Sample records for mechanical planarization cmp

  1. A flexible nanobrush pad for the chemical mechanical planarization of Cu/ultra-low-к materials

    NASA Astrophysics Data System (ADS)

    Han, Guiquan; Liu, Yuhong; Lu, Xinchun; Luo, Jianbin

    2012-10-01

    A new idea of polishing pad called flexible nanobrush pad (FNP) has been proposed for the low down pressure chemical mechanical planarization (CMP) process of Cu/ultra-low-к materials. The FNP was designed with a surface layer of flexible brush-like nanofibers which can `actively' carry nanoscale abrasives in slurry independent of the down pressure. Better planarization performances including high material removal rate, good planarization, good polishing uniformity, and low defectivity are expected in the CMP process under the low down pressure with such kind of pad. The FNP can be made by template-assisted replication or template-based synthesis methods, which will be driven by the development of the preparation technologies for ordered nanostructure arrays. The present work would potentially provide a new solution for the Cu/ultra-low-к CMP process.

  2. The way to zeros: The future of semiconductor device and chemical mechanical polishing technologies

    NASA Astrophysics Data System (ADS)

    Tsujimura, Manabu

    2016-06-01

    For the last 60 years, the development of cutting-edge semiconductor devices has strongly emphasized scaling; the effort to scale down current CMOS devices may well achieve the target of 5 nm nodes by 2020. Planarization by chemical mechanical polishing (CMP), is one technology essential for supporting scaling. This paper summarizes the history of CMP transitions in the planarization process as well as the changing degree of planarity required, and, finally, introduces innovative technologies to meet the requirements. The use of CMP was triggered by the replacement of local oxidation of silicon (LOCOS) as the element isolation technology by shallow trench isolation (STI) in the 1980s. Then, CMP’s use expanded to improving embedability of aluminum wiring, tungsten (W) contacts, Cu wiring, and, more recently, to its adoption in high-k metal gate (HKMG) and FinFET (FF) processes. Initially, the required degree of planarity was 50 nm, but now 0 nm is required. Further, zero defects on a post-CMP wafer is now the goal, and it is possible that zero psi CMP loading pressure will be required going forward. Soon, it seems, everything will have to be “zero” and perfect. Although the process is also chemical in nature, the CMP process is actually mechanical with a load added using slurry particles several tens of nm in diameter. Zero load in the loading process, zero nm planarity with no trace of processing, and zero residual foreign material, including the very slurry particles used in the process, are all required. This article will provide an overview of how to achieve these new requirements and what technologies should be employed.

  3. SEMICONDUCTOR TECHNOLOGY Dummy fill effect on CMP planarity

    NASA Astrophysics Data System (ADS)

    Junxiong, Zhou; Lan, Chen; Wenbiao, Ruan; Zhigang, Li; Weixiang, Shen; Tianchun, Ye

    2010-10-01

    With the use of a chemical-mechanical polishing (CMP) simulator verified by testing data from a foundry, the effect of dummy fill characteristics, such as fill size, fill density and fill shape, on CMP planarity is analyzed. The results indicate that dummy density has a significant impact on oxide erosion, and copper dishing is in proportion to dummy size. We also demonstrate that cross shape dummy fill can have the best dishing performance at the same density.

  4. A flexible nanobrush pad for the chemical mechanical planarization of Cu/ultra-low-к materials

    PubMed Central

    2012-01-01

    A new idea of polishing pad called flexible nanobrush pad (FNP) has been proposed for the low down pressure chemical mechanical planarization (CMP) process of Cu/ultra-low-к materials. The FNP was designed with a surface layer of flexible brush-like nanofibers which can ‘actively’ carry nanoscale abrasives in slurry independent of the down pressure. Better planarization performances including high material removal rate, good planarization, good polishing uniformity, and low defectivity are expected in the CMP process under the low down pressure with such kind of pad. The FNP can be made by template-assisted replication or template-based synthesis methods, which will be driven by the development of the preparation technologies for ordered nanostructure arrays. The present work would potentially provide a new solution for the Cu/ultra-low-к CMP process. PMID:23110959

  5. Anaerobic biodegradability and methanogenic toxicity of key constituents in copper chemical mechanical planarization effluents of the semiconductor industry.

    PubMed

    Hollingsworth, Jeremy; Sierra-Alvarez, Reyes; Zhou, Michael; Ogden, Kimberly L; Field, Jim A

    2005-06-01

    Copper chemical mechanical planarization (CMP) effluents can account for 30-40% of the water discharge in semiconductor manufacturing. CMP effluents contain high concentrations of soluble copper and a complex mixture of organic constituents. The aim of this study is to perform a preliminary assessment of the treatability of CMP effluents in anaerobic sulfidogenic bioreactors inoculated with anaerobic granular sludge by testing individual compounds expected in the CMP effluents. Of all the compounds tested (copper (II), benzotriazoles, polyethylene glycol (M(n) 300), polyethylene glycol (M(n) 860) monooleate, perfluoro-1-octane sulfonate, citric acid, oxalic acid and isopropanol) only copper was found to be inhibitory to methanogenic activity at the concentrations tested. Most of the organic compounds tested were biodegradable with the exception of perfluoro-1-octane sulfonate and benzotriazoles under sulfate reducing conditions and with the exception of the same compounds as well as Triton X-100 under methanogenic conditions. The susceptibility of key components in CMP effluents to anaerobic biodegradation combined with their low microbial inhibition suggest that CMP effluents should be amenable to biological treatment in sulfate reducing bioreactors.

  6. Electrochemical characterization of bulk and thin film copper in ammonia- and nitric acid-based slurries for chemical mechanical planarization of interconnects

    NASA Astrophysics Data System (ADS)

    Sainio, Carlyn Anne

    Copper will be replacing aluminum as the interconnect material in silicon integrated circuits. Chemical mechanical planarization (CMP) in combination with an inlaid metal interconnection scheme has been utilized to pattern copper interconnects. The thesis describes an attempt to understand the electrochemistry of copper in slurries used for CMP. Steady-state electrochemical potential measurements, linear polarization resistance determinations, and potentiodynamic and potentiostatic polarization scans have been used in order to characterize the mechanism by which copper is removed during CMP. Electrochemical measurements were implemented on a rotating disk assembly to simulate conditions during CMP. Experiments were performed on both bulk copper samples and blanket copper thin films sputter deposited onto silicon wafers. Electrochemical potential measurements have been used in conjunction with potential-pH diagrams to determine the possible copper species which are stable during CMP. Electrochemical results were correlated to CMP experiments to determine slurry compositions with optimum potential-pH ranges for copper planarization. The results indicate that such studies present an opportunity to isolate the electrochemical and chemical effects from the mechanical effects in the CMP of metals and to determine the dependencies of each of these effects on the other. CMP of copper was controlled by the removal of native or non-native surface films. High CMP rates were achieved by matching the rates of film formation and copper and film dissolution. During CMP, surface films are abraded, allowing increased dissolution of copper until the surface film reforms. When the surface was indented by abrasive particles, the corrosion rate of the exposed copper increased by two orders of magnitude. Etchants (i.e. ammonia or nitric acid) were necessary for high CMP rates (120-240 nm/min) and to minimize scratching. CMP rates of copper in 1 volume percent NHsb4OH and 0.7 volume percent HNOsb3 with 0.0016 weight percent KMnOsb4 were comparable. Electrochemical characterization can narrow the possible slurry compositions that may be used for polishing. Also, the possibility of implementing electrochemical techniques to detect the endpoint of polishing was investigated. Although electrochemical measurements in ammonia-based slurries did not indicate when tantalum was exposed, similar measurements may be used to determine when polishing pads should be replaced.

  7. Chemical-mechanical polishing of recessed microelectromechanical devices

    DOEpatents

    Barron, Carole C.; Hetherington, Dale L.; Montague, Stephen

    1999-01-01

    A method is disclosed for micromachining recessed layers (e.g. sacrificial layers) of a microelectromechanical system (MEMS) device formed in a cavity etched into a semiconductor substrate. The method uses chemical-mechanical polishing (CMP) with a resilient polishing pad to locally planarize one or more of the recessed layers within the substrate cavity. Such local planarization using the method of the present invention is advantageous for improving the patterning of subsequently deposited layers, for eliminating mechanical interferences between functional elements (e.g. linkages) of the MEMS device, and for eliminating the formation of stringers. After the local planarization of one or more of the recessed layers, another CMP step can be provided for globally planarizing the semiconductor substrate to form a recessed MEMS device which can be integrated with electronic circuitry (e.g. CMOS, BiCMOS or bipolar circuitry) formed on the surface of the substrate.

  8. Chemical-mechanical polishing of recessed microelectromechanical devices

    DOEpatents

    Barron, C.C.; Hetherington, D.L.; Montague, S.

    1999-07-06

    A method is disclosed for micromachining recessed layers (e.g. sacrificial layers) of a microelectromechanical system (MEMS) device formed in a cavity etched into a semiconductor substrate. The method uses chemical-mechanical polishing (CMP) with a resilient polishing pad to locally planarize one or more of the recessed layers within the substrate cavity. Such local planarization using the method of the present invention is advantageous for improving the patterning of subsequently deposited layers, for eliminating mechanical interferences between functional elements (e.g. linkages) of the MEMS device, and for eliminating the formation of stringers. After the local planarization of one or more of the recessed layers, another CMP step can be provided for globally planarizing the semiconductor substrate to form a recessed MEMS device which can be integrated with electronic circuitry (e.g., CMOS, BiCMOS or bipolar circuitry) formed on the surface of the substrate. 23 figs.

  9. A nano-scale mirror-like surface of Ti-6Al-4V attained by chemical mechanical polishing

    NASA Astrophysics Data System (ADS)

    Chenliang, Liang; Weili, Liu; Shasha, Li; Hui, Kong; Zefang, Zhang; Zhitang, Song

    2016-05-01

    Metal Ti and its alloys have been widely utilized in the fields of aviation, medical science, and micro-electro-mechanical systems, for its excellent specific strength, resistance to corrosion, and biological compatibility. As the application of Ti moves to the micro or nano scale, however, traditional methods of planarization have shown their short slabs. Thus, we introduce the method of chemical mechanical polishing (CMP) to provide a new way for the nano-scale planarization method of Ti alloys. We obtain a mirror-like surface, whose flatness is of nano-scale, via the CMP method. We test the basic mechanical behavior of Ti-6Al-4V (Ti64) in the CMP process, and optimize the composition of CMP slurry. Furthermore, the possible reactions that may take place in the CMP process have been studied by electrochemical methods combined with x-ray photoelectron spectroscopy (XPS). An equivalent circuit has been built to interpret the dynamic of oxidation. Finally, a model has been established to explain the synergy of chemical and mechanical effects in the CMP of Ti-6Al-4V. Project supported by the National Major Scientific and Technological Special Project during the Twelfth Five-year Plan Period of China (Grant No. 2009ZX02030-1), the National Natural Science Foundation of China (Grant No. 51205387), the Support by Science and Technology Commission of Shanghai City, China (Grant No. 11nm0500300), and the Science and Technology Commission of Shanghai City, China (Grant No. 14XD1425300).

  10. Tribochemical investigation of microelectronic materials

    NASA Astrophysics Data System (ADS)

    Kulkarni, Milind Sudhakar

    To achieve efficient planarization with reduced device dimensions in integrated circuits, a better understanding of the physics, chemistry, and the complex interplay involved in chemical mechanical planarization (CMP) is needed. The CMP process takes place at the interface of the pad and wafer in the presence of the fluid slurry medium. The hardness of Cu is significantly less than the slurry abrasive particles which are usually alumina or silica. It has been accepted that a surface layer can protect the Cu surface from scratching during CMP. Four competing mechanisms in materials removal have been reported: the chemical dissolution of Cu, the mechanical removal through slurry abrasives, the formation of thin layer of Cu oxide and the sweeping surface material by slurry flow. Despite the previous investigation of Cu removal, the electrochemical properties of Cu surface layer is yet to be understood. The motivation of this research was to understand the fundamental aspects of removal mechanisms in terms of electrochemical interactions, chemical dissolution, mechanical wear, and factors affecting planarization. Since one of the major requirements in CMP is to have a high surface finish, i.e., low surface roughness, optimization of the surface finish in reference to various parameters was emphasized. Three approaches were used in this research: in situ measurement of material removal, exploration of the electropotential activation and passivation at the copper surface and modeling of the synergistic electrochemical-mechanical interactions on the copper surface. In this research, copper polishing experiments were conducted using a table top tribometer. A potentiostat was coupled with this tribometer. This combination enabled the evaluation of important variables such as applied pressure, polishing speed, slurry chemistry, pH, materials, and applied DC potential. Experiments were designed to understand the combined and individual effect of electrochemical interactions as well as mechanical impact during polishing. Extensive surface characterization was performed with AFM, SEM, TEM and XPS. An innovative method for direct material removal measurement on the nanometer scale was developed and used. Experimental observations were compared with the theoretically calculated material removal rate values. The synergistic effect of all of the components of the process, which result in a better quality surface finish was quantitatively evaluated for the first time. Impressed potential during CMP proved to be a controlling parameter in the material removal mechanism. Using the experimental results, a model was developed, which provided a practical insight into the CMP process. The research is expected to help with electrochemical material removal in copper planarization with low-k dielectrics.

  11. Chemical-mechanical planarization of aluminum and copper interconnects with magnetic liners

    NASA Astrophysics Data System (ADS)

    Wang, Bin

    2000-10-01

    Chemical Mechanical Planarization (CMP) has been employed to achieve Damascene patterning of aluminum and copper interconnects with unique magnetic liners. A one-step process was developed for each interconnect scheme, using a double-layered pad with mesh cells, pores, and perforations on a top hard layer. In a hydrogen peroxide-based slurry, aluminum CMP was a process of periodic removal and formation of a surface oxide layer. Cu CMP in the same slurry, however, was found to be a dissolution dominant process. In a potassium iodate-based slurry, copper removal was the result of two competing reactions: copper dissolution and a non-native surface layer formation. Guided by electrochemistry, slurries were developed to remove nickel in different regimes of the corrosion kinetics diagram. Nickel CMP in a ferric sulfate-based slurry resulted in periodic removal and formation of a passive surface layer. In a potassium permanganate-based slurry, nickel removal is a dissolution dominant process. Visible Al(Cu) surface damages obtained with copper-doped aluminum could be eliminated by understanding the interactions between the substrate, the pad, and the abrasive agglomerate. Increasing substrate hardness by annealing prior to CMP led to a surface finish free of visible scratches. A similar result was also obtained by preventing formation of abrasive agglomerates and minimizing their contact with the substrate.

  12. Mechanism of amino acid interaction with silicon nitride surface during chemical mechanical planarization

    NASA Astrophysics Data System (ADS)

    America, William George

    Chemical-Mechanical Planarization (CMP) has become an essential technology for making modern semiconductor devices. This technique was originally applied to overcome the depth of focus limitations of lithography tools during pattern development of metal and dielectric films. As features of the semiconductor device became smaller the lithographic process shifted to shorter exposure wavelengths and the useable depth of focus became smaller. The topography differences on the wafer's surface from all of the previous processing steps became greater than the exposure tools could properly project. CMP helped solve this problem by bringing the features of the wafer surface to the same plane. As semiconductor fabrication technology progressed further, CMP was applied to other areas of the process, including shallow trench isolation and metal line Damascene processing. In its simplest application, CMP polishes on features projecting upward and higher than the average surface. These projections experience more work and are polished faster. Given sufficient time the surface becomes essentially flat, on a micro-scale, and the lithographic projection tools has the same plane onto which to focus. Thus, the pattern is properly and uniformly exposed and subsequent reactive ion etching (RIE) steps are executed. This technique was initially applied to later steps in the wafer processing scheme to render a new flat surface at each metal layer. Building on this success, CMP has been applied to a broad range of steps in the wafer processing particularly where surface topography warrants and when RIE of dielectric or metallic films is not practical. CMP has seen its greatest application in semiconductor logic and memory devices and most recently, a Damascene processing for copper lines and shallow trench isolation. This pattern dependent CMP issue is explored in this thesis as it pertains primarily to shallow trench isolation CMP coupled with a highly selective slurry chemistry.

  13. Dynamic NMR Study of Model CMP Slurry Containing Silica Particles as Abrasives

    NASA Astrophysics Data System (ADS)

    Odeh, F.; Al-Bawab, A.; Li, Y.

    2018-02-01

    Chemical mechanical planarization (CMP) should provide a good surface planarity with minimal surface defectivity. Since CMP slurries are multi-component systems, it is very important to understand the various processes and interactions taking place in such slurries. Several techniques have been employed for such task, however, most of them lack the molecular recognition to investigate molecular interactions without adding probes which in turn increase complexity and might alter the microenvironment of the slurry. Nuclear magnetic resonance (NMR) is a powerful technique that can be employed in such study. The longitudinal relaxation times (T1) of the different components of CMP slurries were measured using Spin Echo-NMR (SE-NMR) at a constant temperature. The fact that NMR is non-invasive and gives information on the molecular level gives more advantage to the technique. The model CMP slurry was prepared in D2O to enable monitoring of T1 for the various components' protons. SE-NMR provide a very powerful tool to study the various interactions and adsorption processes that take place in a model CMP silica based slurry which contains BTA and/or glycine and/or Cu+2 ions. It was found that BTA is very competitive towards complexation with Cu+2 ions and BTA-Cu complex adsorbs on silica surface.

  14. Note: Evaluation of slurry particle size analyzers for chemical mechanical planarization process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Sunjae; Kulkarni, Atul; Qin, Hongyi

    In the chemical mechanical planarization (CMP) process, slurry particle size is important because large particles can cause defects. Hence, selection of an appropriate particle measuring system is necessary in the CMP process. In this study, a scanning mobility particle sizer (SMPS) and dynamic light scattering (DLS) were compared for particle size distribution (PSD) measurements. In addition, the actual particle size and shape were confirmed by transmission electron microscope (TEM) results. SMPS classifies the particle size according to the electrical mobility, and measures the particle concentration (single particle measurement). On the other hand, the DLS measures the particle size distribution bymore » analyzing scattered light from multiple particles (multiple particle measurement). For the slurry particles selected for evaluation, it is observed that SMPS shows bi-modal particle sizes 30 nm and 80 nm, which closely matches with the TEM measurements, whereas DLS shows only single mode distribution in the range of 90 nm to 100 nm and showing incapability of measuring small particles. Hence, SMPS can be a better choice for the evaluation of CMP slurry particle size and concentration measurements.« less

  15. A reliable control system for measurement on film thickness in copper chemical mechanical planarization system

    NASA Astrophysics Data System (ADS)

    Li, Hongkai; Qu, Zilian; Zhao, Qian; Tian, Fangxin; Zhao, Dewen; Meng, Yonggang; Lu, Xinchun

    2013-12-01

    In recent years, a variety of film thickness measurement techniques for copper chemical mechanical planarization (CMP) are subsequently proposed. In this paper, the eddy-current technique is used. In the control system of the CMP tool developed in the State Key Laboratory of Tribology, there are in situ module and off-line module for measurement subsystem. The in situ module can get the thickness of copper film on wafer surface in real time, and accurately judge when the CMP process should stop. This is called end-point detection. The off-line module is used for multi-points measurement after CMP process, in order to know the thickness of remained copper film. The whole control system is structured with two levels, and the physical connection between the upper and the lower is achieved by the industrial Ethernet. The process flow includes calibration and measurement, and there are different algorithms for two modules. In the process of software development, C++ is chosen as the programming language, in combination with Qt OpenSource to design two modules' GUI and OPC technology to implement the communication between the two levels. In addition, the drawing function is developed relying on Matlab, enriching the software functions of the off-line module. The result shows that the control system is running stably after repeated tests and practical operations for a long time.

  16. A reliable control system for measurement on film thickness in copper chemical mechanical planarization system.

    PubMed

    Li, Hongkai; Qu, Zilian; Zhao, Qian; Tian, Fangxin; Zhao, Dewen; Meng, Yonggang; Lu, Xinchun

    2013-12-01

    In recent years, a variety of film thickness measurement techniques for copper chemical mechanical planarization (CMP) are subsequently proposed. In this paper, the eddy-current technique is used. In the control system of the CMP tool developed in the State Key Laboratory of Tribology, there are in situ module and off-line module for measurement subsystem. The in situ module can get the thickness of copper film on wafer surface in real time, and accurately judge when the CMP process should stop. This is called end-point detection. The off-line module is used for multi-points measurement after CMP process, in order to know the thickness of remained copper film. The whole control system is structured with two levels, and the physical connection between the upper and the lower is achieved by the industrial Ethernet. The process flow includes calibration and measurement, and there are different algorithms for two modules. In the process of software development, C++ is chosen as the programming language, in combination with Qt OpenSource to design two modules' GUI and OPC technology to implement the communication between the two levels. In addition, the drawing function is developed relying on Matlab, enriching the software functions of the off-line module. The result shows that the control system is running stably after repeated tests and practical operations for a long time.

  17. A reliable control system for measurement on film thickness in copper chemical mechanical planarization system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hongkai; Qu, Zilian; Zhao, Qian

    In recent years, a variety of film thickness measurement techniques for copper chemical mechanical planarization (CMP) are subsequently proposed. In this paper, the eddy-current technique is used. In the control system of the CMP tool developed in the State Key Laboratory of Tribology, there are in situ module and off-line module for measurement subsystem. The in situ module can get the thickness of copper film on wafer surface in real time, and accurately judge when the CMP process should stop. This is called end-point detection. The off-line module is used for multi-points measurement after CMP process, in order to knowmore » the thickness of remained copper film. The whole control system is structured with two levels, and the physical connection between the upper and the lower is achieved by the industrial Ethernet. The process flow includes calibration and measurement, and there are different algorithms for two modules. In the process of software development, C++ is chosen as the programming language, in combination with Qt OpenSource to design two modules’ GUI and OPC technology to implement the communication between the two levels. In addition, the drawing function is developed relying on Matlab, enriching the software functions of the off-line module. The result shows that the control system is running stably after repeated tests and practical operations for a long time.« less

  18. Defectivity control of aluminum chemical mechanical planarization in replacement metal gate process of MOSFET

    NASA Astrophysics Data System (ADS)

    Jin, Zhang; Yuling, Liu; Chenqi, Yan; Yangang, He; Baohong, Gao

    2016-04-01

    The replacement metal gate (RMG) defectivity performance control is very challenging in high-k metal gate (HKMG) chemical mechanical polishing (CMP). In this study, three major defect types, including fall-on particles, micro-scratch and corrosion have been investigated. The research studied the effects of polishing pad, pressure, rotating speed, flow rate and post-CMP cleaning on the three kinds of defect, which finally eliminated the defects and achieved good surface morphology. This study will provide an important reference value for the future research of aluminum metal gate CMP. Project supported by the Major National Science and Technology Special Projects (No. 2009ZX02308), the Natural Science Foundation for the Youth of Hebei Province (Nos. F2012202094, F2015202267), and the Outstanding Youth Science and Technology Innovation Fund of Hebei University of Technology (No. 2013010).

  19. Novel technique for fabrication of multi-layered microcoils in microelectromechanical systems (MEMS) applications

    NASA Astrophysics Data System (ADS)

    Chang, Hung-Pin; Qian, Jiangyuan; Bachman, Mark; Congdon, Philip; Li, Guann-pyng

    2002-07-01

    A novel planarization technique, compressive molding planarization (CMP) is developed for implementation of a multi-layered micro coil device. Applying CMP and other micromachining techniques, a multi-layered micro coil device has been designed and fabricated, and its use in the magnetic micro actuators for hard disk drive applications has been demonstrated, showing that it can produce milli-Newton of magnetic force suitable for driving a micro actuator. The novel CMP technique can be equally applicable in other MEMS devices fabrication to ease the process integration for the complicated structure.

  20. Electrochemical studies of Copper, Tantalum and Tantalum Nitride surfaces in aqueous solutions for applications in chemical-mechanical and electrochemical-mechanical planarization

    NASA Astrophysics Data System (ADS)

    Sulyma, Christopher Michael

    This report will investigate fundamental properties of materials involved in integrated circuit (IC) manufacturing. Individual materials (one at a time) are studied in different electrochemical environmental solutions to better understand the kinetics associated with the polishing process. Each system tries to simulate a real CMP environment in order to compare our findings with what is currently used in industry. To accomplish this, a variety of techniques are used. The voltage pulse modulation technique is useful for electrochemical processing of metal and alloy surfaces by utilizing faradaic reactions like electrodeposition and electrodissolution. A theoretical framework is presented in chapter 4 to facilitate quantitative analysis of experimental data (current transients) obtained in this approach. A typical application of this analysis is demonstrated for an experimental system involving electrochemical removal of copper surface layers, a relatively new process for abrasive-free electrochemical mechanical planarization of copper lines used in the fabrication of integrated circuits. Voltage pulse modulated electrodissolution of Cu in the absence of mechanical polishing is activated in an acidic solution of oxalic acid and hydrogen peroxide. The current generated by each applied voltage step shows a sharp spike, followed by a double-exponential decay, and eventually attains the rectangular shape of the potential pulses. For the second system in chapter 5, open-circuit potential measurements, cyclic voltammetry and Fourier transform impedance spectroscopy have been used to study pH dependent surface reactions of Cu and Ta rotating disc electrodes (RDEs) in aqueous solutions of succinic acid (SA, a complexing agent), hydrogen peroxide (an oxidizer), and ammonium dodecyl sulfate (ADS, a corrosion inhibitor for Cu). The surface chemistries of these systems are relevant for the development of a single-slurry approach to chemical mechanical planarization (CMP) of Cu lines and Ta barriers in the fabrication of semiconductor devices. It is shown that in non-alkaline solutions of H2O2, the SA-promoted surface complexes of Cu and Ta can potentially support chemically enhanced material removal in low-pressure CMP of surface topographies overlying fragile low-k dielectrics. ADS can suppress Cu dissolution without significantly affecting the surface chemistry of Ta. Chapter 6 discusses anodic corrosion of Ta, which is examined as a possible route to voltage induced removal of Ta for potential applications in electrochemical mechanical planarization (ECMP) of diffusion barriers. This strategy involves electro-oxidation of Ta in the presence of NO3- anions to form mechanically weak surface oxide films, followed by removal of the oxide layers by moderate mechanical abrasion. This NO3 - system is compared with a reference solution of Br -. In both electrolytes, the voltammetric currents of anodic oxidation exhibit oscillatory behaviors in the initial cycles of slow (5 mV s-1) voltage scans. The frequencies of these current oscillations are show signature attributes of localized pitting or general surface corrosion caused by Br- or NO3 -, respectively. Scanning electron microscopy, cyclic voltammetry, polarization resistance measurements, and time resolved Fourier transform impedance spectroscopy provide additional details about these corrosion mechanism. Apart from their relevance in the context of ECMP, the results also address certain fundamental aspects of pitting and general corrosions. The general protocols necessary to combine and analyze the results of D.C. and A.C. electrochemical measurements involving such valve metal corrosion systems are discussed in detail. In chapter 7 potassium salts of certain oxyanions (nitrate, sulfate and phosphate in particular) are shown to serve as effective surface-modifying agents in chemically enhanced, low-pressure chemical mechanical planarization (CMP) of Ta and TaN barrier layers for interconnect structures. The surface reactions that form the basis of this CMP strategy are investigated here in detail using the electrochemical techniques of cyclic voltammetry, open circuit potential analysis, polarization resistance measurements, and Fourier transform impedance spectroscopy. The results suggest that forming structurally weak oxide layers on the CMP samples is a key to achieving the goal of chemically controlled CMP of Ta/TaN at low down-pressures. (Abstract shortened by UMI.)

  1. The study on the effect of pattern density distribution on the STI CMP process

    NASA Astrophysics Data System (ADS)

    Sub, Yoon Myung; Hian, Bernard Yap Tzen; Fong, Lee It; Anak, Philip Menit; Minhar, Ariffin Bin; Wui, Tan Kim; Kim, Melvin Phua Twang; Jin, Looi Hui; Min, Foo Thai

    2017-08-01

    The effects of pattern density on CMP characteristics were investigated using specially designed wafer for the characterization of pattern-dependencies in STI CMP [1]. The purpose of this study is to investigate the planarization behavior based on a direct STI CMP used in cerium (CeO2) based slurry system in terms of pattern density variation. The minimal design rule (DR) of 180nm generation technology node was adopted for the mask layout. The mask was successfully applied for evaluation of a cerium (CeO2) abrasive based direct STI CMP process. In this study, we described a planarization behavior of the loading-effects of pattern density variation which were characterized with layout pattern density and pitch variations using masks mentioned above. Furthermore, the characterizing pattern dependent on the variations of the dimensions and spacing features, in thickness remaining after CMP, were analyzed and evaluated. The goal was to establish a concept of library method which will be used to generate design rules reducing the probability of CMP-related failures. Details of the characterization were measured in various layouts showing different pattern density ranges and the effects of pattern density on STI CMP has been discussed in this paper.

  2. Effect of photocatalytic oxidation technology on GaN CMP

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Wang, Tongqing; Pan, Guoshun; Lu, Xinchun

    2016-01-01

    GaN is so hard and so chemically inert that it is difficult to obtain a high material removal rate (MRR) in the chemical mechanical polishing (CMP) process. This paper discusses the application of photocatalytic oxidation technology in GaN planarization. Three N-type semiconductor particles (TiO2, SnO2, and Fe2O3) are used as catalysts and added to the H2O2-SiO2-based slurry. By optical excitation, highly reactive photoinduced holes are produced on the surface of the particles, which can oxidize OH- and H2O absorbed on the surface of the catalysts; therefore, more OH* will be generated. As a result, GaN MRRs in an H2O2-SiO2-based polishing system combined with catalysts are improved significantly, especially when using TiO2, the MRR of which is 122 nm/h. The X-ray photoelectron spectroscopy (XPS) analysis shows the variation trend of chemical composition on the GaN surface after polishing, revealing the planarization process. Besides, the effect of pH on photocatalytic oxidation combined with TiO2 is analyzed deeply. Furthermore, the physical model of GaN CMP combined with photocatalytic oxidation technology is proposed to describe the removal mechanism of GaN.

  3. Interaction, transformation and toxicity assessment of particles and additives used in the semiconducting industry.

    PubMed

    Dumitrescu, Eduard; Karunaratne, Dinusha P; Babu, S V; Wallace, Kenneth N; Andreescu, Silvana

    2018-02-01

    Chemical mechanical planarization (CMP) is a widely used technique for the manufacturing of integrated circuit chips in the semiconductor industry. The process generates large amounts of waste containing engineered particles, chemical additives, and chemo-mechanically removed compounds. The environmental and health effects associated with the release of CMP materials are largely unknown and have recently become of significant concern. Using a zebrafish embryo assay, we established toxicity profiles of individual CMP particle abrasives (SiO 2 and CeO 2 ), chemical additives (hydrogen peroxide, proline, glycine, nicotinic acid, and benzotriazole), as well as three model representative slurries and their resulting waste. These materials were characterized before and after use in a typical CMP process in order to assess changes that may affect their toxicological profile and alter their surface chemistry due to polishing. Toxicity outcome in zebrafish is discussed in relation with the physicochemical characteristics of the abrasive particles and with the type and concentration profile of the slurry components pre and post-polishing, as well as the interactions between particle abrasives and additives. This work provides toxicological information of realistic CMP slurries and their polishing waste, and can be used as a guideline to predict the impact of these materials in the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Chemical-mechanical polishing of metal and dielectric films for microelectronic applications

    NASA Astrophysics Data System (ADS)

    Hegde, Sharath

    The demand for smaller, faster devices has led the integrated circuit (IC) industry to continually increase the device density on a chip while simultaneously reducing feature dimensions. Copper interconnects and multilevel metallization (MLM) schemes were introduced to meet some of these challenges. With the employment of MLM in the ultra-large-scale-integrated (ULSI) circuit fabrication technology, repeated planarization of different surface layers with tolerance of a few nanometers is required. Presently, chemical-mechanical planarization (CMP) is the only technique that can meet this requirement. Damascene and shallow trench isolation processes are currently used in conjunction with CMP in the fabrication of multilevel copper interconnects and isolation of devices, respectively, for advanced logic and memory devices. These processes, at some stage, require simultaneous polishing of two different materials using a single slurry that offers high polish rates, high polish selectivity to one material over the other and good post-polish surface finish. Slurries containing one kind of abrasive particles do not meet most of these demands due mainly to the unique physical and chemical properties of each abrasive. However, if a composite particle is formed that takes the advantages of different abrasives while mitigating their disadvantages, the CMP performance of resulting abrasives would be compelling. It is demonstrated that electrostatic interactions between ceria and silica particles at pH 4 can be used to produce composite particles with enhanced functionality. Zeta potential measurement and TEM images used for particle characterization show the presence of such composite particles with smaller shell particles attached onto larger core particles. Slurries containing ceria (core)/silica (shell) and silica (core)/ceria (shell) composite particles when used to polish metal and dielectric films, respectively, yield both enhanced metal and dielectric film removal rates and better post-polish surface roughness values compared to those containing single kind of particles. Several arguments are proposed to explain the enhanced CMP performance with the composite abrasives. The effect of surface charge of the composite abrasive and the hardness of the core particles in the composite abrasives contained in the polishing slurry on polish rates of different films is discussed. Also, as a part of this thesis, several issues related to CMP were addressed. The planarization ability of Cu CMP slurry containing alumina coated silica particles was studied to elucidate the role of pattern geometry in affecting polish rate and also generating pattern dependent defects like dishing and erosion. Additionally, a polishing process was devised which, when viewed with the optical profilometer, eliminated surface defects including shallow and deep scratches and pits already present in a copper film. Also, molybdenum dioxide (MoO2) was evaluated as a potential abrasive for a highly reactive copper CMP slurry with potassium iodate as the oxidizing agent. Finally, the interaction of amino acid additives in ceria slurries with the silicon nitride film during STI CMP is discussed. Directions for future work have been presented at the end of the thesis.

  5. Effects of the Physical Characteristics of Cerium Oxide on Plasma-Enhanced Tetraethylorthosiliate Removal Rate of Chemical Mechanical Polishing for Shallow Trench Isolation

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Kyun; Paik, Ungyu; Oh, Seong-Geun; Park, Yong-Kook; Katoh, Takeo; Park, Jea-Gun

    2003-03-01

    Ceria powders were synthesized by two different methods, solid-state displacement reaction and wet chemical precipitation, and the influence of the physical characteristics of cerium oxide on the removal rate of plasma-enhanced tetraethylorthosilicate (PETEOS) and chemical vapor deposition (CVD) nitride films in chemical mechanical planarization (CMP) was investigated. The fundamental physicochemical property and electrokinetic behavior of ceria particles in aqueous suspending media were investigated to identify the correlation between the colloidal property of ceria and the CMP performance. The surface potentials of two different ceria particles are found to have different isoelectric point (pHiep) values and differences in physical properties of ceria particles such as porosity and density were found to be the key parameters in CMP of PETEOS films. Ceria powders synthesized by the solid-state displacement reaction method yielded a higher removal rate of PETEOS and higher selectivity than powders synthesized by the wet chemical precipitation method.

  6. Characterization of chemical interactions during chemical mechanical polishing (CMP) of copper

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Mahn

    2003-10-01

    Chemical mechanical polishing (CMP) has received much attention as an unique technique to provide a wafer level planarization in semiconductor manufacturing. However, despite the extensive use of CMP, it still remains one of the least understood areas in semiconductor processing. The lack of the fundamental understanding is a significant barrier to further advancements in CMP technology. One critical aspect of metal CMP is the formation of a thin surface layer on the metal surface. The formation and removal of this layer controls all the aspects of the CMP process, including removal rate, surface finish, etc. In this dissertation, we focus on the characterization of the formation and removal of the thin surface layer on the copper surface. The formation dynamics was investigated using static and dynamic electrochemical techniques, including potentiodynamic scans and chronoamperometry. The results were validated using XPS measurements. The mechanical properties of the surface layer were investigated using nanoindentation measurements. The electrochemical investigation showed that the thickness of the surface layer is controlled by the chemicals such as an oxidizer (hydrogen peroxide), a corrosion inhibitor (benzotriazole), a complexing agent (citric acid), and their concentrations. The dynamic electrochemical measurements indicated that the initial layer formation kinetics is unaffected by the corrosion inhibitors. The passivation due to the corrosion inhibitor becomes important only on large time scales (>200 millisecond). The porosity and the density of the chemically modified surface layer can be affected by additives of other chemicals such as citric acid. An optimum density of the surface layer is required for high polishing rate while at the same time maintaining a high degree of surface finish. Nanoindentation measurements indicated that the mechanical properties of the surface layer are strongly dependent on the chemical additives in the slurry. The CMP removal rates were found to be in good agreement with the initial reaction kinetics as well as the mechanical properties of the chemically modified surface layer. In addition, the material removal model based on the micro- and nano-scale interactions, which were measured experimentally, has been developed.

  7. Abrasive Particle Trajectories and Material Removal Non-Uniformity during CMP and Filtration Characteristics of CMP Slurries - A Simulation and Experimental Study

    NASA Astrophysics Data System (ADS)

    Rastegar, Vahid

    Nanoscale finishing and planarization are integral process steps in multilevel metallization designs for integrated circuit (IC) manufacturing since it is necessary to ensure local and global surface planarization at each metal layer before depositing the next layer. Chemical mechanical planarization (CMP) has been widely recognized as the most promising technology to eliminate topographic variation and has allowed the construction of multilevel interconnection structures with a more regularly stacked sequence, resulting in better device performance [1]. Understanding fundamental of the CMP mechanisms can offer guidance to the control and optimization of the polishing processes. CMP kinematics based on slurry distribution and particle trajectories have a significant impact on MRR profiles. In this work a mathematical model to describe particle trajectories during chemical mechanical polishing was developed and extended to account for the effect of larger particles, particle location changes due to slurry dispensing and in-situ conditioning. Material removal rate (MRR) and within wafer non-uniformity (WIWNU) were determined based on the calculated particle trajectory densities. Rotary dynamics and reciprocating motion were optimized to obtain best MRR uniformity. Edge-fast MRR profile was discussed based on mechanical aspect of CMP. Using the model, we also investigated the effect of variable rotational speeds of wafer and pad, and of large particles on WIWNU and scratch growth. It was shown that the presence of even a small portion of large particles can deteriorate the WIWNU significantly and also lead to more scratches. Furthermore, it was shown that the in-situ conditioning improves the uniformity of the polished wafers. Furthermore, a combined experimental and computational study of fibrous filters for removal of larger abrasive particles from aqueous dispersions, essential to minimize defects during chemical mechanical polishing, was performed. Dilute aqueous suspensions of colloidal ceria particles, of known size distribution, were filtered at different flow rates and the filter efficiencies were measured for different particle sizes and pH, then converted to single fiber efficiencies. The particle size distributions were also measured for the influent and effluent streams. In a series of numerical simulations, the Navier-Stokes equation was solved for a single fiber using the ANSYS-FLUENT computational fluid dynamics commercial package. For dilute suspensions, the motion of the dispersed particles in the size range of 35-600 nm and zeta potential range of -50 to 50 mV was tracked in the Lagrangian reference frame including the effects of hydrodynamic drag, lift, gravity, hydrodynamic retardation, Brownian, van der Waals and electric double layer forces. The electric double layer and van der Waals forces were incorporated in the calculations by developing a user defined function. Particular attention was given to the effects of Brownian excitations, as well as the electric double layer and van der Waals forces that have been neglected in many of the previous models on the overall fiber collection efficiency for different particle sizes and charges. Moreover, the effect of flow velocity on the fiber capture efficiency and residence time was investigated. The effect of velocity on minimum collection efficiency and most penetrating particle size was investigated. It was also shown that the CFD results are in a good agreement with the experimental results.

  8. Material Characterization in the Electro-Analytic Approach for Applications in Chemical Mechanical Planarization and Electrochemical Energy Systems

    NASA Astrophysics Data System (ADS)

    Rock, Simon E.

    The work presented in this thesis covers electro-analytical characterization for multiple applications in material science. Electrochemical techniques were used to investigate soluble film formation on metals used in chemical mechanical planarization in order to better understand the removal rate process by studying new chemicals proposed by groups in industry. Second, an ionic liquid was used as an electrolyte in a lithium ion cathode half cell to show the essential functionality of the IL and the temperature advantage over traditional electrolytes. Lastly, a comprehensive measurement for charge recombination in dye-sensitized solar cells was performed using both open-circuit voltage decay and impedance spectroscopy, which may be used to better understand the limiting factors that affect the cell's efficiently. Electrochemical techniques were applied to new methods and materials to extend the development of material manufacturing and advance the measurement process. The fabrication of interconnect structures for semiconductor devices requires low down-pressure chemical mechanical planarization (CMP) of Ta barrier layers. Guanidine carbonate (GC) serves as an effective surface-complexing agent for such CMP applications, where the rate of Ta removal can be chemically controlled through pH-tuned selectivity with respect to the removal of Cu lines. Electrochemical techniques are employed in this work to study the surface-modifying roles of GC that make this chemical an attractive complexing agent for Ta CMP. In addition, the effects of including H2O2 (an oxidizer) and dodecyl benzene sulfonic acid (DBSA, a dissolution inhibitor for Cu) in GC-based CMP solutions are investigated to examine the selective CMP mechanisms of Ta and Cu in these solutions. The results suggest that the removal of Ta is supported in part by structurally weak guanidinium-tantalic-acid surface complexes formed on Ta/Ta2O5. The bicarbonate/carbonate anions of GC also facilitate Ta removal through the generation of ion-incorporated tantalum pentoxide. DBSA strongly affects the CMP chemistry of Cu, but exhibits relatively weaker effects on the surface activity of Ta, and thus plays a vital role in dictating the selectivity of Ta:Cu polish rates. CMP of tantalum nitride is also an essential step of material processing in the fabrication of integrated circuits, which is looked separately in this thesis. The present work investigates certain chemical aspects of this strategy of TaN-CMP by also using guanidine carbonate (GC) as a surface complexing agent, and employing electrochemical experiments. The experiments are designed to study the chemical and electrochemical origins of the CMP-specific surface complex films formed on a TaN wafer in acidic solutions of GC and hydrogen peroxide. Open circuit potential, polarization resistance, and electrochemical impedance measurements are employed to probe the surface effects that facilitate material removal in chemically prevailing CMP of TaN. The results are discussed in view of designing slurry variables to support barrier layer planarization with reduced roles of mechanical abrasion. Nonvolatile and nonflammable ionic liquids (ILs) have distinct thermal advantages over the traditional organic solvent electrolytes of lithium ion batteries. However, this beneficial feature of ILs is often counterbalanced by their high viscosity (a limiting factor for ionic conductivity) and, sometimes, by their unsuitable electrochemistry for generating protective layers on electrode surfaces. In an effort to alleviate these limiting Aspects of ILs, we have synthesized a PEGylated imidazolium bis(triflouromethylsulfonyl)amide (bistriflamide) IL that exhibited better thermal and electrochemical stability than a conventional electrolyte based on a blend of ethylene carbonate and diethyl carbonate. The electrochemical performance of this IL has been demonstrated using a cathode consisting of ball-milled LiMn2O4 particles. A direct comparison of the ionic liquid electrolyte with the nonionic low-viscosity conventional solvent blend is presented. Charge recombination at the electrolyte-photoanode interface of a dye sensitized solar cell (DSSC) is a major efficiency-limiting factor of the cell. To mitigate this recombination effect it is necessary to ensure that the effective electron lifetime in the DSSC is longer than the electron's transit time across the photoanode of mesoporous TiO2. While the efforts aimed at accomplishing this goal are often based on new materials/designs of photoanodes, a quantitative evaluation of these designs relies on the precision of the benchmarking measurements of electron lifetimes. The open circuit voltage decay (OCVD) technique offers an effective yet straightforward method for such measurements. The present work focuses on certain experimental criteria for ensuring the accuracy of these experiments, and probes the associated effects of temperature variations in the solar cell. The results demonstrate that, a high rate of data sampling is essential for adequately resolving the fast initial stages of charge recombination. The results also show the effects of nonlinear recombination where second order OCV variations are operative. The findings of the OCVD experiments are compared with a parallel set of tests carried out using impedance spectroscopy. The relative roles of the two sets of analytical measurements are examined.

  9. Virtual Metrology applied in Run-to-Run Control for a Chemical Mechanical Planarization process

    NASA Astrophysics Data System (ADS)

    Jebri, M. A.; El Adel, E. M.; Graton, G.; Ouladsine, M.; Pinaton, J.

    2017-01-01

    This paper deals with missing data in semiconductor manufacturing derived from a measurement sampling strategies. The idea is to construct a virtual metrology module to estimate non measured variables using a new modified Just-In-Time Learning approach (JITL). The aim of this paper is to integrate estimated data into product control loop. In collaboration with our industrial partner STMicroelectronics Rousset, the accuracy of the proposed method is illustrated by using industrial data-sets derived from Chemical Mechanical Planarization (CMP) process that enables us to compare results obtained with the classical and the modified version of JITL approach. Then, the contribution of the estimated data is shown in product quality improvement.

  10. Study on chemical mechanical polishing of silicon wafer with megasonic vibration assisted.

    PubMed

    Zhai, Ke; He, Qing; Li, Liang; Ren, Yi

    2017-09-01

    Chemical mechanical polishing (CMP) is the primary method to realize the global planarization of silicon wafer. In order to improve this process, a novel method which combined megasonic vibration to assist chemical mechanical polishing (MA-CMP) is developed in this paper. A matching layer structure of polishing head was calculated and designed. Silicon wafers are polished by megasonic assisted chemical mechanical polishing and traditional chemical mechanical polishing respectively, both coarse polishing and precision polishing experiments were carried out. With the use of megasonic vibration, the surface roughness values Ra reduced from 22.260nm to 17.835nm in coarse polishing, and the material removal rate increased by approximately 15-25% for megasonic assisted chemical mechanical polishing relative to traditional chemical mechanical polishing. Average Surface roughness values Ra reduced from 0.509nm to 0.387nm in precision polishing. The results show that megasonic assisted chemical mechanical polishing is a feasible method to improve polishing efficiency and surface quality. The material removal and finishing mechanisms of megasonic vibration assisted polishing are investigated too. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Characterization of shallow trench isolation CMP process and its application

    NASA Astrophysics Data System (ADS)

    Li, Helen; Zhang, ChunLei; Liu, JinBing; Liu, ZhengFang; Chen, Kuang Han; Gbondo-Tugbawa, Tamba; Ding, Hua; Li, Flora; Lee, Brian; Gower-Hall, Aaron; Chiu, Yang-Chih

    2016-03-01

    Chemical mechanical polishing (CMP) has been a critical enabling technology in shallow trench isolation (STI), which is used in current integrated circuit fabrication process to accomplish device isolation. Excessive dishing and erosion in STI CMP processes, however, create device yield concerns. This paper proposes characterization and modeling techniques to address a variety of concerns in STI CMP. In the past, majority of CMP publications have been addressed on interconnect layers in backend- of-line (BEOL) process. However, the number of CMP steps in front-end-of-line (FEOL) has been increasing in more advanced process techniques like 3D-FinFET and replacement metal gate, as a results incoming topography induced by FEOL CMP steps can no longer be ignored as the topography accumulates and stacks up across multiple CMP steps and eventually propagating to BEOL layers. In this paper, we first discuss how to characterize and model STI CMP process. Once STI CMP model is developed, it can be used for screening design and detect possible manufacturing weak spots. We also work with process engineering team to establish hotspot criteria in terms of oxide dishing and nitride loss. As process technologies move from planar transistor to 3D transistor like FinFet and multi-gate, it is important to accurately predict topography in FEOL CMP processes. These incoming topographies when stacked up can have huge impact in BEOL copper processes, where copper pooling becomes catastrophic yield loss. A calibration methodology to characterize STI CMP step is developed as shown in Figure 1; moreover, this STI CMP model is validated from silicon data collected from product chips not used in calibration stage. Additionally, wafer experimental setup and metrology plan are instrumental to an accurate model with high predictive power. After a model is generated, spec limits and threshold to establish hotspots criteria can be defined. Such definition requires working closely with foundry process engineering and integration team and reviewing past failure analysis (FA) to come up a reasonable metrics. Conventionally, a potential STI weak point can be found when nitride residues remains in the active region after nitride strip. Another source of STI hotspots occurs when nitride erosion is too much, and active region can suffer severe damage.

  12. Automated AFM for small-scale and large-scale surface profiling in CMP applications

    NASA Astrophysics Data System (ADS)

    Zandiatashbar, Ardavan; Kim, Byong; Yoo, Young-kook; Lee, Keibock; Jo, Ahjin; Lee, Ju Suk; Cho, Sang-Joon; Park, Sang-il

    2018-03-01

    As the feature size is shrinking in the foundries, the need for inline high resolution surface profiling with versatile capabilities is increasing. One of the important areas of this need is chemical mechanical planarization (CMP) process. We introduce a new generation of atomic force profiler (AFP) using decoupled scanners design. The system is capable of providing small-scale profiling using XY scanner and large-scale profiling using sliding stage. Decoupled scanners design enables enhanced vision which helps minimizing the positioning error for locations of interest in case of highly polished dies. Non-Contact mode imaging is another feature of interest in this system which is used for surface roughness measurement, automatic defect review, and deep trench measurement. Examples of the measurements performed using the atomic force profiler are demonstrated.

  13. Colloidal and electrochemical aspects of copper-CMP

    NASA Astrophysics Data System (ADS)

    Sun, Yuxia

    Copper based interconnects with low dielectric constant layers are currently used to increase interconnect densities and reduce interconnect time delays in integrated circuits. The technology used to develop copper interconnects involves Chemical Mechanical Planarization (CMP) of copper films deposited on low-k layers (silica or silica based films), which is carried out using slurries containing abrasive particles. One issue using such a structure is copper contamination over dielectric layers (SiO2 film), if not reduced, this contamination will cause current leakage. In this study, the conditions conducive to copper contamination onto SiO2 films during Cu-CMP process were studied, and a post-CMP cleaning technique was discussed based on experimental results. It was found that the adsorption of copper onto a silica surface is kinetically fast (<0.5 minute). The amount of copper absorbed is pH and concentration dependent and affected by presence of H2O2, complexing agents, and copper corrosion inhibitor Benzotrazole. Based on de-sorption results, DI water alone was unable to reduce adsorbed copper to an acceptable level, especially for adsorption that takes place at a higher pH condition. The addition of complex agent, citric acid, proved effective in suppressing copper adsorption onto oxide silica during polishing or post-CMP cleaning by forming stable copper-CA complexes. Surface Complexation Modeling was used to simulate copper adsorption isotherms and predict the copper contamination levels on SiO2 surfaces. Another issue with the application of copper CMP is its environmental impact. CMP is a costly process due to its huge consumption of pure water and slurry. Additionally, Cu-CMP processing generates a waste stream containing certain amounts of copper and abrasive slurry particles. In this study, the separation technique electrocoagulation was investigated to remove both copper and abrasive slurry particles simultaneously. For effluent containing ˜40 ppm dissolved copper, it was found that ˜90% dissolved copper was removed from the waste streams through electroplating and in-situ chemical precipitation. The amount of copper removed through plating is impacted by membrane surface charge, type/amount of complexing agents, and solid content in the slurry suspension. The slurry particles can be removed ˜90% within 2 hours of EC through multiple mechanisms.

  14. Sensor-based monitoring and inspection of surface morphology in ultraprecision manufacturing processes

    NASA Astrophysics Data System (ADS)

    Rao, Prahalad Krishna

    This research proposes approaches for monitoring and inspection of surface morphology with respect to two ultraprecision/nanomanufacturing processes, namely, ultraprecision machining (UPM) and chemical mechanical planarization (CMP). The methods illustrated in this dissertation are motivated from the compelling need for in situ process monitoring in nanomanufacturing and invoke concepts from diverse scientific backgrounds, such as artificial neural networks, Bayesian learning, and algebraic graph theory. From an engineering perspective, this work has the following contributions: 1. A combined neural network and Bayesian learning approach for early detection of UPM process anomalies by integrating data from multiple heterogeneous in situ sensors (force, vibration, and acoustic emission) is developed. The approach captures process drifts in UPM of aluminum 6061 discs within 15 milliseconds of their inception and is therefore valuable for minimizing yield losses. 2. CMP process dynamics are mathematically represented using a deterministic multi-scale hierarchical nonlinear differential equation model. This process-machine inter-action (PMI) model is evocative of the various physio-mechanical aspects in CMP and closely emulates experimentally acquired vibration signal patterns, including complex nonlinear dynamics manifest in the process. By combining the PMI model predictions with features gathered from wirelessly acquired CMP vibration signal patterns, CMP process anomalies, such as pad wear, and drifts in polishing were identified in their nascent stage with high fidelity (R2 ~ 75%). 3. An algebraic graph theoretic approach for quantifying nano-surface morphology from optical micrograph images is developed. The approach enables a parsimonious representation of the topological relationships between heterogeneous nano-surface fea-tures, which are enshrined in graph theoretic entities, namely, the similarity, degree, and Laplacian matrices. Topological invariant measures (e.g., Fiedler number, Kirchoff index) extracted from these matrices are shown to be sensitive to evolving nano-surface morphology. For instance, we observed that prominent nanoscale morphological changes on CMP processed Cu wafers, although discernible visually, could not be tractably quantified using statistical metrology parameters, such as arithmetic average roughness (Sa), root mean square roughness (Sq), etc. In contrast, CMP induced nanoscale surface variations were captured on invoking graph theoretic topological invariants. Consequently, the graph theoretic approach can enable timely, non-contact, and in situ metrology of semiconductor wafers by obviating the need for reticent profile mapping techniques (e.g., AFM, SEM, etc.), and thereby prevent the propagation of yield losses over long production runs.

  15. Electro-Analytical Study of Material Interfaces Relevant for Chemical Mechanical Planarization and Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Turk, Michael C.

    This dissertation work involves two areas of experimental research, focusing specifically on the applications of electro-analytical techniques for interfacial material characterization. The first area of the work is centered on the evaluation and characterization of material components used for chemical mechanical planarization (CMP) in the fabrication of semiconductor devices. This part also represents the bulk of the projects undertaken for the present dissertation. The other area of research included here involves exploratory electrochemical studies of certain electrolyte and electrode materials for applications in the development of advanced lithium ion secondary batteries. The common element between the two areas of investigation is the technical approach that combines a broad variety of electro-analytical characterization techniques to examine application specific functions of the associated materials and devices. The CMP related projects concentrate on designing and evaluating materials for CMP slurries that would be useful in the processing of copper interconnects for the sub-22 nm technology node. Specifically, ruthenium and cobalt are nontraditional barrier materials currently considered for the new interconnects. The CMP schemes used to process the structures based on these metals involve complex surface chemistries of Ru, Co and Cu (used for wiring lines). The strict requirement of defect-control while maintaining material removal by precisely regulated tribo-corrosion complicates the designs of the CMP slurries needed to process these systems. Since Ru is electrochemically more noble than Cu, the surface regions of Cu assembled in contact with Ru tend to generate defects due to galvanic corrosion in the CMP environment. At the same time, Co is strongly reactive in the typical slurry environment and is prone to developing galvanic corrosion induced by Cu. The present work explores a selected class of alkaline slurry formulations aimed at reducing these galvanic corrosions in chemically controlled low-pressure CMP. The CMP specific functions of the slurry components are characterized in the tribo-electro-analytical approach by using voltammetry, open circuit potential (OCP) measurements and electrochemical impedance spectroscopy (EIS) in the presence as well as in the absence of surface abrasion, both with and without the inclusion of colloidal silica (SiO2) abrasives. The results are used to understand the reaction mechanisms responsible for supporting material removal and corrosion suppression. The project carried out in the area of Li ion batteries (LIBs) uses electro-analytical techniques to probe electrolyte characteristics as well as electrode material performance. The investigation concentrates on optimizing a tactically chosen set of electrolyte compositions for low-to-moderate temperature applications of lithium titanium oxide (LTO), a relatively new anode material for such batteries. For this application, mixtures of non-aqueous carbonate based solvents are studied in combination with lithium perchlorate. The temperature dependent conductivities of the electrolytes are rigorously measured and analyzed using EIS. The experimental considerations and the working principle of this EIS based approach are carefully examined and standardized in the course of this study. These experiments also investigate the effects of temperature variations (below room temperature) on the solid electrolyte interphase (SEI) formation characteristics of LTO in the given electrolytes. This dissertation is organized as follows: Each experimental system and its relevance for practical applications are briefly introduced in each chapter. The experimental approach and the motivation for carrying out the investigation are also noted in that context. The experimental details specific to the particular study are described. This is followed by the results and their discussion, and subsequently, by the specific conclusions drawn from the given set of experiments. A general summary of the obtained results is presented at the end of the dissertation. Possible extensions of the present studies have also been briefly noted there.

  16. The stability of a novel weakly alkaline slurry of copper interconnection CMPfor GLSI

    NASA Astrophysics Data System (ADS)

    Yao, Caihong; Wang, Chenwei; Niu, Xinhuan; Wang, Yan; Tian, Shengjun; Jiang, Zichao; Liu, Yuling

    2018-02-01

    Chemical mechanical polishing (CMP) is one of the important machining procedures of multilayered copper interconnection for GLSI, meanwhile polishing slurry is a critical factor for realizing the high polishing performance such as high planarization efficiency, low surface roughness. The effect of slurry components such as abrasive (colloidal silica), complexing agent (glycine), inhibitor (BTA) and oxidizing agent (H2O2) on the stability of the novel weakly alkaline slurry of copper interconnection CMP for GLSI was investigated in this paper. First, the synergistic and competitive relationship of them in a peroxide-based weakly alkaline slurry during the copper CMP process was studied and the stability mechanism was put forward. Then 1 wt% colloidal silica, 2.5 wt% glycine, 200 ppm BTA, 20 mL/L H2O2 had been selected as the appropriate concentration to prepare copper slurry, and using such slurry the copper blanket wafer was polished. From the variations of copper removal rate, root-mean square roughness (Sq) value with the setting time, it indicates that the working-life of the novel weakly alkaline slurry can reach more than 7 days, which satisfies the requirement of microelectronics further development. Project supported by the Major National Science and Technology Special Projects (No. 2016ZX02301003-004-007), the Professional Degree Teaching Case Foundation of Hebei Province, China (No. KCJSZ2017008), the Natural Science Foundation of Hebei Province, China (No. F2015202267), and the Natural Science Foundation of Tianjin, China (No. 16JCYBJC16100).

  17. Synergetic effect of chelating agent and nonionic surfactant for benzotriazole removal on post Cu-CMP cleaning

    NASA Astrophysics Data System (ADS)

    Yanlei, Li; Yuling, Liu; Chenwei, Wang; Yue, Li

    2016-08-01

    The cleaning of copper interconnects after chemical mechanical planarization (CMP) process is a critical step in integrated circuits (ICs) fabrication. Benzotriazole (BTA), which is used as corrosion inhibitor in the copper CMP slurry, is the primary source for the formation of organic contaminants. The presence of BTA can degrade the electrical properties and reliability of ICs which needs to be removed by using an effective cleaning solution. In this paper, an alkaline cleaning solution was proposed. The alkaline cleaning solution studied in this work consists of a chelating agent and a nonionic surfactant. The removal of BTA was characterized by contact angle measurements and potentiodynamic polarization studies. The cleaning properties of the proposed cleaning solution on a 300 mm copper patterned wafer were also quantified, total defect counts after cleaning was studied, scanning electron microscopy (SEM) review was used to identify types of BTA to confirm the ability of cleaning solution for BTA removal. All the results reveal that the chelating agent can effectively remove the BTA residual, nonionic surfactant can further improve the performance. Project supported by the Natural Science Foundation of Hebei Province, China (No. F2015202267) and the Scientific Innovation Grant for Excellent Young Scientists of Hebei University of Technology (No. 2015007).

  18. Signal processing and analysis for copper layer thickness measurement within a large variation range in the CMP process.

    PubMed

    Li, Hongkai; Zhao, Qian; Lu, Xinchun; Luo, Jianbin

    2017-11-01

    In the copper (Cu) chemical mechanical planarization (CMP) process, accurate determination of a process reaching the end point is of great importance. Based on the eddy current technology, the in situ thickness measurement of the Cu layer is feasible. Previous research studies focus on the application of the eddy current method to the metal layer thickness measurement or endpoint detection. In this paper, an in situ measurement system, which is independently developed by using the eddy current method, is applied to the actual Cu CMP process. A series of experiments are done for further analyzing the dynamic response characteristic of the output signal within different thickness variation ranges. In this study, the voltage difference of the output signal is used to represent the thickness of the Cu layer, and we can extract the voltage difference variations from the output signal fast by using the proposed data processing algorithm. The results show that the voltage difference decreases as thickness decreases in the conventional measurement range and the sensitivity increases at the same time. However, it is also found that there exists a thickness threshold, and the correlation is negative, when the thickness is more than the threshold. Furthermore, it is possible that the in situ measurement system can be used within a larger Cu layer thickness variation range by creating two calibration tables.

  19. A novel approach of chemical mechanical polishing using environment-friendly slurry for mercury cadmium telluride semiconductors

    PubMed Central

    Zhang, Zhenyu; Wang, Bo; Zhou, Ping; Guo, Dongming; Kang, Renke; Zhang, Bi

    2016-01-01

    A novel approach of chemical mechanical polishing (CMP) is developed for mercury cadmium telluride (HgCdTe or MCT) semiconductors. Firstly, fixed-abrasive lapping is used to machine the MCT wafers, and the lapping solution is deionized water. Secondly, the MCT wafers are polished using the developed CMP slurry. The CMP slurry consists of mainly SiO2 nanospheres, H2O2, and malic and citric acids, which are different from previous CMP slurries, in which corrosive and toxic chemical reagents are usually employed. Finally, the polished MCT wafers are cleaned and dried by deionized water and compressed air, respectively. The novel approach of CMP is environment-friendly. Surface roughness Ra, and peak-to-valley (PV) values of 0.45, and 4.74 nm are achieved, respectively on MCT wafers after CMP. The first and second passivating processes are observed in electrochemical measurements on MCT wafers. The fundamental mechanisms of CMP are proposed according to the X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. Malic and citric acids dominate the first passivating process, and the CMP slurry governs the second process. Te4+3d peaks are absent after CMP induced by the developed CMP slurry, indicating the removing of oxidized films on MCT wafers, which is difficult to achieve using single H2O2 and malic and citric acids solutions. PMID:26926622

  20. Formation of gallium nitride templates and freestanding substrates by hydride vapor phase epitaxy for homoepitaxial growth of III-nitride devices

    NASA Astrophysics Data System (ADS)

    Williams, Adrian Daniel

    Gallium nitride (GaN) is a direct wide band gap semiconductor currently under heavy development worldwide due to interest in its applications in ultra-violet optoelectronics, power electronics, devices operating in harsh environments (high temperature or corrorsive), etc. While a number of devices have been demonstrated with this material and its related alloys, the unavailability of GaN substrates is seen as one of the current major bottlenecks to both material quality and device performance. This dissertation is concerned with the synthesis of high quality GaN substrates by the hydride vapor phase epitaxy method (HVPE). In this work, the flow of growth precursors in a home-built HVPE reactor was modeled by the Navier-Stokes equation and solved by finite element analysis to promote uniformity of GaN on 2'' sapphire substrates. Kinetics of growth was studied and various regimes of growth were identified to establish a methodology for HVPE GaN growth, independent of reactor geometry. GaN templates as well as bulk substrates were fabricated in this work. Realization of freestanding GaN substrates was achieved through discovery of a natural stress-induced method of separating bulk GaN from sapphire via mechanical failure of a low-temperature GaN buffer layer. Such a process eliminates the need for pre- or post-processing of sapphire substrates, as is currently the standard. Stress in GaN-on-sapphire is discussed, with the dominant contributor identified as thermal stress due to thermal expansion coefficient mismatch between the two materials. This thermal stress is analyzed using Stoney's equation and conditions for crack-free growth of thick GaN substrates were identified. An etch-back process for planarizing GaN templates was also developed and successfully applied to rough GaN templates. The planarization of GaN has been mainly addressed by chemo-mechanical polishing (CMP) methods in the literature, with notable shortcomings including the inability to effectively planarize gallium-polar GaN, the preferred growth plane for devices. The process developed in this work bypasses the constraints of CMP, allowing for the planarization of all surfaces of GaN irrespective of crystal orientation. The GaN samples grown for this dissertation were studied by various techniques to characterize their structural, optical, and electrical properties.

  1. Effects of catalyst concentration and ultraviolet intensity on chemical mechanical polishing of GaN

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Wang, Tongqing; Pan, Guoshun; Lu, Xinchun

    2016-08-01

    Effects of catalyst concentration and ultraviolet intensity on chemical mechanical polishing (CMP) of GaN were deeply investigated in this paper. Working as an ideal homogeneous substrate material in LED industry, GaN ought to be equipped with a smooth and flat surface. Taking the strong chemical stability of GaN into account, photocatalytic oxidation technology was adopted in GaN CMP process to realize efficient removal. It was found that, because of the improved reaction rate of photocatalytic oxidation, GaN material removal rate (MRR) increases by a certain extent with catalyst concentration increasing. Cross single line analysis on the surface after polishing by Phase Shift MicroXAM-3D was carried out to prove the better removal effect with higher catalyst concentration. Ultraviolet intensity field in H2O2-SiO2-based polishing system was established and simulated, revealing the variation trend of ultraviolet intensity around the outlet of the slurry. It could be concluded that, owing to the higher planarization efficiency and lower energy damage, the UV lamp of 125 W is the most appropriate lamp in this system. Based on the analysis, defects removal model of this work was proposed to describe the effects of higher catalyst concentration and higher power of UV lamp.

  2. Mechanistic, kinetic, and processing aspects of tungsten chemical mechanical polishing

    NASA Astrophysics Data System (ADS)

    Stein, David

    This dissertation presents an investigation into tungsten chemical mechanical polishing (CMP). CMP is the industrially predominant unit operation that removes excess tungsten after non-selective chemical vapor deposition (CVD) during sub-micron integrated circuit (IC) manufacture. This work explores the CMP process from process engineering and fundamental mechanistic perspectives. The process engineering study optimized an existing CMP process to address issues of polish pad and wafer carrier life. Polish rates, post-CMP metrology of patterned wafers, electrical test data, and synergy with a thermal endpoint technique were used to determine the optimal process. The oxidation rate of tungsten during CMP is significantly lower than the removal rate under identical conditions. Tungsten polished without inhibition during cathodic potentiostatic control. Hertzian indenter model calculations preclude colloids of the size used in tungsten CMP slurries from indenting the tungsten surface. AFM surface topography maps and TEM images of post-CMP tungsten do not show evidence of plow marks or intergranular fracture. Polish rate is dependent on potassium iodate concentration; process temperature is not. The colloid species significantly affects the polish rate and process temperature. Process temperature is not a predictor of polish rate. A process energy balance indicates that the process temperature is predominantly due to shaft work, and that any heat of reaction evolved during the CMP process is negligible. Friction and adhesion between alumina and tungsten were studied using modified AFM techniques. Friction was constant with potassium iodate concentration, but varied with applied pressure. This corroborates the results from the energy balance. Adhesion between the alumina and the tungsten was proportional to the potassium iodate concentration. A heuristic mechanism, which captures the relationship between polish rate, pressure, velocity, and slurry chemistry, is presented. In this mechanism, the colloid reacts with the chemistry of the slurry to produce active sites. These active sites become inactive by removing tungsten from the film. The process repeats when then inactive sites are reconverted to active sites. It is shown that the empirical form of the heuristic mechanism fits all of the data obtained. The mechanism also agrees with the limiting cases that were investigated.

  3. SEMICONDUCTOR TECHNOLOGY A signal processing method for the friction-based endpoint detection system of a CMP process

    NASA Astrophysics Data System (ADS)

    Chi, Xu; Dongming, Guo; Zhuji, Jin; Renke, Kang

    2010-12-01

    A signal processing method for the friction-based endpoint detection system of a chemical mechanical polishing (CMP) process is presented. The signal process method uses the wavelet threshold denoising method to reduce the noise contained in the measured original signal, extracts the Kalman filter innovation from the denoised signal as the feature signal, and judges the CMP endpoint based on the feature of the Kalman filter innovation sequence during the CMP process. Applying the signal processing method, the endpoint detection experiments of the Cu CMP process were carried out. The results show that the signal processing method can judge the endpoint of the Cu CMP process.

  4. Mechanism of inhibition of mammalian tumor and other thymidylate synthases by N sup 4 -hydroxy-dCMP, N sup 4 -hydroxy-5-fluoro-dCMP, and related analogues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rode, W.; Zielinski, Z.; Dzik, J.M.

    1990-12-01

    N{sup 4}-Hydroxy-dCMP (N{sup 4}-OH-dCMP), N{sup 4}-methoxy-dCMP (N{sup 4}-OMe-dCMP), and their 5-fluoro congeners were all slow-binding inhibitors of Ehrlich carcinoma thymidylate synthase (TS), competitive with respect to dUMP, and had differing kinetic constants describing interactions with the two TS binding sites. N{sup 4}-OH-dCMP was not a substrate and its inactivation of TS was methylenetetrahydrofolate-dependent, hence mechanism-based. K{sub i} values for N{sup 4}-OH-dCMP and its 5-fluoro analogue were in the range 10{sup {minus}7}-10{sup {minus}8} M, 2-3 orders of magnitude higher for the corresponding N{sup 4}-OMe analogues. The 5-methyl analogue of N{sup 4}-OHdCMP was 10{sup 4}-fold less potent, pointing to the anti rotamermore » of the imino form of exocyclic N{sup 4}-OH, relative to the ring N(3), as the active species. This is consistent with weaker slow-binding inhibition of the altered enzyme from 5-FdUrd-resistant, relative to parent, L1210 cells by both FdUMP and N{sup 4}-OH-dCMP, suggesting interaction of both N{sup 4}-OH and C(5)-F groups with the same region of the active center. Kinetic studies with purified enzyme from five sources, viz., Ehrlich carcinoma, L1210 parental, and 5-FdUrd-resistant cells, regenerating rat liver, and the tapeworm Hymenolepis diminuta, demonstrated that addition of a 5-fluoro substituent to N{sup 4}-OH-dCMP increased its affinity from 2- to 20-fold for the enzyme from different sources. With the Ehrlich and tapeworm enzymes, N{sup 4}-OH-FdCMP and FdUMP were almost equally effective inhibitors.« less

  5. Inkjet-based adaptive planarization (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Singhal, Shrawan; Grigas, Michelle M.; Khusnatdinov, Niyaz; Sreenivasan, Srinivasan V.

    2017-03-01

    Planarization is a critical unit step in the lithography process because it enables patterning of surfaces with versatile pattern density without compromising on the stringent planarity and depth-of-focus requirements. In addition to nanoscale pattern density variation, parasitics such as pre-existing wafer topography, can corrupt the desired process output after planarization. The topography of any surface can be classified in three broad categories, depending upon the amplitude and spatial wavelength of the same [1], [2]: (i) nominal shape, (ii) nanotopography and (iii) roughness. The nominal shape is given by the largest spatial wavelengths, typically < 20mm. For spatial length scales of 1-20mm, height variations at this spatial wavelength range are classified as nanotopography. Roughness usually has lower spatial wavelengths. While the nominal shape of a substrate surface is usually decided by the nature of wafer preparation and the tooling and chucking infrastructure used in the same, roughness is usually mitigated by standard polishing techniques. It is the intermediate nanotopography that is probably the most critical surface topography parameter. This is because most traditional polishing techniques cannot selectively address pre-existing substrate topography, without introducing a parasitic signature at the scale of nanotopography. Moreover, fields with pattern density variation typically also have length scales that are commensurate with nanotopography. It is thus instructive to summarize existing planarization technology to understand current limitations. Spin on Glass and Etch back is one technique used for micron scale device manufacturing [3]. As the name implies, a glass dielectric is spin-coated on the substrate followed by etching in a chemistry that ensures equal etching rates for both the sacrificial glass and the underlying film or substrate material. Photoresists may also be used instead of glass. However, the global planarity that can be achieved by this technique is limited. Also, planarization over a large isolated topographical feature has been studied for the reverse-tone Jet-and-Flash Imprint Lithography process, also known as JFIL-R [4]. This relies on surface tension and capillary effects to smoothen a spin-coated Si containing film that can be etched to obtain a smooth profile. To meet the stringent requirement of planarity in submicron device technologies Chemical Mechanical Planarization (CMP) is the most widely used planarization technology [5], [6]. It uses a combination of abrasive laden chemical slurry and a mechanical pad for achieving planar profiles. The biggest concern with CMP is the dependence of material removal rate on the pattern density of material, leading to the formation of a step between the high density and low-density. The step shows up as a long-range thickness variation in the planarized film, similar in scale to pre-existing substrate topography that should have been polished away. Preventive techniques like dummy fill and patterned resist can be used to reduce the variation in pattern density. These techniques increase the complexity of the planarization process and significantly limit the device design flexibility. Contact Planarization (CP) has also been reported as an alternative to the CMP processing [7], [8]. A substrate is spin coated with a photo curable material and pre baked to remove residual solvent. An ultra-flat surface or an optical flat is pressed on the spin-coated wafer. The material is forced to reflow. Pressure is used to spread out material evenly and achieve global planarization. The substrate is then exposed to UV radiation to harden the photo curable material. Although attractive, this process is not adaptive as it does not account for differences in surface topography of the wafer and the optical flat, nor can it address all the parasitics that arise during the process itself. The optical flat leads to undesirable planarization of even the substrate nominal shape and nanotopography, which corrupts the final film thickness profile. Hence, it becomes extremely difficult to eliminate this signature to a desirable extent without introducing other parasitic signatures. An example of this is shown in Figure 1. In this paper, a novel adaptive planarization process has been presented that potentially addresses the problems associated with planarization of varying pattern density, even in the presence of pre-existing substrate topography [9]. This process is called Inkjet-enabled Adaptive Planarization (IAP). The IAP process uses an inverse optimization scheme, built around a validated fluid mechanics-based forward model [10], that takes the pre-existing substrate topography and pattern layout as inputs. It then generates an inkjet drop pattern with a material distribution that is correlated with the desired planarization film profile. This allows a contiguous film to be formed with the desired thickness variation to cater to the topography and any parasitic signatures caused by the pattern layout. This film is formed by the coercing action of a compliant superstrate, which forces the drops to spread and merge and eliminates any bubble trapping. Then, the film is cured using blanket UV exposure and the superstrate separated to reveal the desired planarized film. The use of an inverse optimization algorithm allows substrate topography to be addressed adaptively. In other words, the algorithm can generate a drop pattern that does not disturb the pre-existing substrate topography substantially, but only caters to the pattern density variation. This process has potential advantages over other planarization techniques because of its adaptive nature. Hence, the IAP process can cater to substrates of varying topographies and pattern densities by changing the inkjetted material distribution, without any changes in hardware. The IAP process can also address pre-existing substrate topography selectively by conforming to the nominal shape while planarizing over the pattern layout. A schematic of the IAP process is shown in Figure 2. The goal of this paper is to present some preliminary results from the IAP process. A test pattern layout has been generated with the help of photolithography, and is shown in Figure 3. For the purpose of this trial, the nanoscale features have not been patterned, as it is expected that the planarization process will be blind to their presence. Thus, areas with nanoscale patterns have been patterned as a single feature of SiO2 with height equal to 100 nm. These features are adjacent to pattern-less areas, thus marking a drastic change in pattern density. As can be seen in Figure 4, the smallest length scale across which pattern density changes, is 70 microns. The goal of the IAP process is to be able to planarize this pattern with a film that conforms to pre-existing substrate topography. The targeted planarity of the film is 95% 3sigma, while the targeted film thickness at the tallest feature is less than 30 nm. In another trial, the inverse tone of the same layout will also be tested. This pattern has features of height equal to 100 nm where the previous pattern did not. The targeted metrics for the inverse layout are the same as the nominal layout.

  6. Implications of the Differential Toxicological Effects of III-V Ionic and Particulate Materials for Hazard Assessment of Semiconductor Slurries.

    PubMed

    Jiang, Wen; Lin, Sijie; Chang, Chong Hyun; Ji, Zhaoxia; Sun, Bingbing; Wang, Xiang; Li, Ruibin; Pon, Nanetta; Xia, Tian; Nel, André E

    2015-12-22

    Because of tunable band gaps, high carrier mobility, and low-energy consumption rates, III-V materials are attractive for use in semiconductor wafers. However, these wafers require chemical mechanical planarization (CMP) for polishing, which leads to the generation of large quantities of hazardous waste including particulate and ionic III-V debris. Although the toxic effects of micron-sized III-V materials have been studied in vivo, no comprehensive assessment has been undertaken to elucidate the hazardous effects of submicron particulates and released III-V ionic components. Since III-V materials may contribute disproportionately to the hazard of CMP slurries, we obtained GaP, InP, GaAs, and InAs as micron- (0.2-3 μm) and nanoscale (<100 nm) particles for comparative studies of their cytotoxic potential in macrophage (THP-1) and lung epithelial (BEAS-2B) cell lines. We found that nanosized III-V arsenides, including GaAs and InAs, could induce significantly more cytotoxicity over a 24-72 h observation period. In contrast, GaP and InP particulates of all sizes as well as ionic GaCl3 and InCl3 were substantially less hazardous. The principal mechanism of III-V arsenide nanoparticle toxicity is dissolution and shedding of toxic As(III) and, to a lesser extent, As(V) ions. GaAs dissolves in the cell culture medium as well as in acidifying intracellular compartments, while InAs dissolves (more slowly) inside cells. Chelation of released As by 2,3-dimercapto-1-propanesulfonic acid interfered in GaAs toxicity. Collectively, these results demonstrate that III-V arsenides, GaAs and InAs nanoparticles, contribute in a major way to the toxicity of III-V materials that could appear in slurries. This finding is of importance for considering how to deal with the hazard potential of CMP slurries.

  7. Design and Characterization of Next-Generation Micromirrors Fabricated in a Four-Level, Planarized Surface-Micromachined Polycrystalline Silicon Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalicek, M.A.; Comtois, J.H.; Barron, C.C.

    This paper describes the design and characterization of several types of micromirror devices to include process capabilities, device modeling, and test data resulting in deflection versus applied potential curves. These micromirror devices are the first to be fabricated in the state-of-the-art four-level planarized polysilicon process available at Sandia National Laboratories known as the Sandia Ultra-planar Multi-level MEMS Technology (SUMMiT). This enabling process permits the development of micromirror devices with near-ideal characteristics which have previously been unrealizable in standard three-layer polysilicon processes. This paper describes such characteristics as elevated address electrodes, individual address wiring beneath the device, planarized mirror surfaces usingmore » Chemical Mechanical Polishing (CMP), unique post-process metallization, and the best active surface area to date. This paper presents the design, fabrication, modeling, and characterization of several variations of Flexure-Beam (FBMD) and Axial-Rotation Micromirror Devices (ARMD). The released devices are first metallized using a standard sputtering technique relying on metallization guards and masks that are fabricated next to the devices. Such guards are shown to enable the sharing of bond pads between numerous arrays of micromirrors in order to maximize the number of on-chip test arrays. The devices are modeled and then empirically characterized using a laser interferometer setup located at the Air Force Institute of Technology (AFIT) at Wright-Patterson AFB in Dayton, Ohio. Unique design considerations for these devices and the process are also discussed.« less

  8. Vascular delay of the latissimus dorsi muscle: an essential component of cardiomyoplasty.

    PubMed

    Carroll, S M; Carroll, C M; Stremel, R W; Heilman, S J; Tobin, G R; Barker, J H

    1997-04-01

    Cardiomyoplasty (CMP) uses the latissimus dorsi muscle (LDM) to assist the heart in cases of cardiac failure. Distal ischemia and necrosis of the LDM is a recognized complication of CMP that can reduce distal muscle function and the mechanical effectiveness of CMP. Canine (n = 9) LDMs were subjected to a 10-day period of vascular delay followed by a simulated CMP. Two weeks after simulated CMP (corresponding to the healing delay between CMP and the onset of LDM stimulation used in the clinical setting), LDM perfusion was measured in the distal, middle, and proximal segments of the muscle, and circumferential (distal and middle squeezing muscle function) and longitudinal (proximal pulling muscle function) force generation and fatigue rates were measured. The results were compared with the contralateral nondelayed simulated CMP. Muscle perfusion was significantly (p < 0.05) greater in the distal and middle segments of vascular-delayed LDMs. Circumferential muscle force generation and fatigue rates were significantly (p < 0.05) improved in the vascular-delayed LDMs. Vascular delay can significantly improve LDM perfusion and function in a model that closely reflects clinical CMP, and the use of vascular delay may improve clinical outcomes in CMP.

  9. Atomic-scale and pit-free flattening of GaN by combination of plasma pretreatment and time-controlled chemical mechanical polishing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Hui; Endo, Katsuyoshi; Yamamura, Kazuya, E-mail: yamamura@upst.eng.osaka-u.ac.jp

    2015-08-03

    Chemical mechanical polishing (CMP) combined with atmospheric-pressure plasma pretreatment was applied to a GaN (0001) substrate. The irradiation of a CF{sub 4}-containing plasma was proven to be very useful for modifying the surface of GaN. When CMP was conducted on a plasma-irradiated surface, a modified layer of GaF{sub 3} acted as a protective layer on GaN by preventing the formation of etch pits. Within a short duration (8 min) of CMP using a commercially available CeO{sub 2} slurry, an atomically flat surface with a root mean square (rms) roughness of 0.11 nm was obtained. Moreover, etch pits, which are inevitably introduced inmore » conventional CMP, could not be observed at the dislocation sites on the polished GaN surface. It was revealed that CMP combined with the plasma pretreatment was very effective for obtaining a pit-free and atomically flat GaN surface.« less

  10. Design of an ultraprecision computerized numerical control chemical mechanical polishing machine and its implementation

    NASA Astrophysics Data System (ADS)

    Zhang, Chupeng; Zhao, Huiying; Zhu, Xueliang; Zhao, Shijie; Jiang, Chunye

    2018-01-01

    The chemical mechanical polishing (CMP) is a key process during the machining route of plane optics. To improve the polishing efficiency and accuracy, a CMP model and machine tool were developed. Based on the Preston equation and the axial run-out error measurement results of the m circles on the tin plate, a CMP model that could simulate the material removal at any point on the workpiece was presented. An analysis of the model indicated that lower axial run-out error led to lower material removal but better polishing efficiency and accuracy. Based on this conclusion, the CMP machine was designed, and the ultraprecision gas hydrostatic guideway and rotary table as well as the Siemens 840Dsl numerical control system were incorporated in the CMP machine. To verify the design principles of machine, a series of detection and machining experiments were conducted. The LK-G5000 laser sensor was employed for detecting the straightness error of the gas hydrostatic guideway and the axial run-out error of the gas hydrostatic rotary table. A 300-mm-diameter optic was chosen for the surface profile machining experiments performed to determine the CMP efficiency and accuracy.

  11. Multi-functional composite materials for catalysis and chemical mechanical planarization

    NASA Astrophysics Data System (ADS)

    Coutinho, Cecil A.

    2009-12-01

    Composite materials formed from two or more functionally different materials offer a versatile avenue to create a tailored material with well defined traits. Within this dissertation research, multi-functional composites were synthesized based on organic and inorganic materials. The functionally of these composites was experimentally tested and a semi-empirical model describing the sedimentation behavior of these particles was developed. This first objective involved the fabrication of microcomposites consisting of titanium dioxide (TiO2) nanoparticles confined within porous, microgels of a thermo-responsive polymer for use in the photocatalytic treatment of wastewater. TiO2 has been shown to be an excellent photocatalyst with potential applications in advanced oxidative processes such as wastewater remediation. Upon UV irradiation, short-lived electron-hole pairs are generated, which produce oxidative species that degrade simple organic contaminants. The rapid sedimentation of these microcomposites provided an easy gravimetric separation after remediation. Methyl orange was used as a model organic contaminant to investigate the kinetics of photodegradation under a range of concentrations and pH conditions. Although after prolonged periods of UV irradiation (˜8-13 hrs), the titania-microgels also degrade, regeneration of the microcomposites was straightforward via the addition of polymer microgels with no loss in photocatalytic activity of the reformed microcomposites. The second objective within this dissertation involved the systematic development of abrasive microcomposite particles containing well dispersed nanoparticles of ceria in an organic/inorganic hybrid polymeric particle for use in chemical mechanical polishing/planarization (CMP). A challenge in IC fabrication involves the defect-free planarization of silicon oxide films for successful multi-layer deposition. Planarization studies conducted with the microcomposites prepared in this research, yield very smooth, planar surfaces with removal rates that rival those of inorganic oxides slurries typically used in industry. The density and size of these ceria-microgel particles could be controlled by varying the temperature or composition during synthesis, leading to softer or harder polishing when desired.

  12. Exposure assessment and risk management of engineered nanoparticles: Investigation in semiconductor wafer processing

    NASA Astrophysics Data System (ADS)

    Shepard, Michele N.

    Engineered nanomaterials (ENMs) are currently used in hundreds of commercial products and industrial processes, with more applications being investigated. Nanomaterials have unique properties that differ from bulk materials. While these properties may enable technological advancements, the potential risks of ENMs to people and the environment are not yet fully understood. Certain low solubility nanoparticles are more toxic than their bulk material, such that existing occupational exposure limits may not be sufficiently protective for workers. Risk assessments are currently challenging due to gaps in data on the numerous emerging materials and applications as well as method uncertainties and limitations. Chemical mechanical planarization (CMP) processes with engineered nanoparticle abrasives are used for research and commercial manufacturing applications in the semiconductor and related industries. Despite growing use, no published studies addressed occupational exposures to nanoparticles associated with CMP or risk assessment and management practices for these scenarios. Additional studies are needed to evaluate potential sources of workplace exposure or emission, as well as to help test and refine assessment methods. This research was conducted to: identify the lifecycle stages and potential exposure sources for ENMs in CMP processes; characterize worker exposure; determine recommended engineering controls and compare risk assessment models. The study included workplace air and surface sampling and an evaluation of qualitative risk banding approaches. Exposure assessment results indicated the potential for worker contact with ENMs on workplace surfaces but did not identify nanoparticles readily dispersed in air during work tasks. Some increases in respirable particle concentrations were identified, but not consistently. Measured aerosol concentrations by number and mass were well below current reference values for poorly soluble low toxicity nanoparticles. From application and evaluation of qualitative risk assessment approaches, differences in control banding models and results were identified, although output generally agreed with conclusions from air sampling as to whether an upgrade in site engineering controls was recommended. This research helped to improve understanding of potential worker exposures to ENMs in CMP processes, as well as the methods for risk assessment and management of metal oxide nanoparticles in occupational environments.

  13. Distinct Signaling Roles of cIMP, cCMP, and cUMP.

    PubMed

    Seifert, Roland

    2016-10-04

    The cyclic purine nucleotide cIMP and the cyclic pyrimidine nucleotides cCMP and cUMP are emerging second messengers. These cNMPs show different biological effects, but the molecular mechanisms remain elusive. In this issue of Structure, Ng et al. (2016) provide structural evidence for distinct interactions of cIMP, cCMP, and cUMP with ion channels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Carboxymethyl pachyman (CMP) reduces intestinal mucositis and regulates the intestinal microflora in 5-fluorouracil-treated CT26 tumour-bearing mice.

    PubMed

    Wang, Canhong; Yang, Shuxian; Gao, Li; Wang, Lili; Cao, Li

    2018-05-23

    The compound 5-fluorouracil (5-FU) is the first choice chemotherapeutic agent for the treatment of colorectal cancer (CRC), but intestinal mucositis is a primary limiting factor in anticancer therapy. There is currently no broadly effective targeted treatment to cure this side effect. Carboxymethylated pachyman (CMP) is a polysaccharide that is modified from the structure of pachyman isolated from Poria cocos (Chinese name: Fu Ling). Meanwhile, recent studies have shown that CMP exhibits immune regulatory, anti-inflammatory and antioxidant activities. Therefore, the purpose of this study was to evaluate the intestinal protective effect of CMP in 5-FU-treated CT26 tumour-bearing mice and to further explore its underlying mechanism(s) of action. Initially, a CT26 colon carcinoma xenograft mice model was established. The colon length, colon tissue injury, intestinal flora, short-chain fatty acids (SCFAs) and indicators linked to inflammation, antioxidation and apoptosis were then measured. Our results showed that CMP in combination with 5-FU reversed intestinal shortening (p < 0.01) and alleviated 5-FU-induced colon injury (p < 0.001) via suppression of ROS production; increasing the levels of CAT, GSH-Px and GSH; decreasing expression of NF-κB, p-p38 and Bax; and elevating the levels of Nrf2 and Bcl-2. More importantly, CMP had a significant impact and counteracted the intestinal microflora disorders produced by 5-FU by increasing the proportion of Bacteroidetes, lactobacilli, and butyric acid-producing and acetic acid-producing bacteria and restoring the intestinal flora diversity. Overall, this work suggested that CMP could regulate the ecological balance of the intestinal flora and reduce colon injuries induced by 5-FU in CT26 tumour-bearing mice, and the mechanism involved may be associated with the regulation of the NF-κB, Nrf2-ARE and MAPK/P38 pathways.

  15. IgG subclass reactivity to human cardiac myosin in cardiomyopathy patients is indicative of a Th1-like autoimmune disease

    PubMed Central

    Skyllouriotis, P; Skyllouriotis-Lazarou, M; Natter, S; Steiner, R; Spitzauer, S; Kapiotis, S; Valent, P; Hirschl, A M; Guber, S E; Laufer, G; Wollenek, G; Wolner, E; Wimmer, M; Valenta, R

    1999-01-01

    Studies performed in mice together with the demonstration of increased levels of heart-specific autoantibodies, cytokines and cytokine receptors in sera from cardiomyopathy (CMP) patients argued for a pathogenic role of autoimmune mechanisms in CMP. This study was designed to analyse the presence of IgG anti-heart antibodies in sera from patients suffering from hypertrophic and dilatative forms of CMP as well as from patients with ischaemic heart disease and healthy individuals. Patients' sera were analysed for IgG reactivity to Western-blotted extracts prepared from human epithelial and endothelial cells, heart and skeletal muscle specimens as well as from Streptococcus pyogenes. The IgG subclass (IgG1–4) reactivity to purified human cardiac myosin was analysed by ELISA. While sera from CMP patients and healthy individuals displayed comparable IgG reactivity to a variety of human proteins, cardiac myosin represented the prominent antigen detected strongly and preferentially by sera from CMP patients. Pronounced IgG anti-cardiac myosin reactivity was frequently found in sera from patients with dilatative CMP and reduced ventricular function. ELISA analyses revealed a prominent IgG2/IgG3 anti-cardiac myosin reactivity in CMP sera, indicating a preferential Th1-like immune response. Elevated anti-cytomegalovirus, anti-enterovirus IgG titres as well as IgG reactivity to nitrocellulose-blotted S. pyogenes proteins were also frequently observed in the group of CMP patients. If further work can support the hypothesis that autoreactivity to cardiac myosin represents a pathogenic factor in CMP, specific immunomodulation of this Th1- towards a Th2-like immune response may represent a promising therapeutic strategy for CMP. PMID:9933448

  16. SEMICONDUCTOR TECHNOLOGY: Material removal rate in chemical-mechanical polishing of wafers based on particle trajectories

    NASA Astrophysics Data System (ADS)

    Jianxiu, Su; Xiqu, Chen; Jiaxi, Du; Renke, Kang

    2010-05-01

    Distribution forms of abrasives in the chemical mechanical polishing (CMP) process are analyzed based on experimental results. Then the relationships between the wafer, the abrasive and the polishing pad are analyzed based on kinematics and contact mechanics. According to the track length of abrasives on the wafer surface, the relationships between the material removal rate and the polishing velocity are obtained. The analysis results are in accord with the experimental results. The conclusion provides a theoretical guide for further understanding the material removal mechanism of wafers in CMP.

  17. Effect of Molecular Structure on Modulation of Passivation Films on Copper Chemical Mechanical Planarization

    NASA Astrophysics Data System (ADS)

    Mlynarski, Amy

    In order to optimize the chemical mechanical planarization (CMP) process, there is a need to further understand the synergistic relationship between chemical and mechanical parameters to enhance the polishing process. CMP chemistry is very complex, as it contains complexing agents, oxidizing agents, passivating agents, and abrasive particles. This variety of components ensues chaos within the system, which complicates the understanding of the direct impact each component has on the CMP process. In order for there to be efficiency in the polishing process, specifically for copper (Cu) polishing, the chemistry must create a softened passivation layer on the Cu surface that is able to be readily removed by applied mechanical abrasion. Focusing on Cu CMP, the oxidation of Cu to Cu2+ needs to be thoroughly understood in order to probe the formation of creating this ideal passivated layer, which protects recessed Cu regions. The type of film that is formed, the strength of the film, and even the efficiency of film removal will be altered depending on the chemistry of interaction at the Cu surface. This thesis focuses on understanding the working mechanism of the film formation on Cu, depending on the passivating agent added to the system. The different passivating agents used, more specifically benzotriazole (BTA), triazole (TAZ), salicylhydroxamic acid (SHA), and benzimidazole (BIA), have all been known to create a light coat of protection on the recessed metal, providing corrosion resistance. In order to study the differences in these films, many different techniques can be utilized to characterize the films, such as electrochemical scans, referred to as Tafel plots, which will be performed to compare the differences of the films. By altering the temperature within the system, the activation energy for each system can also be determined as another way to characterize the density of the passive film formed. Furthermore, the generation of *OH will be monitored since the formation of *OH is imperative for catalyzing the Cu-amino acid complexes, necessary for obtaining adequate removal rates. The amount of *OH generated from each system would have a direct correlation to the polishing performance for the different systems. Additionally, the effect of changing mechanical parameters or consumables used will alter the polish, more specifically the amount of friction generated during the polishes. This work discovered that when comparing all of the different types of inhibitors, there was a significant difference seen in the type of film formed as well as the stability of the film, strongly dependent on the concentration of the corrosion inhibitor. The calculated activation energy showed a direct correlation to the concentration of the corrosion inhibitor; more specifically, as the concentration of the inhibitor increases, so does the activation energy. By looking at the generated amount of *OH for the complexes, more specifically BTA and SHA, there is a minimal amount of *OH generated within the system compared to that of TAZ and BIA which resemble more like a system containing no inhibitor at all. This would once again show how the structure determines function of the inhibitor in regards to how the complex changes for the different molecules. The removal rates for these systems, both at 100 ppm and 500 ppm, show a strong correlation to the previously discussed activation energies. BTA shows extremely low removal rates, which seems to be diminished at even higher concentration, since the film created is so dense due to the pi-pi electron interactions. Similar trends are seen in the results from TAZ where the removal rates decrease as the concentration of the inhibitor increases. Furthermore, SHA shows significant material removal rates (MRR) at lower concentrations, but the rates are vastly different when increasing the concentration to 500 ppm. This could be because the complex that forms with the surface is a stable ring-like complex, but once enough inhibitor is added, the SHA complex covers the surface entirely, eliminating any chance of Cu-glycine interaction, which would promote removal rate. Unlike the other inhibitors, the removal rates for BIA show that as the concentration of the inhibitor increases, the removal rates significantly increase as well. Since this inhibitor forms a "weaker" complex, comparatively, the more inhibitor added would allow for more of the Cu-glycine interactions to take place.

  18. Development of High-Speed Copper Chemical Mechanical Polishing Slurry for Through Silicon Via Application Based on Friction Analysis Using Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Amanokura, Jin; Ono, Hiroshi; Hombo, Kyoko

    2011-05-01

    In order to obtain a high-speed copper chemical mechanical polishing (CMP) process for through silicon vias (TSV) application, we developed a new Cu CMP slurry through friction analysis of Cu reaction layer by an atomic force microscope (AFM) technique. A lateral modulation friction force microscope (LM-FFM) is able to measure the friction value properly giving a vibration to the layer. We evaluated the torsional displacement between the probe of the LM-FFM and the Cu reaction layer under a 5 nm vibration to cancel the shape effect of the Cu reaction layer. The developed Cu CMP slurry forms a frictionally easy-removable Cu reaction layer.

  19. Large Cardiac Muscle Patches Engineered From Human Induced-Pluripotent Stem Cell-Derived Cardiac Cells Improve Recovery From Myocardial Infarction in Swine.

    PubMed

    Gao, Ling; Gregorich, Zachery R; Zhu, Wuqiang; Mattapally, Saidulu; Oduk, Yasin; Lou, Xi; Kannappan, Ramaswamy; Borovjagin, Anton V; Walcott, Gregory P; Pollard, Andrew E; Fast, Vladimir G; Hu, Xinyang; Lloyd, Steven G; Ge, Ying; Zhang, Jianyi

    2018-04-17

    Here, we generated human cardiac muscle patches (hCMPs) of clinically relevant dimensions (4 cm × 2 cm × 1.25 mm) by suspending cardiomyocytes, smooth muscle cells, and endothelial cells that had been differentiated from human induced-pluripotent stem cells in a fibrin scaffold and then culturing the construct on a dynamic (rocking) platform. In vitro assessments of hCMPs suggest maturation in response to dynamic culture stimulation. In vivo assessments were conducted in a porcine model of myocardial infarction (MI). Animal groups included: MI hearts treated with 2 hCMPs (MI+hCMP, n=13), MI hearts treated with 2 cell-free open fibrin patches (n=14), or MI hearts with neither experimental patch (n=15); a fourth group of animals underwent sham surgery (Sham, n=8). Cardiac function and infarct size were evaluated by MRI, arrhythmia incidence by implanted loop recorders, and the engraftment rate by calculation of quantitative polymerase chain reaction measurements of expression of the human Y chromosome. Additional studies examined the myocardial protein expression profile changes and potential mechanisms of action that related to exosomes from the cell patch. The hCMPs began to beat synchronously within 1 day of fabrication, and after 7 days of dynamic culture stimulation, in vitro assessments indicated the mechanisms related to the improvements in electronic mechanical coupling, calcium-handling, and force generation, suggesting a maturation process during the dynamic culture. The engraftment rate was 10.9±1.8% at 4 weeks after the transplantation. The hCMP transplantation was associated with significant improvements in left ventricular function, infarct size, myocardial wall stress, myocardial hypertrophy, and reduced apoptosis in the periscar boarder zone myocardium. hCMP transplantation also reversed some MI-associated changes in sarcomeric regulatory protein phosphorylation. The exosomes released from the hCMP appeared to have cytoprotective properties that improved cardiomyocyte survival. We have fabricated a clinically relevant size of hCMP with trilineage cardiac cells derived from human induced-pluripotent stem cells. The hCMP matures in vitro during 7 days of dynamic culture. Transplantation of this type of hCMP results in significantly reduced infarct size and improvements in cardiac function that are associated with reduction in left ventricular wall stress. The hCMP treatment is not associated with significant changes in arrhythmogenicity. © 2017 American Heart Association, Inc.

  20. Microbial biofilms for the removal of Cu²⁺ from CMP wastewater.

    PubMed

    Mosier, Aaron P; Behnke, Jason; Jin, Eileen T; Cady, Nathaniel C

    2015-09-01

    The modern semiconductor industry relies heavily on a process known as chemical mechanical planarization, which uses physical and chemical processes to remove excess material from the surface of silicon wafers during microchip fabrication. This process results in large volumes of wastewater containing dissolved metals including copper (Cu(2+)), which must then be filtered and treated before release into municipal waste systems. We have investigated the potential use of bacterial and fungal biomass as an alternative to the currently used ion-exchange resins for the adsorption of dissolved Cu(2+) from high-throughput industrial waste streams. A library of candidate microorganisms, including Lactobacillus casei and Pichia pastoris, was screened for ability to bind Cu(2+) from solution and to form static biofilm communities within packed-bed adsorption columns. The binding efficiency of these biomass-based adsorption columns was assessed under various flow conditions and compared to that of industrially used ion-exchange resins. We demonstrated the potential to regenerate the biomass within the adsorption columns through the use of a hydrochloric acid wash, and subsequently reuse the columns for additional copper binding. While the binding efficiency and capacity of the developed L. casei/P. pastoris biomass filters was inferior to ion-exchange resin, the potential for repeated reuse of these filters, coupled with the advantages of a more sustainable "green" adsorption process, make this technique an attractive candidate for use in industrial-scale CMP wastewater treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Monoatomic layer removal mechanism in chemical mechanical polishing process: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Si, Lina; Guo, Dan; Luo, Jianbin; Lu, Xinchun

    2010-03-01

    Molecular dynamics simulations of nanoscratching processes were used to study the atomic-scale removal mechanism of single crystalline silicon in chemical mechanical polishing (CMP) process and particular attention was paid to the effect of scratching depth. The simulation results under a scratching depth of 1 nm showed that a thick layer of silicon material was removed by chip formation and an amorphous layer was formed on the silicon surface after nanoscratching. By contrast, the simulation results with a depth of 0.1 nm indicated that just one monoatomic layer of workpiece was removed and a well ordered crystalline surface was obtained, which is quite consistent with previous CMP experimental results. Therefore, monoatomic layer removal mechanism was presented, by which it is considered that during CMP process the material was removed by one monoatomic layer after another, and the mechanism could provide a reasonable understanding on how the high precision surface was obtained. Also, the effects of the silica particle size and scratching velocity on the removal mechanism were investigated; the wear regimes and interatomic forces between silica particle and workpiece were studied to account for the different removal mechanisms with indentation depths of 0.1 and 1 nm.

  2. Study on effect of the surface variation of colloidal silica abrasive during chemical mechanical polishing of sapphire

    NASA Astrophysics Data System (ADS)

    Bun-Athuek, Natthaphon; Yoshimoto, Yutaka; Sakai, Koya; Khajornrungruang, Panart; Suzuki, Keisuke

    2017-07-01

    The surface and diameter size variations of colloidal silica particles during the chemical mechanical polishing (CMP) of sapphire substrates were investigated using different particle diameters of 20 and 55 nm. Dynamic light scattering (DLS) results show that the silica particles became larger after CMP under both conditions. The increase in particle size in the slurry was proportional to the material removal amount (MRA) as a function of the removed volume of sapphire substrates by CMP and affected the material removal rate (MRR). Transmission electron microscopy (TEM) images revealed an increase in the size of the fine particles and a change in their surface shape in the slurry. The colloidal silica was coated with the material removed from the substrate during CMP. In this case, the increase in the size of 55 nm diameter particles is larger than that of 20 nm diameter particles. X-ray fluorescence spectrometry (XRF) results indicate that the aluminum element from polished sapphire substrates adhered to the surfaces of silica particles. Therefore, MRR decreases with increasing of polishing time owing to the degradation of particles in the slurry.

  3. Chemical Mechanical Polishing of Ruthenium, Cobalt, and Black Diamond Films

    NASA Astrophysics Data System (ADS)

    Peethala, Brown Cornelius

    Ta/TaN bilayer serves as the diffusion barrier as well as the adhesion promoter between Cu and the dielectric in 32 nm technology devices. A key concern of future technology devices (<32 nm) for Cu interconnects is the extendibility of TaN/Ta/Cu-seed to sustain the diffusion barrier performance without forming voids and meeting the requirements of low resistivity. These are very challenging requirements for the Ta/TaN bilayer at a thickness of < 5 nm. Hence, ruthenium (Ru) and cobalt (Co), among these, are being considered for replacing Ta/TaN as barrier materials for Cu interconnects in future technology devices. Both are very attractive for reasons such as the capability of direct electroplating of Cu, lower resistivity and for a single layer (vs. a bilayer of Ta/TaN) to act as a barrier. During patterning, they need to be planarized using conventional chemical mechanical polishing (CMP) to achieve a planar surface. However, CMP of these new barrier materials requires novel slurry compositions that provide adequate selectivity towards Cu and dielectric films, and minimize galvanic corrosion. Apart from the application as a barrier, Ru also has been proposed as a lower electrode material in metal-insulator-metal capacitors where high (> 50 nm/min) Ru removal rates (RRs) are required and as a stop layer in magnetic recording head fabrication where low (< 1 nm/min) Ru RRs are desired. A Ru removal rate of ˜60 nm/min was achieved with a colloidal silica-based slurry at pH 9 using potassium periodate (KIO4) as the oxidizer. At this pH, toxic RuO4 does not form eliminating a major challenge in Ru CMP. This removal rate was obtained by increasing the solubility of KIO4 by adding potassium hydroxide (KOH). It was also determined that increased the ionic strength is not responsible for the observed increase in Ru removal rate. Benzotirazole (BTA) and ascorbic acid were added to the slurry to reduce the open circuit potential (Eoc) difference between Cu and Ru to ˜20 mV from about 550 mV in the absence of additives. A removal mechanism with KIO4 as the oxidizing agent is proposed based on the formation of several ruthenium oxides, some of which formed residues on the polishing pad below a pH of ˜7. Next, a colloidal silica-based slurry with hydrogen peroxide (H 2O2) as the oxidizer (1 wt%), and arginine (0.5 wt%) as the complexing agent was developed to polish Co at pH 10. The Eoc between Cu and Co at the above conditions was reduced to ˜20 mV compared to ˜250 mV in the absence of additives, suggestive of reduced galvanic corrosion during the Co polishing. The slurry also has the advantages of good post-polish surface quality at pH 10, and no dissolution rate. BTA at a concentration of 5mM in this slurry inhibited Cu dissolution rates and yielded a Cu/Co RR ratio of ˜0.8:1 while the open potential difference between Cu and Co was further reduced to ˜10 mV. The role of H2O2, complexing agent (arginine), silica abrasives, and Co removal mechanism during polishing is discussed. Also, during the barrier CMP, a part of the underlying low-k (SiCOH) material has to be polished to remove any modified surface film. Black Diamond (BD) is a SiCOH type material with a dielectric constant of ˜2.9 and here, polishing of BD was investigated in order to understand the polishing behavior of SiCOH-based materials using the barrier slurries. The slurries that were developed for polishing Co and Ru in this work and Ta/TaN (earlier) were investigated for polishing the Black Diamond (BD) films. Here, it was found that ionic salts play a major role in enhancing the BD RRs to ˜65 nm/min compared to no removal rates in the absence of additives. A removal mechanism in the presence of ionic salts is proposed.

  4. Surface topography analysis and performance on post-CMP images (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lee, Jusang; Bello, Abner F.; Kakita, Shinichiro; Pieniazek, Nicholas; Johnson, Timothy A.

    2017-03-01

    Surface topography on post-CMP processing can be measured with white light interference microscopy to determine the planarity. Results are used to avoid under or over polishing and to decrease dishing. The numerical output of the surface topography is the RMS (root-mean-square) of the height. Beyond RMS, the topography image is visually examined and not further quantified. Subjective comparisons of the height maps are used to determine optimum CMP process conditions. While visual comparison of height maps can determine excursions, it's only through manual inspection of the images. In this work we describe methods of quantifying post-CMP surface topography characteristics that are used in other technical fields such as geography and facial-recognition. The topography image is divided into small surface patches of 7x7 pixels. Each surface patch is fitted to an analytic surface equation, in this case a third order polynomial, from which the gradient, directional derivatives, and other characteristics are calculated. Based on the characteristics, the surface patch is labeled as peak, ridge, flat, saddle, ravine, pit or hillside. The number of each label and thus the associated histogram is then used as a quantified characteristic of the surface topography, and could be used as a parameter for SPC (statistical process control) charting. In addition, the gradient for each surface patch is calculated, so the average, maximum, and other characteristics of the gradient distribution can be used for SPC. Repeatability measurements indicate high confidence where individual labels can be lower than 2% relative standard deviation. When the histogram is considered, an associated chi-squared value can be defined from which to compare other measurements. The chi-squared value of the histogram is a very sensitive and quantifiable parameter to determine the within wafer and wafer-to-wafer topography non-uniformity. As for the gradient histogram distribution, the chi-squared could again be calculated and used as yet another quantifiable parameter for SPC. In this work we measured the post Cu CMP of a die designed for 14nm technology. A region of interest (ROI) known to be indicative of the CMP processing is chosen for the topography analysis. The ROI, of size 1800 x 2500 pixels where each pixel represents 2um, was repeatably measured. We show the sensitivity based on measurements and the comparison between center and edge die measurements. The topography measurements and surface patch analysis were applied to hundreds of images representing the periodic process qualification runs required to control and verify CMP performance and tool matching. The analysis is shown to be sensitive to process conditions that vary in polishing time, type of slurry, CMP tool manufacturer, and CMP pad lifetime. Keywords: Keywords: CMP, Topography, Image Processing, Metrology, Interference microscopy, surface processing [1] De Lega, Xavier Colonna, and Peter De Groot. "Optical topography measurement of patterned wafers." Characterization and Metrology for ULSI Technology 2005 788 (2005): 432-436. [2] de Groot, Peter. "Coherence scanning interferometry." Optical Measurement of Surface Topography. Springer Berlin Heidelberg, 2011. 187-208. [3] Watson, Layne T., Thomas J. Laffey, and Robert M. Haralick. "Topographic classification of digital image intensity surfaces using generalized splines and the discrete cosine transformation." Computer Vision, Graphics, and Image Processing 29.2 (1985): 143-167. [4] Wang, Jun, et al. "3D facial expression recognition based on primitive surface feature distribution." Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on. Vol. 2. IEEE, 2006.

  5. Influence of Si wafer thinning processes on (sub)surface defects

    NASA Astrophysics Data System (ADS)

    Inoue, Fumihiro; Jourdain, Anne; Peng, Lan; Phommahaxay, Alain; De Vos, Joeri; Rebibis, Kenneth June; Miller, Andy; Sleeckx, Erik; Beyne, Eric; Uedono, Akira

    2017-05-01

    Wafer-to-wafer three-dimensional (3D) integration with minimal Si thickness can produce interacting multiple devices with significantly scaled vertical interconnections. Realizing such a thin 3D structure, however, depends critically on the surface and subsurface of the remaining backside Si after the thinning processes. The Si (sub)surface after mechanical grinding has already been characterized fruitfully for a range of few dozen of μm. Here, we expand the characterization of Si (sub)surface to 5 μm thickness after thinning process on dielectric bonded wafers. The subsurface defects and damage layer were investigated after grinding, chemical mechanical polishing (CMP), wet etching and plasma dry etching. The (sub)surface defects were characterized using transmission microscopy, atomic force microscopy, and positron annihilation spectroscopy. Although grinding provides the fastest removal rate of Si, the surface roughness was not compatible with subsequent processing. Furthermore, mechanical damage such as dislocations and amorphous Si cannot be reduced regardless of Si thickness and thin wafer handling systems. The CMP after grinding showed excellent performance to remove this grinding damage, even though the removal amount is 1 μm. For the case of Si thinning towards 5 μm using grinding and CMP, the (sub)surface is atomic scale of roughness without vacancy. For the case of grinding + dry etch, vacancy defects were detected in subsurface around 0.5-2 μm. The finished surface after wet etch remains in the nm scale in the strain region. By inserting a CMP step in between grinding and dry etch it is possible to significantly reduce not only the roughness, but also the remaining vacancies at the subsurface. The surface of grinding + CMP + dry etching gives an equivalent mono vacancy result as to that of grinding + CMP. This combination of thinning processes allows development of extremely thin 3D integration devices with minimal roughness and vacancy surface.

  6. Experimental Studies of Selected Aqueous Electrochemical Systems Relevant for Materials Processing in the Fabrications of Microelectronic Components and Direct Alcohol Fuel Cells

    NASA Astrophysics Data System (ADS)

    Shi, Xingzhao

    A broad range of electrochemical techniques are employed in this dissertation to investigate a selected set of aqueous electrochemical systems that are relevant for materials processing in the fabrication of microelectronic devices and direct alcohol fuel cells. In terms of technical applications, this work covers three main experimental systems: (i) chemical mechanical planarization (CMP), (ii) electro-less nickel deposition, and (iii) direct alkaline glycerol fuel cells. The first two areas are related to electronic device fabrications and the third topic is related to cost-effective energy conversion. The common electrochemical aspect of these different systems is that, in all these cases the active material characteristics are governed by complex (often multi-step) reactions occurring at metal-liquid (aqueous) interfaces. Electro-analytical techniques are ideally suited for studying the detailed mechanisms of such reactions, and the present investigation is largely focused on developing adequate analytical strategies for probing these reaction mechanisms. In the fabrication of integrated circuits, certain steps of materials processing involve CMP of Al deposited on thin layers of diffusion barrier materials like Ta/TaN, Co, or Ti/TiN. A specific example of this situation is found in the processing of replacement metal gates used for high-k/metal-gate transistors. Since the commonly used barrier materials are nobler than Al, the Al interface in contact with the barrier can become prone to galvanic corrosion in the wet CMP environment. Using model systems of coupon electrodes and two specific barrier metals, Ta and Co, the electrochemical factors responsible for these corrosion effects are investigated here in a moderately acidic (pH = 4.0) abrasive-free solution. The techniques of cyclic voltammetry and impedance spectroscopy are combined with strategic measurements of galvanic currents and open circuit potentials (OCPs). L-ascorbic acid (AA) is employed as a surface modifying agent for controlling galvanic corrosions of Al in the Ta-Al and Co-Al bimetallic combinations. The results elaborate the chemical and electrochemical mechanisms responsible for activating and suppressing the corrosion processes in these systems. Defect-control is a critical requirement for CMP of the ultrathin diffusion barriers considered for the new Cu-interconnects. The challenging task of developing advanced CMP slurries for such systems can be aided by electrochemical evaluations of model CMP schemes under tribological conditions. The present work uses this strategy to characterize an alkaline slurry formulation aimed at minimizing galvanic corrosion in the CMP systems involving Ru, Ta (barrier metals) and Cu (wiring metal). This slurry is based on percarbonate and guanidine additives, and the test metals are polycrystalline disc samples. A particular goal of this study is to explore the essential analytical aspects of evaluating CMP systems in the tribo-electrochemical approach. The CMP specific surface reactions are characterized by potentiodynamic polarization and open circuit voltage measurements, performed both in the presence and in the absence of polishing, and by employing abrasive free as well as abrasive (colloidal SiO 2) added solutions. The findings of these experiments are further checked by using impedance spectroscopy. The electrochemical mixed potential steps of the CMP promoting reactions are analyzed, and the removable surface species formed by these reactions are discussed. Electro-oxidation of hypophosphite plays an important role in the electro-less deposition of Ni used to fabricate surface engineered films, alloys, and coatings for a variety of applications. At the same time, the kinetic details of this oxidation reaction comprise an ideal framework for studying many general mechanistic aspects of electrocatalysis on transition metal substrates. The present study utilizes these specific attributes of hypophosphite oxidation to probe the underlying function of the incipient hydrous oxide of Ni in promoting the catalytic properties of this metal in an alkaline medium. The experiments reported here use time-resolved Fourier-transform electrochemical impedance spectroscopy (FT-EIS), strategically coupled with scan-rate controlled voltammetry. The results suggest that the incipient hydrous oxide Ni(OH)ad formed at the onset of hypophosphite oxidation catalytically promotes the latter's precursor de-hydrogenation step. While voltammetry provides suggestive evidence for these Ni(OH)ad induced effects, the FT-EIS data serve to gather more direct signatures of the catalytic function of Ni(OH)ad. The mechanism of energy conversion in a direct glycerol fuel cell (DGFC) is governed by the anode-supported heterogeneous steps of glycerol electro-oxidation. In aerated alkaline electrolytes, glycerol also participates in a base catalyzed process, which can release certain species mixing with the anode catalyzed surface products. As a result, selective probing of the surface catalytic reactions involving such systems can be difficult. The present work addresses this issue for a gold anode by using the analytical capability of cyclic voltammetry (CV). In addition, surface plasmon resonance measurements are used to optically probe the adsorption characteristics of the electrolyte species. The net exchange current of the oxidation process and the transfer coefficient of the rate determining step are evaluated by analyzing the CV data. The interfacial reactions and their products on Au are identified by measuring the number of electrons released during the electro-oxidation of glycerol. The results indicate that these reactions are facilitated by the surface bound hydroxyl species on Au (chemisorbed OH-- and faradaically formed Au-OH). By comparing the findings for stationary and rotating electrodes, it is shown that, convective mass transport is critical to maintaining efficient progression of the consecutive oxidation steps of glycerol. In the absence of hydrodynamic support, the main surface products of glycerol oxidation appear to be glyceraldehyde, glycerate and malonate, formed through a net six-electron route. In the presence of controlled convection, a ten-electron process is activated, where mesaxolate is the likely additional product.

  7. Fundamental studies on silicon dioxide chemical mechanical polishing

    NASA Astrophysics Data System (ADS)

    Mahajan, Uday

    Chemical Mechanical Polishing (CMP) has lately been adopted on a large scale by the semiconductor industry for planarizing and patterning metal and dielectric films. Additionally, CMP has been used for hundreds of years for optical polishing. Still, several aspects of this process remain poorly understood. In this study, some results on CMP of SiO2 are presented with a view to characterizing the effects of abrasive properties and slurry chemistry on the polishing process. Additionally, some results from a novel in-situ friction force measuring instrument are also presented. The friction force results showed the effect of several parameters such as surface roughness, solution pH and ionic strength on wafer-pad interactions. Additionally, monitoring the friction as a function of velocity showed that the transition from boundary lubrication to full fluid-film lubrication depends on the roughness (conditioning) of the polishing pad. The parameters investigated in the polishing experiments include abrasive size and concentration. From the experimental results, it was found that an optimum concentration exists for each abrasive size, which shifts to lower values and becomes narrower as particle size increases. From calculations, this was attributed to a decreased ability of the large particles to chemically modify the surface of the SiO2 films. The smaller particles, having a much larger surface area, are able to better adsorb dissolution and abrasion products at high concentrations, thus leading to high removal rates under those conditions. Studies on the effect of slurry ionic strength showed that the ability of a metal ion to shield the surface charge on the surfaces interacting during polishing is what determined removal rate. This was due to the reduced electrostatic repulsion between the surfaces, which resulted in better contact and thus higher polishing rates. These results were corroborated by the earlier friction force measurements. Finally, the influence of particle density on polishing was shown, with denser alumina particles being able to polish SiO2 much more effectively. Some preliminary results on polishing with different abrasives as a function of slurry pH indicate that the material properties of the abrasives seem to change around their Iso-electric Points (IEP), resulting in almost no polishing, and severe particle contamination on the SiO2 surface.

  8. A novel approach of chemical mechanical polishing for cadmium zinc telluride wafers.

    PubMed

    Zhang, Zhenyu; Wang, Bo; Zhou, Ping; Kang, Renke; Zhang, Bi; Guo, Dongming

    2016-05-26

    A novel approach of chemical mechanical polishing (CMP) is developed for cadmium zinc telluride (CdZnTe or CZT) wafers. The approach uses environment-friendly slurry that consists of mainly silica, hydrogen peroxide, and citric acid. This is different from the previously reported slurries that are usually composed of strong acid, alkali, and bromine methanol, and are detrimental to the environment and operators. Surface roughness 0.5 nm and 4.7 nm are achieved for Ra and peak-to-valley (PV) values respectively in a measurement area of 70 × 50 μm(2), using the developed novel approach. Fundamental polishing mechanisms are also investigated in terms of X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. Hydrogen peroxide dominates the passivating process during the CMP of CZT wafers, indicating by the lowest passivation current density among silica, citric acid and hydrogen peroxide solution. Chemical reaction equations are proposed during CMP according to the XPS and electrochemical measurements.

  9. A novel approach of chemical mechanical polishing for cadmium zinc telluride wafers

    PubMed Central

    Zhang, Zhenyu; Wang, Bo; Zhou, Ping; Kang, Renke; Zhang, Bi; Guo, Dongming

    2016-01-01

    A novel approach of chemical mechanical polishing (CMP) is developed for cadmium zinc telluride (CdZnTe or CZT) wafers. The approach uses environment-friendly slurry that consists of mainly silica, hydrogen peroxide, and citric acid. This is different from the previously reported slurries that are usually composed of strong acid, alkali, and bromine methanol, and are detrimental to the environment and operators. Surface roughness 0.5 nm and 4.7 nm are achieved for Ra and peak-to-valley (PV) values respectively in a measurement area of 70 × 50 μm2, using the developed novel approach. Fundamental polishing mechanisms are also investigated in terms of X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. Hydrogen peroxide dominates the passivating process during the CMP of CZT wafers, indicating by the lowest passivation current density among silica, citric acid and hydrogen peroxide solution. Chemical reaction equations are proposed during CMP according to the XPS and electrochemical measurements. PMID:27225310

  10. Surfactant assisted disperser pretreatment on the liquefaction of Ulva reticulata and evaluation of biodegradability for energy efficient biofuel production through nonlinear regression modelling.

    PubMed

    Kumar, M Dinesh; Tamilarasan, K; Kaliappan, S; Banu, J Rajesh; Rajkumar, M; Kim, Sang Hyoun

    2018-05-01

    The present study aimed to increase the disintegration potential of marine macroalgae, (Ulva reticulata) through chemo mechanical pretreatment (CMP) in an energy efficient manner. By combining surfactant with disperser, the specific energy input was considerably reduced from 437.1 kJ/kg TS to 264.9 kJ/kg TS to achieve 10.7% liquefaction. A disperser rpm (10,000), pretreatment time (30 min) and tween 80 dosage (21.6 mg/L) were considered as an optimum for effective liquefaction of algal biomass. CMP was designated as an appropriate pretreatment resulting in a higher soluble organic release 1250 mg/L, respectively. Anaerobic fermentation results revealed that the volatile fatty acid (VFA) concentration was doubled (782 mg/L) in CMP when compared to mechanical pretreatment (MP) (345 mg/L). CMP pretreated algal biomass was considered as the suitable for biohydrogen production with highest H 2 yield of about 63 mL H 2 /g COD than (MP) (45 mL H 2 /g COD) and control (10 mL H 2 /g COD). Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Quantum Mechanics/Molecular Mechanics Study of the Sialyltransferase Reaction Mechanism.

    PubMed

    Hamada, Yojiro; Kanematsu, Yusuke; Tachikawa, Masanori

    2016-10-11

    The sialyltransferase is an enzyme that transfers the sialic acid moiety from cytidine 5'-monophospho-N-acetyl-neuraminic acid (CMP-NeuAc) to the terminal position of glycans. To elucidate the catalytic mechanism of sialyltransferase, we explored the potential energy surface along the sialic acid transfer reaction coordinates by the hybrid quantum mechanics/molecular mechanics method on the basis of the crystal structure of sialyltransferase CstII. Our calculation demonstrated that CstII employed an S N 1-like reaction mechanism via the formation of a short-lived oxocarbenium ion intermediate. The computational barrier height was 19.5 kcal/mol, which reasonably corresponded with the experimental reaction rate. We also found that two tyrosine residues (Tyr156 and Tyr162) played a vital role in stabilizing the intermediate and the transition states by quantum mechanical interaction with CMP.

  12. Development of Formulations for a-SiC and Manganese CMP and Post-CMP Cleaning of Cobalt

    NASA Astrophysics Data System (ADS)

    Lagudu, Uma Rames Krishna

    We have investigated the chemical mechanical polishing (CMP) of amorphous SiC (a-SiC) and Mn and Post CMP cleaning of cobalt for various device applications. During the manufacture of copper interconnects using the damascene process the polishing of copper is followed by the polishing of the barrier material (Co, Mn, Ru and their alloys) and its post CMP cleaning. This is followed by the a-SiC hard mask CMP. Silicon carbide thin films, though of widespread use in microelectronic engineering, are difficult to process by CMP because of their hardness and chemical inertness. The earlier part of the SiC work discusses the development of slurries based on silica abrasives that resulted in high a-SiC removal rates (RRs). The ionic strength of the silica dispersion was found to play a significant role in enhancing material removal rate, while also providing very good post-polish surface-smoothness. For example, the addition of 50 mM potassium nitrate to a pH 8 aqueous slurry consisting of 10 wt % of silica abrasives and 1.47 M hydrogen peroxide increased the RR from about 150 nm/h to about 2100 nm/h. The role of ionic strength in obtaining such high RRs was investigated using surface zeta-potentials measurements and X-ray photoelectron spectroscopy (XPS). Evidently, hydrogen peroxide promoted the oxidation of Si and C to form weakly adhered species that were subsequently removed by the abrasive action of the silica particles. The effect of potassium nitrate in increasing material removal is attributed to the reduction in the electrostatic repulsion between the abrasive particles and the SiC surface because of screening of surface charges by the added electrolyte. We also show that transition metal compounds when used as additives to silica dispersions enhance a-SiC removal rates (RRs). Silica slurries containing potassium permanganate gave RRs as high as 2000 nm/h at pH 4. Addition of copper sulfate to this slurry further enhanced the RRs to ˜3500 nm/h at pH 6. Furthermore, addition of a low concentration of 250 ppm Brij-35 to this slurry suppressed the RRs of silicon dioxide to zero, while retaining the RRs of a-SiC at ˜2700 nm/h , a combination of RRs that is appropriate for hard mask polishing. The second part of this thesis focuses on the polishing of manganese which was proposed as a "self-forming" barrier material to prevent copper diffusion in advanced generation (22 nm and smaller) Si devices. A major challenge associated with such a self-forming Mn barrier for Cu interconnects in sub-22nm devices is galvanic corrosion that can occur at the Cu-Mn interface during chemical mechanical planarization. In the present work, it was shown that an aqueous solution of sucrose, BTA and potassium periodate reduces the corrosion potential gap between Cu and Mn to ˜ 0.01 V at pH 10 while also lowering the galvanic currents significantly and hence can be an excellent candidate for a polishing slurry. We discuss the role of these reagents and the inhibiting film that can be formed at the interface of the bimetallic system in this solution. Preliminary polishing results for Cu and Mn using a silica-based slurry formulated with this solution are also presented. The third part involves the development of compositions for Post CMP cleaning of cobalt barriers in advanced generation (22 nm and smaller). The thickness of the cobalt films was found to impact the corrosion behavior of the films. Thinner films of cobalt were found be more prone to galvanic corrosion in the presence of copper. The corrosion currents were low for both Cu and Co in all the solutions tested but the galvanic currents varied significantly. It was found that while BTA was not able to suppress the galvanic corrosion between Cu and Co (2000 A) at pH 8, either 60 mM of 3 Amino 1,2,4 triazole or 30 mM of 3 Amino 5 methyl thio 1,2,4 triazole were able to suppress the galvanic corrosion between Cu and Co (2000 A) to < 0.3 micro amperes per square cm at pH 8. These compositions however were not able to suppress the galvanic corrosion of Co (20 A) films. Changing the pH to 10 did not improve the results. Furthermore, addition of several complexing agents and other corrosion inhibitors also did not lower the Ecorr of Co (20 A) and Cu. Further experiments are being conducted to identify compositions to protect Co and Cu from corrosion. (Abstract shortened by UMI.).

  13. Affinity chromatography matrices for depletion and purification of casein glycomacropeptide from bovine whey.

    PubMed

    Baieli, María F; Urtasun, Nicolás; Martinez, María J; Hirsch, Daniela B; Pilosof, Ana M R; Miranda, María V; Cascone, Osvaldo; Wolman, Federico J

    2017-01-01

    Casein glycomacropeptide (CMP) is a 64- amino acid peptide found in cheese whey, which is released after κ-casein specific cleavage by chymosin. CMP lacks aromatic amino acids, a characteristic that makes it usable as a nutritional supplement for people with phenylketonuria. CMP consists of two nonglycosylated isoforms (aCMP A and aCMP B) and its different glycosylated forms (gCMP A and gCMP B). The most predominant carbohydrate of gCMP is N-acetylneuraminic acid (sialic acid). Here, we developed a CMP purification process based on the affinity of sialic acid for wheat germ agglutinin (WGA). After formation of chitosan beads and adsorption of WGA, the agglutinin was covalently attached with glutaraldehyde. Two matrices with different WGA density were assayed for CMP adsorption. Maximum adsorption capacities were calculated according to the Langmuir model from adsorption isotherms developed at pH 7.0, being 137.0 mg/g for the matrix with the best performance. In CMP reduction from whey, maximum removal percentage was 79% (specifically 33.7% of gCMP A and B, 75.8% of aCMP A, and 93.9% of aCMP B). The CMP was recovered as an aggregate with an overall yield of 64%. Therefore, the matrices developed are promising for CMP purification from cheese whey. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:171-180, 2017. © 2016 American Institute of Chemical Engineers.

  14. Impact of a human CMP-sialic acid transporter on recombinant glycoprotein sialylation in glycoengineered insect cells.

    PubMed

    Mabashi-Asazuma, Hideaki; Shi, Xianzong; Geisler, Christoph; Kuo, Chu-Wei; Khoo, Kay-Hooi; Jarvis, Donald L

    2013-02-01

    Insect cells are widely used for recombinant glycoprotein production, but they cannot provide the glycosylation patterns required for some biotechnological applications. This problem has been addressed by genetically engineering insect cells to express mammalian genes encoding various glycoprotein glycan processing functions. However, for various reasons, the impact of a mammalian cytosine-5'-monophospho (CMP)-sialic acid transporter has not yet been examined. Thus, we transformed Spodoptera frugiperda (Sf9) cells with six mammalian genes to generate a new cell line, SfSWT-4, that can produce sialylated glycoproteins when cultured with the sialic acid precursor, N-acetylmannosamine. We then super-transformed SfSWT-4 with a human CMP-sialic acid transporter (hCSAT) gene to isolate a daughter cell line, SfSWT-6, which expressed the hCSAT gene in addition to the other mammalian glycogenes. SfSWT-6 cells had higher levels of cell surface sialylation and also supported higher levels of recombinant glycoprotein sialylation, particularly when cultured with low concentrations of N-acetylmannosamine. Thus, hCSAT expression has an impact on glycoprotein sialylation, can reduce the cost of recombinant glycoprotein production and therefore should be included in ongoing efforts to glycoengineer the baculovirus-insect cell system. The results of this study also contributed new insights into the endogenous mechanism and potential mechanisms of CMP-sialic acid accumulation in the Golgi apparatus of lepidopteran insect cells.

  15. An occupational exposure assessment for engineered nanoparticles used in semiconductor fabrication.

    PubMed

    Shepard, Michele Noble; Brenner, Sara

    2014-03-01

    Engineered nanoparticles of alumina, amorphous silica, and ceria are used in semiconductor device fabrication during wafer polishing steps referred to as 'chemical mechanical planarization' (CMP). Some metal oxide nanoparticles can impact the biological response of cells and organ systems and may cause adverse health effects; additional research is necessary to better understand potential risks from nanomaterial applications and occupational exposure scenarios. This study was conducted to assess potential airborne exposures to nanoparticles and agglomerates using direct-reading instruments and filter-based samples to characterize workplace aerosols by particle number, mass, size, composition, and morphology. Sampling was repeated for tasks in three work areas (fab, subfab, wastewater treatment) at a facility using engineered nanoparticles for CMP. Real-time measurements were collected using a condensation particle counter (CPC), optical particle counter, and scanning mobility particle spectrometer (SMPS). Filter-based samples were analyzed for total mass or the respirable fraction, and for specific metals of interest. Additional air sample filters were analyzed by transmission electron microscopy with energy dispersive x-ray spectroscopy (TEM/EDX) for elemental identification and to provide data on particle size, morphology, and concentration. Peak concentrations measured on the CPC ranged from 1 to 16 particles per cubic centimeter (P cm(-3)) for background and from 4 to 74 P cm(-3) during tasks sampled in the fab; from 1 to 60 P cm(-3) for background and from 3 to 84 P cm(-3) for tasks sampled in the subfab; and from 1160 to 45 894 P cm(-3) for background and from 1710 to 45 519 P cm(-3) during wastewater treatment system filter change tasks. Significant variability was seen among the repeated task measurements and among background comparisons in each area. Several data analysis methods were used to compare each set of task and background measurements. Increased concentrations of respirable particles were identified for some tasks sampled in each work area, although of relatively low magnitude and inconsistently among repeated measurements for specific tasks. Measurements with a portable SMPS indicated that nanoparticle number concentrations (channels 11.5-115.5nm) increased above background levels by 3.2 P cm(-3) during CMP tool set-up in the fab area but were not elevated when changing filters for the CMP wastewater treatment system. All results from mass concentration analysis were below the limits of detection. Characterization by TEM/EDX identified structures containing the elements of interest (Al, Si), primarily as agglomerates or aggregates in the 100-1000nm size range. Although health-based occupational exposure limits have not been established for nanoscale alumina, silica, or ceria, the measured concentrations by number and mass were below currently proposed benchmarks or reference values for poorly soluble low-toxicity nanoparticles.

  16. Mechanism of the development of a weakly alkaline barrier slurry without BTA and oxidizer

    NASA Astrophysics Data System (ADS)

    Xiaodong, Luan; Yuling, Liu; Xinhuan, Niu; Juan, Wang

    2015-07-01

    Controllable removal rate selectivity with various films (Cu, Ta, SiO2) is a challenging job in barrier CMP. H2O2 as an oxidizer and benzotriazole (BTA) as an inhibitor is considered to be an effective method in barrier CMP. Slurries that contain hydrogen peroxide have a very short shelf life because H2O2 is unstable and easily decomposed. BTA can cause post-CMP challenges, such as organic residue, toxicity and particle adhesion. We have been engaged in studying a weakly alkaline barrier slurry without oxidizer and benzotriazole. Based on these works, the objective of this paper is to discuss the mechanism of the development of the barrier slurry without oxidizer and benzotriazole by studying the effects of the different components (containing colloidal silica, FA/O complexing agent, pH of polishing solution and guanidine nitrate) on removal rate selectivity. The possible related polishing mechanism has also been proposed. Project supported by the Major National Science and Technology Special Projects (No. 2009ZX02308), the National Natural Science Foundation of Hebei Province, China (No. E2013202247), and the Department of Education-Funded Research Projects of Hebei Province, China (No. QN2014208).

  17. Chitin nanofibrils for rapid and efficient removal of metal ions from water system.

    PubMed

    Liu, Dagang; Zhu, Yi; Li, Zehui; Tian, Donglin; Chen, Lei; Chen, Peng

    2013-10-15

    Joint mechanical defibrillation was successfully used to downsize chitin micro-particles (CMP) into nanofibrils without changing its chemical or crystalline structure. The fine chitin nanofibrils (CNF) bearing width of about 50 nm and length of more than 1 μm were then developed as heavy metal ion sorbents. The uptake performance of CNF dependent on pH, ionic concentration, time, and temperature was investigated. Results show that fixation amount of Cd(II), Ni(II), Cu(II), Zn(II), Pb(II), Cr(III) on CNF was up to 2.94, 2.30, 2.22, 2.06, 1.46, and 0.31 mmol/g, respectively, much higher than CMP due to high specific surface area and widely distributed pores of CNF. Adsorption kinetics of CMP and CNF followed pseudo-second-order model and Freundlich isotherm although CNF exhibited higher rate constant and sorption capacity than that of CMP. The defibrillated CNF is renewable, feasible, easily recyclable, and is thought as good candidate for heavy metal ion treatment due to their low sorption energy, rapid and efficient uptake capacity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Atomistic scale nanoscratching behavior of monocrystalline Cu influenced by water film in CMP process

    NASA Astrophysics Data System (ADS)

    Shi, Junqin; Chen, Juan; Fang, Liang; Sun, Kun; Sun, Jiapeng; Han, Jing

    2018-03-01

    The effect of water film on the nanoscratching behavior of monocrystalline Cu was studied by molecular dynamics (MD) simulation. The results indicate that the friction force acting on abrasive particle increases due to the resistance of water film accumulating ahead of particle, but the water film with lubrication decreases friction force acting on Cu surface. The accumulation of water molecules around particle causes the anisotropy of ridge and the surface damage around the groove, and the water molecules remaining in the groove lead to the non-regular groove structure. The dislocation evolution displays the re-organization of the dislocation network in the nanoscratching process. The evaluation of removal efficiency shows the number of removed Cu atoms decreases with water film thickness. It is considered that an appropriate rather than a high removal efficiency should be adopted to evaluate the polishing process in real (chemical mechanical polishing) CMP. These results are helpful to reveal the polishing mechanism under the effect of water film from physical perspective, which benefits the development of ultra-precision manufacture and miniaturized components, as well as the innovation of CMP technology.

  19. In situ measurement method for film thickness using transparency resin sheet with low refractive index under wet condition on chemical mechanical polishing

    NASA Astrophysics Data System (ADS)

    Oniki, Takahiro; Khajornrungruang, Panart; Suzuki, Keisuke

    2017-07-01

    We suggest that a transparency resin sheet with low refractive index can be applied to the measurement of a silicon dioxide (SiO2) film on a silicon wafer under wet condition for a film thickness measurement system on chemical mechanical polishing (CMP). By adjusting the refractive indices of the resin sheet and water, stable measurements of the SiO2 film can be expected, irrespective of slurry film thickness fluctuation because it has robustness against the slurry film. This result indicates that the transparency resin sheet with low refractive index is a useful for monitoring system of CMP.

  20. Self-assembled nanocomplexes of anionic pullulan and polyallylamine for DNA and pH-sensitive intracellular drug delivery

    NASA Astrophysics Data System (ADS)

    Vora, Lalit; Tyagi, Monica; Patel, Ketan; Gupta, Sanjay; Vavia, Pradeep

    2014-12-01

    The amalgamation of chemotherapy and gene therapy is promising treatment option for cancer. In this study, novel biocompatible self-assembled nanocomplexes (NCs) between carboxylmethylated pullulan t335 (CMP) with polyallylamine (CMP-PAA NCs) were developed for plasmid DNA (pDNA) and pH-sensitive doxorubicin (DOX) delivery. DOX was conjugated to CMP (DOX-CMP) via hydrazone and confirmed by FTIR and 1H-NMR. In vitro release studies of pH-sensitive DOX-CMP conjugate showed 23 and 85 % release after 48 h at pH 7.4 (physiological pH) and pH 5 (intracellular/tumoral pH), respectively. The CMP-PAA NCs or DOX-CMP-PAA NCs self-assembled into a nanosized (<250 nm) spherical shape as confirmed by DLS and TEM. The hemolysis and cytotoxicity study indicated that the CMP-PAA NCs did not show cytotoxicity in comparison with plain polyallylamine. Gel retardation assay showed complete binding of pDNA with CMP-PAA NCs at 1:2 weight ratio. CMP-PAA NCs/pDNA showed significantly higher transfection in HEK293 cells compared to PAA/pDNA complexes. Confocal imaging demonstrated successful cellular uptake of DOX-CMP-PAA NCs in HEK293 cells. Thus, NCs hold great potential for targeted pDNA and pH-sensitive intratumoral drug delivery.

  1. Cell-derived microparticles and vascular pregnancy complications: a systematic and comprehensive review.

    PubMed

    Alijotas-Reig, Jaume; Palacio-Garcia, Carles; Llurba, Elisa; Vilardell-Tarres, Miquel

    2013-02-01

    To assess current studies on the relationship between cell-derived microparticles (cMP) and recurrent miscarriages (RM) and pre-eclampsia (PE), and review the relationships between cMP and inflammatory and clot pathways, antiphospholipid antibodies (aPL), cytokines, and pregnancy complications. Systematic and comprehensive review of the literature from January 2000 to January 2012. Vall d'Hebron University Hospital. Women with recurrent miscarriages or PE, healthy nonpregnant women, and healthy pregnant women. None. Comparison of cMP numbers and types among groups. Platelet and endothelial cMP are increased in women with normal pregnancies compared with nonpregnant healthy women. Only five case-control studies regarding cMP and RM and 16 on cMP and PE were found to match our objective. Three of five articles referring to RM showed differences in cMP numbering, and 13 of 16 on cMP and PE showed differences in some type of cMP compared with controls. Cell-derived microparticles were raised in normal pregnancy. Recurrent miscarriage seems to be related to endothelial and platelet cell activation and/or consumption. An increase in almost all cMP types was observed in PE. A relationship between cMP and endothelial activation and proinflammatory status seems to exist. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  2. An Injectable Enzymatically Crosslinked Carboxymethylated Pullulan/Chondroitin Sulfate Hydrogel for Cartilage Tissue Engineering

    PubMed Central

    Chen, Feng; Yu, Songrui; Liu, Bing; Ni, Yunzhou; Yu, Chunyang; Su, Yue; Zhu, Xinyuan; Yu, Xiaowei; Zhou, Yongfeng; Yan, Deyue

    2016-01-01

    In this study, an enzymatically cross-linked injectable and biodegradable hydrogel system comprising carboxymethyl pullulan-tyramine (CMP-TA) and chondroitin sulfate-tyramine (CS-TA) conjugates was successfully developed under physiological conditions in the presence of both horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) for cartilage tissue engineering (CTTE). The HRP crosslinking method makes this injectable system feasible, minimally invasive and easily translatable for regenerative medicine applications. The physicochemical properties of the mechanically stable hydrogel system can be modulated by varying the weight ratio and concentration of polymer as well as the concentrations of crosslinking reagents. Additionally, the cellular behaviour of porcine auricular chondrocytes encapsulated into CMP-TA/CS-TA hydrogels demonstrates that the hydrogel system has a good cyto-compatibility. Specifically, compared to the CMP-TA hydrogel, these CMP-TA/CS-TA composite hydrogels have enhanced cell proliferation and increased cartilaginous ECM deposition, which significantly facilitate chondrogenesis. Furthermore, histological analysis indicates that the hydrogel system exhibits acceptable tissue compatibility by using a mouse subcutaneous implantation model. Overall, the novel injectable pullulan/chondroitin sulfate composite hydrogels presented here are expected to be useful biomaterial scaffold for regenerating cartilage tissue. PMID:26817622

  3. An Injectable Enzymatically Crosslinked Carboxymethylated Pullulan/Chondroitin Sulfate Hydrogel for Cartilage Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Yu, Songrui; Liu, Bing; Ni, Yunzhou; Yu, Chunyang; Su, Yue; Zhu, Xinyuan; Yu, Xiaowei; Zhou, Yongfeng; Yan, Deyue

    2016-01-01

    In this study, an enzymatically cross-linked injectable and biodegradable hydrogel system comprising carboxymethyl pullulan-tyramine (CMP-TA) and chondroitin sulfate-tyramine (CS-TA) conjugates was successfully developed under physiological conditions in the presence of both horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) for cartilage tissue engineering (CTTE). The HRP crosslinking method makes this injectable system feasible, minimally invasive and easily translatable for regenerative medicine applications. The physicochemical properties of the mechanically stable hydrogel system can be modulated by varying the weight ratio and concentration of polymer as well as the concentrations of crosslinking reagents. Additionally, the cellular behaviour of porcine auricular chondrocytes encapsulated into CMP-TA/CS-TA hydrogels demonstrates that the hydrogel system has a good cyto-compatibility. Specifically, compared to the CMP-TA hydrogel, these CMP-TA/CS-TA composite hydrogels have enhanced cell proliferation and increased cartilaginous ECM deposition, which significantly facilitate chondrogenesis. Furthermore, histological analysis indicates that the hydrogel system exhibits acceptable tissue compatibility by using a mouse subcutaneous implantation model. Overall, the novel injectable pullulan/chondroitin sulfate composite hydrogels presented here are expected to be useful biomaterial scaffold for regenerating cartilage tissue.

  4. Influence of Wafer Edge Geometry on Removal Rate Profile in Chemical Mechanical Polishing: Wafer Edge Roll-Off and Notch

    NASA Astrophysics Data System (ADS)

    Fukuda, Akira; Fukuda, Tetsuo; Fukunaga, Akira; Tsujimura, Manabu

    2012-05-01

    In the chemical mechanical polishing (CMP) process, uniform polishing up to near the wafer edge is essential to reduce edge exclusion and improve yield. In this study, we examine the influences of inherent wafer edge geometries, i.e., wafer edge roll-off and notch, on the CMP removal rate profile. We clarify the areas in which the removal rate profile is affected by the wafer edge roll-off and the notch, as well as the intensity of their effects on the removal rate profile. In addition, we propose the use of a small notch to reduce the influence of the wafer notch and present the results of an examination by finite element method (FEM) analysis.

  5. Comorbidity of fibromyalgia and cervical myofascial pain syndrome.

    PubMed

    Cakit, Burcu Duyur; Taskin, Suhan; Nacir, Baris; Unlu, Irem; Genc, Hakan; Erdem, Hatice Rana

    2010-04-01

    The aims of this study are to determine the frequency of fibromyalgia syndrome (FMS) in patients with chronic cervical myofascial pain (CMP) and to investigate the FMS characteristics in CMP patients. Ninty-three patients with CMP and 30 age-matched healthy women were included in this study. Main outcome measures included visual analog scale (VAS), Beck Depression Inventory (BDI), and pain pressure thresholds. CMP patients were evaluated for the existence of FMS. The severity of FMS was assessed with total myalgic score (TMS) and control point score (CPS). Most common clinical characteristics of FMS were noted. Of the 93 CMP subjects, 22 (23.6%) patients fulfilled the classification criteria for FMS. Number of tender points were higher (p=0.0), while TMS (p=0.0) and CPS (p=0.0) values were lower in comorbid CMP and FMS patients than regional CMP group. There were statistically significant differences between regional CMP patients and comorbid CMP and FMS patients regarding presence of fatigue (p=0.0) and irritable bowel syndrome (p=0.022). There was no statistically significant difference between patient groups regarding VAS values (p>0.05). BDI values of the regional CMP were significantly lower than comorbid CMP and FMS patients (p=0.011). In conclusion, we found that nearly a quarter of CMP patients were comorbid with FMS, and psychological and comorbid symptoms were more prominent in comorbid patients. We thought that, these two syndromes might be overlapping conditions and as a peripheral pain generator or inducer of central sensitisation, MPS might lead to FMS or precipitate and worsen the FMS symptoms.

  6. Adsorption treatment of oxide chemical mechanical polishing wastewater from a semiconductor manufacturing plant by electrocoagulation.

    PubMed

    Chou, Wei-Lung; Wang, Chih-Ta; Chang, Wen-Chun; Chang, Shih-Yu

    2010-08-15

    In this study, metal hydroxides generated during electrocoagulation (EC) were used to remove the chemical oxygen demand (COD) of oxide chemical mechanical polishing (oxide-CMP) wastewater from a semiconductor manufacturing plant by EC. Adsorption studies were conducted in a batch system for various current densities and temperatures. The COD concentration in the oxide-CMP wastewater was effectively removed and decreased by more than 90%, resulting in a final wastewater COD concentration that was below the Taiwan discharge standard (100 mg L(-1)). Since the processed wastewater quality exceeded the direct discharge standard, the effluent could be considered for reuse. The adsorption kinetic studies showed that the EC process was best described using the pseudo-second-order kinetic model at the various current densities and temperatures. The experimental data were also tested against different adsorption isotherm models to describe the EC process. The Freundlich adsorption isotherm model predictions matched satisfactorily with the experimental observations. Thermodynamic parameters, including the Gibbs free energy, enthalpy, and entropy, indicated that the COD adsorption of oxide-CMP wastewater on metal hydroxides was feasible, spontaneous and endothermic in the temperature range of 288-318 K. Copyright 2010 Elsevier B.V. All rights reserved.

  7. SCAMPI Lead Appraiser (Service Mark) Body of Knowledge (SLA BOK)

    DTIC Science & Technology

    2007-10-01

    CMP 6.4.2, Understanding business goals and concerns as they impact process judgments • CMP 6.5.4, Recommending next steps for process improvement...Applying practice characterization and rating rules CMP 6.4.2 Understanding business goals and concerns as they impact process judgments Associated...judgments CMP 6.4.2* Understanding business goals and concerns as they impact process judgments CMP 6.4.3 Conducting preliminary findings

  8. Investigation of aluminum gate CMP in a novel alkaline solution

    NASA Astrophysics Data System (ADS)

    Cuiyue, Feng; Yuling, Liu; Ming, Sun; Wenqian, Zhang; Jin, Zhang; Shuai, Wang

    2016-01-01

    Beyond 45 nm, due to the superior CMP performance requirements with the metal gate of aluminum in the advanced CMOS process, a novel alkaline slurry for an aluminum gate CMP with poly-amine alkali slurry is investigated. The aluminum gate CMP under alkaline conditions has two steps: stock polishing and fine polishing. A controllable removal rate, the uniformity of aluminum gate and low corrosion are the key challenges for the alkaline polishing slurry of the aluminum gate CMP. This work utilizes the complexation-soluble function of FA/O II and the preference adsorption mechanism of FA/O I nonionic surfactant to improve the uniformity of the surface chemistry function with the electrochemical corrosion research, such as OCP-TIME curves, Tafel curves and AC impedance. The result is that the stock polishing slurry (with SiO2 abrasive) contains 1 wt.% H2O2,0.5 wt.% FA/O II and 1.0 wt.% FA/O I nonionic surfactant. For a fine polishing process, 1.5 wt.% H2O2, 0.4 wt.% FA/O II and 2.0 wt.% FA/O I nonionic surfactant are added. The polishing experiments show that the removal rates are 3000 ± 50 Å/min and 1600 ± 60 Å/min, respectively. The surface roughnesses are 2.05 ± 0.128 nm and 1.59 ± 0.081 nm, respectively. A combination of the functions of FA/O II and FA/O I nonionic surfactant obtains a controllable removal rate and a better surface roughness in alkaline solution.

  9. 42 CFR 417.407 - Requirements for a Competitive Medical Plan (CMP).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Requirements for a Competitive Medical Plan (CMP... AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM HEALTH MAINTENANCE ORGANIZATIONS, COMPETITIVE MEDICAL... Requirements for a Competitive Medical Plan (CMP). (a) General rule. To qualify as a CMP, an entity must be...

  10. 42 CFR 417.407 - Requirements for a Competitive Medical Plan (CMP).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false Requirements for a Competitive Medical Plan (CMP... AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM HEALTH MAINTENANCE ORGANIZATIONS, COMPETITIVE MEDICAL... Requirements for a Competitive Medical Plan (CMP). (a) General rule. To qualify as a CMP, an entity must be...

  11. Comparative analysis of redox and inflammatory properties of pristine nanomaterials and commonly used semiconductor manufacturing nano-abrasives.

    PubMed

    Flaherty, Nicole L; Chandrasekaran, Akshaya; del Pilar Sosa Peña, Maria; Roth, Gary A; Brenner, Sara A; Begley, Thomas J; Melendez, J Andrés

    2015-12-15

    Continued expansion of the nanotechnology industry has necessitated the self-assessment of manufacturing processes, specifically in regards to understanding the health related aspects following exposure to nanomaterials. There exists a growing concern over potential occupational exposure in the semiconductor industry where Al2O3, CeO2 and SiO2 nanoparticles are commonly featured as part of the chemical mechanical planarization (CMP) process. Chronic exposure to toxicants can result not only in acute cytotoxicity but also initiation of a chronic inflammatory state associated with diverse pathologies. In the current investigation, pristine nanoparticles and CMP slurry formulations of Al2O3, SiO2 and CeO2 were employed to assess their ability to induce cytotoxicity, inflammatory responses and reactive oxygen species in a mouse alveolar macrophage cell model. The pristine nanoparticles and slurries were not intrinsically cytotoxic and did not generate free radicals but were found to act as scavengers in the presence of an oxidant stimulant. Al2O3 and SiO2 nanoparticles increased levels of pro-inflammatory cytokines while pristine SiO2 nanoparticles induced generation of F2-Isoprostanes. In co-treatment studies, the pristine nanomaterials modulated the response to the inflammatory stimulant lipopolysaccharide. The studies have established that pristine nanoparticles and slurries do not impact the cells in a similar way indicating that they should not be used as slurry substitutes in toxicity evaluations. Further, we have defined how an alveolar cell line, which would likely be the first challenged upon nanomaterial aerosolization, responds to diverse mixtures of nanomaterials. Moreover, our findings reinforce the importance of using multiple analytic methods to define the redox state of the cell following exposure to commonly used industrial nanomaterials and toxicants. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. A novel protein from edible fungi Cordyceps militaris that induces apoptosis.

    PubMed

    Bai, Ke-Chun; Sheu, Fuu

    2018-01-01

    Cordyceps militaris is a dietary therapeutic fungus that is an important model species in Cordyceps research. In this study, we purified a novel protein from the fruit bodies of C. militaris and designated it as Cordyceps militaris protein (CMP). CMP has a molecular mass of 18.0 kDa and is not glycosylated. Interestingly, CMP inhibited cell viability in murine primary cells and other cell lines in a time- and dose-dependent manner. Using trypan blue staining and a lactate dehydrogenase release assay, we showed that CMP caused cell death in the murine hepatoma cell line BNL 1MEA.7R.1. Furthermore, the frequency of BNL 1MEA.7R.1 cells at the sub-G1 stage was increased by CMP. Apoptosis, as determined by Annexin V and propidium iodide analysis, indicated that CMP could mediate BNL 1MEA.7R.1 apoptosis, but not necrosis. After coincubation with CMP, a decrease in mitochondria potential was detected using 3,3'-dihexyloxacarbocyanine iodide. These results suggest that CMP is a harmful protein that induces apoptosis through a mitochondrion-dependent pathway. Stability experiments demonstrated that heat treatment and alkalization degraded CMP and further destroyed its cell-death-inducing ability, implying that cooking is necessary for food containing C. militaris. Copyright © 2017. Published by Elsevier B.V.

  13. Reversible Sialylation: Synthesis of CMP-NeuAc from 5′-CMP using α2,3-sialyl O-glycan, glycolipid and macromolecule based donors allow for the synthesis of diverse sialylated products

    PubMed Central

    Chandrasekaran, E.V.; Xue, Jun; Xia, Jie; Locke, Robert D.; Matta, Khushi L.; Neelamegham, Sriram

    2008-01-01

    Sialyltransferases transfer sialic acid from CMP-NeuAc to an acceptor molecule. Trans-sialidases of parasites transfer α2,3 linked sialic acid from one molecule to another without the involvement of CMP-NeuAc. Here, we report another type of sialylation termed reverse sialylation catalyzed by mammalian sialyltransferase ST3Gal-II. This enzyme synthesizes CMP-NeuAc by transferring NeuAc from the NeuAcα2,3Galβ1,3GalNAcα-unit of O-glycans, 3-sialyl globo unit of glycolipids and sialylated macromolecules to 5′-CMP. CMP-NeuAc produced in situ is utilized by the same enzyme to sialylate other O-glycans and by other sialyltransferases such as ST6Gal-I and ST6GalNAc-I forming α2,6 sialylated compounds. ST3Gal-II also catalyzed the conversion of 5′-UMP to UMP-NeuAc, which was found to be an inactive sialyl donor. Reverse sialylation proceeded without the need for free sialic acid, divalent metal ions or energy. The direct sialylation using CMP-NeuAc as well as the formation of CMP-NeuAc from 5′-CMP had a wide optimum range (pH 5.2–7.2 and 4.8–6.4 respectively) whereas the entire reaction comprising in situ production of CMP-NeuAc and sialylation of acceptor had a sharp optimum at pH 5.6 (the activity level 50% at pH 5.2 & 6.8 and 25% at pH 4.8 & 7.2). Several properties distinguish forward/conventional vs. reverse sialylation: i. Sodium citrate inhibited forward sialylation but not reverse sialylation. ii. 5′-CDP, a potent forward sialyltransferase inhibitor, did not inhibit the conversion of 5′-CMP to CMP-NeuAc. iii. The mucin core 2 compound 3-O-sulfoα2,3Galβ1,4GlcNAcβ1,6(Galβ1,3)GalNAcα-O-Bn, an efficient acceptor for ST3Gal-II, inhibited the conversion of 5′-CMP to CMP-NeuAc. A significant level of reverse sialylation activity is noted in human prostate cancer cell lines LNCaP and PC3. Overall, the study demonstrates that the sialyltransferase reaction is readily reversible in the case of ST3Gal-II and can be exploited for the enzymatic synthesis of diverse sialyl products. PMID:18067323

  14. Spin dynamics in the modulation frame: application to homonuclear recoupling in magic angle spinning solid-state NMR.

    PubMed

    De Paëpe, Gaël; Lewandowski, Józef R; Griffin, Robert G

    2008-03-28

    We introduce a family of solid-state NMR pulse sequences that generalizes the concept of second averaging in the modulation frame and therefore provides a new approach to perform magic angle spinning dipolar recoupling experiments. Here, we focus on two particular recoupling mechanisms-cosine modulated rotary resonance (CMpRR) and cosine modulated recoupling with isotropic chemical shift reintroduction (COMICS). The first technique, CMpRR, is based on a cosine modulation of the rf phase and yields broadband double-quantum (DQ) (13)C recoupling using >70 kHz omega(1,C)/2pi rf field for the spinning frequency omega(r)/2=10-30 kHz and (1)H Larmor frequency omega(0,H)/2pi up to 900 MHz. Importantly, for p>or=5, CMpRR recouples efficiently in the absence of (1)H decoupling. Extension to lower p values (3.5

  15. Abrasive rolling effects on material removal and surface finish in chemical mechanical polishing analyzed by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Si, Lina; Guo, Dan; Luo, Jianbin; Lu, Xinchun; Xie, Guoxin

    2011-04-01

    In an abrasive chemical mechanical polishing (CMP) process, materials were considered to be removed by abrasive sliding and rolling. Abrasive sliding has been investigated by many molecular dynamics (MD) studies; while abrasive rolling was usually considered to be negligible and therefore was rarely investigated. In this paper, an MD simulation was used to study the effects of abrasive rolling on material removal and surface finish in the CMP process. As the silica particle rolled across the silicon substrate, some atoms of the substrate were dragged out from their original positions and adhered to the silica particle, leaving some atomic vacancies on the substrate surface. Meanwhile, a high quality surface could be obtained. During the abrasive rolling process, the influencing factors of material removal, e.g., external down force and driving force, were also discussed. Finally, MD simulations were carried out to examine the effects of abrasive sliding on material removal under the same external down force as abrasive rolling. The results showed that the ability of abrasive rolling to remove material on the atomic scale was not notably inferior to that of abrasive sliding. Therefore, it can be proposed that both abrasive sliding and rolling play important roles in material removal in the abrasive CMP of the silicon substrate.

  16. Performance of colloidal silica and ceria based slurries on CMP of Si-face 6H-SiC substrates

    NASA Astrophysics Data System (ADS)

    Chen, Guomei; Ni, Zifeng; Xu, Laijun; Li, Qingzhong; Zhao, Yongwu

    2015-12-01

    Colloidal silica and ceria based slurries, both using KMnO4 as an oxidizer, for chemical mechanical polishing (CMP) of Si-face (0 0 0 1) 6H-SiC substrate, were investigated to obtain higher material removal rate (MRR) and ultra-smooth surface. The results indicate that there was a significant difference in the CMP performance of 6H-SiC between silica and ceria based slurries. For the ceria based slurries, a higher MRR was obtained, especially in strong acid KMnO4 environment, and the maximum MRR (1089 nm/h) and a smoother surface with an average roughness Ra of 0.11 nm was achieved using slurries containing 2 wt% colloidal ceria, 0.05 M KMnO4 at pH 2. In contrast, due to the attraction between negative charged silica particles and positive charged SiC surface below pH 5, the maximum MRR of silica based slurry was only 185 nm/h with surface roughness Ra of 0.254 nm using slurries containing 6 wt% colloidal silica, 0.05 M KMnO4 at pH 6. The polishing mechanism was discussed based on the zeta potential measurements of the abrasives and the X-ray photoelectron spectroscopy (XPS) analysis of the polished SiC surfaces.

  17. Fate of 1-(1',4'-cyclohexadienyl)-2-methylaminopropane (CMP) in soil: route-specific by-product in the clandestine manufacture of methamphetamine.

    PubMed

    Pal, Raktim; Megharaj, Mallavarapu; Kirkbride, K Paul; Naidu, Ravi

    2012-02-01

    We investigated the fate of 1-(1',4'-cyclohexadienyl)-2-methylaminopropane (CMP) in soil. CMP is the major route-specific byproduct in the clandestine manufacture of methamphetamine (MAP) by the use of excess alkali metal (e.g., lithium) in liquid ammonia, which is commonly referred to as the "Nazi method". This is one of the most common methods used in many countries for the illicit production of MAP. Knowledge on the fate of CMP in the terrestrial environment is essential to combat potential threats arising from illegal dumping of clandestine laboratory wastes. We report on the sorption-desorption, degradation, and metabolism patterns of CMP in three South Australian soils investigated in laboratory scale. CMP sorption in the test soils followed a Freundlich isotherm in the concentration range of 5 to 100μgmL(-1). Degradation studies showed that CMP was fairly unstable in both non-sterile and sterile soils, with half-life values typically less than one week. The role of biotic and abiotic soil processes in the degradation of CMP also varied significantly between the different soils, and with the length of the incubation period. Interestingly, but not surprisingly, the results showed that the CMP was not actually degraded to any simpler compounds but transformed to more persistent MAP. Thus, the main concern with Nazi method is the potential hazard from MAP rather than CMP if wastes are disposed of into the environment. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Structure-based Mechanism of CMP-2-keto-3-deoxymanno-octulonic Acid Synthetase

    PubMed Central

    Heyes, Derren J.; Levy, Colin; Lafite, Pierre; Roberts, Ian S.; Goldrick, Marie; Stachulski, Andrew V.; Rossington, Steven B.; Stanford, Deborah; Rigby, Stephen E. J.; Scrutton, Nigel S.; Leys, David

    2009-01-01

    The enzyme CMP-Kdo synthetase (KdsB) catalyzes the addition of 2-keto-3-deoxymanno-octulonic acid (Kdo) to CTP to form CMP-Kdo, a key reaction in the biosynthesis of lipopolysaccharide. The reaction catalyzed by KdsB and the related CMP-acylneuraminate synthase is unique among the sugar-activating enzymes in that the respective sugars are directly coupled to a cytosine monophosphate. Using inhibition studies, in combination with isothermal calorimetry, we show the substrate analogue 2β-deoxy-Kdo to be a potent competitive inhibitor. The ligand-free Escherichia coli KdsB and ternary complex KdsB-CTP-2β-deoxy-Kdo crystal structures reveal that Kdo binding leads to active site closure and repositioning of the CTP phosphates and associated Mg2+ ion (Mg-B). Both ligands occupy conformations compatible with an Sn2-type attack on the α-phosphate by the Kdo 2-hydroxyl group. Based on strong similarity with DNA/RNA polymerases, both in terms of overall chemistry catalyzed as well as active site configuration, we postulate a second Mg2+ ion (Mg-A) is bound by the catalytically competent KdsB-CTP-Kdo ternary complex. Modeling of this complex reveals the Mg-A coordinated to the conserved Asp100 and Asp235 in addition to the CTP α-phosphate and both the Kdo carboxylic and 2-hydroxyl groups. EPR measurements on the Mn2+-substituted ternary complex support this model. We propose the KdsB/CNS sugar-activating enzymes catalyze the formation of activated sugars, such as the abundant CMP-5-N-acetylneuraminic acid, by recruitment of two Mg2+ to the active site. Although each metal ion assists in correct positioning of the substrates and activation of the α-phosphate, Mg-A is responsible for activation of the sugar-hydroxyl group. PMID:19815542

  19. [Features of Clinical Register of Chinese Medicine and Pharmacy Based on ClinicalTrials.gov. (USA)].

    PubMed

    Lu, Peng-fei; Liao, Xing; Xie, Yan-ming; Wang, Zhi-guo

    2015-11-01

    In recent 10 years, clinical trials of Chinese medicine and pharmacy (cMP) at clinicalTrials.gov.(USA) are gradually increasing. In order to analyze features of CMP clinical register, ClinicalTrials.gov register database were comprehensively retrieved in this study. Included clinical trials were input one item after another using EXCEL. A final of 348 CMP clinical trials were included. Results showed that China occupied the first place in CMP clinical register, followed by USA. CMP clinical trials, sponsored mainly by colleges/universities and hospitals, mostly covered interventional studies on evaluating safety/effectiveness of CMP. The proportions of studies, sponsored by mainland China and companies, recruitment trials and multi-center clinical trials in interventional trials were increasing. The proportions of studies sponsored by Hong Kong and Taiwan, research completed trials, unclear research status, phase III clinical trials, and published research trials in interventional trials were decreasing. Published ratios of CMP clinical trials were quite low. There were more missing types and higher proportions in trial register information.

  20. Musculoskeletal pain in patients with chronic kidney disease.

    PubMed

    Caravaca, Francisco; Gonzales, Boris; Bayo, Miguel Ángel; Luna, Enrique

    2016-01-01

    Chronic musculoskeletal pain (CMP) is a very common symptom in patients with chronic kidney disease (CKD), and is associated with a significant deterioration in quality of life. To determine the prevalence and clinical characteristics associated with CMP in patients with advanced CKD not on dialysis, and to analyse their relation with other uraemic symptoms and their prognosis significance. Cross-sectional study to analyse the uraemic symptoms of an unselected cohort of patients with CKD stage 4-5 pre-dialysis. In order to characterise patients with CMP, demographic and anthropometric data were collected, as well as data on comorbidities and kidney function. In addition, inflammatory parameters, uric parameters, bone mineral metabolism including 25-hydroxycholecalciferol (25-OHCC), creatine kinase and drugs of potential interest including allopurinol, statins and erythropoiesis-stimulating agents were recorded. The study group consisted of 1169 patients (mean age 65±15 years, 54% male). A total of 38% of patients complained of CMP, and this symptom was more prevalent in women than in men (49 vs. 28%; P<.0001). Muscle weakness, pruritus, muscle cramps, ecchymosis, insomnia, oedema and dyspnoea were the most common symptoms associated with CMP. There were no significant associations between serum levels of creatine kinase, 25-OHCC, treatment with allopurinol, statins or erythropoiesis-stimulating agents and CMP. The female gender, elderly age, obesity, comorbidity (mainly diabetes, heart failure or COPD), and elevated levels of inflammatory markers (C-reactive protein and non-neutrophilic leukocytes) were the best determinants of CMP. While patients with CMP showed a worse survival rate, a multivariate analysis adjusted for demographic data ruled out the independent association of CMP with mortality. CMP is highly prevalent in patients with advanced CKD and is associated with other common symptoms of chronic uraemia. As with the general population, elderly age, the female gender, obesity and some comorbid conditions are the best determinants of CMP. Increased inflammatory markers commonly observed in patients with CMP may have a relevant role in its pathogenesis. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  1. Key Processes of Silicon-On-Glass MEMS Fabrication Technology for Gyroscope Application.

    PubMed

    Ma, Zhibo; Wang, Yinan; Shen, Qiang; Zhang, Han; Guo, Xuetao

    2018-04-17

    MEMS fabrication that is based on the silicon-on-glass (SOG) process requires many steps, including patterning, anodic bonding, deep reactive ion etching (DRIE), and chemical mechanical polishing (CMP). The effects of the process parameters of CMP and DRIE are investigated in this study. The process parameters of CMP, such as abrasive size, load pressure, and pH value of SF1 solution are examined to optimize the total thickness variation in the structure and the surface quality. The ratio of etching and passivation cycle time and the process pressure are also adjusted to achieve satisfactory performance during DRIE. The process is optimized to avoid neither the notching nor lag effects on the fabricated silicon structures. For demonstrating the capability of the modified CMP and DRIE processes, a z-axis micro gyroscope is fabricated that is based on the SOG process. Initial test results show that the average surface roughness of silicon is below 1.13 nm and the thickness of the silicon is measured to be 50 μm. All of the structures are well defined without the footing effect by the use of the modified DRIE process. The initial performance test results of the resonant frequency for the drive and sense modes are 4.048 and 4.076 kHz, respectively. The demands for this kind of SOG MEMS device can be fulfilled using the optimized process.

  2. A conserved OmpA-like protein in Legionella pneumophila required for efficient intracellular replication.

    PubMed

    Goodwin, Ian P; Kumova, Ogan K; Ninio, Shira

    2016-08-01

    The OmpA-like protein domain has been associated with peptidoglycan-binding proteins, and is often found in virulence factors of bacterial pathogens. The intracellular pathogen Legionella pneumophila encodes for six proteins that contain the OmpA-like domain, among them the highly conserved uncharacterized protein we named CmpA. Here we set out to characterize the CmpA protein and determine its contribution to intracellular survival of L. pneumophila Secondary structure analysis suggests that CmpA is an inner membrane protein with a peptidoglycan-binding domain at the C-teminus. A cmpA mutant was able to replicate normally in broth, but failed to compete with an isogenic wild-type strain in an intracellular growth competition assay. The cmpA mutant also displayed significant intracellular growth defects in both the protozoan host Acanthamoeba castellanii and in primary bone marrow-derived macrophages, where uptake into the cells was also impaired. The cmpA phenotypes were completely restored upon expression of CmpA in trans The data presented here establish CmpA as a novel virulence factor of L. pneumophila that is required for efficient intracellular replication in both mammalian and protozoan hosts. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Ultra-precision process of CaF2 single crystal

    NASA Astrophysics Data System (ADS)

    Yin, Guoju; Li, Shengyi; Xie, Xuhui; Zhou, Lin

    2014-08-01

    This paper proposes a new chemical mechanical polishing (CMP) process method for CaF2 single crystal to get ultraprecision surface. The CMP processes are improving polishing pad and using alkaline SiO2 polishing slurry with PH=8, PH=11 two phases to polish, respectively, and the roughness can be 0.181nm Rq (10μm×10μm). The CMP process can't get high surface figure, so we use ion beam figuring (IBF) technology to obtain high surface figure. However, IBF is difficult to improve the CaF2 surface roughness. We optimize IBF process to improve surface figure and keep good surface roughness too. Different IBF incident ion energy from 400ev to 800ev does not affect on the surface roughness obviously but the depth of material removal is reverse. CaF2 single crystal can get high precision surface figure (RMS=2.251nm) and still keep ultra-smooth surface (Rq=0.207nm) by IBF when removal depth is less than 200nm. The researches above provide important information for CaF2 single crystal to realize ultra-precision manufacture.

  4. Cm-p5: an antifungal hydrophilic peptide derived from the coastal mollusk Cenchritis muricatus (Gastropoda: Littorinidae).

    PubMed

    López-Abarrategui, Carlos; McBeth, Christine; Mandal, Santi M; Sun, Zhenyu J; Heffron, Gregory; Alba-Menéndez, Annia; Migliolo, Ludovico; Reyes-Acosta, Osvaldo; García-Villarino, Mónica; Nolasco, Diego O; Falcão, Rosana; Cherobim, Mariana D; Dias, Simoni C; Brandt, Wolfgang; Wessjohann, Ludger; Starnbach, Michael; Franco, Octavio L; Otero-González, Anselmo J

    2015-08-01

    Antimicrobial peptides form part of the first line of defense against pathogens for many organisms. Current treatments for fungal infections are limited by drug toxicity and pathogen resistance. Cm-p5 (SRSELIVHQRLF), a peptide derived from the marine mollusk Cenchritis muricatus peptide Cm-p1, has a significantly increased fungistatic activity against pathogenic Candida albicans (minimal inhibitory concentration, 10 µg/ml; EC50, 1.146 µg/ml) while exhibiting low toxic effects against a cultured mammalian cell line. Cm-p5 as characterized by circular dichroism and nuclear magnetic resonance revealed an α-helical structure in membrane-mimetic conditions and a tendency to random coil folding in aqueous solutions. Additional studies modeling Cm-p5 binding to a phosphatidylserine bilayer in silico and isothermal titration calorimetry using lipid monophases demonstrated that Cm-p5 has a high affinity for the phospholipids of fungal membranes (phosphatidylserine and phosphatidylethanolamine), only moderate interactions with a mammalian membrane phospholipid, low interaction with ergosterol, and no interaction with chitin. Adhesion of Cm-p5 to living C. albicans cells was confirmed by fluorescence microscopy with FITC-labeled peptide. In a systemic candidiasis model in mice, intraperitoneal administration of Cm-p5 was unable to control the fungal kidney burden, although its low amphiphaticity could be modified to generate new derivatives with improved fungicidal activity and stability. © FASEB.

  5. Synergistic effect of casein glycomacropeptide on sodium caseinate foaming properties.

    PubMed

    Morales, R; Martinez, M J; Pilosof, A M R

    2017-11-01

    Several strategies to improve the interfacial properties and foaming properties of proteins may be developed; among them, the use of mixtures of biopolymers that exhibit synergistic interactions. The aim of the present work was to evaluate the effect of casein glycomacropeptide (CMP) on foaming and surface properties of sodium caseinate (NaCas) and to establish the role of protein interactions in the aqueous phase. To this end particles size, interfacial and foaming properties of CMP, NaCas and NaCas-CMP mixtures at pH 5.5 and 7 were determined. At both pH, the interaction between CMP and NaCas induced a decrease in the aggregation state of NaCas. Single CMP foams showed the highest and NaCas the lowest foam overrun (FO) and the mixture exhibited intermediate values. CMP foam quickly drained. The drainage profile of mixed foams was closer to NaCas foams; at pH 5.5, mixed foams drained even slower than NaCas foam, exhibiting a synergistic performance. Additionally, a strong synergism was observed on the collapse of mixed foams at pH 5.5. Finally, a model to explain the synergistic effect observed on foaming properties in CMP-NaCas mixtures has been proposed; the reduced aggregation state of NaCas in the presence of CMP, made it more efficient for foam stabilization. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Use of a novel radiometric method to assess the inhibitory effect of donepezil on acetylcholinesterase activity in minimally diluted tissue samples

    PubMed Central

    Kikuchi, Tatsuya; Okamura, Toshimitsu; Arai, Takuya; Obata, Takayuki; Fukushi, Kiyoshi; Irie, Toshiaki; Shiraishi, Tetsuya

    2010-01-01

    Background and purpose: Cholinesterase inhibitors have been widely used for the treatment of patients with dementia. Monitoring of the cholinesterase activity in the blood is used as an indicator of the effect of the cholinesterase inhibitors in the brain. The selective measurement of cholinesterase with low tissue dilution is preferred for accurate monitoring; however, the methods have not been established. Here, we investigated the effect of tissue dilution on the action of cholinesterase inhibitors using a novel radiometric method with selective substrates, N-[14C]methylpiperidin-4-yl acetate ([14C]MP4A) and (R)-N-[14C]methylpiperidin-3-yl butyrate ([14C]MP3B_R), for AChE and butyrylcholinesterase (BChE) respectively. Experimental approach: We investigated the kinetics of hydrolysis of [14C]-MP4A and [14C]-MP3B_R by cholinesterases, and evaluated the selectivity of [14C]MP4A and [14C]MP3B_R for human AChE and BChE, respectively, compared with traditional substrates. Then, IC50 values of cholinesterase inhibitors in minimally diluted and highly diluted tissues were measured with [14C]MP4A and [14C]MP3B_R. Key results: AChE and BChE activities were selectively measured as the first-order hydrolysis rates of [14C]-MP4A and [14C]MP3B_R respectively. The AChE selectivity of [14C]MP4A was an order of magnitude higher than traditional substrates used for the AChE assay. The IC50 values of specific AChE and BChE inhibitors, donepezil and ethopropazine, in 1.2-fold diluted human whole blood were much higher than those in 120-fold diluted blood. In addition, the IC50 values of donepezil in monkey brain were dramatically decreased as the tissue was diluted. Conclusions and implications: This method would effectively monitor the activity of cholinesterase inhibitors used for therapeutics, pesticides and chemical warfare agents. PMID:20401964

  7. Health fair screening: the clinical utility of the comprehensive metabolic profile.

    PubMed

    Alpert, Jeffrey P; Greiner, Allen; Hall, Sandra

    2004-01-01

    Health fairs are a common method used by providers and health care organizations to provide screening tests, including comprehensive metabolic profiles (CMPs), to asymptomatic individuals. No national organizations currently recommend the complete CMP as a screening test for asymptomatic individuals in primary care settings. This study evaluated the value of CMPs in a health fair setting by measuring the ability of a health fair CMP to predict new medical diagnoses among residents of a sparsely populated rural county. Volunteer participants submitted fasting blood samples at a health fair conducted by a county health center in a county with 2,531 total residents. CMP values were determined to be "normal" or "abnormal" based on laboratory reference ranges and clinical judgment of the health center physicians. Medical records were reviewed 4 months later to determine if participants with abnormal CMP values had been diagnosed with new medical conditions as a result of the screening tests. Analysis was conducted to evaluate CMP test characteristics and determine whether demographic factors or specific CMP values predicted new medical diagnoses in the participants. Out of 478 health fair participants, 73 individuals had at least one abnormal CMP value. The most frequently occurring abnormal value was an elevated glucose level, with Hispanic participants significantly more likely to have this abnormality than whites. After all evaluation was completed, only about 1% of tested subjects had a new diagnosis as a result of the screening CMP test; most abnormal CMP tests did not result in a new diagnosis. The positive predictive value for an abnormal test resulting in a new medical diagnosis was 0.356. Comprehensive metabolic profiles have limited value as a screening tool in asymptomatic populations at health fairs.

  8. [Anti-tissue transglutaminase antibodies not related to gluten intake].

    PubMed

    Garcia-Peris, Mónica; Donat Aliaga, Ester; Roca Llorens, María; Masip Simó, Etna; Polo Miquel, Begoña; Ribes Koninckx, Carmen

    2018-03-16

    Anti-tissue transglutaminase antibodies (tTG) have high specificity for coeliac disease (CD). However, positive anti-tTG antibodies have been described in non-coeliac patients. Aim To assess positive anti-tTG antibodies not related to gluten intake. Retrospective review and follow up conducted on patients with suspected CD (increase anti-tTG levels and gastrointestinal symptoms) but with atypical serology results, positive anti-tTG with gluten free diet and a decrease in anti-tTG levels despite gluten intake. A total of 9 cases were reviewed in which 5 cases had Marsh 3 involvement in the initial biopsy, and were diagnosed with CD (Group A). They began a gluten free diet and also a cow's milk protein (CMP) free diet because of their nutritional status. When CMP was re-introduced, anti-tTG increased, and returned to normal after the CMP was withdrawn again. The other 4 patients had a normal initial biopsy (Group B). Gluten was not removed from their diet, but they started a CMP free diet because a non IgE mediated CMP allergy was suspected. Symptoms disappeared, and anti-tTG was normal after CMP free diet with gluten intake. All the patients had susceptibility haplotype HLA DQ2/DQ8. CMP ingestion after an exclusion diet can induce an increase in anti-tTG in some coeliac subjects. CMP can produce this immune response if there were no gluten transgressions. This response has also been observed in non-IgE mediated CMP allergy patients with the susceptibility haplotype HLA DQ2/DQ8. Copyright © 2018. Publicado por Elsevier España, S.L.U.

  9. The cox-maze procedure for lone atrial fibrillation: a single-center experience over 2 decades.

    PubMed

    Weimar, Timo; Schena, Stefano; Bailey, Marci S; Maniar, Hersh S; Schuessler, Richard B; Cox, James L; Damiano, Ralph J

    2012-02-01

    The Cox-Maze procedure (CMP) has achieved high success rates in the therapy of atrial fibrillation (AF) while becoming progressively less invasive. This report evaluates our experience with the CMP in the treatment of lone AF over 2 decades and compares the original cut-and-sew CMP-III to the ablation-assisted CMP-IV, which uses bipolar radiofrequency and cryoenergy to create the original lesion pattern. Data were collected prospectively on 212 consecutive patients (mean age, 53.5±10.4 years; 78% male) who underwent a stand-alone CMP from 1992 through 2010. The median duration of preoperative AF was 6 (interquartile range, 2.9-11.5) years, with 48% paroxysmal and 52% persistent or long-standing persistent AF. Univariate analysis with preoperative and perioperative variables used as covariates for the CMP-III (n=112) and the CMP-IV (n=100) was performed. Overall, 30-day mortality was 1.4%, with no intraoperative deaths. Freedom from AF was 93%, and freedom from AF off antiarrhythmics was 82%, at a mean follow-up time of 3.6±3.1 years. Freedom from symptomatic AF at 10 years was 85%. Only 1 late stroke occurred, with 80% of patients not receiving anticoagulation therapy. The less invasive CMP-IV had significantly shorter cross-clamp times (41±13 versus 92±26 minutes; P<0.001) while achieving high success rates, with 90% freedom from AF and 84% freedom from AF off antiarrhythmics at 2 years. The CMP, although simplified and shortened by alternative energy sources, has excellent results, even with improved follow-up and stricter definition of failure.

  10. United States Coast Guard Configuration Management Plan (CMP) for the Ports and Waterways Safety System (PAWSS) Project

    DOT National Transportation Integrated Search

    1997-01-01

    Prepared ca. 1997. The Configuration Management Plan (CMP) provides configuration management instructions and guidance for the Vessel Traffic Service (VTS) system of the Ports and Waterways Safety System (PAWSS) project. The CMP describes in detail t...

  11. The Structure of a Cyanobacterial Bicarbonate Transport Protein, CmpA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koropatkin, Nicole M.; Koppenaal, David W.; Pakrasi, Himadri B.

    2007-01-26

    Cyanobacteria, blue-green algae, are the most abundant autotrophs in aquatic environments and form the base of the food chain by fixing carbon and nitrogen into cellular biomass. To compensate for the low selectivity of Rubisco for CO₂ over O₂, Cyanobacteria have developed highly efficient CO₂concentrating machinery of which the ABC transport system CmpABCD from Synechocystis PCC 6803 is one component. Here we describe the structure of the bicarbonate binding protein, CmpA, in the absence and presence of bicarbonate and carbonic acid. CmpA is highly homologous to the nitrate transport protein, NrtA. CmpA binds carbonic acid at the entrance to themore » ligand-binding pocket whereas bicarbonate binds in nearly an identical location compared to nitrate binding to NrtA. Unexpectedly, bicarbonate binding is accompanied by a metal ion, identified as Ca²⁺ via inductively coupled plasma optical emission spectrometry. The binding of bicarbonate and metal is highly cooperative and suggests that CmpA co-transports bicarbonate and calcium.« less

  12. Cystic meconium peritonitis with jejunoileal atresia: Is it associated with unfavorable outcome?

    PubMed Central

    Chan, Kin Wai Edwin; Lee, Kim Hung; Wong, Hei Yi Vicky; Tsui, Siu Yan Bess; Wong, Yuen Shan; Pang, Kit Yi Kristine; Mou, Jennifer Wai Cheung; Tam, Yuk Him

    2017-01-01

    AIM To compare the outcome between patients with jejunoileal atresia (JIA) associated with cystic meconium peritonitis (CMP) and patients with isolated JIA (JIA without CMP). METHODS A retrospective study was conducted for all neonates with JIA operated in our institute from January 2005 to January 2016. Demographics including the gestation age, sex, birth weight, age at operation, the presence of associated syndrome was recorded. Clinical outcome including the type of operation performed, operative time, the need for reoperation and mortality were studied. The demographics and the outcome between the 2 groups were compared. RESULTS During the study period, 53 neonates had JIA underwent operation in our institute. Seventeen neonates (32%) were associated with CMP. There was no statistical difference on the demographics in the two groups. Patients with CMP had earlier operation than patients with isolated JIA (mean 1.4 d vs 3 d, P = 0.038). Primary anastomosis was performed in 16 patients (94%) with CMP and 30 patients (83%) with isolated JIA (P = 0.269). Patients with CMP had longer operation (mean 190 min vs 154 min, P = 0.004). There were no statistical difference the need for reoperation (3 vs 6, P = 0.606) and mortality (2 vs 1, P = 0.269) between the two groups. CONCLUSION Primary intestinal anastomosis can be performed in 94% of patients with JIA associated with CMP. Although patients with CMP had longer operative time, the mortality and reoperation rates were low and were comparable to patients with isolated JIA. PMID:28224094

  13. Circulating cell-derived microparticles in severe preeclampsia and in fetal growth restriction.

    PubMed

    Alijotas-Reig, Jaume; Palacio-Garcia, Carles; Farran-Codina, Immaculada; Ruiz-Romance, Mar; Llurba, Elisa; Vilardell-Tarres, Miquel

    2012-02-01

    The behavior of the circulating microparticles (cMP) in severe preeclampsia (PE) and fetal growth restriction (FGR) is disputed. METHOD OF STUDY  Non-matched case-control study. Seventy cases of severe PE/HELLP/FGR were compared to 38 healthy pregnant women. Twenty healthy non-pregnant women acted as a control. cMP were analyzed using flow cytometry. Results are given as total (annexin-A5-ANXA5+), platelet (CD41+), leukocyte (CD45+), endothelial (CD144+CD31+//CD41-), and CD41-negative cMP/μL of plasma. Antiphospholipid antibodies (aPL) were analyzed through usual methods. Platelet and endothelial cMP increased in healthy pregnant women. PE whole group (PE±FGR) showed an increase in endothelial and CD41-negative, but not in platelet-derived, cMP. Comparing PE whole group versus healthy pregnant, we found cMP levels of endothelial and CD41- had increased. The cMP results obtained in PE group were similar to those of the PE whole group. Comparing PE group to isolated FGR, significant CD41-negative cMP increase was found in PE. According to its aPL positivity, a trend to decrease in leukocyte and endothelial-derived cMP was found in PE group. Normal pregnancy is accompanied by endothelial and platelet cell activation. Endothelial cell activation has been shown in PE but not in isolated FGR. In PE, aPL may contribute to endothelial and possibly to leukocyte cell activation. © 2011 John Wiley & Sons A/S.

  14. 42 CFR 417.424 - Denial of enrollment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of § 417.422 if acceptance would— (1) Cause the number of enrollees who are Medicare or Medicaid... substantially nonrepresentative of the general population in the HMO's or CMP's geographic area. (b) Selection... the HMO or CMP substantially nonrepresentative of the general population in the HMO's or CMP's...

  15. NeuA sialic acid O-acetylesterase activity modulates O-acetylation of capsular polysaccharide in group B Streptococcus.

    PubMed

    Lewis, Amanda L; Cao, Hongzhi; Patel, Silpa K; Diaz, Sandra; Ryan, Wesley; Carlin, Aaron F; Thon, Vireak; Lewis, Warren G; Varki, Ajit; Chen, Xi; Nizet, Victor

    2007-09-21

    Group B Streptococcus (GBS) is a common cause of neonatal sepsis and meningitis. A major GBS virulence determinant is its sialic acid (Sia)-capped capsular polysaccharide. Recently, we discovered the presence and genetic basis of capsular Sia O-acetylation in GBS. We now characterize a GBS Sia O-acetylesterase that modulates the degree of GBS surface O-acetylation. The GBS Sia O-acetylesterase operates cooperatively with the GBS CMP-Sia synthetase, both part of a single polypeptide encoded by the neuA gene. NeuA de-O-acetylation of free 9-O-acetyl-N-acetylneuraminic acid (Neu5,9Ac(2)) was enhanced by CTP and Mg(2+), the substrate and co-factor, respectively, of the N-terminal GBS CMP-Sia synthetase domain. In contrast, the homologous bifunctional NeuA esterase from Escherichia coli K1 did not display cofactor dependence. Further analyses showed that in vitro, GBS NeuA can operate via two alternate enzymatic pathways: de-O-acetylation of Neu5,9Ac(2) followed by CMP activation of Neu5Ac or activation of Neu5,9Ac(2) followed by de-O-acetylation of CMP-Neu5,9Ac(2). Consistent with in vitro esterase assays, genetic deletion of GBS neuA led to accumulation of intracellular O-acetylated Sias, and overexpression of GBS NeuA reduced O-acetylation of Sias on the bacterial surface. Site-directed mutagenesis of conserved asparagine residue 301 abolished esterase activity but preserved CMP-Sia synthetase activity, as evidenced by hyper-O-acetylation of capsular polysaccharide Sias on GBS expressing only the N301A NeuA allele. These studies demonstrate a novel mechanism regulating the extent of capsular Sia O-acetylation in intact bacteria and provide a genetic strategy for manipulating GBS O-acetylation in order to explore the role of this modification in GBS pathogenesis and immunogenicity.

  16. 42 CFR 417.480 - Maintenance of records: Cost HMOs and CMPs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... or CMP, and operation of the HMO's or CMP's financial, medical, and other recordkeeping systems. (2..., sale, or other action. (5) Agreements, contracts, and subcontracts. (6) Franchise, marketing, and management agreements. (7) Schedules of charges for the HMO's or CMP's fee-for-service patients. (8) Matters...

  17. A Designed Angiopoietin-1 Variant, Dimeric CMP-Ang1 Activates Tie2 and Stimulates Angiogenesis and Vascular Stabilization in N-glycan Dependent Manner

    PubMed Central

    Oh, Nuri; Kim, Kangsan; Jin Kim, Soo; Park, Intae; Lee, Jung-Eun; Suk Seo, Young; Joo An, Hyun; Min Kim, Ho; Young Koh, Gou

    2015-01-01

    Angiopoietin-1 (Ang1), a potential growth factor for therapeutic angiogenesis and vascular stabilization, is known to specifically cluster and activate Tie2 in high oligomeric forms, which is a unique and essential process in this ligand-receptor interaction. However, highly oligomeric native Ang1 and Ang1 variants are difficult to produce, purify, and store in a stable and active form. To overcome these limitations, we developed a simple and active dimeric CMP-Ang1 by replacing the N-terminal of native Ang1 with the coiled-coil domain of cartilage matrix protein (CMP) bearing mutations in its cysteine residues. This dimeric CMP-Ang1 effectively increased the migration, survival, and tube formation of endothelial cells via Tie2 activation. Furthermore, dimeric CMP-Ang1 induced angiogenesis and suppressed vascular leakage in vivo. Despite its dimeric structure, the potencies of such Tie2-activation-induced effects were comparable to those of a previously engineered protein, COMP-Ang1. We also revealed that these effects of dimeric CMP-Ang1 were affected by specified N-glycosylation in its fibrinogen-like domain. Taken together, our results indicate that dimeric CMP-Ang1 is capable of activating Tie2 and stimulating angiogenesis in N-glycan dependent manner. PMID:26478188

  18. Growth-promoting effects of pepsin- and trypsin-treated caseinomacropeptide from bovine milk on probiotics.

    PubMed

    Robitaille, Gilles; Champagne, Claude P

    2014-08-01

    Probiotic Lactobacillus and Bifidobacterium species are generally fastidious bacteria and require rich media for propagation. In milk-based media, they grow poorly, and nitrogen supplementation is required to produce high bacterial biomass levels. It has been reported that caseinomacropeptide (CMP), a 7-kDa peptide released from κ-casein during renneting or gastric digestion, exhibits some growth-promoting activity for lactobacilli and bifidobacteria. During the digestive process, peptides derived from CMP are detected in the intestinal lumen The aim of this study was to evaluate the effects of peptic and tryptic digests of CMP on probiotic lactic acid bacteria growth in de Man, Rogosa and Sharpe broth (MRS) and in milk during fermentation at 37 °C under anaerobic conditions. The study showed that pepsin-treated CMP used as supplements at 0.5 g/l can promote the growth of probiotics even in peptone-rich environments such as MRS. The effect was strain-dependent and evident for the strains that grow poorly in MRS, with an improvement of >1.5 times (P<0.05) by addition of pepsin-treated CMP. Trypsin-treated CMP was much less efficient as growth promoter. Moreover, pepsin-treated CMP was effective in promoting the growth in milk of all probiotic lactic acid bacteria tested, with biomass levels being improved significantly, by 1.7 to 2.6 times (P<0.05), depending on the strain. Thus, supplementation of MRS and of milk with pepsin-treated CMP would be advantageous for the production of high biomass levels for Bifidobacteria and Lactobacilli.

  19. The Major Soybean Allergen Gly m Bd 28K Induces Hypersensitivity Reactions in Mice Sensitized to Cow's Milk Proteins.

    PubMed

    Candreva, Ángela María; Smaldini, Paola Lorena; Curciarello, Renata; Fossati, Carlos Alberto; Docena, Guillermo Horacio; Petruccelli, Silvana

    2016-02-24

    Reactions to soy have been reported in a proportion of patients with IgE-mediated cow's milk allergy (CMA). In this work, we analyzed if Gly m Bd 28K/P28, one of the major soybean allergens, is a cross-reactive allergen with cow milk proteins (CMP). We showed that P28 was recognized by IgE sera from CMA patients and activated human peripheral basophils degranulation. Moreover, IgE sera of mice exclusively sensitized to CMP recognized P28. Splenocytes from sensitized animals secreted IL-5 and IL-13 when incubated with CMP or soy proteins, but only IL-13 when treated with P28. In addition, a skin test was strongly positive for CMP and weakly positive for P28. Remarkably, milk-sensitized mice showed hypersensitivity symptoms following sublingual challenge with P28 or CMP. With the use of bioinformatics' tools seven putative cross-reactive epitopes were identified. In conclusion, using in vitro and in vivo tests we demonstrated that P28 is a novel cross-reactive allergen with CMP.

  20. SPOT4 Operational Control Center (CMP)

    NASA Technical Reports Server (NTRS)

    Zaouche, G.

    1993-01-01

    CNES(F) is responsible for the development of a new generation of Operational Control Center (CMP) which will operate the new heliosynchronous remote sensing satellite (SPOT4). This Operational Control Center takes large benefit from the experience of the first generation of control center and from the recent advances in computer technology and standards. The CMP is designed for operating two satellites all the same time with a reduced pool of controllers. The architecture of this CMP is simple, robust, and flexible, since it is based on powerful distributed workstations interconnected through an Ethernet LAN. The application software uses modern and formal software engineering methods, in order to improve quality and reliability, and facilitate maintenance. This software is table driven so it can be easily adapted to other operational needs. Operation tasks are automated to the maximum extent, so that it could be possible to operate the CMP automatically with very limited human interference for supervision and decision making. This paper provides an overview of the SPOTS mission and associated ground segment. It also details the CMP, its functions, and its software and hardware architecture.

  1. Cm-p5: an antifungal hydrophilic peptide derived from the coastal mollusk Cenchritis muricatus (Gastropoda: Littorinidae)

    PubMed Central

    López-Abarrategui, Carlos; McBeth, Christine; Mandal, Santi M.; Sun, Zhenyu J.; Heffron, Gregory; Alba-Menéndez, Annia; Migliolo, Ludovico; Reyes-Acosta, Osvaldo; García-Villarino, Mónica; Nolasco, Diego O.; Falcão, Rosana; Cherobim, Mariana D.; Dias, Simoni C.; Brandt, Wolfgang; Wessjohann, Ludger; Starnbach, Michael; Franco, Octavio L.; Otero-González, Anselmo J.

    2015-01-01

    Antimicrobial peptides form part of the first line of defense against pathogens for many organisms. Current treatments for fungal infections are limited by drug toxicity and pathogen resistance. Cm-p5 (SRSELIVHQRLF), a peptide derived from the marine mollusk Cenchritis muricatus peptide Cm-p1, has a significantly increased fungistatic activity against pathogenic Candida albicans (minimal inhibitory concentration, 10 µg/ml; EC50, 1.146 µg/ml) while exhibiting low toxic effects against a cultured mammalian cell line. Cm-p5 as characterized by circular dichroism and nuclear magnetic resonance revealed an α-helical structure in membrane-mimetic conditions and a tendency to random coil folding in aqueous solutions. Additional studies modeling Cm-p5 binding to a phosphatidylserine bilayer in silico and isothermal titration calorimetry using lipid monophases demonstrated that Cm-p5 has a high affinity for the phospholipids of fungal membranes (phosphatidylserine and phosphatidylethanolamine), only moderate interactions with a mammalian membrane phospholipid, low interaction with ergosterol, and no interaction with chitin. Adhesion of Cm-p5 to living C. albicans cells was confirmed by fluorescence microscopy with FITC-labeled peptide. In a systemic candidiasis model in mice, intraperitoneal administration of Cm-p5 was unable to control the fungal kidney burden, although its low amphiphaticity could be modified to generate new derivatives with improved fungicidal activity and stability.—López-Abarrategui, C., McBeth, C., Mandal, S. M., Sun, Z. J., Heffron, G., Alba-Menéndez, A., Migliolo, L., Reyes-Acosta, O., García-Villarino, M., Nolasco, D. O., Falcão, R., Cherobim, M. D., Dias, S. C., Brandt, W., Wessjohann, L., Starnbach, M., Franco, O. L., Otero-González, A. J. Cm-p5: an antifungal hydrophilic peptide derived from the coastal mollusk Cenchritis muricatus (Gastropoda: Littorinidae). PMID:25921828

  2. Electrochemical investigations of advanced materials for microelectronic and energy storage devices

    NASA Astrophysics Data System (ADS)

    Goonetilleke, Pubudu Chaminda

    A broad range of electrochemical techniques are employed in this work to study a selected set of advanced materials for applications in microelectronics and energy storage devices. The primary motivation of this study has been to explore the capabilities of certain modern electrochemical techniques in a number of emerging areas of material processing and characterization. The work includes both aqueous and non-aqueous systems, with applications in two rather general areas of technology, namely microelectronics and energy storage. The sub-systems selected for investigation are: (i) Electrochemical mechanical and chemical mechanical planarization (ECMP and CMP, respectively), (ii) Carbon nanotubes in combination with room temperature ionic liquids (ILs), and (iii) Cathode materials for high-performance Li ion batteries. The first group of systems represents an important building block in the fabrication of microelectronic devices. The second and third groups of systems are relevant for new energy storage technologies, and have generated immense interests in recent years. A common feature of these different systems is that they all are associated with complex surface reactions that dictate the performance of the devices based on them. Fundamental understanding of these reactions is crucial to further development and expansion of their associated technologies. It is the complex mechanistic details of these surface reactions that we address using a judicious combination of a number of state of the art electrochemical techniques. The main electrochemical techniques used in this work include: (i) Cyclic voltammetry (CV) and slow scan cyclic voltammetry (SSCV, a special case of CV); (ii) Galvanostatic (or current-controlled) measurements; (iii) Electrochemical impedance spectroscopy (EIS), based on two different methodologies, namely, Fourier transform EIS (FT-EIS, capable of studying fast reaction kinetics in a time-resolved mode), and EIS using frequency response analysis (employed to study slow reactions such as solid state diffusion of Li). The designs of both the experimental equipment and the control variables change for studying the different aqueous and non-aqueous systems. The protocols for data analysis also change depending on the systems. In addition, it often becomes necessary to combine different aspects of the different experimental methods to obtain the necessary information about the system(s) under study. The experimental strategies and the associated theoretical considerations for developing these strategies are discussed in appropriate contexts of this work. CNT electrodes in combination with IL electrolytes are potentially important for electrochemical super-capacitors. We have carried out electrochemical investigation of such a system involving a paper-electrode of multiwall CNT in the IL of 1-Ethyl-3-methyl imidazolium ethylsulfate (EMIM-EtSO4). Our study concentrated on the analytical aspects of cyclic voltammetry (CV) to probe the double layer capacitance of these relatively unconventional systems. (that involve rather large charge-discharge time constants). Both theoretical and experimental aspects of CV for such systems have been discussed, focusing in particular, on the effects of faradaic side-reactions, electrolyte resistance and voltage scan speeds. The results have been analyzed using an electrode equivalent circuit model, demonstrating a method to account for the typical artifacts expected in CV of CNT-IL interfaces. Chemical-mechanical planarization (CMP) of copper has now become an integral part of modern semiconductor fabrication technology. Recently, electrochemical-mechanical planarization (ECMP) has emerged as a possible extension of CMP, where through voltage-activated removal of Cu surface layers, one can substantially minimize the down-force necessary for mechanical polishing However, the detailed electrochemical factors that are central to designing efficient abrasive-free electrolytes for ECMP are not clearly understood at the present time. The present work has addressed this issue by studying the relative electrochemical effects of selected different chemical additives. Controlling the surface reactions (that is controlling the voltage-induced material removal) in ECMP requires a carefully designed combination of a number of electrochemical input variables (voltage activation program and electrolyte composition). We have studied the main experimental factors for designing these parameters, using triangular and rectangular-voltage-pulse modulated dissolution of Cu in electrolytes of different chemical compositions. Applications of rechargeable Li ion batteries have considerably expanded in recent years. As a result, research activities involving material-fabrication and characterization for these batteries also have expanded during this period. The importance of studying these specific materials lies in the fact that the cathode plays a major role in its contribution to the battery performance LiMn2O4 cathodes are being considered for next generation of Li ion batteries. The current work focuses on a specific problem commonly associated with Li cathode systems, namely surface film formation on the cathodes. LiMn2O4 cathodes tend to develop native surface films in carbonate electrolytes. By combining D.C. SSCV with A.C. EIS, we have studied how these films would react with an electrolyte of LiBF4 in ethylene and diethyl carbonates. We have demonstrated that such reactions could affect the measurement of the characteristic electrochemical parameters of the cathode, namely the intercalation capacitance, initial capacity-loss, coulometric titration profiles, and the solid state diffusion coefficient of Li+. A generalized framework for data analysis, based on the considerations of electrode equivalent circuits, has been used to combine the results of the D.C. and A.C. measurements.

  3. 42 CFR 417.584 - Payment to HMOs or CMPs with risk contracts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CMP. (a) Principle of payment. CMS makes monthly advance payments equivalent to the HMO's or CMP's per... subsequent monthly payments to take account of the difference. (d) Reduction of payments. If an HMO or CMP... 1998, HMOs or CMPs with risk contracts will be paid in accordance with principles contained in subpart...

  4. 42 CFR 417.576 - Final settlement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... end of each contract period, unless CMS extends the period for good cause shown by the HMO or CMP. (2... by common ownership or control; and (B) For reports for cost-reporting periods that begin on or after... CMP or related to the HMO or CMP by common ownership or control and that provides services to the HMO...

  5. The best of both worlds: automated CMP polishing of channel-cut monochromators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasman, Elina; Erdmann, Mark; Stoupin, Stanislav

    2015-09-03

    The use of a channel-cut monochromator is the most straightforward method to ensure that the two reflection surfaces maintain alignment between crystallographic planes without the need for complicated alignment mechanisms. Three basic characteristics that affect monochromator performance are: subsurface damage which contaminates spectral purity; surface roughness which reduces efficiency due to scattering; and surface figure error which imparts intensity structure and coherence distortion in the beam. Standard chemical-mechanical polishing processes and equipment are used when the diffracting surface is easily accessible, such as for single-bounce monochromators. Due to the inaccessibly of the surfaces inside a channel-cut monochromator for polishing, thesemore » optics are generally wet-etched for their final processing. This results in minimal subsurface damage, but very poor roughness and figure error. A new CMP channel polishing instrument design is presented which allows the internal diffracting surface quality of channel-cut crystals to approach that of conventional single-bounce monochromators« less

  6. A novel kind of TSV slurry with guanidine hydrochloride

    NASA Astrophysics Data System (ADS)

    Jiao, Hong; Yuling, Liu; Baoguo, Zhang; Xinhuan, Niu; Liying, Han

    2015-10-01

    The effect of a novel alkaline TSV (through-silicon-via) slurry with guanidine hydrochloride (GH) on CMP (chemical mechanical polishing) was investigated. The novel alkaline TSV slurry was free of any inhibitors. During the polishing process, the guanidine hydrochloride serves as an effective surface-complexing agent for TSV CMP applications, the removal rate of barrier (Ti) can be chemically controlled through tuned selectivity with respect to the removal rate of copper and dielectric, which is helpful to modifying the dishing and gaining an excellent topography performance in TSV manufacturing. In this paper, we mainly studied the working mechanism of the components of slurry and the skillful application guanidine hydrochloride in the TSV slurry. Project supported by the Major National Science and Technology Special Projects (No. 2009ZX02308), the Fund Project of Hebei Provincial Department of Education, China (No. QN2014208), the Natural Science Foundation of Hebei Province, China (No. E2013202247), and Colleges and Universities Scientific research project of Hebei Province, China (No. Z2014088).

  7. Assessment of late cardiomyopathy by magnetic resonance imaging in patients with acute promyelocytic leukaemia treated with all-trans retinoic acid and idarubicin.

    PubMed

    Rodríguez-Veiga, Rebeca; Igual, Begoña; Montesinos, Pau; Tormo, Mar; Sayas, Mª José; Linares, Mariano; Fernández, José María; Salvador, Antonio; Maceira-González, Alicia; Estornell, Jordi; Calabuig, Marisa; Pedreño, María; Roig, Mónica; Sanz, Jaime; Sanz, Guillermo; Carretero, Carlos; Boluda, Blanca; Martínez-Cuadrón, David; Sanz, Miguel Ángel

    2017-07-01

    Late cardiomyopathy CMP is regarded as a potential severe long-term complication after anthracycline-based regimens for acute promyelocitic leukaemia (APL). We assess by MRI the incidence and severity of clinical and subclinical long-term CMP in a cohort of adult APL patients in first complete remission with PETHEMA trials. Adult patients diagnosed with APL in first complete remission lasting ≥2 years underwent anamnesis and physical examination and were asked to perform a cardiac MRI. Clinical CMP was defined as radiographic and physical signs of heart failure accompanied by symptoms or by left ventricle ejection fraction (LVEF) <45% by MRI with or without symptoms. Subclinical CMP was defined as the following MRI abnormalities: LVEF 45-50% or late gadolinium enhancement or two or more of LVEF ≤55%, left ventricle end-diastolic volume index ≥98 ml/m 2 , left ventricle end-systolic volume index ≥38 ml/m 2 , right ventricle end-diastolic volume index ≥106 ml/m 2 and regional wall motion abnormalities. Of the 82 patients enrolled in the study, median cumulative dose of anthracyclines (doxorubicin equivalence) was 650 mg/m 2 , and median time from APL diagnosis to the study was 87 months (range, 24-195). Seven out of 57 patients with available MRI (12%) had subclinical CMP (all of them showed late gadolinium enhancement in MRI), and none had clinical CMP. Among the 25 patients without MRI, none had CMP by chest X-ray and physical assessment. In summary, we found 12% of subclinical and no clinical late CMP assessed by MRI in APL patients treated with PETHEMA protocols. Due to the low number of patients, we must interpret our results cautiously.

  8. In vivo evidence of cross-reactivity between cow's milk and soybean proteins in a mouse model of food allergy.

    PubMed

    Smaldini, Paola; Curciarello, Renata; Candreva, Angela; Rey, María Amanda; Fossati, Carlos Alberto; Petruccelli, Silvana; Docena, Guillermo Horacio

    2012-01-01

    Cow's milk allergy (CMA) is an important problem worldwide and the development of an in vivo system to study new immunotherapeutic strategies is of interest. Intolerance to soybean formula has been described in CMA patients, but it is not fully understood. In this work, we used a food allergy model in BALB/c mice to study the cross-reactivity between cow's milk protein (CMP) and soy proteins (SP). Mice were orally sensitized with cholera toxin and CMP, and then challenged with CMP or SP to induce allergy. Elicited symptoms, plasma histamine, humoral and cellular immune response were analyzed. Th1- and Th2-associated cytokines and transcription factors were assessed at mucosal sites and in splenocytes. Cutaneous tests were also performed. We found that the immediate symptoms elicited in CMP-sensitized mice orally challenged with SP were consistent with a plasma histamine increase. The serum levels of CMP-specific IgE and IgG1 antibodies were increased. These antibodies also recognized soy proteins. Splenocytes and mesenteric lymph node cells incubated with CMP or SP secreted IL-5 and IL-13. mRNA expression of Th2-associated genes (IL-5, IL-13, and GATA-3) was upregulated in mucosal samples. In addition, sensitized animals exhibited positive cutaneous tests after the injection of CMP or SP. We demonstrate that CMP-sensitized mice, without previous exposure to soy proteins, elicited hypersensitivity signs immediately after the oral administration of SP, suggesting that the immunochemical cross-reactivity might be clinically relevant. This model may provide an approach to further characterize cross-allergenicity phenomena and develop new immunotherapeutic treatments for allergic patients. Copyright © 2012 S. Karger AG, Basel.

  9. Novel cytidine-based orotidine-5'-monophosphate decarboxylase inhibitors with an unusual twist.

    PubMed

    Purohit, Meena K; Poduch, Ewa; Wei, Lianhu William; Crandall, Ian Edward; To, Terrence; Kain, Kevin C; Pai, Emil F; Kotra, Lakshmi P

    2012-11-26

    Orotidine-5'-monophosphate decarboxylase (ODCase) is an interesting enzyme with an unusual catalytic activity and a potential drug target in Plasmodium falciparum, which causes malaria. ODCase has been shown to exhibit unusual and interesting interactions with a variety of nucleotide ligands. Cytidine-5'-monophosphate (CMP) is a poor ligand of ODCase, and CMP binds to the active site of ODCase with an unusual orientation and conformation. We designed N3- and N4-modified CMP derivatives as novel ligands to ODCase. These novel CMP derivatives and their corresponding nucleosides were evaluated against Plasmodium falciparum ODCase and parasitic cultures, respectively. These derivatives exhibited improved inhibition of the enzyme catalytic activity, displayed interesting binding conformations and unusual molecular rearrangements of the ligands. These findings with the modified CMP nucleotides underscored the potential of transformation of poor ligands to ODCase into novel inhibitors of this drug target.

  10. A client-treatment matching protocol for therapeutic communities: first report.

    PubMed

    Melnick, G; De Leon, G; Thomas, G; Kressel, D

    2001-10-01

    The present study is the first report on a client-treatment matching protocol (CMP) to guide admissions to residential and outpatient substance abuse treatment settings. Two cohorts, a field test sample (n = 318) and cross-validation (n = 407) sample were drawn from consecutive admissions to nine geographically distributed multisetting therapeutic communities (TCs). A passive matching design was employed. Clients received the CMP on admission, but agencies were "blind" to the CMP treatment recommendation (i.e., match) and assigned clients to treatment by the usual intake procedures. Bivariate and logistical regression analyses show that positive treatment dispositions (treatment completion or longer retention in treatment)) were significantly higher among the CMP-matched clients. The present findings provide the empirical basis for studies assessing the validity and utility of the CMP with controlled designs. Though limited to TC-oriented agencies, the present research supports the use of objective matching criteria to improve treatment.

  11. Characterising the development of the understanding of human body systems in high-school biology students - a longitudinal study

    NASA Astrophysics Data System (ADS)

    Snapir, Zohar; Eberbach, Catherine; Ben-Zvi-Assaraf, Orit; Hmelo-Silver, Cindy; Tripto, Jaklin

    2017-10-01

    Science education today has become increasingly focused on research into complex natural, social and technological systems. In this study, we examined the development of high-school biology students' systems understanding of the human body, in a three-year longitudinal study. The development of the students' system understanding was evaluated using the Components Mechanisms Phenomena (CMP) framework for conceptual representation. We coded and analysed the repertory grid personal constructs of 67 high-school biology students at 4 points throughout the study. Our data analysis builds on the assumption that systems understanding entails a perception of all the system categories, including structures within the system (its Components), specific processes and interactions at the macro and micro levels (Mechanisms), and the Phenomena that present the macro scale of processes and patterns within a system. Our findings suggest that as the learning process progressed, the systems understanding of our students became more advanced, moving forward within each of the major CMP categories. Moreover, there was an increase in the mechanism complexity presented by the students, manifested by more students describing mechanisms at the molecular level. Thus, the 'mechanism' category and the micro level are critical components that enable students to understand system-level phenomena such as homeostasis.

  12. 42 CFR 417.560 - Apportionment: Part B physician and supplier services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... HMO or CMP or by a related entity of the HMO or CMP must be apportioned on the basis of the ratio of... reasonable cost the HMO or CMP pays under its financial arrangement with the physician or supplier must be apportioned between Medicare enrollees and others based on the ratio of covered services furnished to Medicare...

  13. Timing of Bag Application and Removal in Controlled Mass Pollination

    Treesearch

    F.E. Bridgwater; D.L. Bramlett; V.D. Hipkins

    1999-01-01

    Controlled mass pollination (CMP) among outstanding parents is one way to increase genetic gains from traditional wind-pollinated seed orchards, but the economic success of CMP depends on both genetic gains and costs. CMP has been shown. to be cost-effective (Bridgwater et al. 1998) even when costs were adjusted for risk (Byram and Bridgwater 1999, These Proceedings...

  14. 42 CFR 417.460 - Disenrollment of beneficiaries by an HMO or CMP.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... or CMP's geographic area does not expand that area to encompass the location of the enrollee's new... to the HMO's or CMP's geographic area within 1 year from the date he or she left that area, the HMO... date the enrollee left that area in accordance with paragraph (f)(1) of this section. (g) Failure to...

  15. 42 CFR 417.460 - Disenrollment of beneficiaries by an HMO or CMP.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... or CMP's geographic area does not expand that area to encompass the location of the enrollee's new... to the HMO's or CMP's geographic area within 1 year from the date he or she left that area, the HMO... date the enrollee left that area in accordance with paragraph (f)(1) of this section. (g) Failure to...

  16. Stable curcumin-loaded polymeric micellar formulation for enhancing cellular uptake and cytotoxicity to FLT3 overexpressing EoL-1 leukemic cells.

    PubMed

    Tima, Singkome; Anuchapreeda, Songyot; Ampasavate, Chadarat; Berkland, Cory; Okonogi, Siriporn

    2017-05-01

    The present study aims to develop a stable polymeric micellar formulation of curcumin (CM) with improved solubility and stability, and that is suitable for clinical applications in leukemia patients. CM-loaded polymeric micelles (CM-micelles) were prepared using poloxamers. The chemical structure of the polymers influenced micellar properties. The best formulation of CM-micelles, namely CM-P407, was obtained from poloxamer 407 at drug to polymer ratio of 1:30 and rehydrated with phosphate buffer solution pH 7.4. CM-P407 exhibited the smallest size of 30.3±1.3nm and highest entrapment efficiency of 88.4±4.1%. When stored at -80°C for 60days, CM-P407 retained high protection of CM and had no significant size change. In comparison with CM solution in dimethyl sulfoxide (CM-DMSO), CM kinetic degradation in both formulations followed a pseudo-first-order reaction, but the half-life of CM in CM-P407 was approx. 200 times longer than in CM-DMSO. Regarding the activity against FLT3 overexpressing EoL-1 leukemic cells, CM-P407 showed higher cytotoxicity than CM-DMSO. Moreover, intracellular uptake to leukemic cells of CM-P407 was 2-3 times greater than that of CM-DMSO. These promising results for CM-P407 will be further investigated in rodents and in clinical studies for leukemia treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Engineering Sialic Acid Synthesis Ability in Insect Cells.

    PubMed

    Viswanathan, Karthik; Narang, Someet; Betenbaugh, Michael J

    2015-01-01

    Insect cells lack the ability to synthesize the sialic acid donor molecule CMP-sialic acid or its precursor, sialic acid. In this chapter, we describe a method to engineer CMP-sialic acid synthesis capability into Spodoptera frugiperda (Sf9) cells, a prototypical insect cell line, by recombinant expression of sialic acid synthesis pathway genes using baculovirus technology. Co-expression of a sialuria mutant UDP-GlcNAc-2-epimerase/ManNAc kinase (EKR263L), wild-type sialic acid 9-phosphate synthase (SAS), and wild-type CMP-sialic acid synthetase (CSAS) in the presence of GlcNAc leads to synthesis of CMP-sialic acids synthesis to support sialylation of N-glycans on glycoproteins.

  18. Atmospheric oxidation of selected chlorinated alkenes by O3, OH, NO3 and Cl

    NASA Astrophysics Data System (ADS)

    Zhang, Qun; Chen, Yi; Tong, Shengrui; Ge, Maofa; Shenolikar, Justin; Johnson, Matthew S.; Wang, Yifeng; Tsona, Narcisse T.; Mellouki, Abdelwahid; Du, Lin

    2017-12-01

    An experimental study on the 3-chloro-2-methyl-1-propene (CMP), 2,3-dichloropropene (DCP) and 3,4-dichlorobutene (DCB) reactions with atmospheric oxidants at (298 ± 1) K and atmospheric pressure is reported. Rate constants for the gas phase reactions of the three chlorinated alkenes with O3, OH and NO3 radicals and Cl atom were determined in a 100 L Teflon reactor by gas chromatography with flame ionization detector (GC-FID). The obtained rate constants are (3.03 ± 0.15) × 10-18, (3.83 ± 1.30) × 10-11, (1.99 ± 0.19) × 10-14, and (2.40 ± 0.41) × 10-10 cm3 molecule-1 s-1 for CMP reactions with O3, OH, NO3, and Cl, respectively, (4.62 ± 1.41) × 10-20, (1.37 ± 1.02) × 10-11, (1.45 ± 0.15) × 10-15 and (1.30 ± 0.99) × 10-11 cm3 molecule-1 s-1 for DCP reactions and (2.09 ± 0.24) × 10-19, (1.45 ± 0.59) × 10-11, (3.00 ± 0.82) × 10-16 and (1.91 ± 0.19) × 10-10 cm3 molecule-1 s-1 for DCB reactions. The CMP reaction products were detected and possible reaction mechanisms of their formation were proposed. Chloroacetone was found to be the major product in all four oxidation reactions. The loss process of CMP in the atmosphere is mostly controlled by its reaction with the OH radical during daytime and with NO3 during nighttime, with lifetimes of 3.6 h and 27.9 h respectively. Atmospheric implications of both these reactions and their potential products are discussed.

  19. Medicinal Chemistry of the Noncanonical Cyclic Nucleotides cCMP and cUMP.

    PubMed

    Schwede, Frank; Rentsch, Andreas; Genieser, Hans-Gottfried

    2017-01-01

    After decades of intensive research on adenosine-3',5'-cyclic monophosphate (cAMP)- and guanosine-3',5'-cyclic monophosphate (cGMP)-related second messenger systems, also the noncanonical congeners cyclic cytidine-3',5'-monophosphate (cCMP) and cyclic uridine-3',5'-monophosphate (cUMP) gained more and more interest. Until the late 1980s, only a small number of cCMP and cUMP analogs with sometimes undefined purities had been described. Moreover, most of these compounds had been rather synthesized as precursors of antitumor and antiviral nucleoside-5'-monophosphates and hence had not been tested for any second messenger activity. Along with the recurring interest in cCMP- and cUMP-related signaling in the early 2000s, it became evident that well-characterized small molecule analogs with reliable purities would serve as highly valuable tools for the evaluation of a putative second messenger role of cyclic pyrimidine nucleotides. Meanwhile, for this purpose new cCMP and cUMP derivatives have been developed, and already known analogs have been resynthesized and highly purified. This chapter summarizes early medicinal chemistry work on cCMP and cUMP and analogs thereof, followed by a description of recent synthetic developments and an outlook on potential future directions.

  20. Effect of slurry composition on the chemical mechanical polishing of thin diamond films

    PubMed Central

    Werrell, Jessica M.; Mandal, Soumen; Thomas, Evan L. H.; Brousseau, Emmanuel B.; Lewis, Ryan; Borri, Paola; Davies, Philip R.; Williams, Oliver A.

    2017-01-01

    Nanocrystalline diamond (NCD) thin films grown by chemical vapour deposition have an intrinsic surface roughness, which hinders the development and performance of the films’ various applications. Traditional methods of diamond polishing are not effective on NCD thin films. Films either shatter due to the combination of wafer bow and high mechanical pressures or produce uneven surfaces, which has led to the adaptation of the chemical mechanical polishing (CMP) technique for NCD films. This process is poorly understood and in need of optimisation. To compare the effect of slurry composition and pH upon polishing rates, a series of NCD thin films have been polished for three hours using a Logitech Ltd. Tribo CMP System in conjunction with a polyester/polyurethane polishing cloth and six different slurries. The reduction in surface roughness was measured hourly using an atomic force microscope. The final surface chemistry was examined using X-ray photoelectron spectroscopy and a scanning electron microscope. It was found that of all the various properties of the slurries, including pH and composition, the particle size was the determining factor for the polishing rate. The smaller particles polishing at a greater rate than the larger ones. PMID:29057022

  1. Effect of slurry composition on the chemical mechanical polishing of thin diamond films

    NASA Astrophysics Data System (ADS)

    Werrell, Jessica M.; Mandal, Soumen; Thomas, Evan L. H.; Brousseau, Emmanuel B.; Lewis, Ryan; Borri, Paola; Davies, Philip R.; Williams, Oliver A.

    2017-12-01

    Nanocrystalline diamond (NCD) thin films grown by chemical vapour deposition have an intrinsic surface roughness, which hinders the development and performance of the films' various applications. Traditional methods of diamond polishing are not effective on NCD thin films. Films either shatter due to the combination of wafer bow and high mechanical pressures or produce uneven surfaces, which has led to the adaptation of the chemical mechanical polishing (CMP) technique for NCD films. This process is poorly understood and in need of optimisation. To compare the effect of slurry composition and pH upon polishing rates, a series of NCD thin films have been polished for three hours using a Logitech Ltd. Tribo CMP System in conjunction with a polyester/polyurethane polishing cloth and six different slurries. The reduction in surface roughness was measured hourly using an atomic force microscope. The final surface chemistry was examined using X-ray photoelectron spectroscopy and a scanning electron microscope. It was found that of all the various properties of the slurries, including pH and composition, the particle size was the determining factor for the polishing rate. The smaller particles polishing at a greater rate than the larger ones.

  2. Matrix Metalloproteinases and their Tissue Inhibitors in Cardiac Amyloidosis: Relationship to Structural, Functional Myocardial Changes and to Light Chain Amyloid Deposition

    PubMed Central

    Biolo, Andreia; Ramamurthy, Sujata; Connors, Lawreen H.; O'Hara, Carl J.; Meier-Ewert, Hans K.; Hoo, Pamela T. Soo; Sawyer, Douglas B.; Seldin, David S.; Sam, Flora

    2009-01-01

    Background Cardiac amyloidosis is characterized by amyloid infiltration resulting in extracellular matrix (ECM) disruption. Amyloid cardiomyopathy due to immunoglobulin light chain protein (AL-CMP) deposition, has an accelerated clinical course and a worse prognosis compared to non-light chain cardiac amyloidoses i.e., forms associated with wild-type or mutated transthyretin (TTR). We therefore tested the hypothesis that determinants of proteolytic activity of the ECM, the matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), would have distinct patterns and contribute to the pathogenesis of AL-CMP vs. TTR. Methods / Results We studied 40 patients with systemic amyloidosis: 10 AL-CMP patients, 20 patients with TTR-associated forms of cardiac amyloidosis, i.e. senile systemic amyloidois (SSA, involving wild-type TTR) or mutant TTR (ATTR), and 10 patients with AL amyloidosis without cardiac involvement. Serum MMP-2 and −9, TIMP-1, −2 and −4, brain natriuretic peptide (BNP) values and echocardiography were determined. AL-CMP and SSA-ATTR groups had similar degrees of increased left ventricular wall thickness (LVWT). However, BNP, MMP-9 and TIMP-1 levels were distinctly elevated accompanied by marked diastolic dysfunction in the AL-CMP group vs. no or minimal increases in the SSA-ATTR group. BNP, MMPs and TIMPs were not correlated with the degree of LVWT but were correlated to each other and to measures of diastolic dysfunction. Immunostaining of human endomyocardial biopsies showed diffuse expression of MMP-9 and TIMP-1 in AL-CMP and limited expression in SSA or ATTR hearts. Conclusions Despite comparable LVWT with TTR-related cardiac amyloidosis, AL-CMP patients have higher BNP, MMPs and TIMPs, which correlated with diastolic dysfunction. These findings suggest a relationship between light chains and ECM proteolytic activation that may play an important role in the functional and clinical manifestations of AL-CMP, distinct from the other non-light chain cardiac amyloidoses. PMID:19808299

  3. Kinetic measurement of 2-aminopurine X cytosine and 2-aminopurine X thymine base pairs as a test of DNA polymerase fidelity mechanisms.

    PubMed Central

    Watanabe, S M; Goodman, M F

    1982-01-01

    Enzyme kinetic measurements are presented showing that Km rather than maximum velocity (Vmax) discrimination governs the frequency of forming 2-aminopurine X cytosine base mispairs by DNA polymerase alpha. An in vitro system is used in which incorporation of dTMP or dCMP occurs opposite a template 2-aminopurine, and values for Km and Vmax are obtained. Results from a previous study in which dTTP and dCTP were competing simultaneously for insertion opposite 2-aminopurine indicated that dTMP is inserted 22 times more frequently than dCMP. We now report that the ratio of Km values KCm/KTm = 25 +/- 6, which agrees quantitatively with the dTMP/dCMP incorporation ratio obtained previously. We also report that VCmax is indistinguishable from VTmax. These Km and Vmax data are consistent with predictions from a model, the Km discrimination model, in which replication fidelity is determined by free energy differences between matched and mismatched base pairs. Central to this model is the prediction that the ratio of Km values for insertion of correct and incorrect nucleotides specifies the insertion fidelity, and the maximum velocities of insertion are the same for both nucleotides. PMID:6959128

  4. Immunoreactivity to food antigens in patients with chronic urticaria.

    PubMed

    Rašković, Sanvila; Matić, Ivana Z; Dorđić, Marija; Damjanović, Ana; Kolundžija, Branka; Grozdanić-Stanisavljević, Nađa; Besu, Irina; Jovičić, Zikica; Bijelić, Borivoj; Janković, Ljiljana; Juranić, Zorica

    2014-01-01

    The goal of study was better understanding of complex immune mechanisms that can help to evaluate patients with chronic urticaria (CU), especially those with unknown etiology. The study involved 55 patients with CU. Control group consisted of up to 90 healthy persons. The presence and intensity of serum IgG, IgA, IgM and IgE antibodies to common food antigens: cow's milk proteins (CMP), gliadin and phytohemagglutinin were determined by ELISA. Determination of subpopulations of immunocompetent cells was performed by flow cytometry. Significantly enhanced IgE, but also IgA immunity to CMP was found in patients with CU in comparison to healthy controls: (p < 0.000004) and (p < 0.002), respectively. Notably, in 40 out of 55 CU patients, the increased levels of some type of immunoglobulin reactivity to CMP were found. Regarding gliadin, only the levels of serum IgE anti-gliadin antibodies were significantly enhanced in patients with CU (p < 0.04). Significantly enhanced percentage of CD89+ cells accompanied with significantly lower percentage of lymphocytes and significantly higher mean fluorescence intensity of CD26 expression on lymphocytes were found in patients with CU in comparison to healthy controls (p < 0.04), (p < 0.02) and (p < 0.003), respectively. Results of this study may help in better understanding the complex immune disturbances in patients with CU.

  5. A novel highly selective 5-HT6 receptor antagonist attenuates ethanol and nicotine seeking but does not affect inhibitory response control in Wistar rats.

    PubMed

    de Bruin, N M W J; McCreary, A C; van Loevezijn, A; de Vries, T J; Venhorst, J; van Drimmelen, M; Kruse, C G

    2013-01-01

    Recent studies suggest a potential role for 5-hydroxytryptamine(6) (5-HT(6)) receptors in the regulation of addictive behavior. In the present study, our aim was to investigate whether the novel highly selective 5-HT(6) receptor antagonist compound (CMP) 42 affected nicotine and ethanol seeking behavior in Wistar rats. We have also studied whether CMP 42 had beneficial effects in a model of impulse control, as measured in the 5-choice serial reaction time task (5-CSRTT). Rats were trained to nose poke to receive intravenous infusions of nicotine or an ethanol drop. CMP 42 (3-30 mg/kg intraperitoneally, i.p.) was administered to investigate the effects on nicotine self-administration. Rats were also tested for cue-induced reinstatement of nicotine and ethanol seeking. In addition, the effects of CMP 42 were studied on the number of anticipatory responses in the 5-CSRTT. CMP 42 was effective in reducing nicotine self-administration and reinstatement of nicotine seeking at a dose of 30 mg/kg (i.p.). CMP 42 was also effective in reducing reinstatement of ethanol seeking (30 mg/kg i.p.). In contrast, CMP 42 did not affect anticipatory responding at doses tested, indicating no effects on impulse control. These results add to a body of evidence implicating the 5-HT(6) receptor as a viable target for the control of drug abuse. Specifically, we demonstrated for the first time effects on nicotine self-administration and on nicotine and ethanol reinstatement. Further, these effects are probably not mediated by effects on impulse control. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Microbiomes of Endodontic-Periodontal Lesions before and after Chemomechanical Preparation.

    PubMed

    Gomes, Brenda P F A; Berber, Vanessa B; Kokaras, Alexis S; Chen, Tsute; Paster, Bruce J

    2015-12-01

    This study was conducted to evaluate the microbiomes of endodontic-periodontal lesions before and after chemomechanical preparation (CMP). Clinical samples were taken from 15 root canals (RCs) with necrotic pulp tissues and from their associated periodontal pockets (PPs) (n = 15) of teeth with endodontic-periodontal lesions before and after CMP. The Human Oral Microbe Identification using Next Generation Sequencing (NGS) protocol and viable culture were used to analyze samples from RCs and PPs. The Mann-Whitney U test and Benjamini-Hochberg corrections were performed to correlate the clinical and radiographic findings with microbial findings (P < .05). Bacteria were detected in 100% of the samples in both sites (15/15) using NGS. Firmicutes was the most predominant phylum in both sites using both methods. The most frequently detected species in the RCs before and after CMP using NGS were Enterococcus faecalis, Parvimonas micra, Mogibacterium timidum, Filifactor alocis, and Fretibacterium fastidiosum. The species most frequently detected in the PPs before and after CMP using NGS were P. micra, E. faecalis, Streptococcus constellatus, Eubacterium brachy, Tannerella forsythia, and F. alocis. Associations were found between periapical lesions ≤ 2 mm and Desulfobulbus sp oral taxon 041 and with periodontal pockets ≥ 6 mm and Dialister invisius and Peptostreptococcus stomatis (all P < .05, found in the RCs before CMP). It is concluded that the microbial community present in combined endodontic-periodontal lesions is complex and more diverse than previously reported. It is important to note that bacteria do survive in some root canals after CMP. Finally, the similarity between the microbiota of both sites, before and after CMP, suggests there may be a pathway of infection between the pulp and periodontium. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. An innovative method of ocular prosthesis fabrication by bio-CAD and rapid 3-D printing technology: A pilot study.

    PubMed

    Alam, Md Shahid; Sugavaneswaran, M; Arumaikkannu, G; Mukherjee, Bipasha

    2017-08-01

    Ocular prosthesis is either a readymade stock shell or custom made prosthesis (CMP). Presently, there is no other technology available, which is either superior or even comparable to the conventional CMP. The present study was designed to fabricate ocular prosthesis using computer aided design (CAD) and rapid manufacturing (RM) technology and to compare it with custom made prosthesis (CMP). The ocular prosthesis prepared by CAD was compared with conventional CMP in terms of time taken for fabrication, weight, cosmesis, comfort, and motility. Two eyes of two patients were included. Computerized tomography scan of wax model of socket was converted into three dimensional format using Materialize Interactive Medical Image Control System (MIMICS)software and further refined. This was given as an input to rapid manufacturing machine (Polyjet 3-D printer). The final painting on prototype was done by an ocularist. The average effective time required for fabrication of CAD prosthesis was 2.5 hours; and weight 2.9 grams. The same for CMP were 10 hours; and 4.4 grams. CAD prosthesis was more comfortable for both the patients. The study demonstrates the first ever attempt of fabricating a complete ocular prosthesis using CAD and rapid manufacturing and comparing it with conventional CMP. This prosthesis takes lesser time for fabrication, and is more comfortable. Studies with larger sample size will be required to further validate this technique.

  8. Application of AI methods to aircraft guidance and control

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.; Mcmanus, John W.

    1988-01-01

    A research program for integrating artificial intelligence (AI) techniques with tools and methods used for aircraft flight control system design, development, and implementation is discussed. The application of the AI methods for the development and implementation of the logic software which operates with the control mode panel (CMP) of an aircraft is presented. The CMP is the pilot control panel for the automatic flight control system of a commercial-type research aircraft of Langley Research Center's Advanced Transport Operating Systems (ATOPS) program. A mouse-driven color-display emulation of the CMP, which was developed with AI methods and used to test the AI software logic implementation, is discussed. The operation of the CMP was enhanced with the addition of a display which was quickly developed with AI methods. The display advises the pilot of conditions not satisfied when a mode does not arm or engage. The implementation of the CMP software logic has shown that the time required to develop, implement, and modify software systems can be significantly reduced with the use of the AI methods.

  9. Proteomics: a tool to develop novel diagnostic methods and unravel molecular mechanisms of pediatric diseases.

    PubMed

    Torres-Arroyo, Angélica; Ruiz-Lara, Arturo; Castillo-Villanueva, Adriana; Méndez-Cruz, Sara Teresa; Espinosa-Padilla, Sara Elvia; Espinosa-Rosales, Francisco Javier; Zarate-Mondragón, Flora; Cervantes-Bustamante, Roberto; Bosch-Canto, Vanessa; Vizzuett-López, Iris; Ordaz-Fávila, Juan Carlos; Oria-Hernández, Jesús; Reyes-Vivas, Horacio

    Proteomics is the study of the expression of changes and post-translational modifications (PTM) of proteins along a metabolic condition either normal or pathological. In the field of health, proteomics allows obtaining valuable data for treatment, diagnosis or pathophysiological mechanisms of different illnesses. To illustrate the aforementioned, we describe two projects currently being performed at the Instituto Nacional de Pediatría: The immuno-proteomic study of cow milk allergy and the Proteomic study of childhood cataract. Cow's milk proteins (CMP) are the first antigens to which infants are exposed and generate allergy in some of them. In Mexico, the incidence of CMP allergy has been estimated at 5-7%. Clinical manifestations include both gastrointestinal and extra-gastrointestinal symptoms, making its diagnosis extremely difficult. An inappropriate diagnosis affects the development and growth of children. The goals of the study are to identify the main immune-reactive CMP in Mexican pediatric population and to design more accurate diagnostic tools for this disease. Childhood cataract is a major ocular disease representing one of the main causes of blindness in infants; in developing countries, this disease promotes up to 27% of cases related to visual loss. From this group, it has been estimated that close to 60% of children do not survive beyond two years after vision lost. PTM have been pointed out as the main cause of protein precipitation at the crystalline and, consequently, clouding of this tissue. The study of childhood cataract represents an outstanding opportunity to identify the PTM associated to the cataract-genesis process. Copyright © 2017 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  10. Method for selective CMP of polysilicon

    NASA Technical Reports Server (NTRS)

    Babu, Suryadevara V. (Inventor); Natarajan, Anita (Inventor); Hegde, Sharath (Inventor)

    2010-01-01

    A method of removing polysilicon in preference to silicon dioxide and/or silicon nitride by chemical mechanical polishing. The method removes polysilicon from a surface at a high removal rate while maintaining a high selectivity of polysilicon to silicon dioxide and/or a polysilicon to silicon nitride. The method is particularly suitable for use in the fabrication of MEMS devices.

  11. The clinical and occupational effectiveness of condition management for Incapacity Benefit recipients.

    PubMed

    Kellett, Stephen; Bickerstaffe, Darren; Purdie, Fiona; Dyke, Andrew; Filer, Sarah; Lomax, Victoria; Tomlinson, Hayley

    2011-06-01

    OBJECTIVES. The aim of the Condition Management Programme (CMP) is to help Incapacity Benefit recipients manage their health conditions more effectively and return to work. This paper seeks to examine the clinical and employment outcomes from a group-based and mixed-condition CMP. DESIGN. In a prospective cohort design, measures of employment status and psychological well-being were taken at three time points; pre-CMP, post-CMP, and at 3-month follow-up. METHOD. Participants (N= 2,064) with a variety of physical and mental health conditions voluntarily attended a seven session cognitive-behaviourally informed psychoeducational group intervention. The psychological measures used were the Clinical Outcomes in Routine Evaluation - Outcome Measure, Work and Social Adjustment Scale, Self-Efficacy Scale, and the Intrinsic Motivation Scale. The employment status of participants was also measured at the three time points of the evaluation. RESULTS. Following CMP, 50% of participants experienced a reliable improvement in psychological well-being and 26% had either taken some steps towards work or returned to work at follow-up. Participants with a mental health condition were more likely to experience a reliable improvement in psychological well-being compared to those with physical health conditions. CONCLUSIONS. The results suggest that participation in CMP may be helpful in facilitating more effective self-management of the health conditions contributing to unemployment. The results have implications for whether formal employment assistance should be available in mental health services. ©2010 The British Psychological Society.

  12. Cerebral misery perfusion due to carotid occlusive disease

    PubMed Central

    Maddula, Mohana; Sprigg, Nikola; Bath, Philip M; Munshi, Sunil

    2017-01-01

    Purpose Cerebral misery perfusion (CMP) is a condition where cerebral autoregulatory capacity is exhausted, and cerebral blood supply in insufficient to meet metabolic demand. We present an educational review of this important condition, which has a range of clinical manifestations. Method A non-systematic review of published literature was undertaken on CMP and major cerebral artery occlusive disease, using Pubmed and Sciencedirect. Findings Patients with CMP may present with strokes in watershed territories, collapses and transient ischaemic attacks or episodic movements associated with an orthostatic component. While positron emission tomography is the gold standard investigation for misery perfusion, advanced MRI is being increasingly used as an alternative investigation modality. The presence of CMP increases the risk of strokes. In addition to the devastating effect of stroke, there is accumulating evidence of impaired cognition and quality of life with carotid occlusive disease (COD) and misery perfusion. The evidence for revascularisation in the setting of complete carotid occlusion is weak. Medical management constitutes careful blood pressure management while addressing other vascular risk factors. Discussion The evidence for the management of patients with COD and CMP is discussed, together with recommendations based on our local experience. In this review, we focus on misery perfusion due to COD. Conclusion Patients with CMP and COD may present with a wide-ranging clinical phenotype and therefore to many specialties. Early identification of patients with misery perfusion may allow appropriate management and focus on strategies to maintain or improve cerebral blood flow, while avoiding potentially harmful treatment. PMID:28959496

  13. Does the grading of chondromalacia patellae influence anterior knee pain following total knee arthroplasty without patellar resurfacing?

    PubMed

    Zha, Guo-Chun; Feng, Shuo; Chen, Xiang-Yang; Guo, Kai-Jin

    2018-03-01

    The influence of chondromalacia patellae (CMP) on post-operative anterior knee pain (AKP) following total knee arthroplasty (TKA) remains controversial, and few studies have focused on the relationship between them. The purpose of this study was to determine whether different CMP grades affect the incidence of AKP after TKA without patellar resurfacing. We performed a retrospective analysis of prospectively collected data on 290 TKAs with the use of the low contact stress mobile-bearing prosthesis, without patellar resurfacing in 290 patients from February 2009 to January 2013. Patients were assessed by the Outerbridge classification for CMP, visual analog scale for AKP, the Knee Society clinical scoring system of knee score (KS), function score (FS), the patellar score (PS) for clinical function, and patients' satisfaction. The intra-operative grading of CMP: grade I in 30 patients, grade II in 68 patients, grade III in 97 patients, and grade IV in 95 patients. The incidence of AKP at 36-month follow-up was 10.3% (30/290). No statistical difference was detected among the different CMP grades in terms of the incidence of AKP (p = 0.995), patients' satisfaction (p = 0.832), KS (p = 0.228), FS (p = 0.713), and PS (p = 0.119) at 36-month follow-up. The findings may suggest no relevant influence of CMP grading on the incidence of AKP after TKA without patellar resurfacing.

  14. ECM turnover-stimulated gene delivery through collagen-mimetic peptide-plasmid integration in collagen.

    PubMed

    Urello, Morgan A; Kiick, Kristi L; Sullivan, Millicent O

    2017-10-15

    Gene therapies have great potential in regenerative medicine; however, clinical translation has been inhibited by low stability and limited transfection efficiencies. Herein, we incorporate collagen-mimetic peptide (CMP)-linked polyplexes in collagen scaffolds to increase DNA stability by up to 400% and enable tailorable in vivo transgene expression at 100-fold higher levels and 10-fold longer time periods. These improvements were directly linked to a sustained interaction between collagen and polyplexes that persisted during cellular remodeling, polyplex uptake, and intracellular trafficking. Specifically, incorporation of CMPs into polyethylenimine (PEI) polyplexes preserved serum-exposed polyplex-collagen activity over a period of 14days, with 4 orders-of-magnitude more intact DNA present in CMP-modified polyplex-collagen relative to unmodified polyplex-collagen after a 10day incubation under cell culture conditions. CMP-modification also altered endocytic uptake, as indicated by gene silencing studies showing a nearly 50% decrease in transgene expression in response to caveolin-1 silencing in modified samples versus only 30% in unmodified samples. Furthermore, cellular internalization studies demonstrated that polyplex-collagen association persisted within cells in CMP polyplexes, but not in unmodified polyplexes, suggesting that CMP linkage to collagen regulates intracellular transport. Moreover, experiments in an in vivo repair model showed that CMP modification enabled tailoring of transgene expression from 4 to 25days over a range of concentrations. Overall, these findings demonstrate that CMP decoration provides substantial improvements in gene retention, altered release kinetics, improved serum-stability, and improved gene activity in vivo. This versatile technique has great potential for multiple applications in regenerative medicine. In this work, we demonstrate a novel approach for stably integrating DNA into collagen scaffolds to exploit the natural process of collagen remodelling for high efficiency non-viral gene delivery. The incorporation of CMPs into DNA polyplexes, coupled with the innate affinity between CMPs and collagen, not only permitted improved control over polyplex retention and release, but also provided a series of substantial and highly unique benefits via the stable and persistent linkage between CMP-polyplexes and collagen fragments. Specifically, CMP-modification of polyplexes was demonstrated to (i) control release for nearly a month, (ii) improve vector stability under physiological-like conditions, and (iii) provide ligands able to efficiently transfer genes via endocytic collagen pathways. These unique properties overcome key barriers inhibiting non-viral gene therapy. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Studies of Aqueous and Non-Aqueous Electrochemical Interface for Applications in Microelectronic and Energy Storage Systems

    NASA Astrophysics Data System (ADS)

    Zheng, Jianping

    Various electrochemical techniques were utilized to study a wide range of electrochemical systems in this dissertation. Mainly they are grouped in three sections: 1) the conventional metal-aqueous systems for new applications in modern microelectronic devices, 2) unconventional ceramic-organic systems for applications in Li-ion batteries and 3) novel systems composed of ionic liquids and carbon series electrodes. The objects are to probe the electrochemical/chemical reactions and interfacial structures, which are the common features of the aforementioned systems. This dissertation mainly focuses on experimental aspects, however, some theories and new models used to elucidate the experiment data have also been developed and presented. Some new experimental techniques have been explored and their limitations and validity have also been discussed. Oxalic acid (OA)-based nonalkaline solutions with H2O 2 are found to support chemically mediated removal of Ta-oxide surface films on Ta. The associated surface reactions are critical for chemical mechanical planarization (CMP) of Ta barrier. In chapter 4, a Ta coupon electrode is used as a model system in abrasive-free solutions of OA and H2O 2, where the chemical component of CMP is selectively examined. In chapter 5, electrochemical impedance spectroscopy (EIS) is employed to study the competitive reactions of surface corrosion and passivating film formation on a Cu-rotating disc electrode (RDE) in pH-adjusted solutions of H2O2, acetic acid (HAc) and ammonium dodecyl sulfate (ADS). Micrometric LiMn2O4 particles are mechano-chemically modified by ball-milling to obtain a mixture of nano- and micro-scale particles. In chapter 6, this mixture is tested as a potential active cathode material for rapid-charge Li ion batteries, and also as a model system for studying the detailed kinetics of Li intercalation/de-intercalation in such electrodes. In chapter 7, cyclic voltammetry (CV) and EIS are compared as techniques for analyzing double layer capacitances of ionic liquids (ILs) at the surfaces of two carbon-based electrodes. These systems are relevant for energy storage supercapacitors and often are associated with unconventional electrochemical properties. In chapter 8, the electrochemical interfaces of a glassy carbon (GC) and a carbon nanotube (CNT) paper electrode have been studied in EmimBF 4 and BmimBF4 ILs using CV and EIS.

  16. Advances in process overlay on 300-mm wafers

    NASA Astrophysics Data System (ADS)

    Staecker, Jens; Arendt, Stefanie; Schumacher, Karl; Mos, Evert C.; van Haren, Richard J. F.; van der Schaar, Maurits; Edart, Remi; Demmerle, Wolfgang; Tolsma, Hoite

    2002-07-01

    Overlay budgets are getting tighter within 300 mm volume production and as a consequence the process effects on alignment and off-line metrology becomes more important. In a short loop experiment, with cleared reference marks in each image field, the isolated effect of processing was measured with a sub-nanometer accuracy. The examined processes are Shallow Trench Isolation (STI), Tungsten-Chemical Mechanical Processing (W-CMP) and resist spinning. The alignment measurements were done on an ASML TWINSCANT scanner and the off-line metrology measurements on a KLA Tencor. Mark type and mark position dependency of the process effects are analyzed. The mean plus 3 (sigma) of the maximum overlay after correcting batch average wafer parameters is used as an overlay performance indicator (OPI). 3 (sigma) residuals to the wafer-model are used as an indicator of the noise that is added by the process. The results are in agreement with existing knowledge of process effects on 200 mm wafers. The W-CMP process introduces an additional wafer rotation and scaling that is similar for alignment marks and metrology targets. The effects depend on the mark type; in general they get less severe for higher spatial frequencies. For a 7th order alignment mark, the OPI measured about 12 nm and the added noise about 12 nm. For the examined metrology targets the OPI is about 20 nm with an added noise of about 90 nm. Two different types of alignment marks were tested in the STI process, i.e., zero layer marks and marks that were exposed together with the STI product. The overlay contribution due to processing on both types of alignment marks is very low (smaller than 5 nm OPI) and independent on mark type. Some flyers are observed fot the zero layer marks. The flyers can be explained by the residues of oxide and nitride that is left behind in the spaces of the alignment marks. Resist spinning is examined on single layer resist and resist with an organic Bottom Anti-Reflective Coating (BARC) underneath. Single layer resist showed scaling on unsegmented marks that disappears using higher diffraction orders and/or mark segmentation. Resist with a planarizing BARC caused additional effects on the wafer edge for measurements with the red laser signal. The effects disappear using the green laser of ATHENAT.

  17. Cytosine to uracil conversion through hydrolytic deamination of cytidine monophosphate hydroxy-alkylated on the amino group: a liquid chromatography--electrospray ionization--mass spectrometry investigation.

    PubMed

    Losito, I; Angelico, R; Introna, B; Ceglie, A; Palmisano, F

    2012-10-01

    A novel pathway for cytosine to uracil conversion performed in a micellar environment, leading to the generation of uridine monophosphate (UMP), was evidenced during the alkylation reaction of cytidine monophosphate (CMP) by dodecyl epoxide. Liquid chromatography-electrospray ionization - ion trap - mass spectrometry was used to separate and identify the reaction products and to follow their formation over time. The detection of hydroxy-amino-dodecane, concurrently with free UMP, in the reaction mixture suggested that, among the various alkyl-derivatives formed, CMP alkylated on the amino group of cytosine could undergo tautomerization to an imine and hydrolytic deamination, generating UMP. Interestingly, no evidence for this peculiar conversion pathway was obtained when guanosine monophosphate (GMP), the complementary ribonucleotide of CMP, was also present in the reaction mixture, due to the fact that NH(2)-alkylated CMP was not formed in this case. The last finding emphasized the role played by CMP-GMP molecular interactions, mediated by a micellar environment, in hindering the alkylation reaction at the level of the cytosine amino group. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Deoxypyrimidine monophosphate bypass therapy for thymidine kinase 2 deficiency

    PubMed Central

    Garone, Caterina; Garcia-Diaz, Beatriz; Emmanuele, Valentina; Lopez, Luis C; Tadesse, Saba; Akman, Hasan O; Tanji, Kurenai; Quinzii, Catarina M; Hirano, Michio

    2014-01-01

    Autosomal recessive mutations in the thymidine kinase 2 gene (TK2) cause mitochondrial DNA depletion, multiple deletions, or both due to loss of TK2 enzyme activity and ensuing unbalanced deoxynucleotide triphosphate (dNTP) pools. To bypass Tk2 deficiency, we administered deoxycytidine and deoxythymidine monophosphates (dCMP+dTMP) to the Tk2 H126N (Tk2−/−) knock-in mouse model from postnatal day 4, when mutant mice are phenotypically normal, but biochemically affected. Assessment of 13-day-old Tk2−/− mice treated with dCMP+dTMP 200 mg/kg/day each (Tk2−/−200dCMP/dTMP) demonstrated that in mutant animals, the compounds raise dTTP concentrations, increase levels of mtDNA, ameliorate defects of mitochondrial respiratory chain enzymes, and significantly prolong their lifespan (34 days with treatment versus 13 days untreated). A second trial of dCMP+dTMP each at 400 mg/kg/day showed even greater phenotypic and biochemical improvements. In conclusion, dCMP/dTMP supplementation is the first effective pharmacologic treatment for Tk2 deficiency. Subject Categories Genetics, Gene Therapy & Genetic Disease; Metabolism PMID:24968719

  19. Deoxypyrimidine monophosphate bypass therapy for thymidine kinase 2 deficiency.

    PubMed

    Garone, Caterina; Garcia-Diaz, Beatriz; Emmanuele, Valentina; Lopez, Luis C; Tadesse, Saba; Akman, Hasan O; Tanji, Kurenai; Quinzii, Catarina M; Hirano, Michio

    2014-08-01

    Autosomal recessive mutations in the thymidine kinase 2 gene (TK2) cause mitochondrial DNA depletion, multiple deletions, or both due to loss of TK2 enzyme activity and ensuing unbalanced deoxynucleotide triphosphate (dNTP) pools. To bypass Tk2 deficiency, we administered deoxycytidine and deoxythymidine monophosphates (dCMP+dTMP) to the Tk2 H126N (Tk2(-/-)) knock-in mouse model from postnatal day 4, when mutant mice are phenotypically normal, but biochemically affected. Assessment of 13-day-old Tk2(-/-) mice treated with dCMP+dTMP 200 mg/kg/day each (Tk2(-/-200dCMP/) (dTMP)) demonstrated that in mutant animals, the compounds raise dTTP concentrations, increase levels of mtDNA, ameliorate defects of mitochondrial respiratory chain enzymes, and significantly prolong their lifespan (34 days with treatment versus 13 days untreated). A second trial of dCMP+dTMP each at 400 mg/kg/day showed even greater phenotypic and biochemical improvements. In conclusion, dCMP/dTMP supplementation is the first effective pharmacologic treatment for Tk2 deficiency. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  20. Circulating cell-derived microparticles in women with pregnancy loss.

    PubMed

    Alijotas-Reig, Jaume; Palacio-Garcia, Carles; Farran-Codina, Immaculada; Zarzoso, Cristina; Cabero-Roura, Luis; Vilardell-Tarres, Miquel

    2011-09-01

    To analyze cell-derived microparticles (cMP) in pregnancy loss (PL), both recurrent miscarriages (RM) and unexplained fetal loss (UFL). Non-matched case-control study was performed at Vall d'Hebron Hospital. Cell-derived microparticles of 53 PL cases, 30 with RM, 16 with UFL, and 7 (RM + UFL), were compared to 38 healthy pregnant women. Twenty healthy non-pregnant women act as controls. Cell-derived microparticles were analyzed through flow cytometry. Results are given as total annexin (A5+), endothelial-(CD144+/CD31+ CD41-), platelet-(CD41+), leukocyte-(CD45+) and CD41- c-MP/μL of plasma. Antiphospholipid antibodies (aPLA) were analyzed according to established methods. Comparing PL versus healthy pregnant, we observed a significant endothelial cMP decrease in PL. When comparing RM subgroup with controls, we observed significant decreases in endothelial cMP. When comparing the PL positive for aPLA versus PL-aPLA-negative, no cMP numbering differences were seen. Pregnancy loss seems to be related to endothelial cell activation and/or consumption. A relationship between aPLA and cMP could not be demonstrated. © 2011 John Wiley & Sons A/S.

  1. Scan direction induced charging dynamics and the application for detection of gate to S/D shorts in logic devices

    NASA Astrophysics Data System (ADS)

    Lei, Ming; Tian, Qing; Wu, Kevin; Zhao, Yan

    2016-03-01

    Gate to source/drain (S/D) short is the most common and detrimental failure mechanism for advanced process technology development in Metal-Oxide-Semiconductor-Field-Effect-Transistor (MOSFET) device manufacturing. Especially for sub-1Xnm nodes, MOSFET device is more vulnerable to gate-S/D shorts due to the aggressive scaling. The detection of this kind of electrical short defect is always challenging for in-line electron beam inspection (EBI), especially new shorting mechanisms on atomic scale due to new material/process flow implementation. The second challenge comes from the characterization of the shorts including identification of the exact shorting location. In this paper, we demonstrate unique scan direction induced charging dynamics (SDCD) phenomenon which stems from the transistor level response from EBI scan at post metal contact chemical-mechanical planarization (CMP) layers. We found that SDCD effect is exceptionally useful for gate-S/D short induced voltage contrast (VC) defect detection, especially for identification of shorting locations. The unique SDCD effect signatures of gate-S/D shorts can be used as fingerprint for ground true shorting defect detection. Correlation with other characterization methods on the same defective location from EBI scan shows consistent results from various shorting mechanism. A practical work flow to implement the application of SDCD effect for in-line EBI monitor of critical gate-S/D short defects is also proposed, together with examples of successful application use cases which mostly focus on static random-access memory (SRAM) array regions. Although the capability of gate-S/D short detection as well as expected device response is limited to passing transistors and pull-down transistors due to the design restriction from standard 6-cell SRAM structure, SDCD effect is proven to be very effective for gate-S/D short induced VC defect detection as well as yield learning for advanced technology development.

  2. Antifungal nanofibers made by controlled release of sea animal derived peptide

    NASA Astrophysics Data System (ADS)

    Viana, Juliane F. C.; Carrijo, Jéssica; Freitas, Camila G.; Paul, Arghya; Alcaraz, Jarib; Lacorte, Cristiano C.; Migliolo, Ludovico; Andrade, César A.; Falcão, Rosana; Santos, Nuno C.; Gonçalves, Sónia; Otero-González, Anselmo J.; Khademhosseini, Ali; Dias, Simoni C.; Franco, Octávio L.

    2015-03-01

    Candida albicans is a common human-pathogenic fungal species with the ability to cause several diseases including surface infections. Despite the clear difficulties of Candida control, antimicrobial peptides (AMPs) have emerged as an alternative strategy for fungal control. In this report, different concentrations of antifungal Cm-p1 (Cencritchis muricatus peptide 1) were electrospun into nanofibers for drug delivery. The nanofibers were characterized by mass spectrometry confirming the presence of the peptide on the scaffold. Atomic force microscopy and scanning electronic microscopy were used to measure the diameters, showing that Cm-p1 affects fiber morphology as well as the diameter and scaffold thickness. The Cm-p1 release behavior from the nanofibers demonstrated peptide release from 30 min to three days, leading to effective yeast control in the first 24 hours. Moreover, the biocompatibility of the fibers were evaluated through a MTS assay as well as ROS production by using a HUVEC model, showing that the fibers do not affect cell viability and only nanofibers containing 10% Cm-p1-PVA improved ROS generation. In addition, the secretion of pro-inflammatory cytokines IL-6 and TNF-α by the HUVECs was also slightly modified by the 10% Cm-p1-PVA nanofibers. In conclusion, the electrospinning technique applied here allowed for the manufacture of biodegradable biomimetic nanofibrous extracellular membranes with the ability to control fungal infection.Candida albicans is a common human-pathogenic fungal species with the ability to cause several diseases including surface infections. Despite the clear difficulties of Candida control, antimicrobial peptides (AMPs) have emerged as an alternative strategy for fungal control. In this report, different concentrations of antifungal Cm-p1 (Cencritchis muricatus peptide 1) were electrospun into nanofibers for drug delivery. The nanofibers were characterized by mass spectrometry confirming the presence of the peptide on the scaffold. Atomic force microscopy and scanning electronic microscopy were used to measure the diameters, showing that Cm-p1 affects fiber morphology as well as the diameter and scaffold thickness. The Cm-p1 release behavior from the nanofibers demonstrated peptide release from 30 min to three days, leading to effective yeast control in the first 24 hours. Moreover, the biocompatibility of the fibers were evaluated through a MTS assay as well as ROS production by using a HUVEC model, showing that the fibers do not affect cell viability and only nanofibers containing 10% Cm-p1-PVA improved ROS generation. In addition, the secretion of pro-inflammatory cytokines IL-6 and TNF-α by the HUVECs was also slightly modified by the 10% Cm-p1-PVA nanofibers. In conclusion, the electrospinning technique applied here allowed for the manufacture of biodegradable biomimetic nanofibrous extracellular membranes with the ability to control fungal infection. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00767d

  3. Random or predictable?: Adoption patterns of chronic care management practices in physician organizations.

    PubMed

    Miake-Lye, Isomi M; Chuang, Emmeline; Rodriguez, Hector P; Kominski, Gerald F; Yano, Elizabeth M; Shortell, Stephen M

    2017-08-24

    Theories, models, and frameworks used by implementation science, including Diffusion of Innovations, tend to focus on the adoption of one innovation, when often organizations may be facing multiple simultaneous adoption decisions. For instance, despite evidence that care management practices (CMPs) are helpful in managing chronic illness, there is still uneven adoption by physician organizations. This exploratory paper leverages this natural variation in uptake to describe inter-organizational patterns in adoption of CMPs and to better understand how adoption choices may be related to one another. We assessed a cross section of national survey data from physician organizations reporting on the use of 20 CMPs (5 each for asthma, congestive heart failure, depression, and diabetes). Item response theory was used to explore patterns in adoption, first considering all 20 CMPs together and then by subsets according to disease focus or CMP type (e.g., registries, patient reminders). Mokken scale analysis explored whether adoption choices were linked by disease focus or CMP type and whether a consistent ordering of adoption choices was present. The Mokken scale for all 20 CMPs demonstrated medium scalability (H = 0.43), but no consistent ordering. Scales for subsets of CMPs sharing a disease focus had medium scalability (0.4 < H < 0.5), while subsets sharing a CMP type had strong scalability (H > 0.5). Scales for CMP type consistently ranked diabetes CMPs as most adoptable and depression CMPs as least adoptable. Within disease focus scales, patient reminders were ranked as the most adoptable CMP, while clinician feedback and patient education were ranked the least adoptable. Patterns of adoption indicate that innovation characteristics may influence adoption. CMP dissemination efforts may be strengthened by encouraging traditionally non-adopting organizations to focus on more adoptable practices first and then describing a pathway for the adoption of subsequent CMPs. Clarifying why certain CMPs are "less adoptable" may also provide insights into how to overcome CMP adoption constraints.

  4. Conjugated Microporous Polymers for Heterogeneous Catalysis.

    PubMed

    Zhou, Yun-Bing; Zhan, Zhuang-Ping

    2018-01-04

    Conjugated microporous polymers (CMPs) are a class of crosslinked polymers that combine permanent micropores with π-conjugated skeletons and possess three-dimensional (3D) networks. Compared with conventional materials such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), CMPs usually have superior chemical and thermal stability. CMPs have made significant progress in heterogeneous catalysis in the past seven years. With a bottom-up strategy, catalytic moieties can be directly introduced into in the framework to produce heterogeneous CMP catalysts. Higher activity, stability, and selectivity can be obtained with heterogeneous CMP catalysts in comparison with their homogeneous analogs. In addition, CMP catalysts can be easily isolated and recycled. In this review, we focus on CMPs as an intriguing platform for developing various highly efficient and recyclable heterogeneous catalysts in organic reactions. The design, synthesis, and structure of these CMP catalysts are also discussed in this focus review. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. TreeCmp: Comparison of Trees in Polynomial Time

    PubMed Central

    Bogdanowicz, Damian; Giaro, Krzysztof; Wróbel, Borys

    2012-01-01

    When a phylogenetic reconstruction does not result in one tree but in several, tree metrics permit finding out how far the reconstructed trees are from one another. They also permit to assess the accuracy of a reconstruction if a true tree is known. TreeCmp implements eight metrics that can be calculated in polynomial time for arbitrary (not only bifurcating) trees: four for unrooted (Matching Split metric, which we have recently proposed, Robinson-Foulds, Path Difference, Quartet) and four for rooted trees (Matching Cluster, Robinson-Foulds cluster, Nodal Splitted and Triple). TreeCmp is the first implementation of Matching Split/Cluster metrics and the first efficient and convenient implementation of Nodal Splitted. It allows to compare relatively large trees. We provide an example of the application of TreeCmp to compare the accuracy of ten approaches to phylogenetic reconstruction with trees up to 5000 external nodes, using a measure of accuracy based on normalized similarity between trees.

  6. The endolysins of bacteriophages CMP1 and CN77 are specific for the lysis of Clavibacter michiganensis strains.

    PubMed

    Wittmann, Johannes; Eichenlaub, Rudolf; Dreiseikelmann, Brigitte

    2010-08-01

    Putative endolysin genes of bacteriophages CMP1 and CN77, which infect Clavibacter michiganensis subsp. michiganensis and C. michiganensis subsp. nebraskensis, respectively, were cloned and expressed in Escherichia coli. The His-tagged endolysin of CMP1 consists of 306 amino acids and has a calculated molecular mass of 34.8 kDa, while the His-tagged endolysin of CN77 has 290 amino acids with a molecular mass of 31.9 kDa. The proteins were purified and their bacteriolytic activity was demonstrated. The bacteriolytic activity of both enzymes showed a host range which was limited to the respective C. michiganensis subspecies and did not affect other bacteria, even those closely related to Clavibacter. Due to the high specificity of the CMP1 and CN77 endolysins they may be useful tools for biocontrol of plant-pathogenic C. michiganensis without affecting other bacteria in the soil.

  7. Power-Aware Compiler Controllable Chip Multiprocessor

    NASA Astrophysics Data System (ADS)

    Shikano, Hiroaki; Shirako, Jun; Wada, Yasutaka; Kimura, Keiji; Kasahara, Hironori

    A power-aware compiler controllable chip multiprocessor (CMP) is presented and its performance and power consumption are evaluated with the optimally scheduled advanced multiprocessor (OSCAR) parallelizing compiler. The CMP is equipped with power control registers that change clock frequency and power supply voltage to functional units including processor cores, memories, and an interconnection network. The OSCAR compiler carries out coarse-grain task parallelization of programs and reduces power consumption using architectural power control support and the compiler's power saving scheme. The performance evaluation shows that MPEG-2 encoding on the proposed CMP with four CPUs results in 82.6% power reduction in real-time execution mode with a deadline constraint on its sequential execution time. Furthermore, MP3 encoding on a heterogeneous CMP with four CPUs and four accelerators results in 53.9% power reduction at 21.1-fold speed-up in performance against its sequential execution in the fastest execution mode.

  8. Interaction of cytidine 5'-monophosphate with Au(111): an in situ infrared spectroscopic study.

    PubMed

    Doneux, Thomas; Fojt, Lukás

    2009-07-13

    The interaction of cytidine 5'-monophosphate (CMP) with gold surfaces is studied by means of in situ infrared spectroscopy and cyclic voltammetry at the Au(111)|aqueous solution interface. Similar to other nucleic acid components, cytidine 5'-monophosphate is chemisorbed on the surface at positive potentials, and the amount of adsorbed CMP increases with the potential. Subtractively normalized interfacial Fourier-transform infrared spectroscopy (SNIFTIRS) is used to identify the adsorbed and desorbed species. Upon electrochemical desorption, the molecules released in solution are unprotonated on the N3 atom. Striking similarities are found between the spectrum of adsorbed CMP and the solution spectrum of protonated CMP. The origin of such similarities is discussed. The results strongly suggest that chemisorption occurs through the N3 atom of the pyrimidine ring. A comparison is drawn with cytidine, whose electrochemical and spectroscopic behaviors are also investigated.

  9. Ultrafast fingerprint indexing for embedded systems

    NASA Astrophysics Data System (ADS)

    Zhou, Ru; Sin, Sang Woo; Li, Dongju; Isshiki, Tsuyoshi; Kunieda, Hiroaki

    2011-10-01

    A novel core-based fingerprint indexing scheme for embedded systems is presented in this paper. Our approach is enabled by our new precise and fast core-detection algorithm with the direction map. It introduces the feature of CMP (core minutiae pair), which describes the coordinates of minutiae and the direction of ridges associated with the minutiae based on the uniquely defined core coordinates. Since each CMP is identical against the shift and rotation of the fingerprint image, the CMP comparison between a template and an input image can be performed without any alignment. The proposed indexing algorithm based on CMP is suitable for embedded systems because the tremendous speed up and the memory reduction are achieved. In fact, the experiments with the fingerprint database FVC2002 show that its speed for the identifications becomes about 40 times faster than conventional approaches, even though the database includes fingerprints with no core.

  10. The Effect of Postpartum Depression and Current Mental Health Problems of the Mother on Child Behaviour at Eight Years.

    PubMed

    Closa-Monasterolo, R; Gispert-Llaurado, M; Canals, J; Luque, V; Zaragoza-Jordana, M; Koletzko, B; Grote, V; Weber, M; Gruszfeld, D; Szott, K; Verduci, E; ReDionigi, A; Hoyos, J; Brasselle, G; Escribano Subías, J

    2017-07-01

    Background Maternal postpartum depression (PPD) could affect children's emotional development, increasing later risk of child psychological problems. The aim of our study was to assess the association between child's emotional and behavioural problems and mother's PPD, considering maternal current mental health problems (CMP). Methods This is a secondary analysis from the EU-Childhood Obesity Project (NCT00338689). Women completed the Edinburgh Postnatal Depression Scale (EPDS) at, 2, 3 and 6 months after delivery and the General Health Questionnaire (GHQ-12) to assess CMP once the children reached the age of 8 years. EPDS scores > 10 were defined as PPD and GHQ-12 scores > 2 were defined as CMP. The psychological problems of the children at the age of eight were collected by mothers through the Child's Behaviour Checklist (CBCL). Results 473, 474 and 459 mothers filled in GHQ-12 and CBCL tests at 8 years and EPDS at 2, 3 and 6 months, respectively. Anxiety and depression was significantly increased by maternal EPDS. Children whose mothers had both PPD and CMP exhibited the highest levels of psychological problems, followed by those whose mothers who had only CMP and only PPD. PPD and CMP had a significant effect on child's total psychological problems (p = 0.033, p < 0.001, respectively). Children whose mothers had PPD did not differ from children whose mothers did not have any depression. Conclusions Maternal postpartum depression and current mental health problems, separately and synergistically, increase children's psychological problems at 8 years.

  11. Critical Behavior of Transport and Mechanical Properties in Particulate Dispersions and Granular Media

    DTIC Science & Technology

    1988-07-29

    ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION University of Southern 1 (i aplicable ) It California I J R 6c. ADDRESS (City, State...Materials Based on the Theory of "Compound Mobilized Planes" (CMP) and "Spatial Mobilized Planes" (SMP), in Vol. II of Advances in the Mechanics and the Flow...of Disordered and Reinforced Materials", M. S. Thesis , M. D. Stephens, Department of Chemical Engineering, May 1988, , 13 UNIVERSITY OF SOUTHERN

  12. X-ray characterization techniques for the assessment of surface damage in crystalline wafers: A model study in AlN

    NASA Astrophysics Data System (ADS)

    Bobea, M.; Tweedie, J.; Bryan, I.; Bryan, Z.; Rice, A.; Dalmau, R.; Xie, J.; Collazo, R.; Sitar, Z.

    2013-03-01

    A high-resolution X-ray diffraction method with enhanced surface sensitivity has been used to investigate the effects of various polishing steps on the near-surface region of single crystal substrates. The method involves the study of a highly asymmetric reflection, observable under grazing incidence conditions. Analysis of rocking curve measurements and reciprocal space maps (RSMs) revealed subtle structural differences between the polished substrates. For aluminum nitride wafers, damage induced from diamond sawing and mechanical polishing was readily identifiable by on-axis rocking curves, but this method was unable to distinguish between sample surfaces subjected to various degrees of chemical mechanical polishing (CMP). To characterize sufficiently these surfaces, (10.3) RSMs were measured to provide both qualitative and quantitative information about the near-surface region. Two features present in the RSMs were utilized to quantitatively assess the polished wafers: the magnitude of the diffuse scatter in the omega-scans and the elongation of the crystal truncation rod. The method is able to distinguish between different degrees of CMP surface preparation and provides metrics to quantify subsurface damage after this polishing step.

  13. Preparation of chitosan/MCM-41-PAA nanocomposites and the adsorption behaviour of Hg(II) ions

    NASA Astrophysics Data System (ADS)

    Fu, Yong; Huang, Yue; Hu, Jianshe

    2018-03-01

    A novel functional hybrid mesoporous composite material (CMP) based on chitosan and MCM-41-PAA was reported and its application as an excellent adsorbent for Hg(II) ions was also investigated. Innovatively, MCM-41-PAA was prepared by using diatomite and polyacrylic acid (PAA) with integrated polymer-silica hybrid frameworks, and then CMP was fabricated by introducing MCM-41-PAA to chitosan using glutaraldehyde as a cross-linking agent. The structure and morphology of CMP were characterized by X-ray diffraction, Fourier transform infrared spectra, thermogravimetric analysis, scanning electron microscopy and Brunauer-Emmett-Teller measurements. The results showed that the CMP possessed multifunctional groups such as -OH, -COOH and -NH2 with large specific surface area. Adsorption behaviour of Hg(II) ions onto CMP was fitted better by the pseudo-second-order kinetic model and the Langmuir model when the initial Hg(II) concentration, pH, adsorption temperature and time were 200 mg l-1, 4, 298 K and 120 min, respectively, as the optimum conditions. The corresponding maximum adsorption capacity could reach 164 mg g-1. According to the thermodynamic parameters determined such as free energy, enthalpy and entropy, the adsorption process of Hg(II) ions was spontaneous endothermic adsorption.

  14. Deoxycytidine and deoxythymidine treatment for thymidine kinase 2 deficiency

    PubMed Central

    Lopez-Gomez, Carlos; Levy, Rebecca J; Sanchez-Quintero, Maria J; Juanola-Falgarona, Marti; Barca, Emanuele; Garcia-Diaz, Beatriz; Tadesse, Saba; Garone, Caterina; Hirano, Michio

    2017-01-01

    Objective Thymidine kinase 2 (TK2), a critical enzyme in the mitochondrial pyrimidine salvage pathway, is essential for mitochondrial DNA (mtDNA) maintenance. Mutations in the nuclear gene TK2 cause TK2 deficiency, which manifests predominantly in children as myopathy with mtDNA depletion. Molecular bypass therapy with the TK2 products, dCMP and dTMP, prolongs the lifespan of Tk2-deficient (Tk2-/-) mice by 2-3 fold. Because we observed rapid catabolism of the deoxynucleoside monophosphates to deoxythymidine (dT) and deoxycytidine (dC), we hypothesized that: 1) deoxynucleosides might be the major active agents and 2) inhibition of deoxycytidine deamination might enhance dTMP+dCMP therapy. Methods To test these hypotheses, we assessed two therapies in Tk2-/- mice: 1) dT+dC and 2) co-administration of the deaminase inhibitor, tetrahydrouridine (THU), with dTMP+dCMP. Results We observed that dC+dT delayed disease onset, prolonged lifespan of Tk2-deficient mice, and restored mtDNA copy number as well as respiratory chain enzyme activities and levels. In contrast, dCMP+dTMP+THU therapy decreased lifespan of Tk2-/- animals compared to dCMP+dTMP. Interpretation Our studies demonstrate that deoxynucleoside substrate enhancement is a novel therapy, which may ameliorate TK2 deficiency in patients. PMID:28318037

  15. Preparation of chitosan/MCM-41-PAA nanocomposites and the adsorption behaviour of Hg(II) ions

    PubMed Central

    Fu, Yong; Huang, Yue; Hu, Jianshe

    2018-01-01

    A novel functional hybrid mesoporous composite material (CMP) based on chitosan and MCM-41-PAA was reported and its application as an excellent adsorbent for Hg(II) ions was also investigated. Innovatively, MCM-41-PAA was prepared by using diatomite and polyacrylic acid (PAA) with integrated polymer–silica hybrid frameworks, and then CMP was fabricated by introducing MCM-41-PAA to chitosan using glutaraldehyde as a cross-linking agent. The structure and morphology of CMP were characterized by X-ray diffraction, Fourier transform infrared spectra, thermogravimetric analysis, scanning electron microscopy and Brunauer–Emmett–Teller measurements. The results showed that the CMP possessed multifunctional groups such as –OH, –COOH and –NH2 with large specific surface area. Adsorption behaviour of Hg(II) ions onto CMP was fitted better by the pseudo-second-order kinetic model and the Langmuir model when the initial Hg(II) concentration, pH, adsorption temperature and time were 200 mg l−1, 4, 298 K and 120 min, respectively, as the optimum conditions. The corresponding maximum adsorption capacity could reach 164 mg g−1. According to the thermodynamic parameters determined such as free energy, enthalpy and entropy, the adsorption process of Hg(II) ions was spontaneous endothermic adsorption. PMID:29657793

  16. Creating a Community to Strengthen the Broader Impacts of Condensed Matter Physics Research

    NASA Astrophysics Data System (ADS)

    Adenwalla, Shireen; Bosley, Jocelyn; Voth, Gregory; Smith, Leigh

    The Broader Impacts (BI) merit criteria set out by the National Science Foundation are essential for building the public support necessary for science to flourish. Condensed matter physicists (CMP) have made transformative impacts on our society, but these are often invisible to the public. Communicating the societal benefits of our research can be challenging, because CMP consists of many independent research groups for whom effective engagement in the public arena is not necessarily a forte. Other BI activities, such as engaging K-12 students and teachers to increase scientific literacy and strengthen the STEM workforce, may be very effective, but these are often isolated and short in duration. To increase the visibility of CMP and to make the implementation of BI activities more efficient, we have created a website with two sides: a public side to communicate to a broad audience exciting scientific discoveries in CMP and the technologies they enable, and a private side for condensed matter researchers to communicate with one another about effective broader impact activities. Here we discuss the content of the new website, and the best practices we have identified for communicating the excitement of CMP research to the broadest possible audience. Nsf-DMR 1550737, 1550724 and 1550681.

  17. The Highly Robust Electrical Interconnects and Ultrasensitive Biosensors Based on Embedded Carbon Nanotube Arrays

    NASA Technical Reports Server (NTRS)

    Li, Jun; Cassell, Alan; Koehne, Jessica; Chen, Hua; Ng, Hou Tee; Ye, Qi; Stevens, Ramsey; Han, Jie; Meyyappan, M.

    2003-01-01

    We report on our recent breakthroughs in two different applications using well-aligned carbon nanotube (CNT) arrays on Si chips, including (1) a novel processing solution for highly robust electrical interconnects in integrated circuit manufacturing, and (2) the development of ultrasensitive electrochemical DNA sensors. Both of them rely on the invention of a bottom-up fabrication scheme which includes six steps, including: (a) lithographic patterning, (b) depositing bottom conducting contacts, (c) depositing metal catalysts, (d) CNT growth by plasma enhanced chemical vapor deposition (PECVD), (e) dielectric gap-filling, and (f) chemical mechanical polishing (CMP). Such processes produce a stable planarized surface with only the open end of CNTs exposed, whch can be further processed or modified for different applications. By depositing patterned top contacts, the CNT can serve as vertical interconnects between the two conducting layers. This method is fundamentally different fiom current damascene processes and avoids problems associated with etching and filling of high aspect ratio holes at nanoscales. In addition, multiwalled CNTs (MWCNTs) are highly robust and can carry a current density of 10(exp 9) A/square centimeters without degradation. It has great potential to help extending the current Si technology. The embedded MWCNT array without the top contact layer can be also used as a nanoelectrode array in electrochemical biosensors. The cell time-constant and sensitivity can be dramatically improved. By functionalizing the tube ends with specific oligonucleotide probes, specific DNA targets can be detected with electrochemical methods down to subattomoles.

  18. Total circulating microparticle levels are increased in patients with deep infiltrating endometriosis.

    PubMed

    Munrós, J; Martínez-Zamora, M A; Tàssies, D; Coloma, J L; Torrente, M A; Reverter, J C; Carmona, F; Balasch, J

    2017-02-01

    Are the levels of total circulating cell-derived microparticles (cMPs) and circulating tissue factor-containing microparticles (cMP-TF) increased in patients with endometriosis? The levels of total cMP, but not cMP-TF, were higher in patients with endometriosis, and these were attributed to higher levels in patients with deep infiltrating endometriosis (DIE). Previous studies have reported elevated levels of total cMP in inflammatory conditions as well as higher levels of other inflammatory biomarkers in endometriosis. Increased expression of tissue factor (a transmembrane receptor for Factor VII/VIIa) in eutopic and ectopic endometrium from patients with endometriosis has been described. There is no previous data regarding total cMP and cMP-TF levels in patients with endometriosis. A prospective case-control study including two groups of patients was carried out. The E group included 65 patients with surgically confirmed endometriosis (37 with DIE lesions) and the C group comprises 33 women without surgical findings of any form of endometriosis. Patients and controls were recruited during the same 10-month period. Controls were the next patient without endometriosis undergoing surgery, after including two patients with endometriosis. Venous blood samples for total cMP and cMP-TF determinations were obtained at the time of surgery, before anesthesia at a tertiary care center. To assess total cMP, an ELISA functional assay was used and cMP-TF activity in plasma was measured using an ELISA kit. Total cMP levels in plasma were higher in the E group compared with the C group (P < 0.0001). The subanalysis of endometriosis patients with DIE or with ovarian endometriomas without DIE showed that total cMP levels were higher in the DIE group (P = 0.001). There were no statistically significant differences in cMP-TF levels among the groups analyzed. This is a preliminary study in which the sample size was arbitrarily decided, albeit in keeping with previous studies analyzing cMP in other inflammatory diseases and other biomarkers in endometriosis. The control group included patients with other pathologies as well as healthy controls, and blood samples were taken at different phases of the cycle. Elevated total cMP levels in DIE patients may reflect an inflammatory and/or procoagulant systemic status in these patients. Further studies are warranted to confirm our findings and to assess the role of cMP levels in the pathophysiology of DIE. This study was supported in part by a grant from FIS-PI11/01560 and FIS-PI11/00977 within the 'Plan Nacional de I + D + I' and co-funded by the 'ISCIII-Subdirección General de Evaluación' and 'Fondo Europeo de Desarrollo Regional (FEDER)' and by the grant 'Premi Fi de Residència Emili Letang 2015' from the Hospital Clínic of Barcelona. The authors have no competing interests to disclose. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Updating and improving methodology for prioritizing highway project locations on the strategic intermodal system (SIS).

    DOT National Transportation Integrated Search

    2016-04-01

    The Florida Department of Transportation (FDOT) District One developed the Congestion Management Process : (CMP) system to prioritize low-cost, near-term highway improvements on the Strategic Intermodal System (SIS). : The existing CMP system is desi...

  20. Investigation of the Relationship between Anterior Knee Pain and Chondromalacia Patellae and Patellofemoral Malalignment.

    PubMed

    Aysin, Idil Kurut; Askin, Ayhan; Mete, Berna Dirim; Guvendi, Ece; Aysin, Murat; Kocyigit, Hikmet

    2018-02-01

    The study aimed to investigate whether there is any association of anterior knee pain and knee function with chondromalacia stage and patellofemoral alignment in patients with anterior knee pain for over a month and with chondromalacia patellae (CMP) detected by magnetic resonance imaging (MRI). We reviewed the medical records of 38 patients who underwent a knee MRI examination and were diagnosed with chondromalacia based on the MRI. Knee MRI images were evaluated by a radiologist for chondromalacia staging. Patients were divided into two groups as early stage (stage 1-2) and advanced stage (stage 3-4) chondromalacia. Patients' demographical data (age, sex, and occupation), clinical features, physical examination findings and patellofemoral pain severity scale, kujala patellofemoral scoring system, and functional index questionnaire scores were obtained from their medical records. Trochlear sulcus angle, sulcus depth, lateral patellofemoral angle, patellar translation, and Insall-Salvati index were measured using the MRI images. The mean patient age was higher in the advanced stage CMP group compared to the early stage CMP group (p=0.038). There was no statistically significant difference regarding other demographical data (p>0.05). MRI measurement parameters did not show difference between the groups (p>0.05). Patients in the advanced stage CMP group had higher patellofemoral pain severity score, lower kujala patellofemoral score, and lower functional index questionnaire score compared to the early stage CMP group. The differences were statistically significant (p=0.008, p=0.012, and p=0.026, respectively). As chondromalacia stage advances, the symptom severity worsens and knee functions decline; however, MRI measurements do not show difference between early and advanced stage CMP patients.

  1. Investigation of the Relationship between Anterior Knee Pain and Chondromalacia Patellae and Patellofemoral Malalignment

    PubMed Central

    Aysin, Idil Kurut; Askin, Ayhan; Mete, Berna Dirim; Guvendi, Ece; Aysin, Murat; Kocyigit, Hikmet

    2018-01-01

    Objective: The study aimed to investigate whether there is any association of anterior knee pain and knee function with chondromalacia stage and patellofemoral alignment in patients with anterior knee pain for over a month and with chondromalacia patellae (CMP) detected by magnetic resonance imaging (MRI). Materials and Methods: We reviewed the medical records of 38 patients who underwent a knee MRI examination and were diagnosed with chondromalacia based on the MRI. Knee MRI images were evaluated by a radiologist for chondromalacia staging. Patients were divided into two groups as early stage (stage 1–2) and advanced stage (stage 3–4) chondromalacia. Patients’ demographical data (age, sex, and occupation), clinical features, physical examination findings and patellofemoral pain severity scale, kujala patellofemoral scoring system, and functional index questionnaire scores were obtained from their medical records. Trochlear sulcus angle, sulcus depth, lateral patellofemoral angle, patellar translation, and Insall–Salvati index were measured using the MRI images. Results: The mean patient age was higher in the advanced stage CMP group compared to the early stage CMP group (p=0.038). There was no statistically significant difference regarding other demographical data (p>0.05). MRI measurement parameters did not show difference between the groups (p>0.05). Patients in the advanced stage CMP group had higher patellofemoral pain severity score, lower kujala patellofemoral score, and lower functional index questionnaire score compared to the early stage CMP group. The differences were statistically significant (p=0.008, p=0.012, and p=0.026, respectively). Conclusion: As chondromalacia stage advances, the symptom severity worsens and knee functions decline; however, MRI measurements do not show difference between early and advanced stage CMP patients. PMID:29531488

  2. Ready-to-use pre-filled syringes of atropine for anaesthesia care in French hospitals - a budget impact analysis.

    PubMed

    Benhamou, Dan; Piriou, Vincent; De Vaumas, Cyrille; Albaladejo, Pierre; Malinovsky, Jean-Marc; Doz, Marianne; Lafuma, Antoine; Bouaziz, Hervé

    2017-04-01

    Patient safety is improved by the use of labelled, ready-to-use, pre-filled syringes (PFS) when compared to conventional methods of syringe preparation (CMP) of the same product from an ampoule. However, the PFS presentation costs more than the CMP presentation. To estimate the budget impact for French hospitals of switching from atropine in ampoules to atropine PFS for anaesthesia care. A model was constructed to simulate the financial consequences of the use of atropine PFS in operating theatres, taking into account wastage and medication errors. The model tested different scenarios and a sensitivity analysis was performed. In a reference scenario, the systematic use of atropine PFS rather than atropine CMP yielded a net one-year budget saving of €5,255,304. Medication errors outweighed other cost factors relating to the use of atropine CMP (€9,425,448). Avoidance of wastage in the case of atropine CMP (prepared and unused) was a major source of savings (€1,167,323). Significant savings were made by means of other scenarios examined. The sensitivity analysis suggests that the results obtained are robust and stable for a range of parameter estimates and assumptions. The financial model was based on data obtained from the literature and expert opinions. The budget impact analysis shows that even though atropine PFS is more expensive than atropine CMP, its use would lead to significant cost savings. Savings would mainly be due to fewer medication errors and their associated consequences and the absence of wastage when atropine syringes are prepared in advance. Copyright © 2016 Société française d'anesthésie et de réanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.

  3. Inhibition of DNA replication in Saccharomyces cerevisiae by araCMP.

    PubMed

    McIntosh, E M; Kunz, B A; Haynes, R H

    1986-01-01

    Cytosine arabinoside (araC), a potent inhibitor of DNA replication in mammalian cells, was found to be completely ineffective in Saccharomyces cerevisiae. The 5' monophosphate derivative, araCMP, is toxic and effectively inhibits both nuclear and mitochondrial DNA synthesis in this organism. Although wild-type strains can be inhibited by araCMP, dTMP permeable (tup-) strains were found to be much more sensitive to the analogue. In vivo labelling experiments indicate that araC enters yeast cells; however, it is extensively catabolized by deamination and breakage of the glycosidic bond. In addition, the analogue is not efficiently phosphorylated in S. cerevisiae owing to an apparent lack of deoxynucleoside kinase activity. These results provide further evidence that deoxyribonucleotides can be synthesized only through de novo pathways in this organism. Finally, araCMP was found to be recombinagenic in S. cerevisiae which suggests, together with other previous studies, that, in general, inhibition of DNA synthesis in yeast promotes mitotic recombination events.

  4. The influence of soil organic matter chemistry and site/soil properties in predicting the decomposability of tundra soils

    NASA Astrophysics Data System (ADS)

    Matamala, R.; Jastrow, J. D.; Fan, Z.; Liang, C.; Calderon, F.; Michaelson, G.; Mishra, U.; Ping, C. L.

    2017-12-01

    With the increase in high latitude warming, there is a need to better understand the potential vulnerability of soil organic matter (SOM) stored in Arctic regions. In this study, we used mid infrared spectroscopy (MidIR) to determine the influence of soil chemistry and site properties in the short-term mineralization potential of SOM stored in tundra soils. Soils from the active and permafrost layers were collected from four tundra sites on the Coastal Plain, and Arctic Foothills of the North Slope of Alaska and were incubated for 60 days at a range of temperatures. Site and soil properties including acidic versus non-acidic tundra, lowland versus upland areas, total soil organic carbon (TOC) and total nitrogen (TN) concentrations, 60-day carbon mineralization potential (CMP), MidIR spectra and the chemical composition of the SOM stored in these soils were determined. Partial least squares (PLS) models for CMP versus MidIR spectra were produced upon splitting the dataset into site and soil properties categories. We found that SOM composition determined by MidIR spectroscopy was most effective in predicting CMP for tundra soils and it was most relevant for the active-layer mineral and upper permafrost soil horizons and/or soils with C concentrations of 10% or lower. Analysis of the factor loadings and standardized beta coefficients from the CMP PLS models indicated that spectral bands associated with clay contents, phenolic OH, aliphatic, silicates, carboxylic acids, and polysaccharides were influential for lower TOC soils, but these bands were less important for higher TOC soils. High TOC soils were influenced by a combination of other factors. Our results suggest that different factors affect the short-term CMP of SOM in tundra soils depending on the amount of TOC present. We show MidIR as a powerful tool for quickly and reasonably estimating the short-term CMP of tundra soils. Widespread application of MidIR measurements to already collected and archived tundra region soils could provide a quick and reliable assessment of the CMP of these soils, reduce the need for incubation studies, and contribute to upscaling and model benchmarking of SOM mineralization of tundra soils.

  5. Mobility and Position Error Analysis of a Complex Planar Mechanism with Redundant Constraints

    NASA Astrophysics Data System (ADS)

    Sun, Qipeng; Li, Gangyan

    2018-03-01

    Nowadays mechanisms with redundant constraints have been created and attracted much attention for their merits. The mechanism of the redundant constraints in a mechanical system is analyzed in this paper. A analysis method of Planar Linkage with a repetitive structure is proposed to get the number and type of constraints. According to the difference of applications and constraint characteristics, the redundant constraints are divided into the theoretical planar redundant constraints and the space-planar redundant constraints. And the calculation formula for the number of redundant constraints and type of judging method are carried out. And a complex mechanism with redundant constraints is analyzed of the influence about redundant constraints on mechanical performance. With the combination of theoretical derivation and simulation research, a mechanism analysis method is put forward about the position error of complex mechanism with redundant constraints. It points out the direction on how to eliminate or reduce the influence of redundant constraints.

  6. Connected Mathematics Project (CMP). What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2010

    2010-01-01

    The "Connected Mathematics Project" ("CMP") is a mathematics curriculum designed for students in grades 6-8. Each grade level of the curriculum is a full-year program and covers numbers, algebra, geometry/measurement, probability, and statistics. The curriculum uses an investigative approach, and students utilize interactive…

  7. Deoxycytidine and Deoxythymidine Treatment for Thymidine Kinase 2 Deficiency.

    PubMed

    Lopez-Gomez, Carlos; Levy, Rebecca J; Sanchez-Quintero, Maria J; Juanola-Falgarona, Martí; Barca, Emanuele; Garcia-Diaz, Beatriz; Tadesse, Saba; Garone, Caterina; Hirano, Michio

    2017-05-01

    Thymidine kinase 2 (TK2), a critical enzyme in the mitochondrial pyrimidine salvage pathway, is essential for mitochondrial DNA (mtDNA) maintenance. Mutations in the nuclear gene, TK2, cause TK2 deficiency, which manifests predominantly in children as myopathy with mtDNA depletion. Molecular bypass therapy with the TK2 products, deoxycytidine monophosphate (dCMP) and deoxythymidine monophosphate (dTMP), prolongs the life span of Tk2-deficient (Tk2 -/- ) mice by 2- to 3-fold. Because we observed rapid catabolism of the deoxynucleoside monophosphates to deoxythymidine (dT) and deoxycytidine (dC), we hypothesized that: (1) deoxynucleosides might be the major active agents and (2) inhibition of deoxycytidine deamination might enhance dTMP+dCMP therapy. To test these hypotheses, we assessed two therapies in Tk2 -/- mice: (1) dT+dC and (2) coadministration of the deaminase inhibitor, tetrahydrouridine (THU), with dTMP+dCMP. We observed that dC+dT delayed disease onset, prolonged life span of Tk2-deficient mice and restored mtDNA copy number as well as respiratory chain enzyme activities and levels. In contrast, dCMP+dTMP+THU therapy decreased life span of Tk2 -/- animals compared to dCMP+dTMP. Our studies demonstrate that deoxynucleoside substrate enhancement is a novel therapy, which may ameliorate TK2 deficiency in patients. Ann Neurol 2017;81:641-652. © 2017 American Neurological Association.

  8. Increased circulating cell-derived microparticle count is associated with recurrent implantation failure after IVF and embryo transfer.

    PubMed

    Martínez-Zamora, M Angeles; Tàssies, Dolors; Reverter, Juan Carlos; Creus, Montserrat; Casals, Gemma; Cívico, Salvadora; Carmona, Francisco; Balasch, Juan

    2016-08-01

    Cell-derived microparticles (cMPs) are small membrane vesicles that are released from many different cell types in response to cellular activation or apoptosis. Elevated cMP counts have been found in almost all thrombotic diseases and pregnancy wastage, such as recurrent spontaneous abortion and in a number of conditions associated with inflammation, cellular activation and angiogenesis. cMP count was investigated in patients experiencing unexplained recurrent implantation failure (RIF). The study group was composed of 30 women diagnosed with RIF (RIF group). The first control group (IVF group) (n = 30) comprised patients undergoing a first successful IVF cycle. The second control group (FER group) included 30 healthy women who had at least one child born at term and no history of infertility or obstetric complications. cMP count was significantly higher in the RIF group compared with the IVF and FER groups (P < 0.05 and P < 0.01, respectively) (RIF group: 15.8 ± 6.2 nM phosphatidylserine equivalent [PS eq]; IVF group: 10.9 ± 5.3 nM PS eq; FER group: 9.6 ± 4.0 nM PS eq). No statistical difference was found in cMP count between the IVF and FER groups. Increased cMP count is, therefore, associated with RIF after IVF and embryo transfer. Copyright © 2016. Published by Elsevier Ltd.

  9. Validity of Self-Reported Concentration and Memory Problems: Relationship with Neuropsychological Assessment and Depression

    EPA Science Inventory

    Background: This study investigated the validity of self-reported concentration and memory problems (CMP) in residents environmentally exposed to manganese (Mn). Method: Self-report of CMP from a health questionnaire (HQ) and the Symptoms Checklist-90-Revised (SCL-90-R) was com...

  10. Interim Action Proposed Plan for the Chemicals, Metals, and Pesticides (CMP) Pits Operable Unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, J.

    2002-06-18

    The purpose of this Interim Action Proposed Plan (IAPP) is to describe the preferred interim remedial action for addressing the Chemicals, Metals, and Pesticides (CMP) Pits Operable Unit and to provide an opportunity for public input into the remedial action selection process.

  11. Incorporating Nondrug Social & Recreational Activities in Outpatient Chemical Dependency Treatment

    ERIC Educational Resources Information Center

    Siporin, Sheldon; Baron, Lisa

    2012-01-01

    "Contingency Management programs (CMP) and non-drug social and recreational activities (NDSRA) are interventions premised on behavior theory that rely on external sources of reinforcement alternative to drug-based forms to decrease drug use. CMP usually employs vouchers as reinforcement for negative toxicologies. Despite research support, CMP…

  12. 42 CFR 417.594 - Computation of adjusted community rate (ACR).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM (CONTINUED) HEALTH MAINTENANCE ORGANIZATIONS, COMPETITIVE... or CMP develops an aggregate premium for all its enrollees and weights the aggregate by the size of... groups are defined as employee groups or other bodies of subscribers that enroll in the HMO or CMP...

  13. 42 CFR 417.594 - Computation of adjusted community rate (ACR).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM (CONTINUED) HEALTH MAINTENANCE ORGANIZATIONS, COMPETITIVE... or CMP develops an aggregate premium for all its enrollees and weights the aggregate by the size of... groups are defined as employee groups or other bodies of subscribers that enroll in the HMO or CMP...

  14. 42 CFR 417.594 - Computation of adjusted community rate (ACR).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM (CONTINUED) HEALTH MAINTENANCE ORGANIZATIONS, COMPETITIVE... or CMP develops an aggregate premium for all its enrollees and weights the aggregate by the size of... groups are defined as employee groups or other bodies of subscribers that enroll in the HMO or CMP...

  15. 42 CFR 417.424 - Denial of enrollment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the criteria of § 417.422 if acceptance would— (1) Cause the number of enrollees who are Medicare or... become substantially nonrepresentative of the general population in the HMO's or CMP's geographic area... the enrollment of the HMO or CMP substantially nonrepresentative of the general population in the HMO...

  16. 42 CFR 417.424 - Denial of enrollment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the criteria of § 417.422 if acceptance would— (1) Cause the number of enrollees who are Medicare or... become substantially nonrepresentative of the general population in the HMO's or CMP's geographic area... the enrollment of the HMO or CMP substantially nonrepresentative of the general population in the HMO...

  17. 42 CFR 417.424 - Denial of enrollment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the criteria of § 417.422 if acceptance would— (1) Cause the number of enrollees who are Medicare or... become substantially nonrepresentative of the general population in the HMO's or CMP's geographic area... the enrollment of the HMO or CMP substantially nonrepresentative of the general population in the HMO...

  18. 42 CFR 417.458 - Recoupment of uncollected deductible and coinsurance amounts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM HEALTH MAINTENANCE ORGANIZATIONS... Medicare Contract § 417.458 Recoupment of uncollected deductible and coinsurance amounts. An HMO or CMP... previous contract period except in the following circumstances: (a) The HMO or CMP failed to collect the...

  19. 42 CFR 417.422 - Eligibility to enroll in an HMO or CMP.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SERVICES (CONTINUED) MEDICARE PROGRAM HEALTH MAINTENANCE ORGANIZATIONS, COMPETITIVE MEDICAL PLANS, AND HEALTH CARE PREPAYMENT PLANS Enrollment, Entitlement, and Disenrollment under Medicare Contract § 417.422... entered into a contract under subpart L of this part; (d) During an enrollment period of the HMO or CMP...

  20. Connected Mathematics Project (CMP). What Works Clearinghouse Intervention Report. Updated

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2017

    2017-01-01

    "Connected Mathematics Project" (CMP) is a math curriculum for students in grades 6-8. It uses interactive problems and everyday situations to explore mathematical ideas, with a goal of fostering a problem-centered, inquiry-based learning environment. At each grade level, the curriculum covers numbers, algebra, geometry/measurement,…

  1. 48 CFR 732.406-74 - Revocation of the LOC.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....406-74 Section 732.406-74 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL DEVELOPMENT GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Advance Payments 732.406-74 Revocation of the LOC. If during the term of the contract FM/CMP believes that the LOC should be revoked, FM/CMP may, after...

  2. 48 CFR 732.406-74 - Revocation of the LOC.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....406-74 Section 732.406-74 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL DEVELOPMENT GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Advance Payments 732.406-74 Revocation of the LOC. If during the term of the contract FM/CMP believes that the LOC should be revoked, FM/CMP may, after...

  3. 42 CFR 417.576 - Final settlement.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the HMO's or CMP's submission and CMS's review of an independently certified cost report and... that begin on or after January 1, 1996, the costs of hospital and SNF services paid by Medicare's intermediaries under the option provided by § 417.532(d). (ii) The HMO's or CMP's methods of apportioning cost...

  4. 42 CFR 417.576 - Final settlement.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the HMO's or CMP's submission and CMS's review of an independently certified cost report and... that begin on or after January 1, 1996, the costs of hospital and SNF services paid by Medicare's intermediaries under the option provided by § 417.532(d). (ii) The HMO's or CMP's methods of apportioning cost...

  5. Identification of cytidine 2',3'-cyclic monophosphate and uridine 2',3'-cyclic monophosphate in Pseudomonas fluorescens pfo-1 culture.

    PubMed

    Bordeleau, Emily; Oberc, Christopher; Ameen, Eve; da Silva, Amanda Mendes; Yan, Hongbin

    2014-09-15

    Cytidine 2',3'-cyclic monophosphate (2',3'-cCMP) and uridine 2',3'-cyclic monophosphate (2',3'-cUMP) were isolated from Pseudomonas fluorescens pfo-1 cell extracts by semi-preparative reverse phase HPLC. The structures of the two compounds were confirmed by NMR and mass spectroscopy against commercially available authentic samples. Concentrations of both intracellular and extracellular 2',3'-cCMP and 2',3'-cUMP were determined. Addition of 2',3'-cCMP and 2',3'-cUMP to P. fluorescens pfo-1 culture did not significantly affect the level of biofilm formation in static liquid cultures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. 42 CFR 417.544 - Physicians' services furnished directly by the HMO or CMP.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... attributable to salaries, wages, incentive payments, fringe benefits) must be distinguished from the cost of... 42 Public Health 3 2010-10-01 2010-10-01 false Physicians' services furnished directly by the HMO or CMP. 417.544 Section 417.544 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF...

  7. 75 FR 9864 - Fisheries of the Caribbean, Gulf of Mexico and South Atlantic; Comprehensive Ecosystem-Based...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ... Coastal Migratory Pelagic (CMP) Resources (CMP FMP); and the FMP for the Spiny Lobster Fishery of the Gulf... golden crab and deepwater shrimp fisheries while extending protection for deepwater coral ecosystems. CE-BA 1 would also amend the Coral, Shrimp, Coastal Migratory Pelagics, Golden Crab, Spiny Lobster...

  8. Clinicians' and Patients' Assessment of Activity Overuse and Underuse and Its Relation to Physical Capacity

    ERIC Educational Resources Information Center

    de Jong, Annemieke Bonny; Preuper, Henrica R. Schiphorst; Reneman, Michiel F.

    2012-01-01

    To explore clinicians' and patients' (self)-assessment of activity overuse and underuse, and its relationship with physical capacity in patients with chronic musculoskeletal pain (CMP). Study design was cross-sectional. Participants included patients with CMP, admitted to a multidisciplinary outpatient pain rehabilitation program. The main…

  9. 42 CFR 417.440 - Entitlement to health care services from an HMO or CMP.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM HEALTH MAINTENANCE ORGANIZATIONS, COMPETITIVE... Contract § 417.440 Entitlement to health care services from an HMO or CMP. (a) Basic rules. (1) Subject to... not converted to the risk portion of the contract, may enroll in a special supplemental plan, if...

  10. Medicare and State Health Care Programs: Fraud and Abuse; Revisions to the Office of Inspector General's Civil Monetary Penalty Rules. Final rule.

    PubMed

    2016-12-07

    This final rule amends the civil monetary penalty (CMP or penalty) rules of the Office of Inspector General to incorporate new CMP authorities, clarify existing authorities, and reorganize regulations on civil money penalties, assessments, and exclusions to improve readability and clarity.

  11. 42 CFR 417.558 - Emergency, urgently needed, and out-of-area services for which the HMO or CMP accepts...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... services for which the HMO or CMP accepts responsibility. 417.558 Section 417.558 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM HEALTH MAINTENANCE ORGANIZATIONS, COMPETITIVE MEDICAL PLANS, AND HEALTH CARE PREPAYMENT PLANS Medicare Payment: Cost...

  12. Ribonucleotide incorporation by human DNA polymerase η impacts translesion synthesis and RNase H2 activity

    PubMed Central

    Mentegari, Elisa; Crespan, Emmanuele; Bavagnoli, Laura; Kissova, Miroslava; Bertoletti, Federica; Sabbioneda, Simone; Imhof, Ralph; Sturla, Shana J.; Nilforoushan, Arman; Hübscher, Ulrich; van Loon, Barbara

    2017-01-01

    Abstract Ribonucleotides (rNs) incorporated in the genome by DNA polymerases (Pols) are removed by RNase H2. Cytidine and guanosine preferentially accumulate over the other rNs. Here we show that human Pol η can incorporate cytidine monophosphate (rCMP) opposite guanine, 8-oxo-7,8-dihydroguanine, 8-methyl-2΄-deoxyguanosine and a cisplatin intrastrand guanine crosslink (cis-PtGG), while it cannot bypass a 3-methylcytidine or an abasic site with rNs as substrates. Pol η is also capable of synthesizing polyribonucleotide chains, and its activity is enhanced by its auxiliary factor DNA Pol δ interacting protein 2 (PolDIP2). Human RNase H2 removes cytidine and guanosine less efficiently than the other rNs and incorporation of rCMP opposite DNA lesions further reduces the efficiency of RNase H2. Experiments with XP-V cell extracts indicate Pol η as the major basis of rCMP incorporation opposite cis-PtGG. These results suggest that translesion synthesis by Pol η can contribute to the accumulation of rCMP in the genome, particularly opposite modified guanines. PMID:27994034

  13. Two-dimensional cross correlation analysis of protein unfolding: Portrayal of the thermal denaturation of CMP kinases in the absence and presence of substrates

    NASA Astrophysics Data System (ADS)

    Schultz, Christian P.; Bârzu, Octavian; Mantsch, Henry H.

    2000-03-01

    The functional role of CMP kinases is to regenerate mono-phosphate nucleotides in cells by transferring phosphate residues from tri-phosphorylated nucleotides to monophosphorylated nucleotides. These enzymes possess two binding sites and maintain a highly conserved secondary structure. They are essential for cell survival. Herein we compare the infrared spectra of two similar, but not identical enzymes, the CMP kinases from Escherichia coli and Bacillus subtilis. A two-dimensional cross correlation analysis of the infrared spectra reveals differences in the denaturation behavior of the two proteins. Different secondary structure elements show different time-delayed or advanced unfolding events in the two enzymes. When bound to the active sites, the two nucleotide-substrates CMP and ATP exert a stabilizing effect on the structure of both proteins. The changes observed upon thermal denaturation are different for the two enzymes. Model 2D correlations are used to simulate the different denaturation of the two enzymes. Thermal denaturation and aggregation can be distinguished as two processes separated in time.

  14. The role of hydroxo-bridged dinuclear species and the influence of "innocent" buffers in the reactivity of cis-[Co(III)(cyclen)(H₂O)₂]³⁺ and [Co(III)(tren)(H₂O)₂]³⁺ complexes with biologically relevant ligands at physiological pH.

    PubMed

    Basallote, Manuel G; Martínez, Manuel; Vázquez, Marta

    2014-07-28

    In view of the relevance of the reactivity of inert tetraamine Co(III) complexes having two substitutionally active cis positions capable of interact with biologically relevant ligands, the study of the reaction of cis-[Co(cyclen)(H2O)2](3+) and [Co(tren)(H2O)2](3+) with chlorides, inorganic phosphate and 5'-CMP (5'-cytidinemonophosphate) has been pursued at physiological pH. The results indicate that, in addition to the actuation of the expected labilising conjugate-base mechanism, the formation of mono and inert bis hydroxo-bridged species is relevant for understanding their speciation and reactivity. The reactivity pattern observed also indicates the key role played by the "innocent" buffers frequently used in most in vitro studies, which can make the results unreliable in many cases. The differences between the reactivity of inorganic and biologically relevant phosphates has also been found to be remarkable, with outer-sphere hydrogen bonding interactions being a dominant factor for the process. While for the inorganic phosphate substitution process the formation of μ-η(2)-OPO2O represents the termination of the reactivity monitored, for 5'-CMP only the formation of η(1)-OPO3 species is observed, which evolve with time to the final dead-end bis hydroxo-bridged complexes. The promoted hydrolysis of the 5'-CMP phosphate has not been observed in any of the processes studied.

  15. Primary care physicians, acupuncture and chiropractic clinicians, and chronic pain patients: a qualitative analysis of communication and care coordination patterns.

    PubMed

    Penney, Lauren S; Ritenbaugh, Cheryl; Elder, Charles; Schneider, Jennifer; Deyo, Richard A; DeBar, Lynn L

    2016-01-25

    A variety of people, with multiple perspectives, make up the system comprising chronic musculoskeletal pain (CMP) treatment. While there are frequently problems in communication and coordination of care within conventional health systems, more opportunities for communicative disruptions seem possible when providers use different explanatory models and are not within the same health management system. We sought to describe the communication system surrounding the management of chronic pain from the perspectives of allopathic providers, acupuncture and chiropractor (A/C) providers, and CMP patients. We collected qualitative data from CMP patients (n = 90) and primary care physicians (PCPs) (n = 25) in a managed care system, and community acupuncture and chiropractic care providers (n = 14) who received high levels of referrals from the system, in the context of a longitudinal study of CMP patients' experience. Multiple points of divergence and communicative barriers were identified among the main stakeholders in the system. Those that were most frequently mentioned included issues surrounding the referral process (requesting, approving) and lack of consistent information flow back to providers that impairs overall management of patient care. We found that because of these problems, CMP patients were frequently tasked and sometimes overwhelmed with integrating and coordinating their own care, with little help from the system. Patients, PCPs, and A/C providers desire more communication; thus systems need to be created to facilitate more open communication which could positively benefit patient outcomes.

  16. Antibody-independent identification of bovine milk-derived peptides in breast-milk.

    PubMed

    Picariello, Gianluca; Addeo, Francesco; Ferranti, Pasquale; Nocerino, Rita; Paparo, Lorella; Passariello, Annalisa; Dallas, David C; Robinson, Randall C; Barile, Daniela; Canani, Roberto Berni

    2016-08-10

    Exclusively breast-fed infants can exhibit clear signs of IgE or non IgE-mediated cow's milk allergy. However, the definite characterization of dietary cow's milk proteins (CMP) that survive the maternal digestive tract to be absorbed into the bloodstream and secreted into breast milk remains missing. Herein, we aimed at assessing possible CMP-derived peptides in breast milk. Using high performance liquid chromatography (HPLC)-high resolution mass spectrometry (MS), we compared the peptide fraction of breast milk from 12 donors, among which 6 drank a cup of milk daily and 6 were on a strict dairy-free diet. We identified two bovine β-lactoglobulin (β-Lg, 2 out 6 samples) and one αs1-casein (1 out 6 samples) fragments in breast milk from mothers receiving a cup of bovine milk daily. These CMP-derived fragments, namely β-Lg (f42-54), (f42-57) and αs1-casein (f180-197), were absent in milk from mothers on dairy-free diet. In contrast, neither intact nor hydrolyzed β-Lg was detected by western blot and competitive ELISA in any breast milk sample. Eight additional bovine milk-derived peptides identified by software-assisted MS were most likely false positive. The results of this study demonstrate that CMP-derived peptides rather than intact CMP may sensitize or elicit allergic responses in the neonate through mother's milk. Immunologically active peptides from the maternal diet could be involved in priming the newborn's immune system, driving a tolerogenic response.

  17. Case mix, outcome and length of stay for admissions to adult, general critical care units in England, Wales and Northern Ireland: the Intensive Care National Audit & Research Centre Case Mix Programme Database

    PubMed Central

    2005-01-01

    Introduction The present paper describes the methods of data collection and validation employed in the Intensive Care National Audit & Research Centre Case Mix Programme (CMP), a national comparative audit of outcome for adult, critical care admissions. The paper also describes the case mix, outcome and activity of the admissions in the Case Mix Programme Database (CMPD). Methods The CMP collects data on consecutive admissions to adult, general critical care units in England, Wales and Northern Ireland. Explicit steps are taken to ensure the accuracy of the data, including use of a dataset specification, of initial and refresher training courses, and of local and central validation of submitted data for incomplete, illogical and inconsistent values. Criteria for evaluating clinical databases developed by the Directory of Clinical Databases were applied to the CMPD. The case mix, outcome and activity for all admissions were briefly summarised. Results The mean quality level achieved by the CMPD for the 10 Directory of Clinical Databases criteria was 3.4 (on a scale of 1 = worst to 4 = best). The CMPD contained validated data on 129,647 admissions to 128 units. The median age was 63 years, and 59% were male. The mean Acute Physiology and Chronic Health Evaluation II score was 16.5. Mortality was 20.3% in the CMP unit and was 30.8% at ultimate discharge from hospital. Nonsurvivors stayed longer in intensive care than did survivors (median 2.0 days versus 1.7 days in the CMP unit) but had a shorter total hospital length of stay (9 days versus 16 days). Results for the CMPD were comparable with results from other published reports of UK critical care admissions. Conclusions The CMP uses rigorous methods to ensure data are complete, valid and reliable. The CMP scores well against published criteria for high-quality clinical databases.

  18. Case mix, outcome and length of stay for admissions to adult, general critical care units in England, Wales and Northern Ireland: the Intensive Care National Audit & Research Centre Case Mix Programme Database

    PubMed Central

    Harrison, David A; Brady, Anthony R; Rowan, Kathy

    2004-01-01

    Introduction The present paper describes the methods of data collection and validation employed in the Intensive Care National Audit & Research Centre Case Mix Programme (CMP), a national comparative audit of outcome for adult, critical care admissions. The paper also describes the case mix, outcome and activity of the admissions in the Case Mix Programme Database (CMPD). Methods The CMP collects data on consecutive admissions to adult, general critical care units in England, Wales and Northern Ireland. Explicit steps are taken to ensure the accuracy of the data, including use of a dataset specification, of initial and refresher training courses, and of local and central validation of submitted data for incomplete, illogical and inconsistent values. Criteria for evaluating clinical databases developed by the Directory of Clinical Databases were applied to the CMPD. The case mix, outcome and activity for all admissions were briefly summarised. Results The mean quality level achieved by the CMPD for the 10 Directory of Clinical Databases criteria was 3.4 (on a scale of 1 = worst to 4 = best). The CMPD contained validated data on 129,647 admissions to 128 units. The median age was 63 years, and 59% were male. The mean Acute Physiology and Chronic Health Evaluation II score was 16.5. Mortality was 20.3% in the CMP unit and was 30.8% at ultimate discharge from hospital. Nonsurvivors stayed longer in intensive care than did survivors (median 2.0 days versus 1.7 days in the CMP unit) but had a shorter total hospital length of stay (9 days versus 16 days). Results for the CMPD were comparable with results from other published reports of UK critical care admissions. Conclusions The CMP uses rigorous methods to ensure data are complete, valid and reliable. The CMP scores well against published criteria for high-quality clinical databases. PMID:15025784

  19. Immunochemical characterization of Glycine max L. Merr. var Raiden, as a possible hypoallergenic substitute for cow's milk-allergic patients.

    PubMed

    Curciarello, R; Lareu, J F; Fossati, C A; Docena, G H; Petruccelli, S

    2008-09-01

    Cows' milk allergy (CMA) is the most common cause of food allergy in infancy. The only proven treatment is the complete elimination of cows' milk proteins (CMPs) from the diet by means of hypoallergenic formulas. Soybean-based formulae are widely used although intolerance to soy has been reported to occur in 15-40% of infants with CMA. The aim of this work was to analyse the in vitro reactivity of the soybean cultivar Raiden, which naturally lacks glycinin A(4)A(5)B(3), to evaluate whether this genotype could be a safe CMP substitute for CMA patients. The reactivity of conventional soybean (CS) and Raiden soybean (RS) genotypes and also recombinant glycinin A(4)A(5)B(3) and alphabeta-conglycinin with casein-specific monoclonal antibodies and CMP-specific polyclonal serum was evaluated by immunoblotting and ELISA. A sequential competitive ELISA with the polyclonal antiserum and different soluble inhibitors was performed. In addition, an indirect ELISA with sera of atopic children with CMA was carried out to analyse the IgE-binding capacity of the different soybean components. We have shown that CS contains four components that cross-react with CMP, while RS has only one. The remaining cross-reactive component in RS was identified as alpha-subunit beta-conglycinin. By means of inhibitory ELISA, we demonstrated that CS, RS and the alpha-subunit beta-conglycinin extracts inhibited the binding of CMP-specific antibodies to the CMP-coated solid phase. Finally, we showed that CS, RS and the recombinant proteins were recognized by human CMP-specific IgE antibodies. This work shows that although Raiden has fewer cross-reactive components than conventional soybean, it still has a residual cross-reactive component: the alpha-subunit beta-conglycinin. This reactivity might make this genotype unsuitable to treat CMA and also explains adverse reactions to soybean in CMA infants.

  20. KDP Aqueous Solution-in-Oil Microemulsion for Ultra-Precision Chemical-Mechanical Polishing of KDP Crystal

    PubMed Central

    Dong, Hui; Wang, Lili; Gao, Wei; Li, Xiaoyuan; Wang, Chao; Ji, Fang; Pan, Jinlong; Wang, Baorui

    2017-01-01

    A novel functional KH2PO4 (KDP) aqueous solution-in-oil (KDP aq/O) microemulsion system for KDP crystal ultra-precision chemical-mechanical polishing (CMP) was prepared. The system, which consisted of decanol, Triton X-100, and KH2PO4 aqueous solution, was available at room temperature. The functional KDP aq/O microemulsion system was systematically studied and applied as polishing solution to KDP CMP technology. In this study, a controlled deliquescent mechanism was proposed for KDP polishing with the KDP aq/O microemulsion. KDP aqueous solution, the chemical etchant in the polishing process, was caged into the micelles in the microemulsion, leading to a limitation of the reaction between the KDP crystal and KDP aqueous solution only if the microemulsion was deformed under the effect of the external force. Based on the interface reaction dynamics, KDP aqueous solutions with different concentrations (cKDP) were applied to replace water in the traditional water-in-oil (W/O) microemulsion. The practicability of the controlled deliquescent mechanism was proved by the decreasing material removal rate (MRR) with the increasing of the cKDP. As a result, the corrosion pits on the KDP surface were avoided to some degree. Moreover, the roughnesses of KDP with KDP aq/O microemulsion (cKDP was changed from 10 mM to 100 mM) as polishing solutions were smaller than that with the W/O microemulsion. The smallest surface root-mean-square roughness of 1.5 nm was obtained at a 30 mmol/L KDP aq solution, because of the most appropriate deliquescent rate and MRR. PMID:28772632

  1. KDP Aqueous Solution-in-Oil Microemulsion for Ultra-Precision Chemical-Mechanical Polishing of KDP Crystal.

    PubMed

    Dong, Hui; Wang, Lili; Gao, Wei; Li, Xiaoyuan; Wang, Chao; Ji, Fang; Pan, Jinlong; Wang, Baorui

    2017-03-09

    A novel functional KH₂PO₄ (KDP) aqueous solution-in-oil (KDP aq/O) microemulsion system for KDP crystal ultra-precision chemical-mechanical polishing (CMP) was prepared. The system, which consisted of decanol, Triton X-100, and KH₂PO₄ aqueous solution, was available at room temperature. The functional KDP aq/O microemulsion system was systematically studied and applied as polishing solution to KDP CMP technology. In this study, a controlled deliquescent mechanism was proposed for KDP polishing with the KDP aq/O microemulsion. KDP aqueous solution, the chemical etchant in the polishing process, was caged into the micelles in the microemulsion, leading to a limitation of the reaction between the KDP crystal and KDP aqueous solution only if the microemulsion was deformed under the effect of the external force. Based on the interface reaction dynamics, KDP aqueous solutions with different concentrations ( c KDP ) were applied to replace water in the traditional water-in-oil (W/O) microemulsion. The practicability of the controlled deliquescent mechanism was proved by the decreasing material removal rate (MRR) with the increasing of the c KDP . As a result, the corrosion pits on the KDP surface were avoided to some degree. Moreover, the roughnesses of KDP with KDP aq/O microemulsion ( c KDP was changed from 10 mM to 100 mM) as polishing solutions were smaller than that with the W/O microemulsion. The smallest surface root-mean-square roughness of 1.5 nm was obtained at a 30 mmol/L KDP aq solution, because of the most appropriate deliquescent rate and MRR.

  2. Dynamic analysis of four bar planar mechanism extended to six-bar planar mechanism with variable topology

    NASA Astrophysics Data System (ADS)

    Belleri, Basayya K.; Kerur, Shravankumar B.

    2018-04-01

    A computer-oriented procedure for solving the dynamic force analysis problem for general planar mechanisms is presented. This paper provides position analysis, velocity analysis, acceleration analysis and force analysis of six bar mechanism with variable topology approach. Six bar mechanism is constructed by joining two simple four bar mechanisms. Initially the position, velocity and acceleration analysis of first four bar mechanism are determined by using the input parameters. The outputs (angular displacement, velocity and acceleration of rocker)of first four bar mechanism are used as input parameter for the second four bar mechanism and the position, velocity, acceleration and forces are analyzed. With out-put parameters of second four-bar mechanism the force analysis of first four-bar mechanism is carried out.

  3. 77 FR 68748 - Intent To Prepare a Draft Environmental Impact Statement and Feasibility Report for the Cano...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ... recreation and tourism, with minimal temporary negative impact on the ecosystem and the adjacent communities... public spaces for recreation and interaction between the communities, visitors and the CMP identified as... impoverished communities in San Juan, the CMP connects the San Juan Bay with the San Jose and Los Corozos...

  4. 75 FR 14548 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Comprehensive Ecosystem-Based...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ... the FMP for Coastal Migratory Pelagic (CMP) Resources (CMP FMP); and the FMP for the Spiny Lobster Fishery of the Gulf of Mexico and South Atlantic (Spiny Lobster FMP), as prepared and submitted by the... bottom habitats; dolphin and wahoo; golden crab; shrimp; spiny lobster; and snapper-grouper off the...

  5. 75 FR 35330 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Comprehensive Ecosystem-Based...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-22

    ... Migratory Pelagic (CMP) Resources (CMP FMP); and the FMP for the Spiny Lobster Fishery of the Gulf of Mexico and South Atlantic (Spiny Lobster FMP), as prepared and submitted by the South Atlantic and Gulf of...; shrimp; spiny lobster; and snapper-grouper off the southern Atlantic states are managed under their...

  6. Controlled mass pollination in loblolly pine to increase genetic gains

    Treesearch

    F.E. Bridgwater; D.L. Bramlett; T.D. Byram; W.J. Lowe

    1998-01-01

    Controlled mass pollination (CMP) is one way to increase genetic gains from traditional wind-pollinated seed orchards. Methodology is under development by several forestry companies in the southern USA. Costs of CMP depend on the efficient installation, pollination, and removal of inexpensive paper bags. Even in pilot-scale studies these costs seem reasonable. Net...

  7. Condensed Matter Physics at ONR - A Nanoelectronics Perspective

    NASA Astrophysics Data System (ADS)

    Baatar, Chagaan

    As a mission agency within the Department of Defense, the Office of Naval Research (ONR) currently does not have a program exclusively dedicated to condensed matter physics (CMP) research. Yet many CMP related topics are being funded under various programs scattered throughout the agency. In this talk I will provide an example of such a program - the ONR Nanoelectronics program, that I currently manage, and highlight some of the CMP related activities within the program. I may also mention a few topics that are funded by other ONR program officers. Finally, in addressing the theme of the session, I will describe the ONR Young Investigator Program (YIP) - its brief history, solicitation and evaluation processes involved, and provide a few examples from recent YIP projects.

  8. Minimum area requirements for an at-risk butterfly based on movement and demography.

    PubMed

    Brown, Leone M; Crone, Elizabeth E

    2016-02-01

    Determining the minimum area required to sustain populations has a long history in theoretical and conservation biology. Correlative approaches are often used to estimate minimum area requirements (MARs) based on relationships between area and the population size required for persistence or between species' traits and distribution patterns across landscapes. Mechanistic approaches to estimating MAR facilitate prediction across space and time but are few. We used a mechanistic MAR model to determine the critical minimum patch size (CMP) for the Baltimore checkerspot butterfly (Euphydryas phaeton), a locally abundant species in decline along its southern range, and sister to several federally listed species. Our CMP is based on principles of diffusion, where individuals in smaller patches encounter edges and leave with higher probability than those in larger patches, potentially before reproducing. We estimated a CMP for the Baltimore checkerspot of 0.7-1.5 ha, in accordance with trait-based MAR estimates. The diffusion rate on which we based this CMP was broadly similar when estimated at the landscape scale (comparing flight path vs. capture-mark-recapture data), and the estimated population growth rate was consistent with observed site trends. Our mechanistic approach to estimating MAR is appropriate for species whose movement follows a correlated random walk and may be useful where landscape-scale distributions are difficult to assess, but demographic and movement data are obtainable from a single site or the literature. Just as simple estimates of lambda are often used to assess population viability, the principles of diffusion and CMP could provide a starting place for estimating MAR for conservation. © 2015 Society for Conservation Biology.

  9. Redox-active triazatruxene-based conjugated microporous polymers for high-performance supercapacitors† †Electronic supplementary information (ESI) available: Synthetic procedures and characterization data for all new compounds; general experimental method; thermogravimetry curves; PXRD patterns; SEM and TEM images; XPS spectra. See DOI: 10.1039/c6sc05532j Click here for additional data file.

    PubMed Central

    Li, Xiang-Chun; Zhang, Yizhou; Wang, Chun-Yu; Wan, Yi

    2017-01-01

    Conjugated polymers (CPs) have been intensively explored for various optoelectronic applications in the last few decades. Nevertheless, CP based electrochemical energy storage devices such as supercapacitors remain largely unexplored. This is mainly owing to the low specific capacitance, poor structural/electrochemical stability, and low energy density of most existing CPs. In this contribution, a novel set of redox-active conjugated microporous polymers, TAT-CMP-1 and TAT-CMP-2, based on nitrogen-rich and highly conductive triazatruxene building blocks, were successfully designed and synthesized to explore their potential application as efficient and stable electrode materials for supercapacitors. Despite a moderate surface area of 88 m2 g–1 for TAT-CMP-1 and 106 m2 g–1 for TAT-CMP-2, exceptional specific capacitances of 141 F g–1 and 183 F g–1 were achieved at a current density of 1 A g–1. The resulting polymers exhibited unusually high areal specific capacitance (>160 μF cm–2), which is attributed to the pseudocapacitance resulting from redox-active structures with high nitrogen content. More importantly, the TAT-CMP-2 electrode exhibits excellent cycling stability: only 5% capacitance fading is observed after 10 000 cycles at a high current density of 10 A g–1, enabling the possible use of these materials as electrodes in electrochemical devices. PMID:28451362

  10. A prime-boost immunization regimen based on a simian adenovirus 36 vectored multi-stage malaria vaccine induces protective immunity in mice.

    PubMed

    Fonseca, Jairo A; McCaffery, Jessica N; Kashentseva, Elena; Singh, Balwan; Dmitriev, Igor P; Curiel, David T; Moreno, Alberto

    2017-05-31

    Malaria remains a considerable burden on public health. In 2015, the WHO estimates there were 212 million malaria cases causing nearly 429,000 deaths globally. A highly effective malaria vaccine is needed to reduce the burden of this disease. We have developed an experimental vaccine candidate (PyCMP) based on pre-erythrocytic (CSP) and erythrocytic (MSP1) stage antigens derived from the rodent malaria parasite P. yoelii. Our protein-based vaccine construct induces protective antibodies and CD4 + T cell responses. Based on evidence that viral vectors increase CD8 + T cell-mediated immunity, we also have tested heterologous prime-boost immunization regimens that included human adenovirus serotype 5 vector (Ad5), obtaining protective CD8 + T cell responses. While Ad5 is commonly used for vaccine studies, the high prevalence of pre-existing immunity to Ad5 severely compromises its utility. Here, we report the use of the novel simian adenovirus 36 (SAd36) as a candidate for a vectored malaria vaccine since this virus is not known to infect humans, and it is not neutralized by anti-Ad5 antibodies. Our study shows that the recombinant SAd36PyCMP can enhance specific CD8 + T cell response and elicit similar antibody titers when compared to an immunization regimen including the recombinant Ad5PyCMP. The robust immune responses induced by SAd36PyCMP are translated into a lower parasite load following P. yoelii infectious challenge when compared to mice immunized with Ad5PyCMP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Influence of apical enlargement and complementary canal preparation with the Self-Adjusting File on endotoxin reduction in retreatment cases.

    PubMed

    Silva, E J N L; Ferreira, V M; Silva, C C; Herrera, D R; De-Deus, G; Gomes, B P

    2017-07-01

    To compare the effectiveness of large apical preparations and complementary canal preparation with the Self-Adjusting File (SAF) in removing endotoxins from the root canal of teeth with apical periodontitis. Ten single-rooted and single-canaled teeth with post-treatment apical periodontitis were selected. Endotoxin samples were taken after removal of the root filling (S1), after chemomechanical preparation (CMP) using 2.5% NaOCl and an R25 file (S2), after CMP using 2.5% NaOCl and an R40 file (S3) and after complementary CMP using the SAF system (S4). Limulus amebocyte lysate (LAL) was used to measure endotoxin levels. The Friedman and Wilcoxon tests were used to compare endotoxin levels at each clinical intervention (P < 0.05). After root filling removal, endotoxin was detected in 100% of the root canals (S1, 4.84 EU mL -1 ). CMP with the R25 file was able to significantly reduce endotoxin levels (P < 0.05). Increased levels of endotoxin removal were achieved by apical preparation with the R40 file (P < 0.05). Complementary CMP with SAF did not significantly reduce endotoxin levels (P > 0.05) following the use of the R40 instrument. Apical enlargement protocols were effective in significantly reducing endotoxin levels. Complementary preparation with the SAF system failed to eliminate residual endotoxin contents beyond those obtained with the R40 instrument. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  12. The Community Mentorship Program: Providing Community-Engagement Opportunities for Early-Stage Clinical and Translational Scientists to Facilitate Research Translation.

    PubMed

    Patino, Cecilia M; Kubicek, Katrina; Robles, Marisela; Kiger, Holly; Dzekov, Jeanne

    2017-02-01

    A goal of the Southern California Clinical and Translational Science Institute (SC-CTSI) at the University of Southern California and Children's Hospital Los Angeles is to train early-stage clinical and translational scientists (CTSs) to conduct research that improves the health of diverse communities. This goal aligns well with the Institute of Medicine's recommendations emphasizing community engagement in biomedical research that facilitates research translation. The Community Mentorship Program (CMP), created to complement community-engaged research didactics, matches CTSs with community mentors who help them identify and complete community-engaged experiences that inform their research. The CMP was piloted in 2013-2015 by the SC-CTSI Workforce Development and Community Engagement cores. The CMP team matched three CTSs (assistant professors pursuing mentored career development awards) with mentors at community-based organizations (CBOs) aligned with their research interests. Each mentor-mentee pair signed a memorandum of understanding. The CMP team checked in regularly, monitoring progress and addressing challenges in CTSs' completion of their community-engaged experience. Each pair completed at least one community-engaged activity informing the CTS's research. In exit interviews, the CTSs and CBO mentors expressed satisfaction with the program and stated that they would continue to work together. The CTSs reported that the program provided opportunities to develop networks outside academia, build trust within the community, and receive feedback and learn from individuals in communities affected by their research. The CMP will be expanded to include all eligible early-career CTSs and promoted for use in similar settings outside the SC-CTSI.

  13. Variation in the Use of Federal and State Civil Money Penalties for Nursing Homes

    ERIC Educational Resources Information Center

    Harrington, Charlene; Tsoukalas, Theodore; Rudder, Cynthia; Mollot, Richard J.; Carrillo, Helen

    2008-01-01

    Purpose: The study examined factors associated with state variations in the use of federal and state civil money penalties (CMPs) for nursing homes. Design and Methods: We collected federal and state CMP data from state survey and certification agencies for 2004. We also used federal CMP data from the federal enforcement action database for…

  14. Association of Calf Muscle Pump Stimulation With Sleep Quality in Adults.

    PubMed

    Baniak, Lynn M; Pierce, Carolyn S; McLeod, Kenneth J; Chasens, Eileen R

    2016-12-01

    Prevention of lower extremity fluid pooling (LEFP) is associated with improved sleep quality. Physical activity and compression stockings are non-invasive methods used to manage LEFP, but both are associated with low adherence. Calf muscle pump (CMP) stimulation is an alternative and more convenient approach. Convenience sampling was used to recruit 11 participants between ages 45 and 65 with poor sleep quality. A within-person single-group pre-test-post-test design was used to evaluate changes in sleep quality, daytime sleepiness, and functional outcomes sensitive to impaired sleep as measured by the Pittsburgh Sleep Quality Index (PSQI), Functional Outcomes of Sleep Questionnaire, and Epworth Sleepiness Scale after 4 weeks of CMP stimulation. Statistical analysis included effect size (ES) calculations. After daily use of CMP stimulation, participants demonstrated improvement in overall sleep quality (ES = -.97) and a large reduction in daily disturbance from poor sleep (ES = -1.25). Moderate improvements were observed in daytime sleepiness (ES = -.53) and functional outcomes sensitive to sleepiness (ES = .49). Although causality could not be determined with this study design, these results support further research to determine whether CMP stimulation can improve sleep quality. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Enhanced degradation and mineralization of 4-chloro-3-methyl phenol by Zn-CNTs/O3 system.

    PubMed

    Liu, Yong; Zhou, Anlan; Liu, Yanlan; Wang, Jianlong

    2018-01-01

    A novel zinc-carbon nanotubes (Zn-CNTs) composite was prepared, characterized and used in O 3 system for the enhanced degradation and mineralization of chlorinated phenol. The Zn-CNTs was characterized by SEM, BET and XRD, and the degradation of 4-chloro-3-methyl phenol (CMP) in aqueous solution was investigated using Zn-CNTs/O 3 system. The experimental results showed that the rate constant of total organic carbon (TOC) removal was 0.29 min -1 , much higher than that of only O 3 system (0.059 min -1 ) because Zn-CNTs/O 2 system could generate H 2 O 2 in situ, the concentration of H 2 O 2 could reach 156.14 mg/L within 60 min at pH 6.0. The high mineralization ratio of CMP by Zn-CNTs/O 3 occurred at wide pH range (3.0-9.0). The increase of Zn-CNTs dosage or gas flow rate contributed to the enhancement of CMP mineralization. The intermediates of CMP degradation were identified and the possible degradation pathway was tentatively proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Fabrication of controllably variable sub-100  nm gaps in silver nanowires by photothermal-induced stress.

    PubMed

    Ghosh, Pintu; Lu, Jinsheng; Luo, Hao; Xu, Ziquan; Yan, Xiaoyuan; Wang, Yewu; Lu, Jun; Qiu, Min; Li, Qiang

    2018-05-15

    A technique to fabricate nanogaps with controllably variable gap width in silver (Ag) nanowires (NWs) by photothermal-induced stress utilizing a focused continuous-wave laser (532 nm) is presented. For the case of an Ag NW on gold thin film, a gap width starting from ∼20  nm is achieved with a critical minimum power (CMP) of about 160 mW, whereas in the case of an Ag NW placed on top of a zinc oxide NW, the attained gap width is as small as a few nm (<10  nm) with a CMP of only ∼100  mW. In both cases, the CMP is much lower as compared to the required CMP (∼280  mW) for an Ag NW placed on a bare silica substrate. The photothermal-induced stress combined with Rayleigh instability, melting, and sublimation of Ag aids in breaking the Ag NW. In particular, the former one plays a key role in attaining an extremely narrow gap. This technique to fabricate sub-100 nm nanogaps in metal NWs can be extensively implemented in fabrication and maintenance of nanomechanical, nanoplasmonic, and nanoelectronic devices.

  17. Docking, characterization and investigation of β-cyclodextrin complexed with citronellal, a monoterpene present in the essential oil of Cymbopogon species, as an anti-hyperalgesic agent in chronic muscle pain model.

    PubMed

    Santos, Priscila L; Brito, Renan G; Oliveira, Marlange A; Quintans, Jullyana S S; Guimarães, Adriana G; Santos, Márcio R V; Menezes, Paula P; Serafini, Mairim R; Menezes, Irwin R A; Coutinho, Henrique D M; Araújo, Adriano A S; Quintans-Júnior, Lucindo J

    2016-08-15

    Citronellal (CT) is a monoterpene with antinociceptive acute effect. β-Cyclodextrin (βCD) has enhanced the analgesic effect of various substances. To evaluate the effect of CT both complexed in β-cyclodextrin (CT-βCD) and non-complexed, in a chronic muscle pain model (CMP) in mice. The complex containing CT in βCD was obtained and characterized in the laboratory. The anti-hyperalgesic effect of CT and CT-βCD was evaluated in a pre-clinical in vivo study in a murine CMP. The complex was characterized through differential scanning calorimetry, derivative thermogravimetry, moisture determination, infrared spectroscopy and scanning electron microscopy. Male Swiss mice were pre-treated with CT (50mg/kg, po), CT-βCD (50mg/kg, po), vehicle (isotonic saline, po) or standard drug (tramadol4 mg/kg, ip). 60 min after the treatment and then each 1h, the mechanic hyperalgesia was evaluated to obtain the time effect. In addition, the muscle strength using grip strength meter and hyperalgesia were also performed daily, for 7 days. We assessed by immunofluorescence for Fos protein on brains and spinal cords of mice. The involvement of the CT with the glutamatergic system was studied with molecular docking. All characterization methods showed the CT-βCD complexation. CT-induced anti-hyperalgesic effect lasted until 6h (p <0.001) while CT-βCD lasted until 8h (p <0.001vs vehicle and p <0.001vs CT from the 6th h). CT-βCD reduced mechanical hyperalgesia on all days of treatment (p <0.05), without changing muscle strength. Periaqueductal gray (p <0.01) and rostroventromedular area (p <0.05) showed significant increase in the Fos protein expression while in the spinal cord, there was a reduction (p <0.001). CT showed favorable energy binding (-5.6 and -6.1) to GluR2-S1S2J protein based in the docking score function. We can suggest that βCD improved the anti-hyperalgesic effect of CT, and that effect seems to involve the descending pain-inhibitory mechanisms, with a possible interaction of the glutamate receptors, which are considered as promising molecules for the management of chronic pain such as CMP. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Medicare program; contracts with health maintenance organizations (HMOs) and competitive medical plans (CMPs)--HCFA. Final rule with comment period.

    PubMed

    1995-09-01

    This rule clarifies and updates portions of the HCFA regulations that pertain to the following: The conditions that an HMO or CMP must meet to qualify for a Medicare contract (Subpart J). The contract requirements (Subpart L). The rules for enrollment, entitlement, and disenrollment of Medicare beneficiaries in a contracting HMO or CMP (Subpart K). How a Medicare contract is affected when there is change of ownership or leasing of facilities of a contracting HMO or CMP (Subpart M). These are technical and editorial changes that do not affect the substance of the regulations. They are intended to make it easier to find particular provisions, to provide overviews of the different program aspects, and to better ensure uniform understanding of the rules.

  19. Cow's milk allergy: where have we come from and where are we going?

    PubMed

    Host, Arne; Halken, Susanne

    2014-03-01

    Since the 1930's the scientific literature on cow's milk protein allergy (CMPA) has accumulated. Over the last decade new diagnostic tools and treatment approaches have been developed. The diagnosis of reproducible adverse reactions to cow's milk proteins (CMP), i.e. CMPA, still has to be confirmed by controlled elimination and challenge procedures. Advanced diagnostic testing using epitope and microarray technology may in the future improve the diagnostic accuracy of CMPA by determination of specific IgE against specific allergen components of cow's milk protein. The incidence of CMPA in early childhood is approximately 2-3% in developed countries. Symptoms suggestive of CMPA may be encountered in 5-15% of infants emphasizing the importance of controlled elimination/milk challenge procedures. Reproducible clinical reactions to CMP in human milk have been reported in 0.5% of breastfed infants. Most infants with CMPA develop symptoms before 1 month of age, often within 1 week after inter introduction of CMP-based formula. The majority has two or more symptoms from two or more organ systems. Approximately 50-70% have cutaneous symptoms, 50-60% gastrointestinal symptoms and 20-30% respiratory symptoms. Symptoms may occur within 1 hour after milk intake (immediate reactions) or after 1 hour (late reactions). The prognosis of CMPA is good with a remission rate of approximately 45 to 50% at 1 year, 60 to 75% at 2 years and 85 to 90% at 3 years. Associated adverse reactions to other foods develop in up to 50% and allergy against inhalants in 50 to 80%. The basic treatment of CMPA is avoidance of CMP. In early childhood a milk substitute is needed. Documented extensively hydrolysed formulas are recommended, whereas partially hydrolysed formulas should not be used because of a high degree of antigenicity and allergenicity associated with adverse reactions. In case of intolerance to extensively hydrolysed formulas and multiple food allergies a formula based on aminoacids is recommended. Alternative milk substitutes such as sheep's and goat's milk should not be used because of a high degree of cross reactivity with CMP. Milk from other mammals such as mare and donkey may be tolerated by some children with CMPA. Soy protein is as allergenic as CMP and soy formula is not recommended for young children with CMPA because of a great risk of development of allergy to soy, whereas soymilk is normally tolerated in older children with CMPA. Recent treatment modalities are oral immunotherapy (OIT) involving the ingestion of increasing amounts of milk allergen on a regular basis to desensitize and potentially permanently tolerize patients to CMP. OIT can increase the reaction thresholds to CMP, but questions about safety and long-term efficacy remain. Anti-IgE therapy with Omalizumab may improve the safety and efficacy of OIT and may provide benefit in monotherapy.

  20. Effect of soluble calcium on the renneting properties of casein micelles as measured by rheology and diffusing wave spectroscopy.

    PubMed

    Sandra, S; Ho, M; Alexander, M; Corredig, M

    2012-01-01

    Addition of calcium chloride to milk has positive effects on cheese-making because it decreases coagulation time, creates firmer gels, and increases curd yield. Although addition of calcium chloride is a widely used industrial practice, the effect of soluble calcium on the preliminary stages of gelation is not fully understood. In addition, it is not known whether the manner of addition and equilibration of the soluble calcium would affect the rennetability of the casein micelles. Therefore, the aim of this paper was to study the details of the coagulation behavior of casein micelles in the presence of additional calcium, and to elucidate whether the manner in which this cation is added (directly as calcium chloride or by gradual exchange through dialysis) affects the functionality of the micelles. Calcium was added as CaCl(2) (1 mM final added concentration) directly to skim milk or indirectly using dialysis against 50 volumes of milk. Additional soluble calcium did not affect the primary phase of the renneting reaction, as demonstrated by the analysis of the casein macropeptide (CMP) released in solution; however, it shortened the coagulation time of the micelles and increased the firmness of the gel. The turbidity parameter of samples with or without calcium showed that similar amounts of CMP were needed for particle interactions to commence. However, the amount of CMP released at the point of gelation, as indicated by rheology, was lesser for samples with added calcium, which can be attributed to a greater extent of calcium bridging on the surface or between micelles. The results also showed that the manner in which calcium was presented to the micelles did not influence the mechanism of gelation. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Exploring personality dimensions that influence practice and performance of a simulated laparoscopic task in the objective structured clinical examination.

    PubMed

    Malhotra, Neha; Poolton, Jamie M; Wilson, Mark R; Leung, Gilberto; Zhu, Frank; Fan, Joe K M; Masters, Rich S W

    2015-01-01

    Surgical educators have encouraged the investigation of individual differences in aptitude and personality in surgical performance. An individual personality difference that has been shown to influence laparoscopic performance under time pressure is movement specific reinvestment. Movement specific reinvestment has 2 dimensions, movement self-consciousness (MS-C) (i.e., the propensity to consciously monitor movements) and conscious motor processing (CMP) (i.e., the propensity to consciously control movements), which have been shown to differentially influence laparoscopic performance in practice but have yet to be investigated in the context of psychological stress (e.g., the objective structured clinical examination [OSCE]). This study investigated the role of individual differences in propensity for MS-C and CMP in practice of a fundamental laparoscopic skill and in laparoscopic performance during the OSCE. Furthermore, this study examined whether individual differences during practice of a fundamental laparoscopic skill were predictive of laparoscopic performance during the OSCE. Overall, 77 final-year undergraduate medical students completed the movement specific reinvestment scale, an assessment tool that quantifies the propensity for MS-C and CMP. Participants were trained to proficiency on a fundamental laparoscopic skill. The number of trials to reach proficiency was measured, and completion times were recorded during early practice, later practice, and the OSCE. There was a trend for CMP to be negatively associated with the number of trials to reach proficiency (p = 0.064). A higher propensity for CMP was associated with fewer trials to reach proficiency (β = -0.70, p = 0.023). CMP and MS-C did not significantly predict completion times in the OSCE (p > 0.05). Completion times in early practice (β = 0.05, p = 0.016) and later practice (β = 0.47, p < 0.001) and number of trials to reach proficiency (β = 0.23, p = 0.003) significantly predicted completion times in the OSCE. It appears that a higher propensity for CMP predicts faster rates of learning of a fundamental laparoscopic skill. Furthermore, laparoscopic performance during practice is indicative of laparoscopic performance in the challenging conditions of the OSCE. The lack of association between the 2 dimensions of movement specific reinvestment and performance during the OSCE is explained using the theory of reinvestment as a framework. Overall, consideration of personality differences and individual differences in ability during practice could help inform the development of individualized surgical training programs. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  2. Three-Dimensional Vibration Isolator for Suppressing High-Frequency Responses for Sage III Contamination Monitoring Package (CMP)

    NASA Technical Reports Server (NTRS)

    Li, Y.; Cutright, S.; Dyke, R.; Templeton, J.; Gasbarre, J.; Novak, F.

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) III - International Space Station (ISS) instrument will be used to study ozone, providing global, long-term measurements of key components of the Earth's atmosphere for the continued health of Earth and its inhabitants. SAGE III is launched into orbit in an inverted configuration on SpaceX;s Falcon 9 launch vehicle. As one of its four supporting elements, a Contamination Monitoring Package (CMP) mounted to the top panel of the Interface Adapter Module (IAM) box experiences high-frequency response due to structural coupling between the two structures during the SpaceX launch. These vibrations, which were initially observed in the IAM Engineering Development Unit (EDU) test and later verified through finite element analysis (FEA) for the SpaceX launch loads, may damage the internal electronic cards and the Thermoelectric Quartz Crystal Microbalance (TQCM) sensors mounted on the CMP. Three-dimensional (3D) vibration isolators were required to be inserted between the CMP and IAM interface in order to attenuate the high frequency vibrations without resulting in any major changes to the existing system. Wire rope isolators were proposed as the isolation system between the CMP and IAM due to the low impact to design. Most 3D isolation systems are designed for compression and roll, therefore little dynamic data was available for using wire rope isolators in an inverted or tension configuration. From the isolator FEA and test results, it is shown that by using the 3D wire rope isolators, the CMP high-frequency responses have been suppressed by several orders of magnitude over a wide excitation frequency range. Consequently, the TQCM sensor responses are well below their qualification environments. It is indicated that these high-frequency responses due to the typical instrument structural coupling can be significantly suppressed by a vibration passive control using the 3D vibration isolator. Thermal and contamination issues were also examined during the isolator selection period for meeting the SAGE III-ISS instrument requirements.

  3. Estimating Temporal Redistribution of Surface Melt Water into Upper Stratigraphy of the Juneau Icefield, Alaska

    NASA Astrophysics Data System (ADS)

    Wilner, J.; Smith, B.; Moore, T.; Campbell, S. W.; Slavin, B. V.; Hollander, J.; Wolf, J.

    2015-12-01

    The redistribution of winter accumulation from surface melt into firn or deeper layers (i.e. internal accumulation) remains a poorly understood component of glacier mass balance. Winter accumulation is usually quantified prior to summer melt, however the time window between accumulation and the onset of melt is minimal so this is not always possible. Studies which are initiated following the onset of summer melt either neglect sources of internal accumulation or attempt to estimate melt (and therefore winter accumulation uncertainty) through a variety of modeling methods. Here, we used ground-penetrating radar (GPR) repeat common midpoint (CMP) surveys with supporting common offset surveys, mass balance snow pits, and probing to estimate temporal changes in water content within the winter accumulation and firn layers of the southern Juneau Icefield, Alaska. In temperate glaciers, radio-wave velocity is primarily dependent on water content and snow or firn density. We assume density changes are temporally slow relative to water flow through the snow and firn pack, and therefore infer that changing radio-wave velocities measured by successive CMP surveys result from flux in surface melt through deeper layers. Preliminary CMP data yield radio-wave velocities of 0.15 to 0.2 m/ns in snowpack densities averaging 0.56 g cm-3, indicating partially to fully saturated snowpack (4-9% water content). Further spatial-temporal analysis of CMP surveys is being conducted. We recommend that repeat CMP surveys be conducted over a longer time frame to estimate stratigraphic water redistribution between the end of winter accumulation and maximum melt season. This information could be incorporated into surface energy balance models to further understanding of the influence of internal accumulation on glacier mass balance.

  4. Mineral materials as feasible amendments to stabilize heavy metals in polluted urban soils.

    PubMed

    Zhang, Mingkui; Pu, Jincheng

    2011-01-01

    Four minerals, agricultural limestone (AL), rock phosphate (RP), palygorskite (PG), and calcium magnesium phosphate (CMP), were evaluated by means of chemical fractions of heavy metals in soils and concentrations of heavy metals in leachates from columns to determine their ability to stabilize heavy metals in polluted urban soils. Two urban soils (calcareous soil and acidic soil) polluted with cadmium, copper, zinc and lead were selected and amended in the laboratory with the mineral materials) for 12 months. Results indicated that application of the mineral materials reduced exchangeable metals in the sequence of Pb, Cd > Cu > Zn. The reduction of exchangeable fraction of heavy metals in the soils amended with different mineral materials followed the sequence of CMP, PG > AL > RP. Reductions of heavy metals leached were based on comparison with cumulative totals of heavy metals eluted through 12 pore volumes from an untreated soil. The reductions of the metals eluted from the calcareous soil amended with the RP, AL, PG and CMP were 1.98%, 38.89%, 64.81% and 75.93% for Cd, 8.51%, 40.42%, 60.64% and 55.32% for Cu, 1.76%, 52.94%, 70.00% and 74.12% for Pb, and 28.42%, 52.74%, 64.38% and 49.66% for Zn. Those from the acidic soil amended with the CMP, PG, AL, and RP were 25.65%, 68.06%, 78.01% and 79.06% for Cd, 26.56%, 49.64%, 43.40% and 34.68% for Cu, 44.44%, 33.32%, 61.11% and 69.44% for Pb, and 18.46%, 43.77%, 41.98% and 40.68% for Zn. The CMP and PG treatments were superior to the AL and RP for stabilizing heavy metals in the polluted urban soils.

  5. The Community Mentorship Program: Providing Community-Engagement Opportunities for Early-Stage Clinical and Translational Scientists to Facilitate Research Translation

    PubMed Central

    Patino, Cecilia M.; Kubicek, Katrina; Robles, Marisela; Kiger, Holly; Dzekov, Jeanne

    2016-01-01

    Problem A goal of the Southern California Clinical and Translational Science Institute (SC-CTSI) at the University of Southern California (USC) and Children's Hospital Los Angeles is to train early-stage clinical translational scientists (CTSs) to conduct research that improves the health of diverse communities. This goal aligns well with the Institute of Medicine's recommendations emphasizing community engagement in biomedical research that facilitates research translation. The Community Mentorship Program (CMP), created to complement community-engaged research (CER) didactics, matches CTSs with community mentors who help CTSs identify and complete community-engaged experiences that inform their research. Approach The CMP was piloted in 2013-2015 by the SC-CTSI Workforce Development and Community-Engagement cores. The CMP team matched three CTSs (assistant professors pursuing mentored career development awards, two with CER experience) with mentors at community-based organizations (CBOs) aligned with their research interests. Each mentor–mentee pair signed a memorandum of understanding. The CMP team checked in regularly, monitoring progress and addressing challenges in CTSs’ completion of their community-engaged experience. Outcomes All pairs completed at least one community-engaged activity informing the CTS's research. In exit interviews, the CTSs and CBO mentors expressed satisfaction with the program and stated they would continue to work together. The CTSs reported the program provided opportunities to develop networks outside academia, build trust within the community, and receive feedback and learn from individuals in communities affected by their research. Next Steps The CMP will be expanded to include all eligible early-career CTSs and promoted for use in similar settings outside the SC-CTSI. PMID:27508342

  6. Oral delivery of Brucella spp. recombinant protein U-Omp16 abrogates the IgE-mediated milk allergy.

    PubMed

    Smaldini, Paola Lorena; Ibañez, Andrés Esteban; Fossati, Carlos Alberto; Cassataro, Juliana; Docena, Guillermo Horacio

    2014-01-01

    Food allergies are increasingly common disorders and no therapeutic strategies are yet approved. The unlipidated Omp16 (U-Omp16) is the outer membrane protein of 16 kDa from B. abortus and possesses a mucosal adjuvant property. In this study, we aimed to examine the U-Omp16 capacity to abrogate an allergen-specific Th2 immune response when it is administered as an oral adjuvant in a mouse model of food allergy.   Balb/c mice were sensitized with cholera toxin and cow's milk proteins (CMP) by gavage and simultaneously treated with U-Omp16 and CMP. Oral challenge with CMP was performed to evaluate the allergic status of mice. Symptoms, local (small bowel cytokine and transcription factor gene expression) and systemic (specific isotypes and spleen cell-secreted cytokines) parameters, and skin tests were done to evaluate the immune response. We found that the oral administration of U-Omp16 with CMP during sensitization dampened the allergic symptoms, with negativization of immediate skin test and increased skin DTH response. Serum specific IgE and IL-5 were inhibited and a Th1 response was promoted (specific IgG2a antibodies and CMP-induced IFN-γ secretion). We found at the mucosal site an inhibition of the gene expression corresponding to IL-13 and Gata-3, with an induction of IFN-γ and T-bet. These results indicated that the oral administration of U-Omp16 significantly controlled the allergic response in sensitized mice with a shift of the balance of Th1- and Th2-T cells toward Th1 predominance. These findings suggest that U-Omp16 may be useful as a Th1-directing adjuvant in an oral vaccine.

  7. Oral delivery of Brucella spp. recombinant protein U-Omp16 abrogates the IgE-mediated milk allergy

    PubMed Central

    Smaldini, Paola Lorena; Ibañez, Andrés Esteban; Fossati, Carlos Alberto; Cassataro, Juliana; Docena, Guillermo Horacio

    2014-01-01

    Food allergies are increasingly common disorders and no therapeutic strategies are yet approved. The unlipidated Omp16 (U-Omp16) is the outer membrane protein of 16 kDa from B. abortus and possesses a mucosal adjuvant property. In this study, we aimed to examine the U-Omp16 capacity to abrogate an allergen-specific Th2 immune response when it is administered as an oral adjuvant in a mouse model of food allergy.   Balb/c mice were sensitized with cholera toxin and cow’s milk proteins (CMP) by gavage and simultaneously treated with U-Omp16 and CMP. Oral challenge with CMP was performed to evaluate the allergic status of mice. Symptoms, local (small bowel cytokine and transcription factor gene expression) and systemic (specific isotypes and spleen cell-secreted cytokines) parameters, and skin tests were done to evaluate the immune response. We found that the oral administration of U-Omp16 with CMP during sensitization dampened the allergic symptoms, with negativization of immediate skin test and increased skin DTH response. Serum specific IgE and IL-5 were inhibited and a Th1 response was promoted (specific IgG2a antibodies and CMP-induced IFN-γ secretion). We found at the mucosal site an inhibition of the gene expression corresponding to IL-13 and Gata-3, with an induction of IFN-γ and T-bet. These results indicated that the oral administration of U-Omp16 significantly controlled the allergic response in sensitized mice with a shift of the balance of Th1- and Th2-T cells toward Th1 predominance. These findings suggest that U-Omp16 may be useful as a Th1-directing adjuvant in an oral vaccine. PMID:25424811

  8. Effects of age on the soccer-specific cognitive-motor performance of elite young soccer players: Comparison between objective measurements and coaches’ evaluation

    PubMed Central

    Chauvin, Alan; Chassot, Steve; Chenevière, Xavier; Taube, Wolfgang

    2017-01-01

    The cognitive-motor performance (CMP), defined here as the capacity to rapidly use sensory information and transfer it into efficient motor output, represents a major contributor to performance in almost all sports, including soccer. Here, we used a high-technology system (COGNIFOOT) which combines a visual environment simulator fully synchronized with a motion capture system. This system allowed us to measure objective real-time CMP parameters (passing accuracy/speed and response times) in a large turf-artificial grass playfield. Forty-six (46) young elite soccer players (including 2 female players) aged between 11 and 16 years who belonged to the same youth soccer academy were tested. Each player had to pass the ball as fast and as accurately as possible towards visual targets projected onto a large screen located 5.32 meters in front of him (a short pass situation). We observed a linear age-related increase in the CMP: the passing accuracy, speed and reactiveness of players improved by 4 centimeters, 2.3 km/h and 30 milliseconds per year of age, respectively. These data were converted into 5 point-scales and compared to the judgement of expert coaches, who also used a 5 point-scale to evaluate the same CMP parameters but based on their experience with the players during games and training. The objectively-measured age-related CMP changes were also observed in expert coaches’ judgments although these were more variable across coaches and age categories. This demonstrates that high-technology systems like COGNIFOOT can be used in complement to traditional approaches of talent identification and to objectively monitor the progress of soccer players throughout a cognitive-motor training cycle. PMID:28953958

  9. Effects of age on the soccer-specific cognitive-motor performance of elite young soccer players: Comparison between objective measurements and coaches' evaluation.

    PubMed

    Hicheur, Halim; Chauvin, Alan; Chassot, Steve; Chenevière, Xavier; Taube, Wolfgang

    2017-01-01

    The cognitive-motor performance (CMP), defined here as the capacity to rapidly use sensory information and transfer it into efficient motor output, represents a major contributor to performance in almost all sports, including soccer. Here, we used a high-technology system (COGNIFOOT) which combines a visual environment simulator fully synchronized with a motion capture system. This system allowed us to measure objective real-time CMP parameters (passing accuracy/speed and response times) in a large turf-artificial grass playfield. Forty-six (46) young elite soccer players (including 2 female players) aged between 11 and 16 years who belonged to the same youth soccer academy were tested. Each player had to pass the ball as fast and as accurately as possible towards visual targets projected onto a large screen located 5.32 meters in front of him (a short pass situation). We observed a linear age-related increase in the CMP: the passing accuracy, speed and reactiveness of players improved by 4 centimeters, 2.3 km/h and 30 milliseconds per year of age, respectively. These data were converted into 5 point-scales and compared to the judgement of expert coaches, who also used a 5 point-scale to evaluate the same CMP parameters but based on their experience with the players during games and training. The objectively-measured age-related CMP changes were also observed in expert coaches' judgments although these were more variable across coaches and age categories. This demonstrates that high-technology systems like COGNIFOOT can be used in complement to traditional approaches of talent identification and to objectively monitor the progress of soccer players throughout a cognitive-motor training cycle.

  10. Decision Support Preferences Among Hispanic and Non-Hispanic White Older Adults With Chronic Musculoskeletal Pain.

    PubMed

    Riffin, Catherine; Pillemer, Karl; Reid, Manny C; Lӧckenhoff, Corinna E

    2016-09-01

    Despite broad recognition that social networks play a key role in the management of chronic musculoskeletal pain (CMP), little is known about when and why older adults with CMP choose to involve others in treatment decisions. This study investigates the types (i.e., informational, emotional, and instrumental) and sources (i.e., formal and informal) of support Hispanic and non-Hispanic White CMP patients desire and receive when making decisions about their pain care. Semi-structured interviews were conducted with Hispanic and non-Hispanic White older adults with CMP (N = 63) recruited from one medical center and one senior center in New York City. Interviews were transcribed and then analyzed using content analysis. CMP patients sought network members who supported their emotional well-being throughout the decision-making process. When considering high-stakes treatment decisions, participants selectively involved individuals who had similar pain conditions or first-hand experience with the procedure. Participants' perceptions of the decision-making process were contingent upon the congruence between the decision they made and the support they received for it. For Spanish-speaking participants, positive perceptions were linked with satisfactory language competence by their providers. On the other hand, lack of language competence among providers hindered Spanish speakers' ability to obtain adequate informational support. Results reveal the importance of empathic patient-provider exchanges across diverse patient populations and cultural sensitivity for Spanish-speaking patients. Findings suggest that social networks beyond the patient-provider dyad influence patients' decision-making satisfaction. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Benzocyclobutene-based electric micromachines supported on microball bearings: Design, fabrication, and characterization

    NASA Astrophysics Data System (ADS)

    Modafe, Alireza

    This dissertation summarizes the research activities that led to the development of the first microball-bearing-supported linear electrostatic micromotor with benzocyclobutene (BCB) low-k polymer insulating layers. The primary application of this device is long-range, high-speed linear micropositioning. The future generations of this device include rotary electrostatic micromotors and microgenerators. The development of the first generation of microball-bearing-supported micromachines, including device theory, design, and modeling, material characterization, process development, device fabrication, and device test and characterization is presented. The first generation of these devices is based on a 6-phase, bottom-drive, linear, variable-capacitance micromotor (B-LVCM). The design of the electrical and mechanical components of the micromotor, lumped-circuit modeling of the device and electromechanical characteristics, including variable capacitance, force, power, and speed are presented. Electrical characterization of BCB polymers, characterization of BCB chemical mechanical planarization (CMP), development of embedded BCB in silicon (EBiS) process, and integration of device components using microfabrication techniques are also presented. The micromotor consists of a silicon stator, a silicon slider, and four stainless-steel microballs. The aligning force profile of the micromotor was extracted from simulated and measured capacitances of all phases. An average total aligning force of 0.27 mN with a maximum of 0.41 mN, assuming a 100 V peak-to-peak square-wave voltage, was measured. The operation of the micromotor was verified by applying square-wave voltages and characterizing the slider motion. An average slider speed of 7.32 mm/s when excited by a 40 Hz, 120 V square-wave voltage was reached without losing the synchronization. This research has a pivotal impact in the field of power microelectromechanical systems (MEMS). It establishes the foundation for the development of more reliable, efficient electrostatic micromachines with variety of applications such as micropropulsion, high-speed micropumping, microfluid delivery, and microsystem power generation.

  12. Does supplemental photodynamic therapy optimize the disinfection of bacteria and endotoxins in one-visit and two-visit root canal therapy? A randomized clinical trial.

    PubMed

    Rabello, Diego G D; Corazza, Bruna J M; Ferreira, Luciana L; Santamaria, Mauro P; Gomes, Ana P M; Martinho, Frederico C

    2017-09-01

    To evaluate the effectiveness of supplemental photodynamic therapy (PDT) in optimizing the removal of bacteria and endotoxins from primarily infected root canals after one-visit and two-visit treatments. Twenty-four primarily infected root canals with apical periodontitis were selected and randomly divided into one-visit (n=12) and two-visit treatment groups (n=12). Chemo-mechanical preparation (CMP) was performed by using the single-file reciprocating technique+2.5% NaOCL and a final rinse with 17% EDTA. The photosensitizer agent (methylene blue 0.1mg/mL) was applied to root canals for 60s before application of laser with a potency of 60mW and energy density of 129J/cm 2 for 120s after CMP in the one-visit treatment and after 14-day inter-appointment medication with Ca(OH) 2 +Saline solution (SSL) in the two-visit treatment. Samples were collected before and after root canal procedures. Endotoxins were quantified by chromogenic limulus amebocyte lysate assay. Culture techniques were used to determine bacterial colony-forming unit counts. Bacteria and endotoxins were detected in 100% of the initial samples, with median values of 1.97×10 5 CFU/mL and 24.983EU/mL, respectively. The CMP using single-file reciprocating technique was effective in the reduction of bacteria and endotoxins (All, p<0.05). The supplemental PDT was effective in reducing bacterial load in the one-visit (p<0.05) but not in the two-visit treatment after use of Ca(OH) 2 medication for 14days (p>0.05). In the two-visit group, after 14days of inter-appointment medication with Ca(OH) 2 , a significant reduction in the median levels of endotoxins was found in comparison to CMP alone (from 1.041 to 0.094EU/mL) (p<0.05). Despite the type of treatment, the supplemental PDT was not effective against endotoxins (p>0.05). The photodynamic therapy optimized the disinfection of bacteria from root canals in one-visit but not for two visit treatment modality with the accomplishment of calcium hydroxide medication. Despite the type of treatment, the supplemental PDT was not effective against endotoxins. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Effects of the Connected Mathematics Project 2 (CMP2) on the Mathematics Achievement of Grade 6 Students in the Mid-Atlantic Region. Final Report. NCEE 2012-4017

    ERIC Educational Resources Information Center

    Martin, Taylor; Brasiel, Sarah J.; Turner, Herb; Wise, John C.

    2012-01-01

    This study examines the effects of Connected Mathematics Project 2 (CMP2) on grade 6 student mathematics achievement and engagement using a cluster randomized controlled trial (RCT) design. It responds to a need to improve mathematics learning in the Mid-Atlantic Region (Delaware, Maryland, New Jersey, Pennsylvania, and Washington, DC). Findings…

  14. Student Attainment in Connected Mathematics Curriculum [and] Effects of the Connected Mathematics Project on Student Achievement. What Works Clearinghouse Detailed Study Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2004

    2004-01-01

    In this study, Ridgway et al. found mixed results, depending on the assessment test used. With the Balanced Assessment (BA) test, positive significant differences were found between the Connected Mathematics Project (CMP) students and non-CMP students in grades 6, 7, and 8. The results for the Iowa Test of Basic Skills (ITBS) were less favorable…

  15. Student Attainment in Connected Mathematics Curriculum [and] Effects of the Connected Mathematics Project on Student Achievement. What Works Clearinghouse Brief Study Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2004

    2004-01-01

    In this study, Ridgway et al. found mixed results, depending on the assessment test used. With the Balanced Assessment (BA) test, positive significant differences were found between the Connected Mathematics Project (CMP) students and non-CMP students in grades 6, 7, and 8. The results for the Iowa Test of Basic Skills (ITBS) were less favorable…

  16. Free-free and fixed base modal survey tests of the Space Station Common Module Prototype

    NASA Technical Reports Server (NTRS)

    Driskill, T. C.; Anderson, J. B.; Coleman, A. D.

    1992-01-01

    This paper describes the testing aspects and the problems encountered during the free-free and fixed base modal surveys completed on the original Space Station Common Module Prototype (CMP). The CMP is a 40-ft long by 14.5-ft diameter 'waffle-grid' cylinder built by the Boeing Company and housed at the Marshall Space Flight Center (MSFC) near Huntsville, AL. The CMP modal survey tests were conducted at MSFC by the Dynamics Test Branch. The free-free modal survey tests (June '90 to Sept. '90) included interface verification tests (IFVT), often referred to as impedance measurements, mass-additive testing and linearity studies. The fixed base modal survey tests (Feb. '91 to April '91), including linearity studies, were conducted in a fixture designed to constrain the CMP in 7 total degrees-of-freedom at five trunnion interfaces (two primary, two secondary, and the keel). The fixture also incorporated an airbag off-load system designed to alleviate the non-linear effects of friction in the primary and secondary trunnion interfaces. Numerous test configurations were performed with the objective of providing a modal data base for evaluating the various testing methodologies to verify dynamic finite element models used for input to coupled load analysis.

  17. Intellectual disability and bleeding diathesis due to deficient CMP--sialic acid transport.

    PubMed

    Mohamed, Miski; Ashikov, Angel; Guillard, Mailys; Robben, Joris H; Schmidt, Samuel; van den Heuvel, B; de Brouwer, Arjan P M; Gerardy-Schahn, Rita; Deen, Peter M T; Wevers, Ron A; Lefeber, Dirk J; Morava, Eva

    2013-08-13

    To identify the underlying genetic defect in a patient with intellectual disability, seizures, ataxia, macrothrombocytopenia, renal and cardiac involvement, and abnormal protein glycosylation. Genetic studies involved homozygosity mapping by 250K single nucleotide polymorphism array and SLC35A1 sequencing. Functional studies included biochemical assays for N-glycosylation and mucin-type O-glycosylation and SLC35A1-encoded cytidine 5'-monophosphosialic acid (CMP-sialic acid) transport after heterologous expression in yeast. We performed biochemical analysis and found combined N- and O-glycosylation abnormalities and specific reduction in sialylation in this patient. Homozygosity mapping revealed homozygosity for the CMP-sialic acid transporter SLC35A1. Mutation analysis identified a homozygous c.303G > C (p.Gln101His) missense mutation that was heterozygous in both parents. Functional analysis of mutant SLC35A1 showed normal Golgi localization but 50% reduction in transport activity of CMP-sialic acid in vitro. We confirm an autosomal recessive, generalized sialylation defect due to mutations in SLC35A1. The primary neurologic presentation consisting of ataxia, intellectual disability, and seizures, in combination with bleeding diathesis and proteinuria, is discriminative from a previous case described with deficient sialic acid transporter. Our study underlines the importance of sialylation for normal CNS development and regular organ function.

  18. Development and application of a crossbreeding simulation model for goat production systems in tropical regions.

    PubMed

    Tsukahara, Y; Oishi, K; Hirooka, H

    2011-12-01

    A deterministic simulation model was developed to estimate biological production efficiency and to evaluate goat crossbreeding systems under tropical conditions. The model involves 5 production systems: pure indigenous, first filial generations (F1), backcross (BC), composite breeds of F1 (CMP(F1)), and BC (CMP(BC)). The model first simulates growth, reproduction, lactation, and energy intakes of a doe and a kid on a 1-d time step at the individual level and thereafter the outputs are integrated into the herd dynamics program. The ability of the model to simulate individual performances was tested under a base situation. The simulation results represented daily BW changes, ME requirements, and milk yield and the estimates were within the range of published data. Two conventional goat production scenarios (an intensive milk production scenario and an integrated goat and oil palm production scenario) in Malaysia were examined. The simulation results of the intensive milk production scenario showed the greater production efficiency of the CMP(BC) and CMP(F1) systems and decreased production efficiency of the F1 and BC systems. The results of the integrated goat and oil palm production scenario showed that the production efficiency and stocking rate were greater for the indigenous goats than for the crossbreeding systems.

  19. Method for directional hydraulic fracturing

    DOEpatents

    Swanson, David E.; Daly, Daniel W.

    1994-01-01

    A method for directional hydraulic fracturing using borehole seals to confine pressurized fluid in planar permeable regions, comprising: placing a sealant in the hole of a structure selected from geologic or cemented formations to fill the space between a permeable planar component and the geologic or cemented formation in the vicinity of the permeable planar component; making a hydraulic connection between the permeable planar component and a pump; permitting the sealant to cure and thereby provide both mechanical and hydraulic confinement to the permeable planar component; and pumping a fluid from the pump into the permeable planar component to internally pressurize the permeable planar component to initiate a fracture in the formation, the fracture being disposed in the same orientation as the permeable planar component.

  20. Reciprocal Interactions between Multiple Myeloma Cells and Osteoprogenitor Cells Affect Bone Formation and Tumor Growth

    DTIC Science & Technology

    2015-12-01

    cells (HSCs) are multipotent cells that differentiate into myeloid, lymphoid and erythroid lineages, and have short-term or long-term regenerative...All rights reserved Nature Reviews | Rheumatology a b MPP CMP CLP Lymphoid cells NK cellB cell T cell Megakaryocyte and erythrocytes Macrophage and...into other cell types. CLP, common lymphoid progenitor; CMP, common myeloid progenitor; MPP, multipotent progenitor; NK cell , natural killer cell . R E

  1. [The optimization of chondromalacia patellae diagnosis by NMR tomography. The use of an apparatus for cartilage compression].

    PubMed

    König, H; Dinkelaker, F; Wolf, K J

    1991-08-01

    The aim of this study was to improve the MRI diagnosis of CMP, with special reference to the early stages and accurate staging. For this purpose, the retropatellar cartilage was examined by MRI while compression was carried out, using 21 patients and five normal controls. The compression was applied by means of a specially constructed device. Changes in cartilage thickness and signal intensity were evaluated quantitatively during FLASH and FISP sequences. In all patients the results of arthroscopies were available and in 12 patients, cartilage biopsies had been obtained. CMP stage I could be distinguished from normal cartilage by reduction in cartilage thickness and signal increase from the oedematous cartilage during compression. In CMP stages II/III, abnormal protein deposition of collagen type I could be demonstrated by its compressibility. In stages III and IV, the method does not add any significant additional information.

  2. Isolated planar gyroscope with internal radial sensing and actuation

    NASA Technical Reports Server (NTRS)

    Challoner, A. Dorian (Inventor); Shcheglov, Kirill V. (Inventor)

    2006-01-01

    The present invention discloses an inertial sensor comprising a planar mechanical resonator with embedded sensing and actuation for substantially in-plane vibration and having a central rigid support for the resonator. At least one excitation or torquer electrode is disposed within an interior of the resonator to excite in-plane vibration of the resonator and at least one sensing or pickoff electrode is disposed within the interior of the resonator for sensing the motion of the excited resonator. In one embodiment, the planar resonator includes a plurality of slots in an annular pattern; in another embodiment, the planar mechanical resonator comprises four masses; each embodiment having a simple degenerate pair of in-plane vibration modes.

  3. Acupuncture and chiropractic care for chronic pain in an integrated health plan: a mixed methods study

    PubMed Central

    2011-01-01

    Background Substantial recent research examines the efficacy of many types of complementary and alternative (CAM) therapies. However, outcomes associated with the "real-world" use of CAM has been largely overlooked, despite calls for CAM therapies to be studied in the manner in which they are practiced. Americans seek CAM treatments far more often for chronic musculoskeletal pain (CMP) than for any other condition. Among CAM treatments for CMP, acupuncture and chiropractic (A/C) care are among those with the highest acceptance by physician groups and the best evidence to support their use. Further, recent alarming increases in delivery of opioid treatment and surgical interventions for chronic pain--despite their high costs, potential adverse effects, and modest efficacy--suggests the need to evaluate real world outcomes associated with promising non-pharmacological/non-surgical CAM treatments for CMP, which are often well accepted by patients and increasingly used in the community. Methods/Design This multi-phase, mixed methods study will: (1) conduct a retrospective study using information from electronic medical records (EMRs) of a large HMO to identify unique clusters of patients with CMP (e.g., those with differing demographics, histories of pain condition, use of allopathic and CAM health services, and comorbidity profiles) that may be associated with different propensities for A/C utilization and/or differential outcomes associated with such care; (2) use qualitative interviews to explore allopathic providers' recommendations for A/C and patients' decisions to pursue and retain CAM care; and (3) prospectively evaluate health services/costs and broader clinical and functional outcomes associated with the receipt of A/C relative to carefully matched comparison participants receiving traditional CMP services. Sensitivity analyses will compare methods relying solely on EMR-derived data versus analyses supplementing EMR data with conventionally collected patient and clinician data. Discussion Successful completion of these aggregate aims will provide an evaluation of outcomes associated with the real-world use of A/C services. The trio of retrospective, qualitative, and prospective study will also provide a clearer understanding of the decision-making processes behind the use of A/C for CMP and a transportable methodology that can be applied to other health care settings, CAM treatments, and clinical populations. Trial registration ClinicalTrials.gov: NCT01345409 PMID:22118061

  4. Radical scavenger can scavenge lipid allyl radicals complexed with lipoxygenase at lower oxygen content.

    PubMed

    Koshiishi, Ichiro; Tsuchida, Kazunori; Takajo, Tokuko; Komatsu, Makiko

    2006-04-15

    Lipoxygenases have been proposed to be a possible factor that is responsible for the pathology of certain diseases, including ischaemic injury. In the peroxidation process of linoleic acid by lipoxygenase, the E,Z-linoleate allyl radical-lipoxygenase complex seems to be generated as an intermediate. In the present study, we evaluated whether E,Z-linoleate allyl radicals on the enzyme are scavenged by radical scavengers. Linoleic acid, the content of which was greater than the dissolved oxygen content, was treated with soya bean lipoxygenase-1 (ferric form) in the presence of radical scavenger, CmP (3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-N-oxyl). The reaction rate between oxygen and lipid allyl radical is comparatively faster than that between CmP and lipid allyl radical. Therefore a reaction between linoleate allyl radical and CmP was not observed while the dioxygenation of linoleic acid was ongoing. After the dissolved oxygen was depleted, CmP stoichiometrically trapped linoleate-allyl radicals. Accompanied by this one-electron redox reaction, the resulting ferrous lipoxygenase was re-oxidized to the ferric form by hydroperoxylinoleate. Through the adduct assay via LC (liquid chromatography)-MS/MS (tandem MS), four E,Z-linoleate allyl radical-CmP adducts corresponding to regio- and diastereo-isomers were detected in the linoleate/lipoxygenase system, whereas E,E-linoleate allyl radical-CmP adducts were not detected at all. If E,Z-linoleate allyl radical is liberated from the enzyme, the E/Z-isomer has to reach equilibrium with the thermodynamically favoured E/E-isomer. These data suggested that the E,Z-linoleate allyl radicals were not liberated from the active site of lipoxygenase before being trapped by CmP. Consequently, we concluded that the lipid allyl radicals complexed with lipoxygenase could be scavenged by radical scavengers at lower oxygen content.

  5. Radical scavenger can scavenge lipid allyl radicals complexed with lipoxygenase at lower oxygen content

    PubMed Central

    Koshiishi, Ichiro; Tsuchida, Kazunori; Takajo, Tokuko; Komatsu, Makiko

    2006-01-01

    Lipoxygenases have been proposed to be a possible factor that is responsible for the pathology of certain diseases, including ischaemic injury. In the peroxidation process of linoleic acid by lipoxygenase, the E,Z-linoleate allyl radical–lipoxygenase complex seems to be generated as an intermediate. In the present study, we evaluated whether E,Z-linoleate allyl radicals on the enzyme are scavenged by radical scavengers. Linoleic acid, the content of which was greater than the dissolved oxygen content, was treated with soya bean lipoxygenase-1 (ferric form) in the presence of radical scavenger, CmP (3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-N-oxyl). The reaction rate between oxygen and lipid allyl radical is comparatively faster than that between CmP and lipid allyl radical. Therefore a reaction between linoleate allyl radical and CmP was not observed while the dioxygenation of linoleic acid was ongoing. After the dissolved oxygen was depleted, CmP stoichiometrically trapped linoleate-allyl radicals. Accompanied by this one-electron redox reaction, the resulting ferrous lipoxygenase was re-oxidized to the ferric form by hydroperoxylinoleate. Through the adduct assay via LC (liquid chromatography)–MS/MS (tandem MS), four E,Z-linoleate allyl radical–CmP adducts corresponding to regio- and diastereo-isomers were detected in the linoleate/lipoxygenase system, whereas E,E-linoleate allyl radical–CmP adducts were not detected at all. If E,Z-linoleate allyl radical is liberated from the enzyme, the E/Z-isomer has to reach equilibrium with the thermodynamically favoured E/E-isomer. These data suggested that the E,Z-linoleate allyl radicals were not liberated from the active site of lipoxygenase before being trapped by CmP. Consequently, we concluded that the lipid allyl radicals complexed with lipoxygenase could be scavenged by radical scavengers at lower oxygen content. PMID:16396633

  6. Substrate-induced fit of the ATP binding site of cytidine monophosphate kinase from Escherichia coli: time-resolved fluorescence of 3'-anthraniloyl-2'-deoxy-ADP and molecular modeling.

    PubMed

    Li de La Sierra, I M; Gallay, J; Vincent, M; Bertrand, T; Briozzo, P; Bârzu, O; Gilles, A M

    2000-12-26

    The conformation and dynamics of the ATP binding site of cytidine monophosphate kinase from Escherichia coli (CMPK(coli)), which catalyzes specifically the phosphate exchange between ATP and CMP, was studied using the fluorescence properties of 3'-anthraniloyl-2'-deoxy-ADP, a specific ligand of the enzyme. The spectroscopic properties of the bound fluorescent nucleotide change strongly with respect to those in aqueous solution. These changes (red shift of the absorption and excitation spectra, large increase of the excited state lifetime) are compared to those observed in different solvents. These data, as well as acrylamide quenching experiments, suggest that the anthraniloyl moiety is protected from the aqueous solvent upon binding to the ATP binding site, irrespective of the presence of CMP or CDP. The protein-bound ADP analogue exhibits a restricted fast subnanosecond rotational motion, completely blocked by CMP binding. The energy-minimized models of CMPK(coli) complexed with 3'-anthraniloyl-2'-deoxy-ADP using the crystal structures of the ligand-free protein and of its complex with CDP (PDB codes and, respectively) were compared to the crystal structure of UMP/CMP kinase from Dictyostelium discoideum complexed with substrates (PDB code ). The key residues for ATP/ADP binding to CMPK(coli) were identified as R157 and I209, their side chains sandwiching the adenine ring. Moreover, the residues involved in the fixation of the phosphate groups are conserved in both proteins. In the model, the accessibility of the fluorescent ring to the solvent should be substantial if the LID conformation remained unchanged, by contrast to the fluorescence data. These results provide the first experimental arguments about an ATP-mediated induced-fit of the LID in CMPK(coli) modulated by CMP, leading to a closed conformation of the active site, protected from water.

  7. Output Error Analysis of Planar 2-DOF Five-bar Mechanism

    NASA Astrophysics Data System (ADS)

    Niu, Kejia; Wang, Jun; Ting, Kwun-Lon; Tao, Fen; Cheng, Qunchao; Wang, Quan; Zhang, Kaiyang

    2018-03-01

    Aiming at the mechanism error caused by clearance of planar 2-DOF Five-bar motion pair, the method of equivalent joint clearance of kinematic pair to virtual link is applied. The structural error model of revolute joint clearance is established based on the N-bar rotation laws and the concept of joint rotation space, The influence of the clearance of the moving pair is studied on the output error of the mechanis. and the calculation method and basis of the maximum error are given. The error rotation space of the mechanism under the influence of joint clearance is obtained. The results show that this method can accurately calculate the joint space error rotation space, which provides a new way to analyze the planar parallel mechanism error caused by joint space.

  8. Structure–Function Dissection of the Frizzled Receptor in Drosophila melanogaster Suggests Different Mechanisms of Action in Planar Polarity and Canonical Wnt Signaling

    PubMed Central

    Strutt, David; Madder, Daisy; Artymiuk, Peter J.

    2012-01-01

    Members of the Frizzled family of sevenpass transmembrane receptors signal via the canonical Wnt pathway and also via noncanonical pathways of which the best characterized is the planar polarity pathway. Activation of both canonical and planar polarity signaling requires interaction between Frizzled receptors and cytoplasmic proteins of the Dishevelled family; however, there has been some dispute regarding whether the Frizzled–Dishevelled interactions are the same in both cases. Studies looking at mutated forms of Dishevelled suggested that stable recruitment of Dishevelled to membranes by Frizzled was required only for planar polarity activity, implying that qualitatively different Frizzled–Dishevelled interactions underlie canonical signaling. Conversely, studies looking at the sequence requirements of Frizzled receptors in the fruit fly Drosophila melanogaster for canonical and planar polarity signaling have concluded that there is most likely a common mechanism of action. To understand better Frizzled receptor function, we have carried out a large-scale mutagenesis in Drosophila to isolate novel mutations in frizzled that affect planar polarity activity and have identified a group of missense mutations in cytosolic-facing regions of the Frizzled receptor that block Dishevelled recruitment. Interestingly, although some of these affect both planar polarity and canonical activity, as previously reported for similar lesions, we find a subset that affect only planar polarity activity. These results support the view that qualitatively different Frizzled–Dishevelled interactions underlie planar polarity and canonical Wnt signaling. PMID:23023003

  9. Multiple Optical Traps with a Single-Beam Optical Tweezer Utilizing Surface Micromachined Planar Curved Grating

    NASA Astrophysics Data System (ADS)

    Kuo, Ju-Nan; Chen, Kuan-Yu

    2010-11-01

    In this paper, we present a single-beam optical tweezer integrated with a planar curved diffraction grating for microbead manipulation. Various curvatures of the surface micromachined planar curved grating are systematically investigated. The planar curved grating was fabricated using multiuser micro-electro-mechanical-system (MEMS) processes (MUMPs). The angular separation and the number of diffracted orders were determined. Experimental results indicate that the diffraction patterns and curvature of the planar curved grating are closely related. As the curvature of the planar curved grating increases, the vertical diffraction angle increases, resulting in the strip patterns of the planar curved grating. A single-beam optical tweezer integrated with a planar curved diffraction grating was developed. We demonstrate a technique for creating multiple optical traps from a single laser beam using the developed planar curved grating. The strip patterns of the planar curved grating that resulted from diffraction were used to trap one row of polystyrene beads.

  10. Fabrication and Characterization of Planar Spring Based on FR4-PCB for Electrodynamics Vibration Energy Harvesting Application

    NASA Astrophysics Data System (ADS)

    Sugandi, Gandi; Mambu, Grace A.; Mulyadi, Dadang; Mulyana, Edi

    2017-07-01

    Planar spring as a mechanical resonator is very important in designing an electrodynamic vibration energy harvesting application (EVEH) to generate output power with high efficiency. Generally, component of the mechanical resonator is a cantilever beam that is designed using one cantilever with an inertial mass placed cantilever tip. In this study, a planar spring which has four arms cantilever beam was designed and fabricated using an extra-thin FR4-PCB material with a total thickness of 130 µm. There are four types of planar spring that were designed and fabricated in this research to produce resonant frequencies at about 30, 40, 50 and 60 Hz with 1 mm width cantilever arm and various length of 13.5, 11.2, 9.8 and 8.7 mm, respectively. FR4 resonator is fabricated using technology LASER-cutting in order to obtain results precisely. The resonant frequency generated by the mechanical resonator is characterized using vibrator system with certain acceleration. The resonant frequency of the planar spring was obtained at a frequency where the maximum induced voltage occurs. The resonant frequency generated by each type of planar spring was obtained at 24.81, 34.24, 40.2, and 46.8 Hz with three conditions of acceleration of 0.02, 0.06, and 0,1g (g=9.8 m/s2).

  11. Tetraphenylethylene-Interweaving Conjugated Macrocycle Polymer Materials as Two-Photon Fluorescence Sensors for Metal Ions and Organic Molecules.

    PubMed

    Li, Xi; Li, Zheng; Yang, Ying-Wei

    2018-05-01

    A luminescent conjugated macrocycle polymer (CMP) with strong two-photon fluorescence property, namely, P[5]-TPE-CMP, is constructed from ditriflate-functionalized pillar[5]arene and a 1,1,2,2-tetrakis(4-ethynylphenyl)ethylene (TPE) linker through a Sonogashira-Hagihara cross-coupling reaction. Significantly, in sharp contrast with the corresponding conjugated microporous polymer without synthetic macrocycles, P[5]-TPE-CMP shows an outstanding stability against photobleaching and exhibits highly selective cation sensing capability toward Fe 3+ at different excitation wavelengths (both UV and red-near-infrared regions). Meanwhile, its fluorescence could also be sufficiently quenched by 4-amino azobenzene, a frequently used organic dye that is certified to be carcinogenic, as compared with a group of common organic compounds. This work paves a new way for enhancing the properties of porous organic polymers through the introduction of supramolecular macrocycles like macrocyclic arenes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Development of chitosan-pullulan composite nanoparticles for nasal delivery of vaccines: in vivo studies.

    PubMed

    Cevher, Erdal; Salomon, Stefan K; Somavarapu, Satyanarayana; Brocchini, Steve; Alpar, H Oya

    2015-01-01

    Here, we aimed at developing chitosan/pullulan composite nanoparticles and testing their potential as novel systems for the nasal delivery of diphtheria toxoid (DT). All the chitosan derivatives [N-trimethyl (TMC), chloride and glutamate] and carboxymethyl pullulan (CMP) were synthesised and antigen-loaded composites were prepared by polyion complexation of chitosan and pullulan derivatives (particle size: 239-405 nm; surface charge: +18 and +27 mV). Their immunological effects after intranasal administration to mice were compared to intramuscular route. Composite nanoparticles induced higher levels of IgG responses than particles formed with chitosan derivative and antigen. Nasally administered TMC-pullulan composites showed higher DT serum IgG titre when compared with the other composites. Co-encapsulation of CpG ODN within TMC-CMP-DT nanoparticles resulted in a balanced Th1/Th2 response. TMC/pullulan composite nanoparticles also induced highest cytokine levels compared to those of chitosan salts. These findings demonstrated that TMC-CMP-DT composite nanoparticles are promising delivery system for nasal vaccination.

  13. TRMM Common Microphysics Products: A Tool for Evaluating Spaceborne Precipitation Retrieval Algorithms

    NASA Technical Reports Server (NTRS)

    Kingsmill, David E.; Yuter, Sandra E.; Hobbs, Peter V.; Rangno, Arthur L.; Heymsfield, Andrew J.; Stith, Jeffrey L.; Bansemer, Aaron; Haggerty, Julie A.; Korolev, Alexei V.

    2004-01-01

    A customized product for analysis of microphysics data collected from aircraft during field campaigns in support of the TRMM program is described. These Common Microphysics Products (CMP's) are designed to aid in evaluation of TRMM spaceborne precipitation retrieval algorithms. Information needed for this purpose (e.g., particle size spectra and habit, liquid and ice water content) was derived using a common processing strategy on the wide variety of microphysical instruments and raw native data formats employed in the field campaigns. The CMP's are organized into an ASCII structure to allow easy access to the data for those less familiar with and without the tools to accomplish microphysical data processing. Detailed examples of the CMP show its potential and some of its limitations. This approach may be a first step toward developing a generalized microphysics format and an associated community-oriented, non-proprietary software package for microphysics data processing, initiatives that would likely broaden community access to and use of microphysics datasets.

  14. Recent results on output feedback problems

    NASA Technical Reports Server (NTRS)

    Byrnes, C. I.

    1980-01-01

    Given a real linear system sigma = (A, B, C) with m inputs, p outputs and degree n, the problem of generic pole placement by output feedback is studied, which is to compute the constant C(m,p) such that the inequality C(m,p) not less than n is necessary and sufficient for generically positioning the poles of the generic linear system by constant output feedback. A constant C prime (m,p) is determined, which gives a sufficient condition for generic pole placement and which, to the best of the author's knowledge, is at least as good an estimate of C(m,p) as any in the literature. Some results on the construction of solutions in case mp = n are announced, based on the degree formula of Brockett and Byrnes and the Galois theory. In particular, a question raised by Anderson, Bose, and Jury, on the existence of a rational procedure for computing the feedback law from the desired characteristic polynomial is answered.

  15. Benzotriazole removal on post-Cu CMP cleaning

    NASA Astrophysics Data System (ADS)

    Jiying, Tang; Yuling, Liu; Ming, Sun; Shiyan, Fan; Yan, Li

    2015-06-01

    This work investigates systematically the effect of FA/O II chelating agent and FA/O I surfactant in alkaline cleaning solutions on benzotriazole (BTA) removal during post-Cu CMP cleaning in GLSI under the condition of static etching. The best detergent formulation for BTA removal can be determined by optimization of the experiments of single factor and compound cleaning solution, which has been further confirmed experimentally by contact angle (CA) measurements. The resulting solution with the best formulation has been measured for the actual production line, and the results demonstrate that the obtained cleaning solution can effectively and efficiently remove BTA, CuO and abrasive SiO2 without basically causing interfacial corrosion. This work demonstrates the possibility of developing a simple, low-cost and environmentally-friendly cleaning solution to effectively solve the issues of BTA removal on post-Cu CMP cleaning in a multi-layered copper wafer. Project supported by the Major National Science and Technology Special Projects (No. 2009ZX02308).

  16. Effect of 1,2,4-triazole on galvanic corrosion between cobalt and copper in CMP based alkaline slurry

    NASA Astrophysics Data System (ADS)

    Fu, Lei; Liu, Yuling; Wang, Chenwei; Han, Linan

    2018-04-01

    Cobalt has become a new type of barrier material with its unique advantages since the copper-interconnects in the great-large scale integrated circuits (GLSI) into 10 nm and below technical nodes, but cobalt and copper have severe galvanic corrosion during chemical–mechanical flattening. The effect of 1,2,4-triazole on Co/Cu galvanic corrosion in alkaline slurry and the control of rate selectivity of copper and cobalt were investigated in this work. The results of electrochemical experiments and polishing experiments had indicated that a certain concentration of 1,2,4-triazole could form a layer of insoluble and dense passive film on the surface of cobalt and copper, which reduced the corrosion potential difference between cobalt and copper. Meantime, the removal rate of cobalt and copper could be effectively controlled according to demand during the CMP process. When the study optimized slurry was composed of 0.5 wt% colloidal silica, 0.1 %vol. hydrogen peroxide, 0.05 wt% FA/O, 345 ppm 1,2,4-triazole, cobalt had higher corrosion potential than copper and the galvanic corrosion could be reduced effectively when the corrosion potential difference between them decreased to 1 mV and the galvanic corrosion current density reached 0.02 nA/cm2. Meanwhile, the removal rate of Co was 62.396 nm/min, the removal rate of Cu was 47.328 nm/min, so that the removal rate ratio of cobalt and copper was 1.32 : 1, which was a good amendment to the dishing pits. The contact potential corrosion of Co/Cu was very weak, which could be better for meeting the requirements of the barrier CMP. Project supported by the Major National Science and Technology Special Projects (No. 2016ZX02301003-004-007), the Natural Science Foundation of Hebei Province, China (No. F2015202267), and the Outstanding Young Science and Technology Innovation Fund of Hebei University of Technology (No. 2015007).

  17. Customers' perspectives on the impact of the Pathways to Work condition management programme on their health, well-being and vocational activity.

    PubMed

    Secker, Jenny; Pittam, Gail; Ford, Fiona

    2012-11-01

    Pathways to Work is a UK initiative aimed at supporting customers on incapacity benefits to return to work. This qualitative study complements previous evaluations of Pathways to Work by exploring customers' perceptions of the impact of the Condition Management Programme (CMP) offered to claimants with long-term health conditions. 39 customers took part in focus groups held at the seven sites where Pathways was originally piloted. The main focus of the discussions was on perceptions of the ways in which participation had impacted on health, well-being and return to work. The discussions were audio-recorded and fully transcribed for analysis using a text analysis framework to enable the development and refinement of categories and overarching patterns in the data. Perceived impacts on health and well-being included a more positive outlook, social contact, changed perceptions of conditions and improvements in health. Some customers also reported an increase in their vocational activity and others felt ready to embark on new activities. Factors associated with positive outcomes included the extent and quality of contact with CMP staff and practical advice about condition management. Factors impeding positive employment outcomes related mainly to obstacles to returning to work. The results indicated that CMP can assist customers to learn about and manage their health conditions and increase their vocational activity, and that CMP therefore provides a promising means of enabling people with long-term health conditions to regain a fulfilling, productive life.

  18. The Electronic CardioMetabolic Program (eCMP) for Patients With Cardiometabolic Risk: A Randomized Controlled Trial.

    PubMed

    Azar, Kristen M J; Koliwad, Suneil; Poon, Tak; Xiao, Lan; Lv, Nan; Griggs, Robert; Ma, Jun

    2016-05-27

    Effective lifestyle interventions targeting high-risk adults that are both practical for use in ambulatory care settings and scalable at a population management level are needed. Our aim was to examine the potential effectiveness, feasibility, and acceptability of delivering an evidence-based Electronic Cardio-Metabolic Program (eCMP) for improving health-related quality of life, improving health behaviors, and reducing cardiometabolic risk factors in ambulatory care high-risk adults. We conducted a randomized, wait-list controlled trial with 74 adults aged ≥18 years recruited from a large multispecialty health care organization. Inclusion criteria were (1) BMI ≥35 kg/m(2) and prediabetes, previous gestational diabetes and/or metabolic syndrome, or (2) BMI ≥30 kg/m(2) and type 2 diabetes and/or cardiovascular disease. Participants had a mean age of 59.7 years (SD 11.2), BMI 37.1 kg/m(2) (SD 5.4) and were 59.5% female, 82.4% white. Participants were randomized to participate in eCMP immediately (n=37) or 3 months later (n=37). eCMP is a 6-month program utilizing video conferencing, online tools, and pre-recorded didactic videos to deliver evidence-based curricula. Blinded outcome assessments were conducted at 3 and 6 months postbaseline. Data were collected and analyzed between 2014 and 2015. The primary outcome was health-related quality of life. Secondary outcomes included biometric cardiometabolic risk factors (eg, body weight), self-reported diet and physical activity, mental health status, retention, session attendance, and participant satisfaction. Change in quality of life was not significant in both immediate and delayed participants. Both groups significantly lost weight and reduced waist circumference at 6 months, with some cardiometabolic factors trending accordingly. Significant reduction in self-reported anxiety and perceived stress was seen in the immediate intervention group at 6 months. Retention rate was 93% at 3 months and 86% at 6 months post-baseline. Overall eCMP attendance was high with 59.5-83.8% of immediate and delayed intervention participants attending 50% of the virtual stress management and behavioral lifestyle sessions and 37.8-62.2% attending at least 4 out of 7 in-person physical activity sessions. The intervention received high ratings for satisfaction. The technology-assisted eCMP is a feasible and well-accepted intervention and may significantly decrease cardiometabolic risk among high-risk individuals. Clinicaltrials.gov NCT02246400; https://clinicaltrials.gov/ct2/show/NCT02246400 (Archived by WebCite at http://www.webcitation.org/6h6mWWokP).

  19. Soluble minerals in chemical evolution. II - Characterization of the adsorption of 5-prime-AMP and 5-prime-CMP on a variety of soluble mineral salts

    NASA Technical Reports Server (NTRS)

    Chan, Stephen; Orenberg, James; Lahav, Noam

    1987-01-01

    The adsorption of 5-prime-AMP and 5-prime-CMP is studied in the saturated solutions of several mineral salts as a function of pH, ionic strength, and surface area of the solid salt. It is suggested that the adsorption which results from the binding between the nucleotide molecule and the salt surface is due to electrostatic forces. The adsorption is reversible in nature and decreases with increasing ionic strength.

  20. Acute γ-secretase Inhibition of Nonhuman Primate CNS Shifts Amyloid Precursor Protein (APP) Metabolism from Amyloid-β Production to Alternative APP Fragments without Amyloid-β Rebound

    PubMed Central

    Cook, Jacquelynn J.; Wildsmith, Kristin R.; Gilberto, David B.; Holahan, Marie A.; Kinney, Gene G.; Mathers, Parker D.; Michener, Maria S.; Price, Eric A.; Shearman, Mark S.; Simon, Adam J.; Wang, Jennifer X.; Wu, Guoxin; Yarasheski, Kevin E.; Bateman, Randall J.

    2010-01-01

    The accumulation of amyloid beta (Aβ) in Alzheimer’s disease is caused by an imbalance of production and clearance, which leads to increased soluble Aβ species and extracellular plaque formation in the brain. Multiple Aβ-lowering therapies are currently in development: an important goal is to characterize the molecular mechanisms of action and effects on physiological processing of Aβ, as well as other amyloid precursor protein (APP) metabolites, in models which approximate human Aβ physiology. To this end, we report the translation of the human in vivo stable-isotope-labeling kinetics (SILK) method to a rhesus monkey cisterna magna ported (CMP) nonhuman primate model, and use the model to test the mechanisms of action of a γ-secretase inhibitor (GSI). A major concern of inhibiting the enzymes which produce Aβ (β- and γ-secretase) is that precursors of Aβ may accumulate and cause a rapid increase in Aβ production when enzyme inhibition discontinues. In this study, the GSI MK-0752 was administered to conscious CMP rhesus monkeys in conjunction with in vivo stable isotope labeling, and dose-dependently reduced newly generated CNS Aβ. In contrast to systemic Aβ metabolism, CNS Aβ production was not increased after the GSI was cleared. These results indicate that most of the CNS APP was metabolized to products other than Aβ, including C-terminal truncated forms of Aβ: 1–14, 1–15 and 1–16; this demonstrates an alternative degradation pathway for CNS amyloid precursor protein during γ-secretase inhibition. PMID:20463236

  1. Does increased postural threat lead to more conscious control of posture?

    PubMed

    Huffman, J L; Horslen, B C; Carpenter, M G; Adkin, A L

    2009-11-01

    Although it is well established that postural threat modifies postural control, little is known regarding the underlying mechanism(s) responsible for these changes. It is possible that changes in postural control under conditions of elevated postural threat result from a shift to a more conscious control of posture. The purpose of this study was to determine the influence of elevated postural threat on conscious control of posture and to determine the relationship between conscious control and postural control measures. Forty-eight healthy young adults stood on a force plate at two different surface heights: ground level (LOW) and 3.2-m above ground level (HIGH). Centre of pressure measures calculated in the anterior-posterior (AP) direction were mean position (AP-MP), root mean square (AP-RMS) and mean power frequency (AP-MPF). A modified state-specific version of the Movement Specific Reinvestment Scale was used to measure conscious motor processing (CMP) and movement self-consciousness (MSC). Balance confidence, fear of falling, perceived stability, and perceived and actual anxiety indicators were also collected. A significant effect of postural threat was found for movement reinvestment as participants reported more conscious control and a greater concern about their posture at the HIGH height. Significant correlations between CMP and MSC with AP-MP were observed as participants who consciously controlled and were more concerned for their posture leaned further away from the platform edge. It is possible that changes in movement reinvestment can influence specific aspects of posture (leaning) but other aspects may be immune to these changes (amplitude and frequency).

  2. Characterization of mechanical properties of pericardium tissue using planar biaxial tension and flexural deformation.

    PubMed

    Murdock, Kyle; Martin, Caitlin; Sun, Wei

    2018-01-01

    Flexure is an important mode of deformation for native and bioprosthetic heart valves. However, mechanical characterization of bioprosthetic leaflet materials has been done primarily through planar tensile testing. In this study, an integrated experimental and computational cantilever beam bending test was performed to characterize the flexural properties of glutaraldehyde-treated bovine and porcine pericardium of different thicknesses. A strain-invariant based structural constitutive model was used to model the pericardial mechanical behavior quantified through the bending tests of this study and the planar biaxial tests previously performed. The model parameters were optimized through an inverse finite element (FE) procedure in order to describe both sets of experimental data. The optimized material properties were implemented in FE simulations of transcatheter aortic valve (TAV) deformation. It was observed that porcine pericardium TAV leaflets experienced significantly more flexure than bovine when subjected to opening pressurization, and that the flexure may be overestimated using a constitutive model derived from purely planar tensile experimental data. Thus, modeling of a combination of flexural and biaxial tensile testing data may be necessary to more accurately describe the mechanical properties of pericardium, and to computationally investigate bioprosthetic leaflet function and design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Quantum electromechanics on silicon nitride nanomembranes

    PubMed Central

    Fink, J. M.; Kalaee, M.; Pitanti, A.; Norte, R.; Heinzle, L.; Davanço, M.; Srinivasan, K.; Painter, O.

    2016-01-01

    Radiation pressure has recently been used to effectively couple the quantum motion of mechanical elements to the fields of optical or microwave light. Integration of all three degrees of freedom—mechanical, optical and microwave—would enable a quantum interconnect between microwave and optical quantum systems. We present a platform based on silicon nitride nanomembranes for integrating superconducting microwave circuits with planar acoustic and optical devices such as phononic and photonic crystals. Using planar capacitors with vacuum gaps of 60 nm and spiral inductor coils of micron pitch we realize microwave resonant circuits with large electromechanical coupling to planar acoustic structures of nanoscale dimensions and femtoFarad motional capacitance. Using this enhanced coupling, we demonstrate microwave backaction cooling of the 4.48 MHz mechanical resonance of a nanobeam to an occupancy as low as 0.32. These results indicate the viability of silicon nitride nanomembranes as an all-in-one substrate for quantum electro-opto-mechanical experiments. PMID:27484751

  4. Quantum electromechanics on silicon nitride nanomembranes.

    PubMed

    Fink, J M; Kalaee, M; Pitanti, A; Norte, R; Heinzle, L; Davanço, M; Srinivasan, K; Painter, O

    2016-08-03

    Radiation pressure has recently been used to effectively couple the quantum motion of mechanical elements to the fields of optical or microwave light. Integration of all three degrees of freedom-mechanical, optical and microwave-would enable a quantum interconnect between microwave and optical quantum systems. We present a platform based on silicon nitride nanomembranes for integrating superconducting microwave circuits with planar acoustic and optical devices such as phononic and photonic crystals. Using planar capacitors with vacuum gaps of 60 nm and spiral inductor coils of micron pitch we realize microwave resonant circuits with large electromechanical coupling to planar acoustic structures of nanoscale dimensions and femtoFarad motional capacitance. Using this enhanced coupling, we demonstrate microwave backaction cooling of the 4.48 MHz mechanical resonance of a nanobeam to an occupancy as low as 0.32. These results indicate the viability of silicon nitride nanomembranes as an all-in-one substrate for quantum electro-opto-mechanical experiments.

  5. Novel bio-synthetic hybrid materials and coculture systems for musculoskeletal tissue engineering

    NASA Astrophysics Data System (ADS)

    Lee, Hyeseung Janice

    Tissue Engineering is a truly exciting field of this age, trying to regenerate and repair impaired tissues. Unlike the old artificial implants, tissue engineering aims at making a long-term functional biological replacement. One strategy for such tissue engineering requires the following three components: cells, scaffolds, and soluble factors. Cells are cultured in a three-dimensional (3D) scaffold with medium containing various soluble factors. Once a tissue is developed in vitro, then it is implanted in vivo. The overall goal of this thesis was to develop novel bio-synthetic hybrid scaffolds and coculture system for musculoskeletal tissue engineering. The most abundant cartilage extracellular matrix (ECM) components are collagen and glycosaminoglycan (GAG), which are the natural scaffold for chondrocytes. As two different peptides, collagen mimetic peptide (CMP) and hyaluronic acid binding peptide (HABPep) were previously shown to bind to collagen and hyaluronic acid (HA) of GAG, respectively, it was hypothesized that immobilizing CMP and HABP on 3D scaffold would results in an interaction between ECM components and synthetic scaffolds via peptide-ECM bindings. CMP or HABPep-conjugated photopolymerizable poly(ethylene oxide) diacrylate (PEODA) hydrogels were synthesized and shown to retain encapsulated collagen or HA, respectively. This result supported that conjugated CMP and HABPep can interact with collagen and HA, respectively, and can serve as biological linkers in 3D synthetic hydrogels. When chondrocytes or mesenchymal stem cells (MSCs) were seeded, cells in CMP-conjugated scaffolds produced significantly more amount of type II collagen and GAG, compared to those in control scaffolds. Moreover, MSCs cultured in CMP-conjugated scaffolds exhibited lower level of hypertrophic markers, cbfa-1 and type X collagen. These results demonstrated that enhanced interaction between collagen and scaffold via CMP improves chondrogenesis of chondrocytes and MSCs and further reduces hypertrophy of differentiating MSCs. On the other hand, although cells in HABPep-conjugated scaffolds produced less ECM components, they survived and proliferated significantly more than those in control, resulting in overall increase in ECM contents per scaffold. Once implanted in vivo, HABPep-conjugated constructs increased GAG and type II collagen contents further, compared to those of the control hydrogel. These results showed that enhanced interaction between HA and scaffold via HABPep improved the in vitro culture expansion of MSCs and further ECM production in vivo. Effects of cell-secreted bioactive factors via cell-cell communication on stem cell differentiation were also investigated in 3D bilayer system. First, when mesenchymal progenitor cells (MPCs) were cocultured with ES-derived cells (ESDC), morphogenetic factors secreted by ESDCs showed a potential to improve MPC chondrogenesis in both control and chondrogenic medium by increasing not only MPC's chondrogenic gene expression, but also ECM production. Moreover, the effect of ESDC cell-mediated chondrogenesis of MSC could not be mimicked by chondrogenic medium supplemented with TGF-beta1 and dexamethasone. Secondly, coculturing hepatic cells enhanced specific chondrogenic differentiation of ES cells in the 3D bilayer system. These studies demonstrated that cell-secreted soluble factors can be used to guide stem cell differentiation.

  6. Mechanical failure modes of chronically implanted planar silicon-based neural probes for laminar recording

    PubMed Central

    Kozai, Takashi D. Y.; Catt, Kasey; Li, Xia; Gugel, Zhannetta V.; Olafsson, Valur T.; Vazquez, Alberto L.; Cui, X. Tracy

    2014-01-01

    Penetrating intracortical electrode arrays that record brain activity longitudinally are powerful tools for basic neuroscience research and emerging clinical applications. However, regardless of the technology used, signals recorded by these electrodes degrade over time. The failure mechanisms of these electrodes are understood to be a complex combination of the biological reactive tissue response and material failure of the device over time. While mechanical mismatch between the brain tissue and implanted neural electrodes have been studied as a source of chronic inflammation and performance degradation, the electrode failure caused by mechanical mismatch between different material properties and different structural components within a device have remained poorly characterized. Using Finite Element Model (FEM) we simulate the mechanical strain on a planar silicon electrode. The results presented here demonstrate that mechanical mismatch between iridium and silicon leads to concentrated strain along the border of the two materials. This strain is further focused on small protrusions such as the electrical traces in planar silicon electrodes. These findings are confirmed with chronic in vivo data (133–189 days) in mice by correlating a combination of single-unit electrophysiology, evoked multi-unit recordings, electrochemical impedance spectroscopy, and scanning electron microscopy from traces and electrode sites with our modeling data. Several modes of mechanical failure of chronically implanted planar silicon electrodes are found that result in degradation and/or loss of recording. These findings highlight the importance of strains and material properties of various subcomponents within an electrode array. PMID:25453935

  7. Luminescence properties and energy transfer of site-sensitive Ca(6-x-y)Mg(x-z)(PO(4))(4):Eu(y)(2+),Mn(z)(2+) phosphors and their application to near-UV LED-based white LEDs.

    PubMed

    Kwon, Ki Hyuk; Im, Won Bin; Jang, Ho Seong; Yoo, Hyoung Sun; Jeon, Duk Young

    2009-12-21

    On the basis of the structural information that the host material has excellent charge stabilization, blue-emitting Ca(6-x-y)Mg(x)(PO(4))(4):Eu(y)(2+) (CMP:Eu(2+)) phosphors were synthesized and systematically optimized, and their photoluminescence (PL) properties were evaluated. Depending upon the amount of Mg added, the emission efficiency of the phosphors could be enhanced. The substitution of Eu(2+) affected their maximum wavelength (lambda(max)) and thermal stability because the substitution site of Eu(2+) could be varied. To obtain single-phase two-color-emitting phosphors, we incorporated Mn(2+) into CMP:Eu(2+) phosphors. Weak red emission resulting from the forbidden transition of Mn(2+) could be enhanced by the energy transfer from Eu(2+) to Mn(2+) that occurs because of the spectral overlap between the photoluminescence excitation (PLE) spectrum of Mn(2+) and the PL spectrum of Eu(2+). The energy transfer process was confirmed by the luminescence spectra, energy transfer efficiency, and decay curve of the phosphors. Finally, the optimized Ca(6-x-y)Mg(x-z)(PO(4))(4):Eu(y)(2+),Mn(z)(2+) (CMP:Eu(2+),Mn(2+)) phosphors were applied with green emitting Ca(2)MgSi(2)O(7):Eu(2+) (CMS:Eu(2+)) phosphors to ultraviolet (UV) light emitting diode (LED)-pumped white LEDs. The CMS:Eu(2+)-mixed CMP:Eu(2+), Mn(2+)-based white LEDs showed an excellent color rendering index (CRI) of 98 because of the broader emission band and more stable color coordinates than those of commercial Y(3)Al(5)O(12):Ce(3+) (YAG:Ce(3+))-based white LEDs under a forward bias current of 20 mA. The fabricated white LEDs showed very bright natural white light that had the color coordinate of (0.3288, 0.3401), and thus CMP:Eu(2+),Mn(2+) could be regarded as a good candidate for UV LED-based white LEDs.

  8. Comparison Of Planar And Wound Transformers For Flyback Forward And Half-Bridge Space Power Converters

    NASA Astrophysics Data System (ADS)

    Bjorklund, Thomas; Andreasen, John; Brosen, Finn; Matthiesen, Erik; Poulsen, Ole

    2011-10-01

    Planar technology has now entered the space domain. The big advantages of planar technology are; - Low profile - Excellent repeatability - Economical assembly - Mechanical integrity - Superior thermal characteristics This is why the general power industries increasingly are using planar magnetics in more and more applications, and therefore also why we see a rising demand for the usability of the planar technology among space application developers. The differences between wound and planar transformers have been mapped with a detailed look on the various parasitic component values, such as DC- and AC- resistance, Leakage Inductance and stray capacitance, and revealed the magnitude of the advantages of planar technology. This technical solution is proven in prototypes that have been built in different combination of PCB's and copper foil, with more or less interleaving of windings. Furthermore the transformers have been designed with several outputs stacked together with a fairly high number of primary turns, in order to have planar transformers similar to the wound types that are generally used for space applications.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafsson, Helena; Runesson, Johan; Lundqvist, Jessica

    The objective of the EU-funded integrated project ACuteTox is to develop a strategy in which general cytotoxicity, together with organ-specific toxicity and biokinetic features, are used for the estimation of human acute systemic toxicity. Our role in the project is to characterise the effect of reference chemicals with regard to neurotoxicity. We studied cell membrane potential (CMP), noradrenalin (NA) uptake, acetylcholine esterase (AChE) activity, acetylcholine receptor (AChR) signalling and voltage-operated calcium channel (VOCC) function in human neuroblastoma SH-SY5Y cells after exposure to 23 pharmaceuticals, pesticides or industrial chemicals. Neurotoxic alert chemicals were identified by comparing the obtained data with cytotoxicitymore » data from the neutral red uptake assay in 3T3 mouse fibroblasts. Furthermore, neurotoxic concentrations were correlated with estimated human lethal blood concentrations (LC50). The CMP assay was the most sensitive assay, identifying eight chemicals as neurotoxic alerts and improving the LC50 correlation for nicotine, lindane, atropine and methadone. The NA uptake assay identified five neurotoxic alert chemicals and improved the LC50 correlation for atropine, diazepam, verapamil and methadone. The AChE, AChR and VOCC assays showed limited potential for detection of acute toxicity. The CMP assay was further evaluated by testing 36 additional reference chemicals. Five neurotoxic alert chemicals were generated and orphendrine and amitriptyline showed improved LC50 correlation. Due to the high sensitivity and the simplicity of the test protocol, the CMP assay constitutes a good candidate assay to be included in an in vitro test strategy for prediction of acute systemic toxicity.« less

  10. High accuracy differential pressure measurements using fluid-filled catheters - A feasibility study in compliant tubes.

    PubMed

    Rotman, Oren Moshe; Weiss, Dar; Zaretsky, Uri; Shitzer, Avraham; Einav, Shmuel

    2015-09-18

    High accuracy differential pressure measurements are required in various biomedical and medical applications, such as in fluid-dynamic test systems, or in the cath-lab. Differential pressure measurements using fluid-filled catheters are relatively inexpensive, yet may be subjected to common mode pressure errors (CMP), which can significantly reduce the measurement accuracy. Recently, a novel correction method for high accuracy differential pressure measurements was presented, and was shown to effectively remove CMP distortions from measurements acquired in rigid tubes. The purpose of the present study was to test the feasibility of this correction method inside compliant tubes, which effectively simulate arteries. Two tubes with varying compliance were tested under dynamic flow and pressure conditions to cover the physiological range of radial distensibility in coronary arteries. A third, compliant model, with a 70% stenosis severity was additionally tested. Differential pressure measurements were acquired over a 3 cm tube length using a fluid-filled double-lumen catheter, and were corrected using the proposed CMP correction method. Validation of the corrected differential pressure signals was performed by comparison to differential pressure recordings taken via a direct connection to the compliant tubes, and by comparison to predicted differential pressure readings of matching fluid-structure interaction (FSI) computational simulations. The results show excellent agreement between the experimentally acquired and computationally determined differential pressure signals. This validates the application of the CMP correction method in compliant tubes of the physiological range for up to intermediate size stenosis severity of 70%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. The relationship of insulin resistance estimated by triglyceride glucose index and coronary plaque characteristics.

    PubMed

    Won, Ki-Bum; Kim, Yun Seok; Lee, Byoung Kwon; Heo, Ran; Han, Donghee; Lee, Ji Hyun; Lee, Sang-Eun; Sung, Ji Min; Cho, Iksung; Park, Hyung-Bok; Cho, In-Jeong; Chang, Hyuk-Jae

    2018-05-01

    The triglyceride glucose (TyG) index is a useful surrogate marker for insulin resistance, which is an important risk factor for coronary artery disease (CAD). However, data on the relationship of the TyG index and coronary plaque characteristics are limited.This study included 2840 participants with near-normal renal function who underwent coronary computed tomography angiography. CAD was defined as the presence of any plaques, and obstructive CAD was defined as the presence of plaques with ≥50% stenosis. The relationship between the TyG index and noncalcified plaque (NCP), calcified or mixed plaque (CMP), and coronary artery calcium score (CACS) was evaluated.All participants were stratified into 4 groups based on the quartiles of the TyG index. The prevalence of CAD and obstructive CAD significantly increased with increasing quartiles. The risk for NCP and obstructive NCP was not different among all groups. However, compared with group I (lowest quartile), the risk for CMP was higher in groups III (odds ratio [OR]: 1.438) and IV (highest quartile) (OR: 1.895) (P < .05), and that for obstructive CMP was higher in groups II (OR: 1.469), III (OR: 1.595), and IV (OR: 2.168) (P < .05). Multivariate regression analysis showed that the TyG index was associated with an increased risk for CAD (OR: 1.700), obstructive CAD (OR: 1.692), and CACS >400 (OR: 1.448) (P < .05).The TyG index was independently associated with the presence and severity of CAD due to an increased risk for CMP.

  12. Global geometry of non-planar 3-body motions

    NASA Astrophysics Data System (ADS)

    Salehani, Mahdi Khajeh

    2011-12-01

    The aim of this paper is to study the global geometry of non-planar 3-body motions in the realms of equivariant Differential Geometry and Geometric Mechanics. This work was intended as an attempt at bringing together these two areas, in which geometric methods play the major role, in the study of the 3-body problem. It is shown that the Euler equations of a three-body system with non-planar motion introduce non-holonomic constraints into the Lagrangian formulation of mechanics. Applying the method of undetermined Lagrange multipliers to study the dynamics of three-body motions reduced to the level of moduli space {bar{M}} subject to the non-holonomic constraints yields the generalized Euler-Lagrange equations of non-planar three-body motions in {bar{M}} . As an application of the derived dynamical equations in the level of {bar{M}} , we completely settle the question posed by A. Wintner in his book [The analytical foundations of Celestial Mechanics, Sections 394-396, 435 and 436. Princeton University Press (1941)] on classifying the constant inclination solutions of the three-body problem.

  13. Fabrication of the planar angular rotator using the CMOS process

    NASA Astrophysics Data System (ADS)

    Dai, Ching-Liang; Chang, Chien-Liu; Chen, Hung-Lin; Chang, Pei-Zen

    2002-05-01

    In this investigation we propose a novel planar angular rotator fabricated by the conventional complementary metal-oxide semiconductor (CMOS) process. Following the 0.6 μm single poly triple metal (SPTM) CMOS process, the device is completed by a simple maskless, post-process etching step. The rotor of the planar angular rotator rotates around its geometric center with electrostatic actuation. The proposed design adopts an intelligent mechanism including the slider-crank system to permit simultaneous motion. The CMOS planar angular rotator could be driven with driving voltages of around 40 V. The design proposed here has a shorter response time and longer life, without problems of friction and wear, compared to the more common planar angular micromotor.

  14. Metal Ion-Assembled Micro-Collagen Heterotrimers

    PubMed Central

    LeBruin, Lyndelle Toni; Banerjee, Sunandan; O'Rourke, Bruce Delany; Case, Martin Ashley

    2011-01-01

    Collagen mimetic peptides (CMPs) provide critical insight into the assembly, stability and structure of the triple helical collagen protein. The majority of natural fibrous collagens are aab or abc heterotrimers, yet few examples of heterotrimeric CMPs have been reported. Previously CMP heterotrimers have only been accessible by total syntheses or by introducing complementary interstrand electrostatic or steric interactions. Here we describe an abc CMP heterotrimer in which each contributing CMP consists of only three amino acids: glycine, proline and 4-hydroxyproline. Assembly of the heterotrimeric triple helix is directed by a combination of metal-ion coordination to set the relative register of the CMPs, and minimization of valence frustration to direct heterotrimerization. Assembly of the four-component mixture is facile and extremely rapid, and equilibration to the abc heterotrimer occurs within a few hours at modestly elevated temperatures. The melting temperatures of the metal-assembled collagen trimers are higher by some 30 °C than the apopeptide assemblies. Two iterations of the design are described, and the outcomes suggest possibilities for designing self-assembling abc and abb heterotrimers. PMID:21590759

  15. Interaction of Tl +3 with mononucleotides: metal ion binding and sugar conformation

    NASA Astrophysics Data System (ADS)

    Nafisi, Sh.; Mohajerani, N.; Hadjiakhoondi, A.; Monajemi, M.; Garib, F.

    2001-05-01

    The interaction of Tl 3+ with sodium salts of adenosine-5'-monophosphate (5'-AMP), guanosine-5'-monophosphate (5'-GMP), cytidine-5'-monophosphate (5'-CMP), thymidine 5'-monophosphate (5'-dTMP) in ratios 1 and 2 have been studied in neutral pH. The solid complexes were isolated and characterized by Fourier transform infrared (FTIR) and 1H NMR spectroscopy. In the Tl 2(AMP) 3, Tl 3+ binds directly to N-7 and indirectly to the N-1 position of the pyrimidine ring and phosphate group with sugar moiety in C2'-endoanti. The crystalline salt of Tl 2(GMP) 3 show direct Tl-N-7 and Tl-PO 3(inner-sphere) binding. The conformation of ribose moiety in Tl 2(GMP) 3 is C3'-endoanti. In the Tl 2(CMP) 3, Tl 3+ bind directly to N-3 and PO32- (inner-sphere). The conformation of ribose moiety in Tl 2(CMP) 3 is C2'-endoanti. In the Tl 2(dTMP) 3, Tl 3+ bind indirectly to carbonyl group. The sugar moiety in Tl 2(dTMP) 3 is C3'-endoanti.

  16. Identification of a novel ovine PrP polymorphism and scrapie-resistant genotypes for St. Croix White and a related composite breed.

    PubMed

    Seabury, C M; Derr, J N

    2003-01-01

    Susceptibility to scrapie is primarily controlled by polymorphisms in the ovine prion protein gene (PRNP). Here, we report a novel ovine exon three PRNP polymorphism (SNP G346C; P116), its association with the ovine ARQ allele (P116A136R154Q171), and two new genotypes (PARQ/ARR; PARQ/ARQ) for the St. Croix White (SCW) breed and a related composite (CMP) breed developed for meat production. The (P116) polymorphism occurs between the N-terminal cleavage site and the hydrophobic region of the ovine prion protein, a region which exhibits extreme conservation across mammalian taxa. The relatively high frequency (0.75) of resistant ARR alleles and the absence of ARQ alleles for the SCW ewes used as breeding stock for CMP resulted in significant genic differentiation (P = 0.0123; S.E. = 0.00113). Additionally, the majority of the SCW (66.7%) and CMP (65.4%) sampled possessed genotypes considered resistant or nearly resistant to scrapie and experimental BSE (bovine spongiform encephalopathy. Copyright 2003 S. Karger AG, Basel

  17. Surface Wave Metrology for Copper/Low-k Interconnects

    NASA Astrophysics Data System (ADS)

    Gostein, M.; Maznev, A. A.; Mazurenko, A.; Tower, J.

    2005-09-01

    We review recent advances in the application of laser-induced surface acoustic wave metrology to issues in copper/low-k interconnect development and manufacturing. We illustrate how the metrology technique can be used to measure copper thickness uniformity on a range of features from solid pads to arrays of lines, focusing on specific processing issues in copper electrochemical deposition (ECD) and chemical-mechanical polishing (CMP). In addition, we review recent developments in surface wave metrology for the characterization of low-k dielectric elastic modulus, including the ability to measure within-wafer uniformity of elastic modulus and to characterize porous, anisotropic films.

  18. On the genetic control of planar growth during tissue morphogenesis in plants.

    PubMed

    Enugutti, Balaji; Kirchhelle, Charlotte; Schneitz, Kay

    2013-06-01

    Tissue morphogenesis requires extensive intercellular communication. Plant organs are composites of distinct radial cell layers. A typical layer, such as the epidermis, is propagated by stereotypic anticlinal cell divisions. It is presently unclear what mechanisms coordinate cell divisions relative to the plane of a layer, resulting in planar growth and maintenance of the layer structure. Failure in the regulation of coordinated growth across a tissue may result in spatially restricted abnormal growth and the formation of a tumor-like protrusion. Therefore, one way to approach planar growth control is to look for genetic mutants that exhibit localized tumor-like outgrowths. Interestingly, plants appear to have evolved quite robust genetic mechanisms that govern these aspects of tissue morphogenesis. Here we provide a short summary of the current knowledge about the genetics of tumor formation in plants and relate it to the known control of coordinated cell behavior within a tissue layer. We further portray the integuments of Arabidopsis thaliana as an excellent model system to study the regulation of planar growth. The value of examining this process in integuments was established by the recent identification of the Arabidopsis AGC VIII kinase UNICORN as a novel growth suppressor involved in the regulation of planar growth and the inhibition of localized ectopic growth in integuments and other floral organs. An emerging insight is that misregulation of central determinants of adaxial-abaxial tissue polarity can lead to the formation of spatially restricted multicellular outgrowths in several tissues. Thus, there may exist a link between the mechanisms regulating adaxial-abaxial tissue polarity and planar growth in plants.

  19. [Improving the CMP appointment waiting time for children and adolescents].

    PubMed

    Cani, Pascale

    2014-01-01

    The increasing activity of mental health centres for children and adolescents and longer waiting times in obtaining a first appointment have led an area of child psychiatry to question the organisation of new consultation applications. Two CMP in the sector had a waiting period of over 40 days for half of the patients. Two improvement actions were implemented:the implementation of organisation and reception nurses and the development of a new applications management process. The evaluation after one year showed a decrease of half of the appointment waiting time without changing the non showed up rate.

  20. The Electronic CardioMetabolic Program (eCMP) for Patients With Cardiometabolic Risk: A Randomized Controlled Trial

    PubMed Central

    Koliwad, Suneil; Poon, Tak; Xiao, Lan; Lv, Nan; Griggs, Robert; Ma, Jun

    2016-01-01

    Background Effective lifestyle interventions targeting high-risk adults that are both practical for use in ambulatory care settings and scalable at a population management level are needed. Objective Our aim was to examine the potential effectiveness, feasibility, and acceptability of delivering an evidence-based Electronic Cardio-Metabolic Program (eCMP) for improving health-related quality of life, improving health behaviors, and reducing cardiometabolic risk factors in ambulatory care high-risk adults. Methods We conducted a randomized, wait-list controlled trial with 74 adults aged ≥18 years recruited from a large multispecialty health care organization. Inclusion criteria were (1) BMI ≥35 kg/m2 and prediabetes, previous gestational diabetes and/or metabolic syndrome, or (2) BMI ≥30 kg/m2 and type 2 diabetes and/or cardiovascular disease. Participants had a mean age of 59.7 years (SD 11.2), BMI 37.1 kg/m2 (SD 5.4) and were 59.5% female, 82.4% white. Participants were randomized to participate in eCMP immediately (n=37) or 3 months later (n=37). eCMP is a 6-month program utilizing video conferencing, online tools, and pre-recorded didactic videos to deliver evidence-based curricula. Blinded outcome assessments were conducted at 3 and 6 months postbaseline. Data were collected and analyzed between 2014 and 2015. The primary outcome was health-related quality of life. Secondary outcomes included biometric cardiometabolic risk factors (eg, body weight), self-reported diet and physical activity, mental health status, retention, session attendance, and participant satisfaction. Results Change in quality of life was not significant in both immediate and delayed participants. Both groups significantly lost weight and reduced waist circumference at 6 months, with some cardiometabolic factors trending accordingly. Significant reduction in self-reported anxiety and perceived stress was seen in the immediate intervention group at 6 months. Retention rate was 93% at 3 months and 86% at 6 months post-baseline. Overall eCMP attendance was high with 59.5-83.8% of immediate and delayed intervention participants attending 50% of the virtual stress management and behavioral lifestyle sessions and 37.8-62.2% attending at least 4 out of 7 in-person physical activity sessions. The intervention received high ratings for satisfaction. Conclusions The technology-assisted eCMP is a feasible and well-accepted intervention and may significantly decrease cardiometabolic risk among high-risk individuals. Trial Registration Clinicaltrials.gov NCT02246400; https://clinicaltrials.gov/ct2/show/NCT02246400 (Archived by WebCite at http://www.webcitation.org/6h6mWWokP) PMID:27234480

  1. Method of producing an inertial sensor

    NASA Technical Reports Server (NTRS)

    Shcheglov, Kirill V. (Inventor); Challoner, A. Dorian (Inventor)

    2008-01-01

    The present invention discloses an inertial sensor comprising a planar mechanical resonator with embedded sensing and actuation for substantially in-plane vibration and having a central rigid support for the resonator. At least one excitation or torquer electrode is disposed within an interior of the resonator to excite in-plane vibration of the resonator and at least one sensing or pickoff electrode is disposed within the interior of the resonator for sensing the motion of the excited resonator. In one embodiment, the planar resonator includes a plurality of slots in an annular pattern; in another embodiment, the planar mechanical resonator comprises four masses; each embodiment having a simple degenerate pair of in-plane vibration modes.

  2. Negative refraction and planar focusing based on parity-time symmetric metasurfaces.

    PubMed

    Fleury, Romain; Sounas, Dimitrios L; Alù, Andrea

    2014-07-11

    We introduce a new mechanism to realize negative refraction and planar focusing using a pair of parity-time symmetric metasurfaces. In contrast to existing solutions that achieve these effects with negative-index metamaterials or phase conjugating surfaces, the proposed parity-time symmetric lens enables loss-free, all-angle negative refraction and planar focusing in free space, without relying on bulk metamaterials or nonlinear effects. This concept may represent a pivotal step towards loss-free negative refraction and highly efficient planar focusing by exploiting the largely uncharted scattering properties of parity-time symmetric systems.

  3. Chaos vibration of pinion and rack steering trapezoidal mechanism containing two clearances

    NASA Astrophysics Data System (ADS)

    Wei, Daogao; Wang, Yu; Jiang, Tong; Zheng, Sifa; Zhao, Wenjing; Pan, Zhijie

    2017-08-01

    The multi-clearances of breaking type steering trapezoidal mechanism joints influences vehicle steering stability. Hence, to ascertain the influence of clearance value on steering stability, this paper takes the steering mechanism of a certain vehicle type as a prototype that can be simplified into a planar six-bar linkage, then establishes the system dynamic differential equations after considering the two clearances of tie rods and the steering knuckle arms. The influence of the clearance parameters on the movement stability of the steering mechanism is studied using a numerical computation method. Results show that when the two clearances are equal, the planar movement of the tie rods changes from period-doubling to chaos as the clearances increase. When the two clearances are 0.25 mm and 1.5 mm respectively, the planar movements of the two side tie rods come into chaos, causing the steering stability to deteriorate. Moreover, with the increase of clearances, turning moment fluctuates more intensively and the peak value increases.

  4. Clomipramine and Benznidazole Act Synergistically and Ameliorate the Outcome of Experimental Chagas Disease

    PubMed Central

    García, Mónica Cristina; Ponce, Nicolás Eric; Sanmarco, Liliana Maria; Manzo, Rubén Hilario; Jimenez-Kairuz, Alvaro Federico

    2016-01-01

    Chagas disease is an important public health problem in Latin America, and its treatment by chemotherapy with benznidazole (BZ) or nifurtimox remains unsatisfactory. In order to design new alternative strategies to improve the current etiological treatments, in the present work, we comprehensively evaluated the in vitro and in vivo anti-Trypanosoma cruzi effects of clomipramine (CMP) (a parasite-trypanothione reductase-specific inhibitor) combined with BZ. In vitro studies, carried out using a checkerboard technique on trypomastigotes (T. cruzi strain Tulahuen), revealed a combination index (CI) of 0.375, indicative of a synergistic effect of the drug combination. This result was correlated with the data obtained in infected BALB/c mice. We observed that during the acute phase (15 days postinfection [dpi]), BZ at 25 mg/kg of body weight/day alone decreased the levels of parasitemia compared with those of the control group, but when BZ was administered with CMP, the drug combination completely suppressed the parasitemia due to the observed synergistic effect. Furthermore, in the chronic phase (90 dpi), mice treated with both drugs showed less heart damage as assessed by the histopathological analysis, index of myocardial inflammation, and levels of heart injury biochemical markers than mice treated with BZ alone at the reference dose (100 mg/kg/day). Collectively, these data support the notion that CMP combined with low doses of BZ diminishes cardiac damage and inflammation during the chronic phase of cardiomyopathy. The synergistic activity of BZ-CMP clearly suggests a potential drug combination for Chagas disease treatment, which would allow a reduction of the effective dose of BZ and an increase in therapeutic safety. PMID:27067322

  5. Chinese medicine patterns in patients with post-stroke dementia.

    PubMed

    Tang, Nou-Ying; Liu, Chung-Hsiang; Liu, Hsu-Jan; Li, Tsai-Chung; Liu, Jui-Chen; Chen, Ping-Kun; Hsieh, Ching-Liang

    2012-04-01

    A stroke often results in post-stroke dementia, a rapid decline in memory and intelligence causing dysfunctions in daily life. The Chinese medicine doctor uses 4 examinations of inspection, listening, smelling, and feeling to determine the Chinese medicine pattern (CMP). Therefore, the purpose of the present study was to investigate the CMP in patients with post-stroke dementia. A total of 101 stroke patients were examined, consistent with the DSM IV diagnostic criteria of the American Psychiatric Association, as well as the National Institute of Neurological Disorders and Stroke-Association International pour Ia Recherche et I'Enseignement en Neurosciences vascular dementia diagnostic criteria of post-stroke dementia. 100 patients (99.0%) were KEDP (kidney essence deficiency pattern, shèn jīng kuī xū zhèng, ), 83 patients were AHLYP (ascendant hyperactivity of liver yang pattern, gān yáng shàng kàng zhèng, ), 83 patients were QBDP (qi-blood deficiency pattern, qì xuè kuī xū zhèng, ), 81 patients were SBOCP (static blood obstructing the collaterals pattern, yū xuè zǔ luò zhèng, ), 72 patients were BSTRP (bowels stagnation turbidity retention pattern, fǔ zhì zhuó liú zhèng, ), 50 patients were FHIEP (fire heat interior excess pattern, huǒ rè nèi sheng zhèng, ), and 39 participants (38.6%) were PTOOP (phlegm turbidity obstructing the orifices pattern, tán zhuó zǔ qiào zhèng, ); one to 31 patients have at least 2 CMPs simultaneously. In conclusion, the most CMP is KEDP CMP in the post-stroke dementia patients, and one patient may have one or at least 2 CMPs simultaneously.

  6. Implementing a hybrid approach to select patients for care management: variations across practices.

    PubMed

    Vogeli, Christine; Spirt, Jenna; Brand, Richard; Hsu, John; Mohta, Namita; Hong, Clemens; Weil, Eric; Ferris, Timothy G

    2016-05-01

    Appropriate selection of patients is key to the success of care management programs (CMPs). Hybrid patient selection approaches, in which large data assets are culled to develop a list of patients for more targeted clinical review, are increasingly common. We sought to describe the patient and practice characteristics associated with high-risk patient identification and selection for a CMP during clinical review, and to explore variation across primary care practices. Retrospective cohort study. Standardized estimates of Medicare beneficiaries identified as high risk for poor outcomes and high medical expense, and appropriate for a CMP within a large Pioneer Accountable Care Organization, were developed using mixed effects logistic models. Study subjects were 2685 Medicare beneficiaries aged over 18 (includes individuals eligible for Medicare due to a disability) aligned to 35 primary care practices in 2013. Independent predictors of patient identification as high risk include older age; higher risk score; recent increases in medical conditions; higher numbers of medical hospitalizations, skilled nursing facility days, and primary care physician visits; and shorter relationships with the primary care physician. Older age, and lower income, but no prior hospice use were independently associated with patient selection for a CMP among the subset of patients identified as being high risk. Adjusted predicted percents of high-risk patients varied significantly across practices overall and for 5 of the 6 patient characteristics that were independently associated with identification as high risk. Inconsistency in high-risk patient identification and selection for a CMP may reflect differences in practice resources, but also highlight the need for continual training and feedback in order to protect against unintentional biases.

  7. Particulate emissions calculations from fall tillage operations using point and remote sensors.

    PubMed

    Moore, Kori D; Wojcik, Michael D; Martin, Randal S; Marchant, Christian C; Bingham, Gail E; Pfeiffer, Richard L; Prueger, John H; Hatfield, Jerry L

    2013-07-01

    Soil preparation for agricultural crops produces aerosols that may significantly contribute to seasonal atmospheric particulate matter (PM). Efforts to reduce PM emissions from tillage through a variety of conservation management practices (CMPs) have been made, but the reductions from many of these practices have not been measured in the field. A study was conducted in California's San Joaquin Valley to quantify emissions reductions from fall tillage CMP. Emissions were measured from conventional tillage methods and from a "combined operations" CMP, which combines several implements to reduce tractor passes. Measurements were made of soil moisture, bulk density, meteorological profiles, filter-based total suspended PM (TSP), concentrations of PM with an equivalent aerodynamic diameter ≤10 μm (PM) and PM with an equivalent aerodynamic diameter ≤2.5 μm (PM), and aerosol size distribution. A mass-calibrated, scanning, three-wavelength light detection and ranging (LIDAR) procedure estimated PM through a series of algorithms. Emissions were calculated via inverse modeling with mass concentration measurements and applying a mass balance to LIDAR data. Inverse modeling emission estimates were higher, often with statistically significant differences. Derived PM emissions for conventional operations generally agree with literature values. Sampling irregularities with a few filter-based samples prevented calculation of a complete set of emissions through inverse modeling; however, the LIDAR-based emissions dataset was complete. The CMP control effectiveness was calculated based on LIDAR-derived emissions to be 29 ± 2%, 60 ± 1%, and 25 ± 1% for PM, PM, and TSP size fractions, respectively. Implementation of this CMP provides an effective method for the reduction of PM emissions. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. ROLES OF ADIPOCYTES AND FIBROBLASTS IN ACTIVATION OF THE ALTERNATIVE PATHWAY OF COMPLEMENT IN INFLAMMATORY ARTHRITIS IN MICE

    PubMed Central

    Arend, William P.; Mehta, Gaurav; Antonioli, Alexandra H.; Takahashi, Minoru; Takahashi, Kazue; Stahl, Gregory L.; Holers, V. Michael; Banda, Nirmal K.

    2013-01-01

    The complement system is involved in mediation of joint damage in rheumatoid arthritis, with evidence suggesting activation of both the classical and alternative pathways (AP). The AP is both necessary and sufficient to mediate collagen antibody-induced arthritis (CAIA), an experimental animal model of immune complex (IC)-induced joint disease. The AP in mice is dependent on MASP-1/3 cleavage of pro-factor D (pro-FD) into mature FD. The objectives of the present study were to determine the cells synthesizing MASP-1/3 and pro-FD in synovial tissue. CAIA was studied in wild-type C57BL/6 mice, and the localization of mRNA and protein for FD and MASP-1/3 in synovial adipose tissue (SAT) and fibroblast-like synoviocytes (FLS) was determined using various techniques, including laser capture micro-dissection (LCM). SAT was the sole source of mRNA for pro-FD. Cultured differentiated 3T3 adipocytes, a surrogate for SAT, produced pro-FD but no mature FD. FLS were the main source of MASP-1/3 mRNA and protein. Using cartilage micro-particles (CMP) coated with anti-collagen mAb and serum from MASP-1/3−/− mice as a source of factor B, pro-FD in 3T3 supernatants was cleaved into mature FD by MASP-1/3 in FLS supernatants. The mature FD was eluted from the CMP, and was not present in the supernatants from the incubation with CMP, indicating that cleavage of pro-FD into mature FD by MASP-1 occurred on the CMP. These results demonstrate that pathogenic activation of the AP may occur in the joint through IC adherent to cartilage and the local production of necessary AP proteins by adipocytes and FLS. PMID:23650618

  9. Self-reported work ability and work performance in workers with chronic nonspecific musculoskeletal pain.

    PubMed

    de Vries, Haitze J; Reneman, Michiel F; Groothoff, Johan W; Geertzen, Jan H B; Brouwer, Sandra

    2013-03-01

    To assess self-reported work ability and work performance of workers who stay at work despite chronic nonspecific musculoskeletal pain (CMP), and to explore which variables were associated with these outcomes. In a cross-sectional study we assessed work ability (Work Ability Index, single item scale 0-10) and work performance (Health and Work Performance Questionnaire, scale 0-10) among 119 workers who continued work while having CMP. Scores of work ability and work performance were categorized into excellent (10), good (9), moderate (8) and poor (0-7). Hierarchical multiple regression and logistic regression analysis was used to analyze the relation of socio-demographic, pain-related, personal- and work-related variables with work ability and work performance. Mean work ability and work performance were 7.1 and 7.7 (poor to moderate). Hierarchical multiple regression analysis revealed that higher work ability scores were associated with lower age, better general health perception, and higher pain self-efficacy beliefs (R(2) = 42 %). Higher work performance was associated with lower age, higher pain self-efficacy beliefs, lower physical work demand category and part-time work (R(2) = 37 %). Logistic regression analysis revealed that work ability ≥8 was significantly explained by age (OR = 0.90), general health perception (OR = 1.04) and pain self-efficacy (OR = 1.15). Work performance ≥8 was explained by pain self-efficacy (OR = 1.11). Many workers with CMP who stay at work report poor to moderate work ability and work performance. Our findings suggest that a subgroup of workers with CMP can stay at work with high work ability and performance, especially when they have high beliefs of pain self-efficacy. Our results further show that not the pain itself, but personal and work-related factors relate to work ability and work performance.

  10. Enhanced efficacy of anticonvulsants when combined with levetiracetam in soman-exposed rats.

    PubMed

    Myhrer, Trond; Enger, Siri; Jonassen, Morten; Aas, Pål

    2011-12-01

    Results from studies based on microinfusions into seizure controlling brain sites (area tempestas, medial septum, perirhinal cortex, posterior piriform cortex) have shown that procyclidine, muscimol, caramiphen, and NBQX, but not ketamine, exert anticonvulsant effects against soman-induced seizures. The purpose of the present study was to examine whether levetiracetam (Keppra(®)) may enhance the anticonvulsant potency of the above drugs to become optimally effective when used systemically. Levetiracetam has a unique profile in preclinical models of epilepsy and has been shown to increase the potency of other antiepileptic drugs. The rats were pretreated with pyridostigmine (0.1mg/kg) to enhance survival and received anticonvulsants 20 min after onset of seizures evoked by soman (1.15 × LD(50)). The results showed that no single drug was able to terminate seizure activity. However, when levetiracetam (LEV; 50mg/kg) was combined with either procyclidine (PCD; 10mg/kg) or caramiphen (CMP; 10mg/kg) complete cessation of seizures was achieved, but the nicotinic antagonist mecamylamine was needed to induce full motor rest in some rats. In a subsequent experiment, rats were pretreated with HI-6 (125 mg/kg) to enhance survival and treatment started 40 min following seizure onset of a soman dose of 1.6 × LD(50). LEV (50mg/kg) combined with either PCD (20mg/kg) or CMP (20mg/kg) terminated seizure activity, but the survival rate was considerably higher for LEV+PCD than LEV+CMP. Both therapies could also save the lives of rats that were about to die 5-10 min after seizure onset. Thus, the combination of LEV and PCD or CMP may make up a model of a future autoinjector being effective regardless of the time of application. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Clinical efficacy of EDTA ultrasonic activation in the reduction of endotoxins and cultivable bacteria.

    PubMed

    Herrera, D R; Martinho, F C; de-Jesus-Soares, A; Zaia, A A; Ferraz, C C R; Almeida, J F A; Gomes, B P F A

    2017-10-01

    This clinical study was conducted to investigate the influence of 17% ethylenediaminetetraacetic acid (EDTA) ultrasonic activation after chemomechanical preparation (CMP) on eliminating/reducing oral bacterial lipopolysaccharides (known as endotoxins) and cultivable bacteria in teeth with pulp necrosis and apical periodontitis. Samples were taken from 24 root canals at several clinical periods: S1 - before CMP; S2 - after CMP; S3 - after EDTA: G1 - with ultrasonic activation (n = 12) and G2 - without ultrasonic activation (n = 12). Root canals were instrumented using Mtwo rotary files. Culture techniques were used to determine the number of colony-forming units (CFU). Limulus amebocyte lysate (LAL) was used to measure endotoxin levels. Friedman's and Wilcoxon signed-rank tests were used to compare the amount of bacteria and endotoxin levels in each period (P < 0.05). Endotoxins and cultivable bacteria were recovered in 100% of the initial samples (S1). CMP was effective in reducing endotoxins and bacterial load (all with P < 0.05). Higher values of endotoxin reduction were achieved with EDTA ultrasonic activation [G1, 0.02 EU mL -1 (range 0.01-0.75)] compared with the no activation group [G2, 1.13 EU mL -1 (range 0.01-8.34)] (P < 0.05). Regarding bacterial reduction, no statistically significant difference was found in S3, regardless of the group (G1, G2, P > 0.05). Chemomechanical preparation was effective in reducing bacteria and endotoxins, but could not completely eliminate them. The ultrasonic activation of EDTA was effective in further reducing endotoxin levels in the root canals of teeth with pulp necrosis and apical periodontitis. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  12. Ternary borate-nucleoside complex stabilization by Ribonuclease A demonstrates phosphate mimicry

    PubMed Central

    Gabel, Scott A.; London, Robert E.

    2010-01-01

    Phosphate esters play a central role in cellular energetics, biochemical activation, signal transduction and conformational switching. The structural homology of the borate anion with phosphate, combined with its ability to spontaneously esterify hydroxyl groups, suggested that phosphate-ester recognition sites on proteins might exhibit significant affinity for non-enzymatically formed borate esters. 11B NMR studies and activity measurements on ribonuclease A in the presence of borate and several cytidine analogs demonstrate the formation of a stable ternary RNase A•3′-deoxycytidine-2′-borate ternary complex that mimics the complex formed between RNase A and a 2′-cytidine monophosphate (2′-CMP) inhibitor. Alternatively, no slowly exchanging borate resonance is observed for a ternary RNase A, borate, 2′-deoxycytidine mixture, demonstrating the critical importance of the 2′-hydroxyl group for complex formation. Titration of the ternary complex with 2′-CMP shows that it can displace the bound borate ester with a binding constant that is close to the reported inhibition constant of RNase A by 2′CMP. RNase A binding of a cyclic cytidine-2′,3′-borate ester, which is a structural homolog of the cytidine-2′,3′-cyclic phosphate substrate, could also be demonstrated. The apparent dissociation constant for the cytidine-2′,3′-borate•RNase A complex is 0.8 mM, which compares with a Michaelis constant of 11 mM for cCMP at pH 7, indicating considerably stronger binding. However, the value is 1000-fold larger than the reported dissociation constant of the RNase A complex with uridine-vanadate. These results are consistent with recent reports suggesting that in situ formation of borate esters that mimic the corresponding phosphate esters support enzyme catalysis. PMID:17957392

  13. SEMICONDUCTOR TECHNOLOGY Effects of the reciprocating parameters of the carrier on material removal rate and non-uniformity in CMP

    NASA Astrophysics Data System (ADS)

    Cailing, Wang; Renke, Kang; Zhuji, Jin; Dongming, Guo

    2010-12-01

    Based on the Preston equation, the mathematical model of the material removal rate (MRR), aiming at a line-orbit chemical mechanical polisher, is established. The MRR and the material removal non-uniformity (MRNU) are numerically calculated by MATLAB, and the effects of the reciprocating parameters on the MRR and the MRNU are discussed. It is shown that the smaller the inclination angle and the larger the amplitude, the higher the MRR and the lower the MRNU. The reciprocating speed of the carrier plays a minor role to improve the MRR and decrease the MRNU. The results provide a guide for the design of a polisher and the determination of a process in line-orbit chemical mechanical polishing.

  14. The Effects of Topographical Patterns and Sizes on Neural Stem Cell Behavior

    PubMed Central

    Qi, Lin; Li, Ning; Huang, Rong; Song, Qin; Wang, Long; Zhang, Qi; Su, Ruigong; Kong, Tao; Tang, Mingliang; Cheng, Guosheng

    2013-01-01

    Engineered topographical manipulation, a paralleling approach with conventional biochemical cues, has recently attracted the growing interests in utilizations to control stem cell fate. In this study, effects of topological parameters, pattern and size are emphasized on the proliferation and differentiation of adult neural stem cells (ANSCs). We fabricate micro-scale topographical Si wafers with two different feature sizes. These topographical patterns present linear micro-pattern (LMP), circular micro-pattern (CMP) and dot micro-pattern (DMP). The results show that the three topography substrates are suitable for ANSC growth, while they all depress ANSC proliferation when compared to non-patterned substrates (control). Meanwhile, LMP and CMP with two feature sizes can both significantly enhance ANSC differentiation to neurons compared to control. The smaller the feature size is, the better upregulation applies to ANSC for the differentiated neurons. The underlying mechanisms of topography-enhanced neuronal differentiation are further revealed by directing suppression of mitogen-activated protein kinase/extracellular signaling-regulated kinase (MAPK/Erk) signaling pathway in ANSC using U0126, known to inhibit the activation of Erk. The statistical results suggest MAPK/Erk pathway is partially involved in topography-induced differentiation. These observations provide a better understanding on the different roles of topographical cues on stem cell behavior, especially on the selective differentiation, and facilitate to advance the field of stem cell therapy. PMID:23527077

  15. Gibbs–Thomson Effect in Planar Nanowires: Orientation and Doping Modulated Growth

    DOE PAGES

    Shen, Youde; Chen, Renjie; Yu, Xuechao; ...

    2016-06-02

    Epitaxy-enabled bottom-up synthesis of self-assembled planar nanowires via the vapor–liquid–solid mechanism is an emerging and promising approach toward large-scale direct integration of nanowire-based devices without postgrowth alignment. In this paper, by examining large assemblies of indium tin oxide nanowires on yttria-stabilized zirconia substrate, we demonstrate for the first time that the growth dynamics of planar nanowires follows a modified version of the Gibbs–Thomson mechanism, which has been known for the past decades to govern the correlations between thermodynamic supersaturation, growth speed, and nanowire morphology. Furthermore, the substrate orientation strongly influences the growth characteristics of epitaxial planar nanowires as opposed tomore » impact at only the initial nucleation stage in the growth of vertical nanowires. The rich nanowire morphology can be described by a surface-energy-dependent growth model within the Gibbs–Thomson framework, which is further modulated by the tin doping concentration. Our experiments also reveal that the cutoff nanowire diameter depends on the substrate orientation and decreases with increasing tin doping concentration. Finally, these results enable a deeper understanding and control over the growth of planar nanowires, and the insights will help advance the fabrication of self-assembled nanowire devices.« less

  16. Gibbs-Thomson Effect in Planar Nanowires: Orientation and Doping Modulated Growth.

    PubMed

    Shen, Youde; Chen, Renjie; Yu, Xuechao; Wang, Qijie; Jungjohann, Katherine L; Dayeh, Shadi A; Wu, Tom

    2016-07-13

    Epitaxy-enabled bottom-up synthesis of self-assembled planar nanowires via the vapor-liquid-solid mechanism is an emerging and promising approach toward large-scale direct integration of nanowire-based devices without postgrowth alignment. Here, by examining large assemblies of indium tin oxide nanowires on yttria-stabilized zirconia substrate, we demonstrate for the first time that the growth dynamics of planar nanowires follows a modified version of the Gibbs-Thomson mechanism, which has been known for the past decades to govern the correlations between thermodynamic supersaturation, growth speed, and nanowire morphology. Furthermore, the substrate orientation strongly influences the growth characteristics of epitaxial planar nanowires as opposed to impact at only the initial nucleation stage in the growth of vertical nanowires. The rich nanowire morphology can be described by a surface-energy-dependent growth model within the Gibbs-Thomson framework, which is further modulated by the tin doping concentration. Our experiments also reveal that the cutoff nanowire diameter depends on the substrate orientation and decreases with increasing tin doping concentration. These results enable a deeper understanding and control over the growth of planar nanowires, and the insights will help advance the fabrication of self-assembled nanowire devices.

  17. Promoting Local Ownership: Lessons Learned from Process of Transitioning Clinical Mentoring of HIV Care and Treatment in Ethiopia.

    PubMed

    Kassie, Getnet M; Belay, Teklu; Sharma, Anjali; Feleke, Getachew

    2018-01-01

    Focus on improving access and quality of HIV care and treatment gained acceptance in Ethiopia through the work of the International Training and Education Center for Health. The initiative deployed mobile field-based teams and capacity building teams to mentor health care providers on clinical services and program delivery in three regions, namely Tigray, Amhara, and Afar. Transitioning of the clinical mentoring program (CMP) began in 2012 through capacity building and transfer of skills and knowledge to local health care providers and management. The initiative explored the process of transitioning a CMP on HIV care and treatment to local ownership and documented key lessons learned. A mixed qualitative design was used employing focus group discussions, individual in-depth interviews, and review of secondary data. The participants included regional focal persons, mentors, mentees, multidisciplinary team members, and International Training and Education Center for Health (I-TECH) staff. Three facilities were selected in each region. Data were collected by trained research assistants using customized guides for interviews and with data extraction format. The interviews were recorded and fully transcribed. Open Code software was used for coding and categorizing the data. A total of 16 focus group discussions and 20 individual in-depth interviews were conducted. The critical processes for transitioning a project were: establishment of a mentoring transition task force, development of a roadmap to define steps and directions for implementing the transition, and signing of a memorandum of understanding (MOU) between the respective regional health bureaus and I-TECH Ethiopia to formalize the transition. The elements of implementation included mentorship and capacity building, joint mentoring, supportive supervision, review meetings, and independent mentoring supported by facility-based mechanisms: multidisciplinary team meetings, case-based discussions, and catchment area meetings. The process of transitioning the CMP to local ownership involved signing an MOU, training of mentors, and building capacity of mentoring in each region. The experience shed light on how to transition donor-supported work to local country ownership, with key lessons related to strengthening the structures of regional health bureaus, and other facilities addressing critical issues and ensuring continuity of the facility-based activities.

  18. The performances of different overlay mark types at 65nm node on 300-mm wafers

    NASA Astrophysics Data System (ADS)

    Tseng, H. T.; Lin, Ling-Chieh; Huang, I. H.; Lin, Benjamin S.; Huang, Chin-Chou K.; Huang, Chien-Jen

    2005-05-01

    The integrated circuit (IC) manufacturing factories have measured overlay with conventional "box-in-box" (BiB) or "frame-in-frame" (FiF) structures for many years. Since UMC played as a roll of world class IC foundry service provider, tighter and tighter alignment accuracy specs need to be achieved from generation to generation to meet any kind of customers' requirement, especially according to International Technology Roadmap for Semiconductors (ITRS) 2003 METROLOGY section1. The process noises resulting from dishing, overlay mark damaging by chemical mechanism polishing (CMP), and the variation of film thickness during deposition are factors which can be very problematic in mark alignment. For example, the conventional "box-in-box" overlay marks could be damaged easily by CMP, because the less local pattern density and wide feature width of the box induce either dishing or asymmetric damages for the measurement targets, which will make the overlay measurement varied and difficult. After Advanced Imaging Metrology (AIM) overlay targets was introduced by KLA-Tencor, studies in the past shown AIM was more robust in overlay metrology than conventional FiF or BiB targets. In this study, the applications of AIM overlay marks under different process conditions will be discussed and compared with the conventional overlay targets. To evaluate the overlay mark performance against process variation on 65nm technology node in 300-mm wafer, three critical layers were chosen in this study. These three layers were Poly, Contact, and Cu-Metal. The overlay targets used for performance comparison were BiB and Non-Segmented AIM (NS AIM) marks. We compared the overlay mark performance on two main areas. The first one was total measurement uncertainty (TMU)3 related items that include Tool Induced Shift (TIS) variability, precision, and matching. The other area is the target robustness against process variations. Based on the present study AIM mark demonstrated an equal or better performance in the TMU related items under our process conditions. However, when non-optimized tungsten CMP was introduced in the tungsten contact process, due to the dense grating line structure design, we found that AIM mark was much more robust than BiB overlay target.

  19. Mechanical Strain Determines Cilia Length, Motility, and Planar Position in the Left-Right Organizer.

    PubMed

    Chien, Yuan-Hung; Srinivasan, Shyam; Keller, Ray; Kintner, Chris

    2018-05-07

    The Xenopus left-right organizer (LRO) breaks symmetry along the left-right axis of the early embryo by producing and sensing directed ciliary flow as a patterning cue. To carry out this process, the LRO contains different ciliated cell types that vary in cilia length, whether they are motile or sensory, and how they position their cilia along the anterior-posterior (A-P) planar axis. Here, we show that these different cilia features are specified in the prospective LRO during gastrulation, based on anisotropic mechanical strain that is oriented along the A-P axis, and graded in levels along the medial-lateral axis. Strain instructs ciliated cell differentiation by acting on a mesodermal prepattern present at blastula stages, involving foxj1. We propose that differential strain is a graded, developmental cue, linking the establishment of an A-P planar axis to cilia length, motility, and planar location during formation of the Xenopus LRO. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. A Study of Phased Array Antennas for NASA's Deep Space Network

    NASA Technical Reports Server (NTRS)

    Jamnejad, Vahraz; Huang, John; Cesarone, Robert J.

    2001-01-01

    In this paper we briefly discuss various options but focus on the feasibility of the phased arrays as a viable option for this application. Of particular concern and consideration will be the cost, reliability, and performance compared to the present 70-meter antenna system, particularly the gain/noise temperature levels in the receive mode. Many alternative phased arrays including planar horizontal arrays, hybrid mechanically/electronically steered arrays, phased array of mechanically steered reflectors, multi-faceted planar arrays, phased array-fed lens antennas, and planar reflect-arrays are compared and their viability is assessed. Although they have many advantages including higher reliability, near-instantaneous beam switching or steering capability, the cost of such arrays is presently prohibitive and it is concluded that the only viable array options at the present are the arrays of a few or many small reflectors. The active planar phased arrays, however, may become feasible options in the next decade and can be considered for deployment in smaller configurations as supplementary options.

  1. Optical RAM-enabled cache memory and optical routing for chip multiprocessors: technologies and architectures

    NASA Astrophysics Data System (ADS)

    Pleros, Nikos; Maniotis, Pavlos; Alexoudi, Theonitsa; Fitsios, Dimitris; Vagionas, Christos; Papaioannou, Sotiris; Vyrsokinos, K.; Kanellos, George T.

    2014-03-01

    The processor-memory performance gap, commonly referred to as "Memory Wall" problem, owes to the speed mismatch between processor and electronic RAM clock frequencies, forcing current Chip Multiprocessor (CMP) configurations to consume more than 50% of the chip real-estate for caching purposes. In this article, we present our recent work spanning from Si-based integrated optical RAM cell architectures up to complete optical cache memory architectures for Chip Multiprocessor configurations. Moreover, we discuss on e/o router subsystems with up to Tb/s routing capacity for cache interconnection purposes within CMP configurations, currently pursued within the FP7 PhoxTrot project.

  2. Chromatic multifocal pupillometer for objective early diagnosis of mild cognitive impairment

    NASA Astrophysics Data System (ADS)

    Rotenstreich, Ygal; Ben-Ner, Daniel; Sharvit-Ginon, Inbal; Ravona-Springer, Ramit; Beeri, Michal; Sher, Ifat

    2017-02-01

    The pupil responses of 15 cognitively normal subjects (ages 60-74) were examined in response to 76 focal red and blue light stimuli using a chromatic multifocal pupillometer (CMP). Subjects with low cognitive scores as determined as by Montreal Cognitive Assessment testing, presented significantly weaker and sluggish pupil responses in peripheral and central locations of the visual field in response to red and blue light. Our findings suggests that the CMP may present a novel objective, non-invasive, low cost technique for early diagnosis of cognitive decline that may serve for Alzheimer Disease prevention and as sensitive outcome measure of therapeutic effects.

  3. Micro Computer Feedback Report for the Strategic Leader Development Inventory

    DTIC Science & Technology

    1993-05-01

    POS or NEG variables CALL CREATE MEM DIR ;make a memory directory JC SELS ;exat I error CALL SELECT-SCREEN ;dlsplay select screen JC SEL4 ;no flles in...get keyboaI Input CMP AL,1Bh3 ;ls I an Esc key ? JNZ SEL2 ;X not goto nrod test G-95 JMP SEL4 ;Exit SEL2: CMP AL,OOh Iskapick? JZ SEL ;I YES exit loop...position CALL READ DATE ;gat DOS daoe od 4e CALL F4ND -ERO ;kxlae OW In data ue JC SEL.5 SEL4 : CALL RELEASE MEM DIR ;release meu block CLC ;cler carry fag

  4. Relation between isokinetic muscle strength and functional capacity in recreational athletes with chondromalacia patellae.

    PubMed

    Yildiz, Y; Aydin, T; Sekir, U; Cetin, C; Ors, F; Alp Kalyon, T

    2003-12-01

    To investigate the effects of isokinetic exercise on pain and functional test scores of recreational athletes with chondromalacia patellae (CMP) and to examine the correlation between isokinetic parameters and functional tests or pain score. The functional ability of 30 recreational athletes with unilateral CMP was evaluated using six different tests. Pain scores were assessed during daily activities before and after the treatment protocol. Isokinetic exercise sessions were carried out at angular velocities of 60 degrees /s (25-90 degrees range of flexion) and 180 degrees /s (full range). These sessions were repeated three times a week for six weeks. Quadriceps and hamstring peak torque, total work, and endurance ratios had improved significantly after the treatment, as did the functional parameters and pain scores. There was a poor correlation between the extensor endurance ratio and one leg standing test. A moderate correlation between the visual analogue scale and the extensor endurance ratio or flexion endurance ratio was also found. The isokinetic exercise programme used in this study had a positive effect on muscle strength, pain score, and functional ability of knees with CMP. The improvement in the functional capacity did not correlate with the isokinetic parameters.

  5. Genomic and molecular analysis of phage CMP1 from Clavibacter michiganensis subspecies michiganensis

    PubMed Central

    Wittmann, Johannes; Gartemann, Karl-Heinz; Eichenlaub, Rudolf

    2011-01-01

    Bacteriophage CMP1 is a member of the Siphoviridae family that infects specifically the plant-pathogen Clavibacter michiganensis subsp. michiganensis. The linear double- stranded DNA is terminally redundant and not circularly permuted. The complete nucleotide sequence of the bacteriophage CMP1 genome consists of 58,652 bp including the terminal redundant ends of 791 bp. The G+C content of the phage (57%) is significantly lower than that of its host (72.66%). 74 potential open reading frames were identified and annotated by different bioinformatic tools. Two large clusters which encode the early and the late functions could be identified which are divergently transcribed. There are only a few hypothetical gene products with conserved domains and significant similarity to sequences from the databases. Functional analyses confirmed the activity of four gene products, an endonuclease, an exonuclease, a single-stranded DNA binding protein and a thymidylate synthase. Partial genomic sequences of CN77, a phage of Clavibacter michiganensis subsp. nebraskensis, revealed a similar genome structure and significant similarities on the level of deduced amino acid sequences. An endolysin with peptidase activity has been identified for both phages, which may be good tools for disease control of tomato plants against Clavibacter infections. PMID:21687530

  6. Genomic and molecular analysis of phage CMP1 from Clavibacter michiganensis subspecies michiganensis.

    PubMed

    Wittmann, Johannes; Gartemann, Karl-Heinz; Eichenlaub, Rudolf; Dreiseikelmann, Brigitte

    2011-01-01

    Bacteriophage CMP1 is a member of the Siphoviridae family that infects specifically the plant-pathogen Clavibacter michiganensis subsp. michiganensis. The linear double- stranded DNA is terminally redundant and not circularly permuted. The complete nucleotide sequence of the bacteriophage CMP1 genome consists of 58,652 bp including the terminal redundant ends of 791 bp. The G+C content of the phage (57%) is significantly lower than that of its host (72.66%). 74 potential open reading frames were identified and annotated by different bioinformatic tools. Two large clusters which encode the early and the late functions could be identified which are divergently transcribed. There are only a few hypothetical gene products with conserved domains and significant similarity to sequences from the databases. Functional analyses confirmed the activity of four gene products, an endonuclease, an exonuclease, a single-stranded DNA binding protein and a thymidylate synthase. Partial genomic sequences of CN77, a phage of Clavibacter michiganensis subsp. nebraskensis, revealed a similar genome structure and significant similarities on the level of deduced amino acid sequences. An endolysin with peptidase activity has been identified for both phages, which may be good tools for disease control of tomato plants against Clavibacter infections.

  7. Impact of a Traditional Dietary Supplement with Coconut Milk and Soya Milk on the Lipid Profile in Normal Free Living Subjects

    PubMed Central

    Ekanayaka, R. A. I.; Ekanayaka, N. K.; Perera, B.; De Silva, P. G. S. M.

    2013-01-01

    Background. The effects of coconut fat and soya fat on serum lipids are controversial. This study was designed to investigate the lipid effects of coconut milk and soya milk supplementation on the lipid profile of free living healthy subjects. Methods. Sixty (60) healthy volunteers aged 18–57 years were given coconut milk porridge (CMP) for 5 days of the week for 8 weeks, followed by a 2-week washout period, subsequent to which they received isoenergetic soya milk porridge (SMP) for 8 weeks. Results. The LDL (low density lipoprotein) levels decreased with CMP and reached statistical significance in the total study population and in the >130 baseline LDL group. The HDL (high density lipoprotein) levels rose significantly with CMP supplementation (P = 0.000). Conclusions. We conclude that coconut fat in the form of CM does not cause a detrimental effect on the lipid profile in the general population and in fact is beneficial due to the decrease in LDL and rise in HDL. SMP will be of benefit only in those whose baseline LDL levels are elevated. PMID:24282632

  8. Deoxyribonucleic Acid Replication and Expression of Early and Late Bacteriophage Functions in Bacillus subtilis

    PubMed Central

    Pène, Jacques J.; Marmur, Julius

    1967-01-01

    The role of deoxyribonucleic acid (DNA) replication in the control of the synthesis of deoxycytidylate (dCMP) deaminase and lysozyme in Bacillus subtilis infected with bacteriophage 2C has been studied. These phage-induced enzymes are synthesized at different times during the latent period. It was shown by actinomycin inhibition that the formation of the late enzyme (lysozyme) required messenger ribonucleic acid (mRNA) synthesized de novo after the initiation of translation of mRNA which specifies the early function (dCMP deaminase). The inhibition of phage DNA synthesis by mitomycin C prevented the synthesis of lysozyme only when added before the onset of phage DNA replication, but it did not affect the synthesis or action of dCMP deaminase when added at any time during the latent period. Treatment of infected cells with mitomycin C after phage DNA synthesis had reached 8 to 10% of its maximal rate resulted in the production of normal amounts of lysozyme. These observations suggest that mRNA specifying early enzymes can be transcribed from parental (and probably also from progeny) DNA, whereas late functional messengers can be transcribed only after the formation of progeny DNA. PMID:4990039

  9. Characterization of high-resistivity CdTe and Cd0.9Zn0.1Te crystals grown by Bridgman method for radiation detector applications

    NASA Astrophysics Data System (ADS)

    Mandal, Krishna C.; Krishna, Ramesh M.; Pak, Rahmi O.; Mannan, Mohammad A.

    2014-09-01

    CdTe and Cd0.9Zn0.1Te (CZT) crystals have been studied extensively for various applications including x- and γ-ray imaging and high energy radiation detectors. The crystals were grown from zone refined ultra-pure precursor materials using a vertical Bridgman furnace. The growth process has been monitored, controlled, and optimized by a computer simulation and modeling program developed in our laboratory. The grown crystals were thoroughly characterized after cutting wafers from the ingots and processed by chemo-mechanical polishing (CMP). The infrared (IR) transmission images of the post-treated CdTe and CZT crystals showed average Te inclusion size of ~10 μm for CdTe and ~8 μm for CZT crystal. The etch pit density was ≤ 5×104 cm-2 for CdTe and ≤ 3×104 cm-2 for CZT. Various planar and Frisch collar detectors were fabricated and evaluated. From the current-voltage measurements, the electrical resistivity was estimated to be ~ 1.5×1010 Ω-cm for CdTe and 2-5×1011 Ω-cm for CZT. The Hecht analysis of electron and hole mobility-lifetime products (μτe and μτh) showed μτe = 2×10-3 cm2/V (μτh = 8×10-5 cm2/V) and 3-6×10-3 cm2/V (μτh = 4- 6×10-5 cm2/V) for CdTe and CZT, respectively. Detectors in single pixel, Frisch collar, and coplanar grid geometries were fabricated. Detectors in Frisch grid and guard-ring configuration were found to exhibit energy resolution of 1.4% and 2.6 %, respectively, for 662 keV gamma rays. Assessments of the detector performance have been carried out also using 241Am (60 keV) showing energy resolution of 4.2% FWHM.

  10. Eddy current measurement of the thickness of top Cu film of the multilayer interconnects in the integrated circuit (IC) manufacturing process

    NASA Astrophysics Data System (ADS)

    Qu, Zilian; Meng, Yonggang; Zhao, Qian

    2015-03-01

    This paper proposes a new eddy current method, named equivalent unit method (EUM), for the thickness measurement of the top copper film of multilayer interconnects in the chemical mechanical polishing (CMP) process, which is an important step in the integrated circuit (IC) manufacturing. The influence of the underneath circuit layers on the eddy current is modeled and treated as an equivalent film thickness. By subtracting this equivalent film component, the accuracy of the thickness measurement of the top copper layer with an eddy current sensor is improved and the absolute error is 3 nm for sampler measurement.

  11. pH profile of the adsorption of nucleotides onto montmorillonite. I - Selected homoionic clays

    NASA Technical Reports Server (NTRS)

    Lawless, J. G.; Church, F. M.; Mazzurco, J.; Banin, A.; Huff, R.; Kao, J.; Cook, A.; Lowe, T.; Orenberg, J. B.; Edelson, E.

    1985-01-01

    The effect of pH and adsorbed ions on the adsorption of purine and pyrimidine nucleotides on montmorillonite clay was studied experimentally. The specific nucleotides examined were: 5 prime-AMP; 3-prime AMP; and 5 prime-CMP. The pH of the clay samples was adjusted to various levels in the 2-12 pH range using microliter volumes of concentrated acid (1N HCl) and base (1NHNaOH). It was found that preferential adsorption among nulceotides was dependent on the pH level and on the characteristics of the substituted metal cation and anion exchange mechanisms. Below pH 4, adsorption was attributed to cation and anion exchange mechanisms. Above pH 4, however, adsorption was attributed to the complexation mechanisms occurring between the metal cations in the clay exchange site and in the biomolecule. The possible role of homoionic clays in the concentration mechanisms of biomonomers in the prebiotic environment is discussed.

  12. A Comprehensive Model for Real Gas Transport in Shale Formations with Complex Non-planar Fracture Networks

    PubMed Central

    Yang, Ruiyue; Huang, Zhongwei; Yu, Wei; Li, Gensheng; Ren, Wenxi; Zuo, Lihua; Tan, Xiaosi; Sepehrnoori, Kamy; Tian, Shouceng; Sheng, Mao

    2016-01-01

    A complex fracture network is generally generated during the hydraulic fracturing treatment in shale gas reservoirs. Numerous efforts have been made to model the flow behavior of such fracture networks. However, it is still challenging to predict the impacts of various gas transport mechanisms on well performance with arbitrary fracture geometry in a computationally efficient manner. We develop a robust and comprehensive model for real gas transport in shales with complex non-planar fracture network. Contributions of gas transport mechanisms and fracture complexity to well productivity and rate transient behavior are systematically analyzed. The major findings are: simple planar fracture can overestimate gas production than non-planar fracture due to less fracture interference. A “hump” that occurs in the transition period and formation linear flow with a slope less than 1/2 can infer the appearance of natural fractures. The sharpness of the “hump” can indicate the complexity and irregularity of the fracture networks. Gas flow mechanisms can extend the transition flow period. The gas desorption could make the “hump” more profound. The Knudsen diffusion and slippage effect play a dominant role in the later production time. Maximizing the fracture complexity through generating large connected networks is an effective way to increase shale gas production. PMID:27819349

  13. A Comprehensive Model for Real Gas Transport in Shale Formations with Complex Non-planar Fracture Networks.

    PubMed

    Yang, Ruiyue; Huang, Zhongwei; Yu, Wei; Li, Gensheng; Ren, Wenxi; Zuo, Lihua; Tan, Xiaosi; Sepehrnoori, Kamy; Tian, Shouceng; Sheng, Mao

    2016-11-07

    A complex fracture network is generally generated during the hydraulic fracturing treatment in shale gas reservoirs. Numerous efforts have been made to model the flow behavior of such fracture networks. However, it is still challenging to predict the impacts of various gas transport mechanisms on well performance with arbitrary fracture geometry in a computationally efficient manner. We develop a robust and comprehensive model for real gas transport in shales with complex non-planar fracture network. Contributions of gas transport mechanisms and fracture complexity to well productivity and rate transient behavior are systematically analyzed. The major findings are: simple planar fracture can overestimate gas production than non-planar fracture due to less fracture interference. A "hump" that occurs in the transition period and formation linear flow with a slope less than 1/2 can infer the appearance of natural fractures. The sharpness of the "hump" can indicate the complexity and irregularity of the fracture networks. Gas flow mechanisms can extend the transition flow period. The gas desorption could make the "hump" more profound. The Knudsen diffusion and slippage effect play a dominant role in the later production time. Maximizing the fracture complexity through generating large connected networks is an effective way to increase shale gas production.

  14. Improved diffusivity of NaOH solution in autohydrolyzed poplar sapwood chips for chemi-mechanical pulp production.

    PubMed

    Zhang, Honglei; Hou, Qingxi; Liu, Wei; Yue, Zhen; Jiang, Xiaoya; Ma, Xixi

    2018-07-01

    This work investigated the changes in the physical structure of autohydrolyzed poplar sapwood chips and the effect on the subsequent alkali liquor diffusion properties for chemi-mechanical pulping (CMP). An alkali impregnation process was conducted by using the autohydrolyzed poplar sapwood with different levels of autohydrolysis intensity. The results showed that the volume porosity, water constraint capacity, and saturated water absorption of the autohydrolyzed poplar sapwood chips increased. Also, the effective capillary cross-sectional area (ECCSA) in the radial direction and the diffusion coefficients of NaOH solution in both the radial and axial directions all increased. Autohydrolysis pretreatment enhanced the alkali liquor diffusion properties in poplar sapwood chips, and the diffusion coefficient was increased more greatly in the radial direction than that in the axial direction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Effect of magnetization boundary condition on cavity magnon polariton of YIG thin film.

    PubMed

    Jiang, H H; Xiao, Y; Hu, C M; Guo, H; Xia, K

    2018-06-22

    Motivated by recent studies of cavity magnon polariton (CMP), we extended a previous theoretical work to generalize microwave transmission calculation with various magnetization boundary condition of YIG thin film embedded in cavity. It is found that numerical implementation given in this paper can be easily applied to other magnetization boundary condition and extended to magnetic multilayers. Numerical results show that ferromagnetic resonance mode of microwave transmission spectrum, which is absent in previous calculation, can be recovered by altering the pinning condition of surface spins. The demonstrated reliability of our theory opens attractive perspectives for studying CMP of thin film with complicated surface magnetization distribution and magnetic multilayers.

  16. Investigation of the binding between pepsin and nucleoside analogs by spectroscopy and molecular simulation.

    PubMed

    Li, Zhen; Li, Zhigang; Yang, Lingling; Xie, Yuanzhe; Shi, Jie; Wang, Ruiyong; Chang, Junbiao

    2015-03-01

    In this paper, the interactions of pepsin with CYD (cytidine) or nucleoside analogs, including FNC (2'-deoxy-2'-β-fluoro-4'-azidocytidine) and CMP (cytidine monophosphate), were investigated by fluorescence, UV-visible absorption and synchronous fluorescence spectroscopy under mimic physiological conditions. The results indicated that FNC (CYD/CMP) caused the fluorescence quenching by the formation of complex. The binding constants and thermo-dynamic parameters at three different temperatures were obtained. The hydrophobic and electrostatic interactions were the predominant intermolecular forces to stabilize the complex. The F atom in FNC might weaken the binding of nucleoside analog to pepsin. Results showed that CYD was the strongest quencher and bound to pepsin with higher affinity.

  17. Effect of magnetization boundary condition on cavity magnon polariton of YIG thin film

    NASA Astrophysics Data System (ADS)

    Jiang, H. H.; Xiao, Y.; Hu, C. M.; Guo, H.; Xia, K.

    2018-06-01

    Motivated by recent studies of cavity magnon polariton (CMP), we extended a previous theoretical work to generalize microwave transmission calculation with various magnetization boundary condition of YIG thin film embedded in cavity. It is found that numerical implementation given in this paper can be easily applied to other magnetization boundary condition and extended to magnetic multilayers. Numerical results show that ferromagnetic resonance mode of microwave transmission spectrum, which is absent in previous calculation, can be recovered by altering the pinning condition of surface spins. The demonstrated reliability of our theory opens attractive perspectives for studying CMP of thin film with complicated surface magnetization distribution and magnetic multilayers.

  18. Sterically Hindered Square-Planar Nickel(II) Organometallic Complexes: Preparation, Characterization, and Substitution Behavior

    ERIC Educational Resources Information Center

    Martinez, Manuel; Muller, Guillermo; Rocamora, Merce; Rodriguez, Carlos

    2007-01-01

    The series of experiments proposed for advanced undergraduate students deal with both standard organometallic preparative methods in dry anaerobic conditions and with a kinetic study of the mechanisms operating in the substitution of square-planar complexes. The preparation of organometallic compounds is carried out by transmetallation or…

  19. WHY DOES 5-METHYL CHRYSENE INTERACT WITH DNA LIKE BOTH A PLANAR AND A NON-PLANAR POLYCYCLIC AROMATIC HYDROCARBON? QUANTUM MECHANICAL STUDIES

    EPA Science Inventory

    Polycyclic aromatic hydrocarbons are a large class of anthropogenic chemicals found in the environment. Some class members are potent animal carcinogens while other similar class members show little carcinogenic activity. When considering a series of in vitro studies of the int...

  20. COMPARATIVE STUDIES OF THE EFFECT OF POLYCYCLIC AROMATIC HYDROCARBON GEOMETRY ON THE HYDROLYSIS OF DIOL EPOXIDES

    EPA Science Inventory

    Comparative studies of the effect of polycyclic aromatic hydrocarbon geometry on the hydrolysis of diol epoxides

    The interaction of the diol epoxides (DEs) of both planar and non-planar PAHs with water have been examined using quantum mechanical and molecular dynamics. Th...

  1. Phosphorylation of uridine and cytidine by uridine-cytidine kinase.

    PubMed

    Qian, Yahui; Ding, Qingbao; Li, Yanyu; Zou, Zhi; Yan, Bingkun; Ou, Ling

    2014-10-20

    Uridine 5'-monophosphate (5'-UMP) and cytidine 5'-monophosphate (5'-CMP) were biosynthesized by recombinant uridine-cytidine kinase (UCK) and acetate kinase (ACK). The ack and uck genes from Escherichia coli K12 and the uck1, uck2 and ack genes from Lactobacillus bulgaricus ATCC 11842 were cloned and inserted into the plasmid pET-28a. All of the recombinant E. coli strains were capable of overexpressing UCK and ACK, which catalyzed the reaction using guanosine 5'-triphosphate (GTP) as a phosphate intermediate that was regenerated by ACK from acetyl phosphate. The effect of several parameters, including the substrate concentration, the GTP concentration, the temperature and the reaction pH, were optimized. High efficiency was achieved if uridine or cytidine was phosphorylated by UCK encoded by uck from E. coli and ACK encoded by ack from L. bulgaricus. The maximum conversion yield of 5'-UMP and 5'-CMP was 97% at 37 °C and pH 7.5 when 30 mM uridine/cytidine and 0.5mM GTP in a total of 1 mL were used. In addition, the 5'-UMP and 5'-CMP products were very stable in the reaction system and did not undergo significant degradation. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Development of Rapid, Continuous Calibration Techniques and Implementation as a Prototype System for Civil Engineering Materials Evaluation

    NASA Astrophysics Data System (ADS)

    Scott, M. L.; Gagarin, N.; Mekemson, J. R.; Chintakunta, S. R.

    2011-06-01

    Until recently, civil engineering material calibration data could only be obtained from material sample cores or via time consuming, stationary calibration measurements in a limited number of locations. Calibration data are used to determine material propagation velocities of electromagnetic waves in test materials for use in layer thickness measurements and subsurface imaging. Limitations these calibration methods impose have been a significant impediment to broader use of nondestructive evaluation methods such as ground-penetrating radar (GPR). In 2006, a new rapid, continuous calibration approach was designed using simulation software to address these measurement limitations during a Federal Highway Administration (FHWA) research and development effort. This continuous calibration method combines a digitally-synthesized step-frequency (SF)-GPR array and a data collection protocol sequence for the common midpoint (CMP) method. Modeling and laboratory test results for various data collection protocols and materials are presented in this paper. The continuous-CMP concept was finally implemented for FHWA in a prototype demonstration system called the Advanced Pavement Evaluation (APE) system in 2009. Data from the continuous-CMP protocol is processed using a semblance/coherency analysis to determine material propagation velocities. Continuously calibrated pavement thicknesses measured with the APE system in 2009 are presented. This method is efficient, accurate, and cost-effective.

  3. Quality of ω-3 fatty acid enriched low-fat chicken meat patties incorporated with selected levels of linseed flour/oil and canola flour/oil.

    PubMed

    Singh, Ripudaman; Chatli, Manish K; Biswas, Ashim K; Sahoo, Jhari

    2014-02-01

    The aim of the present study was to compare the nutritional, processing and sensory characteristics of low-fat ω-3 enriched fatty acids chicken meat patties (CMP) prepared with the incorporation of 4% linseed flour (T1), 2% canola flour (T2), 3% linseed oil (T3), and 4% canola oil (T4) and to estimate their cost of production. The total fat and crude fiber content was increased (P < 0.05) with the incorporation of linseed flour. The emulsion stability and cooking yield was greater (P < 0.05) in T4 among all the treatments. The percent shrinkage was lower (P < 0.05) in linseed/canola oil incorporated CMP than their respective flours. The colour and appearance and flavour scores were lower (P < 0.05) in canola flour than canola oil incorporated CMP. The texture scores were not influenced (P < 0.05) in linseed-and canola-treated products. The overall acceptability was greatest (P < 0.05) in T4 whereas, lowest (P < 0.05) in T2 among all treated products. The cost of production was increased by 3-5% with the incorporation of linseed and canola oil whereas it was almost same for control and linseed flour.

  4. Relation between isokinetic muscle strength and functional capacity in recreational athletes with chondromalacia patellae

    PubMed Central

    Yildiz, Y; Aydin, T; Sekir, U; Cetin, C; Ors, F; Alp, K

    2003-01-01

    Objectives: To investigate the effects of isokinetic exercise on pain and functional test scores of recreational athletes with chondromalacia patellae (CMP) and to examine the correlation between isokinetic parameters and functional tests or pain score. Methods: The functional ability of 30 recreational athletes with unilateral CMP was evaluated using six different tests. Pain scores were assessed during daily activities before and after the treatment protocol. Isokinetic exercise sessions were carried out at angular velocities of 60°/s (25–90° range of flexion) and 180°/s (full range). These sessions were repeated three times a week for six weeks. Results: Quadriceps and hamstring peak torque, total work, and endurance ratios had improved significantly after the treatment, as did the functional parameters and pain scores. There was a poor correlation between the extensor endurance ratio and one leg standing test. A moderate correlation between the visual analogue scale and the extensor endurance ratio or flexion endurance ratio was also found. Conclusions: The isokinetic exercise programme used in this study had a positive effect on muscle strength, pain score, and functional ability of knees with CMP. The improvement in the functional capacity did not correlate with the isokinetic parameters. PMID:14665581

  5. Development of rapid, continuous calibration techniques and implementation as a prototype system for civil engineering materials evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, M. L.; Gagarin, N.; Mekemson, J. R.

    Until recently, civil engineering material calibration data could only be obtained from material sample cores or via time consuming, stationary calibration measurements in a limited number of locations. Calibration data are used to determine material propagation velocities of electromagnetic waves in test materials for use in layer thickness measurements and subsurface imaging. Limitations these calibration methods impose have been a significant impediment to broader use of nondestructive evaluation methods such as ground-penetrating radar (GPR). In 2006, a new rapid, continuous calibration approach was designed using simulation software to address these measurement limitations during a Federal Highway Administration (FHWA) research andmore » development effort. This continuous calibration method combines a digitally-synthesized step-frequency (SF)-GPR array and a data collection protocol sequence for the common midpoint (CMP) method. Modeling and laboratory test results for various data collection protocols and materials are presented in this paper. The continuous-CMP concept was finally implemented for FHWA in a prototype demonstration system called the Advanced Pavement Evaluation (APE) system in 2009. Data from the continuous-CMP protocol is processed using a semblance/coherency analysis to determine material propagation velocities. Continuously calibrated pavement thicknesses measured with the APE system in 2009 are presented. This method is efficient, accurate, and cost-effective.« less

  6. DESI-MS imaging and NMR spectroscopy to investigate the influence of biodiesel in the structure of commercial rubbers.

    PubMed

    Silva, Lorena M A; Alves Filho, Elenilson G; Simpson, André J; Monteiro, Marcos R; Cabral, Elaine; Ifa, Demian; Venâncio, Tiago

    2017-10-01

    Biodiesel has been introduced as an energetic matrix in several countries around the world. However, the affinity of biodiesel with the components of petrodiesel engines is a growing concern. In order to obtain information regarding the effect of biodiesel on the rubber structure, nuclear magnetic resonance technics under a new technology named as comprehensive multiphase (CMP NMR) and the imaging through desorption electrospray ionization mass spectrometry (DESI-MS imaging) were used. The 1 H CMP-DOSY NMR showed the entrapped fuel into the rubber cavities, which the higher constraint caused by the rubber structure is related to the smaller diffusion coefficient. The less affected type of rubber by biodiesel was ethylene-propylene-diene monomer (EPDM), and the most affected was synthetic rubber nitrile (NBR). The 13 C CMP MAS-SPE experiments also confirmed that the internal region of EPDM was less accessible to the biodiesel molecules (no fuels detected) while other rubbers were more susceptible to the penetration of the fuel. DESI-MS imaging revealed for the first time the topography of the rubbers exposed to fuels. The biodiesel molecules entrapped at the EPDM and NBR pores were in oxidized form, which might degrade the rubber structure at long exposure time. The employed technics enabled the study of dynamic and molecular structure of the mixing complex multiphase. The DOSY under CMP used in this study could prove helpful in assessing the interactions throughout all physical phases (liquid, solid, and gel or semi-solid) by observing swellability caused by the fuel in the rubber. In addition, the DESI-MS was especially valuable to detect the degradation products of biodiesel entangled at the rubber structure. In our knowledge, this was the first report in which chemical changes of commercial rubbers induced by biodiesel and petrodiesel were investigated by means of DESI-MS and DOSY NMR. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The choline-depleted type II pneumonocyte. A model for investigating the synthesis of surfactant lipids.

    PubMed Central

    Anceschi, M M; Di Renzo, G C; Venincasa, M D; Bleasdale, J E

    1984-01-01

    When type II pneumonocytes from adult rats were maintained in a medium that lacked choline, the incorporation of [14C]glycerol into phosphatidylcholine was not greatly diminished during the period that the cells displayed characteristics of type II pneumonocytes. Cells that were maintained in choline-free medium that contained choline oxidase and catalase, however, became depleted of choline and subsequent synthesis of phosphatidylcholine by these cells was responsive to choline in the extracellular medium. Incorporation of [14C]glycerol into phosphatidylcholine by choline-depleted cells was stimulated maximally (approx. 6-fold) by extracellular choline at a concentration (0.05 mM) that also supported the greatest incorporation into phosphatidylglycerol. The incorporation of [14C]glycerol into other glycerophospholipids by choline-depleted cells was not increased by extracellular choline. When cells were incubated in the presence of [3H]cytidine, the choline-dependent stimulation of the synthesis of phosphatidylcholine and phosphatidylglycerol was accompanied by an increased recovery of [3H]CMP. This increased recovery of [3H]CMP reflected an increase in the intracellular amount of CMP from 48 +/- 9 to 76 +/- 16 pmol/10(6) cells. Choline-depleted cells that were exposed to [3H]choline contained [3H]CDP-choline as the principal water-soluble choline derivative. As the extracellular concentration of choline was increase, however, the amount of 3H in phosphocholine greatly exceeded that in all other water-soluble derivatives. Choline-depletion of cells resulted in an increase in the specific activity of CTP:phosphocholine cytidylyltransferase in cell homogenates (from 0.40 +/- 0.15 to 1.31 +/- 0.20 nmol X min-1 X mg of protein-1). These data are indicative that the biosynthesis of phosphatidylcholine is integrated with that of phosphatidylglycerol and are consistent with the proposed involvement of CMP in this integration. The choline-depleted type II pneumonocyte provides a new model for investigating the regulation of CTP:phosphocholine cytidylyltransferase activity. PMID:6548908

  8. Cytosine substituted calix[4]pyrroles: Neutral receptors for 5′-guanosine monophosphate

    PubMed Central

    Sessler, Jonathan L.; Král, Vladimír; Shishkanova, Tatiana V.; Gale, Philip A.

    2002-01-01

    The synthesis and characterization of two cytosine-substituted calix[4]pyrrole conjugates, bearing the appended cytosine attached at either a β- or meso-pyrrolic position, is described. These systems were tested as nucleotide-selective carriers and as active components of nucleotide-sensing ion-selective electrodes at pH 6.6. Studies of carrier selectivity were made using a Pressman-type model membrane system consisting of an initial pH 6.0 aqueous phase, an intervening dichloromethane barrier containing the calix[4]pyrrole conjugate, and a receiving basic aqueous phase. Good selectivity for the Watson–Crick complementary nucleotide, 5′-guanosine monophosphate (5′-GMP), was seen in the case of the meso-linked conjugate with the relative rates of through-membrane transport being 7.7:4.1:1 for 5′-GMP, 5′-AMP, and 5′-CMP, respectively. By contrast, the β-substituted conjugate, while showing a selectivity for 5′-GMP that was enhanced relative to unsubstituted calix[4]pyrrole, was found to transport 5′-CMP roughly 4.5 times more quickly than 5′-GMP. Higher selectivities were also found for 5′-CMP when both the β- and meso-substituted conjugates were incorporated into polyvinyl chloride membranes and tested as ion selective electrodes at pH 6.6, whereas near-equal selectivities were observed for 5′-CMP and 5′-GMP in the case of unsubstituted calix[4]pyrroles. These seemingly disparate results are consistent with a picture wherein the meso-substituted cytosine calix[4]pyrrole conjugate, but not its β-linked congener, is capable of acting as a ditopic receptor, binding concurrently both the phosphate anion and nucleobase portions of 5′-GMP to the calixpyrrole core and cytosine “tails” of the molecule, respectively, with the effect of this binding being most apparent under the conditions of the transport experiments. PMID:11929967

  9. Does Mindfulness Improve After Heart Coherence Training in Patients With Chronic Musculoskeletal Pain and Healthy Subjects? A Pilot Study.

    PubMed

    Soer, Remko; de Jong, Annemieke B; Hofstra, Bert L; Preuper, Henrica R Schiphorst; Reneman, Michiel F

    2015-07-01

    Mindfulness and heart coherence training (HCT) training are applied increasingly in the treatment of patients with chronic musculoskeletal pain (CMP). Questionnaires have been developed to assess changes in mindfulness but no gold standard is available. Explore the relationship between changes in mindfulness scores and changes in heart coherence after 3 sessions of HCT in patients with CMP and in healthy subjects. Ten patients with CMP and 15 healthy subjects were trained in self-regulation with the use of HCT following a standardized stress relief program developed by the HeartMath Institute. A heart coherence-score (HC-score) was constructed with scores ranging from 0-100 with higher scores reflecting more heart rate variability (HRV) coherency. Change scores, Spearman correlation coefficients, and Wilcoxon Signed Rank test were calculated to test relationships and differences between HC-score, the Mindfulness Attention and Awareness Scale (MAAS) and Five Facet Mindfulness Questionnaire (FFMQ). A new questionnaire was constructed to explore on which mindfulness-related domains patients with CMP report changes after HCT. Increases were present on HC-score in healthy subjects (P<.01) and in patients (P<.01) between baseline and follow-up. Effect sizes on change on the MAAS and FFMQ were low. Weak (r<0.25) and non-significant correlations were observed in change scores between HC-score and MAAS or FFMQ. Patients reported significant favorable differences on 6 mindfulness related domains in the new questionnaire: breathing rhythm, physical awareness, positive or negative emotions, recognition of stressful situations, thoughts, and tendency to actively self-regulate. In this pilot study, mindfulness as assessed by the MAAS and FFMQ does not appear to improve after HCT. HRV coherency, MAAS, and FFMQ measure different constructs and are weakly related. It is of great importance to choose and develop valid measures that reflect patients' states of mindfulness. Content and face validity of measures of mindfulness may be considered in the light of performance-based measures.

  10. The peroxynitrite donor 3-morpholinosydnonimine induces reversible changes in electrophysiological properties of neurons of the guinea-pig spinal cord.

    PubMed

    Ashki, N; Hayes, K C; Bao, F

    2008-09-22

    Elevated concentrations of nitric oxide (NO) and peroxynitrite (ONOO(-)) are present within the CNS following neurotrauma and are implicated in the pathogenesis of the accompanying neurologic deficits. We tested the hypothesis that elevated extracellular concentrations of ONOO(-), introduced by the donor 3-morpholinosydnonimine (SIN-1), induce reversible axonal conduction deficits in neurons of the guinea-pig spinal cord. The compound action potential (CAP) and compound membrane potential (CMP) of excised ventral cord white matter were recorded before, during, and after, bathing the tissue (30 min) in varying concentrations (0.125-2.0 mM) of SIN-1 (3.75-60 microM ONOO(-)). The principal results were rapid onset, concentration-dependent, reductions in amplitude of the CAP (P<0.05). At a concentration of 0.25 mM of SIN-1 the reduction in CAP amplitude was fully reversible and was not accompanied by any changes in CMP. At higher concentrations of SIN-1 (> or =0.5 mM) the reversibility was incomplete and there was concurrent depolarization of the CMP. These electrophysiological changes were not evident when the donor had been a priori depleted of ONOO(-) by uric acid or was co-administered with the ONOO(-) scavenger ebselen (3 mM). Immuno-fluorescence staining for nitrotyrosine (Ntyr) revealed extensive nitration of tyrosine residues in neurons exposed to higher concentrations of SIN-1. These results are the first to demonstrate that ONOO(-) induces reversible conduction deficits within axons of the spinal cord. The dissociation of CAP and CMP changes at low concentrations of SIN-1, when the CAP changes were reversible and there was no evidence of nitration of tyrosine residues, is consistent with ONOO(-)-induced alteration in Na+ channel conductance in the axolemma. The results support the view that ONOO(-) contributes to both reversible and non-reversible neurologic deficits following neurotrauma. The reversal of immune-mediated conduction deficits may contribute to spontaneous neurologic deficits following neurotrauma.

  11. The length-force behavior and operating length range of squid muscle vary as a function of position in the mantle wall.

    PubMed

    Thompson, Joseph T; Shelton, Ryan M; Kier, William M

    2014-06-15

    Hollow cylindrical muscular organs are widespread in animals and are effective in providing support for locomotion and movement, yet are subject to significant non-uniformities in circumferential muscle strain. During contraction of the mantle of squid, the circular muscle fibers along the inner (lumen) surface of the mantle experience circumferential strains 1.3 to 1.6 times greater than fibers along the outer surface of the mantle. This transmural gradient of strain may require the circular muscle fibers near the inner and outer surfaces of the mantle to operate in different regions of the length-tension curve during a given mantle contraction cycle. We tested the hypothesis that circular muscle contractile properties vary transmurally in the mantle of the Atlantic longfin squid, Doryteuthis pealeii. We found that both the length-twitch force and length-tetanic force relationships of the obliquely striated, central mitochondria-poor (CMP) circular muscle fibers varied with radial position in the mantle wall. CMP circular fibers near the inner surface of the mantle produced higher force relative to maximum isometric tetanic force, P0, at all points along the ascending limb of the length-tension curve than CMP circular fibers near the outer surface of the mantle. The mean ± s.d. maximum isometric tetanic stresses at L₀ (the preparation length that produced the maximum isometric tetanic force) of 212 ± 105 and 290 ± 166 kN m(-2) for the fibers from the outer and inner surfaces of the mantle, respectively, did not differ significantly (P=0.29). The mean twitch:tetanus ratios for the outer and inner preparations, 0.60 ± 0.085 and 0.58 ± 0.10, respectively, did not differ significantly (P=0.67). The circular fibers did not exhibit length-dependent changes in contraction kinetics when given a twitch stimulus. As the stimulation frequency increased, L₀ was approximately 1.06 times longer than LTW, the mean preparation length that yielded maximum isometric twitch force. Sonomicrometry experiments revealed that the CMP circular muscle fibers operated in vivo primarily along the ascending limb of the length-tension curve. The CMP fibers functioned routinely over muscle lengths at which force output ranged from only 85% to 40% of P₀, and during escape jets from 100% to 30% of P₀. Our work shows that the functional diversity of obliquely striated muscles is much greater than previously recognized. © 2014. Published by The Company of Biologists Ltd.

  12. Integral resonator gyroscope

    NASA Technical Reports Server (NTRS)

    Shcheglov, Kirill V. (Inventor); Challoner, A. Dorian (Inventor); Hayworth, Ken J. (Inventor); Wiberg, Dean V. (Inventor); Yee, Karl Y. (Inventor)

    2008-01-01

    The present invention discloses an inertial sensor having an integral resonator. A typical sensor comprises a planar mechanical resonator for sensing motion of the inertial sensor and a case for housing the resonator. The resonator and a wall of the case are defined through an etching process. A typical method of producing the resonator includes etching a baseplate, bonding a wafer to the etched baseplate, through etching the wafer to form a planar mechanical resonator and the wall of the case and bonding an end cap wafer to the wall to complete the case.

  13. Method of producing an integral resonator sensor and case

    NASA Technical Reports Server (NTRS)

    Challoner, A. Dorian (Inventor); Yee, Karl Y. (Inventor); Shcheglov, Kirill V. (Inventor); Hayworth, Ken J. (Inventor); Wiberg, Dean V. (Inventor)

    2005-01-01

    The present invention discloses an inertial sensor having an integral resonator. A typical sensor comprises a planar mechanical resonator for sensing motion of the inertial sensor and a case for housing the resonator. The resonator and a wall of the case are defined through an etching process. A typical method of producing the resonator includes etching a baseplate, bonding a wafer to the etched baseplate, through etching the wafer to form a planar mechanical resonator and the wall of the case and bonding an end cap wafer to the wall to complete the case.

  14. Integration of Porogen-Based Low-k Films: Influence of Capping Layer Thickness and Long Thermal Anneals on Low-k Damage and Reliability

    NASA Astrophysics Data System (ADS)

    De Roest, David; Vereecke, Bart; Huffman, Craig; Heylen, Nancy; Croes, Kristof; Arai, Hirofumi; Takamure, Noboru; Beynet, Julien; Sprey, Hessel; Matsushita, Kiyohiro; Kobayashi, Nobuyoshi; Verdonck, Patrick; Demuynck, Steven; Beyer, Gerald; Tokei, Zsolt; Struyf, Herbert

    2010-05-01

    This paper discusses integration aspects of a porous low-k film (k ˜2.45) cured with a broadband UV lamp. Different process splits are discussed which could contribute to avoid integration induced damage and improve reliability. The main factor contributing to a successful integration is the presence of a thick (protecting) cap layer partially remaining after chemical mechanical polishing (CMP), which leads to yielding structures with a keff of ˜2.6, a breakdown voltage of ˜6.9 MV/cm and time dependent dielectric breakdown (TDDB) lifetimes in the excess of 100 years. Long thermal anneals restore the k-value but degrade lifetime.

  15. Constrained Quantum Mechanics: Chaos in Non-Planar Billiards

    ERIC Educational Resources Information Center

    Salazar, R.; Tellez, G.

    2012-01-01

    We illustrate some of the techniques to identify chaos signatures at the quantum level using as guiding examples some systems where a particle is constrained to move on a radial symmetric, but non-planar, surface. In particular, two systems are studied: the case of a cone with an arbitrary contour or "dunce hat billiard" and the rectangular…

  16. Failure Mechanisms of GaAs Transistors - A Literature Survey

    DTIC Science & Technology

    1990-03-01

    doping profile cannot be as sharp as with epitaxial methods. This is the result of the statistics of the implantation and the general diffusion that...Speed GaAs Logic Gates 5.1 GaAs PLANAR TRANSITOR STRUCTURES USED IN IC’S Some planar transistor structures used in IC’s with examples of the

  17. Geometry-based across wafer process control in a dual damascene scenario

    NASA Astrophysics Data System (ADS)

    Krause, Gerd; Hofmann, Detlef; Habets, Boris; Buhl, Stefan; Gutsch, Manuela; Lopez-Gomez, Alberto; Thrun, Xaver

    2018-03-01

    Dual damascene is an established patterning process for back-end-of-line to generate copper interconnects and lines. One of the critical output parameters is the electrical resistance of the metal lines. In our 200 mm line, this is currently being controlled by a feed-forward control from the etch process to the final step in the CMP process. In this paper, we investigate the impact of alternative feed-forward control using a calibrated physical model that estimates the impact on electrical resistance of the metal lines* . This is done by simulation on a large set of wafers. Three different approaches are evaluated, one of which uses different feed-forward settings for different radial zones in the CMP process.

  18. Synthesis and biological evaluation of several dephosphonated analogues of CMP-Neu5Ac as inhibitors of GM3-synthase.

    PubMed

    Rota, Paola; Cirillo, Federica; Piccoli, Marco; Gregorio, Antonio; Tettamanti, Guido; Allevi, Pietro; Anastasia, Luigi

    2015-10-05

    Previous studies demonstrated that reducing the GM3 content in myoblasts increased the cell resistance to hypoxic stress, suggesting that a pharmacological inhibition of the GM3 synthesis could be instrumental for the development of new treatments for ischemic diseases. Herein, the synthesis of several dephosphonated CMP-Neu5Ac congeners and their anti-GM3-synthase activity is reported. Biological activity testes revealed that some inhibitors almost completely blocked the GM3-synthase activity in vitro and reduced the GM3 content in living embryonic kidney 293A cells, eventually activating the epidermal growth factor receptor (EGFR) signaling cascade. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Controllable curvature from planar polymer sheets in response to light.

    PubMed

    Hubbard, Amber M; Mailen, Russell W; Zikry, Mohammed A; Dickey, Michael D; Genzer, Jan

    2017-03-22

    The ability to change shape and control curvature in 3D structures starting from planar sheets can aid in assembly and add functionality to an object. Herein, we convert planar sheets of shape memory polymers (SMPs) into 3D objects with controllable curvature by dictating where the sheets shrink. Ink patterned on the surface of the sheet absorbs infrared (IR) light, resulting in localized heating, and the material shrinks locally wherever the temperature exceeds the activation temperature, T a . We introduce two different mechanisms for controlling curvature within SMP sheets. The 'direct' mechanism uses localized shrinkage to induce curvature only in regions patterned with ink. The 'indirect' mechanism uses localized shrinkage in regions patterned with ink to induce curvature in neighboring regions without ink through a balance of internal stresses. Finite element analysis predicts the final shape of the polymer sheets with excellent qualitative agreement with experimental studies. Results from this study show that curvature can be controlled by the distribution and darkness of the ink pattern on the polymer sheet. Additionally, we utilize the direct and indirect curvature mechanisms to demonstrate the formation and actuation of gripper devices, which represent the potential utility of this approach.

  20. 42 CFR 417.434 - Reenrollment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PROGRAM HEALTH MAINTENANCE ORGANIZATIONS, COMPETITIVE MEDICAL PLANS, AND HEALTH CARE PREPAYMENT PLANS Enrollment, Entitlement, and Disenrollment under Medicare Contract § 417.434 Reenrollment. If an HMO or CMP...

  1. Evanescent field refractometry in planar optical fiber.

    PubMed

    Holmes, Christopher; Jantzen, Alexander; Gray, Alan C; Gow, Paul C; Carpenter, Lewis G; Bannerman, Rex H S; Gates, James C; Smith, Peter G R

    2018-02-15

    This Letter demonstrates a refractometer in integrated optical fiber, a new optical platform that planarizes fiber using flame hydrolysis deposition (FHD). The unique advantage of the technology is survivability in harsh environments. The platform is mechanically robust, and can survive elevated temperatures approaching 1000°C and exposure to common solvents, including acetone, gasoline, and methanol. For the demonstrated refractometer, fabrication was achieved through wet etching an SMF-28 fiber to a diameter of 8 μm before FHD planarization. An external refractive index was monitored using fiber Bragg gratings (FBGs), written into the core of the planarized fiber. A direct comparison to alternative FBG refractometers is made, for which the developed platform is shown to have comparable sensitivity, with the added advantage of survivability in harsh environments.

  2. Planarized thick copper gate polycrystalline silicon thin film transistors for ultra-large AMOLED displays

    NASA Astrophysics Data System (ADS)

    Yun, Seung Jae; Lee, Yong Woo; Son, Se Wan; Byun, Chang Woo; Reddy, A. Mallikarjuna; Joo, Seung Ki

    2012-08-01

    A planarized thick copper (Cu) gate low temperature polycrystalline silicon (LTPS) thin film transistors (TFTs) is fabricated for ultra-large active-matrix organic light-emitting diode (AMOLED) displays. We introduce a damascene and chemical mechanical polishing process to embed a planarized Cu gate of 500 nm thickness into a trench and Si3N4/SiO2 multilayer gate insulator, to prevent the Cu gate from diffusing into the silicon (Si) layer at 550°C, and metal-induced lateral crystallization (MILC) technology to crystallize the amorphous Si layer. A poly-Si TFT with planarized thick Cu gate exhibits a field effect mobility of 5 cm2/Vs and a threshold voltage of -9 V, and a subthreshold swing (S) of 1.4 V/dec.

  3. Development of a simple and efficient method for assaying cytidine monophosphate sialic acid synthetase activity using an enzymatic reduced nicotinamide adenine dinucleotide/oxidized nicotinamide adenine dinucleotide converting system.

    PubMed

    Fujita, Akiko; Sato, Chihiro; Münster-Kühnel, Anja-K; Gerardy-Schahn, Rita; Kitajima, Ken

    2005-02-01

    A new reliable method to assay the activity of cytidine monophosphate sialic acid (CMP-Sia) synthetase (CSS) has been developed. The activation of sialic acids (Sia) to CMP-Sia is a prerequisite for the de novo synthesis of sialoglycoconjugates. In vertebrates, CSS has been cloned from human, mouse, and rainbow trout, and the crystal structure has been resolved for the mouse enzyme. The mouse and rainbow trout enzyme have been compared with respect to substrate specificity, demonstrating that the mouse enzyme exhibits a pronounced specificity for N-acetylneuraminic acid (Neu5Ac), while the rainbow trout CSS is equally active with either of three Sia species, Neu5Ac, N-glycolylneuraminic acid (Neu5Gc), and deaminoneuraminic acid (KDN). However, molecular details that explain the pronounced substrate specificities are unknown. Understanding the catalytic mechanisms of these enzymes is of major importance, since CSSs play crucial roles in cellular sialylation patterns and thus are potential drug targets in a number of pathophysiological situations. The availability of the cDNAs and the obtained structural data enable rational approaches; however, these efforts are limited by the lack of a reliable high-throughput assay system. Here we describe a new assay system that allows product quantification in a reduced nicotinamide adenine dinucleotide (NADH)-dependent color reaction. The activation reaction catalyzed by CSS, CTP+Sia-->CMP-Sia+pyrophosphate, was evaluated by a consumption of Sia, which corresponds to that of NADH on the following two successive reactions: (i) Sia-->pyruvate+ManNAc (or Man), catalyzed by a sialic acid lyase (SAL), and (ii) pyruvate+NADH-->lactate+oxidized nicotinamide adenine dinucleotide (NAD+), catalyzed by a lactate dehydrogenase (LDH). Consumption of NADH can be photometrically monitored on a microtiter plate reader for a number of test samples at the same time. Furthermore, based on the quantification of CSS used in the SAL/LDH assay, relative activities toward Sia derivatives have been obtained. The preference of mouse CSS toward Neu5Ac and the ability of the rainbow trout enzyme to activate both KDN and Neu5Ac were confirmed. Thus, this simple and time-saving method is suitable for a systematic comparison of enzyme activity of structurally mutated enzymes based on the relative specific activity.

  4. Field demonstration of reduction of lead availability in soil and cabbage (Brassica Chinensis L.) contaminated by mining tailings using phosphorus fertilizers*

    PubMed Central

    Xie, Zheng-miao; Wang, Bi-ling; Sun, Ye-fang; Li, Jing

    2006-01-01

    A field demonstration of reduction of lead availability in a soil and cabbage (Brassica Chinensis L.) contaminated by mining tailings, located in Shaoxing, China was carried out to evaluate the effects of applications of phosphorus fertilizers on Pb fractionation and Pb phytoavailability in the soil. It was found that the addition of all three P fertilizers including single super phosphate (SSP), phosphate rock (PR), and calcium magnesium phosphate (CMP) significantly decreased the percentage of water-soluble and exchangeable (WE) soil Pb and then reduced the uptake of Pb, Cd, and Zn by the cabbage compared to the control (CK). The results showed that the level of 300 g P/m2 soil was the most cost-effective application rate of P fertilizers for reducing Pb availability at the first stage of remediation, and that at this P level, the effect of WE fraction of Pb in the soil decreased by three phosphorus fertilizers followed the order: CMP (79%)>SSP (41%)>PR (23%); Effectiveness on the reduction of Pb uptake by cabbage was in the order: CMP (53%)>SSP (41%)>PR (30%). Therefore our field trial demonstrated that it was effective and feasible to reduce Pb availability in soil and cabbage contaminated by mining tailings using P fertilizers in China and PR would be a most cost-effective amendment. PMID:16365925

  5. Involvement of a Non-Human Sialic Acid in Human Cancer

    PubMed Central

    Samraj, Annie N.; Läubli, Heinz; Varki, Nissi; Varki, Ajit

    2014-01-01

    Sialic acids are common monosaccharides that are widely expressed as outer terminal units on all vertebrate cell surfaces, and play fundamental roles in cell–cell and cell–microenvironment interactions. The predominant sialic acids on most mammalian cells are N-glycolylneuraminic acid (Neu5Gc) and N-acetylneuraminic acid (Neu5Ac). Neu5Gc is notable for its deficiency in humans due to a species-specific and species-universal inactivating deletion in the CMAH gene encoding the hydroxylase that converts CMP-Neu5Ac to CMP-Neu5Gc. However, Neu5Gc is metabolically incorporated into human tissues from dietary sources (particularly red meat), and detected at even higher levels in some human cancers. Early life exposure to Neu5Gc-containing foods in the presence of certain commensal bacteria that incorporate dietary Neu5Gc into lipooligosaccharides can lead to generation of antibodies that are also cross-reactive against Neu5Gc-containing glycans in human tissues (“xeno-autoantigens”). Such anti-Neu5Gc “xeno-autoantibodies” are found in all humans, although ranging widely in levels among individuals, and displaying diverse and variable specificities for the underlying glycan. Experimental evidence in a human-like Neu5Gc-deficient Cmah−/−mouse model shows that inflammation due to “xenosialitis” caused by this antigen–antibody interaction can promote tumor progression, suggesting a likely mechanism for the well-known epidemiological link between red meat consumption and carcinoma risk. In this review, we discuss the history of this field, mechanisms of Neu5Gc incorporation into tissues, the origin and specificities of human anti-Neu5Gc antibodies, their use as possible cancer biomarkers, implications of xenosialitis in cancer initiation and progression, and current and future approaches toward immunotherapy that could take advantage of this unusual human-specific phenomenon. PMID:24600589

  6. Molecular filter based planar Doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Elliott, Gregory S.; Beutner, Thomas J.

    1999-11-01

    Molecular filter based diagnostics are continuing to gain popularity as a research tool for investigations in areas of aerodynamics, fluid mechanics, and combustion. This class of diagnostics has gone by many terms including Filtered Rayleigh Scattering, Doppler Global Velocimetry, and Planar Doppler Velocimetry. The majority of this article reviews recent advances in Planar Doppler Velocimetry in measuring up to three velocity components over a planar region in a flowfield. The history of the development of these techniques is given with a description of typical systems, components, and levels of uncertainty in the measurement. Current trends indicate that uncertainties on the order of 1 m/s are possible with these techniques. A comprehensive review is also given on the application of Planar Doppler Velocimetry to laboratory flows, supersonic flows, and large scale subsonic wind tunnels. The article concludes with a description of future trends, which may simplify the technique, followed by a description of techniques which allow multi-property measurements (i.e. velocity, density, temperature, and pressure) simultaneously.

  7. The core planar cell polarity gene prickle interacts with flamingo to promote sensory axon advance in the Drosophila embryo.

    PubMed

    Mrkusich, Eli M; Flanagan, Dustin J; Whitington, Paul M

    2011-10-01

    The atypical cadherin Drosophila protein Flamingo and its vertebrate homologues play widespread roles in the regulation of both dendrite and axon growth. However, little is understood about the molecular mechanisms that underpin these functions. Whereas flamingo interacts with a well-defined group of genes in regulating planar cell polarity, previous studies have uncovered little evidence that the other core planar cell polarity genes are involved in regulation of neurite growth. We present data in this study showing that the planar cell polarity gene prickle interacts with flamingo in regulating sensory axon advance at a key choice point - the transition between the peripheral nervous system and the central nervous system. The cytoplasmic tail of the Flamingo protein is not required for this interaction. Overexpression of another core planar cell polarity gene dishevelled produces a similar phenotype to prickle mutants, suggesting that this gene may also play a role in regulation of sensory axon advance. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  8. The core planar cell polarity gene, Vangl2, maintains apical-basal organisation of the corneal epithelium.

    PubMed

    Panzica, D Alessio; Findlay, Amy S; van Ladesteijn, Rianne; Collinson, J Martin

    2017-08-17

    The role of the core planar cell polarity (PCP) pathway protein, Vangl2, was investigated in the corneal epithelium of the mammalian eye, a paradigm anatomical model of planar cell migration. The gene was conditionally knocked out in vivo and knocked down by siRNA, followed by immunohistochemical, behavioural and morphological analysis of corneal epithelial cells. The primary defects observed in vivo were of apical-basal organisation of the corneal epithelium, with abnormal stratification throughout life, mislocalisation of the cell membrane protein, Scribble, to the basal side of cells, and partial loss of the epithelial basement membrane. Planar defects in migration after wounding and in the presence of an applied electric field were noted. However, knockdown of Vangl2 also retarded cell migration in individual cells that had no contact with their neighbours, which precluded a classic PCP mechanism. It is concluded that some of the planar polarity phenotypes in PCP mutants may arise from disruption of apical-basal polarity. © 2017 Anatomical Society.

  9. Use of chemical mechanical polishing in micromachining

    DOEpatents

    Nasby, Robert D.; Hetherington, Dale L.; Sniegowski, Jeffry J.; McWhorter, Paul J.; Apblett, Christopher A.

    1998-01-01

    A process for removing topography effects during fabrication of micromachines. A sacrificial oxide layer is deposited over a level containing functional elements with etched valleys between the elements such that the sacrificial layer has sufficient thickness to fill the valleys and extend in thickness upwards to the extent that the lowest point on the upper surface of the oxide layer is at least as high as the top surface of the functional elements in the covered level. The sacrificial oxide layer is then polished down and planarized by chemical-mechanical polishing. Another layer of functional elements is then formed upon this new planarized surface.

  10. The ontogeny of muscle structure and locomotory function in the long-finned squid Doryteuthis pealeii.

    PubMed

    Thompson, J T; Bartol, I K; Baksi, A E; Li, K Y; Krueger, P S

    2010-04-01

    Understanding the extent to which changes in muscle form and function underlie ontogenetic changes in locomotory behaviors and performance is important in understanding the evolution of musculoskeletal systems and also the ecology of different life stages. We explored ontogenetic changes in the structure, myosin heavy chain (MHC) expression and contractile properties of the circular muscles that provide power for jet locomotion in the long-finned squid Doryteuthis pealeii. The circular muscle fibers of newly hatched paralarvae had different sizes, shapes, thick filament lengths, thin:thick filament ratio, myofilament organization and sarcoplasmic reticulum (SR) distribution than those of adults. Viewed in cross section, most circular muscle cells were roughly triangular or ovoid in shape with a core of mitochondria; however, numerous muscle cells with crescent or other unusual cross-sectional shapes and muscle cells with unequal distributions of mitochondria were present in the paralarvae. The frequency of these muscle cells relative to 'normal' circular muscle cells ranged from 1:6 to 1:10 among the 19 paralarvae we surveyed. The thick filaments of the two types of circular fibers, superficial mitochondria-rich (SMR) and central mitochondria-poor (CMP), differed slightly in length among paralarvae with thick filament lengths of 0.83+/-0.15 microm and 0.71+/-0.1 microm for the SMR and CMP fibers, respectively (P 0.05; ANOVA). During ontogeny the thick filament lengths of both the CMP and SMR fibers increased significantly to 1.78+/-0.27 microm and 3.12+/-0.56 microm, respectively, in adults (P<0.0001 for both comparisons; ANOVA with Tukey's highly significant difference post hoc tests). When sectioned parallel to their long axes, the SMR and CMP fibers of both paralarvae and adults exhibited the myofilament arrangements typical of obliquely striated muscle cells but the angle of obliquity of the dense bodies was 22.8+/-2.4 deg. and 4.6+/-0.87 deg. for paralarvae and adults, respectively. There were also differences in the distribution of the anastomosing network of SR. In paralarvae, the outer and central zones of SR were well developed but the intramyoplasmic zone was greatly reduced in some cells or was scattered non-uniformly across the myoplasm. Whereas in adults the intramyoplasmic SR region was composed primarily of flattened tubules, it was composed primarily of rounded vesicles or tubules when present in the paralarvae. The ontogenetic differences in circular muscle structure were correlated with significant differences in their contractile properties. In brief tetanus at 20 degrees C, the mean unloaded shortening velocity of the paralarval circular muscle preparations was 9.1 L(0) s(-1) (where L(0) was the preparation length that generated the peak isometric stress), nearly twice that measured in other studies for the CMP fibers of adults. The mean peak isometric stress was 119+/-15 mN mm(-2) physiological cross section, nearly half that measured for the CMP fibers of adults. Reverse transcriptase-polymerase chain reaction analysis of paralarval and adult mantle samples revealed very similar expression patterns of the two known isoforms of squid MHC. The ontogenetic differences in the structure and physiology of the circular muscles may result in more rapid mantle movements during locomotion. This prediction is consistent with jet pulse durations observed in other studies, with shorter jet pulses providing hydrodynamic advantages for paralarvae.

  11. Role of Slip Mode on Stress Corrosion Cracking Behavior

    NASA Astrophysics Data System (ADS)

    Vasudevan, A. K.; Sadananda, K.

    2011-02-01

    In this article, we examine the effect of aging treatment and the role of planarity of slip on stress corrosion cracking (SCC) behavior in precipitation-hardened alloys. With aging, the slip mode can change from a planar slip in the underage (UA) to a wavy slip in the overage (OA) region. This, in turn, results in sharpening the crack tip in the UA compared to blunting in the OA condition. We propose that the planar slip enhances the stress concentration effects by making the alloys more susceptible to SCC. In addition, the planarity of slip enhances plateau velocities, reduces thresholds for SCC, and reduces component life. We show that the effect of slip planarity is somewhat similar to the effects of mechanically induced stress concentrations such as due to the presence of sharp notches. Aging treatment also causes variations in the matrix and grain boundary (GB) microstructures, along with typical mechanical and SCC properties. These properties include yield stress, work hardening rate, fracture toughness K IC , thresholds K Iscc, and steady-state plateau velocity ( da/ dt). The SCC data for a wide range of ductile alloys including 7050, 7075, 5083, 5456 Al, MAR M steels, and solid solution copper-base alloys are collected from the literature. Our assertion is that slip mode and the resulting stress concentration are important factors in SCC behavior. This is further supported by similar observations in many other systems including some steels, Al alloys, and Cu alloys.

  12. Paving the Way Towards Reactive Planar Spanner Construction in Wireless Networks

    NASA Astrophysics Data System (ADS)

    Frey, Hannes; Rührup, Stefan

    A spanner is a subgraph of a given graph that supports the original graph's shortest path lengths up to a constant factor. Planar spanners and their distributed construction are of particular interest for geographic routing, which is an efficient localized routing scheme for wireless ad hoc and sensor networks. Planarity of the network graph is a key criterion for guaranteed delivery, while the spanner property supports efficiency in terms of path length. We consider the problem of reactive local spanner construction, where a node's local topology is determined on demand. Known message-efficient reactive planarization algorithms do not preserve the spanner property, while reactive spanner constructions with a low message overhead have not been described so far. We introduce the concept of direct planarization which may be an enabler of efficient reactive spanner construction. Given an edge, nodes check for all incident intersecting edges a certain geometric criterion and withdraw the edge if this criterion is not satisfied. We use this concept to derive a generic reactive topology control mechanism and consider two geometric criteria. Simulation results show that direct planarization increases the performance of localized geographic routing by providing shorter paths than existing reactive approaches.

  13. Evaluation of the Delta-T SPN1 radiometer for the measurement of solar irradiance components

    NASA Astrophysics Data System (ADS)

    Estelles, Victor; Serrano, David; Segura, Sara; Wood, John; Webb, Nick; Utrillas, Maria Pilar

    2016-04-01

    In this study we analyse the performance of an SPN1 radiometer built by Delta-T Devices Ltd. to retrieve global solar irradiance at ground and its components (diffuse, direct) in comparison with measurements from two Kipp&Zonen CMP21 radiometers and a Kipp&Zonen CHP1 pirheliometer, mounted on an active Solys-2 suntracker at the Burjassot site (Valencia, Spain) using data acquired every minute during years 2013 - 2015. The measurement site is close to sea level (60 m a.s.l.), near the Mediterranean coast (10 km) and within the metropolitan area of Valencia City (over 1.500.000 inhabitants). The SPN1 is an inexpensive and versatile instrument for the measurement of the three components of the solar radiation without any mobile part and without any need to azimuthally align the instrument to track the sun (http://www.delta-t.co.uk). The three components of the solar radiation are estimated from a combination of measurements performed by 7 different miniature thermopiles. The SPN1 pyranometer measures the irradiance between 400 and 2700 nm, and the nominal uncertainty for the individual readings is about 8% ± 10 W/m2 (5% for the daily averages). The pyranometer Kipp&Zonen CMP21 model is a secondary standard for the measurement of broadband solar global irradiance in horizontal planes. Two ventilated CMP21 are used for the measurement of the global and diffuse irradiances. The expected total daily uncertainty of the radiometer is estimated to be 2%. The pirheliometer Kipp&Zonen CHP1 is designed for the measurement of the direct irradiance. The principles are similar to the CMP21 pyranometer. The results of the comparison show that the global irradiance from the SPN1 compares very well with the CMP21, with absolute RMSD and MBD differences below the combined uncertainties (15 W/m2 and -5.4 W/m2, respectively; relative RMSD of 3.1%). Both datasets are very well correlated, with a correlation coefficient higher than 0.997 and a slope and intercept very close to 1 and 0, respectively. The diffuse and direct irradiances do not compare as well as the global irradiance, although the deviations are below or close to the combined uncertainties. The diffuse irradiances have a RMSD and MBD of 15 W/m2 and 12 W/m2, similar to the global irradiance; the direct irradiance RMSD and MBD are 57 W/m2 and -44 W/m2. Both cases have a relative RMSD about 7.7-18%. Linearity is lower but still high (R=0.96). In conclusion, the SPN1 radiometer is a compact, robust and easy to maintain instrument that provides good results for the different solar irradiance components.

  14. Cyclic Nucleotide Monophosphates in Plants and Plant Signaling.

    PubMed

    Marondedze, Claudius; Wong, Aloysius; Thomas, Ludivine; Irving, Helen; Gehring, Chris

    2017-01-01

    Cyclic nucleotide monophosphates (cNMPs) and the enzymes that can generate them are of increasing interest in the plant sciences. Arguably, the major recent advance came with the release of the complete Arabidopsis thaliana genome that has enabled the systematic search for adenylate (ACs) or guanylate cyclases (GCs) and did eventually lead to the discovery of a number of GCs in higher plants. Many of these proteins have complex domain architectures with AC or GC centers moonlighting within cytosolic kinase domains. Recent reports indicated the presence of not just the canonical cNMPs (i.e., cAMP and cGMP), but also the noncanonical cCMP, cUMP, cIMP, and cdTMP in plant tissues, and this raises several questions. Firstly, what are the functions of these cNMPs, and, secondly, which enzymes can convert the substrate triphosphates into the respective noncanonical cNMPs? The first question is addressed here by comparing the reactive oxygen species (ROS) response of cAMP and cGMP to that elicited by the noncanonical cCMP or cIMP. The results show that particularly cIMP can induce significant ROS production. To answer, at least in part, the second question, we have evaluated homology models of experimentally confirmed plant GCs probing the substrate specificity by molecular docking simulations to determine if they can conceivably catalytically convert substrates other than ATP or GTP. In summary, molecular modeling and substrate docking simulations can contribute to the evaluation of cyclases for noncanonical cyclic mononucleotides and thereby further our understanding of the molecular mechanism that underlie cNMP-dependent signaling in planta.

  15. Fabrication of nano-scale Cu bond pads with seal design in 3D integration applications.

    PubMed

    Chen, K N; Tsang, C K; Wu, W W; Lee, S H; Lu, J Q

    2011-04-01

    A method to fabricate nano-scale Cu bond pads for improving bonding quality in 3D integration applications is reported. The effect of Cu bonding quality on inter-level via structural reliability for 3D integration applications is investigated. We developed a Cu nano-scale-height bond pad structure and fabrication process for improved bonding quality by recessing oxides using a combination of SiO2 CMP process and dilute HF wet etching. In addition, in order to achieve improved wafer-level bonding, we introduced a seal design concept that prevents corrosion and provides extra mechanical support. Demonstrations of these concepts and processes provide the feasibility of reliable nano-scale 3D integration applications.

  16. Gene Expression and Pathway Analysis of Effects of the CMAH Deactivation on Mouse Lung, Kidney and Heart

    PubMed Central

    Kwon, Deug-Nam; Chang, Byung-Soo; Kim, Jin-Hoi

    2014-01-01

    Background N-glycolylneuraminic acid (Neu5Gc) is generated by hydroxylation of CMP-Neu5Ac to CMP-Neu5Gc, catalyzed by CMP-Neu5Ac hydroxylase (CMAH). However, humans lack this common mammalian cell surface molecule, Neu5Gc, due to inactivation of the CMAH gene during evolution. CMAH is one of several human-specific genes whose function has been lost by disruption or deletion of the coding frame. It has been suggested that CMAH inactivation has resulted in biochemical or physiological characteristics that have resulted in human-specific diseases. Methodology/Principal Findings To identify differential gene expression profiles associated with the loss of Neu5Gc expression, we performed microarray analysis using Illumina MouseRef-8 v2 Expression BeadChip, using the main tissues (lung, kidney, and heart) from control mice and CMP-Neu5Ac hydroxylase (Cmah) gene knock-out mice, respectively. Out of a total of 25,697 genes, 204, 162, and 147 genes were found to be significantly modulated in the lung, kidney, and heart tissues of the Cmah null mouse, respectively. In this study, we examined the gene expression profiles, using three commercial pathway analysis software packages: Ingenuity Pathways Analysis, Kyoto Encyclopedia of Genes and Genomes analysis, and Pathway Studio. The gene ontology analysis revealed that the top 6 biological processes of these genes included protein metabolism and modification, signal transduction, lipid, fatty acid, and steroid metabolism, nucleoside, nucleotide and nucleic acid metabolism, immunity and defense, and carbohydrate metabolism. Gene interaction network analysis showed a common network that was common to the different tissues of the Cmah null mouse. However, the expression of most sialytransferase mRNAs of Hanganutziu-Deicher antigen, sialy-Tn antigen, Forssman antigen, and Tn antigen was significantly down-regulated in the liver tissue of Cmah null mice. Conclusions/Significance Mice bearing a human-like deletion of the Cmah gene serve as an important model for the study of abnormal pathogenesis and/or metabolism caused by the evolutionary loss of Neu5Gc synthesis in humans. PMID:25229777

  17. The opercular mouth-opening mechanism of largemouth bass functions as a 3D four-bar linkage with three degrees of freedom.

    PubMed

    Olsen, Aaron M; Camp, Ariel L; Brainerd, Elizabeth L

    2017-12-15

    The planar, one degree of freedom (1-DoF) four-bar linkage is an important model for understanding the function, performance and evolution of numerous biomechanical systems. One such system is the opercular mechanism in fishes, which is thought to function like a four-bar linkage to depress the lower jaw. While anatomical and behavioral observations suggest some form of mechanical coupling, previous attempts to model the opercular mechanism as a planar four-bar have consistently produced poor model fits relative to observed kinematics. Using newly developed, open source mechanism fitting software, we fitted multiple three-dimensional (3D) four-bar models with varying DoF to in vivo kinematics in largemouth bass to test whether the opercular mechanism functions instead as a 3D four-bar with one or more DoF. We examined link position error, link rotation error and the ratio of output to input link rotation to identify a best-fit model at two different levels of variation: for each feeding strike and across all strikes from the same individual. A 3D, 3-DoF four-bar linkage was the best-fit model for the opercular mechanism, achieving link rotational errors of less than 5%. We also found that the opercular mechanism moves with multiple degrees of freedom at the level of each strike and across multiple strikes. These results suggest that active motor control may be needed to direct the force input to the mechanism by the axial muscles and achieve a particular mouth-opening trajectory. Our results also expand the versatility of four-bar models in simulating biomechanical systems and extend their utility beyond planar or single-DoF systems. © 2017. Published by The Company of Biologists Ltd.

  18. FIBRE AND INTEGRATED OPTICS. OPTICAL PROCESSING OF INFORMATION: Mechanism of lock-in detection with the aid of an alternating field perpendicular to the surface of a planar photorefractive waveguide

    NASA Astrophysics Data System (ADS)

    Zel'dovich, Boris Ya; Miklyaev, Yu V.; Safonov, V. I.

    1995-02-01

    An analysis is made of the mechanism of formation of a stationary grating in a planar photorefractive waveguide by a travelling interference pattern with the aid of an alternating electric field applied perpendicular to the waveguide layer. A theoretical calculation is reported of the distribution of the space-charge field in a transverse section of the waveguide. Finite drift lengths and trap saturation are taken into account in these calculations, which are carried out on the assumption of a weak contrast in the interference pattern.

  19. Phase Diagram of Planar Matrix Quantum Mechanics, Tensor, and Sachdev-Ye-Kitaev Models.

    PubMed

    Azeyanagi, Tatsuo; Ferrari, Frank; Massolo, Fidel I Schaposnik

    2018-02-09

    We study the Schwinger-Dyson equations of a fermionic planar matrix quantum mechanics [or tensor and Sachdev-Ye-Kitaev (SYK) models] at leading melonic order. We find two solutions describing a high entropy, SYK black-hole-like phase and a low entropy one with trivial IR behavior. There is a line of first order phase transitions that terminates at a new critical point. Critical exponents are nonmean field and differ on the two sides of the transition. Interesting phenomena are also found in unstable and stable bosonic models, including Kazakov critical points and inconsistency of SYK-like solutions of the IR limit.

  20. Propulsion of flexible polymer structures in a rotating magnetic field.

    PubMed

    Garstecki, Piotr; Tierno, Pietro; Weibel, Douglas B; Sagués, Francesc; Whitesides, George M

    2009-05-20

    We demonstrate a new concept for the propulsions of abiological structures at low Reynolds numbers. The approach is based on the design of flexible, planar polymer structures with a permanent magnetic moment. In the presence of an external, uniform, rotating magnetic field these structures deform into three-dimensional shapes that have helical symmetry and translate linearly through fluids at Re between 10(-1) and 10. The mechanism for the motility of these structures involves reversible deformation that breaks their planar symmetry and generates propulsion. These elastic propellers resemble microorganisms that use rotational mechanisms based on flagella and cilia for their motility in fluids at low Re.

  1. Use of chemical mechanical polishing in micromachining

    DOEpatents

    Nasby, R.D.; Hetherington, D.L.; Sniegowski, J.J.; McWhorter, P.J.; Apblett, C.A.

    1998-09-08

    A process for removing topography effects during fabrication of micromachines. A sacrificial oxide layer is deposited over a level containing functional elements with etched valleys between the elements such that the sacrificial layer has sufficient thickness to fill the valleys and extend in thickness upwards to the extent that the lowest point on the upper surface of the oxide layer is at least as high as the top surface of the functional elements in the covered level. The sacrificial oxide layer is then polished down and planarized by chemical-mechanical polishing. Another layer of functional elements is then formed upon this new planarized surface. 4 figs.

  2. Electrochemical-mechanical coupling in composite planar structures that integrate flow channels and ion-conducting membranes

    DOE PAGES

    Euser, Bryan Jeffry; Zhu, Huayang; Berger, John; ...

    2017-01-01

    Ceramic oxygen-transport membranes, such as the doped perovskite La 0.6Sr 0.4Co 0.8Fe 0.2O 3-δ(LSCF6482) considered in the present paper, are effective in applications such as air separation. The present paper considers a planar configuration that is composed of a thin (order tens of microns) ion-transport membrane, a relatively thick (order millimeter) porous-ceramic support structure, and millimeter-scale oxygen-collection flow channels. The lattice-scale strain associated with charged defects (oxygen vacancies and small polarons) within ion-transport membranes causes macroscopic stress that could distort or damage the assembly. The modeling approach is based on an extended twodimensional Nernst–Planck–Poisson (NPP) formulation that is developed andmore » applied to evaluate the effects of chemically induced stress within a planar oxygen-separation assembly. The computational model predicts two-dimensional distributions of steady-state defect concentrations, electrostatic potentials, and stress. Parameter studies consider the effects of support-membrane dimensions, materials mechanical properties, and operating conditions. Although the stress is found to have a negligible influence on the defect transport, the defect transport is found to significantly affect the stress distributions. Such results can play important roles in the design and development of planar ion-transport membranes and their support structures.« less

  3. Investigation of the in-plane and out-of-plane electrical properties of metallic nanoparticles in dielectric matrix thin films elaborated by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Thomas, D.; Puyoo, E.; Le Berre, M.; Militaru, L.; Koneti, S.; Malchère, A.; Epicier, T.; Roiban, L.; Albertini, D.; Sabac, A.; Calmon, F.

    2017-11-01

    Pt nanoparticles in a Al2O3 dielectric matrix thin films are elaborated by means of atomic layer deposition. These nanostructured thin films are integrated in vertical and planar test structures in order to assess both their in-plane and out-of-plane electrical properties. A shadow edge evaporation process is used to develop planar devices with electrode separation distances in the range of 30 nm. Both vertical and planar test structures show a Poole-Frenkel conduction mechanism. Low trap energy levels (<0.1 eV) are identified for the two test structures which indicates that the Pt islands themselves are not acting as traps in the PF mechanism. Furthermore, a more than three order of magnitude current density difference is observed between the two geometries. This electrical anisotropy is attributed to a large electron mobility difference in the in-plane and out-of-plane directions which can be related to different trap distributions in both directions.

  4. Echo planar imaging at 4 Tesla with minimum acoustic noise.

    PubMed

    Tomasi, Dardo G; Ernst, Thomas

    2003-07-01

    To minimize the acoustic sound pressure levels of single-shot echo planar imaging (EPI) acquisitions on high magnetic field MRI scanners. The resonance frequencies of gradient coil vibrations, which depend on the coil length and the elastic properties of the materials in the coil assembly, were measured using piezoelectric transducers. The frequency of the EPI-readout train was adjusted to avoid the frequency ranges of mechanical resonances. Our MRI system exhibited two sharp mechanical resonances (at 720 and 1220 Hz) that can increase vibrational amplitudes up to six-fold. A small adjustment of the EPI-readout frequency made it possible to reduce the sound pressure level of EPI-based perfusion and functional MRI scans by 12 dB. Normal vibrational modes of MRI gradient coils can dramatically increase the sound pressure levels during echo planar imaging (EPI) scans. To minimize acoustic noise, the frequency of EPI-readout trains and the resonance frequencies of gradient coil vibrations need to be different. Copyright 2003 Wiley-Liss, Inc.

  5. A fracture mechanics study of the phase separating planar electrodes: Phase field modeling and analytical results

    NASA Astrophysics Data System (ADS)

    Haftbaradaran, H.; Maddahian, A.; Mossaiby, F.

    2017-05-01

    It is well known that phase separation could severely intensify mechanical degradation and expedite capacity fading in lithium-ion battery electrodes during electrochemical cycling. Experiments have frequently revealed that such degradation effects could be substantially mitigated via reducing the electrode feature size to the nanoscale. The purpose of this work is to present a fracture mechanics study of the phase separating planar electrodes. To this end, a phase field model is utilized to predict how phase separation affects evolution of the solute distribution and stress profile in a planar electrode. Behavior of the preexisting flaws in the electrode in response to the diffusion induced stresses is then examined via computing the time dependent stress intensity factor arising at the tip of flaws during both the insertion and extraction half-cycles. Further, adopting a sharp-interphase approximation of the system, a critical electrode thickness is derived below which the phase separating electrode becomes flaw tolerant. Numerical results of the phase field model are also compared against analytical predictions of the sharp-interphase model. The results are further discussed with reference to the available experiments in the literature. Finally, some of the limitations of the model are cautioned.

  6. Whole-Cell Electrical Activity Under Direct Mechanical Stimulus by AFM Cantilever Using Planar Patch Clamp Chip Approach

    PubMed Central

    Upadhye, Kalpesh V.; Candiello, Joseph E.; Davidson, Lance A.; Lin, Hai

    2011-01-01

    Patch clamp is a powerful tool for studying the properties of ion-channels and cellular membrane. In recent years, planar patch clamp chips have been fabricated from various materials including glass, quartz, silicon, silicon nitride, polydimethyl-siloxane (PDMS), and silicon dioxide. Planar patch clamps have made automation of patch clamp recordings possible. However, most planar patch clamp chips have limitations when used in combination with other techniques. Furthermore, the fabrication methods used are often expensive and require specialized equipments. An improved design as well as fabrication and characterization of a silicon-based planar patch clamp chip are described in this report. Fabrication involves true batch fabrication processes that can be performed in most common microfabrication facilities using well established MEMS techniques. Our planar patch clamp chips can form giga-ohm seals with the cell plasma membrane with success rate comparable to existing patch clamp techniques. The chip permits whole-cell voltage clamp recordings on variety of cell types including Chinese Hamster Ovary (CHO) cells and pheochromocytoma (PC12) cells, for times longer than most available patch clamp chips. When combined with a custom microfluidics chamber, we demonstrate that it is possible to perfuse the extra-cellular as well as intra-cellular buffers. The chamber design allows integration of planar patch clamp with atomic force microscope (AFM). Using our planar patch clamp chip and microfluidics chamber, we have recorded whole-cell mechanosensitive (MS) currents produced by directly stimulating human keratinocyte (HaCaT) cells using an AFM cantilever. Our results reveal the spatial distribution of MS ion channels and temporal details of the responses from MS channels. The results show that planar patch clamp chips have great potential for multi-parametric high throughput studies of ion channel proteins. PMID:22174731

  7. Development of advanced second-generation micromirror devices fabricated in a four-level planarized surface-micromachined polycrystalline silicon process

    NASA Astrophysics Data System (ADS)

    Michalicek, M. Adrian; Comtois, John H.; Schriner, Heather K.

    1998-04-01

    This paper describes the design and characterization of several types of micromirror devices to include process capabilities, device modeling, and test data resulting in deflection versus applied potential curves and surface contour measurements. These devices are the first to be fabricated in the state-of-the-art four-level planarized polysilicon process available at Sandia National Laboratories known as the Sandia Ultra-planar Multi-level MEMS Technology. This enabling process permits the development of micromirror devices with near-ideal characteristics which have previously been unrealizable in standard three-layer polysilicon processes. This paper describes such characteristics which have previously been unrealizable in standard three-layer polysilicon processes. This paper describes such characteristics as elevated address electrodes, various address wiring techniques, planarized mirror surfaces suing Chemical Mechanical Polishing, unique post-process metallization, and the best active surface area to date.

  8. Parametric study of the mode coupling instability for a simple system with planar or rectilinear friction

    NASA Astrophysics Data System (ADS)

    Charroyer, L.; Chiello, O.; Sinou, J.-J.

    2016-12-01

    In this paper, the study of a damped mass-spring system of three degrees of freedom with friction is proposed in order to highlight the differences in mode coupling instabilities between planar and rectilinear friction assumptions. Well-known results on the effect of structural damping in the field of friction-induced vibration are extended to the specific case of a damped mechanical system with planar friction. It is emphasised that the lowering and smoothing effects are not so intuitive in this latter case. The stability analysis is performed by calculating the complex eigenvalues of the linearised system and by using the Routh-Hurwitz criterion. Parametric studies are carried out in order to evaluate the effects of various system parameters on stability. Special attention is paid to the understanding of the role of damping and the associated destabilisation paradox in mode-coupling instabilities with planar and rectilinear friction assumptions.

  9. Blood Test: Comprehensive Metabolic Panel (CMP)

    MedlinePlus

    ... the body's fluid levels and its acid-base balance. Normal levels of these electrolytes help keep cells in the body working as they should. Blood urea nitrogen (BUN) and creatinine , which are waste products filtered ...

  10. Isolation and Expression Profile of the Ca2+-Activated Chloride Channel-like Membrane Protein 6 Gene in Xenopus laevis

    PubMed Central

    Lee, Ra Mi; Ryu, Rae Hyung; Jeong, Seong Won; Oh, Soo Jin; Huang, Hue; Han, Jin Soo; Lee, Chi Ho; Lee, C. Justin; Jan, Lily Yeh

    2011-01-01

    To clone the first anion channel from Xenopus laevis (X. laevis), we isolated a calcium-activated chloride channel (CLCA)-like membrane protein 6 gene (CMP6) in X. laevis. As a first step in gene isolation, an expressed sequence tags database was screened to find the partial cDNA fragment. A putative partial cDNA sequence was obtained by comparison with rat CLCAs identified in our laboratory. First stranded cDNA was synthesized by reverse transcription polymerase-chain reaction (RT-PCR) using a specific primer designed for the target cDNA. Repeating the 5' and 3' rapid amplification of cDNA ends, full-length cDNA was constructed from the cDNA pool. The full-length CMP6 cDNA completed via 5'- and 3'-RACE was 2,940 bp long and had an open reading frame (ORF) of 940 amino acids. The predicted 940 polypeptides have four major transmembrane domains and showed about 50% identity with that of rat brain CLCAs in our previously published data. Semi-quantification analysis revealed that CMP6 was most abundantly expressed in small intestine, colon and liver. However, all tissues except small intestine, colon and liver had undetectable levels. This result became more credible after we did real-time PCR quantification for the target gene. In view of all CLCA studies focused on human or murine channels, this finding suggests a hypothetical protein as an ion channel, an X. laevis CLCA. PMID:21826170

  11. Nitric oxide reversibly impairs axonal conduction in Guinea pig spinal cord.

    PubMed

    Ashki, Negin; Hayes, Keith C; Shi, Riyi

    2006-12-01

    Increased expression of the inducible and neuronal isoforms of nitric oxide synthase (NOS), and elevated concentrations of nitric oxide (NO) metabolites, are present within the central nervous system (CNS) following neurotrauma and are implicated in the pathogenesis of the accompanying neurologic deficits. We tested the hypothesis that elevated extracellular concentrations of NO introduced by the donor Spermine NONOate, induce reversible axonal conduction deficits in neurons of the guinea pig spinal cord. The compound action potential (CAP) and compound membrane potential (CMP) of excised ventral cord white matter were recorded before, during, and after bathing the tissue (30 min) in varying concentrations (0.25-3.0 mM) of Spermine NONOate. The principal results were a rapid onset, dose-dependent, reduction in amplitude of the CAP (p < 0.05) accompanied by depolarization of the CMP during NO exposure. These effects were largely reversible on washout, at low concentration of the donor (0.5 mM), but were only partially reversed at higher concentrations. Changes in the electrophysiological properties were not evident when the donor had been a priori depleted of NO. The results extend previous reports that NO induces reversible axonal conduction deficits. They provide new evidence of dissociation of the effects of NO on CAP and CMP during washout, and after prolonged exposure to the donor. They add support to the emerging concept that immune-mediated axonal conduction failure contributes to reversible neurologic deficits following neurotrauma and aid in understanding clinical phenomena such as spinal shock and neurologic recovery.

  12. Effects of a Proteasome Inhibitor on Cardiomyocytes in a Pressure-Overload Hypertrophy Rat Model: An Animal Study.

    PubMed

    Kim, In-Sub; Jo, Won-Min

    2017-06-01

    The ubiquitin-proteasome system (UPS) is an important pathway of proteolysis in pathologic hypertrophic cardiomyocytes. We hypothesize that MG132, a proteasome inhibitor, might prevent hypertrophic cardiomyopathy (CMP) by blocking the UPS. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and androgen receptor (AR) have been reported to be mediators of CMP and heart failure. This study drew upon pathophysiologic studies and the analysis of NF-κB and AR to assess the cardioprotective effects of MG132 in a left ventricular hypertrophy (LVH) rat model. We constructed a transverse aortic constriction (TAC)-induced LVH rat model with 3 groups: sham (TAC-sham, n=10), control (TAC-cont, n=10), and MG132 administration (TAC-MG132, n=10). MG-132 (0.1 mg/kg) was injected for 4 weeks in the TAC-MG132 group. Pathophysiologic evaluations were performed and the expression of AR and NF-κB was measured in the left ventricle. Fibrosis was prevalent in the pathologic examination of the TAC-cont model, and it was reduced in the TAC-MG132 group, although not significantly. Less expression of AR, but not NF-κB, was found in the TAC-MG132 group than in the TAC-cont group (p<0.05). MG-132 was found to suppress AR in the TAC-CMP model by blocking the UPS, which reduced fibrosis. However, NF-κB expression levels were not related to UPS function.

  13. Influence of chocolate matrix composition on cocoa flavan-3-ol bioaccessibility in vitro and bioavailability in humans.

    PubMed

    Neilson, Andrew P; George, Judy C; Janle, Elsa M; Mattes, Richard D; Rudolph, Ralf; Matusheski, Nathan V; Ferruzzi, Mario G

    2009-10-28

    Conflicting data exist regarding the influence of chocolate matrices on the bioavailability of epicatechin (EC) from cocoa. The objective of this study was to assess the bioavailability of EC from matrices varying in macronutrient composition and physical form. EC bioavailability was assessed from chocolate confections [reference dark chocolate (CDK), high sucrose (CHS), high milk protein (CMP)] and cocoa beverages [sucrose milk protein (BSMP), non-nutritive sweetener milk protein (BNMP)], in humans and in vitro. Six subjects consumed each product in a randomized crossover design, with serum EC concentrations monitored over 6 h post consumption. Areas under the serum concentration-time curve (AUC) were similar among chocolate matrices. However, AUCs were significantly increased for BSMP and BNMP (132 and 143 nM h) versus CMP (101 nM h). Peak serum concentrations (C(MAX)) were also increased for BSMP and BNMP (43 and 42 nM) compared to CDK and CMP (32 and 25 nM). Mean T(MAX) values were lower, although not statistically different, for beverages (0.9-1.1 h) versus confections (1.8-2.3 h), reflecting distinct shapes of the pharmacokinetic curves for beverages and confections. In vitro bioaccessibility and Caco-2 accumulation did not differ between treatments. These data suggest that bioavailability of cocoa flavan-3-ols is likely similar from typical commercial cocoa based foods and beverages, but that the physical form and sucrose content may influence T(MAX) and C(MAX).

  14. Chaotic non-planar vibrations of the thin elastica. Part I: Experimental observation of planar instability

    NASA Astrophysics Data System (ADS)

    Cusumano, J. P.; Moon, F. C.

    1995-01-01

    In this two-part paper, the results of an investigation into the non-linear dynamics of a flexible cantilevered rod (the elastica) with a thin rectangular cross-section are presented. An experimental examination of the dynamics of the elastica over a broad parameter range forms the core of Part I. In Part II, the experimental work is related to a theoretical study of the mechanics of the elastica, and the study of a two-degree-of-freedom model obtained by modal projection. The experimental system used in this investigation is a rod with clamped-free boundary conditions, forced by sinusoidally displacing the clamped end. Planar periodic motions of the driven elastica are shown to lose stability at distinct resonant wedges, and the resulting motions are shown in general to be non-planar, chaotic, bending-torsion oscillations. Non-planar motions in all resonances exhibit energy cascading and dynamic two-well phenomena, and a family of asymmetric, bending-torsion non-linear modes is discovered. Correlation dimension calculations are used to estimate the number of active degrees of freedom in the system.

  15. Dynamic structure of confined shocks undergoing sudden expansion

    NASA Astrophysics Data System (ADS)

    Abate, G.; Shyy, W.

    2002-01-01

    The gas dynamic phenomenon associated with a normal shock wave within a tube undergoing a sudden area expansion consists of highly transient flow and diffraction that give rise to turbulent, compressible, vortical flows. These interactions can occur at time scales typically ranging from micro- to milliseconds. In this article, we review recent experimental and numerical results to highlight the flow phenomena and main physical mechanisms associated with this geometry. The topics addressed include time-accurate shock and vortex locations, flowfield evolution and structure, wall-shock Mach number, two- vs. three-dimensional sudden expansions, and the effect of viscous dissipation on planar shock-front expansions. Between axisymmetric and planar geometries, the flow structure evolves very similarly early on in the sudden expansion process (i.e., within the first two shock tube diameters). Both numerical and experimental studies confirm that the trajectory of the vortex formed at the expansion corner is convected into the flowfield faster in the axisymmetric case than the planar case. The lateral propagation of the vortices correlates very well between axisymmetric and planar geometries. In regard to the rate of dissipation of turbulent kinetic energy (TKE) for a two-dimensional planar shock undergoing a sudden expansion within a confined chamber, calculations show that the solenoidal dissipation is confined to the region of high strain rates arising from the expansion corner. Furthermore, the dilatational dissipation is concentrated mainly at the curvature of the incident, reflected, and barrel shock fronts. The multiple physical mechanisms identified, including shock-strain rate interaction, baroclinic effect, vorticity generation, and different aspects of viscous dissipation, have produced individual and collective flow structures observed experimentally.

  16. Performance improvement of planar dielectric elastomer actuators by magnetic modulating mechanism

    NASA Astrophysics Data System (ADS)

    Zhao, Yun-Hua; Li, Wen-Bo; Zhang, Wen-Ming; Yan, Han; Peng, Zhi-Ke; Meng, Guang

    2018-06-01

    In this paper, a novel planar dielectric elastomer actuator (DEA) with magnetic modulating mechanism is proposed. This design can provide the availability of wider actuation range and larger output force, which are significant indicators to evaluate the performance of DEAs. The DEA tends to be a compact and simple design, and an analytical model is developed to characterize the mechanical behavior. The result shows that the output force induced by the DEA can be improved by 76.90% under a certain applied voltage and initial magnet distance. Moreover, experiments are carried out to reveal the performance of the proposed DEA and validate the theoretical model. It demonstrates that the DEA using magnetic modulating mechanism can enlarge the actuation range and has more remarkable effect with decreasing initial magnet distance within the stable range. It can be useful to promote the applications of DEAs to soft robots and haptic feedback.

  17. Complexion-mediated martensitic phase transformation in Titanium

    PubMed Central

    Zhang, J.; Tasan, C. C.; Lai, M. J.; Dippel, A. -C.; Raabe, D.

    2017-01-01

    The most efficient way to tune microstructures and mechanical properties of metallic alloys lies in designing and using athermal phase transformations. Examples are shape memory alloys and high strength steels, which together stand for 1,500 million tons annual production. In these materials, martensite formation and mechanical twinning are tuned via composition adjustment for realizing complex microstructures and beneficial mechanical properties. Here we report a new phase transformation that has the potential to widen the application window of Ti alloys, the most important structural material in aerospace design, by nanostructuring them via complexion-mediated transformation. This is a reversible martensitic transformation mechanism that leads to a final nanolaminate structure of α″ (orthorhombic) martensite bounded with planar complexions of athermal ω (a–ω, hexagonal). Both phases are crystallographically related to the parent β (BCC) matrix. As expected from a planar complexion, the a–ω is stable only at the hetero-interface. PMID:28145484

  18. Complexion-mediated martensitic phase transformation in Titanium.

    PubMed

    Zhang, J; Tasan, C C; Lai, M J; Dippel, A-C; Raabe, D

    2017-02-01

    The most efficient way to tune microstructures and mechanical properties of metallic alloys lies in designing and using athermal phase transformations. Examples are shape memory alloys and high strength steels, which together stand for 1,500 million tons annual production. In these materials, martensite formation and mechanical twinning are tuned via composition adjustment for realizing complex microstructures and beneficial mechanical properties. Here we report a new phase transformation that has the potential to widen the application window of Ti alloys, the most important structural material in aerospace design, by nanostructuring them via complexion-mediated transformation. This is a reversible martensitic transformation mechanism that leads to a final nanolaminate structure of α″ (orthorhombic) martensite bounded with planar complexions of athermal ω (a-ω, hexagonal). Both phases are crystallographically related to the parent β (BCC) matrix. As expected from a planar complexion, the a-ω is stable only at the hetero-interface.

  19. Interaction of planar and nonplanar organic contaminants with coal fly ash: effects of polar and nonpolar solvent solutions.

    PubMed

    Burgess, Robert M; Ryba, Stephan A; Cantwell, Mark G; Gundersen, Jennifer L; Tien, Rex; Perron, Monique M

    2006-08-01

    Coal fly ash has a very high sorption capacity for a variety of anthropogenic contaminants and has been used to cleanse wastewater of pollutants for approximately 40 years. Like other black carbons, the planar structure of the residual carbon in fly ash results in elevated affinities for planar organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs) and some polychlorinated biphenyls (PCBs). The present study was performed to understand better the mechanisms affecting the strong interaction between planar contaminants and coal fly ash. The removal of 10 PCBs and 10 PAHs by several fly ashes and other sorbents was evaluated under different experimental conditions to highlight the intermolecular forces influencing adsorption. Varying fly ash concentration and solvent system composition indicated that dispersive interactions were most prevalent. For the PCBs, empirical results also were compared to molecular modeling estimates of the energy necessary for the PCB molecule to assume a planar conformation (PCe). The PCe levels ranged from 8 to 25 kcal/mol, depending on the degree of ortho-substituted chlorination of the PCB. A significant correlation between PCe and PCB removal from solution was observed for the fly ashes and activated carbon, whereas the nonplanar sorbent octadecyl (C18) indicated no relationship. These findings demonstrate the strong interaction between black carbon fly ash and planar organic contaminants. Furthermore, as exemplified by the PCBs, these results show how this interaction is a function of a contaminant's ability to assume a planar conformation.

  20. Designing with figer-reinforced plastics (planar random composites)

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1982-01-01

    The use of composite mechanics to predict the hygrothermomechanical behavior of planar random composites (PRC) is reviewed and described. These composites are usually made from chopped fiber reinforced resins (thermoplastics or thermosets). The hygrothermomechanical behavior includes mechanical properties, physical properties, thermal properties, fracture toughness, creep and creep rupture. Properties are presented in graphical form with sample calculations to illustrate their use. Concepts such as directional reinforcement and strip hybrids are described. Typical data that can be used for preliminary design for various PRCs are included. Several resins and molding compounds used to make PRCs are described briefly. Pertinent references are cited that cover analysis and design methods, materials, data, fabrication procedures and applications.

  1. Dependence of Non-Prestonian Behavior of Ceria Slurry with Anionic Surfactant on Abrasive Concentration and Size in Shallow Trench Isolation Chemical Mechanical Polishing

    NASA Astrophysics Data System (ADS)

    Kang, Hyun‑Goo; Kim, Dae‑Hyeong; Katoh, Takeo; Kim, Sung‑Jun; Paik, Ungyu; Park, Jea‑Gun

    2006-05-01

    The dependencies of the non-Prestonian behavior of ceria slurry with anionic surfactant on the size and concentration of abrasive particles were investigated by performing chemical mechanical polishing (CMP) experiments using blanket wafers. We found that not only the abrasive size but also the abrasive concentration with surfactant addition influences the non-Prestonian behavior. Such behavior is clearly exhibited with small abrasive sizes and a higher concentrations of abrasives with surfactant addition, because the abrasive particles can locally contact the film surface more effectively with applied pressure. We introduce a factor to quantify these relations with the non-Prestonian behavior of a slurry. For ceria slurry, this non-Prestonian factor, βNP, was determined to be almost independent of the abrasive concentration for a larger size and a smaller weight conentration of abrasive particles, but it increased with the surfactant concentration for a smaller size and a higher concentration of abrasives with surfactant addition.

  2. The Career Motivation Process Program

    ERIC Educational Resources Information Center

    Garrison, Clifford; And Others

    1975-01-01

    Describes the Career Motivation Process (CMP) program, an experimental approach to career counseling incorporating both the "personality" approach, which centers around personal self-examination, and the "decision-making" approach, which emphasizes the collection of information about possible career options. (JG)

  3. Nitrogen K-edge x-ray absorption near edge structure of pyrimidine-containing nucleotides in aqueous solution

    NASA Astrophysics Data System (ADS)

    Shimada, Hiroyuki; Minami, Hirotake; Okuizumi, Naoto; Sakuma, Ichiro; Ukai, Masatoshi; Fujii, Kentaro; Yokoya, Akinari; Fukuda, Yoshihiro; Saitoh, Yuji

    2015-05-01

    X-ray absorption near edge structure (XANES) was measured at energies around the N K-edge of the pyrimidine-containing nucleotides, cytidine 5'-monophosphate (CMP), 2'-deoxythymidine 5'-monophosphate (dTMP), and uridine 5'-monophosphate (UMP), in aqueous solutions and in dried films under various pH conditions. The features of resonant excitations below the N K-edge in the XANES spectra for CMP, dTMP, and UMP changed depending on the pH of the solutions. The spectral change thus observed is systematically explained by the chemical shift of the core-levels of N atoms in the nucleobase moieties caused by structural changes due to protonation or deprotonation at different proton concentrations. This interpretation is supported by the results of theoretical calculations using density functional theory for the corresponding nucleobases in the neutral and protonated or deprotonated forms.

  4. Nitrogen K-edge x-ray absorption near edge structure of pyrimidine-containing nucleotides in aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimada, Hiroyuki, E-mail: hshimada@cc.tuat.ac.jp; Minami, Hirotake; Okuizumi, Naoto

    2015-05-07

    X-ray absorption near edge structure (XANES) was measured at energies around the N K-edge of the pyrimidine-containing nucleotides, cytidine 5′-monophosphate (CMP), 2′-deoxythymidine 5′-monophosphate (dTMP), and uridine 5′-monophosphate (UMP), in aqueous solutions and in dried films under various pH conditions. The features of resonant excitations below the N K-edge in the XANES spectra for CMP, dTMP, and UMP changed depending on the pH of the solutions. The spectral change thus observed is systematically explained by the chemical shift of the core-levels of N atoms in the nucleobase moieties caused by structural changes due to protonation or deprotonation at different proton concentrations.more » This interpretation is supported by the results of theoretical calculations using density functional theory for the corresponding nucleobases in the neutral and protonated or deprotonated forms.« less

  5. Weighted stacking of seismic AVO data using hybrid AB semblance and local similarity

    NASA Astrophysics Data System (ADS)

    Deng, Pan; Chen, Yangkang; Zhang, Yu; Zhou, Hua-Wei

    2016-04-01

    The common-midpoint (CMP) stacking technique plays an important role in enhancing the signal-to-noise ratio (SNR) in seismic data processing and imaging. Weighted stacking is often used to improve the performance of conventional equal-weight stacking in further attenuating random noise and handling the amplitude variations in real seismic data. In this study, we propose to use a hybrid framework of combining AB semblance and a local-similarity-weighted stacking scheme. The objective is to achieve an optimal stacking of the CMP gathers with class II amplitude-variation-with-offset (AVO) polarity-reversal anomaly. The selection of high-quality near-offset reference trace is another innovation of this work because of its better preservation of useful energy. Applications to synthetic and field seismic data demonstrate a great improvement using our method to capture the true locations of weak reflections, distinguish thin-bed tuning artifacts, and effectively attenuate random noise.

  6. Conversion of post consumer waste polystyrene into a high value adsorbent and its sorptive properties for Congo Red removal from aqueous solution.

    PubMed

    Chaukura, Nhamo; Mamba, Bhekie B; Mishra, Shivani B

    2017-05-15

    Using post-consumer waste polystyrene (WPS), a conjugated microporous polymer (CMP) was synthesised and activated into a sulphonic-group carrying resin (SCMP). The surface chemistry of the materials showed a decline in both the aromatic CH and aliphatic CH 2 stretching vibrations confirming successful crosslinking. The synthesised polymers were thermally stable with decomposition temperatures above 300 °C, had surface heterogeneity, and BET surface areas of 752 and 510 m 2 /g, respectively. A distribution of pores ranging from meso- to micro-pores was comparable to other CMPs. The materials had maximum adsorption capacities of 500 and 357 mg/g for Congo Red (CR) on CMP and SCMP, respectively. Converting waste polystyrene to an adsorbent is a cost effective way of handling waste and simultaneously providing material for wastewater remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Synthesis and characterization of an anomeric sulfur analogue of CMP-sialic acid.

    PubMed

    Cohen, S B; Halcomb, R L

    2000-09-22

    alpha-2,3-Sialyltransferase catalyzes the transfer of sialic acid from CMP-sialic acid (1) to a lactose acceptor. An analogue of 1 was synthesized in which the anomeric oxygen atom was replaced with a sulfur atom (1S). The key step in the synthesis of 1S was a tetrazole-promoted coupling of a cytidine-5'-phosphoramidite with a glycosyl thiol of a protected sialic acid. Compounds 1 and 1S were characterized for their activity in a sialyl transfer assay. The rate of solvolysis in aqueous buffer of analogue 1S was 50-fold slower than that of 1. Analogue 1S was found to be substrate for alpha-2,3-sialyltransferase. The K(m) of 1S was just 3-fold higher than that of 1, while the k(cat) of 1S was 2 orders of magnitude lower compared to 1.

  8. An ab initio MO study on the hydrolysis of methyl chloride with explicit consideration of 13 water molecules

    NASA Astrophysics Data System (ADS)

    Yamataka, Hiroshi; Aida, Misako

    1998-06-01

    Ab initio MO calculations (HF/3-21G, HF/6-31G, HF/6-31+G* and MP2/6-31+G*) were carried out on the hydrolysis of CH 3Cl in which up to 13 water solvent molecules were explicitly considered. For n⩾3, three important stationary points ( cmp1, TS, and cmp2) were detected in the course of the reaction. The calculations for the n=13 system at the HF/6-31+G* level reproduced the experimental activation enthalpy and the secondary deuterium kinetic isotope effect. The two reacting bond lengths in the transition state are 1.975 Å (O-C) and 2.500 Å (C-Cl), and CH 3Cl is surrounded by 13 water molecules without any apparent vacant space. The proton transfer from the attacking water to the water cluster occurs after TS is reached.

  9. Facilitating Scholarly Writing in Academic Medicine

    PubMed Central

    Pololi, Linda; Knight, Sharon; Dunn, Kathleen

    2004-01-01

    Scholarly writing is a critical skill for faculty in academic medicine; however, few faculty receive instruction in the process. We describe the experience of 18 assistant professors who participated in a writing and faculty development program which consisted of 7 monthly 75-minute sessions embedded in a Collaborative Mentoring Program (CMP). Participants identified barriers to writing, developed personal writing strategies, had time to write, and completed monthly writing contracts. Participants provided written responses to open-ended questions about the learning experience, and at the end of the program, participants identified manuscripts submitted for publication, and completed an audiotaped interview. Analysis of qualitative data using data reduction, data display, and conclusion drawing/verification showed that this writing program facilitated the knowledge, skills, and support needed to foster writing productivity. All participants completed at least 1 scholarly manuscript by the end of the CMP. The impact on participants’ future academic productivity requires long-term follow-up. PMID:14748862

  10. Exposure Characteristics of Nanoparticles as Process By-products for the Semiconductor Manufacturing Industry.

    PubMed

    Choi, Kwang-Min; Kim, Jin-Ho; Park, Ju-Hyun; Kim, Kwan-Sick; Bae, Gwi-Nam

    2015-01-01

    This study aims to elucidate the exposure properties of nanoparticles (NPs; <100 nm in diameter) in semiconductor manufacturing processes. The measurements of airborne NPs were mainly performed around process equipment during fabrication processes and during maintenance. The number concentrations of NPs were measured using a water-based condensation particle counter having a size range of 10-3,000 nm. The chemical composition, size, and shape of NPs were determined by scanning electron microscopy and transmission electron microscopy techniques equipped with energy dispersive spectroscopy. The resulting concentrations of NPs ranged from 0.00-11.47 particles/cm(3). The concentration of NPs measured during maintenance showed a tendency to increase, albeit incrementally, compared to that measured during normal conditions (under typical process conditions without maintenance). However, the increment was small. When comparing the mean number concentration and standard deviation (n ± σ) of NPs, the chemical mechanical polishing (CMP) process was the highest (3.45 ± 3.65 particles/cm(3)), and the dry etch (ETCH) process was the lowest (0.11 ± 0.22 particles/cm(3)). The major NPs observed were silica (SiO2) and titania (TiO2) particles, which were mainly spherical agglomerates ranging in size from 25-280 nm. Sampling of semiconductor processes in CMP, chemical vapor deposition, and ETCH reveled NPs were <100 nm in those areas. On the other hand, particle size exceeded 100 nm in diffusion, metallization, ion implantation, and wet cleaning/etching process. The results show that the SiO2 and TiO2 are the major NPs present in semiconductor cleanroom environments.

  11. Extensive enrichment of N-glycolylneuraminic acid in extracellular sialoglycoproteins abundantly synthesized and secreted by human cancer cells.

    PubMed

    Inoue, Sadako; Sato, Chihiro; Kitajima, Ken

    2010-06-01

    N-Glycolylneuraminic acid (Neu5Gc) is the second most populous sialic acid (Sia). The only known biosynthetic pathway of Neu5Gc is the hydroxylation of cytidine-5'-monophosphate-N-acetylneuraminic acid (CMP-Neu5Ac), catalyzed by CMP-Neu5Ac hydroxylase (CMAH). Neu5Gc is abundantly found in mammals except for human, in which CMAH is inactivated due to mutation in the CMAH gene. Evidence has accumulated to show occurrence of Neu5Gc-containing glycoconjugates in sera of cancer patients, human cancerous tissues and cultured human cell lines. Recently, occurrence of natural antibodies against Neu5Gc was shown in healthy humans and is a serious problem for clinical xenotransplantation and stem cell therapies. Studying human occurrence of Neu5Gc is of importance and interest in a broad area of medical sciences. In this study, using a fluorometric high performance liquid chromatography method, we performed quantitative analyses of Sias both inside and in the external environment of the cell and found that (i) incorporation of Neu5Gc was most prominent in soluble glycoproteins found both in the extracellular space and inside the cell as the major Sia compounds. (ii) Of the total Neu5Gc in the Sia compounds that the cells synthesized, 90% was found in the secreted sialoglycoproteins, whereas for Neu5Ac, 70% was found in the secreted sialoglycoproteins. (iii) The Neu5Gc ratio was higher in the secreted sialoglycoproteins (as high as 40% of total Sias) than in intracellular sialoglycoproteins. (iv) The majority of the secreted sialoglycoproteins was anchored on the culture dishes and solubilized by brief trypsin treatment. Based on these findings, a new idea on the mechanism of accumulation of Neu5Gc in cancer cells was proposed.

  12. Characterization of printed planar electromagnetic coils using digital extrusion and roll-to-roll flexographic processes

    NASA Astrophysics Data System (ADS)

    Rickard, Scott

    Electromagnets are a crucial component in a wide range of more complex electrical devices due to their ability to turn electrical energy into mechanical energy and vice versa. The trend for electronics becoming smaller and lighter has led to increased interest in using flat, planar electromagnetic coils, which have been shown to perform better at scaled down sizes. The two-dimensional geometry of a planar electromagnetic coil yields itself to be produced by a roll-to-roll additive manufacturing process. The emergence of the printed electronics field, which uses traditional printing processes to pattern functional inks, has led to new methods of mass-producing basic electrical components. The ability to print a planar electromagnetic coil using printed electronics could rival the traditional subtractive and semi-subtractive PCB process of manufacturing. The ability to print lightweight planar electromagnetic coils on flexible substrates could lead to their inclusion into intelligent packaging applications and could have specific use in actuating devices, transformers, and electromagnetic induction applications such as energy harvesting or wireless charging. In attempts to better understand the limitations of printing planar electromagnetic coils, the effect that the design parameters of the planar coils have on the achievable magnetic field strength were researched. A comparison between prototyping methods of digital extrusion and manufacturing scale flexographic printing are presented, discussing consistency in the printed coils and their performance in generating magnetic fields. A method to predict the performance of these planar coils is introduced to allow for design within required needs of an application. Results from the research include a demonstration of a printed coil being used in a flat speaker design, working off of actuating principles.

  13. Millimeter And Submillimeter-Wave Integrated Circuits On Quartz

    NASA Technical Reports Server (NTRS)

    Mehdi, Imran; Mazed, Mohammad; Siegel, Peter; Smith, R. Peter

    1995-01-01

    Proposed Quartz substrate Upside-down Integrated Device (QUID) relies on UV-curable adhesive to bond semiconductor with quartz. Integrated circuits including planar GaAs Schottky diodes and passive circuit elements (such as bandpass filters) fabricated on quartz substrates. Circuits designed to operate as mixers in waveguide circuit at millimeter and submillimeter wavelengths. Integrated circuits mechanically more robust, larger, and easier to handle than planar Schottky diode chips. Quartz substrate more suitable for waveguide circuits than GaAs substrate.

  14. Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton.

    PubMed

    Shi, Jinwei; Lin, Meng-Hsien; Chen, I-Tung; Mohammadi Estakhri, Nasim; Zhang, Xin-Quan; Wang, Yanrong; Chen, Hung-Ying; Chen, Chun-An; Shih, Chih-Kang; Alù, Andrea; Li, Xiaoqin; Lee, Yi-Hsien; Gwo, Shangjr

    2017-06-26

    Atomically thin lateral heterostructures based on transition metal dichalcogenides have recently been demonstrated. In monolayer transition metal dichalcogenides, exciton energy transfer is typically limited to a short range (~1 μm), and additional losses may be incurred at the interfacial regions of a lateral heterostructure. To overcome these challenges, here we experimentally implement a planar metal-oxide-semiconductor structure by placing a WS 2 /MoS 2 monolayer heterostructure on top of an Al 2 O 3 -capped Ag single-crystalline plate. We find that the exciton energy transfer range can be extended to tens of microns in the hybrid structure mediated by an exciton-surface plasmon polariton-exciton conversion mechanism, allowing cascaded exciton energy transfer from one transition metal dichalcogenides region supporting high-energy exciton resonance to a different transition metal dichalcogenides region in the lateral heterostructure with low-energy exciton resonance. The realized planar hybrid structure combines two-dimensional light-emitting materials with planar plasmonic waveguides and offers great potential for developing integrated photonic and plasmonic devices.Exciton energy transfer in monolayer transition metal dichalcogenides is limited to short distances. Here, Shi et al. fabricate a planar metal-oxide-semiconductor structure and show that exciton energy transfer can be extended to tens of microns, mediated by an exciton-surface-plasmon-polariton-exciton conversion mechanism.

  15. Water management in a planar air-breathing fuel cell array using operando neutron imaging

    NASA Astrophysics Data System (ADS)

    Coz, E.; Théry, J.; Boillat, P.; Faucheux, V.; Alincant, D.; Capron, P.; Gébel, G.

    2016-11-01

    Operando Neutron imaging is used for the investigation of a planar air-breathing array comprising multiple cells in series. The fuel cell demonstrates a stable power density level of 150 mW/cm2. Water distribution and quantification is carried out at different operating points. Drying at high current density is observed and correlated to self-heating and natural convection. Working in dead-end mode, water accumulation at lower current density is largely observed on the anode side. However, flooding mechanisms are found to begin with water condensation on the cathode side, leading to back-diffusion and anodic flooding. Specific in-plane and through-plane water distribution is observed and linked to the planar array design.

  16. LEM2 recruits CHMP7 for ESCRT-mediated nuclear envelope closure in fission yeast and human cells

    PubMed Central

    Gu, Mingyu; LaJoie, Dollie; Chen, Opal S.; von Appen, Alexander; Ladinsky, Mark S.; Redd, Michael J.; Nikolova, Linda; Bjorkman, Pamela J.; Sundquist, Wesley I.; Ullman, Katharine S.; Frost, Adam

    2017-01-01

    Endosomal sorting complexes required for transport III (ESCRT-III) proteins have been implicated in sealing the nuclear envelope in mammals, spindle pole body dynamics in fission yeast, and surveillance of defective nuclear pore complexes in budding yeast. Here, we report that Lem2p (LEM2), a member of the LEM (Lap2-Emerin-Man1) family of inner nuclear membrane proteins, and the ESCRT-II/ESCRT-III hybrid protein Cmp7p (CHMP7), work together to recruit additional ESCRT-III proteins to holes in the nuclear membrane. In Schizosaccharomyces pombe, deletion of the ATPase vps4 leads to severe defects in nuclear morphology and integrity. These phenotypes are suppressed by loss-of-function mutations that arise spontaneously in lem2 or cmp7, implying that these proteins may function upstream in the same pathway. Building on these genetic interactions, we explored the role of LEM2 during nuclear envelope reformation in human cells. We found that CHMP7 and LEM2 enrich at the same region of the chromatin disk periphery during this window of cell division and that CHMP7 can bind directly to the C-terminal domain of LEM2 in vitro. We further found that, during nuclear envelope formation, recruitment of the ESCRT factors CHMP7, CHMP2A, and IST1/CHMP8 all depend on LEM2 in human cells. We conclude that Lem2p/LEM2 is a conserved nuclear site-specific adaptor that recruits Cmp7p/CHMP7 and downstream ESCRT factors to the nuclear envelope. PMID:28242692

  17. Myocardial oedema as the sole marker of acute injury in Takotsubo cardiomyopathy: a cardiovascular magnetic resonance (CMR) study.

    PubMed

    Iacucci, Ilaria; Carbone, Iacopo; Cannavale, Giuseppe; Conti, Bettina; Iampieri, Ilaria; Rosati, Riccardo; Sardella, Gennaro; Frustaci, Andrea; Fedele, Francesco; Catalano, Carlo; Francone, Marco

    2013-12-01

    The main hallmark of Takotsubo cardiomyopathy (TT-CMP) is transient ischaemia, with completely reversible regional contractile dysfunction, which involves the mid-apical segments and shows no angiographic signs of coronary artery disease (CAD). The acute and reversible myocardial injury suggests that tissue oedema may be an important marker of disease. Seventeen patients with a clinical and angiographic diagnosis of TT-CMP underwent cardiovascular magnetic resonance (CMR) imaging in the acute phase and at follow-up after 4 months. A standard acquisition protocol including turbo spin echo (TSE) T2-weighted short-tau inversion-recovery (T2 STIR), steady-state free-precession cine (SSFP cine) and lateenhancement (LE) imaging after gadolinium benzyloxypropionic tetraacetic acid (Gd-BOPTA) administration was performed. All images were analysed, and data on oedema and LE were correlated with regional dysfunction and histological findings from endomyocardial biopsy (EMB) where available. In all patients, T2 STIR images showed a diffuse homogeneous hyperintensity that extended to all mid-apical segments and perfectly matched the area of regional dysfunction, reflecting tissue oedema. In the five patients who underwent EMB, histology confirmed the massive interstitial oedema associated with typical contraction-band necrosis. No cases of LE were observed. At follow-up, complete regression of oedema was observed in all cases, with significant recovery of regional and global left ventricular (LV) function (ejection fraction from 48.7% to 59.8%). Myocardial oedema on CMR is a characteristic feature of acute TT-CMP, which reflects acute inflammation and acute myocardial injury. It could therefore be used as a specific marker of disease severity.

  18. Enzymatic Characterization of AMP Phosphorylase and Ribose-1,5-Bisphosphate Isomerase Functioning in an Archaeal AMP Metabolic Pathway

    PubMed Central

    Aono, Riku; Sato, Takaaki; Yano, Ayumu; Yoshida, Shosuke; Nishitani, Yuichi; Miki, Kunio; Imanaka, Tadayuki

    2012-01-01

    AMP phosphorylase (AMPpase), ribose-1,5-bisphosphate (R15P) isomerase, and type III ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) have been proposed to constitute a novel pathway involved in AMP metabolism in the Archaea. Here we performed a biochemical examination of AMPpase and R15P isomerase from Thermococcus kodakarensis. R15P isomerase was specific for the α-anomer of R15P and did not recognize other sugar compounds. We observed that activity was extremely low with the substrate R15P alone but was dramatically activated in the presence of AMP. Using AMP-activated R15P isomerase, we reevaluated the substrate specificity of AMPpase. AMPpase exhibited phosphorylase activity toward CMP and UMP in addition to AMP. The [S]-v plot (plot of velocity versus substrate concentration) of the enzyme toward AMP was sigmoidal, with an increase in activity observed at concentrations higher than approximately 3 mM. The behavior of the two enzymes toward AMP indicates that the pathway is intrinsically designed to prevent excess degradation of intracellular AMP. We further examined the formation of 3-phosphoglycerate from AMP, CMP, and UMP in T. kodakarensis cell extracts. 3-Phosphoglycerate generation was observed from AMP alone, and from CMP or UMP in the presence of dAMP, which also activates R15P isomerase. 3-Phosphoglycerate was not formed when 2-carboxyarabinitol 1,5-bisphosphate, a Rubisco inhibitor, was added. The results strongly suggest that these enzymes are actually involved in the conversion of nucleoside monophosphates to 3-phosphoglycerate in T. kodakarensis. PMID:23065974

  19. Interactions of 1,12-diamino-4,9-dioxadodecane (OSpm) and Cu(II) ions with pyrimidine and purine nucleotides: adenosine-5'-monophosphate (AMP) and cytidine-5'-monophosphate (CMP).

    PubMed

    Lomozik, L; Gasowska, A; Krzysko, G

    2006-11-01

    The interactions of Cu(II) ions with adenosine-5'-monophosphate (AMP), cytidine-5'-monophosphate (CMP) and 1,12-diamino-4,9-dioxadodecane (OSpm) were studied. A potentiometric method was applied to determine the composition and stability constants of complexes formed, while the mode of interactions was analysed by spectral methods (ultraviolet and visible spectroscopy (UV-Vis), electron paramagnetic resonance (EPR), (13)C NMR, (31)P NMR). In metal-free systems, molecular complexes nucleotide-polyamine (NMP)H(x)(OSpm) were formed. The endocyclic nitrogen atoms of the purine ring N(1), N(7), the nitrogen atom of the pyrimidine ring N(3), the oxygen atoms of the phosphate group of the nucleotide and the protonated nitrogen atoms of the polyamine were the reaction centres. The mode of interaction of the metal ion with OSpm and the nucleotides (AMP or CMP) in the coordination compounds was established. In the system Cu(II)/OSpm the dinuclear complex Cu(2)(OSpm) forms, while in the ternary systems Cu(II)/nucleotide/OSpm the species type MH(x)LL' and MLL' appear. In the MH(x)LL' type species, the main centres of copper (II) ion binding in the nucleotide are the phosphate groups. The protonated amino groups of OSpm are involved in non-covalent interaction with the nitrogen atoms N(1), N(7) or N(3) of the purine or pyrimidine ring, whereas at higher pH, deprotonated nitrogen atoms of polyamine are engaged in metallation in MLL' species.

  20. Hierachical assembly of collagen mimetic peptides into biofunctional materials

    NASA Astrophysics Data System (ADS)

    Gleaton, Jeremy W.

    Collagen is a remarkably strong and prevalent protein distributed throughout nature and as such, collagen is an ideal material for a variety of medical applications. Research efforts for the development of synthetic collagen biomaterials is an area of rapid growth. Here we present two methods for the assembly of collagen mimetic peptides (CMPs). The initial approach prompts assembly of CMPs which contain modifications for metal ion-triggered assembly. Hierarchical assembly into triple helices, followed by formation of disks via hydrophobic interactions has been demonstrated. Metal-ion mediated assembly of these disks, using iron (II)-bipyrdine interactions, has been shown to form micron-sized cages. The nature of the final structures that form depends on the number of bipyridine moieties incorporated into the CMP. These hollow spheres encapsulate a range of molecular weight fluorescently labeled dextrans. Furthermore, they demonstrate a time dependent release of contents under a variety of thermal conditions. The second approach assembles CMPs via the copper-catalyzed alkyne-azide cycloaddition (CuAAC) and the strain-promoted alkyne-azide cycloaddition (SPAAC) reactions. CMPs that incorporate the unnatural amino acids L-propargylglycine and L-azidolysine form triple helices and demonstrate higher order assembly when reacted via CuAAC. Reaction of the alkyne/azide modified CMPs under CuAAC conditions was found to produce an crosslinked 3-dimensional network. Moreover, we demonstrate that polymers, such as, PEG, can be reacted with alkyne and azide CMP triple helices via CuAAC and SPAAC. This designed covalent CMP chemistry allows for high flexibility in integrating various chemical cues, such as cell growth and differentiation within the higher order structures.

  1. Crack Growth Mechanisms under Anti-Plane Shear in Composite Laminates

    NASA Astrophysics Data System (ADS)

    Horner, Allison Lynne

    The research conducted for this dissertation focuses on determining the mechanisms associated with crack growth in polymer matrix composite laminates subjected to anti-plane shear (mode III) loading. For mode III split-beam test methods were proposed, and initial evaluations were conducted. A single test method was selected for further evaluation. Using this test method, it was determined that the apparent mode III delamination toughness, GIIIc , depended on geometry, which indicated a true material property was not being measured. Transverse sectioning and optical microscopy revealed an array of transverse matrix cracks, or echelon cracks, oriented at approximately 45° and intersecting the plane of the delamination. Subsequent investigations found the echelon array formed prior to the onset of planar delamination advance and that growth of the planar delamination is always coupled to echelon array formation in these specimens. The evolution of the fracture surfaces formed by the echelon array and planar delamination were studied, and it was found that the development was similar to crack growth in homogenous materials subjected to mode III or mixed mode I-III loading, although the composite laminate architecture constrained the fracture surface development differently than homogenous materials. It was also found that, for split-beam specimens such as those used herein, applying an anti-plane shear load results in twisting of the specimen's uncracked region which gives rise to a mixed-mode I-III load condition. This twisting has been related to the apparent mode III toughness as well as the orientation of the transverse matrix cracks. A finite element model was then developed to study the mechanisms of initial echelon array formation. From this, it is shown that an echelon array will develop, but will become self-limiting prior to the onset of planar delamination growth.

  2. Observing planar cell polarity in multiciliated mouse airway epithelial cells.

    PubMed

    Vladar, Eszter K; Lee, Yin Loon; Stearns, Tim; Axelrod, Jeffrey D

    2015-01-01

    The concerted movement of cilia propels inhaled contaminants out of the lungs, safeguarding the respiratory system from toxins, pathogens, pollutants, and allergens. Motile cilia on the multiciliated cells (MCCs) of the airway epithelium are physically oriented along the tissue axis for directional motility, which depends on the planar cell polarity (PCP) signaling pathway. The MCCs of the mouse respiratory epithelium have emerged as an important model for the study of motile ciliogenesis and the PCP signaling mechanism. Unlike other motile ciliated or planar polarized tissues, airway epithelial cells are relatively easily accessible and primary cultures faithfully model many of the essential features of the in vivo tissue. There is growing interest in understanding how cells acquire and polarize motile cilia due to the impact of mucociliary clearance on respiratory health. Here, we present methods for observing and quantifying the planar polarized orientation of motile cilia both in vivo and in primary culture airway epithelial cells. We describe how to acquire and evaluate electron and light microscopy images of ciliary ultrastructural features that reveal planar polarized orientation. Furthermore, we describe the immunofluorescence localization of PCP pathway components as a simple readout for airway epithelial planar polarization and ciliary orientation. These methods can be adapted to observe ciliary orientation in other multi- and monociliated cells and to detect PCP pathway activity in any tissue or cell type. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Silicon Dioxide Planarization: Impacts on Optical Coatings for High Energy Laser

    NASA Astrophysics Data System (ADS)

    Day, Travis E.

    The work of this thesis is devoted to examining the impact of silicon dioxide (silica or SiO2) planarization on the optical properties and laser damage resistance of thin-film coatings. SiO2 planarization is a process to smooth out fluence limiting nodular defects within multilayer coatings for high-energy laser applications. Mitigating these defects will improve the power handling abilities and improve the lifetime of laser coatings. Presented here is a combination of work with the aim of evaluating the optical and laser damage properties of SiO2 planarization within single layers, bilayers, and multilayers. As compared to control (non-planarized) samples, a 2-3x increase in the thin-film absorption, which decreases with post-process annealing, was discovered for SiO2 planarized samples. This suggests that planarization creates oxygen-related defects which can be annealed out and little impurity implantation. Investigations of laser damage resistance were carried out at lambda = 1030nm and pulse durations of tau = 220ps and 9ps. The laser damage of single and bilayer coatings is known to be dependent on the substrate-coating interface and this is further evidenced within this thesis. This is because the effects of planarization are masked by the extrinsic laser damage processes within the single and bilayers. Slight change (< 15%) in the laser induced damage threshold (LIDT) at 220ps and 9ps was observed for planarized single and bilayers. Depending on coating design, post-process annealing was shown to increase the LIDT by 10% to 75% at 220ps and 10% to 45% at 9ps. Although the fused silica substrate surface LIDT was shown to follow the √tau pulse scaling law for pulses above 10ps, the single and bilayer coatings do not follow this pulse scaling. The divergence from the √tau pulse scaling on the coatings suggests a variation in the laser damage initiation mechanisms between 220ps and 9ps. Multilayer high-reflecting (HR) mirrors with varying planarization design were also damage tested. A 6-7 J/cm2 LIDT, with 220ps, was observed for HR coatings with SiO2 planarization layers within high electric-field areas within the coating. However, SiO2 planarization at the substrate-coating interface, where the electric-field is minimal, and control (non-planarized) was shown to have a LIDT of 63 +/- 1.2 J/cm 2 and 21.5 +/- 0.5 J/cm2 for 220ps, respectively. At 9ps, the LIDT varied less than 90% difference between the various planarization designs. The substrate-coating planarization multilayer and control coating had an equal LIDT of 9.6 +/- .3 J/cm2 at 9ps.

  4. The Mechanism of Covalent Bonding: Analysis within the Huckel Model of Electronic Structure

    ERIC Educational Resources Information Center

    Nordholm, Sture; Back, Andreas; Backsay, George B.

    2007-01-01

    The commonly used Huckel model of electronic structure is employed to study the mechanisms of covalent bonding, a quantum effect related to electron dynamics. The model also explains the conjugation and aromaticity of planar hydrocarbon molecules completely.

  5. Adsorption of nucleotides onto ferromagnesian phyllosilicates: Significance for the origin of life

    NASA Astrophysics Data System (ADS)

    Pedreira-Segade, Ulysse; Feuillie, Cécile; Pelletier, Manuel; Michot, Laurent J.; Daniel, Isabelle

    2016-03-01

    The concentration of prebiotic organic building blocks may have promoted the formation of biopolymers in the environment of the early Earth. We therefore studied the adsorption of RNA monomers AMP, GMP, CMP, and UMP, and DNA monomers dGMP, dCMP, and TMP, on minerals that were abundant in the early Earth environment as the result of aqueous or hydrothermal alteration of the primitive oceanic crust. We focused our study on swelling clays, i.e. nontronite and montmorillonite, and non-swelling phyllosilicates, i.e. pyrophyllite, chlorite, lizardite and chrysotile suspended in an aqueous saline solution analog to seawater. In this reference study, adsorption experiments were carried out under standard conditions of pressure and temperature and controlled pH. Under such conditions, this work is also relevant to the preservation of nucleic acids in Fe-Mg-rich terrestrial and Martian soils. We compared the adsorption of the different monomers on individual minerals, as well as the adsorption of single monomers on the whole suite of minerals. We found that DNA monomers adsorb much more strongly than RNA monomers, and that any monomer containing the G nucleobase adsorbed more strongly than one containing the C nucleobase. At high surface loadings (greater than about 1 mM monomer in aqueous solution) we also found a dramatic increase in the slope of adsorption isotherm on the swelling clays, leading to large increases in the amounts adsorbed. Data were processed in order to understand the adsorption mechanism of nucleotides onto mineral surfaces. We infer that all nucleotides behave as homologous molecules in regard to their adsorption onto the studied mineral surfaces. At low to moderate surface loadings, their adsorption is best explained by a single mechanism common to the suite of minerals of the present study. At pH 7, adsorption certainly proceeds by ligand exchange between the phosphate group and the hydroxyls of the broken edges of phyllosilicates leading to the saturation of lateral surfaces. Below pH 4, swelling clays also adsorb nucleotides through cation exchange on basal surfaces, whereas non-swelling phyllosilicates do not. However, at high surface loadings an additional mechanism stabilizing adsorption occurs. Given the proposed adsorption mechanisms, the possibility of a favorable polymerization at the mineral-water interface is discussed. We propose that Fe-Mg rich phyllosilicates tightly bind nucleotides, under ambient conditions, and concentrate them up to 1000 times the solution concentration upon saturation. Nontronites have the most diverse and favorable adsorption behaviors and could have helped to the concentration and polymerization of nucleotides under primitive Earth-like conditions.

  6. Planar Cell Polarity Breaks the Symmetry of PAR Protein Distribution prior to Mitosis in Drosophila Sensory Organ Precursor Cells.

    PubMed

    Besson, Charlotte; Bernard, Fred; Corson, Francis; Rouault, Hervé; Reynaud, Elodie; Keder, Alyona; Mazouni, Khalil; Schweisguth, François

    2015-04-20

    During development, cell-fate diversity can result from the unequal segregation of fate determinants at mitosis. Polarization of the mother cell is essential for asymmetric cell division (ACD). It often involves the formation of a cortical domain containing the PAR complex proteins Par3, Par6, and atypical protein kinase C (aPKC). In the fly notum, sensory organ precursor cells (SOPs) divide asymmetrically within the plane of the epithelium and along the body axis to generate two distinct cells. Fate asymmetry depends on the asymmetric localization of the PAR complex. In the absence of planar cell polarity (PCP), SOPs divide with a random planar orientation but still asymmetrically, showing that PCP is dispensable for PAR asymmetry at mitosis. To study when and how the PAR complex localizes asymmetrically, we have used a quantitative imaging approach to measure the planar polarization of the proteins Bazooka (Baz, fly Par3), Par6, and aPKC in living pupae. By using imaging of functional GFP-tagged proteins with image processing and computational modeling, we find that Baz, Par6, and aPKC become planar polarized prior to mitosis in a manner independent of the AuroraA kinase and that PCP is required for the planar polarization of Baz, Par6, and aPKC during interphase. This indicates that a "mitosis rescue" mechanism establishes asymmetry at mitosis in PCP mutants. This study therefore identifies PCP as the initial symmetry-breaking signal for the planar polarization of PAR proteins in asymmetrically dividing SOPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Magnetic Induction Machines Integrated into Bulk-Micromachined Silicon

    DTIC Science & Technology

    2006-04-01

    Actuator Workshop (Hilton Head 2000), pp. 43–7, Jun. 2000. [5] H. Guckel et al., “A first functional current excited planar rotational magnetic micromotor ...in Proc. IEEE Micro Electro Mechanical Sys- tems (MEMS’93), Feb. 1993, pp. 7–11. [6] , “Planar rotational magnetic micromotors ,” Int. J. Appl... micromotor with fully integrated stator and coils,” J. Micro- electromech. Syst., vol. 2, no. 4, pp. 165–73, Dec. 1993. [8] B. Wagner, M. Kreutzer, and W

  8. Generalized Models for Rock Joint Surface Shapes

    PubMed Central

    Du, Shigui; Hu, Yunjin; Hu, Xiaofei

    2014-01-01

    Generalized models of joint surface shapes are the foundation for mechanism studies on the mechanical effects of rock joint surface shapes. Based on extensive field investigations of rock joint surface shapes, generalized models for three level shapes named macroscopic outline, surface undulating shape, and microcosmic roughness were established through statistical analyses of 20,078 rock joint surface profiles. The relative amplitude of profile curves was used as a borderline for the division of different level shapes. The study results show that the macroscopic outline has three basic features such as planar, arc-shaped, and stepped; the surface undulating shape has three basic features such as planar, undulating, and stepped; and the microcosmic roughness has two basic features such as smooth and rough. PMID:25152901

  9. Security hologram foil labels with a design facilitating authenticity testing: effects of mechanical bending of substrates with the glued on holograms

    NASA Astrophysics Data System (ADS)

    Aubrecht, Ivo

    2015-05-01

    Optimal design of security holograms or diffractive optically variable image devices (DOVIDs) that would be complex enough to deter counterfeiters from attempts of mimicking but contains features readily recognizable by laymen has been addressed by many experts. This paper tries to discuss effects of mechanical bending of a flexible substrate to visual appearance of a glued-on foil DOVID. Initially plane, the DOVID is deformed to a convex- or concave-shaped curved surface. Theoretical analyses and experimental results assume the surface to be a cylindrical segment and concern rainbow-type surface-relief holograms that are recorded piecewise in a photoresist material, coated on planar and non-planar substrates.

  10. A novel mechatronic system for measuring end-point stiffness: mechanical design and preliminary tests.

    PubMed

    Masia, L; Sandini, G; Morasso, P G

    2011-01-01

    Measuring arm stiffness is of great interest for many disciplines from biomechanics to medicine especially because modulation of impedance represents one of the main mechanism underlying control of movement and interaction with external environment. Previous works have proposed different methods to identify multijoint hand stiffness by using planar or even tridimensional haptic devices, but the associated computational burden makes them not easy to implement. We present a novel mechanism conceived for measuring multijoint planar stiffness by a single measurement and in a reduced execution time. A novel mechanical rotary device applies cyclic radial perturbation to human arm of a known displacement and the force is acquired by means of a 6-axes commercial load cell. The outcomes suggest that the system is not only reliable but allows obtaining a bi-dimensional estimation of arm stiffness in reduced amount of time and the results are comparable with those reported in previous researches. © 2011 IEEE

  11. Incorporating travel-time reliability into the congestion management process : a primer.

    DOT National Transportation Integrated Search

    2015-02-01

    This primer explains the value of incorporating travel-time reliability into the Congestion Management Process (CMP) : and identifies the most current tools available to assist with this effort. It draws from applied research and best practices : fro...

  12. Use of chemical-mechanical polishing for fabricating photonic bandgap structures

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu; Hetherington, Dale L.; Smith, Bradley K.

    1999-01-01

    A method is disclosed for fabricating a two- or three-dimensional photonic bandgap structure (also termed a photonic crystal, photonic lattice, or photonic dielectric structure). The method uses microelectronic integrated circuit (IC) processes to fabricate the photonic bandgap structure directly upon a silicon substrate. One or more layers of arrayed elements used to form the structure are deposited and patterned, with chemical-mechanical polishing being used to planarize each layer for uniformity and a precise vertical tolerancing of the layer. The use of chemical-mechanical planarization allows the photonic bandgap structure to be formed over a large area with a layer uniformity of about two-percent. Air-gap photonic bandgap structures can also be formed by removing a spacer material separating the arrayed elements by selective etching. The method is useful for fabricating photonic bandgap structures including Fabry-Perot resonators and optical filters for use at wavelengths in the range of about 0.2-20 .mu.m.

  13. Triple bar, high efficiency mechanical sealer

    DOEpatents

    Pak, Donald J.; Hawkins, Samantha A.; Young, John E.

    2013-03-19

    A clamp with a bottom clamp bar that has a planar upper surface is provided. The clamp may also include a top clamp bar connected to the bottom clamp bar, and a pressure distribution bar between the top clamp bar and the bottom clamp bar. The pressure distribution bar may have a planar lower surface in facing relation to the upper surface of the bottom clamp bar. An object is capable of being disposed in a clamping region between the upper surface and the lower surface. The width of the planar lower surface may be less than the width of the upper surface within the clamping region. Also, the pressure distribution bar may be capable of being urged away from the top clamp bar and towards the bottom clamp bar.

  14. Atomically informed nonlocal semi-discrete variational Peierls-Nabarro model for planar core dislocations

    PubMed Central

    Liu, Guisen; Cheng, Xi; Wang, Jian; Chen, Kaiguo; Shen, Yao

    2017-01-01

    Prediction of Peierls stress associated with dislocation glide is of fundamental concern in understanding and designing the plasticity and mechanical properties of crystalline materials. Here, we develop a nonlocal semi-discrete variational Peierls-Nabarro (SVPN) model by incorporating the nonlocal atomic interactions into the semi-discrete variational Peierls framework. The nonlocal kernel is simplified by limiting the nonlocal atomic interaction in the nearest neighbor region, and the nonlocal coefficient is directly computed from the dislocation core structure. Our model is capable of accurately predicting the displacement profile, and the Peierls stress, of planar-extended core dislocations in face-centered cubic structures. Our model could be extended to study more complicated planar-extended core dislocations, such as <110> {111} dislocations in Al-based and Ti-based intermetallic compounds. PMID:28252102

  15. Interfacing planar superconducting qubits with high overtone bulk acoustic phonons

    NASA Astrophysics Data System (ADS)

    Kervinen, Mikael; Rissanen, Ilkka; Sillanpää, Mika

    2018-05-01

    Mechanical resonators are a promising way for interfacing qubits in order to realize hybrid quantum systems that offer great possibilities for applications. Mechanical systems can have very long energy lifetimes, and they can be further interfaced to other systems. Moreover, integration of a mechanical oscillator with qubits creates a potential platform for the exploration of quantum physics in macroscopic mechanical degrees of freedom. The utilization of high overtone bulk acoustic resonators coupled to superconducting qubits is an intriguing platform towards these goals. These resonators exhibit a combination of high-frequency and high-quality factors. They can reach their quantum ground state at dilution refrigeration temperatures and they can be strongly coupled to superconducting qubits via their piezoelectric effect. In this paper, we demonstrate our system where bulk acoustic phonons of a high overtone resonator are coupled to a transmon qubit in a planar circuit architecture. We show that the bulk acoustic phonons are interacting with the qubit in a simple design architecture at the quantum level, representing further progress towards the quantum control of mechanical motion.

  16. Spontaneous Planar Chiral Symmetry Breaking in Cells

    NASA Astrophysics Data System (ADS)

    Hadidjojo, Jeremy; Lubensky, David

    Recent progress in animal development has highlighted the central role played by planar cell polarity (PCP) in epithelial tissue morphogenesis. Through PCP, cells have the ability to collectively polarize in the plane of the epithelium by localizing morphogenetic proteins along a certain axis. This allows direction-dependent modulation of tissue mechanical properties that can translate into the formation of complex, non-rotationally invariant shapes. Recent experimental observations[1] show that cells, in addition to being planar-polarized, can also spontaneously develop planar chirality, perhaps in the effort of making yet more complex shapes that are reflection non-invariant. In this talk we will present our work in characterizing general mechanisms that can lead to spontaneous chiral symmetry breaking in cells. We decompose interfacial concentration of polarity proteins in a hexagonal cell packing into irreducible representations. We find that in the case of polar concentration distributions, a chiral state can only be reached from a secondary instability after the cells are polarized. However in the case of nematic distributions, we show that a finite-amplitude (subcritical, or ``first-order'') nematic transition can send the system from disorder directly to a chiral state. In addition, we find that perturbing the system by stretching the hexagonal packing enables direct (supercritical, or ``second-order'') chiral transition in the nematic case. Finally, we do a Landau expansion to study competition between stretch-induced chirality and the tendency towards a non-chiral state in packings that have retained the full 6-fold symmetry.

  17. InSPACE Experiment

    NASA Image and Video Library

    2012-12-31

    View of Command and Monitoring Panel (CMP),and Power Distribution and Conversion Box (PDC),on the Microgravity Science Glovebox (MSG) rack during Investigating the Structure of Paramagnetic Aggregates from Colloidal Emulsions 3 (InSPACE-3) Experiment,in the U.S. Laboratory. Photo was taken during Expedition 34.

  18. Updating and improving methodology for prioritizing highway project locations on the strategic intermodal system : [summary].

    DOT National Transportation Integrated Search

    2016-05-01

    Florida International University researchers examined the existing performance measures and the project prioritization method in the CMP and updated them to better reflect the current conditions and strategic goals of FDOT. They also developed visual...

  19. Motor vehicle seat belt restraint system analysis during rollover.

    PubMed

    Meyer, Steven E; Hock, Davis; Forrest, Stephen; Herbst, Brian; Sances, Anthony; Kumaresan, Srirangam

    2003-01-01

    The multi-planar and multiple impact long duration accident sequence of a real world rollover results in multidirectional vehicle acceleration pulses and multiplanar occupant motions not typically seen in a planar crash sequence. Various researchers have documented that, while contemporary production emergency locking seatbelt retractors (ELRs) have been found to be extremely effective in the planar crashes in which they are extensively evaluated, when subjected to multi-planar acceleration environments their response may be different than expected. Specifically, accelerations in the vertical plane have been shown to substantially affect the timeliness of the retractors inertial sensor moving out of its neutral position and locking the seat belt. An analysis of the vehicle occupant motions relative to the acceleration pulses sensed at the retractor location indicates a time phase shift that, under certain circumstances, can result in unexpected seat belt spool out and occupant excursions in these multi-planar, multiple impact crash sequences. This paper will review the various previous studies focusing on the retractors response to these multidirectional, including vertical, acceleration environments and review statistical studies based upon U.S. government collected data indicating a significant difference in belt usage rates in rollover accidents as compared to all other planar accident modes. A significant number of real world accident case studies will be reviewed wherein the performance of ELR equipped seatbelt systems spooled out. Finally, the typical occupant injury and the associated mechanism due to belt spool out in real world accidents will be delineated.

  20. Doing that thing that scientists do: A discovery-driven module on protein purification and characterization for the undergraduate biochemistry laboratory classroom.

    PubMed

    Garrett, Teresa A; Osmundson, Joseph; Isaacson, Marisa; Herrera, Jennifer

    2015-01-01

    In traditional introductory biochemistry laboratory classes students learn techniques for protein purification and analysis by following provided, established, step-by-step procedures. Students are exposed to a variety of biochemical techniques but are often not developing procedures or collecting new, original data. In this laboratory module, students develop research skills through work on an original research project and gain confidence in their ability to design and execute an experiment while faculty can enhance their scholarly pursuits through the acquisition of original data in the classroom laboratory. Students are prepared for a 6-8 week discovery-driven project on the purification of the Escherichia coli cytidylate kinase (CMP kinase) through in class problems and other laboratory exercises on bioinformatics and protein structure analysis. After a minimal amount of guidance on how to perform the CMP kinase in vitro enzyme assay, SDS-PAGE, and the basics of protein purification, students, working in groups of three to four, develop a protein purification protocol based on the scientific literature and investigate some aspect of CMP kinase that interests them. Through this process, students learn how to implement a new but perhaps previously worked out procedure to answer their research question. In addition, they learn the importance of keeping a clear and thorough laboratory notebook and how to interpret their data and use that data to inform the next set of experiments. Following this module, students had increased confidence in their ability to do basic biochemistry techniques and reported that the "self-directed" nature of this lab increased their engagement in the project. © 2015 The International Union of Biochemistry and Molecular Biology.

  1. Double-blind placebo-controlled food challenges in children with alleged cow's milk allergy: prevention of unnecessary elimination diets and determination of eliciting doses.

    PubMed

    Dambacher, Wendy M; de Kort, Ellen H M; Blom, W Marty; Houben, Geert F; de Vries, Esther

    2013-02-08

    Children with cow's milk allergy (CMA) need a cow's milk protein (CMP) free diet to prevent allergic reactions. For this, reliable allergy-information on the label of food products is essential to avoid products containing the allergen. On the other hand, both overzealous labeling and misdiagnosis that result in unnecessary elimination diets, can lead to potentially hazardous health situations. Our objective was to evaluate if excluding CMA by double-blind placebo-controlled food challenge (DBPCFC) prevents unnecessary elimination diets in the long term. Secondly, to determine the minimum eliciting dose (MED) for an acute allergic reaction to CMP in DBPCFC positive children. All children with suspected CMA under our care (Oct'05-Jun'09) were prospectively enrolled in a DBPCFC. Placebo and verum feedings were administered on two randomly assigned separate days. The MED was determined by noting the 'lowest observed adverse effect level' (LOAEL) in DBPCFC-positive children. Based on the outcomes of the DBPCFC a dietary advice was given. Parents were contacted by phone several months later about the diet of their child. 116 children were available for analysis. In 76 children CMA was rejected. In 60 of them CMP was successfully reintroduced, in 2 the parents refused introduction, in another 3 the parents stopped reintroduction. In 9 children CMA symptoms reappeared. In 40 children CMA was confirmed. Infants aged ≤ 12 months in our study group have a higher cumulative distribution of MED than older children. Excluding CMA by DBPCFC successfully stopped unnecessary elimination diets in the long term in most children. The MEDs form potential useful information for offering dietary advice to patients and their caretakers.

  2. The role of health information technology in advancing care management and coordination in accountable care organizations.

    PubMed

    Wu, Frances M; Shortell, Stephen M; Rundall, Thomas G; Bloom, Joan R

    To be successful, accountable care organizations (ACOs) must effectively manage patient care. Health information technology (HIT) can support care delivery by providing various degrees of coordination. Few studies have examined the role of HIT functionalities or the role of different levels of coordination enabled by HIT on care management processes. We examine HIT functionalities in ACOs, categorized by the level of coordination they enable in terms of information and work flow, to determine which specific HIT functionalities and levels of coordination are most strongly associated with care management processes. Retrospective cross-sectional analysis was done using 2012 data from the National Survey of Accountable Care Organizations. HIT functionalities are categorized into coordination levels: information capture, the lowest level, which coordinates through standardization; information provision, which supports unidirectional activities; and information exchange, which reflects the highest level of coordination allowing for bidirectional exchange. The Care Management Process index (CMP index) includes 13 questions about the extent to which care is planned, monitored, and supported by providers and patients. Multiple regressions adjusting for organizational and ACO contractual factors are used to assess relationships between HIT functionalities and the CMP index. HIT functionality coordinating the most complex interdependences (information exchange) was associated with a 0.41 standard deviation change in the CMP index (β = .41, p < .001), but the associations for information capture (β = -.01, p = .97) and information provision (β = .15, p = .48) functionalities were not significant. The current study has shed some light on the relationship between HIT and care management processes by specifying the coordination roles that HIT may play and, in particular, the importance of information exchange functionalities. Although these represent early findings, further research can help policy makers and clinical leaders understand how to prioritize HIT development given resource constraints.

  3. The predictive value of specific immunoglobulin E levels in serum for the outcome of the development of tolerance in cow's milk allergy.

    PubMed

    Martorell, A; García Ara, M C; Plaza, A M; Boné, J; Nevot, S; Echeverria, L; Alonso, E; Garde, J

    2008-01-01

    Immunoglobulin E-mediated allergy to cow's milk protein (CMP) tends to subside over years of follow-up. The gold standard for detecting such allergy has been the oral challenge test. The development of some other test for determining the correct timing of the oral challenge test would avoid unnecessary patient discomfort. The aim of this study was to determine whether monitoring cow's milk (CM) specific IgE levels over time can be used as a predictor for determining when patients develop clinical tolerance. A prospective 4-year follow-up study was made of 170 patients with IgE-mediated allergy to CMP, involving periodic evaluations (12, 18, 24, 36 and 48 months) with the determination of casein and CM specific IgE on each visit, along with CM challenge testing. ROC curves were used to analyse the sensitivity, specificity and predictive values of the casein and CM specific IgE levels versus the challenge test outcomes at the different moments of follow-up. In the course of follow-up, 140 infants (82 %) became tolerant. Specific IgE levels to CM: 2.58, 2.5, 2.7, 2.26, 5 kU(A)/l and to casein: 0.97, 1.22, 3, 2.39, 2.73 kU(A)/l, respectively, predicted clinical reactivity (greatest diagnostic efficiency values) at the different analysed moments of follow-up (12, 18, 24, 36 and 48 months). Quantification of CMP specific IgE is a useful test for diagnosing symptomatic allergy to CM in the paediatric population, and could eliminate the need to perform oral challenges tests in a significant number of children.

  4. Myocardial Tissue Engineering With Cells Derived From Human-Induced Pluripotent Stem Cells and a Native-Like, High-Resolution, 3-Dimensionally Printed Scaffold.

    PubMed

    Gao, Ling; Kupfer, Molly E; Jung, Jangwook P; Yang, Libang; Zhang, Patrick; Da Sie, Yong; Tran, Quyen; Ajeti, Visar; Freeman, Brian T; Fast, Vladimir G; Campagnola, Paul J; Ogle, Brenda M; Zhang, Jianyi

    2017-04-14

    Conventional 3-dimensional (3D) printing techniques cannot produce structures of the size at which individual cells interact. Here, we used multiphoton-excited 3D printing to generate a native-like extracellular matrix scaffold with submicron resolution and then seeded the scaffold with cardiomyocytes, smooth muscle cells, and endothelial cells that had been differentiated from human-induced pluripotent stem cells to generate a human-induced pluripotent stem cell-derived cardiac muscle patch (hCMP), which was subsequently evaluated in a murine model of myocardial infarction. The scaffold was seeded with ≈50 000 human-induced pluripotent stem cell-derived cardiomyocytes, smooth muscle cells, and endothelial cells (in a 2:1:1 ratio) to generate the hCMP, which began generating calcium transients and beating synchronously within 1 day of seeding; the speeds of contraction and relaxation and the peak amplitudes of the calcium transients increased significantly over the next 7 days. When tested in mice with surgically induced myocardial infarction, measurements of cardiac function, infarct size, apoptosis, both vascular and arteriole density, and cell proliferation at week 4 after treatment were significantly better in animals treated with the hCMPs than in animals treated with cell-free scaffolds, and the rate of cell engraftment in hCMP-treated animals was 24.5% at week 1 and 11.2% at week 4. Thus, the novel multiphoton-excited 3D printing technique produces extracellular matrix-based scaffolds with exceptional resolution and fidelity, and hCMPs fabricated with these scaffolds may significantly improve recovery from ischemic myocardial injury. © 2017 American Heart Association, Inc.

  5. Staying at work with chronic nonspecific musculoskeletal pain: a qualitative study of workers' experiences.

    PubMed

    de Vries, Haitze J; Brouwer, Sandra; Groothoff, Johan W; Geertzen, Jan H B; Reneman, Michiel F

    2011-06-03

    Many people with chronic nonspecific musculoskeletal pain (CMP) have decreased work ability. The majority, however, stays at work despite their pain. Knowledge about workers who stay at work despite chronic pain is limited, narrowing our views on work participation. The aim of this study was to explore why people with CMP stay at work despite pain (motivators) and how they manage to maintain working (success factors). A semi-structured interview was conducted among 21 subjects who stay at work despite CMP. Participants were included through purposeful sampling. Interviews were audio-recorded, transcribed verbatim, and imported into computer software Atlas.ti. Data was analyzed by means of thematic analysis. The interviews consisted of open questions such as: "Why are you working with pain?" or "How do you manage working while having pain?" A total of 16 motivators and 52 success factors emerged in the interviews. Motivators were categorized into four themes: work as value, work as therapy, work as income generator, and work as responsibility. Success factors were categorized into five themes: personal characteristics, adjustment latitude, coping with pain, use of healthcare services, and pain beliefs. Personal characteristics, well-developed self-management skills, and motivation to work may be considered to be important success factors and prerequisites for staying at work, resulting in behaviors promoting staying at work such as: raising adjustment latitude, changing pain-coping strategies, organizing modifications and conditions at work, finding access to healthcare services, and asking for support. Motivators and success factors for staying at work may be used for interventions in rehabilitation and occupational medicine, to prevent absenteeism, or to promote a sustainable return to work. This qualitative study has evoked new hypotheses about staying at work; quantitative studies on staying at work are needed to obtain further evidence.

  6. Cluster subgroups based on overall pressure pain sensitivity and psychosocial factors in chronic musculoskeletal pain: Differences in clinical outcomes.

    PubMed

    Almeida, Suzana C; George, Steven Z; Leite, Raquel D V; Oliveira, Anamaria S; Chaves, Thais C

    2018-05-17

    We aimed to empirically derive psychosocial and pain sensitivity subgroups using cluster analysis within a sample of individuals with chronic musculoskeletal pain (CMP) and to investigate derived subgroups for differences in pain and disability outcomes. Eighty female participants with CMP answered psychosocial and disability scales and were assessed for pressure pain sensitivity. A cluster analysis was used to derive subgroups, and analysis of variance (ANOVA) was used to investigate differences between subgroups. Psychosocial factors (kinesiophobia, pain catastrophizing, anxiety, and depression) and overall pressure pain threshold (PPT) were entered into the cluster analysis. Three subgroups were empirically derived: cluster 1 (high pain sensitivity and high psychosocial distress; n = 12) characterized by low overall PPT and high psychosocial scores; cluster 2 (high pain sensitivity and intermediate psychosocial distress; n = 39) characterized by low overall PPT and intermediate psychosocial scores; and cluster 3 (low pain sensitivity and low psychosocial distress; n = 29) characterized by high overall PPT and low psychosocial scores compared to the other subgroups. Cluster 1 showed higher values for mean pain intensity (F (2,77)  = 10.58, p < 0.001) compared with cluster 3, and cluster 1 showed higher values for disability (F (2,77)  = 3.81, p = 0.03) compared with both clusters 2 and 3. Only cluster 1 was distinct from cluster 3 according to both pain and disability outcomes. Pain catastrophizing, depression, and anxiety were the psychosocial variables that best differentiated the subgroups. Overall, these results call attention to the importance of considering pain sensitivity and psychosocial variables to obtain a more comprehensive characterization of CMP patients' subtypes.

  7. A Conway-Maxwell-Poisson (CMP) model to address data dispersion on positron emission tomography.

    PubMed

    Santarelli, Maria Filomena; Della Latta, Daniele; Scipioni, Michele; Positano, Vincenzo; Landini, Luigi

    2016-10-01

    Positron emission tomography (PET) in medicine exploits the properties of positron-emitting unstable nuclei. The pairs of γ- rays emitted after annihilation are revealed by coincidence detectors and stored as projections in a sinogram. It is well known that radioactive decay follows a Poisson distribution; however, deviation from Poisson statistics occurs on PET projection data prior to reconstruction due to physical effects, measurement errors, correction of deadtime, scatter, and random coincidences. A model that describes the statistical behavior of measured and corrected PET data can aid in understanding the statistical nature of the data: it is a prerequisite to develop efficient reconstruction and processing methods and to reduce noise. The deviation from Poisson statistics in PET data could be described by the Conway-Maxwell-Poisson (CMP) distribution model, which is characterized by the centring parameter λ and the dispersion parameter ν, the latter quantifying the deviation from a Poisson distribution model. In particular, the parameter ν allows quantifying over-dispersion (ν<1) or under-dispersion (ν>1) of data. A simple and efficient method for λ and ν parameters estimation is introduced and assessed using Monte Carlo simulation for a wide range of activity values. The application of the method to simulated and experimental PET phantom data demonstrated that the CMP distribution parameters could detect deviation from the Poisson distribution both in raw and corrected PET data. It may be usefully implemented in image reconstruction algorithms and quantitative PET data analysis, especially in low counting emission data, as in dynamic PET data, where the method demonstrated the best accuracy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Quantification of endotoxins in infected root canals and acute apical abscess exudates: monitoring the effectiveness of root canal procedures in the reduction of endotoxins.

    PubMed

    Sousa, Ezilmara L R; Martinho, Frederico C; Nascimento, Gustavo G; Leite, Fabio R M; Gomes, Brenda P F A

    2014-02-01

    This clinical study was conducted to measure the endotoxin levels in infected root canals (RCs) and exudates related to acute apical abscesses (AAAs). In addition, the effectiveness of RC procedures in reducing the endotoxin levels in RCs was monitored. Paired samples of infected RCs and exudates from AAAs were collected from 10 subjects by using paper points. RCs samples were collected before (RCS1) and after chemomechanical preparation (CMP) (RCS2), after 17% EDTA (RCS3), and after 30 days of intracanal medication (Ca[OH]2 + chlorhexidine) (RCS4). A turbidimetric kinetic limulus amebocyte lysate assay was used for the measurement of endotoxins. Endotoxins were detected in 100% of the baseline samples of AAAs and RCs (RCS1) with median values of 175 EU/mL and 41.5 EU/mL, respectively (P < .05). After CMP (RCS2), endotoxins were reduced to a median value of 0.54 EU/mL (P < .05). Subsequent irrigation with EDTA (RCS3) failed to present a significant effectiveness in reducing the endotoxin levels (median= 0.37 EU/mL) (P = .07). However, intracanal medication for 30 days (RCS4) reduced endotoxins to median values of 0.03 EU/mL (P < .01). The present study revealed a strong association between the high levels of endotoxins found in AAAs and RCs collected from the same tooth. Moreover, the effectiveness of CMP in reducing the endotoxin levels from RCs in acute endodontic infection was improved by the use of RC medication. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. The formation of novel layered compounds by exfoliation and restacking of cadmium phosphorus trisulphide with the biological molecules adenosine monophosphate and cytidine monophosphate included

    NASA Astrophysics Data System (ADS)

    Westreich, Philippe

    2004-12-01

    Exfoliated single layer Cd0.8PS3 has been combined with the biological molecules cytidine monophosphate (CMP) and adenosine monophosphate (AMP) to form the novel restacked compound LixCd 0.8PS3(NMP)z(H2O) y, where N stands for cytidine or adenosine. Composition was determined using energy dispersive X-ray spectroscopy, and the structure of these compounds was studied using X-ray diffraction on oriented films. It was found that for the AMP samples, there is little influence of relative humidity (RH) in the range of 0 to 80%, after which there is a rapid expansion of the interlayer space. In the 0 to 80% range, for (AMP)0.5, a host plane spacing near 19.6 A was found. Electron density calculations on the X-ray diffraction pattern suggest a model for the arrangement of guest AMP molecules between the host layers, with an accompanying water molecule. The calculations also suggest that there is a buckling in the host layer of about +/-0.6 A. For the (CMP)0.3 samples, there is more sensitivity to relative humidity in the 0--80% range, with spacings varying from 20 to 24 A. Much of this variation is gradual, but at around 50% RH, there is a discontinous change in the spacing of about 1.8 A, corresponding to less than the size of a water molecule, that appears to arise from a modification of the CMP conformation. Possible reasons far the differences in the behaviour of the two systems are explored.

  10. A 13-week repeated dose study of three 3-monochloropropane-1,2-diol fatty acid esters in F344 rats.

    PubMed

    Onami, Saeko; Cho, Young-Man; Toyoda, Takeshi; Mizuta, Yasuko; Yoshida, Midori; Nishikawa, Akiyoshi; Ogawa, Kumiko

    2014-04-01

    3-monochloropropane-1,2-diol (3-MCPD), a rat renal and testicular carcinogen, has been reported to occur in various foods and food ingredients as free or esterified forms. Since reports about toxicity of 3-MCPD esters are limited, we conducted a 13-week rat subchronic toxicity study of 3-MCPD esters (palmitate diester: CDP, palmitate monoester: CMP, oleate diester: CDO). We administered a carcinogenic dose (3.6 × 10(-4) mol/kg B.W./day) of 3-MCPD or these esters at equimolar concentrations and two 1/4 lower doses by gavage with olive oil as a vehicle five times a week for 13 weeks to F344 male and female rats. As a result, five out of ten 3-MCPD-treated females died from acute renal tubular necrosis, but none of the ester-treated rats. Decreased HGB was observed in all high-dose 3-MCPD fatty acid ester-treated rats, except CDO-treated males. The absolute and relative kidney weights were significantly increased in the ester-treated rats at medium and high doses. Relative liver weights were significantly increased in the esters-treated rat at high dose, except for CMP females. Significant increase in apoptotic epithelial cells in the initial segment of the epididymis of high-dose ester-treated males was also observed. The results suggested that although acute renal toxicity was lower than 3-MCPD, these three 3-MCPD fatty acid esters have the potential to exert subchronic toxicity to the rat kidneys and epididymis, to a similar degree as 3-MCPD under the present conditions. NOAELs (no-observed-adverse-effect levels) of CDP, CMP and CDO were suggested to be 14, 8 and 15 mg/kg B.W./day, respectively.

  11. Handsheet formation and mechanical testing via fiber-level simulations

    Treesearch

    Leonard H. Switzer; Daniel J. Klingenberg; C. Tim Scott

    2004-01-01

    A fiber model and simulation method are employed to investigate the mechanical response of planar fiber networks subjected to elongational deformation. The simulated responses agree qualitatively with numerous experimental observations. suggesting that such simulation methods may be useful for probing the relationships between fiber properties and interactions and the...

  12. On equally and completely stressed hinged mechanisms

    NASA Astrophysics Data System (ADS)

    Kovalev, M. D.

    2018-05-01

    The following new question is investigated: is there any bar and joint planar linkage with every bar having the same nonzero stress in each position of the linkage, and with each angle between adjacent bars varying, when the linkage moves? The absence of such mechanisms under appropriate condition is prooved.

  13. Mechanical interface having multiple grounded actuators

    DOEpatents

    Martin, Kenneth M.; Levin, Mike D.; Rosenberg, Louis B.

    1998-01-01

    An apparatus and method for interfacing the motion of a user-manipulable object with a computer system includes a user object physically contacted or grasped by a user. A 3-D spatial mechanism is coupled to the user object, such as a stylus or a medical instrument, and provides three degrees of freedom to the user object. Three grounded actuators provide forces in the three degrees of freedom. Two of the degrees of freedom are a planar workspace provided by a closed-loop linkage of members, and the third degree of freedom is rotation of the planar workspace provided by a rotatable carriage. Capstan drive mechanisms transmit forces between actuators and the user object and include drums coupled to the carriage, pulleys coupled to grounded actuators, and flexible cables transmitting force between the pulleys and the drums. The flexibility of the cable allows the drums to rotate with the carriage while the pulleys and actuators remain fixed to ground. The interface also may include a floating gimbal mechanism coupling the linkage to the user object. The floating gimbal mechanism includes rotatably coupled gimbal members that provide three degrees of freedom to the user object and capstan mechanisms coupled between sensors and the gimbal members for providing enhanced sensor resolution.

  14. 42 CFR 417.401 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PROGRAM HEALTH MAINTENANCE ORGANIZATIONS, COMPETITIVE MEDICAL PLANS, AND HEALTH CARE PREPAYMENT PLANS Qualifying Conditions for Medicare Contracts § 417.401 Definitions. As used in this subpart and subparts K...) means an actuarial estimate made by CMS in advance of an HMO's or CMP's contract period that represents...

  15. Book Reviews

    NASA Astrophysics Data System (ADS)

    Radl, Bruce M.; Donnelly, J. P.; Oliner, Arthur A.

    1986-08-01

    Laser Beam Scanning: Opto-mechanical devices, systems, and data Storage Optics-Reviewed by Bruce M. Radl; Integrated Optoelectronics-Reviewed by J.P. Donnelly; Planar Circuits for Microwaves and Lightwaves-Reviewed by Arthur A. Oliner;

  16. Adapting services to the needs of children and families with complex migration experiences: The Toulouse University Hospital's intercultural consultation.

    PubMed

    Sturm, Gesine; Guerraoui, Zohra; Bonnet, Sylvie; Gouzvinski, Françoise; Raynaud, Jean-Philippe

    2017-08-01

    This article presents the recently created intercultural consultation at the Medical and Psychological Health Care Service (CMP) of the University Hospital la Grave at Toulouse. The approach of the intercultural consultation was elaborated in response to the increasing diversity of children and families using the service in Toulouse. It is also based on local research that indicates the difficulties service providers encounter when trying to establish a solid therapeutic alliance with families with complex migration backgrounds who accumulate different disadvantaging factors. The intercultural consultation adapts existing models of culture-sensitive consultations in child mental health care in France and Canada to the local context in Toulouse. We describe the underlying principles of the intercultural consultation work, the therapeutic and mediation techniques used, and the way the work is integrated into the global service provision of the CMP. The process is illustrated with a case study followed by a discussion of the innovations.

  17. Cryogenic Information Center

    NASA Technical Reports Server (NTRS)

    Mohling, Robert A.; Marquardt, Eric D.; Fusilier, Fred C.; Fesmire, James E.

    2003-01-01

    The Cryogenic Information Center (CIC) is a not-for-profit corporation dedicated to preserving and distributing cryogenic information to government, industry, and academia. The heart of the CIC is a uniform source of cryogenic data including analyses, design, materials and processes, and test information traceable back to the Cryogenic Data Center of the former National Bureau of Standards. The electronic database is a national treasure containing over 146,000 specific bibliographic citations of cryogenic literature and thermophysical property data dating back to 1829. A new technical/bibliographic inquiry service can perform searches and technical analyses. The Cryogenic Material Properties (CMP) Program consists of computer codes using empirical equations to determine thermophysical material properties with emphasis on the 4-300K range. CMP's objective is to develop a user-friendly standard material property database using the best available data so government and industry can conduct more accurate analyses. The CIC serves to benefit researchers, engineers, and technologists in cryogenics and cryogenic engineering, whether they are new or experienced in the field.

  18. SPOT satellite family: Past, present, and future of the operations in the mission and control center

    NASA Technical Reports Server (NTRS)

    Philippe, Pacholczyk

    1993-01-01

    SPOT sun-synchronous remote sensing satellites are operated by CNES since February 1986. Today, the SPOT mission and control center (CCM) operates SPOT1, SPOT2, and is ready to operate SPOT3. During these seven years, the way to operate changed and the CCM, initially designed for the control of one satellite, has been modified and upgraded to support these new operating modes. All these events have shown the performances and the limits of the system. A new generation of satellite (SPOT4) will continue the remote sensing mission during the second half of the 90's. Its design takes into account the experience of the first generation and supports several improvements. A new generation of control center (CMP) has been developed and improves the efficiency, quality, and reliability of the operations. The CMP is designed for operating two satellites at the same time during launching, in-orbit testing, and operating phases. It supports several automatic procedures and improves data retrieval and reporting.

  19. Functional characterization of a synthetic hydrophilic antifungal peptide derived from the marine snail Cenchritis muricatus.

    PubMed

    López-Abarrategui, Carlos; Alba, Annia; Silva, Osmar N; Reyes-Acosta, Osvaldo; Vasconcelos, Ilka M; Oliveira, Jose T A; Migliolo, Ludovico; Costa, Maysa P; Costa, Carolina R; Silva, Maria R R; Garay, Hilda E; Dias, Simoni C; Franco, Octávio L; Otero-González, Anselmo J

    2012-04-01

    Antimicrobial peptides have been found in mollusks and other sea animals. In this report, a crude extract of the marine snail Cenchritis muricatus was evaluated against human pathogens responsible for multiple deleterious effects and diseases. A peptide of 1485.26 Da was purified by reversed-phase HPLC and functionally characterized. This trypsinized peptide was sequenced by MS/MS technology, and a sequence (SRSELIVHQR), named Cm-p1 was recovered, chemically synthesized and functionally characterized. This peptide demonstrated the capacity to prevent the development of yeasts and filamentous fungi. Otherwise, Cm-p1 displayed no toxic effects against mammalian cells. Molecular modeling analyses showed that this peptide possible forms a single hydrophilic α-helix and the probable cationic residue involved in antifungal activity action is proposed. The data reported here demonstrate the importance of sea animals peptide discovery for biotechnological tools development that could be useful in solving human health and agribusiness problems. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  20. Unveiling the Switching Riddle of Silver Tetracyanoquinodimethane Towards Novel Planar Single-Crystalline Electrochemical Metallization Memories.

    PubMed

    Yang, Fangxu; Zhao, Qiang; Xu, Chunhui; Zou, Ye; Dong, Huanli; Zheng, Yonggang; Hu, Wenping

    2016-09-01

    The switching riddle of AgTCNQ is shown to be caused by the solid electrolyte mechanism. Both factors of bulk phase change and contact issue play key roles in the efficient work of the devices. An effective strategy is developed to locate the formation/disruption of Ag conductive filaments using the planar asymmetric configuration of Au/AgTCNQ/AlOx /Al. These novel electrochemical metallization memories demonstrate many promising properties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Reliability of Cascaded THz Frequency Chains with Planar GaAs Circuits

    NASA Technical Reports Server (NTRS)

    Maiwald, Frank; Schlecht, Erich; Lin, Robert; Ward, John; Pearson, John; Siegel, Peter; Mehdi, Imran

    2004-01-01

    Planar GaAs Schottky diodes will be utilized for all of the LO chains on the HIPI instrument for the Herschel Space Observatory. A better understanding of device degradation mechanisms is desirable in order to specify environmental and operational conditions that do not reduce device life times. Failures and degradation associated with ESD (Electrostatic Discharge), high temperatures, DC currents and RF induced current and heating have been investigated. The goal is to establish a procedure to obtain the safe operating range for a given frequency multiplier.

  2. Particulate emissions calculations from fall tillage operations using point and remote sensors

    USDA-ARS?s Scientific Manuscript database

    Preparation of soil for agricultural crops produces aerosols that may significantly contribute to seasonal atmospheric loadings of particulate matter (PM). Efforts to reduce PM emissions from tillage operations through a variety of conservation management practices (CMP) have been made but the reduc...

  3. 42 CFR 417.520 - Effect on HMO and CMP contracts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 417.520 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM HEALTH MAINTENANCE ORGANIZATIONS, COMPETITIVE MEDICAL PLANS, AND... these provisions, references to “M+C organizations” must be read as references to “HMOs and CMPs”. (c...

  4. 78 FR 49525 - Privacy Act of 1974; CMS Computer Match No. 2013-06; HHS Computer Match No. 1308

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ... Care Act of 2010 (Pub. L. 111-148), as amended by the Health Care and Education Reconciliation Act of..., 2009). INCLUSIVE DATES OF THE MATCH: The CMP will become effective no sooner than 40 days after the...

  5. 78 FR 49524 - Privacy Act of 1974; CMS Computer Match No. 2013-08; HHS Computer Match No. 1309

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ... by the Health Care and Education Reconciliation Act of 2010 (Pub. L. 111-152) (collectively, the ACA...). INCLUSIVE DATES OF THE MATCH: The CMP will become effective no sooner than 40 days after the report of the...

  6. 42 CFR 417.404 - General requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (CONTINUED) MEDICARE PROGRAM HEALTH MAINTENANCE ORGANIZATIONS, COMPETITIVE MEDICAL PLANS, AND HEALTH CARE PREPAYMENT PLANS Qualifying Conditions for Medicare Contracts § 417.404 General requirements. (a) In order to contract with CMS under the Medicare program, an entity must— (1) Be determined by CMS to be an HMO or CMP...

  7. Shallow Seismic Reflection Study of Recently Active Fault Scarps, Mina Deflection, Western Nevada

    NASA Astrophysics Data System (ADS)

    Black, R. A.; Christie, M.; Tsoflias, G. P.; Stockli, D. F.

    2006-12-01

    During the spring and summer of 2006 University of Kansas geophysics students and faculty acquired shallow, high resolution seismic reflection data over actively deforming alluvial fans developing across the Emmigrant Peak (in Fish Lake Valley) and Queen Valley Faults in western Nevada. These normal faults represent a portion of the transition from the right-lateral deformation associated with the Walker Lane/Eastern California Shear Zone to the normal and left-lateral faulting of the Mina Deflection. Data were gathered over areas of recent high resolution geological mapping and limited trenching by KU students. An extensive GPR data grid was also acquired. The GPR results are reported in Christie, et al., 2006. The seismic data gathered in the spring included both walkaway tests and a short CMP test line. These data indicated that a very near-surface P-wave to S-wave conversion was taking place and that very high quality S-wave reflections were probably dominating shot records to over one second in time. CMP lines acquired during the summer utilized a 144 channel networked Geode system, single 28 hz geophones, and a 30.06 downhole rifle source. Receiver spacing was 0.5 m, source spacing 1.0m and CMP bin spacings were 0.25m for all lines. Surveying was performed using an RTK system which was also used to develop a concurrent high resolution DEM. A dip line of over 400m and a strike line over 100m in length were shot across the active fan scarp in Fish Lake Valley. Data processing is still underway. However, preliminary interpretation of common-offset gathers and brute stacks indicates very complex faulting and detailed stratigraphic information to depths of over 125m. Depth of information was actually limited by the 1024ms recording time. Several west-dipping normal faults downstep towards the basin. East-dipping antithetic normal faulting is extensive. Several distinctive stratigraphic packages are bound by the faults and apparent unconformitites. A CMP dip line was also run across a large active scarp in Queen Valley near Boundary Peak. Due to slope steepness and extensive boulder armoring shot and receiver locations had to be skipped within several meters of the actual scarp location. Initial structural and stratigraphic interpretations are similar to those in the Fish Lake Valley location. Overall the data prove that the actively deforming fans can be imaged in detail sufficient to perform structural and possibly seismic stratigraphic analysis within the upper one hundred meters of the fans, if not deeper.

  8. Crustal and Moho Reflections Beneath Mount St. Helens from the iMUSH Experiment

    NASA Astrophysics Data System (ADS)

    Levander, A.; Kiser, E.; Schmandt, B.; Hansen, S. M.; Creager, K.

    2017-12-01

    The multi-disciplinary iMUSH project (imaging Magma Under St. Helens) was designed to illuminate the magmatic system beneath Mount St Helens (MSH) from the subducting Juan de Fuca slab to the surface using seismic, magnetotelluric, and petrologic data. The iMUSH active source experiment consisted of 23 large shots and 6000 seismograph stations. Included in the active-source seismic experiment were 2 dense linear profiles striking NW-SE and NE-SW, each with over 1000 receivers ( 150 m spacing) and 8 shots. Using averaged 1D velocity models around each shotpoint taken from the 2D velocity models of Kiser et al., 2016 (Geology), we have made CMP stacked sections of the two profiles. We made images using several types of signal preconditioning and enhancement methods, including analytic signal and STA/LTA envelopes. Reflection time corrections were determined using standard NMO, long-offset NMO, p-tau, and 2D travel time analyses. Bright reflection events in the CMP sections show remarkably close correspondence to abrupt velocity changes in the mid to lower crust and at the Moho in the 2D velocity models: Reflections appear at 20-25 km depth at the tops of two lower crustal high velocity (Vp > 7.5 km/s) bodies. One of these high velocity bodies is directly beneath MSH. The other is 40 km SE of MSH, under the 9ka Indian Heaven basaltic volcanic field. We interpret the high Vp bodies as cumulates from Quaternary or Tertiary volcanism. Separating the two high Vp bodies is a lower velocity column (Vp ≤ 6.5 km/s) dipping to the SE from the midcrust to the Moho. In the CMP section, the Moho reflection is bright under the region of low velocity and dims beneath both of the high velocity lower crustal bodies. The CMP images of the Moho are consistent with the PmP reflection amplitude analysis of Hansen et al, 2016 (Nature Communications). The 1980 eruption seismicity extended from the MSH summit to 20 km depth, stopping just above the bright reflection at the top of the MSH high Vp body. Deep long period events under MSH, often associated with motion of magmatic fluids, cluster at 20-30 km depth along the southeastern edge of the same reflection. We suggest that lower crustal magmas migrate from the southeast at the boundary of the MSH high velocity body, and then laterally across its top to continue vertical ascent to the magma storage zone under the summit.

  9. Research on some auxiliary mechanisms used in passenger cars

    NASA Astrophysics Data System (ADS)

    Antonescu, Daniela; Iozsa, Daniel; Antonescu, Ovidiu; Fratila, Gh.

    2017-10-01

    The paper presents the results of researches on the topological structure and geometrical analysis of the planar mechanisms with articulated bars, which are used for actuating the doors of cars. The main five types of car doors with rotate movement (folding) are presented, being described both as constructive structure and mode of operation, through suitable kinematic schemes. Some innovative solutions for vehicle door actuating mechanisms aim to use as little space as possible, which is beneficial for car parking. There are three types of car door movements: rotation, sliding and planar rotational-sliding. Most of the cars are equipped with folding doors, where the rotate movement is limited and operates horizontally. Almost all sliding doors are placed on the rear of the car (only for passengers, not for driver). Unlike rotate doors, the sliding doors require a minimum lateral space, which is an advantage, especially in parking places. In the end of the paper, a kinematic analysis of the canopy 4-bar mechanism has been performed, in order to increase the passenger comfort on the access into the vehicle.

  10. Shoulder Injuries in US Astronauts Related to EVA Suit Design

    NASA Technical Reports Server (NTRS)

    Scheuring, R. A.; McCulloch, P.; Van Baalen, Mary; Minard, Charles; Watson, Richard; Blatt, T.

    2011-01-01

    Introduction: For every one hour spent performing extravehicular activity (EVA) in space, astronauts in the US space program spend approximately six to ten hours training in the EVA spacesuit at NASA-Johnson Space Center's Neutral Buoyancy Lab (NBL). In 1997, NASA introduced the planar hard upper torso (HUT) EVA spacesuit which subsequently replaced the existing pivoted HUT. An extra joint in the pivoted shoulder allows increased mobility but also increased complexity. Over the next decade a number of astronauts developed shoulder problems requiring surgical intervention, many of whom performed EVA training in the NBL. This study investigated whether changing HUT designs led to shoulder injuries requiring surgical repair. Methods: US astronaut EVA training data and spacesuit design employed were analyzed from the NBL data. Shoulder surgery data was acquired from the medical record database, and causal mechanisms were obtained from personal interviews Analysis of the individual HUT designs was performed as it related to normal shoulder biomechanics. Results: To date, 23 US astronauts have required 25 shoulder surgeries. Approximately 48% (11/23) directly attributed their injury to training in the planar HUT, whereas none attributed their injury to training in the pivoted HUT. The planar HUT design limits shoulder abduction to 90 degrees compared to approximately 120 degrees in the pivoted HUT. The planar HUT also forces the shoulder into a forward flexed position requiring active retraction and extension to increase abduction beyond 90 degrees. Discussion: Multiple factors are associated with mechanisms leading to shoulder injury requiring surgical repair. Limitations to normal shoulder mechanics, suit fit, donning/doffing, body position, pre-existing injury, tool weight and configuration, age, in-suit activity, and HUT design have all been identified as potential sources of injury. Conclusion: Crewmembers with pre-existing or current shoulder injuries or certain anthropometric body types should conduct NBL EVA training in the pivoted HUT.

  11. 42 CFR 417.106 - Quality assurance program; Availability, accessibility, and continuity of basic and supplemental...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Qualified Health Maintenance Organizations: Services § 417.106 Quality assurance program; Availability, accessibility, and continuity of basic and supplemental health services. (a) Quality assurance program. Each HMO or CMP must have an ongoing quality assurance program for its health services that meets the...

  12. 42 CFR 417.594 - Computation of adjusted community rate (ACR).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM HEALTH MAINTENANCE ORGANIZATIONS, COMPETITIVE MEDICAL PLANS... aggregate premium for all its enrollees and weights the aggregate by the size of the various enrolled groups... groups or other bodies of subscribers that enroll in the HMO or CMP through payment of premiums.) (2...

  13. 42 CFR 417.594 - Computation of adjusted community rate (ACR).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM HEALTH MAINTENANCE ORGANIZATIONS, COMPETITIVE MEDICAL PLANS... aggregate premium for all its enrollees and weights the aggregate by the size of the various enrolled groups... groups or other bodies of subscribers that enroll in the HMO or CMP through payment of premiums.) (2...

  14. Polyglycine hydrolases: fungal b-lactamase-like endoproteases that cleave polyglycine regions within plant class IV chitinases

    USDA-ARS?s Scientific Manuscript database

    Polyglycine hydrolases are secreted fungal proteases that cleave glycine-glycine peptide bonds in the inter-domain linker region of specific plant defense chitinases. Previously, we reported the catalytic activity of polyglycine hydrolases from the phytopathogens Epicoccum sorghi (Es-cmp) and Cochli...

  15. Chitinase modifying proteins from phylogenetically distinct lineages of Brassica pathogens

    USDA-ARS?s Scientific Manuscript database

    Chitinase modifying proteins (CMPs) are secreted fungal proteases that truncate specific plant class IV chitinases by cleaving peptide bonds in their amino termini. We recently identified a CMP from the Zea mays (maize) pathogen Fusarium verticillioides and found that it is a member of the fungalysi...

  16. 78 FR 39730 - Privacy Act of 1974; CMS Computer Match No. 2013-11; HHS Computer Match No. 1302

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ... (Pub. L. 111-148), as amended by the Health Care and Education Reconciliation Act of 2010 (Pub. L. 111... 78 FR 32256 on May 29, 2013. Inclusive Dates of the Match: The CMP shall become effective no sooner...

  17. 42 CFR 423.2340 - Compliance monitoring and civil money penalties.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 3 2014-10-01 2014-10-01 false Compliance monitoring and civil money penalties... BENEFIT Medicare Coverage Gap Discount Program § 423.2340 Compliance monitoring and civil money penalties... Agreement. (b) Basis for imposing civil money penalties. CMS imposes a civil money penalty (CMP) on a...

  18. 42 CFR 423.2340 - Compliance monitoring and civil money penalties.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 3 2013-10-01 2013-10-01 false Compliance monitoring and civil money penalties... BENEFIT Medicare Coverage Gap Discount Program § 423.2340 Compliance monitoring and civil money penalties... Agreement. (b) Basis for imposing civil money penalties. CMS imposes a civil money penalty (CMP) on a...

  19. 77 FR 68680 - Rules of Practice for Hearings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ... amount of each civil money penalty (CMP) provided by law within its jurisdiction to account for inflation. This action is required under the Federal Civil Penalties Inflation Adjustment Act of 1990, as amended... amounts for each civil money penalty provided by law within the Board's jurisdiction. The authorizing...

  20. 42 CFR 417.420 - Basic rules on enrollment and entitlement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SERVICES (CONTINUED) MEDICARE PROGRAM HEALTH MAINTENANCE ORGANIZATIONS, COMPETITIVE MEDICAL PLANS, AND HEALTH CARE PREPAYMENT PLANS Enrollment, Entitlement, and Disenrollment under Medicare Contract § 417.420... HMO or CMP that has in effect a contract with CMS under subpart L of this part. (b) Entitlement. If a...

  1. 42 CFR 417.538 - Enrollment and marketing costs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 3 2012-10-01 2012-10-01 false Enrollment and marketing costs. 417.538 Section 417... HEALTH CARE PREPAYMENT PLANS Medicare Payment: Cost Basis § 417.538 Enrollment and marketing costs. (a) Principle. Costs incurred by an HMO or CMP in performing the enrollment and marketing activities described...

  2. 42 CFR 417.538 - Enrollment and marketing costs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 3 2013-10-01 2013-10-01 false Enrollment and marketing costs. 417.538 Section 417... HEALTH CARE PREPAYMENT PLANS Medicare Payment: Cost Basis § 417.538 Enrollment and marketing costs. (a) Principle. Costs incurred by an HMO or CMP in performing the enrollment and marketing activities described...

  3. 42 CFR 417.538 - Enrollment and marketing costs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 3 2014-10-01 2014-10-01 false Enrollment and marketing costs. 417.538 Section 417... HEALTH CARE PREPAYMENT PLANS Medicare Payment: Cost Basis § 417.538 Enrollment and marketing costs. (a) Principle. Costs incurred by an HMO or CMP in performing the enrollment and marketing activities described...

  4. Algebraic Concepts: What's Really New in New Curricula?

    ERIC Educational Resources Information Center

    Star, Jon R.; Herbel-Eisenmann, Beth A.; Smith, John P., III

    2000-01-01

    Examines 8th grade units from the Connected Mathematics Project (CMP). Identifies differences in older and newer conceptions, fundamental objects of study, typical problems, and typical solution methods in algebra. Also discusses where the issue of what is new in algebra is relevant to many other innovative middle school curricula. (KHR)

  5. 42 CFR 417.448 - Restriction on payments for services received by Medicare enrollees of risk HMOs or CMPs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... services imposed by paragraph (a) of this section applies to services received by— (1) New Medicare... § 417.436(a)(9), that he or she has left the HMO's or CMP's geographic area for an extended period. [51...

  6. 42 CFR 417.448 - Restriction on payments for services received by Medicare enrollees of risk HMOs or CMPs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... services imposed by paragraph (a) of this section applies to services received by— (1) New Medicare... § 417.436(a)(9), that he or she has left the HMO's or CMP's geographic area for an extended period. [51...

  7. Fabrication of a stretchable solid-state micro-supercapacitor array.

    PubMed

    Kim, Daeil; Shin, Gunchul; Kang, Yu Jin; Kim, Woong; Ha, Jeong Sook

    2013-09-24

    We fabricated a stretchable micro-supercapacitor array with planar SWCNT electrodes and an ionic liquid-based triblock copolymer electrolyte. The mechanical stability of the entire supercapacitor array upon stretching was obtained by adopting strategic design concepts. First, the narrow and long serpentine metallic interconnections were encapsulated with polyimide thin film to ensure that they were within the mechanical neutral plane. Second, an array of two-dimensional planar micro-supercapacitor with SWCNT electrodes and an ion-gel-type electrolyte was made to achieve all-solid-state energy storage devices. The formed micro-supercapacitor array showed excellent performances which were stable over stretching up to 30% without any noticeable degradation. This work shows the strong potential of a stretchable micro-supercapacitor array in applications such as wearable computers, power dressing, electronic newspapers, paper-like mobile phones, and other easily collapsible gadgets.

  8. Integration of planar cell polarity and ECM signaling in elongation of the vertebrate body plan.

    PubMed

    Skoglund, Paul; Keller, Ray

    2010-10-01

    The shaping of the vertebrate embryonic body plan depends heavily on the narrowing and lengthening (convergence and extension) of embryonic tissues by cell intercalation, a process by which cells actively crawl between one another along the axis of convergence to produce a narrower, longer array. We discuss recent evidence that the vertebrate non-canonical Wnt/Planar Cell Polarity (PCP) pathway, known to directly function in polarizing the movements of intercalating cells, is also involved in the localized assembly of extracellular matrix (ECM). These cell-ECM interactions, in turn, are necessary for expression of the oriented, polarized cell intercalation. The mechanism of PCP/ECM interactions, their molecular signaling, and their mechanical consequences for morphogenesis are discussed with the goal of identifying important unsolved issues. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Molecular mechanisms of decomposition of hydrated Na+Cl- ion pairs under planar nanopore conditions

    NASA Astrophysics Data System (ADS)

    Shevkunov, S. V.

    2017-02-01

    The decomposition of Na+Cl- ion pairs under the conditions of a nanoscopic planar pore with structureless walls in a material contact with water vapor at 298 K is simulated by Monte Carlo method. The transition from the state of a contact ion pair (CIP) to the state of solvent-separated ion pair (SSIP) is shown to occur as a result of an increase in the vapor pressure over a pore after exceeding the threshold number of molecules in a hydrate shell. It is found that the planar form of a molecular cluster under the conditions of a narrow pore does not level an abrupt structural transition and the formation of hydrogen bonds in the hydrate shell starts after three molecules are added. The hydrogen bond length under pore conditions is found to be resistant to variations in the hydrate shell size and coincides with that in water under normal conditions.

  10. Pseudo Jahn-Teller effect in control and rationalization of chemical transformations in two-dimensional compounds

    NASA Astrophysics Data System (ADS)

    Gorinchoy, N. N.; Bersuker, I. B.

    2017-05-01

    We show that the pseudo Jahn-Teller effect (PJTE) is instrumental in predicting and rationalizing structural changes in chemical transformations of two-dimensional (2D) molecular systems by means of analyzing the symmetries and electron occupation of the ground and lowest excited electronic states and the energy gap between them, subject to their PJT coupling along the main distortion coordinates. Special attention is paid to rationalizing the PJTE origin of non-planarity of 2D compounds and to the restoration of their planar configurations. Examples of two series of 1,2- and 1,4-dithiin containing tricyclic compounds (carbon sulfide, thianthrene, and antracene and their derivatives) are used to demonstrate in detail the mechanism of (1) enhancement and suppression of the PJTE distortions (puckering) in redox processes, and (2) PJTE induced symmetry breaking and restoration of the planar configuration by chemical substitutions.

  11. CMOS chip planarization by chemical mechanical polishing for a vertically stacked metal MEMS integration

    NASA Astrophysics Data System (ADS)

    Lee, Hocheol; Miller, Michele H.; Bifano, Thomas G.

    2004-01-01

    In this paper we present the planarization process of a CMOS chip for the integration of a microelectromechanical systems (MEMS) metal mirror array. The CMOS chip, which comes from a commercial foundry, has a bumpy passivation layer due to an underlying aluminum interconnect pattern (1.8 µm high), which is used for addressing individual micromirror array elements. To overcome the tendency for tilt error in the CMOS chip planarization, the approach is to sputter a thick layer of silicon nitride at low temperature and to surround the CMOS chip with dummy silicon pieces that define a polishing plane. The dummy pieces are first lapped down to the height of the CMOS chip, and then all pieces are polished. This process produced a chip surface with a root-mean-square flatness error of less than 100 nm, including tilt and curvature errors.

  12. Polarization Transfer in Wide-Angle Compton Scattering and Single-Pion Photoproduction from the Proton

    NASA Astrophysics Data System (ADS)

    Fanelli, C.; Cisbani, E.; Hamilton, D. J.; Salmé, G.; Wojtsekhowski, B.; Ahmidouch, A.; Annand, J. R. M.; Baghdasaryan, H.; Beaufait, J.; Bosted, P.; Brash, E. J.; Butuceanu, C.; Carter, P.; Christy, E.; Chudakov, E.; Danagoulian, S.; Day, D.; Degtyarenko, P.; Ent, R.; Fenker, H.; Fowler, M.; Frlez, E.; Gaskell, D.; Gilman, R.; Horn, T.; Huber, G. M.; de Jager, C. W.; Jensen, E.; Jones, M. K.; Kelleher, A.; Keppel, C.; Khandaker, M.; Kohl, M.; Kumbartzki, G.; Lassiter, S.; Li, Y.; Lindgren, R.; Lovelace, H.; Luo, W.; Mack, D.; Mamyan, V.; Margaziotis, D. J.; Markowitz, P.; Maxwell, J.; Mbianda, G.; Meekins, D.; Meziane, M.; Miller, J.; Mkrtchyan, A.; Mkrtchyan, H.; Mulholland, J.; Nelyubin, V.; Pentchev, L.; Perdrisat, C. F.; Piasetzky, E.; Prok, Y.; Puckett, A. J. R.; Punjabi, V.; Shabestari, M.; Shahinyan, A.; Slifer, K.; Smith, G.; Solvignon, P.; Subedi, R.; Wesselmann, F. R.; Wood, S.; Ye, Z.; Zheng, X.

    2015-10-01

    Wide-angle exclusive Compton scattering and single-pion photoproduction from the proton have been investigated via measurement of the polarization transfer from a circularly polarized photon beam to the recoil proton. The wide-angle Compton scattering polarization transfer was analyzed at an incident photon energy of 3.7 GeV at a proton scattering angle of θcmp=70 ° . The longitudinal transfer KLL, measured to be 0.645 ±0.059 ±0.048 , where the first error is statistical and the second is systematic, has the same sign as predicted for the reaction mechanism in which the photon interacts with a single quark carrying the spin of the proton. However, the observed value is ˜3 times larger than predicted by the generalized-parton-distribution-based calculations, which indicates a significant unknown contribution to the scattering amplitude.

  13. Effective constitutive relations for large repetitive frame-like structures

    NASA Technical Reports Server (NTRS)

    Nayfeh, A. H.; Hefzy, M. S.

    1981-01-01

    Effective mechanical properties for large repetitive framelike structures are derived using combinations of strength of material and orthogonal transformation techniques. Symmetry considerations are used in order to identify independent property constants. The actual values of these constants are constructed according to a building block format which is carried out in the three consecutive steps: (1) all basic planar lattices are identified; (2) effective continuum properties are derived for each of these planar basic grids using matrix structural analysis methods; and (3) orthogonal transformations are used to determine the contribution of each basic set to the overall effective continuum properties of the structure.

  14. Planar cell polarity in moving cells: think globally, act locally

    PubMed Central

    Davey, Crystal F.

    2017-01-01

    ABSTRACT The planar cell polarity (PCP) pathway is best known for its role in polarizing epithelial cells within the plane of a tissue but it also plays a role in a range of cell migration events during development. The mechanism by which the PCP pathway polarizes stationary epithelial cells is well characterized, but how PCP signaling functions to regulate more dynamic cell behaviors during directed cell migration is much less understood. Here, we review recent discoveries regarding the localization of PCP proteins in migrating cells and their impact on the cell biology of collective and individual cell migratory behaviors. PMID:28096212

  15. A Primer on Elliptic Functions with Applications in Classical Mechanics

    ERIC Educational Resources Information Center

    Brizard, Alain J.

    2009-01-01

    The Jacobi and Weierstrass elliptic functions used to be part of the standard mathematical arsenal of physics students. They appear as solutions of many important problems in classical mechanics: the motion of a planar pendulum (Jacobi), the motion of a force-free asymmetric top (Jacobi), the motion of a spherical pendulum (Weierstrass) and the…

  16. Polymer planar waveguide Bragg gratings: fabrication, characterization, and sensing applications

    NASA Astrophysics Data System (ADS)

    Rosenberger, M.; Hessler, S.; Pauer, H.; Girschikofsky, M.; Roth, G. L.; Adelmann, B.; Woern, H.; Schmauss, B.; Hellmann, R.

    2017-02-01

    In this contribution, we give a comprehensive overview of the fabrication, characterization, and application of integrated planar waveguide Bragg gratings (PPBGs) in cyclo-olefin copolymers (COC). Starting with the measurement of the refractive index depth profile of integrated UV-written structures in COC by phase shifting Mach-Zehnder- Interferometry, we analyze the light propagation using numerical simulations. Furthermore, we show the rapid fabrication of humidity insensitive polymer waveguide Bragg gratings in cyclo-olefin copolymers and discuss the influence of the UV-dosage onto the spectral characteristics and the transmission behavior of the waveguide. Based on these measurements we exemplify that our Bragg gratings exhibit a reflectivity of over 99 % and are highly suitable for sensing applications. With regard to a negligible affinity to absorb water and in conjunction with high temperature stability these polymer devices are ideal for mechanical deformation sensing. Since planar structures are not limited to tensile but can also be applied for measuring compressive strain, we manufacture different functional devices and corroborate their applicability as optical sensors. Exemplarily, we highlight a temperature referenced PPBG sensor written into a femtosecond-laser cut tensile test geometry for tensile and compressive strain sensing. Furthermore, a flexible polymer planar shape sensor is presented.

  17. Shaping the Atomic-Scale Geometries of Electrodes to Control Optical and Electrical Performance of Molecular Devices.

    PubMed

    Zhao, Zhikai; Liu, Ran; Mayer, Dirk; Coppola, Maristella; Sun, Lu; Kim, Youngsang; Wang, Chuankui; Ni, Lifa; Chen, Xing; Wang, Maoning; Li, Zongliang; Lee, Takhee; Xiang, Dong

    2018-04-01

    A straightforward method to generate both atomic-scale sharp and atomic-scale planar electrodes is reported. The atomic-scale sharp electrodes are generated by precisely stretching a suspended nanowire, while the atomic-scale planar electrodes are obtained via mechanically controllable interelectrodes compression followed by a thermal-driven atom migration process. Notably, the gap size between the electrodes can be precisely controlled at subangstrom accuracy with this method. These two types of electrodes are subsequently employed to investigate the properties of single molecular junctions. It is found, for the first time, that the conductance of the amine-linked molecular junctions can be enhanced ≈50% as the atomic-scale sharp electrodes are used. However, the atomic-scale planar electrodes show great advantages to enhance the sensitivity of Raman scattering upon the variation of nanogap size. The underlying mechanisms for these two interesting observations are clarified with the help of density functional theory calculation and finite-element method simulation. These findings not only provide a strategy to control the electron transport through the molecule junction, but also pave a way to modulate the optical response as well as to improve the stability of single molecular devices via the rational design of electrodes geometries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Rotational MEMS mirror with latching arm for silicon photonics

    NASA Astrophysics Data System (ADS)

    Brière, Jonathan; Beaulieu, Philippe-Olivier; Saidani, Menouer; Nabki, Frederic; Menard, Michaël.

    2015-02-01

    We present an innovative rotational MEMS mirror that can control the direction of propagation of light beams inside of planar waveguides implemented in silicon photonics. Potential applications include but are not limited to optical telecommunications, medical imaging, scan and spectrometry. The mirror has a half-cylinder shape with a radius of 300 μm that provides low and constant optical losses over the full angular displacement range. A circular comb drive structure is anchored such that it allows free or latched rotation experimentally demonstrated over 8.5° (X-Y planar rotational movement) using 290V electrostatic actuation. The entire MEMS structure was implemented using the MEMSCAP SOIMUMPs process. The center of the anchor beam is designed to be the approximate rotation point of the circular comb drive to counter the rotation offset of the mirror displacement. A mechanical characterization of the MEMS mirror is presented. The latching mechanism provides up to 20 different angular locking positions allowing the mirror to counter any resonance or vibration effects and it is actuated with an electrostatic linear comb drive. An innovative gap closing structure was designed to reduce optical propagation losses due to beam divergence in the interstitial space between the mirror and the planar waveguide. The gap closing structure is also electrostatically actuated and includes two side stoppers to prevent stiction.

  19. A Cul-3-BTB ubiquitylation pathway regulates junctional levels and asymmetry of core planar polarity proteins

    PubMed Central

    Strutt, Helen; Searle, Elizabeth; Thomas-MacArthur, Victoria; Brookfield, Rosalind; Strutt, David

    2013-01-01

    The asymmetric localisation of core planar polarity proteins at apicolateral junctions is required to specify cell polarity in the plane of epithelia. This asymmetric distribution of the core proteins is proposed to require amplification of an initial asymmetry by feedback loops. In addition, generation of asymmetry appears to require the regulation of core protein levels, but the importance of such regulation and the underlying mechanisms is unknown. Here we show that ubiquitylation acts through more than one mechanism to control core protein levels in Drosophila, and that without this regulation cellular asymmetry is compromised. Levels of Dishevelled at junctions are regulated by a Cullin-3-Diablo/Kelch ubiquitin ligase complex, the activity of which is most likely controlled by neddylation. Furthermore, activity of the deubiquitylating enzyme Fat facets is required to maintain Flamingo levels at junctions. Notably, ubiquitylation does not alter the total cellular levels of Dishevelled or Flamingo, but only that of the junctional population. When junctional core protein levels are either increased or decreased by disruption of the ubiquitylation machinery, their asymmetric localisation is reduced and this leads to disruption of planar polarity at the tissue level. Loss of asymmetry by altered core protein levels can be explained by reference to feedback models for amplification of asymmetry. PMID:23487316

  20. 42 CFR 417.568 - Adequate financial records, statistical data, and cost finding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ORGANIZATIONS, COMPETITIVE MEDICAL PLANS, AND HEALTH CARE PREPAYMENT PLANS Medicare Payment: Cost Basis § 417... health care industry. (b) Provision of data. (1) The HMO or CMP must provide adequate cost and... 42 Public Health 3 2012-10-01 2012-10-01 false Adequate financial records, statistical data, and...

Top