System and method of forming nanostructured ferritic alloy
Dial, Laura Cerully; DiDomizio, Richard; Alinger, Matthew Joseph; Huang, Shenyan
2016-07-26
A system for mechanical milling and a method of mechanical milling are disclosed. The system includes a container, a feedstock, and milling media. The container encloses a processing volume. The feedstock and the milling media are disposed in the processing volume of the container. The feedstock includes metal or alloy powder and a ceramic compound. The feedstock is mechanically milled in the processing volume using metallic milling media that includes a surface portion that has a carbon content less than about 0.4 weight percent.
The kinetics of composite particle formation during mechanical alloying
NASA Technical Reports Server (NTRS)
Aikin, B. J. M.; Courtney, T. H.
1993-01-01
The kinetics of composite particle formation during attritor milling of insoluble binary elemental powders have been examined. The effects of processing conditions (i.e., mill power, temperature, and charge ratio) on these kinetics were studied. Particle size distributions and fractions of elemental and composite particles were determined as functions of milling time and processing conditions. This allowed the deduction of phenomenological rate constants describing the propensity for fracture and welding during processing. For the mill-operating conditions investigated, the number of particles in the mill generally decreased with milling time, indicating a greater tendency for particle welding than fracture. Moreover, a bimodal size distribution is often obtained as a result of preferential welding. Copper and chromium 'alloy' primarily by encapsulation of Cr particles within Cu. This form of alloying also occurs in Cu-Nb alloys processed at low mill power and/or for short milling times. For other conditions, however, Cu-Nb alloys develop a lamellar morphology characteristic of mechanically alloyed two-phase ductile metals. Increasing mill power or charge (ball-to-powder weight) ratio (CR) increases the rate of composite particle formation.
Experimental Study in Taguchi Method on Surface Quality Predication of HSM
NASA Astrophysics Data System (ADS)
Ji, Yan; Li, Yueen
2018-05-01
Based on the study of ball milling mechanism and machining surface formation mechanism, the formation of high speed ball-end milling surface is a time-varying and cumulative Thermos-mechanical coupling process. The nature of this problem is that the uneven stress field and temperature field affect the machined surface Process, the performance of the processing parameters in the processing interaction in the elastic-plastic materials produced by the elastic recovery and plastic deformation. The surface quality of machining surface is characterized by multivariable nonlinear system. It is still an indispensable and effective method to study the surface quality of high speed ball milling by experiments.
Investigation of the milling capabilities of the F10 Fine Grind mill using Box-Behnken designs.
Tan, Bernice Mei Jin; Tay, Justin Yong Soon; Wong, Poh Mun; Chan, Lai Wah; Heng, Paul Wan Sia
2015-01-01
Size reduction or milling of the active is often the first processing step in the design of a dosage form. The ability of a mill to convert coarse crystals into the target size and size distribution efficiently is highly desirable as the quality of the final pharmaceutical product after processing is often still dependent on the dimensional attributes of its component constituents. The F10 Fine Grind mill is a mechanical impact mill designed to produce unimodal mid-size particles by utilizing a single-pass two-stage size reduction process for fine grinding of raw materials needed in secondary processing. Box-Behnken designs were used to investigate the effects of various mill variables (impeller, blower and feeder speeds and screen aperture size) on the milling of coarse crystals. Response variables included the particle size parameters (D10, D50 and D90), span and milling rate. Milled particles in the size range of 5-200 μm, with D50 ranging from 15 to 60 μm, were produced. The impeller and feeder speeds were the most critical factors influencing the particle size and milling rate, respectively. Size distributions of milled particles were better described by their goodness-of-fit to a log-normal distribution (i.e. unimodality) rather than span. Milled particles with symmetrical unimodal distributions were obtained when the screen aperture size was close to the median diameter of coarse particles employed. The capacity for high throughput milling of particles to a mid-size range, which is intermediate between conventional mechanical impact mills and air jet mills, was demonstrated in the F10 mill. Prediction models from the Box-Behnken designs will aid in providing a better guide to the milling process and milled product characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.
Synthesis of Nano-Crystalline Cu-Cr Alloy by Mechanical Alloying
NASA Astrophysics Data System (ADS)
Sheibani, S.; Heshmati-Manesh, S.; Ataie, A.
In this paper, the influence of toluene as the process control agent (PCA) and pre-milling on the extension of solid solubility of 7 wt.% Cr in Cu by mechanical alloying in a high energy ball mill was investigated. The structural evolution and microstructure were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques, respectively. The solid solution formation at different conditions was analyzed by copper lattice parameter change during the milling process. It was found that both the presence of PCA and pre-milling of Cr powder lead to faster dissolution of Cr. The mean crystallite size was also calculated and showed to be about 10 nm after 80 hours of milling.
NASA Astrophysics Data System (ADS)
Rodríguez, V. A. Peña; Medina, J. Medina; Marcatoma, J. Quispe; Ayala, Ch. Rojas; Landauro, C. V.; Baggio-Saitovitch, E. M.; Passamani, E. C.
2011-11-01
Nanocrystalline Fe/Zr alloys have been prepared after milling for 9 h the mixture of elemental Fe and Zr powders or the arc-melting produced Fe2Zr alloy by using mechanical alloying and mechanical milling techniques, respectively. X-ray and Mössbauer results of the Fe and Zr powders, mechanically alloyed, suggest that amorphous Fe2Zr phase and \\upalpha-Fe(Zr) nanograins have been produced with relative concentrations of 91% and 9%, respectively. Conversely, the results of the mechanically milled Fe2Zr alloy indicate that nanograins of the Fe2Zr alloy have been formed, surrounded by a magnetic inter-granular phase that are simultaneously dispersed in a paramagnetic amorphous phase.
Chung, Tien-Kan; Yeh, Po-Chen; Lee, Hao; Lin, Cheng-Mao; Tseng, Chia-Yung; Lo, Wen-Tuan; Wang, Chieh-Min; Wang, Wen-Chin; Tu, Chi-Jen; Tasi, Pei-Yuan; Chang, Jui-Wen
2016-02-23
An attachable electromagnetic-energy-harvester driven wireless vibration-sensing system for monitoring milling-processes and cutter-wear/breakage-conditions is demonstrated. The system includes an electromagnetic energy harvester, three single-axis Micro Electro-Mechanical Systems (MEMS) accelerometers, a wireless chip module, and corresponding circuits. The harvester consisting of magnets with a coil uses electromagnetic induction to harness mechanical energy produced by the rotating spindle in milling processes and consequently convert the harnessed energy to electrical output. The electrical output is rectified by the rectification circuit to power the accelerometers and wireless chip module. The harvester, circuits, accelerometer, and wireless chip are integrated as an energy-harvester driven wireless vibration-sensing system. Therefore, this completes a self-powered wireless vibration sensing system. For system testing, a numerical-controlled machining tool with various milling processes is used. According to the test results, the system is fully self-powered and able to successfully sense vibration in the milling processes. Furthermore, by analyzing the vibration signals (i.e., through analyzing the electrical outputs of the accelerometers), criteria are successfully established for the system for real-time accurate simulations of the milling-processes and cutter-conditions (such as cutter-wear conditions and cutter-breaking occurrence). Due to these results, our approach can be applied to most milling and other machining machines in factories to realize more smart machining technologies.
Chung, Tien-Kan; Yeh, Po-Chen; Lee, Hao; Lin, Cheng-Mao; Tseng, Chia-Yung; Lo, Wen-Tuan; Wang, Chieh-Min; Wang, Wen-Chin; Tu, Chi-Jen; Tasi, Pei-Yuan; Chang, Jui-Wen
2016-01-01
An attachable electromagnetic-energy-harvester driven wireless vibration-sensing system for monitoring milling-processes and cutter-wear/breakage-conditions is demonstrated. The system includes an electromagnetic energy harvester, three single-axis Micro Electro-Mechanical Systems (MEMS) accelerometers, a wireless chip module, and corresponding circuits. The harvester consisting of magnets with a coil uses electromagnetic induction to harness mechanical energy produced by the rotating spindle in milling processes and consequently convert the harnessed energy to electrical output. The electrical output is rectified by the rectification circuit to power the accelerometers and wireless chip module. The harvester, circuits, accelerometer, and wireless chip are integrated as an energy-harvester driven wireless vibration-sensing system. Therefore, this completes a self-powered wireless vibration sensing system. For system testing, a numerical-controlled machining tool with various milling processes is used. According to the test results, the system is fully self-powered and able to successfully sense vibration in the milling processes. Furthermore, by analyzing the vibration signals (i.e., through analyzing the electrical outputs of the accelerometers), criteria are successfully established for the system for real-time accurate simulations of the milling-processes and cutter-conditions (such as cutter-wear conditions and cutter-breaking occurrence). Due to these results, our approach can be applied to most milling and other machining machines in factories to realize more smart machining technologies. PMID:26907297
Mechanism of solid state amorphization of glucose upon milling.
Dujardin, N; Willart, J F; Dudognon, E; Danède, F; Descamps, M
2013-02-07
Crystalline α-glucose is known to amorphize upon milling at -15 °C while it remains structurally invariant upon milling at room temperature. We have taken advantage of this behavior to compare the microstructural evolutions of the material in both conditions in order to identify the essential microstructural features which drive the amorphization process upon milling. The investigations have been performed by differential scanning calorimetry and by powder X-ray diffraction. The results indicate that two different amorphization mechanisms occur upon milling: an amorphization at the surface of crystallites due to the mechanical shocks and a spontaneous amorphization of the crystallites as they reach a critical size, which is close to 200 Å in the particular case of α-glucose.
Effect of milling time on microstructure and mechanical properties of Cu-Ni-graphite composites
NASA Astrophysics Data System (ADS)
Wang, Yiran; Gao, Yimin; Li, Yefei; Zhang, Chao; Huang, Xiaoyu; Zhai, Wenyan
2017-09-01
Cu-Ni-graphite composites are intended for application in switch slide baseplate materials. The microstructure of the composites depends strongly on the ball milling time, and a suitable time can significantly improve the properties of the Cu-Ni-graphite composites. In this study, a two-step milling method was employed. The morphology evolution and microstructural features of the powder was characterized at different milling times. Afterwards, the Cu-Ni-graphite composites were prepared in the process of cold pressing, sintering, re-pressing and re-sintering as a function of the different milling times. Finally, both the microstructure and mechanical properties of the Cu-Ni-graphite composites are discussed. The results show that no new phase was generated during the milling process. The morphology evolution of the mixture of Cu/Ni powder changed from spherical-like to cubic-like, plate-like and flake-like with an increasing milling time. The microstructure of the composites consisted of α-phase and graphite. The boundary area and quantity of pores changed as the milling time increased. The relative density, hardness and flexural strength reached maximum values at 15 h of milling time.
Purification of Tronoh Silica Sand via preliminary process of mechanical milling
NASA Astrophysics Data System (ADS)
H, Nazratulhuda; M, Othman
2016-02-01
The purification of Tronoh silica sand is an important step in expanding technical applications of this silica sand. However no research on purifying of Tronoh silica sand has been reported. This study is focused on ball milling technique as a preliminary technique for Tronoh silica sand purification. The objectives are to study the effect of ball milling to the purification of the silica sand and to analyze its characteristics after the ball milling process. The samples before and after milling process were analyzed by using XRF, XRD, SEM and TEM. Results showed that the purity of SiO2 was increased, the size of the particles has been reduced and the surface area has increased. The crystalline phases for the silica before and after 4 hour milling time were remained constant.
Powder metallurgy preparation of Mg-Ca alloy for biodegradable implant application
NASA Astrophysics Data System (ADS)
Annur, D.; Suhardi, A.; Amal, M. I.; Anwar, M. S.; Kartika, I.
2017-04-01
Magnesium and its alloys is a promising candidate for implant application especially due to its biodegradability. In this study, Mg-7Ca alloys (in weight %) were processed by powder metallurgy from pure magnesium powder and calcium granule. Milling process was done in a shaker mill using stainless steel balls in various milling time (3, 5, and 8 hours) followed by compaction and sintering process. Different sintering temperatures were used (450°C and 550°C) to examine the effect of sintering temperature on mechanical properties and corrosion resistance. Microstructure evaluation was characterized by X-ray diffraction, scanning electron microscope and energy dispersive X-ray spectroscopy. Mechanical properties and corrosion behavior were examined through hardness testing and electrochemical testing in Hank’s solution (simulation body fluid). In this report, a prolonged milling time reduced particle size and later affected mechanical properties of Mg alloy. Meanwhile, the phase analysis showed that α Mg, Mg2Ca, MgO phases were formed after the sintering process. Further, this study showed that Mg-Ca alloy with different powder metallurgy process would have different corrosion rate although there were no difference of Ca content in the alloy.
Synthesis of Nano-Crystalline Gamma-TiAl Materials
NASA Technical Reports Server (NTRS)
Hales, Stephen J.; Vasquez, Peter
2003-01-01
One of the principal problems with nano-crystalline materials is producing them in quantities and sizes large enough for valid mechanical property evaluation. The purpose of this study was to explore an innovative method for producing nano-crystalline gamma-TiAl bulk materials using high energy ball milling and brief secondary processes. Nano-crystalline powder feedstock was produced using a Fritsch P4(TM) vario-planetary ball mill recently installed at NASA-LaRC. The high energy ball milling process employed tungsten carbide tooling (vials and balls) and no process control agents to minimize contamination. In a collaborative effort, two approaches were investigated, namely mechanical alloying of elemental powders and attrition milling of pre-alloyed powders. The objective was to subsequently use RF plasma spray deposition and short cycle vacuum hot pressing in order to effect consolidation while retaining nano-crystalline structure in bulk material. Results and discussion of the work performed to date are presented.
Structural and Morphological Evaluation of Nano-Sized MoSi2 Powder Produced by Mechanical Milling
NASA Astrophysics Data System (ADS)
Sameezadeh, Mahmood; Farhangi, Hassan; Emamy, Masoud
Nano-sized intermetallic powders have received great attention owing to their property advantages over conventional micro-sized counterparts. In the present study nano-sized MoSi2 powder has been produced successfully from commercially available MoSi2 (3 μm) by a mechanical milling process carried out for a period of 100 hours. The effects of milling time on size and morphology of the powders were studied by SEM and TEM and image analyzing system. The results indicate that the as-received micrometric powder with a wide size distribution of irregular shaped morphology changes to a narrow size distribution of nearly equiaxed particles with the progress of attrition milling up to 100 h, reaching an average particle size of 71 nm. Structural evolution of milled samples was characterized by XRD to determine the crystallite size and lattice microstrain using Williamson-Hall method. According to the results, the crystallite size of the powders decreases continuously down to 23 nm with increasing milling time up to 100 h and this size refinement is more rapid at the early stages of the milling process. On the other hand, the lattice strain increases considerably with milling up to 65 h and further milling causes no significant changes of lattice strain.
Influencing Factors and Workpiece's Microstructure in Laser-Assisted Milling of Titanium
NASA Astrophysics Data System (ADS)
Wiedenmann, R.; Liebl, S.; Zaeh, M. F.
Today's lightweight components have to withstand increasing mechanical and thermal loads. Therefore, advanced materials substitute conventional materials like steel or aluminum alloys. Using these high-performance materials the associated costs become prohibitively high. This paper presents the newest fundamental investigations on the hybrid process 'laser-assisted milling' which is an innovative technique to process such materials. The focus is on the validation of a numerical database for a CAD/CAM process control unit which is calculated by using simulation. Prior to that, the influencing factors on a laser-assisted milling process are systematically investigated using Design of Experiments (DoE) to identify the main influencing parameters coming from the laser and the milling operation.
Structure and magnetic properties of mechanically alloyed Co and Co-Ni
NASA Astrophysics Data System (ADS)
Guessasma, S.; Fenineche, N.
The influence of milling process on magnetic properties of Co and Co-Ni materials is studied. Coercivity, squareness ratio and crystallite size of mechanically alloyed Co-Ni material were related to milling time. For Co material, coercivity, cubic phase ratio and crystallite size were related to milling energy considering the vial and plateau rotation velocities. An artificial neural network (ANN) combining the parameters for both materials is used to predict magnetic and structure results versus milling conditions. Predicted results showed that milling energy is mostly dependent on the ratio vial to plateau rotation velocities and that milling times larger than 40 h do not add significant change to both structure and magnetic responses. Magnetic parameters were correlated to crystallite size and the D 6 law was only valid for small sizes.
Chemical reaction of hexagonal boron nitride and graphite nanoclusters in mechanical milling systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muramatsu, Y.; Grush, M.; Callcott, T.A.
1997-04-01
Synthesis of boron-carbon-nitride (BCN) hybrid alloys has been attempted extensively by many researchers because the BCN alloys are considered an extremely hard material called {open_quotes}super diamond,{close_quotes} and the industrial application for wear-resistant materials is promising. A mechanical alloying (MA) method of hexagonal boron nitride (h-BN) with graphite has recently been studied to explore the industrial synthesis of the BCN alloys. To develop the MA method for the BCN alloy synthesis, it is necessary to confirm the chemical reaction processes in the mechanical milling systems and to identify the reaction products. Therefore, the authors have attempted to confirm the chemical reactionmore » process of the h-BN and graphite in mechanical milling systems using x-ray absorption near edge structure (XANES) methods.« less
Csanády, Agnes; Sajó, István; Lábár, János L; Szalay, András; Papp, Katalin; Balaton, Géza; Kálmán, Erika
2005-06-01
It is shown that pore-free bulk samples were produced by the high-energy rate forming axis-symmetrical powder compaction method for different application purposes in case of the very different, immiscible Al and Pb metal pair. The starting Al-Pb nanocomposites were made by mechanical milling of atomized Al and Pb powders either in a SPEX 9000 or a Fritsch Pulverisette 4 mill. Due to the conditions that milling was carried out in air, the PbO layer, originally existing at the surface of the atomized Pb powder, ruptured and was also dispersed in the composite. The presence of the nano PbO particles was proven by XRD and TEM (BF, DF, SAED). When the energy of milling was high, the PbO crystallites became so small that they could hardly be seen by XRD technique. Local distribution of the PbO nanoparticles was still visible in a TEM, using the process diffraction method. Both XRD and SAED proved to be useful for the evaluation of the results of the milling process and compaction.
NASA Astrophysics Data System (ADS)
Mosleh, A.; Ehteshamzadeh, M.; Taherzadeh Mousavian, R.
2014-10-01
In this study, a powder mixture with an Al/TiO2 molar ratio of 10/3 was used to form an r-Al2Ti intermetallic matrix composite (IMC) reinforced with α-Al2O3 ceramic by a novel milling technique, called discontinuous mechanical milling (DMM) instead of milling and ignition of the produced thermite. The results of energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) of samples with varying milling time indicate that this fabrication process requires considerable mechanical energy. It is shown that Al2Ti-Al2O3 IMC with small grain size was produced by DMM after 15 h of ball milling. Peaks for γ-TiAl as well as Al2Ti and Al2O3 are observed in XRD patterns after DMM followed by heat treatment. The microhardness of the DMM-treated composite produced after heat treatment was higher than Hv 700.
NASA Astrophysics Data System (ADS)
Qin, Yanlin; Qiu, Xueqing; Zhu, J. Y.
2016-10-01
Here we used dilute oxalic acid to pretreat a kraft bleached Eucalyptus pulp (BEP) fibers to facilitate mechanical fibrillation in producing cellulose nanofibrils using disk milling with substantial mechanical energy savings. We successfully applied a reaction kinetics based combined hydrolysis factor (CHFX) as a severity factor to quantitatively control xylan dissolution and BEP fibril deploymerization. More importantly, we were able to accurately predict the degree of polymerization (DP) of disk-milled fibrils using CHFX and milling time or milling energy consumption. Experimentally determined ratio of fibril DP and number mean fibril height (diameter d), DP/d, an aspect ratio measurer, were independent of the processing conditions. Therefore, we hypothesize that cellulose have a longitudinal hierarchical structure as in the lateral direction. Acid hydrolysis and milling did not substantially cut the “natural” chain length of cellulose fibrils. This cellulose longitudinal hierarchical model provides support for using weak acid hydrolysis in the production of cellulose nanofibrils with substantially reduced energy input without negatively affecting fibril mechanical strength.
Liu, Bo; Peng, Tongjiang; Sun, Hongjuan
2017-06-01
Pollution by the release of heavy metals from tailings constitutes a potential threat to the environment. To characterize the processes governing the release of Mn, Sr, Pb, and U from the uranium mill tailings, a dynamic leaching test was applied for different size of uranium mill tailings samples. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS) were performed to determine the content of Mn, Sr, Pb, and U in the leachates. The release of mobile Mn, Sr, Pb, and U fraction was slow, being faster in the initial stage and then attained a near steady-state condition. The experimental results demonstrate that the release of Mn, Sr, Pb, and U from uranium mill tailings with different size fractions is controlled by a variety of mechanisms. Surface wash-off is the release mechanism for Mn. The main release mechanism of Sr and Pb is the dissolution in the initial leaching stage. For U, a mixed process of wash-off and diffusion is the controlling mechanism.
NASA Astrophysics Data System (ADS)
Chen, Yunsheng; Lu, Xinghua
2018-05-01
The mechanical parts of the fuselage surface of the UAV are easily fractured by the action of the centrifugal load. In order to improve the compressive strength of UAV and guide the milling and planing of mechanical parts, a numerical simulation method of UAV fuselage compression under centrifugal load based on discrete element analysis method is proposed. The three-dimensional discrete element method is used to establish the splitting tensile force analysis model of the UAV fuselage under centrifugal loading. The micro-contact connection parameters of the UAV fuselage are calculated, and the yield tensile model of the mechanical components is established. The dynamic and static mechanical model of the aircraft fuselage milling is analyzed by the axial amplitude vibration frequency combined method. The correlation parameters of the cutting depth on the tool wear are obtained. The centrifugal load stress spectrum of the surface of the UAV is calculated. The meshing and finite element simulation of the rotor blade of the unmanned aerial vehicle is carried out to optimize the milling process. The test results show that the accuracy of the anti - compression numerical test of the UAV is higher by adopting the method, and the anti - fatigue damage capability of the unmanned aerial vehicle body is improved through the milling and processing optimization, and the mechanical strength of the unmanned aerial vehicle can be effectively improved.
Toward a better understanding of the lignin isolation process from wood.
Guerra, Anderson; Filpponen, Ilari; Lucia, Lucian A; Saquing, Carl; Baumberger, Stephanie; Argyropoulos, Dimitris S
2006-08-09
The recently developed protocol for isolating enzymatic mild acidolysis lignins (EMAL) coupled with the novel combination of derivatization followed by reductive cleavage (DFRC) and quantitative (31)P NMR spectroscopy were used to better understand the lignin isolation process from wood. The EMAL protocol is shown to offer access at lignin samples that are more representative of the overall lignin present in milled wood. The combination of DFRC/(31)P NMR provided a detailed picture on the effects of the isolation conditions on the lignin structure. More specifically, we have used vibratory and ball milling as the two methods of wood pulverization and have compared their effects on the lignin structures and molecular weights. Vibratory-milling conditions cause substantial lignin depolymerization. Lignin depolymerization occurs via the cleavage of uncondensed beta-aryl ether linkages, while condensed beta-aryl ethers and dibenzodioxocins were found to be resistant to such mechanical action. Condensation and side chain oxidations were induced mechanochemically under vibratory-milling conditions as evidenced by the increased amounts of condensed phenolic hydroxyl and carboxylic acid groups. Alternatively, the mild mechanical treatment offered by ball milling was found not to affect the isolated lignin macromolecular structure. However, the overall lignin yields were found to be compromised when the mechanical action was less intense, necessitating longer milling times under ball-milling conditions. As compared to other lignin preparations isolated from the same batch of milled wood, the yield of EMAL was about four times greater than the corresponding milled wood lignin (MWL) and about two times greater as compared to cellulolytic enzyme lignin (CEL). Molecular weight distribution analyses also pointed out that the EMAL protocol allows the isolation of lignin fractions that are not accessed by any other lignin isolation procedures.
USDA-ARS?s Scientific Manuscript database
Natural rubber was reinforced with stearic acid modified soy protein particles prepared with a microfluidizing and ball milling process. Longer ball milling time tends to increase tensile strength of the rubber composites. Elastic modulus of the composites increased with the increasing filler concen...
Sasaki, Kengo; Okamoto, Mami; Shirai, Tomokazu; Tsuge, Yota; Fujino, Ayami; Sasaki, Daisuke; Morita, Masahiko; Matsuda, Fumio; Kikuchi, Jun; Kondo, Akihiko
2016-09-01
Rice straw was mechanically milled using a process consuming 1.9MJ/kg-biomass, and 10g/L of unmilled or milled rice straw was used as the carbon source for methane fermentation in a digester containing carbon fiber textile as the supporting material. Milling increased methane production from 226 to 419mL/L/day at an organic loading rate of 2180mg-dichromate chemical oxygen demand/L/day, corresponding to 260mLCH4/gVS. Storage of the fermentation effluent at room temperature decreased the weight of the milled rice straw residue from 3.81 to 1.00g/L. The supernatant of the effluent was subjected to nanofiltration. The black concentrates deposited on the nanofiltration membranes contained 53.0-57.9% lignin. Solution nuclear magnetic resonance showed that lignin aromatic components such as p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) were retained primarily, and major lignin interunit structures such as the β-O-4-H/G unit were absent. This combinational process will aid the complete utilization of rice straw. Copyright © 2016. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chater, R., E-mail: chatersamy@yahoo.fr; Bououdina, M., E-mail: mboudina@gmail.com; Department of Physics, College of Science, University of Bahrain, PO Box 32038, Kingdom of Bahrain
2013-05-01
Nanocrystalline Fe{sub 1–x–y}Ni xCr y (x=20, y=10% in Wt)) alloy samples were prepared by mechanical alloying process. Fe, Ni and Cr elemental powders have been ball milled in a planetary mill for various periods of time, up to 27 h. XRD analysis allowed the determination of the structure of the mixture, the average crystallite size and the lattice parameter as a function of milling time. The complete formation of FeNiCr is observed after 27 h milling. With increasing milling time from 0 to 27 h, it is observed that the lattice parameter increases from 0.3515 to 0.3593 nm as wellmore » as an increase of microstrain from 0.15 to 0.40%, whereas the grain size decreases from 48 to 13 nm. Grain morphology of the powders at different formation stages was examined using SEM. Saturation magnetization and coercive fields derived from the hysteresis curves are discussed as a function of milling time. - Graphical abstract: Fe₇₀Ni₂₀Cr₁₀ nanopowders were prepared using a planetary ball mill. The structure and microstructure vary with milling time; thereby important modifications of the magnetic properties were observed and discussed. Highlights: • Nanocrystalline Fe₇₀Ni₂₀Cr₁₀ alloy were prepared by the mechanical alloying process. • The complete formation of Fe₇₀Ni₂₀Cr₁₀ is observed after 24 h milling. • With increasing milling time, the grain size decreases, while the strain increases. • The SEM images allowed following the morphology of the materials at different stages. • M s and H C derived from the hysteresis are discussed as a function of milling time.« less
Analysis of Particle Distribution in Milled Al-Based Composites Reinforced by B4C Nanoparticles
NASA Astrophysics Data System (ADS)
Alihosseini, Hamid; Dehghani, Kamran
2017-04-01
In the present work, high-energy ball milling was employed to synthesize Al-(5-10 wt.%)B4C nanocomposite. To do this, two sizes of particles of 50 nm as nanoparticles (NPs) and 50 μm as coarse particles (CPs) were used. The morphology and microstructure of the milled powders were characterized using particle size analyzer, SEM, TEM and EDX techniques. It was found that milling time, B4C particles size and their content strongly affect the characteristics of powders during milling process. The breaking and cold welding of powders was recognized as two main competitive actions during the milling process that influence the microstructural evolutions. It was found that the presence of CPs led to the formation of microcracks which promote the fracture process of Al powders. The dominated mechanisms during the fabrication of composites and nanocomposites were discussed. Also, the theoretical issues regarding the changes in morphology and distribution of B4C particles in CPs and NPs are clarified.
USDA-ARS?s Scientific Manuscript database
Two types of corn fiber gum (CFGs) were extracted from corn fibers (CFs) obtained from wet or dry corn milling processing. Both CFGs could form hydrogels when induced via laccase, but CFGs isolated from wet milled CFs exhibited higher storage modulus (G') and better mechanical strength as obtained f...
Mechanical alloying, characterization and consolidation of Ti-Al-Ni alloys
NASA Technical Reports Server (NTRS)
Nash, P.; Higgins, G. T.; Dillinger, N.; Hwang, S. J.; Kim, H.
1989-01-01
Mechanical alloying is being investigated as a processing route for the production of aluminide intermetallics. This program involves powder production and characterization, consolidation and thermal treatments and determination of microstructure-property relationships. An attritor mill is being used to produce powder in lots up to 1000 grams and the processing parameters are being systematically varied to establish the optimum milling conditions. The mill is being instrumented to generate data related to the processing to provide a basis for theoretical modeling. Powder is being characterized using thermal analysis, optical and electron microscopy and X-ray diffraction. Particle size distributions and powder density are being determined. Consolidation of the powder is being approached in several different ways including, cold isostatic pressing, sintering, extrusion and hot pressing. The results of the program so far will be presented and future directions discussed.
Nakach, Mostafa; Authelin, Jean-René; Perrin, Marc-Antoine; Lakkireddy, Harivardhan Reddy
2018-05-19
Currently, the two technologies primarily used for the manufacturing of nano-crystalline suspensions using top down process (i.e. wet milling) are high pressure homogenization (HPH) and stirred bead milling (SBM). These two technologies are based upon different mechanisms, i.e., cavitation forces for HPH and shear forces for stirred bead milling. In this article, the HPH and SBM technologies are compared in terms of the impact of the suspension composition the process parameters and the technological configuration on milling performances and physical quality of the suspensions produced. The data suggested that both HPH and SBM are suitable for producing nano-crystalline suspensions, although SBM appeared more efficient than HPH, since the limit of milling (d 50 ) for SBM was found to be lower than that obtained with HPH (100 nm vs 200 nm). For both these technologies, regardless of the process parameters used for milling and the scale of manufacturing, the relationship of d 90 versus d 50 could be described by a unique master curve (technology signature of milling pathway) outlining that the HPH leads to more uniform particle size distribution as compared to SBM. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ni, Jennifer Elisabeth
Thermoelectric (TE) materials convert between thermal and electrical energy and when used with existing processes will increase the efficiency via waste heat recovery. Ag0.86Pb19SbTe20 (LAST) and Pb0.95Sn0.05Te - PbS 8% (PbTe-PbS) materials exhibit good thermoelectric (TE) properties and have potential applications as thermoelectric generators in waste heat recovery. However, to fully characterize the thermo-mechanical behavior of LAST and PbTe-PbS materials under in-service conditions, knowledge is needed of the mechanical and thermal properties at room and high temperature. As fracture strength is inversely proportional to the square root of grain size, cast ingots were powder processed to reduce powder particle size. Three different powder processing methods were used (1) dry milling only, (2) wet milling only, or (3) dry milling and wet milling The specimens were fabricated using hot pressing or pulsed electric current sintering (PECS) from planetary ball milled powders. In this study, elastic moduli, including Young's modulus, shear modulus, and Poisson's ratio, were measured dynamically using resonant ultrasound spectroscopy (RUS) at room temperature and as a function of temperature up to 663 K. The room temperature porosity dependence for Young's modulus followed the empirical exponential relationships common for brittle materials, with a material dependent constant bPE of 3.5 and 1.3 for LAST and PbTe-PbS, respectively. The room temperature Young's modulus for a theoretically dense specimen was 58.4 +/- 0.6 GPa and 56.2 +/- 0.4 GPa for for LAST and PbTe-PbS, respectively. For hot pressed PbTe-PbS specimens, the Vickers indentations mean hardness and fracture toughness was 1.18 + 0.09 GPa and 0.35 +/- 0.04 MPa·m 1/2. The coefficient of thermal expansion is important for understanding the mechanical response of a material to a thermal gradient or a thermal transient. For PbTe-PbS the coefficient of thermal expansion measured using dilatometry and high temperature x-ray diffraction was 21.5 x 10-6 K -1. Bloating during post-densification annealing was measured indirectly using resonant ultrasound spectroscopy and dilatometry and directly using scanning electron microscopy. Dry milled only PECS-processed PbTe-PbS specimens did not bloat during post-densification anneals up to 936 K. Hot pressed and PECS-processed specimens processed from wet milled and dry and wet milled powder bloated during densification anneals at temperatures over 603 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundberg, Mattias, E-mail: mattias.lundberg@liu.se
Machining of austenitic stainless steels can result in different surface integrities and different machining process parameters will have a great impact on the component fatigue life. Understanding how machining processes affect the cyclic behaviour and microstructure are of outmost importance in order to improve existing and new life estimation models. Milling and electrical discharge machining (EDM) have been used to manufacture rectangular four-point bend fatigue test samples; subjected to high cycle fatigue. Before fatigue testing, surface integrity characterisation of the two surface conditions was conducted using scanning electron microscopy, surface roughness, residual stress profiles, and hardness profiles. Differences in cyclicmore » behaviour were observed between the two surface conditions by the fatigue testing. The milled samples exhibited a fatigue limit. EDM samples did not show the same behaviour due to ratcheting. Recrystallized nano sized grains were identified at the severely plastically deformed surface of the milled samples. Large amounts of bent mechanical twins were observed ~ 5 μm below the surface. Grain shearing and subsequent grain rotation from milling bent the mechanical twins. EDM samples showed much less plastic deformation at the surface. Surface tensile residual stresses of ~ 500 MPa and ~ 200 MPa for the milled and EDM samples respectively were measured. - Highlights: •Milled samples exhibit fatigue behaviour, but not EDM samples. •Four-point bending is not suitable for materials exhibiting pronounced ratcheting. •LAGB density can be used to quantitatively measure plastic deformation. •Grain shearing and rotation result in bent mechanical twins. •Nano sized grains evolve due to the heat of the operation.« less
Synthesis and characterization of nanocrystalline Co-Fe-Nb-Ta-B alloy
NASA Astrophysics Data System (ADS)
Raanaei, Hossein; Fakhraee, Morteza
2017-09-01
In this research work, structural and magnetic evolution of Co57Fe13Nb8Ta4B18 alloy, during mechanical alloying process, have been investigated by using, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, electron dispersive X-ray spectroscopy, differential thermal analysis and also vibrating sample magnetometer. It is observed that at 120 milling time, the crystallite size reaches to about 7.8 nm. Structural analyses show that, the solid solution of the initial powder mixture occurs at160 h milling time. The coercivity behavior demonstrates a rise, up to 70 h followed by decreasing tendency up to final stage of milling process. Thermal analysis of 160 h milling time sample reveals two endothermic peaks. The characterization of annealed milled sample for 160 h milling time at 427 °C shows crystallite size growth accompanied by increasing in saturation magnetization.
Alao, Abdur-Rasheed; Stoll, Richard; Song, Xiao-Fei; Abbott, John R; Zhang, Yu; Abduo, Jaafar; Yin, Ling
2017-10-01
This paper studied surface fracture, roughness and morphology, phase transformations, and material removal mechanisms of lithium metasilicate/disilicate glass ceramics (LMGC/LDGC) in CAD/CAM-milling and subsequent surface treatments. LMGC (IPS e.max CAD) blocks were milled using a chairside dental CAD/CAM milling unit and then treated in sintering, polishing and glazing processes. X-ray diffraction was performed on all processed surfaces. Scanning electron microscopy (SEM) was applied to analyse surface fracture and morphology. Surface roughness was quantitatively characterized by the arithmetic average surface roughness R a and the maximum roughness R z using desktop SEM-assisted morphology analytical software. The CAD/CAM milling induced extensive brittle cracks and crystal pulverization on LMGC surfaces, which indicate that the dominant removal mechanism was the fracture mode. Polishing and sintering of the milled LMGC lowered the surface roughness (ANOVA, p < 0.05), respectively, while sintering also fully transformed the weak LMGC to the strong LDGC. However, polishing and glazing of LDGC did not significantly improve the roughness (ANOVA, p > 0.05). In comparison of all applied fabrication process routes, it is found that CAD/CAM milling followed by polishing and sintering produced the smoothest surface with R a = 0.12 ± 0.08µm and R z = 0.89 ± 0.26µm. Thus , it is proposed as the optimized process route for LMGC/LDGC in dental restorations. This route enables to manufacture LMGC/LDGC restorations with cost effectiveness, time efficiency, and improved surface quality for better occlusal functions and reduced bacterial plaque accumulation. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mostaed, A., E-mail: alimostaed@yahoo.com; Saghafian, H.; Mostaed, E.
2013-02-15
The effects of reinforcing particle type (SiC and TiC) on morphology and precipitation hardening behavior of Al–4.5%Cu based nanocomposites synthesized via mechanical milling were investigated in the current work. In order to study the microstructure and morphology of mechanically milled powder, X-ray diffraction technique, scanning electron microscopy and high resolution transmission electron microscopy were utilized. Results revealed that at the early stages of mechanical milling, when reinforcing particles are polycrystal, the alloying process is enhanced more in the case of using the TiC particles as reinforcement. But, at the final stages of mechanical milling, when reinforcing particles are single crystal,more » the alloying process is enhanced more in the case of using the SiC ones. Transmission electron microscopy results demonstrated that Al–4.5 wt.%Cu based nanocomposite powders were synthesized and confirmed that the mutual diffusion of aluminum and copper occurs through the interfacial plane of (200). The hardness results showed that not only does introducing 4 vol.% of reinforcing particles (SiC or TiC) considerably decrease the porosity of the bulk composite samples, but also it approximately doubles the hardness of Al–4.5 wt.%Cu alloy (53.4 HB). Finally, apart from TEM and scanning electron microscopy observation which are localized, a decline in hardness in the TiC and SiC contained samples, respectively, after 1.5 and 2 h aging time at 473 K proves the fact that the size of SiC particles is smaller than the size of the TiC ones. - Highlights: ► HRTEM results show mutual diffusion of Al and Cu occurs through the (200) planes. ► TiC particles enhance alloying process more than the SiC ones at the early stages of MM. ► SiC particles enhance alloying process more than the TiC ones at the final stages of MM.« less
Magnesium Nanocomposites: Current Status and Prospects for Army Applications
2011-09-01
and reinforcement that cannot be produced through melt-based processing . In mechanical alloying , the powder and milling media are placed into...mixing vessels that are agitated in a high-energy milling machine. During the mixing process , the powder particles undergo repeated cycles of cold ...welding and fracturing of interparticle bonds. At the end of the process , the powder has been alloyed to the desired composition. Although typically used
NASA Technical Reports Server (NTRS)
Orth, N. W.; Quatinetz, M.; Weeton, J. W.
1970-01-01
Mechanical process produces dispersion-strengthened metal alloys. Power surface contamination during milling is removed by a cleaning method that involves heating thin shapes or partially-compacted milled powder blends in hydrogen to carefully controlled temperature schedules.
Mechanical Alloying of W-Mo-V-Cr-Ta High Entropy Alloys
NASA Astrophysics Data System (ADS)
Das, Sujit; Robi, P. S.
2018-04-01
Recent years have seen the emergence of high-entropy alloys (HEAs) consisting of five or more elements in equi-atomic or near equi-atomic ratios. These alloys in single phase solid solution exhibit exceptional mechanical properties viz., high strength at room and elevated temperatures, reasonable ductility and stable microstructure over a wide range of temperatures making it suitable for high temperature structural materials. In spite of the attractive properties, processing of these materials remains a challenge. Reports regarding fabrication and characterisation of a few refractory HEA systems are available. The processing of these alloys have been carried out by arc melting of small button sized materials. The present paper discusses the development of a novel refractory W-Mo-V-Cr-Ta HEA powder based on a new alloy design concept. The powder mixture was milled for time periods up to 64 hours. Single phase alloy powder having body centred cubic structure was processed by mechanical alloying. The milling characteristics and extent of alloying during the ball milling were characterized using X-ray diffractiometre (XRD), field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). A single phase solid solution alloy powder having body-centred cubic (BCC) structure with a lattice parameter of 3.15486 Å was obtained after milling for 32 hours.
Effect of milling on particle shape and surface energy heterogeneity of needle-shaped crystals.
Ho, Raimundo; Naderi, Majid; Heng, Jerry Y Y; Williams, Daryl R; Thielmann, Frank; Bouza, Peter; Keith, Adam R; Thiele, Greg; Burnett, Daniel J
2012-10-01
Milling and micronization of particles are routinely employed in the pharmaceutical industry to obtain small particles with desired particle size characteristics. The aim of this study is to demonstrate that particle shape is an important factor affecting the fracture mechanism in milling. Needle-shaped crystals of the β polymorph of D-mannitol were prepared from recrystallization in water. A portion of the recrystallized materials was ball-milled. Unmilled and milled sieved fractions of recrystallized D-mannitol were analyzed by dynamic image analysis (DIA) and inverse gas chromatography (IGC) at finite concentration to explain the breakage/fracture behavior. In the process of ball-milling, D-mannitol preferentially fractured along their shortest axis, exposing (011) plane with increased hydrophilicity and increased bounding rectangular aspect ratio. This is in contrary to attachment energy modeling which predicts a fracture mechanism across the (010) plane with increased hydrophobicity, and small change in particle shape. Crystal size, and more importantly, crystal shape and facet-specific mechanical properties, can dictate the fracture/cleavage behavior of organic crystalline materials. Thorough understanding of the crystal slip systems, combining attachment energy prediction with particle shape and surface characterization using DIA and IGC, are important in understanding fracture behavior of organic crystalline solids in milling and micronization.
NASA Astrophysics Data System (ADS)
Basu, P.; Jian, P. F.; Seong, K. Y.; Seng, G. S.; Masrom, A. K.; Hussain, Z.; Aziz, A.
2010-03-01
Carbides of Ti and V have been synthesized directly from their oxides and ferroalloys through mechanical milling and heat treatment. The powder mixtures are milled in a planetary ball mill from 15-80 hours and subsequently heat treated at 1000-1300° C for TiO2-C mixtures, at 500-550° C for V2O5-C mixtures and at 600-1000° C for (Fe-V)-C mixtures. The milled and heat treated powders are characterized by SEM, EDAX, XRD, and BET techniques. Nanostructured TiC has been successfully synthesized under suitable processing conditions. However, carbides of vanadium is unidentified even though possibilities of V2O5-C reaction are indicated with an extent of induced amorphism in the powder mixture. Density, specific surface area and particle size of the milled and heat treated mixtures are correlated with heat treatment temperatures. Similar attempts are also made to synthesize vanadium carbides from industrial grade Fe-V.
Study of Initial Stages of Ball-Milling of Cu Powder Using X-ray Diffraction
NASA Astrophysics Data System (ADS)
Gayathri, N.; Mukherjee, Paramita
2018-04-01
The initial stage of size refinement of Cu powder is studied using detailed X-ray diffraction (XRD) analysis to understand the mechanism of formation of nanomaterials during the ball-milling process. The study was restricted to samples obtained for milling time up to 240 min to understand the deformation mechanism at the early stages of ball milling. Various model based approaches for the analysis of the XRD were used to study the evolution of the microstructural parameters such as domain size and microstrain along the different crystallographic planes. It was seen that the domain size saturates at a low value along the (311) plane whereas the size along the (220) and (200) plane is still higher. The r.m.s microstrain showed a non-monotonic change along the different crystallographic directions up to the milling time of 240 min.
Transformations in oxides induced by high-energy ball-milling.
Šepelák, Vladimir; Bégin-Colin, Sylvie; Le Caër, Gérard
2012-10-21
This paper, by no means exhaustive, focuses on high-energy ball-milling of oxides, on their mechanically induced changes and on the consequences of such changes on their physical and chemical properties. High-energy ball-milling offers a fortunate combination of technical simplicity and of complexity both of physical mechanisms which act during milling and of mechanosynthesized materials. Its basic interest, which stems from the large diversity of routes it offers to prepare oxides either directly or indirectly, is illustrated with various families of oxides. The direct path is to be favoured when as-milled oxides are of interest per se because of their nanocrystalline characteristics, their defects or their modified structures which result from mechanically driven phase transformations. The indirect path consists of a sequence of steps starting with mechanically activated oxides which may be subsequently just annealed or submitted to a combination of thermal treatments, with the possible occurrence of various chemical reactions, to prepare the sought-after materials with potential gains in processing temperatures and times. High energy ball-milling of oxides is more and more currently used to activate powders and to prepare nano-oxides at moderate temperatures. The interest of an activation step is well illustrated by the broad development of doped titania powders, synthesized by heat treatment of pre-ground reactants, for photocatalytic applications or to develop antibacterial materials. Another important class of applications of high-energy ball-milling is the formation of composites. It is exemplified here with the case of oxide-dispersed strengthened alloys whose properties are considerably improved by a dispersion of ultra-stable nanosized oxides whose formation mechanisms were recently described. The basic understanding of the mechanisms by which oxides or oxide mixtures evolve by high-energy ball-milling appears to be less advanced than it is for metallic materials essentially because of the overall complexity of the oxide structures, of their surfaces, of their defects and of their mechanical behavior.
Biomechanical properties of wheat grains: the implications on milling.
Hourston, James E; Ignatz, Michael; Reith, Martin; Leubner-Metzger, Gerhard; Steinbrecher, Tina
2017-01-01
Millennia of continuous innovation have driven ever increasing efficiency in the milling process. Mechanically characterizing wheat grains and discerning the structure and function of the wheat bran layers can contribute to continuing innovation. We present novel shear force and puncture force testing regimes to characterize different wheat grain cultivars. The forces endured by wheat grains during the milling process can be quantified, enabling us to measure the impact of commonly applied grain pretreatments, such as microwave heating, extended tempering, enzyme and hormone treatments on grains of different 'hardness'. Using these methods, we demonstrate the importance of short tempering phases prior to milling and identify ways in which our methods can detect differences in the maximum force, energy and breaking behaviours of hard and soft grain types. We also demonstrate for the first time, endosperm weakening in wheat, through hormone stratification on single bran layers. The modern milling process is highly refined, meaning that small, cultivar specific, adjustments can result in large increases in downstream profits. We believe that methods such as these, which enable rapid testing of milling pretreatments and material properties can help to drive an innovation process that has been core to our industrial efforts since prehistory. © 2017 The Authors.
Biomechanical properties of wheat grains: the implications on milling
Reith, Martin
2017-01-01
Millennia of continuous innovation have driven ever increasing efficiency in the milling process. Mechanically characterizing wheat grains and discerning the structure and function of the wheat bran layers can contribute to continuing innovation. We present novel shear force and puncture force testing regimes to characterize different wheat grain cultivars. The forces endured by wheat grains during the milling process can be quantified, enabling us to measure the impact of commonly applied grain pretreatments, such as microwave heating, extended tempering, enzyme and hormone treatments on grains of different ‘hardness’. Using these methods, we demonstrate the importance of short tempering phases prior to milling and identify ways in which our methods can detect differences in the maximum force, energy and breaking behaviours of hard and soft grain types. We also demonstrate for the first time, endosperm weakening in wheat, through hormone stratification on single bran layers. The modern milling process is highly refined, meaning that small, cultivar specific, adjustments can result in large increases in downstream profits. We believe that methods such as these, which enable rapid testing of milling pretreatments and material properties can help to drive an innovation process that has been core to our industrial efforts since prehistory. PMID:28100826
The effects of processing techniques on magnesium-based composite
NASA Astrophysics Data System (ADS)
Rodzi, Siti Nur Hazwani Mohamad; Zuhailawati, Hussain
2016-12-01
The aim of this study is to investigate the effect of processing techniques on the densification, hardness and compressive strength of Mg alloy and Mg-based composite for biomaterial application. The control sample (pure Mg) and Mg-based composite (Mg-Zn/HAp) were fabricated through mechanical alloying process using high energy planetary mill, whilst another Mg-Zn/HAp composite was fabricated through double step processing (the matrix Mg-Zn alloy was fabricated by planetary mill, subsequently HAp was dispersed by roll mill). As-milled powder was then consolidated by cold press into 10 mm diameter pellet under 400 MPa compaction pressure before being sintered at 300 °C for 1 hour under the flow of argon. The densification of the sintered pellets were then determined by Archimedes principle. Mechanical properties of the sintered pellets were characterized by microhardness and compression test. The results show that the density of the pellets was significantly increased by addition of HAp, but the most optimum density was observed when the sample was fabricated through double step processing (1.8046 g/cm3). Slight increment in hardness and ultimate compressive strength were observed for Mg-Zn/HAp composite that was fabricated through double step processing (58.09 HV, 132.19 MPa), as compared to Mg-Zn/HAp produced through single step processing (47.18 HV, 122.49 MPa).
Saheb, Nouari; Aliyu, Ismaila Kayode; Hassan, Syed Fida; Al-Aqeeli, Nasser
2014-09-19
Development of homogenous metal matrix nanocomposites with uniform distribution of nanoreinforcement, preserved matrix nanostructure features, and improved properties, was possible by means of innovative processing techniques. In this work, Al-SiC nanocomposites were synthesized by mechanical milling and consolidated through spark plasma sintering. Field Emission Scanning Electron Microscope (FE-SEM) with Energy Dispersive X-ray Spectroscopy (EDS) facility was used for the characterization of the extent of SiC particles' distribution in the mechanically milled powders and spark plasma sintered samples. The change of the matrix crystallite size and lattice strain during milling and sintering was followed through X-ray diffraction (XRD). The density and hardness of the developed materials were evaluated as function of SiC content at fixed sintering conditions using a densimeter and a digital microhardness tester, respectively. It was found that milling for 24 h led to uniform distribution of SiC nanoreinforcement, reduced particle size and crystallite size of the aluminum matrix, and increased lattice strain. The presence and amount of SiC reinforcement enhanced the milling effect. The uniform distribution of SiC achieved by mechanical milling was maintained in sintered samples. Sintering led to the increase in the crystallite size of the aluminum matrix; however, it remained less than 100 nm in the composite containing 10 wt.% SiC. Density and hardness of sintered nanocomposites were reported and compared with those published in the literature.
Systematic comparison of mechanical and thermal sludge disintegration technologies.
Wett, B; Phothilangka, P; Eladawy, A
2010-06-01
This study presents a systematic comparison and evaluation of sewage sludge pre-treatment by mechanical and thermal techniques. Waste activated sludge (WAS) was pre-treated by separate full scale Thermo-Pressure-Hydrolysis (TDH) and ball milling facilities. Then the sludge was processed in pilot-scale digestion experiments. The results indicated that a significant increase in soluble organic matter could be achieved. TDH and ball milling pre-treatment could offer a feasible treatment method to efficiently disintegrate sludge and enhance biogas yield of digestion. The TDH increased biogas production by ca. 75% whereas ball milling allowed for an approximately 41% increase. The mechanisms of pre-treatment were investigated by numerical modeling based on Anaerobic Digestion Model No. 1 (ADM1) in the MatLab/SIMBA environment. TDH process induced advanced COD-solubilisation (COD(soluble)/COD(total)=43%) and specifically complete destruction of cell mass which is hardly degradable in conventional digestion. While the ball mill technique achieved a lower solubilisation rate (COD(soluble)/COD(total)=28%) and only a partial destruction of microbial decay products. From a whole-plant prospective relevant release of ammonia and formation of soluble inerts have been observed especially from thermal hydrolysis. Copyright 2009 Elsevier Ltd. All rights reserved.
Assessing mechanical deconstruction of softwood cell wall for cellulosic biofuels production
NASA Astrophysics Data System (ADS)
Jiang, Jinxue
Mechanical deconstruction offers a promising strategy to overcome biomass recalcitrance for facilitating enzymatic hydrolysis of pretreated substrates with zero chemicals input and presence of inhibitors. The goal of this dissertation research is to gain a more fundamental understanding on the impact of mechanical pretreatment on generating digestible micronized-wood and how the physicochemical characteristics influence the subsequent enzymatic hydrolysis of micronized wood. The initial moisture content of feedstock was found to be the key factor affecting the development of physical features and enzymatic hydrolysis of micronized wood. Lower moisture content resulted in much rounder particles with lower crystallinity, while higher moisture content resulted in the milled particles with larger aspect ratio and crystallinity. The enzymatic hydrolysis of micronized wood was improved as collectively increasing surface area (i.e., reducing particle size and aspect ratio) and decreasing crystallinity during mechanical milling pretreatment. Energy efficiency analysis demonstrated that low-moisture content feedstock with multi-step milling process would contribute to cost-effectiveness of mechanical pretreatment for achieving more than 70% of total sugars conversion. In the early stage of mechanical pretreatment, the types of cell fractures were distinguished by the initial moisture contents of wood, leading to interwall fracture at the middle lamella region for low moisture content samples and intrawall fracture at the inner cell wall for high moisture content samples. The changes in cell wall fractures also resulted in difference in the distribution of surface chemical composition and energy required for milling process. In an effort to exploit the underlying mechanism associated with the reduced recalcitrance in micronized wood, we reported the increased enzymatic sugar yield and correspondingly structural and accessible properties of micronized feedstock. Electronic microscopy analysis detailed the structural alternation of cell wall during mechanical process, including cell fracture and delamination, ultrastructure disintegration, and cell wall fragments amorphization, as coincident with the particle size reduction. It was confirmed with Simons' staining that longer milling time resulted in increased substrate accessibility and porosity. The changes in cellulose molecular structure with respect to degree of polymerization (DP) and crystallinity index (CrI) also benefited to decreasing recalcitrance and facilitating enzymatic hydrolysis of micronized wood.
Discrete element method as an approach to model the wheat milling process
USDA-ARS?s Scientific Manuscript database
It is a well-known phenomenon that break-release, particle size, and size distribution of wheat milling are functions of machine operational parameters and grain properties. Due to the non-uniformity of characteristics and properties of wheat kernels, the kernel physical and mechanical properties af...
Production, microstructure and mechanical properties of two different austenitic ODS steels
NASA Astrophysics Data System (ADS)
Gräning, T.; Rieth, M.; Hoffmann, J.; Möslang, A.
2017-04-01
This article is to summarize and examine processing parameters of novel developed austenitic oxide dispersed strengthened (ODS) steels. Comparing hot-rolled and extruded conditions after the same degree of deformation after and before annealing, are just some examples to give insights into the complex processing of austenitic ODS steels. One of the major drawbacks of the material is the more sophisticated production process. Due to a ductile matrix material with an increased stickiness during milling, a two-step milling procedure with the use of ZrO2 milling balls was applied to raise the production yield and to use the abrasion of the ZrO2 as an additional element to facilitate the formation of nano-sized precipitates. To get a better understanding how the different powder particle sizes after milling affect final properties, sieving was applied and revealed a serious effect in terms of precipitate size, distribution and mechanical properties. Grain sizes in relation to the precipitate size, annealing time and processing parameters were determined and compared to the mechanical properties. Hardness and tensile test have pointed out, that the precipitate size and number are more important in respect to the ultimate tensile strength than the grain size and that in this study hot-rolled material exhibited the better properties. The investigation of the microstructure illustrated the stability of precipitates during annealing at 1100 °C for 40 h. These heat treatments also led to a consistent grain size, due to the pinning effect of the grain boundaries, caused by precipitates.
Nordin, Jamillah Amer; Prajitno, Djoko Hadi; Saidin, Syafiqah; Nur, Hadi; Hermawan, Hendra
2015-06-01
Hydroxyapatite (HAp) is an attractive bioceramics due to its similar composition to bone mineral and its ability to promote bone-implant interaction. However, its low strength has limited its application as load bearing implants. This paper presented a work focusing on the improvement of HAp mechanical property by synthesizing iron (Fe)-reinforced bovine HAp nanocomposite powders via mechanosynthesis method. The synthesis process was performed using high energy milling at varied milling time (3, 6, 9, and 12h). The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM). Its mechanical properties were investigated by micro-Vicker's hardness and compression tests. Results showed that milling time directly influenced the characteristics of the nanocomposite powders. Amorphous BHAp was formed after 9 and 12h milling in the presence of HPO4(2-) ions. Continuous milling has improved the crystallinity of Fe without changing the HAp lattice structure. The nanocomposite powders were found in spherical shape, agglomerated and dense after longer milling time. The hardness and Young's modulus of the nanocomposites were also increased at 69% and 66%, respectively, as the milling time was prolonged from 3 to 12h. Therefore, the improvement of the mechanical properties of nanocomposite was attributed to high Fe crystallinity and homogenous, dense structure produced by mechanosynthesis. Copyright © 2015 Elsevier B.V. All rights reserved.
Influence of in situ and ex situ ZrO2 addition on the properties of MgB2
NASA Astrophysics Data System (ADS)
Chen, S. K.; Glowacki, B. A.; MacManus-Driscoll, J. L.; Vickers, M. E.; Majoros, M.
2004-02-01
The effect of ZrO2 addition on the properties of MgB2 has been studied using in situ and ex situ processes. The in situ process was performed by introducing ZrO2 from the milling tools into MgB2 throughout the planetary ball milling, whereas the ex situ process was accomplished by mixing ZrO2 from the milling tools with MgB2 by hand grinding in a mortar. A detectable amount of ZrO2 was present in MgB2 after 4 h of milling during the in situ process and its content increased with milling time as expected. The 400 h milled powder was partially amorphized and showed the formation of a minority ZrB2 phase. For milling up to 100 h, diamagnetism of MgB2 was significantly reduced while Tc remained unchanged. Superconductivity was totally destroyed after 148 h of milling. The loss of superconductivity is attributed to the effect of disordering induced by mechanical milling. As a result of in situ ZrO2 addition, the initial Tc and crystal structure of MgB2 could not be restored upon annealing. With increasing milling time, the expansion of lattice parameters in both the a-axis and c-axis may be due to possible substitution of Mg or B by Zr. The result from the magnetic measurement shows that Jc of MgB2 is deteriorated by in situ ZrO2 addition. On the other hand, ex situ ZrO2 addition with annealing did not degrade the Tc of MgB2.
Solid state amorphization in the Al-Fe binary system during high energy milling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urban, P., E-mail: purban@us.es; Montes, J. M.; Cintas, J.
2013-12-16
In the present study, mechanical alloying (MA) of Al75Fe25 elemental powders mixture was carried out in argon atmosphere, using a high energy attritor ball mill. The microstructure of the milled products at different stages of milling was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The results showed that the amorphous phase content increased by increasing the milling time, and after 50 hours the amorphization process became complete. Heating the samples resulted in the crystallization of the synthesized amorphous alloys and the appearance of the equilibrium intermetallic compounds Al{sub 5}Fe{submore » 2}.« less
Preparation of a Bimetal Using Mechanical Alloying for Environmental or Industrial Use
NASA Technical Reports Server (NTRS)
Quinn, Jacqueline; Geiger, Cherie; Clausen, Christian
2013-01-01
Following the 1976 Toxic Substances Control Act ban on their manufacture, PCBs remain an environmental threat. PCBs are known to bio-accumulate and concentrate in fatty tissues. Further complications arise from the potential for contamination of commercial mixtures with other more toxic chlorinated compounds such as polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Until recently, only one option was available for the treatment of PCB-contaminated materials: incineration. This may prove to be more detrimental to the environment than the PCBs themselves due to the potential for formation of PCDDs. Metals have been used for the past ten years for the remediation of halogenated solvents and other contaminants in the environment; however, zero-valent metals alone do not possess the activity required to dehalogenate PCBs. Palladium has been shown to act as an excellent catalyst for the dechlorination of PCBs with active metals. This invention is a method for the production of a palladium/magnesium bimetal capable of dechlorinating PCBs using mechanical milling/mechanical alloying. Other base metals and catalysts may also be alloyed together (e.g., nickel or zinc) to create a similarly functioning catalyst system. Several bimetal catalyst systems currently can be used for processes such as hydrogen peroxide synthesis, oxidation of ethane, selective oxidation, hydrogenation, and production of syngas for further conversion to clean fuels. The processes for making these bimetal catalysts often involve vapor deposition. This technology provides an alternative to vapor deposition that may provide equally active catalysts. A hydrogenation catalyst including a base material coated with a catalytic metal is made using mechanical milling techniques. The hydrogenation catalysts are used as an excellent catalyst for the dehalogenation of contaminated compounds and the remediation of other industrial compounds. The mechanical milling technique is simpler and cheaper than previously used methods for producing hydrogenation catalysts. Preferably, the hydrogenation catalyst is a bimetallic particle formed from a zero-valent iron or zero-valent magnesium particle coated with palladium that is impregnated onto a high-surface-area graphite support. The zero-valent metal particles should be microscale or nanoscale zero-valent magnesium or zero-valent iron particles. Other zero-valent metal particles and combinations may be used. Additionally, the base material may be selected from a variety of minerals including, but not limited to, alumina and zeolites. The catalytic metal is preferably selected from the group consisting of noble metals and transition metals, preferably palladium. The mechanical milling process includes milling the base material with a catalytic metal impregnated into a high-surface-area support to form the hydrogenation catalyst. In a preferred mechanical milling process, a zero-valent metal particle is provided as the base material, preferably having a particle size of less than about 10 microns, preferably 0.1 to 10 microns or smaller, prior to milling. The catalytic metal is supported on a conductive carbon support structure prior to milling. For example, palladium may be impregnated on a graphite support. Other support structures such as semiconductive metal oxides may also be used.
NASA Astrophysics Data System (ADS)
Kumar, Anil; Chopkar, Manoj
2018-05-01
Effect of Si addition on phase formation of AlCoCrCuFeMnSix (x=0, 0.3, 0.6 and 0.9) high entropy alloy have been investigated in this work. The alloys are prepared by mechanical alloying and vacuum arc melting technique. The X-ray diffraction results reveals the formation of mixture of face centered and body centered cubic solid solution phases in milled powders. The addition of Si favours body centered cubic structure formation during milling process. Whereas, after melting the milled powders, body centered phases formed during milling is partial transformed into sigma phases. XRD results were also correlated with the SEM elemental mapping of as casted samples. Addition of Si favours σ phase formation in the as cast samples.
Effect of ball milling materials and methods on powder processing of Bi2223 superconductors
NASA Astrophysics Data System (ADS)
Yavuz, M.; Maeda, H.; Vance, L.; Liu, H. K.; Dou, S. X.
1998-10-01
Various milling systems consisting of agate and polypropylene grinding containers, agate and YSZ balls, and dry and wet milling were used in planetary ball-milling and YSZ balls and YSZ container were used in wet and dry attrition milling. The differently milled powders were then evaluated by measurements of particle size, surface area, porosity, size distribution and chemical analysis of the Si, Zr and C contents. The results show that dry milling is much more efficient for particle size reduction in planetary milling than wet milling, whereas wet milling and dry milling gave quite similar results in attrition milling. Meanwhile 0953-2048/11/10/056/img6 contamination was found in powder milled with an agate container with agate balls. Some C contamination from the polypropylene container was detected after milling, but negligible Zr from YSZ balls and C from the grinding carrier (hexane). It was found that after 1 h milling in the planetary mill fracture mechanisms transform from the elastic to the plastic region. Therefore, further milling is not very effective. It was also shown that the Bi2212 phase decomposes into several non-superconducting oxides such as 0953-2048/11/10/056/img7, CuO and a main amorphous phase after extensive dry milling.
Optical properties of hydroxyapatite obtained by mechanical alloying
NASA Astrophysics Data System (ADS)
Silva, C. C.; Thomazini, D.; Pinheiro, A. G.; Lanciotti, F.; Sasaki, J. M.; Góes, J. C.; Sombra, A. S. B.
2002-09-01
Calcium phosphate based bioceramics, mainly in the form of hydroxyapatite (HA), have been in use in medicine and dentistry for the last 20 years. Applications include coatings of orthopaedic and dental implants, alveolar ridge augmentation, maxillofacial surgery, otolaryngology, and scaffolds for bone growth and as powders in total hip and knee surgery. These materials exhibit several problems of handling and fabrication, which can be overcome by mixing with a suitable binder. In this paper, mechanical alloying has been used successfully to produce nanocrystalline powders of HA using five different experimental procedures. The milled HA were studied by X-ray powder diffraction, infrared and Raman scattering spectroscopy. For four different procedures, HA was obtained after a couple of hours of milling (on an average, 20 h of milling depending on the reaction procedure). The XRD patterns indicate that the grain size is within the range of 29-103 nm. This milling process, used to produce HA, presents the advantage that melting is not necessary and the powder obtained is nanocrystalline with extraordinary mechanical properties. The material can be compacted and transformed in solid ceramic samples. The high efficiency of the process opens a way to produce commercial amount of nanocrystalline HA. Due to the nanocrystalline character of this powder, their mechanical properties have changed and for this reason a pressure of 1 GPa is enough to shape the sample into any geometry.
Mechanically Induced Graphite-Nanodiamonds-Phase Transformations During High-Energy Ball Milling
NASA Astrophysics Data System (ADS)
El-Eskandarany, M. Sherif
2017-05-01
Due to their unusual mechanical, chemical, physical, optical, and biological properties, nearly spherical-like nanodiamonds have received much attention as desirable advanced nanomaterials for use in a wide spectrum of applications. Although, nanodiamonds can be successfully synthesized by several approaches, applications of high temperature and/or high pressure may restrict the real applications of such strategic nanomaterials. Distinct from the current preparation approaches used for nanodiamonds preparation, here we show a new process for preparing ultrafine nanodiamonds (3-5 nm) embedded in a homogeneous amorphous-carbon matrix. Our process started from high-energy ball milling of commercial graphite powders at ambient temperature under normal atmospheric helium gas pressure. The results have demonstrated graphite-single wall carbon nanotubes-amorphous-carbon-nanodiamonds phase transformations carried out through three subsequent stages of ball milling. Based on XRD and RAMAN analyses, the percentage of nanodiamond phase + C60 (crystalline phase) produced by ball milling was approximately 81%, while the amorphous phase amount was 19%. The pressure generated on the powder together the with temperature increase upon the ball-powder-ball collision is responsible for the phase transformations occurring in graphite powders.
Reduction of metal oxides through mechanochemical processing
Froes, Francis H.; Eranezhuth, Baburaj G.; Senkov, Oleg N.
2000-01-01
The low temperature reduction of a metal oxide using mechanochemical processing techniques. The reduction reactions are induced mechanically by milling the reactants. In one embodiment of the invention, titanium oxide TiO.sub.2 is milled with CaH.sub.2 to produce TiH.sub.2. Low temperature heat treating, in the range of 400.degree. C. to 700.degree. C., can be used to remove the hydrogen in the titanium hydride.
NASA Astrophysics Data System (ADS)
Tong, J. B.; Lu, X.; Liu, C. C.; Wang, L. N.; Qu, X. H.
2015-03-01
High-Nb-containing TiAl alloys are a new generation of materials for high-temperature structural applications because of their superior high-temperature mechanical properties. The alloy powders can be widely used for additive manufacturing, thermal spraying, and powder metallurgy. Because of the difficulty of making microfine spherical alloy powders in quantity by conventional techniques, a compact method was proposed, which consisted of two-step ball milling of elemental powders and subsequent radio frequency (RF) argon plasma spheroidization. In comparison with conventional mechanical alloying techniques, the two-step milling process can be used to prepare alloy powders with uniform scale in a short milling time with no addition of process control agent. This makes the process effective and less contaminating. After RF argon plasma spheroidization, the powders produced exhibit good sphericity, and the number-average diameter is about 8.2 μm with a symmetric unimodal particle size distribution. The powders perform high composition homogeneity and contain predominately supersaturated α 2-Ti3Al phase. The oxygen and carbon contents of the spheroidized powder are 0.47% and 0.050%, respectively.
Xu, Wei; Li, Ming; Wen, Cuie; Lv, Shaomin; Liu, Chengcheng; Lu, Xin; Qu, Xuanhui
2018-03-30
A biocompatible Ti-28Nb-35.4Zr alloy used as bone implant was fabricated through the powder metallurgy process. The effects of mechanical milling and sintering temperatures on the microstructure and mechanical properties were investigated systematically, before in vitro biocompatibility of full dense Ti-28Nb-35.4Zr alloy was evaluated by cytotoxicity tests. The results show that the mechanical milling and sintering temperatures have significantly effects on the density and mechanical properties of the alloys. The relative density of the alloy fabricated by the atomized powders at 1500 °C is only 83 ± 1.8%, while the relative density of the alloy fabricated by the ball-milled powders can rapidly reach at 96.4 ± 1.3% at 1500 °C. When the temperature was increased to 1550 °C, the alloy fabricated by ball-milled powders achieve full density (relative density is 98.1 ± 1.2%). The PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C can achieve a wide range of mechanical properties, with a compressive yield strength of 1058 ± 35.1 MPa, elastic modulus of 50.8 ± 3.9 GPa, and hardness of 65.8 ± 1.5 HRA. The in vitro cytotoxicity test suggests that the PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C has no adverse effects on MC3T3-E1 cells with cytotoxicity ranking of 0 grade, which is nearly close to ELI Ti-6Al-4V or CP Ti. These properties and the net-shape manufacturability makes PM-fabricated Ti-28Nb-35.4Zr alloy a low-cost, highly-biocompatible, Ti-based biomedical alloy.
Nanocrystalline Nb-Al-Ge mixtures fabricated using wet mechanical milling
NASA Astrophysics Data System (ADS)
Pusceddu, E.; Charlton, S.; Hampshire, D. P.
2008-02-01
An investigation into Nb-Al-Ge mixtures is presented with special attention to the superconducting compounds Nb3(Al1-xGex) with x = 0, 0.3 and 1, which are reported to provide the highest upper critical field values for Nb-based compounds. Wet mechanical milling using copper milling media and distilled water as a process control agent (PCA) was used with the intention of improving the yield, properties and the performance of these materials. Very high yields of nanocrystalline material were achieved but significant copper contamination occurred - confirmed using inductively-coupled-plasma atomic-emission-spectroscopy. Simultaneous thermogravimetric measurements and differential scanning calorimetry were performed on powders milled for up to 20 h with different PCA content, to quantify the work done on the powders. A typical grain size of a few nm was obtained for the Nb-Al-Ge mixtures after several hours milling. Powder ground for 20 h with 5% PCA was processed using a hot isostatic press (HIP) operating at 2000 atm and temperatures up to 750 °C. The room temperature resistivity decreased as the temperature of the HIPing increased. Unfortunately, despite the nanocrystalline microstructure of the powders and the high HIP temperatures, if superconducting material was formed it was below the detection level of resistivity, Ac. susceptibility and SQUID measurements. We conclude that during milling there was widespread contamination of the powders by the PCA so that milling with distilled water as a PCA is not to be recommended for fabricating nanocrystalline Nb3(Al1-xGex) A15 superconducting compounds.
Analyzing the effect of tool edge radius on cutting temperature in micro-milling process
NASA Astrophysics Data System (ADS)
Liang, Y. C.; Yang, K.; Zheng, K. N.; Bai, Q. S.; Chen, W. Q.; Sun, G. Y.
2010-10-01
Cutting heat is one of the important physical subjects in the cutting process. Cutting heat together with cutting temperature produced by the cutting process will directly have effects on the tool wear and the life as well as on the workpiece processing precision and surface quality. The feature size of the workpiece is usually several microns. Thus, the tiny changes of cutting temperature will affect the workpiece on the surface quality and accuracy. Therefore, cutting heat and temperature generated in micro-milling will have significantly different effect than the one in the traditional tools cutting. In this paper, a two-dimensional coupled thermal-mechanical finite element model is adopted to determine thermal fields and cutting temperature during the Micro-milling process, by using software Deform-2D. The effect of tool edge radius on effective stress, effective strain, velocity field and cutting temperature distribution in micro-milling of aluminum alloy Al2024-T6 were investigated and analyzed. Also, the transient cutting temperature distribution was simulated dynamically. The simulation results show that the cutting temperature in Micro-milling is lower than those occurring in conventional milling processes due to the small loads and low cutting velocity. With increase of tool edge radius, the maximum temperature region gradually occurs on the contact region between finished surfaced and flank face of micro-cutter, instead of the rake face or the corner of micro-cutter. And this phenomenon shows an obvious size effect.
Morphological and XPS study of ball milled Fe1-xAlx (0.3≤x≤0.6) alloys
NASA Astrophysics Data System (ADS)
Rajan, Sandeep; Kumar, Anil; Vyas, Anupam; Brajpuriya, Ranjeet
2018-05-01
The paper presents mechanical and XPS study of ball milled Fe1-xAlx (0.3≤x≤0.6) alloys. The author prepared the solid solution of Fe(Al) with different composition of Al by using mechanical alloying (MA) technique. The MA process induces a progressive dissolution of Al into Fe, resulted in the formation of an extended Fe(Al) solid solution with the bcc structure after 5 hr of milling. The SEM Images shows that the initial shape of particles disappeared completely, and their structure became a mixture of small and large angular-shaped crystallites with different sizes. The TEM micrograph also confirms the reduction in crystallite size and alloy formation. XPS study shows the shift in the binding energy position of both Fe and Al Peaks provide strong evidence of Fe(Al) phase formation after milling.
Julien, Patrick A; Malvestiti, Ivani
2017-01-01
We provide the first in situ and real-time study of the effect of milling frequency on the course of a mechanochemical organic reaction conducted using a vibratory shaker (mixer) ball mill. The use of in situ Raman spectroscopy for real-time monitoring of the mechanochemical synthesis of a 2,3-diphenylquinoxaline derivative revealed a pronounced dependence of chemical reactivity on small variations in milling frequency. In particular, in situ measurements revealed the establishment of two different regimes of reaction kinetics at different frequencies, providing tentative insight into processes of mechanical activation in organic mechanochemical synthesis. PMID:29114323
NASA Astrophysics Data System (ADS)
Vardanyan, E. L.; Budilov, V. V.; Ramazanov, K. N.; Ataullin, Z. R.
2017-07-01
Thin-film wear-resistant coatings are widely used to increase life and efficiency of metal cutting tools. This paper shows the results of a study on the influence of architecture (number, sequence and thickness of layers) of wear-resistant coatings on physical, mechanical and operational properties of end mills. Coatings consisting of alternating Ti-Al/Ti-Al-N layers of equal thickness demonstrated the best physical and mechanical properties. Durability of coated tools when processing materials from chromium-vanadium steel increased twice as compared to uncoated tools.
NASA Astrophysics Data System (ADS)
Genareau, K. D.; Cronin, S. J.; Stewart, C.; Back, E.
2015-12-01
Explosive volcanic eruptions are known to be a significant geohazard, but post- or inter-eruptive processes (such as lahars, landslides, and debris avalanches) can be equally damaging to local and regional areas by remobilizing deposits. Numerous studies have found that soluble salts bound to ash grain surfaces may be quickly released into exposed waters, often lowering pH and adding trace metals with both beneficial and deleterious effects on marine flora and fauna (e.g., Fe influx initiating blooms of marine phytoplankton). Most of the cation content of pyroclastic deposits is released slowly into the environment through weathering and alteration processes. However, other pathways exist through the physical comminution of pyroclasts in fluvial and marine settings. In this case, mechanical fracturing of pyroclasts during progressive stages of disaggregation will lead to exposure of reactive particle surfaces. This study evaluates the potential, ongoing effects on water quality by experimental, mechanical milling of pyroclasts and the evaluation of released metals into exposed waters using the pyroclastic density current deposits of both the 2010 eruption of Merapi and the 2014 eruption of Kelud (Java, Indonesia), which have a bulk basaltic andesite/andesite composition (60-65 wt% SiO2). The electrical conductivity (EC) of water samples positively correlates with Ca and Sr concentrations in the case of bulk ash, whole, and crushed lapilli, but correlates with Na for the milled samples. Compared to other stages of pyroclast disaggregation, milled lapilli have the greatest effect on the concentration of alkali elements and produce a significant increase in Ca, Na, K, and Si. Mechanical milling of pyroclasts grinds down minerals and glass, resulting in an increased EC, pH, and Na concentration of exposed waters. Similar experiments are currently being conducted using basalt (50 wt% SiO2) and rhyolite (70 wt% SiO2) deposits, and these results will be presented. Mechanical milling of volcanic deposits may occur during transport of lahars, submarine landslides, or debris avalanches, sometimes decades or centuries after the initial eruptive activity, providing a sudden input of elements into marine environments that can affect a range of flora and fauna.
40 CFR 430.76 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2010 CFR
2010-07-01
...) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Mechanical Pulp... mechanical pulp facilities where pulp and paper at groundwood mills are produced through the application of the thermo-mechanical process; mechanical pulp facilities where the integrated production of pulp and...
Effect of ball milling and heat treatment process on MnBi powders magnetic properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Wei; Polikarpov, Evgueni; Choi, Jung-Pyung
The metallic compound MnBi has high intrinsic coercivity with large positive temperature coefficient. The coercivity of MnBi exceeds 12 kOe and 26 kOe at 300 K and 523 K, respectively. Hence MnBi is a good candidate for the hard phase in exchange coupled nanocomposite magnets. In order to maximize the loading of the soft phase, the size of the MnBi particle has to be close to 500 nm, the size of single magnetic domain. Low energy milling is the common method to reduce MnBi particle size. However, only 3-7 mu m size particle can be achieved without significant decomposition. Here,more » we report our effort on preparing submicron MnBi powders using traditional powder metallurgy methods. Mn55Bi45 magnetic powders were prepared using arc melting method, followed by a series of thermal-mechanical treatment to improve purity, and finished with low energy ball milling at cryogenic temperature to achieve submicron particle size. The Mn55Bi45 powders were decomposed during ball milling process and recovered during 24 h 290 degrees C annealing process. With increasing ball-milling time, the saturation magnetization of MnBi decreases, while the coercivity increases. Annealing after ball milling recovers some of the magnetization, indicating the decomposition occurred during the ball-milling process can be reversed. The coercivity of Mn55Bi45 powders are also improved as a result of the heat treatment at 290 degrees C for 24 h. The world record magnetization 71.2 emu/g measured applying a field of 23 kOe has been achieved via low energy ball mill at room temperature« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.K. Brimacombe; I.V. Samarasekera; E.B. Hawbolt
1999-07-31
This report describes the work of developing an integrated model used to predict the thermal history, deformation, roll forces, microstructural evolution and mechanical properties of steel strip in a hot-strip mill. This achievement results from a joint research effort that is part of the American Iron and Steel Institute's (AIS) Advanced Process Control Program, a collaboration between the U.S. DOE and fifteen North American Steelmakers.
Nouri, A; Hodgson, P D; Wen, C E
2010-04-01
The influence of different amounts and types of process control agent (PCA), i.e., stearic acid and ethylene bis-stearamide, on the porous structure and mechanical properties of a biomedical Ti-16Sn-4Nb (wt.%) alloy was investigated. Alloy synthesis was performed on elemental metal powders using high-energy ball milling for 5h. Results indicated that varying the PCA content during ball milling led to a drastic change in morphology and particle-size distribution of the ball-milled powders. Porous titanium alloy samples sintered from the powders ball milled with the addition of various amounts of PCA also revealed different pore morphology and porosity. The Vickers hardness of the sintered titanium alloy samples exhibited a considerable increase with increasing PCA content. Moreover, the addition of larger amounts of PCA in the powder mixture resulted in a significant increase in the elastic modulus and peak stress for the sintered porous titanium alloy samples under compression. It should also be mentioned that the addition of PCA introduced contamination (mainly carbon and oxygen) into the sintered porous product. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.
Zhang, Zhi-Yuan; Zhang, Fu-Shen; Yao, TianQi
2017-10-01
The present study reports a mechanochemical (MC) process for effective recovery of copper (Cu) and precious metals (i.e. Pd and Ag) from e-waste scraps. Results indicated that the mixture of K 2 S 2 O 8 and NaCl (abbreviated as K 2 S 2 O 8 /NaCl hereafter) was the most effective co-milling reagents in terms of high recovery rate. After co-milling with K 2 S 2 O 8 /NaCl, soluble metallic compounds were produced and consequently benefit the subsequent leaching process. 99.9% of Cu and 95.5% of Pd in the e-waste particles could be recovered in 0.5mol/L diluted HCl in 15min. Ag was concentrated in the leaching residue as AgCl and then recovered in 1mol/L NH 3 solution. XRD and XPS analysis indicated that elemental metals in the raw materials were transformed into their corresponding oxidation state during ball milling process at low temperature, implying that solid-solid phase reactions is the reaction mechanism. Based on the results and thermodynamic parameters of the probable reactions, possible reaction pathways during ball milling were proposed. Suggestion on category of e-waste for ball milling process was put forward according to the experiment results. The designed metal recovery process of this study has the advantages of highly recovery rate and quick leaching speed. Thus, this study offers a promising and environmentally friendly method for recovering valuable metals from e-waste. Copyright © 2017 Elsevier Ltd. All rights reserved.
A study of processing parameters in thermal-sprayed alumina and zircon mixtures
NASA Astrophysics Data System (ADS)
Li, Y.; Khor, K. A.
2002-06-01
A method of plasma spraying of alumina and zircon mixtures to form ZrO2-mullite composites has been proposed and developed. The feedstock is prepared by a combination of mechanical alloying, which allows formation of fine-grained, homogeneous solid-solution mixtures, followed by plasma spheroidization that yields rapid solidified microstructures and enhanced compositional homogeneity. The effects of ball-milling duration and milling media were studied. It was found that zirconia is a more efficient milling media and that increasing milling duration enhanced the dissociation of zircon. Flame spray and plasma spray processes were used to spheroidize the spray-dried powders. The temperature of the flame spray was found to be insufficient to melt the powders completely. The processing parameters of the plasma spray played an important role in zircon decomposition and mullite formation. Increasing the arc current or reducing secondary gas pressure caused more zircon to decompose and more mullite to form after heat treatment at 1200 °C for 3 h. Dissociation of zircon and the amount of mullite for med can be enhanced significantly when using the more efficient, computerized plasma-spraying system and increasing the ball-milling duration from 4 to 8 h.
Yang, Ziyi; Nollenberger, Kathrin; Albers, Jessica; Qi, Sheng
2014-07-07
The solubility of drugs in polymer matrixes has been recognized as one of the key factors governing the physical stability of solid dispersions. This study has explored the implications of drug solubility on the destabilization that occurs on milling, which is often used as an additional process for hot melt extruded (HME) solid dispersions. The theoretical drug solubility in the polymer was first predicted using various theoretical and experimental approaches. The destabilization effects of high-energy mechanical milling on the solid dispersions with drug loadings below and above the predicted solubility were then investigated using a range of thermal, microscopic, and spectroscopic techniques. Four model drug-polymer combinations were studied. The HME formulations with drug loading below the predicted solid solubility (undersaturated and true molecular dispersion) showed good stability against milling. In contrast, milling destabilized supersaturated HME dispersions via increasing molecular mobility and creating phase-separated, amorphous, drug-rich domains. However, these additional amorphous drug-rich domains created by milling show good stability under ambient conditions, though crystallization can be accelerated by additional heating. These results highlighted that the processing method used to prepare the solid dispersions may play a role in facilitating the stabilization of amorphous drug in supersaturated solid dispersions. The degree of supersaturation of the drug in the polymer showed significant impact on the destabilization behavior of milling on solid dispersions. An improved understanding of the destabilization behavior of solid dispersions upon milling can provide new insights into the processing related apparent solubility of drugs in polymers.
Xu, Wei; Li, Ming; Wen, Cuie; Lv, Shaomin; Liu, Chengcheng; Lu, Xin
2018-01-01
A biocompatible Ti-28Nb-35.4Zr alloy used as bone implant was fabricated through the powder metallurgy process. The effects of mechanical milling and sintering temperatures on the microstructure and mechanical properties were investigated systematically, before in vitro biocompatibility of full dense Ti-28Nb-35.4Zr alloy was evaluated by cytotoxicity tests. The results show that the mechanical milling and sintering temperatures have significantly effects on the density and mechanical properties of the alloys. The relative density of the alloy fabricated by the atomized powders at 1500 °C is only 83 ± 1.8%, while the relative density of the alloy fabricated by the ball-milled powders can rapidly reach at 96.4 ± 1.3% at 1500 °C. When the temperature was increased to 1550 °C, the alloy fabricated by ball-milled powders achieve full density (relative density is 98.1 ± 1.2%). The PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C can achieve a wide range of mechanical properties, with a compressive yield strength of 1058 ± 35.1 MPa, elastic modulus of 50.8 ± 3.9 GPa, and hardness of 65.8 ± 1.5 HRA. The in vitro cytotoxicity test suggests that the PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C has no adverse effects on MC3T3-E1 cells with cytotoxicity ranking of 0 grade, which is nearly close to ELI Ti-6Al-4V or CP Ti. These properties and the net-shape manufacturability makes PM-fabricated Ti-28Nb-35.4Zr alloy a low-cost, highly-biocompatible, Ti-based biomedical alloy. PMID:29601517
NASA Astrophysics Data System (ADS)
Hou, Shang-Chieh; Su, Yuh-Fan; Chang, Chia-Chin; Hu, Chih-Wei; Chen, Tsan-Yao; Yang, Shun-Min; Huang, Jow-Lay
2017-05-01
The submicro-sized and nanostructured Si aggregated powder is prepared by combinational routes of high energy mechanical milling (HEMM) and wet milling. Milled Si powder is investigated by particle size analyzer, SEM, TEM, XPS and XRD as well as the control ones. Its electrode is also investigated by in situ XRD and electrochemical performance. Morphology reveals that combining the high energy mechanical milling and wet milling not only fracture primary Si particles but also form submicro-sized Si aggregates constructed by amorphous and nanocrystalline phases. Moreover, XPS shows that wet milling in ethanol trigger Sisbnd Osbnd CH2CH3 bonding on Si surface might enhance the SEI formation. In situ XRD analysis shows negative electrode made of submicro-sized Si aggregated powder can effectively suppress formation of crystalline Li15Si4 during lithiation and delithiation due to amorphous and nanocrystalline construction. Thus, the submicro-sized Si powder with synergistic effects combining the high energy mechanical milling and wet milling in ethanol as negative electrode performs better capacity retention.
Hot mill process parameters impacting on hot mill tertiary scale formation
NASA Astrophysics Data System (ADS)
Kennedy, Jonathan Ian
For high end steel applications surface quality is paramount to deliver a suitable product. A major cause of surface quality issues is from the formation of tertiary scale. The scale formation depends on numerous factors such as thermo-mechanical processing routes, chemical composition, thickness and rolls used. This thesis utilises a collection of data mining techniques to better understand the influence of Hot Mill process parameters on scale formation at Port Talbot Hot Strip Mill in South Wales. The dataset to which these data mining techniques were applied was carefully chosen to reduce process variation. There are several main factors that were considered to minimise this variability including time period, grade and gauge investigated. The following data mining techniques were chosen to investigate this dataset: Partial Least Squares (PLS); Logit Analysis; Principle Component Analysis (PCA); Multinomial Logistical Regression (MLR); Adaptive Neuro Inference Fuzzy Systems (ANFIS). The analysis indicated that the most significant variable for scale formation is the temperature entering the finishing mill. If the temperature is controlled on entering the finishing mill scale will not be formed. Values greater than 1070 °C for the average Roughing Mill and above 1050 °C for the average Crop Shear temperature are considered high, with values greater than this increasing the chance of scale formation. As the temperature increases more scale suppression measures are required to limit scale formation, with high temperatures more likely to generate a greater amount of scale even with fully functional scale suppression systems in place. Chemistry is also a significant factor in scale formation, with Phosphorus being the most significant of the chemistry variables. It is recommended that the chemistry specification for Phosphorus be limited to a maximum value of 0.015 % rather than 0.020 % to limit scale formation. Slabs with higher values should be treated with particular care when being processed through the Hot Mill to limit scale formation.
The Effect of High Energy Ball Milling on the Dynamic Response of Aluminum Powders
NASA Astrophysics Data System (ADS)
Beason, Matthew T.; Justice, Andrew W.; Gunduz, Ibrahim E.; Son, Steven F.
2017-06-01
Ball milling is an effective method to enhance the reactivity of intermetallic reactives by reducing characteristic diffusions distances. During this process, ductile reactants are mixed into a lamellar material with nanoscale features, resulting in significant strain hardening. Plate impact experiments using a single stage light gas gun have been performed to evaluate the effect of high energy ball milling (HEBM) on the mechanical properties and dynamic response of cold pressed aluminum compacts. The average grain size of the milled material is evaluate and suggested as a method of correlating the measured response to the properties of milled composites. This material is based upon work supported by the Department of Energy, National Nuclear Security Administration, under Award Number(s) DE-NA0002377, as well as individual funding (Beason) by the Department of Defense through the NDSEG.
6. VIEW TO WEST, SAMPLING BUILDING, MECHANIC SHED, MILL WAREHOUSE, ...
6. VIEW TO WEST, SAMPLING BUILDING, MECHANIC SHED, MILL WAREHOUSE, DRYERS, AND GRINDING/ROD MILL. - Vanadium Corporation of America (VCA) Naturita Mill, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO
40 CFR 430.76 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2011 CFR
2011-07-01
... through the application of the thermo-mechanical process] Pollutant or pollutant property Maximum for any...) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Mechanical Pulp... mechanical pulp facilities where pulp and paper at groundwood mills are produced through the application of...
Albers, Jessica; Alles, Rainer; Matthée, Karin; Knop, Klaus; Nahrup, Julia Schulze; Kleinebudde, Peter
2009-02-01
The aim of the study was the formulation of solid dispersions of the poorly water-soluble drug celecoxib and a polymethacrylate carrier by hot-melt extrusion. The objectives were to elucidate the mechanism of drug release from obtained extrudates and milled strands addicted to the solid-state properties of the solid dispersions and to examine and eliminate stability problems occurring under storage, exposure of mechanical stress, and in vitro dissolution. Transparent extrudates containing up to 60% drug could be prepared with a temperature setting below the melting point of celecoxib. XRPD and DSC measurements indicated the formation of a glassy solid solution, where the drug is molecularly dispersed in the carrier. The amorphous state of the glassy solid solution could be maintained during the exposure of mechanical stress in a milling process, and was stable under storage for at least 6 months. Solid-state properties and SEM images of extrudates after dissolution indicated a carrier-controlled dissolution, whereby the drug is molecularly dispersed within the concentrated carrier layer. The glassy solid solution showed a 58-fold supersaturation in 0.1 N HCl within the first 10 min, which was followed by a recrystallization process. Recrystallization could be inhibited by an external addition of HPMC.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Mechanical Pulp... mechanical pulp facilities where pulp and paper at groundwood mills are produced through the application of the thermo-mechanical process; mechanical pulp facilities where the integrated production of pulp and...
Code of Federal Regulations, 2010 CFR
2010-07-01
...) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Mechanical Pulp... mechanical pulp facilities where pulp and paper at groundwood mills are produced through the application of the thermo-mechanical process; mechanical pulp facilities where the integrated production of pulp and...
Kim, Hae Ri; Jang, Seong-Ho; Kim, Young Kyung; Son, Jun Sik; Min, Bong Ki; Kim, Kyo-Han; Kwon, Tae-Yub
2016-01-01
The microstructures and mechanical properties of cobalt-chromium (Co-Cr) alloys produced by three CAD/CAM-based processing techniques were investigated in comparison with those produced by the traditional casting technique. Four groups of disc- (microstructures) or dumbbell- (mechanical properties) specimens made of Co-Cr alloys were prepared using casting (CS), milling (ML), selective laser melting (SLM), and milling/post-sintering (ML/PS). For each technique, the corresponding commercial alloy material was used. The microstructures of the specimens were evaluated via X-ray diffractometry, optical and scanning electron microscopy with energy-dispersive X-ray spectroscopy, and electron backscattered diffraction pattern analysis. The mechanical properties were evaluated using a tensile test according to ISO 22674 (n = 6). The microstructure of the alloys was strongly influenced by the manufacturing processes. Overall, the SLM group showed superior mechanical properties, the ML/PS group being nearly comparable. The mechanical properties of the ML group were inferior to those of the CS group. The microstructures and mechanical properties of Co-Cr alloys were greatly dependent on the manufacturing technique as well as the chemical composition. The SLM and ML/PS techniques may be considered promising alternatives to the Co-Cr alloy casting process. PMID:28773718
Yang, Chao; Muránsky, Ondrej; Zhu, Hanliang; Thorogood, Gordon J; Avdeev, Maxim; Huang, Hefei; Zhou, Xingtai
2017-04-06
A new generation of alloys, which rely on a combination of various strengthening mechanisms, has been developed for application in molten salt nuclear reactors. In the current study, a battery of dispersion and precipitation-strengthened (DPS) NiMo-based alloys containing varying amounts of SiC (0.5-2.5 wt %) were prepared from Ni-Mo-SiC powder mixture via a mechanical alloying (MA) route followed by spark plasma sintering (SPS) and rapid cooling. Neutron Powder Diffraction (NPD), Electron Back Scattering Diffraction (EBSD), and Transmission Electron Microscopy (TEM) were employed in the characterization of the microstructural properties of these in-house prepared NiMo-SiC DPS alloys. The study showed that uniformly-dispersed SiC particles provide dispersion strengthening, the precipitation of nano-scale Ni₃Si particles provides precipitation strengthening, and the solid-solution of Mo in the Ni matrix provides solid-solution strengthening. It was further shown that the milling time has significant effects on the microstructural characteristics of these alloys. Increased milling time seems to limit the grain growth of the NiMo matrix by producing well-dispersed Mo₂C particles during sintering. The amount of grain boundaries greatly increases the Hall-Petch strengthening, resulting in significantly higher strength in the case of 48-h-milled NiMo-SiC DPS alloys compared with the 8-h-milled alloys. However, it was also shown that the total elongation is considerably reduced in the 48-h-milled NiMo-SiC DPS alloy due to high porosity. The porosity is a result of cold welding of the powder mixture during the extended milling process.
Yang, Chao; Muránsky, Ondrej; Zhu, Hanliang; Thorogood, Gordon J.; Avdeev, Maxim; Huang, Hefei; Zhou, Xingtai
2017-01-01
A new generation of alloys, which rely on a combination of various strengthening mechanisms, has been developed for application in molten salt nuclear reactors. In the current study, a battery of dispersion and precipitation-strengthened (DPS) NiMo-based alloys containing varying amounts of SiC (0.5–2.5 wt %) were prepared from Ni-Mo-SiC powder mixture via a mechanical alloying (MA) route followed by spark plasma sintering (SPS) and rapid cooling. Neutron Powder Diffraction (NPD), Electron Back Scattering Diffraction (EBSD), and Transmission Electron Microscopy (TEM) were employed in the characterization of the microstructural properties of these in-house prepared NiMo-SiC DPS alloys. The study showed that uniformly-dispersed SiC particles provide dispersion strengthening, the precipitation of nano-scale Ni3Si particles provides precipitation strengthening, and the solid-solution of Mo in the Ni matrix provides solid-solution strengthening. It was further shown that the milling time has significant effects on the microstructural characteristics of these alloys. Increased milling time seems to limit the grain growth of the NiMo matrix by producing well-dispersed Mo2C particles during sintering. The amount of grain boundaries greatly increases the Hall–Petch strengthening, resulting in significantly higher strength in the case of 48-h-milled NiMo-SiC DPS alloys compared with the 8-h-milled alloys. However, it was also shown that the total elongation is considerably reduced in the 48-h-milled NiMo-SiC DPS alloy due to high porosity. The porosity is a result of cold welding of the powder mixture during the extended milling process. PMID:28772747
Influence of attrition milling on nano-grain boundaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rawers, J.; Cook, D.
1999-03-01
Nanostructured materials have a relatively large proportion of their atoms associated with the grain boundary, and the method used to develop the nano-grains has a strong influence on the resulting grain boundary structure. In this study, attrition milling iron powders and blends of iron powders produced micron-size particles composed of nano-size grains. Mechanical cold-working powder resulted in dislocation generation, multiplication, and congealing that produced grain refinement. As the grain size approached nano-dimensions, dislocations were no longer sustained within the grain and once generated, rapidly diffused to the grain boundary. Dislocations on the grain boundary strained the local lattice structure which,more » as the grain size decreased, became the entire grain. Mechanical alloying of substitutional aluminium atoms into iron powder resulted in the aluminium atoms substituting for iron atoms in the grain boundary cells and providing a grain boundary structure similar to that of the iron powder processed in argon. Attrition milling iron powder in nitrogen gas resulted in nitrogen atoms being adsorbed onto the particle surface. Continued mechanical milling infused the nitrogen atoms into interstitial lattice sites on the grain boundary which also contributed to expanding and straining the local lattice.« less
Lebon, Nicolas; Tapie, Laurent; Duret, Francois; Attal, Jean-Pierre
2016-01-01
The dental milling machine is an important device in the dental CAD/CAM chain. Nowadays, dental numerical controlled (NC) milling machines are available for dental surgeries (chairside solution). This article provides a mechanical engineering approach to NC milling machines to help dentists understand the involvement of technology in digital dentistry practice. First, some technical concepts and definitions associated with NC milling machines are described from a mechanical engineering viewpoint. The technical and economic criteria of four chairside dental NC milling machines that are available on the market are then described. The technical criteria are focused on the capacities of the embedded technologies of these milling machines to mill both prosthetic materials and types of shape restorations. The economic criteria are focused on investment costs and interoperability with third-party software. The clinical relevance of the technology is assessed in terms of the accuracy and integrity of the restoration.
Milling assisted synthesis of calcium zirconate СаZrО3
NASA Astrophysics Data System (ADS)
Kalinkin, A. M.; Nevedomskii, V. N.; Kalinkina, E. V.; Balyakin, K. V.
2014-08-01
Monophase calcium zirconate (CaZrO3) has been prepared from the equimolar ZrO2 + CaCO3 mixture by two-step synthesis process. In the first step, mechanical treatment of the mixture is performed in an AGO-2 planetary ball mill. In the second step, the milled mixture is annealed to form calcium zirconate. High-energy ball milling of the (ZrO2+CaCO3) mixture results in decrease in the temperature of CaZrO3 formation during annealing at 950 °C. The enhancement of CaZrO3 synthesis is due to accumulation of excess energy by the reagents, decreasing the particle size and notable increase in the interphase area because of “smearing” of CaCO3 on ZrO2 particles during milling. Nanocrystalline calcium zirconate has been produced by controlling the annealing temperature and time.
Study on the surface constitute properties of high-speed end milling aluminum alloy
NASA Astrophysics Data System (ADS)
Huang, Xiaoming; Li, Hongwei; Yumeng, Ma
2017-09-01
The physical and mechanical properties of the metal surface will change after the metal cutting processing. The comprehensive study of the influence of machining parameters on surface constitute properties are necessary. A high-speed milling experiment by means of orthogonal method with four factors was conducted for aluminum alloy7050-T7451. The surface constitutive properties of the Al-Alloy surface were measured using SSM-B4000TM stress-strain microprobe system. Based on all the load-depth curves obtained, the characteristics parameters such as strain hardening exponent n and yield strength σy of the milling surface are calculated. The effect of cutting speed, feed rate, and width and depth of cut on n and σy was investigated using the ANOVA techniques. The affecting degree of milling parameters on n and σy was v>fz> ap < ae. The influence of milling parameters on n and σ y was described and discussed.
Gravity flow operated small electricity generator retrofit kit to flour mill industry.
Shekara, Prithivi; Kumar V, Pavan; Hosamane, Gangadharappa Gundabhakthara
2013-10-01
Flour milling is a grinding process to produce flour from wheat through comprehensive stages of grinding and separation. The primary energy is required to provide power used in grinding of wheat. In wheat milling, tempering is the process of adding water to wheat before milling to toughen the bran and mellow the endosperm. Gravity flow of the wheat is utilized to rotate the dampener wheel with cups to add water. Low cost gravity flow operated small electricity generator retrofit kit for dampener was designed and developed to justify low cost energy production without expensive solutions. Results of statistical analysis indicated that there was significant difference in mean values for voltage, rpm and flow rate at the 95% probability level. The resulted maximum mechanical power and measured electrical power were 5.1 W and 4.9 W respectively at wheat flow rate of 1.6 Kg/s and dampener wheel rotational velocity of 4.4 rad/s.
NASA Astrophysics Data System (ADS)
Sugeng, Bambang; Bandriyana, B.; Sugeng, Bambang; Salam, Rohmad; Sumariyo; Sujatno, Agus; Dimyati, Arbi
2018-03-01
Investigation on the relationship between the process conditions of milling time and the microstructure on the synthesis of the zirconia-ODS steel alloy has been performed. The elemental composition of the alloy was determined on 20 wt% Cr and zirconia dispersoid of 0.50 wt%. The synthesis was carried out by powder metallurgy method with milling time of 3, 5 and 7 hours, static compression of 20 Ton and sintering process for 4 minutes using the APS (Arc Plasma Sintering) equipment. SEM-EDX and XRD test was carried out to characterize the phase and morphology of the alloy and the effect to the mechanical properties was evaluated by the Vickers Hardness testing. The synthesis produced sample of ODS steel with good dense and very little porous with the Fe-Cr phase that clearly observed in the XRD peak pattern. In addition milling time increased the homogeneously of Fe-Cr phase formulation, enhanced the grain refinement of the structure and increase the hardness of the alloy.
NASA Astrophysics Data System (ADS)
Simoes, T. A.; Goode, A. E.; Porter, A. E.; Ryan, M. P.; Milne, S. J.; Brown, A. P.; Brydson, R. M. D.
2014-06-01
CoCrMo alloys are utilised as the main material in hip prostheses. The link between this type of hip prosthesis and chronic pain remains unclear. Studies suggest that wear debris generated in-vivo may be related to post-operative complications such as inflammation. These alloys can contain different amounts of carbon, which improves the mechanical properties of the alloy. However, the formation of carbides could become sites that initiate corrosion, releasing ions and/or particles into the human body. This study analysed the mechanical milling of alloys containing both high and low carbon levels in relevant biological media, as an alternative route to generate wear debris. The results show that low carbon alloys produce significantly more nanoparticles than high carbon alloys. During the milling process, strain induces an fcc to hcp phase transformation. Evidence for cobalt and molybdenum dissolution in the presence of serum was confirmed by ICP-MS and TEM EDX techniques.
NASA Astrophysics Data System (ADS)
Salleh, Emee Marina; Ramakrishnan, Sivakumar; Hussain, Zuhailawati
2014-06-01
The biodegradable nature of magnesium (Mg) makes it a most highlighted and attractive to be used as implant materials. However, rapid corrosion rate of Mg alloys especially in electrolytic aqueous environment limits its performance. In this study, Mg alloy was mechanically milled by incorporating manganese (Mn) as alloying element. An attempt was made to study both effect of mechanical alloying and subsequent consolidation processes on the bulk properties of Mg-Mn alloys. 2k-2 factorial design was employed to determine the significant factors in producing Mg alloy which has properties closes to that of human bones. The design considered six factors (i.e. milling time, milling speed, weight percentage of Mn, compaction pressure, sintering temperature and sintering time). Density and hardness were chosen as the responses for assessing the most significant parameters that affected the bulk properties of Mg-Mn alloys. The experimental variables were evaluated using ANOVA and regression model. The main parameter investigated was compaction pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lone, A. G., E-mail: agl221986@gmail.com; Bhowmik, R. N.
2015-06-24
We investigate the structural phase transformation from orthorhombic to rhombohedral structure in FeGaO{sub 3} by adopting a combined effect of mechanical alloying/milling and solid state sintering techniques. The structural phase formation of the FeGaO{sub 3} compound has been characterized by X-ray diffraction pattern. Mechanical milling played a significant role on the stabilization of rhombohedral phase in FeGaO{sub 3}, where as high temperature sintering stabilized the system in orthorhombic phase. A considerable difference has been observed in magnetic and ferroelectric properties of the system in two phases. The system in rhombohedral (R-3c) phase exhibited better ferromagnetic and of ferroelectric properties atmore » room temperature in comparison to orthorhombic (Pc2{sub 1}n) phase. The rhombohedral phase appears to be good for developing metal doped hematite system for spintronics applications and in that process mechanical milling played an important role.« less
NASA Astrophysics Data System (ADS)
Rendtorff, N. M.; Suárez, G.; Sakka, Y.; Aglietti, E. F.
2011-10-01
The mechanochemical activation processing has proved to be an effective technique to enhance a solid-state reaction at relatively low temperatures. In such a process, the mechanical effects of milling, such as reduction of particle size and mixture homogenization, are accompanied by chemical effects, such as partial decomposition of salts or hydroxides resulting in very active reactants. The objective of the present work is to obtain (ZrO2)0.97(Y2O3)0.03 nanocrystalline tetragonal solid solution powders directly using a high energy milling on a mixture of the pure oxides. A second objective is to evaluate the efficiency of the processing proposed and to characterize both textural and structural evolution of the mixtures during the milling processes and throughout posterior low temperature treatments. The Textural and structural evolution were studied by XRD analysis, specific area measurements (BET) and SEM. Firstly a decrease of the crystallinity of the reactants was observed, followed by the disappearance of Y2O3 diffraction peaks and the partial appearance of the tetragonal phase at room temperature. The solid solution proportion was increased with the high energy milling time, obtaining complete stabilization of the tetragonal solid solution with long milling treatments (60 min).The obtained powders were uniaxially pressed and sintered at different temperatures (600-1400°C) the influence of the milling time was correlated with the sinterization degree and final crystalline composition of the materials. Finally, fully stabilized nanocrystalline zirconia materials were obtained satisfactorily by the proposed method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jeoung Han; Byun, Thak Sang; Shin, Eunjoo
2015-08-17
Three oxide dispersion-strengthened (ODS) steels are produced in order to investigate the effect of the mechanical alloying (MA) temperature on the microstructural evolution and high temperature mechanical properties. The microstructural evolution with different MA conditions is examined using small angle neutron scattering. As the MA temperature decreases, the density of the nanoclusters below 10 nm increases and their mean diameter decreases. A low temperature during MA leads to a high strength in the compression tests performed at 500 *C; however, this effect disappears in testing at 900 *C. The milling process at *70 *C exhibits excellent high fracture toughness, whichmore » is better than the benchmark material 14YWT-SM10. However, the *150 *C milling process results in significantly worse fracture toughness properties. The reasons for this strong temperature dependency are discussed.« less
Effect of Cu concentration on morphology of Sn-Ag-Cu solders by mechanical alloying
NASA Astrophysics Data System (ADS)
Kao, Szu-Tsung; Duh, Jenq-Gong
2004-12-01
The mechanical alloying (MA) process is considered an alternative approach to produce solder materials. In this study, the effect of Cu concentration in the ternary Sn-3.5Ag-xCu (x=0.2, 0.7, and 1) solder by MA was investigated. The (Cu,Sn) solid solution was precipitated as the Cu6Sn5 intermetallic compound (IMC), which was distributed nonuniformly through the microstructure. The Cu6Sn5 IMC, which was present in the SnAgCu solder with high Cu composition, causes the as-milled MA particle to fracture to a smaller size. Appreciable distinction on morphology of as-milled MA powders with different Cu content was revealed. When the Cu concentration was low (x=0.2), MA particle aggregated to a spherical ingot with large particle size. For higher Cu concentration (x=0.7 and x=1), the MA particle turned to flakes with smaller particle size. The distinction of the milling mechanism of Sn-3.5Ag-xCu (x=0.2, 0.7, and 1) solder by the MA process was discussed. An effective approach was developed to reduce the particle size of the SnAgCu solder from 1 mm down to 10-100 µm by doping the Cu6Sn5 nanoparticle during the MA process. In addition, the differential scanning calorimetry (DSC) results also ensure the compatibility to apply the solder material for the reflow process.
Zucuni, C P; Guilardi, L F; Fraga, S; May, L G; Pereira, G K R; Valandro, L F
2017-07-01
This study evaluated the effects of different pre-sintering fabrication processing techniques of Y-TZP ceramic (CAD/CAM Vs. in-lab), considering surface characteristics and mechanical performance outcomes. Pre-sintered discs of Y-TZP ceramic (IPS e.max ZirCAD, Ivoclar Vivadent) were produced using different pre-sintering fabrication processing techniques: Machined- milling with a CAD/CAM system; Polished- fabrication using a cutting device followed by polishing (600 and 1200 SiC papers); Xfine- fabrication using a cutting machine followed by grinding with extra-fine diamond bur (grit size 30 μm); Fine- fabrication using a cutting machine followed by grinding with fine diamond bur (grit size 46 μm); SiC- fabrication using a cutting machine followed by grinding with 220 SiC paper. Afterwards, the discs were sintered and submitted to roughness (n=35), surface topography (n=2), phase transformation (n=2), biaxial flexural strength (n=20), and biaxial flexural fatigue strength (fatigue limit) (n=15) analyses. No monoclinic-phase content was observed in all processing techniques. It can be observed that obtaining a surface with similar characteristics to CAD/CAM milling is essential for the observation of similar mechanical performance. On this sense, grinding with fine diamond bur before sintering (Fine group) was the best mimic protocol in comparison to the CAD/CAM milling. Copyright © 2017 Elsevier Ltd. All rights reserved.
Study on Finite Element Method of Stress Field in Aluminum Alloy High-Speed Milling Process
NASA Astrophysics Data System (ADS)
Zhang, Wei; Li, Shunming; Wu, Qijun; An, Zenghui
2017-11-01
Three-dimensional numerical simulation model has been built by means of Advantage FEM. Perform simulation the stress fields of 7050-T7451 aluminum alloy in high speed milling process at the speed range of 628 m/min∼5946 m/min. The dynamic change and speed’s influence of stress fields and residual stress in machined layer is systematically analyzed. Some conclusions were drawn. With the cutting process development, the stress field converts to the stress state that crushing stress occupies a leading position. The magnitudes of crushing stress in all directions reduce with milling processes as the effect of Thermal-Mechanical-Coupled weakens; With the cutting speed increasing the magnitudes of crushing stress in all directions fluctuate near -950Mpa first, and then increase at the speed of 3000m/min; The residual pulling stress beneath the surface 0.03mm has been found and the magnitude increases with the cutting speed. A good agreement was obtained between predictions and experiments.
Development of Oxide Dispersion Strengthened MCrAlY Coatings
NASA Astrophysics Data System (ADS)
Bobzin, K.; Schläfer, T.; Richardt, K.; Brühl, M.
2008-12-01
MCrAlY materials are widely used as bond coats for thermal barrier coatings on turbine blades. The aim of this work is to improve mechanical properties and wear resistance of thermal sprayed NiCoCrAlY-coatings by strengthening the coating with hard phase particles. In order to retain the effect of the dispersion reinforcement at high temperatures, the use of temperature-stable oxide hard phases such as ZrO2-Y2O3 is necessary. To realize this new material structure, the high-energy ball-milling process is applied and analyzed. The mixture ratio between NiCoCrAlY and ZrO2-Y2O3 was varied between 5 and 10 wt.% ZrO2-Y2O3. The influences of the milling time of the high-energy ball-milling process on the distribution of the hard phases in the metal matrix were analyzed. After spraying with a HVOF system the mechanical properties of the coatings are measured and compared with conventional NiCoCrAlY coatings.
Code of Federal Regulations, 2011 CFR
2011-07-01
... through the application of the thermo-mechanical process] Pollutant or pollutant property Kg/kkg (or... where pulp and paper at groundwood chemi-mechanical mills are produced] Pollutant or pollutant property... Mechanical Pulp Subcategory § 430.72 Effluent limitations representing the degree of effluent reduction...
Microstructure Engineering in Hot Strip Mills, Part 1 of 2: Integrated mathematical Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.K. Brimacombe; I.V. Samaraseker; E.B. Hawbolt
1998-09-30
This report describes the work of developing an integrated model used to predict the thermal history, deformation, roll forces, microstructural evaluation and mechanical properties of steel strip in a hot-strip mill. This achievement results from a join research effort that is part of the American Iron and Steel Institute's (AISI) Advanced Process Control Program, a collaboration between the U.S. DOE and fifteen North American steel makers.
On a phase transformation produced by mechanical activation in iron pyrite
NASA Astrophysics Data System (ADS)
Eymery, J.-P.
1999-02-01
The behaviour of pyrite in the process of mechanical milling in air has been examined. Milled powders were characterized by scanning electron microscopy, Mössbauer spectroscopy working in transmission geometry and X-ray diffraction. In the presence of oxygen, pyrite can readily be transformed to ferrous sulphate monohydrate, which indicates that the Fe(II) goes from a low-spin state to to a high-spin state. The transformation mechanism is saturated after about 60hours milling, but however it can be markedly prolonged by further ageing at room temperature. The results also indicate that mechanical milling is a useful room temperature process of material production. On a étudié le comportement de la pyrite au cours de broyages mécaniques réalisés à l'air. Les poudres broyées ont été analysées par microscopie électronique à balayage, spectroscopie Mössbauer fonctionnant en géométrie de transmission et diffraction des rayonsX. En présence d'oxygène, la pyrite se transforme immédiatement en sulfate de fer monohydraté, ce qui correspond pour Fe(II) au passage de l'état bas spin à l'état haut spin. Le mécanisme de la transformation est saturé après 60heures de broyage environ, mais cependant il peut être notablement prolongé par un vieillissement ultérieur à la température ambiante. Les résultats montrent aussi que le broyage mécanique constitue un processus utile de fabrication des matériaux à l'ambiante.
Fabrication and Characterization of novel W80Ni10Nb10 alloy produced by mechanical alloying
NASA Astrophysics Data System (ADS)
Saxena, R.; Patra, A.; Karak, S. K.; Pattanaik, A.; Mishra, S. C.
2016-02-01
Nanostructured tungsten (W) based alloy with nominal composition of W80Ni10Nb10 (in wt. %) was synthesized by mechanical alloying of elemental powders of tungsten (W), nickel (Ni), niobium (Nb) in a high energy planetary ball-mill for 20 h using chrome steel as grinding media and toluene as process control agent followed by compaction at 500 MPa pressure for 5 mins and sintering at 1500°C for 2 h in Ar atmosphere. The phase evolution and the microstructure of the milled powder and consolidated product were investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The crystallite size of W in W80Ni10Nb10 powder was reduced from 100 μm at 0 h to 45.6 nm at 10 h and 34.1 nm at 20 h of milling whereas lattice strain increases to 35% at 20 h of milling. The dislocation density shows sharp increase up to 5 h of milling and the rate of increase drops beyond 5 to 20 h of milling. The lattice parameter of tungsten in W80Ni10Nb10 expanded upto 0.04% at 10 h of milling and contracted upto 0.02% at 20 h of milling. The SEM micrograph revealed the presence of spherical and elongated particles in W80Ni10Nb10 powders at 20 h of milling. The particle size decreases from 100 μm to 2 μm with an increase in the milling time from 0 to 20 hours. The crystallite size of W in milled W80Ni10Nb10 alloy as evident from bright field TEM image was in well agreement with the measured crystallite size from XRD. Structure of W in 20 h milled W80Ni10Nb10 alloy was identified by indexing of selected area diffraction (SAD) pattern. Formation of NbNi intermetallic was evident from XRD pattern and SEM micrograph of sintered alloy. Maximum sinterability of 90.8% was achieved in 20 h milled sintered alloy. Hardness and wear study was also conducted to investigate the mechanical behaviour of the sintered product. Hardness of W80Ni10Nb10 alloy reduces with increasing load whereas wear rate increases with increasing load. The evaluated hardness value in the present study for all loads is lower than the literature reported hardness of nanostructured W.
NASA Astrophysics Data System (ADS)
Lu, Canhui; Zhang, Xinxing; Zhang, Wei
2015-05-01
The partially devulcanization or de-crosslinking of ground tire rubber (GTR), post-vulcanized fluororubber scraps and crosslinked polyethylene from cable scraps through high-shear mechanochemical milling (HSMM) was conducted by a modified solid-state mechanochemical reactor. The results indicated that the HSMM treated crosslinked polymer scraps can be reprocessed as virgin rubbers or thermoplastics to produce materials with high performance. The foamed composites of low density polyethylene/GTR and the blend of post-vulcanized flurorubber (FKM) with polyacrylate rubber (ACM) with better processability and mechanical properties were obtained. The morphology observation showed that the dispersion and compatibility between de-crosslinked polymer scraps and matrix were enhanced. The results demonstrated that HSMM is a feasible alternative technology for recycling post-vulcanized or crosslinked polymer scraps.
Chuen, Onn Chiu; Yusoff, Sumiani
2012-03-01
This study performed an assessment on the beneficial of the Clean Development Mechanism (CDM) application on waste treatment system in a local palm oil industry in Malaysia. Life cycle assessment (LCA) was conducted to assess the environmental impacts of the greenhouse gas (GHG) reduction from the CDM application. Calculations on the emission reduction used the methodology based on AM002 (Avoided Wastewater and On-site Energy Use Emissions in the Industrial Sector) Version 4 published by United Nations Framework Convention on Climate Change (UNFCC). The results from the studies showed that the introduction of CDM in the palm oil mill through conversion of the captured biogas from palm oil mill effluent (POME) treatment into power generation were able to reduce approximate 0.12 tonnes CO2 equivalent concentration (tCO2e) emission and 30 kW x hr power generation per 1 tonne of fresh fruit bunch processed. Thus, the application of CDM methodology on palm oil mill wastewater treatment was able to reduce up to 1/4 of the overall environment impact generated in palm oil mill.
Structural and magnetic properties of new uniaxial nanocrystalline Pr5Co19 compound
NASA Astrophysics Data System (ADS)
Bouzidi, W.; Mliki, N.; Bessais, L.
2017-11-01
Highly-coercive nanocrystalline Pr5Co19 powders have been synthesized by mechanical milling for the first time. The structural properties are studied by X-ray diffraction and refined with Rietveld method. This analysis revealed that whatever annealing temperature, samples crystallize in the rhombohedral (3R) of Ce5Co19-type structure (space group R 3 bar m). The magnetization curve as a function of temperature shows a magnetic transition state at the Curie temperature TC = 690 K. The optimum hard magnetic properties have been obtained for Pr5Co19 milled for 5 h and annealed at 1048 K for 30 min. These alloys exhibit a coercivity of 15 kOe at room temperature. This high coercivity is attributed to the high uniaxial magnetocrystalline anisotropy, nanoscale grain size, and to the homogeneous nanostructure developed by mechanical milling process and subsequent annealing.
NASA Astrophysics Data System (ADS)
Hamran, Noramirah; Rashid, Azura A.
2017-07-01
Commercial fillers such as silica and carbon black generally impart the reinforcing effects in dry rubber compound, but have an adverse effect on Natural rubber (NR) latex compounds. The addition of commercial fillers in NR latex has reduced the mechanical properties of NR latex films due to the destabilization effect in the NR latex compounds which govern by the dispersion quality, particle size and also the pH of the dispersion itself. The ball milling process is the conventional meth od of preparation of dispersions and ultrasonic has successfully used in preparation of nano fillers such as carbon nanotube (CNT). In this study the combination between the conventional methods; ball milling together the ultrasonic method were used to prepare the silica and carbon black dispersions. The different duration of ball milling (24, 48 and 72 hours) was compared with the ultrasonic method (30, 60, 90 and 120 minutes). The combination of ball milling and ultrasonic from the optimum individual technique was used to investigate the reduction of particle size of the fillers. The particle size analyzer, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) test were carried out to investigate the obtained particle size and the tensile and tear test were carried out to investigate the mechanical properties of the NR latex films. The reduction of filler particle size is expected to impart the properties of NR latex films.
Krug, Klaus-Peter; Knauber, Andreas W; Nothdurft, Frank P
2015-03-01
The aim of this study was to investigate the fracture behavior of metal-ceramic bridges with frameworks from cobalt-chromium-molybdenum (CoCrMo), which are manufactured using conventional casting or a new computer-aided design/computer-aided manufacturing (CAD/CAM) milling and sintering technique. A total of 32 metal-ceramic fixed dental prostheses (FDPs), which are based on a nonprecious metal framework, was produced using a conventional casting process (n = 16) or a new CAD/CAM milling and sintering process (n = 16). Eight unveneered frameworks were manufactured using each of the techniques. After thermal and mechanical aging of half of the restorations, all samples were subjected to a static loading test in a universal testing machine, in which acoustic emission monitoring was performed. Three different critical forces were revealed: the fracture force (F max), the force at the first reduction in force (F decr1), and the force at the critical acoustic event (F acoust1). With the exception of the veneered restorations with cast or sintered metal frameworks without artificial aging, which presented a statistically significant but slightly different F max, no statistically significant differences between cast and CAD/CAM sintered and milled FDPs were detected. Thermal and mechanical loading did not significantly affect the resulting forces. Cast and CAD/CAM milled and sintered metal-ceramic bridges were determined to be comparable with respect to the fracture behavior. FDPs based on CAD/CAM milled and sintered frameworks may be an applicable and less technique-sensitive alternative to frameworks that are based on conventionally cast frameworks.
Influence of processing on the microstructure and mechanical properties of 14YWT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoelzer, D. T.; Unocic, K. A.; Sokolov, Mikhail A.
2016-04-25
The investigation of the mechanical alloying (MA) conditions for producing the advanced oxide dispersion strengthened (ODS) 14YWT ferritic alloy led to significant improvements in balancing the strength, ductility and fracture toughness properties while still maintaining the salient microstructural features consisting of ultra-fine grains and high concentration of Y-, Ti- and O-enriched nanoclusters. The implemented changes to the processing conditions included reducing the contamination of the powder during ball milling, applying a pre-extrusion annealing treatment on the ball milled powder and exploring different extrusion temperatures at 850 C (SM170 heat), 1000 C (SM185) and 1150 C (SM200). The microstructural studies ofmore » the three 14YWT heats showed similarities in the dispersion of nanoclusters and sub-micron size grains, indicating the microstructure was insensitive to the different extrusion conditions. Compared to past 14YWT heats, the three new heats showed lower strength, but higher ductility levels between 25 and 800 C and significantly higher fracture toughness values between 25 C and 700 C. The lower contamination levels of O, C and N achieved with improved ball milling conditions plus the slightly larger grain size were identified as important factors for improving the balance in mechanical properties of the three heats of 14YWT.« less
NASA Astrophysics Data System (ADS)
Tarai, U. K.; Robi, P. S.; Pal, Sukhomay
2018-04-01
A Ni-Cr-Fe-Si-B based interlayer material was developed by mechanical alloying (MA) process in a high-energy planetary ball mill. Equiaxed alloy powders of size 12 µm was obtained after milling for 50 hours. X-ray diffraction analysis of the milled powder revealed that milling of elemental powders initially resulted in microcrystalline alloy powder having face centered cubic structure, which on subsequent milling resulted in nano-crystallice alloy powder with a crystallite size of 3.2 nm. XRD analysis also reveals formation of metastable eutectic alloys resulting in lowering of the melting point of the interlayer material to 1025 °C. IN 718 superalloy samples were joined at 1050°C using the developed interlayer. A homogeneous joint was formed by the newly developed interlayer material. Three different zones were observed at the bond (i) isothermally solidified zone, (ii) diffusion affected zone and (iii) unaffected base metal. In the diffusion-affected zone, boron was present at the grain boundaries of Ni γ matrix in bulky metal borides form. The diffusion of boron from interlayer material into the base material was mechanism of isothermal solidification and bond formation in transient liquid phase bonding of IN 718.
Recreation and Simulation of Preindustrial Flour Processes in the Margin of Rivers
NASA Astrophysics Data System (ADS)
Fernández, J. J.; José, J. I.; Martínez-Rubio, J.; Finat, J.
2015-02-01
Manufacture and preindustrial activities have configured infrastructures and commercial development along several centuries. Both regional economic and social environment of the present days can be seen as a consequence of the secular interaction between available physical resources and social tissue along our history. Since ancient times, the economy of Castile and Leon has been based on livestock and agriculture, predominantly represented by cattle and large cereal extensions. Thus, flour industry plays an important role which has been reflected along the Medieval and Renaissance ages in a network of preindustrial installations involving mills and "aceñas" (which are also water-powered mills but set up as larger plants containing different kinds of grinders). In this work we have performed an architectural surveying of a bunch of those large-scale abandoned installations which precede the development of the flour factories that brought the industrial era. Our case of use focuses on the aceñas placed in a strech of the Duero river, between Tordesillas and Toro (Spain). Our work includes the virtual reconstruction of mechanisms and a simulation of the processes that milling involves by using the transformation of hydrodynamical forces into mechanical power. Furthermore the architectural container, our development allows the visualization of the milling machinery running, enriched with a simulation of some aspect of the involved hydrodynamic aspects.
8. VIEW TO SOUTHEAST, DRYERS, GRINDING/ROD MILL, MECHANIC SHED, AND ...
8. VIEW TO SOUTHEAST, DRYERS, GRINDING/ROD MILL, MECHANIC SHED, AND SKINNER SALT ROASTERS. - Vanadium Corporation of America (VCA) Naturita Mill, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO
3. VIEW TO NORTHEAST, MECHANIC SHED, DRYERS, GRINDING/ROD MILL, AND ...
3. VIEW TO NORTHEAST, MECHANIC SHED, DRYERS, GRINDING/ROD MILL, AND SKINNER SALT ROASTERS. - Vanadium Corporation of America (VCA) Naturita Mill, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO
Optimizing friction stir weld parameters of aluminum and copper using conventional milling machine
NASA Astrophysics Data System (ADS)
Manisegaran, Lohappriya V.; Ahmad, Nurainaa Ayuni; Nazri, Nurnadhirah; Noor, Amirul Syafiq Mohd; Ramachandran, Vignesh; Ismail, Muhammad Tarmizizulfika; Ahmad, Ku Zarina Ku; Daruis, Dian Darina Indah
2018-05-01
The joining of two of any particular materials through friction stir welding (FSW) are done by a rotating tool and the work piece material that generates heat which causes the region near the FSW tool to soften. This in return will mechanically intermix the work pieces. The first objective of this study is to join aluminum plates and copper plates by means of friction stir welding process using self-fabricated tools and conventional milling machine. This study also aims to investigate the optimum process parameters to produce the optimum mechanical properties of the welding joints for Aluminum plates and Copper plates. A suitable tool bit and a fixture is to be fabricated for the welding process. A conventional milling machine will be used to weld the aluminum and copper. The most important parameters to enable the process are speed and pressure of the tool (or tool design and alignment of the tool onto the work piece). The study showed that the best surface finish was produced from speed of 1150 rpm and tool bit tilted to 3°. For a 200mm × 100mm Aluminum 6061 with plate thickness of 2 mm at a speed of 1 mm/s, the time taken to complete the welding is only 200 seconds or equivalent to 3 minutes and 20 seconds. The Copper plates was successfully welded using FSW with tool rotation speed of 500 rpm, 700 rpm, 900 rpm, 1150 rpm and 1440 rpm and with welding traverse rate of 30 mm/min, 60 mm/min and 90 mm/min. As the conclusion, FSW using milling machine can be done on both Aluminum and Copper plates, however the weld parameters are different for the two types of plates.
Biomechanical pulping : a mill-scale evaluation
Masood Akhtar; Gary M. Scott; Ross E. Swaney; Mike J. Lentz; Eric G. Horn; Marguerite S. Sykes; Gary C. Myers
1999-01-01
Mechanical pulping process is electrical energy intensive and results in low paper strength. Biomechanical pulping, defined as the fungal treatment of lignocellulosic materials prior to mechanical pulping, has shown at least 30% savings in electrical energy consumption, and significant improvements in paper strength properties compared to the control at a laboratory...
Hydrogen sorption characteristics of nanostructured Pd–10Rh processed by cryomilling
Yang, Nancy; Yee, Joshua K.; Zhang, Zhihui; ...
2014-10-03
Palladium and its alloys are model systems for studying solid-state storage of hydrogen. Mechanical milling is commonly used to process complex powder systems for solid-state hydrogen storage; however, milling can also be used to evolve nanostructured powder to modify hydrogen sorption characteristics. In the present study, cryomilling (mechanical attrition milling in a cryogenic liquid) is used to produce nanostructured palladium-rhodium alloy powder. Characterization of the cryomilled Pd-10Rh using electron microscopy, X-ray diffraction, and surface area analysis reveals that (i) particle morphology evolves from spherical to flattened disk-like particles; while the (ii) crystallite size decreases from several microns to less thanmore » 100 nm and (iii) dislocation density increases with increased cryomilling time. Hydrogen absorption and desorption isotherms as well as the time scales for absorption were measured for cryomilled Pd-10Rh, and correlated with observed microstructural changes induced by the cryomilling process. In short, as the microstructure of the Pd-10Rh alloy is refined by cryomilling: (i) the maximum hydrogen concentration in the α-phase increases, (ii) the pressure plateau becomes flatter, and (iii) the equilibrium hydrogen capacity at 760 Torr increases. In addition, the rate of hydrogen absorption was reduced by an order of magnitude compared to non-cryomilled (atomized) powder.« less
Chen, Yiqin; Bi, Kaixi; Wang, Qianjin; Zheng, Mengjie; Liu, Qing; Han, Yunxin; Yang, Junbo; Chang, Shengli; Zhang, Guanhua; Duan, Huigao
2016-12-27
Focused ion beam (FIB) milling is a versatile maskless and resistless patterning technique and has been widely used for the fabrication of inverse plasmonic structures such as nanoholes and nanoslits for various applications. However, due to its subtractive milling nature, it is an impractical method to fabricate isolated plasmonic nanoparticles and assemblies which are more commonly adopted in applications. In this work, we propose and demonstrate an approach to reliably and rapidly define plasmonic nanoparticles and their assemblies using FIB milling via a simple "sketch and peel" strategy. Systematic experimental investigations and mechanism studies reveal that the high reliability of this fabrication approach is enabled by a conformally formed sidewall coating due to the ion-milling-induced redeposition. Particularly, we demonstrated that this strategy is also applicable to the state-of-the-art helium ion beam milling technology, with which high-fidelity plasmonic dimers with tiny gaps could be directly and rapidly prototyped. Because the proposed approach enables rapid and reliable patterning of arbitrary plasmonic nanostructures that are not feasible to fabricate via conventional FIB milling process, our work provides the FIB milling technology an additional nanopatterning capability and thus could greatly increase its popularity for utilization in fundamental research and device prototyping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Canhui; Zhang, Xinxing; Zhang, Wei
The partially devulcanization or de-crosslinking of ground tire rubber (GTR), post-vulcanized fluororubber scraps and crosslinked polyethylene from cable scraps through high-shear mechanochemical milling (HSMM) was conducted by a modified solid-state mechanochemical reactor. The results indicated that the HSMM treated crosslinked polymer scraps can be reprocessed as virgin rubbers or thermoplastics to produce materials with high performance. The foamed composites of low density polyethylene/GTR and the blend of post-vulcanized flurorubber (FKM) with polyacrylate rubber (ACM) with better processability and mechanical properties were obtained. The morphology observation showed that the dispersion and compatibility between de-crosslinked polymer scraps and matrix were enhanced. Themore » results demonstrated that HSMM is a feasible alternative technology for recycling post-vulcanized or crosslinked polymer scraps.« less
7. VIEW TO EAST, MILL WAREHOUSE, DRYERS, GRINDING/ROD MILL, AND ...
7. VIEW TO EAST, MILL WAREHOUSE, DRYERS, GRINDING/ROD MILL, AND MECHANIC SHED. - Vanadium Corporation of America (VCA) Naturita Mill, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO
Lala, S; Brahmachari, S; Das, P K; Das, D; Kar, T; Pradhan, S K
2014-09-01
Single phase nanocrystalline biocompatible A-type carbonated hydroxyapatite (A-cHAp) powder has been synthesized by mechanical alloying the stoichiometric mixture of CaCO3 and CaHPO4.2H2O powders in open air at room temperature within 2h of milling. The A-type carbonation in HAp is confirmed by FTIR analysis. Structural and microstructure parameters of as-milled powders are obtained from both Rietveld's powder structure refinement analysis and transmission electron microscopy. Size and lattice strain of nanocrystalline HAp particles are found to be anisotropic in nature. Mechanical alloying causes amorphization of a part of crystalline A-cHAp which is analogous to native bone mineral. Some primary bond lengths of as-milled samples are critically measured. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay test reveals high percentage of cell viability and hence confirms the biocompatibility of the sample. The overall results indicate that the processed A-cHAp has a chemical composition very close to that of biological apatite. Copyright © 2014 Elsevier B.V. All rights reserved.
Enzymatic corn wet milling: engineering process and cost model
Ramírez, Edna C; Johnston, David B; McAloon, Andrew J; Singh, Vijay
2009-01-01
Background Enzymatic corn wet milling (E-milling) is a process derived from conventional wet milling for the recovery and purification of starch and co-products using proteases to eliminate the need for sulfites and decrease the steeping time. In 2006, the total starch production in USA by conventional wet milling equaled 23 billion kilograms, including modified starches and starches used for sweeteners and ethanol production [1]. Process engineering and cost models for an E-milling process have been developed for a processing plant with a capacity of 2.54 million kg of corn per day (100,000 bu/day). These models are based on the previously published models for a traditional wet milling plant with the same capacity. The E-milling process includes grain cleaning, pretreatment, enzymatic treatment, germ separation and recovery, fiber separation and recovery, gluten separation and recovery and starch separation. Information for the development of the conventional models was obtained from a variety of technical sources including commercial wet milling companies, industry experts and equipment suppliers. Additional information for the present models was obtained from our own experience with the development of the E-milling process and trials in the laboratory and at the pilot plant scale. The models were developed using process and cost simulation software (SuperPro Designer®) and include processing information such as composition and flow rates of the various process streams, descriptions of the various unit operations and detailed breakdowns of the operating and capital cost of the facility. Results Based on the information from the model, we can estimate the cost of production per kilogram of starch using the input prices for corn, enzyme and other wet milling co-products. The work presented here describes the E-milling process and compares the process, the operation and costs with the conventional process. Conclusion The E-milling process was found to be cost competitive with the conventional process during periods of high corn feedstock costs since the enzymatic process enhances the yields of the products in a corn wet milling process. This model is available upon request from the authors for educational, research and non-commercial uses. PMID:19154623
Modifications of Graphite and Multiwall Carbon Nanotubes in the Presence of Urea
NASA Astrophysics Data System (ADS)
Duraia, El-Shazly M.; Fahami, Abbas; Beall, Gary W.
2018-02-01
The effect of high-energy ball milling on two carbon allotropes, graphite and multiwall carbon nanotubes (MWCNT) in the presence of urea has been studied. Samples were investigated using Raman spectroscopy, x-ray diffraction, scanning electron microscope (SEM) and x-ray photoelectron spectroscopy (XPS). Nitrogen-doped graphene has been successfully synthesized via a simple scalable mechanochemistry method using urea and graphite powder precursors. XPS results revealed the existence of the different nitrogen atoms configurations including pyridine, pyrrodic and graphitic N. SEM observations showed that the graphene nanosheets morphology become more wrinkles folded and crumbled as the milling time increased. The ID/IG ratio also increased as the milling time rose. The presence of both D' and G + D bands at 1621 cm-1 and 2940 cm-1, respectively, demonstrated the nitrogen incorporation in the graphene lattice Two factors contribute to the used urea: first it helps to exfoliate graphite into graphene, and second it preserves the graphitic structure from damage during the milling process as well as acting as a solid-state nitrogen source. Based on the phase analysis, the d-spacing of MWCNT samples in the presence of urea decreased due to the mechanical force in the milling process as the milling time increased. On the other hand, in the graphite case, due to its open flat surface, the graphite (002) peak shifts toward lower two theta as the milling time increase. Such findings are important and could be used for large-scale production of N-doped graphene, diminishing the use of either dangerous chemicals or sophisticated equipment.
NASA Astrophysics Data System (ADS)
Sahoo, R. R.; Patra, A.; Karak, S. K.
2017-02-01
A high energy planetary ball-mill was employed to synthesize tungsten (W) based alloy with nominal composition of W79Ni10Ti5Nb5(ZrO2)1 (in wt. %) for 20 h with chrome steel as grinding media, toluene as process control agent (PCA) along with compaction at 500 MPa pressure for 5 mins and sintering at 1500°C for 2 h using Ar atmosphere. X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS), elemental mapping and Transmission electron microscopy (TEM) was used to study the phase formation, microstructure of both milled powder and consolidated alloy. The crystallite size of W in W79Ni10Ti5Nb5(ZrO2)1 powder was 37 nm, 14.7 nm at 10 h and 20 h of milling respectively and lattice strain enhances to 0.54% at 20 h of milling. The crystallite size reduction is more at 10 h of milling and the rate drop beyond 10 to 20 h of milling. The intense improvement in dislocation density was evident upto 10 h of milling and the rate decreases between 10 to 20 h of milling. Increase in the lattice parameter of tungsten in W79Ni10Ti5Nb5(ZrO2)1 alloy upto 0.09% was observed at 10 h of milling owing to severe stress assisted deformation followed by contraction upto 0.07% at 20 h of milling due to formation of solid solution. The large spherical particles at 0 h of milling transformed to elongated shape at 10 h of milling and finer morphology at 20 h of milling. The average particle size reduced from 100 µm to 4.5 µm with the progress of milling from 0 to 20 h. Formation of fine polycrystallites of W was revealed by bright field TEM analysis and the observed crystallite size from TEM study was well supported by the evaluated crystallite size from XRD. XRD pattern and SEM micrograph of sintered alloy revealed the formation of NbNi, Ni3Ti intermetallic phases. Densification of 91.5% was attained in the 20 h milled and sintered alloy. Mechanical behaviour of the sintered product was evaluated by hardness and wear study. W79Ni10Ti5Nb5(ZrO2)1 alloy showed increase in hardness with decreasing load. The wear rate increases with increasing load due to higher abrasion effect at higher load.
Fabrication of silicon-based shape memory alloy micro-actuators
NASA Technical Reports Server (NTRS)
Johnson, A. David; Busch, John D.; Ray, Curtis A.; Sloan, Charles L.
1992-01-01
Thin film shape memory alloy has been integrated with silicon in a new actuation mechanism for microelectromechanical systems. This paper compares nickel-titanium film with other actuators, describes recent results of chemical milling processes developed to fabricate shape memory alloy microactuators in silicon, and describes simple actuation mechanisms which have been fabricated and tested.
Influence of processing on the microstructure and mechanical properties of 14YWT
Hoelzer, David T.; Unocic, Kinga A.; Sokolov, Mikhail A.; ...
2015-12-15
In this study, the investigation of the mechanical alloying (MA) conditions for producing the advanced oxide dispersion strengthened (ODS) 14YWT ferritic alloy led to significant improvements in balancing the strength, ductility and fracture toughness properties while still maintaining the salient microstructural features consisting of ultra-fine grains and high concentration of Y-, Ti- and O-enriched nanoclusters. The implemented changes to the processing conditions included reducing the contamination of the powder during ball milling, applying a pre-extrusion annealing treatment on the ball milled powder and exploring different extrusion temperatures at 850 °C (SM170 heat), 1000 °C (SM185) and 1150 °C (SM200). Themore » microstructural studies of the three 14YWT heats showed similarities in the dispersion of nanoclusters and sub-micron size grains, indicating the microstructure was insensitive to the different extrusion conditions. Compared to past 14YWT heats, the three new heats showed lower strength, but higher ductility levels between 25 and 800 °C and significantly higher fracture toughness values between 25 °C and 700 °C. The lower contamination levels of O, C and N achieved with improved ball milling conditions plus the slightly larger grain size were identified as important factors for improving the balance in mechanical properties of the three heats of 14YWT.« less
Processing of oil palm empty fruit bunch as filler material of polymer recycles
NASA Astrophysics Data System (ADS)
Saepulloh, D. R.; Nikmatin, S.; Hardhienata, H.
2017-05-01
Oil palm empty fruit bunches (OPEFB) is waste from crude palm oil (CPO) processing plants. This research aims to process OPEFB to be a reinforcement polymer recycle with the mechanical milling method and identify each establishment molecular with the orbital hybridization theory. OPEFB fibers were synthesized using a mechanical milling until the size shortfiber and microfiber. Then do the biocomposite granular synthesis with single screw extruder. TAPPI chemical test shows levels of α-cellulose fibers amounted 41.68%. Based on density, the most optimum composition contained in the filler amounted 15% with the size is the microfiber. The test results of morphology with SEM showed deployment of filler OPEFB fiber is fairly equitable distributed. Regarding the molecular interaction between matrix with OPEFB fiber, described by the theory of orbital hybridization. But the explanation establishment of the bond for more complex molecules likes this from the side of the molecular orbital theory is necessary complete information of the hybrid levels.
Mechanically Milled Irregular Zinc Nanoparticles for Printable Bioresorbable Electronics.
Mahajan, Bikram K; Yu, Xiaowei; Shou, Wan; Pan, Heng; Huang, Xian
2017-05-01
Bioresorbable electronics is predominantly realized by complex and time-consuming anhydrous fabrication processes. New technology explores printable methods using inks containing micro- or nano-bioresorbable particles (e.g., Zn and Mg). However, these particles have seldom been obtained in the context of bioresorbable electronics using cheap, reliable, and effective approaches with limited study on properties essential to printable electronics. Here, irregular nanocrystalline Zn with controllable sizes and optimized electrical performance is obtained through ball milling approach using polyvinylpyrrolidone (PVP) as a process control agent to stabilize Zn particles and prevent cold welding. Time and PVP dependence of the ball milled particles are studied with systematic characterizations of morphology and composition of the nanoparticles. The results reveal crystallized Zn nanoparticles with a size of ≈34.834 ± 1.76 nm and low surface oxidation. The resulting Zn nanoparticles can be readily printed onto bioresorbable substrates and sintered at room temperature using a photonic sintering approach, leading to a high conductivity of 44 643 S m -1 for printable zinc nanoparticles. The techniques to obtain Zn nanoparticles through ball milling and processing them through photonic sintering may potentially lead to a mass fabrication method for bioresorbable electronics and promote its applications in healthcare, environmental protection, and consumer electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Process engineering with planetary ball mills.
Burmeister, Christine Friederike; Kwade, Arno
2013-09-21
Planetary ball mills are well known and used for particle size reduction on laboratory and pilot scales for decades while during the last few years the application of planetary ball mills has extended to mechanochemical approaches. Processes inside planetary ball mills are complex and strongly depend on the processed material and synthesis and, thus, the optimum milling conditions have to be assessed for each individual system. The present review focuses on the insight into several parameters like properties of grinding balls, the filling ratio or revolution speed. It gives examples of the aspects of grinding and illustrates some general guidelines to follow for modelling processes in planetary ball mills in terms of refinement, synthesis' yield and contamination from wear. The amount of energy transferred from the milling tools to the powder is significant and hardly measurable for processes in planetary ball mills. Thus numerical simulations based on a discrete-element-method are used to describe the energy transfer to give an adequate description of the process by correlation with experiments. The simulations illustrate the effect of the geometry of planetary ball mills on the energy entry. In addition the imaging of motion patterns inside a planetary ball mill from simulations and video recordings is shown.
NASA Astrophysics Data System (ADS)
Arunkumar, S.; Kumaravel, P.; Velmurugan, C.; Senthilkumar, V.
2018-01-01
The formulation of nanocrystalline NiTi shape memory alloys has potential effects in mechanical stimulation and medical implantology. The present work elucidates the effect of milling time on the product's structural characteristics, chemical composition, and microhardness for NiTi synthesized by mechanical alloying for different milling durations. Increasing the milling duration led to the formation of a nanocrystalline NiTi intermetallic at a higher level. The formation of nanocrystalline materials was directed through cold fusion, fracturing, and the development of a steady state, which were influenced by the accumulation of strain energy. In the morphological study, uninterrupted cold diffusion and fracturing were visualized using transmission electron microscopy. Particle size analysis revealed that the mean particle size was reduced to 93 μm after 20 h of milling. The mechanical strength was enhanced by the formation of a nanocrystalline intermetallic phase at longer milling time, which was confirmed by the results of Vickers hardness analyses.
Structural and Mössbauer characterization of the ball milled Fe x(Cr 2O 3) 1- x system
NASA Astrophysics Data System (ADS)
Biondo, Valdecir; de Medeiros, Suzana Nóbrega; Paesano, Andrea, Jr.; Ghivelder, Luis; Hallouche, Bachir; da Cunha, João Batista Marimon
2009-08-01
The Fe x(Cr 2O 3) 1- x system, with 0.10 ≤ X ≤ 0.80, was mechanically processed for 24 h in a high-energy ball-mill. In order to examine the possible formation of iron-chromium oxides and alloys, the milled samples were, later, thermally annealed in inert (argon) and reducing (hydrogen) atmospheres. The as-milled and annealed products were characterized by X-ray diffraction, Mössbauer spectroscopy, transmission electron microscopy and magnetization. The as-milled samples showed the formation of an Fe 1+ YCr 2- YO 4- δ nanostructured and disordered spinel phase, the α 1-Fe(Cr) and α 2-Cr(Fe) solid solutions and the presence of non-exhausted precursors. For the samples annealed in inert atmosphere, the chromite (FeCr 2O 4) formation and the recrystallization of the precursors were verified. The hydrogen treated samples revealed the reduction of the spinel phase, with the phase separation of the chromia phase and retention of the Fe-Cr solid solutions. All the samples, either as-milled or annealed, presented the magnetization versus applied field curves typical for superparamagnetic systems.
Recycle of mixed automotive plastics: A model study
NASA Astrophysics Data System (ADS)
Woramongconchai, Somsak
This research investigated blends of virgin automotive plastics which were identified through market analysis. The intent was that this study could be used as a basis for further research in blends of automotive plastics recyclate. The effects of temperature, shear, time, and degree of mixing in a two-roll mill, a single-screw extruder, and a twin-screw extruder were investigated. Properties were evaluated in terms of melt flow, rigidity, strength, impact, heat resistance, electrical resistivity, color, and resistance to water and gasoline. Torque rheometry, dynamic mechanical analysis (DMA), optical and scanning electron microscopy were used to characterize the processability and morphology of major components of the blends. The two-roll mill was operated at high temperature, short time, and low roll speed to avoid discolored and degraded materials. The single-screw extruder and twin-screw extruder were operated at medium and high temperature and high screw speed, respectively, for optimizing head pressure, residence time, shear and degree of mixing of the materials. Melt index increased with extrusion temperature. Flexural modulus increased with the processing temperatures in milling or twin-screw extrusion, but decreased with the increasing single-screw extrusion temperature. Tensile modulus was also enhanced by increasing processing temperature. The tensile strengths for each process were similar and relatively low. The impact strength increased with temperature and roll speed in two-roll milling, was unaffected by the single-screw extrusion temperature and decreased with increasing twin-screw extrusion temperature. Heat resistance was always reduced by higher processing temperature. The volume resistivity increased, water absorption was unaffected and gasoline absorption altered by increased processing temperature. The latter increased somewhat with mill temperature, roll speed (two-roll mill) and higher extrusion temperature (single-screw extruder), but decreased with increased twin-screw extrusion temperature. The flexural modulus of the recycled mixed automotive plastics expected in 2003 was higher than the 1980s and 1990 recycle. Flexural strength effects were not large enough for serious consideration, but were more dominant when compared to those in the 1980s and 1990s. Impact strengths at 20-30 J/m were the lowest value compared to the 1980s and 1990s mixed automotive recycle. Torque rheometry, dynamic mechanical analysis and optical and electron microscopy agreed with each other on the characterization of the processability and morphology of the blends. LLDPE and HDPE were miscible while PP was partially miscible with polyethylene. ABS and nylon-6 were immiscible with the polyolefins, but partially miscible with each other. As expected, the polyurethane foam was immiscible with the other components. The minor components of the model recycle of mixed automotive materials were probably partially miscible with ABS/nylon-6, but there were multiple and unresolved phases in the major blends.
40 CFR 430.70 - Applicability; description of the mechanical pulp subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... mechanical pulp subcategory. 430.70 Section 430.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Mechanical Pulp Subcategory § 430.70 Applicability; description of the mechanical pulp subcategory. The... groundwood chemi-mechanical mills; the production of pulp and paper at groundwood mills through the...
Kim, Chungseok
2018-03-01
The objective of this study was to fabricate an Al metal matrix composite strengthened by nanosized Al3Ti particles via double mechanical alloying process. Several Al-xTi alloys were fabricated, including Al-12%Ti, Al-15%Ti, and Al-12%Ti-1%Y2O3. The lattice parameter of as-milled state was calculated to be 4.0485 Å; after a milling time of 540 min, it was 4.0401 Å. This decrease was induced by Ti solutionizing into the Al matrix. The equivalent size of a coarse Al3Ti particle was 200-500 nm after the heat treatment; however, the particles were uniformly distributed and were refined through the MA2 process. The particle size of a Al3Ti phase was 30 nm or less, and the particles were uniformly distributed. These particles remained in a fine state in the matrix without growth and coarsening, even after the hot extrusion process. The microstructure of hot extruded alloys consisted of a uniform distribution of Al3Ti particles and other dispersoids in the Al matrix.
Milling induced amorphisation and recrystallization of α-lactose monohydrate.
Badal Tejedor, Maria; Pazesh, Samaneh; Nordgren, Niklas; Schuleit, Michael; Rutland, Mark W; Alderborn, Göran; Millqvist-Fureby, Anna
2018-02-15
Preprocessing of pharmaceutical powders is a common procedure to condition the materials for a better manufacturing performance. However, such operations may induce undesired material properties modifications when conditioning particle size through milling, for example. Modification of both surface and bulk material structure will change the material properties, thus affecting the processability of the powder. Hence it is essential to control the material transformations that occur during milling. Topographical and mechanical changes in surface properties can be a preliminary indication of further material transformations. Therefore a surface evaluation of the α-lactose monohydrate after short and prolonged milling times has been performed. Unprocessed α-lactose monohydrate and spray dried lactose were evaluated in parallel to the milled samples as reference examples of the crystalline and amorphous lactose structure. Morphological differences between unprocessed α-lactose, 1 h and 20 h milled lactose and spray dried lactose were detected from SEM and AFM images. Additionally, AFM was used to simultaneously characterize particle surface amorphicity by measuring energy dissipation. Extensive surface amorphicity was detected after 1 h of milling while prolonged milling times showed only a moderate particle surface amorphisation. Bulk material characterization performed with DSC indicated a partial amorphicity for the 1 h milled lactose and a fully amorphous thermal profile for the 20 h milled lactose. The temperature profiles however, were shifted somewhat in the comparison to the amorphous reference, particularly after extended milling, suggesting a different amorphous state compared to the spray-dried material. Water loss during milling was measured with TGA, showing lower water content for the lactose amorphized through milling compared to spray dried amorphous lactose. The combined results suggest a surface-bulk propagation of the amorphicity during milling in combination with a different amorphous structural conformation to that of the amorphous spray dried lactose. The hardened surface may be due to either surface crystallization of lactose or to formation of a low-water glass transition. Copyright © 2017 Elsevier B.V. All rights reserved.
23. DETAIL VIEW OF THE CLUTCH MECHANISM FOR THE MILL ...
23. DETAIL VIEW OF THE CLUTCH MECHANISM FOR THE MILL POWER DISTRIBUTION SYSTEM FROM LEFT TO RIGHT. TRANSFER WHEEL WITH A BELT THAT CONNECTS TO THE DRIVE WHEEL OF THE MAIN POWER SHAFT. THE CLUTCH MECHANISM, THE DRIVE WHEEL THAT RECEIVED ITS POWER FROM A BELT CONNECTED TO TRANSFER WHEEL IN THE ELECTRIC MOTOR ROOM (BEHIND CAMERA). - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA
Shi, Zhenyu; Liu, Zhanqiang; Li, Yuchao; Qiao, Yang
2017-01-01
Cutting tool geometry should be very much considered in micro-cutting because it has a significant effect on the topography and accuracy of the machined surface, particularly considering the uncut chip thickness is comparable to the cutting edge radius. The objective of this paper was to clarify the influence of the mechanism of the cutting tool geometry on the surface topography in the micro-milling process. Four different cutting tools including two two-fluted end milling tools with different helix angles of 15° and 30° cutting tools, as well as two three-fluted end milling tools with different helix angles of 15° and 30° were investigated by combining theoretical modeling analysis with experimental research. The tool geometry was mathematically modeled through coordinate translation and transformation to make all three cutting edges at the cutting tool tip into the same coordinate system. Swept mechanisms, minimum uncut chip thickness, and cutting tool run-out were considered on modeling surface roughness parameters (the height of surface roughness Rz and average surface roughness Ra) based on the established mathematical model. A set of cutting experiments was carried out using four different shaped cutting tools. It was found that the sweeping volume of the cutting tool increases with the decrease of both the cutting tool helix angle and the flute number. Great coarse machined surface roughness and more non-uniform surface topography are generated when the sweeping volume increases. The outcome of this research should bring about new methodologies for micro-end milling tool design and manufacturing. The machined surface roughness can be improved by appropriately selecting the tool geometrical parameters. PMID:28772479
Zügner, Sascha; Marquardt, Karin; Zimmermann, Ingfried
2006-02-01
Elastic-plastic properties of single crystals are supposed to influence the size reduction process of bulk materials during jet milling. According to Pahl [M.H. Pahl, Zerkleinerungstechnik 2. Auflage. Fachbuchverlag, Leipzig (1993)] and H. Rumpf: [Prinzipien der Prallzerkleinerung und ihre Anwendung bei der Strahlmahlung. Chem. Ing. Tech., 3(1960) 129-135.] fracture toughness, maximum strain or work of fracture for example are strongly dependent on mechanical parameters like hardness (H) and young's modulus of elasticity (E). In addition the dwell time of particles in a spiral jet mill proved to correlate with the hardness of the feed material [F. Rief: Ph. D. Thesis, University of Würzburg (2001)]. Therefore 'near-surface' properties have a direct influence on the effectiveness of the comminution process. The mean particle diameter as well as the size distribution of the ground product may vary significantly with the nanomechanical response of the material. Thus accurate measurement of crystals' hardness and modulus is essential to determine the ideal operational micronisation conditions of the spiral jet mill. The recently developed nanoindentation technique is applied to examine subsurface properties of pharmaceutical bulk materials, namely calcite, sodium ascorbate, lactose and sodium chloride. Pressing a small sized tip into the material while continuously recording load and displacement, characteristic diagrams are derived. The mathematical evaluation of the force-displacement-data allows for calculation of the hardness and the elastic modulus of the investigated material at penetration depths between 50-300 nm. Grinding experiments performed with a modified spiral jet mill (Type Fryma JMRS 80) indicate the strong impact of the elastic-plastic properties of a given substance on its breaking behaviour. The fineness of milled products produced at constant grinding conditions but with different crystalline powders varies significantly as it is dependent on the nanohardness and the elasticity of the feed material. The analysis of this correlation gives new insights into the size reduction process.
Sambusiti, C; Monlau, F; Barakat, A
2016-07-01
This study investigates the feasibility of producing bioethanol from solid digestate after a mechanical fractionation (i.e. centrifugal milling), in order to improve the energy recovery from agricultural wastes and the sustainability of anaerobic digestion plants. A bioethanol yield of 37gkg(-1)TS was evaluated for the solid digestate fraction. Mass and energetic balances were performed and compared between two scenarios: (A) one-stage bioethanol fermentation and (B) two-stage anaerobic digestion-bioethanol fermentation, in order to evaluate the feasibility and the advantages of the two-stage process. Results revealed that, compared to the one-stage process, the dual anaerobic digestion-bioethanol process permitted: (i) to diversify biofuels production; (ii) to provide the thermal energy sufficient for drying digestate (13,351kWhthday(-1)), for the subsequent milling step; (iii) to reduce the electric energy requirement for the milling step (from 23,880 to 3580kWhelday(-1)); (iv) to produce extra electrical energy of 8483kWhelday(-1); (v) to improve the reduction of waste streams generated (from 13% to 54% of organic matter removal). Copyright © 2016. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Utama, P. S.; Saputra, E.; Khairat
2018-04-01
Palm Oil Mill Fly Ash (POMFA) the solid waste of palm oil industry was used as a raw material for synthetic amorphous silica and carbon zeolite composite synthesis in order to minimize the wastes of palm oil industry. The alkaline extraction combine with the sol-gel precipitation and mechanical fragmentation was applied to produce synthetic amorphous silica. The byproduct, extracted POMFA was rich in carbon and silica content in a significant amount. The microwave heated hydrothermal process used to synthesize carbon zeolite composite from the byproduct. The obtained silica had chemical composition, specific surface area and the micrograph similar to commercial precipitated silica for rubber filler. The microwave heated hydrothermal process has a great potential for synthesizing carbon zeolite composite. The process only needs one-step and shorter time compare to conventional hydrothermal process.
Preparation and Reactivity of Gasless Nanostructured Energetic Materials
Manukyan, Khachatur V.; Shuck, Christopher E.; Rogachev, Alexander S.; Mukasyan, Alexander S.
2015-01-01
High-Energy Ball Milling (HEBM) is a ball milling process where a powder mixture placed in the ball mill is subjected to high-energy collisions from the balls. Among other applications, it is a versatile technique that allows for effective preparation of gasless reactive nanostructured materials with high energy density per volume (Ni+Al, Ta+C, Ti+C). The structural transformations of reactive media, which take place during HEBM, define the reaction mechanism in the produced energetic composites. Varying the processing conditions permits fine tuning of the milling-induced microstructures of the fabricated composite particles. In turn, the reactivity, i.e., self-ignition temperature, ignition delay time, as well as reaction kinetics, of high energy density materials depends on its microstructure. Analysis of the milling-induced microstructures suggests that the formation of fresh oxygen-free intimate high surface area contacts between the reagents is responsible for the enhancement of their reactivity. This manifests itself in a reduction of ignition temperature and delay time, an increased rate of chemical reaction, and an overall decrease of the effective activation energy of the reaction. The protocol provides a detailed description for the preparation of reactive nanocomposites with tailored microstructure using short-term HEBM method. It also describes a high-speed thermal imaging technique to determine the ignition/combustion characteristics of the energetic materials. The protocol can be adapted to preparation and characterization of a variety of nanostructured energetic composites. PMID:25868065
Line profile analysis of ODS steels Fe20Cr5AlTiY milled powders at different Y2O3 concentrations
NASA Astrophysics Data System (ADS)
Afandi, A.; Nisa, R.; Thosin, K. A. Z.
2017-04-01
Mechanical properties of material are largely dictated by constituent microstructure parameters such as dislocation density, lattice microstrain, crystallite size and its distribution. To develop ultra-fine grain alloys such as Oxide Dispersion Strengthened (ODS) alloys, mechanical alloying is crucial step to introduce crystal defects, and refining the crystallite size. In this research the ODS sample powders were mechanically alloyed with different Y2O3 concentration respectively of 0.5, 1, 3, and 5 wt%. MA process was conducted with High Energy Milling (HEM) with the ball to powder ratio of 15:1. The vial and the ball were made of alumina, and the milling condition is set 200 r.p.m constant. The ODS powders were investigated by X-Ray Diffractions (XRD), Bragg-Brentano setup of SmartLab Rigaku with 40 KV, and 30 mA, step size using 0.02°, with scanning speed of 4°min-1. Line Profile Analysis (LPA) of classical Williamson-Hall was carried out, with the aim to investigate the different crystallite size, and microstrain due to the selection of the full wide at half maximum (FWHM) and integral breadth.
Low-Carbon Metallurgical Concepts for Seamless Octg Pipe
NASA Astrophysics Data System (ADS)
Mohrbacher, Hardy
Seamless pipes are available with wall gages of up to 100 mm and outer diameters up to around 700 mm. Such pipes are typically used for oil country tubular goods as well as for structural applications. Due to market requirements the demand for high strength grade seamless pipes is increasing. Many applications need high toughness in addition to high strength. The different rolling processes applied in production depend on wall gage and pipe diameter. The continuous mandrel mill process is used to produce smaller gages and diameters; plug mill processing covers medium gages and diameters; Pilger mill processing allows producing larger diameters and heavy wall gage. In all these processes only a limited degree of thermo-mechanical rolling can be achieved. Therefore strengthening and toughening by severe grain refinement employing a conventional niobium-based microalloying concept is not easily achievable. Accordingly, high strength and toughness seamless pipe is typically produced via a quench and tempering process route. This route however is costly and above that often constitutes a capacity bottleneck in the mill. Innovative low-carbon alloy concepts however do allow producing strength up to grade X70 at very high toughness directly off the rolling plant, i.e., without quench and tempering treatment. Due to the low carbon content also welding is much facilitated. The paper reveals the metallurgical principles, which are based on appropriate niobium and molybdenum alloying. Additionally the paper demonstrates how heavy gaged seamless pipes up to 70 mm wall thickness can be produced based on a low-carbon Nb-Mo approach using quench and temper treatment.
Research of the chemical activity of microgrinding coals of various metamorphism degree
NASA Astrophysics Data System (ADS)
Burdukov, A. P.; Butakov, E. B.; Kuznetsov, A. V.
2017-09-01
In this paper, we investigate the effect of mechanically activating grinding of coals of various degrees of metamorphism by two different methods - determination of the flash time in a vertical tubular furnace and thermogravimetric analysis. In the experiments, the coals that had been processed on a vibrating centrifugal mill and a disintegrator, aged for some time, were compared. The experiments showed a decrease in the ignition temperature of mechanically activated coals - deactivation of fuel, as well as the effect of mechanical activation on the further process of thermal-oxidative degradation.
Fabrication and ab initio study of downscaled graphene nanoelectronic devices
NASA Astrophysics Data System (ADS)
Mizuta, Hiroshi; Moktadir, Zakaria; Boden, Stuart A.; Kalhor, Nima; Hang, Shuojin; Schmidt, Marek E.; Cuong, Nguyen Tien; Chi, Dam Hieu; Otsuka, Nobuo; Muruganathan, Manoharan; Tsuchiya, Yoshishige; Chong, Harold; Rutt, Harvey N.; Bagnall, Darren M.
2012-09-01
In this paper we first present a new fabrication process of downscaled graphene nanodevices based on direct milling of graphene using an atomic-size helium ion beam. We address the issue of contamination caused by the electron-beam lithography process to pattern the contact metals prior to the ultrafine milling process in the helium ion microscope (HIM). We then present our recent experimental study of the effects of the helium ion exposure on the carrier transport properties. By varying the time of helium ion bombardment onto a bilayer graphene nanoribbon transistor, the change in the transfer characteristics is investigated along with underlying carrier scattering mechanisms. Finally we study the effects of various single defects introduced into extremely-scaled armchair graphene nanoribbons on the carrier transport properties using ab initio simulation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 3 2010-07-01 2010-07-01 false âTransporting [such] products to the mill, processing plant... EMPLOYED § 788.11 “Transporting [such] products to the mill, processing plant, railroad, or other transportation terminal.” The transportation or movement of logs or other forestry products to a “mill processing...
Characterization of milled solid residue from cypress liquefaction in sub- and super ethanol.
Liu, Hua-Min; Liu, Yu-Lan
2014-01-01
Cypress liquefaction in sub- and super ethanol was carried out in an autoclave at various temperatures. Milled solid residue (MSR) was isolated from solid residue remaining from the liquefaction process, and its chemical characteristics was comparatively investigated with milled wood lignin (MWL) of cypress by sugar analysis, elemental analysis, FT-IR analysis, gel permeation chromatography, and NMR analysis. Results showed that there were two reactions (de-polymerization and re-polymerization) during the cypress liquefaction in sub- and super ethanol and the re-polymerization reactions were the main reaction at 220-260°C. Considering the stability of side-chain, the stability of lignin side-chain in cypress during liquefaction process in ethanol could be sequenced as follows: β-5>β-β'>β-O-4'. The MSR were mainly from the decomposition and re-polymerization of lignin. This study suggests that characterization of MSR provides a promising method to investigate the mechanisms of cypress liquefaction in ethanol. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Magnetic properties of Ni nanoparticles dispersed in silica prepared by high-energy ball milling
NASA Astrophysics Data System (ADS)
González, E. M.; Montero, M. I.; Cebollada, F.; de Julián, C.; Vicent, J. L.; González, J. M.
1998-04-01
We analyze the magnetic properties of mechanically ground nanosized Ni particles dispersed in a SiO2 matrix. Our magnetic characterization of the as-milled samples show the occurrence of two blocking processes and that of non-monotonic milling time evolutions of the magnetic-order temperature, the high-field magnetization and the saturation coercivity. The measured coercivities exhibit giant values and a uniaxial-type temperature dependence. Thermal treatment carried out in the as-prepared samples result in a remarkable coercivity reduction and in an increase of the high-field magnetization. We conclude, on the basis of the consideration of a core (pure Ni) and shell (Ni-Si inhomogeneous alloy) particle structure, that the magnetoelastic anisotropy plays the dominant role in determining the magnetic properties of our particles.
Mechanical alloying of lanthana-bearing nanostructured ferritic steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somayeh Paseban; Indrajit Charit; Yaqiao Q. Wu
2013-09-01
A novel nanostructured ferritic steel powder with the nominal composition Fe–14Cr–1Ti–0.3Mo–0.5La2O3 (wt.%) was developed via high energy ball milling. La2O3 was added to this alloy instead of the traditionally used Y2O3. The effects of varying the ball milling parameters, such as milling time, steel ball size and ball to powder ratio, on the mechanical properties and micro structural characteristics of the as-milled powder were investigated. Nanocrystallites of a body-centered cubic ferritic solid solution matrix with a mean size of approximately 20 nm were observed by transmission electron microscopy. Nanoscale characterization of the as-milled powder by local electrode atom probe tomographymore » revealed the formation of Cr–Ti–La–O-enriched nanoclusters during mechanical alloying. The Cr:Ti:La:O ratio is considered “non-stoichiometric”. The average size (radius) of the nanoclusters was about 1 nm, with number density of 3.7 1024 m3. The mechanism for formation of nanoclusters in the as-milled powder is discussed. La2O3 appears to be a promising alternative rare earth oxide for future nanostructured ferritic steels.« less
Energy use pattern in rice milling industries-a critical appraisal.
Goyal, S K; Jogdand, S V; Agrawal, A K
2014-11-01
Rice milling industry is one of the most energy consuming industries. Like capital, labour and material, energy is one of the production factors which used to produce final product. In economical term, energy is demand-derived goods and can be regarded as intermediate good whose demand depends on the demand of final product. This paper deals with various types of energy pattern used in rice milling industries viz., thermal energy, mechanical energy, electrical energy and human energy. The important utilities in a rice mill are water, air, steam, electricity and labour. In a rice mill some of the operations are done manually namely, cleaning, sun drying, feeding paddy to the bucket elevators, weighing and packaging, etc. So the man-hours are also included in energy accounting. Water is used for soaking and steam generation. Electricity is the main energy source for these rice mills and is imported form the state electricity board grids. Electricity is used to run motors, pumps, blowers, conveyors, fans, lights, etc. The variations in the consumption rate of energy through the use of utilities during processing must also accounted for final cost of the finished product. The paddy milling consumes significant quantity of fuels and electricity. The major energy consuming equipments in the rice milling units are; boilers and steam distribution, blowers, pumps, conveyers, elevators, motors, transmission systems, weighing, etc. Though, wide variety of technologies has been evolved for efficient use of energy for various equipments of rice mills, so far, only a few have improved their energy efficiency levels. Most of the rice mills use old and locally available technologies and are also completely dependent on locally available technical personnel.
NASA Astrophysics Data System (ADS)
Muojekwu, Cornelius Anaedu
The present research was directed at adequate prediction of the temperature, deformation behavior (roll force, flow stress, strain and strain rate) and microstructural evolution (recovery, recrystallization, grain growth, austenite and ferrite grain sizes) during rolling in the Compact Strip Production (CSP) process, as well as the final mechanical properties of the hot rolled strips. This was accomplished with the aid of integrated process modeling, involving mathematical simulation, laboratory experiments and industrial campaigns. The study covered two conventional plain carbon steel grades, the A36 (AISI 1018, 0.17C-0.74Mn) and DQSK (AISI 1005, 0.038C-0.3Mn), and a range of plain carbon steel grades (0.06-0.09 C, 0.16-0.9 Mn) produced at HYLSA's CSP mill at Monterrey, Mexico. In the laboratory, compression tests (both single and double-hits) were carried out on the Gleeble 1500 thermomechanical simulator in order to elucidate the effect of coarse austenite grain size on the flow stress and recrystallization behavior of the plain carbon steels. It was found that coarse grain size not only decreased the flow stress at a given strain but also substantially reduced the tendency toward dynamic recrystallization. An increase in grain size from 244 to 1110 mum which is typical of the first stands of a conventional finishing mill and CSP hot-strip mill respectively, resulted in up to a 30 MPa decrease in the flow stress of both A36 and DQSK steel grades at similar operating conditions of temperature, strain and strain rate. In order to validate the model and laboratory results with mill measurements from an operating CSP plant, an industrial trial was carried out at HYLSA's CSP mill in Monterrey, Mexico. During the industrial campaign, intermediate temperature measurements were made, CSP slab and coil samples were acquired, and all measured and recorded mill data and practices were obtained. Comprehensive mathematical modeling of the rolling process was carried out employing finite difference and finite element analysis. The CSP mill measurements were utilized to validate model predictions of temperature, roll force, grain size and mechanical properties. Good agreement was obtained between prediction and measurement in most of the cases. An estimate of the heat extraction from the various mill sub-units was conducted from the validated calculations. It was found that heat loss by radiation accounted for 48-51 percent of the total heat loss, the work rolls accounted for 41-44 percent, the descaling unit accounted for 4-6 percent and the interstand sprays accounted for the remaining 3-4 percent. It was found that the uniform strain model consistently predicts lower temperatures than the target exit temperature for thin gauges due to a low estimate of deformation heat. Model results captured the details of heat transfer, deformation, recrystallization and austenite decomposition in the CSP mill. The effect of various mill parameters were elucidated, and the similarities and differences between conventional cold-charge rolling and CSP rolling were highlighted. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Chandran, P.; Zafari, A.; Lui, E. W.; Xia, K.
2017-05-01
Mechanically alloyed Al with immiscible elements such as Nb can lead to a uniform distribution of nanoscaled precipitates which are highly stable compared to conventional alloying and with excellent interface, resulting in significant increase in strength without problems associated with nano ceramic particles in metal matrix composites. Although immiscible, Nb can be alloyed with Al through mechanical milling, forming trialuminide (Al3Nb), either directly or upon subsequent precipitation, which possesses high strength, stiffness and stability at elevated temperatures. In the present study, Al-5 at.% Nb supersaturated solid solution was achieved after prolonged ball milling and nano Al3Nb precipitates were formed during subsequent ageing at 530°C. The Al-Al3Nb powder was consolidated by equal channel angular pressing (ECAP) at 400°C, resulting in a fully dense material with a uniform distribution of nanoscaled Al3Nb precipitates in the Al matrix.
Anand, Chokkalingam; Yamaguchi, Yudai; Liu, Zhendong; Ibe, Sayoko; Elangovan, Shanmugam P; Ishii, Toshihiro; Ishikawa, Tsuyoshi; Endo, Akira; Okubo, Tatsuya; Wakihara, Toru
2016-07-05
Top-down approach has been viewed as an efficient and straightforward method to prepare nanosized zeolites. Yet, the mechanical breaking of zeolite causes amorphization, which usually requires a post-milling recrystallization to obtain fully crystalline nanoparticles. Herein we present a facile methodology to prepare zeolite nanocrystals, where milling and recrystallization can be performed in situ. A milling apparatus specially designed to work under conditions of high alkalinity and temperature enables the in situ recrystallization during milling. Taking zeolite A as an example, we demonstrate its size reduction from ~3 μm to 66 nm in 30 min, which is quite faster than previous methods reported. Three functions, viz., miniaturization, amorphization and recrystallization were found to take effect concurrently during this one-pot process. The dynamic balance between these three functions was achieved by adjusting the milling period and temperature, which lead to the tuning of zeolite A particle size. Particle size and crystallinity of the zeolite A nanocrystals were confirmed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and water adsorption-desorption. This work presents a pioneering advancement in this field of nanosized zeolites, and will facilitate the mass production as well as boost the wide applications of nanosized zeolites.
Anand, Chokkalingam; Yamaguchi, Yudai; Liu, Zhendong; Ibe, Sayoko; Elangovan, Shanmugam P.; Ishii, Toshihiro; Ishikawa, Tsuyoshi; Endo, Akira; Okubo, Tatsuya; Wakihara, Toru
2016-01-01
Top-down approach has been viewed as an efficient and straightforward method to prepare nanosized zeolites. Yet, the mechanical breaking of zeolite causes amorphization, which usually requires a post-milling recrystallization to obtain fully crystalline nanoparticles. Herein we present a facile methodology to prepare zeolite nanocrystals, where milling and recrystallization can be performed in situ. A milling apparatus specially designed to work under conditions of high alkalinity and temperature enables the in situ recrystallization during milling. Taking zeolite A as an example, we demonstrate its size reduction from ~3 μm to 66 nm in 30 min, which is quite faster than previous methods reported. Three functions, viz., miniaturization, amorphization and recrystallization were found to take effect concurrently during this one-pot process. The dynamic balance between these three functions was achieved by adjusting the milling period and temperature, which lead to the tuning of zeolite A particle size. Particle size and crystallinity of the zeolite A nanocrystals were confirmed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and water adsorption-desorption. This work presents a pioneering advancement in this field of nanosized zeolites, and will facilitate the mass production as well as boost the wide applications of nanosized zeolites. PMID:27378145
Yield Improvement and Energy Savings Uing Phosphonates as Additives in Kraft pulping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulrike W. Tschirner; Timothy Smith
2007-03-31
Project Objective: Develop a commercially viable modification to the Kraft process resulting in energy savings, increased yield and improved bleachability. Evaluate the feasibility of this technology across a spectrum of wood species used in North America. Develop detailed fundamental understanding of the mechanism by which phosphonates improve KAPPA number and yield. Evaluate the North American market potential for the use of phosphonates in the Kraft pulping process. Examine determinants of customer perceived value and explore organizational and operational factors influencing attitudes and behaviors. Provide an economic feasibility assessment for the supply chain, both suppliers (chemical supply companies) and buyers (Kraftmore » mills). Provide background to most effectively transfer this new technology to commercial mills.« less
High spatial resolution PEELS characterization of FeAl nanograins prepared by mechanical alloying
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valdre, G.; Botton, G.A.; Brown, L.M.
The authors investigate the nanograin ``chemical`` structure in a nanostructured material of possible industrial application (Fe-Al system) prepared by conventional mechanical alloying via ball milling in argon atmosphere. They restrict themselves to the structural and nanochemical behavior of ball-milled nanocrystalline Fe-Al powders with atomic composition Fe{sub 3}Al, corresponding to a well-known intermetallic compound of the Fe-Al system. Scanning transmission electron microscopy (STEM) equipped with a parallel detection electron energy loss spectrometer (PEELS) has provided an insight on the ``chemical`` structure of both nanograins and their surface at a spatial resolution of better than 1 nm. The energy loss near edgemore » structure of the Al L loss reveals that the Al coordination is similar to a B2 compound and the oxidation of the powder during processing may play a significant role in the stabilization of the intermetallic phases. Conventional transmission electron microscopy (TEM) was used for the structural characterization of the material after the ball milling; powder X-ray diffraction (XRD) aided the investigation.« less
Flat ion milling: a powerful tool for preparation of cross-sections of lead-silver alloys.
Brodusch, Nicolas; Boisvert, Sophie; Gauvin, Raynald
2013-06-01
While conventional mechanical and chemical polishing results in stress, deformation and polishing particles embedded on the surface, flat milling with Ar+ ions erodes the material with no mechanical artefacts. This flat milling process is presented as an alternative method to prepare a Pb-Ag alloy cross-section for scanning electron microscopy. The resulting surface is free of scratches with very little to no stress induced, so that electron diffraction and channelling contrast are possible. The results have shown that energy dispersive spectrometer (EDS) mapping, electron channelling contrast imaging and electron backscatter diffraction can be conducted with only one sample preparation step. Electron diffraction patterns acquired at 5 keV possessed very good pattern quality, highlighting an excellent surface condition. An orientation map was acquired at 20 keV with an indexing rate of 90.1%. An EDS map was performed at 5 keV, and Pb-Ag precipitates of sizes lower than 100 nm were observed. However, the drawback of the method is the generation of a noticeable surface topography resulting from the interaction of the ion beam with a polycrystalline and biphasic sample.
Discrete element method based scale-up model for material synthesis using ball milling
NASA Astrophysics Data System (ADS)
Santhanam, Priya Radhi
Mechanical milling is a widely used technique for powder processing in various areas. In this work, a scale-up model for describing this ball milling process is developed. The thesis is a combination of experimental and modeling efforts. Initially, Discrete Element Model (DEM) is used to describe energy transfer from milling tools to the milled powder for shaker, planetary, and attritor mills. The rolling and static friction coefficients are determined experimentally. Computations predict a quasisteady rate of energy dissipation, E d, for each experimental configuration. It is proposed that the milling dose defined as a product of Ed and milling time, t, divided by the mass of milled powder, mp characterizes the milling progress independently of the milling device or milling conditions used. Once the milling dose is determined for one experimental configuration, it can be used to predict the milling time required to prepare the same material in any milling configuration, for which Ed is calculated. The concept is validated experimentally for DEM describing planetary and shaker mills. For attritor, the predicted Ed includes substantial contribution from milling tool interaction events with abnormally high forces (>103 N). The energy in such events is likely dissipated to heat or plastically deform milling tools rather than refine material. Indeed, DEM predictions for the attritor correlate with experiments when such events are ignored in the analysis. With an objective of obtaining real-time indicators of milling progress, power, torque, and rotation speed of the impeller of an attritor mill are measured during preparation of metal matrix composite powders in the subsequent portion of this thesis. Two material systems are selected and comparisons made between in-situ parameters and experimental milling progress indicators. It is established that real-time measurements can certainly be used to describe milling progress. However, they need to be interpreted carefully depending on hardness of brittle component relative to milling media. To improve the DEM model of the attritor mill, it is desired to avoid the removal of unrealistic, high-force events using an approach that would not predict such events in the first place. It is observed that during experiments in attritor, balls may jam causing an increased resistance to the impeller's rotation. The impeller may instantaneously slow down, quickly returning to its pre-set rotation rate. Previous DEM models did not account for such rapid changes in the impeller's rotation. In this work, this relationship between impeller's torque and rotation rate is obtained experimentally and introduced in DEM. As a result, predicted Ed, are shown to correlate well with the experimental data. Finally, a methodology is proposed combining an experiment and its DEM description enabling one to identify the appropriate interaction parameters for powder systems. The experiment uses a miniature vibrating hopper and can be applied to characterize the powder flow for variety of materials. The hopper is designed to hold up to 20,000 particles of 50-mum diameter, which can be directly described in DEM. Based on comparison of discharge rate from experiments and model, all 6 interaction parameters were analyzed and the ideal conditions identified for Zirconia beads. The values of these parameters for powders are generally not the same as those established for macroscopic bodies. In addition, effects of some other experimental parameters such as particle size distribution and amplitude of vibration are also investigated.
Development of seal ring carbon-graphite materials (tasks 8, 9, and 10)
NASA Technical Reports Server (NTRS)
Fechter, N. J.; Petrunich, P. S.
1973-01-01
A screening study was conducted to develop improved carbon-graphite materials for use in self-acting seals at air temperatures to 1300 F (704 C). Property measurements on materials prepared during this study have shown that: (1) The mechanical properties of a carbon-graphite material were significantly improved by using a fine milled artificial graphite filler material and including intensive mixing, warm molding, and pitch impregnation in the processing; and (2) the oxidation resistance of a carbon-graphite material was improved by including fine milled boron carbide as an oxidation-inhibiting additive. These techniques were employed to develop a material that has 10 times more oxidation resistance than that of a widely used commercial grade and mechanical properties that approach those of the commercial grade.
NASA Astrophysics Data System (ADS)
Omran, Abdel-Nasser; Woo, Kee-Do; Lee, Hyun Bom
2012-12-01
A developed Ti-35 pct Nb-2.5 pct Sn (wt pct) alloy was synthesized by mechanical alloying using high-energy ball-milled powders, and the powder consolidation was done by pulsed current activated sintering (PCAS). The starting powder materials were mixed for 24 hours and then milled by high-energy ball milling (HEBM) for 1, 4, and 12 hours. The bulk solid samples were fabricated by PCAS at 1073 K to 1373 K (800 °C to 1100 °C) for a short time, followed by rapid cooling to 773 K (500 °C). The relative density of the sintered samples was about 93 pct. The Ti was completely transformed from α to β-Ti phase after milling for 12 hours in powder state, and the specimen sintered at 1546 K (1273 °C) was almost transformed to β-Ti phase. The homogeneity of the sintered specimen increased with increasing milling time and sintering temperature, as did its hardness, reaching 400 HV after 12 hours of milling. The Young's modulus was almost constant for all sintered Ti-35 pct Nb-2.5 pct Sn specimens at different milling times. The Young's modulus was low (63.55 to 65.3 GPa) compared to that of the standard alloy of Ti-6Al-4V (100 GPa). The wear resistance of the sintered specimen increased with increasing milling time. The 12-hour milled powder exhibited the best wear resistance.
Effect of roll-compaction and milling conditions on granules and tablet properties.
Perez-Gandarillas, Lucia; Perez-Gago, Ana; Mazor, Alon; Kleinebudde, Peter; Lecoq, Olivier; Michrafy, Abderrahim
2016-09-01
Dry granulation is an agglomeration process used to produce size-enlarged particles (granules), improving the handling properties of powders such as flowability. In this process, powders are compacted using a roll press to produce ribbons, which are milled in granules used further in the tableting process. The granule and tablet properties are influenced by the existence of different designs of the roll compactors, milling systems and the interaction between process parameters and raw material properties. The main objective of this work was to investigate how different roll-compaction conditions and milling process parameters impact on ribbons, granules and tablet properties, highlighting the role of the sealing system (cheek plates and rimmed roll). In this context, two common excipients differing in their mechanical behaviour (MCC and mannitol) are used. The study is based on the analysis of granule size distribution together with the characterization of loss of compactability during die compaction. Results show that the tensile strength of tablets is lower when using granules than when the raw materials are compressed. Moreover, the plastic material (MCC) is more sensitive than the brittle one (mannitol). Regarding the roll-force, it is observed that the higher the roll force, the lower the tensile strength of tablets from granulated material is. These findings are in agreement with the literature. The comparison of sealing systems shows that the rimmed-roll system leads to slightly stronger tablets than the use of cheek plates. In addition, the use of the rimmed-roll system reduces the amount of fines, in particular when high roll force is applied. Overall, it can be concluded that roll-compaction effect is predominant over the milling effect on the production of fines but less significant on the tablet properties. This study points out that the balance between a good flowability by reducing the amount of fines and appropriate tablet strength is achieved with rimmed-roll and the highest roll-force used. Copyright © 2016 Elsevier B.V. All rights reserved.
Jie, Qing; Ren, Zhifeng; Chen, Gang
2015-12-08
Disclosed are methods for the manufacture of n-type and p-type filled skutterudite thermoelectric legs of an electrical contact. A first material of CoSi.sub.2 and a dopant are ball-milled to form a first powder which is thermo-mechanically processed with a second powder of n-type skutterudite to form a n-type skutterudite layer disposed between a first layer and a third layer of the doped-CoSi.sub.2. In addition, a plurality of components such as iron, and nickel, and at least one of cobalt or chromium are ball-milled form a first powder that is thermo-mechanically processed with a p-type skutterudite layer to form a p-type skutterudite layer "second layer" disposed between a first and a third layer of the first powder. The specific contact resistance between the first layer and the skutterudite layer for both the n-type and the p-type skutterudites subsequent to hot-pressing is less than about 10.0 .mu..OMEGA.cm.sup.2.
Jie, Qing; Ren, Zhifeng; Chen, Gang
2017-08-01
Disclosed are methods for the manufacture of n-type and p-type filled skutterudite thermoelectric legs of an electrical contact. A first material of CoSi.sub.2 and a dopant are ball-milled to form a first powder which is thermo-mechanically processed with a second powder of n-type skutterudite to form a n-type skutterudite layer disposed between a first layer and a third layer of the doped-CoSi.sub.2. In addition, a plurality of components such as iron, and nickel, and at least one of cobalt or chromium are ball-milled form a first powder that is thermo-mechanically processed with a p-type skutterudite layer to form a p-type skutterudite layer "second layer" disposed between a first and a third layer of the first powder. The specific contact resistance between the first layer and the skutterudite layer for both the n-type and the p-type skutterudites subsequent to hot-pressing is less than about 10.0 .mu..OMEGA.cm.sup.2.
NASA Astrophysics Data System (ADS)
Dorofeev, G. A.; Lubnin, A. N.; Lad'yanov, V. I.; Mukhgalin, V. V.; Puskkarev, B. E.
2014-02-01
It has been shown using X-ray diffraction, scanning electron microscopy, and chemical analysis that, upon ball milling of α-titanium in liquid organic media (toluene and n-heptane), a nanocrystalline fcc phase is formed that is a metastable carbohydride Ti(C,H) deficient in hydrogen and carbon compared to stable carbohydrides. The dimensions of powder particles after milling in toluene and n-heptane differ substantially (are 5-10 and 20-30 μm, respectively. It has been shown that the kinetics of the formation of Ti(C,H) is independent of the milling medium. The atomic ratios H/C in the products of mechanosynthesis agree well with those corresponding to the employed organic media, i.e., H/C = 1.1 for toluene and 2.3 for n-heptane. A solid-liquid mechanism of mechanosynthesis is suggested, which includes repeated processes of particle fracturing with the formation of fresh surfaces, adsorption of liquid hydrocarbons on these surfaces, and subsequent cold welding of the newly formed particles. It is assumed that the formation of the fcc phase in the process of milling is connected with the generation of stacking faults in α-Ti. Upon annealing at 550°C, the fcc phase decomposes with the formation of stable titanium carbide TiC (annealing in a vacuum) or stable titanium carbohydride and a β-Ti(H) solid solution (annealing in argon) with a partial reverse transformation Ti(C,H) → α-Ti in both cases.
Thermal stability of active/inactive nanocomposite anodes based on Cu2Sb in lithium-ion batteries
NASA Astrophysics Data System (ADS)
Allcorn, Eric; Kim, Sang-Ok; Manthiram, Arumugam
2015-12-01
Various active/inactive nanocomposites of Cu2Sb-Al2O3@C, Cu2Sb-TiC, and Cu2Sb-TiC@C have been synthesized by high energy mechanical milling and investigated by differential scanning calorimetry (DSC) to determine the lithiated phase stability and heat generation arising from these electrodes. The milling process reduces the Li3Sb phase stability, relative to the un-milled samples, to below ∼200 °C. However, the incorporation of the reinforcing, inactive phases Al2O3, TiC, and carbon black offer a slight improvement. DSC curves also show that the low-temperature heat generation in the SEI-layer reaction range is not noticeably altered by either the milling process or the addition of the inactive phases. A strong exothermic peak is observed at ∼200 °C for the 0% state of charge electrodes of Cu2Sb-Al2O3@C and Cu2Sb-TiC@C that was caused by the incorporation of carbon black into the composite. This peak was not present in the electrodes of milled Cu2Sb or Cu2Sb-TiC, suggesting that efforts to extend the cycle life of alloy anodes should avoid carbon black due to its destabilizing effects on delithiated electrodes. Fourier Transform infrared spectroscopy analysis indicates that the reaction arising from the incorporation of carbon black is tied to a low-temperature breakdown of the lithium salt LiPF6.
NASA Astrophysics Data System (ADS)
Piosik, A.; Żurowski, K.; Pietralik, Z.; Hędzelek, W.; Kozak, M.
2017-11-01
Zirconium dioxide has been widely used in dental prosthetics. However, the improper mechanical treatment can induce changes in the microstructure of zirconium dioxide. From the viewpoint of mechanical properties and performance, the phase transitions of ZrO2 from the tetragonal to the monoclinic phase induced by mechanical processing, are particularly undesirable. In this study, the phase transitions of yttrium stabilized zirconium dioxide (Y-TZP) induced by mechanical treatment are investigated by the scanning electron microscopy (SEM), atomic force microscopy (AFM) and powder diffraction (XRD). Mechanical stress was induced by different types of drills used presently in dentistry. At the same time the surface temperature was monitored during milling using a thermal imaging camera. Diffraction analysis allowed determination of the effect of temperature and mechanical processing on the scale of induced changes. The observed phase transition to the monoclinic phase was correlated with the methods of mechanical processing.
NASA Astrophysics Data System (ADS)
Alinger, Matthew J.
Iron powders containing ≈14wt%Cr and smaller amounts of W and Ti were mechanically alloyed (MA) by ball milling with Y2O3 and subsequently either hot consolidated by hot extrusion or isostatic pressing, or powder annealed, producing very high densities of nm-scale coherent transition phase precipitates, or Y-Ti-O nano-clusters (NCs), along with fine-scale grains. These so-called nanostructured ferritic alloys (NFAs) manifest very high strength (static and creep) and corrosion-oxidation resistance up to temperatures in excess of 800°C. We used a carefully designed matrix of model MA powders and consolidated alloys to systematically assess the NC evolutions during each processing step, and to explore the combined effects of alloy composition and a number of processing variables, including the milling energy, consolidation method and the time and temperature of annealing of the as-milled powders. The stability of the NCs was also characterized during high-temperate post-consolidation annealing of a commercial NFA, MA957. The micro-nanostructural evolutions, and their effects on the alloy strength, were characterized by a combination of techniques, including XRD, TEM, atom-probe tomography (APT) and positron annihilation spectroscopy (PAS). However, small angle neutron scattering (SANS) was the primary tool used to characterize the nm-scale precipitates. The effect of the micro-nanostructure on the alloy strength was assessed by microhardness measurements. The studies revealed the critical sequence-of-events in forming the NCs, involves dissolution of Y, Ti and O during ball milling. The supersaturated solutes then precipitate during hot consolidation or powder annealing. The precipitate volume fraction increases with both the milling energy and Ti additions at lower consolidation and annealing temperatures (850°C), and at higher processing temperatures (1150°C) both are needed to produce NCs. The non-equilibrium kinetics of NC formation are nucleation controlled and independent of time with an effective activation energy of ≈60 kJ/mole. High temperature precipitate coarsening and transformations to oxide phases show a high effective activation energy (≈880 kJ/mole) and have a time dependence characteristic of a dislocation pipe diffusion mechanism. The NCs act as weak to moderately strong (alpha = 0.1 to 0.5) obstacles that can be sheared by dislocations, where the obstacle strength increases with alpha ≈0.37log(r/2b).
Synthesis and Explosive Consolidation of Titanium, Aluminium, Boron and Carbon Containing Powders
NASA Astrophysics Data System (ADS)
Chikhradze, Mikheil; Oniashvili, George; Chikhradze, Nikoloz; D. S Marquis, Fernand
2016-10-01
The development of modern technologies in the field of materials science has increased the interest towards the bulk materials with improved physical, chemical and mechanical properties. Composites, fabricated in Ti-Al-B-C systems are characterized by unique physical and mechanical properties. They are attractive for aerospace, power engineering, machine and chemical applications. The technologies to fabricate ultrafine grained powder and bulk materials in Ti-Al-B-C system are described in the paper. It includes results of theoretical and experimental investigation for selection of powders composition and determination of thermodynamic conditions for bland preparation, as well as optimal technological parameters for mechanical alloying and adiabatic compaction. The crystalline coarse Ti, Al, C powders and amorphous B were used as precursors and blends with different compositions of Ti-Al, Ti-Al-C, Ti-B-C and Ti-Al-B were prepared. Preliminary determination/selection of blend compositions was made on the basis of phase diagrams. The powders were mixed according to the selected ratios of components to produce the blend. Blends were processed in “Fritsch” Planetary premium line ball mill for mechanical alloying, syntheses of new phases, amorphization and ultrafine powder production. The blends processing time was variable: 1 to 20 hours. The optimal technological regimes of nano blend preparation were determined experimentally. Ball milled nano blends were placed in metallic tube and loaded by shock waves for realization of consolidation in adiabatic regime. The structure and properties of the obtained ultrafine grained materials depending on the processing parameters are investigated and discussed. For consolidation of the mixture, explosive compaction technology is applied at room temperatures. The prepared mixtures were located in low carbon steel tube and blast energies were used for explosive consolidation compositions. The relationship of ball milling technological parameters and explosive consolidation conditions on the structure/properties of the obtained samples are described in the paper.
Phase and crystallite size analysis of (Ti1-xMox)C-(Ni,Cr) cermet obtained by mechanical alloying
NASA Astrophysics Data System (ADS)
Suryana, Anis, Muhammad; Manaf, Azwar
2018-04-01
In this paper, we report the phase and crystallite size analysis of (Ti1-xMox)C-(Ni,Cr) with x = 0-0.5 cermet obtained by mechanical alloying of Ti, Mo, Ni, Cr and C elemental powders using a high-energy shaker ball mill under wet condition for 10 hours. The process used toluene as process control agent and the ball to mass ratio was 10:1. The mechanically milled powder was then consolidated and subsequently heated at a temperature 850°C for 2 hours under an argon flow to prevent oxidation. The product was characterized by X-ray diffraction (XRD) and scanning electron microscope equipped with energy dispersive analyzer. Results shown that, by the selection of appropriate condition during the mechanical alloying process, a metastable Ti-Ni-Cr-C powders could be obtained. The powder then allowed the in situ synthesis of TiC-(Ni,Cr) cermet which took place during exposure time at a high temperature that applied in reactive sintering step. Addition to molybdenum has caused shifting the TiC XRD peaks to a slightly higher angle which indicated that molybdenum dissolved in TiC phase. The crystallite size distribution of TiC is discussed in the report, which showing that the mean size decreased with the addition of molybdenum.
Toozandehjani, Meysam; Matori, Khamirul Amin; Ostovan, Farhad; Abdul Aziz, Sidek; Mamat, Md Shuhazlly
2017-10-26
The effect of milling time on the morphology, microstructure, physical and mechanical properties of pure Al-5 wt % Al₂O₃ (Al-5Al₂O₃) has been investigated. Al-5Al₂O₃ nanocomposites were fabricated using ball milling in a powder metallurgy route. The increase in the milling time resulted in the homogenous dispersion of 5 wt % Al₂O₃ nanoparticles, the reduction of particle clustering, and the reduction of distances between the composite particles. The significant grain refining during milling was revealed which showed as a reduction of particle size resulting from longer milling time. X-Ray diffraction (XRD) analysis of the nanocomposite powders also showed that designated ball milling contributes to the crystalline refining and accumulation of internal stress due to induced severe plastic deformation of the particles. It can be argued that these morphological and microstructural variations of nanocomposite powders induced by designated ball milling time was found to contribute to an improvement in the density, densification, micro-hardness ( HV ), nano-hardness ( HN ), and Young's modulus ( E ) of Al-5Al₂O₃ nanocomposites. HV , HN , and E values of nanocomposites were increased by ~48%, 46%, and 40%, after 12 h of milling, respectively.
Comparing corn stover and switchgrass biochar: characterization and sorption properties
USDA-ARS?s Scientific Manuscript database
A switchgrass biochar (SB) produced by fast pyrolysis and a corn stover biochar (CSB) from a slow pyrolysis process were mechanically milled and characterized. Both of these biochars are very cost-effective and originate as residues from bioenergy production and the corn industry, respectively. Thes...
West Virginia timber industry: an assessment of timber product output and use, 2007
Ronald J. Piva; Gregory W. Cook
2011-01-01
In 2007, there were 116 primary wood-processing mills in West Virginia, 60 fewer mills than in 2000. These mills processed 172.9 million cubic feet of industrial roundwood, of which 138.8 million cubic feet was harvested from the State. Another 50.5 million cubic feet of the industrial roundwood harvested in West Virginia was sent to primary wood-processing mills in...
29. VIEW OF MILL FROM WEST. SHOWS SECONDARY THICKENER No. ...
29. VIEW OF MILL FROM WEST. SHOWS SECONDARY THICKENER No. 7 TANK FLOOR FRAMING AND CENTRAL MECHANISM AT CENTER. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD
Ball milling pretreatment of corn stover for enhancing the efficiency of enzymatic hydrolysis.
Lin, Zengxiang; Huang, He; Zhang, Hongman; Zhang, Lin; Yan, Lishi; Chen, Jingwen
2010-11-01
Ethanol can be produced from lignocellulosic biomass with the usage of ball milling pretreatment followed by enzymatic hydrolysis and fermentation. The sugar yields from lignocellulosic feed stocks are critical parameters for ethanol production process. The research results from this paper indicated that the yields of glucose and xylose were improved by adding any of the following dilute chemical reagents: H(2)SO(4), HCl, HNO(3), CH(3)COOH, HCOOH, H(3)PO(4), and NaOH, KOH, Ca(OH)(2), NH(3)·H(2)O in the ball milling pretreatment of corn stover. The optimal enzymatic hydrolysis efficiencies were obtained under the conditions of ball milling in the alkali medium that was due to delignification. The data also demonstrated that ball milling pretreatment was a robust process. From the microscope image of ball milling-pretreated corn stover, it could be observed that the particle size of material was decreased and the fiber structure was more loosely organized. Meanwhile, the results indicate that the treatment effect of wet milling is better than that of dry milling. The optimum parameters for the milling process were ball speed of 350 r/min, solid/liquid ratio of 1:10, raw material particle size with 0.5 mm, and number of balls of 20 (steel ball, Φ = 10 mm), grinding for 30 min. In comparison with water milling process, alkaline milling treatment could increase the enzymatic hydrolysis efficiency of corn stover by 110%; and through the digestion process with the combination of xylanase and cellulase mixture, the hydrolysis efficiency could increase by 160%.
43 CFR 3832.34 - How may I use my mill site?
Code of Federal Regulations, 2011 CFR
2011-10-01
... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LOCATING MINING CLAIMS OR SITES Mill Sites... plants and substations; (3) Tailings ponds and leach pads; (4) Rock and soil dumps; (5) Water and process... independent mill sites for processing metallic minerals from lode claims using: (1) Quartz or stamp mills; or...
43 CFR 3832.34 - How may I use my mill site?
Code of Federal Regulations, 2013 CFR
2013-10-01
... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LOCATING MINING CLAIMS OR SITES Mill Sites... plants and substations; (3) Tailings ponds and leach pads; (4) Rock and soil dumps; (5) Water and process... independent mill sites for processing metallic minerals from lode claims using: (1) Quartz or stamp mills; or...
43 CFR 3832.34 - How may I use my mill site?
Code of Federal Regulations, 2012 CFR
2012-10-01
... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LOCATING MINING CLAIMS OR SITES Mill Sites... plants and substations; (3) Tailings ponds and leach pads; (4) Rock and soil dumps; (5) Water and process... independent mill sites for processing metallic minerals from lode claims using: (1) Quartz or stamp mills; or...
Micro structrual characterization and analysis of ball milled silicon carbide
NASA Astrophysics Data System (ADS)
Madhusudan, B. M.; Raju, H. P.; Ghanaraja., S.
2018-04-01
Mechanical alloying has been one of the prominent methods of powder synthesis technique in solid state involving cyclic deformation, cold welding and fracturing of powder particles. Powder particles in this method are subjected to greater mechanical deformation due to the impact of ball-powder-ball and ball-powder-container collisions that occurs during mechanical alloying. Strain hardening and fracture of particles decreases the size of the particles and creates new surfaces. The objective of this Present work is to use ball milling of SiC powder for different duration of 5, 10, 15 and 20 hours by High energy planetary ball milling machine and to evaluate the effect of ball milling on SiC powder. Micro structural Studies using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) and EDAX has been investigated.
1. Photocopy of sketch showing water power drive mechanism for ...
1. Photocopy of sketch showing water power drive mechanism for up-and-down saw mill; delineated by Charles G. Poor, Bob Levy and Janet Hochuli, 1977. - Grant's Grist & Saw Mill, Wrentham Road, Cumberland, Providence County, RI
Development of a Cr-Based Hard Composite Processed by Spark Plasma Sintering
NASA Astrophysics Data System (ADS)
García-Junceda, A.; Sáez, I.; Deng, X. X.; Torralba, J. M.
2018-04-01
This investigation analyzes the feasibility of processing a composite material comprising WC particles randomly dispersed in a matrix in which Cr is the main metallic binder. Thus, a new composite material is processed using a commercial, economic, and easily available Cr-based alloy, assuming that there is a certain Cr solubility in the WC particles acting as reinforcement. The processing route followed includes mechanical milling of the powders and consolidation by spark plasma sintering.
NASA Astrophysics Data System (ADS)
Tie, Xiaoyong; Han, Qianyan; Liang, Chunyan; Li, Bo; Zai, Jiantao; Qian, Xuefeng
2017-12-01
Si@SiOx/Graphene nanosheet (GNS) nanocomposites as high performance anode materials for lithium-ion batteries are synthesized by mechanically blending the mixture of expanded graphite with Si nanoparticles, and characterized by X-ray diffraction, Raman spectrum, field emission scanning electron microscopy and transmission electron microscopy. During the ball milling process, the size of Si nanoparticles will decrease, and the layer of expanded graphite can be peeled off to thin multilayers. Electrochemical performances reveal that the obtained Si@SiOx/GNS nanocomposites exhibit improved cycling stability, high reversible lithium storage capacity and superior rate capability, e.g. the discharge capacity is kept as high as 1055 mAh g-1 within 50 cycles at a current density of 200 mA g-1, retaining 63.6% of the initial value. The high performance of the obtained nanocomposites can be ascribed to GNS prepared through heat-treat and ball-milling methods, the decrease in the size of Si nanoparticles and SiOx layer on Si surface, which enhance the interactions between Si and GNS.
Thinning of Large Biological Cells for Cryo-TEM Characterization by Cryo-FIB Milling
Strunk, Korrinn M.; Ke, Danxia; Gray, Jennifer L.; Zhang, Peijun
2013-01-01
SUMMARY Focused ion beam milling at cryogenic temperatures (cryo-FIB) is a valuable tool that can be used to thin vitreous biological specimens for subsequent imaging and analysis in a cryo-transmission electron microscope (cryo-TEM) in their frozen-hydrated state. This technique offers the potential benefit of eliminating the mechanical artifacts that are typically found with cryo-ultramicrotomy. However, due to the additional complexity in transferring samples in and out of the FIB, contamination and devitrification of the amorphous ice is commonly encountered. In order to address these problems, we have designed a new sample cryo-shuttle that specifically accepts Polara TEM cartridges directly in order to simplify the transfer process between the FIB and TEM. We used the quality of the ice in the sample as an indicator to test various parameters used the process, and demonstrated with successful milling of large mammalian cells. By comparing the results from larger HeLa cells to those from E. coli cells, we discuss some of the artifacts and challenges we have encountered using this technique. PMID:22906009
Investigation of Carbon Fiber Reinforced Plastics Machining Using 355 nm Picosecond Pulsed Laser
NASA Astrophysics Data System (ADS)
Hu, Jun; Zhu, Dezhi
2018-06-01
Carbon fiber reinforced plastics (CFRP) has been widely used in the aircraft industry and automobile industry owing to its superior properties. In this paper, a Nd:YVO4 picosecond pulsed system emitting at 355 nm has been used for CFRP machining experiments to determine optimum milling conditions. Milling parameters including laser power, milling speed and hatch distance were optimized by using box-behnken design of response surface methodology (RSM). Material removal rate was influenced by laser beam overlap ratio which affects mechanical denudation. The results in heat affected zones (HAZ) and milling quality were discussed through the machined surface observed with scanning electron microscope. A re-focusing technique based on the experiment with different focal planes was proposed and milling mechanism was also analyzed in details.
Matrix model of the grinding process of cement clinker in the ball mill
NASA Astrophysics Data System (ADS)
Sharapov, Rashid R.
2018-02-01
In the article attention is paid to improving the efficiency of production of fine powders, in particular Portland cement clinker. The questions of Portland cement clinker grinding in closed circuit ball mills. Noted that the main task of modeling the grinding process is predicting the granulometric composition of the finished product taking into account constructive and technological parameters used ball mill and separator. It is shown that the most complete and informative characterization of the grinding process in a ball mill is a grinding matrix taking into account the transformation of grain composition inside the mill drum. Shows how the relative mass fraction of the particles of crushed material, get to corresponding fraction. Noted, that the actual task of reconstruction of the matrix of grinding on the experimental data obtained in the real operating installations. On the basis of experimental data obtained on industrial installations, using matrix method to determine the kinetics of the grinding process in closed circuit ball mills. The calculation method of the conversion of the grain composition of the crushed material along the mill drum developed. Taking into account the proposed approach can be optimized processing methods to improve the manufacturing process of Portland cement clinker.
Structural changes during milling of aluminum oxide powders
NASA Technical Reports Server (NTRS)
Ziepler, G.
1984-01-01
The mechanical activation of four fused corundum powders and a calcined Al2O3 powder was studied. The milled powders were characterized by their structural properties, crystallite size, and lattice distortions. Structural changes during milling, detected by X-ray line broadening analysis, gave information about the enhanced activity of the powders caused by the lattice distortions and by the decreasing crystallite size during milling. The structural changes during milling, under the same milling conditions, can be quite different for the same ceramic material, but with different characteristics in the as received state.
2. RW Meyer Sugar Mill: 18761899. Threeroll sugar mill, oneton ...
2. RW Meyer Sugar Mill: 1876-1899. Three-roll sugar mill, one-ton daily processing capacity. Manufactured by Edwin Maw, Liverpool, England, ca. 1855-1870. View: Top roll and one bottom roll, mill housing or cheeks, and spur pinion gears. The broken projection on the mill beside the bottom roll indicates the location of the cane tray. The cane juice crushed from the cane flowed into the juice tray below the bottom rolls. It then flowed into a wooden gutter and through a short tunnel in the mill's masonry enclosure and on to the boiling house for further processing. The opening at the base of the masency wall (In the photograph) is where the gutter ran from the mill to the boiling house. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
NASA Astrophysics Data System (ADS)
Arora, Sweety; Srivastava, Chandan
2017-02-01
A ZnO nanocrystal-graphene composite was synthesized by a two-step method involving mechanical milling and sonication-assisted exfoliation. Zn metal powder was first ball-milled with graphite powder for 30 h in water medium. This ball-milled mixture was then subjected to exfoliation by sonication in the presence of sodium lauryl sulfate surfactant to produce graphene decorated with spherical agglomerates of ultrafine nanocrystalline ZnO. The presence of a few layers of graphene was confirmed by Raman spectroscopy and atomic force microscopy measurements. The size, phase identity and composition of the ZnO nanocrystals was determined by transmission electron microscopy measurements.
A PFI mill can be used to predict biomechanical pulp strength properties
Gary F. Leatham; Gary C. Myers
1990-01-01
Recently, we showed that a biomechanical pulping process in which aspen chips are pretreated with a white-rot fungus can give energy savings and can increase paper sheet strength. To optimize this process, we need more efficient ways to evaluate the fungal treatments. Here, we examine a method that consists of treating coarse refiner mechanical pulp, refining in a PFI...
31. RW Meyer Sugar Mill: 18761889. Threeroll sugar mill: oneton ...
31. RW Meyer Sugar Mill: 1876-1889. Three-roll sugar mill: one-ton daily processing capacity. Manufactured by Edwin Maw, Liverpool, England, ca. 1855-1870. View: View down at the mill from top of the mill's circular masonry enclosure. Mill animals circling above the mill, on top of the enclosure, dragged booms radiating from the drive shaft to power the mill. The drive-shaft is no longer in its upright positon but is lying next to the mill in the foreground. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
21. FOREBAY; GATE MECHANISM VISIBLE IN LOWER LEFT; HEADRACE ARCH ...
21. FOREBAY; GATE MECHANISM VISIBLE IN LOWER LEFT; HEADRACE ARCH IS IN NORTH WALL OF FOREBAY, BEHIND MASONRY ARCH IN CENTER; LOOKING NORTHEAST - Crown Roller Mill, 105 Fifth Avenue, South, West Side Milling District, Minneapolis, Hennepin County, MN
Nekkanti, Vijaykumar; Marwah, Ashwani; Pillai, Raviraj
2015-01-01
Design of experiments (DOE), a component of Quality by Design (QbD), is systematic and simultaneous evaluation of process variables to develop a product with predetermined quality attributes. This article presents a case study to understand the effects of process variables in a bead milling process used for manufacture of drug nanoparticles. Experiments were designed and results were computed according to a 3-factor, 3-level face-centered central composite design (CCD). The factors investigated were motor speed, pump speed and bead volume. Responses analyzed for evaluating these effects and interactions were milling time, particle size and process yield. Process validation batches were executed using the optimum process conditions obtained from software Design-Expert® to evaluate both the repeatability and reproducibility of bead milling technique. Milling time was optimized to <5 h to obtain the desired particle size (d90 < 400 nm). The desirability function used to optimize the response variables and observed responses were in agreement with experimental values. These results demonstrated the reliability of selected model for manufacture of drug nanoparticles with predictable quality attributes. The optimization of bead milling process variables by applying DOE resulted in considerable decrease in milling time to achieve the desired particle size. The study indicates the applicability of DOE approach to optimize critical process parameters in the manufacture of drug nanoparticles.
Matori, Khamirul Amin; Ostovan, Farhad; Abdul Aziz, Sidek; Mamat, Md Shuhazlly
2017-01-01
The effect of milling time on the morphology, microstructure, physical and mechanical properties of pure Al-5 wt % Al2O3 (Al-5Al2O3) has been investigated. Al-5Al2O3 nanocomposites were fabricated using ball milling in a powder metallurgy route. The increase in the milling time resulted in the homogenous dispersion of 5 wt % Al2O3 nanoparticles, the reduction of particle clustering, and the reduction of distances between the composite particles. The significant grain refining during milling was revealed which showed as a reduction of particle size resulting from longer milling time. X-Ray diffraction (XRD) analysis of the nanocomposite powders also showed that designated ball milling contributes to the crystalline refining and accumulation of internal stress due to induced severe plastic deformation of the particles. It can be argued that these morphological and microstructural variations of nanocomposite powders induced by designated ball milling time was found to contribute to an improvement in the density, densification, micro-hardness (HV), nano-hardness (HN), and Young’s modulus (E) of Al-5Al2O3 nanocomposites. HV, HN, and E values of nanocomposites were increased by ~48%, 46%, and 40%, after 12 h of milling, respectively. PMID:29072632
Passivity of the bars manufactured using current technologies: laser-sintering, casting, and milling
NASA Astrophysics Data System (ADS)
Popescu, Diana; Popescu, Sabin; Pop, Daniel; Jivanescu, Anca; Todea, Carmen
2014-01-01
Implant overdentures are often selected as therapeutic options for the treatment of edentulous mandibles. "Passive-fit" between the mesostructures and the implants plays an important role in the longevity of the implant-prosthetic assembly in the oral cavity. "Mis-fit" can cause mechanical or biological complications. The purpose of this test was to investigate the passive adaptation of the bars manufactured through different technologies, and in this respect two bars (short and long) were fabricated by each process: laser-sintering, milling, casting. The tensions induced by tightening the connection screw between the bars and the underlying implants were recorded using strain gauges and used as measuring and comparing tool in testing the bars' "passivity". The results of the test showed that the milled bars had the best "passive-fit", followed by laser-sintered bars, while cast bars had the lowest adaptation level.
NASA Astrophysics Data System (ADS)
Tang, W. M.; Liu, H. L.; Wang, Y. X.; Xu, G. O.; Zheng, Z. X.
2012-05-01
Nanocrystalline powders of alloy Fe - 28% Al - 5% Cr (at.%) obtained by mechanical alloying from powdered iron, aluminum, and preliminarily alloyed Fe - 20% Cr are studied. The chemical composition is shown to be homogenized. The changes in the structure and in the morphology of the particles in the process of ball milling and subsequent heat treatment are determined. The alloying is shown to occur by the mechanism of continuous diffusion mixing.
NASA Astrophysics Data System (ADS)
Sago, James Alan
Metal Injection Molding (MIM) is one of the most rapidly growing areas of powder metallurgy (P/M) but the growth of MIM into new markets and more demanding applications is limited by two fundamental barriers, the availability of low cost metal powders and a lack of knowledge and understanding of how mechanical properties, especially toughness, are affected by the many parameters in the MIM process. The goals of this study were to investigate solutions to these challenges for MIM. Mechanical alloying (MA) is a technique which can produce a wide variety of powder compositions in a size range suited to MIM and in smaller batches. However MA typically suffers from low production volumes and long milling times. This study will show that a saucer mill can produce sizable volumes of MA powders in times typically less than an hour. The MA process was also used to produce powders of 17-4PH stainless steel and the NiTi shape memory alloy for a MIM feedstock. This study shows that the MA powder characteristics led to successful MIM processing of parts. Previous studies have shown that the toughness of individual MIM parts can vary widely within a single production run and from one producer to another. In the last part of the study a Design of Experiments (DOE) approach was used to evaluate the effects of MIM processing parameters on the mechanical properties. Analysis of Variance produced mathematical models for Charpy impact toughness, hardness, density, and carbon content. Tensile properties did not produce a good model due to processing problems. The models and recommendations for improving both toughness and reproducibility of toughness are presented.
32. RW Meyer Sugar Mill: 18761889. Threeroll sugar mill, oneton ...
32. RW Meyer Sugar Mill: 1876-1889. Three-roll sugar mill, one-ton daily processing capacity. Manufactured by Edwin Maw, Liverpool, England, ca. 1855-1870. View: End of mill into which cane was fed between top and bottom roll. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
Process water reduction in a wire milling operation. 1989 summer intern report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alberg, J.
1989-12-31
Johnson Filtration Systems is a company located in New Brighton, Minnesota which employs 256 people. The focus of the project was to reduce the water usage of the wire milling operation. Water in the milling process is used to clean the wire and cool the mill components. Total annual water usage for this operation is six million gallons. The milling process changes the cross sectional shape of the wire by using flattening hammers and rollers. A synthetic coolant is used to enhance this process and remove heat. The coolant is removed from the wire as it is pulled through amore » squeegee, washed it with water and dried with an air knife.« less
Microalloying of transition metal silicides by mechanical activation and field-activated reaction
Munir, Zuhair A [Davis, CA; Woolman, Joseph N [Davis, CA; Petrovic, John J [Los Alamos, NM
2003-09-02
Alloys of transition metal suicides that contain one or more alloying elements are fabricated by a two-stage process involving mechanical activation as the first stage and densification and field-activated reaction as the second stage. Mechanical activation, preferably performed by high-energy planetary milling, results in the incorporation of atoms of the alloying element(s) into the crystal lattice of the transition metal, while the densification and field-activated reaction, preferably performed by spark plasma sintering, result in the formation of the alloyed transition metal silicide. Among the many advantages of the process are its ability to accommodate materials that are incompatible in other alloying methods.
NASA Astrophysics Data System (ADS)
Dong, Huina; Chen, Deliang; Wang, Kai; Zhang, Rui
2016-09-01
Cost-effective and scalable preparation of two-dimensional (2D) molybdenum disulfide (MoS2) has been the bottleneck that limits their applications. This paper reports a novel coupled ultrasonication-milling (CUM) process to exfoliate natural molybdenite powders to achieve few-layer MoS2 (FL-MoS2) nanosheets in the solvent of N-methyl-2-pyrrolidone (NMP) with polyvinylpyrrolidone (PVP) molecules. The synergistic effect of ultrasonication and sand milling highly enhanced the exfoliation efficiency, and the precursor of natural molybdenite powders minimizes the synthetic cost of FL-MoS2 nanosheets. The exfoliation of natural molybdenite powders was conducted in a home-made CUM system, mainly consisting of an ultrasonic cell disruptor and a ceramic sand mill. The samples were characterized by X-ray diffraction, UV-vis spectra, Raman spectra, FT-IR, SEM, TEM, AFM, and N2 adsorption-desorption. The factors that influence the exfoliation in the CUM process, including the initial concentration of natural molybdenite powders ( C in, 15-55 g L-1), ultrasonic power ( P u, 200-350 W), rotation speed of sand mill ( ω s, 1500-2250 r.p.m), exfoliation time ( t ex, 0.5-6 h), and the molar ratio of PVP unit to MoS2 ( R pm, 0-1), were systematically investigated. Under the optimal CUM conditions (i.e., C in = 45 g L-1, P u = 280 W, ω s = 2250 r.p.m and R pm = 0.5), the yield at t ex = 6 h reaches 21.6 %, and the corresponding exfoliation rate is as high as 1.42 g L-1 h-1. The exfoliation efficiency of the CUM mode is much higher than that of either the ultrasonication (U) mode or the milling (M) mode. The synergistic mechanism and influencing rules of the CUM process in exfoliating natural molybdenite powders were elaborated. The as-obtained FL-MoS2 nanosheets have a high specific surface area of 924 m2 g-1 and show highly enhanced electrocatalytic performance in hydrogen evolution reaction and good electrochemical sensing property in detecting ascorbic acid. The CUM process developed has paved a low-cost, green, and highly efficient way towards FL-MoS2 nanosheets from natural molybdenite powders.
NASA Astrophysics Data System (ADS)
Krishnamoorthy, Karthikeyan; Pazhamalai, Parthiban; Veerasubramani, Ganesh Kumar; Kim, Sang Jae
2016-07-01
Two dimensional nanostructures are increasingly used as electrode materials in flexible supercapacitors for portable electronic applications. Herein, we demonstrated a ball milling approach for achieving few layered molybdenum disulfide (MoS2) via exfoliation from their bulk. Physico-chemical characterizations such as X-ray diffraction, field emission scanning electron microscope, and laser Raman analyses confirmed the occurrence of exfoliated MoS2 sheets with few layers from their bulk via ball milling process. MoS2 based wire type solid state supercapacitors (WSCs) are fabricated and examined using cyclic voltammetry (CV), electrochemical impedance spectroscopy, and galvanostatic charge discharge (CD) measurements. The presence of rectangular shaped CV curves and symmetric triangular shaped CD profiles suggested the mechanism of charge storage in MoS2 WSC is due to the formation of electrochemical double layer capacitance. The MoS2 WSC device delivered a specific capacitance of 119 μF cm-1, and energy density of 8.1 nW h cm-1 with better capacitance retention of about 89.36% over 2500 cycles, which ensures the use of the ball milled MoS2 for electrochemical energy storage devices.
Mechanochemical depolymerization of inulin.
Xing, Haoran; Yaylayan, Varoujan A
2018-05-02
Although chemical reactions driven by mechanical force is emerging as a promising tool in the field of physical sciences, its applications in the area of food sciences are not reported. In this paper, we propose ball milling as an efficient tool for the controlled generation of fructooligosaccharide (FOS) mixtures from inulin with a degree of polymerization (dp) ranging between 4 and 7. The addition of catalytic amounts of AlCl 3 together with ball milling (30 min, at 30 Hz) generated mixtures rich in dehydrated disaccharides such as di-D-fructose dianhydrides. Based on anion exchange chromatography in conjunction with ESI/qTOF/MS/MS analysis, catalysis increased the overall content of mono-, di-, and tri-saccharides by around 30 fold compared to un-catalyzed milling. In addition, dialysis results of the untreated and treated samples have indicated that under catalysis the percent of depolymerization (dp < 12) reached 73.4% from the starting value of 27.6% in the untreated sample. Both processes resulted in mixtures of prebiotic value. The use of mechanical energy may be suitable for a fast, cost-efficient and green conversion of inulin to value-added food ingredients. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bandriyana; Dimyati, Arbi; Sujatno, Agus; Salam, Rohmad; Sumaryo; Untoro, Pudji; Suharno, Bambang
2018-03-01
High chromium ODS alloy has been developed for application as structural material in high temperature nuclear reactor. In the present study, Fe-25Cr-Y2O3 with dispersed 0.5 wt.% Ytria (Y2O3) were synthesized and characterized by means of various techniques as a function of milling time 1, 2 and 3 hours. The alloy synthesis was carried out by the Mechanical Alloying (MA) process and subsequent sintering by means the new plasma technique using the APS apparatus. Scaning Electron Microscopy (SEM) and X-ray diffraction (XRD) were conducted for morphology and phase analysis. Evaluation of the mechanical properties was studied based on the Vickers hardness measurement. SEM examination revealed that the sample after sintering by APS method at different milling duration exhibited some particle aglomeration and homogenized oxide dispersion that obviously strengthened the alloy. The XRD test, however, proved the formation of the main phase Fe-Cr. The alloy showed exceptionally high hardness of 193 VHR which is mainly due to the grain refining that increase by the increasing of the milling time.
Mechanical properties and superficial characterization of a milled CAD-CAM glass fiber post.
Ruschel, George Hebert; Gomes, Érica Alves; Silva-Sousa, Yara Terezinha; Pinelli, Rafaela Giedra Pirondi; Sousa-Neto, Manoel Damião; Pereira, Gabriel Kalil Rocha; Spazzin, Aloísio Oro
2018-06-01
Computer-aided design and computer-aided manufacturing (CAD-CAM) technology may be used to produce custom intraradicular posts, but studies are lacking. The purpose of this in vitro study was to evaluate the flexural properties (strength and modulus), failure mode, superficial morphology, and roughness of two CAD-CAM glass fiber posts (milled at different angulations) compared with a commercially available prefabricated glass fiber post. Three groups were tested (n = 10): PF (control group)- prefabricated glass fiber post; C-Cd-diagonally milled post; and C-Cv-vertically milled post. A 3-dimensional virtual image was obtained from a prefabricated post, which guided the posterior milling of posts from a glass fiber disk (Trilor Blanks; Bioloren). Surface roughness and morphology were evaluated using confocal laser microscopy. Flexural strength and modulus were evaluated with the 3-point bend test. Data were submitted to one-way analysis of variance followed by the Student-Newman-Keuls post hoc test (α = 0.05). The fractured surfaces were evaluated with scanning electron microscopy. The superficial roughness was highest for PF and similar for the experimental groups. Morphological analysis shows different sizes and directions of the glass fibers along the post. The flexural strength was highest for PF (900.1 ± 30.4 > C-Cd - 357.2 ± 30.7 > C-Cv 101.8 ± 4.3 MPa) as was the flexural modulus (PF 19.3 ± 2.0 GPa > C-Cv 10.1 ± 1.9 GPa > C-Cd 7.8 ± 1.3 GPa). A CAD-CAM milled post seems a promising development, but processing requires optimizing, as the prefabricated post still shows better mechanical properties and superficial characteristics. Copyright © 2018 Elsevier Ltd. All rights reserved.
Processing of palm oil mill wastes based on zero waste technology
NASA Astrophysics Data System (ADS)
Irvan
2018-02-01
Indonesia is currently the main producer of palm oil in the world with a total production reached 33.5 million tons per year. In the processing of fresh fruit bunches (FFB) besides producing palm oil and kernel oil, palm oil mills also produce liquid and solid wastes. The increase of palm oil production will be followed by an increase in the production of waste generated. It will give rise to major environmental issues especially the discharge of liquid waste to the rivers, the emission of methane from digestion pond and the incineration of empty fruit bunches (EFB). This paper describes a zero waste technology in processing palm oil mill waste after the milling process. The technology involves fermentation of palm oil mill effluent (POME) to biogas by using continuous stirred tank reactor (CSTR) in the presence of thermophilic microbes, producing activated liquid organic fertilizer (ALOF) from discharge of treated waste effluent from biogas digester, composting EFB by spraying ALOF on the EFB in the composter, and producing pellet or biochar from EFB by pyrolysis process. This concept can be considered as a promising technology for palm oil mills with the main objective of eliminating the effluent from their mills.
NASA Astrophysics Data System (ADS)
Farina, Simone; Thepsonti, Thanongsak; Ceretti, Elisabetta; Özel, Tugrul
2011-05-01
Titanium alloys offer superb properties in strength, corrosion resistance and biocompatibility and are commonly utilized in medical devices and implants. Micro-end milling process is a direct and rapid fabrication method for manufacturing medical devices and implants in titanium alloys. Process performance and quality depend upon an understanding of the relationship between cutting parameters and forces and resultant tool deflections to avoid tool breakage. For this purpose, FE simulations of chip formation during micro-end milling of Ti-6Al-4V alloy with an ultra-fine grain solid carbide two-flute micro-end mill are investigated using DEFORM software. At first, specific forces in tangential and radial directions of cutting during micro-end milling for varying feed advance and rotational speeds have been determined using designed FE simulations for chip formation process. Later, these forces are applied to the micro-end mill geometry along the axial depth of cut in 3D analysis of ABAQUS. Consequently, 3D distributions for tool deflections & von Misses stress are determined. These analyses will yield in establishing integrated multi-physics process models for high performance micro-end milling and a leap-forward to process improvements.
NASA Astrophysics Data System (ADS)
Wang, Wen; Li, Boyu; Zhai, Sicheng; Xu, Juan; Niu, Zuozhe; Xu, Jing; Wang, Yan
2018-02-01
In this paper, FeSiBAlNiCo x (x = 0.2, 0.8) high-entropy alloy (HEA) powders were fabricated by mechanical alloying process, and the powders milled for 140 h were sintered by spark plasma sintering (SPS) technique. The microstructures and properties of as-milled powders and as-sintered samples were investigated. The results reveal that the final milling products (140 h) of both sample powders present the fully amorphous structure. The increased Co contents obviously enhance the glass forming ability and thermal stability of amorphous HEA powders, which are reflected by the shorter formation time of fully amorphous phase and the higher onset crystallization temperature, respectively. According to coercivity, the as-milled FeSiBAlNiCo x (x = 0.2, 0.8) powders (140 h) are the semi-hard magnetic materials. FeSiBAlNiCo0.8 HEA powders possess the highest saturation magnetization and largest remanence ratio. The SPS-ed products of both bulk HEAs are composed of body-centered cubic solid solution, and FeSi and FeB intermetallic phases. They possess the high relative density above 97% and excellent microhardness exceeding 1150 HV. The as-sintered bulks undergo the remarkable increase in saturation magnetization compared with the as-milled state. The SPS-ed FeSiBAlNiCo0.8 HEA exhibits the soft magnetic properties. The electrochemical corrosion test is carried out in 3.5% NaCl solution. The SPS-ed FeSiBAlNiCo0.2 HEA reveals the better passivity with low passive current density, and the higher pitting resistance with wide passive region.
Tran, Thuy T B; Shelat, Kinnari J; Tang, Daniel; Li, Enpeng; Gilbert, Robert G; Hasjim, Jovin
2011-04-27
Whole polished rice grains were ground using cryogenic and hammer milling to understand the mechanisms of degradation of starch granule structure, whole (branched) molecular structure, and individual branches of the molecules during particle size reduction (grinding). Hammer milling caused greater degradation to starch granules than cryogenic milling when the grains were ground to a similar volume-median diameter. Molecular degradation of starch was not evident in the cryogenically milled flours, but it was observed in the hammer-milled flours with preferential cleavage of longer (amylose) branches. This can be attributed to the increased grain brittleness and fracturability at cryogenic temperatures, reducing the mechanical energy required to diminish the grain size and thus reducing the probability of chain scission. The results indicate, for the first time, that branching, whole molecule, and granule structures of starch can be independently altered by varying grinding conditions, such as grinding force and temperature.
Size and morphology controlled NiSe nanoparticles as efficient catalyst for the reduction reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subbarao, Udumula; Marakatti, Vijaykumar S.; Amshumali, Mungalimane K.
Facile and efficient ball milling and polyol methods were employed for the synthesis of nickel selenide (NiSe) nanoparticle. The particle size of the NiSe nanoparticle has been controlled mechanically by varying the ball size in the milling process. The role of the surfactants in the formation of various morphologies was studied. The compounds were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray energy dispersive spectroscopy (EDS). The efficiency of the NiSe nanoparticle as a catalyst was tested for the reduction of para-nitroaniline (PNA) to para-phenyldiamine (PPD) and para-nitrophenol (PNP) to para-aminophenol (PAP)more » using NaBH{sub 4} as the reducing agent. Particle size, morphology and the presence of surfactant played a crucial role in the reduction process. - Graphical abstract: NiSe nanoparticles in different size and morphology were synthesized using facile ball milling and polyol methods. Particle size, morphology and the presence of surfactant in these materials played a crucial role in the hydrogenation of PNA and PNP. - Highlights: • NiSe nanoparticles synthesized using ball milling and solution phase methods. • NiSe nanoparticle is an efficient catalyst for the reduction of PNA and PNP. • NiSe is found to be better than the best reported noble metal catalysts.« less
Primary and secondary fragmentation of crystal-bearing intermediate magma
NASA Astrophysics Data System (ADS)
Jones, Thomas J.; McNamara, Keri; Eychenne, Julia; Rust, Alison C.; Cashman, Katharine V.; Scheu, Bettina; Edwards, Robyn
2016-11-01
Crystal-rich intermediate magmas are subjected to both primary and secondary fragmentation processes, each of which may produce texturally distinct tephra. Of particular interest for volcanic hazards is the extent to which each process contributes ash to volcanic plumes. One way to address this question is by fragmenting pyroclasts under controlled conditions. We fragmented pumice samples from Soufriere Hills Volcano (SHV), Montserrat, by three methods: rapid decompression in a shock tube-like apparatus, impact by a falling piston, and milling in a ball mill. Grain size distributions of the products reveal that all three mechanisms produce fractal breakage patterns, and that the fractal dimension increases from a minimum of 2.1 for decompression fragmentation (primary fragmentation) to a maximum of 2.7 by repeated impact (secondary fragmentation). To assess the details of the fragmentation process, we quantified the shape, texture and components of constituent ash particles. Ash shape analysis shows that the axial ratio increases during milling and that particle convexity increases with repeated impacts. We also quantify the extent to which the matrix is separated from the crystals, which shows that secondary processes efficiently remove adhering matrix from crystals, particularly during milling (abrasion). Furthermore, measurements of crystal size distributions before (using x-ray computed tomography) and after (by componentry of individual grain size classes) decompression-driven fragmentation show not only that crystals influence particular size fractions across the total grain size distribution, but also that free crystals are smaller in the fragmented material than in the original pumice clast. Taken together, our results confirm previous work showing both the control of initial texture on the primary fragmentation process and the contributions of secondary processes to ash formation. Critically, however, our extension of previous analyses to characterisation of shape, texture and componentry provides new analytical tools that can be used to assess contributions of secondary processes to ash deposits of uncertain or mixed origin. We illustrate this application with examples from SHV deposits.
Alternative Fuels Data Center: Ethanol Production
States is produced from starch-based crops by dry- or wet-mill processing. Nearly 90% of ethanol plants are dry mills due to lower capital costs. Dry-milling is a process that grinds corn into flour and
NASA Astrophysics Data System (ADS)
Yustanti, Erlina; Manaf, Azwar
2018-04-01
Barium hexaferrite (BaO.6Fe2O3/BaFe12O19) is a permanent magnetic material and microwave absorbing material. The value of microwave absorption can be increased through the engineering of the material structure, while the reduction of crystallite and particle size up to nanometer results device performance improvement to be superior. In this research, the structural engineering through mechanical alloying and crystallite size reduction through high power ultrasonic irradiation will be explained. Mixing and alloying of Sigma Aldrich BaCO3, Fe2O3, MnCO3, TiO2 p.a 99% precursor material used ball mill with powder ratio of vial at 1:10. Mechanical alloying for 60 hours at 160 rpm produced amorphous material. The process of the crystalline embryo nucleation for 4 hours produced multicrystalline material at a sinter temperature of 1100°C. Phase analysis of the mechanical alloying result using x-ray diffractometer was confirmed either the formation of BaO.6Fe2-xMnx/2Tix/2O3 (x=0.5) single phase. Multicrystalline powder of BaO.6Fe2-xMnx/2Tix/2O3 (x=0.5) was obtained through 20 hours hand grinding and re-milling to bulk sample. Crystallite size reduction in the analysis was conducted through particle density variation in ultrasonic reactor and variation of the increase in ultrasonic time. Increase in milling time up to 60 hours produced fragmenting so that particle size reduction from 18.8 µm to 0.9 µm was occurred. The 12-h ultrasonic irradiation at a frequency of 20 kHz amplitude of 60 µm produced a crystallite-size reduction up to 18 nm at a 10 g/L particle density.
Numerical simulation of X90 UOE pipe forming process
NASA Astrophysics Data System (ADS)
Zou, Tianxia; Ren, Qiang; Peng, Yinghong; Li, Dayong; Tang, Ding; Han, Jianzeng; Li, Xinwen; Wang, Xiaoxiu
2013-12-01
The UOE process is an important technique to manufacture large-diameter welding pipes which are increasingly applied in oil pipelines and offshore platforms. The forming process of UOE mainly consists of five successive operations: crimping, U-forming, O-forming, welding and mechanical expansion, through which a blank is formed into a pipe in a UOE pipe mill. The blank with an appropriate edge bevel is bent into a cylindrical shape by crimping (C-forming), U-forming and O-forming successively. After the O-forming, there is an open-seam between two ends of the plate. Then, the blank is welded by automatic four-electrode submerged arc welding technique. Subsequently, the welded pipe is expanded with a mechanical expander to get a high precision circular shape. The multiple operations in the UOE mill make it difficult to control the quality of the formed pipe. Therefore, process design mainly relies on experience in practical production. In this study, the UOE forming of an API X90 pipe is studied by using finite element simulation. The mechanical properties tests are performed on the API X90 pipeline steel blank. A two-dimensional finite element model under the hypothesis of plane strain condition is developed to simulate the UOE process according to data coming from the workshop. A kinematic hardening model is used in the simulation to take the Bauschinger effect into account. The deformation characteristics of the blank during the forming processes are analyzed. The simulation results show a significant coherence in the geometric configurations comparing with the practical manufacturing.
NASA Astrophysics Data System (ADS)
Al-Aqeeli, N.; Suryanarayana, C.; Hussein, M. A.
2013-10-01
Mechanical alloying of binary Nb-Zr powder mixtures was carried out to evaluate the formation of metastable phases in this immiscible system. The milled powders were characterized for their constitution and structure by X-ray diffraction and transmission electron microscopy methods. It was shown that an amorphous phase had formed on milling the binary powder mixture for about 10 h and that it had crystallized on subsequent milling up to 50-70 h, referred to as mechanical crystallization. Thermodynamic and structural arguments have been presented to explain the formation of the amorphous phase and its subsequent crystallization.
Fabrication of Oxide Dispersion Strengthened Bond Coats with Low Al2O3 Content
NASA Astrophysics Data System (ADS)
Bergholz, Jan; Pint, Bruce A.; Unocic, Kinga A.; Vaßen, Robert
2017-06-01
Nanoscale oxide dispersions have long been used to increase the oxidation and wear resistance of alloys used as bond coatings in thermal barrier coatings. Their manufacturing via mechanical alloying is often accompanied by difficulties regarding their particle size, homogeneous distribution of the oxide dispersions inside the powder, involving considerable costs, due to cold welding of the powder during milling. A significant improvement in this process can be achieved by the use of process control agent (PCA) to achieve the critical balance between cold welding and fracturing, thereby enhancing the process efficiency. In this investigation, the influence of the organic additive stearic acid on the manufacturing process of Al2O3-doped CoNiCrAlY powder was investigated. Powders were fabricated via mechanical alloying at different milling times and PCA concentrations. The results showed a decrease in particle size, without hindering the homogeneous incorporation of the oxide dispersions. Two powders manufactured with 0.5 and 1.0 wt.% PCA were deposited by high velocity oxygen fuel (HVOF) spraying. Results showed that a higher content of elongated particles in the powder with the higher PCA content led to increased surface roughness, porosity and decreased coating thickness, with areas without embedded oxide particles.
Size and morphology controlled NiSe nanoparticles as efficient catalyst for the reduction reactions
NASA Astrophysics Data System (ADS)
Subbarao, Udumula; Marakatti, Vijaykumar S.; Amshumali, Mungalimane K.; Loukya, B.; Singh, Dheeraj Kumar; Datta, Ranjan; Peter, Sebastian C.
2016-12-01
Facile and efficient ball milling and polyol methods were employed for the synthesis of nickel selenide (NiSe) nanoparticle. The particle size of the NiSe nanoparticle has been controlled mechanically by varying the ball size in the milling process. The role of the surfactants in the formation of various morphologies was studied. The compounds were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray energy dispersive spectroscopy (EDS). The efficiency of the NiSe nanoparticle as a catalyst was tested for the reduction of para-nitroaniline (PNA) to para-phenyldiamine (PPD) and para-nitrophenol (PNP) to para-aminophenol (PAP) using NaBH4 as the reducing agent. Particle size, morphology and the presence of surfactant played a crucial role in the reduction process.
Fluid mechanics of slurry flow through the grinding media in ball mills
DOE Office of Scientific and Technical Information (OSTI.GOV)
Songfack, P.K.; Rajamani, R.K.
1995-12-31
The slurry transport within the ball mill greatly influences the mill holdup, residence time, breakage rate, and hence the power draw and the particle size distribution of the mill product. However, residence-time distribution and holdup in industrial mills could not be predicted a priori. Indeed, it is impossible to determine the slurry loading in continuously operating mills by direct measurement, especially in industrial mills. In this paper, the slurry transport problem is solved using the principles of fluid mechanics. First, the motion of the ball charge and its expansion are predicted by a technique called discrete element method. Then themore » slurry flow through the porous ball charge is tackled with a fluid-flow technique called the marker and cell method. This may be the only numerical technique capable of tracking the slurry free surface as it fluctuates with the motion of the ball charge. The result is a prediction of the slurry profile in both the radial and axial directions. Hence, it leads to the detailed description of slurry mass and ball charge within the mill. The model predictions are verified with pilot-scale experimental work. This novel approach based on the physics of fluid flow is devoid of any empiricism. It is shown that the holdup of industrial mills at a given feed percent solids can be predicted successfully.« less
Nanosecond multi-pulse laser milling for certain area removal of metal coating on plastics surface
NASA Astrophysics Data System (ADS)
Zhao, Kai; Jia, Zhenyuan; Ma, Jianwei; Liu, Wei; Wang, Ling
2014-12-01
Metal coating with functional pattern on engineering plastics surface plays an important role in industry applications; it can be obtained by adding or removing certain area of metal coating on engineering plastics surface. However, the manufacturing requirements are improved continuously and the plastic substrate presents three-dimensional (3D) structure-many of these parts cannot be fabricated by conventional processing methods, and a new manufacturing method is urgently needed. As the laser-processing technology has many advantages like high machining accuracy and constraints free substrate structure, the machining of the parts is studied through removing certain area of metal coating based on the nanosecond multi-pulse laser milling. To improve the edge quality of the functional pattern, generation mechanism and corresponding avoidance strategy of the processing defects are studied. Additionally, a prediction model for the laser ablation depth is proposed, which can effectively avoid the existence of residual metal coating and reduces the damage of substrate. With the optimal machining parameters, an equiangular spiral pattern on copper-clad polyimide (CCPI) is machined based on the laser milling at last. The experimental results indicate that the edge of the pattern is smooth and consistent, the substrate is flat and without damage. The achievements in this study could be applied in industrial production.
30. RW Meyer Sugar Mill: 18761889. Threeroll sugar mill: oneton ...
30. RW Meyer Sugar Mill: 1876-1889. Three-roll sugar mill: one-ton daily processing capacity. Manufactured by Edwin Maw, Liverpool, England, ca. 1885-1870. View: Masonry-lined passage-way leading to the mill at the center of its circular masonry enclosure. The passageway permitted cane to be carried to the mill and cane trash (bagasse) to be carried away. Bridges over the passageways, no longer in place, permitted the mill animals to circle and power the mill from above. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
Processing study of high temperature superconducting Y-Ba-Cu-O ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safari, A.; Wachtman, J.B. Jr.; Ward, C.
Processing of the YBa{sub 2}Cu{sub 3}O{sub 6+x} superconducting phase by employing different precursor powder preparation techniques (ball milling, attrition milling) and samples formed by different sintering conditions are discussed. The superconducting phase has been identified by powder x-ray diffraction. The effect of different powder processing and pressing conditions on the structure, density, resistivity and a.c. magnetic susceptibility were studied. Though there is no variation in T{sub c} for all the samples, attrition milled samples show a much lower resistance and less temperature dependence compared to ball milled samples above the superconducting transition temperature up to room temperature. Ball milled samplesmore » were loosely packed with more voids compared to attrition milled samples which are more densely packed with a needle-like structure.« less
NASA Astrophysics Data System (ADS)
Latif, A. Afiff; Ibrahim, M. Rasidi; Rahim, E. A.; Cheng, K.
2017-04-01
The conventional milling has many difficulties in the processing of hard and brittle material. Hence, ultrasonic vibration assisted milling (UVAM) was proposed to overcome this problem. The objective of this research is to study the behavior of compliance mechanism (CM) as the critical part affect the performance of the UVAM. The design of the CM was investigated and focuses on 1-Dimensional. Experimental result was obtained from a portable laser digital vibrometer. While the 1-Dimensional value such as safety factor, deformation of hinges and stress analysis are obtained from finite elements simulation. Finally, the findings help to find the best design judging from the most travelled distance of the piezoelectric actuators. In addition, this paper would provide a clear picture the behavior of the CM embedded in the UVAM, which can provide good data and to improve the machining on reducing tool wear, and lower cutting force on the workpiece surface roughness.
Málek, Přemysl; Minárik, Peter; Chráska, Tomáš; Novák, Pavel; Průša, Filip
2017-01-01
The microstructure, phase composition, and microhardness of both gas-atomized and mechanically milled powders of the Al7075 + 1 wt % Zr alloy were investigated. The gas-atomized powder exhibited a cellular microstructure (grain size of a few µm) with layers of intermetallic phases along the cell boundaries. Mechanical milling (400 revolutions per minute (RPM)/8 h) resulted in a grain size reduction to the nanocrystalline range (20 to 100 nm) along with the dissolution of the intermetallic phases. Milling led to an increase in the powder’s microhardness from 97 to 343 HV. Compacts prepared by spark plasma sintering (SPS) exhibited negligible porosity. The grain size of the originally gas-atomized material was retained, but the continuous layers of intermetallic phases were replaced by individual particles. Recrystallization led to a grain size increase to 365 nm in the SPS compact prepared from the originally milled powder. Small precipitates of the Al3Zr phase were observed in the SPS compacts, and they are believed to be responsible for the retainment of the sub-microcrystalline microstructure during SPS. A more intensive precipitation in this SPS compact can be attributed to a faster diffusion due to a high density of dislocations and grain boundaries in the milled powder. PMID:28930192
NASA Astrophysics Data System (ADS)
Kulecki, P.; Lichańska, E.
2017-12-01
The effect of ball milling powder mixtures of Höganäs pre-alloyed iron Astaloy CrM, low-carbon ferromanganese Elkem, elemental electrolytic Cu and C-UF graphite on the sintered structure and mechanical properties was evaluated. The mixing was conducted using Turbula mixer for 30 minutes and CDI-EM60 frequency inverter for 1 and 2 hours. Milling was performed on 150 g mixtures with (in weight %) CrM + 1% Mn, CrM + 2% Mn, CrM + 1% Mn + 1% Cu and CrM + 2% Mn + 1% Cu, all with 0.6%C. The green compacts were single pressed at 660 MPa according to PN-EN ISO 2740. Sintering was carried out in a laboratory horizontal furnace Carbolite STF 15/450 at 1250°C for 60 minutes in 5%H2 - 95%N2 atmosphere with a heating rate of 75°C/min, followed by sintering hardening at 60°C/min cooling rate. All the steels were characterized by martensitic structures. Mechanical testing revealed that steels based on milled powders have slightly higher mechanical properties compared to those only mixed and sintered. The best combination of mechanical properties, for ball milled CrM + 1% Mn + 1% Cu was UTS 1046 MPa, TRS 1336 MPa and A 1.94%.
NASA Astrophysics Data System (ADS)
Tomita, Yasumasa; Kimura, Noritaka; Izumi, Yusuke; Arai, Juichi; Kohno, Yoshiumi; Kobayashi, Kenkichiro
2017-06-01
4LiF-NiMn2O4 composites are synthesized by the mechanical milling of LiF and NiMn2O4 in a molar ratio of 4: 1 for 36-192 h. The synthesized composites are investigated by XRD, charge-discharge measurements, and XPS. A broad XRD peak of 4LiF-NiMn2O4 was observed and those of LiF and NiMn2O4 disappear after the milling of 144 h and more. The discharge capacity of the 4LiF-NiMn2O4 composites changes with the milling time, with the composite prepared by milling for 144 h exhibiting a discharge capacity of 256 mA h g-1 at 0.1 C for voltages of 2.0-4.8 V. With a cut-off voltage of 4.8 V or more, decomposition of the electrolyte proceeds along with the charge process, so the charge-discharge current efficiency deteriorates and the discharge voltage decreases. In the charge-discharge measurement without the capacity limit, although the charge-discharge efficiency was low due to the decomposition of the electrolyte, the high discharge capacity of 310 mA h g-1 was obtained. The XPS data suggests that the Ni2+ ion and Mn3+ ion are oxidized to Ni3+ and Mn4+ ion in charge process up to 4.8 V and are reduced to Ni2+ ion and Mn3+ ion during the discharge process.
Release behavior of uranium in uranium mill tailings under environmental conditions.
Liu, Bo; Peng, Tongjiang; Sun, Hongjuan; Yue, Huanjuan
2017-05-01
Uranium contamination is observed in sedimentary geochemical environments, but the geochemical and mineralogical processes that control uranium release from sediment are not fully appreciated. Identification of how sediments and water influence the release and migration of uranium is critical to improve the prevention of uranium contamination in soil and groundwater. To understand the process of uranium release and migration from uranium mill tailings under water chemistry conditions, uranium mill tailing samples from northwest China were investigated with batch leaching experiments. Results showed that water played an important role in uranium release from the tailing minerals. The uranium release was clearly influenced by contact time, liquid-solid ratio, particle size, and pH under water chemistry conditions. Longer contact time, higher liquid content, and extreme pH were all not conducive to the stabilization of uranium and accelerated the uranium release from the tailing mineral to the solution. The values of pH were found to significantly influence the extent and mechanisms of uranium release from minerals to water. Uranium release was monitored by a number of interactive processes, including dissolution of uranium-bearing minerals, uranium desorption from mineral surfaces, and formation of aqueous uranium complexes. Considering the impact of contact time, liquid-solid ratio, particle size, and pH on uranium release from uranium mill tailings, reducing the water content, decreasing the porosity of tailing dumps and controlling the pH of tailings were the key factors for prevention and management of environmental pollution in areas near uranium mines. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sutcu, Mucahit; Ozturk, Savas; Yalamac, Emre; Gencel, Osman
2016-10-01
Production of porous clay bricks lightened by adding olive mill waste as a pore making additive was investigated. Factors influencing the brick manufacturing process were analyzed by an experimental design, Taguchi method, to find out the most favorable conditions for the production of bricks. The optimum process conditions for brick preparation were investigated by studying the effects of mixture ratios (0, 5 and 10 wt%) and firing temperatures (850, 950 and 1050 °C) on the physical, thermal and mechanical properties of the bricks. Apparent density, bulk density, apparent porosity, water absorption, compressive strength, thermal conductivity, microstructure and crystalline phase formations of the fired brick samples were measured. It was found that the use of 10% waste addition reduced the bulk density of the samples up to 1.45 g/cm(3). As the porosities increased from 30.8 to 47.0%, the compressive strengths decreased from 36.9 to 10.26 MPa at firing temperature of 950 °C. The thermal conductivities of samples fired at the same temperature showed a decrease of 31% from 0.638 to 0.436 W/mK, which is hopeful for heat insulation in the buildings. Increasing of the firing temperature also affected their mechanical and physical properties. This study showed that the olive mill waste could be used as a pore maker in brick production. Copyright © 2016 Elsevier Ltd. All rights reserved.
Development of an electromechanical principle for wet and dry milling
NASA Astrophysics Data System (ADS)
Halbedel, Bernd; Kazak, Oleg
2018-05-01
The paper presents a novel electromechanical principle for wet and dry milling of different materials, in which the milling beads are moved under a time- and local-variable magnetic field. A possibility to optimize the milling process in such a milling machine by simulation of the vector gradient distribution of the electromagnetic field in the process room is presented. The mathematical model and simulation methods based on standard software packages are worked out. The results of numerical simulations and experimental measurements of the electromagnetic field in the working chamber of a developed and manufactured laboratory plant correlate well with each other. Using the obtained operating parameters, dry milling experiments with crushed cement clinker and wet milling experiments of organic agents in the laboratory plant are performed and the results are discussed here.
The Tool Life of Ball Nose end Mill Depending on the Different Types of Ramping
NASA Astrophysics Data System (ADS)
Vopát, Tomáš; Peterka, Jozef; Kováč, Martin
2014-12-01
The article deals with the cutting tool wear measurement process and tool life of ball nose end mill depending on upward ramping and downward ramping. The aim was to determine and compare the wear (tool life) of ball nose end mill for different types of copy milling operations, as well as to specify particular steps of the measurement process. In addition, we examined and observed cutter contact areas of ball nose end mill with machined material. For tool life test, DMG DMU 85 monoBLOCK 5-axis CNC milling machine was used. In the experiment, cutting speed, feed rate, axial depth of cut and radial depth of cut were not changed. The cutting tool wear was measured on Zoller Genius 3s universal measuring machine. The results show different tool life of ball nose end mills depending on the copy milling strategy.
Use of near infared spectroscopy to predict the mechanical properties of six softwoods
Stephen S. Jelley; Timothy G. Rials; Leslie H. Groom; Chi-Leung So
2004-01-01
The visible and near infrared (NIR)(500-2400 nm) spectra and mechanical properties of almost 1000 small clear-wood samples from six softwood species: Pinus taeda L. (loblolly pine), Pinus palustris, Mill. (longleaf pine), Pinus elliottii Engelm. (slash pine), Pinus echinata Mill. (shortleaf...
USDA-ARS?s Scientific Manuscript database
Paulownia wood flour (PWF), a byproduct of milling lumber, was tested as bio-filler with polylactic acid (PLA). Paulownia wood (PW) shavings were milled and separated into particle fractions and then blended with PLA with a single screw extruder. Mechanical and thermal properties were tested. Dif...
NASA Astrophysics Data System (ADS)
Khaerudini, Deni S.; Berliana, Rina; Prakoso, Gatra B.; Insiyanda, Dita R.; Alva, Sagir
2018-03-01
This work concerns the utilization of mill scale, a by-product of iron and steel formed during the hot rolling of steel, as a potential material for use as bipolar plates in proton exchange membrane fuel cells (PEMFCs). On the other hand, mill scale is considered a very rich in iron source having characteristic required such as for current collector in bipolar plate and would significantly contribute to lower the overall cost of PEMFC based fuel cell systems. In this study, the iron reach source of mill scale powder, after sieving of 150 mesh, was mechanically alloyed with the aluminium source containing 30 wt.% using a shaker mill for 3 h. The mixed powders were then pressed at 300 MPa and sintered at various temperatures of 400, 450 and 500 °C for 1 h under inert gas atmosphere. The structural changes of powder particles during mechanical alloying and after sintering were studied by x-ray diffractometry, scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX), microhardness measurement, and density - porosity analysis. The details of the performance variation of three different sintering conditions can be preliminary explained by the metallographic and crystallographic structure and phase analysis as well as sufficient mechanical strength of the sintered materials was presented in this report.
NASA Astrophysics Data System (ADS)
Afolabi, Afola we mi
One way to improve the bioavailability of poorly water-soluble drugs is to reduce particle size of drug crystals down to nanoscale via wet stirred media milling. An increase in total surface area per mass loading of the drug and specific surface area as well as reduced external mass transfer resistance allow a faster dissolution of the poorly-water soluble drug from nanocrystals. To prevent aggregation of nanoparticles, polymers and surfactants are dissolved in water acting as stabilizers via adsorption onto the drug crystals. In the last two decades, ample experimental data were generated in the area of wet stirred media milling for the production of drug nanoparticle suspensions. However, a fundamental scientific/engineering understanding of various aspects of this process is still lacking. These challenges include elucidation of the governing mechanism(s) during nanoparticle formation and physical stabilization of the nanosuspension with the use of polymers and surfactants (formulation parameters), understanding the impact of process parameters in the context of first-principle-based models, and production of truly nanosized drug particles (10-100 nm) with acceptable physical stability and minimal contamination with the media. Recirculation mode of milling operation, where the drug suspension in a holding tank continuously circulates through the stirred media mill, has been commonly used in lab, pilot, and commercial scales. Although the recirculation is continuous, the recirculation operation mode is overall a batch operation, requiring significant number of batches for a large-volume pharmaceutical product. Hence, development and investigation of a truly continuous process should offer significant advantages. To explain the impact of some of the processing parameters, stress intensity and stress number concepts were widely used in literature, which do not account for the effect of suspension viscosity explicitly. The impact of the processing parameters has not been explained in a predictive and reliable manner. In this dissertation, a comprehensive investigation of the production of Griseofulvin nanosuspensions in a wet stirred media mill operating in both the recirculation and continuous modes has been conducted to address the aforementioned fundamental challenges. Griseofulvin has been selected as a model poorly water-soluble BCS Class II drug. Impact of various formulation parameters such as stabilizer type and loading as well as processing parameters such as rotor speed, bead loading, bead size, suspension flow rate and drug loading was studied. A major novelty of the present contribution is that the impact of processing and formulation parameters has been analyzed and interpreted using a combined experimental-theoretical (microhydrodynamic model) approach. Such a comprehensive approach allowed us to intensify the process for the production of sub-100 nm drug particles, which could not be produced with top-down approaches in the literature so far. In addition, a multi-pass mode of continuous operation was developed and the so-called "Rehbinder effect", which has not been shown for the breakage of drug particles, was also elucidated. The dissertation work (1) indicated the need for a minimum polymeric stabilizer-to-drug ratio for proper stabilization of drug nanosuspensions as dictated by polymer adsorption and synergistic interactions between a polymeric stabilizer and a surfactant, (2) demonstrated the existence of an optimum polymer concentration from a breakage rate perspective in the presence of a surfactant, which results from the competing effects of viscous dampening and enhanced steric stabilization at higher polymer concentration, (3) developed fundamental understanding of the breakage dynamics-processing-formulation relationships and rationalized preparation of a single highly drug- loaded batch (20% or higher) instead of multiple dilute batches, (4) designed an intensified process for faster preparation of sub-100 nm particles with reduced specific energy consumption and media wear (i.e. minimal drug contamination), and (5) provided first evidence for the proof of Rehbinder effect during the milling of drugs. Not only do the polymers and surfactants allow proper physical stabilization of the nanoparticles in the suspensions, but they also do facilitate drug particle breakage. This dissertation also discusses applications of nanosuspensions and practical issues encountered during wet media milling.
NASA Astrophysics Data System (ADS)
Varol, T.; Canakci, A.
2013-06-01
In the present work, the effect of milling parameters on the morphology and microstructure of nanostructure Al2024-B4C composite powders obtained by mechanical alloying (MA) was studied. The effects of milling time and B4C content on the morphology, microstructure and particle size of nanostructure Al2024-B4C composite powders have been investigated. Different amounts of B4C particles (0, 5, 10 and 20 wt.%) were mixed with Al2024 powders and milled in a planetary ball mill for 30, 60, 120, 300, 420 and 600 min. Al 2024-B4C composite powders were characterized using a scanning electron microscope (SEM), laser particle-size analyzer, X-ray diffraction analysis (XRD) and the Vickers microhardness test. The results showed that the nanostructure Al2024-B4C composite powders were produced when they were milled for 600 min. The size of composite powder in the milled powder mixture was affected by the milling time and content of B4C particles. Moreover, it was observed that when MA reached a steady state, the properties of composite powders were stabilized.
Finite-action solutions of Yang-Mills equations on de Sitter dS4 and anti-de Sitter AdS4 spaces
NASA Astrophysics Data System (ADS)
Ivanova, Tatiana A.; Lechtenfeld, Olaf; Popov, Alexander D.
2017-11-01
We consider pure SU(2) Yang-Mills theory on four-dimensional de Sitter dS4 and anti-de Sitter AdS4 spaces and construct various solutions to the Yang-Mills equations. On de Sitter space we reduce the Yang-Mills equations via an SU(2)-equivariant ansatz to Newtonian mechanics of a particle moving in R^3 under the influence of a quartic potential. Then we describe magnetic and electric-magnetic solutions, both Abelian and non-Abelian, all having finite energy and finite action. A similar reduction on anti-de Sitter space also yields Yang-Mills solutions with finite energy and action. We propose a lower bound for the action on both backgrounds. Employing another metric on AdS4, the SU(2) Yang-Mills equations are reduced to an analytic continuation of the above particle mechanics from R^3 to R^{2,1} . We discuss analytical solutions to these equations, which produce infinite-action configurations. After a Euclidean continuation of dS4 and AdS4 we also present self-dual (instanton-type) Yang-Mills solutions on these backgrounds.
Lumber Cost Minimization through Optimum Grade-Mix Selection
Xiaoqiu Zuo; Urs Buehlmann; R. Edward Thomas; R. Edward Thomas
2003-01-01
Rough mills process kiln-dried lumber into components for the furniture and wood products industries, Lumber is a significant portion of total rough mill costs and lumber quality can have a serious impact on mill productivity. Lower quality lumber is less expensive yet is harder to process. Higher quality lumber is more expensive yet easier to process. The problem of...
40 CFR 60.670 - Applicability and designation of affected facility.
Code of Federal Regulations, 2010 CFR
2010-07-01
... mineral processing plants: each crusher, grinding mill, screening operation, bucket elevator, belt... grinding mills at hot mix asphalt facilities that reduce the size of nonmetallic minerals embedded in... or grinding mills above ground; and wet material processing operations (as defined in § 60.671). (b...
1. RW Meyer Sugar Mill: 18761889. Threeroll sugar mill: oneton ...
1. RW Meyer Sugar Mill: 1876-1889. Three-roll sugar mill: one-ton daily processing capacity. Manufactured by Edwin Maw, Liverpool, England, ca. 1855-1870. View: Historical view, 1934, from T.T. Waterman collection, Hawaiian Sugar Planters' Association. Large rectangular piece lying in front of the mill is the top of the mill frame appearing in its proper place in 1928 views. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
Confinement, holonomy, and correlated instanton-dyon ensemble: SU(2) Yang-Mills theory
NASA Astrophysics Data System (ADS)
Lopez-Ruiz, Miguel Angel; Jiang, Yin; Liao, Jinfeng
2018-03-01
The mechanism of confinement in Yang-Mills theories remains a challenge to our understanding of nonperturbative gauge dynamics. While it is widely perceived that confinement may arise from chromomagnetically charged gauge configurations with nontrivial topology, it is not clear what types of configurations could do that and how, in pure Yang-Mills and QCD-like (nonsupersymmetric) theories. Recently, a promising approach has emerged, based on statistical ensembles of dyons/anti-dyons that are constituents of instanton/anti-instanton solutions with nontrivial holonomy where the holonomy plays a vital role as an effective "Higgsing" mechanism. We report a thorough numerical investigation of the confinement dynamics in S U (2 ) Yang-Mills theory by constructing such a statistical ensemble of correlated instanton-dyons.
Fabrication of novel cryomill for synthesis of high purity metallic nanoparticles
NASA Astrophysics Data System (ADS)
Kumar, Nirmal; Biswas, Krishanu
2015-08-01
The successful preparation of free standing metal nanoparticles with high purity in bulk quantity is the pre-requisite for any potential application. This is possible by using ball milling at cryogenic temperature. However, the most of ball mills available in the market do not allow preparing high purity metal nanoparticles by this route. In addition, it is not possible to carry out in situ measurements of process parameters as well as diagnostic of the process. In the present investigation, we present a detailed study on the fabrication of a cryomill, which is capable of avoiding contaminations in the product. It also provides in situ measurements and diagnostic of the low temperature milling process. Online monitoring of the milling temperature and observation of ball motion are the important aspects in the newly designed mill. The nanoparticles prepared using this fabricated mill have been found to be free standing and also free from contaminations.
Numerical simulation study on rolling-chemical milling process of aluminum-lithium alloy skin panel
NASA Astrophysics Data System (ADS)
Huang, Z. B.; Sun, Z. G.; Sun, X. F.; Li, X. Q.
2017-09-01
Single curvature parts such as aircraft fuselage skin panels are usually manufactured by rolling-chemical milling process, which is usually faced with the problem of geometric accuracy caused by springback. In most cases, the methods of manual adjustment and multiple roll bending are used to control or eliminate the springback. However, these methods can cause the increase of product cost and cycle, and lead to material performance degradation. Therefore, it is of significance to precisely control the springback of rolling-chemical milling process. In this paper, using the method of experiment and numerical simulation on rolling-chemical milling process, the simulation model for rolling-chemical milling process of 2060-T8 aluminum-lithium alloy skin was established and testified by the comparison between numerical simulation and experiment results for the validity. Then, based on the numerical simulation model, the relative technological parameters which influence on the curvature of the skin panel were analyzed. Finally, the prediction of springback and the compensation can be realized by controlling the process parameters.
Wang, Guang-Kui; Kang, Hong; Bao, Guang-Jie; Lv, Jin-Jun; Gao, Fei
2006-10-01
To investigate the mechanical properties and microstructure of nano -zirconia toughened alumina ceramics with variety of nano-zirconia content in centrifugal infiltrate casting processing of dental all-ceramic. Composite powder with different ethanol-water ratio, obtained serosity from ball milling and centrifugal infiltrate cast processing of green, then sintered at 1 450 degrees C for 8 h. The physical and mechanical properties of the sintered sample after milling and polishing were tested. Microstructures of the surface and fracture of the sintered sample were investigated by SEM. The experimental results showed that there had statistical significience (P < 0.01) on static three-point flexure strength and Vickers Hardness in three kinds of different nano-zirconia content sintered sample. Fracture toughness of 20% group was different from other two groups, while 10% group had not difference from 30% group (P < 0.05). The mechanical properties of this ceramic with 20% nano-zirconia was the best of the three, the static three-point flexure strength was (433 +/- 19) MPa and fracture toughness was (7.50 +/- 0.56) MPa x min 1/2. The intra/inter structure, fracture of intragranular and intergranular on the surface and fracture of sintered sample in microstrucre was also found. Intra/inter structure has strengthen toughness in ceramics. It has better toughness with 20% nano-zirconia, is suitable dental all-ceramic restoratives.
Synthesis of Amorphous Powders of Ni-Si and Co-Si Alloys by Mechanical Alloying
NASA Astrophysics Data System (ADS)
Omuro, Keisuke; Miura, Harumatsu
1991-05-01
Amorphous powders of the Ni-Si and Co-Si alloys are synthesized by mechanical alloying (MA) from crystalline elemental powders using a high energy ball mill. The alloying and amorphization process is examined by X-ray diffraction, differential scanning calorimetry (DSC), and scanning electron microscopy. For the Ni-Si alloy, it is confirmed that the crystallization temperature of the MA powder, measured by DSC, is in good agreement with that of the powder sample prepared by mechanical grinding from the cast alloy ingot products of the same composition.
Refining the site conceptual model at a former uranium mill site in Riverton, Wyoming, USA
Dam, William; Campbell, Sam; Johnson, Ray; ...
2015-07-07
Milling activities at a former uranium mill site near Riverton, Wyoming, USA, contaminated the shallow groundwater beneath and downgradient of the site. Although the mill operated for <6 years (1958-1963), its impact remains an environmental liability. Groundwater modeling predicted that contaminant concentrations were declining steadily, which confirmed the conceptual site model (CSM). However, local flooding in 2010 mobilized contaminants that migrated downgradient from the Riverton site and resulted in a dramatic increase in groundwater contaminant concentrations. This observation indicated that the original CSM was inadequate to explain site conditions and needed to be refined. In response to the new observationsmore » after the flood, a collaborative investigation to better understand site conditions and processes commenced. This investigation included installing 103 boreholes to collect soil and groundwater samples, sampling and analysis of evaporite minerals along the bank of the Little Wind River, an analysis of evaportranspiration in the shallow aquifer, and sampling naturally organic-rich sediments near groundwater discharge areas. The enhanced characterization revealed that the existing CSM did not account for high uranium concentrations in groundwater remaining on the former mill site and groundwater plume stagnation near the Little Wind River. Observations from the flood and subsequent investigations indicate that additional characterization is still needed to continue refining the CSM and determine the viability of the natural flushing compliance strategy. Additional sampling, analysis, and testing of soil and groundwater are necessary to investigate secondary contaminant sources, mobilization of contaminants during floods, geochemical processes, contaminant plume stagnation, distribution of evaporite minerals and organic-rich sediments, and mechanisms and rates of contaminant transfer from soil to groundwater. Future data collection will be used to continually revise the CSM and evaluate the compliance strategy at the site.« less
Effects of Milling on the Fibrous Structure and Mechanical Behaviors of a Collagen Material--Leather
USDA-ARS?s Scientific Manuscript database
Leather, a fibrous collagen material, is a high value coproduct of the meat industry. Milling is being practiced in the tannery to mechanically tumble and therefore soften leather for adequate stiffness and feel. However, there is no report regarding its effects on the structure change and physica...
Fluidized Bed Opposed Jet Mill System for Processing Inorganic Materials
NASA Astrophysics Data System (ADS)
Al-Nuzal, S. M. D.; Mohammed, M. I.
2017-08-01
A jet mill system was built aiming to give values for processing inorganic materials, to be used for different industry. The milling housing of the system is composed of; milling chamber, compressed air nozzles which deliver compressed air in the milling chamber to accelerate sample particles. The classifier wheel is composed of two concentric pieces welded together under argon and coupled to a AC Motor, 0 - 9000 rpm, 2 kW, with AC frequencies convertor. The performances of this jet mill system were tried on five cheap locally available materials, viz. white sand, glass, iron oxide, black carbon and alum. It is possible to get particle sizes of less than 1 μm with narrow distribution of particle sizes.
Characterization and corrosion behaviour of CoNi alloys obtained by mechanical alloying
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olvera, S.; Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Química-Física Aplicada, 28049 Madrid; Sánchez-Marcos, J.
2014-07-01
CoNi alloys including Co{sub 30}Ni{sub 70}, Co{sub 50}Ni{sub 50} and Co{sub 70}Ni{sub 30} were prepared via mechanical alloying using Co and Ni powders. The crystallinity and short-range order were studied using X-ray diffraction and X-ray absorption spectroscopy. The results show that the milling process increases the number of vacancies, especially around the Co atoms, while the milling time decreases the crystalline size and enhances the crystallinity. X-ray photoelectron spectroscopy was used to characterise the chemical composition of the samples surface. The magnetic properties were analysed using zero-field cooling, field cooling and a magnetic hysteresis loops. The magnetic saturation moment ismore » approximately 1.05 μ{sub B}/atom; this value decreases with the mechanical alloying time, and it is proportional to the cobalt concentration. The polarization and impedance curves in different media (NaCl, H{sub 2}SO{sub 4} and NaOH) showed similar corrosion resistance values. The corrosion resistance increased in the order NaCl, H{sub 2}SO{sub 4} and NaOH. A good passivation layer was formed in NaOH due to the cobalt and nickel oxides on the particle surfaces. - Highlights: • Ni{sub x}Co{sub 100-x} alloys were synthesized by mechanical alloying • Milling time decrease size and enhances crystallinity. • Oxygen is not present in a significant percentage in bulk but is detected on the surface. • Magnetic saturation moment is 1.05 mB/atom and decrease with mechanical allowing time • Corrosion resistance is higher in NaOH than in NaCl or HCl solutions.« less
Thermochemical properties of nanometer CL-20 and PETN fabricated using a mechanical milling method
NASA Astrophysics Data System (ADS)
Song, Xiaolan; Wang, Yi; An, Chongwei
2018-06-01
2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and pentaerythritol tetranitrate (PETN), with mean sizes of 73.8 nm and 267.7 nm, respectively, were fabricated on a high-energy ball-mill. Scanning electron microscope (SEM) analysis was used to image the micron-scale morphology of nano-explosives, and the particle size distribution was calculated using the statistics of individual particle sizes obtained from the SEM images. Analyses, such as X-ray diffractometer (XRD), infrared spectroscopy (IR), and X-ray photoelectron spectroscopy (XPS), were also used to confirm whether the crystal phase, molecular structure, and surface elements changed after a long-term milling process. The results were as expected. Thermal analysis was performed at different heating rates. Parameters, such as the activation energy (ES), activation enthalpy (ΔH≠), activation free energy (ΔG≠), activation entropy (ΔS≠), and critical temperature of thermal explosion (Tb), were calculated to determine the decomposition courses of the explosives. Moreover, the thermal decomposition mechanisms of nano CL-20 and nano PETN were investigated using thermal-infrared spectrometry online (DSC-IR) analysis, by which their gas products were also detected. The results indicated that nano CL-20 decomposed to CO2 and N2O and that nano PETN decayed to NO2, which implied a remarkable difference between the decomposition mechanisms of the two explosives. In addition, the mechanical sensitivities of CL-20 and PETN were tested, and the results revealed that nano-explosives were more insensitive than raw ones, and the possible mechanism for this was discussed. Thermal sensitivity was also investigated with a 5 s bursting point test, from which the 5 s bursting point (T5s) and the activation of the deflagration were obtained.
Lebon, Nicolas; Tapie, Laurent; Duret, Francois; Attal, Jean-Pierre
2016-01-01
Nowadays, dental numerical controlled (NC) milling machines are available for dental laboratories (labside solution) and dental production centers. This article provides a mechanical engineering approach to NC milling machines to help dental technicians understand the involvement of technology in digital dentistry practice. The technical and economic criteria are described for four labside and two production center dental NC milling machines available on the market. The technical criteria are focused on the capacities of the embedded technologies of milling machines to mill prosthetic materials and various restoration shapes. The economic criteria are focused on investment cost and interoperability with third-party software. The clinical relevance of the technology is discussed through the accuracy and integrity of the restoration. It can be asserted that dental production center milling machines offer a wider range of materials and types of restoration shapes than labside solutions, while labside solutions offer a wider range than chairside solutions. The accuracy and integrity of restorations may be improved as a function of the embedded technologies provided. However, the more complex the technical solutions available, the more skilled the user must be. Investment cost and interoperability with third-party software increase according to the quality of the embedded technologies implemented. Each private dental practice may decide which fabrication option to use depending on the scope of the practice.
A new approach for remediation of As-contaminated soil: ball mill-based technique.
Shin, Yeon-Jun; Park, Sang-Min; Yoo, Jong-Chan; Jeon, Chil-Sung; Lee, Seung-Woo; Baek, Kitae
2016-02-01
In this study, a physical ball mill process instead of chemical extraction using toxic chemical agents was applied to remove arsenic (As) from contaminated soil. A statistical analysis was carried out to establish the optimal conditions for ball mill processing. As a result of the statistical analysis, approximately 70% of As was removed from the soil at the following conditions: 5 min, 1.0 cm, 10 rpm, and 5% of operating time, media size, rotational velocity, and soil loading conditions, respectively. A significant amount of As remained in the grinded fine soil after ball mill processing while more than 90% of soil has the original properties to be reused or recycled. As a result, the ball mill process could remove the metals bound strongly to the surface of soil by the surface grinding, which could be applied as a pretreatment before application of chemical extraction to reduce the load.
NASA Astrophysics Data System (ADS)
Wang, Fenglin; Li, Yunping; Xu, Xiandong; Koizumi, Yuichiro; Yamanaka, Kenta; Bian, Huakang; Chiba, Akihiko
2015-12-01
A Cu-TiC alloy, with nanoscale TiC particles highly dispersed in the submicron-grained Cu matrix, was manufactured by a self-developed two-step ball-milling process on Cu, Ti and C powders. The thermostability of the composite was evaluated by high-temperature isothermal annealing treatments, with temperatures ranging from 727 to 1273 K. The semicoherent nanoscale TiC particles with Cu matrix, mainly located along the grain boundaries, were found to exhibit the promising trait of blocking grain boundary migrations, which leads to a super-stabilized microstructures up to approximately the melting point of copper (1223 K). Furthermore, the Cu-TiC alloys after annealing at 1323 K showed a slight decrease in Vickers hardness as well as the duplex microstructure due to selective grain growth, which were discussed in terms of hardness contributions from various mechanisms.
Energy-effective Grinding of Inorganic Solids Using Organic Additives.
Mishra, Ratan K; Weibel, Martin; Müller, Thomas; Heinz, Hendrik; Flatt, Robert J
2017-08-09
We present our research findings related to new formulations of the organic additives (grinding aids) needed for the efficient grinding of inorganic solids. Even though the size reduction phenomena of the inorganic solid particles in a ball mill is purely a physical process, the addition of grinding aids in milling media introduces a complex physicochemical process. In addition to further gain in productivity, the organic additive helps to reduce the energy needed for grinding, which in the case of cement clinker has major environmental implications worldwide. This is primarily due to the tremendous amounts of cement produced and almost 30% of the associated electrical energy is consumed for grinding. In this paper, we examine the question of how to optimize these grinding aids linking molecular insight into their working mechanisms, and also how to design chemical additives of improved performance for industrial comminution.
33. RW Meyer Sugar Mill: 18761889. Threeroll sugar mill, oneton ...
33. RW Meyer Sugar Mill: 1876-1889. Three-roll sugar mill, one-ton daily processing capacity. Manufactured by Edwin Maw, Liverpool, England, ca. 1855-1870. View: From above the mill showing the three 15' x 22' horizontal rolls, mill frame or cheeks, portland cement foundation, and lower part of vertical drive shaft lying next mill in foreground. The loose metal piece resting on top of the mill frame matched the indented portion of the upper frame to form a bracket and bearing for the drive shaft when it was in its proper upright position. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
Use of purple durum wheat to produce naturally functional fresh and dry pasta.
Ficco, Donatella Bianca Maria; De Simone, Vanessa; De Leonardis, Anna Maria; Giovanniello, Valentina; Del Nobile, Matteo Alessandro; Padalino, Lucia; Lecce, Lucia; Borrelli, Grazia Maria; De Vita, Pasquale
2016-08-15
In this study, the effects of different milling procedures (roller-milling vs. stone-milling) and pasta processing (fresh vs. dried spaghetti), and cooking on the antioxidant components and sensory properties of purple durum wheat were investigated. Milling and pasta processing were performed using one purple and one conventional non-pigmented durum wheat genotypes, and the end-products were compared with commercial pasta. The results show that the stone milling process preserved more compounds with high health value (total fibre and carotenoids, and in the purple genotype, also anthocyanins) compared to roller-milling. The drying process significantly (p<0.05) reduced the content of anthocyanins (21.42 μg/g vs. 46.32 μg/g) and carotenoids (3.77 μg/g vs. 4.04 μg/g) with respect to the pasteurisation process involved in fresh pasta production. The sensory properties of pasta from the purple genotype did not significantly differ from commercial wholemeal pasta, and its in vitro glycemic index was even lower. Thus, it is possible to consider this genetic material as a good ingredient for the production of functional foods from cereals naturally rich in bioactive compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rough Mill Improvement Guide for Managers and Supervisors
Philip H. Mitchell; Jan Wiedenbeck; Bobby Ammerman; Bobby Ammerman
2005-01-01
Wood products manufacturers require an efficient recovery of product from lumber to remain profitable. A company's ability to obtain the best yield in lumber cut-up operations (i.e., the rough mill) varies according to the raw material, product, processing equipment, processing environment, and knowledge and skill of the rough mill's employees. This book...
NASA Astrophysics Data System (ADS)
Mu, X. N.; Zhang, H. M.; Cai, H. N.; Fan, Q. B.; Wu, Y.; Fu, Z. J.; Wang, Q. X.
2017-05-01
This study proposed an in-situ reactive method that uses graphene as a reinforcement to fabricate titanium metal matrix composites (TiMMCs) through powder metallurgy processing route. The volume fraction of graphene nanoplatelets was 1.8%vol, and the pure titanium was used as a matrix. The Archimedes density, hardness, microstructure and mechanical properties of specimens were compared under different ball milling times (20 min and 2.5 h) and hot pressing temperatures (900°C, 1150°C, and 1300°C,). The ultimate tensile strength of 630 MPa, which demonstrated a 27.3% increase compared with pure Ti, was achieved under a ball milling time of 20 min. Elongation increased with increasing temperature. When the ball milling time and hot pressing temperature were increased to 2.5 h and 1300 °C, respectively, the ultimate tensile strength of the composites reached 750 MPa, showing an increase of 51.5% compared with pure Ti.
Gurram, Raghu Nandan; Al-Shannag, Mohammad; Lecher, Nicholas Joshua; Duncan, Shona M; Singsaas, Eric Lawrence; Alkasrawi, Malek
2015-09-01
In this study we investigated the technical feasibility of convert paper mill sludge into fuel ethanol. This involved the removal of mineral fillers by using either chemical pretreatment or mechanical fractionation to determine their effects on cellulose hydrolysis and fermentation to ethanol. In addition, we studied the effect of cationic polyelectrolyte (as accelerant) addition and hydrogen peroxide pretreatment on enzymatic hydrolysis and fermentation. We present results showing that removing the fillers content (ash and calcium carbonate) from the paper mill sludge increases the enzymatic hydrolysis performance dramatically with higher cellulose conversion at faster rates. The addition of accelerant and hydrogen peroxide pretreatment further improved the hydrolysis yields by 16% and 25% (g glucose / g cellulose), respectively with the de-ashed sludge. The fermentation process of produced sugars achieved up to 95% of the maximum theoretical ethanol yield and higher ethanol productivities within 9h of fermentation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Disintegration of Nannochloropsis sp. cells in an improved turbine bead mill.
Pan, Zhidong; Huang, Ying; Wang, Yanmin; Wu, Zhiwei
2017-12-01
The Nannochloropsis sp. cells in aqueous solution were disintegrated in an improved bead mill with turbine agitator. The disintegration rates of cell samples disrupted under various operating parameters (i.e., circumferential speed, bead size, disintegration time, and cell concentration) were analyzed. An experimental strategy to optimize the parameters affecting the cell disintegration process was proposed. The results show that Nannochloropsis sp. cells can be effectively disintegrated in the turbine stirred bead mill under the optimum condition (i.e., circumferential speed of 2.3m/s, concentration of 15vol.%, disintegration time of 40min and bead size of 0.3-0.4mm). The disintegration mechanism was discussed via the selection and breakage functions from population balance modelling. It is revealed that the impact and compression effects of stirring beads are more effective for the disruption of coarser fraction of cells, and the shear effect dominates the production of finer fractions of disintegrated cells. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wismogroho, A. S.; Sudiro, T.; Didik, A.; Ciswandi
2018-03-01
In present work, Cr-Al coatings containing 0, 1, 2, 3, and 5% W have been prepared on the surface of low carbon steel by mechanical alloying technique. The composition of each powder was milled for 2 hour in a stainless steel crucible with a ball to powder ratio of 10:1. Afterward, the Cr-Al-W powder and substrate were mechanically alloyed in air for 1 hour. The heat treatment of coated samples was carried out at 800 °C in a vacuum furnace for 2 hour. In order to characterize the phase composition and microstructure of the coating before and after heat treatment, XRD and SEM-EDX were used. The analysis results reveal that the ball milling process induces the formation of homogeneous Cr-Al-W coating structure with a thickness of about 80 μm. The phase observation shows individual peaks of each starting elements, along with the occurrence of powder refinement and solid solution formation. After heat treatment, AlCr2 and Al8Cr5 phases were formed. The addition of W accelerates the formation of AlCr2, but inhibits the formation of Al8Cr5. The detail of the results was presented in this paper.
Dong, Huina; Chen, Deliang; Wang, Kai; Zhang, Rui
2016-12-01
Cost-effective and scalable preparation of two-dimensional (2D) molybdenum disulfide (MoS2) has been the bottleneck that limits their applications. This paper reports a novel coupled ultrasonication-milling (CUM) process to exfoliate natural molybdenite powders to achieve few-layer MoS2 (FL-MoS2) nanosheets in the solvent of N-methyl-2-pyrrolidone (NMP) with polyvinylpyrrolidone (PVP) molecules. The synergistic effect of ultrasonication and sand milling highly enhanced the exfoliation efficiency, and the precursor of natural molybdenite powders minimizes the synthetic cost of FL-MoS2 nanosheets. The exfoliation of natural molybdenite powders was conducted in a home-made CUM system, mainly consisting of an ultrasonic cell disruptor and a ceramic sand mill. The samples were characterized by X-ray diffraction, UV-vis spectra, Raman spectra, FT-IR, SEM, TEM, AFM, and N2 adsorption-desorption. The factors that influence the exfoliation in the CUM process, including the initial concentration of natural molybdenite powders (C in, 15-55 g L(-1)), ultrasonic power (P u, 200-350 W), rotation speed of sand mill (ω s, 1500-2250 r.p.m), exfoliation time (t ex, 0.5-6 h), and the molar ratio of PVP unit to MoS2 (R pm, 0-1), were systematically investigated. Under the optimal CUM conditions (i.e., C in = 45 g L(-1), P u = 280 W, ω s = 2250 r.p.m and R pm = 0.5), the yield at t ex = 6 h reaches 21.6 %, and the corresponding exfoliation rate is as high as 1.42 g L(-1) h(-1). The exfoliation efficiency of the CUM mode is much higher than that of either the ultrasonication (U) mode or the milling (M) mode. The synergistic mechanism and influencing rules of the CUM process in exfoliating natural molybdenite powders were elaborated. The as-obtained FL-MoS2 nanosheets have a high specific surface area of 924 m(2) g(-1) and show highly enhanced electrocatalytic performance in hydrogen evolution reaction and good electrochemical sensing property in detecting ascorbic acid. The CUM process developed has paved a low-cost, green, and highly efficient way towards FL-MoS2 nanosheets from natural molybdenite powders.
NASA Astrophysics Data System (ADS)
Khaerudini, D. S.; Prakoso, G. B.; Insiyanda, D. R.; Widodo, H.; Destyorini, F.; Indayaningsih, N.
2018-03-01
Bipolar plates (BPP) is a vital component of proton exchange membrane fuel cells (PEMFC), which supplies fuel and oxidant to reactive sites, remove reaction products, collects produced current and provide mechanical support for the cells in the stack. This work concerns the utilization of mill scale, a by-product of iron and steel formed during the hot rolling of steel, as a potential material for use as BPP in PEMFC. On the other hand, mill scale is considered a very rich in iron source having characteristic required such as for current collector in BPP and would significantly contribute to lower the overall cost of PEMFC based fuel cell systems. In this study, the iron reach source of mill scale powder, after sieving of 150 mesh, was mechanically alloyed with the carbon source containing 5, 10, and 15 wt.% graphite using a shaker mill for 3 h. The mixed powders were then pressed at 300 MPa and sintered at 900 °C for 1 h under inert gas atmosphere. The structural changes of powder particles during mechanical alloying and after sintering were studied by X-ray diffractometry, optical microscopy, scanning electron microscopy, and microhardness measurement. The details of the presence of iron, carbon, and iron carbide (Fe-C) as the products of reactions as well as sufficient mechanical strength of the sintered materials were presented in this report.
Vane Pump Casing Machining of Dumpling Machine Based on CAD/CAM
NASA Astrophysics Data System (ADS)
Huang, Yusen; Li, Shilong; Li, Chengcheng; Yang, Zhen
Automatic dumpling forming machine is also called dumpling machine, which makes dumplings through mechanical motions. This paper adopts the stuffing delivery mechanism featuring the improved and specially-designed vane pump casing, which can contribute to the formation of dumplings. Its 3D modeling in Pro/E software, machining process planning, milling path optimization, simulation based on UG and compiling post program were introduced and verified. The results indicated that adoption of CAD/CAM offers firms the potential to pursue new innovative strategies.
Preparation and characterization of Fe50Co50 nanostructured alloy
NASA Astrophysics Data System (ADS)
Yepes, N.; Orozco, J.; Caamaño, Z.; Mass, J.; Pérez, G.
2014-04-01
Nanostructured Fe50Co50 alloy was prepared by mechanical alloying of Fe and Co powders in a planetary high energy ball milling. The microstructure and structural evolution of the alloy have been investigated as a function of milling time (0 h, 8 h, 20 h and 35 h) by scanning electron microscopy (SEM) and X-Ray diffraction (XRD) characterization techniques. SEM micrographs showed different powder particles morphologies during the mechanical alloying stages. By XRD analysis it could be identified the structural phases of the alloy and the crystallite size was calculated as a function of the milling time.
Yanlin Qin; Xueqing Qiu; Junyong Zhu
2016-01-01
Here we used dilute oxalic acid to pretreat a kraft bleached Eucalyptus pulp (BEP) fibers to facilitate mechanical fibrillation in producing cellulose nanofibrils using disk milling with substantial mechanical energy savings. We successfully applied a reaction kinetics based combined hydrolysis factor (CHFx) as a severity factor to quantitatively...
Drakos, Antonios; Kyriakakis, Georgios; Evageliou, Vasiliki; Protonotariou, Styliani; Mandala, Ioanna; Ritzoulis, Christos
2017-01-15
Finer barley and rye flours were produced by jet milling at two feed rates. The effect of reduced particle size on composition and several physicochemical and mechanical properties of all flours were evaluated. Moisture content decreased as the size of the granules decreased. Differences on ash and protein contents were observed. Jet milling increased the amount of damaged starch in both rye and barley flours. True density increased with decreased particle size whereas porosity and bulk density increased. The solvent retention capacity profile was also affected by jet milling. Barley was richer in phenolics and had greater antioxidant activity than rye. Regarding colour, both rye and barley flours when subjected to jet milling became brighter, whereas their yellowness was not altered significantly. The minimum gelation concentration for all flours was 16%w/v. Barley flour gels were stronger, firmer and more elastic than the rye ones. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bitterlich, A; Laabs, C; Krautstrunk, I; Dengler, M; Juhnke, M; Grandeury, A; Bunjes, H; Kwade, A
2015-05-01
The production of nanosuspensions has proved to be an effective method for overcoming bioavailability challenges of poorly water soluble drugs. Wet milling in stirred media mills and planetary ball mills has become an established top-down-method for producing such drug nanosuspensions. The quality of the resulting nanosuspension is determined by the stability against agglomeration on the one hand, and the process parameters of the mill on the other hand. In order to understand the occurring dependencies, a detailed screening study, not only on adequate stabilizers, but also on their optimum concentration was carried out for the active pharmaceutical ingredient (API) naproxen in a planetary ball mill. The type and concentration of the stabilizer had a pronounced influence on the minimum particle size obtained. With the best formulation the influence of the relevant process parameters on product quality was investigated to determine the grinding limit of naproxen. Besides the well known phenomenon of particle agglomeration, actual naproxen crystal growth and morphology alterations occurred during the process which has not been observed before. It was shown that, by adjusting the process parameters, those effects could be reduced or eliminated. Thus, besides real grinding and agglomeration a process parameter dependent ripening of the naproxen particles was identified to be a concurrent effect during the naproxen fine grinding process. Copyright © 2015 Elsevier B.V. All rights reserved.
12. RW Meyer Sugar Mill: 18761889. Threeroll sugar mill: oneton ...
12. RW Meyer Sugar Mill: 1876-1889. Three-roll sugar mill: one-ton daily processing capacity. Manufactured by Edwin Maw, Liverpool, England, ca. 1855-1870. View: Historical view, 1934, T.T. Waterman Collection, Hawaiian Sugar Planters' Association, Oahu, Hawaii. Masonry-lined passageway leading to the mill at the center of its circular masonry enclosure. The passageway permitted cane to be carried to the mill and cane trash (bagasse) to be carried away after milling. Bridges over the passageways, not in place, permitted the mill animals to circle and power the mill from above. View shows area prior to substantial overgrowth existing in 1978 views of the area. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
Bergholz, Jan; Pint, Bruce A.; Unocic, Kinga A.; ...
2017-03-23
Here, nanoscale oxide dispersions have long been used to increase the oxidation and wear resistance of alloys used as bond coatings in thermal barrier coatings. Their manufacturing via mechanical alloying is often accompanied by difficulties regarding their particle size, homogeneous distribution of the oxide dispersions inside the powder, involving considerable costs, due to cold welding of the powder during milling. A significant improvement in this process can be achieved by the use of process control agent (PCA) to achieve the critical balance between cold welding and fracturing, thereby enhancing the process efficiency. In this investigation, the influence of the organicmore » additive stearic acid on the manufacturing process of Al 2O 3-doped CoNiCrAlY powder was investigated. Powders were fabricated via mechanical alloying at different milling times and PCA concentrations. The results showed a decrease in particle size, without hindering the homogeneous incorporation of the oxide dispersions. Two powders manufactured with 0.5 and 1.0 wt.% PCA were deposited by high velocity oxygen fuel (HVOF) spraying. Results showed that a higher content of elongated particles in the powder with the higher PCA content led to increased surface roughness, porosity and decreased coating thickness, with areas without embedded oxide particles.« less
Alighardashi, A; Gharibi, H R; Raygan, Sh; Akbarzadeh, A
2016-01-01
Red mud (RM) is the industrial waste of alumina production and causes serious environmental risks. In this paper, a novel activation procedure for RM (mechano-chemical processing) is proposed in order to improve the nitrate adsorption from water. High-energy milling and acidification were selected as mechanical and chemical activation methods, respectively. Synthesized samples of adsorbent were produced considering two parameters of activation: acid concentrations and acidification time in two selected milling times. Optimization of the activation process was based on nitrate removal from a stock solution. Experimental data were analyzed with two-way analysis of variance and Kruskal-Wallis methods to verify and discover the accuracy and probable errors. Best conditions (acceptable removal percentage > 75) were 17.6% w/w for acid concentrate and 19.9 minutes for acidification time in 8 hours for milling time. A direct relationship between increase in nitrate removal and increasing the acid concentration and acidification time was observed. The adsorption isotherms were studied and compared with other nitrate adsorbents. Characterization tests (X-ray fluorescence, X-ray diffraction, Fourier transform infrared spectrophotometry, dynamic light scattering, surface area analysis and scanning electron microscopy) were conducted for both raw and activated adsorbents. Results showed noticeable superiority in characteristics after activation: higher specific area and porosity, lower particle size and lower agglomeration in structure.
Pulp capacity in the United States, 2000.
Brett R. Smith; Robert W. Rice; Peter J. Ince
2003-01-01
Production capacities of all woodpulp mills in the United States are identified by location, ownership, and process type. For each mill, production capacity is reported for the year 2000 by process type; total mill capacities are also reported for 1961, 1965, 1979, 1974, and 1983. In addition, the report summarizes the recent history and current status of woodpulp...
Leaders in Future and Current Technology Teaming Up to Improve Ethanol
and NREL expertise to: Develop improvements in process throughput and water management for dry mill , Complete an overall process engineering model of the dry mill technology that identifies new ways to and operation of "dry mill" plants that currently produce ethanol from corn starch. Dry
NASA Astrophysics Data System (ADS)
Alinejad, Babak; Mahmoodi, Korosh
Natural graphite is a soft material that conventional milling methods fail to grind into nanoparticles. We found that adding NaCl into graphite during milling allows obtaining graphene nanoflakes of about 50×200nm2 as evidenced by Transmission Electron Microscope (TEM). NaCl particles are substantially brittle and harder than graphite, serving as milling agents by both helping to chop graphite into smaller pieces and preventing graphite particles from agglomeration. After milling, NaCl can be easily washed away by water. Probable mechanism for exfoliation of graphene during the modified ball milling may be explained by NaCl and graphene slipping or sliding against and over each other, exfoliating the graphene particles into thin layers.
34. RW Meyer Sugar Mill: 18761889. Threeroll sugar mill, oneton ...
34. RW Meyer Sugar Mill: 1876-1889. Three-roll sugar mill, one-ton daily processing capacity. Manufactured by Edwin Maw, Liverpool, England, ca. 1855-1870. View: Side view of mill. Vertical drive shaft lying on ground in foreground. When drive-shaft was in upright position its bevel gear was meshed with the bevel gear of the top roll, transmitting the animals'circular motion around the drive shaft to the horizontal rolls. The foundation is of portland cement. The heavy timber mill bed, between the mill and the portland cement foundation has rolled away. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
Ross Swaney; Masood Akhtar; Eric Horn; Michael Lentz; Carl Houtman; John Klungness
2003-01-01
The biopulping process for treating wood chips prior to mechanical pulping has been scaled up through an extensive development program and has been demonstrated at 50 ton semicommercial scale. Detailed engineering analyses and design studies have been performed for full production-scale mill implementation, and the technology is ready for commercial use. This paper...
NASA Astrophysics Data System (ADS)
Akbarpour, M. R.
2018-03-01
The presence of large grains within nanometric and ultrafine grain matrix is an effective method in order to enhance strength while keeping the high ductility of metals. For this purpose, in this research, spark plasma sintering (SPS) was used to consolidate milled Cu and Cu-SiC powders. In SPS process, local sparks with high temperature between particles take place and locally lead to intense grain growth, and therefore, this method has the ability to produce bimodal grain structures in copper and copper-based composites. Microstructural and mechanical studies showed ≈ 185 and ≈ 437 nm matrix grain sizes, high tensile yield strength values of ≈ 188.4 and ≈ 296.9 MPa, and fracture strain values of 15.1 and 6.7% for sintered Cu and Cu-4 vol.% SiC nanocomposite materials, respectively. The presence of nanoparticles promoted the occurrence of static recrystallization and decreased the fraction of coarse grains in microstructure. The high tensile properties of the produced materials are attributed to fine grain size, homogenous dispersion of nanoparticles and retarded grain boundary migration during sintering.
Mechanisms of Current Transfer in Electrodeposited Layers of Submicron Semiconductor Particles
NASA Astrophysics Data System (ADS)
Zhukov, N. D.; Mosiyash, D. S.; Sinev, I. V.; Khazanov, A. A.; Smirnov, A. V.; Lapshin, I. V.
2017-12-01
Current-voltage ( I- V) characteristics of conductance in multigrain layers of submicron particles of silicon, gallium arsenide, indium arsenide, and indium antimonide have been studied. Nanoparticles of all semiconductors were obtained by processing initial single crystals in a ball mill and applied after sedimentation onto substrates by means of electrodeposition. Detailed analysis of the I- V curves of electrodeposited layers shows that their behavior is determined by the mechanism of intergranular tunneling emission from near-surface electron states of submicron particles. Parameters of this emission process have been determined. The proposed multigrain semiconductor structures can be used in gas sensors, optical detectors, IR imagers, etc.
NASA Astrophysics Data System (ADS)
Yue, Zhihao; Zhou, Lang; Jin, Chenxin; Xu, Guojun; Liu, Liekai; Tang, Hao; Li, Xiaomin; Sun, Fugen; Huang, Haibin; Yuan, Jiren
2017-06-01
N-type silicon wafers with electrical resistivity of 0.001 Ω cm were ball-milled to powders and part of them was further mechanically crushed by sand-milling to smaller particles of nano-size. Both the sand-milled and ball-milled silicon powders were, respectively, mixed with graphite powder (silicon:graphite = 5:95, weight ratio) as anode materials for lithium ion batteries. Electrochemical measurements, including cycle and rate tests, present that anode using sand-milled silicon powder performed much better. The first discharge capacity of sand-milled silicon anode is 549.7 mAh/g and it is still up to 420.4 mAh/g after 100 cycles. Besides, the D50 of sand-milled silicon powder shows ten times smaller in particle size than that of ball-milled silicon powder, and they are 276 nm and 2.6 μm, respectively. In addition, there exist some amorphous silicon components in the sand-milled silicon powder excepting the multi-crystalline silicon, which is very different from the ball-milled silicon powder made up of multi-crystalline silicon only.
The effect of milling time on the synthesis of Cu{sub 54}Mg{sub 22}Ti{sub 18}Ni{sub 6} alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kursun, C., E-mail: celalkursun@ksu.edu.tr; Gogebakan, M., E-mail: gogebakan@ksu.edu.tr
In the present work, nanocrystalline Cu{sub 54}Mg{sub 22}Ti{sub 18}Ni{sub 6} alloy was produced by mechanical alloying from mixtures of pure crystalline Cu, Mg, Ti and Ni powders using a Fritsch planetary ball mill with a ball to powder ratio of 10:1. Morphological changes, microstructural evolution and thermal behaviour of the Cu-Mg-Ti-Ni powders at different stages of milling were characterised by X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray detection (SEM/EDX) and differential thermal analysis (DTA). This alloy resulted in formation of single phase solid solution with FCC structure α-Cu (Mg, Ti, Ni) after 80 h of milling. In the initialmore » stage of milling different sized and shaped elemental powders became uniform during mechanical alloying. The homogeneity of the Cu{sub 54}Mg{sub 22}Ti{sub 18}Ni{sub 6} alloy increased with increasing milling time. The EDX result also confirmed the compositional homogeneity of the powder alloy. The crystallite size of alloy was calculated below 10 nm from XRD data.« less
NASA Astrophysics Data System (ADS)
Krishnan, Vinoadh Kumar; Sinnaeruvadi, Kumaran
2016-10-01
Vanadium metal powders, ball milled with different surfactants viz., stearic acid, KCl and NaCl, have been studied by X-ray diffraction and transmission electron microscopy. The surfactants alter the microstructural and morphological characteristics of the powders. Ball milling with stearic acid results in solid-state amorphization, while powders milled with KCl yield vanadium-tungsten carbide nanocomposite mixtures. NaCl proved to be an excellent surfactant for obtaining nanostructured fusion-grade vanadium powders. In order to understand the reaction mechanism behind any interstitial addition in the ball-milled powders, CHNOS analysis was performed.
Oxide dispersion strengthened nickel produced by nonreactive milling
NASA Technical Reports Server (NTRS)
Arias, A.
1976-01-01
It is shown that oxide dispersion strengthened alloys can be produced by a postulated nonreactive milling mechanism whereby the dispersoid is trapped at the interface between welding metal powder particles. This interparticle welding is possible because, without a suitable and sufficiently vigorous chemical reaction between the metal powder particles and the milling fluid, no protective, weld-preventing reaction coating is formed on these particles. Using water as the nonreactive milling fluid, Ni - 1.8-vol % thoria and Ni - 1.8-vol % yttria alloys with 1093 C tensile strengths ranging from 122.3 to 141.5 MN/sq m (17,900 to 20,500 psi) were produced by nonreactive milling.
Cavity formation and surface modeling of laser milling process under a thin-flowing water layer
NASA Astrophysics Data System (ADS)
Tangwarodomnukun, Viboon
2016-11-01
Laser milling process normally involves a number of laser scans over a workpiece to selectively remove the material and then to form cavities with shape and dimensions required. However, this process adversely causes a heat accumulation in work material, which can in turn damage the laser-milled area and vicinity in terms of recast deposition and change of material properties. Laser milling process performing in a thin-flowing water layer is a promising method that can overcome such damage. With the use of this technique, water can flush away the cut debris and at the same time cool the workpiece during the ablation. To understand the potential of this technique for milling application, the effects of process parameters on cavity dimensions and surface roughness were experimentally examined in this study. Titanium sheet was used as a workpiece to be milled by a nanosecond pulse laser under different water flow velocities. A smooth and uniform cut feature can be obtained when the metal was ablated under the high laser pulse frequency and high water flow velocity. Furthermore, a surface model based on the energy balance was developed in this study to predict the cavity profile and surface roughness. By comparing to the experiments, the predicted profiles had a good agreement with the measured ones.
Rough mill simulator version 3.0: an analysis tool for refining rough mill operations
Edward Thomas; Joel Weiss
2006-01-01
ROMI-3 is a rough mill computer simulation package designed to be used by both rip-first and chop-first rough mill operators and researchers. ROMI-3 allows users to model and examine the complex relationships among cutting bill, lumber grade mix, processing options, and their impact on rough mill yield and efficiency. Integrated into the ROMI-3 software is a new least-...
Flank wear analysing of high speed end milling for hardened steel D2 using Taguchi Method
NASA Astrophysics Data System (ADS)
Hazza Faizi Al-Hazza, Muataz; Ibrahim, Nur Asmawiyah bt; Adesta, Erry T. Y.; Khan, Ahsan Ali; Abdullah Sidek, Atiah Bt.
2017-03-01
One of the main challenges for any manufacturer is how to decrease the machining cost without affecting the final quality of the product. One of the new advanced machining processes in industry is the high speed hard end milling process that merges three advanced machining processes: high speed milling, hard milling and dry milling. However, one of the most important challenges in this process is to control the flank wear rate. Therefore a analyzing the flank wear rate during machining should be investigated in order to determine the best cutting levels that will not affect the final quality of the product. In this research Taguchi method has been used to investigate the effect of cutting speed, feed rate and depth of cut and determine the best level s to minimize the flank wear rate up to total length of 0.3mm based on the ISO standard to maintain the finishing requirements.
Mechanical alloying of a hydrogenation catalyst used for the remediation of contaminated compounds
NASA Technical Reports Server (NTRS)
Quinn, Jacqueline W. (Inventor); Geiger, Cherie L. (Inventor); Aitken, Brian S. (Inventor); Clausen, Christian A. (Inventor)
2012-01-01
A hydrogenation catalyst including a base material coated with a catalytic metal is made using mechanical milling techniques. The hydrogenation catalysts are used as an excellent catalyst for the dehalogenation of contaminated compounds and the remediation of other industrial compounds. Preferably, the hydrogenation catalyst is a bimetallic particle including zero-valent metal particles coated with a catalytic material. The mechanical milling technique is simpler and cheaper than previously used methods for producing hydrogenation catalysts.
Mechanical alloying of a hydrogenation catalyst used for the remediation of contaminated compounds
NASA Technical Reports Server (NTRS)
Quinn, Jacqueline W. (Inventor); Aitken, Brian S. (Inventor); Clausen, Christian A. (Inventor); Geiger, Cherie L. (Inventor)
2010-01-01
A hydrogenation catalyst including a base material coated with a catalytic metal is made using mechanical milling techniques. The hydrogenation catalysts are used as an excellent catalyst for the dehalogenation of contaminated compounds and the remediation of other industrial compounds. Preferably, the hydrogenation catalyst is a bimetallic particle including zero-valent metal particles coated with a catalytic material. The mechanical milling technique is simpler and cheaper than previously used methods for producing hydrogenation catalysts.
Absorption property of C@CIPs composites by the mechanical milling process
NASA Astrophysics Data System (ADS)
Liu, Ting; Zhou, Li; Zheng, Dianliang; Xu, Yonggang
2017-09-01
The C@CIPs absorbents were fabricated by the mechanical milling method. The particle morphology and crystal grain structure were characterized by the scanning electron microscopy and the X-ray diffraction patterns, respectively. The complex permittivity and permeability of the absorbing composites added the hybrid particles were tested in 2-18 GHz. The reflection loss (RL) and shielding effectiveness were calculated using the tested parameters. It was found that the MWCNTs were bonded to the CIPs surface. The permittivity and permeability of the C@CIPs were increased as the MWCNTs coated on the CIPs. It was attributed to the dielectric property of MWCNTs, particle shape and the interactions of the two particles according to the Debye equation and the Maxwell-Garnett mixing rule. The C@CIPs composites had a better absorbing property as RL < -4 dB in 4.6-17 GHz with thickness 0.6 mm as well as shielding property (maximum 12.7 dB) in 2-18 GHz. It indicated that C@CIPs might be an effective absorbing/shielding absorbent.
NASA Astrophysics Data System (ADS)
Reddy, M. Penchal; Ubaid, F.; Shakoor, R. A.; Mohamed, A. M. A.
2018-06-01
In the present work, Al metal matrix composites reinforced with Cu-based (Cu50Ti50) amorphous alloy particles synthesized by ball milling followed by a microwave sintering process were studied. The amorphous powders of Cu50Ti50 produced by ball milling were used to reinforce the aluminum matrix. They were examined by x-ray diffraction (XRD), scanning electron microscopy (SEM), microhardness and compression testing. The analysis of XRD patterns of the samples containing 5 vol.%, 10 vol.% and 15 vol.% Cu50Ti50 indicates the presence of Al and Cu50Ti50 peaks. SEM images of the sintered composites show the uniform distribution of reinforced particles within the matrix. Mechanical properties of the composites were found to increase with an increasing volume fraction of Cu50Ti50 reinforcement particles. The hardness and compressive strength were enhanced to 89 Hv and 449 MPa, respectively, for the Al-15 vol.% Cu50Ti50 composites.
Fattahi, M; Nabhani, N; Rashidkhani, E; Fattahi, Y; Akhavan, S; Arabian, N
2013-01-01
The effect of multi-walled carbon nanotube (MWCNT) on the mechanical properties of aluminum multipass weld metal prepared by the tungsten inert gas (TIG) welding process was investigated. High energy ball milling was used to disperse MWCNT in the aluminum powder. Carbon nanotube/aluminum composite filler metal was fabricated for the first time by hot extrusion of ball-milled powders. After welding, the tensile strength, microhardness and MWCNT distribution in the weld metal were investigated. The test results showed that the tensile strength and microhardness of weld metal was greatly increased when using the filler metal containing 1.5 wt.% MWCNT. Therefore, according to the results presented in this paper, it can be concluded that the filler metal containing MWCNT can serve as a super filler metal to improve the mechanical properties of TIG welds of Al and its alloys. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Eom, JiYong; Kim, DongYung; Kwon, HyukSang
The effects of ball-milling on Li insertion into multi-walled carbon nanotubes (MWNTs) are presented. The MWNTs are synthesized on supported catalysts by thermal chemical vapour deposition, purified, and mechanically ball-milled by the high energy ball-milling. The purified MWNTs and the ball-milled MWNTs were electrochemically inserted with Li. Structural and chemical modifications in the ball-milled MWNTs change the insertion-extraction properties of Li ions into/from the ball-milled MWNTs. The reversible capacity (C rev) increases with increasing ball-milling time, namely, from 351 mAh g -1 (Li 0.9C 6) for the purified MWNTs to 641 mAh g -1 (Li 1.7C 6) for the ball-milled MWNTs. The undesirable irreversible capacity (C irr) decreases continuously with increase in the ball-milling time, namely, from 1012 mAh g -1 (Li 2.7C 6) for the purified MWNTs to 518 mAh g -1 (Li 1.4C 6) for the ball-milled MWNTs. The decrease in C irr of the ball-milled samples results in an increase in the coulombic efficiency from 25% for the purified samples to 50% for the ball-milled samples. In addition, the ball-milled samples maintain a more stable capacity than the purified samples during charge-discharge cycling.
NASA Astrophysics Data System (ADS)
Cruz, Febus Reidj G.; Padilla, Dionis A.; Hortinela, Carlos C.; Bucog, Krissel C.; Sarto, Mildred C.; Sia, Nirlu Sebastian A.; Chung, Wen-Yaw
2017-02-01
This study is about the determination of moisture content of milled rice using image processing technique and perceptron neural network algorithm. The algorithm involves several inputs that produces an output which is the moisture content of the milled rice. Several types of milled rice are used in this study, namely: Jasmine, Kokuyu, 5-Star, Ifugao, Malagkit, and NFA rice. The captured images are processed using MATLAB R2013a software. There is a USB dongle connected to the router which provided internet connection for online web access. The GizDuino IOT-644 is used for handling the temperature and humidity sensor, and for sending and receiving of data from computer to the cloud storage. The result is compared to the actual moisture content range using a moisture tester for milled rice. Based on results, this study provided accurate data in determining the moisture content of the milled rice.
Phase transformations in the hematite-metal system during mechanical alloying
NASA Astrophysics Data System (ADS)
Kozlov, K. A.; Shabashov, V. A.; Litvinov, A. V.; Sagaradze, V. V.
2009-04-01
Mössbauer spectroscopy and X-ray diffraction are used to show that the phase transformations in hematite α-Fe2O3-metal ( M = Fe, Ni, Ti, Zr) powder mixtures induced by severe cold plastic deformation in ball mills occur via the formation of M-Fe-O solid solutions, redox reactions with the reduction of metallic iron, and the formation of secondary M x O y oxides and M x Fe y intermetallics. Mechanical activation in a ball mill is compared to that under high-pressure shear in Bridgman anvils. The transformations that take place in a ball mill are found to have several stages and to be accelerated.
Improvement of the tool life of a micro-end mill using nano-sized SiC/Ni electroplating method.
Park, Shinyoung; Kim, Kwang-Su; Roh, Ji Young; Jang, Gyu-Beom; Ahn, Sung-Hoon; Lee, Caroline Sunyong
2012-04-01
High mechanical properties of a tungsten carbide micro-end-mill tool was achieved by extending its tool life by electroplating nano-sized SiC particles (< 100 nm) that had a hardness similar to diamond in a nickel-based material. The co-electroplating method on the surface of the micro-end-mill tool was applied using SiC particles and Ni particles. Organic additives (saccharin and ammonium chloride) were added in a Watts bath to improve the nickel matrix density in the electroplating bath and to smooth the surface of the co-electroplating. The morphology of the coated nano-sized SiC particles and the composition were measured using Scanning Electron Microscope and Energy Dispersive Spectrometer. As the Ni/SiC co-electroplating layer was applied, the hardness and friction coefficient improved by 50%. Nano-sized SiC particles with 7 wt% were deposited on the surface of the micro-end mill while the Ni matrix was smoothed by adding organic additives. The tool life of the Ni/SiC co-electroplating coating on the micro-end mill was at least 25% longer than that of the existing micro-end mills without Ni/SiC co-electroplating. Thus, nano-sized SiC/Ni coating by electroplating significantly improves the mechanical properties of tungsten carbide micro-end mills.
NASA Astrophysics Data System (ADS)
Zhang, Yanghuan; Shang, Hongwei; Hou, Zhonghui; Yuan, Zeming; Yang, Tai; Qi, Yan
2016-12-01
In this study, Mg was partially substituted by Ni with the intent of improving the hydrogen storage kinetics performance of NdMg12-type alloy. Mechanical milling technology was adopted to fabricate the nanocrystalline and amorphous NdMg11Ni + x wt pct Ni ( x = 100, 200) alloys. The effects of Ni content and milling duration on the microstructures and hydrogen storage kinetics of as-milled alloys have been systematically investigated. The structures were characterized by XRD and HRTEM. The electrochemical hydrogen storage properties were tested by an automatic galvanostatic system. Moreover, the gaseous hydrogen storage properties were investigated by Sievert apparatus and a differential scanning calorimeter connected with a H2 detector. Hydrogen desorption activation energy of alloy hydrides was estimated by using Arrhenius and Kissinger methods. The results reveal that the increase of Ni content dramatically ameliorates the gaseous and electrochemical hydrogen storage kinetics performance of the as-milled alloys. Furthermore, high rate discharge ability (HRD) reach the maximum value with the variation of milling time. The maximum HRDs of the NdMg11Ni + x wt pct Ni ( x = 100, 200) alloys are 80.24 and 85.17 pct. The improved gaseous hydrogen storage kinetics of alloys via increasing Ni content and milling time can be attributed to a decrease in the hydrogen desorption activation energy.
The FEM Simulation on End Mill of Plastic Doors and Windows Corner Cleaning Based on Deform-3D
NASA Astrophysics Data System (ADS)
Li, Guoping; Huang, Zhenyong; Wang, Xiaohui
2017-12-01
In the plastic doors and windows corner cleaning process, the rotating speed, the feed rate and the milling cutter diameter are the main factors that affect the efficiency and quality of the of corner cleaning. In this paper, SolidWorks will be used to establish the 3D model of end mills, and use Deform-3D to research the end mill milling process. And using orthogonal experiment design method to analyze the effect of rotating speed, the feed rate and the milling cutter diameter on the axial force variation, and to get the overall trend of axial force and the selection of various parameters according to the influence of axial force change. Finally, simulate milling experiment used to get the actual axial force data to verify the reliability of the FEM simulation model. And the conclusion obtained in this paper has important theoretical value in improving the plastic doors and windows corner cleaning efficiency and quality.
Facile Fabrication of 100% Bio-Based and Degradable Ternary Cellulose/PHBV/PLA Composites
Wang, Jinwu
2018-01-01
Modifying bio-based degradable polymers such as polylactide (PLA) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) with non-degradable agents will compromise the 100% degradability of their resultant composites. This work developed a facile and solvent-free route in order to fabricate 100% bio-based and degradable ternary cellulose/PHBV/PLA composite materials. The effects of ball milling on the physicochemical properties of pulp cellulose fibers, and the ball-milled cellulose particles on the morphology and mechanical properties of PHBV/PLA blends, were investigated experimentally and statistically. The results showed that more ball-milling time resulted in a smaller particle size and lower crystallinity by way of mechanical disintegration. Filling PHBV/PLA blends with the ball-milled celluloses dramatically increased the stiffness at all of the levels of particle size and filling content, and improved their elongation at the break and fracture work at certain levels of particle size and filling content. It was also found that the high filling content of the ball-milled cellulose particles was detrimental to the mechanical properties for the resultant composite materials. The ternary cellulose/PHBV/PLA composite materials have some potential applications, such as in packaging materials and automobile inner decoration parts. Furthermore, filling content contributes more to the variations of their mechanical properties than particle size does. Statistical analysis combined with experimental tests provide a new pathway to quantitatively evaluate the effects of multiple variables on a specific property, and figure out the dominant one for the resultant composite materials. PMID:29495315
NASA Astrophysics Data System (ADS)
Razani, Marjan; Soudagar, Yasaman; Yu, Karen; Galbraith, Christopher M.; Webster, Paul J. L.; Van Vlack, Cole; Sun, Cuiru; Mariampillai, Adrian; Leung, Michael K. K.; Standish, Beau; Kiehl, Tim-Rasmus; Fraser, James M.; Yang, Victor X. D.
2013-03-01
Precision depth control of bone resection is necessary for safe surgical procedures in the spine. In this paper, we compare the control and quality of cutting bovine tail bone, as an ex vivo model of laminectomy and bony resection simulating spinal surgery, planned with micro-CT data and executed using two approaches: (a) mechanical milling guided by optical topographical imaging (OTI) and (b) optical milling using closed-loop inline coherent imaging (ICI) to monitor and control the incision depth of a high-power 1070 nm fiber laser in situ. OTI provides the in situ topology of the 2-dimensional surface of the bone orientation in the mechanical mill which is registered with the treatment plan derived from the micro-CT data. The coregistration allows the plan to be programmed into the mill which is then used as a benchmark of current surgical techniques. For laser cutting, 3D optical land marking with coaxial camera vision and the ICI system is used to coregister the treatment plan. The unstable, carbonization-mediated ablation behaviour of 1070 nm light and the unknown initial geometry of bone leads to unpredictable ablation which substantially limits the depth accuracy of open-loop cutting. However, even with such a non-ideal cutting laser, we demonstrate that ICI provides in situ high-speed feedback that automatically and accurately limits the laser's cut depth to effectively create an all-optical analogue to the mechanical mill.
6. View of the end of the lower raceway showing ...
6. View of the end of the lower raceway showing the gates and controlling mechanisms for channeling water into the Industry Mill. - Industry Mill, Van Houten & Prospect Street, Paterson, Passaic County, NJ
Decontamination effect of milling by a jet mill on bacteria in rice flour.
Sotome, Itaru; Nei, Daisuke; Tsuda, Masuko; Mohammed, Sharif Hossen; Takenaka, Makiko; Okadome, Hiroshi; Isobe, Seiichiro
2011-06-01
The decontamination effect of milling by a jet mill was investigated by counting the number of bacteria in brown and white rice flour with mean particle diameters of 3, 20, and 40µm prepared by the jet mill. In the jet mill, the particles are crushed and reduced in size by the mechanical impact caused by their collision. Although the brown and white rice grains were contaminated with approximately 10(6) and 10(5) CFU/g bacteria, the microbial load of the rice flour decreased as the mean particle diameter decreased, ultimately decreasing to approximately 104 and 103 CFU/g in the brown and white rice flour. The temperature and pressure changes of the sample were not considered to have an effect on reducing the bacterial count during the milling. Hence, it was thought that the rice flour was decontaminated by other effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rounaghi, S.A., E-mail: s.a.rounaghi@gmail.com; Kiani Rashid, A.R.; Eshghi, H., E-mail: heshghi@ferdowsi.um.ac.ir
Decomposition of melamine was studied by solid state reaction of melamine and aluminum powders during high energy ball-milling. The milling procedure performed for both pure melamine and melamine/Al mixed powders as the starting materials for various times up to 48 h under ambient atmosphere. The products were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The results revealed that Al causes melamine deammoniation at the first stages of milling and further milling process leads to the s-triazine ring degradation while nano-crystallite hexagonal aluminum nitride (h-AlN) was the main solid product. Comparison to milling process, the possibility ofmore » the reaction of melamine with Al was also investigated by thermal treatment method using differential scanning calorimeter (DSC) and thermo gravimetric analyzer (TGA). Melamine decomposition occurred by thermal treatment in the range of 270-370 Degree-Sign C, but no reaction between melamine and aluminum was observed. - Graphical Abstract: Mechanochemical reaction of melamine with Al resulted in the formation of nanocrystalline AlN after 7 h milling time Highlights: Black-Right-Pointing-Pointer High energy ball milling of melamine and aluminum results decomposition of melamine with elimination of ammonia. Black-Right-Pointing-Pointer Nano-crystalline AlN was synthesized by the mechanochemical route. Black-Right-Pointing-Pointer Milling process has no conspicuous effect on pure melamine degradation. Black-Right-Pointing-Pointer No reaction takes place by heating melamine and aluminum powder mixture in argon.« less
Activity of Plodia interpunctella (Lepidoptera: Pyralidae) in and around flour mills.
Doud, C W; Phillips, T W
2000-12-01
Studies were conducted at two flour mills where male Indian meal moths, Plodia interpunctella (Hübner), were captured using pheromone-baited traps. Objectives were to determine the distribution of male P. interpunctella at different locations in and around the mills throughout the season, and to monitor moth activity before and after one of the mills was fumigated with methyl bromide to assess efficacy of treatment. Commercially available sticky traps baited with the P. interpunctella sex pheromone were placed at various locations outside and within the larger of the two mills (mill 1). Moths were captured inside mill 1 after methyl bromide fumigations. The highest numbers of P. interpunctella were caught outside the facility and at ground floor locations near outside openings. Additional traps placed in the rooms above the concrete stored-wheat silos at mill 1 during the second year captured more moths than did traps within the mill's production and warehouse areas. In another study, moths were trapped at various distances from a smaller flour mill (mill 2) to determine the distribution of moths outdoors relative to the mill. There was a negative correlation between moth capture and distance from the facility, which suggested that moth activity was concentrated at or near the flour mill. The effectiveness of the methyl bromide fumigations in suppressing moth populations could not be assessed with certainty because moths captured after fumigation may have immigrated from outside through opened loading bay warehouse doors. This study documents high levels of P. interpunctella outdoors relative to those recorded inside a food processing facility. Potential for immigration of P. interpunctella into flour mills and other stored product facilities from other sources may be greater than previously recognized. Moth entry into a food processing facility after fumigation is a problem that should be addressed by pest managers.
ROMI-3: Rough-Mill Simulator Version 3.0: User's Guide
Joel M. Weiss; R. Edward Thomas; R. Edward Thomas
2005-01-01
ROMI-3 Rough-Mill Simulator is a software package that simulates current industrial practices for rip-first and chop-first lumber processing. This guide shows the user how to set up and examine the results of simulations of current or proposed mill practices. ROMI-3 accepts cutting bills with as many as 600 combined solid and/or panel part sizes. Plots of processed...
Ball milling: An experimental support to the energy transfer evaluated by the collision model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magini, M.; Iasonna, A.; Padella, F.
1996-01-01
In recent years several attempts have been made in order to understand the fundamentals of the ball milling process. The aim of these approaches is to establish predictive capabilities for this process, i.e. the possibility of obtaining a given product by suitable choosing the proper milling conditions. Maurice and Courtney have modeled ball milling in a planetary and in a vibratory mill including parameters like impact times, areas of the colliding surfaces (derived from hertzian collision theory), powder strain rates and pressure peak during collision. Burgio et al derived the kinematic equations of a ball moving on a planetary millmore » and the consequent ball-to-powder energy transfer occurring in a single collision event. The fraction of input energy transferred to the powder was subsequently estimated by an analysis of the collision event. Finally an energy map was constructed which was the basis for a model with predictive capabilities. The aim of the present article is to show that the arguments used to construct the model of the milling process has substantial experimental support.« less
Modeling of Surface Geometric Structure State After Integratedformed Milling and Finish Burnishing
NASA Astrophysics Data System (ADS)
Berczyński, Stefan; Grochała, Daniel; Grządziel, Zenon
2017-06-01
The article deals with computer-based modeling of burnishing a surface previously milled with a spherical cutter. This method of milling leaves traces, mainly asperities caused by the cutting crossfeed and cutter diameter. The burnishing process - surface plastic treatment - is accompanied by phenomena that take place right in the burnishing ball-milled surface contact zone. The authors present the method for preparing a finite element model and the methodology of tests for the assessment of height parameters of a surface geometrical structure (SGS). In the physical model the workpieces had a cuboidal shape and these dimensions: (width × height × length) 2×1×4.5 mm. As in the process of burnishing a cuboidal workpiece is affected by plastic deformations, the nonlinearities of the milled item were taken into account. The physical model of the process assumed that the burnishing ball would be rolled perpendicularly to milling cutter linear traces. The model tests included the application of three different burnishing forces: 250 N, 500 N and 1000 N. The process modeling featured the contact and pressing of a ball into the workpiece surface till the desired force was attained, then the burnishing ball was rolled along the surface section of 2 mm, and the burnishing force was gradually reduced till the ball left the contact zone. While rolling, the burnishing ball turned by a 23° angle. The cumulative diagrams depict plastic deformations of the modeled surfaces after milling and burnishing with defined force values. The roughness of idealized milled surface was calculated for the physical model under consideration, i.e. in an elementary section between profile peaks spaced at intervals of crossfeed passes, where the milling feed fwm = 0.5 mm. Also, asperities after burnishing were calculated for the same section. The differences of the obtained values fall below 20% of mean values recorded during empirical experiments. The adopted simplification in after-milling SGS modeling enables substantial acceleration of the computing process. There is a visible reduction of the Ra parameter value for milled and burnished surfaces as the burnishing force rises. The tests determined an optimal burnishing force at a level of 500 N (lowest Ra = 0.24 μm). Further increase in the value of burnishing force turned out not to affect the surface roughness, which is consistent with the results obtained from experimental studies.
The dispersion of fine chitosan particles by beads-milling
NASA Astrophysics Data System (ADS)
Rochima, Emma; Utami, Safira; Hamdani, Herman; Azhary, Sundoro Yoga; Praseptiangga, Danar; Joni, I. Made; Panatarani, Camellia
2018-02-01
This research aimed to produce fine chitosan particles from a crab shell waste by beads-milling method by two different concentration of PEG as dispersing agent (150 and 300 wt. %). The characterization was performed to obtain the size and size distribution, the characteristics of functional groups and the degree of deacetylation. The results showed that the chitosan fine particles was obtained with a milling time 120 minutes with the best concentration of PEG 400 150 wt. %. The average particle size of the as-prepared suspension is 584 nm after addition of acetic acid solution (1%, v/v). Beads milling process did not change the glucosamine and N-acetylglucosamine content on chitosan structure which is indicated by degree of deacetylation higher than 70%. It was concluded that beads milling process can be applied to prepare chitosan fineparticles by proper adjustment in the milling time, pH and dosage of dispersing agent.
Newell, H E; Buckton, G; Butler, D A; Thielmann, F; Williams, D R
2001-05-01
To assess differences in surface energy due to processing induced disorder and to understand whether the disorder dominated the surfaces of particles. Inverse gas chromatography was used to compare the surface energies of crystalline, amorphous, and ball milled lactose. The milling process made ca 1% of the lactose amorphous, however the dispersive contribution to surface energy was 31.2, 37.1, and 41.6 mJ m(-2) for crystalline, spray dried and milled lactose, respectively. A physical mixture of crystalline (99%) and amorphous (1%) material had a dispersive surface energy of 31.5 mJ m(-2). Milling had made the surface energy similar to that of the amorphous material in a manner that was very different to a physical mixture of the same amorphous content. The milled material will have similar interfacial interactions to the 100% amorphous material.
Estimation of Asphalt Pavement Life
DOT National Transportation Integrated Search
2002-01-01
The milling of asphalt concrete (AC) pavement surface refers to the mechanical removal of a part of the pavement surface. The Kansas Department of Transportation (KDOT) and the Kansas Turnpike Authority (KTA) routinely mill the surfaces of some AC pa...
40 CFR 430.00 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... semi-chemical mills using an ammonia base or a sodium base (Ba). G Mechanical Pulp Pulp and paper at... nonintegrated mills (Za). a This subpart is contained in the 40 CFR parts 425 through 699, edition revised as of...
40 CFR 430.00 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... semi-chemical mills using an ammonia base or a sodium base (Ba). G Mechanical Pulp Pulp and paper at... nonintegrated mills (Za). a This subpart is contained in the 40 CFR parts 425 through 699, edition revised as of...
Synthesis of Multimetal-Graphene Composite by Mechanical Milling
NASA Astrophysics Data System (ADS)
Saiphaneendra, Bachu; Srivastava, Avi Krishna; Srivastava, Chandan
2016-10-01
Multimetal-graphene composites were synthesized using the ball milling technique. To prepare the composite, graphite powder was mixed with Fe, Cr, Co, Cu and Mg powders. This mixture was then mechanically milled for 35 h in toluene medium. After milling, the multimetal-graphite mixture was mixed with sodium lauryl sulfate and sonicated for 2 h. Sonication led to the exfoliation of graphene sheets. Formation of graphene was confirmed from x-ray diffraction and Raman spectroscopy. Transmission electron microscopy-based analysis revealed the formation of multimetal deposits over the graphene surface. Compositional analysis of the multimetal deposits revealed fairly uniform distribution of all the five component metal atoms over the graphene sheet. The average composition of the multimetal deposit was determined to be 11.4 ± 4 at.% Mg, 33.8 ± 19 at.% Cr, 21.8 ± 16 at.% Fe, 9.4 ± 5.7 at.% Co and 23.6 ± 12 at.% Cu.
NASA Astrophysics Data System (ADS)
Geng, Yunlong
L10-type (Space group P4/mmm) magnetic compounds, including FeNi and MnAl, possess promising technical magnetic properties of both high magnetization and large magnetocrystalline anisotropy energy, and thus offer potential in replacing rare earth permanent magnets in some applications. In equiatomic Fe-Ni, the disorder-order transformation from fcc structure to the L10 structure is a diffusional transformation, but is inhibited by the low ordering temperature. The transformation could be enhanced through the creation of vacancies. Thus, mechanical alloying was employed to generate more open-volume defects. A decrease in grain size and concomitant increase in grain boundary area resulted from the mechanical alloying, while an initial increase in internal strain (manifested through an increase in dislocation density) was followed by a subsequent decrease with further alloying. However, a decrease in the net defect concentration was determined by Doppler broadening positron annihilation spectroscopy, as open volume defects utilized dislocations and grain boundaries as sinks. An alloy, Fe32Ni52Zr3B13, formed an amorphous structure after rapid solidification, with a higher defect concentration than crystalline materials. Mechanical milling was utilized in an attempt to generate even more defects. However, it was observed that Fe32Ni52Zr3B13 underwent crystallization during the milling process, which appears to be related to enhanced vacancy-type defect concentrations allowing growth of pre-existing Fe(Ni) nuclei. The milling and enhanced vacancy concentration also de-stabilizes the glass, leading to decreased crystallization temperatures, and ultimately leading to complete crystallization. In Mn-Al, the L10 structure forms from the parent hcp phase. However, this phase is slightly hyperstoichiometric relative to Mn, and the excess Mn occupies Al sites and couples antiparallel to the other Mn atoms. In this study, the Zr substituted preferentially for the Mn atoms in the Al layer, resulting in an increase in saturation magnetization, from 115 emu/g in the alloys without Zr to 128 emu/g in Mn53Al43C 3Zr1. To further improve the coercivity in Mn53Al 43C3Zr1, microstructure modification was achieved through the addition of excessive C and through surfactant-assisted mechanical milling. Enhancement in coercivity was accomplished through the microstructure modification, however, the loss of saturation magnetization was observed due to the formation of other equilibrium phases, including epsilon, beta-Mn and ZrO.
NanoClusters Enhance Drug Delivery in Mechanical Ventilation
NASA Astrophysics Data System (ADS)
Pornputtapitak, Warangkana
The overall goal of this thesis was to develop a dry powder delivery system for patients on mechanical ventilation. The studies were divided into two parts: the formulation development and the device design. The pulmonary system is an attractive route for drug delivery since the lungs have a large accessible surface area for treatment or drug absorption. For ventilated patients, inhaled drugs have to successfully navigate ventilator tubing and an endotracheal tube. Agglomerates of drug nanoparticles (also known as 'NanoClusters') are fine dry powder aerosols that were hypothesized to enable drug delivery through ventilator circuits. This Thesis systematically investigated formulations of NanoClusters and their aerosol performance in a conventional inhaler and a device designed for use during mechanical ventilation. These engineered powders of budesonide (NC-Bud) were delivered via a MonodoseRTM inhaler or a novel device through commercial endotracheal tubes, and analyzed by cascade impaction. NC-Bud had a higher efficiency of aerosol delivery compared to micronized stock budesonide. The delivery efficiency was independent of ventilator parameters such as inspiration patterns, inspiration volumes, and inspiration flow rates. A novel device designed to fit directly to the ventilator and endotracheal tubing connections and the MonodoseRTM inhaler showed the same efficiency of drug delivery. The new device combined with NanoCluster formulation technology, therefore, allowed convenient and efficient drug delivery through endotracheal tubes. Furthermore, itraconazole (ITZ), a triazole antifungal agent, was formulated as a NanoCluster powder via milling (top-down process) or precipitation (bottom-up process) without using any excipients. ITZ NanoClusters prepared by wet milling showed better aerosol performance compared to micronized stock ITZ and ITZ NanoClusters prepared by precipitation. ITZ NanoClusters prepared by precipitation methods also showed an amorphous state while milled ITZ NanoClusters maintained the crystalline character. Overall, NanoClusters prepared by various processes represent a potential engineered drug particle approach for inhalation therapy since they provide effective aerosol properties and stability due to the crystalline state of the drug powders. Future work will continue to explore formulation and delivery performance in vitro and in vivo..
Surface topography and roughness of high-speed milled AlMn1Cu
NASA Astrophysics Data System (ADS)
Wang, Zhenhua; Yuan, Juntang; Yin, Zengbin; Hu, Xiaoqiu
2016-10-01
The aluminum alloy AlMn1Cu has been broadly applied for functional parts production because of its good properties. But few researches about the machining mechanism and the surface roughness were reported. The high-speed milling experiments are carried out in order to improve the machining quality and reveal the machining mechanism. The typical topography features of machined surface are observed by scan electron microscope(SEM). The results show that the milled surface topography is mainly characterized by the plastic shearing deformation surface and material piling zone. The material flows plastically along the end cutting edge of the flat-end milling tool and meanwhile is extruded by the end cutting edge, resulting in that materials partly adhere to the machined surface and form the material piling zone. As the depth of cut and the feed per tooth increase, the plastic flow of materials is strengthened and the machined surface becomes rougher. However, as the cutting speed increases, the plastic flow of materials is weakened and the milled surface becomes smoother. The cutting parameters (e.g. cutting speed, feed per tooth and depth of cut) influencing the surface roughness are analyzed. It can be concluded that the roughness of the machined surface formed by the end cutting edge is less than that by the cylindrical cutting edge when a cylindrical flat-end mill tool is used for milling. The proposed research provides the typical topography features of machined surface of the anti-rust aluminum alloy AlMn1Cu in high speed milling.
Ortiz, Darwin; Ponrajan, Amudhan; Bonnet, Juan Pablo; Rocheford, Torbert; Ferruzzi, Mario G
2018-05-09
Translation of the breeding efforts designed to biofortify maize ( Z. mays) genotypes with higher levels of provitamin A carotenoid (pVAC) content for sub-Saharan Africa is dependent in part on the stability of carotenoids during postharvest through industrial and in-home food processing operations. The purpose of this study was to simulate production of commercial milled products by determining the impact of dry milling and extrusion processing on carotenoid stability in three higher pVAC maize genotypes (C17xDE3, Orange ISO, Hi27xCML328). Pericarp and germ removal of biofortified maize kernels resulted in ∼10% loss of total carotenoids. Separating out the maize flour fraction (<212 μm) resulted in an additional ∼15% loss of total carotenoids. Carotenoid degradation was similar across milled maize fractions. Dry-milled products of Orange ISO and Hi27xCML328 genotypes showed ∼28% pVAC loss after 90-days storage. Genotype C17xDE3, with highest levels of all- trans-β-carotene, showed a 68% pVAC loss after 90-day storage. Extrusion processing conditions were optimal at 35% extrusion moisture, producing fully cooked instant maize flours with high pVAC retention (70-93%). These results support the notion that postharvest losses in maize milled fractions may be dependent, in part, on genotype and that extrusion processing may provide an option for preserving biofortified maize products.
Investigation of formation of cut off layers and productivity of screw milling process
NASA Astrophysics Data System (ADS)
Ambrosimov, S. K.; Morozova, A. V.
2018-03-01
The article presents studies of a new method for complex milling surfaces with a screw feed motion. Using the apparatus of algebra of logic, the process of formation of cut metal layers and processing capacity is presented.
NASA Astrophysics Data System (ADS)
Arkhurst, Barton Mensah; Kim, Jeoung Han
2018-05-01
Nano-structured oxide dispersion strengthened (ODS) steels produced from a 410L stainless steel powder prepared by water-atomization was studied. The influences of Ti content and milling time on the microstructure and the mechanical properties were analysed. It was found that the ODS steels made from the Si bearing 410L powder contained Y-Ti-O, Y-Ti-Si-O, Y-Si-O, and TiO2 oxides. Most nanoparticles produced after 80 h of milling were aggregated nanoparticles; however, after 160 h of milling, most aggregated nanoparticles dissociated into smaller individual nanoparticles. Perfect mixing of Y and Ti was not achieved even after the longer milling time of 160 h; instead, the longer hours of milling rather resulted in Si incorporation into the Y-Ti-O rich nanoparticles and a change in the matrix morphology from an equiaxed microstructure to a tempered martensite-like microstructure. The overall micro-hardness of the ODS steel increased with the increase of milling time. After 80 and 160 h, the microhardnesses were over 400 HV, which primarily resulted from the finer dispersed nanoparticles and in part to the formation of martensitic phases. Tensile strength of the 410L ODS steels was comparable with that of ODS steel produced from gas-atomized powder.
Solid State Reduction of MoO3 with Carbon via Mechanical Alloying to Synthesize Nano-Crystaline MoO2
NASA Astrophysics Data System (ADS)
Saghafi, M.; Ataie, A.; Heshmati-Manesh, S.
In this research, effect of milling time on solid state reduction of MoO3 with carbon has been investigated. It was found that mechanical activation of a mixture of MoO3 and carbon at ambient temperature by high energy ball milling was not able to reduce MoO3 to metallic molybdenum. MoO3 was converted to MoO2 at the first stage of reduction and peaks of the latter phase in X-ray diffraction patterns were detected when the milling time exceeded from 50 hours. The main effect of increased milling time at this stage was decreasing of MoO3 peak intensities and significant peak broadening due to decrease in size of crystallites. After prolonged milling, MoO3 was fully reduced to nano-crystalline MoO2 and its mean crystallite size was calculated using Williamson-Hall technique and found to be 17.5 nm. Thermodynamic investigations also confirm the possibility of reduction of MoO3 to MoO2 during the milling operation at room temperature. But, further reduction to metallic molybdenum requires thermal activation at higher temperature near 1100 K. XRD and SEM techniques were employed to evaluate the powder particles characteristics.
Metastable supersymmetry breaking in terms of Peccei-Quinn mechanism
NASA Astrophysics Data System (ADS)
Yoshimatsu, Nobuki
2018-07-01
Gauge-mediated supersymmetry breaking at metastable vacuum is reconsidered in terms of the Peccei-Quinn (PQ) mechanism. We suggest that for acceptable μ-value generation, such a class of model should involve messenger mass generation via the PQ-breaking process. We then construct a model in context of the Izawa-Yanagida-Intriligator-Thomas superpotential with the aid of the effective Kähler coupling induced by an additional super Yang-Mills sector. Therein, the PQ-charged fundamental singlet plays a crucial role in accommodating a sizable μ-value.
NASA Astrophysics Data System (ADS)
Razumov, Nikolay G.; Wang, Qing Sheng; Popovich, Anatoly A.; Shamshurin, Aleksey I.
2018-04-01
This paper describes the results of experimental studies on the treatment of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, synthesized by the mechanical alloying (MA) of elemental powders in the flow of a radio frequency thermal plasma. The as-milled powder with irregular particles were successfully converted into spherical high-nitrogen stainless steel powder alloy. Measurement of the residual nitrogen content in the obtained powder, shown that during the plasma spheroidization process, part of the nitrogen escapes from the alloy.
Solid state amorphization kinetic of alpha lactose upon mechanical milling.
Caron, Vincent; Willart, Jean-François; Lefort, Ronan; Derollez, Patrick; Danède, Florence; Descamps, Marc
2011-11-29
It has been previously reported that α-lactose could be totally amorphized by ball milling. In this paper we report a detailed investigation of the structural and microstructural changes by which this solid state amorphization takes place. The investigations have been performed by Powder X-ray Diffraction, Solid State Nuclear Magnetic Resonance ((13)C CP-MAS) and Differential Scanning Calorimetry. The results reveal the structural complexity of the material in the course of its amorphization so that it cannot be considered as a simple mixture made of a decreasing crystalline fraction and an increasing amorphous fraction. Heating this complexity can give rise to a fully nano-crystalline material. The results also show that chemical degradations upon heating are strongly connected to the melting process. Copyright © 2011 Elsevier Ltd. All rights reserved.
Near-neighbor mixing and bond dilation in mechanically alloyed Cu-Fe
NASA Astrophysics Data System (ADS)
Harris, V. G.; Kemner, K. M.; Das, B. N.; Koon, N. C.; Ehrlich, A. E.; Kirkland, J. P.; Woicik, J. C.; Crespo, P.; Hernando, A.; Garcia Escorial, A.
1996-09-01
Extended x-ray-absorption fine-structure (EXAFS) measurements were used to obtain element-specific, structural, and chemical information of the local environments around Cu and Fe atoms in high-energy ball-milled CuxFe1-x samples (x=0.50 and 0.70). Analysis of the EXAFS data shows both Fe and Cu atoms reside in face-centered-cubic sites where the first coordination sphere consists of a mixture of Fe and Cu atoms in a ratio which reflects the as-prepared stoichiometry. The measured bond distances indicate a dilation in the bonds between unlike neighbors which accounts for the lattice expansion measured by x-ray diffraction. These results indicate that metastable alloys having a positive heat of mixing can be prepared via the high-energy ball-milling process.
NASA Astrophysics Data System (ADS)
Wang, Bo; Wei, Shicheng; Wang, Yujiang; Liang, Yi; Guo, Lei; Xue, Junfeng; Pan, Fusheng; Tang, Aitao; Chen, Xianhua; Xu, Binshi
2018-03-01
Nano-titanium (Nano-Ti) was prepared by high-energy ball milling from pure Ti power and grinding agents (Epoxy resin) at room temperature. The effect of milling time on structure and properties of Nano-Ti polymer were investigated systematically. The results show that high-energy ball milling is an effective way to produce Nano-Ti polymer. The dispersion stability and compatibility between Ti power and grinding agents are improved by prolonging the milling time at a certain degree, that is to say, the optimization milling time is 240 min. The particle size of Ti powder and the diffraction peaks intensity of Ti decrease obviously as the milling time increases due to the compression stress, shear friction and other mechanical forces are formed during ball milling. FT-IR result displays that the wavenumber of all the bands move to lower wavenumber after ball milling, and the epoxy ring is open. The system internal energy rises owing to the broken epoxy group and much more Nano-Ti is formed to promote the grafting reaction between Nano-Ti and epoxy resin. The results from TEM and XPS also prove that. And the grafting ration is maximum as the milling time is 240 min, the mass loss ratio is 17.53%.
The role of nano-particles in the field of thermal spray coating technology
NASA Astrophysics Data System (ADS)
Siegmann, Stephan; Leparoux, Marc; Rohr, Lukas
2005-06-01
Nano-particles play not only a key role in recent research fields, but also in the public discussions about health and safety in nanotechnology. Nevertheless, the worldwide activities in nano-particles research increased dramatically during the last 5 to 10 years. There are different potential routes for the future production of nano-particles at large scale. The main directions envisaged are mechanical milling, wet chemical reactions or gas phase processes. Each of the processes has its specific advantages and limitations. Mechanical milling and wet chemical reactions are typically time intensive and batch processes, whereas gas phase productions by flames or plasma can be carried out continuously. Materials of interest are mainly oxide ceramics, carbides, nitrides, and pure metals. Nano-ceramics are interesting candidates for coating technologies due to expected higher coating toughness, better thermal shock and wear resistance. Especially embedded nano-carbides and-nitrides offer homogenously distributed hard phases, which enhance coatings hardness. Thermal spraying, a nearly 100 years old and world wide established coating technology, gets new possibilities thanks to optimized, nano-sized and/or nano-structured powders. Latest coating system developments like high velocity flame spraying (HVOF), cold gas deposition or liquid suspension spraying in combination with new powder qualities may open new applications and markets. This article gives an overview on the latest activities in nano-particle research and production in special relation to thermal spray coating technology.
Review on recent developments on pulp and paper mill wastewater treatment.
Kamali, Mohammadreza; Khodaparast, Zahra
2015-04-01
Economic benefits of the pulp and paper industry have led it to be one of the most important industrial sections in the world. Nevertheless, in recent years, pulp and paper mills are facing challenges with the energy efficiency mechanisms and management of the resulting pollutants, considering the environmental feedbacks and ongoing legal requirements. This study reviews and discusses the recent developments of affordable methods dealing with pulp and paper mill wastewaters. To this end, the current state of the various processes used for pulp and paper production from virgin or recovered fibers has been briefly reviewed. Also, the relevant contaminants have been investigated, considering the used raw materials and applied techniques as the subject for further discussion about the relevant suitable wastewater treatment methods. The results of the present study indicated that adopting the integrated methods, alongside a combination of biological (e.g., anaerobic digestion) and physicochemical (e.g., novel Fenton reactions) treatment methods, can be environmentally and economically preferable to minimize environmental contaminants and energy recycling. Copyright © 2014 Elsevier Inc. All rights reserved.
Superhydrophobic surface prepared by micro-milling and WEDM on aluminum alloy
NASA Astrophysics Data System (ADS)
Yanling, Wan; Jian, Yang; Huadong, Yu
2018-06-01
To simulate the hydrophobic microstructure of rice leaf surface, high-speed precision micro-milling machine was used to fabricate micro groove array structure on the surface of aluminum alloy. The micro-and nanostructure was constructed on the surface of the grooved convex platform by Wire Cut Electrical Discharge Machining (WEDM). The surface morphology and hydrophobic properties of the aluminum alloy microstructures fabricated by two processing methods were observed respectively, and the hydrophobic mechanism was analyzed. The results show that the contact angle was effectively improved from 49° up to 158.4° in the vertical direction, and 146.7° in the parallel direction. The change of surface wettability from hydrophilic to hydrophobic was realized. By comparison, the micro-and nanostructure fabricated by WEDM had improved the hydrophobic stability of the aluminum alloy surface while enlarging the contact Angle, and the micro-milling groove structure further amplified the contact angle and greatly reduced the contact area of the water droplet, it was also observed that the drop took longer to completely spread on the sample after WEDM.
NASA Astrophysics Data System (ADS)
Vikram, K. Arun; Ratnam, Ch; Lakshmi, VVK; Kumar, A. Sunny; Ramakanth, RT
2018-02-01
Meta-heuristic multi-response optimization methods are widely in use to solve multi-objective problems to obtain Pareto optimal solutions during optimization. This work focuses on optimal multi-response evaluation of process parameters in generating responses like surface roughness (Ra), surface hardness (H) and tool vibration displacement amplitude (Vib) while performing operations like tangential and orthogonal turn-mill processes on A-axis Computer Numerical Control vertical milling center. Process parameters like tool speed, feed rate and depth of cut are considered as process parameters machined over brass material under dry condition with high speed steel end milling cutters using Taguchi design of experiments (DOE). Meta-heuristic like Dragonfly algorithm is used to optimize the multi-objectives like ‘Ra’, ‘H’ and ‘Vib’ to identify the optimal multi-response process parameters combination. Later, the results thus obtained from multi-objective dragonfly algorithm (MODA) are compared with another multi-response optimization technique Viz. Grey relational analysis (GRA).
NASA Astrophysics Data System (ADS)
Guan, Yingdong; Huang, Yi; Wu, Di; Feng, Dan; He, Mingkai; He, Jiaqing
2018-05-01
AgBiSe2 is deemed as a decent candidate of state-of-arts thermoelectric lead chalcogenides due to its intrinsically low lattice thermal conductivity. In this work, we report that a peak figure of merit of ˜0.9 can be realized at 773 K in n-type AgBiSe2 when it is simultaneously doped with indium and composited with AgBiS2 through the ball milling process. The enhancement of thermoelectric performance of AgBiSe2 largely comes from the significant reduction of thermal conductivity from ˜0.5 W/mK to 0.33 W/mK at 773 K, which is the record low value ever reported in this specific system. The decrease in thermal conductivity can be ascribed to the combination of grain size reduction and enhanced alloy scattering from S-Se substitution during the high energy ball milling processes.
Rheology of corn stover slurries during fermentation to ethanol
NASA Astrophysics Data System (ADS)
Ghosh, Sanchari; Epps, Brenden; Lynd, Lee
2017-11-01
In typical processes that convert cellulosic biomass into ethanol fuel, solubilization of the biomass is carried out by saccharolytic enzymes; however, these enzymes require an expensive pretreatment step to make the biomass accessible for solubilization (and subsequent fermentation). We have proposed a potentially-less-expensive approach using the bacterium Clostridium thermocellum, which can initiate fermentation without pretreatment. Moreover, we have proposed a ``cotreatment'' process, in which fermentation and mechanical milling occur alternately so as to achieve the highest ethanol yield for the least milling energy input. In order to inform the energetic requirements of cotreatment, we experimentally characterized the rheological properties of corn stover slurries at various stages of fermentation. Results show that a corn stover slurry is a yield stress fluid, with shear thinning behavior well described by a power law model. Viscosity decreases dramatically upon fermentation, controlling for variables such as solids concentration and particle size distribution. To the authors' knowledge, this is the first study to characterize the changes in the physical properties of biomass during fermentation by a thermophilic bacterium.
Johnson, L; Harrison, J H; Hunt, C; Shinners, K; Doggett, C G; Sapienza, D
1999-12-01
Stage of maturity at harvest and mechanical processing affect the nutritive value of corn silage. The change in nutritive value of corn silage as maturity advances can be measured by animal digestion and macro in situ degradation studies among other methods. Predictive equations using climatic data, vitreousness of corn grain in corn silage, starch reactivity, gelatinization enthalpy, dry matter (DM) of corn grain in corn silage, and DM of corn silage can be used to estimate starch digestibility of corn silage. Whole plant corn silage can be mechanically processed either pre- or postensiling with a kernel processor mounted on a forage harvester, a recutter screen on a forage harvester, or a stationary roller mill. Mechanical processing of corn silage can improve ensiling characteristics, reduce DM losses during ensiling, and improve starch and fiber digestion as a result of fracturing the corn kernels and crushing and shearing the stover and cobs. Improvements in milk production have ranged from 0.2 to 2.0 kg/d when cows were fed mechanically processed corn silage. A consistent improvement in milk protein yield has also been observed when mechanically processed corn silage has been fed. With the advent of mechanical processors, alternative strategies are evident for corn silage management, such as a longer harvest window.
NASA Astrophysics Data System (ADS)
Shon, In-Jin; Kang, Hyun-Su; Doh, Jung-Mann; Yoon, Jin-Kook
2015-03-01
Nanocrystalline materials have received much attention as advanced engineering materials, with improved mechanical properties. Attention has been directed to the application of nanomaterials, as they possess excellent mechanical properties (high strength, high hardness, excellent ductility and toughness). A singlestep synthesis and consolidation of nanostructured Mg2Al4Si5O18 was achieved by pulsed current heating, using the stoichiometric mixture of MgO, Al2O3 and SiO2 powders. Before sintering, the powder mixture was high-energy ball milled for 10 h. From the milled powder mixture, a highly dense nanostructured Mg2Al4Si5O18 compound could be obtained within one minute, under the simultaneous application of 80 MPa pressure, and a pulsed current. The advantage of this process is that it allows an instant densification to the near theoretical density, while sustaining the nanosized microstructure of raw powders. The sintering behavior, microstructure and mechanical properties of Mg2Al4Si5O18 were evaluated. The fracture toughness of a nanostructured Mg2Al4Si5O18 compound was higher than that of sub-micron Mg2Al4Si5O18 compound.
High-conversion hydrolysates and corn sweetener production in dry-grind corn process.
USDA-ARS?s Scientific Manuscript database
Most corn is processed to fuel ethanol and distillers’ grain animal feed using the dry grind process. However, wet milling is needed to refine corn starch. Corn starch is in turn processed to numerous products, including glucose and syrup. However, wet milling is a capital, labor, and energy intensi...
Rico, M M; Alcázar, G A Pérez; Zamora, L E; González, C; Greneche, J M
2008-06-01
The effect of Mn and B on the magnetic and structural properties of nanostructured samples of the Fe60Al40 system, prepared by mechanical alloying, was studied by 57Fe Mössbauer spectrometry, X-ray diffraction and magnetic measurements. In the case of the Fe(60-x)Mn(x)Al40 system, 24 h milling time is required to achieve the BCC ternary phase. Different magnetic structures are observed according to the temperature and the Mn content for alloys milled during 48 h: ferromagnetic, antiferromagnetic, spin-glass, reentrant spin-glass and superparamagnetic behavior. They result from the bond randomness behaviour induced by the atomic disorder introduced by the MA process and from the competitive interactions of the Fe-Fe ferromagnetic interactions and the Mn-Mn and Fe-Mn antiferromagnetic interactions and finally the presence of Al atoms acting as dilutors. When B is added in the Fe60Al40 alloy and milled for 12 and 24 hours, two crystalline phases were found: a prevailing FeAl BCC phase and a Fe2B phase type. In addition, one observes an additional contribution attributed to grain boundaries which increases when both milling time and boron composition increase. Finally Mn and B were added to samples of the Fe60Al40 system prepared by mechanical alloying during 12 and 24 hours. Mn content was fixed to 10 at.% and B content varied between 0 and 20 at.%, substituting Al. X-ray patterns show two crystalline phases, the ternary FeMnAl BCC phase, and a (Fe,Mn)2B phase type. The relative proportion of the last phase increases when the B content increases, in addition to changes of the grain size and the lattice parameter. Such behavior was observed for both milling periods. On the other hand, the magnetic hyperfine field distributions show that both phases exhibit chemical disorder, and that the contribution attributed to the grain boundaries is less important when the B content increases. Coercive field values of about 10(2) Oe slightly increase with boron content. Comparison with previous results on FeAIB alloys shows that Mn promotes the structural stability of the nanostructured powders.
NASA Astrophysics Data System (ADS)
Pan, Minqiang; Zeng, Dehuai; Tang, Yong
A novel multi-cutter milling process for multiple parallel microchannels with manifolds is proposed to address the challenge of mass manufacture as required for cost-effective commercial applications. Several slotting cutters are stacked together to form a composite tool for machining microchannels simultaneously. The feasibility of this new fabrication process is experimentally investigated under different machining conditions and reaction characteristics of methanol steam reforming for hydrogen production. The influences of cutting parameters and the composite tool on the microchannel qualities and burr formation are analyzed. Experimental results indicate that larger cutting speed, smaller feed rate and cutting depth are in favor of obtaining relatively good microchannel qualities and small burrs. Of all the cutting parameters considered in these experiments, 94.2 m min -1 cutting speed, 23.5 mm min -1 feed rate and 0.5 mm cutting depth are found to be the optimum value. According to the comparisons of experimental results of multi-cutter milling process and estimated one of other alternative methods, it is found that multi-cutter milling process shows much shorter machining time and higher work removal rate than that of other alternative methods. Reaction characteristics of methanol steam reforming in microchannels also indicate that multi-cutter milling process is probably suitable for a commercial application.
Steiner, Denise; Finke, Jan Henrik; Kwade, Arno
2016-09-25
Orodispersible films possess a great potential as a versatile platform for nanoparticle-loaded oral dosage forms. In this case, poorly water-soluble organic materials were ground in a stirred media mill and embedded into a polymer matrix. The aim of this study was the shortening of this manufacturing process by the integration of several process steps into a stirred media mill without facing disadvantages regarding the film quality. Furthermore, this process integration is time conserving due to the high stress intensities provided in the mill and applicable for high solids contents and high suspension viscosities. Two organic materials, the model compound Anthraquinone and the active pharmaceutical ingredient Naproxen were investigated in this study. Besides the impact of the film processing on the crystallinity of the particles in the orodispersible film, a particle load of up to 50% was investigated with the new developed processing route. Additionally, a disintegration test was developed, combining an appropriate amount of saliva substitute and a clear endpoint determination. In summary, high nanoparticle loads in orodispersible films with good particle size preservation after film redispersion in water as well as a manufacturing of the film casting mass within a few minutes in a stirred media mill was achieved. Copyright © 2016 Elsevier B.V. All rights reserved.
Downhole vacuum cleans up tough fishing, milling jobs
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaLande, P.; Flanders, B.
1996-02-01
A unique tool developed to effect reverse circulation downhole is being used successfully in problem milling and fishing operations where conventional techniques fail to recover junk in the hole. Jointly developed by several major operators in conjunction with Baker Oil Tools, the patented Reverse Circulating Tool (RCT) acts as a downhole vacuum cleaner, catching and retaining debris circulated from the wellbore while allowing fishing, milling and washover operations to continue uninterrupted. As described in several case histories overviewed, the unique vacuuming action efficiently cleans up junk and debris in even the most difficult fishing and milling applications. Downhole operations proceedmore » normally, but without threat of damage from milled debris. Developers hold both mechanical and method patents on the RCT.« less
The SHOLO mill: return on investment versus mill design
Hugh W. Reynolds; Charles J. Gatchell; Charles J. Gatchell
1971-01-01
The newly developed SHOLO (from SHOrt Log) process can be used to convert low-grade hardwood logs into parts for standard warehouse pallets and pulp chips. Should you build a SHOLO mill? This paper has been prepared to help you decide.
Performance of Color Camera Machine Vision in Automated Furniture Rough Mill Systems
D. Earl Kline; Agus Widoyoko; Janice K. Wiedenbeck; Philip A. Araman
1998-01-01
The objective of this study was to evaluate the performance of color camera machine vision for lumber processing in a furniture rough mill. The study used 134 red oak boards to compare the performance of automated gang-rip-first rough mill yield based on a prototype color camera lumber inspection system developed at Virginia Tech with both estimated optimum rough mill...
Rostad, Colleen E.; Schmitt, Christopher J.; Schumacher, John G.; Leiker, Thomas J.
2011-01-01
Surface water samples were collected in 2006 from a lead mine-mill complex in Missouri to investigate possible organic compounds coming from the milling process. Water samples contained relatively high concentrations of dissolved organic carbon (DOC; greater than 20 mg/l) for surface waters but were colorless, implying a lack of naturally occurring aquatic humic or fulvic acids. Samples were extracted by three different types of solid-phase extraction and analyzed by electrospray ionization/mass spectrometry. Because large amounts of xanthate complexation reagents are used in the milling process, techniques were developed to extract and analyze for sodium isopropyl xanthate and sodium ethyl xanthate. Although these xanthate reagents were not found, trace amounts of the degradates, isopropyl xanthyl thiosulfonate and isopropyl xanthyl sulfonate, were found in most locations sampled, including the tailings pond downstream. Dioctyl sulfosuccinate, a surfactant and process filtering aid, was found at concentrations estimated at 350 μg/l at one mill outlet, but not downstream. Release of these organic compounds downstream from lead-zinc mine and milling areas has not previously been reported. A majority of the DOC remains unidentified.
A post-processing study on aluminum surface by fiber laser: Removing face milling patterns
NASA Astrophysics Data System (ADS)
Kayahan, Ersin
2018-05-01
The face milling process of the metal surface is a well-known machining process of using rotary cutters to remove material from a workpiece. Flat metal surfaces can be produced by a face milling process. However, in practice, visible, traced marks following the motion of points on the cutter's face are usually apparent. In this study, it was shown that milled patterns can be removed by means of 20 W fiber laser on the aluminum surface (AA7075). Experimental results also showed that roughened and hydrophobic surface can be produced with optimized laser parameters. It is a new approach to remove the patterns from the metal surface and can be explained through roughening by re-melting instead of ablation. The new method is a strong candidate to replace sandblasting the metal surface. It is also cheap and environmentally friendly.
An argon ion beam milling process for native AlOx layers enabling coherent superconducting contacts
NASA Astrophysics Data System (ADS)
Grünhaupt, Lukas; von Lüpke, Uwe; Gusenkova, Daria; Skacel, Sebastian T.; Maleeva, Nataliya; Schlör, Steffen; Bilmes, Alexander; Rotzinger, Hannes; Ustinov, Alexey V.; Weides, Martin; Pop, Ioan M.
2017-08-01
We present an argon ion beam milling process to remove the native oxide layer forming on aluminum thin films due to their exposure to atmosphere in between lithographic steps. Our cleaning process is readily integrable with conventional fabrication of Josephson junction quantum circuits. From measurements of the internal quality factors of superconducting microwave resonators with and without contacts, we place an upper bound on the residual resistance of an ion beam milled contact of 50 mΩ μm2 at a frequency of 4.5 GHz. Resonators for which only 6% of the total foot-print was exposed to the ion beam milling, in areas of low electric and high magnetic fields, showed quality factors above 106 in the single photon regime, and no degradation compared to single layer samples. We believe these results will enable the development of increasingly complex superconducting circuits for quantum information processing.
Bitra, Venkata S P; Womac, Alvin R; Igathinathane, C; Miu, Petre I; Yang, Yuechuan T; Smith, David R; Chevanan, Nehru; Sokhansanj, Shahab
2009-12-01
Lengthy straw/stalk of biomass may not be directly fed into grinders such as hammer mills and disc refiners. Hence, biomass needs to be preprocessed using coarse grinders like a knife mill to allow for efficient feeding in refiner mills without bridging and choking. Size reduction mechanical energy was directly measured for switchgrass (Panicum virgatum L.), wheat straw (Triticum aestivum L.), and corn stover (Zea mays L.) in an instrumented knife mill. Direct power inputs were determined for different knife mill screen openings from 12.7 to 50.8 mm, rotor speeds between 250 and 500 rpm, and mass feed rates from 1 to 11 kg/min. Overall accuracy of power measurement was calculated to be +/-0.003 kW. Total specific energy (kWh/Mg) was defined as size reduction energy to operate mill with biomass. Effective specific energy was defined as the energy that can be assumed to reach the biomass. The difference is parasitic or no-load energy of mill. Total specific energy for switchgrass, wheat straw, and corn stover chopping increased with knife mill speed, whereas, effective specific energy decreased marginally for switchgrass and increased for wheat straw and corn stover. Total and effective specific energy decreased with an increase in screen size for all the crops studied. Total specific energy decreased with increase in mass feed rate, but effective specific energy increased for switchgrass and wheat straw, and decreased for corn stover at increased feed rate. For knife mill screen size of 25.4 mm and optimum speed of 250 rpm, optimum feed rates were 7.6, 5.8, and 4.5 kg/min for switchgrass, wheat straw, and corn stover, respectively, and the corresponding total specific energies were 7.57, 10.53, and 8.87 kWh/Mg and effective specific energies were 1.27, 1.50, and 0.24 kWh/Mg for switchgrass, wheat straw, and corn stover, respectively. Energy utilization ratios were calculated as 16.8%, 14.3%, and 2.8% for switchgrass, wheat straw, and corn stover, respectively. These data will be useful for preparing the feed material for subsequent fine grinding operations and designing new mills.
Licursi, Domenico; Antonetti, Claudia; Martinelli, Marco; Ribechini, Erika; Zanaboni, Marco; Raspolli Galletti, Anna Maria
2016-03-01
Recycled paper needs a lot of mechanical/chemical treatments for its re-use in the papermaking process. Some of these ones produce considerable rejected waste fractions, such as "screen rejects", which include both cellulose fibers and non-fibrous organic contaminants, or "stickies", these last representing a shortcoming both for the papermaking process and for the quality of the final product. Instead, the accepted fractions coming from these unit operations become progressively poorer in contaminants and richer in cellulose. Here, input and output streams coming from mechanical screening systems of a papermaking plant using recycled paper for cardboard production were sampled and analyzed directly and after solvent extraction, thus confirming the abundant presence of styrene-butadiene rubber (SBR) and ethylene vinyl acetate (EVA) copolymers in the output rejected stream and cellulose in the output accepted one. Despite some significant drawbacks, the "screen reject" fraction could be traditionally used as fuel for energy recovery within the paper mill, in agreement with the integrated recycled paper mill approach. The waste, which still contains a cellulose fraction, can be also exploited by means of the hydrothermal route to give levulinic acid, a platform chemical of very high value added. Copyright © 2016 Elsevier Ltd. All rights reserved.
The role of processing route on the microstructure of 14YWT nanostructured ferritic alloy
Mazumder, B.; Parish, C. M.; Bei, H.; ...
2015-06-03
Nanostructured ferritic alloys (NFAs) have outstanding high temperature creep properties and extreme tolerance to radiation damage. To achieve these properties, NFAs are fabricated by mechanical alloying of metallic and yttria powders. Atom probe tomography has demonstrated that milling times of at least 40 h are required to produce a uniform distribution of solutes in the flakes. After milling and hot extrusion, the microstructure consists of -Fe, high number densities of Ti-Y-O-vacancy-enriched nanoclusters, and coarse Y2Ti2O7 and Ti(O,C,N) precipitates on the grain boundaries. In contrast, the as-cast condition consists of -Fe with 50-100 m irregularly-shaped Y2Ti2O7 pyrochlore precipitates with smaller embeddedmore » precipitates with the Al5Y3O12 (yttrium-aluminum garnet) crystal structure indicating that this traditional processing route is not a viable approach to achieve the desired microstructure. The nano-hardnesses were also substantially different, i.e., 4 and 8 GPa for the as-cast and as-extruded conditions, respectively. These differences can be explained by the differences in the microstructure and the effects of the high vacancy content introduced by mechanical alloying, and the strong binding energy of vacancies with O, Ti, and Y atoms retarding diffusion.« less
The role of processing route on the microstructure of 14YWT nanostructured ferritic alloy
NASA Astrophysics Data System (ADS)
Mazumder, B.; Parish, C. M.; Bei, H.; Miller, M. K.
2015-10-01
Nanostructured ferritic alloys have outstanding high temperature creep properties and enhanced tolerance to radiation damage over conventional ferritic alloys. To achieve these properties, NFAs are fabricated by mechanical alloying of metallic and yttria powders. Atom probe tomography has demonstrated that milling times of at least 40 h are required to produce a uniform distribution of solutes in the flakes. After milling and hot extrusion, the microstructure consists of α-Fe, high number densities of Ti-Y-O-vacancy-enriched nanoclusters, and coarse Y2Ti2O7 and Ti(O,C,N) precipitates on the grain boundaries. In contrast, the as-cast condition consists of α-Fe with 50-100 μm irregularly-shaped Y2Ti2O7 pyrochlore precipitates with smaller embedded precipitates with the Y3Al5O12 (yttrium-aluminum garnet) crystal structure indicating that this traditional processing route is not a viable approach to achieve the desired microstructure. The nano-hardnesses were also substantially different, i.e., 4 and 8 GPa for the as-cast and as-extruded conditions, respectively. These variances can be explained by the microstructural differences and the effects of the high vacancy content introduced by mechanical alloying, and the strong binding energy of vacancies with O, Ti, and Y atoms that retard diffusion.
Hybrid ABC Optimized MARS-Based Modeling of the Milling Tool Wear from Milling Run Experimental Data
García Nieto, Paulino José; García-Gonzalo, Esperanza; Ordóñez Galán, Celestino; Bernardo Sánchez, Antonio
2016-01-01
Milling cutters are important cutting tools used in milling machines to perform milling operations, which are prone to wear and subsequent failure. In this paper, a practical new hybrid model to predict the milling tool wear in a regular cut, as well as entry cut and exit cut, of a milling tool is proposed. The model was based on the optimization tool termed artificial bee colony (ABC) in combination with multivariate adaptive regression splines (MARS) technique. This optimization mechanism involved the parameter setting in the MARS training procedure, which significantly influences the regression accuracy. Therefore, an ABC–MARS-based model was successfully used here to predict the milling tool flank wear (output variable) as a function of the following input variables: the time duration of experiment, depth of cut, feed, type of material, etc. Regression with optimal hyperparameters was performed and a determination coefficient of 0.94 was obtained. The ABC–MARS-based model's goodness of fit to experimental data confirmed the good performance of this model. This new model also allowed us to ascertain the most influential parameters on the milling tool flank wear with a view to proposing milling machine's improvements. Finally, conclusions of this study are exposed. PMID:28787882
García Nieto, Paulino José; García-Gonzalo, Esperanza; Ordóñez Galán, Celestino; Bernardo Sánchez, Antonio
2016-01-28
Milling cutters are important cutting tools used in milling machines to perform milling operations, which are prone to wear and subsequent failure. In this paper, a practical new hybrid model to predict the milling tool wear in a regular cut, as well as entry cut and exit cut, of a milling tool is proposed. The model was based on the optimization tool termed artificial bee colony (ABC) in combination with multivariate adaptive regression splines (MARS) technique. This optimization mechanism involved the parameter setting in the MARS training procedure, which significantly influences the regression accuracy. Therefore, an ABC-MARS-based model was successfully used here to predict the milling tool flank wear (output variable) as a function of the following input variables: the time duration of experiment, depth of cut, feed, type of material, etc . Regression with optimal hyperparameters was performed and a determination coefficient of 0.94 was obtained. The ABC-MARS-based model's goodness of fit to experimental data confirmed the good performance of this model. This new model also allowed us to ascertain the most influential parameters on the milling tool flank wear with a view to proposing milling machine's improvements. Finally, conclusions of this study are exposed.
Mochales, Carolina; El Briak-BenAbdeslam, Hassane; Ginebra, Maria Pau; Terol, Alain; Planell, Josep A; Boudeville, Philippe
2004-01-01
Mechanochemistry is a possible route to synthesize calcium deficient hydroxyapatite (CDHA) with an expected molar calcium-to-phosphate (Ca/P) ratio +/-0.01. To optimize the experimental conditions of CDHA preparation from dicalcium phosphate dihydrate (DCPD) and calcium oxide by dry mechanosynthesis reaction, we performed the kinetic study varying some experimental parameters. This kinetic study was carried out with two different planetary ball mills (Retsch or Fritsch Instuments). Results obtained with the two mills led to the same conclusions although the values of the rate constants of DCPD disappearance and times for complete reaction were very different. Certainly, the origin of these differences was from the mills used, thus we investigated the influence of instrumental parameters such as the mass and the surface area of the balls or the rotation velocity on the mechanochemical reaction kinetics of DCPD with CaO. Results show that the DCPD reaction rate constant and the inverse of the time for complete disappearance of CaO both vary linearly with (i) the square of the rotation velocity, (ii) the square of eccentricity of the vial on the rotating disc and (iii) the product of the mass by the surface area of the balls. These observations comply with theoretical models developed for mechanical alloying. The consideration of these four parameters allows the transposition of experimental conditions from one mill to another or the comparison between results obtained with different planetary ball mills. These instrumental parameters have to be well described in papers concerning mechanochemistry or when grinding is an important stage in a process.
Yang, Yaxiong; Qu, Xiaolei; Zhang, Lingchao; Gao, Mingxia; Liu, Yongfeng; Pan, Hongge
2018-06-01
In this work, we report on a novel reaction-ball-milling surface coating strategy to suppress the pulverization of microparticle Si anodes upon lithiation/delithiation. By energetic milling the partially prelithiated microparticle Si in a CO2 atmosphere, a multicomponent amorphous layer composed of SiOx, C, SiC and Li2SiO3 is successfully coated on the surface of Si microparticles. The coating level strongly depends on the milling reaction duration, and the 12-h milled prelithiated Si microparticles (BM12h) under a pressure of 3 bar of CO2 exhibits a good conformal coating with 1.006 g cm3 of tap density. The presence of SiC remarkably enhances the mechanical properties of the SiOx/C coating matrix with an approximately 4-fold increase in the elastic modulus and the hardness values, which effectively alleviates the global volume expansion of the Si microparticles upon lithiation. Simultaneously, the existence of Li2SiO3 insures the Li-ion conductivity of the coating layer. Moreover, the SEI film formed on the electrode surface maintains relatively stable upon cycling due to the remarkably suppressed crack and pulverization of particles. These processes work together to allow the BM12h sample to offer much better cycling stability, as its reversible capacity remains at 1439 mAh g-1 at 100 mA g-1 after 100 cycles, which is nearly 4 times that of the pristine Si microparticles (381 mAh g-1). This work opens up new opportunities for the practical applications of micrometre-scaled Si anode.
Nano-sized crystalline drug production by milling technology.
Moribe, Kunikazu; Ueda, Keisuke; Limwikrant, Waree; Higashi, Kenjirou; Yamamoto, Keiji
2013-01-01
Nano-formulation of poorly water-soluble drugs has been developed to enhance drug dissolution. In this review, we introduce nano-milling technology described in recently published papers. Factors affecting the size of drug crystals are compared based on the preparation methods and drug and excipient types. A top-down approach using the comminution process is a method conventionally used to prepare crystalline drug nanoparticles. Wet milling using media is well studied and several wet-milled drug formulations are now on the market. Several trials on drug nanosuspension preparation using different apparatuses, materials, and conditions have been reported. Wet milling using a high-pressure homogenizer is another alternative to preparing production-scale drug nanosuspensions. Dry milling is a simple method of preparing a solid-state drug nano-formulation. The effect of size on the dissolution of a drug from nanoparticles is an area of fundamental research, but it is sometimes incorrectly evaluated. Here, we discuss evaluation procedures and the associated problems. Lastly, the importance of quality control, process optimization, and physicochemical characterization are briefly discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sherif El-Eskandarany, M., E-mail: msherif@kisr.edu.kw; Al-Hazza, Abdulsalam
2014-11-15
We employed a high-energy ball mill for the synthesis of nanograined Ti{sub 55}C{sub 45} powders starting from elemental Ti and C powders. The mechanically induced self-propagating reaction that occurred between the reactant materials was monitored via a gas atmosphere gas-temperature-monitoring system. A single phase of NaCl-type TiC was obtained after 5 h of ball milling. To decrease the powder and grain sizes, the material was subjected to further ball milling time. The powders obtained after 200 h of milling possessed spherical-like morphology with average particle and grain sizes of 45 μm and 4.2 nm, respectively. The end-products obtained after 200more » h of ball milling time, were then consolidated into full dense compacts, using hot pressing and spark plasma sintering at 1500 and 34.5 MPa, with heating rates of 20 °C/min and 500 °C/min, respectively. Whereas hot pressing of the powders led to severe grain growth (∼ 436 nm in diameter), the as-spark plasma sintered powders maintained their nanograined characteristics (∼ 28 nm in diameter). The as-synthesized and as-consolidated powders were characterized, using X-ray diffraction, high-resolution electron microscopy, and scanning electron microscopy. The mechanical properties of the consolidated samples obtained via the hot pressing and spark plasma sintering techniques were characterized, using Vickers microhardness and non-destructive testing techniques. The Vickers hardness, Young's modulus, shear modulus and fracture toughness of as-spark plasma sintered samples were 32 GPa, 358 GPa, 151 GPa and 6.4 MPa·m{sup 1/2}, respectively. The effects of the consolidation approach on the grain size and mechanical properties were investigated and are discussed. - Highlights: • Room-temperature synthesizing of NaCl-type TiC • Dependence on the grain size on the ball milling time • Fabrication of equiaxed nanocrystalline grains with a diameter of 4.2 nm • Fabrication of nanocrystalline bulk TiC material by SPS with minimal grain growth • Dependence of improved mechanical properties on the consolidation techniques.« less
Defect-induced ferromagnetism in ZnO nanoparticles prepared by mechanical milling
NASA Astrophysics Data System (ADS)
Phan, The-Long; Zhang, Y. D.; Yang, D. S.; Nghia, N. X.; Thanh, T. D.; Yu, S. C.
2013-02-01
Though ZnO is known as a diamagnetic material, recent studies have revealed that its nanostructures can be ferromagnetic (FM). The FM origin has been ascribed to intrinsic defects. This work shines light on an alternate method based on mechanical milling to induce defect-related ferromagnetism in ZnO nanoparticles (NPs) from initial diamagnetic ZnO powders. Our idea is motivated by the fact that mechanical milling introduces more defects to a ground material. We point out that the FM order increases with increasing the density of defects in ZnO NPs. The experimental results obtained from analyzing X-ray absorption, electron spin resonance, and Raman scattering spectra demonstrate that the ferromagnetism in ZnO NPs is due to intrinsic defects mainly related to oxygen and zinc vacancies. Among these, zinc vacancies play a decisive role in introducing a high FM order in ZnO NPs.
Xing, Xue; Chen, Zheng; Li, Jifeng; Zhang, Jing; Deng, Huihua; Lu, Zuhong
2013-06-05
Hair cortisol has been used as a biomarker of chronic stress. The detected contents of hair cortisol might depend on the incubation duration in solvents for no-milled hair samples with 3-layer structure. However, there was no research on the dissolution mechanism of hair analytes. After uniform mixture, no-milled hair samples were incubated in methanol and water for the 12 different durations and milled hair was done as comparison. Hair cortisol and cortisone were determined with high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). The measured concentrations of hair cortisol and cortisone showed ≥2 maxima during the entire incubation in methanol and water from 5 min to 72 h for no-milled hair. Hair cortisol concentration measured by LC-MS/MS was increased with the incubation duration. Conversely, it was not held when hair was powdered prior to the incubation in methanol. Hair cortisol and cortisone were dissolved from hair matrix through the 2-stage or multistage mechanism, which might depend on the hair 3-layer structure and its degree of damage. Copyright © 2013 Elsevier B.V. All rights reserved.
Impact of high-pressure coolant supply on chip formation in milling
NASA Astrophysics Data System (ADS)
Klocke, F.; Döbbeler, B.; Lakner, T.
2017-10-01
Machining of titanium alloys is considered as difficult, because of their high temperature strength, low thermal conductivity and low E-modulus, which contributes to high mechanical loads and high temperatures in the contact zone between tool and workpiece. The generated heat in the cutting zone can be dissipated only in a low extent. When cutting steel materials, up to 75% of the process heat is transported away by the chips, contrary to only 25% when machining titanium alloys. As a result, the cutting tool heats up, which leads to high tool wear. Therefore, machining of titanium alloys is only possible with relatively low cutting speeds. This leads to low levels of productivity for milling processes with titanium alloys. One way to increase productivity is to use more cutting edges in tools with the same diameter. However, the limiting factor of adding more cutting edges to a milling tool is the minimum size of the chip spaces, which are sufficient for a stable chip evacuation. This paper presents experimental results on the chip formation and chip size influenced by high-pressure coolant supply, which can lead to smaller chips and to smaller sizes of the chip spaces, respectively. Both influences, the pressure of the supplied coolant and the volumetric flow rate were individually examined. Alpha-beta annealed titanium TiAl6V4 was examined in relation to the reference material quenched and tempered steel 42CrMo4+QT (AISI 4140+QT). The work shows that with proper chip control due to high-pressure coolant supply in milling, the number of cutting edges on the same diameter tool can be increased, which leads to improved productivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dam, William; Campbell, Sam; Johnson, Ray
Milling activities at a former uranium mill site near Riverton, Wyoming, USA, contaminated the shallow groundwater beneath and downgradient of the site. Although the mill operated for <6 years (1958-1963), its impact remains an environmental liability. Groundwater modeling predicted that contaminant concentrations were declining steadily, which confirmed the conceptual site model (CSM). However, local flooding in 2010 mobilized contaminants that migrated downgradient from the Riverton site and resulted in a dramatic increase in groundwater contaminant concentrations. This observation indicated that the original CSM was inadequate to explain site conditions and needed to be refined. In response to the new observationsmore » after the flood, a collaborative investigation to better understand site conditions and processes commenced. This investigation included installing 103 boreholes to collect soil and groundwater samples, sampling and analysis of evaporite minerals along the bank of the Little Wind River, an analysis of evaportranspiration in the shallow aquifer, and sampling naturally organic-rich sediments near groundwater discharge areas. The enhanced characterization revealed that the existing CSM did not account for high uranium concentrations in groundwater remaining on the former mill site and groundwater plume stagnation near the Little Wind River. Observations from the flood and subsequent investigations indicate that additional characterization is still needed to continue refining the CSM and determine the viability of the natural flushing compliance strategy. Additional sampling, analysis, and testing of soil and groundwater are necessary to investigate secondary contaminant sources, mobilization of contaminants during floods, geochemical processes, contaminant plume stagnation, distribution of evaporite minerals and organic-rich sediments, and mechanisms and rates of contaminant transfer from soil to groundwater. Future data collection will be used to continually revise the CSM and evaluate the compliance strategy at the site.« less
Synthesis of metal-polymer nanocomposites for fuel applications
NASA Astrophysics Data System (ADS)
Pontes Lima, Ricardo Jose
Metal particles have long been of interest as fuel and fuel additives for propellants and explosives because their high-density energy. In general, their volumetric energy density is higher as compared to conventional hydrocarbon-based fuel. This advantage is clearly beneficial for volume-limited rocket propulsion systems, in which the most important parameter is the density-based specific impulse. It is widely known that the reactivity of metal particles increases when particle size decreases. Significant improvements in combustion behaviors of propellant have been attributed to the use of nanosize metal particles, for example faster burning rates and shorter ignition delay time. For this reason the application of nanosize particles as fuel could be preferable than large particles. However, several difficulties limit the use of ultrafine particles in fuel applications and propellants. Most of them are attributed to the oxide layer formation on the particles that prevents good combustion performance. In boron applications, practical difficulties such as poor ignition and combustion performance, have so far limited extensive use of boron for fuel applications. Indications are that application of non-oxide coatings on particles protects them against premature oxidation and enhances their combustion properties. A number of methods have been proposed to coat metal particles with a variety of organic compounds or other metals. Common applications provides coatings of saturated hydrocarbons or fatty acids, such as oleic acid as a means to passivation the particles. Recently, high-energy ball milling, in combination with chemical reactions, was applied to fabricate nanostructured metal particles coated with organic compounds. One of the advantages of this technique is that the passivation be integrated into the production of particles as a single step. For example, the reactive milling of boron in oleic acid solution showed an improved reactivity of as-milled powders. However, the versatility of the mechanical milling technique suggests that a vast range of organic compounds could be applied to the capping of particles. Thus, developing a new method to obtain metal nanosized particles coated with chemical substances that can further improve the properties of particles is a great challenge. The first contribution of this work is to investigate the reactive milling process of metal powders, such as boron and aluminum, to better understand the experimental methodology as a means to obtain energetic-capped metal particles. To this end, a comparative experimental study was performed to evaluate two variations of the mechanical milling. In a typical procedure, metal powders and the reagents are poured into the mill vial at the start of milling. The organic reactions occur simultaneously in the milling process. In the alternative procedure, the powders are milled prior the addition of the organic reagent, thus a stepwise process is done. For both methods, an organic functionalized compound was grafted onto the particles, followed by their incorporation into an energetic polymer matrix to create a metal-polymer composite. The results highlight the differences in shape in size of particles, identifying some drawbacks for both applications, as well as analyzing the effects on combustion properties of the organic-capped powders and the binder composites. The analysis of the first results of the reactive milling showed that this way might lead to by-products and self-polymerization of organic coatings. That is the main drawback for the simultaneous milling process, preventing a better performance of as-milled powders. Considering this problem, it was necessary to modify the milling procedure to further improve the capping of metal particle. Thus, the second part of experiments applies an energetic polymer direct grafted onto particles as a means to further improvements in the energetic properties of powders. Glycidyl azide polymer (GAP) was chosen as candidate to coat the particles because of its good energetic properties. Since the mixture viscosity increases as the size of particles decreases, low-viscosity reagents are recommended to avoid very high viscosity. The molecular weight of GAP can range from 700 to 5500 and the number of hydroxyl end groups from 0 (GAP plasticizer) to 3. Among these polymers, the GAP plasticizer (700 g mol-1, low viscosity) has good properties to be applied in reactive milling. However, some functionalized groups are necessary to graft the polymer onto metal particles and the GAP plasticizer does not carry telechelic hydroxyl groups. To achieve a better reactivity of this polymer and the fresh metal surface, the GAP plasticizer was chemically modified to make some additional acid-functionalized branches in the main chain of the polymer. The direct method for coating the metal particles with the modified GAP was more effective in forming the energetic layer, which has influenced the dispersion of powders into polymers and increased the total energy release by the combustion of metal-polymer composites. The last phase of this research addressed the production of boron-polymer composites for combustion purposes. Boron has a very high gravimetric (58 kJ/g) and volumetric (136 kJ/cc) heating value. This clearly exceeds other metal or other conventional hydrocarbon fuels in both mass and volumetric energy production. Despite of this great potential energy, boron has rarely achieved its potential in propulsion systems, whereas the aluminum is the most common metal employed in the preparation of composite solid propellants. A number of studies addressed to the boron combustion attribute its reduced performance to a certain combustion property of the metal. The boron oxide (B2O3) layer, normally found on the particles is highly stable and leads to long ignition delay times. Therefore, the elemental boron ignites in a two-stage process. The first stage corresponds to the burning of boron covered with an oxide layer, and the second stage involves the completion of the combustion of the bare boron particle. The use of light metals, such as magnesium and aluminum as additives in boron formulations, has been indicated as a means to enhance its combustion efficiency. Recently, improvements of the combustion efficiency of boron were associated with the use of magnesium and aluminum as additives. The mechanism proposed for these improvements was boron oxide removal by reaction with aluminum and the additional heat release by the easy ignition of magnesium. In this work, it was proposed to apply of a layer of energetic polymer on the boron particles, which, in addition to releasing a significant amount of energy, brings other benefits in terms of the final application of the particles as fuel (i.e., the dispersion of particles into a polymer binder).
Comparison of five-axis milling and rapid prototyping for implant surgical templates.
Park, Ji-Man; Yi, Tae-Kyoung; Koak, Jai-Young; Kim, Seong-Kyoon; Park, Eun-Jin; Heo, Seong-Joo
2014-01-01
This study aims to compare and evaluate the accuracy of surgical templates fabricated using coordinate synchronization processing with five-axis milling and design-related processing with rapid prototyping (RP). Master phantoms with 10 embedded gutta-percha cylinders hidden under artificial gingiva were fabricated and imaged using cone beam computed tomography. Vectors of the hidden cylinders were extracted and transferred to those of the planned implants through reverse engineering using virtual planning software. An RP-produced template was fabricated by stereolithography in photopolymer at the RP center according to planned data. Metal sleeves were bonded after holes were bored (group RP). For the milled template, milling coordinates were synchronized using the conversion process for the coordinate synchronization platform located on the model's bottom. Metal bushings were set on holes milled on the five-axis milling machine, on which the model was fixed through the coordinate synchronization plate, and the framework was constructed on the model using orthodontic resin (group CS). A computed tomography image was taken with templates firmly fixed on models using anchor pins (RP) or anchor screws (CS). The accuracy was analyzed via reverse engineering. Differences between the two groups were compared by repeated measures two-factor analysis. From the reverse-engineered image of the template on the experimental model, RP-produced templates showed significantly larger deviations than did milled surgical guides. Maximum deviations of the group RP were 1.58 mm (horizontal), 1.68 mm (vertical), and 8.51 degrees (angular); those of the group CS were 0.68 mm (horizontal), 0.41 mm (vertical), and 3.23 degrees (angular). A comparison of milling and RP template production methods showed that a vector-milled surgical guide had significantly smaller deviations than did an RP-produced template. The accuracy of computer-guided milled surgical templates was within the safety margin of previous studies.
Jones, Rhys J.; Rajabi-Siahboomi, Ali; Levina, Marina; Perrie, Yvonne; Mohammed, Afzal R.
2011-01-01
Gelatin is a principal excipient used as a binder in the formulation of lyophilized orally disintegrating tablets. The current study focuses on exploiting the physicochemical properties of gelatin by varying formulation parameters to determine their influence on orally disintegrating tablet (ODT) characteristics. Process parameters, namely pH and ionic strength of the formulations, and ball milling were investigated to observe their effects on excipient characteristics and tablet formation. The properties and characteristics of the formulations and tablets which were investigated included: glass transition temperature, wettability, porosity, mechanical properties, disintegration time, morphology of the internal structure of the freeze-dried tablets, and drug dissolution. The results from the pH study revealed that adjusting the pH of the formulation away from the isoelectric point of gelatin, resulted in an improvement in tablet disintegration time possibly due to increase in gelatin swelling resulting in greater tablet porosity. The results from the ionic strength study revealed that the inclusion of sodium chloride influenced tablet porosity, tablet morphology and the glass transition temperature of the formulations. Data from the milling study showed that milling the excipients influenced formulation characteristics, namely wettability and powder porosity. The study concludes that alterations of simple parameters such as pH and salt concentration have a significant influence on formulation of ODT. PMID:24310589
Effect of milling atmosphere on structural and magnetic properties of Ni-Zn ferrite nanocrystalline
NASA Astrophysics Data System (ADS)
Hajalilou, Abdollah; Hashim, Mansor; Ebrahimi-Kahrizsangi, Reza; Masoudi Mohamad, Taghi
2015-04-01
Powder mixtures of Zn, NiO, and Fe2O3 are mechanically alloyed by high energy ball milling to produce Ni-Zn ferrite with a nominal composition of Ni0.36Zn0.64Fe2O4. The effects of milling atmospheres (argon, air, and oxygen), milling time (from 0 to 30 h) and heat treatment are studied. The products are characterized using x-ray diffractometry, field emission scanning electron microscopy equipped with energy-dispersive x-ray spectroscopy, and transmitted electron microscopy. The results indicate that the desired ferrite is not produced during the milling in the samples milled under either air or oxygen atmospheres. In those samples milled under argon, however, Zn/NiO/Fe2O3 reacts with a solid-state diffusion mode to produce Ni-Zn ferrite nanocrystalline in a size of 8 nm after 30-h-milling. The average crystallite sizes decrease to 9 nm and 10 nm in 30-h-milling samples under air and oxygen atmospheres, respectively. Annealing the 30-h-milling samples at 600 °C for 2 h leads to the formation of a single phase of Ni-Zn ferrite, an increase of crystallite size, and a reduction of internal lattice strain. Finally, the effects of the milling atmosphere and heating temperature on the magnetic properties of the 30-h-milling samples are investigated. Project supported by the University Putra Malaysia Graduate Research Fellowship Section.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fahami, Abbas, E-mail: fahami@txstate.edu; Beall, Gary W., E-mail: gb11@txstate.edu; Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589
2016-01-15
Chlorine intercalated Mg–Al layered double hydroxides (Mg–Al–Cl–LDH) with a chemical formula Mg{sub 0.8}Al{sub 0.2}(OH){sub 2}Cl{sub 0.2} were successfully produced by the one-step mechanochemistry method and subsequent water washing followed by drying in oven for 1 h at 80 °C. The samples were characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FT–IR), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), elemental mapping analysis, transmission electron microscopy (TEM), X-ray fluorescence (XRF), and the differential thermogravimetric analysis (DTGA). Results revealed that the structural characteristics of Mg–Al–Cl–LDH were affected strongly by milling time. At the beginning of milling (up to 1more » h), Hydrotalcite (HT) and Brucite were the dominant phases, while the progressive mechanical activation was completed as milling time increased, which resulted in the formation of nanostructured Mg–Al–Cl–LDH. Based on XRD and FTIR data, Mg{sub 0.8}Al{sub 0.2}(OH){sub 2}Cl{sub 0.2} with high purity was obtained at 5 h milling. The interlayer spacing of LDH is also strongly influenced by milling time so that it escalated from 7.737±0.001 to 8.005±0.002 (1–15 h) and then decreased to 7.937±0.001 for 20 h milled sample. Electron microscopic observation displayed that the final product had hexagonal platelet structure with lateral dimension of 20–100 nm. Therefore, the synthesis of Mg{sub 0.8}Al{sub 0.2}(OH){sub 2}Cl{sub 0.2} via mechanochemistry owing to simplicity and versatility can be a promising candidate for use in catalyst carriers, drug delivery, and gene delivery. - Graphical Abstract: TEM image of milled sample (Mg–Al–Cl–LDH). - Highlights: • Chlorine intercalated LDH was synthesized by a facile solid-state process. • Structural features of products were influenced strongly by the milling time. • XRD and FTIR spectra suggested predominant Mg–Al–Cl–LDH after 5 h milling. • Products showed hexagonal platelet structure with lateral dimension of 20–100 nm.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rashidi, S.; Ataie, A., E-mail: aataie@ut.ac.ir
Highlights: • Single phase CoFe{sub 2}O{sub 4} nano-particles synthesized in one step by mechanical alloying. • PVA/CoFe{sub 2}O{sub 4} magnetic nano-composites were fabricated via mechanical milling. • FTIR confirmed the interaction between PVA and magnetic CoFe{sub 2}O{sub 4} particles. • Increasing in milling time and PVA amount led to well dispersion of CoFe{sub 2}O{sub 4}. - Abstract: In this research, polyvinyl alcohol/cobalt ferrite nano-composites were successfully synthesized employing a two-step procedure: the spherical single-phase cobalt ferrite of 20 ± 4 nm mean particle size was synthesized via mechanical alloying method and then embedded into polymer matrix by intensive milling. Themore » results revealed that increase in polyvinyl alcohol content and milling time causes cobalt ferrite particles disperse more homogeneously in polymer matrix, while the mean particle size and shape of cobalt ferrite have not been significantly affected. Transmission electron microscope images indicated that polyvinyl alcohol chains have surrounded the cobalt ferrite nano-particles; also, the interaction between polymer and cobalt ferrite particles in nano-composite samples was confirmed. Magnetic properties evaluation showed that saturation magnetization, coercivity and anisotropy constant values decreased in nano-composite samples compared to pure cobalt ferrite. However, the coercivity values of related nano-composite samples enhanced by increasing PVA amount due to domain wall mechanism.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This document presents guidance for implementing the process that the U.S. Department of Energy (DOE) Office of Legacy Management (LM) will use for assuming perpetual responsibility for a closed uranium mill tailings site. The transition process specifically addresses sites regulated under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) but is applicable in principle to the transition of sites under other regulatory structures, such as the Formerly Utilized Sites Remedial Action Program.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-30
... State-licensed uranium recovery site, either conventional, heap leach, or in situ recovery. DATES... types of new uranium recovery facilities (conventional mills, heap leach facilities, and in situ... from the ground for processing at a mill. Rather, the ore is processed in-situ with the resulting...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balagurov, Anatoly M.; Bobrikov, Ivan A.; Bokuchava, Gizo D.
2015-11-15
High resolution neutron diffraction was applied for elucidating of the microstructural evolution of nanocrystalline niobium carbide NbC{sub 0.93} powders subjected to high-energy ball milling. The diffraction patterns were collected with the high resolution Fourier diffractometer HRFD by using the reverse time-of-flight (RTOF) mode of data acquisition. The traditional single diffraction line analysis, the Rietveld method and more advanced Whole Powder Pattern Modeling technique were applied for the data analysis. The comparison of these techniques was performed. It is established that short-time milling produces a non-uniform powder, in which two distinct fractions with differing microstructure can be identified. Part of themore » material is in fact milled efficiently, with a reduction in grain size, an increase in the quantity of defects, and a corresponding tendency to decarburize reaching a composition NbC{sub 0.80} after 15 h of milling. The rest of the powder is less efficiently processed and preserves its composition and lower defect content. Larger milling times should have homogenized the system by increasing the efficiently milled fraction, but the material is unable to reach a uniform and homogeneous state. It is definitely shown that RTOF neutron diffraction patterns can provide the very accurate data for microstructure analysis of nanocrystalline powders. - Highlights: • The NbC{sub 0.93} powder was processed by high-energy ball milling. • The microstrain and dislocation density increase with milling time increase. • The corresponding decrease in crystallite size with milling time was observed. • The material exhibits the presence of two fractions after ball milling. • The RTOF neutron diffraction data are suitable for accurate microstructure analysis.« less
Code of Federal Regulations, 2013 CFR
2013-07-01
... other materials to form cement. Clinker cooler means equipment into which clinker product leaving the... kiln or coal mills using exhaust gases from the clinker cooler are not an in-line coal mill. In-line kiln/raw mill means a system in a portland cement production process where a dry kiln system is...
Code of Federal Regulations, 2014 CFR
2014-07-01
... other materials to form cement. Clinker cooler means equipment into which clinker product leaving the... kiln or coal mills using exhaust gases from the clinker cooler are not an in-line coal mill. In-line kiln/raw mill means a system in a portland cement production process where a dry kiln system is...
Wheat mill stream properties for discrete element method modeling
USDA-ARS?s Scientific Manuscript database
A discrete phase approach based on individual wheat kernel characteristics is needed to overcome the limitations of previous statistical models and accurately predict the milling behavior of wheat. As a first step to develop a discrete element method (DEM) model for the wheat milling process, this s...
Milled industrial beet color kinetics and total soluble solid contents by image analysis
USDA-ARS?s Scientific Manuscript database
Industrial beets are an emerging feedstock for biofuel and bioproducts industry in the US. Milling of industrial beets is the primary step in front end processing (FEP) for ethanol production. Milled beets undergo multiple pressings with water addition during raw beet juice extraction, and extracted...
Reduction of excess sludge production using mechanical disintegration devices.
Strünkmann, G W; Müller, J A; Albert, F; Schwedes, J
2006-01-01
The usability of mechanical disintegration techniques for the reduction of excess sludge production in the activated sludge process was investigated. Using three different disintegration devices (ultrasonic homogeniser, stirred media mill, high pressure homogeniser) and different operational parameters of the disintegration, the effect of mechanical disintegration on the excess sludge production and on the effluent quality was studied within a continuously operated, laboratory scale wastewater treatment system with pre-denitrification. Depending on the operational conditions and the disintegration device used, a reduction of excess sludge production of up to 70% was achieved. A combination of mechanical disintegration with a membrane bioreactor process with high sludge age is more energy effective concerning reduction of sludge production than with a conventional activated sludge process at lower sludge ages. Depending on the disintegration parameters, the disintegration has no, or only minor, negative effect on the soluble effluent COD and on the COD-removal capacity of the activated sludge process. Nitrogen-removal was slightly deteriorated by the disintegration, whereas the system used was not optimised for nitrogen removal before disintegration was implemented.
M, Monfared; Me, Bahrololoom
2016-12-01
Dental resin composites are becoming prevalent in restorative dentistry and have almost replaced amalgam nowadays. Consequently, their mechanical properties and durability are critical. The aim of this study was to produce Pyrex glass nano-particles by wet milling process and use them as reinforcement in dental resins for anterior restorations and then examination of fractographic properties of these composites. The glass nano-particles were achieved via wet milling. The surface of the particles was modified with 3-(Trimethoxysilyl) propyl methacrylate (γ-MPTMS) silane in order to improve their surface. Fourier transform infra-red (FTIR) analysis showed that the silane groups provided double bonds to the surface of the particles and prevented agglomeration. Then, the composite resins were made with different weight percentages of Pyrex glass. The mechanical properties of samples flexural test were evaluated. The required energy for fracture of the specimens was achieved via this test. The fracture surfaces of the samples were analyzed using a scanning electron microscope (SEM) in order to explain the mechanisms of fracture. The results and analysis showed that increasing the glass nano-particles mass fraction had a great effect on mechanical properties of the composites due to the mechanisms of crack propagation and crack deflection as well as preventing void formation. The effective energy dissipation mechanisms such as crack pinning and deflection, was observed in SEM micrographs. Void formation in the low filler content composite is one of the mechanisms to decrease the energy required for fracture of these composites and eventually weaken them.
M*, Monfared; ME, Bahrololoom
2016-01-01
Statement of Problem: Dental resin composites are becoming prevalent in restorative dentistry and have almost replaced amalgam nowadays. Consequently, their mechanical properties and durability are critical. Objectives: The aim of this study was to produce Pyrex glass nano-particles by wet milling process and use them as reinforcement in dental resins for anterior restorations and then examination of fractographic properties of these composites. Materials and Methods: The glass nano-particles were achieved via wet milling. The surface of the particles was modified with 3-(Trimethoxysilyl) propyl methacrylate (γ-MPTMS) silane in order to improve their surface. Fourier transform infra-red (FTIR) analysis showed that the silane groups provided double bonds to the surface of the particles and prevented agglomeration. Then, the composite resins were made with different weight percentages of Pyrex glass. The mechanical properties of samples flexural test were evaluated. The required energy for fracture of the specimens was achieved via this test. The fracture surfaces of the samples were analyzed using a scanning electron microscope (SEM) in order to explain the mechanisms of fracture. Results: The results and analysis showed that increasing the glass nano-particles mass fraction had a great effect on mechanical properties of the composites due to the mechanisms of crack propagation and crack deflection as well as preventing void formation. The effective energy dissipation mechanisms such as crack pinning and deflection, was observed in SEM micrographs. Conclusions: Void formation in the low filler content composite is one of the mechanisms to decrease the energy required for fracture of these composites and eventually weaken them. PMID:28959761
Insect pest management decisions in food processing facilities
USDA-ARS?s Scientific Manuscript database
Pest management decision making in food processing facilities such as flour mills, rice mills, human and pet food manufacturing facilities, distribution centers and warehouses, and retail stores is a challenging undertaking. Insect pest management programs require an understanding of the food facili...
11. VIEW TO NORTH, STEELSKINNER SALT ROASTER AND BRICK SKINNER ...
11. VIEW TO NORTH, STEEL-SKINNER SALT ROASTER AND BRICK SKINNER SALT ROASTER (FOREGROUND), AND MECHANIC SHED, MILL WAREHOUSE AND DRYERS (BACKGROUND). - Vanadium Corporation of America (VCA) Naturita Mill, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO
USDA-ARS?s Scientific Manuscript database
The distribution of aerosol applications of pyrethrin+methoprene, generated from a mechanical fogger, and pyrethrin+pyriproxyfen, dispensed from a pressurized cylinder, were characterized inside a pilot-scale flour mill using measurements of particle size and concentration and effects on adult confu...
A new milling machine for computer-aided, in-office restorations.
Kurbad, Andreas
Chairside computer-aided design/computer-aided manufacturing (CAD/CAM) technology requires an effective technical basis to obtain dental restorations with optimal marginal accuracy, esthetics, and longevity in as short a timeframe as possible. This article describes a compact, 5-axis milling machine based on an innovative milling technology (5XT - five-axis turn-milling technique), which is capable of achieving high-precision milling results within a very short processing time. Furthermore, the device's compact dimensioning and state-of-the-art mode of operation facilitate its use in the dental office. This model is also an option to be considered for use in smaller dental laboratories, especially as the open input format enables it to be quickly and simply integrated into digital processing systems already in use. The possibility of using ceramic and polymer materials with varying properties enables the manufacture of restorations covering all conceivable indications in the field of fixed dental prosthetics.
NASA Astrophysics Data System (ADS)
Okamoto, Yuji; Harada, Yoshitomo; Ohta, Narumi; Takada, Kazunori; Sumiya, Masatomo
2016-09-01
We demonstrate that a SiO disproportionation reaction can be achieved simply by high energy mechanochemical milling. The planetary ball-milling of ZrO2 for a few minutes generated Si nano-crystals. Milling conditions including rotation speed, ball number, milling time, and type of ball material were able to control the oxidation states of Si. The ball-milled SiO powder was tested as an anode of a lithium battery. ZrO2 contamination from the vial and balls was eliminated by dipping the ball-milled SiO powder in (NH4)HSO4 molten salt and heating for 5 min. The disproportionated SiO powder showed characteristics comparable to those of a powder prepared by a conventional heating process taking several hours.
Buaban, Benchaporn; Inoue, Hiroyuki; Yano, Shinichi; Tanapongpipat, Sutipa; Ruanglek, Vasimon; Champreda, Verawat; Pichyangkura, Rath; Rengpipat, Sirirat; Eurwilaichitr, Lily
2010-07-01
Sugarcane bagasse is one of the most promising agricultural by-products for conversion to biofuels. Here, ethanol fermentation from bagasse has been achieved using an integrated process combining mechanical pretreatment by ball milling, with enzymatic hydrolysis and fermentation. Ball milling for 2 h was sufficient for nearly complete cellulose structural transformation to an accessible amorphous form. The pretreated cellulosic residues were hydrolyzed by a crude enzyme preparation from Penicillium chrysogenum BCC4504 containing cellulase activity combined with Aspergillus flavus BCC7179 preparation containing complementary beta-glucosidase activity. Saccharification yields of 84.0% and 70.4% for glucose and xylose, respectively, were obtained after hydrolysis at 45 degrees C, pH 5 for 72 h, which were slightly higher than those obtained with a commercial enzyme mixture containing Acremonium cellulase and Optimash BG. A high conversion yield of undetoxified pretreated bagasse (5%, w/v) hydrolysate to ethanol was attained by separate hydrolysis and fermentation processes using Pichia stipitis BCC15191, at pH 5.5, 30 degrees C for 24 h resulting in an ethanol concentration of 8.4 g/l, corresponding to a conversion yield of 0.29 g ethanol/g available fermentable sugars. Comparable ethanol conversion efficiency was obtained by a simultaneous saccharification and fermentation process which led to production of 8.0 g/l ethanol after 72 h fermentation under the same conditions. This study thus demonstrated the potential use of a simple integrated process with minimal environmental impact with the use of promising alternative on-site enzymes and yeast for the production of ethanol from this potent lignocellulosic biomass. 2009. Published by Elsevier B.V.
Smart manufacturing of complex shaped pipe components
NASA Astrophysics Data System (ADS)
Salchak, Y. A.; Kotelnikov, A. A.; Sednev, D. A.; Borikov, V. N.
2018-03-01
Manufacturing industry is constantly improving. Nowadays the most relevant trend is widespread automation and optimization of the production process. This paper represents a novel approach for smart manufacturing of steel pipe valves. The system includes two main parts: mechanical treatment and quality assurance units. Mechanical treatment is performed by application of the milling machine with implementation of computerized numerical control, whilst the quality assurance unit contains three testing modules for different tasks, such as X-ray testing, optical scanning and ultrasound testing modules. The advances of each of them provide reliable results that contain information about any failures of the technological process, any deviations of geometrical parameters of the valves. The system also allows detecting defects on the surface or in the inner structure of the component.
The milling of pristine and brominated P-100 graphite fibers
NASA Technical Reports Server (NTRS)
Dillehay, M. E.; Gaier, J. R.
1986-01-01
Techniques were developed for the ball milling of pristine and brominated P-100 graphite fibers. Because of the lubrication properties of graphite, large ball loads (50 percent by volume) were required. Use of 2-propanol as a milling medium enhanced the efficiency of the process. Milled brominated P-100 fibers had resistivities which were indistinguishable from milled pristine P-100 fibers. Apparent loss of bromine from the brominated fibers suggests that bromine would not be the intercalate of choice in applications where milled fibers of this type are required. Other intercalates which do not degas may be more appropriate for a milled fiber application. These same results, however, do provide evidence that bromine molecules leave the fiber surface when removed from overpressure of bromine. While exploring possible solvent media for milling purposes, it was found that brominated fibers are stable in a wide variety of organic solvents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taghvaei, Amir Hossein, E-mail: Amirtaghvaei@gmail.com; Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz; Stoica, Mihai
2014-06-01
The influence of ball milling on the atomic structure and magnetic properties of the Co{sub 40}Fe{sub 22}Ta{sub 8}B{sub 30} metallic glass with a high thermal stability and excellent soft magnetic properties has been investigated. After 14 h of milling, the obtained powders were found to consist mainly of an amorphous phase and a small fraction of the (Co,Fe){sub 21}Ta{sub 2}B{sub 6} nanocrystals. The changes in the reduced pair correlation functions suggest noticeable changes in the atomic structure of the amorphous upon ball milling. Furthermore, it has been shown that milling is accompanied by introduction of compressive and dilatational sites inmore » the glassy phase and increasing the fluctuation of the atomic-level hydrostatic stress without affecting the coordination number of the nearest neighbors. Ball milling has decreased the thermal stability and significantly affected the magnetic properties through increasing the saturation magnetization, Curie temperature of the amorphous phase and coercivity. - Highlights: • Ball milling affected the atomic structure of Co{sub 40}Fe{sub 22}Ta{sub 8}B{sub 30} metallic glass. • Mechanically-induced crystallization started after 4 h milling. • Milling increased the fluctuation of the atomic-level hydrostatic stress in glass. • Ball milling influenced the thermal stability and magnetic properties.« less
NASA Astrophysics Data System (ADS)
Babaevsky, A. N.; Romanovich, A. A.; Glagolev, E. S.
2018-03-01
The article describes the energy-saving technology and equipment for production of composite binding material with up to a 50% reduction in energy consumption of the process due to a synergistic effect in mechanical activation of the raw mix where a clinker component is substituted with an active mineral supplement. The impact of the gap between the rollers on the final performance of the press roller mill was studied.
NASA Astrophysics Data System (ADS)
Romanovich, A. A.; Romanovich, L. G.; Chekhovskoy, E. I.
2018-03-01
The article presents the results of experimental studies on the grinding process of a clinker preliminarily ground in press roller mills in a ball mill equipped with energy exchange devices. The authors studied the influence of the coefficients of loading for grinding bodies of the first and second mill chambers, their lengths, angles of inclination, and the mutual location of energy exchange devices (the ellipse segment and the double-acting blade) on the output parameters of the grinding process (productivity, drive power consumption and specific energy consumption). It is clarified that the best results of the disaggregation and grinding process, judging by the minimum specific energy consumption in the grinding of clinker with an anisotropic texture after force deformation between the rolls of a press roller shredder, are achieved at a certain angle of ellipse segment inclination; the length of the first chamber and the coefficients of loading the chambers with grinding bodies.
35. RW Meyer Sugar Mill: 18761889. Threeroll sugar mill, oneton ...
35. RW Meyer Sugar Mill: 1876-1889. Three-roll sugar mill, one-ton daily processing capacity. Manufactured by Edwin Maw, Liverpool, England, ca. 1855-1870. View: Bevel gear at lower end of vertical drive shaft in foreground turned bevel gear of top roll when the vertical drive shaft was in place in the brass-bearing socket in the middle ground of the photograph. The bolts above the top roll and at the side of the two bottom rolls adjusted the pressure and position of the rolls' brass bearings. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
NASA Astrophysics Data System (ADS)
Tan Shilan, Salihah; Amri Mazlan, Saiful; Ido, Yasushi; Hajalilou, Abdollah; Jeyadevan, Balachandran; Choi, Seung-Bok; Azhani Yunus, Nurul
2016-09-01
This work proposes different sizes of the plate-like particles from conventional spherical carbonyl iron (CI) particles by adjusting milling time in the ball mill process. The ball mill process to make the plate-like particles is called a solid-state powder processing technique which involves repeated welding, fracturing and re-welding of powder particles in a high-energy ball mill. The effect of ball milling process on the magnetic behavior of CI particles is firstly investigated by vibrating sample magnetometer. It is found form this investigation that the plate-like particles have higher saturation magnetization (about 8%) than that of the spherical particles. Subsequently, for the investigation on the sedimentation behavior the cylindrical measurement technique is used. It is observed from this measurement that the plate-like particles show slower sedimentation rate compared to the spherical particles indicating higher stability of the MR fluid. The field-dependent rheological properties of MR fluids based on the plate-like particles are then investigated with respect to the milling time which is directly connected to the size of the plate-like particles. In addition, the field-dependent rheological properties such as the yield stress are evaluated and compared between the plate-like particles based MR fluids and the spherical particles based MR fluid. It is found that the yield shear stress of the plate-like particles based MR fluid is increased up to 270% compared to the spherical particles based MR fluid.
The timber industries of Pennsylvania, 1988
Eric H. Wharton; John L. Bearer; John L. Bearer
1993-01-01
Evaluates regional timber output of Pennsylvania. Results are based on a survey of primary processing mills located in the state, and of mills in other states that used wood from Pennsylvania. Contains statistics on industrial timber production and mill receipts and the production and final end use of manufacturing residues. Comparisons are made between historical and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molaei, M.J., E-mail: mj.molaee@merc.ac.ir; Delft Chem Tech, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 136, 2628 BL Delft; Ataie, A.
2015-03-15
In this research a mixture of barium ferrite and graphite was milled for different periods of time and then heat treated at different temperatures. The effects of milling time and heat treatment temperature on the phase composition, thermal behavior, morphology and magnetic properties of the samples have been investigated using X-ray diffraction, differential thermal analysis, high resolution transmission electron microscopy and vibrating sample magnetometer techniques, respectively. X-ray diffraction results revealed that BaFe{sub 12}O{sub 19}/Fe{sub 3}O{sub 4} nanocomposites form after a 20 h milling due to the partial reduction of BaFe{sub 12}O{sub 19}. High resolution transmission electron microscope images of amore » 40 h milled sample showed agglomerated structure consisting of nanoparticles with a mean particle size of 30 nm. Thermal analysis of the samples via differential thermal analysis indicated that for un-milled samples, heat treatment up to 900 °C did not result in α-Fe formation, while for a 20 h milled sample heat treatment at 700 °C resulted in reduction process progress to the formation of α-Fe. Wustite was disappeared in an X-ray diffraction pattern of a heat treated sample at 850 °C, by increasing the milling time from 20 to 40 h. By increasing the milling time, the structure of heat treated samples becomes magnetically softer due to an increase in saturation magnetization and a decrease in coercivity. Saturation magnetization and coercivity of a sample milled for 20 h and heat treated at 850 °C were 126.3 emu/g and 149.5 Oe which by increasing the milling time to 40 h, alter to 169.1 emu/g and 24.3 Oe, respectively. High coercivity values of milled and heat treated samples were attributed to the nano-scale formed iron particles. - Graphical abstract: Display Omitted - Highlights: • Barium ferrite and graphite were treated mechano-thermally. • Increasing milling time increases reduction progress after heat treatment. • Composites including iron nano-crystals forms by milling and heat treatment. • Shorter milling time results in higher H{sub C} of the milled and heat treated samples.« less
NASA Astrophysics Data System (ADS)
Slimani, Y.; Hannachi, E.; Azzouz, F. Ben; Salem, M. Ben
2018-06-01
We have reported the influence of planetary high energy ball milling parameters on morphology, microstructure and flux pinning capability of polycrystalline Y3Ba5Cu8Oy. Samples were prepared through the standard solid-state reaction by using two different milling methods, ball milling in a planetary crusher and hand grinding in a mortar. Phase analysis by X-ray diffraction (XRD) method, microstructural examination by scanning electron microscope (SEM), electrical resistivity, the global and intra-granular critical current densities measurements are done to characterize the samples. The processing parameters of the planetary milling have a considerable impact on the final product properties. SEM observations show the presence of nanoscale entities submerged within the Y3Ba5Cu8Oy crystallites. The results show that the fine grain microstructure of the Y3Ba5Cu8Oy bulk induced by ball milling process contributes to critical currents density enhancement in the magnetic field and promotes an optimized flux pinning ability.
Design and Development of a Three-Component Force Sensor for Milling Process Monitoring
Li, Yingxue; Zhao, Yulong; Fei, Jiyou; Qin, Yafei; Zhao, You; Cai, Anjiang; Gao, Song
2017-01-01
A strain-type three-component table dynamometer is presented in this paper, which reduces output errors produced by cutting forces imposed on the different milling positions of a workpiece. A sensor structure with eight parallel elastic beams is proposed, and sensitive regions and Wheastone measuring circuits are also designed in consideration of eliminating the influences of the eccentric forces. To evaluate the sensor decoupling performance, both of the static calibration and dynamic milling test were implemented in different positions of the workpiece. Static experiment results indicate that the maximal deviation between the measured forces and the standard inputs is 4.58%. Milling tests demonstrate that with same machining parameters, the differences of the measured forces between different milling positions derived by the developed sensor are no larger than 6.29%. In addition, the natural frequencies of the dynamometer are kept higher than 2585.5 Hz. All the measuring results show that as a strain-type dynamometer, the developed force sensor has an improved eccentric decoupling accuracy with natural frequencies not much decreased, which owns application potential in milling process monitoring. PMID:28441354
PLYMAP : a computer simulation model of the rotary peeled softwood plywood manufacturing process
Henry Spelter
1990-01-01
This report documents a simulation model of the plywood manufacturing process. Its purpose is to enable a user to make quick estimates of the economic impact of a particular process change within a mill. The program was designed to simulate the processing of plywood within a relatively simplified mill design. Within that limitation, however, it allows a wide range of...
1978-08-01
been furnished the owner, Camden Water & Power Co., 33 Mechanic Street, ..... a ine 0,-43. Co-ies of this report will be made available to the public...gn Branch Engineering Division SAUL CO ER, Member Chief, Water Control Branch Engineering Division APPROVAL RECOMMENDED: JOE B. FRYAR Chief...Camden Water & Power Co. 33 Mechanic Street Camden, Maine 04843 Tne Camden Water and Power Company is an affiliate of Knox Woolen Mills Company. f
Minimization of energy and surface roughness of the products machined by milling
NASA Astrophysics Data System (ADS)
Belloufi, A.; Abdelkrim, M.; Bouakba, M.; Rezgui, I.
2017-08-01
Metal cutting represents a large portion in the manufacturing industries, which makes this process the largest consumer of energy. Energy consumption is an indirect source of carbon footprint, we know that CO2 emissions come from the production of energy. Therefore high energy consumption requires a large production, which leads to high cost and a large amount of CO2 emissions. At this day, a lot of researches done on the Metal cutting, but the environmental problems of the processes are rarely discussed. The right selection of cutting parameters is an effective method to reduce energy consumption because of the direct relationship between energy consumption and cutting parameters in machining processes. Therefore, one of the objectives of this research is to propose an optimization strategy suitable for machining processes (milling) to achieve the optimum cutting conditions based on the criterion of the energy consumed during the milling. In this paper the problem of energy consumed in milling is solved by an optimization method chosen. The optimization is done according to the different requirements in the process of roughing and finishing under various technological constraints.
Milling dynamics. I - Attritor dynamics: Results of a cinematographic study
NASA Technical Reports Server (NTRS)
Rydin, R. W.; Maurice, D.; Courtney, T. H.
1993-01-01
The motions of grinding media and powder in an attritor canister were studied by means of filming the agitated charge and frame-by-frame scrutiny of the footage. In conjunction with auxiliary experiments, this permitted semiquantitative analysis of the milling action. In particular, the mill can be divided into several regions characterized by different balances between direct impacts and rolling/sliding of the grinding media. Simple calculations suggest that impacts are more capable of effecting mechanical alloying (MA) than are rolling or sliding events in an attritor. Powder circulation within an operating mill was also investigated. Based on the results and the accompanying analysis, concepts for improved attritor design are presented.
Application of Odor Sensors to Ore Sorting and Mill Feed Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael G. Nelson
2005-08-01
Control of the feed provided to mineral processing facilities is a continuing challenge. Much effort is currently being devoted to overcoming these problems. These projects are usually described under the general headings of Mine-to-Mill Integration or Mine-Mill Optimization. It should be possible to combine the knowledge of ore type, mineralogy, and other characteristics (located in the mine modeling system), with the advanced capabilities of state-of-the-art mill control systems, to achieve an improved level of control in mineral processing that will allow optimization of the mill processes on an almost real-time basis. This is not happening because mill feed it ismore » often treated as a uniform material, when in reality it varies in composition and characteristics. An investigation was conducted to assess the suitability of odor sensors for maintaining traceability in ore production and processing. Commercially available sensors are now used in food processing, environmental monitoring, and other applications and can detect the presence of very small amounts (0.1-500 ppm) of some molecules. An assortment of such molecules could be used to ''tag'' blocks of ore as they are mined, according to their respective characteristics. Then, as the ore came into the mill, an array of ''electronic noses'' could be used to assess its characteristics in real time. It was found that the Cyranose 320{trademark}, a commercially available odor sensor, can easily distinguish among samples of rock marked with almond, cinnamon, citronella, lemon, and orange oils. Further, the sensor could detect mixtures of rocks marked with various combinations of these oils. Treatment of mixtures of galena and silica with odorant compounds showed no detrimental effects on flotation response in laboratory tests. Additional work is recommended to determine how this concept can be extended to the marking of large volumes of materials.« less
NASA Astrophysics Data System (ADS)
Bolokang, A. S.; Cummings, F. R.; Dhonge, B. P.; Abdallah, H. M. I.; Moyo, T.; Swart, H. C.; Arendse, C. J.; Muller, T. F. G.; Motaung, D. E.
2015-03-01
We report on the correlation between defect-related emissions, the magnetization and sensing of TiO2 nanoparticles (NPs) prepared by milling method. Surface morphology analyses showed that the size of the TiO2 NPs decreases with milling time. Raman and XRD studies demonstrated that the structural properties of the TiO2 transform to orthorhombic structure upon milling. Magnetization improved with an increase of a defect-related band originating from oxygen vacancies (VO), which can be ascribed to a decrease in the size of the NPs due to the milling time. Moreover, the longer-milled TiO2 exhibited enhanced gas-sensing properties to humidity in terms of sensor response, with about 12 s response time at room temperature. A combination of photoluminescence, X-ray photoelectron spectroscopy, vibrating sample magnetometer and sensing analyses demonstrated that a direct relation exists between the magnetization, sensing and the relative occupancy of the VO present on the surface of TiO2 NPs.
NASA Technical Reports Server (NTRS)
Whittenberger, J. Daniel; Grahle, Peter; Arzt, Eduard; Hebsur, Mohan
1998-01-01
In an effort to superimpose two different elevated temperature strengthening mechanisms in NiAl, several lots of oxide dispersion strengthened (ODS) NiAl powder have been cryo-milled in liquid nitrogen to introduce AlN particles at the grain boundaries. As an alternative to cryo-milling, one lot of ODS NiAl was roasted in nitrogen to produce AlN. Both techniques resulted in hot extruded AlN-strengthened, ODS NiAl alloys which were stronger than the base ODS NiAl between 1200 and 1400 K. However, neither the cryo-milled nor the N2-roasted ODS NiAl alloys were as strong as cryo-milled binary NiAl containing like amounts of AlN. The reason(s) for the relative weakness of cryo-milled ODS NiAl is not certain; however the lack of superior strength in N2-roasted ODS NiAl is probably due to its relatively large AlN particles.
Hama, Shinji; Mizuno, Shino; Kihara, Maki; Tanaka, Tsutomu; Ogino, Chiaki; Noda, Hideo; Kondo, Akihiko
2015-01-01
This study focused on the process development for the d-lactic acid production from cellulosic feedstocks using the Lactobacillus plantarum mutant, genetically modified to produce optically pure d-lactic acid from both glucose and xylose. The simultaneous saccharification and fermentation (SSF) using delignified hardwood pulp (5-15% loads) resulted in the lactic acid titers of 55.2-84.6g/L after 72h and increased productivities of 1.77-2.61g/L/h. To facilitate the enzymatic saccharification of high-load pulp at a fermentation temperature, short-term (⩽10min) pulverization of pulp was conducted, leading to a significantly improved saccharification with the suppressed formation of formic acid by-product. The short-term milling followed by SSF resulted in a lactic acid titer of 102.3g/L, an optical purity of 99.2%, and a yield of 0.879g/g-sugars without fed-batch process control. Therefore, the process presented here shows promise for the production of high-titer d-lactic acid using the L. plantarum mutant. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhou, Chuifan; Huang, Meiying; Ren, Huijun; Yu, Jiaoda; Wu, Jiamei; Ma, Xiangqing
2017-08-01
A greenhouse experiment was conducted to assay the bioaccumulation and tolerance characteristics of Rhus chinensis Mill. to lead (Pb). The effects of exposing R. chinensis Mill seedlings to increasing Pb concentrations (0, 250, 500, 100mgkg-1) in the soil were assessed by measuring Pb accumulation, subcellular distribution, ultrastructure, photosynthetic characteristics, antioxidative enzyme activity, malondialdehyde content, and phytochelatin content. The majority of Pb taken up by R. chinensis Mill was associated with the cell wall fraction in the roots, where the absorption of Ca increased to maintain cell wall stability, and Pb deposits were found in the intercellular space or in the cell wall structures. In leaves, Pb was primarily stored in the cell wall, while it was compartmentalized into the vacuolar structures in the stem. Pb concentrations adversely affected the morphology of Rhus chinensis Mill cellular substructures. Furthermore, increased Peroxidase (POD) and catalase (CAT) activity was observed in plants grown in Pb-amended soil, and this may have led to reduced ROS to maintain the function of the membrane. Changes in phytochelatin levels (PCs) that were observed in Pb treated plants suggest that PCs formed complexes with Pb in the cytoplasm to reduce Pb 2+ toxicity in the metabolically active cellular compartment. This mechanism may allow for the plant to accumulate higher concentrations of toxic Pb and survive for a longer period of time. Our study provides a better understanding of how Rhus chinensis Mill detoxifies Pb. Copyright © 2017. Published by Elsevier Inc.
Mesoscale modeling of strain induced solid state amorphization in crystalline materials
NASA Astrophysics Data System (ADS)
Lei, Lei
Solid state amorphization, and in particular crystalline to amorphous transformation, can be observed in metallic alloys, semiconductors, intermetallics, minerals, and also molecular crystals when they undergo irradiation, hydrogen gas dissolution, thermal interdiffusion, mechanical alloying, or mechanical milling. Although the amorphization mechanisms may be different, the transformation occurs due to the high level of disorder introduced into the material. Milling induced solid state amorphization is proposed to be the result of accumulation of crystal defects, specifically dislocations, as the material is subjected to large deformations during the high energy process. Thus, understanding the deformation mechanisms of crystalline materials will be the first step in studying solid state amorphization in crystalline materials, which not only has scientific contributions, but also technical consequences. A phase field dislocation dynamics (PFDD) approach is employed in this work to simulate plastic deformation of molecular crystals. This PFDD model has the advantage of tracking all of the dislocations in a material simultaneously. The model takes into account the elastic interaction between dislocations, the lattice resistance to dislocation motion, and the elastic interaction of dislocations with an external stress field. The PFDD model is employed to describe the deformation of molecular crystals with pharmaceutical applications, namely, single crystal sucrose, acetaminophen, gamma-indomethacin, and aspirin. Stress-strain curves are produced that result in expected anisotropic material response due to the activation of different slip systems and yield stresses that agree well with those from experiments. The PFDD model is coupled to a phase transformation model to study the relation between plastic deformation and the solid state amorphization of crystals that undergo milling. This model predicts the amorphous volume fraction in excellent agreement with experimental observation. Finally, we incorporate the effect of stress free surfaces to model the behavior of dislocations close to these surfaces and in the presence of voids.
NASA Astrophysics Data System (ADS)
Rivai, A. K.; Dimyati, A.; Adi, W. A.
2017-05-01
One of the advanced materials for application at high temperatures which is aggressively developed in the world is ODS (Oxide Dispersion strengthened) steel. ODS ferritic steels are one of the candidate materials for future nuclear reactors in the world (Generation IV reactors) because it is able to be used in the reactor above 600 °C. ODS ferritic steels have also been developed for the interconnect material of SOFC (Solid Oxide Fuel Cell) which will be exposed to about 800 °C of temperature. The steel is strengthened by dispersing homogeneously of oxide particles (ceramic) in nano-meter sized in the matrix of the steel. Synthesis of a ferritic ODS steel by dispersion of nano-particles of yttrium oxide (yttria: Y2O3) as the dispersion particles, and containing high-chromium i.e. 14% has been conducted. Synthesis of the ODS steels was done mechanically (mechanosynthesis) using HEM (High Energy ball Milling) technique for 40 and 100 hours. The resulted samples were characterized using SEM-EDS (Scanning Electron Microscope-Energy Dispersive Spectroscope), and XRD (X-ray diffraction) to analyze the microstructure characteristics. The results showed that the crystal grains of the sample with 100 hours milling time was much smaller than the sample with 40 hours milling time, and some amount of alloy was formed during the milling process even for 40 hours milling time. Furthermore, the structure analysis revealed that some amount of iron atom substituted by a slight amount of chromium atom as a solid solution. The quantitative analysis showed that the phase mostly consisted of FeCr solid-solution with the structure was BCC (body-centered cubic).
Impact Ignition of Low Density Mechanically Activated and Multilayer Foil Ni/Al
NASA Astrophysics Data System (ADS)
Beason, Matthew; Mason, B.; Son, Steven; Groven, Lori
2013-06-01
Mechanical activation (MA) via milling of reactive materials provides a means of lowering the ignition threshold of shock initiated reactions. This treatment provides a finely mixed microstructure with wide variation in the resulting scales of the intraparticle microstructure that makes model validation difficult. In this work we consider nanofoils produced through vapor deposition with well defined periodicity and a similar degree of fine scale mixing. This allows experiments that may be easier to compare with computational models. To achieve this, both equimolar Ni/Al powder that has undergone MA using high energy ball milling and nanofoils milled into a powder using low energy ball milling were used. The Asay Shear impact experiment was conducted on both MA Ni/Al and Ni/Al nanofoil-based powders at low densities (<60%) to examine their impact response and reaction behavior. Scanning electron microscopy and energy-dispersive x-ray spectroscopy were used to verify the microstructure of the materials. The materials' mechanical properties were evaluated using nano-indentation. Onset temperatures were evaluated using differential thermal analysis/differential scanning calorimetry. Impact ignition thresholds, burning rates, temperature field, and ignition delays are reported. Funding from the Defense Threat Reduction Agency (DTRA) Grant Number HDTRA1-10-1-0119. Counter-WMD basic research program, Dr. Suhithi M. Peiris, program director is gratefully acknowledged.
Magnetic properties of mechanically alloyed Mn-Al-C powders
NASA Astrophysics Data System (ADS)
Kohmoto, O.; Kageyama, N.; Kageyama, Y.; Haji, H.; Uchida, M.; Matsushima, Y.
2011-01-01
We have prepared supersaturated-solution Mn-Al-C alloy powders by mechanical alloying using a planetary high-energy mill. The starting materials were pure Mn, Al and C powers. The mechanically-alloyed powders were subjected to a two-step heating. Although starting particles are Al and Mn with additive C, the Al peak disappears with MA time. With increasing MA time, transition from α-Mn to β-Mn does not occur; the α-Mn structure maintains. At 100 h, a single phase of supersaturated-solution α-Mn is obtained. The lattice constant of α-Mn decreases with increasing MA time. From the Scherrer formula, the crystallite size at 500 h is obtained as 200Å, which does not mean amorphous state. By two-step heating, high magnetization (66 emu/g) was obtained from short-time-milled powders (t=10 h). The precursor of the as-milled powder is not a single phase α-Mn but contains small amount of fcc Al. After two-step heating, the powder changes to τ-phase. Although the saturation magnetization increases, the value is less than that by conventional bulk MnAl (88 emu/g). Meanwhile, long-time-milled powder of single α-Mn phase results in low magnetization (5.2 emu/g) after two-step heating.
NASA Astrophysics Data System (ADS)
Buchty-Lemke, Michael; Frings, Roy; Hagemann, Lukas; Lehmkuhl, Frank; Maaß, Anna-Lisa; Schwarzbauer, Jan
2016-04-01
The Wurm River (Lower Rhine Embayment, Germany) is a small stream in a low mountain area near the Dutch-German border that has seen a lot of anthropogenic changes of its morphology since medieval times. Among other influencing factors, water mills, in particular, had an early impact on the sediment dynamics and created sediment traps. Several knickpoints in the long profile may represent the legacy of mill damming - or founded mill building at these spots. The knickpoints may also represent the aftermath of the colliery history. A study site in the upper reaches of the Wurm River features erosion terraces, incised following the demise of a mill dam in the early 20th century. The mill pond most likely collected sediment and additives e.g. used in agricultural and industrial processes. These legacy sediments from behind former mill dams provide information about anthropogenic pollution, particularly for the era of industrialization in the vicinity of the old industrial area of the city of Aachen. Along with the demise of the mill dam and the increased incision tendency, the sediments are also a secondary source for pollution in case of remobilization of contaminated sediments. Two major research questions are addressed. A) Which individual hydrological and geomorphological processes, both upstream and downstream, triggered the incision and the construction of the erosion terraces, which are preserved in the mill pond sediments? Is either the demised mill dam, or subsidence effects, or a combination of both the determining factor? B) Which contaminants are retained in the sediments? Is there a detectable point source for the pollutants or is it a mixture of diffuse anthropogenic (industry, agriculture, traffic, wastewater) and natural origin? To tackle these questions, sedimentological data are combined with geomorphological mapping and evaluation of historical data. A soil profile provides insight into the architecture of the floodplain, which is built of riverbed sediments overlain by stratified fine clastic and organic-rich material, representing the sediment being trapped when the mill dam existed. X-ray fluorescence and grain size analysis are used to determine the depositional process, provenance and chemostratigraphy. Knowledge about the distribution and fate of pollutants in sediments is valuable for river management purposes. Measures within the scope of the EU Water Framework Directive have been implemented at several breaches at the Wurm River, and further ones are planned. Potential risks due to remobilization of polluted alluvial sediments must thereby be taken into account. Furthermore, e.g. dismantling of transverse structures to improve passage for fish might trigger similar erosion processes and affects the sediment continuity.
Investigation into process-induced de-aggregation of cohesive micronised API particles.
Hoffmann, Magnus; Wray, Patrick S; Gamble, John F; Tobyn, Mike
2015-09-30
The aim of this study was to assess the impact of unit processes on the de-aggregation of a cohesive micronised API within a pharmaceutical formulation using near-infrared chemical imaging. The impact on the primary API particles was also investigated using an image-based particle characterization system with integrated Raman analysis. The blended material was shown to contain large, API rich domains which were distributed in-homogeneously across the sample, suggesting that the blending process was not aggressive enough to disperse aggregates of micronised drug particles. Cone milling, routinely used to improve the homogeneity of such cohesive formulations, was observed to substantially reduce the number and size of API rich domains; however, several smaller API domains survived the milling process. Conveyance of the cone milled formulation through the Alexanderwerk WP120 powder feed system completely dispersed all remaining aggregates. Importantly, powder feed transmission of the un-milled formulation was observed to produce an equally homogeneous API distribution. The size of the micronised primary drug particles remained unchanged during powder feed transmission. These findings provide further evidence that this powder feed system does induce shear, and is in fact better able to disperse aggregates of a cohesive micronised API within a blend than the blend-mill-blend step. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
Esfandyari, Yahya; Mahdavi, Yousef; Seyedsalehi, Mahdi; Hoseini, Mohammad; Safari, Gholam Hossein; Ghozikali, Mohammad Ghanbari; Kamani, Hossein; Jaafari, Jalil
2015-04-01
Olive mill wastewater is considered as one of the most polluting effluents of the food industry and constitutes a source of important environmental problems. In this study, the removal of pollutants (chemical oxygen demand (COD), biochemical oxygen demand (BOD5), polyphenols, turbidity, color, total suspended solids (TSS), and oil and grease) from olive oil mill processing wastewater by peroxi-electrocoagulation/electrooxidation-electroflotation process with bipolar aluminum electrodes was evaluated using a pilot continuous reactor. In the electrochemical unit, aluminum (Al), stainless steel, and RuO2/Ti plates were used. The effects of pH, hydrogen peroxide doses, current density, NaCl concentrations, and reaction times were studied. Under optimal conditions of pH 4, current density of 40 mA/m(2), 1000 mg/L H2O2, 1 g/L NaCl, and 30-min reaction time, the peroxi-electrochemical method yielded very effective removal of organic pollution from the olive mill wastewater diluted four times. The treatment process reduced COD by 96%, BOD5 by 93.6%, total, polyphenols by 94.4%, color by 91.4%, turbidity by 88.7, suspended solids by 97% and oil and grease by 97.1%. The biodegradability index (BOD5/COD) increased from 0.29 to 0.46. Therefore, the peroxi-electrocoagulation/electrooxidation-electroflotation process is considered as an effective and feasible process for pre-treating olive mill wastewater, making possible a post-treatment of the effluent in a biological system.
Preparation of plutonium-bearing ceramics via mechanically activated precursor
NASA Astrophysics Data System (ADS)
Chizhevskaya, S. V.; Stefanovsky, S. V.
2000-07-01
The problem of excess weapons plutonium disposition is suggested to be solved by means of its incorporation in stable ceramics with high chemical durability and radiation resistivity. The most promising host phases for plutonium as well as uranium and neutron poisons (gadolinium, hafnium) are zirconolite, pyrochlore, zircon, zirconia [1,2], and murataite [3]. Their production requires high temperatures and a fine-grained homogeneous precursor to reach final waste form with high quality and low leachability. Currently various routes to homogeneous products preparation such as sol-gel technology, wet-milling, and grinding in a ball or planetary mill are used. The best result demonstrates sol-gel technology but this route is very complicated. An alternative technology for preparation of ceramic precursors is the treatment of the oxide batch with high mechanical energy [4]. Such a treatment produces combination of mechanical (fine milling with formation of various defects, homogenization) and chemical (split bonds with formation of active centers—free radicals, ion-radicals, etc.) effects resulting in higher reactivity of the activated batch.
5. VIEW OF BERYLLIUM PROCESSING AREA, ROLLING MILL. BERYLLIUM FORMING ...
5. VIEW OF BERYLLIUM PROCESSING AREA, ROLLING MILL. BERYLLIUM FORMING BEGAN IN SIDE A OF THE BUILDING IN 1962. (11/5/73) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO
7 CFR 868.256 - Milling requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Brown Rice for Processing Principles....252(g)) in brown rice for processing, the degree of milling shall be equal to, or better than, that of the interpretive line sample for “well-milled” rice. [42 FR 40869, Aug. 12, 1977. Redesignated at...
7 CFR 868.256 - Milling requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Brown Rice for Processing Principles....252(g)) in brown rice for processing, the degree of milling shall be equal to, or better than, that of the interpretive line sample for “well-milled” rice. [42 FR 40869, Aug. 12, 1977. Redesignated at...
Post-processing, energy production use of sugarcane bagasse ash
USDA-ARS?s Scientific Manuscript database
Sugarcane bagasse ash (SBA) is a multi-process by-product produced from the milling of sugarcane. Bagasse is the fibrous material remaining after removing the sugar, water, and other impurities from the sugarcane delivered to the mill. Louisiana produces an estimated 2.7 mt of bagasse each year. In ...
Post-processing, energy production use of sugarcane bagasse ash
USDA-ARS?s Scientific Manuscript database
Sugarcane bagasse ash (SBA) is a multi-processed by-product produced from the milling of sugarcane. Bagasse is the fibrous material remaining after removing the sugar, water, and other impurities from the sugarcane delivered to the mill. Louisiana produces an estimated 3 million tons of bagasse each...
Code of Federal Regulations, 2013 CFR
2013-07-01
... process alone or in conjunction with other processes, for the beneficiation of copper, lead, zinc, gold, silver, or molybdenum ores, or any combination of these ores; (3) Mines and mills that use dump, heap, in-situ leach, or vat-leach processes to extract copper from ores or ore waste materials; and (4) Mills...
Code of Federal Regulations, 2012 CFR
2012-07-01
... process alone or in conjunction with other processes, for the beneficiation of copper, lead, zinc, gold, silver, or molybdenum ores, or any combination of these ores; (3) Mines and mills that use dump, heap, in-situ leach, or vat-leach processes to extract copper from ores or ore waste materials; and (4) Mills...
Code of Federal Regulations, 2014 CFR
2014-07-01
... process alone or in conjunction with other processes, for the beneficiation of copper, lead, zinc, gold, silver, or molybdenum ores, or any combination of these ores; (3) Mines and mills that use dump, heap, in-situ leach, or vat-leach processes to extract copper from ores or ore waste materials; and (4) Mills...
Lumber defect detection abilities of furniture rough mill employees
Henry A. Huber; Charles W. McMillin; John P. McKinney
1985-01-01
To cut parts from boards, rough mill employees must be able to see defects, calculate the proper location of cuts, manually position the board, and remain alert. The objective of this study was to evaluate how well rough mill employees perform the task of recognizing, locating, and identifying surface defects independent of the calculation and positioning process....
Process Capability of High Speed Micro End-Milling of Inconel 718 with Minimum Quantity Lubrication
NASA Astrophysics Data System (ADS)
Rahman, Mohamed Abd; Yeakub Ali, Mohammad; Rahman Shah Rosli, Abdul; Banu, Asfana
2017-03-01
The demand for micro-parts is expected to grow and micro-machining has been shown to be a viable manufacturing process to produce these products. These micro-products may be produced from hard-to-machine materials such as superalloys under little or no metal cutting fluids to reduce machining cost or drawbacks associated with health and environment. This project aims to investigate the capability of micro end-milling process of Inconel 718 with minimum quantity lubrication (MQL). Microtools DT-110 multi-process micro machine was used to machine 10 micro-channels with MQL and 10 more under dry condition while maintaining the same machining parameters. The width of the micro-channels was measured using digital microscope and used to determine the process capability indices, Cp and Cpk. QI Macros SPC for Excel was used to analyze the resultant machining data. The results indicated that micro end-milling process of Inconel 718 was not capable under both MQL and dry cutting conditions as indicated by the Cp values of less than 1.0. However, the use of MQL helped the process to be more stable and capable. Results obtained showed that the process variation was greatly reduced by using MQL in micro end-milling of Inconel 718.
NASA Astrophysics Data System (ADS)
Velásquez, A. A.; Marín, C. C.; Urquijo, J. P.
2018-03-01
We present the process of synthesis and characterization of magnetite-maghemite nanoparticles by the ball milling method. The particles were synthesized in a planetary ball mill equipped with vials and balls of tempered steel, employing dry and wet conditions. For dry milling, we employed microstructured analytical-grade hematite (α-Fe2O3), while for wet milling, we mixed hematite and deionized water. Milling products were characterized by X-ray diffraction, transmission electron microscopy, room temperature Mössbauer spectroscopy, vibrating sample magnetometry, and atomic absorption spectroscopy. The Mössbauer spectrum of the dry milling product was well fitted with two sextets of hematite, while the spectrum of the wet milling product was well fitted with three sextets of spinel phase. X-ray measurements confirmed the phases identified by Mössbauer spectroscopy in both milling conditions and a reduction in the crystallinity of the dry milling product. TEM measurements showed that the products of dry milling for 100 h and wet milling for 24 h consist of aggregates of nanoparticles distributed in size, with mean particle size of 10 and 15 nm, respectively. Magnetization measurements of the wet milling product showed little coercivity and a saturation magnetization around 69 emu g-1, characteristic of a nano-spinel system. Atomic absorption measurements showed that the chromium contamination in the wet milling product is approximately two orders of magnitude greater than that found in the dry milling product for 24 h, indicating that the material of the milling bodies, liberated more widely in wet conditions, plays an important role in the conversion hematite-spinel phase.
Atomic-scale thermocapillary flow in focused ion beam milling
NASA Astrophysics Data System (ADS)
Das, Kallol; Johnson, Harley; Freund, Jonathan
2016-11-01
Focused ion beams (FIB) offer an attractive tool for nanometer-scale manufacturing and material processing, particularly because they can be focused to a few nanometer diameter spot. This motivates their use for many applications, such as sample preparation for transmission electron microscopy (TEM), forming nanometer scale pores in thin films for DNA sequencing. Despite its widespread use, the specific mechanisms of FIB milling, especially at high ion fluxes for which significant phase change might occur, remains incompletely understood. Here we investigate the process of nanopore fabrication in thin Si films using molecular dynamics simulation where Ga+ ions are used as the focused ions. For a range of ion intensities in a realistic configuration, a recirculating melt region develops, which is seen to flow with a symmetrical pattern, counter to how it would flow were it is driven by the ion momentum flux. Such flow is potentially important for the shape and composition of the formed structures. Relevant stress scales and estimated physical properties of silicon under these extreme conditions support the importance thermocapillary effects. A continuum flow model with Marangoni forcing reproduces the flow.
Corry, Janet E L; Allen, V M; Hudson, W R; Breslin, M F; Davies, R H
2002-01-01
The prevalence and types of salmonella in broiler chickens during transportation and during slaughter and dressing were studied. This was part of a comprehensive investigation of salmonellas in two UK poultry companies, which aimed to find the origins and mechanisms of salmonella contamination. Salmonellas were isolated using cultural methods. Serovars of Salmonella detected during rearing were usually also found in a small proportion of birds on the day of slaughter and on the carcasses at various points during processing. There was little evidence of salmonellas spreading to large numbers of carcasses during processing. Many serovars found in the feedmills or hatcheries were also detected in the birds during rearing and/or slaughter. Transport crates were contaminated with salmonellas after washing and disinfection. Prevalence of salmonellas fell in the two companies during this survey. A small number of serovars predominated in the processing plants of each company. These serovars originated from the feed mills. Reasons for transport crate contamination were: (1) inadequate cleaning, resulting in residual faecal soiling; (2) disinfectant concentration and temperature of disinfectant too low; (3) contaminated recycled flume water used to soak the crates. Efforts to control salmonella infection in broilers need to concentrate on crate cleaning and disinfection and hygiene in the feed mills.
Toolpath strategy for cutter life improvement in plunge milling of AISI H13 tool steel
NASA Astrophysics Data System (ADS)
Adesta, E. Y. T.; Avicenna; hilmy, I.; Daud, M. R. H. C.
2018-01-01
Machinability of AISI H13 tool steel is a prominent issue since the material has the characteristics of high hardenability, excellent wear resistance, and hot toughness. A method of improving cutter life of AISI H13 tool steel plunge milling by alternating the toolpath and cutting conditions is proposed. Taguchi orthogonal array with L9 (3^4) resolution will be employed with one categorical factor of toolpath strategy (TS) and three numeric factors of cutting speed (Vc), radial depth of cut (ae ), and chip load (fz ). It is expected that there are significant differences for each application of toolpath strategy and each cutting condition factor toward the cutting force and tool wear mechanism of the machining process, and medial axis transform toolpath could provide a better tool life improvement by a reduction of cutting force during machining.
Although evidence indicates that exposure to effluent from paper pulp mills (PME) can alter the body condition, secondary sexual characteristics, and reproductive success of aquatic organisms, there is currently little understanding of the biochemical mechanisms for these effects...
Degradation of TATP, TNT, and RDX using mechanically alloyed metals
NASA Technical Reports Server (NTRS)
Geiger, Cherie (Inventor); Sigman, Michael (Inventor); Fidler, Rebecca (Inventor); Clausen, Christian (Inventor)
2012-01-01
Bimetallic alloys prepared in a ball milling process, such as iron nickel (FeNi), iron palladium (FePd), and magnesium palladium (MgPd) provide in situ catalyst system for remediating and degrading nitro explosive compounds. Specifically, munitions, such as, 2,4,6-trinitrotoluene (TNT), cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX), nitrocellulose and nitroglycerine that have become contaminants in groundwater, soil, and other structures are treated on site to remediate explosive contamination.
Characterization of water based nanofluid for quench medium
NASA Astrophysics Data System (ADS)
Kresnodrianto; Harjanto, S.; Putra, W. N.; Ramahdita, G.; Yahya, S. S.; Mahiswara, E. P.
2018-04-01
Quenching has been a valuable method in steel hardening method especially in industrial scale. The hardenability of the metal alloys, the thickness of the component, and the geometry is some factors that can affect the choice of quench medium. Improper quench media can cause the material to become too brittle, suffers some geometric distortion, and undesirable residual stress that will cause some effect on the mechanical property and fracture mechanism of a component. Recently, nanofluid as a quench medium has been used for better quenching performance and has been studied using several different fluids and nanoparticles. Some of frequently used solvents include polymers, vegetable oils, and mineral oil, and nanoparticles frequently used include CuO, ZnO, and Alumina. In this research, laboratory-grade carbon powder were used as nanoparticle. Water was used as the fluid base in this research as the main observation focus. Carbon particles were obtain using a top-down method, whereas planetary ball mill was used to ground laboratory grade carbon powder to decrease the particle size. Milling speed and duration were set at 500 rpm and 15 hours. Field Emission Scanning Electron Microscope (FE-SEM), and Energy Dispersive X-Ray (EDX) measurement were carried out to determine the particle size, material identification, particle morphology, and surface change of samples. Nanofluid was created by mixing percentage of carbon nanoparticles with water using ultrasonic vibration for 280s. The carbon nanoparticle content in nanofluid quench mediums for this research were varied at 0.1%, 0.2%, 0.3%, 0.4, and 0.5 % volume. Furthermore, these mediums were used to quench JIS S45C or AISI 1045 carbon steel samples which austenized at 1000°C. Hardness testing and metallography observation were then conducted to further check the effect of different quench medium in steel samples. Preliminary characterizations showed that carbon particles dimension after milling was still in sub-micron stage, hundreds of nanometres to be precise. Therefore, the milling process parameters are needed to be optimized further.
NASA Astrophysics Data System (ADS)
Tang, H. P.; Wang, J.; Song, C. N.; Liu, N.; Jia, L.; Elambasseril, J.; Qian, M.
2017-03-01
Sheet (0.41-4.80 mm thick) or thin plate structures commonly exist in additively manufactured Ti-6Al-4V components for load-bearing applications. A batch of 64 Ti-6Al-4V sheet samples with dimensions of 210/180 mm × 42 mm × 3 mm have been additively manufactured by selective electron beam melting (SEBM). A comprehensive assessment was then made of their density, surface flatness, microstructure, and mechanical properties in both as-built and hot isostatically pressed conditions, including the influence of the hot isostatic pressing (HIP) temperature. In particular, standard long tensile (156 mm long, 2 mm thick) and fatigue (206 mm long, 2 mm thick) test sheet samples were used for assessment. As-built SEBM Ti-6Al-4V sheet samples with machined surfaces fully satisfied the minimum tensile property requirements for mill-annealed TIMETAL Ti-6Al-4V sheet products, whereas HIP-processed samples (2 mm thick) with machined surfaces achieved a high cycle fatigue (HCF) strength of 625 MPa (R = 0.06, 107 cycles), similar to mill-annealed Ti-6Al-4V (500-700 MPa). The unflatness was limited to 0.2 mm in both the as-built and HIP-processed conditions. A range of other revealing observations was discussed for the additive manufacturing of the Ti-6Al-4V sheet structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Jiazhuo; Zhang, Kun; Zhao, Qinghua
Novel LDH intercalated with organic aliphatic long-chain anion was large-scale synthesized innovatively by high-energy ball milling in one pot. The linear low density polyethylene (LLDPE)/layered double hydroxides (LDH) composite films with enhanced heat retention, thermal, mechanical, optical and water vapor barrier properties were fabricated by melt blending and blowing process. FT IR, XRD, SEM results show that LDH particles were dispersed uniformly in the LLDPE composite films. Particularly, LLDPE composite film with 1% LDH exhibited the optimal performance among all the composite films with a 60.36% enhancement in the water vapor barrier property and a 45.73 °C increase in themore » temperature of maximum mass loss rate compared with pure LLDPE film. Furthermore, the improved infrared absorbance (1180–914 cm{sup −1}) of LLDPE/LDH films revealed the significant enhancement of heat retention. Therefore, this study prompts the application of LLDPE/LDH films as agricultural films with superior heat retention. - Graphical abstract: The fabrication process of LLDPE/LDH composite films. - Highlights: • LDH with basal spacing of 4.07 nm was synthesized by high-energy ball milling. • LLDPE composite films with homogeneous LDH dispersion were fabricated. • The properties of LLDPE/LDH composite films were improved. • LLDPE/LDH composite films show superior heat retention property.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang , Jing; Bao, Wurigumula; Ma, Lu
2015-11-09
Silicon monoxide is a promising anode candidate because of its high theoretical capacity and good cycle performance. To solve the problems associated with this material, including large volume changes during charge-discharge processes, we report a ternary hierarchical silicon oxide–nickel–graphite composite prepared by a facile two-step ball-milling method. The composite consists of nano-Si dispersed silicon oxides embedded in nano-Ni/graphite matrices (Si@SiOx/Ni/graphite). In the composite, crystalline nano-Si particles are generated by the mechanochemical reduction of SiO by ball milling with Ni. These nano-Si dispersed oxides have abundant electrochemical activity and can provide high Li-ion storage capacity. Furthermore, the milled nano-Ni/graphite matrices stickmore » well to active materials and interconnect to form a crosslinked framework, which functions as an electrical highway and a mechanical backbone so that all silicon oxide particles become electrochemically active. Owing to these advanced structural and electrochemical characteristics, the composite enhances the utilization efficiency of SiO, accommodates its large volume expansion upon cycling, and has good ionic and electronic conductivity. The composite electrodes thus exhibit substantial improvements in electrochemical performance. This ternary hierarchical Si@SiOx/Ni/graphite composite is a promising candidate anode material for high-energy lithium-ion batteries. Additionally, the mechanochemical ball-milling method is low cost and easy to reproduce, indicating potential for the commercial production of the composite materials.« less
Fractal and Chaos Analysis for Dynamics of Radon Exhalation from Uranium Mill Tailings
NASA Astrophysics Data System (ADS)
Li, Yongmei; Tan, Wanyu; Tan, Kaixuan; Liu, Zehua; Xie, Yanshi
2016-08-01
Tailings from mining and milling of uranium ores potentially are large volumes of low-level radioactive materials. A typical environmental problem associated with uranium tailings is radon exhalation, which can significantly pose risks to environment and human health. In order to reduce these risks, it is essential to study the dynamical nature and underlying mechanism of radon exhalation from uranium mill tailings. This motivates the conduction of this study, which is based on the fractal and chaotic methods (e.g. calculating the Hurst exponent, Lyapunov exponent and correlation dimension) and laboratory experiments of the radon exhalation rates. The experimental results show that the radon exhalation rate from uranium mill tailings is highly oscillated. In addition, the nonlinear analyses of the time series of radon exhalation rate demonstrate the following points: (1) the value of Hurst exponent much larger than 0.5 indicates non-random behavior of the radon time series; (2) the positive Lyapunov exponent and non-integer correlation dimension of the time series imply that the radon exhalation from uranium tailings is a chaotic dynamical process; (3) the required minimum number of variables should be five to describe the time evolution of radon exhalation. Therefore, it can be concluded that the internal factors, including heterogeneous distribution of radium, and randomness of radium decay, as well as the fractal characteristics of the tailings, can result in the chaotic evolution of radon exhalation from the tailings.
Wang, Jing; Bao, Wurigumula; Ma, Lu; Tan, Guoqiang; Su, Yuefeng; Chen, Shi; Wu, Feng; Lu, Jun; Amine, Khalil
2015-12-07
Silicon monoxide is a promising anode candidate because of its high theoretical capacity and good cycle performance. To solve the problems associated with this material, including large volume changes during charge-discharge processes, we report a ternary hierarchical silicon oxide-nickel-graphite composite prepared by a facile two-step ball-milling method. The composite consists of nano-Si dispersed silicon oxides embedded in nano-Ni/graphite matrices (Si@SiOx /Ni/graphite). In the composite, crystalline nano-Si particles are generated by the mechanochemical reduction of SiO by ball milling with Ni. These nano-Si dispersed oxides have abundant electrochemical activity and can provide high Li-ion storage capacity. Furthermore, the milled nano-Ni/graphite matrices stick well to active materials and interconnect to form a crosslinked framework, which functions as an electrical highway and a mechanical backbone so that all silicon oxide particles become electrochemically active. Owing to these advanced structural and electrochemical characteristics, the composite enhances the utilization efficiency of SiO, accommodates its large volume expansion upon cycling, and has good ionic and electronic conductivity. The composite electrodes thus exhibit substantial improvements in electrochemical performance. This ternary hierarchical Si@SiOx /Ni/graphite composite is a promising candidate anode material for high-energy lithium-ion batteries. Additionally, the mechanochemical ball-milling method is low cost and easy to reproduce, indicating potential for the commercial production of the composite materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reactive Fusion Welding for Ultra-High Temperature Ceramic Composite Joining
2015-03-16
Titanium diboride TiC-Titanium carbide C-Carbon SiC - Silicon carbide B4C-Boron carbide 67 W-Tungsten WC-Tungsten carbide ZrB2-20ZrC-ZrB2...ceramics with a nominal carbide content of 20 vol% were prepared. Starting powders were mechanically mixed by ball milling ZrB2 (H.C. Starck; Grade B...0.50 wt%, or ~1.5 vol%. Milling was carried out in acetone for 2 hours using tungsten carbide media. After milling, the powder slurry was dried
2014-05-01
particles in the sample. Mass spectrometry was, therefore, used to look for the signature of boranes in the milling jar headspace gas , and also in gases... headspace gas collected from the jar after milling in H2. For this experiment, argon was added to the initial gas mixture at a 12:1 H2:Ar ratio, in...Distribution A: approved for public release; distribution unlimited. 29 Mass spectrometry analysis. After milling selected samples, headspace gas
Effect of mechanical milling on barium titanate (BaTiO3) perovskite
NASA Astrophysics Data System (ADS)
Singh, Rajan Kumar; Sanodia, Sagar; Jain, Neha; Kumar, Ranveer
2018-05-01
Commercial Barium Titanate BaTiO3 (BT) is milled by planetary ball mill in acetone medium using stainless steel bowl & ball for different hours. BT is an important perovskite oxide with structure ABO3. BT has applications in electro-optic devices, energy storing devices such as photovoltaic cells, thermistors, multiceramic capacitors & DRAMs etc. BT is non-toxic & environment friendly ceramic with high dielectric and piezoelectric property so it can be used as the substitute of PZT & PbTiO3. Here, we have investigated the effect of milling time and temperature on particle size and phase transition of BT powder. We used use Raman spectroscopy for studying the spectra of BT; XRD is used for structural study. Intensity (height) of Raman spectra and XRD spectra continuously decrease with increasing the milling hours and width if these spectra increases which indicates, decrease in BT size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rojas-Chavez, H., E-mail: uu_gg_oo@yahoo.com.mx; Reyes-Carmona, F.; Jaramillo-Vigueras, D.
2011-10-15
Highlights: {yields} PbSe synthesized from PbO instead of Pb powder do not require an inert atmosphere. {yields} During high-energy milling oxygen has to be chemically reduced from the lead oxide. {yields} Solid-state and solid-gas chemical reactions promote both solid and gaseous products. -- Abstract: Both solid-solid and gas-solid reactions have been traced during high-energy milling of Se and PbO powders under vial (P, T) conditions in order to synthesize the PbSe phase. Chemical and thermodynamic arguments are postulated to discern the high-energy milling mechanism to transform PbO-Se micropowders onto PbSe-nanocrystals. A set of reactions were evaluated at around room temperature.more » Therefore an experimental campaign was designed to test the nature of reactions in the PbO-Se system during high-energy milling.« less
Naftz, David L.; Ranalli, Anthony J.; Rowland, Ryan C.; Marston, Thomas M.
2011-01-01
In 2007, the Ute Mountain Ute Tribe requested that the U.S. Environmental Protection Agency and U.S. Geological Survey conduct an independent evaluation of potential offsite migration of radionuclides and selected trace elements associated with the ore storage and milling process at an active uranium mill site near White Mesa, Utah. Specific objectives of this study were (1) to determine recharge sources and residence times of groundwater surrounding the mill site, (2) to determine the current concentrations of uranium and associated trace elements in groundwater surrounding the mill site, (3) to differentiate natural and anthropogenic contaminant sources to groundwater resources surrounding the mill site, (4) to assess the solubility and potential for offsite transport of uranium-bearing minerals in groundwater surrounding the mill site, and (5) to use stream sediment and plant material samples from areas surrounding the mill site to identify potential areas of offsite contamination and likely contaminant sources.
Improved oral bioavailability of probucol by dry media-milling.
Li, Jia; Yang, Yan; Zhao, Meihui; Xu, Hui; Ma, Junyuan; Wang, Shaoning
2017-09-01
The polymer/probucol co-milled mixtures were prepared to improve drug dissolution rate and oral bioavailability. Probucol, a BCS II drug, was co-milled together with Copovidone (Kollidon VA64, VA64), Soluplus, or MCC using the dry media-milling process with planetary ball-milling equipment. The properties of the milled mixtures including morphology, crystal form, vitro drug dissolution and in vivo oral bioavailability in rats were evaluated. Probucol existed as an amorphous in the matrix of the co-milled mixtures containing VA64, which helped to enhance drug dissolution. The ternary mixture composed of VA64, RH40, and probucol showed increased dissolution rates in both sink and non-sink conditions. It also had a higher oral bioavailability compared to the reference formulation. Dry-media milling of binary or ternary mixtures composed of drug, polymer and surfactant possibly have wide applications to improve dissolution rate and oral bioavailability of water-insoluble drugs. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Matras, A.; Kowalczyk, R.
2014-11-01
The analysis results of machining accuracy after the free form surface milling simulations (based on machining EN AW- 7075 alloys) for different machining strategies (Level Z, Radial, Square, Circular) are presented in the work. Particular milling simulations were performed using CAD/CAM Esprit software. The accuracy of obtained allowance is defined as a difference between the theoretical surface of work piece element (the surface designed in CAD software) and the machined surface after a milling simulation. The difference between two surfaces describes a value of roughness, which is as the result of tool shape mapping on the machined surface. Accuracy of the left allowance notifies in direct way a surface quality after the finish machining. Described methodology of usage CAD/CAM software can to let improve a time design of machining process for a free form surface milling by a 5-axis CNC milling machine with omitting to perform the item on a milling machine in order to measure the machining accuracy for the selected strategies and cutting data.
Hajeb, Parvaneh; Herrmann, Susan S; Poulsen, Mette E
2017-07-19
The guidance document SANTE 11945/2015 recommends that cereal samples be milled to a particle size preferably smaller than 1.0 mm and that extensive heating of the samples should be avoided. The aim of the present study was therefore to investigate the differences in milling procedures, obtained particle size distributions, and the resulting pesticide residue recovery when cereal samples were milled at the European Union National Reference Laboratories (NRLs) with their routine milling procedures. A total of 23 NRLs participated in the study. The oat and rye samples milled by each NRL were sent to the European Union Reference Laboratory on Cereals and Feedingstuff (EURL) for the determination of the particle size distribution and pesticide residue recovery. The results showed that the NRLs used several different brands and types of mills. Large variations in the particle size distributions and pesticide extraction efficiencies were observed even between samples milled by the same type of mill.
Bioplastic production using wood mill effluents as feedstock.
Ben, M; Mato, T; Lopez, A; Vila, M; Kennes, C; Veiga, M C
2011-01-01
Fibreboard production is one of the most important industrial activities in Galicia (Spain). Great amounts of wastewater are generated, with properties depending on the type of wood, treatment process, final product and water reusing, among others. These effluents are characterized by a high chemical oxygen demand, low pH and nutrients limitation. Although anaerobic digestion is one of the most suitable processes for the treatment, lately bioplastics production (mainly polyhydroxyalkanoates) from wastewaters with mixed cultures is being evaluated. Substrate requirements for these processes consist of high organic matter content and low nutrient concentration. Therefore, wood mill effluents could be a suitable feedstock. In this work, the possibility of producing bioplastics from to wood mill effluents is evaluated. First, wood mill effluent was converted to volatile fatty acids in an acidogenic reactor operated at two different hydraulic retention times of 1 and 1.5 d. The acidification percentage obtained was 37% and 42%, respectively. Then, aerobic batch assays were performed using fermented wood mill effluents obtained at different hydraulic retention times. Assays were developed using different cultures as inoculums. The maximum storage yield of 0.57 Cmmol/Cmmol was obtained when when the culture was enriched on a synthetic media.
Stolle, Achim; Schmidt, Robert; Jacob, Katharina
2014-01-01
The scale-up of the Knoevenagel-condensation between vanillin and barbituric acid carried out in planetary ball mills is investigated from an engineering perspective. Generally, the reaction proceeded in the solid state without intermediate melting and afforded selectively only one product. The reaction has been used as a model to analyze the influence and relationship of different parameters related to operation in planetary ball mills. From the viewpoint of technological parameters the milling ball diameter, dMB, the filling degree with respect to the milling balls' packing, ΦMB,packing, and the filling degree of the substrates with respect to the void volume of the milling balls' packing, ΦGS, have been investigated at different reaction scales. It was found that milling balls with small dMB lead to higher yields within shorter reaction time, treaction, or lower rotation frequency, rpm. Thus, the lower limit is set considering the technology which is available for the separation of the milling balls from the product after the reaction. Regarding ΦMB,packing, results indicate that the optimal value is roughly 50% of the total milling beakers' volume, VB,total, independent of the reaction scale or reaction conditions. Thus, 30% of VB,total are taken by the milling balls. Increase of the initial batch sizes changes ΦGS significantly. However, within the investigated parameter range no negative influence on the yield was observed. Up to 50% of VB,total can be taken over by the substrates in addition to 30% for the total milling ball volume. Scale-up factors of 15 and 11 were realized considering the amount of substrates and the reactor volume, respectively. Beside technological parameters, variables which influence the process itself, treaction and rpm, were investigated also. Variation of those allowed to fine-tune the reaction conditions in order to maximize the yield and minimize the energy intensity.
Peculiarities of binding composition production in vortex jet mill
NASA Astrophysics Data System (ADS)
Zagorodnyuk, L. Kh; Lesovik, V. S.; Sumskoy, D. A.; Elistratkin, M. Yu; Makhortov, D. S.
2018-03-01
The article investigates the disintegration of perlite production waste in a vortex jet mill; the regularities of milling were established. Binding compositions were obtained at different ratios of cement vs. perlite sand production waste in the vortex jet mill in various milling regimes. The peculiarities of milling processes were studied, and technological and physicomechanical properties of the binding compositions were determined as well. The microstructure of the cement stones made of activated Portland cement and binding compositions in the vortex jet mill was elucidated by electron microscopy. The open pores of the cement-binding compositions prepared using perlite fillers were found to be filled by newgrowths at different stages of collective growth. The microstructure of the binding compositions is dense due to rationally proportioned composition, effective mineral filler— perlite waste — that creates additional substrates for internal composite microstructure formation, mechanochemical activation of raw mixture, which allows obtaining composites with required properties.
Li, Meng; Zhang, Lu; Davé, Rajesh N; Bilgili, Ecevit
2016-04-01
As a drug-sparing approach in early development, vibratory milling has been used for the preparation of nanosuspensions of poorly water-soluble drugs. The aim of this study was to intensify this process through a systematic increase in vibration intensity and bead loading with the optimal bead size for faster production. Griseofulvin, a poorly water-soluble drug, was wet-milled using yttrium-stabilized zirconia beads with sizes ranging from 50 to 1500 μm at low power density (0.87 W/g). Then, this process was intensified with the optimal bead size by sequentially increasing vibration intensity and bead loading. Additional experiments with several bead sizes were performed at high power density (16 W/g), and the results were compared to those from wet stirred media milling. Laser diffraction, scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, and dissolution tests were used for characterization. Results for the low power density indicated 800 μm as the optimal bead size which led to a median size of 545 nm with more than 10% of the drug particles greater than 1.8 μm albeit the fastest breakage. An increase in either vibration intensity or bead loading resulted in faster breakage. The most intensified process led to 90% of the particles being smaller than 300 nm. At the high power intensity, 400 μm beads were optimal, which enhanced griseofulvin dissolution significantly and signified the importance of bead size in view of the power density. Only the optimally intensified vibratory milling led to a comparable nanosuspension to that prepared by the stirred media milling.
Mechanochemical processing for metals and metal alloys
Froes, Francis H.; Eranezhuth, Baburaj G.; Prisbrey, Keith
2001-01-01
A set of processes for preparing metal powders, including metal alloy powders, by ambient temperature reduction of a reducible metal compound by a reactive metal or metal hydride through mechanochemical processing. The reduction process includes milling reactants to induce and complete the reduction reaction. The preferred reducing agents include magnesium and calcium hydride powders. A process of pre-milling magnesium as a reducing agent to increase the activity of the magnesium has been established as one part of the invention.
OVERVIEW OF REMAINS OF DEWATERING BUILDING, LOOKING SOUTH TOWARD CYANIDE ...
OVERVIEW OF REMAINS OF DEWATERING BUILDING, LOOKING SOUTH TOWARD CYANIDE PROCESSING AREA. WATER USED IN PROCESSING AT THE STAMP MILL WAS CIRCULATED HERE FOR RECLAMATION. SANDS WERE SETTLED OUT AND DEPOSITED IN ONE OF TWO TAILINGS HOLDING AREAS. CLEARED WATER WAS PUMPED BACK TO THE MILL FOR REUSE. THIS PROCESS WAS ACCOMPLISHED BY THE USE OF SETTLING CONES, EIGHT FEET IN DIAMETER AND SIX FEET HIGH. THE REMAINS OF FOUR CONES ARE AT CENTER, BEHIND THE TANK IN THE FOREGROUND. TO THE LEFT IS THE MAIN ACCESS ROAD BETWEEN THE MILL AND THE PARKING LOT. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA
The MillSOT-A Spiral Orbit Tribometer on a Milling Machine
NASA Technical Reports Server (NTRS)
Pepper, Stephen V.
2014-01-01
A spiral orbit tribometer (SOT) intended to characterize friction and wear phenomena has been constructed on a milling machine. The instrument, essentially a retainerless thrust bearing with one ball and flat races, is exceedingly simple and inexpensive to construct. The capabilities of the tribometer to measure both the coefficient of friction and contact electrical resistance are demonstrated with clean specimens as well as with well known lubricants such as molybdenum disulphide and Krytox oil. Operation in a purged environment of inert gas is also demonstrated. The results with these lubricants are quite close to what is obtained by other methods. Suggestions for extending the capabilities of the tribometer are given. This arrangement may find use in university mechanical engineering laboratories to introduce and study rolling contact motion as well as for research in contact mechanics and tribology.
NASA Astrophysics Data System (ADS)
Almohaimeed, Sulaiman
Thermoelectric phenomenon is the science associated with converting thermal energy into electricity based on the Seebeck effect. Bismuth telluride Bi 2Te3 is currently considered to be the state-of-the art thermoelectric material with high efficiency for low temperature applications and is therefore attractive for energy harvesting processes. Nanostructures thermoelectric materials provide a novel way to enhance thermoelectric properties and are considered to be the efficient building blocks for thermoelectric devices. In this work, n- and p-type bulk nanocrystalline Bismuth telluride thermoelectric materials were prepared by mechanical alloying / ball milling technique. The produced nano-crystalline powder were then consolidated using hot compaction under inert atmosphere. The novel processing of these materials maintained the nanostructure in both n- and p-type. Structural properties of the n- and p-types were characterized using X ray diffraction, scanning electron microscopy and transmission electron microscope. These techniques proved that the average grian size of the milled thermoelectric materials was about 20 nm. Accordingly, a Significant improvement in the figure of merit (ZT) is achieved through significant lattice thermal conductivity reduction and Seebeck coefficient improvement. The maximum ZT value for the n-type nanocrystalline thermoelectric was 1.67 at 373 K while the maximum ZT value for the p-type was 1.78 at the same temperature. These values are considered to be the highest values reported for similar materials. Evaluation of the mechanical properties was also performed through microhardness measurement using Vickers micro-hardness test, which shows an enhancement in mechanical properties for the produced materials.
Effect of milling on the plastic and the elastic stiffness of lactose particles.
Pazesh, Samaneh; Persson, Ann-Sofie; Berggren, Jonas; Alderborn, Göran
2018-03-01
The purpose of this study was to investigate the effect of degree of disorder of a series of α-lactose monohydrate powders, prepared by milling for different time periods, on the plastic and the elastic stiffness of the particles. As references, a series of physical mixtures consisting of original crystalline particles and amorphous particles obtained by spray-drying was used. In addition, the effect of powder pre-storage humidity on the mechanical properties was investigated. For milled particles of a low degree of disorder, a decreased particle size increased the particle plastic stiffness. For milled particles of constant particle size, the plastic stiffness decreased with an increased degree of disorder while the elastic stiffness seemed nearly independent of the degree of disorder. The presence of moisture caused a recrystallisation of milled particles with low degree of disorder which increased their plastic stiffness. For the physical mixtures of crystalline and amorphous particles, similar relationships between plastic stiffness and amorphous content as for the milled powders were obtained. A reasonable explanation is that the nature of the milled particles is represented by a two-state system with crystalline and amorphous domains. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Forest products industries of the southern Middle-Atlantic states, 1985 - 1986
Eric H. Wharton; Kevin Mullarkey; Kevin Mullarkey
1993-01-01
Evaluates regional timber output of Maryland, Delaware, and New Jersey. Results are based on a survey of primary processing mills located in these states and of mills in other states that used wood from the region. Contains statistics on industrial timber production and mill receipts and the production and final end use of manufacturing residues. Comparisons are made...
USDA-ARS?s Scientific Manuscript database
Olive mill wastewater (OMWW) from two California mills (3-phase and 2-phase) was subjected to a two-step membrane filtration process using a novel vibratory system. The obtained reverse osmosis retentate (RO-R) is a phenolic-rich co-product stream, and the reverse osmosis permeate is a near-pure wat...
Resolving the pulpwood canvass with inventory harvest information
Joseph M. McCollum; Tony G. Johnson
2012-01-01
The Resource Use section of the Forest Inventory and Analysis (FIA) Program has done a canvas of wood processing mills for timber product output (TPO) throughout the southern United States. Pulpmills in the South are canvassed on an annual basis, while all other mills (e.g., sawmills, veneer mills, etc.) are canvassed every two years. Attempts have been made to graph...
Furniture rough mill costs evaluated by computer simulation
R. Bruce Anderson
1983-01-01
A crosscut-first furniture rough mill was simulated to evaluate processing and raw material costs on an individual part basis. Distributions representing the real-world characteristics of lumber, equipment feed speeds, and processing requirements are programed into the simulation. Costs of parts from a specific cutting bill are given, and effects of lumber input costs...
Quality control troubleshooting tools for the mill floor
John Dramm
2000-01-01
Statistical Process Control (SPC) provides effective tools for improving process quality in the forest products industry resulting in reduced costs and improved productivity. Implementing SPC helps identify and locate problems that occur in wood products manufacturing. SPC tools achieve their real value when applied on the mill floor for monitoring and troubleshooting...
Wear of carbide inserts with complex surface treatment when milling nickel alloy
NASA Astrophysics Data System (ADS)
Fedorov, Sergey; Swe, Min Htet; Kapitanov, Alexey; Egorov, Sergey
2018-03-01
One of the effective ways of strengthening hard alloys is the creating structure layers on their surface with the gradient distribution of physical and mechanical properties between the wear-resistant coating and the base material. The article discusses the influence of the near-surface layer which is modified by low-energy high-current electron-beam alloying and the upper anti-friction layer in a multi-component coating on the wear mechanism of the replaceable multifaceted plates in the dry milling of the difficult to machine nickel alloys.
NASA Astrophysics Data System (ADS)
Sanwani, Edy; Ikhwanto, Muhammad
2017-01-01
The objective of this paper is to investigate the effect of ball filling and ratio of feed to grinding balls on the kinetic of grinding of ferronickel slag in a laboratory scale ball mill. The experiments were started by crushing the ferronickel slag samples using a roll crusher to produce -3 mesh (-6.7 mm) product. This product, after sampling and sample dividing processes, was then used as feed for grinding process. The grinding was performed with variations of ball filling and ratio of feed to grinding balls for 150 minutes. At every certain time interval, particle size analysis was carried out on the grinding product. The results of the experiments were also used to develop linear regression model of the effect of grinding variables on the P80 of the product. Based on this study, it was shown that P80 values of the grinding products declined sharply until 70 minutes of grinding time due to the dominant mechanism of impact breakage and then decreased slowly after 70 minutes until 150 minutes of grinding time due to dominant mechanism of attrition breakage. Kinetics study of the grinding process on variations of grinding ball filling showed that the optimum rate of formation of fine particles for 20%, 30%, 40% and 50% mill volume was achieved at a particle size of 400 µm in which the best initial rate of formation occurred at 50% volume of mill. At the variations of ratio of feed to grinding balls it was shown that the optimum rate of grinding for the ratio of 1:10, 1: 8 and 1: 6 was achieved at a particle size of 400 µm and for the ratio of 1: 4 was at 841 µm in which the best initial rate of formation occurred at a 1:10 ratio. In this study, it was also produced two regression models that can predict the P80 value of the grinding product as a function of the variables of grinding time, ball filling and the ratio of the feed to grinding balls.
Li, Hailiang; Cui, Xiaoli; Tong, Yan; Gong, Muxin
2012-04-01
To compare inclusion effects and process conditions of two preparation methods-colloid mill and saturated solution-for beta-CD inclusion compound of four traditional Chinese medicine volatile oils and study the relationship between each process condition and volatile oil physical properties and the regularity of selective inclusion of volatile oil components. Volatile oils from Nardostachyos Radix et Rhizoma, Amomi Fructus, Zingiberis Rhizoma and Angelicaesinensis Radix were prepared using two methods in the orthogonal test. These inclusion compounds by optimized processes were assessed and compared by such methods as TLC, IR and scanning electron microscope. Inclusion oils were extracted by steam distillation, and the components found before and after inclusion were analyzed by GC-MS. Analysis showed that new inclusion compounds, but inclusion compounds prepared by the two processes had differences to some extent. The colloid mill method showed a better inclusion effect than the saturated solution method, indicating that their process conditions had relations with volatile oil physical properties. There were differences in the inclusion selectivity of components between each other. The colloid mill method for inclusion preparation is more suitable for industrial requirements. To prepare volatile oil inclusion compounds with heavy gravity and high refractive index, the colloid mill method needs longer time and more water, while the saturated solution method requires higher temperature and more beta-cyclodextrin. The inclusion complex prepared with the colloid mill method contains extended molecular weight chemical composition, but the kinds of components are reduced.
NASA Astrophysics Data System (ADS)
Song, Xiaolan; Wang, Yi; Zhao, Shanshan; An, Chongwei; Wang, Jingyu; Zhang, Jinglin
2018-04-01
Nanometer 2,2', 4,4', 6,6'-hexanitro-stilbene (HNS) and 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) were fabricated on a high-energy ball mill. The particle sizes of nano-HNS and nano-TATB were 98.4 and 57.8 nm, respectively. An SEM analysis was employed to image the micron morphology of nano-explosives. The particle size distribution was calculated by measuring the size of 300 particles in SEM images. XRD, IR, and XPS analyses were used to confirm whether the crystal phase, molecule structure, and surface elements were changed by the milling process. Thermal decomposition of nano-HNS and nano-TATB was investigated by differential scanning calorimetry (DSC) and thermal-infrared spectrometry online (DSC-IR) analyses. Using DSC traces collected from different heating rates, the kinetic and thermodynamic parameters of thermolysis of raw and nano-explosives were calculated (activation energy (EK), pre-exponential factor (lnAK), rate constant (k), activation heat (ΔH≠), activation free energy (ΔG≠), activation entropy (ΔS≠), critical temperature of thermal explosion (Tb), and critical heating rate of thermal explosion (dT/dt)Tb). The results indicated that nano-explosives were of different kinetic and thermodynamic properties from starting explosives. In addition, the gas products for thermal decomposition of nano-HNS and nano-TATB were detected. Although HNS and TATB are both nitro explosives, the decomposition products of the two were different. A mechanism to explain the difference is proposed.
Wang, Meng-Meng; Zhang, Cong-Cong; Zhang, Fu-Shen
2016-05-01
In the current study, an environmental benign process namely mechanochemical approach was developed for cobalt and lithium recovery from spent lithium-ion batteries (LIBs). The main merit of the process was that neither corrosive acid nor strong oxidant was applied. In the proposed process, lithium cobalt oxide (obtained from spent LIBs) was firstly co-grinded with various additives in a hermetic ball milling system, then Co and Li could be easily recovered by a water leaching procedure. It was found that EDTA was the most suitable co-grinding reagent, and 98% of Co and 99% of Li were respectively recovered under optimum conditions: LiCoO2 to EDTA mass ratio 1:4, milling time 4h, rotary speed 600r/min and ball-to-powder mass ratio 80:1, respectively. Mechanisms study implied that lone pair electrons provided by two nitrogen atoms and four hydroxyl oxygen atoms of EDTA could enter the empty orbit of Co and Li by solid-solid reaction, thus forming stable and water-soluble metal chelates Li-EDTA and Co-EDTA. Moreover, the separation of Co and Li could be achieved through a chemical precipitation approach. This study provides a high efficiency and environmentally friendly process for Co and Li recovery from spent LIBs. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Tiwen; Jia, Zhixin; Luo, Yuanfang; Jia, Demin; Peng, Zheng
2015-02-01
The epoxidized natural rubber (ENR) as an interfacial modifier was used to improve the mechanical and dynamical mechanical properties of NR/silica composites. In order to reveal the interaction mechanism between ENR and silica, the ENR/Silica model compound was prepared by using an open mill and the interfacial interaction of ENR with silica was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and stress-strain testing. The results indicated that the ring-opening reaction occurs between the epoxy groups of ENR chains and Si-OH groups on the silica surfaces and the covalent bonds are formed between two phases, which can improve the dispersion of silica in the rubber matrix and enhance the interfacial combination between rubber and silica. The ring-opening reaction occurs not only in vulcanization process but also in mixing process, meanwhile, the latter seems to be more important due to the simultaneous effects of mechanical force and temperature.
An integrated condition-monitoring method for a milling process using reduced decomposition features
NASA Astrophysics Data System (ADS)
Liu, Jie; Wu, Bo; Wang, Yan; Hu, Youmin
2017-08-01
Complex and non-stationary cutting chatter affects productivity and quality in the milling process. Developing an effective condition-monitoring approach is critical to accurately identify cutting chatter. In this paper, an integrated condition-monitoring method is proposed, where reduced features are used to efficiently recognize and classify machine states in the milling process. In the proposed method, vibration signals are decomposed into multiple modes with variational mode decomposition, and Shannon power spectral entropy is calculated to extract features from the decomposed signals. Principal component analysis is adopted to reduce feature size and computational cost. With the extracted feature information, the probabilistic neural network model is used to recognize and classify the machine states, including stable, transition, and chatter states. Experimental studies are conducted, and results show that the proposed method can effectively detect cutting chatter during different milling operation conditions. This monitoring method is also efficient enough to satisfy fast machine state recognition and classification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-02-01
Battelle`s electroacoustic dewatering (EAD) process improves the performance of mechanical dewatering processes for several food products (such as corn fiber) by superimposing electric and ultrasonic fields. EAD has the potential to save 0.027 to 0.035 quad/yr energy by 1995 in the food processing industry, which consumed 0.15 to 0.18 quad in 1986. This report covers Phase III for demonstrating the EAD prototype on corn wet milling products (corn fiber and gluten); only Task 1 (prototype preparation and planning) was completed. EAD performance was examined in the laboratory; availability of a test site was examined. The single-roll, postdewatering EAD belt pressmore » prototype can accept material predewatered by a screw press, centrifuge, or any other mechanical dewatering device. The two-belt system, utilizing a copper-polymer cathode belt, performed as well as the three-belt system used in Phase II.« less
Processing equipment for grinding of building powders
NASA Astrophysics Data System (ADS)
Fediuk, R. S.; Ibragimov, R. A.; Lesovik, V. S.; Pak, A. A.; Krylov, V. V.; Poleschuk, M. M.; Stoyushko, N. Y.; Gladkova, N. A.
2018-03-01
In the article questions of mechanical grinding up to nanosize of building powder materials are considered. In the process of mechanoactivation of the composite binder, active molecules of cement minerals arise when molecular packets are destroyed in the areas of defects and loosening of the metastable phase during decompensation of intermolecular forces. The process is accompanied by a change in the kinetics of hardening Portland cement. Mechanical processes in the grinding of mineral materials cause, together with an increase in their surface energy, the growth of the isobaric potential of the powders and, accordingly, their chemical activity, which also contributes to high adhesion strength when they come into contact with binders. Thus, a set of measures for mechanical activation allows more fully use the mass of components of the filled cement systems and regulate their properties. At relatively low costs, it is possible to provide an impressive and, importantly, easily repeatable in production conditions result. It is revealed that the use of a vario-planetary mill allows to achieve the best results on grinding the powder building materials.
Design and Manufacture of a Highly Reliable, Miniaturized and Low Mass Shutter Mechanism
NASA Technical Reports Server (NTRS)
Manhart, M.; Zeh, T.; Preibler, G.; Hurni, A.; Walter, I.; Helbert, J.; Hiesinger, H.
2010-01-01
This paper describes the development, manufacturing and testing of a lightweight shutter mechanism made of titanium for the MERTIS Instrument. MERTIS is a thermal infrared imaging spectrometer onboard ESA's future BepiColombo mission to Mercury. The mechanism is built as a parallelogram arrangement of flexible hinges, actuated by a voice coil. In a first test run, it was shown that the selected EDM processing led to the generation of titanium oxides and an oxygen-enriched surface layer on the substrate (so called alpha-case layer). In the revised version of the shutter, it was possible to manufacture the complex geometry by micro-milling and an adjacent pickling procedure. The adequacy of this approach was verified by lifetime and vibration testing.
NASA Astrophysics Data System (ADS)
Hadef, Fatma
2016-12-01
The last decade has witnessed an intensive research in the field of nanocrystalline materials due to their enhanced properties. A lot of processing techniques were developed in order to synthesis these novel materials, among them mechanical alloying or high-energy ball milling. In fact, mechanical alloying is one of the most common operations in the processing of solids. It can be used to quickly and easily synthesize a variety of technologically useful materials which are very difficult to manufacture by other techniques. One advantage of MA over many other techniques is that is a solid state technique and consequently problems associated with melting and solidification are bypassed. Special attention is being paid to the synthesis of alloys through reactions mainly occurring in solid state in many metallic ternary Fe-Al-X systems, in order to improve mainly Fe-Al structural and mechanical properties. The results show that nanocrystallization is the common result occurring in all systems during MA process. The aim of this work is to illustrate the uniqueness of MA process to induce phase transformation in metallic Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems.
NASA Astrophysics Data System (ADS)
Bayat, O.; Khavandi, A. R.; Ghasemzadeh, R.
2017-05-01
Effect of mechanical activation of TiO2 and Cr2O3 oxides as starting materials was investigated for direct synthesis of TiCr2. Differential thermal analysis (DTA) indicated that increasing the ball milling time resulted in lower exothermic reaction temperatures between molten Ca-Cr2O3 and molten Ca-TiO2. A model-free Kissinger type method was applied to DTA data to evaluate the reaction kinetics. The results reveal that the activation energy of the exothermic reactions decreased with increasing the milling time. The structure, oxygen content, and average particle sizes of the obtained TiCr2 product were affected by the ball milling time of the starting materials. Increasing the milling time from 10 to 40 h decreased the average particle size and oxygen content of the obtained TiCr2 from 10 to 2 μm and from 1690 to 1290 ppm, respectively. The X-ray diffraction (XRD) results showed that TiCr2 compounds with metastable bcc phase can be produced using nano-sized starting materials, while only a slight amount of bcc phase can be obtained in the TiCr2 compounds, using micron-sized starting materials. The TiCr2 obtained by this method had a hydrogen absorption capability of 0.63 wt % and the kinetics of the hydrogen absorption increased for the 40 h milled sample.
Angular approach combined to mechanical model for tool breakage detection by eddy current sensors
NASA Astrophysics Data System (ADS)
Ritou, M.; Garnier, S.; Furet, B.; Hascoet, J. Y.
2014-02-01
The paper presents a new complete approach for Tool Condition Monitoring (TCM) in milling. The aim is the early detection of small damages so that catastrophic tool failures are prevented. A versatile in-process monitoring system is introduced for reliability concerns. The tool condition is determined by estimates of the radial eccentricity of the teeth. An adequate criterion is proposed combining mechanical model of milling and angular approach.Then, a new solution is proposed for the estimate of cutting force using eddy current sensors implemented close to spindle nose. Signals are analysed in the angular domain, notably by synchronous averaging technique. Phase shifts induced by changes of machining direction are compensated. Results are compared with cutting forces measured with a dynamometer table.The proposed method is implemented in an industrial case of pocket machining operation. One of the cutting edges has been slightly damaged during the machining, as shown by a direct measurement of the tool. A control chart is established with the estimates of cutter eccentricity obtained during the machining from the eddy current sensors signals. Efficiency and reliability of the method is demonstrated by a successful detection of the damage.
Si-FeSi2/C nanocomposite anode materials produced by two-stage high-energy mechanical milling
NASA Astrophysics Data System (ADS)
Yang, Yun Mo; Loka, Chadrasekhar; Kim, Dong Phil; Joo, Sin Yong; Moon, Sung Whan; Choi, Yi Sik; Park, Jung Han; Lee, Kee-Sun
2017-05-01
High capacity retention Silicon-based nanocomposite anode materials have been extensively explored for use in lithium-ion rechargeable batteries. Here we report the preparation of Si-FeSi2/C nanocomposite through scalable a two-stage high-energy mechanical milling process, in which nano-scale Si-FeSi2 powders are besieged by the carbon (graphite/amorphous phase) layer; and investigation of their structure, morphology and electrochemical performance. Raman analysis revealed that the carbon layer structure comprised of graphitic and amorphous phase rather than a single amorphous phase. Anodes fabricated with the Si-FeSi2/C showed excellent electrochemical behavior such as a first discharge capacity of 1082 mAh g-1 and a high capacity retention until the 30th cycle. A remarkable coulombic efficiency of 99.5% was achieved within a few cycles. Differential capacity plots of the Si-FeSi2/C anodes revealed a stable lithium reaction with Si for lithiation/delithiation. The enhanced electrochemical properties of the Si-FeSi2/C nanocomposite are mainly attributed to the nano-size Si and stable solid electrolyte interface formation and highly conductive path driven by the carbon layer.
Ti-6Al-4V Additively Manufactured by Selective Laser Melting with Superior Mechanical Properties
NASA Astrophysics Data System (ADS)
Xu, W.; Sun, S.; Elambasseril, J.; Liu, Q.; Brandt, M.; Qian, M.
2015-03-01
The Achilles' heel of additively manufactured Ti-6Al-4V by selective laser melting (SLM) is its inferior mechanical properties compared with its wrought (forged) counterparts. Acicular α' martensite resulted from rapid cooling by SLM is primarily responsible for high strength but inadequate tensile ductility achieved in the as-fabricated state. This study presents a solution to eliminating the adverse effect of the nonequilibrium α' martensite. This is achieved by enabling in situ martensite decomposition into a novel ultrafine (200-300 nm) lamellar ( α + β) microstructure via the selection of an array of processing variables including the layer thickness, energy density, and focal offset distance. The resulting tensile elongation reached 11.4% while the yield strength was kept above 1100 MPa. These properties compare favorably with those of mill-annealed Ti-6Al-4V consisting of globular α and β. The fatigue life of SLM-fabricated Ti-6Al-4V with an ultrafine lamellar ( α + β) structure has approached that of the mill-annealed counterparts and is much superior to that of SLM-fabricated Ti-6Al-4V with α' martensite.
NASA Astrophysics Data System (ADS)
Choi, Sunho; Lee, Sewook; Park, Jongyeop; Nichols, William T.; Shin, Dongwook
2018-06-01
A lithium ion conductive 75Li2Sṡ25P2S5 glass-ceramics electrolyte is, for the first time, successfully synthesized via a new low-temperature solution technique (LTST) and compared to the conventional mechanical-milling technique. Both samples are composed of the highly lithium ion conductive thio-LISICON III analog phase. Due to the uniform dispersion of reactants in an organic liquid, the use of LTST produced significantly smaller and more uniform particle sizes (2.2 ± 1.68 μm) resulting in a 6.5 times higher specific surface area compared to the mechanically-milled sample. A pronounced enhancement of both the rate capability and cyclability is demonstrated for the LTST solid electrolyte sample due to the more intimate contact with the LiCoO2 active material. Furthermore, the LTST sample shows excellent electrochemical stability throughout the potential range of -1 to 5 V. These results suggest that the proposed technique using the optimized LTST process is promising for the preparation of 75Li2Sṡ25P2S5 solid electrolytes for use in advanced Li-ion batteries.
NASA Astrophysics Data System (ADS)
Overhagen, Christian; Mauk, Paul Josef
2018-05-01
For flat rolled products, the thickness profile in the transversal direction is one of the most important product properties. For further processing, a defined crown of the product is necessary. In the rolling process, several mechanical and thermal influences interact with each other to form the strip shape at the roll gap exit. In the present analysis, a process model for rolling of strip and sheet is presented. The core feature of the process model is a two-dimensional stress distribution model based on von Karman's differential equation. Sub models for the mechanical influences of work roll flattening as well as work and backup roll deflection and the thermal influence of work roll expansion have been developed or extended. The two-dimensional stress distribution serves as an input parameter for the roll deformation models. For work roll flattening, a three-dimensional model based on the Boussinesq problem is adopted, while the work and backup roll deflection, including contact flattening is calculated by means of finite beam elements. The thermal work roll crown is calculated with help of an axisymmetric numerical solution of the heat equation for the work roll, considering azimuthal averaging for the boundary conditions at the work roll surface. Results are presented for hot rolling of a strip in a seven-stand finishing train of a hot strip mill, showing the calculated evolution of the strip profile. A variation of the strip profile from the first to the 20th rolled strip is shown. This variation is addressed to the progressive increase of work roll temperature during the first 20 strips. It is shown that a CVC® system can lead to improvements in strip profile and therefore flatness.
Probing the magnetic moment of FePt micromagnets prepared by focused ion beam milling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Overweg, H. C.; Haan, A. M. J. den; Eerkens, H. J.
2015-08-17
We investigate the degradation of the magnetic moment of a 300 nm thick FePt film induced by Focused Ion Beam (FIB) milling. A 1 μm × 8 μm rod is milled out of a film by a FIB process and is attached to a cantilever by electron beam induced deposition. Its magnetic moment is determined by frequency-shift cantilever magnetometry. We find that the magnetic moment of the rod is μ = 1.1 ± 0.1 × 10{sup −12} Am{sup 2}, which implies that 70% of the magnetic moment is preserved during the FIB milling process. This result has important implications for atom trapping and magnetic resonance force microscopy, which are addressed inmore » this paper.« less
Bao, Di; Gao, Peng; Shen, Xiande; Chang, Cheng; Wang, Longqiang; Wang, Ying; Chen, Yujin; Zhou, Xiaoming; Sun, Shuchao; Li, Guobao; Yang, Piaoping
2014-02-26
The design and synthesis of new hydrogen storage nanomaterials with high capacity at low cost is extremely desirable but remains challenging for today's development of hydrogen economy. Because of the special honeycomb structures and excellent physical and chemical characters, fullerenes have been extensively considered as ideal materials for hydrogen storage materials. To take the most advantage of its distinctive symmetrical carbon cage structure, we have uniformly coated C60's surface with metal cobalt in nanoscale to form a core/shell structure through a simple ball-milling process in this work. The X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectra, high-solution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectrometry (EDX) elemental mappings, and X-ray photoelectron spectroscopy (XPS) measurements have been conducted to evaluate the size and the composition of the composites. In addition, the blue shift of C60 pentagonal pinch mode demonstrates the formation of Co-C chemical bond, and which enhances the stability of the as-obtained nanocomposites. And their electrochemical experimental results demonstrate that the as-obtained C60/Co composites have excellent electrochemical hydrogen storage cycle reversibility and considerably high hydrogen storage capacities of 907 mAh/g (3.32 wt % hydrogen) under room temperature and ambient pressure, which is very close to the theoretical hydrogen storage capacities of individual metal Co (3.33 wt % hydrogen). Furthermore, their hydrogen storage processes and the mechanism have also been investigated, in which the quasi-reversible C60/Co↔C60/Co-Hx reaction is the dominant cycle process.
New technology and energy-saving equipment for production of composite materials
NASA Astrophysics Data System (ADS)
Romanovich, A. A.; Glagolev, S. N.; Babaevsky, A. N.
2018-03-01
The article considers industrial technology and energy-saving equipment for cement and composite binder production with a reduction in energy intensity of the process up to 50% due to the synergetic effect during mechanic activation of the raw mix with the replacement of part of the clinker component with the mineral hydro-active additive. The technological process is based on the sequential introduction of components in dispersed phases into the feed mixture in the grinding path and at the stage of product separation with certain dispersed characteristics. The increase in the energy efficiency of the line is achieved by the joint operation of the press roller aggregate, which is the development of BSTU named after V.G. Shoukhov, and rotor-vortex mills of a very fine grinding of a new design. The experienced design of the aggregate with the device for deagglomeration of the pressed tape allows combining the processes of grinding and disaggregation of the pressed material, thereby reducing the operating costs and increasing the efficiency of using the grinding unit. Comparative tests of cement samples obtained in energy-saving aggregates (PRA + RVM) are given which allowed establishing that their beam strength for compression and bending is higher by 15-20% than the traditional method obtained in a ball mill. An analytical expression is also given that allows one to determine the power consumed for the deagglomeration of crushed and pressed material between the main rolls, taking into account the geometric dimensions of the rolls and the physico-mechanical characteristics of the material.
NASA Astrophysics Data System (ADS)
Amosa, Mutiu Kolade
2017-10-01
Sustainability of a membrane process depends on many factors of which fouling mitigation is the most central. Because membrane fouling phenomenon is very complex, extent of fouling potential of a feedwater with respect to a membrane has to be identified right from the design stage. This will acquaint engineers with the proper fouling mitigation measures during operation. This study presents a preliminary fouling data from the ultrafiltration of biotreated palm oil mill effluent (POME) after an upstream adsorption process. The flux decline is studied in a typical constant-pressure experiments with a cross-flow ultrafiltration of biotreated POME through Sartocon® polyethersulfone membranes (MWCOs 1, 5 and 10 kDa) at applied pressures of 40, 80 and 120 kPa. Results are examined, within the frame of the common blocking mechanisms and it was found that the blocking index η decreased from 2 to 0. Pore blocking phenomenon was successively observed from complete blocking ( η = 2) down to cake filtration ( η = 0), and the early blockage of the pores and a formation of a cake resulted in a limiting cake height. Thus, cake filtration could be best used to explain the fouling mechanisms of biotreated POME on the ultrafiltration membranes based on the R 2 values at all applied pressures. This demonstrates that the fouling was as a result of gradual reversible cake deposition which could easily be removed by less onerous cleaning methods. In addition, it could be concluded that the upstream adsorption reduced the particulate deposition on the membrane surface.
The effects of lumber length on part yields in gang-rip-first rough mills
Peter C. Hamner; Brian H. Bond; Janice K. Wiedenbeck
2002-01-01
The lumber processed in most rough mills typically arrives from vendors in packages of random width boards with lengths ranging from 8 to 16 feet. However, little attention has been given to analyzing how differences in board lengths affect rough mill yield given varying part-prioritization strategies and cutting bill scenarios. The objective of this study was to...
USDA-ARS?s Scientific Manuscript database
The California olive oil industry produces tons of 2-phase olive mill waste (2POMW) every year as a byproduct of the olive oil milling process. 2POMW is rich in health-promoting phenolic compounds, but it is greater than 60% moisture (wet basis) in its native form and thus expensive to store and tr...
Rough Mill Simulations Reveal That Productivity When Processing Short Lumber Can Be High
Janice K. Wiedenbeck; Philip A. Araman
1995-01-01
Handling rates and costs associated with using short-length lumber (less than 8 ft. long) in furniture and cabinet industry rough mills have been assumed to be prohibitive. Discrete-event systems simulation models of both a crosscut-first and gang-rip-first rough mill were built to measure the effect of lumber length on equipment utilization and the volume and value of...
Amiriyan, Mahdi; Blais, Carl; Savoie, Sylvio; Schulz, Robert; Gariépy, Mario; Alamdari, Houshang
2016-01-01
This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. PMID:28787917
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Cheng-Gang; Sun, Chang-Jung, E-mail: sun.3409@hotmail.com; Gau, Sue-Huai
2013-04-15
Highlights: ► Milling extracted MSWI fly ash. ► Increasing specific surface area, destruction of the crystalline texture, and increasing the amount of amorphous materials. ► Increasing heavy metal stability. ► Inducing pozzolanic reactions and increasing the early and later strength of the cement paste. - Abstract: A water extraction process can remove the soluble salts present in municipal solid waste incinerator (MSWI) fly ash, which will help to increase the stability of the synthetic materials produced from the MSWI fly ash. A milling process can be used to stabilize the heavy metals found in the extracted MSWI fly ash (EA)more » leading to the formation of a non-hazardous material. This milled extracted MSWI fly ash (MEA) was added to an ordinary Portland cement (OPC) paste to induce pozzolanic reactions. The experimental parameters included the milling time (96 h), water to binder ratios (0.38, 0.45, and 0.55), and curing time (1, 3, 7 and 28 days). The analysis procedures included inductively coupled plasma atomic emission spectroscopy (ICP/AES), BET, mercury intrusion porosimetry (MIP), X-ray diffraction (XRD), and nuclear magnetic resonance (NMR) imaging. The results of the analyses indicate that the milling process helped to stabilize the heavy metals in the MEA, with an increase in the specific surface area of about 50 times over that of OPC. The addition of the MEA to the OPC paste decreased the amount of Ca(OH){sub 2} and led to the generation of calcium–silicate–hydrates (C–S–H) which in turned increased the amount of gel pores and middle sized pores in the cement. Furthermore, a comparison shows an increase in the early and later strength over that of OPC paste without the addition of the milled extracted ash. In other words, the milling process could stabilize the heavy metals in the MEA and had an activating effect on the MEA, allowing it to partly substitute OPC in OPC paste.« less
Multiphysical FE-analysis of a front-end bending phenomenon in a hot strip mill
NASA Astrophysics Data System (ADS)
Ilmola, Joonas; Seppälä, Oskari; Leinonen, Olli; Pohjonen, Aarne; Larkiola, Jari; Jokisaari, Juha; Putaansuu, Eero
2018-05-01
In hot steel rolling processes, a slab is generally rolled to a transfer bar in a roughing process and to a strip in a hot strip rolling process. Over several rolling passes the front-end may bend upward or downward due to asymmetrical rolling conditions causing entry problems in the next rolling pass. Many different factors may affect the front-end bending phenomenon and are very challenging to measure. Thus, a customized finite element model is designed and built to simulate the front-end bending phenomenon in a hot strip rolling process. To simulate the functioning of the hot strip mill precisely, automated controlling logic of the mill must be considered. In this paper we studied the effect of roll bite friction conditions and amount of reduction on the front-end bending phenomenon in a hot strip rolling process.
Mauchauffee, S; Denieul, M-P; Coste, M
2012-01-01
Paper mill, chemistry, textile and food processing industries are high water consumers. Within the framework of the European project Aquafit4Use, the possibility to close the on-site water loop is studied. The aim is to find new technologies or innovative treatment trains to produce water that is 'fit for use' in the industrial process; an example of a paper mill is given. Laboratory-scale tests on nine technologies were carried out to determine the best suitable treatment train: anaerobic process (already on site) --> aerobic process (already on site) --> Flexible Fibre Filter Module --> softening --> nanofiltration --> evapoconcentration or ozonation on nanofiltration (NF) concentrate. This treatment train is currently compared on site at pilot scale to another treatment train including some modifications on the existing on-site biological treatment: anaerobic process --> softening --> membrane bioreactor --> nanofiltration --> evapoconcentration or ozonation of NF concentrate.
NASA Astrophysics Data System (ADS)
Teixidor, D.; Ferrer, I.; Ciurana, J.
2012-04-01
This paper reports the characterization of laser machining (milling) process to manufacture micro-channels in order to understand the incidence of process parameters on the final features. Selection of process operational parameters is highly critical for successful laser micromachining. A set of designed experiments is carried out in a pulsed Nd:YAG laser system using AISI H13 hardened tool steel as work material. Several micro-channels have been manufactured as micro-mold cavities varying parameters such as scanning speed (SS), pulse intensity (PI) and pulse frequency (PF). Results are obtained by evaluating the dimensions and the surface finish of the micro-channel. The dimensions and shape of the micro-channels produced with laser-micro-milling process exhibit variations. In general the use of low scanning speeds increases the quality of the feature in both surface finishing and dimensional.
Rigol, Anna; Latorre, Anna; Lacorte, Sílvia; Barceló, Damià
2004-02-01
The risk associated with wood extractives, biocides, and other additives in pulp and paper mill effluents was evaluated by performing a characterization of process waters and effluents in terms of toxicity and chemical analysis. The individual toxicity of 10 resin acids, two unsaturated fatty acids, and three biocides was estimated by measuring the bioluminescence inhibition with a ToxAlert 100 system. Median effective concentration values (EC50) of 4.3 to 17.9, 1.2 to 1.5, and 0.022 to 0.50 mg/L were obtained, respectively. Mixtures of these three families of compounds showed antagonistic effects. Chemical analysis of process waters was performed by liquid chromatography- and gas chromatography-mass spectrometry. Biocides such as 2-(thiocyanomethylthio)-benzotiazole (TCMTB) (EC50 = 0.022 mg/L) and 2,2-dibromo-3-nitrilpropionamide (DBNPA) (EC50 = 0.50 mg/L) were the most toxic compounds tested and were detected at concentrations of 16 and 59 microg/L, respectively, in a closed-circuit recycling paper mill. Process waters from kraft pulp mills, printing paper mills, and packing board paper mills showed the highest concentration of resin acids (up to 400 microg/L) and accounted for inhibition percentages up to 100%. Detergent degradation products such as nonylphenol (NP) and octylphenol (OP) and the plasticizer bisphenol A (BPA) were also detected in the waters at levels of 0.6 to 10.6, 0.3 to 1.4, and 0.7 to 187 microg/L, respectively. However, once these waters were biologically treated, the concentration of detected organic compounds diminished and the toxicity decreased in most cases to values of inhibition lower than 20%.
Fluid mechanics relevant to flow through pretreatment of cellulosic biomass.
Archambault-Léger, Véronique; Lynd, Lee R
2014-04-01
The present study investigates fluid mechanical properties of cellulosic feedstocks relevant to flow through (FT) pretreatment for biological conversion of cellulosic biomass. The results inform identifying conditions for which FT pretreatment can be implemented in a practical context. Measurements of pressure drop across packed beds, viscous compaction and water absorption are reported for milled and not milled sugarcane bagasse, switchgrass and poplar, and important factors impacting viscous flow are deduced. Using biomass knife-milled to pass through a 2mm sieve, the observed pressure drop was highest for bagasse, intermediate for switchgrass and lowest for poplar. The highest pressure drop was associated with the presence of more fine particles, greater viscous compaction and the degree of water absorption. Using bagasse without particle size reduction, the instability of the reactor during pretreatment above 140kg/m(3) sets an upper bound on the allowable concentration for continuous stable flow. Copyright © 2014. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Jalal, T.; Hossein Nedjad, S.; Khalili Molan, S.
2013-05-01
A nearly equiatomic MnNi alloy was fabricated from the elemental powders by means of mechanical alloying in a planetary ball milling apparatus. X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and measurements of magnetization were conducted to identify the structural states and properties of the prepared alloys. After ball milling for 20 h, a disordered face-centered cubic (f.c.c.) solid solution was formed which increased in lattice parameter by further milling up to 50 h. An exothermic reaction took place at around 300-400°C during continuous heating of the disordered f.c.c. solid solution. This reaction is attributed to a structural ordering leading to the formation of a face-centered tetragonal (f.c.t.) phase with L10 type ordering. Examination of the magnetic properties indicated that the structural ordering increases remnant magnetization and decreases coerecivity.
26. RW Meyer Sugar Mill: 18761889. Centrifugals, 1879, 1881. Manufacturer, ...
26. RW Meyer Sugar Mill: 1876-1889. Centrifugals, 1879, 1881. Manufacturer, unknown. Supplied by Honolulu Ironworks, Honolulu, Hawaii, 1879, 1881. View: Historical view, 1934, from T. T. Waterman collection, Hawaiian Sugar Planters' Association. Once the molasses was separated from the sugar crystals it flowed through the spouts in the base of the centrifugals. The centrifugals' pulleys can be seen underneath the centrifugal. The centrifugal on the right has been reinforced with seven metal bands. The handles for the clutch mechanism are located above the centrifugal. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
A Study of Mechanical Alloying of Metal Powders
1981-05-01
UYON STAYt~ENT (d ida .... Approved for public release, distribution unlimited -. "’ I’ T PJIu TIO N IT A T EMT• ( ofe~ • e ao . m .. M•A 2-9, If...RELATIVE INTENSITY OF TIlE (1i1) BRAGG REFLECTION, 316 STAINLESS STEEL ,. 2.5 w/o Ti02 POWDER MILLED 98 HOURS AT 300 RPM...micrograph. 316.2.5 w/o Ti02 milled at 300 RPM. Annealed 1.5 hours at 11000C. 30. Micrographs, iron - 10 w/o TiO2 milled 64 hours 72 at 300 RIh
Synthesizing Aluminum alloys by double mechanical alloying
NASA Astrophysics Data System (ADS)
Froyen, L.; Delaey, L.; Niu, X. P.; Le Brun, P.; Peytour, C.
1995-03-01
A new synthesis technique, namely double mechanical alloying (dMA), has been developed to fabricate aluminum alloys containing the finely distributed intermetallic compounds and inert dispersoids Al4C3 and Al2O3 The technique consists mainly of three steps: a primary milling stage of elemental powders (MAI) followed by a heat treatment to promote the formation of intermetallic phases, a secondary milling stage (MA2) to refine the microstructure, and consolidation of the produced powders. The results of mechanical and tribological properties of the resulting materials indicate that the dMA is a promising technique for the fabrication of aluminum alloys for applications requiring wear resistance and high-temperature performance.
Self-assembled nanoparticle arrays as nanomasks for pattern transfer
NASA Astrophysics Data System (ADS)
Sachan, M.; Bonnoit, C.; Hogg, C.; Evarts, E.; Bain, J. A.; Majetich, S. A.; Park, J.-H.; Zhu, J.-G.
2008-07-01
Argon ion milling was used to transfer the pattern of sparse 12 nm iron oxide nanoparticles into underlying thin films of Pt and magnetic tunnel junction stacks and quantify their etching rates and morphological evolution. Under typical milling conditions, Pt milled at 10 nm min-1, while the isolated particles of iron oxide used for the mask milled at 5 nm min-1. Dilute dispersions of nanoparticles were used to produce the sparse nanomasks, and high resolution scanning electron microscopy (SEM) and atomic force microscopy were used to monitor the evolution of etched structures as a function of milling time. SEM measurements indicate an apparent 20% increase in feature diameter before the features began to diminish under additional milling, suggesting redeposition as a limiting feature in the milling of dense arrays. Simulations of the milling process in nanoparticle arrays that include redeposition are consistent with this observation. These simulations predict that an edge-to-edge spacing of 3 nm in a dense array is feasible, but that redeposition reduces the final structure aspect ratio from that of the masking array by as much as a factor of two.
The study on dynamic properties of monolithic ball end mills with various slenderness
NASA Astrophysics Data System (ADS)
Wojciechowski, Szymon; Tabaszewski, Maciej; Krolczyk, Grzegorz M.; Maruda, Radosław W.
2017-10-01
The reliable determination of modal mass, damping and stiffness coefficient (modal parameters) for the particular machine-toolholder-tool system is essential for the accurate estimation of vibrations, stability and thus the machined surface finish formed during the milling process. Therefore, this paper focuses on the analysis of ball end mill's dynamical properties. The tools investigated during this study are monolithic ball end mills with different slenderness values, made of coated cemented carbide. These kinds of tools are very often applied during the precise milling of curvilinear surfaces. The research program included the impulse test carried out for the investigated tools clamped in the hydraulic toolholder. The obtained modal parameters were further applied in the developed tool's instantaneous deflection model, in order to estimate the tool's working part vibrations during precise milling. The application of the proposed dynamics model involved also the determination of instantaneous cutting forces on the basis of the mechanistic approach. The research revealed that ball end mill's slenderness can be considered as an important milling dynamics and machined surface quality indicator.
O’Donnell, J.N.R.; Antonucci, J.M.; Skrtic, D.
2009-01-01
Water sorption (WS), mechanical strength, and ion release of polymeric composites formulated with 40 % as-made or milled amorphous calcium phosphate (ACP) are compared after 1, 2 and 3 months of aqueous exposure. Ethoxylated bisphenol A dimethacrylate, triethylene glycol dimethacrylate, 2-hydroxyethyl methacrylate and methacryloxyethyl phthalate comprised the resin. The WS (mass %) peaked at 3 months. WS of as-made ACP composites was significantly higher than WS of milled ACP composites and copolymers. Both composite groups experienced decreases in biaxial flexural strength (BFS) with water aging, with milled ACP composites retaining a significantly higher BFS throughout immersion. Ion release was moderately reduced in milled ACP composites, though they remained superior to as-made ACP composites due to significantly lower WS and higher BFS after prolonged aqueous exposure. PMID:19774100
Point Defects in Quenched and Mechanically-Milled Intermetallic Compounds
NASA Astrophysics Data System (ADS)
Sinha, Praveen
Investigations were made of structural and thermal point defects in the highly-ordered B2 compound PdIn and deformation-induced defects in PdIn and NiAl. The defects were detected through the quadrupole interactions they induce at nearby ^{111}In/Cd probe atoms using the technique of perturbed gamma-gamma angular correlations (PAC). Measurements on annealed PdIn on both sides of stoichiometry show structural defects that are the Pd vacancies on the Pd-poor side of the stoichiometry and Pd antisite atoms on the Pd-rich side. Signals were attributed to various defect configurations near the In/Cd probes. In addition to the first-shell Pd vacancy and second-shell Pd antisite atom configurations previously observed by Hahn and Muller, we observed two Pd-divacancy configurations in the first shell, a fourth-shell Pd vacancy, a second-shell In vacancy and the combination of a first -shell Pd vacancy and fourth-shell Pd vacancy. Vacancies on both the Pd and In sublattices were detected after quenching. Fractions of probe atoms having each type of neighboring vacancy defect were observed to increase monotonically with quenching temperature over the range 825-1500 K. For compositions very close to 50.15 at.% Pd, nearly equal site fractions were observed for Pd and In vacancies, indicating that the Schottky vacancy-pair defect is the thermal defect at high temperature. The formation enthalpy of the Schottky defect was determined from measurements of the Pd-vacancy site fraction to be 1.30(18) eV from analysis of quenching data in the range 825-1200 K, using the law of mass action and assuming a random distribution. Above 1200 K, the Pd-vacancy concentration was observed to be saturated at a value of 1.3(2) atomic percent. For more Pd-rich compositions, evidence was also obtained for a defect reaction in which a Pd antisite atom and Pd vacancy react to form an In vacancy, thereby increasing the In vacancy concentration and decreasing the Pd vacancy concentration. Analysis of defect concentrations allowed the conclusion that the In vacancy signal was due to second-shell and not third-shell defects. PAC spectroscopy was applied to study deformation -induced defects in PdIn and NiAl after mechanically milling in a SPEX 8000 vibrator mill for periods of up to four hours. For PdIn, the Pd vacancy concentration increased rapidly for short milling times and was observed to saturate at a value of 3.5(5) at.% after 10 minutes of milling when milling was carried out using a WC vial to avoid sample contamination. Such a large vacancy concentration accounts for 4.41(63) kJ mol-1 excess-stored energy in milled PdIn and implies a high density of "broken bonds" which may lead to mechanical instability of the lattice. Milling also produced In antisite atoms on the Pd sublattice. The antisite-atom concentration increased linearly with milling time, reaching a value of 4.0(7) at.% after 2 hours of milling. The Ni vacancy concentration in NiAl was also observed to increase with milling and to saturate after two hours of milling. Here, the "local" Ni vacancy concentration in the first-neighbor shell of the probe, deduced from the vacancy site fraction, was in excess of values that should occur if defects were located at random. This is attributed to binding between the Ni vacancy and the In/Cd probe, which is known from other work to be 0.22 eV.
Pazesh, Samaneh; Lazorova, Lucia; Berggren, Jonas; Alderborn, Göran; Gråsjö, Johan
2016-09-10
The main purpose of the study was to evaluate various pre-processing and quantification approaches of Raman spectrum to quantify low level of amorphous content in milled lactose powder. To improve the quantification analysis, several spectral pre-processing methods were used to adjust background effects. The effects of spectral noise on the variation of determined amorphous content were also investigated theoretically by propagation of error analysis and were compared to the experimentally obtained values. Additionally, the applicability of calibration method with crystalline or amorphous domains in the estimation of amorphous content in milled lactose powder was discussed. Two straight baseline pre-processing methods gave the best and almost equal performance. By the succeeding quantification methods, PCA performed best, although the classical least square analysis (CLS) gave comparable results, while peak parameter analysis displayed to be inferior. The standard deviations of experimental determined percentage amorphous content were 0.94% and 0.25% for pure crystalline and pure amorphous samples respectively, which was very close to the standard deviation values from propagated spectral noise. The reasonable conformity between the milled samples spectra and synthesized spectra indicated representativeness of physical mixtures with crystalline or amorphous domains in the estimation of apparent amorphous content in milled lactose. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.
Grobelny, Pawel; Kazakevich, Irina; Zhang, Dan; Bogner, Robin
2015-01-01
The aim of this study was to investigate the effects of solid carriers and processing routes on the properties of amorphous solid dispersions of itraconazole. Three solid carriers with a range of surface properties were studied, (1) a mesoporous silicate, magnesium aluminum silicate (Neusilin US2), (2) a nonporous silicate of corresponding composition (Veegum) and (3) a non-silicate, inorganic excipient, calcium phosphate dibasic anhydrous (A-TAB). The drug was incorporated via either solvent-deposition or ball milling. Both the maximum drug deposited by solvent-based method that produced an amorphous composite and the time for complete amorphization by co-milling was determined by X-ray powder diffraction (XRPD). Changes in the drug and excipients were monitored by nitrogen adsorption and wettability of the powder. The ability of the excipients to amorphize the drug and enhance its dissolution was related to the powder characteristics. Neusilin provided the fastest amorphization time in the mill and highest drug loading by solvent-deposition, compared with the other two excipients. Solvent-deposition provided greater dissolution enhancement than milling, due to the reduction in Neusilin porosity during high energy milling.This study confirms that substrates as well as the processing routes have notable influence on the drug deposition, amorphization, physical stability and drug in vitro release.
40 CFR 406.55 - Standards of performance for new sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Normal Rice Milling Subcategory § 406... to the provisions of this subpart: There shall be no discharge of process waste water pollutants to...
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Normal Rice Milling... technology economically achievable: there shall be no discharge of process waste water pollutants to...
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Normal Rice Milling... technology economically achievable: there shall be no discharge of process waste water pollutants to...
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Normal Rice Milling... technology economically achievable: there shall be no discharge of process waste water pollutants to...
40 CFR 406.55 - Standards of performance for new sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Normal Rice Milling Subcategory § 406... to the provisions of this subpart: There shall be no discharge of process waste water pollutants to...
40 CFR 406.55 - Standards of performance for new sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Normal Rice Milling Subcategory § 406... to the provisions of this subpart: There shall be no discharge of process waste water pollutants to...
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Normal Rice Milling... technology economically achievable: there shall be no discharge of process waste water pollutants to...
Min, Byeong Cheol; Ramarao, Bandaru V
2017-06-01
Recycled paper mills produce large quantities of fibrous rejects and fines which are usually sent to landfills as solid waste. These cellulosic materials can be enzymatically hydrolyzed into sugars for the production of biofuels and biomaterials. Paper mill wastes also contain large amounts of calcium carbonate which inhibits cellulase activity. The calcium carbonate (30%, w/w) decreased 40-60% of sugar yield of unbleached softwood kraft pulp. The prime mechanisms for this are by pH variation, competitive and non-productive binding, and aggregation effect. Addition of acetic acid (pH adjustment) increased the sugar production from 19 to 22 g/L of paper mill waste fibers. Strong affinity of enzyme-calcium carbonate decreased free enzyme in solution and hindered sugar production. Electrostatic and hydrogen bond interactions are mainly possible mechanism of enzyme-calcium carbonate adsorption. The application of the nonionic surfactant Tween 80 alleviated the non-productive binding of enzyme with the higher affinity on calcium carbonate. Dissociated calcium ion also inhibited the hydrolysis by aggregation of enzyme.
NASA Astrophysics Data System (ADS)
Soltani, Mohammadreza; Atrian, Amir
2018-02-01
This paper investigates the high-temperature tensile behavior of Al-SiC nanocomposite reinforced with 0, 1.5, and 3 vol% SiC nano particles. To fabricate the samples, SiC nano reinforcements and aluminum (Al) powders were milled using an attritor milling and then were cold pressed and hot extruded at 500 °C. Afterward, mechanical and microstructural characteristics were studied in different temperatures. To this end, tensile and compressive tests, micro-hardness test, microscopic examinations, and XRD analysis were performed. The results showed significant improvement of mechanical properties of Al-SiC nanocomposite in room temperature including 40% of ultimate tensile strength (UTS), 36% of ultimate compressive strength (UCS), and 44% of micro-hardness. Moreover, performing tensile tests at elevated temperatures (up to 270 °C) decreased the tensile strength by about 53%, 46%, and 45% for Al-0 vol% SiC, Al-1.5 vol% SiC, and Al-3 vol% SiC, respectively. This temperature rise also enhanced the elongation by about 11% and 133% for non-reinforced Al and Al-3 vol% SiC, respectively.
Introduction of oxygen vacancies and fluorine into TiO{sub 2} nanoparticles by co-milling with PTFE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senna, Mamoru, E-mail: senna@applc.keio.ac.jp; Sepelak, Vladimir; Shi, Jianmin
2012-03-15
Solid-state processes of introducing oxygen vacancies and transference of fluorine to n-TiO{sub 2} nanoparticles by co-milling with poly(tetrafluoroethylene) (PTFE) powder were examined by diffuse reflectance spectroscopy (DRS) of UV, visual, near- and mid-IR regions, thermal analyses (TG-DTA), energy-dispersive X-ray spectroscopy (EDXS), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). The broad absorption peak at around 8800 cm{sup -1} (1140 nm) was attributed to the change in the electronic states, viz. electrons trapped at the oxygen vacancies (Vo) and d-d transitions of titanium ions. Incorporation of fluorine into n-TiO{sub 2} was concentrated at the near surfacemore » region and amounted to ca. 40 at% of the total fluorine in PTFE, after co-milling for 3 h, as confirmed by the F1s XPS spectrum. The overall atomic ratio, F/Ti, determined by EDXS was 0.294. By combining these analytical results, a mechanism of the present solid state processes at the boundary between PTFE and n-TiO{sub 2} was proposed. The entire process is triggered by the partial oxidative decomposition of PTFE. This is accompanied by the abstraction of oxygen atoms from the n-TiO{sub 2} lattices. Loss of the oxygen atoms results in the formation of the diverse states of locally distorted coordination units of titania, i.e. TiO{sub 6-n}Vo{sub n}, located at the near surface region. This leads subsequent partial ligand exchange between F and O, to incorporate fluorine preferentially to the near surface region of n-TiO{sub 2} particles, where local non-crystalline states predominate. - Graphical abstract: Scheme of the reaction processes: (a) pristine mixture, (b) oxygen abstraction from TiO{sub 2} and (c) fluorine migration from PTFE to TiO{sub 2}. Highlights: Transfer of fluorine from PTFE to n-TiO{sub 2} in a dry solid state process was confirmed. Black-Right-Pointing-Pointer 40% of F in PTFE was incorporated to the near surface region of n-TiO{sub 2} nanoparticles. Black-Right-Pointing-Pointer The transfer process is triggered by the oxidative decomposition of PTFE. Black-Right-Pointing-Pointer Fluorine incorporation is mediated by the formation of oxygen vacancies. Black-Right-Pointing-Pointer The sequential mechanisms are verified by XPS, EDXS, HRTEM, TG and DRS.« less
Carbon Nanotube-Reinforced Aluminum Matrix Composites Produced by High-Energy Ball Milling
NASA Astrophysics Data System (ADS)
Travessa, Dilermando N.; da Rocha, Geovana V. B.; Cardoso, Kátia R.; Lieblich, Marcela
2017-05-01
Although multiwall carbon nanotubes (MWCNT) are promising materials to strengthen lightweight aluminum matrix composites, their dispersion into the metallic matrix is challenge. In the present work, MWCNT were dispersed into age-hardenable AA6061 aluminum alloy by high-energy ball milling and the blend was subsequently hot-extruded. The composite bars obtained were heat-treated by solution heat treatment at 520 °C and artificially aged at 177 °C for 8 h, in order to reach the T6 temper. Special attention was given to the integrity of the MWCNT along the entire composite production. The microstructure of the obtained bars was evaluated by optical and scanning electron microscopy, and the mechanical properties were evaluated by Vickers microhardness tests. Raman spectroscopy, x-ray diffraction and transmission electron microscopy were employed to evaluate the structural integrity of MWCNT. It was found that milling time is critical to reach a proper dispersion of the reinforcing phase. The composite hardness increased up to 67% with the dispersion of 2% in weight of MWCNT, when comparing with un-reinforced bars produced by similar route. However, age hardening was not observed in composite bars after heat treatment. It was also found that MWCNT continuously degraded along the process, being partially converted into Al4C3 in the final composite.
A comparative evaluation of explosion hazards in chemical and mechanical pulp bleaching systems
Peter W. Hart; Alan W. Rudie
2010-01-01
Over the past several years, at least three pulp mills in North America have experienced catastrophic events that resulted in the explosion of pumps, mixers, and tanks. All these mills were using 50% concentration hydrogen peroxide at the site of the explosions. In at least two instances, alkali catalyzed decomposition of peroxide is implicated in the explosion....
10. Historic American Buildings Survey, PHOTOCOPY OF PLAN PORTION OF ...
10. Historic American Buildings Survey, PHOTOCOPY OF PLAN PORTION OF J.M. WHITAKER'S SURVEY OF THE LIPPITT MILL, SHEET NO. 15912 DATED MARCH 22, 1913. Blue line ozalid print in the collection of the Department of Civil and Mechanical Engineering, Museum of History and Technology, the Smithsonian Institution. - Lippitt Mill, 825 Main Street, West Warwick, Kent County, RI