Sample records for mechanical properties depending

  1. Exploration of mechanisms underlying the strain-rate-dependent mechanical property of single chondrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Trung Dung; Gu, YuanTong, E-mail: yuantong.gu@qut.edu.au

    2014-05-05

    Based on the characterization by Atomic Force Microscopy, we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young's moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton and the intracellular fluid when the fixed chondrocytes are mainly governed by their intracellular fluid, which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic constitutive material model whichmore » can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.« less

  2. Modified Continuum Mechanics Modeling on Size-Dependent Properties of Piezoelectric Nanomaterials: A Review

    PubMed Central

    Yan, Zhi; Jiang, Liying

    2017-01-01

    Piezoelectric nanomaterials (PNs) are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS) because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characterization, atomistic simulation and continuum mechanics modeling with the consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and achievements in the research on the continuum mechanics modeling of the size-dependent mechanical and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the investigation of the size-dependent properties of PNs by using the modified continuum mechanics models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy harvesters based on piezoelectric nanostructures are presented. PMID:28336861

  3. Modified Continuum Mechanics Modeling on Size-Dependent Properties of Piezoelectric Nanomaterials: A Review.

    PubMed

    Yan, Zhi; Jiang, Liying

    2017-01-26

    Piezoelectric nanomaterials (PNs) are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS) because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characterization, atomistic simulation and continuum mechanics modeling with the consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and achievements in the research on the continuum mechanics modeling of the size-dependent mechanical and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the investigation of the size-dependent properties of PNs by using the modified continuum mechanics models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy harvesters based on piezoelectric nanostructures are presented.

  4. Protocol dependence of mechanical properties in granular systems.

    PubMed

    Inagaki, S; Otsuki, M; Sasa, S

    2011-11-01

    We study the protocol dependence of the mechanical properties of granular media by means of computer simulations. We control a protocol of realizing disk packings in a systematic manner. In 2D, by keeping material properties of the constituents identical, we carry out compaction with various strain rates. The disk packings exhibit the strain rate dependence of the critical packing fraction above which the pressure becomes non-zero. The observed behavior contrasts with the well-studied jamming transitions for frictionless disk packings. We also observe that the elastic moduli of the disk packings depend on the strain rate logarithmically. Our results suggest that there exists a time-dependent state variable to describe macroscopic material properties of disk packings, which depend on its protocol.

  5. Investigation of the influence of the composition on mechanical properties of polylactide

    NASA Astrophysics Data System (ADS)

    Baikin, A. S.; Sevostyanov, M. A.; Nasakina, E. O.; Sergienko, K. V.; Kaplan, M. A.; Konushkin, S. V.; Kolmakova, A. A.; Yakubov, A. D.; Kolmakov, A. G.

    2018-04-01

    In this paper we describe the creation of films from polylactide. Studied the mechanical properties of developed polymer films of polylactide. The effect of the molecular weight of polylactide on the mechanical properties of the resulting polymer films is shown. The dependence of the mechanical properties of polylactide films on the polymer concentration in chloroform was studied. The possibility of creating biodegradable films with specified mechanical properties is shown.

  6. Optimization the mechanical properties of coir-luffa cylindrica filled hybrid composites by using Taguchi method

    NASA Astrophysics Data System (ADS)

    Krishnudu, D. Mohana; Sreeramulu, D.; Reddy, P. Venkateshwar

    2018-04-01

    In the current study mechanical properties of particles filled hybrid composites have been studied. The mechanical properties of the hybrid composite mainly depend on the proportions of the coir weight, Luffa weight and filler weight. RSM along with Taguchi method have been applied to find the optimized parameters of the hybrid composites. From the current study it was observed that the tensile strength of the composite mainly depends on the coir percent than the other two particles.

  7. Microstructure and mechanical properties of horns derived from three domestic bovines.

    PubMed

    Zhang, Quan-bin; Li, Chun; Pan, Yan-ting; Shan, Guang-hua; Cao, Ping; He, Jia; Lin, Zhong-shi; Ao, Ning-jian; Huang, Yao-xiong

    2013-12-01

    The microstructure and mechanical properties of horns derived from three domestic bovines (buffalo, cattle and sheep) were examined. The effects of water content, sampling position and orientation of three bovid horns on mechanical properties were systematically investigated by uniaxial tension and micron indentation tests. Meanwhile, the material composition and metal element contents were determined by Raman spectroscopy and elemental analysis respectively, and the microstructures of the horns were measured by scanning electron microscopy (SEM). Results show that the mechanical properties of horns have negative correlation with water contents and depend on sampling position and orientation. The spatial variations of the mechanical properties in horns are attributed to the different keratinization degrees in the proximal, middle and distal parts. And the mechanical properties of horns in the longitudinal direction are better than those in transverse. Among the three kinds of horns, the mechanical properties of buffalo horn are the best, followed by cattle horn, and those in sheep horn are the worst. This is due to the differences in material composition, metal element, and the microstructures of the horns. But the mechanical properties of buffalo horns are not dependent on the source of the buffalo. Therefore, regular engineered buffalo keratinous materials with standard mechanical properties can be obtained from different buffalo horns by using proper preparation methods. © 2013.

  8. Mechanical Properties of Polymers.

    ERIC Educational Resources Information Center

    Aklonis, J. J.

    1981-01-01

    Mechanical properties (stress-strain relationships) of polymers are reviewed, taking into account both time and temperature factors. Topics include modulus-temperature behavior of polymers, time dependence, time-temperature correspondence, and mechanical models. (JN)

  9. Analysis of dependent scattering mechanism in hard-sphere Yukawa random media

    NASA Astrophysics Data System (ADS)

    Wang, B. X.; Zhao, C. Y.

    2018-06-01

    The structural correlations in the microscopic structures of random media can induce the dependent scattering mechanism and thus influence the optical scattering properties. Based on our recent theory on the dependent scattering mechanism in random media composed of discrete dipolar scatterers [B. X. Wang and C. Y. Zhao, Phys. Rev. A 97, 023836 (2018)], in this paper, we study the hard-sphere Yukawa random media, in order to further elucidate the role of structural correlations in the dependent scattering mechanism and hence optical scattering properties. Here, we consider charged colloidal suspensions, whose effective pair interaction between colloids is described by a screened Coulomb (Yukawa) potential. By means of adding salt ions, the pair interaction between the charged particles can be flexibly tailored and therefore the structural correlations are modified. It is shown that this strategy can affect the optical properties significantly. For colloidal TiO2 suspensions, the modification of electric and magnetic dipole excitations induced by the structural correlations can substantially influence the optical scattering properties, in addition to the far-field interference effect described by the structure factor. However, this modification is only slightly altered by different salt concentrations and is mainly because of the packing-density-dependent screening effect. On the other hand, for low refractive index colloidal polystyrene suspensions, the dependent scattering mechanism mainly involves the far-field interference effect, and the effective exciting field amplitude for the electric dipole almost remains unchanged under different structural correlations. The present study has profound implications for understanding the role of structural correlations in the dependent scattering mechanism.

  10. Investigation of the influence of the composition on mechanical properties poly(glycolide-DL-lactide)

    NASA Astrophysics Data System (ADS)

    Baikin, A. S.; Sevostyanov, M. A.; Nasakina, E. O.; Sergienko, K. V.; Kaplan, M. A.; Konushkin, S. V.; Kolmakova, A. A.; Yakubov, A. D.; Kolmakov, A. G.

    2018-04-01

    In this paper we describe the creation of films from poly (glycolide-DL-lactide). Studied the mechanical properties of developed polymer films of poly (glycolide-DL-lactide). The effect of the molecular weight of poly (glycolide-DL-lactide) on the mechanical properties of the resulting polymer films is shown. The dependence of the mechanical properties of poly (glycolide-DL-lactide) films on the polymer concentration in chloroform was studied. The possibility of creating biodegradable films with specified mechanical properties is shown.

  11. Differences in time-dependent mechanical properties between extruded and molded hydrogels

    PubMed Central

    Ersumo, N; Witherel, CE; Spiller, KL

    2016-01-01

    The mechanical properties of hydrogels used in biomaterials and tissue engineering applications are critical determinants of their functionality. Despite the recent rise of additive manufacturing, and specifically extrusion-based bioprinting, as a prominent biofabrication method, comprehensive studies investigating the mechanical behavior of extruded constructs remain lacking. To address this gap in knowledge, we compared the mechanical properties and swelling properties of crosslinked gelatin-based hydrogels prepared by conventional molding techniques or by 3D bioprinting using a BioBots Beta pneumatic extruder. A preliminary characterization of the impact of bioprinting parameters on construct properties revealed that both Young's modulus and optimal extruding pressure increased with polymer content, and that printing resolution increased with both printing speed and nozzle gauge. High viability (>95%) of encapsulated NIH 3T3 fibroblasts confirmed the cytocompatibility of the construct preparation process. Interestingly, the Young's moduli of extruded and molded constructs were not different, but extruded constructs did show increases in both the rate and extent of time-dependent mechanical behavior observed in creep. Despite similar polymer densities, extruded hydrogels showed greater swelling over time compared to molded hydrogels, suggesting that differences in creep behavior derived from differences in microstructure and fluid flow. Because of the crucial roles of time-dependent mechanical properties, fluid flow, and swelling properties on tissue and cell behavior, these findings highlight the need for greater consideration of the effects of the extrusion process on hydrogel properties. PMID:27550945

  12. Zonal Articular Cartilage Possesses Complex Mechanical Behavior Spanning Multiple Length Scales: Dependence on Chemical Heterogeneity, Anisotropy, and Microstructure

    NASA Astrophysics Data System (ADS)

    Wahlquist, Joseph A.

    This work focused on characterizing the mechanical behavior of biological material in physiologically relevant conditions and at sub millimeter length scales. Elucidating the time, length scale, and directionally dependent mechanical behavior of cartilage and other biological materials is critical to adequately recapitulate native mechanosensory cues for cells, create computational models that mimic native tissue behavior, and assess disease progression. This work focused on three broad aspects of characterizing the mechanical behavior of articular cartilage. First, we sought to reveal the causes of time-dependent deformation and variation of mechanical properties with distance from the articular surface. Second, we investigated size dependence of mechanical properties. Finally, we examined material anisotropy of both the calcified and uncalcified tissues of the osteochondral interface. This research provides insight into how articular cartilage serves to support physiologic loads and simultaneously sustain chondrocyte viability.

  13. Classical continuum theory limits to determine the size-dependency of mechanical properties of GaN NWs

    NASA Astrophysics Data System (ADS)

    Zamani Kouhpanji, Mohammad Reza; Behzadirad, Mahmoud; Busani, Tito

    2017-12-01

    We used the stable strain gradient theory including acceleration gradients to investigate the classical and nonclassical mechanical properties of gallium nitride (GaN) nanowires (NWs). We predicted the static length scales, Young's modulus, and shear modulus of the GaN NWs from the experimental data. Combining these results with atomic simulations, we also found the dynamic length scale of the GaN NWs. Young's modulus, shear modulus, static, and dynamic length scales were found to be 318 GPa, 131 GPa, 8 nm, and 8.9 nm, respectively, usable for demonstrating the static and dynamic behaviors of GaN NWs having diameters from a few nm to bulk dimensions. Furthermore, the experimental data were analyzed with classical continuum theory (CCT) and compared with the available literature to illustrate the size-dependency of the mechanical properties of GaN NWs. This practice resolves the previous published discrepancies that happened due to the limitations of CCT used for determining the mechanical properties of GaN NWs and their size-dependency.

  14. Determination of Temperature- Dependent Mechanical Properties of Carbon Composites Under Tensile and Flexural Loading

    NASA Astrophysics Data System (ADS)

    Chripunow, Andre; Kubisch, Aline; Ruder, Matthias; Forster, Andreas; Korber, Hannes

    2014-06-01

    The presented test setup utilises a custom-built furnace realising test temperatures of up to 500°C. In order to ensure always optimal test conditions the temperature cell can be exchanged depending on the mechanical tests and specimen sizes. Cells for tensile and flexural loadings had been developed. With the latter one it is possible to perform three-point-bending tests, interlaminar-shear-strength tests as well as tests to determine the interlaminar fracture toughness. In this work the effect of fibre orientation on the mechanical properties of CFRP prepreg material under tensile and flexural loads at elevated temperatures was studied. Especially the matrix dominated layups showed a rather early decay of the mechanical properties even at temperatures quite lower than Tg. An analytical model has been used to describe the temperature-dependent properties. The model shows good agreement concerning the strength whereas the proper prediction of the moduli was only possible for the matrix dominated layups.

  15. Strain Rate Dependency of Bronze Metal Matrix Composite Mechanical Properties as a Function of Casting Technique

    NASA Astrophysics Data System (ADS)

    Brown, Lloyd; Joyce, Peter; Radice, Joshua; Gregorian, Dro; Gobble, Michael

    2012-07-01

    Strain rate dependency of mechanical properties of tungsten carbide (WC)-filled bronze castings fabricated by centrifugal and sedimentation-casting techniques are examined, in this study. Both casting techniques are an attempt to produce a functionally graded material with high wear resistance at a chosen surface. Potential applications of such materials include shaft bushings, electrical contact surfaces, and brake rotors. Knowledge of strain rate-dependent mechanical properties is recommended for predicting component response due to dynamic loading or impact events. A brief overview of the casting techniques for the materials considered in this study is followed by an explanation of the test matrix and testing techniques. Hardness testing, density measurement, and determination of the volume fraction of WC particles are performed throughout the castings using both image analysis and optical microscopy. The effects of particle filling on mechanical properties are first evaluated through a microhardness survey of the castings. The volume fraction of WC particles is validated using a thorough density survey and a rule-of-mixtures model. Split Hopkinson Pressure Bar (SHPB) testing of various volume fraction specimens is conducted to determine strain dependence of mechanical properties and to compare the process-property relationships between the two casting techniques. The baseline performances of C95400 bronze are provided for comparison. The results show that the addition of WC particles improves microhardness significantly for the centrifugally cast specimens, and, to a lesser extent, in the sedimentation-cast specimens, largely because the WC particles are more concentrated as a result of the centrifugal-casting process. Both metal matrix composites (MMCs) demonstrate strain rate dependency, with sedimentation casting having a greater, but variable, effects on material response. This difference is attributed to legacy effects from the casting process, namely, porosity and localized WC particle grouping.

  16. Effect of fiber surface and mechanical properties on the stiffness and strength of medium-density fiberboard

    Treesearch

    Leslie H. Groom; Laurence Mott; Stephen M. Shaler; Tom Pesacreta

    1999-01-01

    The mechanical properties of wood-based composites are dependent upon the properties of the wood components (e.g., wood fibers, wood strands) and the manner in which they are combined. The relationship between fiber mechanical properties and fiber-based composites has been discussed in several publications. This paper will focus primarily on the influence of fiber...

  17. Diffusive, Displacive Deformations and Local Phase Transformation Govern the Mechanics of Layered Crystals: The Case Study of Tobermorite.

    PubMed

    Tao, Lei; Shahsavari, Rouzbeh

    2017-07-19

    Understanding the deformation mechanisms underlying the mechanical behavior of materials is the key to fundamental and engineering advances in materials' performance. Herein, we focus on crystalline calcium-silicate-hydrates (C-S-H) as a model system with applications in cementitious materials, bone-tissue engineering, drug delivery and refractory materials, and use molecular dynamics simulation to investigate its loading geometry dependent mechanical properties. By comparing various conventional (e.g. shear, compression and tension) and nano-indentation loading geometries, our findings demonstrate that the former loading leads to size-independent mechanical properties while the latter results in size-dependent mechanical properties at the nanometer scales. We found three key mechanisms govern the deformation and thus mechanics of the layered C-S-H: diffusive-controlled and displacive-controlled deformation mechanisms, and strain gradient with local phase transformations. Together, these elaborately classified mechanisms provide deep fundamental understanding and new insights on the relationship between the macro-scale mechanical properties and underlying molecular deformations, providing new opportunities to control and tune the mechanics of layered crystals and other complex materials such as glassy C-S-H, natural composite structures, and manmade laminated structures.

  18. Modelling nonlinear viscoelastic behaviours of loudspeaker suspensions-like structures

    NASA Astrophysics Data System (ADS)

    Maillou, Balbine; Lotton, Pierrick; Novak, Antonin; Simon, Laurent

    2018-03-01

    Mechanical properties of an electrodynamic loudspeaker are mainly determined by its suspensions (surround and spider) that behave nonlinearly and typically exhibit frequency dependent viscoelastic properties such as creep effect. The paper aims at characterizing the mechanical behaviour of electrodynamic loudspeaker suspensions at low frequencies using nonlinear identification techniques developed in recent years. A Generalized Hammerstein based model can take into account both frequency dependency and nonlinear properties. As shown in the paper, the model generalizes existing nonlinear or viscoelastic models commonly used for loudspeaker modelling. It is further experimentally shown that a possible input-dependent law may play a key role in suspension characterization.

  19. LKB1 Regulates Mitochondria-Dependent Presynaptic Calcium Clearance and Neurotransmitter Release Properties at Excitatory Synapses along Cortical Axons.

    PubMed

    Kwon, Seok-Kyu; Sando, Richard; Lewis, Tommy L; Hirabayashi, Yusuke; Maximov, Anton; Polleux, Franck

    2016-07-01

    Individual synapses vary significantly in their neurotransmitter release properties, which underlie complex information processing in neural circuits. Presynaptic Ca2+ homeostasis plays a critical role in specifying neurotransmitter release properties, but the mechanisms regulating synapse-specific Ca2+ homeostasis in the mammalian brain are still poorly understood. Using electrophysiology and genetically encoded Ca2+ sensors targeted to the mitochondrial matrix or to presynaptic boutons of cortical pyramidal neurons, we demonstrate that the presence or absence of mitochondria at presynaptic boutons dictates neurotransmitter release properties through Mitochondrial Calcium Uniporter (MCU)-dependent Ca2+ clearance. We demonstrate that the serine/threonine kinase LKB1 regulates MCU expression, mitochondria-dependent Ca2+ clearance, and thereby, presynaptic release properties. Re-establishment of MCU-dependent mitochondrial Ca2+ uptake at glutamatergic synapses rescues the altered neurotransmitter release properties characterizing LKB1-null cortical axons. Our results provide novel insights into the cellular and molecular mechanisms whereby mitochondria control neurotransmitter release properties in a bouton-specific way through presynaptic Ca2+ clearance.

  20. Mechanical characterization and modeling for anodes and cathodes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Lubing; Yin, Sha; Zhang, Chao; Huan, Yong; Xu, Jun

    2018-07-01

    Mechanical properties of electrode materials have significant influence over electrochemical properties as well as mechanical integrity of lithium-ion battery cells. Here, anode and cathode in a commercially available 18650 NCA (Nickel Cobalt Aluminum Oxide)/graphite cell were comprehensively studied by tensile tests considering material anisotropy, SOC (state of charge), strain rate and electrolyte content. Results showed that the mechanical properties of both electrodes were highly dependent on strain rate and electrolyte content; however, anode was SOC dependent while cathode was not. Besides, coupled effects of strain rate and SOC of anodes were also discussed. SEM (scanning electron microscope) images of surfaces and cross-sections of electrodes showed the fracture morphology. In addition, mechanical behavior of Cu foil separated from anode with different SOC values were studied and compared. Finally, constitutive models of electrodes considering both strain rate and anisotropy effects were established. This study reveals the relationship between electrochemical dependent mechanical behavior of the electrodes. The established mechanical models of electrodes can be applied to the numerical computation of battery cells. Results are essential to predict the mechanical responses as well as the deformation of battery cell under various loading conditions, facilitating safer battery design and manufacturing.

  1. Skin mechanical properties and modeling: A review.

    PubMed

    Joodaki, Hamed; Panzer, Matthew B

    2018-04-01

    The mechanical properties of the skin are important for various applications. Numerous tests have been conducted to characterize the mechanical behavior of this tissue, and this article presents a review on different experimental methods used. A discussion on the general mechanical behavior of the skin, including nonlinearity, viscoelasticity, anisotropy, loading history dependency, failure properties, and aging effects, is presented. Finally, commonly used constitutive models for simulating the mechanical response of skin are discussed in the context of representing the empirically observed behavior.

  2. Influence of particle size on water absorption capacity and mechanical properties of polyethylene-wood flour composites

    NASA Astrophysics Data System (ADS)

    Zykova, A. K.; Pantyukhov, P. V.; Kolesnikova, N. N.; Popov, A. A.; Olkhov, A. A.

    2015-10-01

    Biocomposites based on low density polyethylene (LDPE) and birch wood flour (WF) were investigated. The mechanical properties and water absorption capacity were examined depending on the particle size of a filler in biocomposites. The aim of the paper is the investigation of composite properties depending on the filler particle size. The filler particle sizes were 0-80 µm, 80-140 µm, 140-200 µm, and 0-200 µm. The tensile strength of composite samples varied within the range 5.7-8.2 MPa. Elongation at break of composites varied within the range 5.1-7.5%. Highest mechanical properties were found in composites with the lowest filler fraction. Highest water absorption was observed in composition with a complex fraction of the filler. The influence of the filler particle size on composite properties was shown. It was found that an increase of the filler particle size decreases mechanical parameters and increases water absorption.

  3. Molecular dynamics modelling of mechanical properties of polymers for adaptive aerospace structures

    NASA Astrophysics Data System (ADS)

    Papanikolaou, Michail; Drikakis, Dimitris; Asproulis, Nikolaos

    2015-02-01

    The features of adaptive structures depend on the properties of the supporting materials. For example, morphing wing structures require wing skin materials, such as rubbers that can withstand the forces imposed by the internal mechanism while maintaining the required aerodynamic properties of the aircraft. In this study, Molecular Dynamics and Minimization simulations are being used to establish well-equilibrated models of Ethylene-Propylene-Diene Monomer (EPDM) elastomer systems and investigate their mechanical properties.

  4. Temperature-dependent mechanical properties of single-layer molybdenum disulphide: Molecular dynamics nanoindentation simulations

    NASA Astrophysics Data System (ADS)

    Zhao, Junhua; Jiang, Jin-Wu; Rabczuk, Timon

    2013-12-01

    The temperature-dependent mechanical properties of single-layer molybdenum disulphide (MoS2) are obtained using molecular dynamics (MD) nanoindentation simulations. The Young's moduli, maximum load stress, and maximum loading strain decrease with increasing temperature from 4.2 K to 500 K. The obtained Young's moduli are in good agreement with those using our MD uniaxial tension simulations and the available experimental results. The tendency of maximum loading strain with different temperature is opposite with that of metal materials due to the short range Stillinger-Weber potentials in MoS2. Furthermore, the indenter tip radius and fitting strain effect on the mechanical properties are also discussed.

  5. Establishment of gel materials with different mechanical properties by 3D gel printer SWIM-ER

    NASA Astrophysics Data System (ADS)

    Ota, Takafumi; Tase, Taishi; Okada, Koji; Saito, Azusa; Takamatsu, Kyuuichiro; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    A 3D printer is a device which can directly produce objects whose shape is the same as the original 3D digital data. Hydrogels have unique properties such as high water content, low frictional properties, biocompatibility, material permeability and high transparency, which are rare in hard and dry materials. These superior characteristics of gels promise useful medical applications. We have been working on the development of a 3D gel printer, SWIM-ER (Soft and Wet Industrial - Easy Realizer), which can make models of organs and artificial blood vessels with gel material. However, 3D printing has a problem: the mechanical properties of the printed object vary depending on printing conditions, and this matter was investigated with SWIM-ER. In the past, we found that mechanical properties of 3D gel objects depend on the deposition orientation in SWIM-ER. In this study, gels were printed with different laser scanning speeds. The mechanical properties of these gels were investigated by compression tests, water content measurements and SMILS (Scanning Microscopic Light Scattering).

  6. Indentation mapping revealed poroelastic, but not viscoelastic, properties spanning native zonal articular cartilage.

    PubMed

    Wahlquist, Joseph A; DelRio, Frank W; Randolph, Mark A; Aziz, Aaron H; Heveran, Chelsea M; Bryant, Stephanie J; Neu, Corey P; Ferguson, Virginia L

    2017-12-01

    Osteoarthrosis is a debilitating disease affecting millions, yet engineering materials for cartilage regeneration has proven difficult because of the complex microstructure of this tissue. Articular cartilage, like many biological tissues, produces a time-dependent response to mechanical load that is critical to cell's physiological function in part due to solid and fluid phase interactions and property variations across multiple length scales. Recreating the time-dependent strain and fluid flow may be critical for successfully engineering replacement tissues but thus far has largely been neglected. Here, microindentation is used to accomplish three objectives: (1) quantify a material's time-dependent mechanical response, (2) map material properties at a cellular relevant length scale throughout zonal articular cartilage and (3) elucidate the underlying viscoelastic, poroelastic, and nonlinear poroelastic causes of deformation in articular cartilage. Untreated and trypsin-treated cartilage was sectioned perpendicular to the articular surface and indentation was used to evaluate properties throughout zonal cartilage on the cut surface. The experimental results demonstrated that within all cartilage zones, the mechanical response was well represented by a model assuming nonlinear biphasic behavior and did not follow conventional viscoelastic or linear poroelastic models. Additionally, 10% (w/w) agarose was tested and, as anticipated, behaved as a linear poroelastic material. The approach outlined here provides a method, applicable to many tissues and biomaterials, which reveals and quantifies the underlying causes of time-dependent deformation, elucidates key aspects of material structure and function, and that can be used to provide important inputs for computational models and targets for tissue engineering. Elucidating the time-dependent mechanical behavior of cartilage, and other biological materials, is critical to adequately recapitulate native mechanosensory cues for cells. We used microindentation to map the time-dependent properties of untreated and trypsin treated cartilage throughout each cartilage zone. Unlike conventional approaches that combine viscoelastic and poroelastic behaviors into a single framework, we deconvoluted the mechanical response into separate contributions to time-dependent behavior. Poroelastic effects in all cartilage zones dominated the time-dependent behavior of articular cartilage, and a model that incorporates tension-compression nonlinearity best represented cartilage mechanical behavior. These results can be used to assess the success of regeneration and repair approaches, as design targets for tissue engineering, and for development of accurate computational models. Copyright © 2017 Acta Materialia Inc. All rights reserved.

  7. Collagen insulated from tensile damage by domains that unfold reversibly: in situ X-ray investigation of mechanical yield and damage repair in the mussel byssus

    PubMed Central

    Harrington, Matthew J.; Gupta, Himadri S.; Fratzl, Peter; Waite, J. Herbert

    2009-01-01

    The byssal threads of the California mussel, Mytilus californianus, are highly hysteretic, elastomeric fibers that collectively perform a holdfast function in wave-swept rocky seashore habitats. Following cyclic loading past the mechanical yield point, threads exhibit a damage-dependent reduction in mechanical performance. However, the distal portion of the byssal thread is capable of recovering initial material properties through a time-dependent healing process in the absence of active cellular metabolism. Byssal threads are composed almost exclusively of multi-domain hybrid collagens known as preCols, which largely determine the mechanical properties of the thread. Here, the structure-property relationships that govern thread mechanical performance are further probed. The molecular rearrangements that occur during yield and damage repair were investigated using time-resolved in situ wide angle X-ray diffraction (WAXD) coupled with cyclic tensile loading of threads and through thermally enhanced damage-repair studies. Results indicate that the collagen domains in byssal preCols are mechanically protected by the unfolding of sacrificial non-collagenous domains that refold on a slower time-scale. Time-dependent healing is primarily attributed to stochastic recoupling of broken histidine-metal coordination complexes. PMID:19275941

  8. The effect of thermal processing on microstructure and mechanical properties in a nickel-iron alloy

    NASA Astrophysics Data System (ADS)

    Yang, Ling

    The correlation between processing conditions, resulted microstructure and mechanical properties is of interest in the field of metallurgy for centuries. In this work, we investigated the effect of thermal processing parameters on microstructure, and key mechanical properties to turbine rotor design: tensile yield strength and crack growth resistance, for a nickel-iron based superalloy Inconel 706. The first step of the designing of experiments is to find parameter ranges for thermal processing. Physical metallurgy on superalloys was combined with finite element analysis to estimate variations in thermal histories for a large Alloy 706 forging, and the results were adopted for designing of experiments. Through the systematic study, correlation was found between the processing parameters and the microstructure. Five different types of grain boundaries were identified by optical metallography, fractography, and transmission electron microscopy, and they were found to be associated with eta precipitation at the grain boundaries. Proportions of types of boundaries, eta size, spacing and angle respect to the grain boundary were found to be dependent on processing parameters. Differences in grain interior precipitates were also identified, and correlated with processing conditions. Further, a strong correlation between microstructure and mechanical properties was identified. The grain boundary precipitates affect the time dependent crack propagation resistance, and different types of boundaries have different levels of resistance. Grain interior precipitates were correlated with tensile yield strength. It was also found that there is a strong environmental effect on time dependent crack propagation resistance, and the sensitivity to environmental damage is microstructure dependent. The microstructure with eta decorated on grain boundaries by controlled processing parameters is more resistant to environmental damage through oxygen embrittlement than material without eta phase on grain boundaries. Effort was made to explore the mechanisms of improving the time dependent crack propagation resistance through thermal processing, several mechanisms were identified in both environment dependent and environment independent category, and they were ranked based on their contributions in affecting crack propagation.

  9. Role of Sequence and Structural Polymorphism on the Mechanical Properties of Amyloid Fibrils

    PubMed Central

    Kim, Jae In; Na, Sungsoo; Eom, Kilho

    2014-01-01

    Amyloid fibrils playing a critical role in disease expression, have recently been found to exhibit the excellent mechanical properties such as elastic modulus in the order of 10 GPa, which is comparable to that of other mechanical proteins such as microtubule, actin filament, and spider silk. These remarkable mechanical properties of amyloid fibrils are correlated with their functional role in disease expression. This suggests the importance in understanding how these excellent mechanical properties are originated through self-assembly process that may depend on the amino acid sequence. However, the sequence-structure-property relationship of amyloid fibrils has not been fully understood yet. In this work, we characterize the mechanical properties of human islet amyloid polypeptide (hIAPP) fibrils with respect to their molecular structures as well as their amino acid sequence by using all-atom explicit water molecular dynamics (MD) simulation. The simulation result suggests that the remarkable bending rigidity of amyloid fibrils can be achieved through a specific self-aggregation pattern such as antiparallel stacking of β strands (peptide chain). Moreover, we have shown that a single point mutation of hIAPP chain constituting a hIAPP fibril significantly affects the thermodynamic stability of hIAPP fibril formed by parallel stacking of peptide chain, and that a single point mutation results in a significant change in the bending rigidity of hIAPP fibrils formed by antiparallel stacking of β strands. This clearly elucidates the role of amino acid sequence on not only the equilibrium conformations of amyloid fibrils but also their mechanical properties. Our study sheds light on sequence-structure-property relationships of amyloid fibrils, which suggests that the mechanical properties of amyloid fibrils are encoded in their sequence-dependent molecular architecture. PMID:24551113

  10. Effect of pH on chitosan hydrogel polymer network structure.

    PubMed

    Xu, Hongcheng; Matysiak, Silvina

    2017-06-29

    Chitosan is a molecule that can form water-filled 3D polymer networks with a wide range of applications. A new coarse-grained model for chitosan hydrogel was developed to explore its pH-dependent self-assembly behavior and mechanical properties. Our results indicate that the underlying polymer physical crosslinking pattern induced by solution pH has a significant effect on hydrogel elastic moduli. With this model, we obtain pH-dependent structural and mechanical property changes in agreement with experimental observations, and provide a molecular mechanism behind the changes in polymer crosslinking patterns.

  11. Temperature dependence of optically induced cell deformations

    NASA Astrophysics Data System (ADS)

    Fritsch, Anatol; Kiessling, Tobias R.; Stange, Roland; Kaes, Josef A.

    2012-02-01

    The mechanical properties of any material change with temperature, hence this must be true for cellular material. In biology many functions are known to undergo modulations with temperature, like myosin motor activity, mechanical properties of actin filament solutions, CO2 uptake of cultured cells or sex determination of several species. As mechanical properties of living cells are considered to play an important role in many cell functions it is surprising that only little is known on how the rheology of single cells is affected by temperature. We report the systematic temperature dependence of single cell deformations in Optical Stretcher (OS) measurements. The temperature is changed on a scale of about 20 minutes up to hours and compared to defined temperature shocks in the range of milliseconds. Thereby, a strong temperature dependence of the mechanics of single suspended cells is revealed. We conclude that the observable differences arise rather from viscosity changes of the cytosol than from structural changes of the cytoskeleton. These findings have implications for the interpretation of many rheological measurements, especially for laser based approaches in biological studies.

  12. EBSD characterization of twinning in cold-rolled CP-Ti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X., E-mail: csulixu@hotmail.com; Duan, Y.L., E-mail: 876270744@qq.com; Xu, G.F., E-mail: csuxgf66@csu.edu.cn

    2013-10-15

    This work presents the use of a mechanical testing system and the electron backscatter diffraction technique to study the mechanical properties and twinning systems of cold-rolled commercial purity titanium, respectively. The dependence of twinning on the matrix orientation is analyzed by the distribution map of Schmid factor. The results showed that the commercial purity titanium experienced strong strain hardening and had excellent formability during rolling. Both the (112{sup ¯}2)<112{sup ¯}3{sup ¯}> compressive twins and (101{sup ¯}2)<101{sup ¯}1{sup ¯}> tensile twins were dependent on the matrix orientation. The Schmid factor of a grain influenced the activation of a particular twinning system.more » The specific rolling deformation of commercial purity titanium controlled the number and species of twinning systems and further changed the mechanical properties. - Highlights: • CP-Ti experienced strain hardening and had excellent formability. • Twins were dependent on the matrix orientation. • Schmid factor of a grain influenced the activation of a twinning system. • Rolling deformation controlled twinning systems and mechanical properties.« less

  13. Mineral concentration dependent modulation of mechanical properties of bone-inspired bionanocomposite scaffold

    NASA Astrophysics Data System (ADS)

    Biswas, Abhijit; Ovaert, Timothy C.; Slaboch, Constance; Zhao, He; Bayer, Ilker S.; Biris, Alexandru S.; Wang, Tao

    2011-07-01

    We demonstrate tunable mechanical properties of bone-inspired bionanocomposite scaffolds while maintaining the required viscoelasticity. Mechanical properties such as hardness and elastic modulus of the bionanocomposite scaffolds were controlled by varying mineral concentrations of the bioscaffold. In particular, higher calcium and oxygen contents in the bioscaffold resulted in a significant enhancement in hardness and modulus of the bionanocomposite. Moreover, the phosphorous content appeared to be a determining factor in the hardness and mechanical properties of the bionanocomposites. These results open up the possibility of designing new engineered biocompatible nanoscaffolds with desired and tunable biomimetic functions and biomechanical properties with significant potential for advanced bone tissue engineering platforms and bone substitutes.

  14. Molecular Modeling of Thermosetting Polymers: Effects of Degree of Curing and Chain Length on Thermo-Mechanical Properties

    DTIC Science & Technology

    2012-08-01

    paper, we will first briefly discuss our recent results, using coarse-grained bead - spring model , on the dependence of failure stress and failure...length of the resin strands. In the coarse-grained model used here the polymer network is treated as a bead - spring system. To create highly cross...simulations of Thermosets We have used a coarse-grained bead - spring model to study the dependence of the mechanical properties of thermosets on chain

  15. Effect of cellulose fiber reinforcement on the temperature dependent mechanical performance of nylon 6

    Treesearch

    Mehdi Tajvidi; Mokhtar Feizmand; Robert H. Falk; Colin Felton

    2009-01-01

    In order to quantify the effect of temperature on the mechanical properties of pure nylon 6 and its composite with cellulose fibers (containing 25 wt% cellulose fibers), the materials were sampled and tested at three representative temperatures of 256, 296, and 336 K. Flexural and tensile tests were performed and the reductions in mechanical properties were evaluated....

  16. Balance decrements are associated with age-related muscle property changes.

    PubMed

    Hasson, Christopher J; van Emmerik, Richard E A; Caldwell, Graham E

    2014-08-01

    In this study, a comprehensive evaluation of static and dynamic balance abilities was performed in young and older adults and regression analysis was used to test whether age-related variations in individual ankle muscle mechanical properties could explain differences in balance performance. The mechanical properties included estimates of the maximal isometric force capability, force-length, force-velocity, and series elastic properties of the dorsiflexors and individual plantarflexor muscles (gastrocnemius and soleus). As expected, the older adults performed more poorly on most balance tasks. Muscular maximal isometric force, optimal fiber length, tendon slack length, and velocity-dependent force capabilities accounted for up to 60% of the age-related variation in performance on the static and dynamic balance tests. In general, the plantarflexors had a stronger predictive role than the dorsiflexors. Plantarflexor stiffness was strongly related to general balance performance, particularly in quiet stance; but this effect did not depend on age. Together, these results suggest that age-related differences in balance performance are explained in part by alterations in muscular mechanical properties.

  17. Role of surface oxidation on the size dependent mechanical properties of nickel nanowires: a ReaxFF molecular dynamics study.

    PubMed

    Aral, Gurcan; Islam, Md Mahbubul; van Duin, Adri C T

    2017-12-20

    Highly reactive metallic nickel (Ni) is readily oxidized by oxygen (O 2 ) molecules even at low temperatures. The presence of the naturally resulting pre-oxide shell layer on metallic Ni nano materials such as Ni nanowires (NW) is responsible for degrading the deformation mechanisms and related mechanical properties. However, the role of the pre-oxide shell layer on the metallic Ni NW coupled with the complicated mechanical deformation mechanism and related properties have not yet been fully and independently understood. For this reason, the ReaxFF reactive force field for Ni/O interactions was used to investigate the effect of surface oxide layers and the size-dependent mechanical properties of Ni NWs under precisely controlled tensile loading conditions. To directly quantify the size dependent surface oxidation effect on the tensile mechanical deformation behaviour and related properties for Ni NWs, first, ReaxFF-molecular dynamics (MD) simulations were carried out to study the oxidation kinetics on the free surface of Ni NWs in a molecular O 2 environment as a function of various diameters (D = 5.0, 6.5, and 8.0 nm) of the NWs, but at the same length. Single crystalline, pure metallic Ni NWs were also studied as a reference. The results of the oxidation simulations indicate that a surface oxide shell layer with limiting thickness of ∼1.0 nm was formed on the free surface of the bare Ni NW, typically via dissociation of the O-O bonds and the subsequent formation of Ni-O bonds. Furthermore, we investigated the evolution of the size-dependent intrinsic mechanical elastic properties of the core-oxide shell (Ni/Ni x O y ) NWs by comparing them with their un-oxidized counterparts under constant uniaxial tensile loading. We found that the oxide shell layer significantly decreases the mechanical properties of metallic Ni NW as well as facilitates the initiation of plastic deformation as a function of decreasing diameter. The disordered oxide shell layer on the Ni NW's surface remarkably reduces the yield stress and Young's modulus, due to the increased softening effects with the decreasing NW diameter, compared to un-oxidized counterparts. Moreover, the onset of plastic deformation occurs at a relatively low yielding strain and stress level for the smaller diameter of oxide-coated Ni NWs in comparison to their pure counterparts. Furthermore, for pure Ni NWs, Young's modulus, the yielding stress and strain slightly decrease with the decrease in the diameter size of Ni NWs.

  18. Procedure for implementation of temperature-dependent mechanical property capability in the Engineering Analysis Language (EAL) system

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Robinson, James C.

    1990-01-01

    A procedure is presented to allow the use of temperature dependent mechanical properties in the Engineering Analysis Language (EAL) System for solid structural elements. This is accomplished by including a modular runstream in the main EAL runstream. The procedure is applicable for models with multiple materials and with anisotropic properties, and can easily be incorporated into an existing EAL runstream. The procedure (which is applicable for EAL elastic solid elements) is described in detail, followed by a description of the validation of the routine. A listing of the EAL runstream used to validate the procedure is included in the Appendix.

  19. Effect of pH on the electrical properties and conducting mechanism of SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Periathai, R. Sudha; Abarna, S.; Hirankumar, G.; Jeyakumaran, N.; Prithivikumaran, N.

    2017-03-01

    Semiconductor nanoparticles have attracted more interests because of their size-dependent optical and electrical properties.SnO2 is an oxygen-deficient n-type semiconductor with a wide band gap of 3.6 eV (300 K). It has many remarkable applications as sensors, catalysts, transparent conducting electrodes, anode material for rechargeable Li- ion batteries and optoelectronic devices. In the present work, the role of pH in determining the electrical and dielectric properties of SnO2 nanoparticles has been studied as a function of temperature ranging from Room temperature (RT) to 114 °C in the frequency range of 7 MHz to 50 mHz using impedance spectroscopic technique. The non linear behavior observed in the thermal dependence of the conductance of SnO2 nanoparticles is explained by means of the surface property of SnO2 nanoparticles where proton hopping mechanism is dealt with. Jonscher's power law has been fitted for the conductance spectra and the frequency exponent ("s" value) gives an insight about the ac conducting mechanism. The temperature dependence of electrical relaxation phenomenon in the material has been observed. The complex electric modulus analysis indicates the possibility of hopping conduction mechanism in the system with non-exponential type of conductivity relaxation.

  20. Casein films: effects of formulation, environmental conditions, and addition of citric pectin on the structure and mechanical properties

    USDA-ARS?s Scientific Manuscript database

    Thin casein films for food packaging applications reportedly possess good strength and low oxygen permeability, but low water-resistance and elasticity. Modifying and customizing the mechanical properties of the films to target specific behaviors depending on environmental conditions would enable a...

  1. Nonlinear Loading-Rate-Dependent Force Response of Individual Vimentin Intermediate Filaments to Applied Strain

    NASA Astrophysics Data System (ADS)

    Block, Johanna; Witt, Hannes; Candelli, Andrea; Peterman, Erwin J. G.; Wuite, Gijs J. L.; Janshoff, Andreas; Köster, Sarah

    2017-01-01

    The mechanical properties of eukaryotic cells are to a great extent determined by the cytoskeleton, a composite network of different filamentous proteins. Among these, intermediate filaments (IFs) are exceptional in their molecular architecture and mechanical properties. Here we directly record stress-strain curves of individual vimentin IFs using optical traps and atomic force microscopy. We find a strong loading rate dependence of the mechanical response, supporting the hypothesis that IFs could serve to protect eukaryotic cells from fast, large deformations. Our experimental results show different unfolding regimes, which we can quantitatively reproduce by an elastically coupled system of multiple two-state elements.

  2. Tribo-Mechanical Properties of HVOF Deposited Fe3Al Coatings Reinforced with TiB2 Particles for Wear-Resistant Applications

    PubMed Central

    Amiriyan, Mahdi; Blais, Carl; Savoie, Sylvio; Schulz, Robert; Gariépy, Mario; Alamdari, Houshang

    2016-01-01

    This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. This study reveals the effect of TiB2 particles on the mechanical and tribological properties of Fe3Al-TiB2 composite coatings against an alumina counterpart. The feedstock was produced by milling Fe3Al and TiB2 powders in a high energy ball mill. The high-velocity oxy-fuel (HVOF) technique was used to deposit the feedstock powder on a steel substrate. The effect of TiB2 addition on mechanical properties and dry sliding wear rates of the coatings at sliding speeds ranging from 0.04 to 0.8 m·s−1 and loads of 3, 5 and 7 N was studied. Coatings made from unreinforced Fe3Al exhibited a relatively high wear rate. The Vickers hardness, elastic modulus and wear resistance of the coatings increased with increasing TiB2 content in the Fe3Al matrix. The wear mechanisms strongly depended on the sliding speed and the presence of TiB2 particles but were less dependent on the applied load. PMID:28787917

  3. Anisotropic mechanical properties of zircon and the effect of radiation damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beirau, Tobias; Nix, William D.; Bismayer, Ulrich

    2016-06-02

    Our study provides new insights into the relationship between radiation-dose-dependent structural damage, due to natural U and Th impurities, and the anisotropic mechanical properties (Poisson s ratio, elastic modulus and hardness) of zircon. Natural zircon samples from Sri Lanka (see Muarakami et al. 1991) and synthetic samples, covering a dose range of zero up to 6.8 x 10 18 -decays/g, have been studied by nanoindentation. Measurements along the [100] crystallographic direction and calculations, based on elastic stiffness constants determined by zkan (1976), revealed a general radiation-induced decrease in stiffness (~ 54 %) and hardness (~ 48 %) and an increasemore » of the Poisson s ratio (~ 54 %) with increasing dose. Additional indentations on selected samples along the [001] allowed one to follow the amorphization process to the point that the mechanical properties are isotropic. This work shows that the radiation-dose-dependent changes of the mechanical properties of zircon can be directly correlated with the amorphous fraction as determined by previous investigations with local and global probes (Rios et al. 2000a; Farnan and Salje 2001; Zhang and Salje 2001). This agreement, revealed by the different methods, indicates a huge influence of structural and even local phenomena on the macroscopic mechanical properties.« less

  4. Understanding Mechanical Response of Elastomeric Graphene Networks

    PubMed Central

    Ni, Na; Barg, Suelen; Garcia-Tunon, Esther; Macul Perez, Felipe; Miranda, Miriam; Lu, Cong; Mattevi, Cecilia; Saiz, Eduardo

    2015-01-01

    Ultra-light porous networks based on nano-carbon materials (such as graphene or carbon nanotubes) have attracted increasing interest owing to their applications in wide fields from bioengineering to electrochemical devices. However, it is often difficult to translate the properties of nanomaterials to bulk three-dimensional networks with a control of their mechanical properties. In this work, we constructed elastomeric graphene porous networks with well-defined structures by freeze casting and thermal reduction, and investigated systematically the effect of key microstructural features. The porous networks made of large reduced graphene oxide flakes (>20 μm) are superelastic and exhibit high energy absorption, showing much enhanced mechanical properties than those with small flakes (<2 μm). A better restoration of the graphitic nature also has a considerable effect. In comparison, microstructural differences, such as the foam architecture or the cell size have smaller or negligible effect on the mechanical response. The recoverability and energy adsorption depend on density with the latter exhibiting a minimum due to the interplay between wall fracture and friction during deformation. These findings suggest that an improvement in the mechanical properties of porous graphene networks significantly depend on the engineering of the graphene flake that controls the property of the cell walls. PMID:26348898

  5. Effect of crystallographic orientations of grains on the global mechanical properties of steel sheets by depth sensing indentation

    NASA Astrophysics Data System (ADS)

    Burik, P.; Pesek, L.; Kejzlar, P.; Andrsova, Z.; Zubko, P.

    2017-01-01

    The main idea of this work is using a physical model to prepare a virtual material with required properties. The model is based on the relationship between the microstructure and mechanical properties. The macroscopic (global) mechanical properties of steel are highly dependent upon microstructure, crystallographic orientation of grains, distribution of each phase present, etc... We need to know the local mechanical properties of each phase separately in multiphase materials. The grain size is a scale, where local mechanical properties are responsible for the behavior. Nanomechanical testing using depth sensing indentation (DSI) provides a straightforward solution for quantitatively characterizing each of phases in microstructure because it is very powerful technique for characterization of materials in small volumes. The aim of this experimental investigation is: (i) to prove how the mixing rule works for local mechanical properties (indentation hardness HIT) in microstructure scale using the DSI technique on steel sheets with different microstructure; (ii) to compare measured global properties with properties achieved by mixing rule; (iii) to analyze the effect of crystallographic orientations of grains on the mixing rule.

  6. Mechanical property quantification of endothelial cells using scanning acoustic microscopy

    NASA Astrophysics Data System (ADS)

    Shelke, A.; Brand, S.; Kundu, T.; Bereiter-Hahn, J.; Blase, C.

    2012-04-01

    The mechanical properties of cells reflect dynamic changes of cellular organization which occur during physiologic activities like cell movement, cell volume regulation or cell division. Thus the study of cell mechanical properties can yield important information for understanding these physiologic activities. Endothelial cells form the thin inner lining of blood vessels in the cardiovascular system and are thus exposed to shear stress as well as tensile stress caused by the pulsatile blood flow. Endothelial dysfunction might occur due to reduced resistance to mechanical stress and is an initial step in the development of cardiovascular disease like, e.g., atherosclerosis. Therefore we investigated the mechanical properties of primary human endothelial cells (HUVEC) of different age using scanning acoustic microscopy at 1.2 GHz. The HUVECs are classified as young (tD < 90 h) and old (tD > 90 h) cells depending upon the generation time for the population doubling of the culture (tD). Longitudinal sound velocity and geometrical properties of cells (thickness) were determined using the material signature curve V(z) method for variable culture condition along spatial coordinates. The plane wave technique with normal incidence is assumed to solve two-dimensional wave equation. The size of the cells is modeled using multilayered (solid-fluid) system. The propagation of transversal wave and surface acoustic wave are neglected in soft matter analysis. The biomechanical properties of HUVEC cells are quantified in an age dependent manner.

  7. Mechanical Properties of Mg2Si/Mg Composites via Powder Metallurgy Process

    NASA Astrophysics Data System (ADS)

    Muramatsu, Hiroshi; Kondoh, Katsuyoshi; Yuasa, Eiji; Aizawa, Tatsuhiko

    The mechanical properties of the Mg2Si/Mg composites solid-state synthesized from the mixed Mg-Si powders have been investigated. The macro-hardness (HRE) and the tensile strength of the composites increase with increasing the Si content and decreasing the Si size. The particle size of the synthesized Mg2Si depends on the initial Si size; the mechanical properties of the Mg2Si/Mg composite are remarkably improved by using fine Si particles or by decreasing the grain size of Mg matrix grains when the powder mixture was prepared via bulk mechanical alloying process.

  8. Development of a strain rate dependent material model of human cortical bone for computer-aided reconstruction of injury mechanisms.

    PubMed

    Asgharpour, Zahra; Zioupos, Peter; Graw, Matthias; Peldschus, Steffen

    2014-03-01

    Computer-aided methods such as finite-element simulation offer a great potential in the forensic reconstruction of injury mechanisms. Numerous studies have been performed on understanding and analysing the mechanical properties of bone and the mechanism of its fracture. Determination of the mechanical properties of bones is made on the same basis used for other structural materials. The mechanical behaviour of bones is affected by the mechanical properties of the bone material, the geometry, the loading direction and mode and of course the loading rate. Strain rate dependency of mechanical properties of cortical bone has been well demonstrated in literature studies, but as many of these were performed on animal bones and at non-physiological strain rates it is questionable how these will apply in the human situations. High strain-rates dominate in a lot of forensic applications in automotive crashes and assault scenarios. There is an overwhelming need to a model which can describe the complex behaviour of bone at lower strain rates as well as higher ones. Some attempts have been made to model the viscoelastic and viscoplastic properties of the bone at high strain rates using constitutive mathematical models with little demonstrated success. The main objective of the present study is to model the rate dependent behaviour of the bones based on experimental data. An isotropic material model of human cortical bone with strain rate dependency effects is implemented using the LS-DYNA material library. We employed a human finite element model called THUMS (Total Human Model for Safety), developed by Toyota R&D Labs and the Wayne State University, USA. The finite element model of the human femur is extracted from the THUMS model. Different methods have been employed to develop a strain rate dependent material model for the femur bone. Results of one the recent experimental studies on human femur have been employed to obtain the numerical model for cortical femur. A forensic application of the model is explained in which impacts to the arm have been reconstructed using the finite element model of THUMS. The advantage of the numerical method is that a wide range of impact conditions can be easily reconstructed. Impact velocity has been changed as a parameter to find the tolerance levels of injuries to the lower arm. The method can be further developed to study the assaults and the injury mechanism which can lead to severe traumatic injuries in forensic cases. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. The Neurobiology of Opiate Motivation

    PubMed Central

    Ting-A-Kee, Ryan; van der Kooy, Derek

    2012-01-01

    Opiates are a highly addictive class of drugs that have been reported to possess both dopamine-dependent and dopamine-independent rewarding properties. The search for how, if at all, these distinct mechanisms of motivation are related is of great interest in drug addiction research. Recent electrophysiological, molecular, and behavioral work has greatly improved our understanding of this process. In particular, the signaling properties of GABAA receptors located on GABA neurons in the ventral tegmental area (VTA) appear to be crucial to understanding the interplay between dopamine-dependent and dopamine-independent mechanisms of opiate motivation. PMID:23028134

  10. Cross-Linker Unbinding and Self-Similarity in Bundled Cytoskeletal Networks

    NASA Astrophysics Data System (ADS)

    Lieleg, O.; Bausch, A. R.

    2007-10-01

    The macromechanical properties of purely bundled in vitro actin networks are not only determined by the micromechanical properties of individual bundles but also by molecular unbinding events of the actin-binding protein (ABP) fascin. Under high mechanical load the network elasticity depends on the forced unbinding of individual ABPs in a rate dependent manner. Cross-linker unbinding in combination with the structural self-similarity of the network enables the introduction of a concentration-time superposition principle—broadening the mechanically accessible frequency range over 8 orders of magnitude.

  11. Determinants of the mechanical properties of bones

    NASA Technical Reports Server (NTRS)

    Martin, R. B.

    1991-01-01

    The mechanical properties of bones are governed by the same principles as those of man-made load-bearing structures, but the organism is able to adapt its bone structure to changes in skeletal loading. In this overview of the determinants of the strength and stiffness of bone, a continuum approach has been taken, in which the behavior of a macroscopic structure depends on its shape and size, and on the mechanical properties of the material within. The latter are assumed to depend on the composition (porosity and mineralization) and organization (trabecular or cortical bone architecture, collagen fiber orientation, fatigue damage) of the bone. The effects of each of these factors are reviewed. Also, the possible means of non-invasively estimating the strength or other mechanical properties of a bone are reviewed, including quantitative computed tomography, photon absorptiometry, and ultrasonic measurements. The best estimates of strength have been obtained with photon absorptiometry and computed tomography, which at best are capable of accounting for 90% of the strength variability in a simple in vitro test, but results from different laboratories have been highly variable.

  12. On the continuum mechanics approach for the analysis of single walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chaudhry, M. S.; Czekanski, A.

    2016-04-01

    Today carbon nanotubes have found various applications in structural, thermal and almost every field of engineering. Carbon nanotubes provide great strength, stiffness resilience properties. Evaluating the structural behavior of nanoscale materials is an important task. In order to understand the materialistic behavior of nanotubes, atomistic models provide a basis for continuum mechanics modelling. Although the properties of bulk materials are consistent with the size and depends mainly on the material but the properties when we are in Nano-range, continuously change with the size. Such models start from the modelling of interatomic interaction. Modelling and simulation has advantage of cost saving when compared with the experiments. So in this project our aim is to use a continuum mechanics model of carbon nanotubes from atomistic perspective and analyses some structural behaviors of nanotubes. It is generally recognized that mechanical properties of nanotubes are dependent upon their structural details. The properties of nanotubes vary with the varying with the interatomic distance, angular orientation, radius of the tube and many such parameters. Based on such models one can analyses the variation of young's modulus, strength, deformation behavior, vibration behavior and thermal behavior. In this study some of the structural behaviors of the nanotubes are analyzed with the help of continuum mechanics models. Using the properties derived from the molecular mechanics model a Finite Element Analysis of carbon nanotubes is performed and results are verified. This study provides the insight on continuum mechanics modelling of nanotubes and hence the scope to study the effect of various parameters on some structural behavior of nanotubes.

  13. Scale dependence of entrainment-mixing mechanisms in cumulus clouds

    DOE PAGES

    Lu, Chunsong; Liu, Yangang; Niu, Shengjie; ...

    2014-12-17

    This work empirically examines the dependence of entrainment-mixing mechanisms on the averaging scale in cumulus clouds using in situ aircraft observations during the Routine Atmospheric Radiation Measurement Aerial Facility Clouds with Low Optical Water Depths Optical Radiative Observations (RACORO) field campaign. A new measure of homogeneous mixing degree is defined that can encompass all types of mixing mechanisms. Analysis of the dependence of the homogenous mixing degree on the averaging scale shows that, on average, the homogenous mixing degree decreases with increasing averaging scales, suggesting that apparent mixing mechanisms gradually approach from homogeneous mixing to extreme inhomogeneous mixing with increasingmore » scales. The scale dependence can be well quantified by an exponential function, providing first attempt at developing a scale-dependent parameterization for the entrainment-mixing mechanism. The influences of three factors on the scale dependence are further examined: droplet-free filament properties (size and fraction), microphysical properties (mean volume radius and liquid water content of cloud droplet size distributions adjacent to droplet-free filaments), and relative humidity of entrained dry air. It is found that the decreasing rate of homogeneous mixing degree with increasing averaging scales becomes larger with larger droplet-free filament size and fraction, larger mean volume radius and liquid water content, or higher relative humidity. The results underscore the necessity and possibility of considering averaging scale in representation of entrainment-mixing processes in atmospheric models.« less

  14. Estimation of viscoelastic parameters in Prony series from shear wave propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Jae-Wook; Hong, Jung-Wuk, E-mail: j.hong@kaist.ac.kr, E-mail: jwhong@alum.mit.edu; Lee, Hyoung-Ki

    2016-06-21

    When acquiring accurate ultrasonic images, we must precisely estimate the mechanical properties of the soft tissue. This study investigates and estimates the viscoelastic properties of the tissue by analyzing shear waves generated through an acoustic radiation force. The shear waves are sourced from a localized pushing force acting for a certain duration, and the generated waves travel horizontally. The wave velocities depend on the mechanical properties of the tissue such as the shear modulus and viscoelastic properties; therefore, we can inversely calculate the properties of the tissue through parametric studies.

  15. Effects of recycled fiber on the properties of fiberboard panels

    Treesearch

    Chin-yin Hwang; Chung-yun Hse; Todd F. Shupe

    2005-01-01

    This study examined the effects of recycled and virgin wood fiber on the properties of fiberboard. Replacing virgin fiber with recycled fiber adversely affected physical and mechanical properties of fiberboard. Bending properties and dimensional stability were linearly dependent on virgin fiber ratios. Based on strength properties, panels with 20 and 40 percent...

  16. Study of the changes in the magnetic properties of stainless steels under mechanical treatment

    NASA Astrophysics Data System (ADS)

    Iankov, R.; Rusanov, V.; Paneva, D.; Mitov, I.; Trautwein, A. X.

    2016-12-01

    Six types of stainless steels (SS) were studied for changes in its structure and magnetic properties under mechanical treatment. Depending on intensity and duration of the process of plastic deformation and the SS type the paramagnetic austenite structure transforms partially to completely into ferrite structure with ferromagnetic behaviour. Some of the SS tested were found slightly modified yet in the process of its manufacturing. Only one SS type with high Ni content preserved its structure and paramagnetic properties even after very intense mechanical treatment.

  17. Dependency properties of the amorphous alloy Co58Ni10Fe5Si11B16 on technological parameters of spinning

    NASA Astrophysics Data System (ADS)

    Frolov, A. M.; Tkachev, V. V.; Fedorets, A. N.; Pustovalov, E. V.; Kraynova, G. S.; Dolzhikov, S. V.; Ilin, N. V.; Tsesarskaya, A. K.

    2017-09-01

    The tapes are quickly quenched onto a rotating drum. The structure of mechanical and physical properties is studied depending on the spinning parameters. An approach is proposed for the classification of obtained bands based on the statistics of the microrelief of their surfaces.

  18. Mechanical properties of aluminium fused SiO2 particulate composites cast using metallic and non-metallic chills

    NASA Astrophysics Data System (ADS)

    Harshith, H. S.; Hemanth, Joel

    2018-04-01

    This research work aims at developing and mechanical characterization of aluminium (LM13) based metal matrix composite reinforced with varying percentage of fused SiO2 (3%,6%,9%,12%). The mechanical properties are completely dependent on the microstructural parameters of the system. Also the microstructure further depends on the cooling rates during solidification process. Various Chills like Silicon carbide, Mild steel, Copper were used during the casting process to increase the rate of solidification, which enhances the mechanical properties of the composite. The chill casted specimens were subjected to tensile and hardness tests followed by microstructure studies. A casting produced using mild steel chill exhibited higher young's modulus and was found to be maximum at 9% reinforcement. Finer microstructure and better UTS were seen for specimen's casted using copper chills, whereas silicon carbide and mild steel chills gave rise to very coarse structure with reduced UTS values compared to copper chills.

  19. Heat treatment effect on the mechanical properties of industrial drawn copper wires

    NASA Astrophysics Data System (ADS)

    Beribeche, Abdellatif; Boumerzoug, Zakaria; Ji, Vincent

    2013-12-01

    In this present investigation, the mechanical properties of industrial drawn copper wires have been studied by tensile tests. The effect of prior heat treatments at 500°C on the drawn wires behavior was the main goal of this investigation. We have found that the mechanical behavior of drawn wires depends strongly on those treatments. SEM observations of the wire cross section after tensile tests have shown that the mechanism of rupture was mainly controlled by the void formation.

  20. Effect of the chemical structure of the polymer matrix on the properties of foam polyurethanes at low temperatures

    NASA Astrophysics Data System (ADS)

    Yakushin, V. A.; Stirna, U. K.; Zhmud', N. P.

    1999-07-01

    The dependence of physical and mechanical properties of oligoether-based foam polyurethanes on the molecular mass (Mc) of polymer chains between the nodes of the polymer network and on the content of rigid segments in the polymer is investigated at 293 and 98K. The values of Mc at which the foam plastics have the best mechanical properties at low temperatures are determined. The content of rigid segments in the polymer at which foam polyurethanes have the best combination of the linear thermal expansion coefficient and mechanical properties in tension at a temperature of 98K is found.

  1. The Mechanical Properties and Modeling of Creep Behavior of UHMWPE/Nano-HA Composites

    NASA Astrophysics Data System (ADS)

    Li, Fan; Gao, Lilan; Gao, Hong; Cui, Yun

    2017-09-01

    Composites with different levels of hydroxyapatite (HA) content and ultra-high molecular weight polyethylene (UHMWPE) were prepared in this work. Mechanical properties of the composites were examined here, and to evaluate the effect of HA particles on the time-dependent behavior of the pure matrix, the creep and recovery performance of composites at various stress levels were also researched. As expected, the addition of HA influenced the time-dependent response of the UHMWPE and the effect had a strong dependence on the HA content. The creep and recovery strain of the composites significantly decreased with increasing HA content, and tensile properties were also impaired, which was due to the concentration of HA fillers. The mechanism and effect of HA dispersed into the UHMWPE matrix were examined by scanning electron microscopy. Additionally, since variations in the adjusted parameters revealed the impact of HA on the creep behavior of the UHMWPE matrix, Findley's model was employed. The results indicated that the analytical model was accurate for the prediction of creep of the pure matrix and its composites.

  2. Tissue-level Mechanical Properties of Bone Contributing to Fracture Risk

    PubMed Central

    Nyman, Jeffry S.; Granke, Mathilde; Singleton, Robert C.; Pharr, George M.

    2016-01-01

    Tissue-level mechanical properties characterize mechanical behavior independently of microscopic porosity. Specifically, quasi-static nanoindentation provides measurements of modulus (stiffness) and hardness (resistance to yielding) of tissue at the length scale of the lamella, while dynamic nanoindentation assesses time-dependent behavior in the form of storage modulus (stiffness), loss modulus (dampening), and loss factor (ratio of the two). While these properties are useful in establishing how a gene, signaling pathway, or disease of interest affects bone tissue, they generally do not vary with aging after skeletal maturation or with osteoporosis. Heterogeneity in tissue-level mechanical properties or in compositional properties may contribute to fracture risk, but a consensus on whether the contribution is negative or positive has not emerged. In vivo indentation of bone tissue is now possible, and the mechanical resistance to microindentation has the potential for improving fracture risk assessment, though determinants are currently unknown. PMID:27263108

  3. Tissue-Level Mechanical Properties of Bone Contributing to Fracture Risk.

    PubMed

    Nyman, Jeffry S; Granke, Mathilde; Singleton, Robert C; Pharr, George M

    2016-08-01

    Tissue-level mechanical properties characterize mechanical behavior independently of microscopic porosity. Specifically, quasi-static nanoindentation provides measurements of modulus (stiffness) and hardness (resistance to yielding) of tissue at the length scale of the lamella, while dynamic nanoindentation assesses time-dependent behavior in the form of storage modulus (stiffness), loss modulus (dampening), and loss factor (ratio of the two). While these properties are useful in establishing how a gene, signaling pathway, or disease of interest affects bone tissue, they generally do not vary with aging after skeletal maturation or with osteoporosis. Heterogeneity in tissue-level mechanical properties or in compositional properties may contribute to fracture risk, but a consensus on whether the contribution is negative or positive has not emerged. In vivo indentation of bone tissue is now possible, and the mechanical resistance to microindentation has the potential for improving fracture risk assessment, though determinants are currently unknown.

  4. The Pressure Dependence of Structural, Electronic, Mechanical, Vibrational, and Thermodynamic Properties of Palladium-Based Heusler Alloys

    NASA Astrophysics Data System (ADS)

    Çoban, Cansu

    2017-08-01

    The pressure dependent behaviour of the structural, electronic, mechanical, vibrational, and thermodynamic properties of Pd2TiX (X=Ga, In) Heusler alloys was investigated by ab initio calculations. The lattice constant, the bulk modulus and its first pressure derivative, the electronic band structure and the density of states (DOS), mechanical properties such as elastic constants, anisotropy factor, Young's modulus, etc., the phonon dispersion curves and phonon DOS, entropy, heat capacity, and free energy were obtained under pressure. It was determined that the calculated lattice parameters are in good agreement with the literature, the elastic constants obey the stability criterion, and the phonon dispersion curves have no negative frequency which shows that the compounds are stable. The band structures at 0, 50, and 70 GPa showed valence instability at the L point which explains the superconductivity in Pd2TiX (X=Ga, In).

  5. Effect of T6 heat treatment on the microstructural and mechanical properties of Al-Si-Cu-Mg alloys

    NASA Astrophysics Data System (ADS)

    Patel, Dhruv; Davda, Chintan; Solanki, P. S.; Keshvani, M. J.

    2016-05-01

    In this communication, it is aimed to optimize the conditions for T6 heat treatment of permanent die cast Al-Si-Cu-Mg alloys. Various solutionizing temperatures, aging treatments and soaking times were used to improve / modify the mechanical properties of presently studied alloys. Formation mechanism of the particles was understood by carrying out optical microscopy and energy dispersive X-ray (EDX) spectroscopy measurements. Spherical particles of alloys were studied for their microstructural properties using scanning electron microscopy (SEM). Microhardness test was performed to investigate their mechanical properties. Dependence of cluster formation and microhardness of the alloys on the adequate solutionizing temperature, aging treatment and soaking time has been discussed in detail.

  6. Bias Voltage-Dependent Impedance Spectroscopy Analysis of Hydrothermally Synthesized ZnS Nanoparticles

    NASA Astrophysics Data System (ADS)

    Dey, Arka; Dhar, Joydeep; Sil, Sayantan; Jana, Rajkumar; Ray, Partha Pratim

    2018-04-01

    In this report, bias voltage-dependent dielectric and electron transport properties of ZnS nanoparticles were discussed. ZnS nanoparticles were synthesized by introducing a modified hydrothermal process. The powder XRD pattern indicates the phase purity, and field emission scanning electron microscope image demonstrates the morphology of the synthesized sample. The optical band gap energy (E g = 4.2 eV) from UV measurement explores semiconductor behavior of the synthesized material. The electrical properties were performed at room temperature using complex impedance spectroscopy (CIS) technique as a function of frequency (40 Hz-10 MHz) under different forward dc bias voltages (0-1 V). The CIS analysis demonstrates the contribution of bulk resistance in conduction mechanism and its dependency on forward dc bias voltages. The imaginary part of the impedance versus frequency curve exhibits the existence of relaxation peak which shifts with increasing dc forward bias voltages. The dc bias voltage-dependent ac and dc conductivity of the synthesized ZnS was studied on thin film structure. A possible hopping mechanism for electrical transport processes in the system was investigated. Finally, it is worth to mention that this analysis of bias voltage-dependent dielectric and transport properties of as-synthesized ZnS showed excellent properties for emerging energy applications.

  7. Determining Tension-Compression Nonlinear Mechanical Properties of Articular Cartilage from Indentation Testing.

    PubMed

    Chen, Xingyu; Zhou, Yilu; Wang, Liyun; Santare, Michael H; Wan, Leo Q; Lu, X Lucas

    2016-04-01

    The indentation test is widely used to determine the in situ biomechanical properties of articular cartilage. The mechanical parameters estimated from the test depend on the constitutive model adopted to analyze the data. Similar to most connective tissues, the solid matrix of cartilage displays different mechanical properties under tension and compression, termed tension-compression nonlinearity (TCN). In this study, cartilage was modeled as a porous elastic material with either a conewise linear elastic matrix with cubic symmetry or a solid matrix reinforced by a continuous fiber distribution. Both models are commonly used to describe the TCN of cartilage. The roles of each mechanical property in determining the indentation response of cartilage were identified by finite element simulation. Under constant loading, the equilibrium deformation of cartilage is mainly dependent on the compressive modulus, while the initial transient creep behavior is largely regulated by the tensile stiffness. More importantly, altering the permeability does not change the shape of the indentation creep curves, but introduces a parallel shift along the horizontal direction on a logarithmic time scale. Based on these findings, a highly efficient curve-fitting algorithm was designed, which can uniquely determine the three major mechanical properties of cartilage (compressive modulus, tensile modulus, and permeability) from a single indentation test. The new technique was tested on adult bovine knee cartilage and compared with results from the classic biphasic linear elastic curve-fitting program.

  8. Comprehensive thermoelectric properties of n- and p-type 78a/o Si - 22a/o Ge alloy

    NASA Technical Reports Server (NTRS)

    Raag, V.

    1978-01-01

    The time and temperature dependence of the thermoelectric properties on n- and p-type 78 a/o Si - 22 a/o Ge alloy are presented in detail for the range of temperatures of zero to 1000 C and operating times up to twelve years. The mechanisms responsible for the time dependence of the properties are discussed and mathematical models used in the derivation of the property values from experimental data are presented. The thermoelectric properties for each polarity type of the alloy are presented as a function of temperature for various operating times.

  9. Electronic structure, mechanical and thermodynamic properties of BaPaO3 under pressure.

    PubMed

    Khandy, Shakeel Ahmad; Islam, Ishtihadah; Gupta, Dinesh C; Laref, Amel

    2018-05-07

    Density functional theory (DFT)-based investigations have been put forward on the elastic, mechanical, and thermo-dynamical properties of BaPaO 3 . The pressure dependence of electronic band structure and other physical properties has been carefully analyzed. The increase in Bulk modulus and decrease in lattice constant is seen on going from 0 to 30 GPa. The predicted lattice constants describe this material as anisotropic and ductile in nature at ambient conditions. Post-DFT calculations using quasi-harmonic Debye model are employed to envisage the pressure-dependent thermodynamic properties like Debye temperature, specific heat capacity, Grüneisen parameter, thermal expansion, etc. Also, the computed Debye temperature and melting temperature of BaPaO 3 at 0 K are 523 K and 1764.75 K, respectively.

  10. The in vivo plantar soft tissue mechanical property under the metatarsal head: implications of tissues׳ joint-angle dependent response in foot finite element modeling.

    PubMed

    Chen, Wen-Ming; Lee, Sung-Jae; Lee, Peter Vee Sin

    2014-12-01

    Material properties of the plantar soft tissue have not been well quantified in vivo (i.e., from life subjects) nor for areas other than the heel pad. This study explored an in vivo investigation of the plantar soft tissue material behavior under the metatarsal head (MTH). We used a novel device collecting indentation data at controlled metatarsophalangeal joint angles. Combined with inverse analysis, tissues׳ joint-angle dependent material properties were identified. The results showed that the soft tissue under MTH exhibited joint-angle dependent material responses, and the computed parameters using the Ogden material model were 51.3% and 30.9% larger in the dorsiflexed than in the neutral positions, respectively. Using derived parameters in subject-specific foot finite element models revealed only those models that used tissues׳ joint-dependent responses could reproduce the known plantar pressure pattern under the MTH. It is suggested that, to further improve specificity of the personalized foot finite element models, quantitative mechanical properties of the tissue inclusive of the effects of metatarsophalangeal joint dorsiflexion are needed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Comparison of mechanical characteristics of focused ion beam fabricated silicon nanowires

    NASA Astrophysics Data System (ADS)

    Ina, Ginnosuke; Fujii, Tatsuya; Kozeki, Takahiro; Miura, Eri; Inoue, Shozo; Namazu, Takahiro

    2017-06-01

    In this study, we investigate the effects of focused ion beam (FIB)-induced damage and specimen size on the mechanical properties of Si nanowires (NWs) by a microelectromechanical system (MEMS)-based tensile testing technique. By an FIB fabrication technique, three types of Si NWs, which are as-FIB-fabricated, annealed, and FIB-implanted NWs, are prepared. A sacrificial-oxidized NW is also prepared to compare the mechanical properties of these FIB-based NWs. The quasi-static uniaxial tensile tests of all the NWs are conducted by scanning electron microscopy (SEM). The fabrication process and specimen size dependences on Young’s modulus and fracture strength are observed. Annealing is effective for improving the Young’s modulus of the FIB-damaged Si. Transmission electron microscopy (TEM) suggests that the mechanism behind the process dependence on the mechanical characteristics is related to the crystallinity of the FIB-damaged portion.

  12. Anatomic variation of depth-dependent mechanical properties in neonatal bovine articular cartilage.

    PubMed

    Silverberg, Jesse L; Dillavou, Sam; Bonassar, Lawrence; Cohen, Itai

    2013-05-01

    Articular cartilage has well known depth-dependent structure and has recently been shown to have similarly non-uniform depth-dependent mechanical properties. Here, we study anatomic variation of the depth-dependent shear modulus and energy dissipation rate in neonatal bovine knees. The regions we specifically focus on are the patellofemoral groove, trochlea, femoral condyle, and tibial plateau. In every sample, we find a highly compliant region within the first 500 µm of tissue measured from the articular surface, where the local shear modulus is reduced by up to two orders of magnitude. Comparing measurements taken from different anatomic sites, we find statistically significant differences localized within the first 50 µm. Histological images reveal these anatomic variations are associated with differences in collagen density and fiber organization. Copyright © 2012 Orthopaedic Research Society.

  13. Cyclic fatigue of a high-strength corrosion-resistant sheet TRIP steel

    NASA Astrophysics Data System (ADS)

    Terent'ev, V. F.; Alekseeva, L. E.; Korableva, S. A.; Prosvirnin, D. V.; Pankova, M. N.; Filippov, G. A.

    2014-04-01

    The mechanical properties of 0.3- and 0.8-mm-thick high-strength corrosion-resistant TRIP steel having various levels of strength properties are studied during static and cyclic loading in the high-cycle fatigue range. The fatigue fracture surface is analyzed by fractography, and the obtained results demonstrate ductile and quasi-brittle fracture mechanisms of this steel depending on the strength properties of the steel and the content of deformation martensite in it.

  14. Data on synthesis and thermo-mechanical properties of stimuli-responsive rubber materials bearing pendant anthracene groups.

    PubMed

    Manhart, Jakob; Ayalur-Karunakaran, Santhosh; Radl, Simone; Oesterreicher, Andreas; Moser, Andreas; Ganser, Christian; Teichert, Christian; Pinter, Gerald; Kern, Wolfgang; Griesser, Thomas; Schlögl, Sandra

    2016-12-01

    The photo-reversible [4πs+4πs] cycloaddition reaction of pendant anthracene moieties represents a convenient strategy to impart wavelength dependent properties into hydrogenated carboxylated nitrile butadiene rubber (HXNBR) networks. The present article provides the 1 H NMR data on the reaction kinetics of the side chain functionalization of HXNBR. 2-(Anthracene-9-yl)oxirane with reactive epoxy groups is covalently attached to the polymer side chain of HXNBR via ring opening reaction between the epoxy and the carboxylic groups. Along with the identification, 1 H NMR data on the quantification of the attached functional groups are shown in dependence on reaction time and concentration of 2-(anthracene-9-yl)oxirane. Changes in the modification yield are reflected in the mechanical properties and DMA data of photo-responsive elastomers are illustrated in dependence on the number of attached anthracene groups. DMA curves over repeated cycles of UV induced crosslinking ( λ >300 nm) and UV induced cleavage ( λ =254 nm) are further depicted, demonstrating the photo-reversibility of the thermo-mechanical properties. Interpretation and discussion of the data are provided in "Design and application of photo-reversible elastomer networks by using the [4πs+4πs] cycloaddition reaction of pendant anthracene groups" (Manhart et al., 2016) [1].

  15. Mechanical and electronic properties of Janus monolayer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Shi, Wenwu; Wang, Zhiguo

    2018-05-01

    The mechanical and electronic properties of Janus monolayer transition metal dichalcogenides MXY (M  =  Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W; X/Y  =  S, Se, Te) were investigated using density functional theory. Results show that breaking the out-of-plane structural symmetry can be used to tune the electronic and mechanical behavior of monolayer transition metal dichalcogenides. The band gaps of monolayer WXY and MoXY are in the ranges of 0.16–1.91 and 0.94–1.69 eV, respectively. A semiconductor to metallic phase transition occurred in Janus monolayer MXY (M  =  Ti, Zr and Hf). The monolayers MXY (M  =  V, Nb, Ta and Cr) show metallic characteristics, which show no dependence on the structural symmetry breaking. The mechanical properties of MXY depended on the composition. Monolayer MXY (M  =  Mo, Ti, Zr, Hf and W) showed brittle characteristic, whereas monolayer CrXY and VXY are with ductile characteristic. The in-plane stiffness of pristine and Janus monolayer MXY are in the range between 22 and 158 N m‑1. The tunable electronic and mechanical properties of these 2D materials would advance the development of ultra-sensitive detectors, nanogenerators, low-power electronics, and energy harvesting and electromechanical systems.

  16. Relation of structure to mechanical properties of thin thoria dispersion strengthened nickel-chromium (TD-NiCr alloy sheet

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1975-01-01

    A study of the relation between structure and mechanical properties of thin TD-NiCr sheet indicated that the elevated temperature tensile, stress-rupture, and creep strength properties depend primarily on the grain aspect ratio and sheet thickness. In general, the strength properties increased with increasing grain aspect ratio and sheet thickness. Tensile testing revealed an absence of ductility at elevated temperatures. A threshold stress for creep appears to exist. Even small amounts of prior creep deformation at elevated temperatures can produce severe creep damage.

  17. Size-dependent Young’s modulus in ZnO nanowires with strong surface atomic bonds

    NASA Astrophysics Data System (ADS)

    Fan, Shiwen; Bi, Sheng; Li, Qikun; Guo, Qinglei; Liu, Junshan; Ouyang, Zhongliang; Jiang, Chengming; Song, Jinhui

    2018-03-01

    The mechanical properties of size-dependent nanowires are important in nano-electro-mechanical systems (NEMSs), and have attracted much research interest. Characterization of the size effect of nanowires in atmosphere directly to broaden their practical application instead of just in high vacuum situations, as reported previously, is desperately needed. In this study, we systematically studied the Young’s modulus of vertical ZnO nanowires in atmosphere. The diameters ranged from 48 nm to 239 nm with a resonance method using non-contact atomic force microscopy. The values of Young’s modulus in atmosphere present extremely strong increasing tendency with decreasing diameter of nanowire due to stronger surface atomic bonds compared with that in vacuum. A core-shell model for nanowires is proposed to explore the Young’s modulus enhancement in atmosphere, which is correlated with atoms of oxygen occurring near the nanowire surface. The modified model is more accurate for analyzing the mechanical behavior of nanowires in atmosphere compared with the model in vacuum. Furthermore, it is possible to use this characterization method to measure the size-related elastic properties of similar wire-sharp nanomaterials in atmosphere and estimate the corresponding mechanical behavior. The study of the size-dependent Young’s modulus in ZnO nanowires in atmosphere will improve the understanding of the mechanical properties of nanomaterials as well as providing guidance for applications in NEMSs, nanogenerators, biosensors and other related areas.

  18. Characteristics of aluminum alloy microplastic deformation in different structural states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seregin, G.V.; Efimenko, L.L.; Leonov, M.V.

    The solution to the problem of improving the mechanical properties (including cyclic strength) of structural materials is largely dependent on our knowledge of the laws governing the development of microplastic deformations in them. The effect of heat and mechanical treatment on the elastoplastic properties and fatigue resistance of the commercial aluminum alloys AK4-1 and D16 is analyzed.

  19. Microscale Mechanics of Actin Networks During Dynamic Assembly and Dissociation

    NASA Astrophysics Data System (ADS)

    Gurmessa, Bekele; Robertson-Anderson, Rae; Ross, Jennifer; Nguyen, Dan; Saleh, Omar

    Actin is one of the key components of the cytoskeleton, enabling cells to move and divide while maintaining shape by dynamic polymerization, dissociation and crosslinking. Actin polymerization and network formation is driven by ATP hydrolysis and varies depending on the concentrations of actin monomers and crosslinking proteins. The viscoelastic properties of steady-state actin networks have been well-characterized, yet the mechanical properties of these non-equilibrium systems during dynamic assembly and disassembly remain to be understood. We use semipermeable microfluidic devices to induce in situ dissolution and re-polymerization of entangled and crosslinked actin networks, by varying ATP concentrations in real-time, while measuring the mechanical properties during disassembly and re-assembly. We use optical tweezers to sinusoidally oscillate embedded microspheres and measure the resulting force at set time-intervals and in different regions of the network during cyclic assembly/disassembly. We determine the time-dependent viscoelastic properties of non-equilibrium network intermediates and the reproducibility and homogeneity of network formation and dissolution. Results inform the role that cytoskeleton reorganization plays in the dynamic multifunctional mechanics of cells. NSF CAREER Award (DMR-1255446) and a Scialog Collaborative Innovation Award funded by Research Corporation for Scientific Advancement (Grant No. 24192).

  20. Nonlinear mechanics of thermoreversibly associating dendrimer glasses

    NASA Astrophysics Data System (ADS)

    Srikanth, Arvind; Hoy, Robert S.; Rinderspacher, Berend C.; Andzelm, Jan W.

    2013-10-01

    We model the mechanics of associating trivalent dendrimer network glasses with a focus on their energy dissipation properties. Various combinations of sticky bond (SB) strength and kinetics are employed. The toughness (work to fracture) of these systems displays a surprising deformation-protocol dependence; different association parameters optimize different properties. In particular, “strong, slow” SBs optimize strength, while “weak, fast” SBs optimize ductility via self-healing during deformation. We relate these observations to breaking, reformation, and partner switching of SBs during deformation. These studies point the way to creating associating-polymer network glasses with tailorable mechanical properties.

  1. Electron beam irradiation effects on ethylene-tetrafluoroethylene copolymer films

    NASA Astrophysics Data System (ADS)

    Nasef, Mohamed Mahmoud; Saidi, Hamdani; Dahlan, Khairul Zaman M.

    2003-12-01

    The effects of electron beam irradiation on ethylene-tetrafluoroethylene copolymer (ETFE) films were studied. Samples were irradiated in air at room temperature by a universal electron beam accelerator for doses ranging from 100 to 1200 kGy. Irradiated samples were investigated with respect to their chemical structure, thermal characteristics, crystallinity and mechanical properties using FTIR, differential scanning calorimeter (DSC) and universal mechanical tester. The interaction of electron irradiation with ETFE films was found to induce dose-dependent changes in all the investigated properties. A mechanism for electron-induced reactions is proposed to explain the structure-property behaviour of irradiated ETFE films.

  2. Size Dependent Mechanical Properties of Monolayer Densely Arranged Polystyrene Nanospheres.

    PubMed

    Huang, Peng; Zhang, Lijing; Yan, Qingfeng; Guo, Dan; Xie, Guoxin

    2016-12-13

    In contrast to macroscopic materials, the mechanical properties of polymer nanospheres show fascinating scientific and application values. However, the experimental measurements of individual nanospheres and quantitative analysis of theoretical mechanisms remain less well performed and understood. We provide a highly efficient and accurate method with monolayer densely arranged honeycomb polystyrene (PS) nanospheres for the quantitatively mechanical characterization of individual nanospheres on the basis of atomic force microscopy (AFM) nanoindentation. The efficiency is improved by 1-2 orders, and the accuracy is also enhanced almost by half-order. The elastic modulus measured in the experiments increases with decreasing radius to the smallest nanospheres (25-35 nm in radius). A core-shell model is introduced to predict the size dependent elasticity of PS nanospheres, and the theoretical prediction agrees reasonably well with the experimental results and also shows a peak modulus value.

  3. Multiscale regression modeling in mouse supraspinatus tendons reveals that dynamic processes act as mediators in structure-function relationships.

    PubMed

    Connizzo, Brianne K; Adams, Sheila M; Adams, Thomas H; Jawad, Abbas F; Birk, David E; Soslowsky, Louis J

    2016-06-14

    Recent advances in technology have allowed for the measurement of dynamic processes (re-alignment, crimp, deformation, sliding), but only a limited number of studies have investigated their relationship with mechanical properties. The overall objective of this study was to investigate the role of composition, structure, and the dynamic response to load in predicting tendon mechanical properties in a multi-level fashion mimicking native hierarchical collagen structure. Multiple linear regression models were investigated to determine the relationships between composition/structure, dynamic processes, and mechanical properties. Mediation was then used to determine if dynamic processes mediated structure-function relationships. Dynamic processes were strong predictors of mechanical properties. These predictions were location-dependent, with the insertion site utilizing all four dynamic responses and the midsubstance responding primarily with fibril deformation and sliding. In addition, dynamic processes were moderately predicted by composition and structure in a regionally-dependent manner. Finally, dynamic processes were partial mediators of the relationship between composition/structure and mechanical function, and results suggested that mediation is likely shared between multiple dynamic processes. In conclusion, the mechanical properties at the midsubstance of the tendon are controlled primarily by fibril structure and this region responds to load via fibril deformation and sliding. Conversely, the mechanical function at the insertion site is controlled by many other important parameters and the region responds to load via all four dynamic mechanisms. Overall, this study presents a strong foundation on which to design future experimental and modeling efforts in order to fully understand the complex structure-function relationships present in tendon. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Thermal and Mechanical Property Characterization of the Advanced Disk Alloy LSHR

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Gayda, John; Telesman, Jack; Kantzos, Peter T.

    2005-01-01

    A low solvus, high refractory (LSHR) powder metallurgy disk alloy was recently designed using experimental screening and statistical modeling of composition and processing variables on sub-scale disks to have versatile processing-property capabilities for advanced disk applications. The objective of the present study was to produce a scaled-up disk and apply varied heat treat processes to enable full-scale demonstration of LSHR properties. Scaled-up disks were produced, heat treated, sectioned, and then machined into specimens for mechanical testing. Results indicate the LSHR alloy can be processed to produce fine and coarse grain microstructures with differing combinations of strength and time-dependent mechanical properties, for application at temperatures exceeding 1300 F.

  5. Size dependent elastic modulus and mechanical resilience of dental enamel.

    PubMed

    O'Brien, Simona; Shaw, Jeremy; Zhao, Xiaoli; Abbott, Paul V; Munroe, Paul; Xu, Jiang; Habibi, Daryoush; Xie, Zonghan

    2014-03-21

    Human tooth enamel exhibits a unique microstructure able to sustain repeated mechanical loading during dental function. Although notable advances have been made towards understanding the mechanical characteristics of enamel, challenges remain in the testing and interpretation of its mechanical properties. For example, enamel was often tested under dry conditions, significantly different from its native environment. In addition, constant load, rather than indentation depth, has been used when mapping the mechanical properties of enamel. In this work, tooth specimens are prepared under hydrated conditions and their stiffnesses are measured by depth control across the thickness of enamel. Crystal arrangement is postulated, among other factors, to be responsible for the size dependent indentation modulus of enamel. Supported by a simple structure model, effective crystal orientation angle is calculated and found to facilitate shear sliding in enamel under mechanical contact. In doing so, the stress build-up is eased and structural integrity is maintained. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Diagnosis and Threat Detection Capabilities of the SERENITY Monitoring Framework

    NASA Astrophysics Data System (ADS)

    Tsigkritis, Theocharis; Spanoudakis, George; Kloukinas, Christos; Lorenzoli, Davide

    The SERENITY monitoring framework offers mechanisms for diagnosing the causes of violations of security and dependability (S&D) properties and detecting potential violations of such properties, called "Cthreats". Diagnostic information and threat detection are often necessary for deciding what an appropriate reaction to a violation is and taking pre-emptive actions against predicted violations, respectively. In this chapter, we describe the mechanisms of the SERENITY monitoring framework which generate diagnostic information for violations of S&D properties and detecting threats.

  7. Effect of specimen size and grain orientation on the mechanical and physical properties of NBG-18 nuclear graphite

    DOE PAGES

    Vasudevamurthy, G.; Byun, T. S.; Pappano, Pete; ...

    2015-03-13

    Here we present a comparison of the measured baseline mechanical and physical properties of with grain (WG) and against grain (AG) non-ASTM size NBG-18 graphite. The objectives of the experiments were twofold: (1) assess the variation in properties with grain orientation; (2) establish a correlation between specimen tensile strength and size. The tensile strength of the smallest sized (4 mm diameter) specimens were about 5% higher than the standard specimens (12 mm diameter) but still within one standard deviation of the ASTM specimen size indicating no significant dependence of strength on specimen size. The thermal expansion coefficient and elastic constantsmore » did not show significant dependence on specimen size. Lastly, experimental data indicated that the variation of thermal expansion coefficient and elastic constants were still within 5% between the different grain orientations, confirming the isotropic nature of NBG-18 graphite in physical properties.« less

  8. Stretchable nanocomposite electrodes with tunable mechanical properties by supersonic cluster beam implantation in elastomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borghi, F.; Podestà, A.; Milani, P., E-mail: pmilani@mi.infn.it

    We demonstrate the fabrication of gold-polydimethylsiloxane nanocomposite electrodes, by supersonic cluster beam implantation, with tunable Young's modulus depending solely on the amount of metal clusters implanted in the elastomeric matrix. We show both experimentally and by atomistic simulations that the mechanical properties of the nanocomposite can be maintained close to that of the bare elastomer for significant metal volume concentrations. Moreover, the elastic properties of the nanocomposite, as experimentally characterized by nanoindentation and modeled with molecular dynamics simulations, are also well described by the Guth-Gold classical model for nanoparticle-filled rubbers, which depends on the presence, concentration, and aspect ratio ofmore » metal nanoparticles, and not on the physical and chemical modification of the polymeric matrix due to the embedding process. The elastic properties of the nanocomposite can therefore be determined and engineered a priori, by controlling only the nanoparticle concentration.« less

  9. Enhanced nutrient transport improves the depth-dependent properties of tri-layered engineered cartilage constructs with zonal co-culture of chondrocytes and MSCs.

    PubMed

    Kim, Minwook; Farrell, Megan J; Steinberg, David R; Burdick, Jason A; Mauck, Robert L

    2017-08-01

    Biomimetic design in cartilage tissue engineering is a challenge given the complexity of the native tissue. While numerous studies have generated constructs with near-native bulk properties, recapitulating the depth-dependent features of native tissue remains a challenge. Furthermore, limitations in nutrient transport and matrix accumulation in engineered constructs hinders maturation within the central core of large constructs. To overcome these limitations, we fabricated tri-layered constructs that recapitulate the depth-dependent cellular organization and functional properties of native tissue using zonally derived chondrocytes co-cultured with MSCs. We also introduced porous hollow fibers (HFs) and HFs/cotton threads to enhance nutrient transport. Our results showed that tri-layered constructs with depth-dependent organization and properties could be fabricated. The addition of HFs or HFs/threads improved matrix accumulation in the central core region. With HF/threads, the local modulus in the deep region of tri-layered constructs nearly matched that of native tissue, though the properties in the central regions remained lower. These constructs reproduced the zonal organization and depth-dependent properties of native tissue, and demonstrate that a layer-by-layer fabrication scheme holds promise for the biomimetic repair of focal cartilage defects. Articular cartilage is a highly organized tissue driven by zonal heterogeneity of cells, extracellular matrix proteins and fibril orientations, resulting in depth-dependent mechanical properties. Therefore, the recapitulation of the functional properties of native cartilage in a tissue engineered construct requires such a biomimetic design of the morphological organization, and this has remained a challenge in cartilage tissue engineering. This study demonstrates that a layer-by-layer fabrication scheme, including co-cultures of zone-specific articular CHs and MSCs, can reproduce the depth-dependent characteristics and mechanical properties of native cartilage while minimizing the need for large numbers of chondrocytes. In addition, introduction of a porous hollow fiber (combined with a cotton thread) enhanced nutrient transport and depth-dependent properties of the tri-layered construct. Such a tri-layered construct may provide critical advantages for focal cartilage repair. These constructs hold promise for restoring native tissue structure and function, and may be beneficial in terms of zone-to-zone integration with adjacent host tissue and providing more appropriate strain transfer after implantation. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation.

    PubMed

    Yamakov, V; Wolf, D; Phillpot, S R; Mukherjee, A K; Gleiter, H

    2004-01-01

    Molecular-dynamics simulations have recently been used to elucidate the transition with decreasing grain size from a dislocation-based to a grain-boundary-based deformation mechanism in nanocrystalline f.c.c. metals. This transition in the deformation mechanism results in a maximum yield strength at a grain size (the 'strongest size') that depends strongly on the stacking-fault energy, the elastic properties of the metal, and the magnitude of the applied stress. Here, by exploring the role of the stacking-fault energy in this crossover, we elucidate how the size of the extended dislocations nucleated from the grain boundaries affects the mechanical behaviour. Building on the fundamental physics of deformation as exposed by these simulations, we propose a two-dimensional stress-grain size deformation-mechanism map for the mechanical behaviour of nanocrystalline f.c.c. metals at low temperature. The map captures this transition in both the deformation mechanism and the related mechanical behaviour with decreasing grain size, as well as its dependence on the stacking-fault energy, the elastic properties of the material, and the applied stress level.

  11. Effect of Solar Radiation on Viscoelastic Properties of Bovine Leather: Temperature and Frequency Scans

    NASA Astrophysics Data System (ADS)

    Nalyanya, Kallen Mulilo; Rop, Ronald K.; Onyuka, Arthur S.

    2017-04-01

    This work presents both analytical and experimental results of the effect of unfiltered natural solar radiation on the thermal and dynamic mechanical properties of Boran bovine leather at both pickling and tanning stages of preparation. Samples cut from both pickled and tanned pieces of leather of appropriate dimensions were exposed to unfiltered natural solar radiation for time intervals ranging from 0 h (non-irradiated) to 24 h. The temperature of the dynamic mechanical analyzer was equilibrated at 30°C and increased to 240°C at a heating rate of 5°C \\cdot Min^{-1}, while its oscillation frequency varied from 0.1 Hz to 100 Hz. With the help of thermal analysis (TA) control software which analyzes and generates parameter means/averages at temperature/frequency range, the graphs were created by Microsoft Excel 2013 from the means. The viscoelastic properties showed linear frequency dependence within 0.1 Hz to 30 Hz followed by negligible frequency dependence above 30 Hz. Storage modulus (E') and shear stress (σ ) increased with frequency, while loss modulus (E''), complex viscosity (η ^{*}) and dynamic shear viscosity (η) decreased linearly with frequency. The effect of solar radiation was evident as the properties increased initially from 0 h to 6 h of irradiation followed by a steady decline to a minimum at 18 h before a drastic increase to a maximum at 24 h. Hence, tanning industry can consider the time duration of 24 h for sun-drying of leather to enhance the mechanical properties and hence the quality of the leather. At frequencies higher than 30 Hz, the dynamic mechanical properties are independent of the frequency. The frequency of 30 Hz was observed to be a critical value in the behavior in the mechanical properties of bovine hide.

  12. Anisotropic mechanical properties of zircon and the effect of radiation damage

    NASA Astrophysics Data System (ADS)

    Beirau, Tobias; Nix, William D.; Bismayer, Ulrich; Boatner, Lynn A.; Isaacson, Scott G.; Ewing, Rodney C.

    2016-10-01

    This study provides new insights into the relationship between radiation-dose-dependent structural damage due to natural U and Th impurities and the anisotropic mechanical properties (Poisson's ratio, elastic modulus and hardness) of zircon. Natural zircon samples from Sri Lanka (see Muarakami et al. in Am Mineral 76:1510-1532, 1991) and synthetic samples, covering a dose range of zero up to 6.8 × 1018 α-decays/g, have been studied by nanoindentation. Measurements along the [100] crystallographic direction and calculations, based on elastic stiffness constants determined by Özkan (J Appl Phys 47:4772-4779, 1976), revealed a general radiation-induced decrease in stiffness (~54 %) and hardness (~48 %) and an increase in the Poisson's ratio (~54 %) with increasing dose. Additional indentations on selected samples along the [001] allowed one to follow the amorphization process to the point that the mechanical properties are isotropic. This work shows that the radiation-dose-dependent changes of the mechanical properties of zircon can be directly correlated with the amorphous fraction as determined by previous investigations with local and global probes (Ríos et al. in J Phys Condens Matter 12:2401-2412, 2000a; Farnan and Salje in J Appl Phys 89:2084-2090, 2001; Zhang and Salje in J Phys Condens Matter 13:3057-3071, 2001). The excellent agreement, revealed by the different methods, indicates a large influence of structural and even local phenomena on the macroscopic mechanical properties. Therefore, this study indicates the importance of acquiring better knowledge about the mechanical long-term stability of radiation-damaged materials.

  13. Shear localization and size-dependent strength of YCd 6 quasicrystal approximant at the micrometer length scale

    DOE PAGES

    Song, Gyuho; Kong, Tai; Dusoe, Keith J.; ...

    2018-01-24

    Mechanical properties of materials are strongly dependent of their atomic arrangement as well as the sample dimension, particularly at the micrometer length scale. Here in this study, we investigated the small-scale mechanical properties of single-crystalline YCd 6, which is a rational approximant of the icosahedral Y-Cd quasicrystal. In situ microcompression tests revealed that shear localization always occurs on {101} planes, but the shear direction is not constrained to any particular crystallographic directions. Furthermore, the yield strengths show the size dependence with a power law exponent of 0.4. Shear localization on {101} planes and size-dependent yield strength are explained in termsmore » of a large interplanar spacing between {101} planes and the energetics of shear localization process, respectively. The mechanical behavior of the icosahedral Y-Cd quasicrystal is also compared to understand the influence of translational symmetry on the shear localization process in both YCd 6 and Y-Cd quasicrystal micropillars. Finally, the results of this study will provide an important insight in a fundamental understanding of shear localization process in novel complex intermetallic compounds.« less

  14. Shear localization and size-dependent strength of YCd 6 quasicrystal approximant at the micrometer length scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Gyuho; Kong, Tai; Dusoe, Keith J.

    Mechanical properties of materials are strongly dependent of their atomic arrangement as well as the sample dimension, particularly at the micrometer length scale. Here in this study, we investigated the small-scale mechanical properties of single-crystalline YCd 6, which is a rational approximant of the icosahedral Y-Cd quasicrystal. In situ microcompression tests revealed that shear localization always occurs on {101} planes, but the shear direction is not constrained to any particular crystallographic directions. Furthermore, the yield strengths show the size dependence with a power law exponent of 0.4. Shear localization on {101} planes and size-dependent yield strength are explained in termsmore » of a large interplanar spacing between {101} planes and the energetics of shear localization process, respectively. The mechanical behavior of the icosahedral Y-Cd quasicrystal is also compared to understand the influence of translational symmetry on the shear localization process in both YCd 6 and Y-Cd quasicrystal micropillars. Finally, the results of this study will provide an important insight in a fundamental understanding of shear localization process in novel complex intermetallic compounds.« less

  15. Interface failure modes explain non-monotonic size-dependent mechanical properties in bioinspired nanolaminates.

    PubMed

    Song, Z Q; Ni, Y; Peng, L M; Liang, H Y; He, L H

    2016-03-31

    Bioinspired discontinuous nanolaminate design becomes an efficient way to mitigate the strength-ductility tradeoff in brittle materials via arresting the crack at the interface followed by controllable interface failure. The analytical solution and numerical simulation based on the nonlinear shear-lag model indicates that propagation of the interface failure can be unstable or stable when the interfacial shear stress between laminae is uniform or highly localized, respectively. A dimensionless key parameter defined by the ratio of two characteristic lengths governs the transition between the two interface-failure modes, which can explain the non-monotonic size-dependent mechanical properties observed in various laminate composites.

  16. Temperature Dependent Electrical and Micromechanical Properties of Lanthanum Titanate with Additions of Yttria

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.

    2003-01-01

    Lanthanum titanate (La2Ti2O7) a layered distorted perovskite (1) with space group Pna2(sub 1) has been shown to have potential as a high temperature piezoelectric (2). However this highly refractory oxide compound must be consolidated at relatively high temperatures approximately 1400 C. Commercial La2Ti207 powders were mechanically alloyed with additions of Y2O3 to lower the consolidation temperature by 300 C and to provide post processing mechanical stability. Temperature dependent electrical, elastic and anelastic behavior were selected as nondestructive means of evaluating the effects of yttria on the properties of this ferroceramic material.

  17. Temperature-dependent mechanical behavior of silicon dioxide, gold and gold-vanadium thin films for VLSI integrated circuits and MicroElectroMechanical systems (MEMs)

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Tzer

    The Semiconductor Industry has grown rapidly in the last twenty years. The national technology roadmap for semiconductors plans for developing the complexity and packing density of semiconductor devices into the next decade, allowing ever smaller and more densely packed structures to be fabricated. Recently, MEMS (Micro-Electro-Mechanical Systems) have become important in modern technology. The goal of MEMs is to integrate many types of miniature devices on a single chip, creating a new micro-world. The oxidation of silicon is one of the most important processes in semiconductor technology. Producing high-quality IC's and MEMS devices requires an understanding of the basic oxidation mechanism. In addition, for the reliability of IC's and MEMS devices, the mechanical properties of the oxide play a critical role. There has been an apparent convergence of opinion on the relevant mechanism leading to the "standard computational model" for stress effects on silicon oxidation. This model has recently become suspect. Most of the reasonably direct experimental data on the flow properties of SiO 2 thin film do not support a stress-dependent viscosity of the sort envisioned by the model. Gold and gold vanadium alloys are used in electrical interconnections and in radio frequency switch contacts for the semiconductor industry, MEMs sensors for the aerospace industry and also in brain probes by the bioelectronics mechanical industry. Despite the strong potential usage of gold and gold vanadium thin films at the small scale, very little is known about their mechanical properties. Our goal was to experimentally investigate stress and its influence on SiO2 thin films and the mechanical properties of gold and gold vanadium thin films at room temperature and at elevated temperature of different vanadium concentration. We found that the application of relatively small amounts of bending to an oxidizing silicon substrate leads to significant decreases in oxide thickness in the ultrathin oxide regime. Both tensile and compressive bending retard oxide growth, although compressive bending results in somewhat thinner oxides than does tensile bending. We also determined the modulus of gold and gold vanadium, and discovered that there is some evidence for a vanadium concentration dependence of the mechanical properties.

  18. Role of segregation and precipitates on interfacial strengthening mechanisms in metal matrix composites when subjected to thermo-mechanical processing

    NASA Astrophysics Data System (ADS)

    Myriounis, Dimitrios

    Metal Matrix ceramic-reinforced composites are rapidly becoming strong candidates as structural materials for many high temperatures and aerospace applications. Metal matrix composites combine the ductile properties of the matrix with a brittle phase of the reinforcement, leading to high stiffness and strength with a reduction in structural weight. The main objective of using a metal matrix composite system is to increase service temperature or improve specific mechanical properties of structural components by replacing existing superalloys.The satisfactory performance of metal matrix composites depends critically on their integrity, the heart of which is the quality of the matrix-reinforcement interface. The nature of the interface depends on the processing of the metal matrix composite component. At the micro-level the development of local stress concentration gradients around the ceramic reinforcement, as the metal matrix attempts to deform during processing, can be very different to the nominal conditions and play a crucial role in important microstructural events such as segregation and precipitation at the matrix-reinforcement interface. These events dominate the cohesive strength and subsequent mechanical properties of the interface.At present the relationship between the strength properties of metal matrix composites and the details of the thermo-mechanical forming processes is not well understood.The purpose of the study is to investigate several strengthening mechanisms and the effect of thermo-mechanical processing of SiCp reinforced A359 aluminium alloy composites on the particle-matrix interface and the overall mechanical properties of the material. From experiments performed on composite materials subjected to various thermo-mechanical conditions and by observation using SEM microanalysis and mechanical testing, data were obtained, summarised and mathematically/statistically analysed upon their significance.The Al/SiCp composites studied, processed in specific thermo-mechanical conditions in order to attain higher values of interfacial fracture strength, due to precipitation hardening and segregation mechanisms, also exhibited enhanced bulk mechanical and fracture resistant properties.An analytical model to predict the interfacial fracture strength in the presence of material segregation was also developed during this research effort. Its validity was determined based on the data gathered from the experiments.The tailoring of the properties due to the microstructural modification of the composites was examined in relation to the experimental measurements obtained, which define the macroscopical behaviour of the material.

  19. Study of the effect of gamma irradiation on a commercial polycyclooctene I. Thermal and mechanical properties

    NASA Astrophysics Data System (ADS)

    García-Huete, N.; Laza, J. M.; Cuevas, J. M.; Vilas, J. L.; Bilbao, E.; León, L. M.

    2014-09-01

    A gamma radiation process for modification of commercial polymers is a widely applied technique to promote new physical, chemical and mechanical properties. Gamma irradiation originates free radicals able to induce chain scission or recombination of radicals, which induces annihilation, branching or crosslinking processes. The aim of this work is to research the structural, thermal and mechanical changes induced on a commercial polycyclooctene (PCO) when it is irradiated with a gamma source of 60Co at different doses (25-200 kGy). After gamma irradiation, gel content was determined by Soxhlet extraction in cyclohexane. Furthermore, thermal properties were evaluated before and after Soxhlet extraction by means of Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC), as well as mechanical properties were measured by Dynamic Mechanical Thermal Analysis (DMTA). The results showed the variations of the properties depending on the irradiation dose. Finally, a first approach to evaluate qualitatively the shape memory behaviour of all irradiated PCO samples was performed by a visually monitoring shape recovery process.

  20. Biomechanics and Mechanobiology of Trabecular Bone: A Review

    PubMed Central

    Oftadeh, Ramin; Perez-Viloria, Miguel; Villa-Camacho, Juan C.; Vaziri, Ashkan; Nazarian, Ara

    2015-01-01

    Trabecular bone is a highly porous, heterogeneous, and anisotropic material which can be found at the epiphyses of long bones and in the vertebral bodies. Studying the mechanical properties of trabecular bone is important, since trabecular bone is the main load bearing bone in vertebral bodies and also transfers the load from joints to the compact bone of the cortex of long bones. This review article highlights the high dependency of the mechanical properties of trabecular bone on species, age, anatomic site, loading direction, and size of the sample under consideration. In recent years, high resolution micro finite element methods have been extensively used to specifically address the mechanical properties of the trabecular bone and provide unique tools to interpret and model the mechanical testing experiments. The aims of the current work are to first review the mechanobiology of trabecular bone and then present classical and new approaches for modeling and analyzing the trabecular bone microstructure and macrostructure and corresponding mechanical properties such as elastic properties and strength. PMID:25412137

  1. Density-functional tight-binding investigation of the structure, stability and material properties of nickel hydroxide nanotubes

    NASA Astrophysics Data System (ADS)

    Jahangiri, Soran; Mosey, Nicholas J.

    2018-01-01

    Nickel hydroxide is a material composed of two-dimensional layers that can be rolled up to form cylindrical nanotubes belonging to a class of inorganic metal hydroxide nanotubes that are candidates for applications in catalysis, energy storage, and microelectronics. The stabilities and other properties of this class of inorganic nanotubes have not yet been investigated in detail. The present study uses self-consistent-charge density-functional tight-binding calculations to examine the stabilities, mechanical properties, and electronic properties of nickel hydroxide nanotubes along with the energetics associated with the adsorption of water by these systems. The tight-binding model was parametrized for this system based on the results of first-principles calculations. The stabilities of the nanotubes were examined by calculating strain energies and performing molecular dynamics simulations. The results indicate that single-walled nickel hydroxide nanotubes are stable at room temperature, which is consistent with experimental investigations. The nanotubes possess size-dependent mechanical properties that are similar in magnitude to those of other inorganic nanotubes. The electronic properties of the nanotubes were also found to be size-dependent and small nickel oxyhydroxide nanotubes are predicted to be semiconductors. Despite this size-dependence, both the mechanical and electronic properties were found to be almost independent of the helical structure of the nanotubes. The calculations also show that water molecules have higher adsorption energies when binding to the interior of the nickel hydroxide nanotubes when compared to adsorption in nanotubes formed from other two-dimensional materials such as graphene. The increased adsorption energy is due to the hydrophilic nature of nickel hydroxide. Due to the broad applications of nickel hydroxide, the nanotubes investigated here are also expected to be used in catalysis, electronics, and clean energy production.

  2. A model for acoustic vaporization dynamics of a bubble/droplet system encapsulated within a hyperelastic shell.

    PubMed

    Lacour, Thomas; Guédra, Matthieu; Valier-Brasier, Tony; Coulouvrat, François

    2018-01-01

    Nanodroplets have great, promising medical applications such as contrast imaging, embolotherapy, or targeted drug delivery. Their functions can be mechanically activated by means of focused ultrasound inducing a phase change of the inner liquid known as the acoustic droplet vaporization (ADV) process. In this context, a four-phases (vapor + liquid + shell + surrounding environment) model of ADV is proposed. Attention is especially devoted to the mechanical properties of the encapsulating shell, incorporating the well-known strain-softening behavior of Mooney-Rivlin material adapted to very large deformations of soft, nearly incompressible materials. Various responses to ultrasound excitation are illustrated, depending on linear and nonlinear mechanical shell properties and acoustical excitation parameters. Different classes of ADV outcomes are exhibited, and a relevant threshold ensuring complete vaporization of the inner liquid layer is defined. The dependence of this threshold with acoustical, geometrical, and mechanical parameters is also provided.

  3. Influence of the temperature on the composites' fusion bonding quality

    NASA Astrophysics Data System (ADS)

    Harkous, Ali; Jurkowski, Tomasz; Bailleul, Jean-Luc; Le Corre, Steven

    2017-10-01

    Thermoplastic composite parts are increasingly used to replace metal pieces in automotive field due to their mechanical properties, chemical properties and recycling potential [1]. To assemble and give them new mechanical functions, fusion bonding is often used. It is a type of welding carried out at a higher temperature than the fusion one [2]. The mechanical quality of the final adhesion depends on the process parameters like pressure, temperature and cycle time [3]. These parameters depend on two phenomena at the origin of the bonding formation: intimate contact [4] and reptation and healing [5]. In this study, we analyze the influence of the temperature on the bonding quality, disregarding in this first steps the pressure influence. For that, two polyamide composite parts are welded using a specific setup. Then, they undergo a mechanical test of peeling in order to quantify the adhesion quality.

  4. Physical Principles Pertaining to Ultrasonic and Mechanical Properties of Anisotropic Media and Their Application to Nondestructive Evaluation of Fiber-Reinforced Composite Materials

    NASA Astrophysics Data System (ADS)

    Handley, Scott Michael

    The central theme of this thesis is to contribute to the physics underlying the mechanical properties of highly anisotropic materials. Our hypothesis is that a fundamental understanding of the physics involved in the interaction of interrogating ultrasonic waves with anisotropic media will provide useful information applicable to quantitative ultrasonic measurement techniques employed for the determination of material properties. Fiber-reinforced plastics represent a class of advanced composite materials that exhibit substantial anisotropy. The desired characteristics of practical fiber -reinforced composites depend on average mechanical properties achieved by placing fibers at specific angles relative to the external surfaces of the finished part. We examine the physics underlying the use of ultrasound as an interrogation probe for determination of ultrasonic and mechanical properties of anisotropic materials such as fiber-reinforced composites. Fundamental constituent parameters, such as elastic stiffness coefficients (c_{rm IJ}), are experimentally determined from ultrasonic time-of-flight measurements. Mechanical moduli (Poisson's ratio, Young's and shear modulus) descriptive of the anisotropic mechanical properties of unidirectional graphite/epoxy composites are obtained from the ultrasonically determined stiffness coefficients. Three-dimensional visualizations of the anisotropic ultrasonic and mechanical properties of unidirectional graphite/epoxy composites are generated. A related goal of the research is to strengthen the connection-between practical ultrasonic nondestructive evaluation methods and the physics underlying quantitative ultrasonic measurements for the assessment of manufactured fiber-reinforced composites. Production defects such as porosity have proven to be of substantial concern in the manufacturing of composites. We investigate the applicability of ultrasonic interrogation techniques for the detection and characterization of porosity in graphite/epoxy laminates. Complementary ultrasonic parameters based on the frequency dependence of ultrasonic attenuation and integrated polar backscatter are investigated. In summary, the approach taken in this thesis is to examine the physical mechanisms in terms of a continuum mechanics framework and a linear elastic description of ultrasonic wave propagation in anisotropic media with specific application to the nondestructive evaluation of advanced composite materials.

  5. Pre-aging time dependence of microstructure and mechanical properties in nanostructured Al-2wt%Cu alloy

    NASA Astrophysics Data System (ADS)

    Azad, Bahram; Borhani, Ehsan

    2016-03-01

    This work is focused on the effect of pre-aging time on the properties of Al-2wt%Cu alloy processed by accumulative roll bonding (ARB) process. Following aged at 190 °C for 10 or 30 min, the samples were deformed up to a strain of 4.8 by the ARB process. The microstructure evolution was investigated by transmission electron microscope and electron backscattering diffraction analyzes. The results showed that the Al2Cu precipitates were formed with different sizes due to the different pre-aging times and the finer precipitates were more effective on the formation of high angle grain boundaries during the ARB process. The grain size of Aged-10 min and Aged-30 min specimens decreased to 400 nm and 420 nm, respectively, after 6 cycles of the ARB process. Also, the final texture after 6 cycles of the ARB process, shown in the {111} pole figure, were different depending on the starting microstructures. The mechanical properties of specimens were investigated by the Vickers microhardness measurements and the tensile tests. The results showed that the mechanical properties are affected by the starting microstructure. The mechanical properties of Aged-10 min specimen were different compared to Aged-30 min specimen due to the different size of the pre-existing precipitates. Although by continuing process, the precipitates were probably dissolved due to the heavy deformation.

  6. Microstructures and Mechanical Properties of Co-Cr Dental Alloys Fabricated by Three CAD/CAM-Based Processing Techniques

    PubMed Central

    Kim, Hae Ri; Jang, Seong-Ho; Kim, Young Kyung; Son, Jun Sik; Min, Bong Ki; Kim, Kyo-Han; Kwon, Tae-Yub

    2016-01-01

    The microstructures and mechanical properties of cobalt-chromium (Co-Cr) alloys produced by three CAD/CAM-based processing techniques were investigated in comparison with those produced by the traditional casting technique. Four groups of disc- (microstructures) or dumbbell- (mechanical properties) specimens made of Co-Cr alloys were prepared using casting (CS), milling (ML), selective laser melting (SLM), and milling/post-sintering (ML/PS). For each technique, the corresponding commercial alloy material was used. The microstructures of the specimens were evaluated via X-ray diffractometry, optical and scanning electron microscopy with energy-dispersive X-ray spectroscopy, and electron backscattered diffraction pattern analysis. The mechanical properties were evaluated using a tensile test according to ISO 22674 (n = 6). The microstructure of the alloys was strongly influenced by the manufacturing processes. Overall, the SLM group showed superior mechanical properties, the ML/PS group being nearly comparable. The mechanical properties of the ML group were inferior to those of the CS group. The microstructures and mechanical properties of Co-Cr alloys were greatly dependent on the manufacturing technique as well as the chemical composition. The SLM and ML/PS techniques may be considered promising alternatives to the Co-Cr alloy casting process. PMID:28773718

  7. Mechanical properties of kinked silicon nanowires

    NASA Astrophysics Data System (ADS)

    Jing, Yuhang; Zhang, Chuan; Liu, Yingzhi; Guo, Licheng; Meng, Qingyuan

    2015-04-01

    Molecular dynamics simulations are used to investigate the mechanical properties of KSiNWs. Our results show that KSiNWs have a much larger fracture strain compared to straight SiNWs. The effects of the periodic length of KSiNWs with symmetric arms and the arm length of the KSiNW with asymmetric arms on the mechanical properties of KSiNWs are studied. The fracture stress of KSiNWs decrease as the periodic length increases. However, the fracture strain of KSiNWs is not dependent on the short periodic length and the fracture strain of KSiNWs will abruptly increase to very large value and then vary slightly as the periodic length increases. In addition, the fracture stress is not dependent on arm length while the fracture strain monotonically increases as the arm length increases. We also investigate the fracture process of KSiNWs. The results in this paper suggest that the KSiNWs with larger fracture strain can be a promising anode materials in high performance Li-ion batteries.

  8. Multicomponent Time-Dependent Density Functional Theory: Proton and Electron Excitation Energies.

    PubMed

    Yang, Yang; Culpitt, Tanner; Hammes-Schiffer, Sharon

    2018-04-05

    The quantum mechanical treatment of both electrons and protons in the calculation of excited state properties is critical for describing nonadiabatic processes such as photoinduced proton-coupled electron transfer. Multicomponent density functional theory enables the consistent quantum mechanical treatment of more than one type of particle and has been implemented previously for studying ground state molecular properties within the nuclear-electronic orbital (NEO) framework, where all electrons and specified protons are treated quantum mechanically. To enable the study of excited state molecular properties, herein the linear response multicomponent time-dependent density functional theory (TDDFT) is derived and implemented within the NEO framework. Initial applications to FHF - and HCN illustrate that NEO-TDDFT provides accurate proton and electron excitation energies within a single calculation. As its computational cost is similar to that of conventional electronic TDDFT, the NEO-TDDFT approach is promising for diverse applications, particularly nonadiabatic proton transfer reactions, which may exhibit mixed electron-proton vibronic excitations.

  9. New methodology for mechanical characterization of human superficial facial tissue anisotropic behaviour in vivo.

    PubMed

    Then, C; Stassen, B; Depta, K; Silber, G

    2017-07-01

    Mechanical characterization of human superficial facial tissue has important applications in biomedical science, computer assisted forensics, graphics, and consumer goods development. Specifically, the latter may include facial hair removal devices. Predictive accuracy of numerical models and their ability to elucidate biomechanically relevant questions depends on the acquisition of experimental data and mechanical tissue behavior representation. Anisotropic viscoelastic behavioral characterization of human facial tissue, deformed in vivo with finite strain, however, is sparse. Employing an experimental-numerical approach, a procedure is presented to evaluate multidirectional tensile properties of superficial tissue layers of the face in vivo. Specifically, in addition to stress relaxation, displacement-controlled multi-step ramp-and-hold protocols were performed to separate elastic from inelastic properties. For numerical representation, an anisotropic hyperelastic material model in conjunction with a time domain linear viscoelasticity formulation with Prony series was employed. Model parameters were inversely derived, employing finite element models, using multi-criteria optimization. The methodology provides insight into mechanical superficial facial tissue properties. Experimental data shows pronounced anisotropy, especially with large strain. The stress relaxation rate does not depend on the loading direction, but is strain-dependent. Preconditioning eliminates equilibrium hysteresis effects and leads to stress-strain repeatability. In the preconditioned state tissue stiffness and hysteresis insensitivity to strain rate in the applied range is evident. The employed material model fits the nonlinear anisotropic elastic results and the viscoelasticity model reasonably reproduces time-dependent results. Inversely deduced maximum anisotropic long-term shear modulus of linear elasticity is G ∞,max aniso =2.43kPa and instantaneous initial shear modulus at an applied rate of ramp loading is G 0,max aniso =15.38kPa. Derived mechanical model parameters constitute a basis for complex skin interaction simulation. Copyright © 2017. Published by Elsevier Ltd.

  10. General theory of skin reinforcement.

    PubMed

    Kruglikov, Ilja L; Scherer, Philipp E

    2017-01-01

    Macroscopic mechanical properties of human skin in vivo cannot be considered independent of adjacent subcutaneous white adipose tissue (sWAT). The layered system skin/sWAT appears as the hierarchical structural composite in which single layers behave as fiber-reinforced structures. Effective macroscopic mechanical properties of such composites are mainly determined either by the properties of the skin or by those of the sWAT, dependent on the conditions of mechanical loading. Mechanical interactions between the skin and the adjacent sWAT associated with a mismatch in the mechanical moduli of these two layers can lead to production of the skin wrinkles. Reinforcement of the composite skin/sWAT can take place in different ways. It can be provided through reorientation of collagen fibers under applied loading, through production of new bonds between existing collagen fibers and through induction of additional collagen structures. Effectiveness of this type of reinforcement is strongly dependent on the type of mechanical loading. Different physical interventions induce the reinforcement of at least one of these two layers, thus increasing the effective macroscopic stiffness of the total composite. At the same time, the standalone reinforcement of the skin appears to be less effective to achieve a delay or a reduction of the apparent signs of skin aging relative to the reinforcement of the sWAT.

  11. The effect of cross linking density on the mechanical properties and structure of the epoxy polymers: molecular dynamics simulation.

    PubMed

    Shokuhfar, Ali; Arab, Behrouz

    2013-09-01

    Recently, great attention has been focused on using epoxy polymers in different fields such as aerospace, automotive, biotechnology, and electronics, owing to their superior properties. In this study, the classical molecular dynamics (MD) was used to simulate the cross linking of diglycidyl ether of bisphenol-A (DGEBA) with diethylenetriamine (DETA) curing agent, and to study the behavior of resulted epoxy polymer with different conversion rates. The constant-strain (static) approach was then applied to calculate the mechanical properties (Bulk, shear and Young's moduli, elastic stiffness constants, and Poisson's ratio) of the uncured and cross-linked systems. Estimated material properties were found to be in good agreement with experimental observations. Moreover, the dependency of mechanical properties on the cross linking density was investigated and revealed improvements in the mechanical properties with increasing the cross linking density. The radial distribution function (RDF) was also used to study the evolution of local structures of the simulated systems as a function of cross linking density.

  12. The Effect of Adhesion Interaction on the Mechanical Properties of Thermoplastic Basalt Plastics

    NASA Astrophysics Data System (ADS)

    Bashtannik, P. I.; Kabak, A. I.; Yakovchuk, Yu. Yu.

    2003-01-01

    The effect of temperature, adhesion time, and surface treatment of a reinforcing filler on the mechanical properties of thermoplastic basalt plastics based on a high-density polyethylene and a copolymer of 1,3,5-trioxane with 1,3-dioxolan is investigated. An extreme dependence for the adhesive strength in a thermoplastic-basalt fiber system is established and its effect on the mechanical properties of basalt plastics and the influence of the adhesion contact time on the adhesive strength in the system are clarified. The surface modification of basalt fibers in acidic and alkaline media intensifies the adhesion of thermoplastics to them owing to a more developed surface of the reinforcing fibers after etching. It is found that the treatment in the acidic medium is more efficient and considerably improves the mechanical properties of basalt plastics.

  13. Shell-binary nanoparticle materials with variable electrical and electro-mechanical properties.

    PubMed

    Zhang, P; Bousack, H; Dai, Y; Offenhäusser, A; Mayer, D

    2018-01-18

    Nanoparticle (NP) materials with the capability to adjust their electrical and electro-mechanical properties facilitate applications in strain sensing technology. Traditional NP materials based on single component NPs lack a systematic and effective means of tuning their electrical and electro-mechanical properties. Here, we report on a new type of shell-binary NP material fabricated by self-assembly with either homogeneous or heterogeneous arrangements of NPs. Variable electrical and electro-mechanical properties were obtained for both materials. We show that the electrical and electro-mechanical properties of these shell-binary NP materials are highly tunable and strongly affected by the NP species as well as their corresponding volume fraction ratio. The conductivity and the gauge factor of these shell-binary NP materials can be altered by about five and two orders of magnitude, respectively. These shell-binary NP materials with different arrangements of NPs also demonstrate different volume fraction dependent electro-mechanical properties. The shell-binary NP materials with a heterogeneous arrangement of NPs exhibit a peaking of the sensitivity at medium mixing ratios, which arises from the aggregation induced local strain enhancement. Studies on the electron transport regimes and micro-morphologies of these shell-binary NP materials revealed the different mechanisms accounting for the variable electrical and electro-mechanical properties. A model based on effective medium theory is used to describe the electrical and electro-mechanical properties of such shell-binary nanomaterials and shows an excellent match with experiment data. These shell-binary NP materials possess great potential applications in high-performance strain sensing technology due to their variable electrical and electro-mechanical properties.

  14. Finite Element Analysis of Eutectic Structures

    DTIC Science & Technology

    2014-03-12

    Reported are the details of processing conditions, microstructure development, and temperature dependent thermoelectric properties . The material system...Sootsman et al ., Microstructure and Thermoelectric Properties of Mechanically Robust PbTe-Si Eutectic Composites, Chem. Mater. 22 (2010) 869. 7. J...Professor) CASE WESTERN RESERVE UNIVERSTY Thermoelectric Properties of WSi2-SixGe1-x Composites Thermoelectric properties of the W/Si/Ge alloy

  15. Viscoelastic Properties of Collagen-Adhesive Composites under Water Saturated and Dry Conditions

    PubMed Central

    Singh, Viraj; Misra, Anil; Parthasarathy, Ranganathan; Ye, Qiang; Spencer, Paulette

    2014-01-01

    To investigate the time and rate dependent mechanical properties of collagen-adhesive composites, creep and monotonic experiments are performed under dry and wet conditions. The composites are prepared by infiltration of dentin adhesive into a demineralized bovine dentin. Experimental results show that for small stress level under dry conditions, both the composite and neat adhesive have similar behavior. On the other hand, in wet conditions, the composites are significantly soft and weak compared to the neat adhesives. The behavior in the wet condition is found to be affected by the hydrophilicity of both the adhesive and collagen. Since the adhesive-collagen composites area part of the complex construct that forms the adhesive-dentin interface, their presence will affect the overall performance of the restoration. We find that Kelvin-Voigt model with at least 4-elements is required to fit the creep compliance data, indicating that the adhesive-collagen composites are complex polymers with several characteristics time-scales whose mechanical behavior will be significantly affected by loading rates and frequencies. Such mechanical properties have not been investigated widely for these types of materials. The derived model provides an additional advantage that it can be exploited to extract other viscoelastic properties which are, generally, time consuming to obtain experimentally. The calibrated model is utilized to obtain stress relaxation function, frequency-dependent storage and loss modulus, and rate dependent elastic modulus. PMID:24753362

  16. Internal state variable plasticity-damage modeling of AISI 4140 steel including microstructure-property relations: temperature and strain rate effects

    NASA Astrophysics Data System (ADS)

    Nacif el Alaoui, Reda

    Mechanical structure-property relations have been quantified for AISI 4140 steel. under different strain rates and temperatures. The structure-property relations were used. to calibrate a microstructure-based internal state variable plasticity-damage model for. monotonic tension, compression and torsion plasticity, as well as damage evolution. Strong stress state and temperature dependences were observed for the AISI 4140 steel. Tension tests on three different notched Bridgman specimens were undertaken to study. the damage-triaxiality dependence for model validation purposes. Fracture surface. analysis was performed using Scanning Electron Microscopy (SEM) to quantify the void. nucleation and void sizes in the different specimens. The stress-strain behavior exhibited. a fairly large applied stress state (tension, compression dependence, and torsion), a. moderate temperature dependence, and a relatively small strain rate dependence.

  17. Achilles tendons from decorin- and biglycan-null mouse models have inferior mechanical and structural properties predicted by an image-based empirical damage model

    PubMed Central

    Gordon, J.A.; Freedman, B.R.; Zuskov, A.; Iozzo, R.V.; Birk, D.E.; Soslowsky, L.J.

    2015-01-01

    Achilles tendons are a common source of pain and injury, and their pathology may originate from aberrant structure function relationships. Small leucine rich proteoglycans (SLRPs) influence mechanical and structural properties in a tendon-specific manner. However, their roles in the Achilles tendon have not been defined. The objective of this study was to evaluate the mechanical and structural differences observed in mouse Achilles tendons lacking class I SLRPs; either decorin or biglycan. In addition, empirical modeling techniques based on mechanical and image-based measures were employed. Achilles tendons from decorin-null (Dcn−/−) and biglycan-null (Bgn−/−) C57BL/6 female mice (N=102) were used. Each tendon underwent a dynamic mechanical testing protocol including simultaneous polarized light image capture to evaluate both structural and mechanical properties of each Achilles tendon. An empirical damage model was adapted for application to genetic variation and for use with image based structural properties to predict tendon dynamic mechanical properties. We found that Achilles tendons lacking decorin and biglycan had inferior mechanical and structural properties that were age dependent; and that simple empirical models, based on previously described damage models, were predictive of Achilles tendon dynamic modulus in both decorin- and biglycan-null mice. PMID:25888014

  18. Achilles tendons from decorin- and biglycan-null mouse models have inferior mechanical and structural properties predicted by an image-based empirical damage model.

    PubMed

    Gordon, J A; Freedman, B R; Zuskov, A; Iozzo, R V; Birk, D E; Soslowsky, L J

    2015-07-16

    Achilles tendons are a common source of pain and injury, and their pathology may originate from aberrant structure function relationships. Small leucine rich proteoglycans (SLRPs) influence mechanical and structural properties in a tendon-specific manner. However, their roles in the Achilles tendon have not been defined. The objective of this study was to evaluate the mechanical and structural differences observed in mouse Achilles tendons lacking class I SLRPs; either decorin or biglycan. In addition, empirical modeling techniques based on mechanical and image-based measures were employed. Achilles tendons from decorin-null (Dcn(-/-)) and biglycan-null (Bgn(-/-)) C57BL/6 female mice (N=102) were used. Each tendon underwent a dynamic mechanical testing protocol including simultaneous polarized light image capture to evaluate both structural and mechanical properties of each Achilles tendon. An empirical damage model was adapted for application to genetic variation and for use with image based structural properties to predict tendon dynamic mechanical properties. We found that Achilles tendons lacking decorin and biglycan had inferior mechanical and structural properties that were age dependent; and that simple empirical models, based on previously described damage models, were predictive of Achilles tendon dynamic modulus in both decorin- and biglycan-null mice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Robustness and Vulnerability of Networks with Dynamical Dependency Groups.

    PubMed

    Bai, Ya-Nan; Huang, Ning; Wang, Lei; Wu, Zhi-Xi

    2016-11-28

    The dependency property and self-recovery of failure nodes both have great effects on the robustness of networks during the cascading process. Existing investigations focused mainly on the failure mechanism of static dependency groups without considering the time-dependency of interdependent nodes and the recovery mechanism in reality. In this study, we present an evolving network model consisting of failure mechanisms and a recovery mechanism to explore network robustness, where the dependency relations among nodes vary over time. Based on generating function techniques, we provide an analytical framework for random networks with arbitrary degree distribution. In particular, we theoretically find that an abrupt percolation transition exists corresponding to the dynamical dependency groups for a wide range of topologies after initial random removal. Moreover, when the abrupt transition point is above the failure threshold of dependency groups, the evolving network with the larger dependency groups is more vulnerable; when below it, the larger dependency groups make the network more robust. Numerical simulations employing the Erdős-Rényi network and Barabási-Albert scale free network are performed to validate our theoretical results.

  20. Remote Determination of Time-Dependent Stiffness of Surface-Degrading-Polymer Scaffolds Via Synchrotron-Based Imaging.

    PubMed

    Bawolin, N K; Chen, X B

    2017-04-01

    Surface-degrading polymers have been widely used to fabricate scaffolds with the mechanical properties appropriate for tissue regeneration/repair. During their surface degradation, the material properties of polymers remain approximately unchanged, but the scaffold geometry and thus mechanical properties vary with time. This paper presents a novel method to determine the time-dependent mechanical properties, particularly stiffness, of scaffolds from the geometric changes captured by synchrotron-based imaging, with the help of finite element analysis (FEA). Three-dimensional (3D) tissue scaffolds were fabricated from surface-degrading polymers, and during their degradation, the tissue scaffolds were imaged via the synchrotron-based imaging to characterize their changing geometry. On this basis, the stiffness behavior of scaffolds was estimated from the FEA, and the results obtained were compared to the direct measurements of scaffold stiffness from the load-displacement material testing. The comparison illustrates that the Young's moduli estimated from the FEA and characterized geometry are in agreement with the ones of direct measurements. The developed method of estimating the mechanical behavior was also demonstrated effective with a nondegrading scaffold that displays the nonlinear stress-strain behavior. The in vivo monitoring of Young's modulus by morphology characterization also suggests the feasibility of characterizing experimentally the difference between in vivo and in vitro surface degradation of tissue engineering constructs.

  1. Seismicity in a model governed by competing frictional weakening and healing mechanisms

    NASA Astrophysics Data System (ADS)

    Hillers, G.; Carlson, J. M.; Archuleta, R. J.

    2009-09-01

    Observations from laboratory, field and numerical work spanning a wide range of space and time scales suggest a strain dependent progressive evolution of material properties that control the stability of earthquake faults. The associated weakening mechanisms are counterbalanced by a variety of restrengthening mechanisms. The efficiency of the healing processes depends on local material properties and on rheologic, temperature, and hydraulic conditions. We investigate the relative effects of these competing non-linear feedbacks on seismogenesis in the context of evolving frictional properties, using a mechanical earthquake model that is governed by slip weakening friction. Weakening and strengthening mechanisms are parametrized by the evolution of the frictional control variable-the slip weakening rate R-using empirical relationships obtained from laboratory experiments. In our model, weakening depends on the slip of an earthquake and tends to increase R, following the behaviour of real and simulated frictional interfaces. Healing causes R to decrease and depends on the time passed since the last slip. Results from models with these competing feedbacks are compared with simulations using non-evolving friction. Compared to fixed R conditions, evolving properties result in a significantly increased variability in the system dynamics. We find that for a given set of weakening parameters the resulting seismicity patterns are sensitive to details of the restrengthening process, such as the healing rate b and a lower cutoff time, tc, up to which no significant change in the friction parameter is observed. For relatively large and small cutoff times, the statistics are typical of fixed large and small R values, respectively. However, a wide range of intermediate values leads to significant fluctuations in the internal energy levels. The frequency-size statistics of earthquake occurrence show corresponding non-stationary characteristics on time scales over which negligible fluctuations are observed in the fixed-R case. The progressive evolution implies that-except for extreme weakening and healing rates-faults and fault networks possibly are not well characterized by steady states on typical catalogue time scales, thus highlighting the essential role of memory and history dependence in seismogenesis. The results suggest that an extrapolation to future seismicity occurrence based on temporally limited data may be misleading due to variability in seismicity patterns associated with competing mechanisms that affect fault stability.

  2. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing.

    PubMed

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands.

  3. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing

    PubMed Central

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands. PMID:26601037

  4. Mechanical Deformation Mechanisms and Properties of Prion Fibrils Probed by Atomistic Simulations

    NASA Astrophysics Data System (ADS)

    Choi, Bumjoon; Kim, Taehee; Ahn, Eue Soo; Lee, Sang Woo; Eom, Kilho

    2017-03-01

    Prion fibrils, which are a hallmark for neurodegenerative diseases, have recently been found to exhibit the structural diversity that governs disease pathology. Despite our recent finding concerning the role of the disease-specific structure of prion fibrils in determining their elastic properties, the mechanical deformation mechanisms and fracture properties of prion fibrils depending on their structures have not been fully characterized. In this work, we have studied the tensile deformation mechanisms of prion and non-prion amyloid fibrils by using steered molecular dynamics simulations. Our simulation results show that the elastic modulus of prion fibril, which is formed based on left-handed β-helical structure, is larger than that of non-prion fibril constructed based on right-handed β-helix. However, the mechanical toughness of prion fibril is found to be less than that of non-prion fibril, which indicates that infectious prion fibril is more fragile than non-infectious (non-prion) fibril. Our study sheds light on the role of the helical structure of amyloid fibrils, which is related to prion infectivity, in determining their mechanical deformation mechanisms and properties.

  5. An investigation of the influence of process and formulation variables on mechanical properties of high shear granules using design of experiment.

    PubMed

    Mangwandi, Chirangano; Adams, Michael J; Hounslow, Michael J; Salman, Agba D

    2012-05-10

    Being able to predict the properties of granules from the knowledge of the process and formulation variables is what most industries are striving for. This research uses experimental design to investigate the effect of process variables and formulation variables on mechanical properties of pharmaceutical granules manufactured from a classical blend of lactose and starch using hydroxypropyl cellulose (HPC) as the binder. The process parameters investigated were granulation time and impeller speed whilst the formulation variables were starch-to-lactose ratio and HPC concentration. The granule properties investigated include granule packing coefficient and granule strength. The effect of some components of the formulation on mechanical properties would also depend on the process variables used in granulation process. This implies that by subjecting the same formulation to different process conditions results in products with different properties. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Simulation and Analysis of Mechanical Properties of Silica Aerogels: From Rationalization to Prediction

    PubMed Central

    Ma, Hao; Zheng, Xiaoyang; Luo, Xuan; Yang, Fan

    2018-01-01

    Silica aerogels are highly porous 3D nanostructures and have exhibited excellent physio-chemical properties. Although silica aerogels have broad potential in many fields, the poor mechanical properties greatly limit further applications. In this study, we have applied the finite volume method (FVM) method to calculate the mechanical properties of silica aerogels with different geometric properties such as particle size, pore size, ligament diameter, etc. The FVM simulation results show that a power law correlation existing between relative density and mechanical properties (elastic modulus and yield stress) of silica aerogels, which are consistent with experimental and literature studies. In addition, depending on the relative densities, different strategies are proposed in order to synthesize silica aerogels with better mechanical performance by adjusting the distribution of pore size and ligament diameter of aerogels. Finally, the results suggest that it is possible to synthesize silica aerogels with ultra-low density as well as high strength and stiffness as long as the textural features are well controlled. It is believed that the FVM simulation methodology could be a valuable tool to study mechanical performance of silica aerogel based materials in the future. PMID:29385745

  7. Simulation and Analysis of Mechanical Properties of Silica Aerogels: From Rationalization to Prediction.

    PubMed

    Ma, Hao; Zheng, Xiaoyang; Luo, Xuan; Yi, Yong; Yang, Fan

    2018-01-30

    Silica aerogels are highly porous 3D nanostructures and have exhibited excellent physio-chemical properties. Although silica aerogels have broad potential in many fields, the poor mechanical properties greatly limit further applications. In this study, we have applied the finite volume method (FVM) method to calculate the mechanical properties of silica aerogels with different geometric properties such as particle size, pore size, ligament diameter, etc. The FVM simulation results show that a power law correlation existing between relative density and mechanical properties (elastic modulus and yield stress) of silica aerogels, which are consistent with experimental and literature studies. In addition, depending on the relative densities, different strategies are proposed in order to synthesize silica aerogels with better mechanical performance by adjusting the distribution of pore size and ligament diameter of aerogels. Finally, the results suggest that it is possible to synthesize silica aerogels with ultra-low density as well as high strength and stiffness as long as the textural features are well controlled. It is believed that the FVM simulation methodology could be a valuable tool to study mechanical performance of silica aerogel based materials in the future.

  8. Proposed FY13 LRIR: Shock-Mitigating Multilayered Mechanical Metamaterials (SM5)

    DTIC Science & Technology

    2012-08-02

    DoD SMART Scholarship for Service Program Awareness Info Sharing Co-Funded Inter- locked 4Approved for Public Release; Distribution Unlimited (PA...Materials Modeling • Rate-dependent • Temperature-dependent • Complex properties Theoretical Mechanics • Dispersion • Wave modes/ polarization ...Dick (Rice) • Wavelet SEM in Plates, PI: Ratan Jha (Clarkson) – Soliton -Based Artificial Nervous System • PI’s: “JK” Yang (USC), Amanda Schrand

  9. Functional gradients in the pericarp of the green coconut inspire asymmetric fibre-composites with improved impact strength, and preserved flexural and tensile properties.

    PubMed

    Graupner, Nina; Labonte, David; Humburg, Heide; Buzkan, Tayfun; Dörgens, Anna; Kelterer, Wiebke; Müssig, Jörg

    2017-02-28

    Here we investigate the mechanical properties and structural design of the pericarp of the green coconut (Cocos nucifera L.). The pericarp showed excellent impact characteristics, and mechanical tests of its individual components revealed gradients in stiffness, strength and elongation at break from the outer to the inner layer of the pericarp. In order to understand more about the potential effect of such gradients on 'bulk' material properties, we designed simple, graded, cellulose fibre-reinforced polylactide (PLA) composites by stacking layers reinforced with fibres of different mechanical properties. Tensile properties of the graded composites were largely determined by the 'weakest' fibre, irrespective of the fibre distribution. However, a graded design led to pronounced asymmetric bending and impact properties. Bio-inspired, asymmetrically graded composites showed a flexural strength and modulus comparable to that of the strongest reference samples, but the elongation at maximum load was dependent on the specimen orientation. The impact strength of the graded composites showed a similar orientation-dependence, and peak values exceeded the impact strength of a non-graded reference composite containing identical fibre fractions by up to a factor of three. In combination, our results show that an asymmetric, systematic variation of fibre properties can successfully combine desirable properties of different fibre types, suggesting new routes for the development of high-performance composites, and improving our understanding of the structure-function relationship of the coconut pericarp.

  10. Temperature-dependent elastic properties of brain tissues measured with the shear wave elastography method.

    PubMed

    Liu, Yan-Lin; Li, Guo-Yang; He, Ping; Mao, Ze-Qi; Cao, Yanping

    2017-01-01

    Determining the mechanical properties of brain tissues is essential in such cases as the surgery planning and surgical training using virtual reality based simulators, trauma research and the diagnosis of some diseases that alter the elastic properties of brain tissues. Here, we suggest a protocol to measure the temperature-dependent elastic properties of brain tissues in physiological saline using the shear wave elastography method. Experiments have been conducted on six porcine brains. Our results show that the shear moduli of brain tissues decrease approximately linearly with a slope of -0.041±0.006kPa/°C when the temperature T increases from room temperature (~23°C) to body temperature (~37°C). A case study has been further conducted which shows that the shear moduli are insensitive to the temperature variation when T is in the range of 37 to 43°C and will increase when T is higher than 43°C. With the present experimental setup, temperature-dependent elastic properties of brain tissues can be measured in a simulated physiological environment and a non-destructive manner. Thus the method suggested here offers a unique tool for the mechanical characterization of brain tissues with potential applications in brain biomechanics research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Mechanical properties of porcine brain tissue in vivo and ex vivo estimated by MR elastography.

    PubMed

    Guertler, Charlotte A; Okamoto, Ruth J; Schmidt, John L; Badachhape, Andrew A; Johnson, Curtis L; Bayly, Philip V

    2018-03-01

    The mechanical properties of brain tissue in vivo determine the response of the brain to rapid skull acceleration. These properties are thus of great interest to the developers of mathematical models of traumatic brain injury (TBI) or neurosurgical simulations. Animal models provide valuable insight that can improve TBI modeling. In this study we compare estimates of mechanical properties of the Yucatan mini-pig brain in vivo and ex vivo using magnetic resonance elastography (MRE) at multiple frequencies. MRE allows estimations of properties in soft tissue, either in vivo or ex vivo, by imaging harmonic shear wave propagation. Most direct measurements of brain mechanical properties have been performed using samples of brain tissue ex vivo. It has been observed that direct estimates of brain mechanical properties depend on the frequency and amplitude of loading, as well as the time post-mortem and condition of the sample. Using MRE in the same animals at overlapping frequencies, we observe that porcine brain tissue in vivo appears stiffer than porcine brain tissue samples ex vivo at frequencies of 100 Hz and 125 Hz, but measurements show closer agreement at lower frequencies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. The properties of coke breeze briquettes produced by ram briquetting

    NASA Astrophysics Data System (ADS)

    Loginov, Yu. N.; Babailov, N. A.; Polyansky, L. I.

    2017-12-01

    The paper reports on the results of briquetting coke breeze with a binder in a closed cylindrical press-die. Liquid glass is used as a binder. Approximating curves for the "compaction ratio vs. compaction pressure" dependences are plotted from experimental data. The mechanical properties of the briquettes are determined, namely, drop damage resistance and breaking stress. The results are presented as approximating dependences in the form of a power function.

  13. Effect of the material properties on the crumpling of a thin sheet.

    PubMed

    Habibi, Mehdi; Adda-Bedia, Mokhtar; Bonn, Daniel

    2017-06-07

    While simple at first glance, the dense packing of sheets is a complex phenomenon that depends on material parameters and the packing protocol. We study the effect of plasticity on the crumpling of sheets of different materials by performing isotropic compaction experiments on sheets of different sizes and elasto-plastic properties. First, we quantify the material properties using a dimensionless foldability index. Then, the compaction force required to crumple a sheet into a ball as well as the average number of layers inside the ball are measured. For each material, both quantities exhibit a power-law dependence on the diameter of the crumpled ball. We experimentally establish the power-law exponents and find that both depend nonlinearly on the foldability index. However the exponents that characterize the mechanical response and morphology of the crumpled materials are related linearly. A simple scaling argument explains this in terms of the buckling of the sheets, and recovers the relation between the crumpling force and the morphology of the crumpled structure. Our results suggest a new approach to tailor the mechanical response of the crumpled objects by carefully selecting their material properties.

  14. Study of the tensile properties of individual multicellular fibres generated by Bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Ye, Xuan; Zhao, Liang; Liang, Jiecun; Li, Xide; Chen, Guo-Qiang

    2017-04-01

    Multicellular fibres formed by Bacillus subtilis (B. subtilis) are attracting interest because of their potential application as degradable biomaterials. However, mechanical properties of individual fibres remain unknown because of their small dimensions. Herein, a new approach is developed to investigate the tensile properties of individual fibres with an average diameter of 0.7 μm and a length range of 25.7-254.3 μm. Variations in the tensile strengths of fibres are found to be the result of variable interactions among pairs of microbial cells known as septa. Using Weibull weakest-link model to study this mechanical variability, we predict the length effect of the sample. Moreover, the mechanical properties of fibres are found to depend highly on relative humidity (RH), with a brittle-ductile transition occurring around RH = 45%. The elastic modulus is 5.8 GPa in the brittle state, while decreases to 62.2 MPa in the ductile state. The properties of fibres are investigated by using a spring model (RH < 45%) for its elastic behaviour, and the Kelvin-Voigt model (RH > 45%) for the time-dependent response. Loading-unloading experiments and numerical calculations demonstrate that necking instability comes from structural changes (septa) and viscoelasticity dominates the deformation of fibres at high RH.

  15. Anisotropic characterization of magnetorheological materials

    NASA Astrophysics Data System (ADS)

    Dohmen, E.; Modler, N.; Gude, M.

    2017-06-01

    For the development of energy efficient lightweight parts novel function integrating materials are needed. Concerning this field of application magnetorheological (MR) fluids, MR elastomers and MR composites are promising materials allowing the adjustment of mechanical properties by an external magnetic field. A key issue for operating such structures in praxis is the magneto-mechanical description. Most rheological properties are gathered at laboratory conditions for high magnetic flux densities and a single field direction, which does not correspond to real praxis conditions. Although anisotropic formation of superstructures can be observed in MR suspensions (Fig. 1) or experimenters intentionally polymerize MR elastomers with anisotropic superstructures these MR materials are usually described in an external magnetic field as uniform, isotropic materials. This is due to missing possibilities for experimentally measuring field angle dependent properties and ways of distinguishing between material properties and frictional effects. Just a few scientific works experimentally investigated the influence of different field angles (Ambacher et al., 1992; Grants et al., 1990; Kuzhir et al., 2003) [1-3] or the influence of surface roughness on the shear behaviour of magnetic fluids (Tang and Conrad, 1996) [4]. The aim of this work is the introduction of a novel field angle cell allowing the determination of anisotropic mechanical properties for various MR materials depending on the applied magnetic field angle.

  16. Analytic structure of the S-matrix for singular quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camblong, Horacio E.; Epele, Luis N.; Fanchiotti, Huner

    2015-06-15

    The analytic structure of the S-matrix of singular quantum mechanics is examined within a multichannel framework, with primary focus on its dependence with respect to a parameter (Ω) that determines the boundary conditions. Specifically, a characterization is given in terms of salient mathematical and physical properties governing its behavior. These properties involve unitarity and associated current-conserving Wronskian relations, time-reversal invariance, and Blaschke factorization. The approach leads to an interpretation of effective nonunitary solutions in singular quantum mechanics and their determination from the unitary family.

  17. Tungsten nanoparticles influence on radiation protection properties of polymers

    NASA Astrophysics Data System (ADS)

    Gavrish, V. M.; Baranov, G. A.; Chayka, T. V.; Derbasova, N. M.; Lvov, A. V.; Matsuk, Y. M.

    2016-02-01

    In the presented article the results of the study of metal-polymer composites based on the ultra-high molecular weight polyethylene GUR 4122 with the addition of superdispersed tungsten nanopowders with 5, 10, 20, 40, and 50 mass percent content levels are given, their thermophysical, radiation-shielding, and mechanical properties are shown, and the influence of content levels of tungsten superdispersed nanopowders on these properties is analyzed. The conducted studies have shown the increase in the listed properties depending on the content level of tungsten superdispersed and nanopowders in the ultra-high molecular weight polyethylene GUR 4122. Owing to their properties, the obtained materials may be used in various fields, such as aviation, space technologies, mechanical engineering, etc.

  18. Critical temperature transitions in laser-mediated cartilage reshaping

    NASA Astrophysics Data System (ADS)

    Wong, Brian J.; Milner, Thomas E.; Kim, Hong H.; Telenkov, Sergey A.; Chew, Clifford; Kuo, Timothy C.; Smithies, Derek J.; Sobol, Emil N.; Nelson, J. Stuart

    1998-07-01

    In this study, we attempted to determine the critical temperature [Tc] at which accelerated stress relaxation occurred during laser mediated cartilage reshaping. During laser irradiation, mechanically deformed cartilage tissue undergoes a temperature dependent phase transformation which results in accelerated stress relaxation. When a critical temperature is attained, cartilage becomes malleable and may be molded into complex new shapes that harden as the tissue cools. Clinically, reshaped cartilage tissue can be used to recreate the underlying cartilaginous framework of structures such as the ear, larynx, trachea, and nose. The principal advantages of using laser radiation for the generation of thermal energy in tissue are precise control of both the space-time temperature distribution and time- dependent thermal denaturation kinetics. Optimization of the reshaping process requires identification of the temperature dependence of this phase transformation and its relationship to observed changes in cartilage optical, mechanical, and thermodynamic properties. Light scattering, infrared radiometry, and modulated differential scanning calorimetry (MDSC) were used to measure temperature dependent changes in the biophysical properties of cartilage tissue during fast (laser mediated) and slow (conventional calorimetric) heating. Our studies using MDSC and laser probe techniques have identified changes in cartilage thermodynamic and optical properties suggestive of a phase transformation occurring near 60 degrees Celsius.

  19. Mechanical properties of regular porous biomaterials made from truncated cube repeating unit cells: Analytical solutions and computational models.

    PubMed

    Hedayati, R; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A

    2016-03-01

    Additive manufacturing (AM) has enabled fabrication of open-cell porous biomaterials based on repeating unit cells. The micro-architecture of the porous biomaterials and, thus, their physical properties could then be precisely controlled. Due to their many favorable properties, porous biomaterials manufactured using AM are considered as promising candidates for bone substitution as well as for several other applications in orthopedic surgery. The mechanical properties of such porous structures including static and fatigue properties are shown to be strongly dependent on the type of the repeating unit cell based on which the porous biomaterial is built. In this paper, we study the mechanical properties of porous biomaterials made from a relatively new unit cell, namely truncated cube. We present analytical solutions that relate the dimensions of the repeating unit cell to the elastic modulus, Poisson's ratio, yield stress, and buckling load of those porous structures. We also performed finite element modeling to predict the mechanical properties of the porous structures. The analytical solution and computational results were found to be in agreement with each other. The mechanical properties estimated using both the analytical and computational techniques were somewhat higher than the experimental data reported in one of our recent studies on selective laser melted Ti-6Al-4V porous biomaterials. In addition to porosity, the elastic modulus and Poisson's ratio of the porous structures were found to be strongly dependent on the ratio of the length of the inclined struts to that of the uninclined (i.e. vertical or horizontal) struts, α, in the truncated cube unit cell. The geometry of the truncated cube unit cell approaches the octahedral and cube unit cells when α respectively approaches zero and infinity. Consistent with those geometrical observations, the analytical solutions presented in this study approached those of the octahedral and cube unit cells when α approached respectively 0 and infinity. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Effects of mechanical properties of adhesive resin cements on stress distribution in fiber-reinforced composite adhesive fixed partial dentures.

    PubMed

    Yokoyama, Daiichiro; Shinya, Akikazu; Gomi, Harunori; Vallittu, Pekka K; Shinya, Akiyoshi

    2012-01-01

    Using finite element analysis (FEA), this study investigated the effects of the mechanical properties of adhesive resin cements on stress distributions in fiber-reinforced resin composite (FRC) adhesive fixed partial dentures (AFPDs). Two adhesive resin cements were compared: Super-Bond C&B and Panavia Fluoro Cement. The AFPD consisted of a pontic to replace a maxillary right lateral incisor and retainers on a maxillary central incisor and canine. FRC framework was made of isotropic, continuous, unidirectional E-glass fibers. Maximum principal stresses were calculated using finite element method (FEM). Test results revealed that differences in the mechanical properties of adhesive resin cements led to different stress distributions at the cement interfaces between AFPD and abutment teeth. Clinical implication of these findings suggested that the safety and longevity of an AFPD depended on choosing an adhesive resin cement with the appropriate mechanical properties.

  1. Effects of laser power density on static and dynamic mechanical properties of dissimilar stainless steel welded joints

    NASA Astrophysics Data System (ADS)

    Wei, Yan-Peng; Li, Mao-Hui; Yu, Gang; Wu, Xian-Qian; Huang, Chen-Guang; Duan, Zhu-Ping

    2012-10-01

    The mechanical properties of laser welded joints under impact loadings such as explosion and car crash etc. are critical for the engineering designs. The hardness, static and dynamic mechanical properties of AISI304 and AISI316 L dissimilar stainless steel welded joints by CO2 laser were experimentally studied. The dynamic strain-stress curves at the strain rate around 103 s-1 were obtained by the split Hopkinson tensile bar (SHTB). The static mechanical properties of the welded joints have little changes with the laser power density and all fracture occurs at 316 L side. However, the strain rate sensitivity has a strong dependence on laser power density. The value of strain rate factor decreases with the increase of laser power density. The welded joint which may be applied for the impact loading can be obtained by reducing the laser power density in the case of welding quality assurance.

  2. Action of microbial transglutaminase (MTGase) in the modification of food proteins: a review.

    PubMed

    Gaspar, Ana Luisa Camolezi; de Góes-Favoni, Silvana Pedroso

    2015-03-15

    Microbial transglutaminase (MTGase) is an enzyme of the class of transferases widely known to modify protein functional properties in food systems. The main mechanisms of action involved are polymerisations, which result in changes in the molecule's hydrophobicity. Among the functional properties, MTGase affects solubility and hence gelation, emulsification, foaming, viscosity and water-holding capacity, which all depend on protein solubility. Although the enzyme's benefits for protein functionality in a variety of food systems are widely reported in the literature, few studies have focussed on its mechanisms. The purpose of this review is therefore to investigate the mechanisms of action of MTGase and consider its influence on the functional properties with different protein substrates. Understanding these mechanisms is the first step in the development and application, in food production, of new and better functional properties with improved and/or innovative characteristics that can satisfy consumer expectations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. The Effects of Obesity on Murine Cortical Bone

    NASA Astrophysics Data System (ADS)

    Martin, Sophi

    This dissertation details the effects of obesity on the mechanical properties and structure of cortical bone. Obesity is associated with greater bone mineral content that might be expected to protect against fracture, which has been observed in adults. Paradoxically however, the incidence of bone fractures has been found to increase in overweight and obese children and adolescents. Femora from adolescent and adult mice fed a high-fat diet are investigated for changes in shape, tissue structure, as well as tissue-level and whole-bone mechanical properties. Results indicate increased bone size, reduced size-independent mechanical properties, but maintained size-dependent mechanical properties. Other changes in cortical bone response to obesity are observed with advancing age. This study indicates that bone quantity and bone quality play important compensatory roles in determining fracture risk, and that fracture risk may not be lessened for adults as previously thought.

  4. Considerations of Alloy 617 Application in the Gen IV Nuclear Reactor Systems - Part I: Mechanical Property Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Weiju

    2010-01-01

    Alloy 617 is currently considered as a leading candidate material for high temperature components in the Gen IV Nuclear Reactor Systems. Because of the unprecedented severe working conditions beyond its commercial service experience required by the Gen IV systems, the alloy faces various challenges in both mechanical and metallurgical properties. This paper, as Part I of the discussion, is focused on the challenges and issues in the mechanical properties of Alloy 617 for the intended nuclear application. Considerations are given in details in its mechanical property data scatter, low creep strength in the desired high temperature range, lack of longtermmore » creep curves, high loading rate dependency, and preponderant tertiary creep. Some research and development activities are suggested with discussions on their viability to satisfy the Gen IV Nuclear Reactor System needs in near future and in the long run.« less

  5. Influence of low-temperature annealing time on the evolution of the structure and mechanical properties of a titanium Ti-Al-V alloy in the submicrocrystalline state

    NASA Astrophysics Data System (ADS)

    Ratochka, I. V.; Lykova, O. N.; Naidenkin, E. V.

    2015-03-01

    The effect of annealing at 673 K for 6-24 h on the structural and phase state and mechanical properties of the titanium alloy of a Ti-Al-V system that was previously subjected to severe plastic deformation by uniform compression deformation, has been studied. It has been established that these annealings lead to a nonmontonic dependence of the mechanical properties of the alloy on the annealing time. It has been shown that the annealing of the Ti-Al-V alloy in a submicrocrystalline state is accompanied by simultaneous hardening processes, i.e., the formation of fine particles during phase transformations and the formation of new nanosized grains, and softening processes, i.e., recovery processes and the growth grains to micron sizes. The prevalence of a given process during annealing determines the deterioration or improvement of the alloy's mechanical properties.

  6. The effect of porosity and microcracking on the thermomechanical properties of cordierite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shyam, A.; Bruno, G.; Watkins, T. R.

    2015-08-28

    The effect of porosity and microcracking on the mechanical properties (strength, fracture toughness, Young’s modulus, and fracture energy) and thermal expansion of diesel particulate filter (DPF) grade cordierite materials has been investigated. A method to deconvolute the effect of porosity and microcracking on Young’s modulus is proposed. In addition, the microcrack density and the pore morphology factor are calculated by applying a micromechanical differential scheme. The values of the investigated mechanical properties are shown to decrease with an increase in porosity, but the thermal expansion values are insensitive to porosity. The variation in mechanical properties as a function of porositymore » leads to distinct porosity dependence of thermal shock resistance for crack initiation and crack propagation for DPF grade synthetic cordierite.« less

  7. Mussel-inspired tough hydrogels with self-repairing and tissue adhesion

    NASA Astrophysics Data System (ADS)

    Gao, Zijian; Duan, Lijie; Yang, Yongqi; Hu, Wei; Gao, Guanghui

    2018-01-01

    The mussel-inspired polymeric hydrogels have been attractively explored owing to their self-repairing or adhesive property when the catechol groups of dopamine could chelate metal ions. However, it was a challenge for self-repairing hydrogels owning high mechanical properties. Herein, a synergistic strategy was proposed by combining catechol-Fe3+ complexes and hydrophobic association. The resulting hydrogels exhibited seamless self-repairing behavior, tissue adhesion and high mechanical property. Moreover, the pH-dependent stoichiometry of catechol-Fe3+ and temperature-sensitive hydrophobic association endue hydrogels with pH/thermo responsive characteristics. Subsequently, the self-repairing rate and mechanical property of hydrogels were investigated at different pH and temperature. This bio-inspired strategy would build an avenue for designing and constructing a new generation of self-repairing, tissue-adhesive and tough hydrogel.

  8. Strong size-dependent stress relaxation in electrospun polymer nanofibers

    NASA Astrophysics Data System (ADS)

    Wingert, Matthew C.; Jiang, Zhang; Chen, Renkun; Cai, Shengqiang

    2017-01-01

    Electrospun polymer nanofibers have garnered significant interest due to their strong size-dependent material properties, such as tensile moduli, strength, toughness, and glass transition temperatures. These properties are closely correlated with polymer chain dynamics. In most applications, polymers usually exhibit viscoelastic behaviors such as stress relaxation and creep, which are also determined by the motion of polymer chains. However, the size-dependent viscoelasticity has not been studied previously in polymer nanofibers. Here, we report the first experimental evidence of significant size-dependent stress relaxation in electrospun Nylon-11 nanofibers as well as size-dependent viscosity of the confined amorphous regions. In conjunction with the dramatically increasing stiffness of nano-scaled fibers, this strong relaxation enables size-tunable properties which break the traditional damping-stiffness tradeoff, qualifying electrospun nanofibers as a promising set of size-tunable materials with an unusual and highly desirable combination of simultaneously high stiffness and large mechanical energy dissipation.

  9. Strong size-dependent stress relaxation in electrospun polymer nanofibers

    DOE PAGES

    Wingert, Matthew C.; Jiang, Zhang; Chen, Renkun; ...

    2017-01-04

    Here, electrospun polymer nanofibers have garnered significant interest due to their strong size-dependent material properties, such as tensile moduli, strength, toughness, and glass transition temperatures. These properties are closely correlated with polymer chain dynamics. In most applications, polymers usually exhibit viscoelastic behaviors such as stress relaxation and creep, which are also determined by the motion of polymer chains. However, the size-dependent viscoelasticity has not been studied previously in polymer nanofibers. Here, we report the first experimental evidence of significant size-dependent stress relaxation in electrospun Nylon-11 nanofibers as well as size-dependent viscosity of the confined amorphous regions. In conjunction with themore » dramatically increasing stiffness of nano-scaled fibers, this strong relaxation enables size-tunable properties which break the traditional damping-stiffness tradeoff, qualifying electrospun nanofibers as a promising set of size-tunable materials with an unusual and highly desirable combination of simultaneously high stiffness and large mechanical energy dissipation.« less

  10. Mechanical properties of cancellous bone in the human mandibular condyle are anisotropic.

    PubMed

    Giesen, E B; Ding, M; Dalstra, M; van Eijden, T M

    2001-06-01

    The objective of the present study was (1) to test the hypothesis that the elastic and failure properties of the cancellous bone of the mandibular condyle depend on the loading direction, and (2) to relate these properties to bone density parameters. Uniaxial compression tests were performed on cylindrical specimens (n=47) obtained from the condyles of 24 embalmed cadavers. Two loading directions were examined, i.e., a direction coinciding with the predominant orientation of the plate-like trabeculae (axial loading) and a direction perpendicular to the plate-like trabeculae (transverse loading). Archimedes' principle was applied to determine bone density parameters. The cancellous bone was in axial loading 3.4 times stiffer and 2.8 times stronger upon failure than in transverse loading. High coefficients of correlation were found among the various mechanical properties and between them and the apparent density and volume fraction. The anisotropic mechanical properties can possibly be considered as a mechanical adaptation to the loading of the condyle in vivo.

  11. The effects of the activation of the inner-hair-cell basolateral K+ channels on auditory nerve responses.

    PubMed

    Altoè, Alessandro; Pulkki, Ville; Verhulst, Sarah

    2018-07-01

    The basolateral membrane of the mammalian inner hair cell (IHC) expresses large voltage and Ca 2+ gated outward K + currents. To quantify how the voltage-dependent activation of the K + channels affects the functionality of the auditory nerve innervating the IHC, this study adopts a model of mechanical-to-neural transduction in which the basolateral K + conductances of the IHC can be made voltage-dependent or not. The model shows that the voltage-dependent activation of the K + channels (i) enhances the phase-locking properties of the auditory fiber (AF) responses; (ii) enables the auditory nerve to encode a large dynamic range of sound levels; (iii) enables the AF responses to synchronize precisely with the envelope of amplitude modulated stimuli; and (iv), is responsible for the steep offset responses of the AFs. These results suggest that the basolateral K + channels play a major role in determining the well-known response properties of the AFs and challenge the classical view that describes the IHC membrane as an electrical low-pass filter. In contrast to previous models of the IHC-AF complex, this study ascribes many of the AF response properties to fairly basic mechanisms in the IHC membrane rather than to complex mechanisms in the synapse. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Length-dependent mechanical properties of gold nanowires

    NASA Astrophysics Data System (ADS)

    Han, Jing; Fang, Liang; Sun, Jiapeng; Han, Ying; Sun, Kun

    2012-12-01

    The well-known "size effect" is not only related to the diameter but also to the length of the small volume materials. It is unfortunate that the length effect on the mechanical behavior of nanowires is rarely explored in contrast to the intensive studies of the diameter effect. The present paper pays attention to the length-dependent mechanical properties of <111>-oriented single crystal gold nanowires employing the large-scale molecular dynamics simulation. It is discovered that the ultrashort Au nanowires exhibit a new deformation and failure regime-high elongation and high strength. The constrained dislocation nucleation and transient dislocation slipping are observed as the dominant mechanism for such unique combination of high strength and high elongation. A mechanical model based on image force theory is developed to provide an insight to dislocation nucleation and capture the yield strength and nucleation site of first partial dislocation indicated by simulation results. Increasing the length of the nanowires, the ductile-to-brittle transition is confirmed. And the new explanation is suggested in the predict model of this transition. Inspired by the superior properties, a new approach to strengthen and toughen nanowires-hard/soft/hard sandwich structured nanowires is suggested. A preliminary evidence from the molecular dynamics simulation corroborates the present opinion.

  13. Cosmic web and environmental dependence of screening: Vainshtein vs. chameleon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falck, Bridget; Koyama, Kazuya; Zhao, Gong-Bo, E-mail: bridget.falck@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk, E-mail: gong-bo.zhao@port.ac.uk

    Theories which modify general relativity to explain the accelerated expansion of the Universe often use screening mechanisms to satisfy constraints on Solar System scales. We investigate the effects of the cosmic web and the local environmental density of dark matter halos on the screening properties of the Vainshtein and chameleon screening mechanisms. We compare the cosmic web morphology of dark matter particles, mass functions of dark matter halos, mass and radial dependence of screening, velocity dispersions and peculiar velocities, and environmental dependence of screening mechanisms in f(R) and nDGP models. Using the ORIGAMI cosmic web identification routine we find thatmore » the Vainshtein mechanism depends on the cosmic web morphology of dark matter particles, since these are defined according to the dimensionality of their collapse, while the chameleon mechanism shows no morphology dependence. The chameleon screening of halos and their velocity dispersions depend on halo mass, and small halos and subhalos can be environmentally screened in the chameleon mechanism. On the other hand, the screening of halos in the Vainshtein mechanism does not depend on mass nor environment, and their velocity dispersions are suppressed. The peculiar velocities of halos in the Vainshtein mechanism are enhanced because screened objects can still feel the fifth force generated by external fields, while peculiar velocities of chameleon halos are suppressed when the halo centers are screened.« less

  14. Experimental studies on the physico-mechanical properties of jet-grout columns in sandy and silty soils

    NASA Astrophysics Data System (ADS)

    Akin, Muge K.

    2016-04-01

    The term of ground improvement states to the modification of the engineering properties of soils. Jet-grouting is one of the grouting methods among various ground improvement techniques. During jet-grouting, different textures of columns can be obtained depending on the characteristics of surrounding subsoil as well as the adopted jet-grouting system for each site is variable. In addition to textural properties, strength and index parameters of jet-grout columns are highly affected by the adjacent soil. In this study, the physical and mechanical properties of jet-grout columns constructed at two different sites in silty and sandy soil conditions were determined by laboratory tests. A number of statistical relationships between physical and mechanical properties of soilcrete were established in this study in order to investigate the dependency of numerous variables. The relationship between qu and γd is more reliable for sandy soilcrete than that of silty columns considering the determination coefficients. Positive linear relationships between Vp and γd with significantly high determination coefficients were obtained for the jet-grout columns in silt and sand. The regression analyses indicate that the P-wave velocity is a very dominant parameter for the estimation of physical and mechanical properties of jet-grout columns and should be involved during the quality control of soilcrete material despite the intensive use of uniaxial compressive strength test. Besides, it is concluded that the dry unit weight of jet-grout column is a good indicator of the efficiency of employed operational parameters during jet-grouting.

  15. Versatile mechanical properties of novel g-SiC x monolayers from graphene to silicene: a first-principles study.

    PubMed

    Lu, X K; Xin, T Y; Zhang, Q; Xu, Q; Wei, T H; Wang, Y X

    2018-08-03

    Recently, a series of graphene-like binary monolayers (g-SiC x ), where Si partly substitutes the C positions in graphene, have been obtained by tailoring the band gaps of graphene and silicene that have made them a promising material for application in opto-electronic devices. Subsequently, evaluating the mechanical properties of g-SiC x has assumed great importance for engineering applications. In this study, we quantified the in-plane mechanical properties of g-SiC x (x = 7, 5, 3, 2 and 1) monolayers (also including graphene and silicene) based on density function theory. It was found that the mechanical parameters of g-SiC x , such as the ideal strength, Young's modulus, shear modulus, Poisson's ratio, as well as fracture toughness, are overall related to the ratio of Si-C to C-C bonds, which varies with Si concentration. However, for g-SiC 7 and g-SiC 3 , the mechanical properties seem to depend on the structure because in g-SiC 7 , the C-C bond strength is severely weakened by abnormal stretching, and in g-SiC 3 , conjugation structure is formed. The microscopic failure of g-SiC x exhibits diverse styles depending on the more complex structural deformation modes introduced by Si substitution. We elaborated the structure-properties relationship of g-SiC x during the failure process, and in particular, found that the structural transformation of g-SiC 3 and g-SiC is due to the singular symmetry of their structure. Due to the homogeneous phase, all the g-SiC x investigated in this study preserve rigorous isotropic Young's moduli and Poisson's ratios. With versatile mechanical performances, the family of g-SiC x may facilitate the design of advanced two-dimensional materials to meet the needs for practical mechanical engineering applications. The results offer a fundamental understanding of the mechanical behaviors of g-SiC x monolayers.

  16. Genetics of Amino Acid Taste and Appetite.

    PubMed

    Bachmanov, Alexander A; Bosak, Natalia P; Glendinning, John I; Inoue, Masashi; Li, Xia; Manita, Satoshi; McCaughey, Stuart A; Murata, Yuko; Reed, Danielle R; Tordoff, Michael G; Beauchamp, Gary K

    2016-07-01

    The consumption of amino acids by animals is controlled by both oral and postoral mechanisms. We used a genetic approach to investigate these mechanisms. Our studies have shown that inbred mouse strains differ in voluntary amino acid consumption, and these differences depend on sensory and nutritive properties of amino acids. Like humans, mice perceive some amino acids as having a sweet (sucrose-like) taste and others as having an umami (glutamate-like) taste. Mouse strain differences in the consumption of some sweet-tasting amino acids (d-phenylalanine, d-tryptophan, and l-proline) are associated with polymorphisms of a taste receptor, type 1, member 3 gene (Tas1r3), and involve differential peripheral taste responsiveness. Strain differences in the consumption of some other sweet-tasting amino acids (glycine, l-alanine, l-glutamine, and l-threonine) do not depend on Tas1r3 polymorphisms and so must be due to allelic variation in other, as yet unknown, genes involved in sweet taste. Strain differences in the consumption of l-glutamate may depend on postingestive rather than taste mechanisms. Thus, genes and physiologic mechanisms responsible for strain differences in the consumption of each amino acid depend on the nature of its taste and postingestive properties. Overall, mouse strain differences in amino acid taste and appetite have a complex genetic architecture. In addition to the Tas1r3 gene, these differences depend on other genes likely involved in determining the taste and postingestive effects of amino acids. The identification of these genes may lead to the discovery of novel mechanisms that regulate amino acid taste and appetite. © 2016 American Society for Nutrition.

  17. Genetics of Amino Acid Taste and Appetite123

    PubMed Central

    Bosak, Natalia P; Glendinning, John I; Inoue, Masashi; Li, Xia; Manita, Satoshi; McCaughey, Stuart A; Murata, Yuko; Beauchamp, Gary K

    2016-01-01

    The consumption of amino acids by animals is controlled by both oral and postoral mechanisms. We used a genetic approach to investigate these mechanisms. Our studies have shown that inbred mouse strains differ in voluntary amino acid consumption, and these differences depend on sensory and nutritive properties of amino acids. Like humans, mice perceive some amino acids as having a sweet (sucrose-like) taste and others as having an umami (glutamate-like) taste. Mouse strain differences in the consumption of some sweet-tasting amino acids (d-phenylalanine, d-tryptophan, and l-proline) are associated with polymorphisms of a taste receptor, type 1, member 3 gene (Tas1r3), and involve differential peripheral taste responsiveness. Strain differences in the consumption of some other sweet-tasting amino acids (glycine, l-alanine, l-glutamine, and l-threonine) do not depend on Tas1r3 polymorphisms and so must be due to allelic variation in other, as yet unknown, genes involved in sweet taste. Strain differences in the consumption of l-glutamate may depend on postingestive rather than taste mechanisms. Thus, genes and physiologic mechanisms responsible for strain differences in the consumption of each amino acid depend on the nature of its taste and postingestive properties. Overall, mouse strain differences in amino acid taste and appetite have a complex genetic architecture. In addition to the Tas1r3 gene, these differences depend on other genes likely involved in determining the taste and postingestive effects of amino acids. The identification of these genes may lead to the discovery of novel mechanisms that regulate amino acid taste and appetite. PMID:27422518

  18. Cytoskeletal changes in actin and microtubules underlie the developing surface mechanical properties of sensory and supporting cells in the mouse cochlea

    PubMed Central

    Szarama, Katherine B.; Gavara, Núria; Petralia, Ronald S.; Kelley, Matthew W.; Chadwick, Richard S.

    2012-01-01

    Correct patterning of the inner ear sensory epithelium is essential for the conversion of sound waves into auditory stimuli. Although much is known about the impact of the developing cytoskeleton on cellular growth and cell shape, considerably less is known about the role of cytoskeletal structures on cell surface mechanical properties. In this study, atomic force microscopy (AFM) was combined with fluorescence imaging to show that developing inner ear hair cells and supporting cells have different cell surface mechanical properties with different developmental time courses. We also explored the cytoskeletal organization of developing sensory and non-sensory cells, and used pharmacological modulation of cytoskeletal elements to show that the developmental increase of hair cell stiffness is a direct result of actin filaments, whereas the development of supporting cell surface mechanical properties depends on the extent of microtubule acetylation. Finally, this study found that the fibroblast growth factor signaling pathway is necessary for the developmental time course of cell surface mechanical properties, in part owing to the effects on microtubule structure. PMID:22573615

  19. Temperature effects on nanostructure and mechanical properties of single-nanoparticle thick membranes.

    DOE PAGES

    Salerno, Kenneth Michael; Grest, Gary S.

    2015-04-30

    In this study, the properties of mechanically stable single-nanoparticle (NP)-thick membranes have largely been studied at room temperature. How these membranes soften as nanoparticle ligands disorder with increasing temperature is unknown. Molecular dynamics simulations are used to probe the temperature dependence of the mechanical and nanostructural properties of nanoparticle membranes made of 6 nm diameter Au nanoparticles coated with dodecanethiol ligands and terminated with either methyl (CH 3) or carboxyl (COOH) terminal groups. For methyl-terminated ligands, interactions along the alkane chain provide mechanical stiffness, with a Young's modulus of 1.7 GPa at 300 K. For carboxyl-terminated chains, end-group interactions aremore » significant, producing stiffer membranes at all temperatures, with a Young's modulus of 3.8 GPa at 300 K. For both end-group types, membrane stiffness is reduced to zero at about 400 K. Ligand structure and mechanical properties of membranes at 300 K that have been annealed at 400 K are comparable to samples that do not undergo thermal annealing.« less

  20. 3D printing of an interpenetrating network hydrogel material with tunable viscoelastic properties.

    PubMed

    Bootsma, Katherine; Fitzgerald, Martha M; Free, Brandon; Dimbath, Elizabeth; Conjerti, Joe; Reese, Greg; Konkolewicz, Dominik; Berberich, Jason A; Sparks, Jessica L

    2017-06-01

    Interpenetrating network (IPN) hydrogel materials are recognized for their unique mechanical properties. While IPN elasticity and toughness properties have been explored in previous studies, the factors that impact the time-dependent stress relaxation behavior of IPN materials are not well understood. Time-dependent (i.e. viscoelastic) mechanical behavior is a critical design parameter in the development of materials for a variety of applications, such as medical simulation devices, flexible substrate materials, cellular mechanobiology substrates, or regenerative medicine applications. This study reports a novel technique for 3D printing alginate-polyacrylamide IPN gels with tunable elastic and viscoelastic properties. The viscoelastic stress relaxation behavior of the 3D printed alginate-polyacrylamide IPN hydrogels was influenced most strongly by varying the concentration of the acrylamide cross-linker (MBAA), while the elastic modulus was affected most by varying the concentration of total monomer material. The material properties of our 3D printed IPN constructs were consistent with those reported in the biomechanics literature for soft tissues such as skeletal muscle, cardiac muscle, skin and subcutaneous tissue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Transverse crack initiation under combined thermal and mechanical loading of Fibre Metal Laminates and Glass Fibre Reinforced Polymers

    NASA Astrophysics Data System (ADS)

    van de Camp, W.; Dhallé, M. M. J.; Warnet, L.; Wessel, W. A. J.; Vos, G. S.; Akkerman, R.; ter Brake, H. J. M.

    2017-02-01

    The paper describes a temperature-dependent extension of the classical laminate theory (CLT) that may be used to predict the mechanical behaviour of Fibre Metal Laminates (FML) at cryogenic conditions, including crack initiation. FML are considered as a possible alternative class of structural materials for the transport and storage of liquified gasses such as LNG. Combining different constituents in a laminate opens up the possibility to enhance its functionality, e.g. offering lower specific weight and increased damage tolerance. To explore this possibility, a test programme is underway at the University of Twente to study transverse crack initiation in different material combinations under combined thermal and mechanical loading. Specifically, the samples are tested in a three-point bending experiment at temperatures ranging from 77 to 293 K. These tests will serve as a validation of the model presented in this paper which, by incorporating temperature-dependent mechanical properties and differential thermal expansion, will allow to select optimal material combinations and laminate layouts. By combining the temperature-dependent mechanical properties and the differential thermal contraction explicitly, the model allows for a more accurate estimate of the resulting thermal stresses which can then be compared to the strength of the constituent materials.

  2. Superplastic Creep of Metal Nanowires From Rate-Dependent Plasticity Transition

    DOE PAGES

    Tao, Weiwei; Cao, Penghui; Park, Harold S.

    2018-04-30

    Understanding the time-dependent mechanical behavior of nanomaterials such as nanowires is essential to predict their reliability in nanomechanical devices. This understanding is typically obtained using creep tests, which are the most fundamental loading mechanism by which the time dependent deformation of materials is characterized. However, due to existing challenges facing both experimentalists and theorists, the time dependent mechanical response of nanowires is not well-understood. Here, we use atomistic simulations that can access experimental time scales to examine the creep of single-crystal face-centered cubic metal (Cu, Ag, Pt) nanowires. Here, we report that both Cu and Ag nanowires show significantly increasedmore » ductility and superplasticity under low creep stresses, where the superplasticity is driven by a rate-dependent transition in defect nucleation from twinning to trailing partial dislocations at the micro- or millisecond time scale. The transition in the deformation mechanism also governs a corresponding transition in the stress-dependent creep time at the microsecond (Ag) and millisecond (Cu) time scales. Overall, this work demonstrates the necessity of accessing time scales that far exceed those seen in conventional atomistic modeling for accurate insights into the time-dependent mechanical behavior and properties of nanomaterials.« less

  3. Superplastic Creep of Metal Nanowires from Rate-Dependent Plasticity Transition.

    PubMed

    Tao, Weiwei; Cao, Penghui; Park, Harold S

    2018-05-22

    Understanding the time-dependent mechanical behavior of nanomaterials such as nanowires is essential to predict their reliability in nanomechanical devices. This understanding is typically obtained using creep tests, which are the most fundamental loading mechanism by which the time-dependent deformation of materials is characterized. However, due to existing challenges facing both experimentalists and theorists, the time-dependent mechanical response of nanowires is not well-understood. Here, we use atomistic simulations that can access experimental time scales to examine the creep of single-crystal face-centered cubic metal (Cu, Ag, Pt) nanowires. We report that both Cu and Ag nanowires show significantly increased ductility and superplasticity under low creep stresses, where the superplasticity is driven by a rate-dependent transition in defect nucleation from twinning to trailing partial dislocations at the micro- or millisecond time scale. The transition in the deformation mechanism also governs a corresponding transition in the stress-dependent creep time at the microsecond (Ag) and millisecond (Cu) time scales. Overall, this work demonstrates the necessity of accessing time scales that far exceed those seen in conventional atomistic modeling for accurate insights into the time-dependent mechanical behavior and properties of nanomaterials.

  4. Superplastic Creep of Metal Nanowires From Rate-Dependent Plasticity Transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Weiwei; Cao, Penghui; Park, Harold S.

    Understanding the time-dependent mechanical behavior of nanomaterials such as nanowires is essential to predict their reliability in nanomechanical devices. This understanding is typically obtained using creep tests, which are the most fundamental loading mechanism by which the time dependent deformation of materials is characterized. However, due to existing challenges facing both experimentalists and theorists, the time dependent mechanical response of nanowires is not well-understood. Here, we use atomistic simulations that can access experimental time scales to examine the creep of single-crystal face-centered cubic metal (Cu, Ag, Pt) nanowires. Here, we report that both Cu and Ag nanowires show significantly increasedmore » ductility and superplasticity under low creep stresses, where the superplasticity is driven by a rate-dependent transition in defect nucleation from twinning to trailing partial dislocations at the micro- or millisecond time scale. The transition in the deformation mechanism also governs a corresponding transition in the stress-dependent creep time at the microsecond (Ag) and millisecond (Cu) time scales. Overall, this work demonstrates the necessity of accessing time scales that far exceed those seen in conventional atomistic modeling for accurate insights into the time-dependent mechanical behavior and properties of nanomaterials.« less

  5. Fabrication and characterization of carbon nanotube turfs

    NASA Astrophysics Data System (ADS)

    Qiu, Anqi

    Carbon nanotube turfs are vertically aligned, slightly tortuous and entangled functional nanomaterials that exhibit high thermal and electrical properties. CNT turfs exhibit unique combinations of thermal and electrical conductivity, energy absorbing capability, low density and adhesive behavior. The objective of this study is to fabricate, measure, manipulate and characterize CNT turfs and thus determine the relationship between a turf's properties and its morphology, and provide guidance for developing links between turf growth conditions and of the subsequent turf properties. Nanoindentation was utilized to determine the mechanical and in situ electrical properties of CNT turfs. Elastic properties do not vary significantly laterally within a single turf, quantifying for the first time the ability to treat the turf as a mechanical continuum throughout. The use of the average mechanical properties for any given turf should be suitable for design purpose without the necessity of accounting for lateral spatial variation in structure. Properties variation based on time dependency, rate dependency, adhesive behavior and energy absorption and dissipation behavior have been investigated for these CNT turfs. Electrical properties measurements of CNT turfs have been carried out and show that a constant electrical current at a constant penetration depth indicates that a constant number of CNTs in contact with the tip; combining with the results that adhesive load increased with an increasing penetration hold time, thus we conclude that during a hold period of nanoindentation, individual tubes increase their individual attachment to the tip. CNT turfs show decreased adhesion and modulus after exposure to an electron beam due to carbon deposition and subsequent oxidation. To increase the modulus of the turf, axial compression and solvent capillary were used to increase the density of the turf by up to 15 times. Structure-property relationships were determined from the density and tortuosity measurements carried out through in situ electrical measurements and directionality measurements. Increasing density increases the mechanical properties as well as electrical conductivity. The modulus increased with a lower tortuosity, which may be related to the compressive buckling positioning.

  6. Effects of frequency- and direction-dependent elastic materials on linearly elastic MRE image reconstructions

    NASA Astrophysics Data System (ADS)

    Perreard, I. M.; Pattison, A. J.; Doyley, M.; McGarry, M. D. J.; Barani, Z.; Van Houten, E. E.; Weaver, J. B.; Paulsen, K. D.

    2010-11-01

    The mechanical model commonly used in magnetic resonance elastography (MRE) is linear elasticity. However, soft tissue may exhibit frequency- and direction-dependent (FDD) shear moduli in response to an induced excitation causing a purely linear elastic model to provide an inaccurate image reconstruction of its mechanical properties. The goal of this study was to characterize the effects of reconstructing FDD data using a linear elastic inversion (LEI) algorithm. Linear and FDD phantoms were manufactured and LEI images were obtained from time-harmonic MRE acquisitions with variations in frequency and driving signal amplitude. LEI responses to artificially imposed uniform phase shifts in the displacement data from both purely linear elastic and FDD phantoms were also evaluated. Of the variety of FDD phantoms considered, LEI appeared to tolerate viscoelastic data-model mismatch better than deviations caused by poroelastic and anisotropic mechanical properties in terms of visual image contrast. However, the estimated shear modulus values were substantially incorrect relative to independent mechanical measurements even in the successful viscoelastic cases and the variations in mean values with changes in experimental conditions associated with uniform phase shifts, driving signal frequency and amplitude were unpredictable. Overall, use of LEI to reconstruct data acquired in phantoms with FDD material properties provided biased results under the best conditions and significant artifacts in the worst cases. These findings suggest that the success with which LEI is applied to MRE data in tissue will depend on the underlying mechanical characteristics of the tissues and/or organs systems of clinical interest.

  7. Effects of frequency- and direction-dependent elastic materials on linearly elastic MRE image reconstructions.

    PubMed

    Perreard, I M; Pattison, A J; Doyley, M; McGarry, M D J; Barani, Z; Van Houten, E E; Weaver, J B; Paulsen, K D

    2010-11-21

    The mechanical model commonly used in magnetic resonance elastography (MRE) is linear elasticity. However, soft tissue may exhibit frequency- and direction-dependent (FDD) shear moduli in response to an induced excitation causing a purely linear elastic model to provide an inaccurate image reconstruction of its mechanical properties. The goal of this study was to characterize the effects of reconstructing FDD data using a linear elastic inversion (LEI) algorithm. Linear and FDD phantoms were manufactured and LEI images were obtained from time-harmonic MRE acquisitions with variations in frequency and driving signal amplitude. LEI responses to artificially imposed uniform phase shifts in the displacement data from both purely linear elastic and FDD phantoms were also evaluated. Of the variety of FDD phantoms considered, LEI appeared to tolerate viscoelastic data-model mismatch better than deviations caused by poroelastic and anisotropic mechanical properties in terms of visual image contrast. However, the estimated shear modulus values were substantially incorrect relative to independent mechanical measurements even in the successful viscoelastic cases and the variations in mean values with changes in experimental conditions associated with uniform phase shifts, driving signal frequency and amplitude were unpredictable. Overall, use of LEI to reconstruct data acquired in phantoms with FDD material properties provided biased results under the best conditions and significant artifacts in the worst cases. These findings suggest that the success with which LEI is applied to MRE data in tissue will depend on the underlying mechanical characteristics of the tissues and/or organs systems of clinical interest.

  8. Low-Temperature Variation of Acoustic Velocity in PDMS for High-Frequency Applications.

    PubMed

    Streque, Jeremy; Rouxel, Didier; Talbi, Abdelkrim; Thomassey, Matthieu; Vincent, Brice

    2018-05-01

    Polydimethylsiloxane (PDMS) and other related silicon-based polymers are among the most widely employed elastomeric materials in microsystems, owing to their physical and chemical properties. Meanwhile, surface acoustic wave (SAW) and bulk acoustic wave (BAW) sensors and filters have been vastly explored for sensing and wireless applications. Many fields could benefit from the combined use of acoustic wave devices, and polydimethylsiloxane-based soft-substrates, microsystems, or packaging elements. The mechanical constants of PDMS strongly depend on frequency, similar to rubber materials. This brings to the exploration of the specific mechanical properties of PDMS encountered at high frequency, required for its exploitation in SAW or BAW devices. First, low-frequency mechanical behavior is confirmed from stress strain measurements, remaining useful for the exploitation of PDMS as a soft substrate or packaging material. The study, then, proposes a temperature-dependent, high-frequency mechanical study of PDMS based on Brillouin spectroscopy to determine the evolution of the longitudinal acoustic velocity in this material, which constitutes the main mechanical parameter for the design of acoustic wave devices. The PDMS glass transition is then retrieved by differential scanning calorimetry in order to confirm the observations made by Brillouin spectroscopy. This paper validates Brillouin spectroscopy as a very suitable characterization technique for the retrieval of longitudinal mechanical properties at low temperature, as a preliminary investigation for the design of acoustic wave devices coupled with soft materials.

  9. Temperature-Dependent Electrical and Micromechanical Properties of Lanthanum Titanate with Additions of Yttria

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.

    2010-01-01

    Temperature-dependent elastic properties were determined by establishing continuous flexural vibrations in the material at its lowest resonance frequency of 31tHz. The imaginary part of the complex impedance plotted as a function of frequency and temperature reveals a thermally activated peak, which decreases in magnitude as the temperature increases. Additions of yttria do not degrade the electromechanical in particularly the elastic and anelastic properties of lanthanum titanate. Y2O3/La2Ti2O7 exhibits extremely low internal friction and hence may be more mechanical fatigue-resistant at low strains.

  10. Influence of Ligament Properties on Knee Mechanics in Walking

    PubMed Central

    Smith, Colin R.; Lenhart, Rachel L.; Kaiser, Jarred; Vignos, Mike; Thelen, Darryl G.

    2016-01-01

    Computational knee models provide a powerful platform to investigate the effects of injury and surgery on functional knee behavior. The objective of this study was to use a multibody knee model to investigate the influence of ligament properties on tibiofemoral kinematics and cartilage contact pressures in the stance phase of walking. The knee model included 14 ligament bundles and articular cartilage contact acting across the tibiofemoral and patellofemoral joints. The knee was incorporated into a lower extremity musculoskeletal model and used to simulate knee mechanics during the stance phase of normal walking. A Monte Carlo approach was employed to assess the influence ligament stiffness and reference strains on knee mechanics. The ACL, MCL and posterior capsule properties exhibited significant influence on anterior tibial translation at heel strike, with the ACL acting as the primary restraint to anterior translation in mid-stance. The MCL and LCL exhibited the greatest influence on tibial rotation from heel strike through mid-stance. Simulated tibial plateau contact location was dependent on the ACL, MCL and LCL properties, while pressure magnitudes were most dependent on the ACL. A decrease in ACL stiffness or reference strain significantly increased average contact pressure in mid-stance, with the pressure migrating posteriorly on the medial tibial plateau. These ligament-dependent shifts in tibiofemoral cartilage contact during walking are potentially relevant to consider when investigating the causes of early onset osteoarthritis following knee ligament injury and surgical treatment. PMID:26408997

  11. Is It Possible To Fabricate a Nanocomposite with Excellent Mechanical Property Using Unmodified Inorganic Nanoparticles Directly?

    PubMed

    Zhang, Chunhua; Xia, Liangjun; Lyu, Pei; Wang, Yun; Li, Chen; Xiao, Xingfang; Dai, Fangyin; Xu, Weilin; Liu, Xin; Deng, Bo

    2018-05-09

    Unmodified ZrO 2 nanoparticles (ZDNPs) are used for the enhancement of polyurethane (PU) films. Optimized strain and toughness of PU/ZDNP nanocomposite at 9.09 wt % ZDNPs are up to 2714.6%, and 280.8 MJ m -3 , respectively. The unique bimodal ZDNP aggregate size distribution which exploits both interfacial positively and negatively toughening mechanisms accounts mainly for the excellent mechanical property of PU/ZDNP nanocomposite. The dependence of different toughening mechanisms on three sizes of ZDNP aggregates is summarized. These findings provide a new avenue for the industrial production of nanocomposites at low cost without surface modification of inorganic nanoparticles.

  12. Relationship between disease-specific structures of amyloid fibrils and their mechanical properties

    NASA Astrophysics Data System (ADS)

    Yoon, Gwonchan; Kab Kim, Young; Eom, Kilho; Na, Sungsoo

    2013-01-01

    It has recently been reported that the mechanical behavior of prion nanofibrils may play a critical role in expression of neurodegenerative diseases. In this work, we have studied the mechanical behavior of HET-s prion nanofibrils using an elastic network model. We have shown that the mechanical properties of prion nanofibrils formed as left-handed β-helices are different from those of non-prion nanofibrils formed as right-handed β-helices. In particular, the bending behavior of prion nanofibrils depends on the length of the nanofibril and that the bending rigidity of the prion nanofibril is larger than that of the non-prion nanofibril.

  13. Self-Assembled Ag-MXA Superclusters with Structure-Dependent Mechanical Properties.

    PubMed

    Qin, Xiaoyun; Luo, Dan; Xue, Zhenjie; Song, Qian; Wang, Tie

    2018-03-01

    The low elastic modulus and time-consuming formation process represent the major challenges that impede the penetration of nanoparticle superstructures into daily life applications. As observed in the molecular or atomic crystals, more effective interactions between adjacent nanoparticles would introduce beneficial features to assemblies enabling optimized mechanical properties. Here, a straightforward synthetic strategy is showed that allows fast and scalable fabrication of 2D Ag-mercaptoalkyl acid superclusters of either hexagonal or lamellar topology. Remarkably, these ordered superstructures exhibit a structure-dependent elastic modulus which is subject to the tether length of straight-chain mercaptoalkyl acids or the ratio between silver and tether molecules. These superclusters are plastic and moldable against arbitrarily shaped masters of macroscopic dimensions, thereby opening a wealth of possibilities to develop more nanocrystals with practically useful nanoscopic properties. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Tensile properties of helical auxetic structures: A numerical study

    NASA Astrophysics Data System (ADS)

    Wright, J. R.; Sloan, M. R.; Evans, K. E.

    2010-08-01

    This paper discusses a helical auxetic structure which has a diverse range of practical applications. The mechanical properties of the system can be determined by particular combinations of geometry and component material properties; finite element analysis is used to investigate the static behavior of these structures under tension. Modeling criteria are determined and design issues are discussed. A description of the different strain-dependent mechanical phases is provided. It is shown that the stiffnesses of the component fibers and the initial helical wrap angle are critical design parameters, and that strain-dependent changes in cross-section must be taken into consideration: we observe that the structures exhibit nonlinear behavior due to nonzero component Poisson's ratios. Negative Poisson's ratios for the helical structures as low as -5 are shown. While we focus here on the structure as a yarn our findings are, in principle, scaleable.

  15. Dynamical effects on the core-mantle boundary from depth-dependent thermodynamical properties of the lower mantle

    NASA Technical Reports Server (NTRS)

    Zhang, Shuxia; Yuen, David A.

    1988-01-01

    A common assumption in modeling dynamical processes in the lower mantle is that both the thermal expansivity and thermal conductivity are reasonably constant. Recent work from seismic equation of state leads to substantially higher values for the thermal conductivity and much lower thermal expansivity values in the deep mantle. The dynamical consequences of incorporating depth-dependent thermodynamic properties on the thermal-mechanical state of the lower mantle are examined with the spherical-shell mean-field equations. It is found that the thermal structure of the seismically resolved anomalous zone at the base of the mantle is strongly influenced by these variable properties and, in particular, that the convective distortion of the core-mantle boundary (CMB) is reduced with the decreasing thermal expansivity. Such a reduction of the dynamically induced topography from pure thermal convection would suggest that some other dynamical mechanism must be operating at the CMB.

  16. Nanomechanics of Cells and Biomaterials Studied by Atomic Force Microscopy.

    PubMed

    Kilpatrick, Jason I; Revenko, Irène; Rodriguez, Brian J

    2015-11-18

    The behavior and mechanical properties of cells are strongly dependent on the biochemical and biomechanical properties of their microenvironment. Thus, understanding the mechanical properties of cells, extracellular matrices, and biomaterials is key to understanding cell function and to develop new materials with tailored mechanical properties for tissue engineering and regenerative medicine applications. Atomic force microscopy (AFM) has emerged as an indispensable technique for measuring the mechanical properties of biomaterials and cells with high spatial resolution and force sensitivity within physiologically relevant environments and timescales in the kPa to GPa elastic modulus range. The growing interest in this field of bionanomechanics has been accompanied by an expanding array of models to describe the complexity of indentation of hierarchical biological samples. Furthermore, the integration of AFM with optical microscopy techniques has further opened the door to a wide range of mechanotransduction studies. In recent years, new multidimensional and multiharmonic AFM approaches for mapping mechanical properties have been developed, which allow the rapid determination of, for example, cell elasticity. This Progress Report provides an introduction and practical guide to making AFM-based nanomechanical measurements of cells and surfaces for tissue engineering applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Characterization of size-dependent mechanical properties of tip-growing cells using a lab-on-chip device.

    PubMed

    Hu, Chengzhi; Munglani, Gautam; Vogler, Hannes; Ndinyanka Fabrice, Tohnyui; Shamsudhin, Naveen; Wittel, Falk K; Ringli, Christoph; Grossniklaus, Ueli; Herrmann, Hans J; Nelson, Bradley J

    2016-12-20

    Quantification of mechanical properties of tissues, living cells, and cellular components is crucial for the modeling of plant developmental processes such as mechanotransduction. Pollen tubes are tip-growing cells that provide an ideal system to study the mechanical properties at the single cell level. In this article, a lab-on-a-chip (LOC) device is developed to quantitatively measure the biomechanical properties of lily (Lilium longiflorum) pollen tubes. A single pollen tube is fixed inside the microfluidic chip at a specific orientation and subjected to compression by a soft membrane. By comparing the deformation of the pollen tube at a given external load (compressibility) and the effect of turgor pressure on the tube diameter (stretch ratio) with finite element modeling, its mechanical properties are determined. The turgor pressure and wall stiffness of the pollen tubes are found to decrease considerably with increasing initial diameter of the pollen tubes. This observation supports the hypothesis that tip-growth is regulated by a delicate balance between turgor pressure and wall stiffness. The LOC device is modular and adaptable to a variety of cells that exhibit tip-growth, allowing for the straightforward measurement of mechanical properties.

  18. Probabilities for time-dependent properties in classical and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Losada, Marcelo; Vanni, Leonardo; Laura, Roberto

    2013-05-01

    We present a formalism which allows one to define probabilities for expressions that involve properties at different times for classical and quantum systems and we study its lattice structure. The formalism is based on the notion of time translation of properties. In the quantum case, the properties involved should satisfy compatibility conditions in order to obtain well-defined probabilities. The formalism is applied to describe the double-slit experiment.

  19. Non-equilibrium dynamics in disordered materials: Ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ohmura, Satoshi; Nagaya, Kiyonobu; Shimojo, Fuyuki; Yao, Makoto

    2015-08-01

    The dynamic properties of liquid B2O3 under pressure and highly-charged bromophenol molecule are studied by using molecular dynamics (MD) simulations based on density functional theory (DFT). Diffusion properties of covalent liquids under high pressure are very interesting in the sense that they show unexpected pressure dependence. It is found from our simulation that the magnitude relation of diffusion coefficients for boron and oxygen in liquid B2O3 shows the anomalous pressure dependence. The simulation clarified the microscopic origin of the anomalous diffusion properties. Our simulation also reveals the dissociation mechanism in the coulomb explosion of the highly-charged bromophenol molecule. When the charge state n is 6, hydrogen atom in the hydroxyl group dissociates at times shorter than 20 fs while all hydrogen atoms dissociate when n is 8. After the hydrogen dissociation, the carbon ring breaks at about 100 fs. There is also a difference on the mechanism of the ring breaking depending on charge states, in which the ring breaks with expanding (n = 6) or shrink (n = 8).

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohmura, Satoshi; Nagaya, Kiyonobu; Yao, Makoto

    The dynamic properties of liquid B{sub 2}O{sub 3} under pressure and highly-charged bromophenol molecule are studied by using molecular dynamics (MD) simulations based on density functional theory (DFT). Diffusion properties of covalent liquids under high pressure are very interesting in the sense that they show unexpected pressure dependence. It is found from our simulation that the magnitude relation of diffusion coefficients for boron and oxygen in liquid B{sub 2}O{sub 3} shows the anomalous pressure dependence. The simulation clarified the microscopic origin of the anomalous diffusion properties. Our simulation also reveals the dissociation mechanism in the coulomb explosion of the highly-chargedmore » bromophenol molecule. When the charge state n is 6, hydrogen atom in the hydroxyl group dissociates at times shorter than 20 fs while all hydrogen atoms dissociate when n is 8. After the hydrogen dissociation, the carbon ring breaks at about 100 fs. There is also a difference on the mechanism of the ring breaking depending on charge states, in which the ring breaks with expanding (n = 6) or shrink (n = 8)« less

  1. Influence of the powder mixture composition on the deposition coefficient and the properties of NI+B4C CGDS coatings

    NASA Astrophysics Data System (ADS)

    Kosarev, V. F.; Polukhin, A. A.; Ryashin, N. S.; Fomin, V. M.; Shikalov, V. S.

    2017-07-01

    The cold gas dynamic spray (CGDS) method used to form composite Ni+B4C coatings from mechanical powder mixture with various content of abrasive components is investigated, and the surface and microstructure of these coatings are considered. An experimental dependence of the deposition coefficient on the abrasive content in the mechanical powder mixture is obtained. The coatings are studied by interference profilometry, optical microscopy, and microindentation methods. The dependence of the bulk and mass B4C content in the sprayed material on the abrasive content in the sprayed powder mixture is obtained. The bulk B4C content in the coating c V ≈ 0.27 is attained. The dependence of the microhardness of composite CGDS coatings on the boron carbide content in them is investigated. The results of this paper demonstrate that the powder mixture composition significantly affects the CGDS coating growth and the properties of these coatings and can be used to control the properties of the CGDS cermet materials.

  2. The correlation between elongation at break and thermal decomposition of aged EPDM cable polymer

    NASA Astrophysics Data System (ADS)

    Šarac, T.; Devaux, J.; Quiévy, N.; Gusarov, A.; Konstantinović, M. J.

    2017-03-01

    The effect of simultaneous thermal and gamma irradiation ageing on the mechanical and physicochemical properties of industrial EPDM was investigated. Accelerated ageing, covering a wide range of dose rates, doses and temperatures, was preformed in stagnant air on EPDM polymer samples extracted from the cables in use in the Belgian nuclear power plants. The mechanical properties, ultimate tensile stress and elongation at break, are found to exhibit the strong dependence on the dose, ageing temperature and dose rate. The thermal decomposition of aged polymer is observed to be the dose dependent when thermogravimetry test is performed under air atmosphere. No dose dependence is observed when thermal decomposition is performed under nitrogen atmosphere. The thermal decomposition rates are found to fully mimic the reduction of elongation at break for all dose rates and ageing temperatures. This effect is argued to be the result of thermal and radiation mediated oxidation degradation process.

  3. Effect of pore architecture and stacking direction on mechanical properties of solid freeform fabrication-based scaffold for bone tissue engineering.

    PubMed

    Lee, Jung-Seob; Cha, Hwang Do; Shim, Jin-Hyung; Jung, Jin Woo; Kim, Jong Young; Cho, Dong-Woo

    2012-07-01

    Fabrication of a three-dimensional (3D) scaffold with increased mechanical strength may be an essential requirement for more advanced bone tissue engineering scaffolds. Various material- and chemical-based approaches have been explored to enhance the mechanical properties of engineered bone tissue scaffolds. In this study, the effects of pore architecture and stacking direction on the mechanical and cell proliferation properties of a scaffold were investigated. The 3D scaffold was prepared using solid freeform fabrication technology with a multihead deposition system. Various types of scaffolds with different pore architectures (lattice, stagger, and triangle types) and stacking directions (horizontal and vertical directions) were fabricated with a blend of polycaprolactone and poly lactic-co-glycolic acid. In compression tests, the triangle-type scaffold was the strongest among the experimental groups. Stacking direction affected the mechanical properties of scaffolds. An in vitro cell counting kit-8 assay showed no significant differences in optical density depending on the different pore architectures and stacking directions. In conclusion, mechanical properties of scaffolds can be enhanced by controlling pore architecture and stacking direction. Copyright © 2012 Wiley Periodicals, Inc.

  4. Effect of cobalt doping on the mechanical properties of ZnO nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vahtrus, Mikk; Šutka, Andris

    In this work, we investigate the influence of doping on the mechanical properties of ZnO nanowires (NWs) by comparing the mechanical properties of pure and Co-doped ZnO NWs grown in similar conditions and having the same crystallographic orientation [0001]. The mechanical characterization included three-point bending tests made with atomic force microscopy and cantilever beam bending tests performed inside scanning electron microscopy. It was found that the Young's modulus of ZnO NWs containing 5% of Co was approximately a third lower than that of the pure ZnO NWs. Bending strength values were comparable for both materials and in both cases weremore » close to theoretical strength indicating high quality of NWs. Dependence of mechanical properties on NW diameter was found for both doped and undoped ZnO NWs. - Highlights: •Effect of Co doping on the mechanical properties of ZnO nanowires is studied. •Co substitutes Zn atoms in ZnO crystal lattice. •Co addition affects crystal lattice parameters. •Co addition results in significantly decreased Young's modulus of ZnO. •Bending strength for doped and undoped wires is close to the theoretical strength.« less

  5. Influence of the grade on the variability of the mechanical properties of polypropylene waste.

    PubMed

    Jmal, Hamdi; Bahlouli, Nadia; Wagner-Kocher, Christiane; Leray, Dimitri; Ruch, Frédéric; Munsch, Jean-Nicolas; Nardin, Michel

    2018-05-01

    The prior properties of recycled polypropylene depend on the origin of waste deposits and its chemical constituents. To obtain specific properties with a predefine melt flow index of polypropylene, the suppliers of polymer introduce additives and fillers. However, the addition of additives and/or fillers can modify strongly the mechanical behaviour of recycled polypropylene. To understand the impact of the additives and fillers on the quasi-static mechanical behaviour, we consider, in this study, three different recycled polypropylenes with three different melt flow index obtained from different waste deposits. The chemical constituents of the additives and filler contents of the recycled polypropylenes are determined through thermo-physico-chemical analysis. Tensile and bending tests performed at different strain rates allow identifying the mechanical properties such as the elastic modulus, the yield stress, the maximum stress, and the failure mechanisms. The results obtained are compared with non-recycled polypropylene and with few researches to explain the combined effect of additives. Finally, a post-mortem analysis of the samples was carried out to make the link between the obtained mechanical properties and microstructure. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Mechanics of metal-catecholate complexes: The roles of coordination state and metal types

    PubMed Central

    Xu, Zhiping

    2013-01-01

    There have been growing evidences for the critical roles of metal-coordination complexes in defining structural and mechanical properties of unmineralized biological materials, including hardness, toughness, and abrasion resistance. Their dynamic (e.g. pH-responsive, self-healable, reversible) properties inspire promising applications of synthetic materials following this concept. However, mechanics of these coordination crosslinks, which lays the ground for predictive and rational material design, has not yet been well addressed. Here we present a first-principles study of representative coordination complexes between metals and catechols. The results show that these crosslinks offer stiffness and strength near a covalent bond, which strongly depend on the coordination state and type of metals. This dependence is discussed by analyzing the nature of bonding between metals and catechols. The responsive mechanics of metal-coordination is further mapped from the single-molecule level to a networked material. The results presented here provide fundamental understanding and principles for material selection in metal-coordination-based applications. PMID:24107799

  7. Hippocampal mechanisms for the context-dependent retrieval of episodes

    PubMed Central

    Hasselmo, Michael E.; Eichenbaum, Howard B.

    2008-01-01

    Behaviors ranging from delivering newspapers to waiting tables depend on remembering previous episodes to avoid incorrect repetition. Physiologically, this requires mechanisms for long-term storage and selective retrieval of episodes based on time of occurrence, despite variable intervals and similarity of events in a familiar environment. Here, this process has been modeled based on physiological properties of the hippocampal formation, including mechanisms for sustained activity in entorhinal cortex and theta rhythm oscillations in hippocampal subregions. The model simulates the context-sensitive firing properties of hippocampal neurons including trial specific firing during spatial alternation and trial by trial changes in theta phase precession on a linear track. This activity is used to guide behavior, and lesions of the hippocampal network impair memory-guided behavior. The model links data at the cellular level to behavior at the systems level, describing a physiologically plausible mechanism for the brain to recall a given episode which occurred at a specific place and time. PMID:16263240

  8. Plaster-based magnetite composite materials in construction

    NASA Astrophysics Data System (ADS)

    Klimenko, V. G.; Kashin, G. A.; Prikaznova, T. A.

    2018-03-01

    Calculation and experimental data demonstrate the possibility of using iron-ore concentrate of Lebedinsky Mining and Processing Plant (Lebedinsky GOK) in the production of plaster concrete. Their physical-mechanical, thermal and radiation protective properties were studied. Structurization mechanisms in plaster magnetite systems depending on the type of plaster binder, textures and the structure of plaster crystals providing for the design of composite materials with predetermined properties are suggested. Composite materials to ensure protection against X-ray radiation are obtained.

  9. Length and temperature dependence of the mechanical properties of finite-size carbyne

    NASA Astrophysics Data System (ADS)

    Yang, Xueming; Huang, Yanhui; Cao, Bingyang; To, Albert C.

    2017-09-01

    Carbyne is an ideal one-dimensional conductor and the thinnest interconnection in an ultimate nano-device and it requires an understanding of the mechanical properties that affect device performance and reliability. Here, we report the mechanical properties of finite-size carbyne, obtained by a molecular dynamics simulation study based on the adaptive intermolecular reactive empirical bond order potential. To avoid confusion in assigning the effective cross-sectional area of carbyne, the value of the effective cross-sectional area of carbyne (4.148 Å2) was deduced via experiment and adopted in our study. Ends-constraints effects on the ultimate stress (maximum force) of the carbyne chains are investigated, revealing that the molecular dynamics simulation results agree very well with the experimental results. The ultimate strength, Young's Modulus and maximum strain of carbyne are rather sensitive to the temperature and all decrease with the temperature. Opposite tendencies of the length dependence of the overall ultimate strength and maximum strain of carbyne at room temperature and very low temperature have been found, and analyses show that this originates in the ends effect of carbyne.

  10. Anomalously Soft Non-Euclidean Springs

    NASA Astrophysics Data System (ADS)

    Levin, Ido; Sharon, Eran

    2016-01-01

    In this work we study the mechanical properties of a frustrated elastic ribbon spring—the non-Euclidean minimal spring. This spring belongs to the family of non-Euclidean plates: it has no spontaneous curvature, but its lateral intrinsic geometry is described by a non-Euclidean reference metric. The reference metric of the minimal spring is hyperbolic, and can be embedded as a minimal surface. We argue that the existence of a continuous set of such isometric minimal surfaces with different extensions leads to a complete degeneracy of the bulk elastic energy of the minimal spring under elongation. This degeneracy is removed only by boundary layer effects. As a result, the mechanical properties of the minimal spring are unusual: the spring is ultrasoft with a rigidity that depends on the thickness t as t7 /2 and does not explicitly depend on the ribbon's width. Moreover, we show that as the ribbon is widened, the rigidity may even decrease. These predictions are confirmed by a numerical study of a constrained spring. This work is the first to address the unusual mechanical properties of constrained non-Euclidean elastic objects.

  11. Pillared graphene on the basis of zigzag carbon nanotubes for adsorption in medicine: mechanical properties

    NASA Astrophysics Data System (ADS)

    Kolesnikova, Anna S.; Mazepa, Margarita M.

    2018-02-01

    In nowadays the nanoscale materials are actively used in medicine, based on the properties of adsorption. One of the main problems of this field of medicine is the increase in specific surface of sorbent. We proposed to use carbon composites consisting of an extended in its directions graphene sheet with attached to it by chemical bonds zigzag carbon nanotubes (CNT). This paper presents the results of a theoretical study of the mechanical properties of graphene based on the CNT zigzag depending on the geometric dimensions of the composite (length and diameter of CNTs).

  12. Relationship of vibro-mechanical properties and microstructure of wood and varnish interface in string instruments

    NASA Astrophysics Data System (ADS)

    Sedighi Gilani, Marjan; Pflaum, Johanna; Hartmann, Stefan; Kaufmann, Rolf; Baumgartner, Michael; Schwarze, Francis Willis Mathew Robert

    2016-04-01

    Wood varnish coatings not only are aesthetically important, but also preserve the musical instrument from wear and fluctuations in the ambient humidity. Depending on the thickness, extent of penetration into the wood and the physical and mechanical properties after hardening, varnishes may change the mechanical and also vibro-acoustical properties of the coated wood. Contrary to studies on the chemistry of the varnish and primer used for old and contemporary musical instruments, the physical and mechanical properties of the varnished wood in relation to the geometry of their interface have been poorly studied. We implemented non-destructive test methods, i.e., vibration tests and X-ray tomography, to characterize the hardening-dependent change in the vibrational properties of master grade tone wood specimens after coating with four different varnishes. Two were manufactured in the laboratory, and two were supplied from master violin makers. For a controlled accelerated hardening of the varnish, a UV exposure method was used. It was demonstrated that varnishes increase wood damping, along and perpendicular to the grain directions. Varnishes reduce the sound radiation along the grain, but increase it in the perpendicular direction. Changes in the vibrational properties were discussed together with results of 3D images of wood and varnish microstructure, obtained from a customized tabletop X-ray microtomographic setup. For comparison, the microstructure of the interface of the varnished wood in the laboratory and of specimens from two old violins was analyzed with the same X-ray tomography setup. Laboratory varnishes with various compositions penetrated differently into the wood structure. One varnish of a master grade old violin had a higher density and was also thicker and penetrated weaker into the wood, which is more likely related to a more sophisticated primer and varnish application. The study demonstrates the importance of the vibro-mechanical properties of varnish, its chemical composition, thickness and penetration into wood.

  13. Anisotropic Mechanical Properties of Magnetically Aligned Fibrin Gels Measured by Magnetic Resonance Elastography

    PubMed Central

    Namani, Ravi; Wood, Matthew D.; Sakiyama-Elbert, Shelly E.; Bayly, Philip V.

    2009-01-01

    The anisotropic mechanical properties of magnetically aligned fibrin gels were measured by magnetic resonance elastography (MRE) and by a standard mechanical test: unconfined compression. Soft anisotropic biomaterials are notoriously difficult to characterize, especially in vivo. MRE is well-suited for efficient, non-invasive, and nondestructive assessment of shear modulus. Direction-dependent differences in shear modulus were found to be statistically significant for gels polymerized at magnetic fields of 11.7T and 4.7T compared to control gels. Mechanical anisotropy was greater in the gels polymerized at the higher magnetic field. These observations were consistent with results from unconfined compression tests. Analysis of confocal microscopy images of gels showed measurable alignment of fibrils in gels polymerized at 11.7T. This study provides direct, quantitative measurements of the anisotropy in mechanical properties that accompanies fibril alignment in fibrin gels. PMID:19656516

  14. Examining Mechanical Strength Characteristics of Selective Inhibition Sintered HDPE Specimens Using RSM and Desirability Approach

    NASA Astrophysics Data System (ADS)

    Rajamani, D.; Esakki, Balasubramanian

    2017-09-01

    Selective inhibition sintering (SIS) is a powder based additive manufacturing (AM) technique to produce functional parts with an inexpensive system compared with other AM processes. Mechanical properties of SIS fabricated parts are of high dependence on various process parameters importantly layer thickness, heat energy, heater feedrate, and printer feedrate. In this paper, examining the influence of these process parameters on evaluating mechanical properties such as tensile and flexural strength using Response Surface Methodology (RSM) is carried out. The test specimens are fabricated using high density polyethylene (HDPE) and mathematical models are developed to correlate the control factors to the respective experimental design response. Further, optimal SIS process parameters are determined using desirability approach to enhance the mechanical properties of HDPE specimens. Optimization studies reveal that, combination of high heat energy, low layer thickness, medium heater feedrate and printer feedrate yielded superior mechanical strength characteristics.

  15. Architectural and Mechanical Cues Direct Mesenchymal Stem Cell Interactions with Crosslinked Gelatin Scaffolds

    PubMed Central

    McAndrews, Kathleen M.; Kim, Min Jeong; Lam, Tuyet Y.; McGrail, Daniel J.

    2014-01-01

    Naturally derived biomaterials have emerged as modulators of cell function and tissue substitutes. Here, we developed crosslinked glutaraldehyde (GTA) scaffolds for the expansion and differentiation of mesenchymal stem cells (MSCs). The mechanical and architectural properties of the scaffolds were altered by varying the concentration of gelatin and GTA. Higher GTA concentrations were associated with an increase in more confined pores and osteogenic differentiation. In addition, myogenic potential varied with crosslinking degree, although bulk mechanical properties were unaltered. Correlation analysis revealed that ALP activity of differentiated MSCs on higher gelatin concentration scaffolds was dependent on traditional effectors, including environment elasticity and spread area. In contrast, the differentiation capacity of cells cultured on lower gelatin concentration scaffolds did not correlate with these factors, instead it was dependent on the hydrated pore structure. These results suggest that scaffold composition can determine what factors direct differentiation and may have critical implications for biomaterial design. PMID:24873687

  16. Two passive mechanical conditions modulate power generation by the outer hair cells

    PubMed Central

    Gracewski, Sheryl M.

    2017-01-01

    In the mammalian cochlea, small vibrations of the sensory epithelium are amplified due to active electro-mechanical feedback of the outer hair cells. The level of amplification is greater in the base than in the apex of the cochlea. Theoretical studies have used longitudinally varying active feedback properties to reproduce the location-dependent amplification. The active feedback force has been considered to be proportional to the basilar membrane displacement or velocity. An underlying assumption was that organ of Corti mechanics are governed by rigid body kinematics. However, recent progress in vibration measurement techniques reveals that organ of Corti mechanics are too complicated to be fully represented with rigid body kinematics. In this study, two components of the active feedback are considered explicitly—organ of Corti mechanics, and outer hair cell electro-mechanics. Physiological properties for the outer hair cells were incorporated, such as the active force gain, mechano-transduction properties, and membrane RC time constant. Instead of a kinematical model, a fully deformable 3D finite element model was used. We show that the organ of Corti mechanics dictate the longitudinal trend of cochlear amplification. Specifically, our results suggest that two mechanical conditions are responsible for location-dependent cochlear amplification. First, the phase of the outer hair cell’s somatic force with respect to its elongation rate varies along the cochlear length. Second, the local stiffness of the organ of Corti complex felt by individual outer hair cells varies along the cochlear length. We describe how these two mechanical conditions result in greater amplification toward the base of the cochlea. PMID:28880884

  17. Simple display system of mechanical properties of cells and their dispersion.

    PubMed

    Shimizu, Yuji; Kihara, Takanori; Haghparast, Seyed Mohammad Ali; Yuba, Shunsuke; Miyake, Jun

    2012-01-01

    The mechanical properties of cells are unique indicators of their states and functions. Though, it is difficult to recognize the degrees of mechanical properties, due to small size of the cell and broad distribution of the mechanical properties. Here, we developed a simple virtual reality system for presenting the mechanical properties of cells and their dispersion using a haptic device and a PC. This system simulates atomic force microscopy (AFM) nanoindentation experiments for floating cells in virtual environments. An operator can virtually position the AFM spherical probe over a round cell with the haptic handle on the PC monitor and feel the force interaction. The Young's modulus of mesenchymal stem cells and HEK293 cells in the floating state was measured by AFM. The distribution of the Young's modulus of these cells was broad, and the distribution complied with a log-normal pattern. To represent the mechanical properties together with the cell variance, we used log-normal distribution-dependent random number determined by the mode and variance values of the Young's modulus of these cells. The represented Young's modulus was determined for each touching event of the probe surface and the cell object, and the haptic device-generating force was calculated using a Hertz model corresponding to the indentation depth and the fixed Young's modulus value. Using this system, we can feel the mechanical properties and their dispersion in each cell type in real time. This system will help us not only recognize the degrees of mechanical properties of diverse cells but also share them with others.

  18. Simple Display System of Mechanical Properties of Cells and Their Dispersion

    PubMed Central

    Shimizu, Yuji; Kihara, Takanori; Haghparast, Seyed Mohammad Ali; Yuba, Shunsuke; Miyake, Jun

    2012-01-01

    The mechanical properties of cells are unique indicators of their states and functions. Though, it is difficult to recognize the degrees of mechanical properties, due to small size of the cell and broad distribution of the mechanical properties. Here, we developed a simple virtual reality system for presenting the mechanical properties of cells and their dispersion using a haptic device and a PC. This system simulates atomic force microscopy (AFM) nanoindentation experiments for floating cells in virtual environments. An operator can virtually position the AFM spherical probe over a round cell with the haptic handle on the PC monitor and feel the force interaction. The Young's modulus of mesenchymal stem cells and HEK293 cells in the floating state was measured by AFM. The distribution of the Young's modulus of these cells was broad, and the distribution complied with a log-normal pattern. To represent the mechanical properties together with the cell variance, we used log-normal distribution-dependent random number determined by the mode and variance values of the Young's modulus of these cells. The represented Young's modulus was determined for each touching event of the probe surface and the cell object, and the haptic device-generating force was calculated using a Hertz model corresponding to the indentation depth and the fixed Young's modulus value. Using this system, we can feel the mechanical properties and their dispersion in each cell type in real time. This system will help us not only recognize the degrees of mechanical properties of diverse cells but also share them with others. PMID:22479595

  19. Frequency-dependent micromechanics of cellularized biopolymer networks

    NASA Astrophysics Data System (ADS)

    Jones, Chris; Kim, Jihan; McIntyre, David; Sun, Bo

    Mechanical interactions between cells and the extracellular matrix (ECM) influence many cellular behaviors such as growth, differentiation, and migration. These are dynamic processes in which the cells actively remodel the ECM. Reconstituted collagen gel is a common model ECM for studying cell-ECM interactions in vitro because collagen is the most abundant component of mammalian ECM and gives the ECM its material stiffness. We embed micron-sized particles in collagen and use holographic optical tweezers to apply forces to the particles in multiple directions and over a range of frequencies up to 10 Hz. We calculate the local compliance and show that it is dependent on both the direction and frequency of the applied force. Performing the same measurement on many particles allows us to characterize the spatial inhomogeneity of the mechanical properties and shows that the compliance decreases at higher frequencies. Performing these measurements on cell-populated collagen gels shows that cellular remodeling of the ECM changes the mechanical properties of the collagen and we investigate whether this change is dependent on the local strain and distance from nearby cells.

  20. Correlation of mechanical properties with metallurgical structure for 18Ni 200 grade maraging steel at room and cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Wagner, J. A.

    1991-01-01

    An extensive metallurgical study is presented which is intended to explain variations in the mechanical properties of Ni18 200 grade maraging steel in various product forms and orientations. Fracture toughness and Charpy impact values are found to decrease with decreasing temperature and be dependent on product form, specimen orientation, and metallurgical condition. Fatigue crack growth rates are dependent on temperature only. Fractographic analysis reveals that the decrease in toughness at -170 C is not associated with cleavage-type fracture morphology. Those specimens exhibiting low fracture toughness at room temperature or -170 C are found to have a significantly larger number of titanium-rich particles associated with dimple formation on the fracture surface.

  1. Pressure and temperature induced elastic properties of rare earth chalcogenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shriya, S.; Sapkale, R., E-mail: sapkale.raju@rediffmail.com; Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com

    2016-05-06

    The pressure and temperature dependent mechanical properties as Young modulus, Thermal expansion coefficient of rare earth REX (RE = La, Pr, Eu; X = O, S, Se, and Te) chalcogenides are studied. The rare earth chalcogenides showed a structural phase transition (B1–B2). Pressure dependence of Young modulus discerns an increase in pressure inferring the hardening or stiffening of the lattice as a consequence of bond compression and bond strengthening. Suppressed Young modulus as functions of temperature infers the weakening of the lattice results in bond weakening in REX. Thermal expansion coefficient demonstrates that REX (RE = La, Pr, Eu; Xmore » = O, S, Se, and Te) chalcogenides is mechanically stiffened, and thermally softened on applied pressure and temperature.« less

  2. Elastic Properties and Internal Friction of Two Magnesium Alloys at Elevated Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freels, M.; Liaw, P. K.; Garlea, E.

    2011-06-01

    The elastic properties and internal friction of two magnesium alloys were studied from 25 C to 450 C using Resonant Ultrasound Spectroscopy (RUS). The Young's moduli decrease with increasing temperature. At 200 C, a change in the temperature dependence of the elastic constants is observed. The internal friction increases significantly with increasing temperature above 200 C. The observed changes in the temperature dependence of the elastic constants and the internal friction are the result of anelastic relaxation by grain boundary sliding at elevated temperatures. Elastic properties govern the behavior of a materials subjected to stress over a region of strainmore » where the material behaves elastically. The elastic properties, including the Young's modulus (E), shear modulus (G), bulk modulus (B), and Poisson's ratio (?), are of significant interest to many design and engineering applications. The choice of the most appropriate material for a particular application at elevated temperatures therefore requires knowledge of its elastic properties as a function of temperature. In addition, mechanical vibration can cause significant damage in the automotive, aerospace, and architectural industries and thus, the ability of a material to dissipate elastic strain energy in materials, known as damping or internal friction, is also important property. Internal friction can be the result of a wide range of physical mechanisms, and depends on the material, temperature, and frequency of the loading. When utilized effectively in engineering applications, the damping capacity of a material can remove undesirable noise and vibration as heat to the surroundings. The elastic properties of materials can be determined by static or dynamic methods. Resonant Ultrasound Spectroscopy (RUS), used in this study, is a unique and sophisticated non-destructive dynamic technique for determining the complete elastic tensor of a solid by measuring the resonant spectrum of mechanical resonance for a sample of known geometry, dimensions, and mass. In addition, RUS allows determination of internal friction, or damping, at different frequencies and temperatures. Polycrystalline pure magnesium (Mg) exhibits excellent high damping properties. However, the poor mechanical properties limit the applications of pure Mg. Although alloying can improve the mechanical properties of Mg, the damping properties are reduced with additions of alloying elements. Therefore, it becomes necessary to study and develop Mg-alloys with simultaneous high damping capacity and improved mechanical properties. Moreover, studies involving the high temperature dynamic elastic properties of Mg alloys are limited. In this study, the elastic properties and internal friction of two magnesium alloys were studied at elevated temperatures using RUS. The effect of alloy composition and grain size was investigated. The wrought magnesium alloys AZ31 and ZK60 were employed. Table 1 gives the nominal chemical compositions of these two alloys. The ZK60 alloy is a commercial extruded plate with a T5 temper, i.e. solution-treated at 535 C for two hours, quenched in hot water, and aged at 185 C for 24 hours. The AZ31 alloy is a commercial rolled plate with a H24 temper, i.e. strain hardened and partially annealed.« less

  3. The influence of disulfide bonds on the mechanical stability of proteins is context dependent.

    PubMed

    Manteca, Aitor; Alonso-Caballero, Álvaro; Fertin, Marie; Poly, Simon; De Sancho, David; Perez-Jimenez, Raul

    2017-08-11

    Disulfide bonds play a crucial role in proteins, modulating their stability and constraining their conformational dynamics. A particularly important case is that of proteins that need to withstand forces arising from their normal biological function and that are often disulfide bonded. However, the influence of disulfides on the overall mechanical stability of proteins is poorly understood. Here, we used single-molecule force spectroscopy (smFS) to study the role of disulfide bonds in different mechanical proteins in terms of their unfolding forces. For this purpose, we chose the pilus protein FimG from Gram-negative bacteria and a disulfide-bonded variant of the I91 human cardiac titin polyprotein. Our results show that disulfide bonds can alter the mechanical stability of proteins in different ways depending on the properties of the system. Specifically, disulfide-bonded FimG undergoes a 30% increase in its mechanical stability compared with its reduced counterpart, whereas the unfolding force of I91 domains experiences a decrease of 15% relative to the WT form. Using a coarse-grained simulation model, we rationalized that the increase in mechanical stability of FimG is due to a shift in the mechanical unfolding pathway. The simple topology-based explanation suggests a neutral effect in the case of titin. In summary, our results indicate that disulfide bonds in proteins act in a context-dependent manner rather than simply as mechanical lockers, underscoring the importance of considering disulfide bonds both computationally and experimentally when studying the mechanical properties of proteins. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Mass properties measurement system dynamics

    NASA Technical Reports Server (NTRS)

    Doty, Keith L.

    1993-01-01

    The MPMS mechanism possess two revolute degrees-of-freedom and allows the user to measure the mass, center of gravity, and the inertia tensor of an unknown mass. The dynamics of the Mass Properties Measurement System (MPMS) from the Lagrangian approach to illustrate the dependency of the motion on the unknown parameters.

  5. Hygrothermal Effects in Continuous Fibre Reinforced Composites. Part 4. Mechanical Properties 2 - Fatigue and Time-Dependent Properties (Effets Hygrothermiques dans les Composites a Renfort de Fibre Continu. Partie 4. Proprietes Mecaniques 2 - Fatigue et Proprietes Dependant du Temps)

    DTIC Science & Technology

    1983-09-01

    reduction of stress intensity at a crack tip due to Lreep was responsible for increasing the fatigue life during the "slow- fast " L .sts. As creep is clearly...Aeronautical Establishment Structures and Materials Laboratory SPONSORING AGENCY/AGENCE DE SUBVENTION 8 DATE FILE/DOSSIER LAB. ORDER PAGES FIGS/ DIAGRAMMES

  6. Temperature and Pressure Dependences of the Elastic Properties of Tantalum Single Crystals Under <100> Tensile Loading: A Molecular Dynamics Study

    NASA Astrophysics Data System (ADS)

    Li, Wei-bing; Li, Kang; Fan, Kan-qi; Zhang, Da-xing; Wang, Wei-dong

    2018-04-01

    Atomistic simulations are capable of providing insights into physical mechanisms responsible for mechanical properties of the transition metal of Tantalum (Ta). By using molecular dynamics (MD) method, temperature and pressure dependences of the elastic properties of Ta single crystals are investigated through <100> tensile loading. First of all, a comparative study between two types of embedded-atom method (EAM) potentials is made in term of the elastic properties of Ta single crystals. The results show that Ravelo-EAM (Physical Review B, 2013, 88: 134101) potential behaves well at different hydrostatic pressures. Then, the MD simulation results based on the Ravelo-EAM potential show that Ta will experience a body-centered-cubic (BCC) to face-centered-cubic (FCC) phase transition before fracture under <100> tensile loading at 1 K temperature, and model size and strain rate have no obvious effects on tensile behaviors of Ta. Next, from the simulation results at the system temperature from 1 to 1500 K, it can be derived that the elastic modulus of E 100 linearly decrease with the increasing temperature, while the yielding stress decrease with conforming a quadratic polynomial formula. Finally, the pressure dependence of the elastic properties is performed from 0 to 140 GPa and the observations show that the elastic modulus increases with the increasing pressure overall.

  7. Temperature and Pressure Dependences of the Elastic Properties of Tantalum Single Crystals Under <100> Tensile Loading: A Molecular Dynamics Study.

    PubMed

    Li, Wei-Bing; Li, Kang; Fan, Kang-Qi; Zhang, Da-Xing; Wang, Wei-Dong

    2018-04-24

    Atomistic simulations are capable of providing insights into physical mechanisms responsible for mechanical properties of the transition metal of Tantalum (Ta). By using molecular dynamics (MD) method, temperature and pressure dependences of the elastic properties of Ta single crystals are investigated through <100> tensile loading. First of all, a comparative study between two types of embedded-atom method (EAM) potentials is made in term of the elastic properties of Ta single crystals. The results show that Ravelo-EAM (Physical Review B, 2013, 88: 134101) potential behaves well at different hydrostatic pressures. Then, the MD simulation results based on the Ravelo-EAM potential show that Ta will experience a body-centered-cubic (BCC) to face-centered-cubic (FCC) phase transition before fracture under <100> tensile loading at 1 K temperature, and model size and strain rate have no obvious effects on tensile behaviors of Ta. Next, from the simulation results at the system temperature from 1 to 1500 K, it can be derived that the elastic modulus of E 100 linearly decrease with the increasing temperature, while the yielding stress decrease with conforming a quadratic polynomial formula. Finally, the pressure dependence of the elastic properties is performed from 0 to 140 GPa and the observations show that the elastic modulus increases with the increasing pressure overall.

  8. Light transmittance and micro-mechanical properties of bulk fill vs. conventional resin based composites.

    PubMed

    Bucuta, Stefan; Ilie, Nicoleta

    2014-11-01

    The aim of this study was to quantify the blue light that passes through different incremental thicknesses of bulk fill in comparison to conventional resin-based composites (RBCs) and to relate it to the induced mechanical properties. Seven bulk fill, five nanohybrid and two flowable RBCs were analysed. Specimens (n = 5) of three incremental thicknesses (2, 4 and 6 mm) were cured from the top for 20 s, while at the bottom, a spectrometer monitored in real time the transmitted irradiance. Micro-mechanical properties (Vickers hardness, HV, and indentation modulus, E) were measured at the top and bottom after 24 h of storage in distilled water at 37 °C. Electron microscope images were taken for assessing the filler distribution and size. Bulk fill RBCs (except SonicFill) were more translucent than conventional RBCs. Low-viscosity bulk fill materials showed the lowest mechanical properties. HV depends highly on the following parameters: material (ηp (2) = 0.952), incremental thickness (0.826), filler volume (0.747), filler weight (0.746) and transmitted irradiance (0.491). The bottom-to-top HV ratio (HVbt) was higher than 80 % in all materials in 2- and 4-mm increments (except for Premise), whereas in 6-mm increments, this is valid only in four bulk fill materials (Venus Bulk Fill, SDR, x-tra fil, Tetric EvoCeram Bulk Fill). The depth of cure is dependent on the RBC's translucency. Low-viscosity bulk fill RBCs have lower mechanical properties than all other types of analysed materials. All bulk fill RBCs (except SonicFill) are more translucent for blue light than conventional RBCs. Although bulk fill RBCs are generally more translucent, the practitioner has to follow the manufacturer's recommendations on curing technique and maximum incremental thickness.

  9. Determination of mechanical properties of battery films from acoustic resonances

    NASA Astrophysics Data System (ADS)

    Dallon, Kathryn L.; Yao, Jing; Wheeler, Dean R.; Mazzeo, Brian A.

    2018-04-01

    Measuring the mechanical properties of lithium-ion battery films, such as thickness and elasticity, is important for predicting and improving homogeneity of the films and subsequent performance of the battery. Problems with film heterogeneity could be identified and addressed early on through accurate, non-destructive inspection of the electrode as it is being manufactured. This research investigates the use of acoustic measurements as an alternative means of non-destructive quality control that could be adapted for on-line use. Here we report on our efforts to distinguish among films with different mechanical properties using acoustic resonances. A clamped film is excited using a pulsed infrared laser to produce an acoustic resonance in a confined area, and a microphone measures the acoustic response. Because the resonance depends on properties such as thickness and density, the resonance frequency shifts with changes in these properties. As the thickness increases, the resonance frequency decreases. These results show that acoustic tests can demonstrate observable differences between films with different properties.

  10. Effect of curing mode on the micro-mechanical properties of dual-cured self-adhesive resin cements.

    PubMed

    Ilie, Nicoleta; Simon, Alexander

    2012-04-01

    Light supplying to luting resin cements is impeded in several clinical situations, causing us to question whether materials can properly be cured to achieve adequately (or adequate) mechanical properties. The aim of this study was therefore to analyse the effect of light on the micro-mechanical properties of eight popular dual-cured self-adhesive resin cements by comparing them with two conventional, also dual-cured, resin cements. Four different curing procedures were applied: auto-polymerisation (dark curing) and light curing (LED unit, Freelight 2, 20 s) by applying the unit directly on the samples' surface, at a distance of 5 and 10 mm. Twenty minutes after curing, the samples were stored for 1 week at 37°C in a water-saturated atmosphere. The micro-mechanical properties-Vickers hardness, modulus of elasticity, creep and elastic/plastic deformation-were measured. Data were analysed with multivariate ANOVA followed by Tukey's test and partial eta-squared statistics (p < 0.05). A very strong influence of the material as well as filler volume and weight on the micro-mechanical properties was measured, whereas the influence of the curing procedure and type of cement-conventional or self-adhesive-was generally low. The influence of light on the polymerisation process was material dependent, with four different behaviour patterns to be distinguished. As a material category, significantly higher micro-mechanical properties were measured for the conventional compared to the self-adhesive resin cements, although this difference was low. Within the self-adhesive resin cements group, the variation in micro-mechanical properties was high. The selection of suitable resin cements should be done by considering, besides its adhesive properties, its micro-mechanical properties and curing behaviour also.

  11. DNA sequence-dependent mechanics and protein-assisted bending in repressor-mediated loop formation

    PubMed Central

    Boedicker, James Q.; Garcia, Hernan G.; Johnson, Stephanie; Phillips, Rob

    2014-01-01

    As the chief informational molecule of life, DNA is subject to extensive physical manipulations. The energy required to deform double-helical DNA depends on sequence, and this mechanical code of DNA influences gene regulation, such as through nucleosome positioning. Here we examine the sequence-dependent flexibility of DNA in bacterial transcription factor-mediated looping, a context for which the role of sequence remains poorly understood. Using a suite of synthetic constructs repressed by the Lac repressor and two well-known sequences that show large flexibility differences in vitro, we make precise statistical mechanical predictions as to how DNA sequence influences loop formation and test these predictions using in vivo transcription and in vitro single-molecule assays. Surprisingly, sequence-dependent flexibility does not affect in vivo gene regulation. By theoretically and experimentally quantifying the relative contributions of sequence and the DNA-bending protein HU to DNA mechanical properties, we reveal that bending by HU dominates DNA mechanics and masks intrinsic sequence-dependent flexibility. Such a quantitative understanding of how mechanical regulatory information is encoded in the genome will be a key step towards a predictive understanding of gene regulation at single-base pair resolution. PMID:24231252

  12. Fracture propagation during fluid injection experiments in shale at elevated confining pressures.

    NASA Astrophysics Data System (ADS)

    Chandler, Mike; Mecklenburgh, Julian; Rutter, Ernest; Fauchille, Anne-Laure; Taylor, Rochelle; Lee, Peter

    2017-04-01

    The use of hydraulic fracturing to recover shale-gas has focused attention upon the fundamental fracture properties of gas-bearing shales. Fracture propagation trajectories in these materials depend on the interaction between the anisotropic mechanical properties of the shale and the anisotropic in-situ stress field. However, there is a general paucity of available experimental data on their anisotropic mechanical, physical and fluid-flow properties, especially at elevated confining pressures. Here we report the results of laboratory-scale fluid injection experiments, for Whitby mudstone and Mancos shale (an interbedded silt and mudstone), as well as Pennant sandstone (a tight sandstone with permeability similar to shales), which is used an isotropic baseline and tight-gas sandstone analogue. Our injection experiments involved the pressurisation of a blind-ending central hole in an initially dry cylindrical sample. Pressurisation was conducted under constant volume-rate control, using silicone oils of various viscosities. The dependence of breakdown pressure on confining pressure was seen to be dependent on the rock strength, with the significantly stronger Pennant sandstone exhibiting much lower confining-pressure dependence of breakdown pressure than the weaker shales. In most experiments, a small drop in the injection pressure record was observed at what is taken to be fracture initiation, and in the Pennant sandstone this was accompanied by a small burst of acoustic energy. Breakdown was found to be rapid and uncontrollable after initiation if injection is continued, but can be limited to a slower (but still uncontrolled) rate by ceasing the injection of fluid after the breakdown initiation in experiments where it could be identified. A simplified 2-dimensional model for explaining these observations is presented in terms of the stress intensities at the tip of a pressurised crack. Additionally, we present a suite of supporting mechanical, flow and elastic measurements. Mechanical experiments include standard triaxial tests, pressure-dependent permeability experiments and fracture toughness determined using the double-torsion test. Elastic characterisation was determined through ultrasonic velocities determined using a cross-correlation method.

  13. Surface orientation effects on bending properties of surgical mesh are independent of tensile properties.

    PubMed

    Simon, David D; Andrews, Sharon M; Robinson-Zeigler, Rebecca; Valdes, Thelma; Woods, Terry O

    2018-02-01

    Current mechanical testing of surgical mesh focuses primarily on tensile properties even though implanted devices are not subjected to pure tensile loads. Our objective was to determine the flexural (bending) properties of surgical mesh and determine if they correlate with mesh tensile properties. The flexural rigidity values of 11 different surgical mesh designs were determined along three textile directions (machine, cross-machine, and 45° to machine; n = 5 for each) using ASTM D1388-14 while tracking surface orientation. Tensile testing was also performed on the same specimens using ASTM D882-12. Linear regressions were performed to compare mesh flexural rigidity to mesh thickness, areal mass density, filament diameter, ultimate tensile strength, and maximum extension. Of 33 mesh specimen groups, 30 had significant differences in flexural rigidity values when comparing surface orientations (top and bottom). Flexural rigidity and mesh tensile properties also varied with textile direction (machine and cross-machine). There was no strong correlation between the flexural and tensile properties, with mesh thickness having the best overall correlation with flexural rigidity. Currently, surface orientation is not indicated on marketed surgical mesh, and a single mesh may behave differently depending on the direction of loading. The lack of correlation between flexural stiffness and tensile properties indicates the need to examine mesh bending stiffness to provide a more comprehensive understanding of surgical mesh mechanical behaviors. Further investigation is needed to determine if these flexural properties result in the surgical mesh behaving mechanically different depending on implantation direction. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 854-862, 2018. © 2017 Wiley Periodicals, Inc.

  14. Impact of the interaction of material production and mechanical processing on the magnetic properties of non-oriented electrical steel

    NASA Astrophysics Data System (ADS)

    Leuning, Nora; Steentjes, Simon; Stöcker, Anett; Kawalla, Rudolf; Wei, Xuefei; Dierdorf, Jens; Hirt, Gerhard; Roggenbuck, Stefan; Korte-Kerzel, Sandra; Weiss, Hannes A.; Volk, Wolfram; Hameyer, Kay

    2018-04-01

    Thin laminations of non-grain oriented (NO) electrical steels form the magnetic core of rotating electrical machines. The magnetic properties of these laminations are therefore key elements for the efficiency of electric drives and need to be fully utilized. Ideally, high magnetization and low losses are realized over the entire polarization and frequency spectrum at reasonable production and processing costs. However, such an ideal material does not exist and thus, achievable magnetic properties need to be deduced from the respective application requirements. Parameters of the electrical steel such as lamination thickness, microstructure and texture affect the magnetic properties as well as their polarization and frequency dependence. These structural features represent possibilities to actively alter the magnetic properties, e.g., magnetization curve, magnetic loss or frequency dependence. This paper studies the influence of production and processing on the resulting magnetic properties of a 2.4 wt% Si electrical steel. Aim is to close the gap between production influence on the material properties and its resulting effect on the magnetization curves and losses at different frequencies with a strong focus on occurring interdependencies between production and mechanical processing. The material production is realized on an experimental processing route that comprises the steps of hot rolling, cold rolling, annealing and punching.

  15. Considerations concerning fatigue life of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, V. M.; Bartolotta, Paul A.

    1993-01-01

    Since metal matrix composites (MMC) are composed from two very distinct materials each having their own physical and mechanical properties, it is feasible that the fatigue resistance depends on the strength of the weaker constituent. Based on this assumption, isothermal fatigue lives of several MMC's were analyzed utilizing a fatigue life diagram approach. For each MMC, the fatigue life diagram was quantified using the mechanical properties of its constituents. The fatigue life regions controlled by fiber fracture and matrix were also quantitatively defined.

  16. Dependence of physical and mechanical properties on polymer architecture for model polymer networks

    NASA Astrophysics Data System (ADS)

    Guo, Ruilan

    Effect of architecture at nanoscale on the macroscopic properties of polymer materials has long been a field of major interest, as evidenced by inhomogeneities in networks, multimodal network topologies, etc. The primary purpose of this research is to establish the architecture-property relationship of polymer networks by studying the physical and mechanical responses of a series of topologically different PTHF networks. Monodispersed allyl-tenninated PTHF precursors were synthesized through "living" cationic polymerization and functional end-capping. Model networks of various crosslink densities and inhomogeneities levels (unimodal, bimodal and clustered) were prepared by endlinking precursors via thiol-ene reaction. Thermal characteristics, i.e., glass transition, melting point, and heat of fusion, of model PTHF networks were investigated as functions of crosslink density and inhomogeneities, which showed different dependence on these two architectural parameters. Study of freezing point depression (FPD) of solvent confined in swollen networks indicated that the size of solvent microcrystals is comparable to the mesh size formed by intercrosslink chains depending on crosslink density and inhomogeneities. Relationship between crystal size and FPD provided a good reflection of the existing architecture facts in the networks. Mechanical responses of elastic chains to uniaxial strains were studied through SANS. Spatial inhomogeneities in bimodal and clustered networks gave rise to "abnormal butterfly patterns", which became more pronounced as elongation ratio increases. Radii of gyration of chains were analyzed at directions parallel and perpendicular to stretching axis. Dependence of Rg on lambda was compared to three rubber elasticity models and the molecular deformation mechanisms for unimodal, bimodal and clustered networks were explored. The thesis focused its last part on the investigation of evolution of free volume distribution of linear polymer (PE) subjected to uniaxial strain at various temperatures using a combination of MD, hard sphere probe method and Voronoi tessellation. Combined effects of temperature and strain on free volume were studied and mechanism of formation of large and ellipsoidal free volume voids was explored.

  17. Tensile stress-dependent fracture behavior and its influences on photovoltaic characteristics in flexible PbS/CdS thin-film solar cells.

    PubMed

    Lee, Seung Min; Yeon, Deuk Ho; Mohanty, Bhaskar Chandra; Cho, Yong Soo

    2015-03-04

    Tensile stress-dependent fracture behavior of flexible PbS/CdS heterojunction thin-film solar cells on indium tin oxide-coated polyethylene terephthalate (PET) substrates is investigated in terms of the variations of fracture parameters with applied strains and their influences on photovoltaic properties. The PbS absorber layer that exhibits only mechanical cracks within the applied strain range from ∼0.67 to 1.33% is prepared by chemical bath deposition at different temperatures of 50, 70, and 90 °C. The PbS thin films prepared at 50 °C demonstrate better mechanical resistance against the applied bending strain with the highest crack initiating bending strain of ∼1.14% and the lowest saturated crack density of 0.036 μm(-1). Photovoltaic properties of the cells depend on the deposition temperature and the level of applied tensile stress. The values of short-circuit current density and fill factor are dramatically reduced above a certain level of applied strain, while open-circuit voltage is nearly maintained. The dependency of photovoltaic properties on the progress of fractures is understood as related to the reduced fracture energy and toughness, which is limitedly controllable by microstructural features of the absorber layer.

  18. Structures, properties, and energy-storage mechanisms of the semi-lunar process cuticles in locusts.

    PubMed

    Wan, Chao; Hao, Zhixiu; Feng, Xiqiao

    2016-10-17

    Locusts have excellent jumping and kicking abilities to survive in nature, which are achieved through the energy storage and release processes occurring in cuticles, especially in the semi-lunar processes (SLP) at the femorotibial joints. As yet, however, the strain energy-storage mechanisms of the SLP cuticles remain unclear. To decode this mystery, we investigated the microstructure, material composition, and mechanical properties of the SLP cuticle and its remarkable strain energy-storage mechanisms for jumping and kicking. It is found that the SLP cuticle of adult Locusta migratoria manilensis consists of five main parts that exhibit different microstructural features, material compositions, mechanical properties, and biological functions in storing strain energy. The mechanical properties of these five components are all transversely isotropic and strongly depend on their water contents. Finite element simulations indicate that the two parts of the core region of the SLP cuticle likely make significant contributions to its outstanding strain energy-storage ability. This work deepens our understanding of the locomotion behaviors and superior energy-storage mechanisms of insects such as locusts and is helpful for the design and fabrication of strain energy-storage devices.

  19. Structures, properties, and energy-storage mechanisms of the semi-lunar process cuticles in locusts

    PubMed Central

    Wan, Chao; Hao, Zhixiu; Feng, Xiqiao

    2016-01-01

    Locusts have excellent jumping and kicking abilities to survive in nature, which are achieved through the energy storage and release processes occurring in cuticles, especially in the semi-lunar processes (SLP) at the femorotibial joints. As yet, however, the strain energy-storage mechanisms of the SLP cuticles remain unclear. To decode this mystery, we investigated the microstructure, material composition, and mechanical properties of the SLP cuticle and its remarkable strain energy-storage mechanisms for jumping and kicking. It is found that the SLP cuticle of adult Locusta migratoria manilensis consists of five main parts that exhibit different microstructural features, material compositions, mechanical properties, and biological functions in storing strain energy. The mechanical properties of these five components are all transversely isotropic and strongly depend on their water contents. Finite element simulations indicate that the two parts of the core region of the SLP cuticle likely make significant contributions to its outstanding strain energy-storage ability. This work deepens our understanding of the locomotion behaviors and superior energy-storage mechanisms of insects such as locusts and is helpful for the design and fabrication of strain energy-storage devices. PMID:27748460

  20. Structures, properties, and energy-storage mechanisms of the semi-lunar process cuticles in locusts

    NASA Astrophysics Data System (ADS)

    Wan, Chao; Hao, Zhixiu; Feng, Xiqiao

    2016-10-01

    Locusts have excellent jumping and kicking abilities to survive in nature, which are achieved through the energy storage and release processes occurring in cuticles, especially in the semi-lunar processes (SLP) at the femorotibial joints. As yet, however, the strain energy-storage mechanisms of the SLP cuticles remain unclear. To decode this mystery, we investigated the microstructure, material composition, and mechanical properties of the SLP cuticle and its remarkable strain energy-storage mechanisms for jumping and kicking. It is found that the SLP cuticle of adult Locusta migratoria manilensis consists of five main parts that exhibit different microstructural features, material compositions, mechanical properties, and biological functions in storing strain energy. The mechanical properties of these five components are all transversely isotropic and strongly depend on their water contents. Finite element simulations indicate that the two parts of the core region of the SLP cuticle likely make significant contributions to its outstanding strain energy-storage ability. This work deepens our understanding of the locomotion behaviors and superior energy-storage mechanisms of insects such as locusts and is helpful for the design and fabrication of strain energy-storage devices.

  1. Mechanical biocompatibility of highly deformable biomedical materials.

    PubMed

    Mazza, Edoardo; Ehret, Alexander E

    2015-08-01

    Mismatch of mechanical properties between highly deformable biomedical materials and adjacent native tissue might lead to short and long term health impairment. The capability of implants to deform at the right level, i.e. similar to the macroscopic mechanical response of the surrounding biological materials, is often associated with dissimilar microstructural deformation mechanisms. This mismatch on smaller length scales might lead to micro-injuries, cell damage, inflammation, fibrosis or necrosis. Hence, the mechanical biocompatibility of soft implants depends not only on the properties and composition of the implant material, but also on its organization, distribution and motion at one or several length scales. The challenges related to the analysis and attainment of mechanical biocompatibility are illustrated with two examples: prosthetic meshes for hernia and pelvic repair and electrospun scaffolds for tissue engineering. For these material systems we describe existing methods for characterization and analysis of the non-linear response to uniaxial and multiaxial stress states, its time and history dependence, and the changes in deformation behavior associated with tissue in-growth and material resorption. We discuss the multi-scale deformation behavior of biomaterials and adjacent tissue, and indicate major interdisciplinary questions to be addressed in future research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Novel Three-Dimensional Interphase Characterisation of Polymer Nanocomposites Using Nanoscaled Topography.

    PubMed

    Mousa, Mohanad; Dong, Yu

    2018-06-19

    Mechanical properties of polymer nanocomposites depend primarily on nanointerphases as transitional zones between nanoparticles and surrounding matrices. Due to the difficulty in the quantitative characterisation of nanointerphases, previous literatures generally deemed such interphases as one-dimensional uniform zones around nanoparticles by assumption for analytical or theoretical modelling. We hereby have demonstrated for the first time direct three-dimensional topography and physical measurement of nanophase mechanical properties between nanodimeter bamboo charcoals (NBCs) and poly (vinyl alcohol) (PVA) in polymer nanocomposites. Topographical features, nanomechanical properties and dimensions of nanointerphases were systematically determined via peak force quantitative nanomechanical tapping mode (PFQNM). Significantly different mechanical properties of nanointerphases were revealed as opposed to those of individual NBCs and PVA matrices. Non-uniform irregular three-dimensional structures and shapes of nanointerphases are manifested around individual NBCs, which can be greatly influenced by nanoparticle size and roughness, and nanoparticle dispersion and distribution. Elastic moduli of nanointerphases were experimentally determined in range from 25.32 ±3.4 to 66.3±3.2 GPa. Additionally, it is clearly shown that the interphase modulus strongly depends on interphase surface area SAInterphase and interphase volume VInterphase. Different NBC distribution patterns from fully to partially embedded nanoparticles are proven to yield a remarkable reduction in elastic moduli of nanointerphases. © 2018 IOP Publishing Ltd.

  3. An automated cirrus classification

    NASA Astrophysics Data System (ADS)

    Gryspeerdt, Edward; Quaas, Johannes; Goren, Tom; Klocke, Daniel; Brueck, Matthias

    2018-05-01

    Cirrus clouds play an important role in determining the radiation budget of the earth, but many of their properties remain uncertain, particularly their response to aerosol variations and to warming. Part of the reason for this uncertainty is the dependence of cirrus cloud properties on the cloud formation mechanism, which itself is strongly dependent on the local meteorological conditions. In this work, a classification system (Identification and Classification of Cirrus or IC-CIR) is introduced to identify cirrus clouds by the cloud formation mechanism. Using reanalysis and satellite data, cirrus clouds are separated into four main types: orographic, frontal, convective and synoptic. Through a comparison to convection-permitting model simulations and back-trajectory-based analysis, it is shown that these observation-based regimes can provide extra information on the cloud-scale updraughts and the frequency of occurrence of liquid-origin ice, with the convective regime having higher updraughts and a greater occurrence of liquid-origin ice compared to the synoptic regimes. Despite having different cloud formation mechanisms, the radiative properties of the regimes are not distinct, indicating that retrieved cloud properties alone are insufficient to completely describe them. This classification is designed to be easily implemented in GCMs, helping improve future model-observation comparisons and leading to improved parametrisations of cirrus cloud processes.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wingert, Matthew C.; Jiang, Zhang; Chen, Renkun

    Here, electrospun polymer nanofibers have garnered significant interest due to their strong size-dependent material properties, such as tensile moduli, strength, toughness, and glass transition temperatures. These properties are closely correlated with polymer chain dynamics. In most applications, polymers usually exhibit viscoelastic behaviors such as stress relaxation and creep, which are also determined by the motion of polymer chains. However, the size-dependent viscoelasticity has not been studied previously in polymer nanofibers. Here, we report the first experimental evidence of significant size-dependent stress relaxation in electrospun Nylon-11 nanofibers as well as size-dependent viscosity of the confined amorphous regions. In conjunction with themore » dramatically increasing stiffness of nano-scaled fibers, this strong relaxation enables size-tunable properties which break the traditional damping-stiffness tradeoff, qualifying electrospun nanofibers as a promising set of size-tunable materials with an unusual and highly desirable combination of simultaneously high stiffness and large mechanical energy dissipation.« less

  5. The compressive mechanical properties of diabetic and non-diabetic plantar soft tissue.

    PubMed

    Pai, Shruti; Ledoux, William R

    2010-06-18

    Diabetic subjects are at an increased risk of developing plantar ulcers. Knowledge of the physiologic compressive properties of the plantar soft tissue is critical to understanding the possible mechanisms of ulcer formation and improving treatment options. The purpose of this study was to determine the compressive mechanical properties of the plantar soft tissue in both diabetic and non-diabetic specimens from six relevant locations beneath the foot, namely the hallux (big toe), first, third, and fifth metatarsal heads, lateral midfoot, and calcaneus (heel). Cylindrical specimens (1.905 cm diameter) from these locations were excised and separated from the skin and bone from 4 diabetic and 4 non-diabetic age-matched, elderly, fresh-frozen cadaveric feet. Specimens were then subjected to biomechanically realistic strains of approximately 50% in compression using triangle wave tests conducted at five frequencies ranging from 1 to 10 Hz to determine tissue modulus, energy loss, and strain rate dependence. Diabetic vs. non-diabetic results across all specimens, locations, and testing frequencies demonstrated altered mechanical properties with significantly increased modulus (1146.7 vs. 593.0 kPa) but no change in energy loss (68.5 vs. 67.9%). All tissue demonstrated strain rate dependence and tissue beneath the calcaneus was found to have decreased modulus and energy loss compared to other areas. The results of this study could be used to generate material properties for all areas of the plantar soft tissue in diabetic or non-diabetic feet, with implications for foot computational modeling efforts and potentially for pressure alleviating footwear that could reduce plantar ulcer incidence. Published by Elsevier Ltd.

  6. The compressive mechanical properties of diabetic and non-diabetic plantar soft tissue

    PubMed Central

    Pai, Shruti; Ledoux, William R.

    2010-01-01

    Diabetic subjects are at an increased risk of developing plantar ulcers. Knowledge of the physiologic compressive properties of the plantar soft tissue is critical to understanding possible mechanisms of ulcer formation and improving treatment options. The purpose of this study was to determine the compressive mechanical properties of the plantar soft tissue in both diabetic and non-diabetic specimens from six relevant locations beneath the foot, namely the hallux (big toe), first, third, and fifth metatarsal heads, lateral midfoot, and calcaneus (heel). Cylindrical specimens (1.905cm diameter) from these locations were excised and separated from the skin and bone from 4 diabetic and 4 non-diabetic age-matched, elderly, fresh-frozen cadaveric feet. Specimens were then subjected to biomechanically realistic strains of ∼50% in compression using triangle wave tests conducted at five frequencies ranging from 1 to 10 Hz to determine tissue modulus, energy loss, and strain rate dependence. Diabetic vs. non-diabetic results across all specimens, locations, and testing frequencies demonstrated altered mechanical properties with significantly increased modulus (1146.7 vs. 593.0kPa) but no change in energy loss (68.5 vs. 67.9%). All tissue demonstrated strain rate dependence and tissue beneath the calcaneus was found to have decreased modulus and energy loss compared to other areas. The results of this study could be used to generate material properties for all areas of the plantar soft tissue in diabetic or non-diabetic feet, with implications for foot computational modeling efforts and potentially for pressure alleviating footwear that could reduce plantar ulcer incidence. PMID:20207359

  7. Computational predictions of the tensile properties of electrospun fiber meshes: effect of fiber diameter and fiber orientation

    PubMed Central

    Stylianopoulos, Triantafyllos; Bashur, Chris A.; Goldstein, Aaron S.; Guelcher, Scott A.; Barocas, Victor H.

    2008-01-01

    The mechanical properties of biomaterial scaffolds are crucial for their efficacy in tissue engineering and regenerative medicine. At the microscopic scale, the scaffold must be sufficiently rigid to support cell adhesion, spreading, and normal extracellular matrix deposition. Concurrently, at the macroscopic scale the scaffold must have mechanical properties that closely match those of the target tissue. The achievement of both goals may be possible by careful control of the scaffold architecture. Recently, electrospinning has emerged as an attractive means to form fused fiber scaffolds for tissue engineering. The diameter and relative orientation of fibers affect cell behavior, but their impact on the tensile properties of the scaffolds has not been rigorously characterized. To examine the structure-property relationship, electrospun meshes were made from a polyurethane elastomer with different fiber diameters and orientations and mechanically tested to determine the dependence of the elastic modulus on the mesh architecture. Concurrently, a multiscale modeling strategy developed for type I collagen networks was employed to predict the mechanical behavior of the polyurethane meshes. Experimentally, the measured elastic modulus of the meshes varied from 0.56 to 3.0 MPa depending on fiber diameter and the degree of fiber alignment. Model predictions for tensile loading parallel to fiber orientation agreed well with experimental measurements for a wide range of conditions when a fitted fiber modulus of 18 MPa was used. Although the model predictions were less accurate in transverse loading of anisotropic samples, these results indicate that computational modeling can assist in design of electrospun artificial tissue scaffolds. PMID:19627797

  8. [Mg2+, ATP-dependent plasma membrane calcium pump of smooth muscle cells. I. Structural organization and properties].

    PubMed

    Veklich, T O; Mazur, Iu Iu; Kosterin, S O

    2015-01-01

    Tight control of cytoplasm Ca2+ concentration is essential in cell functioning. Changing of Ca2+ concentration is thorough in smooth muscle cells, because it determines relaxation/constraint process. One of key proteins which control Ca2+ concentration in cytoplasm is Mg2+, ATP-dependent plasma membrane calcium pump. Thus, it is important to find compoumds which allowed one to change Mg2+, ATP-dependent plasma membrane calcium pump activity, as long as this topic is of current interest in biochemical research which regards energy and pharmacomechanical coupling mechanism of muscle excitation and contraction. In this article we generalized literatute and own data about properties of smooth muscle cell plasma membrane Ca(2+)-pump. Stuctural oganization, kinetical properties and molecular biology are considered.

  9. Strain Rate and Anisotropic Microstructure Dependent Mechanical Behaviors of Silkworm Cocoon Shells

    PubMed Central

    Xu, Jun; Zhang, Wen; Gao, Xiang; Meng, Wanlin; Guan, Juan

    2016-01-01

    Silkworm cocoons are multi-layered composite structures comprised of high strength silk fiber and sericin, and their mechanical properties have been naturally selected to protect pupas during metamorphosis from various types of external attacks. The present study attempts to gain a comprehensive understanding of the mechanical properties of cocoon shell materials from wild silkworm species Antheraea pernyi under dynamic loading rates. Five dynamic strain rates from 0.00625 s-1 to 12.5 s-1 are tested to show the strain rate sensitivity of the cocoon shell material. In the meantime, the anisotropy of the cocoon shell is considered and the cocoon shell specimens are cut along 0°, 45° and 90° orientation to the short axis of cocoons. Typical mechanical properties including Young’s modulus, yield strength, ultimate strength and ultimate strain are extracted and analyzed from the stress-strain curves. Furthermore, the fracture morphologies of the cocoon shell specimens are observed under scanning electron microscopy to help understand the relationship between the mechanical properties and the microstructures of the cocoon material. A discussion on the dynamic strain rate effect on the mechanical properties of cocoon shell material is followed by fitting our experimental results to two previous models, and the effect could be well explained. We also compare natural and dried cocoon materials for the dynamic strain rate effect and interestingly the dried cocoon shells show better overall mechanical properties. This study provides a different perspective on the mechanical properties of cocoon material as a composite material, and provides some insight for bio-inspired engineering materials. PMID:26939063

  10. [The accuracy of rapid equilibrium assumption in steady-state enzyme kinetics is the function of equilibrium segment structure and properties].

    PubMed

    Vrzheshch, P V

    2015-01-01

    Quantitative evaluation of the accuracy of the rapid equilibrium assumption in the steady-state enzyme kinetics was obtained for an arbitrary mechanism of an enzyme-catalyzed reaction. This evaluation depends only on the structure and properties of the equilibrium segment, but doesn't depend on the structure and properties of the rest (stationary part) of the kinetic scheme. The smaller the values of the edges leaving equilibrium segment in relation to values of the edges within the equilibrium segment, the higher the accuracy of determination of intermediate concentrations and reaction velocity in a case of the rapid equilibrium assumption.

  11. Elucidating Multiscale Periosteal Mechanobiology: A Key to Unlocking the Smart Properties and Regenerative Capacity of the Periosteum?

    PubMed Central

    Evans, Sarah F.; Chang, Hana

    2013-01-01

    The periosteum, a thin, fibrous tissue layer covering most bones, resides in a dynamic, mechanically loaded environment. The periosteum also provides a niche for mesenchymal stem cells. The mechanics of periosteum vary greatly between species and anatomical locations, indicating the specialized role of periosteum as bone's bounding membrane. Furthermore, periosteum exhibits stress-state-dependent mechanical and material properties, hallmarks of a smart material. This review discusses what is known about the multiscale mechanical and material properties of the periosteum as well as their potential effect on the mechanosensitive progenitor cells within the tissue. Furthermore, this review addresses open questions and barriers to understanding periosteum's multiscale structure–function relationships. Knowledge of the smart material properties of the periosteum will maximize the translation of periosteum and substitute periosteum to regenerative medicine, facilitate the development of biomimetic tissue-engineered periosteum for use in instances where the native periosteum is lacking or damaged, and provide inspiration for a new class of smart, advanced materials. PMID:23189933

  12. Mechanical Properties of Nanostructured Materials Determined Through Molecular Modeling Techniques

    NASA Technical Reports Server (NTRS)

    Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The potential for gains in material properties over conventional materials has motivated an effort to develop novel nanostructured materials for aerospace applications. These novel materials typically consist of a polymer matrix reinforced with particles on the nanometer length scale. In this study, molecular modeling is used to construct fully atomistic models of a carbon nanotube embedded in an epoxy polymer matrix. Functionalization of the nanotube which consists of the introduction of direct chemical bonding between the polymer matrix and the nanotube, hence providing a load transfer mechanism, is systematically varied. The relative effectiveness of functionalization in a nanostructured material may depend on a variety of factors related to the details of the chemical bonding and the polymer structure at the nanotube-polymer interface. The objective of this modeling is to determine what influence the details of functionalization of the carbon nanotube with the polymer matrix has on the resulting mechanical properties. By considering a range of degree of functionalization, the structure-property relationships of these materials is examined and mechanical properties of these models are calculated using standard techniques.

  13. Scattering property based contextual PolSAR speckle filter

    NASA Astrophysics Data System (ADS)

    Mullissa, Adugna G.; Tolpekin, Valentyn; Stein, Alfred

    2017-12-01

    Reliability of the scattering model based polarimetric SAR (PolSAR) speckle filter depends upon the accurate decomposition and classification of the scattering mechanisms. This paper presents an improved scattering property based contextual speckle filter based upon an iterative classification of the scattering mechanisms. It applies a Cloude-Pottier eigenvalue-eigenvector decomposition and a fuzzy H/α classification to determine the scattering mechanisms on a pre-estimate of the coherency matrix. The H/α classification identifies pixels with homogeneous scattering properties. A coarse pixel selection rule groups pixels that are either single bounce, double bounce or volume scatterers. A fine pixel selection rule is applied to pixels within each canonical scattering mechanism. We filter the PolSAR data and depending on the type of image scene (urban or rural) use either the coarse or fine pixel selection rule. Iterative refinement of the Wishart H/α classification reduces the speckle in the PolSAR data. Effectiveness of this new filter is demonstrated by using both simulated and real PolSAR data. It is compared with the refined Lee filter, the scattering model based filter and the non-local means filter. The study concludes that the proposed filter compares favorably with other polarimetric speckle filters in preserving polarimetric information, point scatterers and subtle features in PolSAR data.

  14. Mechanical improvement of metal reinforcement rings for a finite ring-shaped superconducting bulk

    NASA Astrophysics Data System (ADS)

    Huang, Chen-Guang; Zhou, You-He

    2018-03-01

    As a key technique, reinforcement of type-II superconducting bulks with metal rings can efficiently improve their mechanical properties to enhance the maximum trapped field. In this paper, we study the magnetostrictive and fracture behaviors of a finite superconducting ring bulk reinforced by three typical reinforcing structures composed of metal rings during the magnetizing process by means of the minimization of magnetic energy and the finite element method. After a field-dependent critical current density is adopted, the magnetostriction, pinning-induced stress, and crack tip stress intensity factor are calculated considering the demagnetization effects. The results show that the mechanical properties of the ring bulk are strongly dependent on the reinforcing structure and the material and geometrical parameters of the metal rings. Introducing the metal ring can significantly reduce the hoop stress, and the reduction effect by internal reinforcement is much improved relative to external reinforcement. By comparison, bilateral reinforcement seems to be the best candidate structure. Only when the metal rings have particular Young's modulus and radial thickness will they contribute to improve the mechanical properties the most. In addition, if an edge crack is pre-existing in the ring bulk, the presence of metal rings can effectively avoid crack propagation since it reduces the crack tip stress intensity factor by nearly one order of magnitude.

  15. Thermal Effects Modeling Developed for Smart Structures

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun

    1998-01-01

    Applying smart materials in aeropropulsion systems may improve the performance of aircraft engines through a variety of vibration, noise, and shape-control applications. To facilitate the experimental characterization of these smart structures, researchers have been focusing on developing analytical models to account for the coupled mechanical, electrical, and thermal response of these materials. One focus of current research efforts has been directed toward incorporating a comprehensive thermal analysis modeling capability. Typically, temperature affects the behavior of smart materials by three distinct mechanisms: Induction of thermal strains because of coefficient of thermal expansion mismatch 1. Pyroelectric effects on the piezoelectric elements; 2. Temperature-dependent changes in material properties; and 3. Previous analytical models only investigated the first two thermal effects mechanisms. However, since the material properties of piezoelectric materials generally vary greatly with temperature (see the graph), incorporating temperature-dependent material properties will significantly affect the structural deflections, sensory voltages, and stresses. Thus, the current analytical model captures thermal effects arising from all three mechanisms through thermopiezoelectric constitutive equations. These constitutive equations were incorporated into a layerwise laminate theory with the inherent capability to model both the active and sensory response of smart structures in thermal environments. Corresponding finite element equations were formulated and implemented for both the beam and plate elements to provide a comprehensive thermal effects modeling capability.

  16. Nanomechanical Characterization of Temperature-Dependent Mechanical Properties of Ion-Irradiated Zirconium with Consideration of Microstructure and Surface Damage

    NASA Astrophysics Data System (ADS)

    Marsh, Jonathan; Zhang, Yang; Verma, Devendra; Biswas, Sudipta; Haque, Aman; Tomar, Vikas

    2015-12-01

    Zirconium alloys for nuclear applications with different microstructures were produced by manufacturing processes such as chipping, rolling and annealing. The two Zr samples, rolled and rolled-annealed were subjected to different levels of irradiation, 1 keV and 100 eV, to study the effect of irradiation dosages. The effect of microstructure and irradiation on the mechanical properties (reduced modulus, hardness, indentation yield strength) was analyzed with nanoindentation experiments, which were carried out in the temperature range of 25°C to 450°C to investigate temperature dependence. An indentation size effect analysis was performed and the mechanical properties were also corrected for the oxidation effects at high temperatures. The irradiation-induced hardness was observed, with rolled samples exhibiting higher increase compared to rolled and annealed samples. The relevant material parameters of the Anand viscoplastic model were determined for Zr samples containing different level of irradiation to account for viscoplasticity at high temperatures. The effect of the microstructure and irradiation on the stress-strain curve along with the influence of temperature on the mechanisms of irradiation creep such as formation of vacancies and interstitials is presented. The yield strength of irradiated samples was found to be higher than the unirradiated samples which also showed a decreasing trend with the temperature.

  17. Mechanical properties and fracture behaviour of defective phosphorene nanotubes under uniaxial tension

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Pei, Qing-Xiang; Huang, Wei; Zhang, Yong-Wei

    2017-12-01

    The easy formation of vacancy defects and the asymmetry in the two sublayers of phosphorene nanotubes (PNTs) may result in brand new mechanical properties and failure behaviour. Herein, we investigate the mechanical properties and fracture behaviour of defective PNTs under uniaxial tension using molecular dynamics simulations. Our simulation results show that atomic vacancies cause local stress concentration and thus significantly reduce the fracture strength and fracture strain of PNTs. More specifically, a 1% defect concentration is able to reduce the fracture strength and fracture strain by as much as 50% and 66%, respectively. Interestingly, the reduction in the mechanical properties is found to depend on the defect location: a defect located in the outer sublayer has a stronger effect than one located in the inner layer, especially for PNTs with a small diameter. Temperature is also found to strongly influence the mechanical properties of both defect-free and defective PNTs. When the temperature is increased from 0 K to 400 K, the fracture strength and fracture strain of defective PNTs with a defect concentration of 1% are reduced further by 71% and 61%, respectively. These findings are of great importance for the structural design of PNTs as building blocks in nanodevices.

  18. The Influence of Mo, Cr and B Alloying on Phase Transformation and Mechanical Properties in Nb Added High Strength Dual Phase Steels

    NASA Astrophysics Data System (ADS)

    Girina, O.; Fonstein, N.; Yakubovsky, O.; Panahi, D.; Bhattacharya, D.; Jansto, S.

    The influence of Nb, Mo, Cr and B on phase transformations and mechanical properties are studied in a 0.15C-2.0Mn-0.3Si-0.020Ti dual phase steel separately and in combination. The formation and decomposition of austenite together with recrystallization of ferrite are evaluated by dilatometry and constructed CCT-diagrams in laboratory processed cold rolled material cooled after full austenitization and from intercritical temperature range. The effect of alloying elements on formation of austenite through their effect on initial hot rolled structure is taken into account. The interpretation of phase transformations during heating and cooling is supported by metallography. The effect of alloying elements on mechanical properties and structure are evaluated by annealing simulations. It has been shown that mechanical properties are strongly influenced by alloying additions such as Nb, Mo, Cr and B through their effect on ferrite formation during continuous cooling and corresponding enrichment of remaining austenite by carbon. Depending on combined effect of these alloying elements, different phase transformations can be promoted during cooling. This allows controlling of final microstructural constituents and mechanical properties.

  19. Use-dependent activation of neuronal Kv1.2 channel complexes.

    PubMed

    Baronas, Victoria A; McGuinness, Brandon R; Brigidi, G Stefano; Gomm Kolisko, Rachel N; Vilin, Yury Y; Kim, Robin Y; Lynn, Francis C; Bamji, Shernaz X; Yang, Runying; Kurata, Harley T

    2015-02-25

    In excitable cells, ion channels are frequently challenged by repetitive stimuli, and their responses shape cellular behavior by regulating the duration and termination of bursts of action potentials. We have investigated the behavior of Shaker family voltage-gated potassium (Kv) channels subjected to repetitive stimuli, with a particular focus on Kv1.2. Genetic deletion of this subunit results in complete mortality within 2 weeks of birth in mice, highlighting a critical physiological role for Kv1.2. Kv1.2 channels exhibit a unique property described previously as "prepulse potentiation," in which activation by a depolarizing step facilitates activation in a subsequent pulse. In this study, we demonstrate that this property enables Kv1.2 channels to exhibit use-dependent activation during trains of very brief depolarizations. Also, Kv subunits usually assemble into heteromeric channels in the central nervous system, generating diversity of function and sensitivity to signaling mechanisms. We demonstrate that other Kv1 channel types do not exhibit use-dependent activation, but this property is conferred in heteromeric channel complexes containing even a single Kv1.2 subunit. This regulatory mechanism is observed in mammalian cell lines as well as primary cultures of hippocampal neurons. Our findings illustrate that use-dependent activation is a unique property of Kv1.2 that persists in heteromeric channel complexes and may influence function of hippocampal neurons. Copyright © 2015 the authors 0270-6474/15/353515-10$15.00/0.

  20. Structural effects on mechanical response of MoS2 nanostructures during compression

    NASA Astrophysics Data System (ADS)

    Bucholz, Eric W.; Sinnott, Susan B.

    2013-07-01

    In recent years, inorganic nanostructures, such as fullerene-like MoS2 and WS2 nanoparticles, have been shown to be promising candidates for friction and wear reduction in tribological applications. However, it has been demonstrated experimentally that the mechanical response of any given inorganic nanostructure varies depending on its individual structural characteristics such as size, shape, and crystallinity. Here, classical molecular dynamics simulations are performed that investigate the mechanical responses of different types of MoS2 nanostructures during uniaxial compression. The results illustrate the dependence of mechanical behavior on nanoparticle structure and, in particular, indicate that the mechanical properties of MoS2 nanostructures vary significantly with changes in the orientation of the MoS2 walls at the interface.

  1. Mechanical properties of thin-film materials evaluated from amplitude-dependent internal friction

    NASA Astrophysics Data System (ADS)

    Nishino, Yoichi

    1999-09-01

    A method is presented to evaluate the mechanical properties of thin-film materials from measurements of the amplitude-dependent internal friction. According to the constitutive equation, the internal friction in the film can be determined separately from measured damping of the film/substrate composite. The internal friction in aluminum films is dependent on the strain amplitude that is approximately two orders of magnitude higher than that for bulk aluminum. On the basis of the microplasticity theory, the amplitude-dependent internal friction in the film can be converted into the plastic strain as a function of effective stress on dislocation motion. The mechanical responses thus obtained for aluminum films show that the plastic strain of the order of 10-9 increases nonlinearly with increasing stress. These curves tend to shift to a higher stress with decreasing film thickness and also with decreasing temperature, both indicating a suppression of microplastic flow. The microflow stress at a constant level of the plastic strain varies inversely with the film thickness, provided the grain size is larger than the film thickness. The film thickness effect in the microplastic range can be well explained by the bowing of a dislocation segment whose ends are pinned at the film surface and at the film/substrate interface.

  2. Receptor-based differences in human aortic smooth muscle cell membrane stiffness

    NASA Technical Reports Server (NTRS)

    Huang, H.; Kamm, R. D.; So, P. T.; Lee, R. T.

    2001-01-01

    Cells respond to mechanical stimuli with diverse molecular responses. The nature of the sensory mechanism involved in mechanotransduction is not known, but integrins may play an important role. The integrins are linked to both the cytoskeleton and extracellular matrix, suggesting that probing cells via integrins should yield different mechanical properties than probing cells via non-cytoskeleton-associated receptors. To test the hypothesis that the mechanical properties of a cell are dependent on the receptor on which the stress is applied, human aortic smooth muscle cells were plated, and magnetic beads, targeted either to the integrins via fibronectin or to the transferrin receptor by use of an IgG antibody, were attached to the cell surface. The resistance of the cell to deformation ("stiffness") was estimated by oscillating the magnetic beads at 1 Hz by use of single-pole magnetic tweezers at 2 different magnitudes. The ratio of bead displacements at different magnitudes was used to explore the mechanical properties of the cells. Cells stressed via the integrins required approximately 10-fold more force to obtain the same bead displacements as the cells stressed via the transferrin receptors. Cells stressed via integrins showed stiffening behavior as the force was increased, whereas this stiffening was significantly less for cells stressed via the transferrin receptor (P<0.001). Mechanical characteristics of vascular smooth muscle cells depend on the receptor by which the stress is applied, with integrin-based linkages demonstrating cell-stiffening behavior.

  3. Fundamental Studies of Low Velocity Impact Resistance of Graphite Fiber Reinforced Polymer Matrix Composites. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1985-01-01

    A study was conducted to relate the impact resistance of graphite fiber reinforced composites with matrix properties through gaining an understanding of the basic mechanics involved in the deformation and fracture process, and the effect of the polymer matrix structure on these mechanisms. It was found that the resin matrix structure influences the composite impact resistance in at least two ways. The integration of flexibilizers into the polymer chain structure tends to reduce the T sub g and the mechanical properties of the polymer. The reduction in the mechanical properties of the matrix does not enhance the composite impact resistance because it allows matrix controlled failure to initiate impact damage. It was found that when the instrumented dropweight impact tester is used as a means for assessing resin toughness, the resin toughness is enhanced by the ability of the clamped specimen to deflect enough to produce sufficient membrane action to support a significant amount of the load. The results of this study indicate that crossplied composite impact resistance is very much dependent on the matrix mechanical properties.

  4. Fabrication and material properties of fibrous PHBV scaffolds depending on the cross-ply angle for tissue engineering.

    PubMed

    Kim, Yang-Hee; Min, Young-Ki; Lee, Byong-Taek

    2012-11-01

    Fibrous PHBV cross-ply scaffolds were fabricated using the electrospinning technique. The electrospun fibers were arranged depending on angles of alignment, which were 180°, 90°, 60°, and 45°. The stress and strain values of the fibrous PHBV cross-ply scaffolds increased as the cross-ply angle increased. At 180°, the strength and strain values of the fibers depended on tensile loading directions. At an alignment of 90°, the PHBV scaffolds had a stress value of 3.5 MPa, which was more than two times higher than the random structure. The cell morphology and proliferation of L-929 cells was strongly dependant on the fiber alignment and the best results were observed when the angle alignment was high. The results of this study showed that the cross-ply structure of the PHBV scaffold affected not only the cell adhesion and spreading properties but also dictated the mechanical properties, which were dependent on the angles of alignment.

  5. Mechanical Properties of Mass Concrete at Early Ages

    DTIC Science & Technology

    1991-08-01

    I.............. 15 WES UMAT Time-Dependent Material Properties Model.........15: CHAPTER IV: EXPERIMENTAL PROGRAM.................................. 17...Equationi.......................................41 WES UMAT Creep, Eqtation .................................. 42 Bazant Sinh-Double Power Law...and All ......... 42 7 UMAT Creep Equation Coefficients for Mixtures A2 and All .... 43 8 SDPL Creep Constants for Mixtures A2 and All

  6. Ultrasound elastography to determine the layered mechanical properties of articular cartilage and the importance of such structural characteristics under load.

    PubMed

    McCredie, Alexandra J; Stride, Eleanor; Saffari, Nader

    2009-01-01

    Articular cartilage is an important load bearing surface in joints. Prone to damage and with limited self-repair ability, it is of interest to tissue engineers. Tissue implant design requires full mechanical characterisation of healthy native tissue. A layered organisation of reinforcing collagen fibrils exists in healthy articular cartilage and is believed to be important for correct tissue function. However, the effect of this on the local depth-dependent elasticity is poorly characterised. In this study, quasi-static ultrasound elastography is used both to compare the depth-dependent elastic properties of cartilage structures with two different fibril arrangements and to monitor changes in the elastic properties of engineered samples during development. Results show global and local elastic properties of the native tissues and highlight the differences caused by fibril architecture. At increasing culture periods, results from the engineered tissue demonstrate an increase in elastic stiffness and the time taken to reach equilibrium under a quasi-static displacement. The study suggests suitability of ultrasound elastography for design and monitoring engineered articular cartilage.

  7. Plasma assisted surface treatments of biomaterials.

    PubMed

    Minati, L; Migliaresi, C; Lunelli, L; Viero, G; Dalla Serra, M; Speranza, G

    2017-10-01

    The biocompatibility of an implant depends upon the material it is composed of, in addition to the prosthetic device's morphology, mechanical and surface properties. Properties as porosity and pore size should allow, when required, cells penetration and proliferation. Stiffness and strength, that depend on the bulk characteristics of the material, should match the mechanical requirements of the prosthetic applications. Surface properties should allow integration in the surrounding tissues by activating proper communication pathways with the surrounding cells. Bulk and surface properties are not interconnected, and for instance a bone prosthesis could possess the necessary stiffness and strength for the application omitting out prerequisite surface properties essential for the osteointegration. In this case, surface treatment is mandatory and can be accomplished using various techniques such as applying coatings to the prosthesis, ion beams, chemical grafting or modification, low temperature plasma, or a combination of the aforementioned. Low temperature plasma-based techniques have gained increasing consensus for the surface modification of biomaterials for being effective and competitive compared to other ways to introduce surface functionalities. In this paper we review plasma processing techniques and describe potentialities and applications of plasma to tailor the interface of biomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Preparation and characterization of functionalized single walled carbon nanotubes (fSWCNT)/ Hydroxyapatite (HAp)-Nylon hybridized composite biomaterial to study the mechanical properties

    NASA Astrophysics Data System (ADS)

    Khanal, Suraj; Leventouri, Theodora; Mahfuz, Hassan; Rondinone, Adam

    2014-03-01

    Synthetic hydroxyapatite (HAp) bears poor mechanical properties that limit its applicability in orthopedics. We study the possibility of overcoming such limitations by incorporating functionalized single walled carbon nanotubes (fSWCNT) in a biocompatible/bioactive nano-composite. We present results from synthesis and characterization of samples prepared under different processing parameters. Ultra sonication method was to disperse functionalized single walled carbon nanotubes (fSWCNT) in HAp followed by a simple hot assorting method to incorporate with polymerized ɛ-caprolactam. The fracture toughness of the composite materials was tested in compliance with the ASTM D-5045 standard. We have found that while the fracture toughness strongly depends on the processing parameters, a value comparable to the one for cortical bone is achieved. Mechanical properties, electron microscopy and crystal structure properties of the composite materials will be discussed.

  9. Combined Intercritical Annealing and Q&P Processing of Medium Mn Steel

    NASA Astrophysics Data System (ADS)

    De Cooman, Bruno C.; Lee, Seon Jong; Shin, Sunmi; Seo, Eun Jung; Speer, John G.

    2017-01-01

    The microstructure and mechanical properties of intercritically annealed medium Mn steel are dependent on the selection of the intercritical annealing (IA) temperature. While the yield strength (YS) decreases with increasing IA temperature, the ultimate tensile strength increases with increasing IA temperature. Strain aging phenomena, both static and dynamic, are also often observed. The present contribution shows that, by combining IA with the quench and partitioning processing of the intercritical austenite, it is possible to obtain non-aging mechanical properties which combine a high YS with an ultra-high tensile strength. These properties are particularly suitable for automotive parts related to passenger safety.

  10. Artificial insect wings with biomimetic wing morphology and mechanical properties.

    PubMed

    Liu, Zhiwei; Yan, Xiaojun; Qi, Mingjing; Zhu, Yangsheng; Huang, Dawei; Zhang, Xiaoyong; Lin, Liwei

    2017-09-26

    The pursuit of a high lift force for insect-scale flapping-wing micro aerial vehicles (FMAVs) requires that their artificial wings possess biomimetic wing features which are close to those of their natural counterpart. In this work, we present both fabrication and testing methods for artificial insect wings with biomimetic wing morphology and mechanical properties. The artificial cicada (Hyalessa maculaticollis) wing is fabricated through a high precision laser cutting technique and a bonding process of multilayer materials. Through controlling the shape of the wing venation, the fabrication method can achieve three-dimensional wing architecture, including cambers or corrugations. Besides the artificial cicada wing, the proposed fabrication method also shows a promising versatility for diverse wing types. Considering the artificial cicada wing's characteristics of small size and light weight, special mechanical testing systems are designed to investigate its mechanical properties. Flexural stiffness, maximum deformation rate and natural frequency are measured and compared with those of its natural counterpart. Test results reveal that the mechanical properties of the artificial cicada wing depend strongly on its vein thickness, which can be used to optimize an artificial cicada wing's mechanical properties in the future. As such, this work provides a new form of artificial insect wings which can be used in the field of insect-scale FMAVs.

  11. Mechano-growth factor induces migration of rat mesenchymal stem cells by altering its mechanical properties and activating ERK pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jiamin; Wu, Kewen; Lin, Feng

    2013-11-08

    Highlights: •MGF induced the migration of rat MSC in a concentration-dependent manner. •MGF enhanced the mechanical properties of rMSC in inducing its migration. •MGF activated the ERK 1/2 signaling pathway of rMSC in inducing its migration. •rMSC mechanics may synergy with ERK 1/2 pathway in MGF-induced rMSC migration. -- Abstract: Mechano-growth factor (MGF) generated by cells in response to mechanical stimulation has been identified as a mechano effector molecule, playing a key role in regulating mesenchymal stem cell (MSC) function, including proliferation and migration. However, the mechanism(s) underlying how MGF-induced MSC migration occurs is still unclear. In the present study,more » MGF motivated migration of rat MSCs (rMSCs) in a concentration-dependent manner and optimal concentration of MGF at 50 ng/mL (defined as MGF treatment in this paper) was demonstrated. Notably, enhancement of mechanical properties that is pertinent to cell migration, such as cell traction force and cell stiffness were found to respond to MGF treatment. Furthermore, MGF increased phosphorylation of extracellular signal-regulated kinase (ERK), ERK inhibitor (i.e., PD98059) suppressed ERK phosphorylation, and abolished MGF-induced rMSC migration were found, demonstrating that ERK is involved molecule for MGF-induced rMSC migration. These in vitro evidences of MGF-induced rMSC migration and its direct link to altering rMSC mechanics and activating the ERK pathway, uncover the underlying biomechanical and biological mechanisms of MGF-induced rMSC migration, which may help find MGF-based application of MSC in clinical therapeutics.« less

  12. Crash simulation of hybrid structures considering the stress and strain rate dependent material behavior of thermoplastic materials

    NASA Astrophysics Data System (ADS)

    Hopmann, Ch.; Schöngart, M.; Weber, M.; Klein, J.

    2015-05-01

    Thermoplastic materials are more and more used as a light weight replacement for metal, especially in the automotive industry. Since these materials do not provide the mechanical properties, which are required to manufacture supporting elements like an auto body or a cross bearer, plastics are combined with metals in so called hybrid structures. Normally, the plastics components are joined to the metal structures using different technologies like welding or screwing. Very often, the hybrid structures are made of flat metal parts, which are stiffened by a reinforcement structure made of thermoplastic materials. The loads on these structures are very often impulsive, for example in the crash situation of an automobile. Due to the large stiffness variation of metal and thermoplastic materials, complex states of stress and very high local strain rates occur in the contact zone under impact conditions. Since the mechanical behavior of thermoplastic materials is highly dependent on these types of load, the crash failure of metal plastic hybrid parts is very complex. The problem is that the normally used strain rate dependent elastic/plastic material models are not capable to simulate the mechanical behavior of thermoplastic materials depended on the state of stress. As part of a research project, a method to simulate the mechanical behavior of hybrid structures under impact conditions is developed at the IKV. For this purpose, a specimen for the measurement of mechanical properties dependet on the state of stress and a method for the strain rate depended characterization of thermoplastic materials were developed. In the second step impact testing is performed. A hybrid structure made from a metal sheet and a reinforcement structure of a Polybutylenterephthalat Polycarbonate blend is tested under impact conditions. The measured stress and strain rate depended material data are used to simulate the mechanical behavior of the hybrid structure under highly dynamic load with impact velocities up to 5 m/s. The mechanical behavior of the plastics structure is simulated using a quadratic yield surface, which takes the state of stress and the strain rate into account. The FE model is made from mid surface elements to reduce the computing time.

  13. Composition effects on mechanical properties of tungsten-rhenium-hafnium-carbon alloys

    NASA Technical Reports Server (NTRS)

    Witzke, W. R.

    1973-01-01

    The mechanical properties of rod and sheet fabricated from arc melted W-4Re-Hf-C alloys containing up to about 0.8 mol percent hafnium carbide (HfC) were evaluated in the as-worked condition. The DBTT's of electropolished bend and tensile specimens were independent of HfC content in this range but dependent on excess Hf or C above that required for stoichiometric HfC. Low temperature ductility was a maximum at Hf contents slightly in excess of stoichiometric. Variations in high temperature strength were also dependent on excess Hf and C. Maximum creep strengthening also occurred at Hf contents in excess of stoichiometric. Analysis of extracted second phase particles indicated that creep strength was reduced by increasing WC content in the HfC particles.

  14. Micro- and Macrorheology of Jellyfish Extracellular Matrix

    PubMed Central

    Gambini, Camille; Abou, Bérengère; Ponton, Alain; Cornelissen, Annemiek J.M.

    2012-01-01

    Mechanical properties of the extracellular matrix (ECM) play a key role in tissue organization and morphogenesis. Rheological properties of jellyfish ECM (mesoglea) were measured in vivo at the cellular scale by passive microrheology techniques: microbeads were injected in jellyfish ECM and their Brownian motion was recorded to determine the mechanical properties of the surrounding medium. Microrheology results were compared with macrorheological measurements performed with a shear rheometer on slices of jellyfish mesoglea. We found that the ECM behaved as a viscoelastic gel at the macroscopic scale and as a much softer and heterogeneous viscoelastic structure at the microscopic scale. The fibrous architecture of the mesoglea, as observed by differential interference contrast and scanning electron microscopy, was in accord with these scale-dependent mechanical properties. Furthermore, the evolution of the mechanical properties of the ECM during aging was investigated by measuring microrheological properties at different jellyfish sizes. We measured that the ECM in adult jellyfish was locally stiffer than in juvenile ones. We argue that this stiffening is a consequence of local aggregations of fibers occurring gradually during aging of the jellyfish mesoglea and is enhanced by repetitive muscular contractions of the jellyfish. PMID:22225792

  15. Micro- and macrorheology of jellyfish extracellular matrix.

    PubMed

    Gambini, Camille; Abou, Bérengère; Ponton, Alain; Cornelissen, Annemiek J M

    2012-01-04

    Mechanical properties of the extracellular matrix (ECM) play a key role in tissue organization and morphogenesis. Rheological properties of jellyfish ECM (mesoglea) were measured in vivo at the cellular scale by passive microrheology techniques: microbeads were injected in jellyfish ECM and their Brownian motion was recorded to determine the mechanical properties of the surrounding medium. Microrheology results were compared with macrorheological measurements performed with a shear rheometer on slices of jellyfish mesoglea. We found that the ECM behaved as a viscoelastic gel at the macroscopic scale and as a much softer and heterogeneous viscoelastic structure at the microscopic scale. The fibrous architecture of the mesoglea, as observed by differential interference contrast and scanning electron microscopy, was in accord with these scale-dependent mechanical properties. Furthermore, the evolution of the mechanical properties of the ECM during aging was investigated by measuring microrheological properties at different jellyfish sizes. We measured that the ECM in adult jellyfish was locally stiffer than in juvenile ones. We argue that this stiffening is a consequence of local aggregations of fibers occurring gradually during aging of the jellyfish mesoglea and is enhanced by repetitive muscular contractions of the jellyfish. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. The effect of collagen crosslinking on the biphasic poroviscoelastic cartilage properties determined from a semi-automated microindentation protocol for stress relaxation.

    PubMed

    McGann, Megan E; Bonitsky, Craig M; Ovaert, Timothy C; Wagner, Diane R

    2014-06-01

    Given the important role of the collagenous structure in cartilage mechanics, there is considerable interest in the relationship between collagen crosslinking and the mechanical behavior of the cartilage matrix. While crosslink-induced alterations to the elastic modulus of cartilage have been described, changes to time-dependent behavior have not yet been determined. The objective of the study was to quantify changes to cartilage material properties, including viscoelastic coefficients, with crosslinking via indentation. To accomplish this, a semi-autonomous microindentation stress relaxation protocol was first developed, validated and then applied to cartilage specimens before and after crosslinking. The change in mechanical properties with crosslinking was analyzed both in the unloading portions of the test via the Oliver-Pharr method and in the holding portion with an inverse iterative finite element model that represented cartilage as a biphasic poroviscoelastic material. Although both techniques suggested a similar increase in equilibrium modulus in the crosslinked specimens as compared to the controls, distinct differences in the control specimens were apparent, suggesting that the two different techniques may be capturing different aspects of the material behavior. No differences in time-dependent properties were observed between the crosslinked and the control specimens. These results give further insight into the effects of crosslinking in cartilage mechanical behavior. Additionally, the microindentation stress relaxation protocol may enable increased automation for high-throughput testing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Sintering behavior and mechanical properties of zirconia compacts fabricated by uniaxial press forming.

    PubMed

    Oh, Gye-Jeong; Yun, Kwi-Dug; Lee, Kwang-Min; Lim, Hyun-Pil; Park, Sang-Won

    2010-09-01

    The purpose of this study was to compare the linear sintering behavior of presintered zirconia blocks of various densities. The mechanical properties of the resulting sintered zirconia blocks were then analyzed. Three experimental groups of dental zirconia blocks, with a different presintering density each, were designed in the present study. Kavo Everest® ZS blanks (Kavo, Biberach, Germany) were used as a control group. The experimental group blocks were fabricated from commercial yttria-stabilized tetragonal zirconia powder (KZ-3YF (SD) Type A, KCM. Corporation, Nagoya, Japan). The biaxial flexural strengths, microhardnesses, and microstructures of the sintered blocks were then investigated. The linear sintering shrinkages of blocks were calculated and compared. Despite their different presintered densities, the sintered blocks of the control and experimental groups showed similar mechanical properties. However, the sintered block had different linear sintering shrinkage rate depending on the density of the presintered block. As the density of the presintered block increased, the linear sintering shrinkage decreased. In the experimental blocks, the three sectioned pieces of each block showed the different linear shrinkage depending on the area. The tops of the experimental blocks showed the lowest linear sintering shrinkage, whereas the bottoms of the experimental blocks showed the highest linear sintering shrinkage. Within the limitations of this study, the density difference of the presintered zirconia block did not affect the mechanical properties of the sintered zirconia block, but affected the linear sintering shrinkage of the zirconia block.

  18. Sintering behavior and mechanical properties of zirconia compacts fabricated by uniaxial press forming

    PubMed Central

    Oh, Gye-Jeong; Yun, Kwi-Dug; Lee, Kwang-Min; Lim, Hyun-Pil

    2010-01-01

    PURPOSE The purpose of this study was to compare the linear sintering behavior of presintered zirconia blocks of various densities. The mechanical properties of the resulting sintered zirconia blocks were then analyzed. MATERIALS AND METHODS Three experimental groups of dental zirconia blocks, with a different presintering density each, were designed in the present study. Kavo Everest® ZS blanks (Kavo, Biberach, Germany) were used as a control group. The experimental group blocks were fabricated from commercial yttria-stabilized tetragonal zirconia powder (KZ-3YF (SD) Type A, KCM. Corporation, Nagoya, Japan). The biaxial flexural strengths, microhardnesses, and microstructures of the sintered blocks were then investigated. The linear sintering shrinkages of blocks were calculated and compared. RESULTS Despite their different presintered densities, the sintered blocks of the control and experimental groups showed similar mechanical properties. However, the sintered block had different linear sintering shrinkage rate depending on the density of the presintered block. As the density of the presintered block increased, the linear sintering shrinkage decreased. In the experimental blocks, the three sectioned pieces of each block showed the different linear shrinkage depending on the area. The tops of the experimental blocks showed the lowest linear sintering shrinkage, whereas the bottoms of the experimental blocks showed the highest linear sintering shrinkage. CONCLUSION Within the limitations of this study, the density difference of the presintered zirconia block did not affect the mechanical properties of the sintered zirconia block, but affected the linear sintering shrinkage of the zirconia block. PMID:21165274

  19. Mechanical Degradation of Graphite/PVDF Composite Electrodes: A Model-Experimental Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Kenji; Higa, Kenneth; Mair, Sunil

    2015-12-11

    Mechanical failure modes of a graphite/polyvinylidene difluoride (PVDF) composite electrode for lithium-ion batteries were investigated by combining realistic stress-stain tests and mathematical model predictions. Samples of PVDF mixed with conductive additive were prepared in a similar way to graphite electrodes and tested while submerged in electrolyte solution. Young's modulus and tensile strength values of wet samples were found to be approximately one-fifth and one-half of those measured for dry samples. Simulations of graphite particles surrounded by binder layers given the measured material property values suggest that the particles are unlikely to experience mechanical damage during cycling, but that the fatemore » of the surrounding composite of PVDF and conductive additive depends completely upon the conditions under which its mechanical properties were obtained. Simulations using realistic property values produced results that were consistent with earlier experimental observations.« less

  20. First-principles predictions of structural, mechanical and electronic properties of βTiNb under high pressure

    NASA Astrophysics Data System (ADS)

    Wang, Z. P.; Fang, Q. H.; Li, J.; Liu, B.

    2018-04-01

    Structural, mechanical and electronic properties of βTiNb alloy under high pressure have been investigated based on the density functional theory (DFT). The dependences of dimensionless volume ratio, elastic constants, bulk modulus, Young's modulus, shear modulus, ductile/brittle, anisotropy and Poisson's ratio on applied pressure are all calculated successfully. The results reveal that βTiNb alloy is mechanically stable under pressure below 23.45 GPa, and the pressure-induced phase transformation could occur beyond this critical value. Meanwhile, the applied pressure can effectively promote the mechanical properties of βTiNb alloy, including the resistances to volume change, elastic deformation and shear deformation, as well as the material ductility and metallicity. Furthermore, the calculated electronic structures testify that βTiNb alloy performs the metallicity and the higher pressure reduces the structural stability of unit cell.

  1. Scale Dependence of the Mechanical Properties and Microstructure of Crustaceans Thin Films as Biomimetic Materials

    NASA Astrophysics Data System (ADS)

    Verma, Devendra; Qu, Tao; Tomar, Vikas

    2015-04-01

    The exoskeletons of crustacean species in the form of thin films have been investigated by several researchers to better understand the role played by the exoskeletal structure in affecting the functioning of species such as shrimps, crabs, and lobsters. These species exhibit similar designs in their exoskeleton microstructure, such as a Bouligand pattern (twisted plywood structure), layers of different thickness across cross section, change in mineral content through the layers, etc. Different parts of crustaceans exhibit a significant variation in mechanical properties based on the variation in the above-mentioned parameters. This change in mechanical properties has been analyzed by using imaging techniques such as scanning electron microscopy and energy-dispersive x-ray spectroscopy, and by using mechanical characterization techniques such as nanoindentation and atomic force microscopy. In this article, the design principles of these biological composites are discussed based on two shrimp species: Rimicaris exoculata and Pandalus platyceros.

  2. Orientation and size-dependent mechanical modulation within individual secondary osteons in cortical bone tissue

    PubMed Central

    Carnelli, Davide; Vena, Pasquale; Dao, Ming; Ortiz, Christine; Contro, Roberto

    2013-01-01

    Anisotropy is one of the most peculiar aspects of cortical bone mechanics; however, its anisotropic mechanical behaviour should be treated only with strict relationship to the length scale of investigation. In this study, we focus on quantifying the orientation and size dependence of the spatial mechanical modulation in individual secondary osteons of bovine cortical bone using nanoindentation. Tests were performed on the same osteonal structure in the axial (along the long bone axis) and transverse (normal to the long bone axis) directions along arrays going radially out from the Haversian canal at four different maximum depths on three secondary osteons. Results clearly show a periodic pattern of stiffness with spatial distance across the osteon. The effect of length scale on lamellar bone anisotropy and the critical length at which homogenization of the mechanical properties occurs were determined. Further, a laminate-composite-based analytical model was applied to the stiffness trends obtained at the highest spatial resolution to evaluate the elastic constants for a sub-layer of mineralized collagen fibrils within an osteonal lamella on the basis of the spatial arrangement of the fibrils. The hierarchical arrangement of lamellar bone is found to be a major determinant for modulation of mechanical properties and anisotropic mechanical behaviour of the tissue. PMID:23389895

  3. Atomistic investigation of the structural, transport, and mechanical properties of Cu-Zr metallic glasses

    NASA Astrophysics Data System (ADS)

    Kumar, Mohit

    The unique set of mechanical and magnetic properties possessed by metallic glasses has attracted a lot of recent scientific and technological interest. The development of new metallic glass alloys with improved manufacturability, enhanced properties and higher ductility relies on the fundamental understanding of the interconnections between their atomic structure, glass forming ability (GFA), transport properties, and elastic and plastic deformation mechanisms. This thesis is focused on finding these atomic structure-property relationships in Cu-Zr BMGs using molecular dynamics simulations. In the first study described herein, molecular dynamics simulations of the rapid solidification process over the Cu-Zr compositional domain were conducted to explore inter-dependencies of atomic transport and fragility, elasticity and structural ordering, and GFA. The second study investigated the atomic origins of serration events, which is the characteristic plastic deformation behaviour in BMGs. The combined results of this work suggest that GFA and ductility of metallic glasses could be compositionally tuned.

  4. The interrelation between mechanical properties, corrosion resistance and microstructure of Pb-Sn casting alloys for lead-acid battery components

    NASA Astrophysics Data System (ADS)

    Peixoto, Leandro C.; Osório, Wislei R.; Garcia, Amauri

    It is well known that there is a strong influence of thermal processing variables on the solidification structure and as a direct consequence on the casting final properties. The morphological microstructural parameters such as grain size and cellular or dendritic spacings will depend on the heat transfer conditions imposed by the metal/mould system. There is a need to improve the understanding of the interrelation between the microstructure, mechanical properties and corrosion resistance of dilute Pb-Sn casting alloys which are widely used in the manufacture of battery components. The present study has established correlations between cellular microstructure, ultimate tensile strength and corrosion resistance of Pb-1 wt% Sn and Pb-2.5 wt% Sn alloys by providing a combined plot of these properties as a function of cell spacing. It was found that a compromise between good corrosion resistance and good mechanical properties can be attained by choosing an appropriate cell spacing range.

  5. Impact of Wetting/Oven-Drying Cycles on the Mechanical and Physical Properties of Birch Plywood

    NASA Astrophysics Data System (ADS)

    Sooru, M.; Kasepuu, K.; Kask, R.; Lille, H.

    2015-11-01

    The objective of this study was to explore some physical and mechanical properties and the dimensional stability of birch (Betula sp.) nine-ply veneers glued with phenol-formaldehyde (PF) after 10 cycles of soaking/oven-drying. The properties to be determined were bending strength (BS), modulus of elasticity in bending (MOE), Janka hardness (JH) and thickness swelling (TS), which were tested according to the European Standards (EN). An analytical equation was used for approximation of the change in the physical and mechanical properties of the samples depending on the number of cycles. It was shown that the values of the studied properties were affected most by the first soaking and drying cycles after which BS and MOE decreased continuously while the values of JH and TS stabilized. After 10 cycles the final values of BS, MOE, JH and TS accounted for 75-81%, 95%, 82% and 98.5% of the initial values, respectively.

  6. Antifriction basalt-plastics based on polypropylene

    NASA Astrophysics Data System (ADS)

    Bashtannik, P. I.; Ovcharenko, V. G.

    1997-05-01

    A study is made of the dependence of the mechanical and friction-engineering properties of polypropylene reinforced with basalt fibers on the viscosity of the polymer matrix. It is established that the main factors that determine the mechanical properties of the plastics are the quality of impregnation of the fibers by the binder and the residual length of the reinforcing filler in the composite after extrusion and injection molding. The material that was developed has a low friction coefficient and low rate of wear within a relatively brood range of friction conditions. The basalt-plastics can be used in the rubbing parts of machines and mechanisms subjected to dry friction.

  7. Elastic cavitation and fracture via injection.

    PubMed

    Hutchens, Shelby B; Fakhouri, Sami; Crosby, Alfred J

    2016-03-07

    The cavitation rheology technique extracts soft materials mechanical properties through pressure-monitored fluid injection. Properties are calculated from the system's response at a critical pressure that is governed by either elasticity or fracture (or both); however previous elementary analysis has not been capable of accurately determining which mechanism is dominant. We combine analyses of both mechanisms in order to determine how the full system thermodynamics, including far-field compliance, dictate whether a bubble in an elastomeric solid will grow through either reversible or irreversible deformations. Applying these analyses to experimental data, we demonstrate the sensitivity of cavitation rheology to microstructural variation via a co-dependence between modulus and fracture energy.

  8. Microstructural and mechanical challenges in biomedical NiTi

    NASA Astrophysics Data System (ADS)

    Franz-Xaver Wagner, Martin

    2010-07-01

    The mechanical behaviour of NiTi shape memory alloys superficially resembles that of certain biomaterials, such as bones or tissues: By virtue of a reversible martensitic phase transformation, NiTi alloys can recover relatively large strains; uniaxial stress-strain curves exhibit constant stress-plateaus (at several hundreds of MPa, depending on alloy composition and testing temperature) associated with the phase transition. These novel functional properties, in combination with high mechanical strength in ultra-fine grained NiTi and good biocompatibility, are utilized in various implants and medical devices. Yet - and quite similar to hierarchically structured biomaterials - the deformation behaviour of NiTi is intricately linked to distinct deformation processes on several length scales, and there remain significant gaps in our understanding of the microstructure-property relations. In the present paper, recent experimental and theoretical results from first-principles calculations, micromechanical modelling and nanoindentation are discussed with a focus on the role of inelastic deformation processes, twin boundaries and the interaction of plastic deformation and stress-induced phase transformations. These novel findings challenge our understanding of the fundamental mechanical properties of NiTi. They highlight the importance of inelastic deformation mechanisms for the overall mechanical properties and strength of NiTi.

  9. Superstretchable, Self-Healing Polymeric Elastomers with Tunable Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Peng-Fei; Li, Bingrui; Hong, Tao

    Utilization of self-healing chemistry to develop synthetic polymer materials that can heal themselves with restored mechanical performance and functionality is of great interest. Self-healable polymer elastomers with tunable mechanical properties are especially attractive for a variety of applications. In this paper, a series of urea functionalized poly(dimethyl siloxane)-based elastomers (U-PDMS-Es) are reported with extremely high stretchability, self-healing mechanical properties, and recoverable gas-separation performance. Tailoring the molecular weights of poly(dimethyl siloxane) or weight ratio of elastic cross-linker offers tunable mechanical properties of the obtained U-PDMS-Es, such as ultimate elongation (from 984% to 5600%), Young's modulus, ultimate tensile strength, toughness, and elasticmore » recovery. The U-PDMS-Es can serve as excellent acoustic and vibration damping materials over a broad range of temperature (over 100 °C). The strain-dependent elastic recovery behavior of U-PDMS-Es is also studied. After mechanical damage, the U-PDMS-Es can be healed in 120 min at ambient temperature or in 20 min at 40 °C with completely restored mechanical performance. Lastly, the U-PDMS-Es are also demonstrated to exhibit recoverable gas-separation functionality with retained permeability/selectivity after being damaged.« less

  10. Evaluating Changes in Tendon Crimp with Fatigue Loading as an ex vivo Structural Assessment of Tendon Damage

    PubMed Central

    Freedman, Benjamin R.; Zuskov, Andrey; Sarver, Joseph J.; Buckley, Mark R.; Soslowsky, Louis J.

    2015-01-01

    The complex structure of tendons relates to their mechanical properties. Previous research has associated the waviness of collagen fibers (crimp) during quasi-static tensile loading to tensile mechanics, but less is known about the role of fatigue loading on crimp properties. In this study (IACUC approved), mouse patellar tendons were fatigue loaded while an integrated plane polariscope simultaneously assessed crimp properties. We demonstrate a novel structural mechanism whereby tendon crimp amplitude and frequency are altered with fatigue loading. In particular, fatigue loading increased the crimp amplitude across the tendon width and length, and these structural alterations were shown to be both region and load dependent. The change in crimp amplitude was strongly correlated to mechanical tissue laxity (defined as the ratio of displacement and gauge length relative to the first cycle of fatigue loading assessed at constant load throughout testing), at all loads and regions evaluated. Together, this study highlights the role of fatigue loading on tendon crimp properties as a function of load applied and region evaluated, and offers an additional structural mechanism for mechanical alterations that may lead to ultimate tendon failure. PMID:25773654

  11. Superstretchable, Self-Healing Polymeric Elastomers with Tunable Properties

    DOE PAGES

    Cao, Peng-Fei; Li, Bingrui; Hong, Tao; ...

    2018-04-16

    Utilization of self-healing chemistry to develop synthetic polymer materials that can heal themselves with restored mechanical performance and functionality is of great interest. Self-healable polymer elastomers with tunable mechanical properties are especially attractive for a variety of applications. In this paper, a series of urea functionalized poly(dimethyl siloxane)-based elastomers (U-PDMS-Es) are reported with extremely high stretchability, self-healing mechanical properties, and recoverable gas-separation performance. Tailoring the molecular weights of poly(dimethyl siloxane) or weight ratio of elastic cross-linker offers tunable mechanical properties of the obtained U-PDMS-Es, such as ultimate elongation (from 984% to 5600%), Young's modulus, ultimate tensile strength, toughness, and elasticmore » recovery. The U-PDMS-Es can serve as excellent acoustic and vibration damping materials over a broad range of temperature (over 100 °C). The strain-dependent elastic recovery behavior of U-PDMS-Es is also studied. After mechanical damage, the U-PDMS-Es can be healed in 120 min at ambient temperature or in 20 min at 40 °C with completely restored mechanical performance. Lastly, the U-PDMS-Es are also demonstrated to exhibit recoverable gas-separation functionality with retained permeability/selectivity after being damaged.« less

  12. Elevated-Temperature Mechanical Properties of Lead-Free Sn-0.7Cu- xSiC Nanocomposite Solders

    NASA Astrophysics Data System (ADS)

    Mohammadi, A.; Mahmudi, R.

    2018-02-01

    Mechanical properties of Sn-0.7 wt.%Cu lead-free solder alloy reinforced with 0 vol.%, 1 vol.%, 2 vol.%, and 3 vol.% 100-nm SiC particles have been assessed using the shear punch testing technique in the temperature range from 25°C to 125°C. The composite materials were fabricated by the powder metallurgy route by blending, compacting, sintering, and finally extrusion. The 2 vol.% SiC-containing composite showed superior mechanical properties. In all conditions, the shear strength was adversely affected by increasing test temperature, and the 2 vol.% SiC-containing composite showed superior mechanical properties. Depending on the test temperature, the shear yield stress and ultimate shear strength increased, respectively, by 3 MPa to 4 MPa and 4 MPa to 5.5 MPa, in the composite materials. The strength enhancement was mostly attributed to the Orowan particle strengthening mechanism due to the SiC nanoparticles, and to a lesser extent to the coefficient of thermal expansion mismatch between the particles and matrix in the composite solder. A modified shear lag model was used to predict the total strengthening achieved by particle addition, based on the contribution of each of the above mechanisms.

  13. Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti-Ag sintered alloys.

    PubMed

    Chen, Mian; Zhang, Erlin; Zhang, Lan

    2016-05-01

    In this research, Ag element was selected as an antibacterial agent to develop an antibacterial Ti-Ag alloy by a powder metallurgy. The microstructure, phase constitution, mechanical properties, corrosion resistance and antibacterial properties of the Ti-Ag sintered alloys have been systematically studied by X-ray diffraction (XRD), scanning electron microscope (SEM), compressive test, electrochemical measurements and antibacterial test. The effects of the Ag powder size and the Ag content on the antibacterial property and mechanical property as well as the anticorrosion property have been investigated. The microstructure results have shown that Ti-Ag phase, residual pure Ag and Ti were the mainly phases in Ti-Ag(S75) sintered alloy while Ti2Ag was synthesized in Ti-Ag(S10) sintered alloy. The mechanical test indicated that Ti-Ag sintered alloy showed a much higher hardness and the compressive yield strength than cp-Ti but the mechanical properties were slightly reduced with the increase of Ag content. Electrochemical results showed that Ag powder size had a significant effect on the corrosion resistance of Ti-Ag sintered alloy. Ag content increased the corrosion resistance in a dose dependent way under a homogeneous microstructure. Antibacterial tests have demonstrated that antibacterial Ti-Ag alloy was successfully prepared. It was also shown that the Ag powder particle size and the Ag content influenced the antibacterial activity seriously. The reduction in the Ag powder size was benefit to the improvement in the antibacterial property and the Ag content has to be at least 3wt.% in order to obtain a strong and stable antibacterial activity against Staphylococcus aureus bacteria. The bacterial mechanism was thought to be related to the Ti2Ag and its distribution. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Impacts of Hydrate Distribution on the Hydro-Thermo-Mechanical Properties of Hydrate-Bearing Sediments

    NASA Astrophysics Data System (ADS)

    Dai, S.; Seol, Y.

    2015-12-01

    In general, hydrate makes the sediments hydraulically less conductive, thermally more conductive, and mechanically stronger; yet the dependency of these physical properties on hydrate saturation varies with hydrate distribution and morphology. Hydrate distribution in sediments may cause the bulk physical properties of their host sediments varying several orders of magnitude even with the same amount of hydrate. In natural sediments, hydrate morphology is inherently governed by the burial depth and the grain size of the host sediments. Compare with patchy hydrate, uniformly distributed hydrate is more destructive to fluid flow, yet leads to higher gas and water permeability during hydrate dissociation due to the easiness of forming percolation paths. Water and hydrate have similar thermal conductivity values; the bulk thermal conductivity of hydrate-bearing sediments depends critically on gas-phase saturation. 60% of gas saturation may result in evident thermal conductivity drop and hinder further gas production. Sediments with patchy hydrate yield lower stiffness than that with cementing hydrate but higher stiffness than that with pore filling and loading bearing hydrate. Besides hydrate distribution, the stress state and loading history also play an important role in the mechanical behavior of hydrate-bearing sediments.

  15. Rheological behaviors of edible casein-based packaging films under extreme environmental conditions, using humidity-controlled dynamic mechanical analysis

    USDA-ARS?s Scientific Manuscript database

    Thin casein films for food packaging applications possess good strength and low oxygen permeability but low water-resistance and elasticity. Customizing the mechanical properties of the films to target specific behaviors depending on temperature and humidity changes would enable a variety of commerc...

  16. Reconsolidation of Appetitive Memories for Both Natural and Drug Reinforcement Is Dependent on [beta]-Adrenergic Receptors

    ERIC Educational Resources Information Center

    Milton, Amy L.; Lee, Jonathan L. C.; Everitt, Barry J.

    2008-01-01

    We have investigated the neurochemical mechanisms of memory reconsolidation and, in particular, the functional requirement for intracellular mechanisms initiated by [beta]-adrenergic signaling. We show that propranolol, given in conjunction with a memory reactivation session, can specifically disrupt the conditioned reinforcing properties of a…

  17. Study on bond behaviour exposed to fire using beam specimen

    NASA Astrophysics Data System (ADS)

    Suhaib Ahmad, Mohammad; Bhargava, Pradeep; Sharma, Umesh Kumar

    2018-04-01

    The composite action of concrete and steel in a reinforced concrete structure depends upon the bond between them. Bond behaviour is studied in terms of bond-slip relationship. The bond between them depends upon mechanical properties of concrete and steel. In an event of fire these mechanical properties degrades and hence the bond behaviour changes. Some researches were performed to study the effect of temperature on the bond-slip relationship which are based on pull out specimens. Generally these relationships are obtained using pull out specimen which over estimates the bond properties. In this study beam specimens were used which is recommended by Rilem. These specimens were exposed to elevated temperatures up to 650 °C and there bond-slip behaviour were studied. The study shows that bond strength decreases while peak slip increases with increases in temperature. Also an equation proposed was proposed which can predict the bond strength between concrete and steel exposed up to the temperature of 650 °C.

  18. Thermoplastic Elastomer Part Color as Function of Temperature Histories and Oxygen Atmosphere During Selective Laser Sintering

    NASA Astrophysics Data System (ADS)

    Kummert, C.; Josupeit, S.; Schmid, H.-J.

    2018-03-01

    The influence of selective laser sintering (SLS) parameters on PA12 part properties is well known, but research on other materials is rare. One alternative material is a thermoplastic elastomer (TPE) called PrimePart ST that is more elastic and shows a distinct SLS processing behavior. It undergoes a three-dimensional temperature distribution during the SLS process within the TPE part cake. To examine this further, a temperature measurement system that allows temperature measurements inside the part cake is applied to TPE in the present work. Position-dependent temperature histories are directly correlated with the color and mechanical properties of built parts and are in very good agreement with artificial heat treatment in a furnace. Furthermore, it is clearly shown that the yellowish discoloration of parts in different intensities is not only temperature dependent but also influenced by the residual oxygen content in the process atmosphere. Nevertheless, the discoloration has no influence on the mechanical part properties.

  19. The interplay of stiffness and force anisotropies drives embryo elongation

    PubMed Central

    Vuong-Brender, Thanh Thi Kim; Ben Amar, Martine; Pontabry, Julien; Labouesse, Michel

    2017-01-01

    The morphogenesis of tissues, like the deformation of an object, results from the interplay between their material properties and the mechanical forces exerted on them. The importance of mechanical forces in influencing cell behaviour is widely recognized, whereas the importance of tissue material properties, in particular stiffness, has received much less attention. Using Caenorhabditis elegans as a model, we examine how both aspects contribute to embryonic elongation. Measuring the opening shape of the epidermal actin cortex after laser nano-ablation, we assess the spatiotemporal changes of actomyosin-dependent force and stiffness along the antero-posterior and dorso-ventral axis. Experimental data and analytical modelling show that myosin-II-dependent force anisotropy within the lateral epidermis, and stiffness anisotropy within the fiber-reinforced dorso-ventral epidermis are critical in driving embryonic elongation. Together, our results establish a quantitative link between cortical tension, material properties and morphogenesis of an entire embryo. DOI: http://dx.doi.org/10.7554/eLife.23866.001 PMID:28181905

  20. Changes in Achilles tendon mechanical properties following eccentric heel drop exercise are specific to the free tendon.

    PubMed

    Obst, S J; Newsham-West, R; Barrett, R S

    2016-04-01

    Mechanical loading of the Achilles tendon during isolated eccentric contractions could induce immediate and region-dependent changes in mechanical properties. Three-dimensional ultrasound was used to examine the immediate effect of isolated eccentric exercise on the mechanical properties of the distal (free tendon) and proximal (gastrocnemii) regions of the Achilles tendon. Participants (n = 14) underwent two testing sessions in which tendon measurements were made at rest and during a 30% and 70% isometric plantar flexion contractions immediately before and after either: (a) 3 × 15 eccentric heel drops or (b) 10-min rest. There was a significant time-by-session interaction for free tendon length and strain for all loading conditions (P < 0.05). Pairwise comparisons revealed a significant increase in free tendon length and strain at all contraction intensities after eccentric exercise (P < 0.05). There was no significant time-by-session interaction for the gastrocnemii (medial or lateral) aponeurosis or tendon for any of the measured parameters. Immediate changes in Achilles tendon mechanical properties were specific to the free tendon and consistent with changes due to mechanical creep. These findings suggest that the mechanical properties of the free tendon may be more vulnerable to change with exercise compared with the gastrocnemii aponeurosis or tendon. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Probing Mechanical Properties of Jurkat Cells under the Effect of ART Using Oscillating Optical Tweezers

    PubMed Central

    2015-01-01

    Acute lymphoid leukemia is a common type of blood cancer and chemotherapy is the initial treatment of choice. Quantifying the effect of a chemotherapeutic drug at the cellular level plays an important role in the process of the treatment. In this study, an oscillating optical tweezer was employed to characterize the frequency-dependent mechanical properties of Jurkat cells exposed to the chemotherapeutic agent, artesunate (ART). A motion equation for a bead bound to a cell was applied to describe the mechanical characteristics of the cell cytoskeleton. By comparing between the modeling results and experimental results from the optical tweezer, the stiffness and viscosity of the Jurkat cells before and after the ART treatment were obtained. The results demonstrate a weak power-law dependency of cell stiffness with frequency. Furthermore, the stiffness and viscosity were increased after the treatment. Therefore, the cytoskeleton cell stiffness as the well as power-law coefficient can provide a useful insight into the chemo-mechanical relationship of drug treated cancer cells and may serve as another tool for evaluating therapeutic performance quantitatively. PMID:25928073

  2. Size-dependent fracture behavior of silver nanowires.

    PubMed

    Cao, Ke; Han, Ying; Zhang, Hongti; Gao, Libo; Yang, Hongwei; Chen, Jialin; Li, Yuxiu; Lu, Yang

    2018-07-20

    Silver (Ag) nanowires have great potential to be used in the flexible electronics industry for their applications in flexible, transparent conductors due to high conductivity and light reflectivity. Those applications always involve mechanical loading and deformations, which requires an in-depth understanding of their mechanical behavior and performance under loadings. However, current understanding on the mechanical properties of Ag nanowires is limited, especially on their size-dependent fracture behavior. In this work, mechanical properties of Ag nanowires with diameters ranging from 50 to 300 nm were systematically studied by in situ TEM tensile testing for the first time. The size effect was clearly found, with the increasing of the diameter of Ag nanowires, the ultimate tensile stress decreased. More importantly, the fracture behavior of Ag nanowire was studied and a brittle-to-ductile transition in fracture behavior was observed at the diameters around 100 nm which could be attributed to the dislocation activities within the geometry confinement. This work could give insights for understanding nanosized Ag wires and the design of Ag nanowire-based flexible devices and touchable panels.

  3. Size-dependent fracture behavior of silver nanowires

    NASA Astrophysics Data System (ADS)

    Cao, Ke; Han, Ying; Zhang, Hongti; Gao, Libo; Yang, Hongwei; Chen, Jialin; Li, Yuxiu; Lu, Yang

    2018-07-01

    Silver (Ag) nanowires have great potential to be used in the flexible electronics industry for their applications in flexible, transparent conductors due to high conductivity and light reflectivity. Those applications always involve mechanical loading and deformations, which requires an in-depth understanding of their mechanical behavior and performance under loadings. However, current understanding on the mechanical properties of Ag nanowires is limited, especially on their size-dependent fracture behavior. In this work, mechanical properties of Ag nanowires with diameters ranging from 50 to 300 nm were systematically studied by in situ TEM tensile testing for the first time. The size effect was clearly found, with the increasing of the diameter of Ag nanowires, the ultimate tensile stress decreased. More importantly, the fracture behavior of Ag nanowire was studied and a brittle-to-ductile transition in fracture behavior was observed at the diameters around 100 nm which could be attributed to the dislocation activities within the geometry confinement. This work could give insights for understanding nanosized Ag wires and the design of Ag nanowire-based flexible devices and touchable panels.

  4. Origami-inspired building block and parametric design for mechanical metamaterials

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Ma, Hua; Feng, Mingde; Yan, Leilei; Wang, Jiafu; Wang, Jun; Qu, Shaobo

    2016-08-01

    An origami-based building block of mechanical metamaterials is proposed and explained by introducing a mechanism model based on its geometry. According to our model, this origami mechanism supports response to uniaxial tension that depends on structure parameters. Hence, its mechanical properties can be tunable by adjusting the structure parameters. Experiments for poly lactic acid (PLA) samples were carried out, and the results are in good agreement with those of finite element analysis (FEA). This work may be useful for designing building blocks of mechanical metamaterials or other complex mechanical structures.

  5. Effect of starch type on the physico-chemical properties of edible films.

    PubMed

    Basiak, Ewelina; Lenart, Andrzej; Debeaufort, Frédéric

    2017-05-01

    Food preservation is mostly related to packaging in oil-based plastics, inducing environmental problems, but this drawback could be limited by using edible/biodegradable films and coatings. Physical and chemical properties were assessed and reflect the role of the starch type (wheat, corn or potato) and thus that of the amylose/amylopectin ratio, which influences thickness, colour, moisture, wettability, thermal, surface and mechanical properties. Higher amylose content in films induces higher moisture sensitivity, and thus affects the mechanical and barrier properties. Films made from potato starch constitute a greater barrier for oxygen and water vapour though they have weaker mechanical properties than wheat and corn starch films. Starch species with higher amylose content have lower wettability properties, and better mechanical resistance, which strongly depends on the water content due to the hydrophilic nature of starch films, so they could be used for products with higher water activity, such as cheese, fruits and vegetables. It especially concerns wheat starch systems, and the contact angle indicates less hydrophilic surfaces (above 90°) than those of corn and potato starch films (below 90°). The starch origin influences optical properties and thickness: with more amylose, films are opalescent and thicker; with less, they are transparent and thinner. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Application of the time-temperature superposition principle to the mechanical characterization of elastomeric adhesives for crash simulation purposes

    NASA Astrophysics Data System (ADS)

    Rauh, A.; Hinterhölzl, R.; Drechsler, K.

    2012-05-01

    In the automotive industry, finite element simulation is widely used to ensure crashworthiness. Mechanical material data over wide strain rate and temperature ranges are required as a basis. This work proposes a method reducing the cost of mechanical material characterization by using the time-temperature superposition principle on elastomeric adhesives. The method is based on the time and temperature interdependence which is characteristic for mechanical properties of polymers. Based on the assumption that polymers behave similarly at high strain rates and at low temperatures, a temperature-dominated test program is suggested, which can be used to deduce strain rate dependent material behavior at different reference temperatures. The temperature shift factor is found by means of dynamic mechanical analysis according to the WLF-equation, named after Williams, Landel and Ferry. The principle is applied to the viscoelastic properties as well as to the failure properties of the polymer. The applicability is validated with high strain rate tests.

  7. Built-in Electric Field Induced Mechanical Property Change at the Lanthanum Nickelate/Nb-doped Strontium Titanate Interfaces

    DOE PAGES

    Chien, TeYu; Liu, Jian; Yost, Andrew J.; ...

    2016-01-08

    The interactions between electric field and the mechanical properties of materials are important for the applications of microelectromechanical and nanoelectromechanical systems, but relatively unexplored for nanoscale materials. Here, we observe an apparent correlation between the change of the fractured topography of Nb-doped SrTiO 3 (Nb:STO) within the presence of a built-in electric field resulting from the Schottky contact at the interface of a metallic LaNiO 3 thin film utilizing cross-sectional scanning tunneling microscopy and spectroscopy. The change of the inter-atomic bond length mechanism is argued to be the most plausible origin. This picture is supported by the strong-electric-field-dependent permittivity inmore » STO and the existence of the dielectric dead layer at the interfaces of STO with metallic films. Finally, these results provided direct evidence and a possible mechanism for the interplay between the electric field and the mechanical properties on the nanoscale for perovskite materials.« less

  8. Mechanical analysis of infant carrying in hominoids

    PubMed Central

    2007-01-01

    In all higher nonhuman primates, species survival depends upon safe carrying of infants clinging to body hair of adults. In this work, measurements of mechanical properties of ape hair (gibbon, orangutan, and gorilla) are presented, focusing on constraints for safe infant carrying. Results of hair tensile properties are shown to be species-dependent. Analysis of the mechanics of the mounting position, typical of heavier infant carrying among African apes, shows that both clinging and friction are necessary to carry heavy infants. As a consequence, a required relationship between infant weight, hair–hair friction coefficient, and body angle exists. The hair–hair friction coefficient is measured using natural ape skin samples, and dependence on load and humidity is analyzed. Numerical evaluation of the equilibrium constraint is in agreement with the knuckle-walking quadruped position of African apes. Bipedality is clearly incompatible with the usual clinging and mounting pattern of infant carrying, requiring a revision of models of hominization in relation to the divergence between apes and hominins. These results suggest that safe carrying of heavy infants justify the emergence of biped form of locomotion. Ways to test this possibility are foreseen here. PMID:18030438

  9. Resolving nanoparticle growth mechanisms from size- and time-dependent growth rate analysis

    NASA Astrophysics Data System (ADS)

    Pichelstorfer, Lukas; Stolzenburg, Dominik; Ortega, John; Karl, Thomas; Kokkola, Harri; Laakso, Anton; Lehtinen, Kari E. J.; Smith, James N.; McMurry, Peter H.; Winkler, Paul M.

    2018-01-01

    Atmospheric new particle formation occurs frequently in the global atmosphere and may play a crucial role in climate by affecting cloud properties. The relevance of newly formed nanoparticles depends largely on the dynamics governing their initial formation and growth to sizes where they become important for cloud microphysics. One key to the proper understanding of nanoparticle effects on climate is therefore hidden in the growth mechanisms. In this study we have developed and successfully tested two independent methods based on the aerosol general dynamics equation, allowing detailed retrieval of time- and size-dependent nanoparticle growth rates. Both methods were used to analyze particle formation from two different biogenic precursor vapors in controlled chamber experiments. Our results suggest that growth rates below 10 nm show much more variation than is currently thought and pin down the decisive size range of growth at around 5 nm where in-depth studies of physical and chemical particle properties are needed.

  10. Linear and nonlinear mechanical properties of a series of epoxy resins

    NASA Technical Reports Server (NTRS)

    Curliss, D. B.; Caruthers, J. M.

    1987-01-01

    The linear viscoelastic properties have been measured for a series of bisphenol-A-based epoxy resins cured with the diamine DDS. The linear viscoelastic master curves were constructed via time-temperature superposition of frequency dependent G-prime and G-double-prime isotherms. The G-double-prime master curves exhibited two sub-Tg transitions. Superposition of isotherms in the glass-to-rubber transition (i.e., alpha) and the beta transition at -60 C was achieved by simple horizontal shifts in the log frequency axis; however, in the region between alpha and beta, superposition could not be effected by simple horizontal shifts along the log frequency axis. The different temperature dependency of the alpha and beta relaxation mechanisms causes a complex response of G-double-prime in the so called alpha-prime region. A novel numerical procedure has been developed to extract the complete relaxation spectra and its temperature dependence from the G-prime and G-double-prime isothermal data in the alpha-prime region.

  11. Effects of stress ratio on the temperature-dependent high-cycle fatigue properties of alloy steels

    NASA Astrophysics Data System (ADS)

    Lü, Zhi-yang; Wan, Ao-shuang; Xiong, Jun-jiang; Li, Kuang; Liu, Jian-zhong

    2016-12-01

    This paper addresses the effects of stress ratio on the temperature-dependent high-cycle fatigue (HCF) properties of alloy steels 2CrMo and 9CrCo, which suffer from substantial vibrational loading at small stress amplitude, high stress ratio, and high frequency in the high-temperature environments in which they function as blade and rotor spindle materials in advanced gas or steam turbine engines. Fatigue tests were performed on alloy steels 2CrMo and 9CrCo subjected to constant-amplitude loading at four stress ratios and at four and three temperatures, respectively, to determine their temperature-dependent HCF properties. The interaction mechanisms between high temperature and stress ratio were deduced and compared with each other on the basis of the results of fractographic analysis. A phenomenological model was developed to evaluate the effects of stress ratio on the temperature-dependent HCF properties of alloy steels 2CrMo and 9CrCo. Good correlation was achieved between the predictions and actual experiments, demonstrating the practical and effective use of the proposed method.

  12. The Effect of Temperature Dependent Material Nonlinearities on the Response of Piezoelectric Composite Plates

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun; Saravanos, Dimitris A.

    1997-01-01

    Previously developed analytical formulations for piezoelectric composite plates are extended to account for the nonlinear effects of temperature on material properties. The temperature dependence of the composite and piezoelectric properties are represented at the material level through the thermopiezoelectric constitutive equations. In addition to capturing thermal effects from temperature dependent material properties, this formulation also accounts for thermal effects arising from: (1) coefficient of thermal expansion mismatch between the various composite and piezoelectric plies and (2) pyroelectric effects on the piezoelectric material. The constitutive equations are incorporated into a layerwise laminate theory to provide a unified representation of the coupled mechanical, electrical, and thermal behavior of smart structures. Corresponding finite element equations are derived and implemented for a bilinear plate element with the inherent capability to model both the active and sensory response of piezoelectric composite laminates. Numerical studies are conducted on a simply supported composite plate with attached piezoceramic patches under thermal gradients to investigate the nonlinear effects of material property temperature dependence on the displacements, sensory voltages, active voltages required to minimize thermal deflections, and the resultant stress states.

  13. Effect of reinforcement phase on the mechanical property of tungsten nanocomposite synthesized by spark plasma sintering

    DOE PAGES

    Lee, Jin -Kyu; Kim, Song -Yi; Ott, Ryan T.; ...

    2015-07-15

    Nanostructured tungsten composites were fabricated by spark plasma sintering of nanostructured composite powders. The composite powders, which were synthesized by mechanical milling of tungsten and Ni-based alloy powders, are comprised of alternating layers of tungsten and metallic glass several hundred nanometers in size. The mechanical behavior of the nanostructured W composite is similar to pure tungsten, however, in contrast to monolithic pure tungsten, some macroscopic compressive plasticity accompanies the enhanced maximum strength up to 2.4 GPa by introducing reinforcement. As a result, we have found that the mechanical properties of the composites strongly depend on the uniformity of the nano-grainedmore » tungsten matrix and reinforcement phase distribution.« less

  14. Mechanical Properties of Transcription

    NASA Astrophysics Data System (ADS)

    Sevier, Stuart A.; Levine, Herbert

    2017-06-01

    The mechanical properties of transcription have recently been shown to play a central role in gene expression. However, a full physical characterization of this central biological process is lacking. In this Letter, we introduce a simple description of the basic physical elements of transcription where RNA elongation, RNA polymerase rotation, and DNA supercoiling are coupled. The resulting framework describes the relative amount of RNA polymerase rotation and DNA supercoiling that occurs during RNA elongation. Asymptotic behavior is derived and can be used to experimentally extract unknown mechanical parameters of transcription. Mechanical limits to transcription are incorporated through the addition of a DNA supercoiling-dependent RNA polymerase velocity. This addition can lead to transcriptional stalling and resulting implications for gene expression, chromatin structure and genome organization are discussed.

  15. Physical property measurements of doped cesium iodide crystals

    NASA Technical Reports Server (NTRS)

    Synder, R. S.; Clotfelter, W. N.

    1974-01-01

    Mechanical and thermal property values are reported for crystalline cesium iodide doped with sodium and thallium. Young's modulus, bulk modulus, shear modulus, and Poisson's ratio were obtained from ultrasonic measurements. Young's modulus and the samples' elastic and plastic behavior were also measured under tension and compression. Thermal expansion and thermal conductivity were the temperature dependent measurements that were made.

  16. Evaluation of reactive force fields for prediction of the thermo-mechanical properties of cellulose Iâ

    Treesearch

    Fernando L. Dri; Xiawa Wu; Robert J. Moon; Ashlie Martini; Pablo D. Zavattieri

    2015-01-01

    Molecular dynamics simulation is commonly used to study the properties of nanocellulose-based materials at the atomic scale. It is well known that the accuracy of these simulations strongly depends on the force field that describes energetic interactions. However, since there is no force field developed specifically for cellulose, researchers utilize models...

  17. Combined Mechanical and Electrical Study of Polymers of Biological Origin

    NASA Astrophysics Data System (ADS)

    Zsoldos, G.; Szoda, K.; Marossy, K.

    2017-02-01

    Thermally Simulated Depolarization Current measurement is an excellent but not widely used method for identifying relaxation processes in polymers. The DMA method is used here to analyze the mechanical changes depend on temperature in biopolymers. The two techniques take advantage of the energy changes involved in the various phase transitions of certain polymer molecules. This allows for several properties of the material to be ascertained; melting points, enthalpies of melting, crystallization temperatures, glass transition temperatures and degradation temperatures. The examined biopolymer films are made from biological materials such as proteins and polysaccharides. These materials have gained wide usage in pharmaceutical, medical and food areas. The uses of biopolymer films depend on their structure and mechanical properties. This work is based on pectin and gelatin films. The films were prepared by casting. The casting technique used aqueous solutions in each case of sample preparation. The manufacturing process of the pectin and gelatin films was a single stage solving process.

  18. Effects of carotenoids on lipid bilayers.

    PubMed

    Johnson, Quentin R; Mostofian, Barmak; Fuente Gomez, Gabriel; Smith, Jeremy C; Cheng, Xiaolin

    2018-01-31

    Carotenoids have been found to be important in improving the integrity of biomembranes in eukaryotes. However, the molecular details of how carotenoids modulate the physical properties of biomembranes are unknown. To this end, we have conducted a series of molecular dynamics simulations of different biologically-relevant membranes in the presence of carotenoids. The carotenoid effect on the membrane was found to be specific to the identity of the carotenoid and the composition of the membrane itself. Therefore, different classes of carotenoids produce a different effect on the membrane, and different membrane phases are affected differently by carotenoids. It is apparent from our data that carotenoids do trigger the bilayer to become thinner. The mechanism by which this occurs depends on two competing factors, the ability of the lipid tails of opposing monolayers to either (1) compress or (2) interdigitate as the bilayer condenses. Indeed, carotenoids directly influence the physical properties via these two mechanisms, thus compacting the bilayer. However, the degree to which these competing mechanisms are utilized depends on the bilayer phase and the carotenoid identity.

  19. Quantification and comparison of the mechanical properties of four human cardiac valves.

    PubMed

    Pham, Thuy; Sulejmani, Fatiesa; Shin, Erica; Wang, Di; Sun, Wei

    2017-05-01

    Although having the same ability to permit unidirectional flow within the heart, the four main valves-the mitral valve (MV), aortic (AV), tricuspid (TV) and pulmonary (PV) valves-experience different loading conditions; thus, they exhibit different structural integrity from one another. Most research on heart valve mechanics have been conducted mainly on MV and AV or an individual valve, but none quantify and compare the mechanical and structural properties among the four valves from the same aged patient population whose death was unrelated to cardiovascular disease. A total of 114 valve leaflet samples were excised from 12 human cadavers whose death was unrelated to cardiovascular disease (70.1±3.7years old). Tissue mechanical and structural properties were characterized by planar biaxial mechanical testing and histological methods. The experimental data were then fitted with a Fung-type constitutive model. The four valves differed substantially in thickness, degree of anisotropy, and stiffness. The leaflets of the left heart (the AV leaflets and the anterior mitral leaflets, AML) were significantly stiffer and less compliant than their counterparts in the right heart. TV leaflets were the most extensible and isotropic, while AML and AV leaflets were the least extensible and the most anisotropic. Age plays a significant role in the reduction of leaflet stiffness and extensibility with nearly straightened collagen fibers observed in the leaflet samples from elderly groups (65years and older). Results from 114 human leaflet samples not only provided a baseline quantification of the mechanical properties of aged human cardiac valves, but also offered a better understanding of the age-dependent differences among the four valves. It is hoped that the experimental data collected and the associated constitutive models in this study can facilitate future studies of valve diseases, treatments and the development of interventional devices. Most research on heart valve mechanics have been conducted mainly on mitral and aortic valves or an individual valve, but none quantify and compare the mechanical and structural properties among the four valves from the same relatively healthy elderly patient population. In this study, the mechanical and microstructural properties of 114 leaflets of aortic, mitral, pulmonary and tricuspid valves from 12 human cadaver hearts were mechanically tested, analyzed and compared. Our results not only provided a baseline quantification of the mechanical properties of aged human valves, but a age range between patients (51-87years) also offers a better understanding of the age-dependent differences among the four valves. It is hoped that the obtained experimental data and associated constitutive parameters can facilitate studies of valve diseases, treatments and the development of interventional devices. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Corneal biomechanical properties in different ocular conditions and new measurement techniques.

    PubMed

    Garcia-Porta, Nery; Fernandes, Paulo; Queiros, Antonio; Salgado-Borges, Jose; Parafita-Mato, Manuel; González-Méijome, Jose Manuel

    2014-01-01

    Several refractive and therapeutic treatments as well as several ocular or systemic diseases might induce changes in the mechanical resistance of the cornea. Furthermore, intraocular pressure measurement, one of the most used clinical tools, is also highly dependent on this characteristic. Corneal biomechanical properties can be measured now in the clinical setting with different instruments. In the present work, we review the potential role of the biomechanical properties of the cornea in different fields of ophthalmology and visual science in light of the definitions of the fundamental properties of matter and the results obtained from the different instruments available. The body of literature published so far provides an insight into how the corneal mechanical properties change in different sight-threatening ocular conditions and after different surgical procedures. The future in this field is very promising with several new technologies being applied to the analysis of the corneal biomechanical properties.

  1. Corneal Biomechanical Properties in Different Ocular Conditions and New Measurement Techniques

    PubMed Central

    Garcia-Porta, Nery; Salgado-Borges, Jose; Parafita-Mato, Manuel; González-Méijome, Jose Manuel

    2014-01-01

    Several refractive and therapeutic treatments as well as several ocular or systemic diseases might induce changes in the mechanical resistance of the cornea. Furthermore, intraocular pressure measurement, one of the most used clinical tools, is also highly dependent on this characteristic. Corneal biomechanical properties can be measured now in the clinical setting with different instruments. In the present work, we review the potential role of the biomechanical properties of the cornea in different fields of ophthalmology and visual science in light of the definitions of the fundamental properties of matter and the results obtained from the different instruments available. The body of literature published so far provides an insight into how the corneal mechanical properties change in different sight-threatening ocular conditions and after different surgical procedures. The future in this field is very promising with several new technologies being applied to the analysis of the corneal biomechanical properties. PMID:24729900

  2. Observations on the relationship of structure to the mechanical properties of thin TD-NiCr sheet

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1976-01-01

    A study of the relationship between structure and mechanical properties of thin TD-NiCr sheet indicated that the elevated temperature tensile, stress-rupture, and creep strength properties are dependent on grain aspect ratio and sheet thickness. In general, the strength properties increase with increasing grain aspect ratio and sheet thickness. Tensile testing revealed an absence of ductility at elevated temperatures (not less than 1144 K). Significant creep damage as determined by subsequent tensile testing at room temperature occurs after very small amounts (less than 0.1%) of prior creep deformation over the temperature range 1144-1477 K. A threshold stress for creep appears to exist. Creep exposure below the threshold stress at T not less than 1366 K results in almost full retention of room temperature tensile properties.

  3. Mechanics of Carbon Nanotubes and their Polymer Composites

    NASA Technical Reports Server (NTRS)

    Wei, Chenyu; Cho, K. J.; Srivastava, Deepak; Tang, Harry (Technical Monitor)

    2002-01-01

    Contents include the folloving: carbon nanotube (CNT): structures, application of carbon nanotubes, simulation method, Elastic properties of carbon nanotubes, yield strain of CNT, yielding under tensile stress, yielding: strain-rate and temperature dependence, yield strain under tension, yielding at realistic conditions, nano fibers, polymer CNT composite, force field, density dependency on temperature, diffusion coefficients, young modulus, and conclusions.

  4. Mechanisms of Deformation and Fracture of Thin Coatings on Different Substrates in Instrumented Indentation

    NASA Astrophysics Data System (ADS)

    Eremina, G. M.; Smolin, A. Yu.; Psakhie, S. G.

    2018-04-01

    Mechanical properties of thin surface layers and coatings are commonly studied using instrumented indentation and scratch testing, where the mechanical response of the coating - substrate system essentially depends on the substrate material. It is quite difficult to distinguish this dependence and take it into account in the course of full-scale experiments due to a multivariative and nonlinear character of the influence. In this study the process of instrumented indentation of a hardening coating formed on different substrates is investigated numerically by the method of movable cellular automata. As a result of modeling, we identified the features of the substrate material influence on the derived mechanical characteristics of the coating - substrate systems and the processes of their deformation and fracture.

  5. Influence of time dependent longitudinal magnetic fields on the cooling process, exchange bias and magnetization reversal mechanism in FM core/AFM shell nanoparticles: a Monte Carlo study.

    PubMed

    Yüksel, Yusuf; Akıncı, Ümit

    2016-12-07

    Using Monte Carlo simulations, we have investigated the dynamic phase transition properties of magnetic nanoparticles with ferromagnetic core coated by an antiferromagnetic shell structure. Effects of field amplitude and frequency on the thermal dependence of magnetizations, magnetization reversal mechanisms during hysteresis cycles, as well as on the exchange bias and coercive fields have been examined, and the feasibility of applying dynamic magnetic fields on the particle have been discussed for technological and biomedical purposes.

  6. Modeling the microstructurally dependent mechanical properties of poly(ester-urethane-urea)s.

    PubMed

    Warren, P Daniel; Sycks, Dalton G; McGrath, Dominic V; Vande Geest, Jonathan P

    2013-12-01

    Poly(ester-urethane-urea) (PEUU) is one of many synthetic biodegradable elastomers under scrutiny for biomedical and soft tissue applications. The goal of this study was to investigate the effect of the experimental parameters on mechanical properties of PEUUs following exposure to different degrading environments, similar to that of the human body, using linear regression, producing one predictive model. The model utilizes two independent variables of poly(caprolactone) (PCL) type and copolymer crystallinity to predict the dependent variable of maximum tangential modulus (MTM). Results indicate that comparisons between PCLs at different degradation states are statistically different (p < 0.0003), while the difference between experimental and predicted average MTM is statistically negligible (p < 0.02). The linear correlation between experimental and predicted MTM values is R(2) = 0.75. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  7. NaGd(MoO4)2 nanocrystals with diverse morphologies: controlled synthesis, growth mechanism, photoluminescence and thermometric properties.

    PubMed

    Li, Anming; Xu, Dekang; Lin, Hao; Yang, Shenghong; Shao, Yuanzhi; Zhang, Yueli

    2016-08-10

    Pure tetragonal phase, uniform and well-crystallized sodium gadolinium molybdate (NaGd(MoO4)2) nanocrystals with diverse morphologies, e.g. nanocylinders, nanocubes and square nanoplates have been selectively synthesized via oleic acid-mediated hydrothermal method. The phase, structure, morphology and composition of the as-synthesized products are studied. Contents of both sodium molybdate and oleic acid of the precursor solutions are found to affect the morphologies of the products significantly, and oleic acid plays a key role in the morphology-controlled synthesis of NaGd(MoO4)2 nanocrystals with diverse morphologies. Growth mechanism of NaGd(MoO4)2 nanocrystals is proposed based on time-dependent morphology evolution and X-ray diffraction analysis. Morphology-dependent down-shifting photoluminescence properties of NaGd(MoO4)2: Eu(3+) nanocrystals, and upconversion photoluminescence properties of NaGd(MoO4)2: Yb(3+)/Er(3+) and Yb(3+)/Tm(3+) nanoplates are investigated in detail. Charge transfer band in the down-shifting excitation spectra shows a slight blue-shift, and the luminescence intensities and lifetimes of Eu(3+) are decreased gradually with the morphology of the nanocrystals varying from nanocubes to thin square nanoplates. Upconversion energy transfer mechanisms of NaGd(MoO4)2: Yb(3+)/Er(3+), Yb(3+)/Tm(3+) nanoplates are proposed based on the energy level scheme and power dependence of upconversion emissions. Thermometric properties of NaGd(MoO4)2: Yb(3+)/Er(3+) nanoplates are investigated, and the maximum sensitivity is determined to be 0.01333 K(-1) at 285 K.

  8. NaGd(MoO4)2 nanocrystals with diverse morphologies: controlled synthesis, growth mechanism, photoluminescence and thermometric properties

    PubMed Central

    Li, Anming; Xu, Dekang; Lin, Hao; Yang, Shenghong; Shao, Yuanzhi; Zhang, Yueli

    2016-01-01

    Pure tetragonal phase, uniform and well-crystallized sodium gadolinium molybdate (NaGd(MoO4)2) nanocrystals with diverse morphologies, e.g. nanocylinders, nanocubes and square nanoplates have been selectively synthesized via oleic acid-mediated hydrothermal method. The phase, structure, morphology and composition of the as-synthesized products are studied. Contents of both sodium molybdate and oleic acid of the precursor solutions are found to affect the morphologies of the products significantly, and oleic acid plays a key role in the morphology-controlled synthesis of NaGd(MoO4)2 nanocrystals with diverse morphologies. Growth mechanism of NaGd(MoO4)2 nanocrystals is proposed based on time-dependent morphology evolution and X-ray diffraction analysis. Morphology-dependent down-shifting photoluminescence properties of NaGd(MoO4)2: Eu3+ nanocrystals, and upconversion photoluminescence properties of NaGd(MoO4)2: Yb3+/Er3+ and Yb3+/Tm3+ nanoplates are investigated in detail. Charge transfer band in the down-shifting excitation spectra shows a slight blue-shift, and the luminescence intensities and lifetimes of Eu3+ are decreased gradually with the morphology of the nanocrystals varying from nanocubes to thin square nanoplates. Upconversion energy transfer mechanisms of NaGd(MoO4)2: Yb3+/Er3+, Yb3+/Tm3+ nanoplates are proposed based on the energy level scheme and power dependence of upconversion emissions. Thermometric properties of NaGd(MoO4)2: Yb3+/Er3+ nanoplates are investigated, and the maximum sensitivity is determined to be 0.01333 K−1 at 285 K. PMID:27506629

  9. On the Relative Relevance of Subject-Specific Geometries and Degeneration-Specific Mechanical Properties for the Study of Cell Death in Human Intervertebral Disk Models

    PubMed Central

    Malandrino, Andrea; Pozo, José M.; Castro-Mateos, Isaac; Frangi, Alejandro F.; van Rijsbergen, Marc M.; Ito, Keita; Wilke, Hans-Joachim; Dao, Tien Tuan; Ho Ba Tho, Marie-Christine; Noailly, Jérôme

    2015-01-01

    Capturing patient- or condition-specific intervertebral disk (IVD) properties in finite element models is outmost important in order to explore how biomechanical and biophysical processes may interact in spine diseases. However, disk degenerative changes are often modeled through equations similar to those employed for healthy organs, which might not be valid. As for the simulated effects of degenerative changes, they likely depend on specific disk geometries. Accordingly, we explored the ability of continuum tissue models to simulate disk degenerative changes. We further used the results in order to assess the interplay between these simulated changes and particular IVD morphologies, in relation to disk cell nutrition, a potentially important factor in disk tissue regulation. A protocol to derive patient-specific computational models from clinical images was applied to different spine specimens. In vitro, IVD creep tests were used to optimize poro-hyperelastic input material parameters in these models, in function of the IVD degeneration grade. The use of condition-specific tissue model parameters in the specimen-specific geometrical models was validated against independent kinematic measurements in vitro. Then, models were coupled to a transport-cell viability model in order to assess the respective effects of tissue degeneration and disk geometry on cell viability. While classic disk poro-mechanical models failed in representing known degenerative changes, additional simulation of tissue damage allowed model validation and gave degeneration-dependent material properties related to osmotic pressure and water loss, and to increased fibrosis. Surprisingly, nutrition-induced cell death was independent of the grade-dependent material properties, but was favored by increased diffusion distances in large IVDs. Our results suggest that in situ geometrical screening of IVD morphology might help to anticipate particular mechanisms of disk degeneration. PMID:25717471

  10. Elastase-Sensitive Elastomeric Scaffolds with Variable Anisotropy for Soft Tissue Engineering

    PubMed Central

    Guan, Jianjun; Fujimoto, Kazuro L.; Wagner, William R.

    2010-01-01

    Purpose To develop elastase-sensitive polyurethane scaffolds that would be applicable to the engineering of mechanically active soft tissues. Methods A polyurethane containing an elastase-sensitive peptide sequence was processed into scaffolds by thermally induced phase separation. Processing conditions were manipulated to alter scaffold properties and anisotropy. The scaffold’s mechanical properties, degradation, and cytocompatibility using muscle-derived stem cells were characterized. Scaffold in vivo degradation was evaluated by subcutaneous implantation. Results When heat transfer was multidirectional, scaffolds had randomly oriented pores. Imposition of a heat transfer gradient resulted in oriented pores. Both scaffolds were flexible and relatively strong with mechanical properties dependent upon fabrication conditions such as solvent type, polymer concentration and quenching temperature. Oriented scaffolds exhibited anisotropic mechanical properties with greater tensile strength in the orientation direction. These scaffolds also supported muscle-derived stem cell growth more effectively than random scaffolds. The scaffolds expressed over 40% weight loss after 56 days in elastase containing buffer. Elastase-sensitive scaffolds were complete degraded after 8 weeks subcutaneous implantation in rats, markedly faster than similar polyurethanes that did not contain the peptide sequence. Conclusion The elastase-sensitive polyurethane scaffolds showed promise for application in soft tissue engineering where controlling scaffold mechanical properties and pore architecture are desirable. PMID:18509596

  11. Factors affecting the strength of multipass low-alloy steel weld metal

    NASA Technical Reports Server (NTRS)

    Krantz, B. M.

    1972-01-01

    The mechanical properties of multipass high-strength steel weld metals depend upon several factors, among the most important being: (1) The interaction between the alloy composition and weld metal cooling rate which determines the as-deposited microstructure; and (2) the thermal effects of subsequent passes on each underlying pass which alter the original microstructure. The bulk properties of a multipass weld are therefore governed by both the initial microstructure of each weld pass and its subsequent thermal history. Data obtained for a high strength low alloy steel weld metal confirmed that a simple correlation exists between mechanical properties and welding conditions if the latter are in turn correlated as weld cooling rate.

  12. First principles investigation of structural, mechanical, dynamical and thermodynamic properties of AgMg under pressure

    NASA Astrophysics Data System (ADS)

    Cui, Rong Hua; Chao Dong, Zheng; Gui Zhong, Chong

    2017-12-01

    The effects of pressure on the structural, mechanical, dynamical and thermodynamic properties of AgMg have been investigated using first principles based on density functional theory. The optimized lattice constants agree well with previous experimental and theoretical results. The bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio and Debye temperature under pressures were calculated. The calculated results of Cauchy pressure and B/G ratio indicate that AgMg shows ductile nature. Phonon dispersion curves suggest the dynamical stability of AgMg. The pressure dependent behavior of thermodynamic properties are calculated, the Helmholtz free energy and internal energy increase with increase of pressure, while entropy and heat capacity decrease.

  13. Depth-resolved cellular microrheology using HiLo microscopy.

    PubMed

    Michaelson, Jarett; Choi, Heejin; So, Peter; Huang, Hayden

    2012-06-01

    It is increasingly important to measure cell mechanical properties in three-dimensional environments. Particle tracking microrheology (PTM) can measure cellular viscoelastic properties; however, out-of-plane data can introduce artifacts into these measurements. We developed a technique that employs HiLo microscopy to reduce out-of-plane contributions. This method eliminated signals from 90% of probes 0.5 μm or further from the focal plane, while retaining all in-plane probes. We used this technique to characterize live-cell bilayers and found that there were significant, frequency-dependent changes to the extracted cell moduli when compared to conventional analysis. Our results indicate that removal of out-of-plane information is vital for accurate assessments of cell mechanical properties.

  14. Poly (ricinoleic acid) based novel thermosetting elastomer.

    PubMed

    Ebata, Hiroki; Yasuda, Mayumi; Toshima, Kazunobu; Matsumura, Shuichi

    2008-01-01

    A novel bio-based thermosetting elastomer was prepared by the lipase-catalyzed polymerization of methyl ricinoleate with subsequent vulcanization. Some mechanical properties of the cured carbon black-filled polyricinoleate compounds were evaluated as a thermosetting elastomer. It was found that the carbon black-filled polyricinoleate compounds were readily cured by sulfur curatives to produce a thermosetting elastomer that formed a rubber-like sheet with a smooth and non-sticky surface. The curing behaviors and mechanical properties were dependent on both the molecular weight of the polyricinoleate and the amount of the sulfur curatives. Cured compounds consisting of polyricinoleate with a molecular weight of 100,800 showed good mechanical properties, such as a hardness of 48 A based on the durometer A measurements, a tensile strength at break of 6.91 MPa and an elongation at break of 350%.

  15. Electrospinning of gelatin and SMPU with carbon nanotubes for tissue engineering scaffolds.

    PubMed

    Mejia, Monica A; Hoyos, Lina M; Zapata, Jenniffer; Restrepo, Luz M; Moneada, Maria E

    2016-08-01

    The nanofibres created by electrospinning technique are currently used for a variety of applications in tissue engineering; and Gelatin and Polyurethane Shape-Memory (SMPU) have important results in biomedicine. Similarly, carbon nanotubes combined with other biomaterials change important properties, opening new opportunities for biomedical applications. In this work, we constructed scaffold using electrospinning technique based in bovine-hide gelatin, SMPU and both materials hybrid with carbon nanotube. Morphology and cytotoxicity were evaluated and mechanical properties for two materials were obtained in scaffold building. Morphological, mechanical and citotoxic properties of the electrospun fibers were found to be dependent of alteration in materials concentration, electrospinning conditions and MWCNT concentration. According to morphological, cytotoxic and mechanical analysis, SMPU more MWCNT were the best material, with nanofibers of 451 nm, tensile strength of 1.912 MPa, and a high ratio surface volume.

  16. Complexity and diversity.

    PubMed

    Doebeli, Michael; Ispolatov, Iaroslav

    2010-04-23

    The mechanisms for the origin and maintenance of biological diversity are not fully understood. It is known that frequency-dependent selection, generating advantages for rare types, can maintain genetic variation and lead to speciation, but in models with simple phenotypes (that is, low-dimensional phenotype spaces), frequency dependence needs to be strong to generate diversity. However, we show that if the ecological properties of an organism are determined by multiple traits with complex interactions, the conditions needed for frequency-dependent selection to generate diversity are relaxed to the point where they are easily satisfied in high-dimensional phenotype spaces. Mathematically, this phenomenon is reflected in properties of eigenvalues of quadratic forms. Because all living organisms have at least hundreds of phenotypes, this casts the potential importance of frequency dependence for the origin and maintenance of diversity in a new light.

  17. Assessing frequency-dependent site polarisabilities in linear response polarisable embedding

    NASA Astrophysics Data System (ADS)

    Nørby, Morten S.; Vahtras, Olav; Norman, Patrick; Kongsted, Jacob

    2017-01-01

    In this paper, we discuss the impact of using a frequency-dependent embedding potential in quantum chemical embedding calculations of response properties. We show that the introduction of a frequency-dependent embedding potential leads to further model complications upon solving the central equations defining specific molecular properties. On the other hand, we also show from a numerical point of view that the consequences of using such a frequency-dependent embedding potential is almost negligible. Thus, for the kind of systems and processes studied in this paper the general recommendation is to use frequency-independent embedding potentials since this leads to less complicated model issues. However, larger effects are expected if the absorption bands of the environment are closer to that of the region treated using quantum mechanics.

  18. Anisotropic mechanical behaviors and their structural dependences of crossed-lamellar structure in a bivalve shell.

    PubMed

    Jiao, D; Liu, Z Q; Qu, R T; Zhang, Z F

    2016-02-01

    Crossed-lamellar structure is one of the most common organizations found in mollusk shells and may serve as a natural mimetic model for designing bio-inspired synthetic materials. Nonetheless, the mechanical behaviors and corresponding mechanisms have rarely been investigated for individual macro-layer of such structure. The integrated effects of orientation and hydration also remain unclear. In this study, the mechanical behaviors and their structural dependences of pure crossed-lamellar structure in Saxidomus purpuratus shell were systematically examined by three-point bending and compression tests. Mechanical properties and fracture mechanisms were revealed to depend strongly on the orientation, hydration state and loading condition. Three basic cracking modes of inter-platelet, trans-platelet, and along the interfaces between first-order lamellae were identified, and the interfacial separation was enhanced by hydration. Macroscopic compressive fracture was accomplished through axial splitting during which multiple toughening mechanisms were activated. The competition among different cracking modes was quantitatively evaluated by analyzing their driving stresses and resistances from fundamental mechanics. This study helps to clarify the mechanical behaviors of naturally occurring crossed-lamellar structure, and accordingly, aids in designing new bio-inspired synthetic materials by mimicking it. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Variation of mechanical properties and oxidation with radiation dose and source in highly crosslinked remelted UHMWPE.

    PubMed

    Fung, Mitchell; Bowsher, John G; Van Citters, Douglas W

    2018-06-01

    Ultra-high molecular weight polyethylene (UHMWPE) is the current gold standard for bearing materials used in total joint arthroplasty. High-dose radiation is commonly used to crosslink UHMWPE, thereby improving its wear resistance. A subsequent remelting step eliminates trapped residual free radicals to promote oxidative stability on the shelf, and to prevent material degradation over the long term. Assessment of clinically retrieved, highly crosslinked UHMWPE devices shows signs of unanticipated oxidation occurring in vivo, despite the absence of free radicals prior to implantation. These findings warrant further investigation into possible factors impacting this phenomenon along with its clinical implications. The overall objective of this work is to quantify the influence of irradiation dose and source on UHMWPE's oxidative stability, along with the effects of oxidation on the ultimate mechanical properties, including strength, ductility, and toughness. The results showed a strong positive correlation between maximum oxidation and initial transvinylene content. Critical oxidation levels in the context of mechanical property loss were determined for e-beam and gamma treatments at various radiation doses. Further, it was shown that critical oxidation was more dependent on radiation dose and less dependent on source. If in vivo oxidation persists in these devices, this can potentially lead to mechanical failure (e.g. fatigue damage) as observed in terminally gamma-sterilized devices. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. In vitro characterization of a collagen scaffold enzymatically cross-linked with a tailored elastin-like polymer.

    PubMed

    Garcia, Yolanda; Hemantkumar, Naik; Collighan, Russell; Griffin, Martin; Rodriguez-Cabello, Jose Carlos; Pandit, Abhay

    2009-04-01

    Collagen, the main structural component of the extracellular matrix (ECM), provides tensile stiffness to different structures and organs against rupture. However, collagen tissue-engineered implants are hereto still lacking in mechanical strength. Attempts to create stiffer scaffolds have resulted in increased brittleness of the material, reducing the versatility of the original component. The hypothesis behind this research is that the introduction of an elastic element in the scaffold will enhance the mechanical properties of the collagen-based scaffolds, as elastin does in the ECM to prevent irreversible deformation. In this study, an elastin-like polymer (ELP) designed and synthesized using recombinant DNA methodology is used with the view to providing increased proteolytic resistance and increased functionality to the scaffolds by carrying specific sequences for microbial transglutaminase cross-linking, endothelial cell adhesion, and drug delivery. Evaluation of the effects that cross-linking ELP-collagen has on the physicochemical properties of the scaffold such as porosity, presence of cross-linking, thermal behavior, and mechanical strength demonstrated that the introduction of enzymatically resistant covalent bonds between collagen and ELP increases the mechanical strength of the scaffolds in a dose-dependent manner without significantly affecting the porosity or thermal properties of the original scaffold. Importantly, the scaffolds also showed selective behavior, in a dose (ELP)-dependent manner toward human umbilical vein endothelial cells and smooth muscle cells when compared to fibroblasts.

  1. Improving of Mechanical and Shape-Memory Properties in Hyperbranched Epoxy Shape-Memory Polymers

    NASA Astrophysics Data System (ADS)

    Santiago, David; Fabregat-Sanjuan, Albert; Ferrando, Francesc; De la Flor, Silvia

    2016-09-01

    A series of shape-memory epoxy polymers were synthesized using an aliphatic amine and two different commercial hyperbranched poly(ethyleneimine)s with different molecular weights as crosslinking agents. Thermal, mechanical, and shape-memory properties in materials modified with different hyperbranched polymers were analyzed and compared in order to establish the effect of the structure and the molecular weight of the hyperbranched polymers used. The presence of hyperbranched polymers led to more heterogeneous networks, and the crosslinking densities of which increase as the hyperbranched polymer content increases. The transition temperatures can be tailored from 56 to 117 °C depending on the molecular weight and content of the hyperbranched polymer. The mechanical properties showed excellent values in all formulations at room temperature and, specially, at T_{{g}}^{{E^' with stress at break as high as 15 MPa and strain at break as high as 60 %. The shape-memory performances revealed recovery ratios around 95 %, fixity ratios around 97 %, and shape-recovery velocities as high as 22 %/min. The results obtained in this study reveal that hyperbranched polymers with different molecular weights can be used to enhance the thermal and mechanical properties of epoxy-based SMPs while keeping excellent shape-memory properties.

  2. Predicting Young’s Modulus of Glass/Ceramic Sealant for Solid Oxide Fuel Cell Considering the Combined Effects of Aging, Micro-Voids and Self-Healing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    We study the temperature dependent Young’s modulus for the glass/ceramic seal material used in Solid Oxide Fuel Cells (SOFCs). With longer heat treatment or aging time during operation, further devitrification may reduce the residual glass content in the seal material while boosting the ceramic crystalline content. In the meantime, micro-voids induced by the cooling process from the high operating temperature to room temperature can potentially degrade the mechanical properties of the glass/ceramic sealant. Upon reheating to the SOFC operating temperature, possible self-healing phenomenon may occur in the glass/ceramic sealant which can potentially restore some of its mechanical properties. A phenomenologicalmore » model is developed to model the temperature dependent Young’s modulus of glass/ceramic seal considering the combined effects of aging, micro-voids, and possible self-healing. An aging-time-dependent crystalline content model is first developed to describe the increase of the crystalline content due to the continuing devitrification under high operating temperature. A continuum damage mechanics (CDM) model is then adapted to model the effects of both cooling induced micro-voids and reheating induced self-healing. This model is applied to model the glass-ceramic G18, a candidate SOFC seal material previously developed at PNNL. Experimentally determined temperature dependent Young’s modulus is used to validate the model predictions« less

  3. Ab Initio Study of Electronic Structure, Elastic and Transport Properties of Fluoroperovskite LiBeF3

    NASA Astrophysics Data System (ADS)

    Benmhidi, H.; Rached, H.; Rached, D.; Benkabou, M.

    2017-04-01

    The aim of this work is to investigate the electronic, mechanical, and transport properties of the fluoroperovskite compound LiBeF3 by first-principles calculations using the full-potential linear muffin-tin orbital method based on density functional theory within the local density approximation. The independent elastic constants and related mechanical properties including the bulk modulus ( B), shear modulus ( G), Young's modulus ( E), and Poisson's ratio ( ν) have been studied, yielding the elastic moduli, shear wave velocities, and Debye temperature. According to the electronic properties, this compound is an indirect-bandgap material, in good agreement with available theoretical data. The electron effective mass, hole effective mass, and energy bandgaps with their volume and pressure dependence are investigated for the first time.

  4. Mechanical and electrical properties of low temperature phase MnBi

    DOE PAGES

    Jiang, Xiujuan; Roosendaal, Timothy; Lu, Xiaochuan; ...

    2016-01-21

    The low temperature phase (LTP) MnBi is a promising rare-earth-free permanent magnet material due to its high intrinsic coercivity and its large positive temperature coefficient. While scientists are making progress on fabricating bulk MnBi magnets, engineers have started to consider MnBi magnet for motor applications. In addition to the magnetic properties, there are other physical properties that could significantly affect a motor design. Here, we report the results of our investigation on the mechanical and electrical properties of bulk LTP MnBi and their dependence on temperature. We found at room temperature the sintered MnBi magnet fractures when the compression stressmore » exceeds 193 MPa; and its room temperature electric resistance is about 6.85 μΩ-m.« less

  5. Antibody distance from the cell membrane regulates antibody effector mechanisms

    PubMed Central

    Cleary, Kirstie L.S.; Chan, H.T. Claude; James, Sonja; Glennie, Martin J.; Cragg, Mark S.

    2017-01-01

    Immunotherapy using monoclonal antibodies (mAb) such as rituximab is an established means of treating haematological malignancies. Antibodies can elicit a number of mechanisms to delete target cells, including complement dependent cytotoxicity (CDC), antibody dependent cellular cytotoxicity (ADCC) and antibody dependent cellular phagocytosis (ADCP). The inherent properties of the target molecule help define which of these mechanisms are more important for efficacy. However, why mAb binding to different epitopes within the same target elicits different levels of therapeutic activity, is often unclear. To specifically address whether distance from the target cell membrane influences the aforementioned effector mechanisms, a panel of fusion proteins consisting of a CD20 or CD52 epitope attached to various CD137 scaffold molecules were generated. The CD137 scaffold was modified through the removal or addition of cysteine-rich extracellular domains, to produce a panel of chimeric molecules which held the target epitope at different distances along the protein. It was shown that CDC and ADCC favoured a membrane proximal epitope, whilst ADCP favoured an epitope positioned further away. These findings were then confirmed using reagents targeting the membrane proximal or distal domains of CD137 itself before investigating these properties in vivo where a clear difference in the splenic clearance of transfected tumour cells was observed. Together, this work demonstrates how altering the position of the antibody epitope is able to change the effector mechanisms engaged and facilitates the selection of mAbs designed to delete target cells through specific effector mechanisms and provide more effective therapeutic agents. PMID:28404636

  6. The effect of water uptake on the mechanical properties of low-k organosilicate glass

    NASA Astrophysics Data System (ADS)

    Guo, X.; Jakes, J. E.; Nichols, M. T.; Banna, S.; Nishi, Y.; Shohet, J. L.

    2013-08-01

    Water uptake in porous low-k dielectrics has become a significant challenge for both back-end-of-line integration and circuit reliability. The influence of absorbed water on the mechanical properties of plasma-enhanced chemical-vapor-deposited organosilicate glasses (SiCOH) was investigated with nanoindentation. The roles of physisorbed (α-bonded) and chemisorbed (β-bonded) water were examined separately through annealing at different temperatures. Nanoindentation measurements were performed on dehydrated organosilicate glass during exposure to varying humidity conditions. The elastic modulus and hardness for as-deposited SiCOH are intimately linked to the nature and concentration of the absorbed water in the dielectric. Under mild-annealing conditions, the water-related film mechanical property changes were shown to be reversible. The mechanical properties of UV-cured SiCOH were also shown to depend on absorbed water, but to a lesser extent because UV curing depopulates the hydrophilic chemical groups in SiCOH. High-load indentation tests showed that in-diffusion of water in the film/substrate interface can degrade the hardness of SiCOH/Si film stacks significantly, while not significantly changing the elastic modulus.

  7. The relationship between skin function, barrier properties, and body-dependent factors.

    PubMed

    Dąbrowska, A K; Spano, F; Derler, S; Adlhart, C; Spencer, N D; Rossi, R M

    2018-05-01

    Skin is a multilayer interface between the body and the environment, responsible for many important functions, such as temperature regulation, water transport, sensation, and protection from external triggers. This paper provides an overview of principal factors that influence human skin and describes the diversity of skin characteristics, its causes and possible consequences. It also discusses limitations in the barrier function of the skin, describing mechanisms of absorption. There are a number of in vivo investigations focusing on the diversity of human skin characteristics with reference to barrier properties and body-dependent factors. Skin properties vary among individuals of different age, gender, ethnicity, and skin types. In addition, skin characteristics differ depending on the body site and can be influenced by the body-mass index and lifestyle. Although one of the main functions of the skin is to act as a barrier, absorption of some substances remains possible. Various factors can alter human skin properties, which can be reflected in skin function and the quality of everyday life. Skin properties and function are strongly interlinked. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Regional stiffening with aging in tibialis anterior tendons of mice occurs independent of changes in collagen fibril morphology

    PubMed Central

    Wood, Lauren K.; Arruda, Ellen M.

    2011-01-01

    The incidence of tendon degeneration and rupture increases with advancing age. The mechanisms underlying this increased risk remain unknown but may arise because of age-related changes in tendon mechanical properties and structure. Our purpose was to determine the effect of aging on tendon mechanical properties and collagen fibril morphology. Regional mechanical properties and collagen fibril characteristics were determined along the length of tibialis anterior (TA) tendons from adult (8- to 12-mo-old) and old (28- to 30-mo-old) mice. Tangent modulus of all regions along the tendons increased in old age, but the increase was substantially greater in the proximal region adjacent to the muscle than in the rest of the tendon. Overall end-to-end modulus increased with old age at maximum tendon strain (799 ± 157 vs. 1,419 ± 91 MPa) and at physiologically relevant strain (377 ± 137 vs. 798 ± 104 MPa). Despite the dramatic changes in tendon mechanical properties from adulthood to old age, collagen fibril morphology and packing fraction remained relatively constant in all tendon regions examined. Since tendon properties are influenced by their external loading environment, we also examined the effect of aging on TA muscle contractile properties. Maximum isometric force did not differ between the age groups. We conclude that TA tendons stiffen in a region-dependent manner throughout the life span, but the changes in mechanical properties are not accompanied by corresponding changes in collagen fibril morphology or force-generating capacity of the TA muscle. PMID:21737825

  9. Nanolattices: An Emerging Class of Mechanical Metamaterials.

    PubMed

    Bauer, Jens; Meza, Lucas R; Schaedler, Tobias A; Schwaiger, Ruth; Zheng, Xiaoyu; Valdevit, Lorenzo

    2017-10-01

    In 1903, Alexander Graham Bell developed a design principle to generate lightweight, mechanically robust lattice structures based on triangular cells; this has since found broad application in lightweight design. Over one hundred years later, the same principle is being used in the fabrication of nanolattice materials, namely lattice structures composed of nanoscale constituents. Taking advantage of the size-dependent properties typical of nanoparticles, nanowires, and thin films, nanolattices redefine the limits of the accessible material-property space throughout different disciplines. Herein, the exceptional mechanical performance of nanolattices, including their ultrahigh strength, damage tolerance, and stiffness, are reviewed, and their potential for multifunctional applications beyond mechanics is examined. The efficient integration of architecture and size-affected properties is key to further develop nanolattices. The introduction of a hierarchical architecture is an effective tool in enhancing mechanical properties, and the eventual goal of nanolattice design may be to replicate the intricate hierarchies and functionalities observed in biological materials. Additive manufacturing and self-assembly techniques enable lattice design at the nanoscale; the scaling-up of nanolattice fabrication is currently the major challenge to their widespread use in technological applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Mechanical properties of neutron-irradiated model and commercial FeCrAl alloys

    DOE PAGES

    Field, Kevin G.; Briggs, Samuel A.; Sridharan, Kumar; ...

    2017-03-28

    The development and understanding of the mechanical properties of neutron-irradiated FeCrAl alloys is increasingly a critical need as these alloys continue to become more mature for nuclear reactor applications. This study focuses on the mechanical properties of model FeCrAl alloys and of a commercial FeCrAl alloy neutron-irradiated to up to 13.8 displacements per atom (dpa) at irradiation temperatures between 320 and 382 °C. Tensile tests were completed at room temperature and at 320 °C, and a subset of fractured tensile specimens was examined by scanning electron microscopy. Results showed typical radiation hardening and embrittlement indicative of high chromium ferritic alloysmore » with strong chromium composition dependencies at lower doses. At and above 7.0 dpa, the mechanical properties saturated for both the commercial and model FeCrAl alloys, although brittle cleavage fracture was observed at the highest dose in the model FeCrAl alloy with the highest chromium content (18 wt %). Finally, the results suggest the composition and microstructure of FeCrAl alloys plays a critical role in the mechanical response of FeCrAl alloys irradiated near temperatures relevant to light water reactors.« less

  11. Mechanical properties of neutron-irradiated model and commercial FeCrAl alloys

    NASA Astrophysics Data System (ADS)

    Field, Kevin G.; Briggs, Samuel A.; Sridharan, Kumar; Howard, Richard H.; Yamamoto, Yukinori

    2017-06-01

    The development and understanding of the mechanical properties of neutron-irradiated FeCrAl alloys is increasingly a critical need as these alloys continue to become more mature for nuclear reactor applications. This study focuses on the mechanical properties of model FeCrAl alloys and of a commercial FeCrAl alloy neutron-irradiated to up to 13.8 displacements per atom (dpa) at irradiation temperatures between 320 and 382 °C. Tensile tests were completed at room temperature and at 320 °C, and a subset of fractured tensile specimens was examined by scanning electron microscopy. Results showed typical radiation hardening and embrittlement indicative of high chromium ferritic alloys with strong chromium composition dependencies at lower doses. At and above 7.0 dpa, the mechanical properties saturated for both the commercial and model FeCrAl alloys, although brittle cleavage fracture was observed at the highest dose in the model FeCrAl alloy with the highest chromium content (18 wt %). The results suggest the composition and microstructure of FeCrAl alloys plays a critical role in the mechanical response of FeCrAl alloys irradiated near temperatures relevant to light water reactors.

  12. A temperature dependent cyclic plasticity model for hot work tool steel including particle coarsening

    NASA Astrophysics Data System (ADS)

    Jilg, Andreas; Seifert, Thomas

    2018-05-01

    Hot work tools are subjected to complex thermal and mechanical loads during hot forming processes. Locally, the stresses can exceed the material's yield strength in highly loaded areas as e.g. in small radii in die cavities. To sustain the high loads, the hot forming tools are typically made of martensitic hot work steels. While temperatures for annealing of the tool steels usually lie in the range between 400 and 600 °C, the steels may experience even higher temperatures during hot forming, resulting in softening of the material due to coarsening of strengthening particles. In this paper, a temperature dependent cyclic plasticity model for the martensitic hot work tool steel 1.2367 (X38CrMoV5-3) is presented that includes softening due to particle coarsening and that can be applied in finite-element calculations to assess the effect of softening on the thermomechanical fatigue life of hot work tools. To this end, a kinetic model for the evolution of the mean size of secondary carbides based on Ostwald ripening is coupled with a cyclic plasticity model with kinematic hardening. Mechanism-based relations are developed to describe the dependency of the mechanical properties on carbide size and temperature. The material properties of the mechanical and kinetic model are determined on the basis of tempering hardness curves as well as monotonic and cyclic tests.

  13. Tris(trimethylsilyl)silane as a co-initiator for dental adhesive: Photo-polymerization kinetics and dynamic mechanical property

    PubMed Central

    Song, Linyong; Ye, Qiang; Ge, Xueping; Misra, Anil; Spencer, Paulette

    2017-01-01

    Objectives The purpose of this study was to evaluate the polymerization behavior of a model dentin adhesive with tris(trimethylsilyl)silane (TTMSS) as a co-initiator, and to investigate the polymerization kinetics and mechanical properties of copolymers in dry and wet conditions. Methods A co-monomer mixture based on HEMA/BisGMA (45/55, w/w) was used as a model dentin adhesive. The photoinitiator system included camphorquinone (CQ) as the photosensitizer and the co-initiator was ethyl-4-(dimethylamino) benzoate (EDMAB) or TTMSS. Iodonium salt, diphenyliodonium hexafluorophosphate (DPIHP) serving as a catalyst, was selectively added into the adhesive formulations. The control and the experimental formulations were characterized with regard to the degree of conversion (DC) and dynamic mechanical properties under dry and wet conditions. Results In two-component photoinitiator system (CQ/TTMSS), with an increase of TTMSS concentration, the polymerization rate and DC of C═C double bond increased, and showed a dependence on the irradiation time and curing light intensity. The copolymers that contained the three-component photoinitiator system (CQ/TTMSS/DPIHP) showed similar dynamic mechanical properties, under both dry and wet conditions, to the EDMAB-containing system. Significance The DC of formulations using TTMSS as co-initiator showed a strong dependence on irradiation time. With the addition of TTMSS, the maximum polymerization rate can be adjusted and the network structure became more homogenous. The results indicated that the TTMSS could be used as a substitute for amine-type co-initiator in visible-light induced free radical polymerization of methacrylate-based dentin adhesives. PMID:26616688

  14. Structure–property relationships in hybrid dental nanocomposite resins containing monofunctional and multifunctional polyhedral oligomeric silsesquioxanes

    PubMed Central

    Wang, Weiguo; Sun, Xiang; Huang, Li; Gao, Yu; Ban, Jinghao; Shen, Lijuan; Chen, Jihua

    2014-01-01

    Organic-inorganic hybrid materials, such as polyhedral oligomeric silsesquioxanes (POSS), have the potential to improve the mechanical properties of the methacrylate-based composites and resins used in dentistry. In this article, nanocomposites of methacryl isobutyl POSS (MI-POSS [bears only one methacrylate functional group]) and methacryl POSS (MA-POSS [bears eight methacrylate functional groups]) were investigated to determine the effect of structures on the properties of dental resin. The structures of the POSS-containing networks were determined by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. Monofunctional POSS showed a strong tendency toward aggregation and crystallization, while multifunctional POSS showed higher miscibility with the dimethacrylate monomer. The mechanical properties and wear resistance decreased with increasing amounts of MI-POSS, indicating that the MI-POSS agglomerates act as the mechanical weak point in the dental resins. The addition of small amounts of MA-POSS improved the mechanical and shrinkage properties. However, samples with a higher MA-POSS concentration showed lower flexural strength and flexural modulus, indicating that there is a limited range in which the reinforcement properties of MA-POSS can operate. This concentration dependence is attributed to phase separation at higher concentrations of POSS, which affects the structural integrity, and thus, the mechanical and shrinkage properties of the dental resin. Our results show that resin with 3% MA-POSS is a potential candidate for resin-based dental materials. PMID:24550674

  15. Structure-property relationships in hybrid dental nanocomposite resins containing monofunctional and multifunctional polyhedral oligomeric silsesquioxanes.

    PubMed

    Wang, Weiguo; Sun, Xiang; Huang, Li; Gao, Yu; Ban, Jinghao; Shen, Lijuan; Chen, Jihua

    2014-01-01

    Organic-inorganic hybrid materials, such as polyhedral oligomeric silsesquioxanes (POSS), have the potential to improve the mechanical properties of the methacrylate-based composites and resins used in dentistry. In this article, nanocomposites of methacryl isobutyl POSS (MI-POSS [bears only one methacrylate functional group]) and methacryl POSS (MA-POSS [bears eight methacrylate functional groups]) were investigated to determine the effect of structures on the properties of dental resin. The structures of the POSS-containing networks were determined by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. Monofunctional POSS showed a strong tendency toward aggregation and crystallization, while multifunctional POSS showed higher miscibility with the dimethacrylate monomer. The mechanical properties and wear resistance decreased with increasing amounts of MI-POSS, indicating that the MI-POSS agglomerates act as the mechanical weak point in the dental resins. The addition of small amounts of MA-POSS improved the mechanical and shrinkage properties. However, samples with a higher MA-POSS concentration showed lower flexural strength and flexural modulus, indicating that there is a limited range in which the reinforcement properties of MA-POSS can operate. This concentration dependence is attributed to phase separation at higher concentrations of POSS, which affects the structural integrity, and thus, the mechanical and shrinkage properties of the dental resin. Our results show that resin with 3% MA-POSS is a potential candidate for resin-based dental materials.

  16. Mechanical and thermal properties and morphological studies of 10 MeV electron beam irradiated LDPE/hydroxyapatite nano-composite

    NASA Astrophysics Data System (ADS)

    Soltani, Z.; Ziaie, F.; Ghaffari, M.; Afarideh, H.; Ehsani, M.

    2013-02-01

    In this work the nano-composite samples were prepared using the LDPE filled with different weight percentages of hydroxyapatite powder which was synthesized via hydrolysis method. The samples were subjected to irradiation under 10 MeV electron beam in 75-250 kGy doses. Mechanical and thermal properties as well as the morphology of the nano-composite samples were investigated and compared. The hot-set and swelling tests confirmed the radiation crosslinking induced in the polymer matrix especially between the matrix and reinforcement phase. The result indicates that the mechanical and thermal parameters are strongly dependent on the hydroxyapatite content in comparison to radiation.

  17. Influence of different processing techniques on the mechanical properties of used tires in embankment construction.

    PubMed

    Edinçliler, Ayşe; Baykal, Gökhan; Saygili, Altug

    2010-06-01

    Use of the processed used tires in embankment construction is becoming an accepted way of beneficially recycling scrap tires due to shortages of natural mineral resources and increasing waste disposal costs. Using these used tires in construction requires an awareness of the properties and the limitations associated with their use. The main objective of this paper is to assess the different processing techniques on the mechanical properties of used tires-sand mixtures to improve the engineering properties of the available soil. In the first part, a literature study on the mechanical properties of the processed used tires such as tire shreds, tire chips, tire buffings and their mixtures with sand are summarized. In the second part, large-scale direct shear tests are performed to evaluate shear strength of tire crumb-sand mixtures where information is not readily available in the literature. The test results with tire crumb were compared with the other processed used tire-sand mixtures. Sand-used tire mixtures have higher shear strength than that of the sand alone and the shear strength parameters depend on the processing conditions of used tires. Three factors are found to significantly affect the mechanical properties: normal stress, processing techniques, and the used tire content. Copyright 2009. Published by Elsevier Ltd.

  18. Improved crystallinity and dynamic mechanical properties of reclaimed waste tire rubber/EVA blends under the influence of electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Ramarad, Suganti; Ratnam, Chantara T.; Khalid, Mohammad; Chuah, Abdullah Luqman; Hanson, Svenja

    2017-01-01

    Dependence on automobiles has led to a huge amount of waste tires produced annually around the globe. In this study, the feasibility of recycling these waste tires by blending reclaimed waste tire rubber (RTR) with poly(ethylene-co-vinyl acetate) (EVA) and electron beam irradiation was studied. The RTR/EVA blends containing 100-0 wt% of RTR were prepared in the internal mixer followed by electron beam (EB) irradiation with doses ranging from 50 to 200 kGy. The processing torques, calorimetric and dynamic mechanical properties of the blends were studied. Blends were found to have lower processing torque indicating easier processability of RTR/EVA blends compared to EVA. RTR domains were found to be dispersed in EVA matrix, whereas, irradiation improved the dispersion of RTR into smaller domains in EVA matrix. Results showed the addition of EVA improves the efficiency of irradiation induced crosslink formation and dynamic mechanical properties of the blends at the expense of the calorimetric properties. Storage and loss modulus of 50 wt% RTR blend was higher than RTR and EVA, suggesting partial miscibility of the blend. Whereas, electron beam irradiation improved the calorimetric properties and dynamic mechanical properties of the blends through redistribution of RTR in smaller domain sizes within EVA.

  19. Determination of orthotropic mechanical properties of 3D printed parts for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Poissenot-Arrigoni, Bastien; Scheyer, Austin; Anton, Steven R.

    2017-04-01

    The evolution of additive manufacturing has allowed engineers to use 3D printing for many purposes. As a natural consequence of the 3D printing process, the printed object is anisotropic. As part of an ongoing project to embed piezoelectric devices in 3D printed structures for structural health monitoring (SHM), this study aims to find the mechanical properties of the 3D printed material and the influence of different external factors on those properties. The orthotropic mechanical properties of a 3D printed structure are dependent on the printing parameters used to create the structure. In order to develop an orthotropic material model, mechanical properties will be found experimentally from additively manufactured samples created from polylactic acid (PLA) using a consumer-level fused deposition modeling (FDM) printer; the Lulzbot TAZ 6. Nine mechanical constants including three Young's moduli, three Poisson's ratios, and three shear moduli are needed to fully describe the 3D elastic behavior of the material. Printed specimens with different raster orientations and print orientations allow calculation of the different material constants. In this work, seven of the nine mechanical constants were found. Two shear moduli were unable to be measured due to difficulties in printing two of the sample orientations. These mechanical properties are needed in order to develop orthotropic material models of systems employing 3D printed PLA. The results from this paper will be used to create a model of a piezoelectric transducer embedded in a 3D printed structure for structural health monitoring.

  20. Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering

    PubMed Central

    Palombo, Francesca; Winlove, C. Peter; Edginton, Ryan S.; Green, Ellen; Stone, Nick; Caponi, Silvia; Madami, Marco; Fioretto, Daniele

    2014-01-01

    Brillouin light scattering (BLS) spectroscopy is a technique that is able to detect thermally excited phonons within a material. The speed of propagation of these phonons can be determined from the magnitude of the Brillouin frequency shift between incident and scattered light, thereby providing a measure of the mechanical properties of the material in the gigahertz range. The mechanical properties of the extracellular matrices of biological tissues and their constituent biopolymers are important for normal tissue function and disturbances in these properties are widely implicated in disease. BLS offers the prospect of measuring mechanical properties on a microscopic scale in living tissues, thereby providing insights into structure–function relationships under normal and pathological conditions. In this study, we investigated BLS in collagen and elastin—the fibrous proteins of the extracellular matrix (ECM). Measurements were made on type I collagen in rat tail tendon, type II collagen in articular cartilage and nuchal ligament elastin. The dependence of the BLS spectrum on fibre orientation was investigated in a backscattering geometry using a reflective substrate. Two peaks, a bulk mode arising from phonon propagation along a quasi-radial direction to the fibre axis and a mode parallel to the surface, depending on sample orientation relative to the fibre axis, could be distinguished. The latter peak was fitted to a model of wave propagation through a hexagonally symmetric elastic solid, and the five components of the elasticity tensor were combined to give axial and transverse Young's, shear and bulk moduli of the fibres. These were 10.2, 8.3, 3.2 and 10.9 GPa, and 6.1, 5.3, 1.9 and 8 GPa for dehydrated type I collagen and elastin, respectively. The former values are close to those previously reported. A microfocused BLS approach was also applied providing selection of single fibres. The moduli of collagen and elastin are much higher than those measured at lower frequency using macroscopic strains, and the difference between them is much less. We therefore believe, like previous investigators, that molecular-scale viscoelastic effects are responsible for the frequency dependence of the fibre biomechanics. Combining BLS with larger-scale mechanical testing methods therefore should, in the future, provide a means of following the evolution of mechanical properties in the formation of the complex structures found in the ECM. PMID:25297313

  1. Mesoscale Effective Property Simulations Incorporating Conductive Binder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trembacki, Bradley L.; Noble, David R.; Brunini, Victor E.

    Lithium-ion battery electrodes are composed of active material particles, binder, and conductive additives that form an electrolyte-filled porous particle composite. The mesoscale (particle-scale) interplay of electrochemistry, mechanical deformation, and transport through this tortuous multi-component network dictates the performance of a battery at the cell-level. Effective electrode properties connect mesoscale phenomena with computationally feasible battery-scale simulations. We utilize published tomography data to reconstruct a large subsection (1000+ particles) of an NMC333 cathode into a computational mesh and extract electrode-scale effective properties from finite element continuum-scale simulations. We present a novel method to preferentially place a composite binder phase throughout the mesostructure,more » a necessary approach due difficulty distinguishing between non-active phases in tomographic data. We compare stress generation and effective thermal, electrical, and ionic conductivities across several binder placement approaches. Isotropic lithiation-dependent mechanical swelling of the NMC particles and the consideration of strain-dependent composite binder conductivity significantly impact the resulting effective property trends and stresses generated. Lastly, our results suggest that composite binder location significantly affects mesoscale behavior, indicating that a binder coating on active particles is not sufficient and that more accurate approaches should be used when calculating effective properties that will inform battery-scale models in this inherently multi-scale battery simulation challenge.« less

  2. Mesoscale Effective Property Simulations Incorporating Conductive Binder

    DOE PAGES

    Trembacki, Bradley L.; Noble, David R.; Brunini, Victor E.; ...

    2017-07-26

    Lithium-ion battery electrodes are composed of active material particles, binder, and conductive additives that form an electrolyte-filled porous particle composite. The mesoscale (particle-scale) interplay of electrochemistry, mechanical deformation, and transport through this tortuous multi-component network dictates the performance of a battery at the cell-level. Effective electrode properties connect mesoscale phenomena with computationally feasible battery-scale simulations. We utilize published tomography data to reconstruct a large subsection (1000+ particles) of an NMC333 cathode into a computational mesh and extract electrode-scale effective properties from finite element continuum-scale simulations. We present a novel method to preferentially place a composite binder phase throughout the mesostructure,more » a necessary approach due difficulty distinguishing between non-active phases in tomographic data. We compare stress generation and effective thermal, electrical, and ionic conductivities across several binder placement approaches. Isotropic lithiation-dependent mechanical swelling of the NMC particles and the consideration of strain-dependent composite binder conductivity significantly impact the resulting effective property trends and stresses generated. Lastly, our results suggest that composite binder location significantly affects mesoscale behavior, indicating that a binder coating on active particles is not sufficient and that more accurate approaches should be used when calculating effective properties that will inform battery-scale models in this inherently multi-scale battery simulation challenge.« less

  3. Investigating the dental toolkit of primates based on food mechanical properties: Feeding action does matter.

    PubMed

    Thiery, Ghislain; Guy, Franck; Lazzari, Vincent

    2017-06-01

    Although conveying an indisputable morphological and behavioral signal, traditional dietary categories such as frugivorous or folivorous tend to group a wide range of food mechanical properties together. Because food/tooth interactions are mostly mechanical, it seems relevant to investigate the dental morphology of primates based on mechanical categories. However, existing mechanical categories classify food by its properties but cannot be used as factors to classify primate dietary habits. This comes from the fact that one primate species might be adapted to a wide range of food mechanical properties. To tackle this issue, what follows is an original framework based on action-related categories. The proposal here is to classify extant primates based on the range of food mechanical properties they can process through one given action. The resulting categories can be used as factors to investigate the dental tools available to primates. Furthermore, cracking, grinding, and shearing categories assigned depending on the hardness and the toughness of food are shown to be supported by morphological data (3D relative enamel thickness) and topographic data (relief index, occlusal complexity, and Dirichlet normal energy). Inferring food mechanical properties from dental morphology is especially relevant for the study of extinct primates, which are mainly documented by dental remains. Hence, we use action-related categories to investigate the molar morphology of an extinct colobine monkey Mesopithecus pentelicus from the Miocene of Pikermi, Greece. Action-related categories show contrasting results compared with classical categories and give us new insights into the dietary adaptations of this extinct primate. Finally, we provide some possible directions for future research aiming to test action-related categories. In particular, we suggest acquiring more data on mechanically challenging fallback foods and advocate the use of other food mechanical properties such as abrasiveness. The development of new action-related dental metrics is also crucial for primate dental studies. © 2017 Wiley Periodicals, Inc.

  4. The archetype-genome exemplar in molecular dynamics and continuum mechanics

    NASA Astrophysics Data System (ADS)

    Greene, M. Steven; Li, Ying; Chen, Wei; Liu, Wing Kam

    2014-04-01

    We argue that mechanics and physics of solids rely on a fundamental exemplar: the apparent properties of a system depend on the building blocks that comprise it. Building blocks are referred to as archetypes and apparent system properties as the system genome. Three entities are of importance: the archetype properties, the conformation of archetypes, and the properties of interactions activated by that conformation. The combination of these entities into the system genome is called assembly. To show the utility of the archetype-genome exemplar, this work presents the mathematical ingredients and computational implementation of theories in solid mechanics that are (1) molecular and (2) continuum manifestations of the assembly process. Both coarse-grained molecular dynamics (CGMD) and the archetype-blending continuum (ABC) theories are formulated then applied to polymer nanocomposites (PNCs) to demonstrate the impact the components of the assembly triplet have on a material genome. CGMD simulations demonstrate the sensitivity of nanocomposite viscosities and diffusion coefficients to polymer chain types (archetype), polymer-nanoparticle interaction potentials (interaction), and the structural configuration (conformation) of dispersed nanoparticles. ABC simulations show the contributions of bulk polymer (archetype) properties, occluded region of bound rubber (interaction) properties, and microstructural binary images (conformation) to predictions of linear damping properties, the Payne effect, and localization/size effects in the same class of PNC material. The paper is light on mathematics. Instead, the focus is on the usefulness of the archetype-genome exemplar to predict system behavior inaccessible to classical theories by transitioning mechanics away from heuristic laws to mechanism-based ones. There are two core contributions of this research: (1) presentation of a fundamental axiom—the archetype-genome exemplar—to guide theory development in computational mechanics, and (2) demonstrations of its utility in modern theoretical realms: CGMD, and generalized continuum mechanics.

  5. Synthesis of bio-based nanocomposites for controlled release of antimicrobial agents in food packaging

    NASA Astrophysics Data System (ADS)

    DeGruson, Min Liu

    The utilization of bio-based polymers as packaging materials has attracted great attention in both scientific and industrial areas due to the non-renewable and nondegradable nature of synthetic plastic packaging. Polyhydroxyalkanoate (PHA) is a biobased polymer with excellent film-forming and coating properties, but exhibits brittleness, insufficient gas barrier properties, and poor thermal stability. The overall goal of the project was to develop the polyhydroxyalkanoate-based bio-nanocomposite films modified by antimicrobial agents with improved mechanical and gas barrier properties, along with a controlled release rate of antimicrobial agents for the inhibition of foodborne pathogens and fungi in food. The ability for antimicrobial agents to intercalate into layered double hydroxides depended on the nature of the antimicrobial agents, such as size, spatial structure, and polarity, etc. Benzoate and gallate anions were successfully intercalated into LDH in the present study and different amounts of benzoate anion were loaded into LDH under different reaction conditions. Incorporation of nanoparticles showed no significant effect on mechanical properties of polyhydroxybutyrate (PHB) films, however, significantly increased the tensile strength and elongation at break of polyhydroxybutyrate-co-valerate (PHBV) films. The effects of type and concentration of LDH nanoparticles (unmodified LDH and LDH modified by sodium benzoate and sodium gallate) on structure and properties of PHBV films were then studied. The arrangement of LDH in the bio-nanocomposite matrices ranged from exfoliated to phase-separated depending on the type and concentration of LDH nanoparticles. Intercalated or partially exfoliated structures were obtained using modified LDH, however, only phase-separated structures were formed using unmodified LDH. The mechanical (tensile strength and elongation at break) and thermo-mechanical (storage modulus) properties were significantly improved with low concentrations of nanoparticles incorporated into the polymer. The incorporation of LDH modified by sodium benzoate further improved the mechanical properties in comparison with unmodified LDH, which may be due to the increased compatibility between PHBV and nanoparticles and the larger basal distance between nanolayers after modification. The concentration of benzoate anions in LDH nanoparticles was another factor which affected the properties of PHBV composite films. The PHBV film with 2% modified LDH with 20.9 % w/w of benzoate anions in LDH had the best mechanical and thermomechanical properties. Apparent glass transition temperature increased with the addition of modified LDH but did not change with the addition of unmodified LDH. Moreover, the effect of nanoparticles on thermal properties as well as crystallization of PHBV composites was dependent on the type of nanoparticles. A comparison of mechanical properties and release kinetics of antimicrobial agents directly dispersed in PHBV and modified in LDH and then dispersed in PHBV was made. The results indicated that mechanical properties increased and release rate decreased in the latter case. The release of benzoate and gallate into DI water from PHBV composite films with LDH modified by benzoate and gallate followed pseudo-Fickian behavior fitted with a power law model. The release of benzoate from PHBV composite films with LDH modified by benzoate was also fitted with a Weibull model indicating Fickian behavior in fractal substrate morphologically similar to the percolation cluster. The concentration of modified LDH and the loading of benzoate in modified LDH showed a significant effect on the release kinetics of benzoate. The diffusivities of benzoate at 21 °C ranged from 3.41 to14.97 x 10-16 m 2/s. The slowest release rate was achieved by the PHBV film containing 5 % w/w of modified LDH with medium loading of benzoate (21 % w/w of benzoate) in nanoparticles. The release of gallate from PHBV was much faster than that of benzoate. The effective diffusivity of benzoate increased with increase of temperature and the activation energy Ea for benzoate diffusion was calculated as 66.4 kJ/mol. It will be thus possible to design biodegradable polymeric nanocomposites with a tunable release of active molecules for various applications. (Abstract shortened by UMI.).

  6. The mechanical behavior of nanoscale metallic multilayers: A survey

    NASA Astrophysics Data System (ADS)

    Zhou, Q.; Xie, J. Y.; Wang, F.; Huang, P.; Xu, K. W.; Lu, T. J.

    2015-06-01

    The mechanical behavior of nanoscale metallic multilayers (NMMs) has attracted much attention from both scientific and practical views. Compared with their monolithic counterparts, the large number of interfaces existing in the NMMs dictates the unique behavior of this special class of structural composite materials. While there have been a number of reviews on the mechanical mechanism of microlaminates, the rapid development of nanotechnology brought a pressing need for an overview focusing exclusively on a property-based definition of the NMMs, especially their size-dependent microstructure and mechanical performance. This article attempts to provide a comprehensive and up-to-date review on the microstructure, mechanical property and plastic deformation physics of NMMs. We hope this review could accomplish two purposes: (1) introducing the basic concepts of scaling and dimensional analysis to scientists and engineers working on NMM systems, and (2) providing a better understanding of interface behavior and the exceptional qualities the interfaces in NMMs display at atomic scale.

  7. A clinically applicable non-invasive method to quantitatively assess the visco-hyperelastic properties of human heel pad, implications for assessing the risk of mechanical trauma.

    PubMed

    Behforootan, Sara; Chatzistergos, Panagiotis E; Chockalingam, Nachiappan; Naemi, Roozbeh

    2017-04-01

    Pathological conditions such as diabetic foot and plantar heel pain are associated with changes in the mechanical properties of plantar soft tissue. However, the causes and implications of these changes are not yet fully understood. This is mainly because accurate assessment of the mechanical properties of plantar soft tissue in the clinic remains extremely challenging. To develop a clinically viable non-invasive method of assessing the mechanical properties of the heel pad. Furthermore the effect of non-linear mechanical behaviour of the heel pad on its ability to uniformly distribute foot-ground contact loads in light of the effect of overloading is also investigated. An automated custom device for ultrasound indentation was developed along with custom algorithms for the automated subject-specific modeling of heel pad. Non-time-dependent and time-dependent material properties were inverse engineered from results from quasi-static indentation and stress relaxation test respectively. The validity of the calculated coefficients was assessed for five healthy participants. The implications of altered mechanical properties on the heel pad's ability to uniformly distribute plantar loading were also investigated in a parametric analysis. The subject-specific heel pad models with coefficients calculated based on quasi-static indentation and stress relaxation were able to accurately simulate dynamic indentation. Average error in the predicted forces for maximum deformation was only 6.6±4.0%. When the inverse engineered coefficients were used to simulate the first instance of heel strike the error in terms of peak plantar pressure was 27%. The parametric analysis indicated that the heel pad's ability to uniformly distribute plantar loads is influenced both by its overall deformability and by its stress-strain behaviour. When overall deformability stays constant, changes in stress/strain behaviour leading to a more "linear" mechanical behaviour appear to improve the heel pad's ability to uniformly distribute plantar loading. The developed technique can accurately assess the visco-hyperelastic behaviour of heel pad. It was observed that specific change in stress-strain behaviour can enhance/weaken the heel pad's ability to uniformly distribute plantar loading that will increase/decrease the risk for overloading and trauma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Selected properties of particleboard panels manufactured from rice straws of different geometries

    Treesearch

    Xianjun Li; Zhiyong Cai; Jerrold E. Winandy; Altaf H. Basta

    2010-01-01

    The objective is to evaluate the primary mechanical and physical properties of particleboard made from hammer-milled rice straw particles of six different categories and two types of resins. The results show the performance of straw particleboards is highly dependent upon the straw particle size controlled by the opening size of the perforated plate inside the hammer-...

  9. Effects of external mechanical loading on phase diagrams and dielectric properties in epitaxial ferroelectric thin films with anisotropic in-plane misfit strains

    NASA Astrophysics Data System (ADS)

    Qiu, J. H.; Jiang, Q.

    2007-02-01

    A phenomenological Landau-Devonshine theory is used to describe the effects of external mechanical loading on equilibrium polarization states and dielectric properties in epitaxial ferroelectric thin films grown on dissimilar orthorhombic substrates which induce anisotropic misfit strains in the film plane. The calculation focuses on single-domain perovskite BaTiO3 and PbTiO3 thin films on the assumption that um1=-um2. Compared with the phase diagrams without external loading, the characteristic features of "misfit strain-misfit strain" phase diagrams at room temperature are the presence of paraelectric phase and the strain-induced ferroelectric to paraelectric phase transition. Due to the external loading, the "misfit strain-stress" and "stress-temperature" phase diagrams also have drastic changes, especially for the vanishing of paraelectric phase in "misfit strain-stress" phase map and the appearance of possible ferroelectric phases. We also investigate the dielectric properties and the tunability of both BaTiO3 and PbTiO3 thin films. We find that the external stress dependence of phase diagrams and dielectric properties largely depends on strain anisotropy as well.

  10. Exploring the mechanical behavior of single intermediate filaments.

    PubMed

    Kreplak, L; Bär, H; Leterrier, J F; Herrmann, H; Aebi, U

    2005-12-02

    Intermediate filaments (IFs) are structural elements of eukaryotic cells with distinct mechanical properties. Tissue integrity is severely impaired, in particular in skin and muscle, when IFs are either absent or malfunctioning due to mutations. Our knowledge on the mechanical properties of IFs is mainly based on tensile testing of macroscopic fibers and on the rheology of IF networks. At the single filament level, the only piece of data available is a measure of the persistence length of vimentin IFs. Here, we have employed an atomic force microscopy (AFM) based protocol to directly probe the mechanical properties of single cytoplasmic IFs when adsorbed to a solid support in physiological buffer environment. Three IF types were studied in vitro: recombinant murine desmin, recombinant human keratin K5/K14 and neurofilaments isolated from rat brains, which are composed of the neurofilament triplet proteins NF-L, NF-M and NF-H. Depending on the experimental conditions, the AFM tip was used to laterally displace or to stretch single IFs on the support they had been adsorbed to. Upon applying force, IFs were stretched on average 2.6-fold. The maximum stretching that we encountered was 3.6-fold. A large reduction of the apparent filament diameter was observed concomitantly. The observed mechanical properties therefore suggest that IFs may indeed function as mechanical shock absorbers in vivo.

  11. Effects of precursor composition and mode of crosslinking on mechanical properties of graphene oxide reinforced composite hydrogels.

    PubMed

    Jang, Jinhyeong; Hong, Jisu; Cha, Chaenyung

    2017-05-01

    Graphene oxide (GO) is increasingly investigated as a reinforcing nanofiller for various hydrogels for biomedical applications for its superior mechanical strength. However, the reinforcing mechanism of GO in different hydrogel conditions has not been extensively explored and elucidated to date. Herein, we systematically examine the effects of various types of precursor molecules (monomers vs. macromers) as well as mode of GO incorporation (physical vs. covalent) on the mechanical properties of resulting composite hydrogels. Two hydrogel types, (1) polyacrylamide hydrogels with varying concentrations of acrylamide monomers and (2) poly(ethylene glycol) (PEG) hydrogels with varying molecular weights of PEG macromers, are used as model systems. In addition, incorporation of GO is also controlled by using either unmodified GO or methacrylic GO (MGO) which allows for covalent incorporation. The results in this study demonstrate that the interaction between GO and the surrounding network and its effect on the mechanical properties (i.e. rigidity and toughness) of composite hydrogels are highly dependent on both the type and concentration of precursors and the mode of crosslinking. We expect this study will provide an important guideline for future research efforts on controlling the mechanical properties of GO-based composite hydrogels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Isotropic microscale mechanical properties of coral skeletons

    PubMed Central

    Pasquini, Luca; Molinari, Alan; Fantazzini, Paola; Dauphen, Yannicke; Cuif, Jean-Pierre; Levy, Oren; Dubinsky, Zvy; Caroselli, Erik; Prada, Fiorella; Goffredo, Stefano; Di Giosia, Matteo; Reggi, Michela; Falini, Giuseppe

    2015-01-01

    Scleractinian corals are a major source of biogenic calcium carbonate, yet the relationship between their skeletal microstructure and mechanical properties has been scarcely studied. In this work, the skeletons of two coral species: solitary Balanophyllia europaea and colonial Stylophora pistillata, were investigated by nanoindentation. The hardness HIT and Young's modulus EIT were determined from the analysis of several load–depth data on two perpendicular sections of the skeletons: longitudinal (parallel to the main growth axis) and transverse. Within the experimental and statistical uncertainty, the average values of the mechanical parameters are independent on the section's orientation. The hydration state of the skeletons did not affect the mechanical properties. The measured values, EIT in the 76–77 GPa range, and HIT in the 4.9–5.1 GPa range, are close to the ones expected for polycrystalline pure aragonite. Notably, a small difference in HIT is observed between the species. Different from corals, single-crystal aragonite and the nacreous layer of the seashell Atrina rigida exhibit clearly orientation-dependent mechanical properties. The homogeneous and isotropic mechanical behaviour of the coral skeletons at the microscale is correlated with the microstructure, observed by electron microscopy and atomic force microscopy, and with the X-ray diffraction patterns of the longitudinal and transverse sections. PMID:25977958

  13. 1D Piezoelectric Material Based Nanogenerators: Methods, Materials and Property Optimization

    PubMed Central

    Li, Xing; Sun, Mei; Wei, Xianlong; Shan, Chongxin

    2018-01-01

    Due to the enhanced piezoelectric properties, excellent mechanical properties and tunable electric properties, one-dimensional (1D) piezoelectric materials have shown their promising applications in nanogenerators (NG), sensors, actuators, electronic devices etc. To present a clear view about 1D piezoelectric materials, this review mainly focuses on the characterization and optimization of the piezoelectric properties of 1D nanomaterials, including semiconducting nanowires (NWs) with wurtzite and/or zinc blend phases, perovskite NWs and 1D polymers. Specifically, the piezoelectric coefficients, performance of single NW-based NG and structure-dependent electromechanical properties of 1D nanostructured materials can be respectively investigated through piezoresponse force microscopy, atomic force microscopy and the in-situ scanning/transmission electron microcopy. Along with the introduction of the mechanism and piezoelectric properties of 1D semiconductor, perovskite materials and polymers, their performance improvement strategies are summarized from the view of microstructures, including size-effect, crystal structure, orientation and defects. Finally, the extension of 1D piezoelectric materials in field effect transistors and optoelectronic devices are simply introduced. PMID:29570639

  14. Gamma irradiation degradation/modification of 5-ethylidene 2-norbornene (ENB)-based ethylene propylene diene rubber (EPDM) depending on ENB content of EPDM and type/content of peroxides used in vulcanization

    NASA Astrophysics Data System (ADS)

    Özdemir, Tonguç

    2008-06-01

    In this study, the radiation degradation/modification of the vulcanized EPDM and the effects of dose rate, peroxide type/content in vulcanization system and ENB content of EPDM were studied to investigate the change in the extend of the modification/degradation of the mechanical properties of vulcanized EPDM via gamma irradiation. In addition, thermal, dynamic mechanical, ATR-FTIR, TGA, TGA-FTIR tests were carried out to understand the change of properties of vulcanized EPDM via irradiation. Samples were irradiated with two different dose rates of 1280 and 64.6 Gy/h. Total dose of irradiation was up to 184 kGy. The FTIR spectral analysis showed structural changes of EPDM via irradiation. It was observed that the dose rate changed the mechanical properties with different extends. The change of ENB content of EPDM and peroxide type and content in vulcanization system affect extend of the modification/degradation of the EPDM's properties.

  15. Physical-mechanical properties of agar/κ-carrageenan blend film and derived clay nanocomposite film.

    PubMed

    Rhim, Jong-Whan

    2012-12-01

    Binary blend films with different mixing ratio of agar and κ-carrageenan were prepared using a solution casting method with and without nanoclay and the effect of their composition on the mechanical, water vapor barrier, and water resistance properties was tested. The tensile strength (TS) of the κ-carrageenan film was greater than that of agar film. The water vapor permeability (WVP) of the agar film was lower than that of κ-carrageenan film, the swelling ratio (SR) and water solubility (WS) of κ-carrageenan film were higher than those of agar film. Each property of the binary blend films varied proportionately depending on the mixing ratio of each component. The XRD result indicated that the nanocomposite with agar/κ-carrageenan/clay (Cloisite(®) Na(+)) was intercalated. Consequently, the mechanical strength, water vapor barrier properties, and water contact angle (CA) were significantly (P < 0.05) improved through nanocomposite formation. © 2012 Institute of Food Technologists®

  16. Nonlinear control of high-frequency phonons in spider silk

    NASA Astrophysics Data System (ADS)

    Schneider, Dirk; Gomopoulos, Nikolaos; Koh, Cheong Y.; Papadopoulos, Periklis; Kremer, Friedrich; Thomas, Edwin L.; Fytas, George

    2016-10-01

    Spider dragline silk possesses superior mechanical properties compared with synthetic polymers with similar chemical structure due to its hierarchical structure comprised of partially crystalline oriented nanofibrils. To date, silk’s dynamic mechanical properties have been largely unexplored. Here we report an indirect hypersonic phononic bandgap and an anomalous dispersion of the acoustic-like branch from inelastic (Brillouin) light scattering experiments under varying applied elastic strains. We show the mechanical nonlinearity of the silk structure generates a unique region of negative group velocity, that together with the global (mechanical) anisotropy provides novel symmetry conditions for gap formation. The phononic bandgap and dispersion show strong nonlinear strain-dependent behaviour. Exploiting material nonlinearity along with tailored structural anisotropy could be a new design paradigm to access new types of dynamic behaviour.

  17. The heart as a self-regulating system: integration of homeodynamic mechanisms.

    PubMed

    Kresh, J Y; Armour, J A

    1997-04-01

    In the past the study of mechanical and electrical properties of the heart has been disjointed with minimal overlap and unification. The fact remains that these features are tightly coupled and central to the functioning heart. The maintenance of adequate cardiac output relies upon the highly integrated autoregulatory mechanisms and modulation of cardiac myocyte function. Regional ventricular mechanics and energetics are dependent upon muscle fiber stress-strain rate, the passive properties of myocardial collagen matrix, adequate vascular perfusion, transcapillary transport and electrical activation pattern. Intramural hydraulic "loading" is regulated by coronary arterial and venous dynamics. All of these components are under the constant influence of intrinsic cardiac and extracardiac autonomic neurons, as well as circulating hormones. A brief overview of the putative regulation of these various components is presented in this paper.

  18. DELAY OF GERMINATION 1 mediates a conserved coat-dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination.

    PubMed

    Graeber, Kai; Linkies, Ada; Steinbrecher, Tina; Mummenhoff, Klaus; Tarkowská, Danuše; Turečková, Veronika; Ignatz, Michael; Sperber, Katja; Voegele, Antje; de Jong, Hans; Urbanová, Terezie; Strnad, Miroslav; Leubner-Metzger, Gerhard

    2014-08-26

    Seed germination is an important life-cycle transition because it determines subsequent plant survival and reproductive success. To detect optimal spatiotemporal conditions for germination, seeds act as sophisticated environmental sensors integrating information such as ambient temperature. Here we show that the delay of germination 1 (DOG1) gene, known for providing dormancy adaptation to distinct environments, determines the optimal temperature for seed germination. By reciprocal gene-swapping experiments between Brassicaceae species we show that the DOG1-mediated dormancy mechanism is conserved. Biomechanical analyses show that this mechanism regulates the material properties of the endosperm, a seed tissue layer acting as germination barrier to control coat dormancy. We found that DOG1 inhibits the expression of gibberellin (GA)-regulated genes encoding cell-wall remodeling proteins in a temperature-dependent manner. Furthermore we demonstrate that DOG1 causes temperature-dependent alterations in the seed GA metabolism. These alterations in hormone metabolism are brought about by the temperature-dependent differential expression of genes encoding key enzymes of the GA biosynthetic pathway. These effects of DOG1 lead to a temperature-dependent control of endosperm weakening and determine the optimal temperature for germination. The conserved DOG1-mediated coat-dormancy mechanism provides a highly adaptable temperature-sensing mechanism to control the timing of germination.

  19. Hierarchical and Size Dependent Mechanical Properties of Silica and Silicon Nanostructures Inspired by Diatom Algae

    DTIC Science & Technology

    2010-09-01

    a porous silica mesh structure. For wavy silica, unfolding mechanisms are achieved for increasing amplitude and allow for greater ductility ...as toughness, strength, and ductility , is extremely important when looking into future applications of nanoscale materials. Altering the mechanical...as brittle to ductile or weak to tough, through geometric alterations at the nanoscale, is a profound discovery that may unleash a new paradigm in the

  20. Surface modification of PAMAM dendrimers modulates the mechanism of cellular internalization.

    PubMed

    Saovapakhiran, Angkana; D'Emanuele, Antony; Attwood, David; Penny, Jeffrey

    2009-04-01

    The aim of this study was to investigate the influence of dendrimer surface properties on cellular internalization and intracellular trafficking in the human colon adenocarcinoma HT-29 cell line. Third-generation (G3) polyamidoamine (PAMAM) dendrimers were modified to contain either two lauroyl chains (G3L2), two propranolol molecules (G3P2), or two lauroyl and two propranolol molecules (G3L2P2) at the dendrimer surface. Surface-modified and unmodified dendrimers were labeled with fluorescein isothiocyanate (FITC) at an average molar ratio of 1:1. The mechanisms of cellular internalization and intracellular trafficking of dendrimers were analyzed by confocal laser scanning microscopy and flow cytometry. The internalization of G3 and G3P2 dendrimers involved both caveolae-dependent endocytosis and macropinocytosis pathways; internalization of G3L2P2 dendrimer appeared to involve caveolae-dependent, and possibly clathrin-dependent, endocytosis pathways; and internalization of G3L2 dendrimer occurred via caveolae-dependent, clathrin-dependent, and macropinocytosis pathways. Subcellular colocalization data indicated that unmodified and all surface-modified G3 PAMAM dendrimers were internalized and trafficked to endosomes and lysosomes. It is therefore apparent that the initial mode of dendrimer internalization into HT-29 cells is influenced by the surface properties of G3 PAMAM dendrimer.

  1. Nanoindentation of HMX and Idoxuridine to Determine Mechanical Similarity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burch, Alexandra; Yeager, John; Bahr, David

    Assessing the mechanical behavior (elastic properties, plastic properties, and fracture phenomena) of molecular crystals is often complicated by the difficulty in preparing samples. Pharmaceuticals and energetic materials in particular are often used in composite structures or tablets, where the individual grains can strongly impact the solid behavior. Nanoindentation is a convenient method to experimentally assess these properties, and it is used here to demonstrate the similarity in the mechanical properties of two distinct systems: individual crystals of the explosive cyclotetramethylene tetranitramine (HMX) and the pharmaceutical idoxuridine were tested in their as-precipitated state, and the effective average modulus and hardness (whichmore » can be orientation dependent) were determined. Both exhibit a hardness of 1.0 GPa, with an effective reduced modulus of 25 and 23 GPa for the HMX and idoxuridine, respectively. They also exhibit similar yield point behavior. This indicates idoxuridine may be a suitable mechanical surrogate (or “mock”) for HMX. While the methodology to assess elastic and plastic properties was relatively insensitive to specific crystal orientation (i.e., a uniform distribution in properties was observed for all random crystals tested), the indentation-induced fracture properties appear to be much more sensitive to tip-crystal orientation, and an unloading slope analysis is used to demonstrate the need for further refinement in relating toughness to orientation in these materials with relatively complex slip systems and crystal structures. View Full-Text« less

  2. Nanoindentation of HMX and Idoxuridine to Determine Mechanical Similarity

    DOE PAGES

    Burch, Alexandra; Yeager, John; Bahr, David

    2017-11-01

    Assessing the mechanical behavior (elastic properties, plastic properties, and fracture phenomena) of molecular crystals is often complicated by the difficulty in preparing samples. Pharmaceuticals and energetic materials in particular are often used in composite structures or tablets, where the individual grains can strongly impact the solid behavior. Nanoindentation is a convenient method to experimentally assess these properties, and it is used here to demonstrate the similarity in the mechanical properties of two distinct systems: individual crystals of the explosive cyclotetramethylene tetranitramine (HMX) and the pharmaceutical idoxuridine were tested in their as-precipitated state, and the effective average modulus and hardness (whichmore » can be orientation dependent) were determined. Both exhibit a hardness of 1.0 GPa, with an effective reduced modulus of 25 and 23 GPa for the HMX and idoxuridine, respectively. They also exhibit similar yield point behavior. This indicates idoxuridine may be a suitable mechanical surrogate (or “mock”) for HMX. While the methodology to assess elastic and plastic properties was relatively insensitive to specific crystal orientation (i.e., a uniform distribution in properties was observed for all random crystals tested), the indentation-induced fracture properties appear to be much more sensitive to tip-crystal orientation, and an unloading slope analysis is used to demonstrate the need for further refinement in relating toughness to orientation in these materials with relatively complex slip systems and crystal structures. View Full-Text« less

  3. Differential Effects of Mutations on the Transport Properties of the Na+/H+ Antiporter NhaA from Escherichia coli*

    PubMed Central

    Mager, Thomas; Braner, Markus; Kubsch, Bastian; Hatahet, Lina; Alkoby, Dudu; Rimon, Abraham; Padan, Etana; Fendler, Klaus

    2013-01-01

    Na+/H+ antiporters show a marked pH dependence, which is important for their physiological function in eukaryotic and prokaryotic cells. In NhaA, the Escherichia coli Na+/H+ antiporter, specific single site mutations modulating the pH profile of the transporter have been described in the past. To clarify the mechanism by which these mutations influence the pH dependence of NhaA, the substrate dependence of the kinetics of selected NhaA variants was electrophysiologically investigated and analyzed with a kinetic model. It is shown that the mutations affect NhaA activity in quite different ways by changing the properties of the binding site or the dynamics of the transporter. In the first case, pK and/or KDNa are altered, and in the second case, the rate constants of the conformational transition between the inside and the outside open conformation are modified. It is shown that residues as far apart as 15–20 Å from the binding site can have a significant impact on the dynamics of the conformational transitions or on the binding properties of NhaA. The implications of these results for the pH regulation mechanism of NhaA are discussed. PMID:23836890

  4. Finite element simulation of location- and time-dependent mechanical behavior of chondrocytes in unconfined compression tests.

    PubMed

    Wu, J Z; Herzog, W

    2000-03-01

    Experimental evidence suggests that cells are extremely sensitive to their mechanical environment and react directly to mechanical stimuli. At present, it is technically difficult to measure fluid pressure, stress, and strain in cells, and to determine the time-dependent deformation of chondrocytes. For this reason, there are no data in the published literature that show the dynamic behavior of chondrocytes in articular cartilage. Similarly, the dynamic chondrocyte mechanics have not been calculated using theoretical models that account for the influence of cell volumetric fraction on cartilage mechanical properties. In the present investigation, the location- and time-dependent stress-strain state and fluid pressure distribution in chondrocytes in unconfined compression tests were simulated numerically using a finite element method. The technique involved two basic steps: first, cartilage was approximated as a macroscopically homogenized material and the mechanical behavior of cartilage was obtained using the homogenized model; second, the solution of the time-dependent displacements and fluid pressure fields of the homogenized model was used as the time-dependent boundary conditions for a microscopic submodel to obtain average location- and time-dependent mechanical behavior of cells. Cells and extracellular matrix were assumed to be biphasic materials composed of a fluid phase and a hyperelastic solid phase. The hydraulic permeability was assumed to be deformation dependent and the analysis was performed using a finite deformation approach. Numerical tests were made using configurations similar to those of experiments described in the literature. Our simulations show that the mechanical response of chondrocytes to cartilage loading depends on time, fluid boundary conditions, and the locations of the cells within the specimen. The present results are the first to suggest that chondrocyte deformation in a stress-relaxation type test may exceed the imposed system deformation by a factor of 3-4, that chondrocyte deformations are highly dynamic and do not reach a steady state within about 20 min of steady compression (in an unconfined test), and that cell deformations are very much location dependent.

  5. Deformation micromechanisms of collagen fibrils under uniaxial tension

    PubMed Central

    Tang, Yuye; Ballarini, Roberto; Buehler, Markus J.; Eppell, Steven J.

    2010-01-01

    Collagen, an essential building block of connective tissues, possesses useful mechanical properties due to its hierarchical structure. However, little is known about the mechanical properties of collagen fibril, an intermediate structure between the collagen molecule and connective tissue. Here, we report the results of systematic molecular dynamics simulations to probe the mechanical response of initially unflawed finite size collagen fibrils subjected to uniaxial tension. The observed deformation mechanisms, associated with rupture and sliding of tropocollagen molecules, are strongly influenced by fibril length, width and cross-linking density. Fibrils containing more than approximately 10 molecules along their length and across their width behave as representative volume elements and exhibit brittle fracture. Shorter fibrils experience a more graceful ductile-like failure. An analytical model is constructed and the results of the molecular modelling are used to find curve-fitted expressions for yield stress, yield strain and fracture strain as functions of fibril structural parameters. Our results for the first time elucidate the size dependence of mechanical failure properties of collagen fibrils. The associated molecular deformation mechanisms allow the full power of traditional material and structural engineering theory to be applied to our understanding of the normal and pathological mechanical behaviours of collagenous tissues under load. PMID:19897533

  6. David Adler Lectureship Award: n-point Correlation Functions in Heterogeneous Materials.

    NASA Astrophysics Data System (ADS)

    Torquato, Salvatore

    2009-03-01

    The determination of the bulk transport, electromagnetic, mechanical, and optical properties of heterogeneous materials has a long and venerable history, attracting the attention of some of the luminaries of science, including Maxwell, Lord Rayleigh, and Einstein. The bulk properties can be shown to depend rigorously upon infinite sets of various n-point correlation functions. Many different types of correlation functions arise, depending on the physics of the problem. A unified approach to characterize the microstructure and bulk properties of a large class of disordered materials is developed [S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties (Springer-Verlag, New York, 2002)]. This is accomplished via a canonical n-point function Hn from which one can derive exact analytical expressions for any microstructural function of interest. This microstructural information can then be used to estimate accurately the bulk properties of the material. Unlike homogeneous materials, seemingly different bulk properties (e.g., transport and mechanical properties) of a heterogeneous material can be linked to one another because of the common microstructure that they share. Such cross-property relations can be used to estimate one property given a measurement of another. A recently identified decorrelation principle, roughly speaking, refers to the phenomenon that unconstrained correlations that exist in low-dimensional disordered materials vanish as the space dimension becomes large. Among other results, this implies that in sufficiently high dimensions the densest spheres packings may be disordered (rather than ordered) [S. Torquato and F. H. Stillinger, ``New Conjectural Lower Bounds on the Optimal Density of Sphere Packings," Experimental Mathematics, 15, 307 (2006)].

  7. Mechanical Properties Analysis of 4340 Steel Specimen Heat Treated in Oven and Quenching in Three Different Fluids

    NASA Astrophysics Data System (ADS)

    Fakir, Rachid; Barka, Noureddine; Brousseau, Jean

    2018-03-01

    This paper proposes a statistical approach to analyze the mechanical properties of a standard test specimen, of cylindrical geometry and in steel 4340, with a diameter of 6 mm, heat-treated and quenched in three different fluids. Samples were evaluated in standard tensile test to access their characteristic quantities: hardness, modulus of elasticity, yield strength, tensile strength and ultimate deformation. The proposed approach is gradually being built (a) by a presentation of the experimental device, (b) a presentation of the experimental plan and the results of the mechanical tests, (c) anova analysis of variance and a representation of the output responses using the RSM response surface method, and (d) an analysis of the results and discussion. The feasibility and effectiveness of the proposed approach leads to a precise and reliable model capable of predicting the variation of mechanical properties, depending on the tempering temperature, the tempering time and the cooling capacity of the quenching medium.

  8. Investigation of the influence of the concentrations of Sn in electrochemically deposited CuSn alloy films on their mechanical properties

    NASA Astrophysics Data System (ADS)

    Cherneva, S.; Iankov, R.; Stoychev, D.

    2015-10-01

    Mechanical properties of thin CuSn alloy films containing different content of Sn (0.06 - 67.5 wt.%) were investigated by means of nanoindentation experiments, using Nanoindenter G200 (Agilent Technologies), equipped with Berkovich indenter tip. The films were electrochemically deposited on screen-intermediate Ni film with thickness about 3 µm electrodeposited on Cu or brass (Cu66Zn34) substrates with thickness respectively 300 µm and 500 µm. The thicknesses of investigated CuSn films varied from 0.138 to 5.47 µm. Mechanical properties of the Cu and brass substrates were investigated too. As a result of nanoindentation experiments, load-displacement curves were obtained and two mechanical characteristics of the substrate and investigated films - indentation hardness (HIT) and indentation modulus (EIT) - were calculated using Oliver & Pharr approximation method. Dependence of indentation modulus and indentation hardness on the depth of indentation, content of Sn, structure and phase composition of the alloy films was investigated and discussed.

  9. Fundamentals of poly(lactic acid) microstructure, crystallization behavior, and properties

    NASA Astrophysics Data System (ADS)

    Kang, Shuhui

    Poly(lactic acid) is an environmentally-benign biodegradable and sustainable thermoplastic material, which has found broad applications as food packaging films and as non-woven fibers. The crystallization and deformation mechanisms of the polymer are largely determined by the distribution of conformation and configuration. Knowledge of these mechanisms is needed to understand the mechanical and thermal properties on which processing conditions mainly depend. In conjunction with laser light scattering, Raman spectroscopy and normal coordinate analysis are used in this thesis to elucidate these properties. Vibrational spectroscopic theory, Flory's rotational isomeric state (RIS) theory, Gaussian chain statistics and statistical mechanics are used to relate experimental data to molecular chain structure. A refined RIS model is proposed, chain rigidity recalculated and chain statistics discussed. A Raman spectroscopic characterization method for crystalline and amorphous phase orientation has been developed. A shrinkage model is also proposed to interpret the dimensional stability for fibers and uni- or biaxially stretched films. A study of stereocomplexation formed by poly(l-lactic acid) and poly(d-lactic acid) is also presented.

  10. Electrical potential modulation of dynamic film properties of aqueous surfactant solutions through a nanogap

    NASA Astrophysics Data System (ADS)

    Xie, Guoxin; Luo, Jianbin; Liu, Shuhai; Guo, Dan

    2011-01-01

    The effect of external electrical potentials (EEPs) on aqueous surfactant films nanoconfined in a ball-plate configuration has been investigated by measuring the dynamic film thickness with an interferometer. Experimental results indicate that the film formation properties of the surfactant solutions in the nanogap under applied EEPs are strongly dependent on the interfacial adsorbed surfactant structure. Effective control over the film formation properties by applying EEPs depends on the signs of the charges on the solid surface and the surfactant headgroups, the surfactant concentration, and the magnitude of EEPs. Remarkable alterations of the film formation properties in the nanogap by EEPs can be observed except when the surface charge is the same in sign as the headgroups and the surfactant concentration is above the critical micelle concentration. Mechanisms of these phenomena have been discussed in this work.

  11. Anomalously soft non-Euclidean spring

    NASA Astrophysics Data System (ADS)

    Levin, Ido; Sharon, Eran

    In this work we study the mechanical properties of a frustrated elastic ribbon spring - the non-Euclidean minimal spring. This spring belongs to the family of non-Euclidean plates: it has no spontaneous curvature, but its lateral intrinsic geometry is described by a non-Euclidean reference metric. The reference metric of the minimal spring is hyperbolic, and can be embedded as a minimal surface. We argue that the existence of a continuous set of such isometric minimal surfaces with different extensions leads to a complete degeneracy of the bulk elastic energy of the minimal spring under elongation. This degeneracy is removed only by boundary layer effects. As a result, the mechanical properties of the minimal spring are unusual: the spring is ultra-soft with rigidity that depends on the thickness, t , as t raise 0 . 7 ex 7 7 2 lower 0 . 7 ex 2, and does not explicitly depend on the ribbon's width. These predictions are confirmed by a numerical study of a constrained spring. This work is the first to address the unusual mechanical properties of constrained non-Euclidean elastic objects. We also present a novel experimental system that is capable of constructing such objects, along with many other non-Euclidean plates.

  12. Electrical properties of thermoelectric cobalt Ca3Co4O9 epitaxial heterostructures

    NASA Astrophysics Data System (ADS)

    Guo, Haizhong; Wang, Shufang; Wang, Le; Jin, Kui-juan; Chen, Shanshan; Fu, Guangsheng; Ge, Chen; Lu, Huibin; Wang, Can; He, Meng; Yang, Guozhen

    2013-03-01

    Heterostructures fabricated from layered cobalt oxides offer substantial advantages for thermoelectric applications. C-axis-oriented Ca3Co4O9 (CCO) thin films on SrTiO3 substrates and Ca3Co4O9/SrTi0.993Nb0.007O3 p-n heterojunctions were fabricated by pulsed laser deposition. The measurements of in-plane resistivity, thermopower, and magnetic properties performed on the Ca3Co4O9 thin films were found to be comparable to ab-plane those of the single crystals due to good orientation of the films. The temperature dependence of the electrical transport properties of Ca3Co4O9/SrTi0.993Nb0.007O3 p-n heterojunction was also investigated. The junction shows two distinctive transport mechanisms at different temperature regimes under forward bias: tunneling across the Schottky barrier in the temperature range of 100-380 K, and tunneling mechanism at low bias and thermal emission mechanism at high bias between 10 and 100 K. However, for the case of low reverse bias, the trap assisted tunneling process should be considered for the leakage current. Negative magnetoresistance effect is observed at low temperatures, related to the electron spin-dependent scattering and the interface resistance of the heterostructures.

  13. Biomechanical properties of the thoracic aorta in Marfan patients

    PubMed Central

    Sulejmani, Fatiesa; Pokutta-Paskaleva, Anastassia; Ziganshin, Bulat; Leshnower, Bradley; Iannucci, Glen; Elefteriades, John

    2017-01-01

    Background Marfan syndrome (MFS), a genetic disorder of the connective tissue, has been strongly linked to dilation of the thoracic aorta, among other cardiovascular complications. As a result, MFS patients frequently suffer from aortic dissection and rupture, contributing to the high rate of mortality and morbidity among MFS patients. Despite the significant effort devoted to the investigation of mechanical and structural properties of aneurysmal tissue, studies on Marfan aneurysmal biomechanics are scarce. Ex vivo mechanical characterization of MFS aneurysmal tissue can provide a better insight into tissue strength outside the physiologic loading range and serve as a basis for improved risk assessment and failure prediction. Methods The mechanical and microstructural properties of MFS aneurysmal thoracic aorta (MFS, n=15, 39.5±3.91 years), non-MFS aneurysmal thoracic aorta (TAA, n=8, 52.8±4.9 years), healthy human thoracic aorta (HH, n=8, 75.4±6.1 years), and porcine thoracic aorta (n=10) are investigated. Planar biaxial tensile testing and uniaxial failure testing were utilized to characterize the mechanical and failure properties of the tissue, respectively. Verhoeff-Van Gieson (VVG) and PicroSirius Red stains were utilized to visualize the elastin and collagen fiber architecture, respectively. Results MFS tissue was found to have age-dependent but diameter-independent mechanical, structural, and morphological properties, also showing extensive elastin fiber degradation. Non-MFS thoracic aneurysmal aorta was thicker and stiffer than age-matched MFS tissue. Moreover, non-MFS thoracic aneurysmal mechanics resembled closely the mechanics of older healthy human tissue. Younger MFS tissue (<40 years) exhibited similar mechanical and structural properties to aged porcine tissue. Conclusions Both age and aneurysmal presence were found to be factors associated with increased stiffness in aortic tissue, and aortic diameter was not a significant determinant of mechanical property deterioration. Additionally, the presence of MFS was found to induce stiffening of the thoracic aorta, although not to the extent of the non-MFS aneurysm. PMID:29270373

  14. Crystallite-size dependency of the pressure and temperature response in nanoparticles of magnesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodenbough, Philip P.; Chan, Siu-Wai

    We have carefully measured the hydrostatic compressibility and thermal expansion for a series of magnesia nanoparticles. We found a strong variance in these mechanical properties as crystallite size changed. For decreasing crystallite sizes, bulk modulus first increased, then reached a modest maximum of 165 GPa at an intermediate crystallite size of 14 nm, and then decreased thereafter to 77 GPa at 9 nm. Thermal expansion, meanwhile, decreased continuously to 70% of bulk value at 9 nm. These results are consistent to nano-ceria and together provide important insights into the thermal-mechanical structural properties of oxide nanoparticles.

  15. Solidification rate influence on orientation and mechanical properties of MAR-M-246+Hf

    NASA Technical Reports Server (NTRS)

    Hamilton, D.

    1983-01-01

    The influence of solidification rates on the orientation and mechanical properties of MAR-M-246+Hf was studied. The preferred orientation was found to be (001) for single crystals, with all samples with 45 degrees of (001). Tensile tests were performed at room temperature. The anisotropy of directionally solidified MAR-M-246+Hf was demonstrated by gage section deformation. Dendrite arm spacing and crystal growth were found to depend on solidification rates and source material conditions. The greatest strength occurred at lower solidification rates. Some single crystals were grown by control of growth rates without seeding.

  16. Analysis of Crushing Response of Composite Crashworthy Structures

    NASA Astrophysics Data System (ADS)

    David, Matthew; Johnson, Alastair F.; Voggenreiter, H.

    2013-10-01

    The paper describes quasi-static and dynamic tests to characterise the energy absorption properties of polymer composite crash energy absorbing segment elements under axial loads. Detailed computer tomography scans of failed specimens are used to identify local compression crush failure mechanisms at the crush front. The varied crushing morphology between the compression strain rates identified in this paper is observed to be due to the differences in the response modes and mechanical properties of the strain dependent epoxy matrix. The importance of understanding the role of strain rate effects in composite crash energy absorbing structures is highlighted in this paper.

  17. Microstructure and Properties of Polypropylene/Carbon Nanotube Nanocomposites

    PubMed Central

    Bikiaris, Dimitrios

    2010-01-01

    In the last few years, great attention has been paid to the preparation of polypropylene (PP) nanocomposites using carbon nanotubes (CNTs) due to the tremendous enhancement of the mechanical, thermal, electrical, optical and structural properties of the pristine material. This is due to the unique combination of structural, mechanical, electrical, and thermal transport properties of CNTs. However, it is well-known that the properties of polymer-based nanocomposites strongly depend on the dispersion of nanofillers and almost all the discussed properties of PP/CNTs nanocomposites are strongly related to their microstructure. PP/CNTs nanocomposites were, mainly, prepared by melt mixing and in situ polymerization. Young’s modulus, tensile strength and storage modulus of the PP/CNTs nanocomposites can be increased with increasing CNTs content due to the reinforcement effect of CNTs inside the polymer matrix. However, above a certain CNTs content the mechanical properties are reduced due to the CNTs agglomeration. The microstructure of nanocomposites has been studied mainly by SEM and TEM techniques. Furthermore, it was found that CNTs can act as nucleating agents promoting the crystallization rates of PP and the addition of CNTs enhances all other physical properties of PP. The aim of this paper is to provide a comprehensive review of the existing literature related to PP/CNTs nanocomposite preparation methods and properties studies.

  18. Interdot spacing dependence of electronic structure and properties of multistacked InGaAs quantum dots fabricated without strain compensation technique

    NASA Astrophysics Data System (ADS)

    Goshima, Keishiro; Tsuda, Norio; Inukai, Keisuke; Amano, Takeru; Sugaya, Takeyoshi

    2018-06-01

    We report on the electronic properties and band structure of multistacked quantum dots (QDs) fabricated without a strain compensation technique. It is possible to realize a small interdot spacing and introduce a strong quantum mechanical coupling. From the using temperature dependence, polarized photoluminescent spectra, and photoluminescent excitation experiments, we observe a markedly different behavior depending on the interdot spacing. These results evidence that minibands of electrons and holes are formed with interdot spacings of 7 and 3.5 nm, respectively. In addition, thise results are in good agreement with numerical calculations. We describe in detail the miniband formation and electronic structure of multistacked QDs with various interdot spacings of 10 nm or less.

  19. Mechanics of Nanotubes and Nanotube-Polymer Composites

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Wei, Cheng-Yu; Cho, Kyeong-Jae; Menon, Madhu; Osman, Mohamed; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    CNT is a tubular form of carbon with diameter as small as 1 nm. Length: few nm to microns. CNT is configurationally equivalent to a two dimensional graphene sheet rolled into a tube. CNT exhibits extraordinary mechanical properties: Young's modulus over 1 Tera Pascal, as stiff as diamond, and tensile strength approx. 200 GPa. CNT can be metallic or semiconducting, depending on chirality.

  20. Microtubules soften due to cross-sectional flattening

    DOE PAGES

    Memet, Edvin; Hilitsk, Feodor; Morris, Margaret A.; ...

    2018-06-01

    We use optical trapping to continuously bend an isolated microtubule while simultaneously measuring the applied force and the resulting filament strain, thus allowing us to determine its elastic properties over a wide range of applied strains. We find that, while in the low-strain regime, microtubules may be quantitatively described in terms of the classical Euler-Bernoulli elastic filament, above a critical strain they deviate from this simple elastic model, showing a softening response with increasing deformations. A three-dimensional thin-shell model, in which the increased mechanical compliance is caused by flattening and eventual buckling of the filament cross-section, captures this softening effectmore » in the high strain regime and yields quantitative values of the effective mechanical properties of microtubules. Our results demonstrate that properties of microtubules are highly dependent on the magnitude of the applied strain and offer a new interpretation for the large variety in microtubule mechanical data measured by different methods.« less

  1. Microtubules soften due to cross-sectional flattening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Memet, Edvin; Hilitsk, Feodor; Morris, Margaret A.

    We use optical trapping to continuously bend an isolated microtubule while simultaneously measuring the applied force and the resulting filament strain, thus allowing us to determine its elastic properties over a wide range of applied strains. We find that, while in the low-strain regime, microtubules may be quantitatively described in terms of the classical Euler-Bernoulli elastic filament, above a critical strain they deviate from this simple elastic model, showing a softening response with increasing deformations. A three-dimensional thin-shell model, in which the increased mechanical compliance is caused by flattening and eventual buckling of the filament cross-section, captures this softening effectmore » in the high strain regime and yields quantitative values of the effective mechanical properties of microtubules. Our results demonstrate that properties of microtubules are highly dependent on the magnitude of the applied strain and offer a new interpretation for the large variety in microtubule mechanical data measured by different methods.« less

  2. Mechanical and shape memory properties of porous Ni50.1Ti49.9 alloys manufactured by selective laser melting.

    PubMed

    Taheri Andani, Mohsen; Saedi, Soheil; Turabi, Ali Sadi; Karamooz, M R; Haberland, Christoph; Karaca, Haluk Ersin; Elahinia, Mohammad

    2017-04-01

    Near equiatomic NiTi shape memory alloys were fabricated in dense and designed porous forms by Selective Laser Melting (SLM) and their mechanical and shape memory properties were systematically characterized. Particularly, the effects of pore morphology on their mechanical responses were investigated. Dense and porous NiTi alloys exhibited good shape memory effect with a recoverable strain of about 5% and functional stability after eight cycles of compression. The stiffness and residual plastic strain of porous NiTi were found to depend highly on the pore shape and the level of porosity. Since porous NiTi structures have lower elastic modulus and density than dense NiTi with still good shape memory properties, they are promising materials for lightweight structures, energy absorbers, and biomedical implants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Analysis of role of bone compliance on mechanics of a lumbar motion segment.

    PubMed

    Shirazi-Adl, A

    1994-11-01

    A large deformation elasto-static finite element formulation is developed and used for the determination of the role of bone compliance in mechanics of a lumbar motion segment. This is done by simulating each vertebra as a deformable body with realistic material properties, as a deformable body with stiffer or softer mechanical properties, as a single rigid body, or finally as two rigid bodies attached by deformable beams. The single loadings of axial compression, flexion moment, extension moment, and axial torque are considered. The results indicate the marked effect of alteration in bone material properties on biomechanics of lumbar segments specially under larger loads. The biomechanical studies of the lumbar spine should, therefore, be performed and evaluated in the light of such dependency. A model for bony vertebrae is finally proposed that preserves both the accuracy and the cost-efficiency in nonlinear finite element analyses of spinal multi-motion segment systems.

  4. Composition dependence of mechanical property changes in electron irradiated borosilicate glasses

    NASA Astrophysics Data System (ADS)

    Lv, P.; Chen, L.; Duan, B. H.; Zhang, D. F.; Wang, T. S.

    2017-08-01

    Mechanical properties evolution of three kinds of ternary Na2O-B2O3-SiO2 (labeled as NBS) glasses induced by 1.2 MeV electrons has been investigated by nano-indentation measurements. The glass samples were prepared with different values of the molar ratio R = [Na2O]/[B2O3] (0.4, 0.75 and 1.34), while the molar ratio K = [SiO2]/[B2O3] was kept constant as 4.04. The results indicated that both the mean hardness and the reduced Young modulus were decreased as a function of electron dose and the decrements are significantly related with the glass compositions. The toughness of all these three NBS glasses was slightly improved due to electron irradiation. The mechanical properties of glass samples with greater R value tend to be less affected under electron irradiation.

  5. Small angle neutron scattering analyses and high temperature mechanical properties of nano-structured oxide dispersion strengthened steels produced via cryomilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jeoung Han; Byun, Thak Sang; Shin, Eunjoo

    2015-08-17

    Three oxide dispersion-strengthened (ODS) steels are produced in order to investigate the effect of the mechanical alloying (MA) temperature on the microstructural evolution and high temperature mechanical properties. The microstructural evolution with different MA conditions is examined using small angle neutron scattering. As the MA temperature decreases, the density of the nanoclusters below 10 nm increases and their mean diameter decreases. A low temperature during MA leads to a high strength in the compression tests performed at 500 *C; however, this effect disappears in testing at 900 *C. The milling process at *70 *C exhibits excellent high fracture toughness, whichmore » is better than the benchmark material 14YWT-SM10. However, the *150 *C milling process results in significantly worse fracture toughness properties. The reasons for this strong temperature dependency are discussed.« less

  6. Mechanical properties of carbon steel depending on the rate of the dose build-up of nitrogen and argon ions

    NASA Astrophysics Data System (ADS)

    Vorob'ev, V. L.; Bykov, P. V.; Bayankin, V. Ya.; Shushkov, A. A.; Vakhrushev, A. V.

    2014-08-01

    The effect of pulsed irradiation with argons and nitrogen ions on the mechanical properties, morphology, and structure of the surface layers of carbon steel St3 (0.2% C, 0.4% Mn, 0.15% Si, and Fe for balance) has been investigated depending on the rate of dose build-up at an average ion current density of 10, 20, and 40 μA/cm2. It has been established that the fatigue life and microhardness of surface layers increase in the entire studied range of dose build-up rates. This seems to be due to the hardening of the surface layers, which resulted from the generation of radiation defects and the irradiation-dynamic effect of fast ions. The sample irradiated by argon ions at the lowest of the selected dose build-up rates j av = 10 μA/cm2 withstands the largest number of cycles to failure.

  7. Effect of natural fibers on mechanical properties of green cement mortar

    NASA Astrophysics Data System (ADS)

    AL-Zubaidi, Aseel B.

    2018-05-01

    Natural fibers of banana, reed, palm and coconut were used to reinforce cement composite. Optical microscopy showed that the prepared fibers are different in size and morphology. Nearly equiaxed, ribbon-like and nearly cylindrical morphologies were observed. Each of the utilized natural fibers was incorporated in the cement matrix at 0, 0.25, 0.5, 0.75 and 1.0 wt% and cured for 28 days. The scanning electron micrographs for the 1.0 wt% -reinforced composite showed differences in porosity, grain size and shape. Each of the utilized fibers has different effect on the microstructure of the cement composite that depends on the fiber size and morphology. Water absorption, thermal conductivity, bending strength, hardness and compression strengths were measured for the reinforced cement composite. It is found that the final physical and mechanical properties of the set cement composite depend on the fiber content and fiber type through the differences in their sizes and morphologies.

  8. Pressure and temperature induced elastic properties of Am and Cf monobismuthides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, S., E-mail: sanjay-rjain@rediffmail.com; Sushila Devi Bansal College of Engineering, Rau, Indore 452001; Shriya, S.

    2016-05-23

    The pressure and temperature dependent mechanical properties as melting temperature, hardness and brittle nature of XBi (X = Am and Cf) are studied. The rare earth actinides pnictides showed a structural phase transition (B1–B2) at a transition pressure (P{sub T}) of 14.3 GPa (AmBi) and 10.8 GPa (CfBi). Pressure dependence of melting temperature (T{sub m}) discerns an increase inferring the hardening or stiffening of the lattice as a consequence of bond compression and bond strengthening. Suppressed T{sub M} as functions of temperature infers the weakening of the lattice results in bond weakening in XBi (X = Am, Cf). Vickers Hardnessmore » (H{sub V}), Poisson’s and Pugh ratio of XBi (X = Am and Cf) demonstrates that XBi (X = Am and Cf) is mechanically stiffened, thermally softened and brittle on applied pressure and temperature.« less

  9. Temperature-Dependent Electrical Properties and Carrier Transport Mechanisms of TMAH-Treated Ni/Au/Al2O3/GaN MIS Diode

    NASA Astrophysics Data System (ADS)

    Reddy, M. Siva Pratap; Puneetha, Peddathimula; Reddy, V. Rajagopal; Lee, Jung-Hee; Jeong, Seong-Hoon; Park, Chinho

    2016-11-01

    The temperature-dependent electrical properties and carrier transport mechanisms of tetramethylammonium hydroxide (TMAH)-treated Ni/Au/Al2O3/GaN metal-insulator-semiconductor (MIS) diodes have been investigated by current-voltage ( I- V) and capacitance-voltage ( C- V) measurements. The experimental results reveal that the barrier height ( I- V) increases whereas the ideality factor decreases with increasing temperature. The TMAH-treated Ni/Au/Al2O3/GaN MIS diode showed nonideal behaviors which indicate the presence of a nonuniform distribution of interface states ( N SS) and effect of series resistance ( R S). The obtained R S and N SS were found to decrease with increasing temperature. Furthermore, it was found that different transport mechanisms dominated in the TMAH-treated Ni/Au/Al2O3/GaN MIS diode. At 150 K to 250 K, Poole-Frenkel emission (PFE) was found to be responsible for the reverse leakage, while Schottky emission (SE) was the dominant mechanism at high electric fields in the temperature range from 300 K to 400 K. Feasible energy band diagrams and possible carrier transport mechanisms for the TMAH-treated Ni/Au/Al2O3/GaN MIS diode are discussed based on PFE and SE.

  10. Stimuli-responsive Materials and Structures with Electrically Tunable Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Auletta, Jeffrey Thomas

    Electricity, a convenient stimulus, was used to manipulate the mechanical properties of two classes of materials, each with a different mechanism. In the first system, macroscale electroplastic elastomer hydrogels (EPEs) were reversibly cycled through soft and hard states by sequential application of oxidative and reductive potentials. Electrochemically reversible crosslinks were switched between strongly binding Fe3+ and weak to non-binding Fe2+, as determined by potentiometric titration.With the incorporation of graphene oxide (GO) into the EPE, a significant enhancement in modulus and toughness was observed, allowing for the preparation of thinner EPE samples, which could be reversibly cycled between soft and hard states over 30 minutes. Further characterization of this EPE by magnetic susceptibility measurements suggested the formation of multinuclear iron clusters within the gel. Copper-derived EPEs which exploited the same redox-controlled mechanism for switching between hard and soft states were also prepared. Here, the density of temporary crosslinks and the mechanical properties were controlled by reversibly switching between the +1 and +2 oxidation states, using a combination of electrochemical/air oxidation and chemical reduction. In addition to undergoing redox-controlled changes in modulus, these EPEs exhibited shape memory. In the second system, electroadhesion between ionomer layers was exploited to create laminate structures whose rigidity depended on the reversible polarization of the dielectric polymers. The role of the counter-ion in determining the intrinsic and electroadhesive properties of poly(ethylene-co-acrylic acid) ionomers in bi- and tri-layered laminate structures was examined. PEAA ionomers were prepared with three tetraalkylammonium cations (NR4 +, R = methyl, TMA+; ethyl, TEA+; and propyl, TPA+). Reflecting the increasing hydrophobicity of the longer alkyl chains, water uptake changed as a function of counterion with TMA+ > TEA+ > TPA+. The glass transition temperatures, electrical resistivities, elastic moduli, and coefficients of friction were measured and found to depend on the cation identity. Overall, the cation-influenced mechanical properties of the ionomer determined the flexural rigidity range, but not the magnitude of the rigidity change, between the on and off states.

  11. Thermomechanical Formation–Structure–Property Relationships in Photopolymerized Copper-Catalyzed Azide–Alkyne (CuAAC) Networks

    PubMed Central

    Baranek, Austin; Song, Han Byul; McBride, Mathew; Finnegan, Patricia; Bowman, Christopher N.

    2016-01-01

    Bulk photopolymerization of a library of synthesized multifunctional azides and alkynes was carried out toward developing structure–property relationships for CuAAC-based polymer networks. Multifunctional azides and alkynes were formulated with a copper catalyst and a photoinitiator, cured, and analyzed for their mechanical properties. Material properties such as the glass transition temperatures (Tg) show a strong dependence on monomer structure with Tg values ranging from 41 to 90 °C for the series of CuAAC monomers synthesized in this study. Compared to the triazoles, analogous thioether-based polymer networks exhibit a 45–49 °C lower Tg whereas analogous monomers composed of ethers in place of carbamates exhibit a 40 °C lower Tg. Here, the formation of the triazole moiety during the polymerization represents a critical component in dictating the material properties of the ultimate polymer network where material properties such as the rubbery modulus, cross-link density, and Tg all exhibit strong dependence on polymerization conversion, monomer composition, and structure postgelation. PMID:27867223

  12. Metal matrix composite micromechanics: In-situ behavior influence on composite properties

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Hopkins, D. A.; Chamis, C. C.

    1989-01-01

    Recent efforts in computational mechanics methods for simulating the nonlinear behavior of metal matrix composites have culminated in the implementation of the Metal Matrix Composite Analyzer (METCAN) computer code. In METCAN material nonlinearity is treated at the constituent (fiber, matrix, and interphase) level where the current material model describes a time-temperature-stress dependency of the constituent properties in a material behavior space. The composite properties are synthesized from the constituent instantaneous properties by virtue of composite micromechanics and macromechanics models. The behavior of metal matrix composites depends on fabrication process variables, in situ fiber and matrix properties, bonding between the fiber and matrix, and/or the properties of an interphase between the fiber and matrix. Specifically, the influence of in situ matrix strength and the interphase degradation on the unidirectional composite stress-strain behavior is examined. These types of studies provide insight into micromechanical behavior that may be helpful in resolving discrepancies between experimentally observed composite behavior and predicted response.

  13. Suspended tungsten-based nanowires with enhanced mechanical properties grown by focused ion beam induced deposition

    NASA Astrophysics Data System (ADS)

    Córdoba, Rosa; Lorenzoni, Matteo; Pablo-Navarro, Javier; Magén, César; Pérez-Murano, Francesc; María De Teresa, José

    2017-11-01

    The implementation of three-dimensional (3D) nano-objects as building blocks for the next generation of electro-mechanical, memory and sensing nano-devices is at the forefront of technology. The direct writing of functional 3D nanostructures is made feasible by using a method based on focused ion beam induced deposition (FIBID). We use this technique to grow horizontally suspended tungsten nanowires and then study their nano-mechanical properties by three-point bending method with atomic force microscopy. These measurements reveal that these nanowires exhibit a yield strength up to 12 times higher than that of the bulk tungsten, and near the theoretical value of 0.1 times the Young’s modulus (E). We find a size dependence of E that is adequately described by a core-shell model, which has been confirmed by transmission electron microscopy and compositional analysis at the nanoscale. Additionally, we show that experimental resonance frequencies of suspended nanowires (in the MHz range) are in good agreement with theoretical values. These extraordinary mechanical properties are key to designing electro-mechanically robust nanodevices based on FIBID tungsten nanowires.

  14. Mechanical Properties of Nonwoven Reinforced Thermoplastic Polyurethane Composites

    PubMed Central

    Tausif, Muhammad; Pliakas, Achilles; O’Haire, Tom; Goswami, Parikshit; Russell, Stephen J.

    2017-01-01

    Reinforcement of flexible fibre reinforced plastic (FRP) composites with standard textile fibres is a potential low cost solution to less critical loading applications. The mechanical behaviour of FRPs based on mechanically bonded nonwoven preforms composed of either low or high modulus fibres in a thermoplastic polyurethane (TPU) matrix were compared following compression moulding. Nonwoven preform fibre compositions were selected from lyocell, polyethylene terephthalate (PET), polyamide (PA) as well as para-aramid fibres (polyphenylene terephthalamide; PPTA). Reinforcement with standard fibres manifold improved the tensile modulus and strength of the reinforced composites and the relationship between fibre, fabric and composite’s mechanical properties was studied. The linear density of fibres and the punch density, a key process variable used to consolidate the nonwoven preform, were varied to study the influence on resulting FRP mechanical properties. In summary, increasing the strength and degree of consolidation of nonwoven preforms did not translate to an increase in the strength of resulting fibre reinforced TPU-composites. The TPU composite strength was mainly dependent upon constituent fibre stress-strain behaviour and fibre segment orientation distribution. PMID:28772977

  15. Actin-binding proteins sensitively mediate F-actin bundle stiffness

    NASA Astrophysics Data System (ADS)

    Claessens, Mireille M. A. E.; Bathe, Mark; Frey, Erwin; Bausch, Andreas R.

    2006-09-01

    Bundles of filamentous actin (F-actin) form primary structural components of a broad range of cytoskeletal processes including filopodia, sensory hair cell bristles and microvilli. Actin-binding proteins (ABPs) allow the cell to tailor the dimensions and mechanical properties of the bundles to suit specific biological functions. Therefore, it is important to obtain quantitative knowledge on the effect of ABPs on the mechanical properties of F-actin bundles. Here we measure the bending stiffness of F-actin bundles crosslinked by three ABPs that are ubiquitous in eukaryotes. We observe distinct regimes of bundle bending stiffness that differ by orders of magnitude depending on ABP type, concentration and bundle size. The behaviour observed experimentally is reproduced quantitatively by a molecular-based mechanical model in which ABP shearing competes with F-actin extension/compression. Our results shed new light on the biomechanical function of ABPs and demonstrate how single-molecule properties determine mesoscopic behaviour. The bending mechanics of F-actin fibre bundles are general and have implications for cytoskeletal mechanics and for the rational design of functional materials.

  16. Deposition temperature dependent optical and electrical properties of ALD HfO{sub 2} gate dielectrics pretreated with tetrakisethylmethylamino hafnium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, J.; School of Sciences, Anhui University of Science and Technology, Huainan 232001; He, G., E-mail: hegang@ahu.edu.cn

    2015-10-15

    Highlights: • ALD-derived HfO{sub 2} gate dielectrics have been deposited on Si substrates. • The leakage current mechanism for different deposition temperature was discussed. • Different emission at different field region has been determined precisely. - Abstract: The effect of deposition temperature on the growth rate, band gap energy and electrical properties of HfO{sub 2} thin film deposited by atomic layer deposition (ALD) has been investigated. By means of characterization of spectroscopy ellipsometry and ultraviolet–visible spectroscopy, the growth rate and optical constant of ALD-derived HfO{sub 2} gate dielectrics are determined precisely. The deposition temperature dependent electrical properties of HfO{sub 2}more » films were determined by capacitance–voltage (C–V) and leakage current density–voltage (J–V) measurements. The leakage current mechanism for different deposition temperature has been discussed systematically. As a result, the optimized deposition temperature has been obtained to achieve HfO{sub 2} thin film with high quality.« less

  17. Temperature dependent nonlinear metal matrix laminae behavior

    NASA Technical Reports Server (NTRS)

    Barrett, D. J.; Buesking, K. W.

    1986-01-01

    An analytical method is described for computing the nonlinear thermal and mechanical response of laminated plates. The material model focuses upon the behavior of metal matrix materials by relating the nonlinear composite response to plasticity effects in the matrix. The foundation of the analysis is the unidirectional material model which is used to compute the instantaneous properties of the lamina based upon the properties of the fibers and matrix. The unidirectional model assumes that the fibers properties are constant with temperature and assumes that the matrix can be modelled as a temperature dependent, bilinear, kinematically hardening material. An incremental approach is used to compute average stresses in the fibers and matrix caused by arbitrary mechanical and thermal loads. The layer model is incorporated in an incremental laminated plate theory to compute the nonlinear response of laminated metal matrix composites of general orientation and stacking sequence. The report includes comparisons of the method with other analytical approaches and compares theoretical calculations with measured experimental material behavior. A section is included which describes the limitations of the material model.

  18. Influence of the inlet air temperature in a fluid bed coating process on drug release from shellac-coated pellets.

    PubMed

    Farag, Yassin; Leopold, Claudia Sabine

    2011-03-01

    Since the introduction of aqueous ammoniacal solutions, shellac regained importance for pharmaceutical applications. However, as shellac is a material obtained from natural resources, its quality and thus its physicochemical properties may vary depending on its origin and the type of refining. In this study theophylline pellets were coated with aqueous solutions of three different commercially available shellac types. The inlet air temperature of the coating process was varied, and its influence on drug release from the coated pellet formulations was investigated. Film formation was correlated to the physicochemical and mechanical properties of the investigated shellac types. Pellets coated at lower temperatures showed distinct cracks in the coating film resulting in a loss of the barrier function during dissolution testing. These cracks were nonreversible by additional curing. The physicochemical and mechanical properties of the investigated shellac types varied significantly and could hardly be related to the drug release performance of the investigated formulations. Obviously, with shellac a minimum inlet air temperature must be exceeded to achieve a coherent coating film. This temperature was dependent on the investigated shellac type.

  19. Tuning the gas sensing performance of single PEDOT nanowire devices.

    PubMed

    Hangarter, Carlos M; Hernandez, Sandra C; He, Xueing; Chartuprayoon, Nicha; Choa, Yong Ho; Myung, Nosang V

    2011-06-07

    This paper reports the synthesis and dopant dependent electrical and sensing properties of single poly(ethylenedioxythiophene) (PEDOT) nanowire sensors. Dopant type (i.e. polystyrenesulfonate (PSS(-)) and perchlorate (ClO(4)(-))) and solvent (i.e. acetonitrile and 1 : 1 water-acetonitrile mixture) were adjusted to change the conjugation length and hydrophilicity of nanowires which resulted in change of the electrical properties and sensing performance. Temperature dependent coefficient of resistance (TCR) indicated that the electrical properties are greatly dependent on dopants and electrolyte where greater disorder was found in PSS(-) doped PEDOT nanowires compared to ClO(4)(-) doped nanowires. Upon exposure to different analytes including water vapor and volatile organic compounds, these nanowire devices displayed substantially different sensing characteristics. ClO(4)(-) doped PEDOT nanowires from an acetonitrile bath show superior sensing responses toward less electronegative analytes and followed a power law dependence on the analyte concentration at high partial pressures. These tunable sensing properties were attributed to variation in the conjugation lengths, dopant type and concentration of the wires which may be attributed to two distinct sensing mechanisms: swelling within the bulk of the nanowire and work function modulation of Schottky barrier junction between nanowire and electrodes.

  20. An evaluation of fiber-reinforced titanium matrix composites for advanced high-temperature aerospace applications

    NASA Astrophysics Data System (ADS)

    Larsen, James M.; Russ, Stephan M.; Jones, J. W.

    1995-12-01

    The current capabilities of continuous silicon-carbide fiber-reinforced titanium matrix composites (TMCs) are reviewed with respect to application needs and compared to the capabilities of conventional high-temperature monolithic alloys and aluminides. In particular, the properties of a firstgeneration titanium aluminide composite, SCS-6/Ti-24Al-11Nb, and a second-generation metastable beta alloy composite, SCS-6/TIMETAL 21S, are compared with the nickel-base superalloy IN100, the high-temperature titanium alloy Ti-1100, and a relatively new titanium aluminide alloy. Emphasis is given to life-limiting cyclic and monotonie properties and to the influence of time-dependent deformation and environmental effects on these properties. The composite materials offer a wide range of performance capabilities, depending on laminate architecture. In many instances, unidirectional composites exhibit outstanding properties, although the same materials loaded transverse to the fiber direction typically exhibit very poor properties, primarily due to the weak fiber/matrix interface. Depending on the specific mechanical property under consideration, composite cross-ply laminates often show no improvement over the capability of conventional monolithic materials. Thus, it is essential that these composite materials be tailored to achieve a balance of properties suitable to the specific application needs if these materials are to be attractive candidates to replace more conventional materials.

  1. The wave attenuation mechanism of the periodic local resonant metamaterial

    NASA Astrophysics Data System (ADS)

    Chang, I.-Ling; Liang, Zhen-Xian; Kao, Hao-Wei; Chang, Shih-Hsiang; Yang, Chih-Ying

    2018-01-01

    This research discusses the wave propagation behavior and attenuation mechanism of the elastic metamaterial with locally resonant sub-structure. The dispersion relation of the single resonance system, i.e., periodic spring mass system with sub-structure, could be derived based on lattice dynamics and the band gap could be easily identified. The dynamically equivalent properties, i.e., mass and elastic property, of the single resonance system are derived and found to be frequency dependent. Negative effective properties are found in the vicinity of the local resonance. It is examined whether the band gap always coincides with the frequency range of negative effective properties. The wave attenuation mechanism and the characteristic dynamic behavior of the elastic metamaterial are also studied from the energy point of view. From the analysis, it is clarified that the coupled Bragg-resonance band gap is much wider than the narrow-banded local resonance and the corresponding effective material properties at band gap could be either positive or negative. However, the band gap is totally overlapping with the frequency range of negative effective properties for the metamaterial with band gap purely caused by local resonance. The presented analysis can be extended to other forms of elastic metamaterials involving periodic resonator structures.

  2. Depth-resolved cellular microrheology using HiLo microscopy

    PubMed Central

    Michaelson, Jarett; Choi, Heejin; So, Peter; Huang, Hayden

    2012-01-01

    It is increasingly important to measure cell mechanical properties in three-dimensional environments. Particle tracking microrheology (PTM) can measure cellular viscoelastic properties; however, out-of-plane data can introduce artifacts into these measurements. We developed a technique that employs HiLo microscopy to reduce out-of-plane contributions. This method eliminated signals from 90% of probes 0.5 μm or further from the focal plane, while retaining all in-plane probes. We used this technique to characterize live-cell bilayers and found that there were significant, frequency-dependent changes to the extracted cell moduli when compared to conventional analysis. Our results indicate that removal of out-of-plane information is vital for accurate assessments of cell mechanical properties. PMID:22741071

  3. Passive lipoidal diffusion and carrier-mediated cell uptake are both important mechanisms of membrane permeation in drug disposition.

    PubMed

    Smith, Dennis; Artursson, Per; Avdeef, Alex; Di, Li; Ecker, Gerhard F; Faller, Bernard; Houston, J Brian; Kansy, Manfred; Kerns, Edward H; Krämer, Stefanie D; Lennernäs, Hans; van de Waterbeemd, Han; Sugano, Kiyohiko; Testa, Bernard

    2014-06-02

    Recently, it has been proposed that drug permeation is essentially carrier-mediated only and that passive lipoidal diffusion is negligible. This opposes the prevailing hypothesis of drug permeation through biological membranes, which integrates the contribution of multiple permeation mechanisms, including both carrier-mediated and passive lipoidal diffusion, depending on the compound's properties, membrane properties, and solution properties. The prevailing hypothesis of drug permeation continues to be successful for application and prediction in drug development. Proponents of the carrier-mediated only concept argue against passive lipoidal diffusion. However, the arguments are not supported by broad pharmaceutics literature. The carrier-mediated only concept lacks substantial supporting evidence and successful applications in drug development.

  4. CREB at the Crossroads of Activity-Dependent Regulation of Nervous System Development and Function.

    PubMed

    Belgacem, Yesser H; Borodinsky, Laura N

    2017-01-01

    The central nervous system is a highly plastic network of cells that constantly adjusts its functions to environmental stimuli throughout life. Transcription-dependent mechanisms modify neuronal properties to respond to external stimuli regulating numerous developmental functions, such as cell survival and differentiation, and physiological functions such as learning, memory, and circadian rhythmicity. The discovery and cloning of the cyclic adenosine monophosphate (cAMP) responsive element binding protein (CREB) constituted a big step toward deciphering the molecular mechanisms underlying neuronal plasticity. CREB was first discovered in learning and memory studies as a crucial mediator of activity-dependent changes in target gene expression that in turn impose long-lasting modifications of the structure and function of neurons. In this chapter, we review the molecular and signaling mechanisms of neural activity-dependent recruitment of CREB and its cofactors. We discuss the crosstalk between signaling pathways that imprints diverse spatiotemporal patterns of CREB activation allowing for the integration of a wide variety of stimuli.

  5. Energy localization and frequency analysis in the locust ear.

    PubMed

    Malkin, Robert; McDonagh, Thomas R; Mhatre, Natasha; Scott, Thomas S; Robert, Daniel

    2014-01-06

    Animal ears are exquisitely adapted to capture sound energy and perform signal analysis. Studying the ear of the locust, we show how frequency signal analysis can be performed solely by using the structural features of the tympanum. Incident sound waves generate mechanical vibrational waves that travel across the tympanum. These waves shoal in a tsunami-like fashion, resulting in energy localization that focuses vibrations onto the mechanosensory neurons in a frequency-dependent manner. Using finite element analysis, we demonstrate that two mechanical properties of the locust tympanum, distributed thickness and tension, are necessary and sufficient to generate frequency-dependent energy localization.

  6. The effect of size and composition on structural transitions in monometallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Rossi, Kevin; Pavan, Luca; Soon, YeeYeen; Baletto, Francesca

    2018-02-01

    Predicting the morphological stability of nanoparticles is an essential step towards the accurate modelling of their chemophysical properties. Here we investigate solid-solid transitions in monometallic clusters of 0.5-2.0 nm diameter at finite temperatures and we report the complex dependence of the rearrangement mechanism on the nanoparticle's composition and size. The concerted Lipscomb's Diamond-Square-Diamond mechanisms which connects the decahedral or the cuboctahedral to the icosahedral basins, take place only below a material dependent critical size above which surface diffusion prevails and leads to low-symmetry and defected shapes still belonging to the initial basin.

  7. Nanoribbons: From fundamentals to state-of-the-art applications

    NASA Astrophysics Data System (ADS)

    Yagmurcukardes, M.; Peeters, F. M.; Senger, R. T.; Sahin, H.

    2016-12-01

    Atomically thin nanoribbons (NRs) have been at the forefront of materials science and nanoelectronics in recent years. State-of-the-art research on nanoscale materials has revealed that electronic, magnetic, phononic, and optical properties may differ dramatically when their one-dimensional forms are synthesized. The present article aims to review the recent advances in synthesis techniques and theoretical studies on NRs. The structure of the review is organized as follows: After a brief introduction to low dimensional materials, we review different experimental techniques for the synthesis of graphene nanoribbons (GNRs) with their advantages and disadvantages. In addition, theoretical investigations on width and edge-shape-dependent electronic and magnetic properties, functionalization effects, and quantum transport properties of GNRs are reviewed. We then devote time to the NRs of the transition metal dichalcogenides (TMDs) family. First, various synthesis techniques, E-field-tunable electronic and magnetic properties, and edge-dependent thermoelectric performance of NRs of MoS2 and WS2 are discussed. Then, strongly anisotropic properties, growth-dependent morphology, and the weakly width-dependent bandgap of ReS2 NRs are summarized. Next we discuss TMDs having a T-phase morphology such as TiSe2 and stable single layer NRs of mono-chalcogenides. Strong edge-type dependence on characteristics of GaS NRs, width-dependent Seebeck coefficient of SnSe NRs, and experimental analysis on the stability of ZnSe NRs are reviewed. We then focus on the most recently emerging NRs belonging to the class of transition metal trichalcogenides which provide ultra-high electron mobility and highly anisotropic quasi-1D properties. In addition, width-, edge-shape-, and functionalization-dependent electronic and mechanical properties of blackphosphorus, a monoatomic anisotropic material, and studies on NRs of group IV elements (silicene, germanene, and stanene) are reviewed. Observation of substrate-independent quantum well states, edge and width dependent properties, the topological phase of silicene NRs are reviewed. In addition, H2 concentration-dependent transport properties and anisotropic dielectric function of GeNRs and electric field and strain sensitive I-V characteristics of SnNRs are reviewed. We review both experimental and theoretical studies on the NRs of group III-V compounds. While defect and N-termination dependent conductance are highlighted for boron nitride NRs, aluminum nitride NRs are of importance due to their dangling bond, electric field, and strain dependent electronic and magnetic properties. Finally, superlattice structure of NRs of GaN/AlN, Si/Ge, G/BN, and MoS2/WS2 is reviewed.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, J.M.

    The physical properties: mechanical, electrical, and thermal of a general purpose epoxy potting compound, filled with either glass microspheres, aluminum oxide or beta-eucryptite and catalyzed with either an aliphatic amine, a liquid aromatic amine eutectic blend, or a liquid anhydride are discussed. The properties of a CTBN modified epoxy are also included. Twelve formulation-cure cycle combinations were chosen for evaluation. The temperature dependent properties from -65/sup 0/ to 400/sup 0/F (-54/sup 0/ to 204/sup 0/C) for the 12 combinations are given.

  9. Oceanic lithosphere and asthenosphere: The thermal and mechanical structure

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Froidevaux, C.; Yuen, D. A.

    1976-01-01

    A coupled thermal and mechanical solid state model of the oceanic lithosphere and asthenosphere is presented. The model includes vertical conduction of heat with a temperature dependent thermal conductivity, horizontal and vertical advection of heat, viscous dissipation or shear heating, and linear or nonlinear deformation mechanisms with temperature and pressure dependent constitutive relations between shear stress and strain rate. A constant horizontal velocity u sub 0 and temperature t sub 0 at the surface and zero horizontal velocity and constant temperature t sub infinity at great depth are required. In addition to numerical values of the thermal and mechanical properties of the medium, only the values of u sub 0, t sub 0 and t sub infinity are specified. The model determines the depth and age dependent temperature horizontal and vertical velocity, and viscosity structures of the lithosphere and asthenosphere. In particular, ocean floor topography, oceanic heat flow, and lithosphere thickness are deduced as functions of the age of the ocean floor.

  10. Behavior of Aging, Micro-Void, and Self-Healing of Glass/Ceramic Materials and Its Effect on Mechanical Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    This chapter first describes tests to investigate the temporal evolution of the volume fraction of ceramic phases, the evolution of micro-damage, and the self-healing behavior of the glass ceramic sealant used in SOFCs, then a phenomenological model based on mechanical analogs is developed to describe the temperature dependent Young’s modulus of glass ceramic seal materials. It was found that after the initial sintering process, further crystallization of the glass ceramic sealant does not stop, but slows down and reduces the residual glass content while boosting the ceramic crystalline content. Under the long-term operating environment, distinct fibrous and needle-like crystals inmore » the amorphous phase disappeared, and smeared/diffused phase boundaries between the glass phase and ceramic phase were observed. Meanwhile, the micro-damage was induced by the cooling-down process from the operating temperature to the room temperature, which can potentially degrade the mechanical properties of the glass/ceramic sealant. The glass/ceramic sealant self-healed upon reheating to the SOFC operating temperature, which can restore the mechanical performance of the glass/ceramic sealant. The phenomenological model developed here includes the effects of continuing aging and devitrification on the ceramic phase volume fraction and the resulted mechanical properties of glass ceramic seal material are considered. The effects of micro-voids and self-healing are also considered using a continuum damage mechanics (CDM) model. The formulation is for glass/ceramic seal in general, and it can be further developed to account for effects of various processing parameters. This model was applied to G18, and the temperature-dependent experimental measurements were used to calibrate the modeling parameters and to validate the model prediction.« less

  11. Indentation size effect of cortical bones submitted to different soft tissue removals.

    PubMed

    Bandini, A; Chicot, D; Berry, P; Decoopman, X; Pertuz, A; Ojeda, D

    2013-04-01

    Properties of elasticity, hardness and viscosity are determined for the study of the visco-elastoplastic behavior of bones. The mechanical properties are compared in two upright sections of the bone due to their anisotropy. Besides, influence of hydration treatments leading to structural modifications of collagen and ground substance contents of bones on the mechanical properties is studied on a femoral cortical bovine bone. The treatments applied to the bone are used by forensic anthropologists to remove the soft tissue and modifying the hydration degree coupled to the collagen content. From instrumented indentation experiments, the hardness is characterized by the macrohardness and a hardness length-scale factor stating the hardness-load dependence. The elastic modulus results from the application of the methodology of Oliver and Pharr (1992). The coefficient of viscosity is deduced from a rheological model representing the indenter time-displacement observed under the application of a constant load. As a result, all the mechanical properties are found to be lower in the transverse section in an extent depending on the hydration treatment, i.e. the different values are located between 5% and 25% for the hardness around 0.5GPa, between 25% and 40% for the elastic modulus around 20GPa and between 2% and 35% for the coefficient of viscosity around 60GPa.s. Unexpectedly, the elastic modulus to coefficient of viscosity ratio is found to be independent on the hydration treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Evaluation of glass transition temperature and dynamic mechanical properties of autopolymerized hard direct denture reline resins.

    PubMed

    Takase, Kazuma; Watanabe, Ikuya; Kurogi, Tadafumi; Murata, Hiroshi

    2015-01-01

    This study assessed methods for evaluation of glass transition temperature (Tg) of autopolymerized hard direct denture reline resins using dynamic mechanical analysis and differential scanning calorimetry in addition to the dynamic mechanical properties. The Tg values of 3 different reline resins were determined using a dynamic viscoelastometer and differential scanning calorimeter, and rheological parameters were also determined. Although all materials exhibited higher storage modulus and loss modulus values, and a lower loss tangent at 37˚C with a higher frequency, the frequency dependence was not large. Tg values obtained by dynamic mechanical analysis were higher than those by differential scanning calorimetry and higher frequency led to higher Tg, while more stable Tg values were also obtained by that method. These results suggest that dynamic mechanical analysis is more advantageous for characterization of autopolymerized hard direct denture reline resins than differential scanning calorimetry.

  13. Aspects of the mechanisms of smoke generation by burning materials

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Zinn, B. T.; Browner, R. F.; Powell, E. A.

    1981-01-01

    An investigation of smoke generation during the burning of natural and synthetic solid materials (relevant to fire safety problems), under simulated fire conditions, is presented. Smoke formation mechanisms, including flaming and nonflaming combustion, are reviewed, and the complex physical, chemical, and electrical processes, important in smoke particulate production, are identified. With reference to the smoke formation mechanisms, measured experimental data are discussed, and include effects of ventilation gas temperature, dependence on material composition, and chemical analysis of smoke particulates. Significant differences in smoke characteristics are observed between flaming and nonflaming conditions, which is attributed to specific differences in controlling mechanisms and resultant ways leading to particulate formation. The effects of polymer substrate properties and effects of additives for a given substrate on smoke properties are also discussed in terms of basic processes. It is shown that many of the measured trends can be interpreted by considering postulated mechanisms of particulate formation.

  14. Mechanical properties of ceramic structures based on Triply Periodic Minimal Surface (TPMS) processed by 3D printing

    NASA Astrophysics Data System (ADS)

    Restrepo, S.; Ocampo, S.; Ramírez, J. A.; Paucar, C.; García, C.

    2017-12-01

    Repairing tissues and organs has been the main goal of surgical procedures. Since the 1990s, the main goal of tissue engineering has been reparation, using porous scaffolds that serve as a three-dimensional template for the initial fixation of cells and subsequent tissue formation both in vitro and in vivo. A scaffold must have specific characteristics of porosity, interconnectivity, surface area, pore volume, surface tortuosity, permeability and mechanical properties, which makes its design, manufacturing and characterization a complex process. Inspired by nature, triply periodic minimal surfaces (TPMS) have emerged as an alternative for the manufacture of porous pieces with design requirements, such as scaffolds for tissue repair. In the present work, we used the technique of 3D printing to obtain ceramic structures with Gyroid, Schwarz Primitive and Schwarz Diamond Surfaces shapes, three TPMS that fulfil the geometric requirements of a bone tissue scaffold. The main objective of this work is to compare the mechanical properties of ceramic pieces of three different forms of TPMS printed in 3D using a commercial ceramic paste. In this way it will be possible to clarify which is the TPMS with appropriate characteristics to construct scaffolds of ceramic materials for bone repair. A dependence of the mechanical properties with the geometry was found being the Primitive Surface which shows the highest mechanical properties.

  15. Spatial transferring of ecosystem services and property rights allocation of ecological compensation

    NASA Astrophysics Data System (ADS)

    Wen, Wujun; Xu, Geng; Wang, Xingjie

    2011-09-01

    Ecological compensation is an important means to maintain the sustainability and stability of ecosystem services. The property rights analysis of ecosystem services is indispensable when we implement ecological compensation. In this paper, ecosystem services are evaluated via spatial transferring and property rights analysis. Take the Millennium Ecosystem Assessment (MA) as an example, we attempt to classify the spatial structure of 31 categories of ecosystem services into four dimensions, i.e., local, regional, national and global ones, and divide the property rights structure into three types, i.e., private property rights, common property rights and state-owned property rights. Through the case study of forestry, farming industry, drainage area, development of mineral resources, nature reserves, functional areas, agricultural land expropriation, and international cooperation on ecological compensation, the feasible ecological compensation mechanism is illustrated under the spatial structure and property rights structure of the concerned ecosystem services. For private property rights, the ecological compensation mode mainly depends on the market mechanism. If the initial common property rights are "hidden," the implementation of ecological compensation mainly relies on the quota market transactions and the state investment under the state-owned property rights, and the fairness of property rights is thereby guaranteed through central administration.

  16. Time-Dependent Mechanical Response of APbX 3 (A = Cs, CH 3NH 3; X = I, Br) Single Crystals [The Dynamic Mechanical Properties of Lead-Halide Perovskite Single Crystals are Independent of A-site Cation Chemistry

    DOE PAGES

    Reyes-Martinez, Marcos A.; Abdelhady, Ahmed L.; Saidaminov, Makhsud I.; ...

    2017-05-02

    The ease of processing hybrid organic–inorganic perovskite (HOIPs) films, belonging to a material class with composition ABX 3, from solution and at mild temperatures promises their use in deformable technologies, including flexible photovoltaic devices, sensors, and displays. To successfully apply these materials in deformable devices, knowledge of their mechanical response to dynamic strain is necessary. The authors elucidate the time- and rate-dependent mechanical properties of HOIPs and an inorganic perovskite (IP) single crystal by measuring nanoindentation creep and stress relaxation. The observation of pop-in events and slip bands on the surface of the indented crystals demonstrate dislocation-mediated plastic deformation. Themore » magnitudes of creep and relaxation of both HOIPs and IPs are similar, negating prior hypothesis that the presence of organic A-site cations alters the mechanical response of these materials. Moreover, these samples exhibit a pronounced increase in creep, and stress relaxation as a function of indentation rate whose magnitudes reflect differences in the rates of nucleation and propagation of dislocations within the crystal structures of HOIPs and IP. In conclusion, this contribution provides understanding that is critical for designing perovskite devices capable of withstanding mechanical deformations.« less

  17. Transport Properties of La- doped SrTiO3 Ceramics Prepared Using Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Mehdizadeh Dehkordi, Arash; Bhattacharya, Sriparna; Tritt, Terry M.; Alshareef, Husam N.

    2012-02-01

    In this work, thermoelectric transport properties of La-doped SrTiO3 ceramics prepared using conventional solid state reaction and spark plasma sintering have been investigated. Room temperature power factor of single crystal strontium titanate (SrTiO3), comparable to that of Bi2Te3, has brought new attention to this perovskite-type transition metal-oxide as a potential n-type thermoelectric for high temperature applications. Electronic properties of this model complex oxide, SrTiO3 (ABO3), can be tuned in a wide range through different doping mechanisms. In addition to A site (La-doped) or B site (Nb-doped) substitutional doping, introducing oxygen vacancies plays an important role in electrical and thermal properties of these structures. Having multiple doping mechanisms makes the transport properties of these perovskites more dependent on preparation parameters. The effect of these synthesis parameters and consolidation conditions on the transport properties of these materials has been studied.

  18. Deformation of phospholipid vesicles in an optical stretcher.

    PubMed

    Delabre, Ulysse; Feld, Kasper; Crespo, Eleonore; Whyte, Graeme; Sykes, Cecile; Seifert, Udo; Guck, Jochen

    2015-08-14

    Phospholipid vesicles are common model systems for cell membranes. Important aspects of the membrane function relate to its mechanical properties. Here we have investigated the deformation behaviour of phospholipid vesicles in a dual-beam laser trap, also called an optical stretcher. This study explicitly makes use of the inherent heating present in such traps to investigate the dependence of vesicle deformation on temperature. By using lasers with different wavelengths, optically induced mechanical stresses and temperature increase can be tuned fairly independently with a single setup. The phase transition temperature of vesicles can be clearly identified by an increase in deformation. In the case of no heating effects, a minimal model for drop deformation in an optical stretcher and a more specific model for vesicle deformation that takes explicitly into account the angular dependence of the optical stress are presented to account for the experimental results. Elastic constants are extracted from the fitting procedures, which agree with literature data. This study demonstrates the utility of optical stretching, which is easily combined with microfluidic delivery, for the future serial, high-throughput study of the mechanical and thermodynamic properties of phospholipid vesicles.

  19. Ultra-thin ZnSe: Anisotropic and flexible crystal structure

    NASA Astrophysics Data System (ADS)

    Bacaksiz, C.; Senger, R. T.; Sahin, H.

    2017-07-01

    By performing density functional theory-based calculations, we investigate the structural, electronic, and mechanical properties of the thinnest ever ZnSe crystal [11]. The vibrational spectrum analysis reveals that the monolayer ZnSe is dynamically stable and has flexible nature with its soft phonon modes. In addition, a direct electronic band gap is found at the gamma point for the monolayer structure of ZnSe. We also elucidate that the monolayer ZnSe has angle dependent in-plane elastic parameters. In particular, the in-plane stiffness values are found to be 2.07 and 6.89 N/m for the arm-chair and zig-zag directions, respectively. The angle dependency is also valid for the Poisson ratio of the monolayer ZnSe. More significantly, the in-plane stiffness of the monolayer ZnSe is the one-tenth of Young modulus of bulk zb-ZnSe which indicates that the monolayer ZnSe is a quite flexible single layer crystal. With its flexible nature and in-plane anisotropic mechanical properties, the monolayer ZnSe is a good candidate for nanoscale mechanical applications.

  20. NMR signature of evolution of ductile-to-brittle transition in bulk metallic glasses.

    PubMed

    Yuan, C C; Xiang, J F; Xi, X K; Wang, W H

    2011-12-02

    The mechanical properties of monolithic metallic glasses depend on the structures at atomic or subnanometer scales, while a clear correlation between mechanical behavior and structures has not been well established in such amorphous materials. In this work, we find a clear correlation of (27)Al NMR isotropic shifts with a microalloying induced ductile-to-brittle transition at ambient temperature in bulk metallic glasses, which indicates that the (27)Al NMR isotropic shift can be regarded as a structural signature to characterize plasticity for this metallic glass system. The study provides a compelling approach for investigating and understanding the mechanical properties of metallic glasses from the point of view of electronic structure. © 2011 American Physical Society

  1. Kinetic and functional analysis of transient, persistent and resurgent sodium currents in rat cerebellar granule cells in situ: an electrophysiological and modelling study

    PubMed Central

    Magistretti, Jacopo; Castelli, Loretta; Forti, Lia; D'Angelo, Egidio

    2006-01-01

    Cerebellar neurones show complex and differentiated mechanisms of action potential generation that have been proposed to depend on peculiar properties of their voltage-dependent Na+ currents. In this study we analysed voltage-dependent Na+ currents of rat cerebellar granule cells (GCs) by performing whole-cell, patch-clamp experiments in acute rat cerebellar slices. A transient Na+ current (INaT) was always present and had the properties of a typical fast-activating/inactivating Na+ current. In addition to INaT, robust persistent (INaP) and resurgent (INaR) Na+ currents were observed. INaP peaked at ∼−40 mV, showed half-maximal activation at ∼−55 mV, and its maximal amplitude was about 1.5% of that of INaT. INaR was elicited by repolarizing pulses applied following step depolarizations able to activate/inactivate INaT, and showed voltage- and time-dependent activation and voltage-dependent decay kinetics. The conductance underlying INaR showed a bell-shaped voltage dependence, with peak at −35 mV. A significant correlation was found between GC INaR and INaT peak amplitudes; however, GCs expressing INaT of similar size showed marked variability in terms of INaR amplitude, and in a fraction of cells INaR was undetectable. INaT, INaP and INaR could be accounted for by a 13-state kinetic scheme comprising closed, open, inactivated and blocked states. Current-clamp experiments carried out to identify possible functional correlates of INaP and/or INaR revealed that in GCs single action potentials were followed by depolarizing afterpotentials (DAPs). In a majority of cells, DAPs showed properties consistent with INaR playing a role in their generation. Computer modelling showed that INaR promotes DAP generation and enhances high-frequency firing, whereas INaP boosts near-threshold firing activity. Our findings suggest that special properties of voltage-dependent Na+ currents provides GCs with mechanisms suitable for shaping activity patterns, with potentially important consequences for cerebellar information transfer and computation. PMID:16527854

  2. Probing Polymer-Segment Motions By ESR

    NASA Technical Reports Server (NTRS)

    Tsay, Fun-Dow; Gupta, Amitava

    1988-01-01

    Molecular origins of mechanical properties and aging processes studied. Rotational motions of segments of poly(methyl methacrylate) molecules studied theoretically and experimentally. Activation energies of these motions as determined from temperature dependencies of ESR spectra agree closely with predictions of theory.

  3. Biomimetic growth and substrate dependent mechanical properties of bone like apatite nucleated on Ti and magnetron sputtered TiO2 nanostructure

    NASA Astrophysics Data System (ADS)

    Sarma, Bimal K.; Das, Apurba; Barman, Pintu; Pal, Arup R.

    2016-04-01

    This report presents findings on biomimetic growth of hydroxyapatite (HAp) nanocrystals on Ti and sputtered TiO2 substrates. The possibility of TiO2 nanostructure as candidate materials for future biomedical applications has been explored through the comparison of microstructural and mechanical properties of bone like apatite grown on Ti and nano-TiO2 surfaces. Raman spectroscopy and x-ray diffraction studies reveal formation of carbonate apatite with apparent domain size in the nanoscale range. A better interaction at the nano-TiO2/nano-HAp interface due to higher interfacial area could promote the growth of bone like apatite. The crystal phases, crystallinity, and surface morphology of nano-TiO2 are considered as parameters to understand the nucleation and growth of apatite with different mechanical properties at the nanoscale. The methodology of x-ray line profile analysis encompasses deconvolution of merged peaks by preserving broadening due to nanosized HAp aggregates. The Young’s modulus of bone like apatite exhibits crystallographic directional dependence which suggests the presence of elastic anisotropy in bone like apatite. The lattice contraction in the c-direction is associated with the degree of carbonate substitution in the apatite lattice. The role of residual stress is critical for the lattice distortion of HAp deposited at physiological conditions of temperature and pH of human blood plasma. The ion concentration is crucial for the uniformity, crystallinity, and mechanical behaviour of the apatite.

  4. Identification of cation-binding sites on actin that drive polymerization and modulate bending stiffness

    PubMed Central

    Kang, Hyeran; Bradley, Michael J.; McCullough, Brannon R.; Pierre, Anaëlle; Grintsevich, Elena E.; Reisler, Emil; De La Cruz, Enrique M.

    2012-01-01

    The assembly of actin monomers into filaments and networks plays vital roles throughout eukaryotic biology, including intracellular transport, cell motility, cell division, determining cellular shape, and providing cells with mechanical strength. The regulation of actin assembly and modulation of filament mechanical properties are critical for proper actin function. It is well established that physiological salt concentrations promote actin assembly and alter the overall bending mechanics of assembled filaments and networks. However, the molecular origins of these salt-dependent effects, particularly if they involve nonspecific ionic strength effects or specific ion-binding interactions, are unknown. Here, we demonstrate that specific cation binding at two discrete sites situated between adjacent subunits along the long-pitch helix drive actin polymerization and determine the filament bending rigidity. We classify the two sites as “polymerization” and “stiffness” sites based on the effects that mutations at the sites have on salt-dependent filament assembly and bending mechanics, respectively. These results establish the existence and location of the cation-binding sites that confer salt dependence to the assembly and mechanics of actin filaments. PMID:23027950

  5. Dimensionality of nanoscale TiO 2 determines the mechanism of photoinduced electron injection from a CdSe nanoparticle

    DOE PAGES

    Tafen, De Nyago; Long, Run; Prezhdo, Oleg V.

    2014-03-10

    Assumptions about electron transfer (ET) mechanisms guide design of catalytic, photovoltaic, and electronic systems. We demonstrate that the mechanism of ET from a CdSe quantum dot (QD) into nanoscale TiO 2 depends on TiO 2 dimensionality. The injection into a TiO 2 QD is adiabatic due to strong donor–acceptor coupling, arising from unsaturated chemical bonds on the QD surface, and low density of acceptor states. In contrast, the injection into a TiO 2 nanobelt (NB) is nonadiabatic, because the state density is high, the donor–acceptor coupling is weak, and multiple phonons accommodate changes in the electronic energy. The CdSe adsorbantmore » breaks symmetry of delocalized TiO 2 NB states, relaxing coupling selection rules, and generating more ET channels. Both mechanisms can give efficient ultrafast injection. Furthermore, the dependence on system properties is very different for the two mechanisms, demonstrating that the fundamental principles leading to efficient charge separation depend strongly on the type of nanoscale material.« less

  6. Dimensionality of nanoscale TiO 2 determines the mechanism of photoinduced electron injection from a CdSe nanoparticle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tafen, De Nyago; Long, Run; Prezhdo, Oleg V.

    Assumptions about electron transfer (ET) mechanisms guide design of catalytic, photovoltaic, and electronic systems. We demonstrate that the mechanism of ET from a CdSe quantum dot (QD) into nanoscale TiO 2 depends on TiO 2 dimensionality. The injection into a TiO 2 QD is adiabatic due to strong donor–acceptor coupling, arising from unsaturated chemical bonds on the QD surface, and low density of acceptor states. In contrast, the injection into a TiO 2 nanobelt (NB) is nonadiabatic, because the state density is high, the donor–acceptor coupling is weak, and multiple phonons accommodate changes in the electronic energy. The CdSe adsorbantmore » breaks symmetry of delocalized TiO 2 NB states, relaxing coupling selection rules, and generating more ET channels. Both mechanisms can give efficient ultrafast injection. Furthermore, the dependence on system properties is very different for the two mechanisms, demonstrating that the fundamental principles leading to efficient charge separation depend strongly on the type of nanoscale material.« less

  7. Setting Mechanical Properties of High Strength Steels for Rapid Hot Forming Processes

    PubMed Central

    Löbbe, Christian; Hering, Oliver; Hiegemann, Lars; Tekkaya, A. Erman

    2016-01-01

    Hot stamping of sheet metal is an established method for the manufacturing of light weight products with tailored properties. However, the generally-applied continuous roller furnace manifests two crucial disadvantages: the overall process time is long and a local setting of mechanical properties is only feasible through special cooling techniques. Hot forming with rapid heating directly before shaping is a new approach, which not only reduces the thermal intervention in the zones of critical formability and requested properties, but also allows the processing of an advantageous microstructure characterized by less grain growth, additional fractions (e.g., retained austenite), and undissolved carbides. Since the austenitization and homogenization process is strongly dependent on the microstructure constitution, the general applicability for the process relevant parameters is unknown. Thus, different austenitization parameters are analyzed for the conventional high strength steels 22MnB5, Docol 1400M, and DP1000 in respect of the mechanical properties. In order to characterize the resulting microstructure, the light optical and scanning electron microscopy, micro and macro hardness measurements, and the X-ray diffraction are conducted subsequent to tensile tests. The investigation proves not only the feasibility to adjust the strength and ductility flexibly, unique microstructures are also observed and the governing mechanisms are clarified. PMID:28773354

  8. Preventing collapsing of vascular scaffolds: The mechanical behavior of PLA/PCL composite structure prostheses during in vitro degradation.

    PubMed

    Li, Chaojing; Wang, Fujun; Chen, Peifeng; Zhang, Ze; Guidoin, Robert; Wang, Lu

    2017-11-01

    The success of blood conduit replacement with synthetic graft is highly dependent on the architecture, and mechanical properties of the graft, especially for biodegradable grafts serving as scaffolds for in-situ tissue engineering. Particularly, the property of the radial compression recovery represents a critical to keep the patency during biointegration. Bi-component composite vascular grafts (cVG) made of polylactic acid (PLA) fabric and polycaprolactone (PCL) were developed with superior mechanical properties. In this research, the compressive and tensile properties of the prototypes were characterized when they were subjected to accelerated degradation. In addition, the prepared cVG were analyzed by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and wide angle X-ray diffraction (WAXD) to illustrate the gradual loss of mechanical properties. The results demonstrated that the cVG retained the circular cross-section even through its tensile strength decreased during degradation. The cVG samples containing a high percentage of PLA fibers lost their tensile strength faster, while the samples with lower PLA percentage lost the compressive resistance strength more quickly. This unique fabric-based composite biodegradable vascular prosthesis with an outstanding radical compression recovery could be a good candidate for in-situ formation of tissue engineered vascular graft. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Studying Some of Electrical and Mechanical Properties for Kevlar Fiber Reinforced Epoxy

    NASA Astrophysics Data System (ADS)

    Rafeeq, Sewench N.; Hussein, Samah M.

    2011-12-01

    As ordinary known the ability of synthesizing electrical conducting polymer composites is possible but with poor mechanical properties, for the solution of this problem, we carried out this study in order to obtain that both properties. Three methods were applied for preparing the conductive polyaniline (PANI) composites using Kevlar fiber fabric as substrate for the deposition of the PANI at one time and the prepared composite (EP/Kevlar fiber) at others. The chemical oxidative method was adopted for polymerization of the aniline and simultaneously protonated of PANI with a hydrochloric acid at concentration (1M). Two kinds of oxidation agents (FeCl3.6H2O) and ((NH4)2S2O8) were used. The electrical measurements indicate the effect of each preparation method, kind of oxidant agent and the kind of mat erial which PANI deposited on the electrical results. The conductivity results showed that the prepared composites lie within semiconductors region. Temperature—dependence of electric conductivity results showed semiconductors and conductors behavior of this material within the applied temperature ranges. The mechan ical property (tensile strength) was studied. X-ray diffraction study showed the crystalline structure for EP/Kevlar fiber/PANI composites prepared by the three methods. These results gave optimism to the synthesis of conductive polymer composites with excellent mechanical properties..

  10. The influences of N-acetyl cysteine (NAC) on the cytotoxicity and mechanical properties of Poly-methylmethacrylate (PMMA)-based dental resin

    PubMed Central

    Jiao, Yang; Ma, Sai; Li, Jing; Shan, Lequn; Yang, Yanwei; Li, Meng

    2015-01-01

    Objectives. This study aimed to investigate the influences of N-acetyl cysteine (NAC) on cytotoxicity and mechanical properties of Poly-methylmethacrylate (PMMA) dental resins. Methods. Experimental PMMA resin was prepared by incorporating various concentrations of NAC (0, 0.15, 0.3, 0.6 and 0.9 wt.%). MTT assay was performed to investigate viability of human dental pulp cells after exposure to extract of PMMA resin with or without NAC. Cell adhesion on resin specimens was examined with scanning electron microscopy. Degree of conversion was studied with Fourier Transform Infrared Spectroscopy (FTIR). Flexural strength, microhardness and surface roughness was evaluated using a universal testing machine, microhardness tester and optical profilometer, respectively. Results. Incorporation of NAC into PMMA resin significantly reduced its cytotoxicity and enhanced cell adhesion on its surface. NAC induced negative influences on the mechanical and physical properties of PMMA resin in a dose-dependent manner. The degree of conversion for all experimental PMMA resins reached as high as 72% after 24 h of polymerization. All the tested properties were maintained when the concentration of incorporated NAC was 0.15 wt.%. Conclusion. The addition of 0.15 wt.% NAC remarkably improved biocompatibility of PMMA resin without exerting significant negative influence on its mechanical and physical properties. PMID:25922788

  11. Effects of Different Surfactants on Structural, Tribological and Electrical Properties of Pulsed Electro-Codeposited Cu-ZrO2 Composite Coatings

    NASA Astrophysics Data System (ADS)

    Maharana, H. S.; Basu, A.

    2018-03-01

    Cu-ZrO2 composite coating was synthesized by pulse electrodeposition from an acidic sulfate electrolyte dispersed with nano-sized ZrO2 particles. Effects of different surfactants in different amounts on the codeposition and distribution of ZrO2 particles in the copper matrix, surface-mechanical (hardness and wear) and electrical (conductivity) properties of developed composite coatings have been thoroughly investigated. Sodium dodecyl sulfate (SDS), poly acrylic acid (PAA) and glucose have been added in the electrolyte in different concentrations as anionic, polymeric and nonionic surfactants. Obtained experimental results confirmed that addition of SDS up to 1 g/L improves the amount of codeposited ZrO2 particles in the copper matrix and surface-mechanical properties of the nanocomposite coatings. But, in case of PAA- and glucose-assisted coatings, highest amount of ZrO2 codeposition was observed in 0.5 g/L PAA and 20 g/L glucose-assisted coatings, which in turn affected the mechanical properties. Surface-mechanical properties were found to be affected by coating matrix morphology and crystallographic orientation along with embedded ZrO2 particle content. Electrical conductivity of all the deposits not only depends upon the codeposition of ZrO2 particles in the matrix but also on the microstructure and crystallographic orientation.

  12. Nanomechanics of cellulose crystals and cellulose-based polymer composites

    NASA Astrophysics Data System (ADS)

    Pakzad, Anahita

    Cellulose-polymer composites have potential applications in aerospace and transportation areas where lightweight materials with high mechanical properties are needed. In addition, these economical and biodegradable composites have been shown to be useful as polymer electrolytes, packaging structures, optoelectronic devices, and medical implants such as wound dressing and bone scaffolds. In spite of the above mentioned advantages and potential applications, due to the difficulties associated with synthesis and processing techniques, application of cellulose crystals (micro and nano sized) for preparation of new composite systems is limited. Cellulose is hydrophilic and polar as opposed to most of common thermoplastics, which are non-polar. This results in complications in addition of cellulose crystals to polymer matrices, and as a result in achieving sufficient dispersion levels, which directly affects the mechanical properties of the composites. As in other composite materials, the properties of cellulose-polymer composites depend on the volume fraction and the properties of individual phases (the reinforcement and the polymer matrix), the dispersion quality of the reinforcement through the matrix and the interaction between CNCs themselves and CNC and the matrix (interphase). In order to develop economical cellulose-polymer composites with superior qualities, the properties of individual cellulose crystals, as well as the effect of dispersion of reinforcements and the interphase on the properties of the final composites should be understood. In this research, the mechanical properties of CNC polymer composites were characterized at the macro and nano scales. A direct correlation was made between: - Dispersion quality and macro-mechanical properties - Nanomechanical properties at the surface and tensile properties - CNC diameter and interphase thickness. Lastly, individual CNCs from different sources were characterized and for the first time size-scale effect on their nanomechanical properties were reported. Then the effect of CNC surface modification on the mechanical properties was studied and correlated to the crystalline structure of these materials.

  13. Altered mechanical properties of titin immunoglobulin domain 27 in the presence of calcium.

    PubMed

    DuVall, Michael M; Gifford, Jessica L; Amrein, Matthias; Herzog, Walter

    2013-04-01

    Titin (connectin) based passive force regulation has been an important physiological mechanism to adjust to varying muscle stretch conditions. Upon stretch, titin behaves as a spring capable of modulating its elastic response in accordance with changes in muscle biochemistry. One such mechanism has been the calcium-dependent stiffening of titin domains that renders the spring inherently more resistant to stretch. This transient titin-calcium interaction may serve a protective function in muscle, which could preclude costly unfolding of select domains when muscles elongate to great lengths. To test this idea, fluorescence spectroscopy was performed revealing a change in the microenvironment of the investigated immunoglobulin domain 27 (I27) of titin with calcium. Additionally, an atomic force microscope was used to evaluate the calcium-dependent regulation of passive force by stretching eight linked titin I27 domains until they unfolded. When stretching in the presence of calcium, the I27 homopolymer chain became stabilized, displaying three novel properties: (1) higher stretching forces were needed to unfold the domains, (2) the stiffness, measured as a persistence length (PL), increased and (3) the peak-to-peak distance between adjacent I27 domains increased. Furthermore, a peak order dependence became apparent for both force and PL, reflecting the importance of characterizing the dynamic unfolding history of a polymer with this approach. Together, this novel titin Ig-calcium interaction may serve to stabilize the I27 domain permitting titin to tune passive force within stretched muscle in a calcium-dependent manner.

  14. Polymer-Particle Nanocomposites: Size and Dispersion Effects

    NASA Astrophysics Data System (ADS)

    Moll, Joseph

    Polymer-particle nanocomposites are used in industrial processes to enhance a broad range of material properties (e.g. mechanical, optical, electrical and gas permeability properties). This dissertation will focus on explanation and quantification of mechanical property improvements upon the addition of nanoparticles to polymeric materials. Nanoparticles, as enhancers of mechanical properties, are ubiquitous in synthetic and natural materials (e.g. automobile tires, packaging, bone), however, to date, there is no thorough understanding of the mechanism of their action. In this dissertation, silica (SiO2) nanoparticles, both bare and grafted with polystyrene (PS), are studied in polymeric matrices. Several variables of interest are considered, including particle dispersion state, particle size, length and density of grafted polymer chains, and volume fraction of SiO2. Polymer grafted nanoparticles behave akin to block copolymers, and this is critically leveraged to systematically vary nanoparticle dispersion and examine its role on the mechanical reinforcement in polymer based nanocomposites in the melt state. Rheology unequivocally shows that reinforcement is maximized by the formation of a transient, but long-lived, percolating polymer-particle network with the particles serving as the network junctions. The effects of dispersion and weight fraction of filler on nanocomposite mechanical properties are also studied in a bare particle system. Due to the interest in directional properties for many different materials, different means of inducing directional ordering of particle structures are also studied. Using a combination of electron microscopy and x-ray scattering, it is shown that shearing anisotropic NP assemblies (sheets or strings) causes them to orient, one in front of the other, into macroscopic two-dimensional structures along the flow direction. In contrast, no such flow-induced ordering occurs for well dispersed NPs or spherical NP aggregates! This work also addresses the interfacial, rigid polymer layer, or 'bound layer' which has long been of interest in polymer nanocomposites and polymer thin films. The divergent properties of the 'bound layer' as compared to the bulk material can have very important effects on properties, including mechanical properties. This is especially true in polymer nanocomposites, where at high weight fractions, 'bound layer' polymer can easily make up 20% or more of total material! Here we quantify this layer of bound polymer as a function of particle size, polymer molecular weight and other variables, primarily using thermogravimetric analysis but also dynamic light scattering and differential scanning calorimetry. We find that as nanoparticles become smaller, the 'bound layer' systematically decreases in thickness. This result is quite relevant to explanations of many polymer nanocomposite properties that depend on size, including mechanical and barrier properties. Many additional important and new results are reported herein. These include the importance of dispersion state in the resulting mechanical properties of polymer-particle nanocomposites, where a systematic study showed an optimal dispersion state of a connected particle network. An additional and unexpected finding in this system was the critical dependence of composite properties on grafted chain length of particles. As the grafted chain length is increased, the strain which leads to yielding in a steady shear experiment is increased in a linear relationship. At very high rates, this yielding process completely switches mechanisms, from yielding of the particle network to yielding of the entangled polymer network! A surprising correlation between the amount of bound polymer in solution and in the bulk was also found and is interpreted herein. Self-assembly was further explored in a range of different systems and it was found that grafted particles and there mimics have vast potential in the creation of a wide array of particle superstructures. In concert, these experiments provide a comprehensive picture of mechanical reinforcement in polymer-particle nanocomposites. Not only is the dispersion state of the particles crucial, but the presence of grafted chains is also so for proper reinforcement. Here many routes to ideal dispersion are detailed and the important role of grafted chains is also resolved.

  15. Structural determinants of hydration, mechanics and fluid flow in freeze-dried collagen scaffolds.

    PubMed

    Offeddu, G S; Ashworth, J C; Cameron, R E; Oyen, M L

    2016-09-01

    Freeze-dried scaffolds provide regeneration templates for a wide range of tissues, due to their flexibility in physical and biological properties. Control of structure is crucial for tuning such properties, and therefore scaffold functionality. However, the common approach of modeling these scaffolds as open-cell foams does not fully account for their structural complexity. Here, the validity of the open-cell model is examined across a range of physical characteristics, rigorously linking morphology to hydration and mechanical properties. Collagen scaffolds with systematic changes in relative density were characterized using Scanning Electron Microscopy, X-ray Micro-Computed Tomography and spherical indentation analyzed in a time-dependent poroelastic framework. Morphologically, all scaffolds were mid-way between the open- and closed-cell models, approaching the closed-cell model as relative density increased. Although pore size remained constant, transport pathway diameter decreased. Larger collagen fractions also produced greater volume swelling on hydration, although the change in pore diameter was constant, and relatively small at ∼6%. Mechanically, the dry and hydrated scaffold moduli varied quadratically with relative density, as expected of open-cell materials. However, the increasing pore wall closure was found to determine the time-dependent nature of the hydrated scaffold response, with a decrease in permeability producing increasingly elastic rather than viscoelastic behavior. These results demonstrate that characterizing the deviation from the open-cell model is vital to gain a full understanding of scaffold biophysical properties, and provide a template for structural studies of other freeze-dried biomaterials. Freeze-dried collagen sponges are three-dimensional microporous scaffolds that have been used for a number of exploratory tissue engineering applications. The characterization of the structure-properties relationships of these scaffolds is necessary to understand their biophysical behavior in vivo. In this work, the relationship between morphology and physical properties in the dry and hydrated states was investigated across a range of solid concentrations in the scaffolds. The quantitative results provided can aid the design of scaffolds with a target trade-off between mechanical properties and structural features important for their biological activity. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Experimental constraints on the rheology and mechanical properties of lava erupted in the Holuhraun area during the 2014 rifting event at Bárðarbunga, Iceland

    NASA Astrophysics Data System (ADS)

    Lavallee, Yan; Kendrick, Jackie; Wall, Richard; von Aulock, Felix; Kennedy, Ben; Sigmundsson, Freysteinn

    2015-04-01

    A fissure eruption began at Holuhraun on 16 August 2014, following magma drainage from the Bárðarbunga volcanic system (Iceland). Extrusion initiated as fire fountaining along a segment of the fracture and rapidly localised to a series of small, aligned cones containing a lava lake that over spilled at both ends, feeding a large lava field. The lava composition and flow behaviour put some constraints on its rheology and mechanical properties. The lava erupted is a nearly aphyric basalt containing approximately 2-3% plagioclase with traces of olivine and pyroxene in a quenched groundmass composed of glass and 20-25% microlites. The transition from fire fountaining to lava flow leads to lava with variable vesicularities; pyroclasts expelled during fire fountaining reach up to 80% vesicles whilst the lava contain up to 45% vesicles. Textures in the lava vary from a'a to slabby pahoehoe, and flow thicknesses from several meters to few centimetres. Tension gashes, crease structures and shear zones in the upper lava carapace reveal the importance of both compressive and tensional stresses. In addition, occasional frictional marks at the base of the lava flow as well as bulldozing of sediments along the flow hint at the importance of frictional properties of the rocks during lava flow. Flow properties, textures and failure modes are strongly dependent on the material properties as well as the local conditions of stress and temperature. Here we expand our field observation with preliminary high-temperature experimental data on the rheological and mechanical properties of the erupted lava. Dilatometric measurements are used to constrain the thermal expansion coefficient of the lava important to constrain the dynamics of cooling of the flow. Micropenetration is further employed to determine the viscosity of the melt at super-liquidus temperature, which is compared to the temperature-dependence of viscosity as constrained by geochemistry. Lastly, uniaxial compression and tension tests are presented to constrain the mechanical properties (strength and Young's modulus) of the rocks, forming the cooler carapace of the flow. This high-temperature experimental dataset will be integrated to field observations to constrain lava flow emplacement.

  17. Mechanical responses of a-axis GaN nanowires under axial loads

    NASA Astrophysics Data System (ADS)

    Wang, R. J.; Wang, C. Y.; Feng, Y. T.; Tang, Chun

    2018-03-01

    Gallium nitride (GaN) nanowires (NWs) hold technological significance as functional components in emergent nano-piezotronics. However, the examination of their mechanical responses, especially the mechanistic understanding of behavior beyond elasticity (at failure) remains limited due to the constraints of in situ experimentation. We therefore performed simulations of the molecular dynamics (MD) of the mechanical behavior of [1\\bar{2}10]-oriented GaN NWs subjected to tension or compression loading until failure. The mechanical properties and critical deformation processes are characterized in relation to NW sizes and loading conditions. Detailed examinations revealed that the failure mechanisms are size-dependent and controlled by the dislocation mobility on shuffle-set pyramidal planes. The size dependence of the elastic behavior is also examined in terms of the surface structure determined modification of Young’s modulus. In addition, a comparison with c-axis NWs is made to show how size-effect trends vary with the growth orientation of NWs.

  18. The effect of temperature on pinning mechanisms in HTS composites

    NASA Astrophysics Data System (ADS)

    Sotnikova, A. P.; Rudnev, I. A.

    2016-09-01

    Pinning mechanism in samples of second generation tapes (2G) of high-temperature superconductors (HTS) was studied The critical current and the pinning force were calculated from the magnetization curves measured in the temperature range of 4.2 - 77 K in magnetic fields up to 14 Tesla using vibration sample magnetometer. To determine the pinning mechanism the dependences of pinning force on magnetic field were constructed according to the Dew-Hughes model and Kramer's rule. The obtained dependences revealed a significant influence of the temperature on effectiveness of different types of pinning. At low temperatures the 2G HTS tapes of different manufacturers demonstrated an equal efficiency of the pinning centers but with temperature increase the differences in pinning mechanisms as well as in properties and effectiveness of the pinning centers become obvious. The influence of the pinning mechanism on the energy losses in HTS tapes was shown.

  19. Cell Membrane Transport Mechanisms: Ion Channels and Electrical Properties of Cell Membranes.

    PubMed

    Kulbacka, Julita; Choromańska, Anna; Rossowska, Joanna; Weżgowiec, Joanna; Saczko, Jolanta; Rols, Marie-Pierre

    2017-01-01

    Cellular life strongly depends on the membrane ability to precisely control exchange of solutes between the internal and external (environmental) compartments. This barrier regulates which types of solutes can enter and leave the cell. Transmembrane transport involves complex mechanisms responsible for passive and active carriage of ions and small- and medium-size molecules. Transport mechanisms existing in the biological membranes highly determine proper cellular functions and contribute to drug transport. The present chapter deals with features and electrical properties of the cell membrane and addresses the questions how the cell membrane accomplishes transport functions and how transmembrane transport can be affected. Since dysfunctions of plasma membrane transporters very often are the cause of human diseases, we also report how specific transport mechanisms can be modulated or inhibited in order to enhance the therapeutic effect.

  20. The Effects of Fiber Orientation and Volume Fraction of Fiber on Mechanical Properties of Additively Manufactured Composite Material

    NASA Astrophysics Data System (ADS)

    Kuchipudi, Suresh Chandra

    Additive manufacturing (AM) also known as 3D printing has tremendous advancements in recent days with a vast number of applications in industrial, automotive, architecture, consumer projects, fashion, toys, food, art, etc. Composite materials are widely used in structures with weight as a critical factor especially in aerospace industry. Recently, additive manufacturing technology, a rapidly growing innovative technology, has gained lot of importance in making composite materials. The properties of composite materials depend upon the properties of constituent's matrix and fiber. There is lot of research on effect of fiber orientation on mechanical properties of composite materials made using conventional manufacturing methods. It will be interesting and relevant to study the relationship between the fiber orientation and fiber volume with mechanical properties of additively manufactured composite materials. This thesis work presents experimental investigation of mechanical behavior like tensile strength and fatigue life with variation in fiber orientation and fiber volume fraction of 3D printed composite materials. The aim is to study the best combination of volume fraction of fiber and fiber orientation that has better fatigue strength for additive manufactured composite materials. Using this study, we can decide the type of orientation and volume percent for desired properties. This study also finds the range of fatigue limits of 3d printed composite materials.

  1. Mechanical Properties of Respiratory Muscles

    PubMed Central

    Sieck, Gary C.; Ferreira, Leonardo F.; Reid, Michael B.; Mantilla, Carlos B.

    2014-01-01

    Striated respiratory muscles are necessary for lung ventilation and to maintain the patency of the upper airway. The basic structural and functional properties of respiratory muscles are similar to those of other striated muscles (both skeletal and cardiac). The sarcomere is the fundamental organizational unit of striated muscles and sarcomeric proteins underlie the passive and active mechanical properties of muscle fibers. In this respect, the functional categorization of different fiber types provides a conceptual framework to understand the physiological properties of respiratory muscles. Within the sarcomere, the interaction between the thick and thin filaments at the level of cross-bridges provides the elementary unit of force generation and contraction. Key to an understanding of the unique functional differences across muscle fiber types are differences in cross-bridge recruitment and cycling that relate to the expression of different myosin heavy chain isoforms in the thick filament. The active mechanical properties of muscle fibers are characterized by the relationship between myoplasmic Ca2+ and cross-bridge recruitment, force generation and sarcomere length (also cross-bridge recruitment), external load and shortening velocity (cross-bridge cycling rate), and cross-bridge cycling rate and ATP consumption. Passive mechanical properties are also important reflecting viscoelastic elements within sarcomeres as well as the extracellular matrix. Conditions that affect respiratory muscle performance may have a range of underlying pathophysiological causes, but their manifestations will depend on their impact on these basic elemental structures. PMID:24265238

  2. Mechanical Properties of the TiAl IRIS Alloy

    NASA Astrophysics Data System (ADS)

    Voisin, Thomas; Monchoux, Jean-Philippe; Thomas, Marc; Deshayes, Christophe; Couret, Alain

    2016-12-01

    This paper presents a study of the mechanical properties at room and high temperature of the boron and tungsten containing IRIS alloy (Ti-48Al-2W-0.08B at. pct). This alloy was densified by Spark Plasma Sintering (SPS). The resultant microstructure consists of small lamellar colonies surrounded by γ regions containing B2 precipitates. Tensile tests are performed from room temperature to 1273 K (1000 °C). Creep properties are determined at 973 K (700 °C)/300 MPa, 1023 K (750 °C)/120 MPa, and 1023 K (750 °C)/200 MPa. The tensile strength and the creep resistance at high temperature are found to be very high compared to the data reported in the current literature while a plastic elongation of 1.6 pct is preserved at room temperature. A grain size dependence of both ductility and strength is highlighted at room temperature. The deformation mechanisms are studied by post-mortem analyses on deformed samples and by in situ straining experiments, both performed in a transmission electron microscope. In particular, a low mobility of non-screw segments of dislocations at room temperature and the activation of a mixed-climb mechanism during creep have been identified. The mechanical properties of this IRIS alloy processed by SPS are compared to those of other TiAl alloys developed for high-temperature structural applications as well as to those of similar tungsten containing alloys obtained by more conventional processing techniques. Finally, the relationships between mechanical properties and microstructural features together with the elementary deformation mechanisms are discussed.

  3. Tailoring bulk mechanical properties of 3D printed objects of polylactic acid varying internal micro-architecture

    NASA Astrophysics Data System (ADS)

    Malinauskas, Mangirdas; Skliutas, Edvinas; Jonušauskas, Linas; Mizeras, Deividas; Šešok, Andžela; Piskarskas, Algis

    2015-05-01

    Herein we present 3D Printing (3DP) fabrication of structures having internal microarchitecture and characterization of their mechanical properties. Depending on the material, geometry and fill factor, the manufactured objects mechanical performance can be tailored from "hard" to "soft." In this work we employ low-cost fused filament fabrication 3D printer enabling point-by-point structuring of poly(lactic acid) (PLA) with~̴400 µm feature spatial resolution. The chosen architectures are defined as woodpiles (BCC, FCC and 60 deg rotating). The period is chosen to be of 1200 µm corresponding to 800 µm pores. The produced objects structural quality is characterized using scanning electron microscope, their mechanical properties such as flexural modulus, elastic modulus and stiffness are evaluated by measured experimentally using universal TIRAtest2300 machine. Within the limitation of the carried out study we show that the mechanical properties of 3D printed objects can be tuned at least 3 times by only changing the woodpile geometry arrangement, yet keeping the same filling factor and periodicity of the logs. Additionally, we demonstrate custom 3D printed µ-fluidic elements which can serve as cheap, biocompatible and environmentally biodegradable platforms for integrated Lab-On-Chip (LOC) devices.

  4. Effect of sintering conditions on the microstructural and mechanical characteristics of porous magnesium materials prepared by powder metallurgy.

    PubMed

    Čapek, Jaroslav; Vojtěch, Dalibor

    2014-02-01

    There has recently been an increased demand for porous magnesium materials in many applications, especially in the medical field. Powder metallurgy appears to be a promising approach for the preparation of such materials. Many works have dealt with the preparation of porous magnesium; however, the effect of sintering conditions on material properties has rarely been investigated. In this work, we investigated porous magnesium samples that were prepared by powder metallurgy using ammonium bicarbonate spacer particles. The effects of the purity of the argon atmosphere and sintering time on the microstructure (SEM, EDX and XRD) and mechanical behaviour (universal loading machine and Vickers hardness tester) of porous magnesium were studied. The porosities of the prepared samples ranged from 24 to 29 vol.% depending on the sintering conditions. The purity of atmosphere played a significant role when the sintering time exceeded 6h. Under a gettered argon atmosphere, a prolonged sintering time enhanced diffusion connections between magnesium particles and improved the mechanical properties of the samples, whereas under a technical argon atmosphere, oxidation at the particle surfaces caused deterioration in the mechanical properties of the samples. These results suggest that a refined atmosphere is required to improve the mechanical properties of porous magnesium. © 2013.

  5. Choosing the function of mechanical properties of grounds and rock formations due to their heterogeneity

    NASA Astrophysics Data System (ADS)

    Frolova, Irina; Agakhanov, Murad

    2018-03-01

    The development of computing techniques to analyze underground structures, buildings in high-rise construction that would fully take account of the conditions of their design and operation, as well as the real material properties, is one of the important trends in structural mechanics. For the territory in high-rise construction it is necessary to monitor the deformations of the soil surface. When high-rise construction is recommended to take into account the rheological properties and temperature deformations of the soil, the effect of temperature on the mechanical characteristics of the surrounding massif. Similar tasks also arise in the creation and operation of underground parts of high-rise construction, which are used for various purposes. These parts of the structures are surrounded by rock massifs of various materials. The actual mechanical characteristics of such materials must be taken into account. The objective property of nearly all materials is their non-homogeneity, both natural and technological. The work addresses the matters of building nonhomogeneous media initial models based on the experimental evidence. This made it possible to approximate real dependencies and obtain the appropriate functions in a simple and convenient way.

  6. Review of Relationship Between Particle Deformation, Coating Microstructure, and Properties in High-Pressure Cold Spray

    NASA Astrophysics Data System (ADS)

    Rokni, M. R.; Nutt, S. R.; Widener, C. A.; Champagne, V. K.; Hrabe, R. H.

    2017-08-01

    In the cold spray (CS) process, deposits are produced by depositing powder particles at high velocity onto a substrate. Powders deposited by CS do not undergo melting before or upon impacting the substrate. This feature makes CS suitable for deposition of a wide variety of materials, most commonly metallic alloys, but also ceramics and composites. During processing, the particles undergo severe plastic deformation and create a more mechanical and less metallurgical bond with the underlying material. The deformation behavior of an individual particle depends on multiple material and process parameters that are classified into three major groups—powder characteristics, geometric parameters, and processing parameters, each with their own subcategories. Changing any of these parameters leads to evolution of a different microstructure and consequently changes the mechanical properties in the deposit. While cold spray technology has matured during the last decade, the process is inherently complex, and thus, the effects of deposition parameters on particle deformation, deposit microstructure, and mechanical properties remain unclear. The purpose of this paper is to review the parameters that have been investigated up to now with an emphasis on the existent relationships between particle deformation behavior, microstructure, and mechanical properties of various cold spray deposits.

  7. Multi-Scale Simulations of Carbon Nanotubes: Mechanics and Electronics

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak

    2003-01-01

    Carbon Nanotube (CNT) is a tubular form of carbon with diameter as small as 1 nm. Length: few mn to microns. CNT is configurationally equivalent to a two dimensional graphene sheet rolled into a tube. CNT exhibits extraordinary mechanical properties; Young's modulus over 1 Tera Pascal, as stiff as diamond, and tensile strength approx. 200 GPa. CNT can be metallic or semiconducting, depending on chirality.

  8. Competing Photocurrent Mechanisms in Quasi-Metallic Carbon Nanotube pn Devices.

    PubMed

    Amer, Moh R; Chang, Shun-Wen; Cronin, Stephen B

    2015-07-01

    Photodetectors based on quasi-metallic carbon nanotubes exhibit unique optoelectronic properties. Due to their small bandgap, photocurrent generation is possible at room temperature. The origin of this photocurrent is investigated to determine the underlying mechanism, which can be photothermoelectric effect or photovoltaic effect, depending on the bandgap magnitude of the quasi-metallic nanotube. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Laser Speckle Rheology for evaluating the viscoelastic properties of hydrogel scaffolds

    PubMed Central

    Hajjarian, Zeinab; Nia, Hadi Tavakoli; Ahn, Shawn; Grodzinsky, Alan J.; Jain, Rakesh K.; Nadkarni, Seemantini K.

    2016-01-01

    Natural and synthetic hydrogel scaffolds exhibit distinct viscoelastic properties at various length scales and deformation rates. Laser Speckle Rheology (LSR) offers a novel, non-contact optical approach for evaluating the frequency-dependent viscoelastic properties of hydrogels. In LSR, a coherent laser beam illuminates the specimen and a high-speed camera acquires the time-varying speckle images. Cross-correlation analysis of frames returns the speckle intensity autocorrelation function, g2(t), from which the frequency-dependent viscoelastic modulus, G*(ω), is deduced. Here, we establish the capability of LSR for evaluating the viscoelastic properties of hydrogels over a large range of moduli, using conventional mechanical rheometry and atomic force microscopy (AFM)-based indentation as reference-standards. Results demonstrate a strong correlation between |G*(ω)| values measured by LSR and mechanical rheometry (r = 0.95, p < 10−9), and z-test analysis reports that moduli values measured by the two methods are identical (p > 0.08) over a large range (47 Pa – 36 kPa). In addition, |G*(ω)| values measured by LSR correlate well with indentation moduli, E, reported by AFM (r = 0.92, p < 10−7). Further, spatially-resolved moduli measurements in micro-patterned substrates demonstrate that LSR combines the strengths of conventional rheology and micro-indentation in assessing hydrogel viscoelastic properties at multiple frequencies and small length-scales. PMID:27905494

  10. Laser Speckle Rheology for evaluating the viscoelastic properties of hydrogel scaffolds.

    PubMed

    Hajjarian, Zeinab; Nia, Hadi Tavakoli; Ahn, Shawn; Grodzinsky, Alan J; Jain, Rakesh K; Nadkarni, Seemantini K

    2016-12-01

    Natural and synthetic hydrogel scaffolds exhibit distinct viscoelastic properties at various length scales and deformation rates. Laser Speckle Rheology (LSR) offers a novel, non-contact optical approach for evaluating the frequency-dependent viscoelastic properties of hydrogels. In LSR, a coherent laser beam illuminates the specimen and a high-speed camera acquires the time-varying speckle images. Cross-correlation analysis of frames returns the speckle intensity autocorrelation function, g 2 (t), from which the frequency-dependent viscoelastic modulus, G*(ω), is deduced. Here, we establish the capability of LSR for evaluating the viscoelastic properties of hydrogels over a large range of moduli, using conventional mechanical rheometry and atomic force microscopy (AFM)-based indentation as reference-standards. Results demonstrate a strong correlation between |G*(ω)| values measured by LSR and mechanical rheometry (r = 0.95, p < 10 -9 ), and z-test analysis reports that moduli values measured by the two methods are identical (p > 0.08) over a large range (47 Pa - 36 kPa). In addition, |G*(ω)| values measured by LSR correlate well with indentation moduli, E, reported by AFM (r = 0.92, p < 10 -7 ). Further, spatially-resolved moduli measurements in micro-patterned substrates demonstrate that LSR combines the strengths of conventional rheology and micro-indentation in assessing hydrogel viscoelastic properties at multiple frequencies and small length-scales.

  11. A Robust Method to Generate Mechanically Anisotropic Vascular Smooth Muscle Cell Sheets for Vascular Tissue Engineering.

    PubMed

    Backman, Daniel E; LeSavage, Bauer L; Shah, Shivem B; Wong, Joyce Y

    2017-06-01

    In arterial tissue engineering, mimicking native structure and mechanical properties is essential because compliance mismatch can lead to graft failure and further disease. With bottom-up tissue engineering approaches, designing tissue components with proper microscale mechanical properties is crucial to achieve the necessary macroscale properties in the final implant. This study develops a thermoresponsive cell culture platform for growing aligned vascular smooth muscle cell (VSMC) sheets by photografting N-isopropylacrylamide (NIPAAm) onto micropatterned poly(dimethysiloxane) (PDMS). The grafting process is experimentally and computationally optimized to produce PNIPAAm-PDMS substrates optimal for VSMC attachment. To allow long-term VSMC sheet culture and increase the rate of VSMC sheet formation, PNIPAAm-PDMS surfaces were further modified with 3-aminopropyltriethoxysilane yielding a robust, thermoresponsive cell culture platform for culturing VSMC sheets. VSMC cell sheets cultured on patterned thermoresponsive substrates exhibit cellular and collagen alignment in the direction of the micropattern. Mechanical characterization of patterned, single-layer VSMC sheets reveals increased stiffness in the aligned direction compared to the perpendicular direction whereas nonpatterned cell sheets exhibit no directional dependence. Structural and mechanical anisotropy of aligned, single-layer VSMC sheets makes this platform an attractive microstructural building block for engineering a vascular graft to match the in vivo mechanical properties of native arterial tissue. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Broadband electromagnetic analysis of compacted kaolin

    NASA Astrophysics Data System (ADS)

    Bore, Thierry; Wagner, Norman; Cai, Caifang; Scheuermann, Alexander

    2017-01-01

    The mechanical compaction of soil influences not only the mechanical strength and compressibility but also the hydraulic behavior in terms of hydraulic conductivity and soil suction. At the same time, electric and dielectric parameters are increasingly used to characterize soil and to relate them with mechanic and hydraulic parameters. In the presented study electromagnetic soil properties and suction were measured under defined conditions of standardized compaction tests. The impact of external mechanical stress conditions of nearly pure kaolinite was analyzed on soil suction and broadband electromagnetic soil properties. An experimental procedure was developed and validated to simultaneously determine mechanical, hydraulic and broadband (1 MHz-3 GHz) electromagnetic properties of the porous material. The frequency dependent electromagnetic properties were modeled with a classical mixture equation (advanced Lichtenecker and Rother model, ALRM) and a hydraulic-mechanical-electromagnetic coupling approach was introduced considering water saturation, soil structure (bulk density, porosity), soil suction (pore size distribution, water sorption) as well as electrical conductivity of the aqueous pore solution. Moreover, the relaxation behavior was analyzed with a generalized fractional relaxation model concerning a high-frequency water process and two interface processes extended with an apparent direct current conductivity contribution. The different modeling approaches provide a satisfactory agreement with experimental data for the real part. These results show the potential of broadband electromagnetic approaches for quantitative estimation of the hydraulic state of the soil during densification.

  13. Evaluation of optical and electronic properties of silicon nano-agglomerates embedded in SRO: applying density functional theory

    PubMed Central

    2014-01-01

    In systems in atomic scale and nanoscale such as clusters or agglomerates constituted by particles from a few to less than 100 atoms, quantum confinement effects are very important. Their optical and electronic properties are often dependent on the size of the systems and the way in which the atoms in these clusters are bonded. Generally, these nanostructures display optical and electronic properties significantly different to those found in corresponding bulk materials. Silicon agglomerates embedded in silicon rich oxide (SRO) films have optical properties, which have been reported to be directly dependent on silicon nanocrystal size. Furthermore, the room temperature photoluminescence (PL) of SRO has repeatedly generated a huge interest due to its possible applications in optoelectronic devices. However, a plausible emission mechanism has not been widely accepted in the scientific community. In this work, we present a short review about the experimental results on silicon nanoclusters in SRO considering different techniques of growth. We focus mainly on their size, Raman spectra, and photoluminescence spectra. With this as background, we employed the density functional theory with a functional B3LYP and a basis set 6-31G* to calculate the optical and electronic properties of clusters of silicon (constituted by 15 to 20 silicon atoms). With the theoretical calculation of the structural and optical properties of silicon clusters, it is possible to evaluate the contribution of silicon agglomerates in the luminescent emission mechanism, experimentally found in thin SRO films. PMID:25276105

  14. DELAY OF GERMINATION 1 mediates a conserved coat-dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination

    PubMed Central

    Graeber, Kai; Linkies, Ada; Steinbrecher, Tina; Mummenhoff, Klaus; Tarkowská, Danuše; Turečková, Veronika; Ignatz, Michael; Sperber, Katja; Voegele, Antje; de Jong, Hans; Urbanová, Terezie; Strnad, Miroslav; Leubner-Metzger, Gerhard

    2014-01-01

    Seed germination is an important life-cycle transition because it determines subsequent plant survival and reproductive success. To detect optimal spatiotemporal conditions for germination, seeds act as sophisticated environmental sensors integrating information such as ambient temperature. Here we show that the DELAY OF GERMINATION 1 (DOG1) gene, known for providing dormancy adaptation to distinct environments, determines the optimal temperature for seed germination. By reciprocal gene-swapping experiments between Brassicaceae species we show that the DOG1-mediated dormancy mechanism is conserved. Biomechanical analyses show that this mechanism regulates the material properties of the endosperm, a seed tissue layer acting as germination barrier to control coat dormancy. We found that DOG1 inhibits the expression of gibberellin (GA)-regulated genes encoding cell-wall remodeling proteins in a temperature-dependent manner. Furthermore we demonstrate that DOG1 causes temperature-dependent alterations in the seed GA metabolism. These alterations in hormone metabolism are brought about by the temperature-dependent differential expression of genes encoding key enzymes of the GA biosynthetic pathway. These effects of DOG1 lead to a temperature-dependent control of endosperm weakening and determine the optimal temperature for germination. The conserved DOG1-mediated coat-dormancy mechanism provides a highly adaptable temperature-sensing mechanism to control the timing of germination. PMID:25114251

  15. Effect of flame retardants on the properties of monolithic and foamed polyurethanes at low temperatures

    NASA Astrophysics Data System (ADS)

    Yakushin, V. A.; Stirna, U. K.; Zhmud', N. P.

    1999-09-01

    The dependence of physical and mechanical properties of monolithic and foamed rigid polyurethanes on the content of flame retardants was investigated at 293 and 98 K. The character of the influence of the content of trichloroethyl phosphate on the ultimate tensile elongation and the coefficient of linear thermal expansion for monolithic and foamed polyurethanes at a temperature of 98 K was established.

  16. Yttrium aluminium garnet under pressure: Structural, elastic, and vibrational properties from ab initio studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monteseguro, V.; Rodríguez-Hernández, P.; Muñoz, A., E-mail: amunoz@ull.es

    The structural, elastic, and vibrational properties of yttrium aluminum garnet Y{sub 3}Al{sub 5}O{sub 12} are studied under high pressure by ab initio calculations in the framework of the density functional theory. The calculated ground state properties are in good agreement with the available experimental data. Pressure dependences of bond length and bulk moduli of the constituent polyhedra are reported. The evolution of the elastic constants and the major elastic properties, Young and shear modulus, Poisson's ratios, and Zener anisotropy ratio, are described. The mechanical stability is analyzed, on the light of “Born generalized stability criteria,” showing that the garnet ismore » mechanically unstable above 116 GPa. Symmetries, frequencies, and pressure coefficients of the Raman-active modes are discussed on the basis of the calculated total and partial phonon density of states, which reflect the dynamical contribution of each atom. The relations between the phonon modes of Y{sub 3}Al{sub 5}O{sub 12} and the internal and external molecular modes of the different polyhedra are discussed. Infrared-active modes, as well as the silent modes, and their pressure dependence are also investigated. No dynamical instabilities were found below 116 GPa.« less

  17. Stability and carrier transport properties of phosphorene-based polymorphic nanoribbons

    NASA Astrophysics Data System (ADS)

    Kaur, Sumandeep; Kumar, Ashok; Srivastava, Sunita; Pandey, Ravindra; Tankeshwar, K.

    2018-04-01

    Few-layer black phosphorene has recently attracted significant interest in the scientific community. In this paper, we consider several polymorphs of phosphorene nanoribbons (PNRs) and employ deformation potential theory within the effective mass approximation, together with density functional theory, to investigate their structural, mechanical and electronic properties. The results show that the stability of a PNR strongly depends on the direction along which it can be cut from its 2D counterpart. PNRs also exhibit a wide range of line stiffnesses ranging from 6 × 1010 eV m-1 to 18 × 1011 eV m-1, which has little dependence on the edge passivation. Likewise, the calculated electronic properties of PNRs show them to be either a narrow-gap semiconductor (E g < 1 eV) or a wide-gap semiconductor (E g > 1 eV). The carrier mobility of PNRs is found to be comparable to that of black phosphorene. Some of the PNRs show an n-type (p-type) semiconducting character owing to their higher electron (hole) mobility. Passivation of the edges leads to n-type ↔ p-type transition in many of the PNRs considered. The predicted novel characteristics of PNRs, with a wide range of mechanical and electronic properties, make them potentially suitable for use in nanoscale devices.

  18. Size-dependent chemical transformation, structural phase-change, and optical properties of nanowires

    PubMed Central

    Piccione, Brian; Agarwal, Rahul; Jung, Yeonwoong; Agarwal, Ritesh

    2013-01-01

    Nanowires offer a unique approach for the bottom up assembly of electronic and photonic devices with the potential of integrating photonics with existing technologies. The anisotropic geometry and mesoscopic length scales of nanowires also make them very interesting systems to study a variety of size-dependent phenomenon where finite size effects become important. We will discuss the intriguing size-dependent properties of nanowire systems with diameters in the 5 – 300 nm range, where finite size and interfacial phenomena become more important than quantum mechanical effects. The ability to synthesize and manipulate nanostructures by chemical methods allows tremendous versatility in creating new systems with well controlled geometries, dimensions and functionality, which can then be used for understanding novel processes in finite-sized systems and devices. PMID:23997656

  19. Quantitative phase imaging for enhanced assessment of optomechanical cancer cell properties

    NASA Astrophysics Data System (ADS)

    Kastl, Lena; Kemper, Björn; Schnekenburger, Jürgen

    2018-02-01

    Optical cell stretching provides label-free investigations of cells by measuring their biomechanical properties based on deformability determination in a fiber optical two-beam trap. However, the stretching forces in this two-beam laser trap depend on the optical properties of the investigated specimen. Therefore, we characterized in parallel four cancer cell lines with varying degree of differentiation utilizing quantitative phase imaging (QPI) and optical cell stretching. The QPI data allowed enhanced assessment of the mechanical cell properties measured with the optical cell stretcher and demonstrates the high potential of cell phenotyping when both techniques are combined.

  20. The effects of elevated temperatures on the structural properties of fiber composite materials suitable for use in space shuttle and other space vehicles

    NASA Technical Reports Server (NTRS)

    Wright, M. A.

    1972-01-01

    The effects of high temperatures on the structural properties of fiber composite materials for use in spacecraft structures are investigated. Various mechanical properties of boron reinforced aluminum alloys were measured. It was observed that cycling these materials through temperatures that varied from room temperature to 425 C could seriously degrade the properties. The extent of the observed effects depended on alloy type and the maximum cyclic temperature used. Results are discussed in terms of upper and lower strength bonds calculated from the strengths of individual fibers.

  1. Design of Stretchable Electronics Against Impact.

    PubMed

    Yuan, J H; Pharr, M; Feng, X; Rogers, John A; Huang, Yonggang

    2016-10-01

    Stretchable electronics offer soft, biocompatible mechanical properties; these same properties make them susceptible to device failure associated with physical impact. This paper studies designs for stretchable electronics that resist failure from impacts due to incorporation of a viscoelastic encapsulation layer. Results indicate that the impact resistance depends on the thickness and viscoelastic properties of the encapsulation layer, as well as the duration of impact. An analytic model for the critical thickness of the encapsulation layer is established. It is shown that a commercially available, low modulus silicone material offers viscous properties that make it a good candidate as the encapsulation layer for stretchable electronics.

  2. Thermodynamic and mechanical properties of TiC from ab initio calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dang, D. Y.; Fan, J. L.; Gong, H. R., E-mail: gonghr@csu.edu.cn

    2014-07-21

    The temperature-dependent thermodynamic and mechanical properties of TiC are systematically investigated by means of a combination of density-functional theory, quasi-harmonic approximation, and thermal electronic excitation. It is found that the quasi-harmonic Debye model should be pertinent to reflect thermodynamic properties of TiC, and the elastic properties of TiC decease almost linearly with the increase of temperature. Calculations also reveal that TiC possesses a pronounced directional pseudogap across the Fermi level, mainly due to the strong hybridization of Ti 3d and C 2p states. Moreover, the strong covalent bonding of TiC would be enhanced (reduced) with the decrease (increase) of temperature,more » while the change of volume (temperature) should have negligible effect on density of states at the Fermi level. The calculated results agree well with experimental observations in the literature.« less

  3. Conductivity and properties of polysiloxane-polyether cluster-LiTFSI networks as hybrid polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Boaretto, Nicola; Joost, Christine; Seyfried, Mona; Vezzù, Keti; Di Noto, Vito

    2016-09-01

    This report describes the synthesis and the properties of a series of polymer electrolytes, composed of a hybrid inorganic-organic matrix doped with LiTFSI. The matrix is based on ring-like oligo-siloxane clusters, bearing pendant, partially cross-linked, polyether chains. The dependency of the thermo-mechanic and of the transport properties on several structural parameters, such as polyether chains' length, cross-linkers' concentration, and salt concentration is studied. Altogether, the materials show good thermo-mechanical and electrochemical stabilities, with conductivities reaching, at best, 8·10-5 S cm-1 at 30 °C. In conclusion, the cell performances of one representative sample are shown. The scope of this report is to analyze the correlations between structure and properties in networked and hybrid polymer electrolytes. This could help the design of optimized polymer electrolytes for application in lithium metal batteries.

  4. Stretchable liquid-crystal blue-phase gels.

    PubMed

    Castles, F; Morris, S M; Hung, J M C; Qasim, M M; Wright, A D; Nosheen, S; Choi, S S; Outram, B I; Elston, S J; Burgess, C; Hill, L; Wilkinson, T D; Coles, H J

    2014-08-01

    Liquid-crystalline polymers are materials of considerable scientific interest and technological value. An important subset of these materials exhibit rubber-like elasticity, combining the optical properties of liquid crystals with the mechanical properties of rubber. Moreover, they exhibit behaviour not seen in either type of material independently, and many of their properties depend crucially on the particular mesophase employed. Such stretchable liquid-crystalline polymers have previously been demonstrated in the nematic, chiral-nematic, and smectic mesophases. Here, we report the fabrication of a stretchable gel of blue phase I, which forms a self-assembled, three-dimensional photonic crystal that remains electro-optically switchable under a moderate applied voltage, and whose optical properties can be manipulated by an applied strain. We also find that, unlike its undistorted counterpart, a mechanically deformed blue phase exhibits a Pockels electro-optic effect, which sets out new theoretical challenges and possibilities for low-voltage electro-optic devices.

  5. Effect of Alloying on the Strength Properties and the Hardening Mechanisms of Nitrogen-Bearing Austenitic Steels after Hot Deformation and Annealing

    NASA Astrophysics Data System (ADS)

    Bannykh, I. O.

    2017-11-01

    The main mechanisms of hardening nitrogen-bearing austenitic steels that operate under various thermomechanical treatment conditions at various steel compositions are considered. The strength properties of the steels are shown to depend on the content of interstitial elements, namely, carbon and nitrogen, and the influence of these elements on the stacking fault energy is estimated. The ratios of the main alloying elements that favor an increase or a decrease in the stacking fault energy are found to achieve the desirable level of strain hardening provided that an austenitic structure of steel is retained.

  6. Resistance of polyamide-6 against long time effects of various media at various temperatures

    NASA Technical Reports Server (NTRS)

    Debski, W.; Przylecka, M.

    1988-01-01

    During the first phase of tempering of polyamide-6, there are temporary changes which are apparently related to the lamella structure of the material. Test specimens at high temperature show that the mechanical properties of polyamide-6 are changed permanently, and mostly at 80 C. From the results of density tests and X-ray analysis, it follows that these changes depend on environmental influences and differ in gaseous and liquid media. The results of the test specimens of the mechanical properties as a function of temperature and the medium give information about the practical applications of polyamide-6.

  7. Results of the examination of LDEF polyurethane thermal control coatings

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    1994-01-01

    This report summarizes the condition of polyurethane thermal control coatings subjected to 69 months of low earth orbit (LEO) exposure on the Long Duration Exposure Facility (LDEF) mission. Specimens representing all environmental aspects obtainable by LDEF were analyzed. Widely varying changes in the thermo-optical and mechanical properties of these materials were observed, depending on atomic oxygen and ultraviolet radiation fluences. High atomic oxygen fluences, regardless of ultraviolet radiation exposure levels, resulted in near original optical properties for these coatings but with a degradation in their mechanical condition. A trend in solar absorptance increase with ultraviolet radiation fluence was observed. Contamination, though observed, exhibited minimal effects.

  8. On the dynamical basis of the classification of normal galaxies

    PubMed Central

    Haass, J.; Bertin, G.; Lin, C. C.

    1982-01-01

    Some realistic galaxy models have been found to support discrete unstable spiral modes. Here, through the study of the relevant physical mechanisms and an extensive numerical investigation of the properties of the dominant modes in a wide class of galactic equilibria, we show how spiral structures are excited with different morphological features, depending on the properties of the equilibrium model. We identify the basic dynamical parameters and mechanisms and compare the resulting morphology of spiral modes with the actual classification of galaxies. The present study suggests a dynamical basis for the transition among various types and subclasses of normal and barred spiral galaxies. Images PMID:16593200

  9. Combination of experimental and numerical methods for mechanical characterization of Al-Si alloys

    NASA Astrophysics Data System (ADS)

    Kruglova, A.; Roland, M.; Diebels, S.; Mücklich, F.

    2017-10-01

    In general, mechanical properties of Al-Si alloys strongly depend on the morphology and arrangement of microconstituents, such as primary aluminium dendrites, silicon particles, etc. Therefore, a detailed characterization of morphological and mechanical properties of the alloys is necessary to better understand the relations between the underlined properties and to tailor the material’s microstructure to the specific application needs. The mechanical characterization usually implies numerical simulations and mechanical tests, which allow to investigate the influence of different microstructural aspects on different scales. In this study, the uniaxial tension and compression tests have been carried out on Al-Si alloys having different microstructures. The mechanical behavior of the alloys has been interpreted with respect to the morphology of the microconstituents and has been correlated with the results of numerical simulations. The advantages and limitations of the experimental and numerical methods have been disclosed and the importance of combining both techniques for the interpretation of the mechanical behavior of Al-Si alloys has been shown. Thereby, it has been suggested that the density of Si particles and the size of Al dendrites are more important for the strengthening of the alloys than the size-shape features of the eutectic Si induced by the modification.

  10. Experimental Data and Guidelines for Stone Masonry Structures: a Comparative Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romano, Alessandra

    2008-07-08

    Indications about the mechanical properties of masonry structures contained in many Italian guidelines are based on different aspects both concerning the constituents material (units and mortar) and their assemblage. Indeed, the documents define different classes (depending on the type, the arrangement and the unit properties) and suggest the use of amplification coefficients for taking into account the influence of different factors on the mechanical properties of masonry. In this paper, a critical discussion about the indications proposed by some Italian guidelines for stone masonry structures is presented. Particular attention is addressed to the classification criteria of the masonry type andmore » to the choice of the amplification factors. Finally, a detailed analytical comparison among the suggested values and some inherent experimental data recently published is performed.« less

  11. Pre-clinical MR elastography: Principles, techniques, and applications

    NASA Astrophysics Data System (ADS)

    Bayly, P. V.; Garbow, J. R.

    2018-06-01

    Magnetic resonance elastography (MRE) is a method for measuring the mechanical properties of soft tissue in vivo, non-invasively, by imaging propagating shear waves in the tissue. The speed and attenuation of waves depends on the elastic and dissipative properties of the underlying material. Tissue mechanical properties are essential for biomechanical models and simulations, and may serve as markers of disease, injury, development, or recovery. MRE is already established as a clinical technique for detecting and characterizing liver disease. The potential of MRE for diagnosing or characterizing disease in other organs, including brain, breast, and heart is an active research area. Studies involving MRE in the pre-clinical setting, in phantoms and artificial biomaterials, in the mouse, and in other mammals, are critical to the development of MRE as a robust, reliable, and useful modality.

  12. Evolution of the plasma-sprayed microstructure in 7 wt% yttria-stabilized zirconia thermal barrier coatings during uniaxial stress relaxation and the concomitant changes in material properties

    NASA Astrophysics Data System (ADS)

    Petorak, Christopher

    The understanding of failure mechanisms in plasma sprayed 7 wt% yttria stabilized zirconia (YSZ) is a key step toward optimizing thermal barrier coating (TBC) usage, design, and life prediction. The purpose of the present work is to characterize and understand the stress relaxation behavior occurring in plasma-sprayed YSZ coatings, so that the correlating magnitude of unfavorable tensile stress, which coatings experienced upon cooling, may be reduced through microstructural design. The microstructure and properties of as-sprayed coatings changes immensely during service at high temperature, and therefore the effects of long heat-treatment times, and the concomitant change within the microstructure, on the time-dependent mechanical behavior of stand-alone YSZ coatings was studied in parallel with the as-sprayed coating condition. Aside from influencing the mechanical properties, stress relaxation also affects the insulating efficiency of plasma-sprayed 7wt% YSZ coatings. Directionally dependent changes in microstructure due to stress relaxation of a uniaxially applied stress at 1200°C were observed in plasma-sprayed coatings. Small angle neutron scattering (SANS) investigation of coatings after stress relaxation displayed a 46% reduction in the specific surface area connected to the load-orientation dependent closure of void surface area perpendicular to the applied load when compared to coatings sintered in air, i.e. no applied load. These anisotropic microstructural changes were linked to the thermal properties of the coating. For example, a coating stress relaxed from 60 MPa for 5-min at 1200°C exhibited a thermal conductivity of 2.1 W/m-K. A coating that was only heat-treated for 5-min at 1200°C (i.e. no stress applied) exhibited a thermal conductivity of 1.7 W/m·K. In the current study, uniaxial stress relaxation in plasma-sprayed 7wt% YSZ coatings was determined the result of: (1) A more uniform distribution of the applied load with time, (2) A reduction in the SSA associated with void systems due to sintering, specifically the closing and healing of intralamellar cracks perpendicular to the applied stress, and (3) A compaction and closure of void systems under the applied load. These anisotropic changes in microstructure result in distinguishable changes in thermo-mechanical properties, with very minute changes to the overall bulk density.

  13. Processing, Microstructure, and Mechanical Properties of Interpenetrating Biomorphic Graphite/Copper Composites

    NASA Astrophysics Data System (ADS)

    Childers, Amanda Esther Sall

    Composite properties can surpass those of the individual phases, allowing for the development of advanced, high-performance materials. Bio-inspired and naturally-derived materials have garnered attention as composite constituents due to their inherently efficient and complex structures. Wood-derived ceramics, produced by converting a wood precursor into a ceramic scaffold, can exhibit a wide range of microstructures depending on the wood species, including porosity, pore size and distribution, and connectivity. The focus of this work was to investigate the processing, microstructure, and properties of graphite/copper composites produced using wood-derived graphite scaffolds. Graphite/copper composites combine low specific gravity, high thermal conductivity, and tailorable thermal expansion properties, and due to the non-wetting behavior of copper to graphite, offer a unique system in which mechanically bonded interfaces in composites can be studied. Graphite scaffolds were produced from red oak, beech, and pine precursors using a catalytic pyrolyzation method, resulting in varying types of pore networks. Two infiltration methods were investigated to overcome challenges associated with non-wetting systems: copper electrodeposition and pressure-assisted melt infiltration. The phase distributions, constituent properties, interfacial characteristics, mechanical behavior, and load partitioning of these biomorphic graphite/copper composites were investigated, and were correlated to the wood species. The multi-domain feature sizes in the graphite scaffolds resulted in composites with copper relegated not only to the large, connected channels produced from the transport features in the wood, but also within the smaller, lower aspect ratio fibrous regions of the scaffold. Both features contributed to the mechanical behavior of the composites to varying degrees depending on the wood species. A multi-component predictive model also was developed and used to guide the additive-assisted electroplating of the graphitized scaffold, and helped illuminate the roles of plating additives in macro-sized channels. The model can be adapted for many material systems, sample geometries, and plating conditions to investigate the use of metal electrodeposition as a means of scaffold infiltration. Additionally, X-ray diffraction tomography was used to resolve position-dependent strain in a composite. The results of this nascent capability were discussed with respect to a two-component system under increasing uniaxial load, and compared to the results of conventional volume-averaged measurements.

  14. Why Density Dependent Propulsion?

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    2011-01-01

    In 2004 Khoury and Weltman produced a density dependent cosmology theory they call the Chameleon, as at its nature, it is hidden within known physics. The Chameleon theory has implications to dark matter/energy with universe acceleration properties, which implies a new force mechanism with ties to the far and local density environment. In this paper, the Chameleon Density Model is discussed in terms of propulsion toward new propellant-less engineering methods.

  15. Effect of suction-dependent soil deformability on landslide susceptibility maps

    NASA Astrophysics Data System (ADS)

    Lizarraga, Jose J.; Buscarnera, Giuseppe; Frattini, Paolo; Crosta, Giovanni B.

    2016-04-01

    This contribution presents a physically-based, spatially-distributed model for shallow landslides promoted by rainfall infiltration. The model features a set of Factor of Safety values aimed to capture different failure mechanisms, namely frictional slips with limited mobility and flowslide events associated with the liquefaction of the considered soils. Indices of failure associated with these two modes of instability have been derived from unsaturated soil stability principles. In particular, the propensity to wetting-induced collapse of unsaturated soils is quantified through the introduction of a rigid-plastic model with suction-dependent yielding and strength properties. The model is combined with an analytical approach (TRIGRS) to track the spatio-temporal evolution of soil suction in slopes subjected to transient infiltration. The model has been tested to reply the triggering of shallow landslides in pyroclastic deposits in Sarno (1998, Campania Region, Southern Italy). It is shown that suction-dependent mechanical properties, such as soil deformability, have important effects on the predicted landslide susceptibility scenarios, resulting on computed unstable zones that may encompass a wide range of slope inclinations, saturation levels, and depths. Such preliminary results suggest that the proposed methodology offers an alternative mechanistic interpretation to the variability in behavior of rainfall-induced landslides. Differently to standard methods the explanation to this variability is based on suction-dependent soil behavior characteristics.

  16. Simulation based estimation of dynamic mechanical properties for viscoelastic materials used for vocal fold models

    NASA Astrophysics Data System (ADS)

    Rupitsch, Stefan J.; Ilg, Jürgen; Sutor, Alexander; Lerch, Reinhard; Döllinger, Michael

    2011-08-01

    In order to obtain a deeper understanding of the human phonation process and the mechanisms generating sound, realistic setups are built up containing artificial vocal folds. Usually, these vocal folds consist of viscoelastic materials (e.g., polyurethane mixtures). Reliable simulation based studies on the setups require the mechanical properties of the utilized viscoelastic materials. The aim of this work is the identification of mechanical material parameters (Young's modulus, Poisson's ratio, and loss factor) for those materials. Therefore, we suggest a low-cost measurement setup, the so-called vibration transmission analyzer (VTA) enabling to analyze the transfer behavior of viscoelastic materials for propagating mechanical waves. With the aid of a mathematical Inverse Method, the material parameters are adjusted in a convenient way so that the simulation results coincide with the measurement results for the transfer behavior. Contrary to other works, we determine frequency dependent functions for the mechanical properties characterizing the viscoelastic material in the frequency range of human speech (100-250 Hz). The results for three different materials clearly show that the Poisson's ratio is close to 0.5 and that the Young's modulus increases with higher frequencies. For a frequency of 400 Hz, the Young's modulus of the investigated viscoelastic materials is approximately 80% higher than for the static case (0 Hz). We verify the identified mechanical properties with experiments on fabricated vocal fold models. Thereby, only small deviations between measurements and simulations occur.

  17. Pore cross-section area on predicting elastic properties of trabecular bovine bone for human implants.

    PubMed

    Maciel, Alfredo; Presbítero, Gerardo; Piña, Cristina; del Pilar Gutiérrez, María; Guzmán, José; Munguía, Nadia

    2015-01-01

    A clear understanding of the dependence of mechanical properties of bone remains a task not fully achieved. In order to estimate the mechanical properties in bones for implants, pore cross-section area, calcium content, and apparent density were measured in trabecular bone samples for human implants. Samples of fresh and defatted bone tissue, extracted from one year old bovines, were cut in longitudinal and transversal orientation of the trabeculae. Pore cross-section area was measured with an image analyzer. Compression tests were conducted into rectangular prisms. Elastic modulus presents a linear tendency as a function of pore cross-section area, calcium content and apparent density regardless of the trabecular orientation. The best variable to estimate elastic modulus of trabecular bone for implants was pore cross-section area, and affirmations to consider Nukbone process appropriated for marrow extraction in trabecular bone for implantation purposes are proposed, according to bone mechanical properties. Considering stress-strain curves, defatted bone is stiffer than fresh bone. Number of pores against pore cross-section area present an exponential decay, consistent for all the samples. These graphs also are useful to predict elastic properties of trabecular samples of young bovines for implants.

  18. Surface mechanical properties of pHEMA contact lenses: viscoelastic and adhesive property changes on exposure to controlled humidity.

    PubMed

    Opdahl, Aric; Kim, Seong H; Koffas, Telly S; Marmo, Chris; Somorjai, Gabor A

    2003-10-01

    The surface mechanical properties of poly(hydroxyethyl)methacrylate (pHEMA)-based contact lenses were monitored as a function of humidity by atomic force microscopy (AFM). Surface viscoelastic and adhesion values were extracted from AFM force versus distance interaction curves and were found to be strongly dependent on the bulk water content of the lens and on the relative humidity. At low relative humidity, 40-50%, the dehydration rate from the surface is faster than the hydration rate from the bulk, leading to a rigid surface region that has mechanical properties similar to those measured on totally dehydrated lenses. At relative humidity values > 60%, the dehydration rate from the lens surface rapidly decreases, leading to higher surface water content and a softer surface region. The results indicate that, in an ocular environment, although the bulk of the pHEMA contact lens is hydrated, the surface region may be in a transition between a dehydrated glassy state and a hydrated rubbery state. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 67A: 350-356, 2003

  19. Mussel-Inspired Fabrication of Konjac Glucomannan/Poly (Lactic Acid) Cryogels with Enhanced Thermal and Mechanical Properties

    PubMed Central

    Wang, Lin; Mu, Ruo-Jun; Gong, Jingni; Ni, Yongsheng; Hong, Xin; Pang, Jie; Wu, Chunhua

    2017-01-01

    Three-dimensional nanofibers cryogels (NFCs) with both thermally-tolerant and mechanically-robust properties have potential for wide application in biomedical or food areas; however, creating such NFCs has proven to be extremely challenging. In this study, konjac glucomannan (KGM)/poly (lactic acid) (PLA)-based novel NFCs were prepared by the incorporation of the mussel-inspired protein polydopamine (PDA) via a facile and environmentally-friendly electrospinning and freeze-shaping technique. The obtained KGM/PLA/PDA (KPP) NFCs were characterized by field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and compressive and tensile test. The results showed that the hierarchical cellular structure and physicochemical properties of KPP NFCs were dependent on the incorporation of PDA content. Moreover, the strong intermolecular hydrogen bond interactions among KGM, PLA and PDA also gave KPP NFCs high thermostability and mechanically-robust properties. Thus, this study developed a simple approach to fabricate multifunctional NFCs with significant potential for biomedical or food application. PMID:29258196

  20. How Sensitive Is the Elasticity of Hydroxyapatite-Nanoparticle-Reinforced Chitosan Composite to Changes in Particle Concentration and Crystallization Temperature?

    PubMed

    Wang, Kean; Liao, Kin; Goh, Kheng Lim

    2015-10-10

    Hydroxyapatite (HA) nanoparticle-reinforced chitosan composites are biocompatible and biodegradable structural materials that are used as biomaterials in tissue engineering. However, in order for these materials to function effectively as intended, e.g., to provide adequate structural support for repairing damaged tissues, it is necessary to analyse and optimise the material processing parameters that affect the relevant mechanical properties. Here we are concerned with the strength, stiffness and toughness of wet-spun HA-reinforced chitosan fibres. Unlike previous studies which have addressed each of these parameters as singly applied treatments, we have carried out an experiment designed using a two-factor analysis of variance to study the main effects of two key material processing parameters, namely HA concentration and crystallization temperature, and their interactions on the respective mechanical properties of the composite fibres. The analysis reveals that significant interaction occurs between the crystallization temperature and HA concentration. Starting at a low HA concentration level, the magnitude of the respective mechanical properties decreases significantly with increasing HA concentration until a critical HA concentration is reached, at around 0.20-0.30 (HA mass fraction), beyond which the magnitude of the mechanical properties increases significantly with HA concentration. The sensitivity of the mechanical properties to crystallization temperature is masked by the interaction between the two parameters-further analysis reveals that the dependence on crystallization temperature is significant in at least some levels of HA concentration. The magnitude of the mechanical properties of the chitosan composite fibre corresponding to 40 °C is higher than that at 100 °C at low HA concentration; the reverse applies at high HA concentration. In conclusion, the elasticity of the HA nanoparticle-reinforced chitosan composite fibre is sensitive to HA concentration and crystallization temperature, and there exists a critical concentration level whereby the magnitude of the mechanical property is a minimum.

  1. Layer-Dependent Ultrafast Carrier and Coherent Phonon Dynamics in Black Phosphorus.

    PubMed

    Miao, Xianchong; Zhang, Guowei; Wang, Fanjie; Yan, Hugen; Ji, Minbiao

    2018-05-09

    Black phosphorus is a layered semiconducting material, demonstrating strong layer-dependent optical and electronic properties. Probing the photophysical properties on ultrafast time scales is of central importance in understanding many-body interactions and nonequilibrium quasiparticle dynamics. Here, we applied temporally, spectrally, and spatially resolved pump-probe microscopy to study the transient optical responses of mechanically exfoliated few-layer black phosphorus, with layer numbers ranging from 2 to 9. We have observed layer-dependent resonant transient absorption spectra with both photobleaching and red-shifted photoinduced absorption features, which could be attributed to band gap renormalization of higher subband transitions. Surprisingly, coherent phonon oscillations with unprecedented intensities were observed when the probe photons were in resonance with the optical transitions, which correspond to the low-frequency layer-breathing mode. Our results reveal strong Coulomb interactions and electron-phonon couplings in photoexcited black phosphorus, providing important insights into the ultrafast optical, nanomechanical, and optoelectronic properties of this novel two-dimensional material.

  2. Force-velocity properties' contribution to bilateral deficit during ballistic push-off.

    PubMed

    Samozino, Pierre; Rejc, Enrico; di Prampero, Pietro Enrico; Belli, Alain; Morin, Jean-Benoît

    2014-01-01

    The objective of this study is to quantify the contribution of the force-velocity (F-v) properties to bilateral force deficit (BLD) in ballistic lower limb push-off and to relate it to individual F-v mechanical properties of the lower limbs. The F-v relation was individually assessed from mechanical measurements for 14 subjects during maximal ballistic lower limb push-offs; its contribution to BLD was then investigated using a theoretical macroscopic approach, considering both the mechanical constraints of movement dynamics and the maximal external capabilities of the lower limb neuromuscular system. During ballistic lower limb push-off, the maximum force each lower limb can produce was lower during bilateral than unilateral actions, thus leading to a BLD of 36.7% ± 5.7%. The decrease in force due to the F-v mechanical properties amounted to 19.9% ± 3.6% of the force developed during BL push-offs, which represents a nonneural contribution to BLD of 43.5% ± 9.1%. This contribution to BLD that cannot be attributed to changes in neural features was negatively correlated to the maximum unloaded extension velocity of the lower limb (r = -0.977, P < 0.001). During ballistic lower limb push-off, BLD is due to both neural alterations and F-v mechanical properties, the latter being associated with the change in movement velocity between bilateral and unilateral actions. The level of the contribution of the F-v properties depends on the individual F-v mechanical profile of the entire lower limb neuromuscular system: the more the F-v profile is oriented toward velocity capabilities, the lower the loss of force from unilateral to bilateral push-offs due to changes in movement velocity.

  3. Analytical Modelling and Optimization of the Temperature-Dependent Dynamic Mechanical Properties of Fused Deposition Fabricated Parts Made of PC-ABS.

    PubMed

    Mohamed, Omar Ahmed; Masood, Syed Hasan; Bhowmik, Jahar Lal

    2016-11-04

    Fused deposition modeling (FDM) additive manufacturing has been intensively used for many industrial applications due to its attractive advantages over traditional manufacturing processes. The process parameters used in FDM have significant influence on the part quality and its properties. This process produces the plastic part through complex mechanisms and it involves complex relationships between the manufacturing conditions and the quality of the processed part. In the present study, the influence of multi-level manufacturing parameters on the temperature-dependent dynamic mechanical properties of FDM processed parts was investigated using IV-optimality response surface methodology (RSM) and multilayer feed-forward neural networks (MFNNs). The process parameters considered for optimization and investigation are slice thickness, raster to raster air gap, deposition angle, part print direction, bead width, and number of perimeters. Storage compliance and loss compliance were considered as response variables. The effect of each process parameter was investigated using developed regression models and multiple regression analysis. The surface characteristics are studied using scanning electron microscope (SEM). Furthermore, performance of optimum conditions was determined and validated by conducting confirmation experiment. The comparison between the experimental values and the predicted values by IV-Optimal RSM and MFNN was conducted for each experimental run and results indicate that the MFNN provides better predictions than IV-Optimal RSM.

  4. Rate- and Temperature-Dependent Material Behavior of a Multilayer Polymer Battery Separator

    NASA Astrophysics Data System (ADS)

    Avdeev, Ilya; Martinsen, Michael; Francis, Alex

    2014-01-01

    Designing battery packs for safety in automotive applications requires multiscale modeling, as macroscopic deformations due to impact cause the mechanical failure of individual cells on a sub-millimeter level. The separator material plays a critical role in this process, as the thinning or perforating of the separator can lead to thermal runaway and catastrophic failure of an entire battery pack. The electrochemical properties of various polymer separators have been extensively investigated; however, the dependency of mechanical properties of these thin films on various factors, such as high temperature and strain rate, has not been sufficiently characterized. In this study, the macroscopic mechanical properties of a multilayer polymer thin film used as a battery separator are studied experimentally at various temperatures, strain rates, and solvent saturations. Due to the anisotropy of the material, material testing was conducted in two perpendicular directions (machine and transverse directions). Material samples were tested in both dry and saturated conditions at several temperatures, and it was found that temperature and strain rate have a nearly linear effect on the stress experienced by the material. Additionally, saturating the separator material in a common lithium-ion solvent had softened it and had a positive effect on its toughness. The experimental results obtained in this study can be used to develop mathematical constitutive models of the multilayer separator material for subsequent numerical simulations and design.

  5. Analytical Modelling and Optimization of the Temperature-Dependent Dynamic Mechanical Properties of Fused Deposition Fabricated Parts Made of PC-ABS

    PubMed Central

    Mohamed, Omar Ahmed; Masood, Syed Hasan; Bhowmik, Jahar Lal

    2016-01-01

    Fused deposition modeling (FDM) additive manufacturing has been intensively used for many industrial applications due to its attractive advantages over traditional manufacturing processes. The process parameters used in FDM have significant influence on the part quality and its properties. This process produces the plastic part through complex mechanisms and it involves complex relationships between the manufacturing conditions and the quality of the processed part. In the present study, the influence of multi-level manufacturing parameters on the temperature-dependent dynamic mechanical properties of FDM processed parts was investigated using IV-optimality response surface methodology (RSM) and multilayer feed-forward neural networks (MFNNs). The process parameters considered for optimization and investigation are slice thickness, raster to raster air gap, deposition angle, part print direction, bead width, and number of perimeters. Storage compliance and loss compliance were considered as response variables. The effect of each process parameter was investigated using developed regression models and multiple regression analysis. The surface characteristics are studied using scanning electron microscope (SEM). Furthermore, performance of optimum conditions was determined and validated by conducting confirmation experiment. The comparison between the experimental values and the predicted values by IV-Optimal RSM and MFNN was conducted for each experimental run and results indicate that the MFNN provides better predictions than IV-Optimal RSM. PMID:28774019

  6. A Multiscale Virtual Fabrication and Lattice Modeling Approach for the Fatigue Performance Prediction of Asphalt Concrete

    NASA Astrophysics Data System (ADS)

    Dehghan Banadaki, Arash

    Predicting the ultimate performance of asphalt concrete under realistic loading conditions is the main key to developing better-performing materials, designing long-lasting pavements, and performing reliable lifecycle analysis for pavements. The fatigue performance of asphalt concrete depends on the mechanical properties of the constituent materials, namely asphalt binder and aggregate. This dependent link between performance and mechanical properties is extremely complex, and experimental techniques often are used to try to characterize the performance of hot mix asphalt. However, given the seemingly uncountable number of mixture designs and loading conditions, it is simply not economical to try to understand and characterize the material behavior solely by experimentation. It is well known that analytical and computational modeling methods can be combined with experimental techniques to reduce the costs associated with understanding and characterizing the mechanical behavior of the constituent materials. This study aims to develop a multiscale micromechanical lattice-based model to predict cracking in asphalt concrete using component material properties. The proposed algorithm, while capturing different phenomena for different scales, also minimizes the need for laboratory experiments. The developed methodology builds on a previously developed lattice model and the viscoelastic continuum damage model to link the component material properties to the mixture fatigue performance. The resulting lattice model is applied to predict the dynamic modulus mastercurves for different scales. A framework for capturing the so-called structuralization effects is introduced that significantly improves the accuracy of the modulus prediction. Furthermore, air voids are added to the model to help capture this important micromechanical feature that affects the fatigue performance of asphalt concrete as well as the modulus value. The effects of rate dependency are captured by implementing the viscoelastic fracture criterion. In the end, an efficient cyclic loading framework is developed to evaluate the damage accumulation in the material that is caused by long-sustained cyclic loads.

  7. Voltage-Dependent Gating: Novel Insights from KCNQ1 Channels

    PubMed Central

    Cui, Jianmin

    2016-01-01

    Gating of voltage-dependent cation channels involves three general molecular processes: voltage sensor activation, sensor-pore coupling, and pore opening. KCNQ1 is a voltage-gated potassium (Kv) channel whose distinctive properties have provided novel insights on fundamental principles of voltage-dependent gating. 1) Similar to other Kv channels, KCNQ1 voltage sensor activation undergoes two resolvable steps; but, unique to KCNQ1, the pore opens at both the intermediate and activated state of voltage sensor activation. The voltage sensor-pore coupling differs in the intermediate-open and the activated-open states, resulting in changes of open pore properties during voltage sensor activation. 2) The voltage sensor-pore coupling and pore opening require the membrane lipid PIP2 and intracellular ATP, respectively, as cofactors, thus voltage-dependent gating is dependent on multiple stimuli, including the binding of intracellular signaling molecules. These mechanisms underlie the extraordinary KCNE1 subunit modification of the KCNQ1 channel and have significant physiological implications. PMID:26745405

  8. Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures.

    PubMed

    Rossmanna, Christian; Haemmerich, Dieter

    2014-01-01

    The application of supraphysiological temperatures (>40°C) to biological tissues causes changes at the molecular, cellular, and structural level, with corresponding changes in tissue function and in thermal, mechanical and dielectric tissue properties. This is particularly relevant for image-guided thermal treatments (e.g. hyperthermia and thermal ablation) delivering heat via focused ultrasound (FUS), radiofrequency (RF), microwave (MW), or laser energy; temperature induced changes in tissue properties are of relevance in relation to predicting tissue temperature profile, monitoring during treatment, and evaluation of treatment results. This paper presents a literature survey of temperature dependence of electrical (electrical conductivity, resistivity, permittivity) and thermal tissue properties (thermal conductivity, specific heat, diffusivity). Data of soft tissues (liver, prostate, muscle, kidney, uterus, collagen, myocardium and spleen) for temperatures between 5 to 90°C, and dielectric properties in the frequency range between 460 kHz and 3 GHz are reported. Furthermore, perfusion changes in tumors including carcinomas, sarcomas, rhabdomyosarcoma, adenocarcinoma and ependymoblastoma in response to hyperthmic temperatures up to 46°C are presented. Where appropriate, mathematical models to describe temperature dependence of properties are presented. The presented data is valuable for mathematical models that predict tissue temperature during thermal therapies (e.g. hyperthermia or thermal ablation), as well as for applications related to prediction and monitoring of temperature induced tissue changes.

  9. Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures

    PubMed Central

    Rossmann, Christian; Haemmerich, Dieter

    2016-01-01

    The application of supraphysiological temperatures (>40°C) to biological tissues causes changes at the molecular, cellular, and structural level, with corresponding changes in tissue function and in thermal, mechanical and dielectric tissue properties. This is particularly relevant for image-guided thermal treatments (e.g. hyperthermia and thermal ablation) delivering heat via focused ultrasound (FUS), radiofrequency (RF), microwave (MW), or laser energy; temperature induced changes in tissue properties are of relevance in relation to predicting tissue temperature profile, monitoring during treatment, and evaluation of treatment results. This paper presents a literature survey of temperature dependence of electrical (electrical conductivity, resistivity, permittivity) and thermal tissue properties (thermal conductivity, specific heat, diffusivity). Data of soft tissues (liver, prostate, muscle, kidney, uterus, collagen, myocardium and spleen) for temperatures between 5 to 90°C, and dielectric properties in the frequency range between 460 kHz and 3 GHz are reported. Furthermore, perfusion changes in tumors including carcinomas, sarcomas, rhabdomyosarcoma, adenocarcinoma and ependymoblastoma in response to hyperthmic temperatures up to 46°C are presented. Where appropriate, mathematical models to describe temperature dependence of properties are presented. The presented data is valuable for mathematical models that predict tissue temperature during thermal therapies (e.g. hyperthermia or thermal ablation), as well as for applications related to prediction and monitoring of temperature induced tissue changes. PMID:25955712

  10. Mechanics of fresh, frozen-thawed and heated porcine liver tissue.

    PubMed

    Wex, Cora; Stoll, Anke; Fröhlich, Marlen; Arndt, Susann; Lippert, Hans

    2014-06-01

    For a better understanding of the effects of thermally altered soft tissue, the biothermomechanics of these tissues need to be studied. Without the knowledge of the underlying physical processes and the parameters that can be controlled clinically, thermal treatment of cancerous hepatic tissue or the preservation of liver grafts are based primarily on trial and error. Thus, this study is concerned with the investigation of the influence of temperature on the rheological properties and the histological properties of porcine liver. Heating previously cooled porcine liver tissue above 40 °C leads to significant, irreversible stiffness changes observed in the amplitude sweep. The increase of the complex shear module of healthy porcine liver from room temperature to 70 °C is approximately 9-fold. Comparing the temperatures -20 °C and 20 °C, no significant difference of the mechanical properties was observed. Furthermore, there is a strong relation between the mechanical and histological properties of the porcine liver. Temperatures above 40 °C destroy the collagen matrix within the liver tissue. This results in the alteration of the biomechanical properties. The time-temperature superposition principle is applied to generate temperature-dependent shift factors that can be described by a two-part exponential function model with an inflection temperature of 45 °C. Tumor ablation techniques such as heating or freezing have a significant influence on the histology of liver tissue. However, only for temperatures above body temperature an influence on the mechanical properties of hepatic tissues was noticeable. Freezing up to -20 °C did not affect the liver mechanics.

  11. Microstructure and Properties of Cobalt-and Zinc-Containing Magnetic Magnesium Alloys Processed by High-Pressure Die Casting

    NASA Astrophysics Data System (ADS)

    Klose, Christian; Demminger, Christian; Maier, Hans Jürgen

    The inherent magnetic properties of lightweight alloys based on magnesium and cobalt offer a novel way in order to measure mechanical loads throughout the entire structural component using the magnetoelastic effect. Because the solubility of cobalt in the magnesium matrix is negligible, the magnetic properties mainly originate from Co-rich precipitates. Thus, the size and distribution of Co-containing phases within the alloy's microstructure wields a major influence on the amplitude of the load-sensitive properties which can be measured by employing the harmonic analysis of eddy-current signals. In this study, Mg-Co-based alloys are produced by several casting methods which allow the application of different cooling rates, e.g. gravity die casting and high-pressure die casting. The differences between the manufactured alloys' micro- and phase structures are compared depending on the applied cooling rate and the superior magnetic and mechanical properties of the high-pressure die cast material are demonstrated.

  12. Influence of Ti content on synthesis and characteristics of W-Ti ODS alloy

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Liang; Zeng, Yong

    2016-02-01

    Tungsten-titanium alloys are considered as promising materials for the future fusion devices, in particular for the divertor and other first wall components. The microstructure and the mechanical properties of the material are dependent on the amount of Ti present in the alloy. In this study, W-Ti-Y2O3 alloys with varied Ti contents between 1 wt.% and 10 wt.% fabricated by mechanical alloying were investigated. The effect of Ti on the phase formation and mechanical properties of W-Ti-Y2O3 alloys has been examined. The results suggest that the alloys containing low Ti content exhibit homogeneous microstructure with a uniform distribution of fine titanium oxide particles and tungsten carbides, leading to a significant increase in hardness and elastic modulus of alloys. In addition, high-energy ball milling can facilitate a solid-state reaction between Y2O3 particles and the tungsten-titanium matrix and the subsequent sintering processing promotes the formation of stable nano Ti2Y2O7 oxide particles, which greatly increase the mechanical properties at elevated temperature and enhance irradiation resistance.

  13. Experimental studies of graphite-epoxy and boron-epoxy angle ply laminates in compression

    NASA Technical Reports Server (NTRS)

    Weller, T.

    1977-01-01

    A test program aimed at studying the nonlinear/inelastic response under axial compression across a wide range of angle ply was graphite-epoxy and boron-epoxy laminates was presented and described. The strength allowables corresponding to the various laminate configurations were defined and the failure mechanisms which dictate their mode of failure were detected. The program involved two types of specimens for each laminate configuration: compression sandwich coupons and compression tubes. The test results indicate that the coupons perform better than the tubes displaying considerably high stress-strain allowables and mechanical properties relative to the tubes. Also, it is observed that depending on their dimensions the coupons are susceptible to very pronounced edge effects. This sensitivity results in assigning to the laminate conservative mechanical properties rather than the actual ones.

  14. Data of thermal degradation and dynamic mechanical properties of starch–glycerol based films with citric acid as crosslinking agent

    PubMed Central

    González Seligra, Paula; Medina Jaramillo, Carolina; Famá, Lucía; Goyanes, Silvia

    2016-01-01

    Interest in biodegradable edible films as packaging or coating has increased because their beneficial effects on foods. In particular, food products are highly dependents on thermal stability, integrity and transition process temperatures of the packaging. The present work describes a complete data of the thermal degradation and dynamic mechanical properties of starch–glycerol based films with citric acid (CA) as crosslinking agent described in the article titled: “Biodegradable and non-retrogradable eco-films based on starch–glycerol with citric acid as crosslinking agent” González Seligra et al. (2016) [1]. Data describes thermogravimetric and dynamical mechanical experiences and provides the figures of weight loss and loss tangent of the films as a function of the temperature. PMID:27158645

  15. Quantum Mechanical Modeling of Ballistic MOSFETs

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    The objective of this project was to develop theory, approximations, and computer code to model quasi 1D structures such as nanotubes, DNA, and MOSFETs: (1) Nanotubes: Influence of defects on ballistic transport, electro-mechanical properties, and metal-nanotube coupling; (2) DNA: Model electron transfer (biochemistry) and transport experiments, and sequence dependence of conductance; and (3) MOSFETs: 2D doping profiles, polysilicon depletion, source to drain and gate tunneling, understand ballistic limit.

  16. 1/f noise measurements for faster evaluation of electromigration in advanced microelectronics interconnections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beyne, Sofie, E-mail: sofie.beyne@imec.be; De Wolf, Ingrid; imec, Kapeldreef 75, B-3001 Leuven

    The use of 1/f noise measurements is explored for the purpose of finding faster techniques for electromigration (EM) characterization in advanced microelectronic interconnects, which also enable a better understanding of its underlying physical mechanisms. Three different applications of 1/f noise for EM characterization are explored. First, whether 1/f noise measurements during EM stress can serve as an early indicator of EM damage. Second, whether the current dependence of the noise power spectral density (PSD) can be used for a qualitative comparison of the defect concentration of different interconnects and consequently also their EM lifetime t50. Third, whether the activation energiesmore » obtained from the temperature dependence of the 1/f noise PSD correspond to the activation energies found by means of classic EM tests. In this paper, the 1/f noise technique has been used to assess and compare the EM properties of various advanced integration schemes and different materials, as they are being explored by the industry to enable advanced interconnect scaling. More concrete, different types of copper interconnects and one type of tungsten interconnect are compared. The 1/f noise measurements confirm the excellent electromigration properties of tungsten and demonstrate a dependence of the EM failure mechanism on copper grain size and distribution, where grain boundary diffusion is found to be a dominant failure mechanism.« less

  17. Effect of corneal inhomogeneity on the mechanical behavior of the eye

    NASA Astrophysics Data System (ADS)

    Stein, A. A.; Moiseeva, I. N.

    2018-05-01

    The effect of spatial inhomogeneity of the effective cornea stiffness distribution on the mechanical properties of the eye is investigated on the basis of the two-component model of the eyeball, in which the cornea is represented by a momentless deformable, linearly elastic surface and the scleral region by an elastic element that responds to changes in intraocular pressure by changes in volume. The approach used makes it possible to consider within the same model both the natural corneal inhomogeneity and mechanical consequences of local cornea weakening owing to surgical procedures. The dependences on changes in intraocular pressure of parameters that characterize deformation properties of both the cornea (apex displacement) and the eyeball as a whole (change in intraocular volume) are obtained. For moderate inhomogeneity they differ from the same dependences for the homogenous cornea with effective stiffness equal to the average value for the corresponding inhomogeneous distribution only slightly. However, if the effective stiffness amplitude is very high, corneal inhomogeneity discernibly affects the integral response of the cornea and the eyeball as a whole to changes in pressure. The effect of inhomogeneity on the data of tonometry also mainly depends on the average effective corneal stiffness. The difference between the tonometric and true pressures increases with surgical cornea weakening in the apical region for both Schiøtz and Maklakoff tonometers.

  18. Distributed Cerebellar Motor Learning: A Spike-Timing-Dependent Plasticity Model

    PubMed Central

    Luque, Niceto R.; Garrido, Jesús A.; Naveros, Francisco; Carrillo, Richard R.; D'Angelo, Egidio; Ros, Eduardo

    2016-01-01

    Deep cerebellar nuclei neurons receive both inhibitory (GABAergic) synaptic currents from Purkinje cells (within the cerebellar cortex) and excitatory (glutamatergic) synaptic currents from mossy fibers. Those two deep cerebellar nucleus inputs are thought to be also adaptive, embedding interesting properties in the framework of accurate movements. We show that distributed spike-timing-dependent plasticity mechanisms (STDP) located at different cerebellar sites (parallel fibers to Purkinje cells, mossy fibers to deep cerebellar nucleus cells, and Purkinje cells to deep cerebellar nucleus cells) in close-loop simulations provide an explanation for the complex learning properties of the cerebellum in motor learning. Concretely, we propose a new mechanistic cerebellar spiking model. In this new model, deep cerebellar nuclei embed a dual functionality: deep cerebellar nuclei acting as a gain adaptation mechanism and as a facilitator for the slow memory consolidation at mossy fibers to deep cerebellar nucleus synapses. Equipping the cerebellum with excitatory (e-STDP) and inhibitory (i-STDP) mechanisms at deep cerebellar nuclei afferents allows the accommodation of synaptic memories that were formed at parallel fibers to Purkinje cells synapses and then transferred to mossy fibers to deep cerebellar nucleus synapses. These adaptive mechanisms also contribute to modulate the deep-cerebellar-nucleus-output firing rate (output gain modulation toward optimizing its working range). PMID:26973504

  19. Microstructure evolution and tensile properties of Zr-2.5wt%Nb pressure tubes processed from billets with different microstructures

    NASA Astrophysics Data System (ADS)

    Kapoor, K.; Saratchandran, N.; Muralidharan, K.

    1999-02-01

    Starting with identical ingots, billets having different microstructures were obtained by three different processing methods for fabrication of Zr-2.5wt%Nb pressure tubes. The billets were further processed by hot extrusion and cold Pilger tube reducing to the finished product. Microstructural characterization was done at each stage of processing. The effects of the initial billet microstructure on the intermediate and final microstructure and mechanical property results were determined. It was found that the structure at each stage and the final mechanical properties depend strongly on the initial billet microstructure. The structure at the final stage consists of elongated alpha zirconium grains with a network of metastable beta zirconium phase. Some of this metastable phase transforms into stable beta niobium during thermomechanical processing. Billets with quenched structure resulted in less beta niobium at the final stage. The air cooled billets resulted in a large amount of beta niobium. The tensile properties, especially the percentage elongation, were found to vary for the different methods. Higher percentage elongation was observed for billets having quenched structure. Extrusion and forging did not produce any characteristic differences in the properties. The results were used to select a process flow sheet which yields the desired mechanical properties with suitable microstructure in the final product.

  20. Origin of the Absorption Band of Bromophenol Blue in Acidic and Basic pH: Insight from a Combined Molecular Dynamics and TD-DFT/MM Study.

    PubMed

    Chattopadhyaya, M; Murugan, N Arul; Rinkevicius, Zilvinas

    2016-09-15

    We study the linear and nonlinear optical properties of a well-known acid-base indicator, bromophenol blue (BPB), in aqueous solution by employing static and integrated approaches. In the static approach, optical properties have been calculated using time-dependent density functional theory (TD-DFT) on the fully relaxed geometries of the neutral and different unprotonated forms of BPB. Moreover, both closed and open forms of BPB were considered. In the integrated approach, the optical properties have been computed over many snapshots extracted from molecular dynamics simulation using a hybrid time-dependent density functional theory/molecular mechanics approach. The static approach suggests closed neutral ⇒ anionic interconversion as the dominant mechanism for the red shift in the absorption spectra of BPB due to a change from acidic to basic pH. It is found by employing an integrated approach that the two interconversions, namely open neutral ⇒ anionic and open neutral ⇒ dianionic, can contribute to the pH-dependent shift in the absorption spectra of BPB. Even though both static and integrated approaches reproduce the pH-dependent red shift in the absorption spectra of BPB, the latter one is suitable to determine both the spectra and spectral broadening. Finally, the computed static first hyperpolarizability for various protonated and deprotonated forms of BPB reveals that this molecule can be used as a nonlinear optical probe for pH sensing in addition to its highly exploited use as an optical probe.

Top