Science.gov

Sample records for mechanical properties performance

  1. Mechanisms Responsible for Microwave Properties in High Performance Dielectric Materials

    NASA Astrophysics Data System (ADS)

    Zhang, Shengke

    Microwave properties of low-loss commercial dielectric materials are optimized by adding transition-metal dopants or alloying agents (i.e. Ni, Co, Mn) to tune the temperature coefficient of resonant frequency (tau f) to zero. This occurs as a result of the temperature dependence of dielectric constant offsetting the thermal expansion. At cryogenic temperatures, the microwave loss in these dielectric materials is dominated by electron paramagnetic resonance (EPR) loss, which results from the spin-excitations of d-shell electron spins in exchange-coupled clusters. We show that the origin of the observed magnetically-induced shifts in the dielectric resonator frequency originates from the same mechanism, as described by the Kramers-Kronig relations. The temperature coefficient of resonator frequency, tauf, is related to three material parameters according to the equation, tau f = - (½ tauepsilon + ½ taumu + alphaL), where tauepsilon, taumu , and alphaL are the temperature coefficient of dielectric constant, magnetic permeability, and lattice constant, respectively. Each of these parameters for dielectric materials of interest are measured experimentally. These results, in combination with density functional simulations, developed a much improved understanding of the fundamental mechanisms responsible for tau f. The same experimental methods have been used to characterize in-situ the physical nature and concentration of performance-degrading point defects in the dielectrics of superconducting planar microwave resonators.

  2. Mechanical properties of high performance fibers vis-a-vis applications in flexible structural composites

    NASA Astrophysics Data System (ADS)

    Sharma, Varunesh

    Some of the critical properties of high performance organic fibers and fiber assemblies have been addressed vis-a-vis their applications in flexible structural composites. These include: tensile properties; mechanical properties under complex modes of deformation; creep at high tensile loads; changes in physical properties due to thermo-mechanical/chemical treatments used in manufacturing of reinforced rubber goods. The axial elastic modulus of fibers and tautly twisted filament assemblies of high performance organic polymers have been measured along with their crystalline orientation distributions. Based on well established procedures in continuum mechanics of axially symmetric structures, a quantitative relationship has been derived to relate the axial elastic modulus to the second and fourth moment of average crystalline orientation distribution. The latter was determined by X-ray diffraction measurements with yarns. This model, valid for single-phase materials, has been found to provide an excellent fit of data from twisted yams of aromatic polyamide and highly ordered polyethylene fibers, with a wide range of overall crystalline orientation distributions. An important property of concern in engineering applications of polymeric filament assemblies of high performance organic fibers is creep. In this study, creep deformation data of gel-spun Ultra High Molecular Weight Polyethylne (UHMWPE) SpectraRTM 1000 yams have been fitted to a model obtained through an empirical mechanical analog of the viscoelastic process. The non-linear viscoelastic model composed of stress-dependent non-linear mechanical analogs qualitatively predicted the creep response to a series of step-loads applied on the UHMWPE yarns. To understand the mechanical properties of high performance organic fibers under combined bending and extension, a simple pin-test procedure has been employed to characterize fibers and twisted yarns. The results obtained from the test have been interpreted with

  3. Effect of Heat Treatment on Mechanical Properties and Corrosion Performance of Cold-Sprayed Tantalum Coatings

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Vidyasagar, V.; Jyothirmayi, A.; Joshi, S. V.

    2016-04-01

    The cold-spray technique is of significant interest to deposit refractory metals with relatively high melting point for a variety of demanding applications. In the present study, mechanical properties of cold-sprayed tantalum coatings heat treated at different temperatures were investigated using microtensile testing, scratch testing, and nanoindentation. The corrosion performance of heat-treated coatings was also evaluated in 1 M KOH solution, and potentiodynamic polarization as well as impedance spectroscopy studies were carried out. Assessment of structure-property correlations was attempted based on microstructure, porosity, and intersplat bonding state, together with mechanical and corrosion properties of the heat-treated cold-sprayed tantalum coatings. Coatings annealed at 1500 °C, which is very close to the recrystallization temperature of tantalum, were found to perform almost as bulk tantalum, with exciting implications for various applications.

  4. Evaluation of mechanical properties and durability performance of HDPE-wood composites

    NASA Astrophysics Data System (ADS)

    Tazi, M.; Erchiqui, F.; Kaddami, H.; Bouazara, M.; Poaty, B.

    2015-05-01

    The objective of this work is to evaluate the mechanical properties and durability performance of bio-composite materials made from sawdust and thermoplastic polymer (HDPE). For the preparation of the composites, sawdust in different proportions with Maleic Anhydride grafted Polyethylene (MAPE) as the coupling agent was used. The thermal and mechanical properties were successively characterized. The results indicate that adding wood fillers to a polymer matrix increases the degree of crystallinity and improves the tensile strength and ductility of composites. On the contrary, resistance to water absorption decreases as a function of the wood fillers. Scanning electron microscopy (SEM) was used to analyze morphological structure alteration when exposed to intense weathering. The biodegradability of bio-composites up to 97 days was also investigated; the results indicate that, by increasing the filler content, the amount of weight loss increased as well. In other words, even though the addition of sawdust to thermoplastic polymer improves the mechanical performance of a composite material, it also accelerates the biodegradation rate of the composite. An optimum amount of filler content might compromise the effect of biodegradation and mechanical properties of composite materials

  5. Evaluation of mechanical properties and durability performance of HDPE-wood composites

    SciTech Connect

    Tazi, M.; Erchiqui, F.; Kaddami, H.; Bouazara, M.; Poaty, B.

    2015-05-22

    The objective of this work is to evaluate the mechanical properties and durability performance of bio-composite materials made from sawdust and thermoplastic polymer (HDPE). For the preparation of the composites, sawdust in different proportions with Maleic Anhydride grafted Polyethylene (MAPE) as the coupling agent was used. The thermal and mechanical properties were successively characterized. The results indicate that adding wood fillers to a polymer matrix increases the degree of crystallinity and improves the tensile strength and ductility of composites. On the contrary, resistance to water absorption decreases as a function of the wood fillers. Scanning electron microscopy (SEM) was used to analyze morphological structure alteration when exposed to intense weathering. The biodegradability of bio-composites up to 97 days was also investigated; the results indicate that, by increasing the filler content, the amount of weight loss increased as well. In other words, even though the addition of sawdust to thermoplastic polymer improves the mechanical performance of a composite material, it also accelerates the biodegradation rate of the composite. An optimum amount of filler content might compromise the effect of biodegradation and mechanical properties of composite materials.

  6. MICROSTRUCTURE AND MECHANICAL PROPERTY PERFORMANCE OF COMMERCIAL GRADE API PIPELINE STEELS IN HIGH PRESSURE GASEOUS HYDROGEN

    SciTech Connect

    Stalheim, Mr. Douglas; Boggess, Todd; San Marchi, Chris; Jansto, Steven; Somerday, Dr. B; Muralidharan, Govindarajan; Sofronis, Prof. Petros

    2010-01-01

    The continued growth of the world s developing countries has placed an ever increasing demand on traditional fossil fuel energy sources. This development has lead to increasing research and development of alternative energy sources. Hydrogen gas is one of the potential alternative energy sources under development. Currently the most economical method of transporting large quantities of hydrogen gas is through steel pipelines. It is well known that hydrogen embrittlement has the potential to degrade steel s mechanical properties when hydrogen migrates into the steel matrix. Consequently, the current pipeline infrastructure used in hydrogen transport is typically operated in a conservative fashion. This operational practice is not conducive to economical movement of significant volumes of hydrogen gas as an alternative to fossil fuels. The degradation of the mechanical properties of steels in hydrogen service is known to depend on the microstructure of the steel. Understanding the levels of mechanical property degradation of a given microstructure when exposed to hydrogen gas under pressure can be used to evaluate the suitability of the existing pipeline infrastructure for hydrogen service and guide alloy and microstructure design for new hydrogen pipeline infrastructure. To this end, the 2 Copyright 2010 by ASME microstructures of relevant steels and their mechanical properties in relevant gaseous hydrogen environments must be fully characterized to establish suitability for transporting hydrogen. A project to evaluate four commercially available pipeline steels alloy/microstructure performance in the presences of gaseous hydrogen has been funded by the US Department of Energy along with the private sector. The microstructures of four pipeline steels were characterized and then tensile testing was conducted in gaseous hydrogen and helium at pressures of 800, 1600 and 3000 psi. Based on measurements of reduction of area, two of the four steels that performed the best

  7. Thrust chamber life prediction. Volume 1: Mechanical and physical properties of high performance rocket nozzle materials

    NASA Technical Reports Server (NTRS)

    Esposito, J. J.; Zabora, R. F.

    1975-01-01

    Pertinent mechanical and physical properties of six high conductivity metals were determined. The metals included Amzirc, NARloy Z, oxygen free pure copper, electroformed copper, fine silver, and electroformed nickel. Selection of these materials was based on their possible use in high performance reusable rocket nozzles. The typical room temperature properties determined for each material included tensile ultimate strength, tensile yield strength, elongation, reduction of area, modulus of elasticity, Poisson's ratio, density, specific heat, thermal conductivity, and coefficient of thermal expansion. Typical static tensile stress-strain curves, cyclic stress-strain curves, and low-cycle fatigue life curves are shown. Properties versus temperature are presented in graphical form for temperatures from 27.6K (-410 F) to 810.9K (1000 F).

  8. The physical and mechanical properties of laterite gravels from southeastern Nigeria relative to their engineering performance

    NASA Astrophysics Data System (ADS)

    Okagbue, C. O.

    Laterite gravels are used extensively as aggregates for highway construction, concrete making and fills in SE Nigeria. This paper presents results of laboratory investigations carried out to evaluate the physical and mechanical properties of these gravels. High mechanical strength, as measured by aggregate crushing (AC), and Los Angeles abrasion (LAA) values were found to be significant factors controlling the performance. Results indicate that significant correlations exist between these and specific gravity, water absorption and angularity of the gravels. No clear distinction in physical and mechanical properties could be found between the laterite gravels formed over sandstones and shales, indicating perhaps that effects of parent rock on the physical and mechanical nature of laterite gravels is of secondary importance. It is proposed that laterite gravels with AC and LAA values in the range of 30-40% and 34-45%, respectively and 10% fines value of between 8 and 4 tonnes be used only for medium and light trafficked roads. Those with AC and LAA values of less than 30% and 34%, respectively and 10% fines value of greater than 8 tonnes can be used for heavily trafficked roads, provided that acceptable gradation, plasticity limits (on the fines) and other construction specifications are met.

  9. Charge storage mechanisms in electrochemical capacitors: Effects of electrode properties on performance

    NASA Astrophysics Data System (ADS)

    Dupont, Madeleine F.; Donne, Scott W.

    2016-09-01

    The capacitive behaviour of four commonly studied electrochemical capacitor systems has been analyzed using the step potential electrochemical spectroscopy (SPECS) method. Electrode-electrolyte combinations with different charge storage mechanisms were characterized, including activated carbon in aqueous (H2SO4) and organic (TEABF4 in acetonitrile) electrolytes, manganese dioxide (Na2SO4) and anhydrous ruthenium oxide (H2SO4). The SPECS method was used to separate the charge storage contributions from double layer capacitance (CDL) and diffusion-limited pseudo-capacitance (CD) at scan rates ranging from 0.08 to 125 mV/s. The relative contributions from each process are related to the physicochemical properties of the electrode. Additionally, the effects of these electrode properties on the overall performance of each system, in terms of specific power and energy, are identified.

  10. Stunting delays maturation of triceps surae mechanical properties and motor performance in prepubertal children.

    PubMed

    Paiva, Maria das Graças; Souza, Thaysa O L; Canon, Francis; Pérot, Chantal; Xavier, Luciana C C; Ferraz, Karla M; Osório, Mônica M; Manhães-de-Castro, Raul; Lambertz, Daniel

    2012-12-01

    Malnutrition can lead to possible irreversible consequences in the development of muscle function and some of them are yet poorly characterized. The present study evaluated the mechanical properties of the triceps surae and motor performance in stunted (S) and eutrophic (E) prepubertal children (9 years ± 6 months). Height-for-age ratio was used as indicator of stunting due to early malnutrition, according to the World Health Organization. Torque was determined by maximal voluntary contractions (MVC) and musculotendinous (MT) stiffness was achieved through quick-release tests to obtain MT stiffness index (SI(MT)) and passive stiffness (K (p)) from linear MT stiffness-torque relationships. Percutaneous supramaximal electrically elicited contractions determined twitch torque (Pt) and electromechanical delay (EMD). Motor performance was evaluated by balance test. S group presented significantly lower MVC and a trend of lower Pt values indicating lower capacities to develop force under voluntary or induced conditions. Significantly higher SI(MT) and EMD values were observed, while K (p) and motor performance in balance were significantly lower. Higher SI(MT) values have been reported previously in youngest prepubertal children, indicating that immature activation capacities can mask MT stiffness assessment during voluntary contractions, taking into consideration the higher EMD values as a measure of muscle stiffness contribution. Lower K (p) may indicate a delay in the maturation of tendinous tissue in S group, influencing motor performance in balance. The present study shows that malnutrition leads to adaptation of intrinsic MT elastic properties, but depends on the level of the observed structure.

  11. Mechanical properties testing of candidate polymer matrix materials for use in high performance composites

    NASA Technical Reports Server (NTRS)

    Zimmerman, R. S.; Adams, D. F.

    1985-01-01

    The mechanical properties of four candidate neat resin systems for use in graphite/epoxy composites are characterized. This includes tensile and shear stiffnesses and strengths, coefficients of thermal and moisture expansion, and fracture toughness. Tests are conducted on specimens in the dry state and moisture-saturated, at temperatures of 23C, 82C and 121C. The neat resins tested are Hexcel HX-1504, Narmco 5245-C, American Cyanamid CYCOM 907, and Union Carbide ERX-4901A (MDA). Results are compared with those obtained for four other epoxy resins tested in a prior program, i.e., Hercules 3502, 2220-1, and 2220-3, and Ciba-Geigy Fibredux 914, as well as with available Hercules 3501-6 data. Scanning electron microscopic examination of fracture surfaces is performed to permit the correlation of observed failure modes with the environmental test conditions. A finite element micromechanics analysis is used to predict unidirectional composite response under various test conditions, using the measured neat resin properties as input data.

  12. Properties and Performance Attributes of Novel Co-Extruded Polyolefin Battery Separator Materials. Part 1; Mechanical Properties

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.; Guzik, Monica; Skierski, Michael

    2011-01-01

    As NASA prepares for its next era of manned spaceflight missions, advanced energy storage technologies are being developed and evaluated to address future mission needs and technical requirements and to provide new mission-enabling technologies. Cell-level components for advanced lithium-ion batteries possessing higher energy, more reliable performance and enhanced, inherent safety characteristics are actively under development within the NASA infrastructure. A key component for safe and reliable cell performance is the cell separator, which separates the two energetic electrodes and functions to prevent the occurrence of an internal short-circuit while enabling ionic transport. Recently, a new generation of co-extruded separator films has been developed by ExxonMobil Chemical and introduced into their battery separator product portfolio. Several grades of this new separator material have been evaluated with respect to dynamic mechanical properties and safety-related performance attributes. This paper presents the results of these evaluations in comparison to a current state-ofthe-practice separator material. The results are discussed with respect to potential opportunities to enhance the inherent safety characteristics and reliability of future, advanced lithium-ion cell chemistries.

  13. Traits, properties, and performance: how woody plants combine hydraulic and mechanical functions in a cell, tissue, or whole plant.

    PubMed

    Lachenbruch, Barbara; McCulloh, Katherine A

    2014-12-01

    This review presents a framework for evaluating how cells, tissues, organs, and whole plants perform both hydraulic and mechanical functions. The morphological alterations that affect dual functionality are varied: individual cells can have altered morphology; tissues can have altered partitioning to functions or altered cell alignment; and organs and whole plants can differ in their allocation to different tissues, or in the geometric distribution of the tissues they have. A hierarchical model emphasizes that morphological traits influence the hydraulic or mechanical properties; the properties, combined with the plant unit's environment, then influence the performance of that plant unit. As a special case, we discuss the mechanisms by which the proxy property wood density has strong correlations to performance but without direct causality. Traits and properties influence multiple aspects of performance, and there can be mutual compensations such that similar performance occurs. This compensation emphasizes that natural selection acts on, and a plant's viability is determined by, its performance, rather than its contributing traits and properties. Continued research on the relationships among traits, and on their effects on multiple aspects of performance, will help us better predict, manage, and select plant material for success under multiple stresses in the future.

  14. Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films.

    PubMed

    Parra, Elisa; Pérez-Gil, Jesús

    2015-01-01

    The respiratory surface in the mammalian lung is stabilized by pulmonary surfactant, a membrane-based system composed of multiple lipids and specific proteins, the primary function of which is to minimize the surface tension at the alveolar air-liquid interface, optimizing the mechanics of breathing and avoiding alveolar collapse, especially at the end of expiration. The goal of the present review is to summarize current knowledge regarding the structure, lipid-protein interactions and mechanical features of surfactant membranes and films and how these properties correlate with surfactant biological function inside the lungs. Surfactant mechanical properties can be severely compromised by different agents, which lead to surfactant inhibition and ultimately contributes to the development of pulmonary disorders and pathologies in newborns, children and adults. A detailed comprehension of the unique mechanical and rheological properties of surfactant layers is crucial for the diagnostics and treatment of lung diseases, either by analyzing the contribution of surfactant impairment to the pathophysiology or by improving the formulations in surfactant replacement therapies. Finally, a short review is also included on the most relevant experimental techniques currently employed to evaluate lung surfactant mechanics, rheology, and inhibition and reactivation processes.

  15. Direct correlation of single-molecule properties with bulk mechanical performance for the biomimetic design of polymers.

    PubMed

    Chung, Jaeyoon; Kushner, Aaron M; Weisman, Adam C; Guan, Zhibin

    2014-11-01

    For rational design of advanced polymeric materials, it is critical to establish a clear mechanistic link between the molecular structure of a polymer and the emergent bulk mechanical properties. Despite progress towards this goal, it remains a major challenge to directly correlate the bulk mechanical performance to the nanomechanical properties of individual constituent macromolecules. Here, we show a direct correlation between the single-molecule nanomechanical properties of a biomimetic modular polymer and the mechanical characteristics of the resulting bulk material. The multi-cyclic single-molecule force spectroscopy (SMFS) data enabled quantitative derivation of the asymmetric potential energy profile of individual module rupture and re-folding, in which a steep dissociative pathway accounted for the high plateau modulus, while a shallow associative well explained the energy-dissipative hysteresis and dynamic, adaptive recovery. These results demonstrate the potential for SMFS to serve as a guide for future rational design of advanced multifunctional materials.

  16. Influence of mechanical properties of alginate-based substrates on the performance of Schwann cells in culture.

    PubMed

    Ning, Liqun; Xu, Yitong; Chen, Xiongbiao; Schreyer, David J

    2016-06-01

    In tissue engineering, artificial tissue scaffolds containing living cells have been studied for tissue repair and regeneration. Notably, the performance of these encapsulated-in-scaffolds cells in terms of cell viability, proliferation, and expression of function during and after the scaffold fabrication process, has not been well documented because of the influence of mechanical, chemical, and physical properties of the scaffold substrate materials. This paper presents our study on the influence of mechanical properties of alginate-based substrates on the performance of Schwann cells, which are the major glial cells of peripheral nervous system. Given the fact that alginate polysaccharide hydrogel has poor cell adhesion properties, in this study, we examined several types of cell-adhesion supplements and found that alginate covalently modified with RGD peptide provided improved cell proliferation and adhesion. We prepared alginate-based substrates for cell culture using varying alginate concentrations for altering their mechanical properties, which were confirmed by compression testing. Then, we examined the viability, proliferation, morphology, and expression of the extracellular matrix protein laminin of Schwann cells that were seeded on the surface of alginate-based substrates (or 2D culture) or encapsulated within alginate-based substrates (3D cultures), and correlated the examined cell performance to the alginate concentration (or mechanical properties) of hydrogel substrates. Our findings suggest that covalent attachment of RGD peptide can improve the success of Schwann cell encapsulation within alginate-based scaffolds, and provide guidance for regulating the mechanical properties of alginate-based scaffolds containing Schwann cells for applications in peripheral nervous system regeneration and repair. PMID:27012482

  17. Influence of mechanical properties of alginate-based substrates on the performance of Schwann cells in culture.

    PubMed

    Ning, Liqun; Xu, Yitong; Chen, Xiongbiao; Schreyer, David J

    2016-06-01

    In tissue engineering, artificial tissue scaffolds containing living cells have been studied for tissue repair and regeneration. Notably, the performance of these encapsulated-in-scaffolds cells in terms of cell viability, proliferation, and expression of function during and after the scaffold fabrication process, has not been well documented because of the influence of mechanical, chemical, and physical properties of the scaffold substrate materials. This paper presents our study on the influence of mechanical properties of alginate-based substrates on the performance of Schwann cells, which are the major glial cells of peripheral nervous system. Given the fact that alginate polysaccharide hydrogel has poor cell adhesion properties, in this study, we examined several types of cell-adhesion supplements and found that alginate covalently modified with RGD peptide provided improved cell proliferation and adhesion. We prepared alginate-based substrates for cell culture using varying alginate concentrations for altering their mechanical properties, which were confirmed by compression testing. Then, we examined the viability, proliferation, morphology, and expression of the extracellular matrix protein laminin of Schwann cells that were seeded on the surface of alginate-based substrates (or 2D culture) or encapsulated within alginate-based substrates (3D cultures), and correlated the examined cell performance to the alginate concentration (or mechanical properties) of hydrogel substrates. Our findings suggest that covalent attachment of RGD peptide can improve the success of Schwann cell encapsulation within alginate-based scaffolds, and provide guidance for regulating the mechanical properties of alginate-based scaffolds containing Schwann cells for applications in peripheral nervous system regeneration and repair.

  18. Molecular dynamics study of binding energies, mechanical properties, and detonation performances of bicyclo-HMX-based PBXs.

    PubMed

    Qiu, Ling; Xiao, Heming

    2009-05-15

    To investigate the effect of polymer binders on the monoexplosive, molecular dynamics simulations were performed to study the binding energies, mechanical properties, and detonation performances of the bicyclo-HMX-based polymer-bonded explosives (PBXs). The results show that the binding energies on different crystalline surfaces of bicyclo-HMX decrease in the order of (010)>(100)>(001). On each crystalline surface, binding properties of different polymers with the same chain segment are different from each other, while those of the polymers in the same content decrease in the sequence of PVDF>F(2311)>F(2314) approximately PCTFE. The mechanical properties of a dozen of model systems (elastic coefficients, various moduli, Cauchy pressure, and Poisson's ratio) have been obtained. It is found that mechanical properties are effectively improved by adding small amounts of fluorine polymers, and the overall effect of fluorine polymers on three crystalline surfaces of bicyclo-HMX changes in the order of (010)>(001) approximately (100). In comparison with the base explosive, detonation performances of the PBXs decrease slightly, but they are still superior to TNT. These suggestions may be useful for the formulation design of bicyclo-HMX-based PBXs.

  19. Effect of Expansive Admixtures on the Shrinkage and Mechanical Properties of High-Performance Fiber-Reinforced Cement Composites

    PubMed Central

    Choi, Won-Chang; Yun, Hyun-Do

    2013-01-01

    High-performance fiber-reinforced cement composites (HPFRCCs) are characterized by strain-hardening and multiple cracking during the inelastic deformation process, but they also develop high shrinkage strain. This study investigates the effects of replacing Portland cement with calcium sulfoaluminate-based expansive admixtures (CSA EXAs) to compensate for the shrinkage and associated mechanical behavior of HPFRCCs. Two types of CSA EXA (CSA-K and CSA-J), each with a different chemical composition, are used in this study. Various replacement ratios (0%, 8%, 10%, 12%, and 14% by weight of cement) of CSA EXA are considered for the design of HPFRCC mixtures reinforced with 1.5% polyethylene (PE) fibers by volume. Mechanical properties, such as shrinkage compensation, compressive strength, flexural strength, and direct tensile strength, of the HPFRCC mixtures are examined. Also, crack width and development are investigated to determine the effects of the EXAs on the performance of the HPFRCC mixtures, and a performance index is used to quantify the performance of mixture. The results indicate that replacements of 10% CSA-K (Type 1) and 8% CSA-J (Type 2) considerably enhance the mechanical properties and reduce shrinkage of HPFRCCs. PMID:24376382

  20. Mechanical Properties of Polymers.

    ERIC Educational Resources Information Center

    Aklonis, J. J.

    1981-01-01

    Mechanical properties (stress-strain relationships) of polymers are reviewed, taking into account both time and temperature factors. Topics include modulus-temperature behavior of polymers, time dependence, time-temperature correspondence, and mechanical models. (JN)

  1. High performance hyperbranched polymers for improved processing and mechanical properties in thermoset composites

    NASA Astrophysics Data System (ADS)

    Marsh, Timothy

    Hyperbranched polymers, specifically hyperbranched poly(arylene ether ketone imide)s (HBPAEKI), are here studied as blend additives in thermoset composites to improve processing and ultimate performance properties of the composite. Monomer synthesis for HBPAEKI was further advanced in this work leading to higher yields, fewer reactions, and shorter production times. A five step synthetic method with an overall yield of 12% was reduced to a three step process with an overall yield of 38%. Polymer was synthesized under varying conditions and end group chemistry for use in thermoset blends. NMR characterization allowed for the assignment of chemical shifts in monomer and cataloguing of shifts in polymer for use in future work to characterize degree of branching. Cure kinetics of blends of HBPAEKI are explored through the use of differential scanning calorimetry (DSC) and chemorheology using small angle oscillatory shear. In a phenylethynyl terminated imide oligomer (PETI) thermoset resin, reactive phenylethynyl endcapped PAEKI (PEPAEKI) was found to retard cure while non reactive alkyl endcapped PAEKI was found to accelerate cure in DGEBA/DAH epoxy systems. Minimal effect was seen on early stage blend viscosity. Composite properties tested focused on the effect on bulk fracture and interfacial shear strength. No significant effect was seen in fracture toughness by SENB. XPS was used to verify that PEPAEKI was surface active to DGEBA/DDS epoxy/air interfaces to the complete exclusion of the epoxy at the surface. Evidence was also seen consistent with surface activity in alkyl endcapped PAEKI in DGEBA/DAH systems, although the contrast is much lower. Effect of alkyl endcapped HBPAEKI on interfacial shear strength was examined through the use of t-peel and single fiber fracture (SFF) techniques. In some systems, t-peel indicates a clear improvement in peel force, proportional to the blend concentration. In SFF, interfacial shear strength was found to be equal or slightly

  2. Research on reverse association mechanism of the thermal control performance of conducting optical solar reflector and its antistatic properties

    NASA Astrophysics Data System (ADS)

    Chang, Tianhai; Wu, Shuling; Xing, Zheng; Wei, Xiaoqun

    2014-12-01

    As we know, optical solar reflector (OSR) is used as the thermal control element for communications satellites and other spacecraft. The solar absorption, infrared emissivity and their ratio of OSR, are considered as the main standard of its thermal control performance. OSR is divided into conducting OSR and non-conducting OSR. When using the indium tin oxide (ITO) film coated on the surface of conducting OSR's glass substrate, ITO film will improve OSR's solar absorption rate and reduce the infrared emissivity. That means the thermal control performance will be declined. The paper is aimed to revealing the reverse association mechanism between the thermal control performance of conducting OSR used for spacecraft and the antistatic properties of ITO film. First, we combined the Drude theory with the Thermal radiation theorem to analyze how the antistatic parameters of ITO film impact the solar absorption and the infrared emissivity of OSR. Then,based on the theoretic analysis of main antistatic parameters of ITO, including the surface square resistance, secondary electron emission characteristic, solar absorption rate, infrared emissivity and other optical and electrical parameters. It illustrated that those factors have a strong reverse connection with the thermal control parameters of OSR, and influenced the solar absorption, infrared emissivity and their ratio of OSR. Comparison of the predicted and experimental results demonstrate that when reducing the surface square resistance of the ITO film, the antistatic properties was declined, and increased the value of the OSR solar absorption. On the contrary, reducing the infrared emissivity, It would result in the degradation of OSR's thermal control performance. The study has performed that the reverse association mechanism of conducting OSR can't be ignored. And apparently it shows that if we want to keep its application in the spacecraft thermal control environment and antistatic properties long-term stable, the

  3. Prediction of fish body's passive visco-elastic properties and related muscle mechanical performance in vivo during steady swimming

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Yu, YongLiang; Tong, BingGang

    2014-01-01

    For attaining the optimized locomotory performance of swimming fishes, both the passive visco-elastic properties of the fish body and the mechanical behavior of the active muscles should coordinate with the fish body's undulatory motion pattern. However, it is difficult to directly measure the visco-elastic constitutive relation and the muscular mechanical performance in vivo. In the present paper, a new approach based on the continuous beam model for steady swimming fish is proposed to predict the fish body's visco-elastic properties and the related muscle mechanical behavior in vivo. Given the lateral travelling-wave-like movement as the input condition, the required muscle force and the energy consumption are functions of the fish body's visco-elastic parameters, i.e. the Young's modulus E and the viscosity coefficient µ in the Kelvin model. After investigating the variations of the propagating speed of the required muscle force with the fish body's visco-elastic parameters, we analyze the impacts of the visco-elastic properties on the energy efficiencies, including the energy utilization ratios of each element of the kinematic chain in fish swimming and the overall efficiency. Under the constraints of reasonable wave speed of muscle activation and the physiological feasibility, the optimal design of the passive visco-elastic properties can be predicted aiming at maximizing the overall efficiency. The analysis is based on the small-amplitude steady swimming of the carangiform swimmer, with typical Reynolds number varying from 2.5×104 to 2.5×105, and the present results show that the non-dimensional Young's modulus is 112±34, and the non-dimensional viscosity coefficient is 13 approximately. In the present estimated ranges, the overall efficiency of the swimming fish is insensitive to the viscosity, and its magnitude is about 0.11±0.02, in the predicted range given by previous study.

  4. Mechanical properties of high performance concrete made with high calcium high sulfate fly ash

    SciTech Connect

    Zhang, Y.; Sun, W.; Shang, L.

    1997-07-01

    A high calcium fly ash with high SO{sub 3} content was used to produce high performance concrete. In all the mixes, the fly ash contents of 50% and 60% by weight were applied. Although fly ash cement pastes showed severe volume instability and poor pore structure development, mortars and concretes incorporating high mass high calcium fly ash exhibited good performance in both fresh and hardened state as those with low calcium fly ash did. The 3d and 28d compressive strength of mortars reached 25.2--42.2MPa respectively with the water binder ratio varying from 0.30 to 0.24. What is noticeable is that all the mortars and concretes showed good strength developing tendency with the 90d compressive strength up to 67.3--85.5MPa. This investigation reveals once more the fact that some materials which are not up to standard can still play a special role so long as the components are carefully chosen and proportions properly designed.

  5. The Effect of Aluminum and Ammonium Perchlorate Content on Temperature Sensitivity, Mechanical Properties and Performance of HTPB Propellants

    NASA Astrophysics Data System (ADS)

    Tüzün, F. Nihal

    This paper describes the effect of aluminum content variation of HTPB (hydroxyl terminated polybutadiene) propellants on temperature sensitivity, mechanical properties and performance values. Aluminum (Al) content was applied as 16, 18 and 20 percent to the propellant compositions and those compositions were tested at small test motors with three different propellant area ratios (K=200, 250 and 300) by keeping the propellant grain at three different temperatures (231, 258 and 323 K). As a result of this, a relationship such as P=aesT was determined with different coefficients for each of the three compositions and propellant area ratios. The lowest temperature sensitivity value was obtained for the composition containing 20% Al and 65% AP. The second relation as P=bKy was derived for three propellants and temperatures. The highest pressure was found with the K value of 300 for the propellant including 16% Al and 69% AP at 323 K. The third relationship such as r=cPn was also determined for three propellant compositions and temperatures. It was observed that the propellant having 16% Al and 69% AP had the highest burning rate at 323 K. The highest maximum tensile stress and elongation values were obtained for the propellants including 20% Al and 16% Al respectively. Evaluation of performance values for those propellants exhibits that the maximum characteristic velocity value is attained for the propellant containing 16% Al and 69% AP.

  6. Mechanical Properties of Cells

    NASA Technical Reports Server (NTRS)

    Bradley, Robert; Becerril, Joseph; Jeevarajan, Anthony

    2007-01-01

    Many physiologic and pathologic processes alter the biomechanical properties of the tissue they affect, and these changes may be manifest at the single cell level. The normal and abnormal mechanical properties of a given cell type can be established with the aid of an atomic force microscope (AFM), nonetheless, consistency in the area of the tip has been a mayor limitation of using the AFM for quantitative measurements of mechanical properties. This project attempts to overcome this limitation by using materials with a known elastic modulus, which resembles the one of the cell, to create force-deformation curves to calculate the area of indentation by means of Hooke s Law (sigma = E(epsilon)), which states that stress (sigma) is proportional to the strain (epsilon) where the constant of proportionality, E, is called the Young s modulus, also referred as the elastic modulus. Hook s Law can be rearranged to find the area of indentation (Area= Force/ E(epsilon)), where the indentation force is defined by the means of the added mass spring calibration method.

  7. Mechanical Properties of Aerogels

    NASA Technical Reports Server (NTRS)

    Parmenter, Kelly E.; Milstein, Frederick

    1995-01-01

    Aerogels are extremely low density solids that are characterized by a high porosity and pore sizes on the order of nanometers. Their low thermal conductivity and sometimes transparent appearance make them desirable for applications such as insulation in cryogenic vessels and between double paned glass in solar architecture. An understanding of the mechanical properties of aerogels is necessary before aerogels can be used in load bearing applications. In the present study, the mechanical behavior of various types of fiber-reinforced silica aerogels was investigated with hardness, compression, tension and shear tests. Particular attention was paid to the effects of processing parameters, testing conditions, storage environment, and age on the aerogels' mechanical response. The results indicate that the addition of fibers to the aerogel matrix generally resulted in softer, weaker materials with smaller elastic moduli. Furthermore, the testing environment significantly affected compression results. Tests in ethanol show an appreciable amount of scatter, and are not consistent with results for tests in air. In fact, the compression specimens appeared to crack and begin to dissolve upon exposure to the ethanol solution. This is consistent with the inherent hydrophobic nature of these aerogels. In addition, the aging process affected the aerogels' mechanical behavior by increasing their compressive strength and elastic moduli while decreasing their strain at fracture. However, desiccation of the specimens did not appreciably affect the mechanical properties, even though it reduced the aerogel density by removing trapped moisture. Finally, tension and shear test results indicate that the shear strength of the aerogels exceeds the tensile strength. This is consistent with the response of brittle materials. Future work should concentrate on mechanical testing at cryogenic temperatures, and should involve more extensive tensile tests. Moreover, before the mechanical response

  8. Mechanical Properties of Respiratory Muscles

    PubMed Central

    Sieck, Gary C.; Ferreira, Leonardo F.; Reid, Michael B.; Mantilla, Carlos B.

    2014-01-01

    Striated respiratory muscles are necessary for lung ventilation and to maintain the patency of the upper airway. The basic structural and functional properties of respiratory muscles are similar to those of other striated muscles (both skeletal and cardiac). The sarcomere is the fundamental organizational unit of striated muscles and sarcomeric proteins underlie the passive and active mechanical properties of muscle fibers. In this respect, the functional categorization of different fiber types provides a conceptual framework to understand the physiological properties of respiratory muscles. Within the sarcomere, the interaction between the thick and thin filaments at the level of cross-bridges provides the elementary unit of force generation and contraction. Key to an understanding of the unique functional differences across muscle fiber types are differences in cross-bridge recruitment and cycling that relate to the expression of different myosin heavy chain isoforms in the thick filament. The active mechanical properties of muscle fibers are characterized by the relationship between myoplasmic Ca2+ and cross-bridge recruitment, force generation and sarcomere length (also cross-bridge recruitment), external load and shortening velocity (cross-bridge cycling rate), and cross-bridge cycling rate and ATP consumption. Passive mechanical properties are also important reflecting viscoelastic elements within sarcomeres as well as the extracellular matrix. Conditions that affect respiratory muscle performance may have a range of underlying pathophysiological causes, but their manifestations will depend on their impact on these basic elemental structures. PMID:24265238

  9. Comparative acoustic performance and mechanical properties of silk membranes for the repair of chronic tympanic membrane perforations.

    PubMed

    Allardyce, Benjamin J; Rajkhowa, Rangam; Dilley, Rodney J; Xie, Zhigang; Campbell, Luke; Keating, Adrian; Atlas, Marcus D; von Unge, Magnus; Wang, Xungai

    2016-12-01

    The acoustic and mechanical properties of silk membranes of different thicknesses were tested to determine their suitability as a repair material for tympanic membrane perforations. Membranes of different thickness (10-100μm) were tested to determine their frequency response and their resistance to pressure loads in a simulated ear canal model. Their mechanical rigidity to pressure loads was confirmed by tensile testing. These membranes were tested alongside animal cartilage, currently the strongest available myringoplasty graft as well as paper, which is commonly used for simpler procedures. Silk membranes showed resonant frequencies within the human hearing range and a higher vibrational amplitude than cartilage, suggesting that silk may offer good acoustic energy transfer characteristics. Silk membranes were also highly resistant to simulated pressure changes in the middle ear, suggesting they can resist retraction, a common cause of graft failure resulting from chronic negative pressures in the middle ear. Part of this strength can be explained by the substantially higher modulus of silk films compared with cartilage. This allows for the production of films that are much thinner than cartilage, with superior acoustic properties, but that still provide the same level of mechanical support as thicker cartilage. Together, these in vitro results suggest that silk membranes may provide good hearing outcomes while offering similar levels of mechanical support to the reconstructed middle ear. PMID:27479895

  10. Woven TPS Mechanical Property Evaluation

    NASA Technical Reports Server (NTRS)

    Gonzales, Gregory Lewis; Kao, David Jan-Woei; Stackpoole, Margaret M.

    2013-01-01

    Woven Thermal Protection Systems (WTPS) is a relatively new program funded by the Office of the Chief Technologist (OCT). The WTPS approach to producing TPS architectures uses precisely engineered 3-D weaving techniques that allow tailoring material characteristics needed to meet specific mission requirements. A series of mechanical tests were performed to evaluate performance of different weave types, and get a better understanding of failure modes expected in these three-dimensional architectures. These properties will aid in material down selection and guide selection of the appropriate WTPS for a potential mission.

  11. Fluid-structure interaction numerical simulation of thermal performance and mechanical property on plate-fins heat exchanger

    NASA Astrophysics Data System (ADS)

    Zhang, Lingjie; Qian, Zuoqin; Deng, Jun; Yin, Yuting

    2015-09-01

    A numerical simulation and experimental study of heat transfer, fluid flow and fins mechanical property on plate-fin heat exchanger has been presented in this paper. The methods used in this study are experiment, CFD analysis, fluid-structure interaction and finite element method. An air-oil wind tunnel is established for this experiment. The temperature difference, pressure drop, streamlines are obtained in overall model, and the heat transfer coefficient, j/ f factor, temperature and stress distribution of plate-fin body are obtained in different fin thickness and fin offset. The prediction from the CFD simulation shows reasonably good agreement with the experimental results.

  12. Mechanical Properties of Silicon Nanowires.

    PubMed

    Sohn, Young-Soo; Park, Jinsung; Yoon, Gwonchan; Song, Jiseok; Jee, Sang-Won; Lee, Jung-Ho; Na, Sungsoo; Kwon, Taeyun; Eom, Kilho

    2009-10-27

    Nanowires have been taken much attention as a nanoscale building block, which can perform the excellent mechanical function as an electromechanical device. Here, we have performed atomic force microscope (AFM)-based nanoindentation experiments of silicon nanowires in order to investigate the mechanical properties of silicon nanowires. It is shown that stiffness of nanowires is well described by Hertz theory and that elastic modulus of silicon nanowires with various diameters from ~100 to ~600 nm is close to that of bulk silicon. This implies that the elastic modulus of silicon nanowires is independent of their diameters if the diameter is larger than 100 nm. This supports that finite size effect (due to surface effect) does not play a role on elastic behavior of silicon nanowires with diameter of >100 nm.

  13. Mechanical Properties of Silicon Nanowires

    PubMed Central

    2010-01-01

    Nanowires have been taken much attention as a nanoscale building block, which can perform the excellent mechanical function as an electromechanical device. Here, we have performed atomic force microscope (AFM)-based nanoindentation experiments of silicon nanowires in order to investigate the mechanical properties of silicon nanowires. It is shown that stiffness of nanowires is well described by Hertz theory and that elastic modulus of silicon nanowires with various diameters from ~100 to ~600 nm is close to that of bulk silicon. This implies that the elastic modulus of silicon nanowires is independent of their diameters if the diameter is larger than 100 nm. This supports that finite size effect (due to surface effect) does not play a role on elastic behavior of silicon nanowires with diameter of >100 nm. PMID:20652130

  14. Mechanical properties and in vivo performance of load-bearing fiber-reinforced composite intramedullary nails with improved torsional strength.

    PubMed

    Moritz, N; Strandberg, N; Zhao, D S; Mattila, R; Paracchini, L; Vallittu, P K; Aro, H T

    2014-12-01

    Fiber-reinforced composites (FRC) could be feasible materials for fracture fixation devices if the mechanical properties of the composites are congruent with the local structural properties of bone. In a recently developed FRC implant, bisphenol A dimethacrylate (BisGMA) and triethylene glycol dimethacrylate (TEGDMA) resin was reinforced with unidirectional E-glass fibers. The addition of a braided glass fiber sleeving to the unidirectional fibers increased the torsional strength (99.5MPa) of the FRC implants at the expense of the flexural strength (602.0MPa). The flexural modulus was 15.3GPa. Two types of FRC intramedullary nails were prepared; first type was FRC as such, second type was FRC with a surface layer of bioactive glass (BG) granules. Experimental oblong subtrochanteric defect was created in 14 rabbits. The defect, which reduced the torsional strength of the bones by 66%, was fixed with an FRC intramedullary nail of either type. The contralateral intact femur served as the control. This model simulated surgical stabilization of bone metastasis. After 12 weeks of follow-up, the femurs were harvested and analyzed by torsional testing, micro-CT and hard tissue histology. Healed undisplaced peri-implant fractures were noticed in half of the animals irrespective of the type of FRC implant. Torsional testing showed no significant differences between the implantation groups. The torsional strength of the bones stabilized by either type of FRC implant was 83% of that of the contralateral femurs. In histological analysis, no implant debris and no adverse tissue reactions were observed. While the mechanical properties of the modified FRCs were suboptimal, the FRC intramedullary nails supported the femurs without structural failure, even in the cases of peri-implant fractures. PMID:25222871

  15. Analytical, numerical, and experimental investigations on effective mechanical properties and performances of carbon nanotubes and nanotube based nanocomposites with novel three dimensional nanostructures

    NASA Astrophysics Data System (ADS)

    Askari, Davood

    The theoretical objectives and accomplishment of this work are the analytical and numerical investigation of material properties and mechanical behavior of carbon nanotubes (CNTs) and nanotube nanocomposites when they are subjected to various loading conditions. First, the finite element method is employed to investigate numerically the effective Young's modulus and Poisson's ratio of a single-walled CNT. Next, the effects of chirality on the effective Young's modulus and Poisson's ratio are investigated and then variations of their effective coefficient of thermal expansions and effective thermal conductivities are studied for CNTs with different structural configurations. To study the influence of small vacancy defects on mechanical properties of CNTs, finite element analyses are performed and the behavior of CNTs with various structural configurations having different types of vacancy defects is studied. It is frequently reported that nano-materials are excellent candidates as reinforcements in nanocomposites to change or enhance material properties of polymers and their nanocomposites. Second, the inclusion of nano-materials can considerably improve electrical, thermal, and mechanical properties of the bonding agent, i.e., resin. Note that, materials atomic and molecular level do not usually show isotropic behaviour, rather they have orthotropic properties. Therefore, two-phase and three-phase cylindrically orthotropic composite models consisting of different constituents with orthotropic properties are developed and introduced in this work to analytically predict the effective mechanical properties and mechanical behavior of such structures when they are subjected to various external loading conditions. To verify the analytically obtained exact solutions, finite element analyses of identical cylindrical structures are also performed and then results are compared with those obtained analytically, and excellent agreement is achieved. The third part of this

  16. Ionic supramolecular bonds preserve mechanical properties and enable synergetic performance at high humidity in water-borne, self-assembled nacre-mimetics

    NASA Astrophysics Data System (ADS)

    Das, Paramita; Walther, Andreas

    2013-09-01

    Although tremendous effort has been focused on enhancing the mechanical properties of nacre-mimetic materials, conservation of high stiffness and strength against hydration-induced decay of mechanical properties at high humidity remains a fundamental challenge in such water-borne high-performance materials. Herein, we demonstrate that ionic supramolecular bonds, introduced by infiltration of divalent Cu2+ ions, allow efficient stabilization of the mechanical properties of self-assembled water-borne nacre-mimetics based on sustainable sodium carboxymethylcellulose (Na+CMC) and natural sodium montmorillonite nanoclay (Na+MTM) against high humidity (95% RH). The mechanical properties in the highly hydrated state (Young's modulus up to 13.5 GPa and tensile strength up to 125 MPa) are in fact comparable to a range of non-crosslinked nacre-mimetic materials in the dry state. Moreover, the Cu2+-treated nacre-inspired materials display synergetic mechanical properties as found in a simultaneous improvement of stiffness, strength and toughness, as compared to the pristine material. Significant inelastic deformation takes place considering the highly reinforced state. This contrasts the typical behaviour of tight, covalent crosslinks and is suggested to originate from a sacrificial, dynamic breakage and rebinding of transient supramolecular ionic bonds. Considering easy access to a large range of ionic interactions and alteration of counter-ion charge via external stimuli, we foresee responsive and adaptive mechanical properties in highly reinforced and stiff bio-inspired bulk nanocomposites and in other bio-inspired materials, e.g. nanocellulose papers and peptide-based materials.Although tremendous effort has been focused on enhancing the mechanical properties of nacre-mimetic materials, conservation of high stiffness and strength against hydration-induced decay of mechanical properties at high humidity remains a fundamental challenge in such water-borne high-performance

  17. Correlating mechanical properties and anti-wear performance of tribofilms formed by ionic liquids, ZDDP and their combinations

    DOE PAGES

    Landauer, Alexander K.; Barnhill, William C.; Qu, Jun

    2016-03-10

    Here we examine the elasticity, hardness, and resistance-to-plastic-deformation (P/S2) measured via nanoindentation of several tribofilms and correlates these properties to friction and wear behavior. The tribofilms were generated by ball-on-plate reciprocating sliding lubricated by a base oil containing an ionic liquid, phosphonium-organophosphate or ammonium-organophosphate, zinc dialkyldithiophosphate (ZDDP), or combination of IL and ZDDP. Nanoindentation was conducted at room and elevated temperatures. While there seems little correlation between the tribofilm hardness and tribological behavior, a higher modulus generally leads to better friction and wear performance. Interestingly, a lower P/S2 ratio tends to reduce friction and improve wear protection, which is inmore » an opposite trend as reported for bulk materials. Ultimately, this is likely attributable to the dynamic, self-healing characteristics of tribofilms.« less

  18. Influence of the Mechanical Properties of Third-Generation Artificial Turf Systems on Soccer Players’ Physiological and Physical Performance and Their Perceptions

    PubMed Central

    Sánchez-Sánchez, Javier; García-Unanue, Jorge; Jiménez-Reyes, Pedro; Gallardo, Ana; Burillo, Pablo; Felipe, José Luis; Gallardo, Leonor

    2014-01-01

    The aim of this research was to evaluate the influence of the mechanical properties of artificial turf systems on soccer players’ performance. A battery of perceptive physiological and physical tests were developed on four different structural systems of artificial turf (System 1: Compacted gravel sub-base without elastic layer; System 2: Compacted gravel sub-base with elastic layer; System 3: Asphalt sub-base without elastic layer; System 4: Asphalt sub-base with elastic layer). The sample was composed of 18 soccer players (22.44±1.72 years) who typically train and compete on artificial turf. The artificial turf system with less rotational traction (S3) showed higher total time in the Repeated Sprint Ability test in comparison to the systems with intermediate values (49.46±1.75 s vs 47.55±1.82 s (S1) and 47.85±1.59 s (S2); p<0.001). The performance in jumping tests (countermovement jump and squat jump) and ball kicking to goal decreased after the RSA test in all surfaces assessed (p<0.05), since the artificial turf system did not affect performance deterioration (p>0.05). The physiological load was similar in all four artificial turf systems. However, players felt more comfortable on the harder and more rigid system (S4; visual analogue scale = 70.83±14.28) than on the softer artificial turf system (S2; visual analogue scale = 54.24±19.63). The lineal regression analysis revealed a significant influence of the mechanical properties of the surface of 16.5%, 15.8% and 7.1% on the mean time of the sprint, the best sprint time and the maximum mean speed in the RSA test respectively. Results suggest a mechanical heterogeneity between the systems of artificial turf which generate differences in the physical performance and in the soccer players’ perceptions. PMID:25354188

  19. Mechanical Properties of Crystalline Silicon Carbide Nanowires.

    PubMed

    Zhang, Huan; Ding, Weiqiang; Aidun, Daryush K

    2015-02-01

    In this paper, the mechanical properties of crystalline silicon carbide nanowires, synthesized with a catalyst-free chemical vapor deposition method, were characterized with nanoscale tensile testing and mechanical resonance testing methods inside a scanning electron microscope. Tensile testing of individual silicon carbide nanowire was performed to determine the tensile properties of the material including the tensile strength, failure strain and Young's modulus. The silicon carbide nanowires were also excited to mechanical resonance in the scanning electron microscope vacuum chamber using mechanical excitation and electrical excitation methods, and the corresponding resonance frequencies were used to determine the Young's modulus of the material according to the simple beam theory. The Young's modulus values from tensile tests were in good agreement with the ones obtained from the mechanical resonance tests.

  20. Mechanical properties of warped membranes.

    PubMed

    Košmrlj, Andrej; Nelson, David R

    2013-07-01

    We explore how a frozen background metric affects the mechanical properties of planar membranes with a shear modulus. We focus on a special class of "warped membranes" with a preferred random height profile characterized by random Gaussian variables h(q) in Fourier space with zero mean and variance <|h(q)|(2)>~q(-d(h)) and show that in the linear response regime the mechanical properties depend dramatically on the system size L for d(h)≥2. Membranes with d(h)=4 could be produced by flash polymerization of lyotropic smectic liquid crystals. Via a self-consistent screening approximation we find that the renormalized bending rigidity increases as κ(R)~L((d(h)-2)/2) for membranes of size L, while the Young and shear moduli decrease according to Y(R),μ(R)~L(-(d(h)-2)/2) resulting in a universal Poisson ratio. Numerical results show good agreement with analytically determined exponents.

  1. HDS catalysts performance and properties

    SciTech Connect

    Panarello, F.; Guanziroli, S.

    1995-12-31

    The European refiners are being asked to produce cleaner diesel fuel which might reduce engine emissions. To meet this requirement they have to increase the hydrotreatment capacity and to use the best catalysts in terms of activity and deactivation performances. In particular, Co-Mo on gamma-alumina catalysts are currently in use to reduce diesel sulfur content. In the past, different chemical-physical modifications have been studied in order to improve the catalysts performances, many theoretical correlations between one or more chemical-physical properties and activity have been suggested. We tested different Co-Mo catalysts in pilot plant units with various refinery streams and run length up to two thousand hours. We performed on fresh, exhausted and regenerated catalysts samples, elemental composition, surface properties, metal dispersion and metal distribution analyses. Among the various chemical-physical properties the metal distribution is the parameter that correlates in the most satisfactory way with the catalytic performances.

  2. Mechanical Property Data for Fiberboard

    SciTech Connect

    WILLIAM, daugherty

    2004-12-14

    The 9975 shipping package incorporates a cane fiberboard overpack for thermal insulation and impact resistance. Mechanical properties (tensile and compressive behavior) have been measured on cane fiberboard and a similar wood-based product following short-term conditioning in several temperature/humidity environments. Both products show similar trends, and vary in behavior with material orientation, temperature and humidity. A memory effect is also seen in that original strength values are only partially recovered following exposure to a degrading environment and return to ambient conditions.

  3. Mechanical Properties of Niobium Cavities

    SciTech Connect

    Ciovati, Gianluigi; Dhakal, Pashupati; Matalevich, Joseph R.; Myneni, Ganapati Rao

    2015-09-01

    The mechanical stability of bulk Nb cavity is an important aspect to be considered in relation to cavity material, geometry and treatments. Mechanical properties of Nb are typically obtained from uniaxial tensile tests of small samples. In this contribution we report the results of measurements of the resonant frequency and local strain along the contour of single-cell cavities made of ingot and fine-grain Nb of different purity subjected to increasing uniform differential pressure, up to 6 atm. Measurements have been done on cavities subjected to different heat treatments. Good agreement between finite element analysis simulations and experimental data in the elastic regime was obtained with a single set of values of Young’s modulus and Poisson’s ratio. The experimental results indicate that the yield strength of medium-purity ingot Nb cavities is higher than that of fine-grain, high-purity Nb.

  4. Mechanical properties of metal dihydrides

    DOE PAGES

    Schultz, Peter A.; Snow, Clark S.

    2016-02-04

    First-principles calculations are used to characterize the bulk elastic properties of cubic and tetragonal phase metal dihydrides,more » $$\\text{M}{{\\text{H}}_{2}}$$ {$$\\text{M}$$ = Sc, Y, Ti, Zr, Hf, lanthanides} to gain insight into the mechanical properties that govern the aging behavior of rare-earth di-tritides as the constituent 3H, tritium, decays into 3He. As tritium decays, helium is inserted in the lattice, the helium migrates and collects into bubbles, that then can ultimately create sufficient internal pressure to rupture the material. The elastic properties of the materials are needed to construct effective mesoscale models of the process of bubble growth and fracture. Dihydrides of the scandium column and most of the rare-earths crystalize into a cubic phase, while dihydrides from the next column, Ti, Zr, and Hf, distort instead into the tetragonal phase, indicating incipient instabilities in the phase and potentially significant changes in elastic properties. We report the computed elastic properties of these dihydrides, and also investigate the off-stoichiometric phases as He or vacancies accumulate. As helium builds up in the cubic phase, the shear moduli greatly soften, converting to the tetragonal phase. Conversely, the tetragonal phases convert very quickly to cubic with the removal of H from the lattice, while the cubic phases show little change with removal of H. Finally, the source and magnitude of the numerical and physical uncertainties in the modeling are analyzed and quantified to establish the level of confidence that can be placed in the computational results, and this quantified confidence is used to justify using the results to augment and even supplant experimental measurements.« less

  5. Mechanical properties of metal dihydrides

    NASA Astrophysics Data System (ADS)

    Schultz, Peter A.; Snow, Clark S.

    2016-03-01

    First-principles calculations are used to characterize the bulk elastic properties of cubic and tetragonal phase metal dihydrides, \\text{M}{{\\text{H}}2} {\\text{M}   =  Sc, Y, Ti, Zr, Hf, lanthanides} to gain insight into the mechanical properties that govern the aging behavior of rare-earth di-tritides as the constituent 3H, tritium, decays into 3He. As tritium decays, helium is inserted in the lattice, the helium migrates and collects into bubbles, that then can ultimately create sufficient internal pressure to rupture the material. The elastic properties of the materials are needed to construct effective mesoscale models of the process of bubble growth and fracture. Dihydrides of the scandium column and most of the rare-earths crystalize into a cubic phase, while dihydrides from the next column, Ti, Zr, and Hf, distort instead into the tetragonal phase, indicating incipient instabilities in the phase and potentially significant changes in elastic properties. We report the computed elastic properties of these dihydrides, and also investigate the off-stoichiometric phases as He or vacancies accumulate. As helium builds up in the cubic phase, the shear moduli greatly soften, converting to the tetragonal phase. Conversely, the tetragonal phases convert very quickly to cubic with the removal of H from the lattice, while the cubic phases show little change with removal of H. The source and magnitude of the numerical and physical uncertainties in the modeling are analyzed and quantified to establish the level of confidence that can be placed in the computational results, and this quantified confidence is used to justify using the results to augment and even supplant experimental measurements.

  6. Mechanical properties of crosslinked polymer coatings

    NASA Technical Reports Server (NTRS)

    Csernica, Jeffrey

    1994-01-01

    The objectives of this experiment are to: fabricate and test thin films to explore relations between a polymer's structure and its mechanical properties; expose students to testing methods for hardness and impact energy that are simple to perform and which have results that are easy to comprehend; show importance of polymer properties in materials that students frequently encounter; illustrate a system which displays a tradeoff between strength and impact resistance, the combination of which would need to be optimized for a particular application; and to expose students to coatings technology and testing.

  7. Mechanical performance of PPy helix tube microactuator

    NASA Astrophysics Data System (ADS)

    Bahrami Samani, Mehrdad; Spinks, Geoffrey M.; Cook, Christopher

    2004-02-01

    Conducting polymer actuators with favourable properties such as linearity, high power density and compliance are of increasing demand in micro applications. These materials generate forces over two times larger than produced by mammalian skeletal muscles. They operate to convert electro chemical energy to mechanical stress and strain. On the other hand, the application of conducting polymers is limited by the lack of a full description of the relation between four essential parameters: stress, strain, voltage and current. In this paper, polypyrrole helix tube micro actuator mechanical characteristics are investigated. The electrolyte is propylene carbonate and the dopant is TBA. PF6. The experiments are both in isotonic and isometric conditions and the input parameters are both electrical and mechanical. A dual mode force and length control and potentiostat / galvanostat are utilized for this purpose. Ultimately, the viscoelastic behaviour of the actuator is presented in this paper by a standard stress relaxation test. The effect of electrical stimulus on mechanical parameters is also explored by cyclic voltametry at different scan rates to obtain the best understanding of the actuation mechanism. The results demonstrate that the linear viscoelastic model, which performed well on conducting polymer film actuators, has to be modified to explain the mechanical behaviour of PPy helix tube fibre micro actuators. Secondly, the changes in mechanical properties of PPy need to be considered when modelling electromechanical behaviour.

  8. Mechanical Properties of Polymer Nano-composites

    NASA Astrophysics Data System (ADS)

    Srivastava, Iti

    Thermoset polymer composites are increasingly important in high-performance engineering industries due to their light-weight and high specific strength, finding cutting-edge applications such as aircraft fuselage material and automobile parts. Epoxy is the most widely employed thermoset polymer, but is brittle due to extensive cross-linking and notch sensitivity, necessitating mechanical property studies especially fracture toughness and fatigue resistance, to ameliorate the low crack resistance. Towards this end, various nano and micro fillers have been used with epoxy to form composite materials. Particularly for nano-fillers, the 1-100 nm scale dimensions lead to fascinating mechanical properties, oftentimes proving superior to the epoxy matrix. The chemical nature, topology, mechanical properties and geometry of the nano-fillers have a profound influence on nano-composite behavior and hence are studied in the context of enhancing properties and understanding reinforcement mechanisms in polymer matrix nano-composites. Using carbon nanotubes (CNTs) as polymer filler, uniquely results in both increased stiffness as well as toughness, leading to extensive research on their applications. Though CNTs-polymer nano-composites offer better mechanical properties, at high stress amplitude their fatigue resistance is lost. In this work covalent functionalization of CNTs has been found to have a profound impact on mechanical properties of the CNT-epoxy nano-composite. Amine treated CNTs were found to give rise to effective fatigue resistance throughout the whole range of stress intensity factor, in addition to significantly enhancing fracture toughness, ductility, Young's modulus and average hardness of the nano-composite by factors of 57%, 60%, 30% and 45% respectively over the matrix as a result of diminished localized cross-linking. Graphene, a one-atom-thick sheet of atoms is a carbon allotrope, which has garnered significant attention of the scientific community and is

  9. Mechanical properties of electron vortices

    NASA Astrophysics Data System (ADS)

    Lloyd, S. M.; Babiker, M.; Yuan, J.

    2013-09-01

    It is shown how the quantum mechanical mass flux and the electromagnetic fields of an electron Bessel vortex mode generate its intrinsic linear momentum and angular momentum properties. Although the corresponding volume density vectors due to the mass flux contain transverse vector components, their volume integrals are shown by explicit analysis to yield null results. The total linear and angular momenta are thus purely axial vectors. There are additional contributions associated with the vortex electric and magnetic fields and these too are shown to be purely axial vectors. Order of magnitude estimates are made in the context of a suggested experiment on the rotation of an optically levitated nanoparticle subject to an electron vortex.

  10. Mechanical Properties of Nanocrystal Supercrystals

    SciTech Connect

    Tam, Enrico; Podsiadlo, Paul; Shevchenko, Elena; Ogletree, D. Frank; Delplancke-Ogletree, Marie-Paule; Ashby, Paul D.

    2009-12-30

    Colloidal nanocrystals attract significant interest due to their potential applications in electronic, magnetic, and optical devices. Nanocrystal supercrystals (NCSCs) are particularly appealing for their well ordered structure and homogeneity. The interactions between organic ligands that passivate the inorganic nanocrystal cores critically influence their self-organization into supercrystals, By investigating the mechanical properties of supercrystals, we can directly characterize the particle-particle interactions in a well-defined geometry, and gain insight into both the self-assembly process and the potential applications of nanocrystal supercrystals. Here we report nanoindentation studies of well ordered lead-sulfide (Pbs) nanocrystal supercrystals. Their modulus and hardness were found to be similar to soft polymers at 1.7 GPa and 70 MPa respectively and the fractures toughness was 39 KPa/m1/2, revealing the extremely brittle nature of these materials.

  11. Mechanical Properties of Primary Cilia

    NASA Astrophysics Data System (ADS)

    Battle, Christopher; Schmidt, Christoph F.

    2013-03-01

    Recent studies have shown that the primary cilium, long thought to be a vestigial cellular appendage with no function, is involved in a multitude of sensory functions. One example, interesting from both a biophysical and medical standpoint, is the primary cilium of kidney epithelial cells, which acts as a mechanosensitive flow sensor. Genetic defects in ciliary function can cause, e.g., polycystic kidney disease (PKD). The material properties of these non-motile, microtubule-based 9 +0 cilia, and the way they are anchored to the cell cytoskeleton, are important to know if one wants to understand the mechano-electrochemical response of these cells, which is mediated by their cilia. We have probed the mechanical properties, boundary conditions, and dynamics of the cilia of MDCK cells using optical traps and DIC/fluorescence microscopy. We found evidence for both elastic relaxation of the cilia themselves after bending and for compliance in the intracellular anchoring structures. Angular and positional fluctuations of the cilia reflect both thermal excitations and cellular driving forces.

  12. Realization and performance of cryogenic selection mechanisms

    NASA Astrophysics Data System (ADS)

    Aitink-Kroes, Gabby; Bettonvil, Felix; Kragt, Jan; Elswijk, Eddy; Tromp, Niels

    2014-07-01

    Within Infra-Red large wavelength bandwidth instruments the use of mechanisms for selection of observation modes, filters, dispersing elements, pinholes or slits is inevitable. The cryogenic operating environment poses several challenges to these cryogenic mechanisms; like differential thermal shrinkage, physical property change of materials, limited use of lubrication, high feature density, limited space etc. MATISSE the mid-infrared interferometric spectrograph and imager for ESO's VLT interferometer (VLTI) at Paranal in Chile coherently combines the light from 4 telescopes. Within the Cold Optics Bench (COB) of MATISSE two concepts of selection mechanisms can be distinguished based on the same design principles: linear selection mechanisms (sliders) and rotating selection mechanisms (wheels).Both sliders and wheels are used at a temperature of 38 Kelvin. The selection mechanisms have to provide high accuracy and repeatability. The sliders/wheels have integrated tracks that run on small, accurately located, spring loaded precision bearings. Special indents are used for selection of the slider/wheel position. For maximum accuracy/repeatability the guiding/selection system is separated from the actuation in this case a cryogenic actuator inside the cryostat. The paper discusses the detailed design of the mechanisms and the final realization for the MATISSE COB. Limited lifetime and performance tests determine accuracy, warm and cold and the reliability/wear during life of the instrument. The test results and further improvements to the mechanisms are discussed.

  13. Mechanical properties of intra-ocular lenses

    NASA Astrophysics Data System (ADS)

    Ehrmann, Klaus; Kim, Eon; Parel, Jean-Marie

    2008-02-01

    Cataract surgery usually involves the replacement of the natural crystalline lens with a rigid or foldable intraocular lens to restore clear vision for the patient. While great efforts have been placed on optimising the shape and optical characteristics of IOLs, little is know about the mechanical properties of these devices and how they interact with the capsular bag once implanted. Mechanical properties measurements were performed on 8 of the most commonly implanted IOLs using a custom build micro tensometer. Measurement data will be presented for the stiffness of the haptic elements, the buckling resistance of foldable IOLs, the dynamic behaviour of the different lens materials and the axial compressibility. The biggest difference between the lens types was found between one-piece and 3-piece lenses with respect to the flexibility of the haptic elements

  14. Rhenium Mechanical Properties and Joining Technology

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.; Biaglow, James A.

    1996-01-01

    Iridium-coated rhenium (Ir/Re) provides thermal margin for high performance and long life radiation cooled rockets. Two issues that have arisen in the development of flight Ir/Re engines are the sparsity of rhenium (Re) mechanical property data (particularly at high temperatures) required for engineering design, and the inability to directly electron beam weld Re chambers to C103 nozzle skirts. To address these issues, a Re mechanical property database is being established and techniques for creating Re/C103 transition joints are being investigated. This paper discusses the tensile testing results of powder metallurgy Re samples at temperatures from 1370 to 2090 C. Also discussed is the evaluation of Re/C103 transition pieces joined by both, explosive and diffusion bonding. Finally, the evaluation of full size Re transition pieces, joined by inertia welding, as well as explosive and diffusion bonding, is detailed.

  15. Advanced Ceramics Property and Performance Measurements

    NASA Technical Reports Server (NTRS)

    Jenkins, Michael; Salem, Jonathan; Helfinstine, John; Quinn, George; Gonczy, Stephen

    2015-01-01

    Mechanical and physical properties of ceramic bodies can be difficult to measure correctly unless the proper techniques are used. The Advanced Ceramics Committee of ASTM, C-28, has developed dozens of consensus test standards and practices to measure various properties of a ceramic monolith, composite, or coating. The standards give the what, how, how not, and why for measurement of many mechanical, physical, thermal, and performance properties. Using these standards will provide accurate, reliable, and complete data for rigorous comparisons with other test results from your test lab, or another. The C-28 Committee has involved academics, producers, and users of ceramics to write and continually update more than 45 standards since the committees inception in 1986. Included in this poster is a pictogram of the C-28 standards and information on how to obtain individual copies with full details or the complete collection of all of the standards in one volume.

  16. Microstructure, mechanical properties and machining performance of hot-pressed Al2O3 - ZrO2 - TiC composites

    NASA Astrophysics Data System (ADS)

    Grigoriev, M.; Kotelnikov, N.; Buyakova, S.; Kulkov, S.

    2016-02-01

    The effect of adding nanocrystalline ZrO2 and submicron TiC to ultrafine Al2O3 on mechanical properties and the microstructure of the composites developed by hot pressing was investigated. It was shown that by means of hot pressing in an argon atmosphere at a sintering temperature of 1500 °C one can obtain the composites Al2O3 - ZrO2 - TiC with a fine structure and minimal porosity. It has been shown that in material a multi-scale hierarchical structure is formed, which possesses high physical and mechanical properties: the hardness and fracture toughness was 21.5 GPa and 5.2 MPa*m1/2 respectively, the modulus of elasticity was 500 GPa and bending strength was 390 MPa. Tests on composites’ cutting properties were carried out on interrupted cutting of hardened steel. All samples had wear of the cutting edge in the form of chips of the grain rear working surface of the tool, but the cutting tool which was made by Al2O3 - 10% ZrO2 - 10% TiC had a minimum width of wear.

  17. Design of monoliths through their mechanical properties.

    PubMed

    Podgornik, Aleš; Savnik, Aleš; Jančar, Janez; Krajnc, Nika Lendero

    2014-03-14

    Chromatographic monoliths have several interesting properties making them attractive supports for analytics but also for purification, especially of large biomolecules and bioassemblies. Although many of monolith features were thoroughly investigated, there is no data available to predict how monolith mechanical properties affect its chromatographic performance. In this work, we investigated the effect of porosity, pore size and chemical modification on methacrylate monolith compression modulus. While a linear correlation between pore size and compression modulus was found, the effect of porosity was highly exponential. Through these correlations it was concluded that chemical modification affects monolith porosity without changing the monolith skeleton integrity. Mathematical model to describe the change of monolith permeability as a function of monolith compression modulus was derived and successfully validated for monoliths of different geometries and pore sizes. It enables the prediction of pressure drop increase due to monolith compressibility for any monolith structural characteristics, such as geometry, porosity, pore size or mobile phase properties like viscosity or flow rate, based solely on the data of compression modulus and structural data of non-compressed monolith. Furthermore, it enables simple determination of monolith pore size at which monolith compressibility is the smallest and the most robust performance is expected. Data of monolith compression modulus in combination with developed mathematical model can therefore be used for the prediction of monolith permeability during its implementation but also to accelerate the design of novel chromatographic monoliths with desired hydrodynamic properties for particular application.

  18. Mechanisms to improve the mechanical performance of surgical gloves

    NASA Astrophysics Data System (ADS)

    Watkins, Michelle Hoyt

    1997-11-01

    The use of gloves as a barrier to cross infection in the medical industry has increased substantially due to the heightened awareness of viral transmission, especially the human immunodeficiency virus and the hepatitis B virus. The glove must allow for tactile sensation, comfort and long use times, while providing equally critical mechanical performance. The majority of surgical gloves are made of natural rubber latex which do not give a critical level of cut-resistance or puncture-resistance. Natural rubber latex gloves are also known to cause latex allergy with hypersensitivity reactions ranging from mild skin rashes to more severe bronchial asthma, anaphylactic reactions, and even death. It has been postulated natural rubber latex (NRL) proteins cause these allergic reactions. The research that has been conducted comprises two approaches that have been explored for improving the cut-resistance of surgical gloves. The first method involves an integral fiber-latex structure that possesses the combination of high reversible extensibility, barrier performance and retention of tactile sense. Improvement in mechanical properties in excess of 85% has been achieved as well as an improvement in cut-resistance. The second method involves the incorporation of a low concentration of ultra high molecular weight (UHMW) polyacrylamide. Although the initial premise for using a UHMW polymer was that it would bridge the latex compound particulates to improve strength, an entirely different mechanism for the enhancement of strength was explored through a parallel investigation of the release of proteins from cured natural rubber. However, no mechanism was conclusively identified. To address the allergy aspects of NRL, a thorough examination of the release of naturally-occurring latex proteins from cured natural rubber latex glove material was conducted in order to identify mechanisms for eliminating and/or reducing the potential allergens. The initial study examined the release of

  19. Investigation of Mechanical Properties and Interfacial Mechanics of Crystalline Nanomaterials

    NASA Astrophysics Data System (ADS)

    Qin, Qingquan

    Nanowires (NWs) and nanotubes (NTs) are critical building blocks of nanotechnologies. The operation and reliability of these nanomaterials based devices depend on their mechanical properties of the nanomaterials, which is therefore important to accurately measure the mechanical properties. Besides, the NW--substrate interfaces also play a critical role in both mechanical reliability and electrical performance of these nanodevices, especially when the size of the NW is small. In this thesis, we focus on the mechanical properties and interface mechanics of three important one dimensional (1D) nanomaterials: ZnO NWs, Ag NWs and Si NWs. For the size effect study, this thesis presents a systematic experimental investigation on the elastic and failure properties of ZnO NWs under different loading modes: tension and buckling. Both tensile modulus (from tension) and bending modulus (from buckling) were found to increase as the NW diameter decreased from 80 to 20 nm. The elastic modulus also shows loading mode dependent; the bending modulus increases more rapidly than the tensile modulus. The tension experiments showed that fracture strain and strength of ZnO NWs increase as the NW diameter decrease. A resonance testing setup was developed to measure elastic modulus of ZnO NWs to confirm the loading mode dependent effect. A systematic study was conducted on the effect of clamping on resonance frequency and thus measured Young's modulus of NWs via a combined experiment and simulation approach. A simple scaling law was provided as guidelines for future designs to accurate measure elastic modulus of a cantilevered NW using the resonance method. This thesis reports the first quantitative measurement of a full spectrum of mechanical properties of five-fold twinned Ag NWs including Young's modulus, yield strength and ultimate tensile strength. In situ tensile testing of Ag NWs with diameters between 34 and 130 nm was carried out inside a SEM. Young's modulus, yield strength and

  20. Enhancement of mechanical properties of 123 superconductors

    DOEpatents

    Balachandran, U.

    1995-04-25

    A composition and method are disclosed of preparing YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} superconductor. Addition of tin oxide containing compounds to YBCO superconductors results in substantial improvement of fracture toughness and other mechanical properties without affect on T{sub c}. About 5-20% additions give rise to substantially improved mechanical properties.

  1. Enhancement of mechanical properties of 123 superconductors

    DOEpatents

    Balachandran, Uthamalingam

    1995-01-01

    A composition and method of preparing YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor. Addition of tin oxide containing compounds to YBCO superconductors results in substantial improvement of fracture toughness and other mechanical properties without affect on T.sub.c. About 5-20% additions give rise to substantially improved mechanical properties.

  2. Influence of liquid lubricant properties on their performance

    NASA Technical Reports Server (NTRS)

    Wedeven, V.

    1972-01-01

    The influence of lubricant properties on performance is considered in connection with various mechanisms of lubrication. The effects of temperature and pressure on viscosity, which is important in hydrodynamic and elastohydrodynamic lubrication, is presented using a correlation postulated by Roelands. Under elastohydrodynamic conditions it is important to distinguish between the influence of lubricant properties within the inlet region and the Hertz region since each performs different functions. The role of lubricant transport properties such as surface tension is considered in connection with lubricant starvation. Since the lubrication of practical surfaces usually involves boundary as well as hydrodynamic mechanisms, both the chemical and physical properties significantly influence the lubricant's performance.

  3. Mechanical Properties of Nanoceramic Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Ojo, Ipidapo; Abunaemeh, Malek; Smith, Cydale; Muntele, Claudiu; Ila, Daryush

    2009-03-01

    Generation IV nuclear reactors will use the TRISO fuels, a type of micro fuel particle. It consists of a fuel kernel coated with four layers of isotropic material. One of the materials considered for these layers is silicon carbide ceramic. This lightweight material can maintain chemical and dimensional stability in adverse environments at very high temperatures up to 3000 C, and it is chemically inert. It is widely used as a semiconductor material in electronics because of its high thermo conductivity, high electric field break down strength, and high maximum current density, which makes it more desirable than silicon. Silicon carbide has a very low coefficient of thermal expansion and has no phase transition that would discontinue its thermal expansion. At the Center for Irradiation of Materials (C.I.M.) we are developing a new fabrication process for nanopowdered silicon carbide for TRISO fuel coating purposes. We also study the mechanical properties of the material produced. Among the different test being performed are particle induced X-ray emission (PIXE) an Rutherford backscattering spectroscopy (RBS). The mechanical properties of interest are hardness (measured by Vickers Hardness machine), toughness (measured by the Anstis equation, KIC= 1.6 x 10-2(E/H)^1/2(P/C0^3/2, where P=load, C0=crack length, E=Young's modulus and H=Vickers Hardness), tensile strength and flexural strength (measured by a three point bend test). Results will be presented during the meeting.

  4. Mechanical properties of C-5 epimerized alginates.

    PubMed

    Mørch, Y A; Holtan, S; Donati, I; Strand, B L; Skjåk-Braek, G

    2008-09-01

    There is an increased need for alginate materials with both enhanced and controllable mechanical properties in the fields of food, pharmaceutical and specialty applications. In the present work, well-characterized algal polymers and mannuronan were enzymatically modified using C-5 epimerases converting mannuronic acid residues to guluronic acid in the polymer chain. Composition and sequential structure of controls and epimerized alginates were analyzed by (1)H NMR spectroscopy. Mechanical properties of Ca-alginate gels were further examined giving Young's modulus, syneresis, rupture strength, and elasticity of the gels. Both mechanical strength and elasticity of hydrogels could be improved and manipulated by epimerization. In particular, alternating sequences were found to play an important role for the final mechanical properties of alginate gels, and interestingly, a pure polyalternating sample resulted in gels with extremely high syneresis and rupture strength. In conclusion, enzymatic modification was shown to be a valuable tool in modifying the mechanical properties of alginates in a highly specific manner.

  5. Mechanical performance of disposable surgical needle holders.

    PubMed

    Francis, E H; Towler, M A; Moody, F P; McGregor, W; Himel, H N; Rodeheaver, G T; Edlich, R F

    1992-01-01

    The mechanical performance of disposable Webster surgical needle holders supplied by three different surgical instrument companies was determined by recording the forces (clamping moment) applied by the different needle holder jaws to curved surgical needles. This investigation demonstrated that there was a large variability in the mechanical performance of the disposable needle holders supplied by each surgical instrument company. In addition, the mechanical performance of the disposable needle holder of each surgical instrument company was distinctly different.

  6. Mechanical properties of cells and ageing.

    PubMed

    Starodubtseva, Maria N

    2011-01-01

    Mechanical properties are fundamental properties of the cells and tissues of living organisms. The mechanical properties of a single cell as a biocomposite are determined by the interdependent combination of cellular components mechanical properties. Quantitative estimate of the cell mechanical properties depends on a cell state, method of measurement, and used theoretical model. Predominant tendency for the majority of cells with ageing is an increase of cell stiffness and a decrease of cell ability to undergo reversible large deformations. The mechanical signal transduction in old cells becomes less effective than that in young cells, and with ageing, the cells lose the ability of the rapid functional rearrangements of cellular skeleton. The article reviews the theoretical and experimental facts touching the age-related changes of the mechanical properties of cellular components and cells in the certain systems of an organism (the blood, the vascular system, the musculoskeletal system, the lens, and the epithelium). In fact, the cell mechanical parameters (including elastic modulii) can be useful as specific markers of cell ageing.

  7. Mechanical properties of low dimensional materials

    NASA Astrophysics Data System (ADS)

    Saini, Deepika

    Recent advances in low dimensional materials (LDMs) have paved the way for unprecedented technological advancements. The drive to reduce the dimensions of electronics has compelled researchers to devise newer techniques to not only synthesize novel materials, but also tailor their properties. Although micro and nanomaterials have shown phenomenal electronic properties, their mechanical robustness and a thorough understanding of their structure-property relationship are critical for their use in practical applications. However, the challenges in probing these mechanical properties dramatically increase as their dimensions shrink, rendering the commonly used techniques inadequate. This dissertation focuses on developing techniques for accurate determination of elastic modulus of LDMs and their mechanical responses under tensile and shear stresses. Fibers with micron-sized diameters continuously undergo tensile and shear deformations through many phases of their processing and applications. Significant attention has been given to their tensile response and their structure-tensile properties relations are well understood, but the same cannot be said about their shear responses or the structure-shear properties. This is partly due to the lack of appropriate instruments that are capable of performing direct shear measurements. In an attempt to fill this void, this dissertation describes the design of an inexpensive tabletop instrument, referred to as the twister, which can measure the shear modulus (G) and other longitudinal shear properties of micron-sized individual fibers. An automated system applies a pre-determined twist to the fiber sample and measures the resulting torque using a sensitive optical detector. The accuracy of the instrument was verified by measuring G for high purity copper and tungsten fibers. Two industrially important fibers, IM7 carbon fiber and KevlarRTM 119, were found to have G = 17 and 2.4 GPa, respectively. In addition to measuring the shear

  8. Microstructure and mechanical properties of sheep horn.

    PubMed

    Zhu, Bing; Zhang, Ming; Zhao, Jian

    2016-07-01

    The sheep horn presents outstanding mechanical properties of impact resistance and energy absorption, which suits the need of the vehicle bumper design, but the mechanism behind this phenomenon is less investigated. The microstructure and mechanical properties of the sheep horn of Small Tailed Han Sheep (Ovis aries) living in northeast China were investigated in this article. The effect of sampling position and orientation of the sheep horn sheath on mechanical properties were researched by tensile and compression tests. Meanwhile, the surface morphology and microstructure of the sheep horn were observed using scanning electron microscopy (SEM). The formation mechanism of the mechanical properties of the sheep horn was investigated by biological coupling analysis. The analytical results indicated that the outstanding mechanical properties of the sheep horn are determined by configuration, structure, surface morphology and material coupling elements. These biological coupling elements make the sheep horn possess super characteristics of crashworthiness and energy absorption through the internal coupling mechanism. We suppose that these findings would make a difference in vehicle bumper design. Microsc. Res. Tech. 79:664-674, 2016. © 2016 Wiley Periodicals, Inc.

  9. Microstructure and mechanical properties of sheep horn.

    PubMed

    Zhu, Bing; Zhang, Ming; Zhao, Jian

    2016-07-01

    The sheep horn presents outstanding mechanical properties of impact resistance and energy absorption, which suits the need of the vehicle bumper design, but the mechanism behind this phenomenon is less investigated. The microstructure and mechanical properties of the sheep horn of Small Tailed Han Sheep (Ovis aries) living in northeast China were investigated in this article. The effect of sampling position and orientation of the sheep horn sheath on mechanical properties were researched by tensile and compression tests. Meanwhile, the surface morphology and microstructure of the sheep horn were observed using scanning electron microscopy (SEM). The formation mechanism of the mechanical properties of the sheep horn was investigated by biological coupling analysis. The analytical results indicated that the outstanding mechanical properties of the sheep horn are determined by configuration, structure, surface morphology and material coupling elements. These biological coupling elements make the sheep horn possess super characteristics of crashworthiness and energy absorption through the internal coupling mechanism. We suppose that these findings would make a difference in vehicle bumper design. Microsc. Res. Tech. 79:664-674, 2016. © 2016 Wiley Periodicals, Inc. PMID:27184115

  10. Mechanical deformation mechanisms and properties of amyloid fibrils.

    PubMed

    Choi, Bumjoon; Yoon, Gwonchan; Lee, Sang Woo; Eom, Kilho

    2015-01-14

    Amyloid fibrils have recently received attention due to their remarkable mechanical properties, which are highly correlated with their biological functions. We have studied the mechanical deformation mechanisms and properties of amyloid fibrils as a function of their length scales by using atomistic simulations. It is shown that the length of amyloid fibrils plays a role in their deformation and fracture mechanisms in such a way that the competition between shear and bending deformations is highly dependent on the fibril length, and that as the fibril length increases, so does the bending strength of the fibril while its shear strength decreases. The dependence of rupture force for amyloid fibrils on their length is elucidated using the Bell model, which suggests that the rupture force of the fibril is determined from the hydrogen bond rupture mechanism that critically depends on the fibril length. We have measured the toughness of amyloid fibrils, which is shown to depend on the fibril length. In particular, the toughness of the fibril with its length of ∼3 nm is estimated to be ∼30 kcal mol(-1) nm(-3), comparable to that of a spider silk crystal with its length of ∼2 nm. Moreover, we have shown the important effect of the pulling rate on the mechanical deformation mechanisms and properties of amyloid fibril. It is found that as the pulling rate increases, so does the contribution of the shear effect to the elastic deformation of the amyloid fibril with its length of <10 nm. However, we found that the deformation mechanism of the amyloid fibril with its length of >15 nm is almost independent of the pulling rate. Our study sheds light on the role of the length scale of amyloid fibrils and the pulling rate in their mechanical behaviors and properties, which may provide insights into how the excellent mechanical properties of protein fibrils can be determined. PMID:25426573

  11. Mechanical properties of low tantalum alloys

    NASA Technical Reports Server (NTRS)

    Kortovich, C. S.

    1982-01-01

    The mechanical property behavior of equiaxed cast B-1900 + Hf alloy as a function of tantalum content was studied. Tensile and stress rupture characterization was conducted on cast to size test bars containing tantalum at the 4.3% (standard level), 2.2% and 0% levels. Casting parameters were selected to duplicate conditions used to prepare test specimens for master metal heat qualification. The mechanical property results as well as results of microstructural/phase analysis of failed test bars are presented.

  12. Some Mechanical Properties of Austempered Ductile Iron

    NASA Astrophysics Data System (ADS)

    Waanders, F. B.; Vorster, S. W.; Vorster, M. J.

    1998-12-01

    In the present investigation the influence of the microstructure, obtained after an austempering treatment in a "process window", on the mechanical properties of austempered ductile iron has been investigated. These properties include tensile strength, elongation and hardness. Conversion electron Mössbauer spectra (CEMS) were measured, after heat treatment.

  13. Bioinspired layered materials with superior mechanical performance.

    PubMed

    Cheng, Qunfeng; Jiang, Lei; Tang, Zhiyong

    2014-04-15

    Nature has inspired researchers to construct structures with ordered layers as candidates for new materials with high mechanical performance. As a prominent example, nacre, also known as mother of pearl, consists of a combination of inorganic plates (aragonite calcium carbonate, 95% by volume) and organic macromolecules (elastic biopolymer, 5% by volume) and shows a unique combination of strength and toughness. Investigations of its structure reveal that the hexagonal platelets of calcium carbonate and the amorphous biopolymer are alternatively assembled into the orderly layered structure. The delicate interface between the calcium carbonate and the biopolymer is well defined. Both the building blocks that make up these assembled layers and the interfaces between the inorganic and organic components contribute to the excellent mechanical property of natural nacre. In this Account, we summarize recent research from our group and from others on the design of bioinspired materials composed by layering various primitive materials. We focus particular attention on nanoscale carbon materials. Using several examples, we describe how the use of different combinations of layered materials leads to particular properties. Flattened double-walled carbon nanotubes (FDWCNTs) covalently cross-linked in a thermoset three-dimensional (3D) network produced the materials with the highest strength. The stiffest layered materials were generated from borate orthoester covalent bonding between adjacent graphene oxide (GO) nanosheets, and the toughest layered materials were fabricated with Al2O3 platelets and chitosan via hydrogen bonding. These new building blocks, such as FDWCNTs and GO, and the replication of the elaborate micro-/nanoscale interface of natural nacre have provided many options for developing new high performance artificial materials. The interface designs for bioinspired layered materials are generally categorized into (1) hydrogen bonding, (2) ionic bonding, and (3

  14. Thigmomorphogenesis: on the mechanical properties of mechanically perturbed bean plants.

    PubMed

    Jaffe, M J; Telewski, F W; Cooke, P W

    1984-01-01

    The mechanical properties of control and mechanically perturbed (MP) bean stems (Phaseolus vulgaris L., cv. Cherokee wax) were compared. The rubbed plants were greatly hardened against mechanical rupture by previous MP. This hardening was due to a dramatic increase in the flexibility of the stems, but not in their stiffness. The MP-plants were able to bend more than 90 degree without breaking, whereas the control plants broke after just slight bending. A comparison with other work reveals that different species utilize different tactics for achieving similar resistance to rupture due to mechanical stress. PMID:11540788

  15. Mechanical properties of different airway stents.

    PubMed

    Ratnovsky, Anat; Regev, Noa; Wald, Shaily; Kramer, Mordechai; Naftali, Sara

    2015-04-01

    Airway stents improve pulmonary function and quality of life in patients suffering from airway obstruction. The aim of this study was to compare main types of stents (silicone, balloon-dilated metal, self-expanding metal, and covered self-expanding metal) in terms of their mechanical properties and the radial forces they exert on the trachea. Mechanical measurements were carried out using a force gauge and specially designed adaptors fabricated in our lab. Numerical simulations were performed for eight different stent geometries, inserted into trachea models. The results show a clear correlation between stent diameter (oversizing) and the levels of stress it exerts on the trachea. Compared with uncovered metal stents, metal stents that are covered with less stiff material exert significantly less stress on the trachea while still maintaining strong contact with it. The use of such stents may reduce formation of mucosa necrosis and fistulas while still preventing stent migration. Silicone stents produce the lowest levels of stress, which may be due to weak contact between the stent and the trachea and can explain their propensity for migration. Unexpectedly, stents made of the same materials exerted different stresses due to differences in their structure. Stenosis significantly increases stress levels in all stents.

  16. Alberta's Performance-Based Funding Mechanism.

    ERIC Educational Resources Information Center

    Barnetson, Bob

    This paper provides an overview of the performance indicator-based accountability and funding mechanism implemented in the higher education system of Alberta, Canada. The paper defines the terms accountability and regulation, examines the use of performance indicators to demonstrate accountability, and explains how performance indicator-based…

  17. Mechanical Properties of Continuous Fiber Reinforced Zirconium Diboride Matrix Composites

    NASA Technical Reports Server (NTRS)

    Stuffle, Kevin; Creegan, Peter; Nowell, Steven; Bull, Jeffrey D.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    Continuous fiber reinforced zirconium diboride matrix composites, SCS-9a-(RBSiCZrB2)matrix, are being developed for leading edge, rocket nozzle and turbine engine applications. Recently, the composite materials have been characterized for tensile properties to 1250 C, the highest temperature tested. The tensile properties are fiber dominated as the matrix is microcracked on fabrication, but favorable failure characteristic are observed. Compression and shear mechanical testing results will be reported if completed. The effects of fiber volume fraction and matrix density on mechanical properties will be discussed. The target applications of the materials will be discussed. Specific testing being performed towards qualification for these applications will be included.

  18. The mechanical properties of FeAl

    SciTech Connect

    Baker, I.; George, E.P.

    1996-12-31

    Only in the last few years has progress been made in obtaining reproducible mechanical properties data for FeAl. Two sets of observations are the foundation of this progress. The first is that the large vacancy concentrations that exist in FeAl at high temperature are easily retained at low temperature and that these strongly affect the low-temperature mechanical properties. The second is that RT ductility is adversely affected by water vapor. Purpose of this paper is not to present a comprehensive overview of the mechanical properties of FeAl but rather to highlight our understanding of key phenomena and to show how an understanding of the factors which control the yield strength and fracture behavior has followed the discovery of the above two effects. 87 refs, 9 figs.

  19. Physical and mechanical properties of hemp seed

    NASA Astrophysics Data System (ADS)

    Taheri-Garavand, A.; Nassiri, A.; Gharibzahedi, S.

    2012-04-01

    The current study was conducted to investigate the effect of moisture content on the post-harvest physical and mechanical properties of hemp seed in the range of 5.39 to 27.12% d.b. Results showed that the effect of moisture content on the most physical properties of the grain was significant (P<0.05). The results of mechanical tests demonstrated that the effect of loading rate on the mechanical properties of hemp seed was not significant. However, the moisture content effect on rupture force and energy was significant (P<0.01). The lowest value of rupture force was obtained at the highest loading rate (3mm min-1)and in the moisture content of 27.12% d.b. Moreover, the interaction effects of loading rate and moisture content on the rupture force and energy of hemp seed were significant (P<0.05).

  20. Mechanical property characterization of polymeric composites reinforced by continuous microfibers

    NASA Astrophysics Data System (ADS)

    Zubayar, Ali

    moduli, and Poisson's ratios) from the numerical solutions of the RVEs undergone these three load tests. Validation of the obtained micro-scale mechanical properties will be performed using rule of mixture (ROM), 1st, and 2nd order of the mathematical model and experimental data.

  1. Stainless Steel Microstructure and Mechanical Properties Evaluation

    SciTech Connect

    Switzner, Nathan T

    2010-06-01

    A nitrogen strengthened 21-6-9 stainless steel plate was spinformed into hemispherical test shapes. A battery of laboratory tests was used to characterize the hemispheres. The laboratory tests show that near the pole (axis) of a spinformed hemisphere the yield strength is the lowest because this area endures the least “cold-work” strengthening, i.e., the least deformation. The characterization indicated that stress-relief annealing spinformed stainless steel hemispheres does not degrade mechanical properties. Stress-relief annealing reduces residual stresses while maintaining relatively high mechanical properties. Full annealing completely eliminates residual stresses, but reduces yield strength by about 30%.

  2. Mechanical Properties of Ingot Nb Cavities

    SciTech Connect

    Ciovati, Gianluigi; Dhakal, Pashupati; Kneisel, Peter; Mammosser, John; Matalevich, Joseph; Rao Myneni, Ganapati

    2014-07-01

    This contribution presents the results of measurements of the resonant frequency and of strain along the contour of a single-cell cavity made of ingot Nb subjected to increasing uniform differential pressure, up to 6 atm. The data were used to infer mechanical properties of this material after cavity fabrication, by comparison with the results from simulation calculations done with ANSYS. The objective is to provide useful information about the mechanical properties of ingot Nb cavities which can be used in the design phase of SRF cavities intended to be built with this material.

  3. Diesel Mechanics. Performance Objectives. Basic Course.

    ERIC Educational Resources Information Center

    Tidwell, Joseph

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 12 terminal objectives for a basic diesel mechanics course. The course is designed as a two-semester (2 hour daily) course for 10th graders interested in being diesel service and repair mechanics; it would serve as the first year of a 3-year…

  4. Mechanical Properties Of Large Sodium Iodide Crystals

    NASA Technical Reports Server (NTRS)

    Lee, Henry M.

    1988-01-01

    Report presents data on mechanical properties of large crystals of thallium-doped sodium iodide. Five specimens in shape of circular flat plates subjected to mechanical tests. Presents test results for each specimen as plots of differential pressure versus center displacement and differential pressure versus stress at center. Also tabulates raw data. Test program also developed procedure for screening candidate crystals for gamma-ray sensor. Procedure eliminates potentially weak crystals before installed and ensures material yielding kept to minimum.

  5. Laminar Tendon Composites with Enhanced Mechanical Properties

    PubMed Central

    Alberti, Kyle A.; Sun, Jeong-Yun; Illeperuma, Widusha R.; Suo, Zhigang; Xu, Qiaobing

    2015-01-01

    Purpose A strong isotropic material that is both biocompatible and biodegradable is desired for many biomedical applications, including rotator cuff repair, tendon and ligament repair, vascular grafting, among others. Recently, we developed a technique, called “bioskiving” to create novel 2D and 3D constructs from decellularized tendon, using a combination of mechanical sectioning, and layered stacking and rolling. The unidirectionally aligned collagen nanofibers (derived from sections of decellularized tendon) offer good mechanical properties to the constructs compared with those fabricated from reconstituted collagen. Methods In this paper, we studied the effect that several variables have on the mechanical properties of structures fabricated from tendon slices, including crosslinking density and the orientation in which the fibers are stacked. Results We observed that following stacking and crosslinking, the strength of the constructs is significantly improved, with crosslinked sections having an ultimate tens ile strength over 20 times greater than non-crosslinked samples, and a modulus nearly 50 times higher. The mechanism of the mechanical failure mode of the tendon constructs with or without crosslinking was also investigated. Conclusions The strength and fiber organization, combined with the ability to introduce transversely isotropic mechanical properties makes the laminar tendon composites a biocompatiable material that may find future use in a number of biomedical and tissue engineering applications. PMID:25691802

  6. Mechanical properties of thermal protection system materials.

    SciTech Connect

    Hardy, Robert Douglas; Bronowski, David R.; Lee, Moo Yul; Hofer, John H.

    2005-06-01

    An experimental study was conducted to measure the mechanical properties of the Thermal Protection System (TPS) materials used for the Space Shuttle. Three types of TPS materials (LI-900, LI-2200, and FRCI-12) were tested in 'in-plane' and 'out-of-plane' orientations. Four types of quasi-static mechanical tests (uniaxial tension, uniaxial compression, uniaxial strain, and shear) were performed under low (10{sup -4} to 10{sup -3}/s) and intermediate (1 to 10/s) strain rate conditions. In addition, split Hopkinson pressure bar tests were conducted to obtain the strength of the materials under a relatively higher strain rate ({approx}10{sup 2} to 10{sup 3}/s) condition. In general, TPS materials have higher strength and higher Young's modulus when tested in 'in-plane' than in 'through-the-thickness' orientation under compressive (unconfined and confined) and tensile stress conditions. In both stress conditions, the strength of the material increases as the strain rate increases. The rate of increase in LI-900 is relatively small compared to those for the other two TPS materials tested in this study. But, the Young's modulus appears to be insensitive to the different strain rates applied. The FRCI-12 material, designed to replace the heavier LI-2200, showed higher strengths under tensile and shear stress conditions. But, under a compressive stress condition, LI-2200 showed higher strength than FRCI-12. As far as the modulus is concerned, LI-2200 has higher Young's modulus both in compression and in tension. The shear modulus of FRCI-12 and LI-2200 fell in the same range.

  7. Probing cell mechanical properties with microfluidic devices

    NASA Astrophysics Data System (ADS)

    Rowat, Amy

    2012-02-01

    Exploiting flow on the micron-scale is emerging as a method to probe cell mechanical properties with 10-1000x advances in throughput over existing technologies. The mechanical properties of cells and the cell nucleus are implicated in a wide range of biological contexts: for example, the ability of white blood cells to deform is central to immune response; and malignant cells show decreased stiffness compared to benign cells. We recently developed a microfluidic device to probe cell and nucleus mechanical properties: cells are forced to deform through a narrow constrictions in response to an applied pressure; flowing cells through a series of constrictions enables us to probe the ability of hundreds of cells to deform and relax during flow. By tuning the constriction width so it is narrower than the width of the cell nucleus, we can specifically probe the effects of nuclear physical properties on whole cell deformability. We show that the nucleus is the rate-limiting step in cell passage: inducing a change in its shape to a multilobed structure results in cells that transit more quickly; increased levels of lamin A, a nuclear protein that is key for nuclear shape and mechanical stability, impairs the passage of cells through constrictions. We are currently developing a new class of microfluidic devices to simultaneously probe the deformability of hundreds of cell samples in parallel. Using the same soft lithography techniques, membranes are fabricated to have well-defined pore distribution, width, length, and tortuosity. We design the membranes to interface with a multiwell plate, enabling simultaneous measurement of hundreds of different samples. Given the wide spectrum of diseases where altered cell and nucleus mechanical properties are implicated, such a platform has great potential, for example, to screen cells based on their mechanical phenotype against a library of drugs.

  8. Lithophysal Rock Mass Mechanical Properties of the Repository Host Horizon

    SciTech Connect

    D. Rigby

    2004-11-10

    The purpose of this calculation is to develop estimates of key mechanical properties for the lithophysal rock masses of the Topopah Spring Tuff (Tpt) within the repository host horizon, including their uncertainties and spatial variability. The mechanical properties to be characterized include an elastic parameter, Young's modulus, and a strength parameter, uniaxial compressive strength. Since lithophysal porosity is used as a surrogate property to develop the distributions of the mechanical properties, an estimate of the distribution of lithophysal porosity is also developed. The resulting characterizations of rock parameters are important for supporting the subsurface design, developing the preclosure safety analysis, and assessing the postclosure performance of the repository (e.g., drift degradation and modeling of rockfall impacts on engineered barrier system components).

  9. A simple auxetic tubular structure with tuneable mechanical properties

    NASA Astrophysics Data System (ADS)

    Ren, Xin; Shen, Jianhu; Ghaedizadeh, Arash; Tian, Hongqi; Xie, Yi Min

    2016-06-01

    Auxetic materials and structures are increasingly used in various fields because of their unusual properties. Auxetic tubular structures have been fabricated and studied due to their potential to be adopted as oesophageal stents where only tensile auxetic performance is required. However, studies on compressive mechanical properties of auxetic tubular structures are limited in the current literature. In this paper, we developed a simple tubular structure which exhibits auxetic behaviour in both compression and tension. This was achieved by extending a design concept recently proposed by the authors for generating 3D metallic auxetic metamaterials. Both compressive and tensile mechanical properties of the auxetic tubular structure were investigated. It was found that the methodology for generating 3D auxetic metamaterials could be effectively used to create auxetic tubular structures as well. By properly adjusting certain parameters, the mechanical properties of the designed auxetic tubular structure could be easily tuned.

  10. High-rate mechanical properties of energetic materials

    NASA Astrophysics Data System (ADS)

    Walley, S. M.; Siviour, C. R.; Drodge, D. R.; Williamson, D. M.

    2010-01-01

    Compared to the many thousands of studies that have been performed on the energy release mechanisms of high energy materials, relatively few studies have been performed (a few hundred) into their mechanical properties. Since it is increasingly desired to model the high rate deformation of such materials, it is of great importance to gather data on their response so that predictive constitutive models can be constructed. This paper reviews the state of the art concerning what is known about the mechanical response of high energy materials. Examples of such materials are polymer bonded explosives (used in munitions), propellants (used to propel rockets), and pyrotechnics (used to initiate munitions and also in flares).

  11. Microstructures and Mechanical Properties of Irradiated Metals and Alloys

    SciTech Connect

    Zinkle, Steven J

    2008-01-01

    The effects of neutron irradiation on the microstructural evolution of metals and alloys are reviewed, with an emphasis on the roles of crystal structure, neutron dose and temperature. The corresponding effects of neutron irradiation on mechanical properties of metals and alloys are summarized, with particular attention on the phenomena of low temperature radiation hardening and embrittlement. The prospects of developing improved high-performance structural materials with high resistance to radiation-induced property degradation are briefly discussed.

  12. Mechanical properties of jennite: A theoretical and experimental study

    SciTech Connect

    Moon, Juhyuk; Yoon, Seyoon; Monteiro, Paulo J.M.

    2015-05-15

    The objective of this study is to determine the mechanical properties of jennite. To date, several hypotheses have been proposed to predict the structural properties of jennite. For the first time as reported herein, the isothermal bulk modulus of jennite was measured experimentally. Synchrotron-based high-pressure x-ray diffraction experiments were performed to observe the variation of lattice parameters under pressure. First-principles calculations were applied to compare with the experimental results and predict additional structural properties. Accurately measured isothermal bulk modulus herein (K{sub 0} = 64(2) GPa) and the statistical assessment on experimental and theoretical results suggest reliable mechanical properties of shear and Young's modulus, Poisson's ratio, and elastic tensor coefficients. Determination of these fundamental structural properties is the first step toward greater understanding of calcium–silicate–hydrate, as well as provides a sound foundation for forthcoming atomic level simulations.

  13. Isotropic microscale mechanical properties of coral skeletons

    PubMed Central

    Pasquini, Luca; Molinari, Alan; Fantazzini, Paola; Dauphen, Yannicke; Cuif, Jean-Pierre; Levy, Oren; Dubinsky, Zvy; Caroselli, Erik; Prada, Fiorella; Goffredo, Stefano; Di Giosia, Matteo; Reggi, Michela; Falini, Giuseppe

    2015-01-01

    Scleractinian corals are a major source of biogenic calcium carbonate, yet the relationship between their skeletal microstructure and mechanical properties has been scarcely studied. In this work, the skeletons of two coral species: solitary Balanophyllia europaea and colonial Stylophora pistillata, were investigated by nanoindentation. The hardness HIT and Young's modulus EIT were determined from the analysis of several load–depth data on two perpendicular sections of the skeletons: longitudinal (parallel to the main growth axis) and transverse. Within the experimental and statistical uncertainty, the average values of the mechanical parameters are independent on the section's orientation. The hydration state of the skeletons did not affect the mechanical properties. The measured values, EIT in the 76–77 GPa range, and HIT in the 4.9–5.1 GPa range, are close to the ones expected for polycrystalline pure aragonite. Notably, a small difference in HIT is observed between the species. Different from corals, single-crystal aragonite and the nacreous layer of the seashell Atrina rigida exhibit clearly orientation-dependent mechanical properties. The homogeneous and isotropic mechanical behaviour of the coral skeletons at the microscale is correlated with the microstructure, observed by electron microscopy and atomic force microscopy, and with the X-ray diffraction patterns of the longitudinal and transverse sections. PMID:25977958

  14. Mechanical properties of additively manufactured octagonal honeycombs.

    PubMed

    Hedayati, R; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A

    2016-12-01

    Honeycomb structures have found numerous applications as structural and biomedical materials due to their favourable properties such as low weight, high stiffness, and porosity. Application of additive manufacturing and 3D printing techniques allows for manufacturing of honeycombs with arbitrary shape and wall thickness, opening the way for optimizing the mechanical and physical properties for specific applications. In this study, the mechanical properties of honeycomb structures with a new geometry, called octagonal honeycomb, were investigated using analytical, numerical, and experimental approaches. An additive manufacturing technique, namely fused deposition modelling, was used to fabricate the honeycomb from polylactic acid (PLA). The honeycombs structures were then mechanically tested under compression and the mechanical properties of the structures were determined. In addition, the Euler-Bernoulli and Timoshenko beam theories were used for deriving analytical relationships for elastic modulus, yield stress, Poisson's ratio, and buckling stress of this new design of honeycomb structures. Finite element models were also created to analyse the mechanical behaviour of the honeycombs computationally. The analytical solutions obtained using Timoshenko beam theory were close to computational results in terms of elastic modulus, Poisson's ratio and yield stress, especially for relative densities smaller than 25%. The analytical solutions based on the Timoshenko analytical solution and the computational results were in good agreement with experimental observations. Finally, the elastic properties of the proposed honeycomb structure were compared to those of other honeycomb structures such as square, triangular, hexagonal, mixed, diamond, and Kagome. The octagonal honeycomb showed yield stress and elastic modulus values very close to those of regular hexagonal honeycombs and lower than the other considered honeycombs. PMID:27612831

  15. Mechanical properties of additively manufactured octagonal honeycombs.

    PubMed

    Hedayati, R; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A

    2016-12-01

    Honeycomb structures have found numerous applications as structural and biomedical materials due to their favourable properties such as low weight, high stiffness, and porosity. Application of additive manufacturing and 3D printing techniques allows for manufacturing of honeycombs with arbitrary shape and wall thickness, opening the way for optimizing the mechanical and physical properties for specific applications. In this study, the mechanical properties of honeycomb structures with a new geometry, called octagonal honeycomb, were investigated using analytical, numerical, and experimental approaches. An additive manufacturing technique, namely fused deposition modelling, was used to fabricate the honeycomb from polylactic acid (PLA). The honeycombs structures were then mechanically tested under compression and the mechanical properties of the structures were determined. In addition, the Euler-Bernoulli and Timoshenko beam theories were used for deriving analytical relationships for elastic modulus, yield stress, Poisson's ratio, and buckling stress of this new design of honeycomb structures. Finite element models were also created to analyse the mechanical behaviour of the honeycombs computationally. The analytical solutions obtained using Timoshenko beam theory were close to computational results in terms of elastic modulus, Poisson's ratio and yield stress, especially for relative densities smaller than 25%. The analytical solutions based on the Timoshenko analytical solution and the computational results were in good agreement with experimental observations. Finally, the elastic properties of the proposed honeycomb structure were compared to those of other honeycomb structures such as square, triangular, hexagonal, mixed, diamond, and Kagome. The octagonal honeycomb showed yield stress and elastic modulus values very close to those of regular hexagonal honeycombs and lower than the other considered honeycombs.

  16. Food mechanical properties and dietary ecology.

    PubMed

    Berthaume, Michael A

    2016-01-01

    Interdisciplinary research has benefitted the fields of anthropology and engineering for decades: a classic example being the application of material science to the field of feeding biomechanics. However, after decades of research, discordances have developed in how mechanical properties are defined, measured, calculated, and used due to disharmonies between and within fields. This is highlighted by "toughness," or energy release rate, the comparison of incomparable tests (i.e., the scissors and wedge tests), and the comparison of incomparable metrics (i.e., the stress and displacement-limited indices). Furthermore, while material scientists report on a myriad of mechanical properties, it is common for feeding biomechanics studies to report on just one (energy release rate) or two (energy release rate and Young's modulus), which may or may not be the most appropriate for understanding feeding mechanics. Here, I review portions of materials science important to feeding biomechanists, discussing some of the basic assumptions, tests, and measurements. Next, I provide an overview of what is mechanically important during feeding, and discuss the application of mechanical property tests to feeding biomechanics. I also explain how 1) toughness measures gathered with the scissors, wedge, razor, and/or punch and die tests on non-linearly elastic brittle materials are not mechanical properties, 2) scissors and wedge tests are not comparable and 3) the stress and displacement-limited indices are not comparable. Finally, I discuss what data gathered thus far can be best used for, and discuss the future of the field, urging researchers to challenge underlying assumptions in currently used methods to gain a better understanding between primate masticatory morphology and diet.

  17. Microstructure and Mechanical Properties of Porous Mullite

    NASA Astrophysics Data System (ADS)

    Hsiung, Chwan-Hai Harold

    Mullite (3 Al2O3 : 2 SiO2) is a technologically important ceramic due to its thermal stability, corrosion resistance, and mechanical robustness. One variant, porous acicular mullite (ACM), has a unique needle-like microstructure and is the material platform for The Dow Chemical Company's diesel particulate filter AERIFY(TM). The investigation described herein focuses on the microstructure-mechanical property relationships in acicular mullites as well as those with traditional porous microstructures with the goal of illuminating the critical factors in determining their modulus, strength, and toughness. Mullites with traditional pore morphologies were made to serve as references via slipcasting of a kaolinite-alumina-starch slurry. The starch was burned out to leave behind a pore network, and the calcined body was then reaction-sintered at 1600C to form mullite. The samples had porosities of approximately 60%. Pore size and shape were altered by using different starch templates, and pore size was found to influence the stiffness and toughness. The ACM microstructure was varied along three parameters: total porosity, pore size, and needle size. Total porosity was found to dominate the mechanical behavior of ACM, while increases in needle and pore size increased the toughness at lower porosities. ACM was found to have much improved (˜130%) mechanical properties relative to its non-acicular counterpart at the same porosity. A second set of investigations studied the role of the intergranular glassy phase which wets the needle intersections of ACM. Removal of the glassy phase via an HF etch reduced the mechanical properties by ˜30%, highlighting the intergranular phase's importance to the enhanced mechanical properties of ACM. The composition of the glassy phase was altered by doping the ACM precursor with magnesium and neodymium. Magnesium doping resulted in ACM with greatly reduced fracture strength and toughness. Studies showed that the mechanical properties of the

  18. Mechanical Properties of Fe-Ni Meteorites

    NASA Astrophysics Data System (ADS)

    Roberta, Mulford; El Dasher, B.

    2010-10-01

    Iron-nickel meteorites exhibit a unique lamellar microstructure, Widmanstatten patterns, consisting of small regions with steep-iron-nickel composition gradients.1,2 The microstructure arises as a result of extremely slow cooling in a planetary core or other large mass. Mechanical properties of these structures have been investigated using microindentation, x-ray fluorescence, and EBSD. Observation of local mechanical properties in these highly structured materials supplements bulk measurements, which can exhibit large variation in dynamic properties, even within a single sample. 3 Accurate mechanical properties for meteorites may enable better modeling of planetary cores, the likely origin of these objects. Appropriate values for strength are important in impact and crater modeling and in understanding the consequences of observed impacts on planetary crusts. Previous studies of the mechanical properties of a typical iron-nickel meteorite, a Diablo Canyon specimen, indicated that the strength of the composite was higher by almost an order of magnitude than values obtained from laboratory-prepared specimens.4 This was ascribed to the extreme work-hardening evident in the EBSD measurements. This particular specimen exhibited only residual Widmanstatten structures, and may have been heated and deformed during its traverse of the atmosphere. Additional specimens from the Canyon Diablo fall (type IAB, coarse octahedrite) and examples from the Muonionalusta meteorite and Gibeon fall ( both IVA, fine octahedrite), have been examined to establish a range of error on the previously measured yield, to determine the extent to which deformation upon re-entry contributes to yield, and to establish the degree to which the strength varies as a function of microstructure. 1. A. Christiansen, et.al., Physica Scripta, 29 94-96 (1984.) 2. Goldstein and Ogilvie, Geochim Cosmochim Acta, 29 893-925 (1965.) 3. M. D. Furnish, M.B. Boslough, G.T. Gray II, and J.L. Remo, Int. J. Impact Eng

  19. Mechanical Properties of Cellulose Microfiber Reinforced Polyolefin

    NASA Astrophysics Data System (ADS)

    Kobayashi, Satoshi; Yamada, Hiroyuki

    Cellulose microfiber (CeF) has been expected as a reinforcement of polymer because of its high modulus and strength and lower cost. In the present study, mechanical properties of CeF/polyolefin were investigated. Tensile modulus increased with increasing CeF content. On the other hand, tensile strength decreased. Fatigue properties were also investigated with acoustic emission measurement. Stiffness of the composites gradually decreased with loading. Drastic decrease in stiffness was observed just before the final fracture. Based on the Mori-Tanaka's theory, the method to calculate modulus of CeF were proposed to evaluate dispersion of CeF.

  20. AFM Investigation of mechanical properties of dentin

    SciTech Connect

    Cohen, Sidney R; Apter, Nathan; Jesse, Stephen; Kalinin, Sergei V; Barlam, David; Peretz, Adi Idit; Ziskind, Daniel; Wagner, H. Daniel

    2008-01-01

    Mechanical properties of peritubular dentin were investigated using scanning probe microscopy techniques, namely Nanoindentation and Band Excitation. Particular attention was directed to the possible existence of a gradient in these properties moving outward from the tubular lumen to the junction with the intertubular dentin. Finite element analysis showed that the influence of the boundaries is small relative to the effects observed. Thus, these results strongly support the concept of a lowering of modulus and hardness from the tubular exterior to its periphery, which appear to correlate with graded changes in the mineral content.

  1. Investigation of mechanical properties of cryogenically treated music wire.

    PubMed

    Heptonstall, A; Waller, M; Robertson, N A

    2015-08-01

    It has been reported that treating music wire (high carbon steel wire) by cooling to cryogenic temperatures can enhance its mechanical properties with particular reference to those properties important for musical performance. We use such wire for suspending many of the optics in Advanced LIGO, the upgrade to LIGO—the Laser Interferometric Gravitational-Wave Observatory. Two properties that particularly interest us are mechanical loss and breaking strength. A decrease in mechanical loss would directly reduce the thermal noise associated with the suspension, thus enhancing the noise performance of mirror suspensions within the detector. An increase in strength could allow thinner wire to be safely used, which would enhance the dilution factor of the suspension, again leading to lower suspension thermal noise. In this article, we describe the results of an investigation into some of the mechanical properties of music wire, comparing untreated wire with the same wire which has been cryogenically treated. For the samples we studied, we conclude that there is no significant difference in the properties of interest for application in gravitational wave detectors. PMID:26329213

  2. Investigation of mechanical properties of cryogenically treated music wire

    NASA Astrophysics Data System (ADS)

    Heptonstall, A.; Waller, M.; Robertson, N. A.

    2015-08-01

    It has been reported that treating music wire (high carbon steel wire) by cooling to cryogenic temperatures can enhance its mechanical properties with particular reference to those properties important for musical performance. We use such wire for suspending many of the optics in Advanced LIGO, the upgrade to LIGO—the Laser Interferometric Gravitational-Wave Observatory. Two properties that particularly interest us are mechanical loss and breaking strength. A decrease in mechanical loss would directly reduce the thermal noise associated with the suspension, thus enhancing the noise performance of mirror suspensions within the detector. An increase in strength could allow thinner wire to be safely used, which would enhance the dilution factor of the suspension, again leading to lower suspension thermal noise. In this article, we describe the results of an investigation into some of the mechanical properties of music wire, comparing untreated wire with the same wire which has been cryogenically treated. For the samples we studied, we conclude that there is no significant difference in the properties of interest for application in gravitational wave detectors.

  3. Mechanical Properties of Degraded PMR-15 Resin

    NASA Technical Reports Server (NTRS)

    Tsuji, Luis C.; McManus, Hugh L.; Bowles, Kenneth J.

    1998-01-01

    Thermo-oxidative aging produces a non-uniform degradation state in PMR-15 resin. A surface layer, usually attributed to oxidative degradation, forms. This surface layer has different properties from the inner material. A set of material tests was designed to separate the properties of the oxidized surface layer from the properties of interior material. Test specimens were aged at 316 C in either air or nitrogen, for durations of up to 800 hours. The thickness of the oxidized surface layer in air aged specimens, and the shrinkage and Coefficient of Thermal Expansion (CTE) of nitrogen aged specimens were measured directly. Four-point-bend tests were performed to determine modulus of both the oxidized surface layer and the interior material. Bimaterial strip specimens consisting of oxidized surface material and unoxidized interior material were constructed and used to determine surface layer shrinkage and CTE. Results confirm that the surface layer and core materials have substantially different properties.

  4. Influence of liquid lubricant properties on their performance.

    NASA Technical Reports Server (NTRS)

    Wedeven, V.

    1972-01-01

    The influence of lubricant properties on performance is considered in connection with various mechanisms of lubrication. The effects of temperature and pressure on viscosity, which is important in hydrodynamic and elastohydrodynamic lubrication, is presented using a correlation postulated by Roelands. Under elastohydrodynamic conditions it is important to distinguish between the influence of lubricant properties within the inlet region and the Hertz region since each performs different functions. The role of lubricant transport properties such as surface tension is considered in connection with lubricant starvation.

  5. Mechanical properties of silicones for MEMS

    NASA Astrophysics Data System (ADS)

    Schneider, F.; Fellner, T.; Wilde, J.; Wallrabe, U.

    2008-06-01

    This paper focuses on the mechanical properties of polydimethylsiloxane (PDMS) relevant for microelectromechanical system (MEMS) applications. In view of the limited amount of published data, we analyzed the two products most commonly used in MEMS, namely RTV 615 from Bayer Silicones and Sylgard 184 from Dow Corning. With regard to mechanical properties, we focused on the dependence of the elastic modulus on the thinner concentration, temperature and strain rate. In addition, creep and thermal aging were analyzed. We conclude that the isotropic and constant elastic modulus has strong dependence on the hardening conditions. At high hardening temperatures and long hardening time, RTV 615 displays an elastic modulus of 1.91 MPa and Sylgard 184 of 2.60 MPa in a range up to 40% strain.

  6. The effects of replacing dicalcium phosphate with Busumbu rock phosphate on performance and the mechanical properties of bone in growing chicks.

    PubMed

    Odongo, N E; Plaizier, J; van Straaten, P; McBride, B

    2002-07-01

    Three hundred, day-old broiler chicks, with an average initial weight of 41.8 +/- 1.79 g, were used in a 15-day study (10 birds per battery cage) to characterize their performance and fluorine status when dicalcium phosphate (DCP) was replaced by Busumbu rock phosphate (BRP) as the source of phosphorus in the chicks' ration. The treatments comprised a standard ration with BRP replacing 0, 25%, 50%, 75% or 100% of DCP. Replacing DCP with BRP significantly reduced the final weight of the chicks (p < 0.01), feed intake (p < 0.01), weight gains (p < 0.01) and dry matter digestibility (p < 0.05) but increased (p < 0.05) the feed-to-gain ratio. True phosphorus absorption and the percentage of phosphorus in the tibia were not affected by increasing amounts of BRP in the diet. Increasing levels of BRP in the diet linearly reduced (p < 0.01) the percentage bone ash, calcium, Ca:P ratio, ultimate breaking force, bending moment, stress, and modulus of elasticity. Leg stiffness, lameness, reduced feed intake, and a decline in general health were recorded in 10-40% of the chicks on 75% and 100% BRP, respectively. These results suggest that excessive ingestion of fluorine from the BRP caused the reduction in the chicks' performance.

  7. Mechanical Properties of Palm Fiber Mattress

    NASA Astrophysics Data System (ADS)

    Li, Yu-Qian; Wu, Jia-Yu; Gu, Hao-Wei; Chen, Zong-Yong; Shi, Xiao-Bing; Liao, Ting-Mao; An, Cheng; Yuan, Hong; Liu, Ren-Huai

    2016-05-01

    Palm fiber mattress is increasingly accepted by many families. This study aims at evaluating the mechanical properties of palm fiber mattress. Two experiments were conduct to investigate the Young's modulus of palm fiber mattress in three directions. In addition, finite element models were established to characterize palm fiber mattress under uniform distributed pressure. Finally, results from finite element analysis are presented to illustrate that the thick mattress will stick with human body curve perfectly, which can support vertebral column effectively.

  8. Tensile mechanical properties of human forearm tendons.

    PubMed

    Weber, J F; Agur, A M R; Fattah, A Y; Gordon, K D; Oliver, M L

    2015-09-01

    Previous studies of the mechanical properties of tendons in the upper limb have used embalmed specimens or sub-optimal methods of measurement. The aim of this study was to determine the biomechanical properties of all tendons from five fresh frozen cadaveric forearms using updated methodology. The cross-sectional area of tendons was accurately measured using a laser reflectance system. Tensile testing was done in a precision servo-hydraulic device with cryo-clamp fixation. We determined that the cross-sectional area of some tendons is variable and directly influences the calculated material properties; visual estimation of this is unreliable. Data trends illustrate that digital extensor tendons possess the greatest tensile strength and a higher Young's modulus than other tendon types. PMID:25940499

  9. Tensile mechanical properties of human forearm tendons.

    PubMed

    Weber, J F; Agur, A M R; Fattah, A Y; Gordon, K D; Oliver, M L

    2015-09-01

    Previous studies of the mechanical properties of tendons in the upper limb have used embalmed specimens or sub-optimal methods of measurement. The aim of this study was to determine the biomechanical properties of all tendons from five fresh frozen cadaveric forearms using updated methodology. The cross-sectional area of tendons was accurately measured using a laser reflectance system. Tensile testing was done in a precision servo-hydraulic device with cryo-clamp fixation. We determined that the cross-sectional area of some tendons is variable and directly influences the calculated material properties; visual estimation of this is unreliable. Data trends illustrate that digital extensor tendons possess the greatest tensile strength and a higher Young's modulus than other tendon types.

  10. Determinants of the mechanical properties of bones

    NASA Technical Reports Server (NTRS)

    Martin, R. B.

    1991-01-01

    The mechanical properties of bones are governed by the same principles as those of man-made load-bearing structures, but the organism is able to adapt its bone structure to changes in skeletal loading. In this overview of the determinants of the strength and stiffness of bone, a continuum approach has been taken, in which the behavior of a macroscopic structure depends on its shape and size, and on the mechanical properties of the material within. The latter are assumed to depend on the composition (porosity and mineralization) and organization (trabecular or cortical bone architecture, collagen fiber orientation, fatigue damage) of the bone. The effects of each of these factors are reviewed. Also, the possible means of non-invasively estimating the strength or other mechanical properties of a bone are reviewed, including quantitative computed tomography, photon absorptiometry, and ultrasonic measurements. The best estimates of strength have been obtained with photon absorptiometry and computed tomography, which at best are capable of accounting for 90% of the strength variability in a simple in vitro test, but results from different laboratories have been highly variable.

  11. CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: Microstructure and Corrosion Performance of Carbonitriding Layers on Cast Iron by Plasma Electrolytic Carbonitriding

    NASA Astrophysics Data System (ADS)

    Pang, Hua; Lv, Guo-Hua; Chen, Huan; Wang, Xin-Quan; Zhang, Gu-Ling; Yang, Si-Ze

    2009-08-01

    The surface carbonitriding of cast iron is investigated in an aqueous solution of acetamide and glycerin. Microstructure, chemical and phase composition and corrosion performance of the carbonitriding layers are investigated by scanning electron microscopy, energy dispersive spectroscopy and x-ray diffraction, as well as potentiodynamic polarization testing. X-ray diffraction results show that the carbonitriding coatings are composed of martensite, austenite(γ-Fe), Fe2C, Fe3C, Fe5C2, FeN and in-Fe2-3N. After the plasma electrolytic carbonitriding treatment the corrosion resistance of cast iron is clearly improved compared to the substrate, and the coatings produced at 350 V for 30s give the best corrosion resistance.

  12. Database of Mechanical Properties of Textile Composites

    NASA Technical Reports Server (NTRS)

    Delbrey, Jerry

    1996-01-01

    This report describes the approach followed to develop a database for mechanical properties of textile composites. The data in this database is assembled from NASA Advanced Composites Technology (ACT) programs and from data in the public domain. This database meets the data documentation requirements of MIL-HDBK-17, Section 8.1.2, which describes in detail the type and amount of information needed to completely document composite material properties. The database focuses on mechanical properties of textile composite. Properties are available for a range of parameters such as direction, fiber architecture, materials, environmental condition, and failure mode. The composite materials in the database contain innovative textile architectures such as the braided, woven, and knitted materials evaluated under the NASA ACT programs. In summary, the database contains results for approximately 3500 coupon level tests, for ten different fiber/resin combinations, and seven different textile architectures. It also includes a limited amount of prepreg tape composites data from ACT programs where side-by-side comparisons were made.

  13. Gasoline Engine Mechanics. Performance Objectives. Basic Course.

    ERIC Educational Resources Information Center

    Jones, Marion

    Several intermediate performance objectives and corresponding criterion measures are listed for each of five terminal objectives presented in this curriculum guide for a basic gasoline engine mechanics course at the secondary level. (For the intermediate course guide see CE 010 946.) The materials were developed for a two semester (2 hours daily)…

  14. Gasoline Engine Mechanics. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Jones, Marion

    Several intermediate performance objectives and corresponding criterion measures are listed for each of six terminal objectives presented in this curriculum guide for an intermediate gasoline engine mechanics course at the secondary level. (For the beginning course guide see CE 010 947.) The materials were developed for a two-semester (2 hour…

  15. Auto Mechanics. Performance Objectives. Basic Course.

    ERIC Educational Resources Information Center

    Carter, Thomas G., Sr.

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 14 terminal objectives for a basic automotive mechanics course. The materials were developed for a two-semester course (2 hours daily) designed to provide training in the basic fundamentals in diagnosis and repair including cooling system and…

  16. Diesel Mechanics. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Tidwell, Joseph

    Several intermediate performance objectives and corresponding criterion measures are listed for each of six terminal objectives for an intermediate diesel mechanics course (two semesters, 3 hours daily) designed for high school students who upon completion would be ready for an on-the-job training experience in diesel service and repair. Through…

  17. Mechanical excavator performance in Yucca Mountain tuffs

    SciTech Connect

    Ozdemir, L.; Hansen, F.D.

    1991-01-01

    A research effort of four phases is in progress at the Colorado School of Mines. The overall program will evaluate the cutability of welded tuff and other lithologies likely to be excavated at Yucca Mountain in the site characterization process. Several mechanical systems are considered with emphasis given to the tunnel boring machine. The research comprises laboratory testing, linear drag bit and disc cutter tests and potentially large-scale laboratory demonstrations to support potential use of a tunnel boring machine in welded tuff. Preliminary estimates of mechanical excavator performance in Yucca Mountain tuff are presented here. As phases of the research project are completed, well quantified estimates will be made of performance of mechanical excavators in the Yucca Mountain tuffs. 3 refs., 2 tabs.

  18. Mechanical performance of aquatic rowing and flying.

    PubMed Central

    Walker, J A; Westneat, M W

    2000-01-01

    Aquatic flight, performed by rowing or flapping fins, wings or limbs, is a primary locomotor mechanism for many animals. We used a computer simulation to compare the mechanical performance of rowing and flapping appendages across a range of speeds. Flapping appendages proved to be more mechanically efficient than rowing appendages at all swimming speeds, suggesting that animals that frequently engage in locomotor behaviours that require energy conservation should employ a flapping stroke. The lower efficiency of rowing appendages across all speeds begs the question of why rowing occurs at all. One answer lies in the ability of rowing fins to generate more thrust than flapping fins during the power stroke. Large forces are necessary for manoeuvring behaviours such as accelerations, turning and braking, which suggests that rowing should be found in slow-swimming animals that frequently manoeuvre. The predictions of the model are supported by observed patterns of behavioural variation among rowing and flapping vertebrates. PMID:11052539

  19. Physical and Mechanical Properties of Niobium for SRF Science and Technology

    SciTech Connect

    Ganapati Rao Myneni

    2006-10-31

    Optimized mechanical and physical properties of high purity niobium are crucial for obtaining high performance SRF particle beam accelerator structures consistently. This paper summarizes these important material properties for both high purity polycrystalline and single crystal niobium.

  20. Mechanical Properties Characterization at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Fong, Hanson; Sopp, Jeffery; Sarikaya, Mehmet

    2001-05-01

    Nanoindentation is an unique technique that characterizes mechanical properties of materials down to the nanometer scale. With a force range from nanoNewtons to milliNewtons, unique properties of surface structures and thin films in the mesoscale can be routinely quantifieds. With technology continually pushing toward smaller feature size in electronic and mechanical devices as well as biomaterials applications, nanoindentation has become an invaluable method to measure these characteristic features. Here, we report its application in the study the biological hard tissues. For example, using engineered metallic indentation tips, the elastic properties of the 20 nm protein layer in the biocomposite of the abalone shell was measured. The elastic modulus was found to be exceptionally high compared to most synthetic polymers. With the combination of AFM imaging nanoindentation, we were able to measure the difference in deformation behavior at the mesoscale between normal and genetically altered mouse enamel. These measurements were complementary in determining the growth defects resulting from genetically modified enamel proteins. Details of these results and future prospects will be discussed.

  1. Multiscale Approach to Characterize Mechanical Properties of Tissue Engineered Skin.

    PubMed

    Tupin, S; Molimard, J; Cenizo, V; Hoc, T; Sohm, B; Zahouani, H

    2016-09-01

    Tissue engineered skin usually consist of a multi-layered visco-elastic material composed of a fibrillar matrix and cells. The complete mechanical characterization of these tissues has not yet been accomplished. The purpose of this study was to develop a multiscale approach to perform this characterization in order to link the development process of a cultured skin to the mechanical properties. As a proof-of-concept, tissue engineered skin samples were characterized at different stages of manufacturing (acellular matrix, reconstructed dermis and reconstructed skin) for two different aging models (using cells from an 18- and a 61-year-old man). To assess structural variations, bi-photonic confocal microscopy was used. To characterize mechanical properties at a macroscopic scale, a light-load micro-mechanical device that performs indentation and relaxation tests was designed. Finally, images of the internal network of the samples under stretching were acquired by combining confocal microscopy with a tensile device. Mechanical properties at microscopic scale were assessed. Results revealed that adding cells during manufacturing induced structural changes, which provided higher elastic modulus and viscosity. Moreover, senescence models exhibited lower elastic modulus and viscosity. This multiscale approach was efficient to characterize and compare skin equivalent samples and permitted the first experimental assessment of the Poisson's ratio for such tissues.

  2. Mechanical Properties of Degraded PMR-15 Resin

    NASA Technical Reports Server (NTRS)

    Tsuji, Luis C.

    2000-01-01

    Thermo-oxidative aging produces a nonuniform degradation state in PMR-15 resin. A surface layer, usually attributed to oxidative degradation, forms. This surface layer has different properties from the inner material. A set of material tests was designed to separate the properties of the oxidized surface layer from the properties of interior material. Test specimens were aged at 316 C in either air or nitrogen, for durations of up to 800 hr. The thickness of the oxidized surface layer in air aged specimens, and the shrinkage and coefficient of thermal expansion (CTE) of nitrogen aged specimens were measured directly. The nitrogen-aged specimens were assumed to have the same properties as the interior material in the air-aged specimens. Four-point-bend tests were performed to determine modulus of both the oxidized surface layer and the interior material. Bimaterial strip specimens consisting of oxidized surface material and unoxidized interior material were constructed and used to determine surface layer shrinkage and CTE. Results confirm that the surface layer and core materials have substantially different properties.

  3. Mechanical properties of carbon fiber composites for applications in space

    NASA Astrophysics Data System (ADS)

    Hana, P.; Inneman, A.; Daniel, V.; Sieger, L.; Petru, M.

    2015-01-01

    This article describes method of measurement mechanical properties of carbon fiber composites in space. New material structures are specifically designed for use on space satellites. Composite structures will be exposed to cosmic radiation in Earth orbit on board of a '2U CubeSat' satellite. Piezoelectric ceramic sensors are used for detection mechanical vibrations of composite test strip. A great deal of attention is paid to signal processing using 8-bit microcontroler. Fast Fourier Transformation is used. Fundamental harmonic frequencies and damping from on-board measurements will serve as the input data for terrestrial data processing. The other step of elaboration data is creation of the physical model for evaluating mechanical properties of Carbon composite - Piezoelectric ceramic system. Evaluation of anisotropic mechanical properties of piezoelectric ceramics is an interesting secondary outcome of the investigation. Extreme changes in temperature and the effect of cosmic rays will affect the mechanical properties and durability of the material used for the external construction of satellites. Comparative terrestrial measurements will be performed.

  4. PICA Variants with Improved Mechanical Properties

    NASA Technical Reports Server (NTRS)

    Thornton, Jeremy; Ghandehari, Ehson M.; Fan, Wenhong; Stackpoole, Margaret; Chavez-Garcia, Jose

    2011-01-01

    Phenolic Impregnated Carbon Ablator (PICA) is a member of the family of Lightweight Ceramic Ablators (LCAs) and was developed at NASA Ames Research Center as a thermal protection system (TPS) material for the Stardust mission probe that entered the Earth s atmosphere faster than any other probe or vehicle to date. PICA, carbon fiberform base and phenolic polymer, shows excellent thermal insulative properties at heating rates from about 250 W/sq cm to 1000 W/sq cm. The density of standard PICA - 0.26 g/cu cm to 0.28 g/cu cm - can be changed by changing the concentration of the phenolic resin. By adding polymers to the phenolic resin before curing it is possible to significantly improve the mechanical properties of PICA without significantly increasing the density.

  5. Electrical and Mechanical Properties of Graphene

    NASA Astrophysics Data System (ADS)

    Bao, Wenzhong

    Graphene is an exciting new atomically-thin two-dimensional (2D) system of carbon atoms organized in a hexagonal lattice structure. This "wonder material" has been extensively studied in the last few years since it's first isolation in 2004. Its rapid rise to popularity in scientific and technological communities can be attributed to a number of its exceptional properties. In this thesis I will present several topics including fabrication of graphene devices, electrical and mechanical properties of graphene. I will start with a brief introduction of electronic transport in nanosclae system including quantum Hall effect, followed by a discussion of fundamental electrical and mechanical properties of graphene. Next I will describe how graphene devices are produced: from the famous "mechnical exfoliation" to our innovative "scratching exfoliation" method, together with the traditional lithography fabrication for graphene devices. We also developed a lithography-free technique for making electrical contacts to suspended graphene devices. Most of the suspended devices presented in this thesis are fabricated by this technique. Graphene has remarkable electrical properties thanks to its crystal and band structures. In Chapter 3, I will first focus on proximity-induced superconductivity in graphene Josephson transistors. In this section we investigate electronic transport in single layer graphene coupled to superconducting electrodes. We observe significant suppression in the critical current I c and large variation in the product IcR n in comparison to theoretic prediction; both phenomena can be satisfactorily accounted for by premature switching in underdamped Josephson junctions. Another focus of our studies is quantum Hall effect and many body physics in graphene in suspended bilayer and trilayer graphene. We demonstrate that symmetry breaking of the first 3 Landau levels and fractional quantum Hall states are observed in both bilayer and trilayer suspended graphene

  6. Mechanical properties of dried defatted spongy bone.

    PubMed

    Lindahl, O

    1976-02-01

    A study has been made of the compressive strength, compression at rupture, limit of proportionality, compression at the limit of proportionality and the modulus of elasticity of spongy bone from vertebrae and tibias. The specimens were obtained from autopsy subjects of both sexes aged 14 to 89 years. There was a qualitative deterioration of most of the strength parameters with age, and also differences between the sexes and between vertebrae and tibia. Spongy bone was found to have the unusual mechanical property that, despite rupture, its compressive strength often steadily increased; this was especially the case for vertebrae from young males.

  7. Passive mechanical properties of ovine rumen tissue

    NASA Astrophysics Data System (ADS)

    Waite, Stephen J.; Cater, John E.; Walker, Cameron G.; Amirapu, Satya; Waghorn, Garry C.; Suresh, Vinod

    2016-05-01

    Mechanical and structural properties of ovine rumen tissue have been determined using uniaxial tensile testing of tissue from four animals at five rumen locations and two orientations. Animal and orientation did not have a significant effect on the stress-strain response, but there was a significant difference between rumen locations. Histological studies showed two orthogonal muscle layers in all regions except the reticulum, which has a more isotropic structure. A quasi-linear viscoelastic model was fitted to the relaxation stage for each region. Model predictions of the ramp stage had RMS errors of 13-24% and were within the range of the experimental data.

  8. Mechanical properties of phosphorene nanoribbons and oxides

    SciTech Connect

    Hao, Feng; Chen, Xi

    2015-12-21

    Mechanical properties of phosphorene nanoribbons and oxides are investigated by using density functional theory. It is found that the ideal strength of nanoribbon decreases in comparison with that of 2D phosphorene. The Young's modulus of armchair nanoribbon has a remarkable size effect because of the edge relaxations. The analysis of the stress-strain relation indicates that, owing to chemisorbed oxygen atoms, the ideal strength and Young's modulus of 2D phosphorene oxide are greatly reduced along the zigzag direction, especially upon high oxidation ratios. In addition, strain and oxidation have significant impacts on phonon dispersion.

  9. The mechanical properties of breast prostheses.

    PubMed

    Peters, W J

    1981-03-01

    The mechanical properties of inflatable and gel-filled breast prostheses were evaluated using the Instron Universal Testing Machine. Prosthesis strength characteristics were evaluated in terms of compression strength (rather than tensile strength) because of the relationship to closed capsulotomy. The compression breaking strength of prostheses ranged from 0.62 to 10.8 pounds per square inch. There was considerable variation among prostheses. Pressures exceeding these values have been recorded during closed compression capsulotomy. The clinical relevance of these results is discussed.

  10. Surveyor v: lunar surface mechanical properties.

    PubMed

    Christensen, E M; Choate, R; Jaffe, L D; Spencer, R L; Sperling, F B; Batterson, S A; Benson, H E; Hutton, R E; Jones, R H; Ko, H Y; Schmidt, F N; Scott, R F; Sutton, G H

    1967-11-01

    The mechanical properties of the lunar soil at the Surveyor V landing site seem to be generally consistent with values determined for soils at the landing sites of Surveyor I and III. These three maria sites are hundreds of kilometers apart. However, the static bearing capability may be somewhat lower than that at the previous landing sites (2 x 10(5) to 6 x 10(5) dynes per square centimeter or 3 to 8 pounds per square inch). The results of the erosion experiment, the spacecraft landing effects, and other observations indicate that the soil has significant amounts of fine-grained material and a measurable cohesion.

  11. Polyaniline: Factors affecting conductivity and mechanical properties

    SciTech Connect

    Scherr, E.M.

    1993-01-01

    The main objectives of this study were: (a) to study electronic and mechanical properties of films of the conducting polymer, polyaniline, in the doped and undoped emeraldine oxidation state, (b) to study how the electronic and mechanical properties were modified through mechanical stretch-orientation of the films, (c) to study the effect of water vapor on the conductivity of stretched protonic acid doped films, (d) to observe changes in tensile strength and Young's modulus when selected plasticizers were introduced into the films, (e) to observe, using UV/Vis spectroscopy, the effect that neutral salts in the doping media have on the doping level of thin, optically transparent films of polyaniline, (f) to use thin, optically transparent films to spectroscopically study (by UV/Vis) hysteresis in the doping and undoping behavior of polyaniline. The significant results and conclusions are: (a) mechanical stretch-orientation of polyaniline increased the tensile strength of emeraldine base films, (b) the conductivity of doped films of polyaniline was increased approximately two orders of magnitude by stretch-orientation (four-fold elongation) from [approximately]5 S/cm to [approximately]90 S/cm, (c) an increase in the relative percent crystallinity (by x-ray diffraction) upon stretch-orientation of emeraldine base films, (d) the removal of water vapor was found to decrease the conductivity of stretched emeraldine, (e) both tensile strength and Young's modulus are decreased by the introduction of plasticizers and [open quotes]dopant plasticizers[close quotes] into the films, (f) no loss in conductivity was observed due to the addition of plasticizers, (g) the presence of neutral salts in the doping media increased the doping level of thin films of polyaniline, (h) observed hysteresis upon doping and undoping thin polyaniline films is due to irreversible morphological changes that take place in polyaniline upon doping and undoping.

  12. Mechanical and wear properties of PMMA/PVDF microfilled systems

    SciTech Connect

    Garcia, J.L.; Koelling, K.W.; Seghi, R.R.

    1996-12-31

    There is a clinical need in fixed prosthodontics for aesthetic materials that are biologically compatible. Polymethylmethacrylate (PMMA) has been used extensively in dental applications. Blends of PMMA and polyvinylidene fluoride (PVDF) are a new class of materials that might perform as aesthetic restorative materials. The fracture properties of PMMA have been intensively studied because it is an amorphous glass below 110{degrees}C, thus exhibiting brittle fracture under normal testing conditions below about 85{degrees}C. However, this brittle behavior leads to poor wear resistance. The properties of the matrix can be tailored by blending with PVDF. The blends are composed of homogeneous mixtures of the two polymers at the molecular level. Polyvinylidene fluoride molecules do not contribute to the mechanical yield behavior of the blend but do act as plasticizers. Improvements in the mechanical properties may be achieved by incorporating a filler into the polymer matrix.

  13. Limitations to maximum sprinting speed imposed by muscle mechanical properties.

    PubMed

    Miller, Ross H; Umberger, Brian R; Caldwell, Graham E

    2012-04-01

    It has been suggested that the force-velocity relationship of skeletal muscle plays a critical limiting role in the maximum speed at which humans can sprint. However, this theory has not been tested directly, and it is possible that other muscle mechanical properties play limiting roles as well. In this study, forward dynamics simulations of human sprinting were generated using a 2D musculoskeletal model actuated by Hill muscle models. The initial simulation results compared favorably to kinetic, kinematic, and electromyographic data recorded from sprinting humans. Muscle mechanical properties were then removed in isolation to quantify their effect on maximum sprinting speed. Removal of the force-velocity, excitation-activation, and force-length relationships increased the maximum speed by 15, 8, and 4%, respectively. Removal of the series elastic force-extension relationship decreased the maximum speed by 26%. Each relationship affected both stride length and stride frequency except for the force-length relationship, which mainly affected stride length. Removal of all muscular properties entirely (optimized joint torques) increased speed (+22%) to a greater extent than the removal of any single contractile property. The results indicate that the force-velocity relationship is indeed the most important contractile property of muscle regarding limits to maximum sprinting speed, but that other muscular properties also play important roles. Interactions between the various muscular properties should be considered when explaining limits to maximal human performance.

  14. Quantitative Characterization of Mechanical Property of Annealed Monolayer Colloidal Crystal.

    PubMed

    Zhang, Lijing; Wang, Weiqi; Zheng, Lu; Wang, Xiuyu; Yan, Qingfeng

    2016-01-19

    Quantitative characterization of the mechanical properties of a polystyrene (PS) monolayer colloidal crystal (MCC) annealed with solvent vapor has been performed for the first time by means of atomic force microscopy nanoindentation. The results showed that both the compressive and bending elastic modulus of PS MCC increased with the prolongation of annealing time from initial to 13 min. When the annealing time reached 15 min or even more, the PS MCC almost deformed to a planar film, and the elastic modulus of the PS MCC presented a drastic increase. These results provide a basis for tailoring the mechanical properties of a polymer colloidal monolayer via solvent vapor annealing. Such self-supported and high-mechanical-strength colloidal monolayers can be transferred to other surfaces for potential and promising applications in the bottom-up fabrication of highly ordered nanostructured materials such as nano dot arrays, photonic crystals, and many others.

  15. Quantitative Characterization of Mechanical Property of Annealed Monolayer Colloidal Crystal.

    PubMed

    Zhang, Lijing; Wang, Weiqi; Zheng, Lu; Wang, Xiuyu; Yan, Qingfeng

    2016-01-19

    Quantitative characterization of the mechanical properties of a polystyrene (PS) monolayer colloidal crystal (MCC) annealed with solvent vapor has been performed for the first time by means of atomic force microscopy nanoindentation. The results showed that both the compressive and bending elastic modulus of PS MCC increased with the prolongation of annealing time from initial to 13 min. When the annealing time reached 15 min or even more, the PS MCC almost deformed to a planar film, and the elastic modulus of the PS MCC presented a drastic increase. These results provide a basis for tailoring the mechanical properties of a polymer colloidal monolayer via solvent vapor annealing. Such self-supported and high-mechanical-strength colloidal monolayers can be transferred to other surfaces for potential and promising applications in the bottom-up fabrication of highly ordered nanostructured materials such as nano dot arrays, photonic crystals, and many others. PMID:26700374

  16. Rock Mechanical Properties from Logs Petrophysics : Concepts and Results

    NASA Astrophysics Data System (ADS)

    Gaillot, Philippe; Crawford, Brian; Alramahi, Bashar; Karner, Steve

    2010-05-01

    The objective of the "geomechanics from logs" (GML) research project is to develop model-driven predictive software for determining rock mechanical properties (specifically rock strength, compressibility and fracability) from other, more easily measured, rock properties (e.g. lithology, porosity, clay volume, velocity) routinely derived from nuclear, resistivity and acoustic logging tools. To this end, geomechanics from logs seeks to increase fundamental understanding of the primary geologic controls on rock mechanical properties and to translate this new insight into novel predictive tools. In detail, GML predictors rely on (i) the generation of relational rock mechanical properties databases incorporating QC'd core-based laboratory measurements (both in-house and high-precision published data); (ii) the use of established rock physics models (e.g. friable sand, contact cement models) to investigate theoretical relationships between geologic processes, reservoir environment, rock microstructure and elastic, bulk and transport petrophysical attributes/properties; (iii) the subdivision of database rocks into generic lithotypes (e.g. sand, shaly sand, sandy shale, shale) with common petrophysical attributes/properties; (iv) the use of multivariate statistics to generate lithotype-dependent empirical predictive relationships between mechanical properties and log-derived petrophysical attributes/properties; (v) the estimation of uncertainties associated with predictive function parameters; (vi) the application and validation of mechanical properties predictive tools to well-documented case studies (e.g. sand strength for perforation stability, rock compressibility for reservoir simulation) to test overall performance and quantify uncertainty in predictions. This paper presents the results of various rock strength, rock compressibility and rock fracability case studies conducted in wells of different stratigraphic age and depositional environment. Overall, GML (i

  17. The mechanical properties of density graded hemp/polyethylene composites

    NASA Astrophysics Data System (ADS)

    Dauvegis, Raphaël; Rodrigue, Denis

    2015-05-01

    In this work, the production and mechanical characterization of density graded biocomposites based on high density polyethylene and hemp fibres was performed. The effect of coupling agent addition (maleated polyethylene) and hemp content (0-30%) was studied to determine the effect of hemp distribution (graded content) inside the composite (uniform, linear, V and Λ). Tensile and flexural properties are reported to compare the structures, especially in terms of their stress-strain behaviors under tensile loading.

  18. Computational studies on the crystal structure, thermodynamic properties, detonation performance, and pyrolysis mechanism of 2,4,6,8-tetranitro-1,3,5,7-tetraazacubane as a novel high energy density material.

    PubMed

    Wang, Fang; Du, Hongchen; Zhang, Jianying; Gong, Xuedong

    2011-10-27

    Studies have suggested that octanitrocubane (ONC) is one of the most powerful non-nuclear high energy density material (HEDM) currently known. 2,4,6,8-Tetranitro-1,3,5,7-tetraazacubane (TNTAC) studied in this work may also be a novel HEDM due to its high nitrogen content and crystal density. Density functional theory and molecular mechanics methods have been employed to study the crystal structure, IR spectrum, electronic structure, thermodynamic properties, gas-phase and condensed-phase heat of formation, detonation performance, and pyrolysis mechanism of TNTAC. The TNTAC has a predicted density of about 2.12 g/cm(3), and its detonation velocity (10.42 km/s) and detonation pressure (52.82 GPa) are higher than that of ONC. The crystalline packing is P2(1)2(1)2(1), and the corresponding cell parameters are Z = 4, a = 8.87 Å, b = 8.87 Å, and c = 11.47 Å. Both the density of states of the predicted crystal and the bond dissociation energy of the molecule in gas phase show that the cage C-N bond is the trigger bond during thermolysis. The activation energy of the pyrolysis initiation reaction obtained from the B3LYP/6-311++G(2df,2p) level is 125.98 kJ/mol, which indicates that TNTAC meets the thermal stability request as an exploitable HEDM. PMID:21919441

  19. Measurement and Comparison of Mechanical Properties of Nitinol Stents

    NASA Astrophysics Data System (ADS)

    Hanus, Josef; Zahora, Jiri

    2005-01-01

    The self expandable Nitinol stents or stentgrafts are typically used for miniinvasive treatment of stenosis and aneurysms in the cardiovascular system. The minimal traumatisation of the patient, shorter time of hospitalization are typical advantages of these methods. More than ten years of experience has yielded also important information about the performance of stents in interaction with biological system and the possible problems related with it. The leakage or the shift of stent are some typical disadvantages, that can be related among other in the construction of the stent. The problem is that the mechanical properties, dimensions and the dynamical properties of the stent do not exactly correspond to the properties of the vessel or generally of tissue where this stent is introduced. The measurement, the description and the comparison of the relations between the mechanical properties of stents and tissues can be one of the possible ways to minimize these disadvantages. The developed original computer controlled measuring system allows the measurement of mechanical properties of stents, the measurement of strain-stress curves or simulation of interaction of the stent and vessel for exactly defined hemodynamic conditions. We measured and compared the mechanical parameters of different selfexpandable Nitinol stents, which differed in geometry (radius and length), in the type of construction (number of branches and rising of winding) and in the diameter of used wire. The results of measurements confirmed the theoretical assumptions that just the diameter of the Nitinol wire significantly influences the rigidity and the level of compressibility of the stent as well. A compromise must be found between the required rigidity of the stent and the minimal size of the delivery system. The exact description of the relation between the mechanical properties and geometry and construction of the stents enables to design the stent to fit the patient and it is expected that

  20. Engineered disulfides improve mechanical properties of recombinant spider silk

    PubMed Central

    Grip, S; Johansson, J; Hedhammar, M

    2009-01-01

    Nature's high-performance polymer, spider silk, is composed of specific proteins, spidroins, which form solid fibers. So far, fibers made from recombinant spidroins have failed in replicating the extraordinary mechanical properties of the native material. A recombinant miniature spidroin consisting of four poly-Ala/Gly-rich tandem repeats and a nonrepetitive C-terminal domain (4RepCT) can be isolated in physiological buffers and undergoes self assembly into macrofibers. Herein, we have made a first attempt to improve the mechanical properties of 4RepCT fibers by selective introduction of AA → CC mutations and by letting the fibers form under physiologically relevant redox conditions. Introduction of AA → CC mutations in the first poly-Ala block in the miniature spidroin increases the stiffness and tensile strength without changes in ability to form fibers, or in fiber morphology. These improved mechanical properties correlate with degree of disulfide formation. AA → CC mutations in the forth poly-Ala block, however, lead to premature aggregation of the protein, possibly due to disulfide bonding with a conserved Cys in the C-terminal domain. Replacement of this Cys with a Ser, lowers thermal stability but does not interfere with dimerization, fiber morphology or tensile strength. These results show that mutagenesis of 4RepCT can reveal spidroin structure-activity relationships and generate recombinant fibers with improved mechanical properties. PMID:19388023

  1. Mechanical properties of the beetle elytron, a biological composite material

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We determined the relationship between composition and mechanical properties of elytral (modified forewing) cuticle of the beetles Tribolium castaneum and Tenebrio molitor. Elytra of both species have similar mechanical properties at comparable stages of maturation (tanning). Shortly after adult ecl...

  2. Performance of 5000 students in introductory mechanics

    NASA Astrophysics Data System (ADS)

    Caballero, Marcos; Bujak, Keith; Kohlmyer, Matthew; Catrambone, Richard; Marr, M. Jackson; Schatz, Michael

    2009-11-01

    We present the performance of nearly 5000 students on a standardized assessment of force and motion (Force Concept Inventory) for two fundamentally different physics curricula; a traditional course based on the Knight text and a reform course based on the text of Chabay and Sherwood, Matter and Interactions (M&I). The traditional course is a standard physics curriculum with particular emphasis on constant force motion. The M&I course is a modern approach to physics instruction with computer modeling and an emphasis on the generality and dynamics of Newton's Second Law. We find poorer performance for students who have taken the M&I course as compared to students taking the standard course. This under-performance is consistent despite the superior performance by M&I students on common exam problems in other areas of mechanics. We offer explanations for this consistent under-performance in the realm of force and motion as well as some results from recent work to combat these misconceptions in the M&I course.

  3. Environmental properties set cell mechanics and morphology

    NASA Astrophysics Data System (ADS)

    Janmey, Paul

    2012-02-01

    Many cell types are sensitive to mechanical signals that are produced either by application of exogenous force to their surfaces, or by the resistance that their surroundings place on forces generated by the cells themselves. Cell morphology, motility, proliferation, and protein expression all change in response to substrate stiffness. Changing the elastic moduli of substrates alters the formation of focal adhesions, the assembly of actin filaments into bundles, and the stability of intermediate filaments. The range of stiffness over which different primary cell types respond can vary over a wide range and generally reflects the elastic modulus of the tissue from which these cells were isolated. Mechanosensing depends on the type of adhesion receptor by which the cell binds, and therefore on both the molecular composition of the extracellular matrix and the nature of its link to the cytoskeleton. Many cell types can alter their own stiffness to match that of the substrate to which they adhere. The maximal elastic modulus that cells such as fibroblasts can attain is similar to that of crosslinked actin networks at the concentrations in the cell cortex. The precise mechanisms of mechanosensing are not well defined, but they presumably require an elastic connection between cell and substrate, mediated by transmembrane proteins. The viscoelastic properties of different extracellular matrices and cytoskeletal elements strongly influence the response of cells to mechanical signals, and the unusual non-linear elasticity of many biopolymer gels, characterized by strain-stiffening, leads to novel mechanisms by which cells alter their stiffness by engagement of molecular motors that produce internal stresses. Cell cortical elasticity is dominated by cytoskeletal polymer networks and can be modulated by internal tension. Simultaneous control of substrate stiffness and adhesive patterns suggests that stiffness sensing occurs on a length scale much larger than single molecular

  4. Mechanical performance of novel bioactive glass containing dental restorative composites

    PubMed Central

    Khvostenko, D.; Mitchell, J. C.; Hilton, T. J.; Ferracane, J. L.; Kruzic, J. J.

    2013-01-01

    Objectives Bioactive glass (BAG) is known to possess antimicrobial properties and release ions needed for remineralization of tooth tissue, and therefore may be a strategic additive for dental restorative materials. The objective of this study was to develop BAG containing dental restorative composites with adequate mechanical properties comparable to successful commercially available composites, and to confirm the stability of these materials when exposed to a biologically challenging environment. Methods Composites with 72 wt.% total filler content were prepared while substituting 0–15% of the filler with ground BAG. Flexural strength, fracture toughness, and fatigue crack growth tests were performed after several different soaking treatments: 24 hours in DI water (all experiments), two months in brain-heart infusion (BHI) media+S. mutans bacteria (all experiments) and two months in BHI media (only for flexural strength). Mechanical properties of new BAG composites were compared along with the commercial composite Heliomolar by two-way ANOVA and Tukey’s multiple comparison test (p≤0.05). Results Flexural strength, fracture toughness, and fatigue crack growth resistance for the BAG containing composites were unaffected by increasing BAG content up to 15% and were superior to Heliomolar after all post cure treatments. The flexural strength of the BAG composites was unaffected by two months exposure to aqueous media and a bacterial challenge, while some decreases in fracture toughness and fatigue resistance were observed. The favorable mechanical properties compared to Heliomolar were attributed to higher filler content and a microstructure morphology that better promoted the toughening mechanisms of crack deflection and bridging. Significance Overall, the BAG containing composites developed in this study demonstrated adequate and stable mechanical properties relative to successful commercial composites. PMID:24050766

  5. Performance of demining sensors and soil properties

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazunori; Preetz, Holger; Igel, Jan

    2011-06-01

    Metal detector has commonly been used for landmine detection and ground-penetrating radar (GPR) is about to be deployed as dual sensor that is in combination with metal detector. Since both devices employ electromagnetic techniques, they are influenced by magnetic and dielectric properties of soil. To observe the influence, various soil properties as well as their spatial distributions were measured in four types of soil where a field test of metal detectors and GPRs took place. By analyzing soil properties these four types of soil were graded based on the estimated amount of influence on the detection techniques. The classification was compared to the detection performance of devices obtained from the blind test and a clear correlation between the difficulty of soil and the performance was observed; the detection and identification performance were degraded in soils that were classified as problematic. Therefore, it was demonstrated that the performance of metal detector and GPR for landmine detection can qualitatively be assessed by geophysical analyses.

  6. Mechanical properties of icosahedral virus capsids

    NASA Astrophysics Data System (ADS)

    Vliegenthart, G. A.; Gompper, G.

    2007-12-01

    Virus capsids are self-assembled protein shells in the size range of 10 to 100 nanometers. The shells of DNA-viruses have to sustain large internal pressures while encapsulating and protecting the viral DNA. We employ computer simulations to study the mechanical properties of crystalline shells with icosahedral symmetry that serve as a model for virus capsids. The shells are positioned on a substrate and deformed by a uni-axial force excerted by a small bead. We predict the elastic response for small deformations, and the buckling transitions at large deformations. Both are found to depend strongly on the number N of elementary building blocks (capsomers), and the Föppl-von Kármán number γ which characterizes the relative importance of shear and bending elasticity.

  7. Material modeling of biofilm mechanical properties.

    PubMed

    Laspidou, C S; Spyrou, L A; Aravas, N; Rittmann, B E

    2014-05-01

    A biofilm material model and a procedure for numerical integration are developed in this article. They enable calculation of a composite Young's modulus that varies in the biofilm and evolves with deformation. The biofilm-material model makes it possible to introduce a modeling example, produced by the Unified Multi-Component Cellular Automaton model, into the general-purpose finite-element code ABAQUS. Compressive, tensile, and shear loads are imposed, and the way the biofilm mechanical properties evolve is assessed. Results show that the local values of Young's modulus increase under compressive loading, since compression results in the voids "closing," thus making the material stiffer. For the opposite reason, biofilm stiffness decreases when tensile loads are imposed. Furthermore, the biofilm is more compliant in shear than in compression or tension due to the how the elastic shear modulus relates to Young's modulus. PMID:24560820

  8. Evaluation of mechanical properties of esthetic brackets

    PubMed Central

    Umezaki, Eisaku; Komazawa, Daigo; Otsuka, Yuichiro; Suda, Naoto

    2015-01-01

    Plastic brackets, as well as ceramic brackets, are used in various cases since they have excellent esthetics. However, their mechanical properties remain uncertain. The purpose of this study was to determine how deformation and stress distribution in esthetic brackets differ among materials under the same wire load. Using the digital image correlation method, we discovered the following: (1) the strain of the wings of plastic brackets is within 0.2% and that of ceramic and metal brackets is negligible, (2) polycarbonate brackets having a stainless steel slot show significantly smaller displacement than other plastic brackets, and (3) there is a significant difference between plastic brackets and ceramic and stainless steel brackets in terms of the displacement of the bracket wing. PMID:25755677

  9. The minimal nanowire: Mechanical properties of carbyne

    NASA Astrophysics Data System (ADS)

    Nair, A. K.; Cranford, S. W.; Buehler, M. J.

    2011-07-01

    Advances in molecular assembly are converging to an ultimate in atomistic precision —nanostructures built by single atoms. Recent experimental studies confirm that single chains of carbon atoms —carbyne— exist in stable polyyne structures and can be synthesized, representing the minimal possible nanowire. Here we report the mechanical properties of carbyne obtained by first-principles-based ReaxFF molecular simulation. A peak Young's modulus of 288 GPa is found with linear stiffnesses ranging from 64.6-5 N/m for lengths of 5-64 Å. We identify a size-dependent strength that ranges from 11 GPa (1.3 nN) for the shortest to a constant 8 GPa (0.9 nN) for longer carbyne chains. We demonstrate that carbyne chains exhibit extremely high vibrational frequencies close to 6 THz for the shortest chains, which are found to be highly length-dependent.

  10. How Molecular Structure Affects Mechanical Properties of an Advanced Polymer

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.

    2000-01-01

    density was performed over a range of temperatures below the glass transition temperature. The physical characterization, elastic properties and notched tensile strength all as a function of molecular weight and test temperature were determined. For the uncrosslinked SI material, it was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. For the crosslinked PETI-SI material, it was shown that the effect of crosslinking significantly enhances the mechanical performance of the low molecular weight material; comparable to that exhibited by the high molecular weight material.

  11. Rationally designing the mechanical properties of protein hydrogels

    NASA Astrophysics Data System (ADS)

    Cao, Yi

    Naturally occurring biomaterials possess diverse mechanical properties, which are critical to their unique biological functions. However, it remains challenging to rationally control the mechanical properties of synthetic biomaterials. Here we provide a bottom-up approach to rationally design the mechanical properties of protein-based hydrogels. We first use atomic fore microscope (AFM) based single-molecule force spectroscopy to characterize the mechanical stability of individual protein building blocks. We then rationally design the mechanical properties of hydrogels by selecting different combination of protein building blocks of known mechanical properties. As a proof-of-principle, we demonstrate the engineering of hydrogels of distinct extensibility and toughness. This simple combinatorial approach allows direct translation of the mechanical properties of proteins from the single molecule level to the macroscopic level and represents an important step towards rationally designing the mechanical properties of biomaterials.

  12. Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced By Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Domack, Marcia S.; Taminger, Karen M. B.; Begley, Matthew

    2006-01-01

    The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties have been demonstrated for electron beam deposited aluminum and titanium alloys that are comparable to wrought products, although the microstructures of the deposits exhibit features more typical of cast material. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. In the current study, mechanical properties and resulting microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Material performance was evaluated based on tensile properties and results were compared with properties of Al 2219 wrought products. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains, typically with interior dendritic structures, which were described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.

  13. Biodegradable compounds: Rheological, mechanical and thermal properties

    NASA Astrophysics Data System (ADS)

    Nobile, Maria Rossella; Lucia, G.; Santella, M.; Malinconico, M.; Cerruti, P.; Pantani, R.

    2015-12-01

    Recently great attention from industry has been focused on biodegradable polyesters derived from renewable resources. In particular, PLA has attracted great interest due to its high strength and high modulus and a good biocompatibility, however its brittleness and low heat distortion temperature (HDT) restrict its wide application. On the other hand, Poly(butylene succinate) (PBS) is a biodegradable polymer with a low tensile modulus but characterized by a high flexibility, excellent impact strength, good thermal and chemical resistance. In this work the two aliphatic biodegradable polyesters PBS and PLA were selected with the aim to obtain a biodegradable material for the industry of plastic cups and plates. PBS was also blended with a thermoplastic starch. Talc was also added to the compounds because of its low cost and its effectiveness in increasing the modulus and the HDT of polymers. The compounds were obtained by melt compounding in a single screw extruder and the rheological, mechanical and thermal properties were investigated. The properties of the two compounds were compared and it was found that the values of the tensile modulus and elongation at break measured for the PBS/PLA/Talc compound make it interesting for the production of disposable plates and cups. In terms of thermal resistance the compounds have HDTs high enough to contain hot food or beverages. The PLA/PBS/Talc compound can be, then, considered as biodegradable substitute for polystyrene for the production of disposable plates and cups for hot food and beverages.

  14. Bulk Mechanical Properties of Single Walled Carbon Nanotube Electrodes

    NASA Astrophysics Data System (ADS)

    Giarra, Matthew; Landi, Brian; Cress, Cory; Raffaelle, Ryne

    2007-03-01

    The unique properties of single walled carbon nanotubes (SWNTs) make them especially well suited for use as electrodes in power devices such as lithium ion batteries, hydrogen fuel cells, solar cells, and supercapacitors. The performances of such devices are expected to be influenced, at least in part, by the mechanical properties of the SWNTs used in composites or in stand alone ``papers.'' Therefore, the elastic moduli and ultimate tensile strengths of SWNT papers were measured as functions of temperature, SWNT purity, SWNT length, and SWNT bundling. The SWNTs used to produce the papers were synthesized in an alexandrite laser vaporization reactor at 1100^oC and purified using conventional acid-reflux conditions. Characterization of the SWNTs was performed using SEM, BET, TGA, and optical and Raman spectroscopy. The purified material was filtered and dried to yield papers of bundled SWNTs which were analyzed using dynamic mechanical analysis (DMA). It was observed that the mechanical properties of acid-refluxed SWNT papers were significantly improved by controlled thermal oxidation and strain-hardening. Elastic moduli of SWNT papers were measured between 3 and 6 GPa. Ultimate (breaking) tensile stresses were measured between 45 and 90 MPa at 1-3% strain. These results and their implications in regard to potential applications in power devices will be discussed.

  15. Mechanical properties of DNA-like polymers

    PubMed Central

    Peters, Justin P.; Yelgaonkar, Shweta P.; Srivatsan, Seergazhi G.; Tor, Yitzhak; James Maher, L.

    2013-01-01

    The molecular structure of the DNA double helix has been known for 60 years, but we remain surprisingly ignorant of the balance of forces that determine its mechanical properties. The DNA double helix is among the stiffest of all biopolymers, but neither theory nor experiment has provided a coherent understanding of the relative roles of attractive base stacking forces and repulsive electrostatic forces creating this stiffness. To gain insight, we have created a family of double-helical DNA-like polymers where one of the four normal bases is replaced with various cationic, anionic or neutral analogs. We apply DNA ligase-catalyzed cyclization kinetics experiments to measure the bending and twisting flexibilities of these polymers under low salt conditions. Interestingly, we show that these modifications alter DNA bending stiffness by only 20%, but have much stronger (5-fold) effects on twist flexibility. We suggest that rather than modifying DNA stiffness through a mechanism easily interpretable as electrostatic, the more dominant effect of neutral and charged base modifications is their ability to drive transitions to helical conformations different from canonical B-form DNA. PMID:24013560

  16. Photopatterning the mechanical properties of polydimethylsiloxane films

    NASA Astrophysics Data System (ADS)

    Cotton, D. P. J.; Popel, A.; Graz, I. M.; Lacour, S. P.

    2011-03-01

    Silicone rubber films with graded and localized mechanical properties are prepared using two-part polydimethylsiloxane (PDMS) elastomer, photoinhibitor compounds and conventional photolithography. First the un-cross-linked PDMS is mixed with benzophenone. The resulting positive photosensitive material is then exposed through a mask to UV light from a conventional mask aligner. Cross-linking of the UV exposed elastomer is inhibited, leading to softer regions than the surrounding unexposed matrix. By empirically fitting the nonlinear, hyperelastic Mooney-Rivlin model to experimentally measured stress-strain curves we determine the equivalent tensile modulus (E) of the rubber film. We show the PDMS tensile modulus can then be adjusted in the 0.65-2.9 MPa range by decreasing the UV exposure dose (from 24 000 to 0 mJ cm-2). Further, using a patterned UV mask, we can locally define differential regions of tensile modulus within a single PDMS rubber film. We demonstrate that "hard islands" (E ≈ 2.9 MPa) of 100 μm minimum diameter can be patterned within a 100-μm-thick, single "soft" PDMS rubber membrane (E ≈ 0.65 MPa) cured at 150 °C for 24 h. Thin gold film conductors patterned directly onto the photopatterned PDMS are stretchable and withstand uniaxial cycling to tens of percent strain. The mechanically "pixellated" PDMS rubber film provides an improved substrate with built-in strain relief for stretchable electronics.

  17. Trabecular Bone Mechanical Properties and Fractal Dimension

    NASA Technical Reports Server (NTRS)

    Hogan, Harry A.

    1996-01-01

    Countermeasures for reducing bone loss and muscle atrophy due to extended exposure to the microgravity environment of space are continuing to be developed and improved. An important component of this effort is finite element modeling of the lower extremity and spinal column. These models will permit analysis and evaluation specific to each individual and thereby provide more efficient and effective exercise protocols. Inflight countermeasures and post-flight rehabilitation can then be customized and targeted on a case-by-case basis. Recent Summer Faculty Fellowship participants have focused upon finite element mesh generation, muscle force estimation, and fractal calculations of trabecular bone microstructure. Methods have been developed for generating the three-dimensional geometry of the femur from serial section magnetic resonance images (MRI). The use of MRI as an imaging modality avoids excessive exposure to radiation associated with X-ray based methods. These images can also detect trabecular bone microstructure and architecture. The goal of the current research is to determine the degree to which the fractal dimension of trabecular architecture can be used to predict the mechanical properties of trabecular bone tissue. The elastic modulus and the ultimate strength (or strain) can then be estimated from non-invasive, non-radiating imaging and incorporated into the finite element models to more accurately represent the bone tissue of each individual of interest. Trabecular bone specimens from the proximal tibia are being studied in this first phase of the work. Detailed protocols and procedures have been developed for carrying test specimens through all of the steps of a multi-faceted test program. The test program begins with MRI and X-ray imaging of the whole bones before excising a smaller workpiece from the proximal tibia region. High resolution MRI scans are then made and the piece further cut into slabs (roughly 1 cm thick). The slabs are X-rayed again

  18. Nondestructive measurement of esophageal biaxial mechanical properties utilizing sonometry

    NASA Astrophysics Data System (ADS)

    Aho, Johnathon M.; Qiang, Bo; Wigle, Dennis A.; Tschumperlin, Daniel J.; Urban, Matthew W.

    2016-07-01

    Malignant esophageal pathology typically requires resection of the esophagus and reconstruction to restore foregut continuity. Reconstruction options are limited and morbid. The esophagus represents a useful target for tissue engineering strategies based on relative simplicity in comparison to other organs. The ideal tissue engineered conduit would have sufficient and ideally matched mechanical tolerances to native esophageal tissue. Current methods for mechanical testing of esophageal tissues both in vivo and ex vivo are typically destructive, alter tissue conformation, ignore anisotropy, or are not able to be performed in fluid media. The aim of this study was to investigate biomechanical properties of swine esophageal tissues through nondestructive testing utilizing sonometry ex vivo. This method allows for biomechanical determination of tissue properties, particularly longitudinal and circumferential moduli and strain energy functions. The relative contribution of mucosal-submucosal layers and muscular layers are compared to composite esophagi. Swine thoracic esophageal tissues (n  =  15) were tested by pressure loading using a continuous pressure pump system to generate stress. Preconditioning of tissue was performed by pressure loading with the pump system and pre-straining the tissue to in vivo length before data was recorded. Sonometry using piezocrystals was utilized to determine longitudinal and circumferential strain on five composite esophagi. Similarly, five mucosa-submucosal and five muscular layers from thoracic esophagi were tested independently. This work on esophageal tissues is consistent with reported uniaxial and biaxial mechanical testing and reported results using strain energy theory and also provides high resolution displacements, preserves native architectural structure and allows assessment of biomechanical properties in fluid media. This method may be of use to characterize mechanical properties of tissue engineered esophageal

  19. Nondestructive measurement of esophageal biaxial mechanical properties utilizing sonometry

    NASA Astrophysics Data System (ADS)

    Aho, Johnathon M.; Qiang, Bo; Wigle, Dennis A.; Tschumperlin, Daniel J.; Urban, Matthew W.

    2016-07-01

    Malignant esophageal pathology typically requires resection of the esophagus and reconstruction to restore foregut continuity. Reconstruction options are limited and morbid. The esophagus represents a useful target for tissue engineering strategies based on relative simplicity in comparison to other organs. The ideal tissue engineered conduit would have sufficient and ideally matched mechanical tolerances to native esophageal tissue. Current methods for mechanical testing of esophageal tissues both in vivo and ex vivo are typically destructive, alter tissue conformation, ignore anisotropy, or are not able to be performed in fluid media. The aim of this study was to investigate biomechanical properties of swine esophageal tissues through nondestructive testing utilizing sonometry ex vivo. This method allows for biomechanical determination of tissue properties, particularly longitudinal and circumferential moduli and strain energy functions. The relative contribution of mucosal–submucosal layers and muscular layers are compared to composite esophagi. Swine thoracic esophageal tissues (n  =  15) were tested by pressure loading using a continuous pressure pump system to generate stress. Preconditioning of tissue was performed by pressure loading with the pump system and pre-straining the tissue to in vivo length before data was recorded. Sonometry using piezocrystals was utilized to determine longitudinal and circumferential strain on five composite esophagi. Similarly, five mucosa–submucosal and five muscular layers from thoracic esophagi were tested independently. This work on esophageal tissues is consistent with reported uniaxial and biaxial mechanical testing and reported results using strain energy theory and also provides high resolution displacements, preserves native architectural structure and allows assessment of biomechanical properties in fluid media. This method may be of use to characterize mechanical properties of tissue engineered

  20. Nondestructive measurement of esophageal biaxial mechanical properties utilizing sonometry.

    PubMed

    Aho, Johnathon M; Qiang, Bo; Wigle, Dennis A; Tschumperlin, Daniel J; Urban, Matthew W

    2016-07-01

    Malignant esophageal pathology typically requires resection of the esophagus and reconstruction to restore foregut continuity. Reconstruction options are limited and morbid. The esophagus represents a useful target for tissue engineering strategies based on relative simplicity in comparison to other organs. The ideal tissue engineered conduit would have sufficient and ideally matched mechanical tolerances to native esophageal tissue. Current methods for mechanical testing of esophageal tissues both in vivo and ex vivo are typically destructive, alter tissue conformation, ignore anisotropy, or are not able to be performed in fluid media. The aim of this study was to investigate biomechanical properties of swine esophageal tissues through nondestructive testing utilizing sonometry ex vivo. This method allows for biomechanical determination of tissue properties, particularly longitudinal and circumferential moduli and strain energy functions. The relative contribution of mucosal-submucosal layers and muscular layers are compared to composite esophagi. Swine thoracic esophageal tissues (n  =  15) were tested by pressure loading using a continuous pressure pump system to generate stress. Preconditioning of tissue was performed by pressure loading with the pump system and pre-straining the tissue to in vivo length before data was recorded. Sonometry using piezocrystals was utilized to determine longitudinal and circumferential strain on five composite esophagi. Similarly, five mucosa-submucosal and five muscular layers from thoracic esophagi were tested independently. This work on esophageal tissues is consistent with reported uniaxial and biaxial mechanical testing and reported results using strain energy theory and also provides high resolution displacements, preserves native architectural structure and allows assessment of biomechanical properties in fluid media. This method may be of use to characterize mechanical properties of tissue engineered esophageal

  1. High performance stepper motors for space mechanisms

    NASA Technical Reports Server (NTRS)

    Sega, Patrick; Estevenon, Christine

    1995-01-01

    Hybrid stepper motors are very well adapted to high performance space mechanisms. They are very simple to operate and are often used for accurate positioning and for smooth rotations. In order to fulfill these requirements, the motor torque, its harmonic content, and the magnetic parasitic torque have to be properly designed. Only finite element computations can provide enough accuracy to determine the toothed structures' magnetic permeance, whose derivative function leads to the torque. It is then possible to design motors with a maximum torque capability or with the most reduced torque harmonic content (less than 3 percent of fundamental). These later motors are dedicated to applications where a microstep or a synchronous mode is selected for minimal dynamic disturbances. In every case, the capability to convert electrical power into torque is much higher than on DC brushless motors.

  2. Mechanical properties of graphene on deformable patterned substrates: Experimental studies

    NASA Astrophysics Data System (ADS)

    Scharfenberg, S.; Chialvo, C.; Rocklin, D. Z.; Weaver, R.; Goldbart, P. M.; Mason, N.

    2010-03-01

    The mechanical properties of graphene can strongly influence its electronic behavior, and are relevant for implementing novel nano-mechanical devices. In this talk we present results on the mechanical behavior of few-layered graphene (FLG) placed on a patterned rubbery surface. Samples of FLG, with thicknesses ranging from 1-7 atomic layers, were deposited on micro-scale grooved polydimethylsiloxane (PDMS) substrates. AFM imaging techniques were then used to study the surface deformations, and to perform thickness measurements on the samples. AFM phase-imaging shows that the graphene strongly adheres to the substrate. The graphene also substantially deforms the substrate, with thicker pieces causing greater deformation. The results are discussed in the context of a linear elasticity theory (detailed in an accompanying paper) which can be used to explain the data and place bounds on the various interface strengths.

  3. ACCESS: Thermal Mechanical Design, Performance, and Status

    NASA Astrophysics Data System (ADS)

    Kaiser, Mary Elizabeth; Morris, M. J.; McCandliss, S. R.; Rauscher, B. J.; Kimble, R. A.; Kruk, J. W.; Wright, E. L.; Bohlin, R.; Kurucz, R. L.; Riess, A. G.; Pelton, R.; Deustua, S. E.; Dixon, W. V.; Sahnow, D. J.; Benford, D. J.; Gardner, J. P.; Feldman, P. D.; Moos, H. W.; Lampton, M.; Perlmutter, S.; Woodgate, B. E.

    2014-01-01

    Systematic errors associated with astrophysical data used to probe fundamental astrophysical questions, such as SNeIa observations used to constrain dark energy theories, are now rivaling and exceeding the statistical errors associated with these measurements. ACCESS: Absolute Color Calibration Experiment for Standard Stars is a series of rocket-borne sub-orbital missions and ground-based experiments designed to enable improvements in the precision of the astrophysical flux scale through the transfer of absolute laboratory detector standards from the National Institute of Standards and Technology (NIST) to a network of stellar standards with a calibration accuracy of 1% and a spectral resolving power of 500 across the 0.35 - 1.7μm bandpass. Achieving this level of accuracy requires characterization and stability of the instrument and detector including a thermal background that contributes less than 1% to the flux per resolution element in the NIR. We will present the instrument and calibration status with a focus on the thermal mechanical design and associated performance data. The detector control and performance will be presented in a companion poster (Morris, et al). NASA APRA sounding rocket grant NNX08AI65G supports this work.

  4. Mechanical Properties of Nuclear Fuel Surrogates using Picosecond Laser Ultrasonics

    SciTech Connect

    David Hurley; Marat Khafizov; Farhad Farzbod; Eric Burgett

    2013-05-01

    Detailed understanding between microstructure evolution and mechanical properties is important for designing new high burnup nuclear fuels. In this presentation we discuss the use of picosecond ultrasonics to measure localize changes in mechanical properties of fuel surrogates. We develop measurement techniques that can be applied to investigate heterogeneous elastic properties caused by localize changes in chemistry, grain microstructure caused by recrystallization, and mechanical properties of small samples prepared using focused ion beam sample preparation. Emphasis is placed on understanding the relationship between microstructure and mechanical properties

  5. Extracting nanobelt mechanical properties from nanoindentation

    NASA Astrophysics Data System (ADS)

    Zhang, Yin

    2010-06-01

    A three-spring-in-series model is proposed for the nanobelt (NB) indentation test. Compared with the previous two-spring-in-series model, which considers the bending stiffness of atomic force microscope cantilever and the indenter/NB contact stiffness, this model adds a third spring of the NB/substrate contact stiffness. NB is highly flexural due to its large aspect ratio of length to thickness. The bending and lift-off of NB form a localized contact with substrate, which makes the Oliver-Pharr method [W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992)] and Sneddon method [I. N. Sneddon, Int. J. Eng. Sci. 3, 47 (1965)] inappropriate for NB indentation test. Because the NB/substrate deformation may have significant impact on the force-indentation depth data obtained in experiment, the two-spring-in-series model can lead to erroneous predictions on the NB mechanical properties. NB in indentation test can be susceptible to the adhesion influence because of its large surface area to volume ratio. NB/substrate contact and adhesion can have direct and significant impact on the interpretation of experimental data. Through the three-spring-in-series model, the influence of NB/substrate contact and adhesion is analyzed and methods of reducing such influence are also suggested.

  6. Mechanical properties of the aneurysmal aorta.

    PubMed

    MacSweeney, S T; Young, G; Greenhalgh, R M; Powell, J T

    1992-12-01

    The mechanical properties of the abdominal aorta were investigated non-invasively in 30 patients with aortic aneurysm and 11 with peripheral arterial disease. The distensibility of the aorta was measured using M-mode ultrasonography, permitting non-invasive assessment of the pressure--strain elastic modulus or aortic stiffness, Ep. The median Ep value increased from 4.0 N/cm2 in control subjects in their third decade of life (n = 10) to 10.4 N/cm2 in middle age (n = 11) to 14.0 N/cm2 in the elderly (n = 13). In the presence of a normal diameter, peripheral arterial disease with aortic atherosclerosis had little effect on aortic stiffness, median Ep being 16.0 N/cm2. Aneurysmal dilatation was associated with a significant increase in aortic stiffness, median Ep being 31.3 N/cm2 (P < 0.001). For aortas of normal diameter, Ep was at all ages dependent on mean arterial pressure. In patients with aortic aneurysms there was no clear relationship between Ep and mean arterial pressure or aortic diameter. Of the patients studied, 15 underwent aortic reconstruction; increasing aortic stiffness (log Ep) was associated with a decreased medial elastin content of the aortic biopsy (r = -0.63, P < 0.02). This study demonstrates the marked stiffness or inelasticity of dilated or aneurysmal vessels, part of which is attributable to the loss of elastin.

  7. Mechanical properties of carbon-implanted niobium

    SciTech Connect

    Zinkle, S.J. ); Huang, J.S. )

    1990-01-01

    Polycrystalline niobium specimens were implanted with either 200 keV carbon ions or a combination of 50, 100, and 200 keV carbon ions to peak concentrations of 0.6 to 50 at. {percent}. Microindentation techniques were used to measure the hardness and elastic modulus of the implanted layer. Both the hardness (H) and modulus (E) showed dramatic increases due to the carbon implantation. The measured peak hardness and modulus following uniform implantation with 16 at. {percent} C were 15{times} and 3{times} that of niobium, respectively, which is comparable to the literature values for NbC. The peak hardness and modulus for the implanted specimens were observed at an indent depth of {approximately}40 nm, which is about one-eighth of the depth of the implanted carbon layer. The decrease in the indentation mechanical properties at deeper indent depths is due to the interaction of long-ranging strain fields underneath the indenter with the niobium substrate. 17 refs., 6 figs.

  8. Mechanical properties of melamine-formaldehyde microcapsules.

    PubMed

    Sun, G; Zhang, Z

    2001-01-01

    The mechanical properties of melamine-formaldehyde (M-F) microcapsules were studied using a micromanipulation technique. Single microcapsules with diameters of 1-12 microm were compressed and held between two parallel planes, compressed and released, and compressed to burst at different speeds, whilst the force being imposed on the microcapsules and their deformation were measured simultaneously. This force increased as single microcapsules were compressed and then relaxed slightly as they were held. When the microcapsules were repeatedly compressed and released, a pseudo yield point was found for each microcapsule. Before the microcapsules were compressed to this point, the deformed microcapsules recovered to their original shape once the force was removed. However, when the deformation was beyond the 'yield point' there was profound hysteresis and the microcapsules showed plastic behaviour. As the microcapsules were compressed to burst at different speeds, ranging from 0.5-6.0 microm/s, it was found that their mean bursting forces did not change significantly. The deformations at the pseudo yield point and at bursting were also independent of the compression speed. On average, these melamine-formaldehyde microcapsules reached their 'yield point' at a deformation of about 19 +/- 1%, and burst at a deformation of 70 +/- 1%.

  9. Mechanical Properties of the Upper Airway

    PubMed Central

    Strohl, Kingman P.; Butler, James P.; Malhotra, Atul

    2013-01-01

    The importance of the upper airway (nose, pharynx, and larynx) in health and in the pathogenesis of sleep apnea, asthma, and other airway diseases, discussed elsewhere in the Comprehensive Physiology series, prompts this review of the biomechanical properties and functional aspects of the upper airway. There is a literature based on anatomic or structural descriptions in static circumstances, albeit studied in limited numbers of individuals in both health and disease. As for dynamic features, the literature is limited to studies of pressure and flow through all or parts of the upper airway and to the effects of muscle activation on such features; however, the links between structure and function through airway size, shape, and compliance remain a topic that is completely open for investigation, particularly through analyses using concepts of fluid and structural mechanics. Throughout are included both historically seminal references, as well as those serving as signposts or updated reviews. This article should be considered a resource for concepts needed for the application of biomechanical models of upper airway physiology, applicable to understanding the pathophysiology of disease and anticipated results of treatment interventions. PMID:23723026

  10. Brain mechanical property measurement using MRE with intrinsic activation

    NASA Astrophysics Data System (ADS)

    Weaver, John B.; Pattison, Adam J.; McGarry, Matthew D.; Perreard, Irina M.; Swienckowski, Jessica G.; Eskey, Clifford J.; Lollis, S. Scott; Paulsen, Keith D.

    2012-11-01

    , termed intrinsic activation, produces sufficient motion to allow mechanical properties to be recovered. The poroelastic model is more consistent with the measured data from brain at low frequencies than the linear elastic model. Intrinsic activation allows MRE to be performed without a device shaking the head so the patient notices no differences between it and the other sequences in an MR examination.

  11. Influence of carbon nanotubes on mechanical properties and structure of rigid polyurethane foam

    NASA Astrophysics Data System (ADS)

    Ciecierska, E.; Jurczyk-Kowalska, M.; Bazarnik, P.; Kulesza, M.; Lewandowska, M.; Kowalski, M.; Krauze, S.

    2014-08-01

    In this work, the influence of carbon nanotubes addition on foam structure and mechanical properties of rigid polyurethane foam/nanotube composites was investigated. Scanning electron microscopy was performed to reveal the foam porous structure and distribution of carbon nanotubes. To determine the mechanical properties, three point bending tests were carried out.

  12. Structure and mechanical properties of Octopus vulgaris suckers.

    PubMed

    Tramacere, Francesca; Kovalev, Alexander; Kleinteich, Thomas; Gorb, Stanislav N; Mazzolai, Barbara

    2014-02-01

    In this study, we investigate the morphology and mechanical features of Octopus vulgaris suckers, which may serve as a model for the creation of a new generation of attachment devices. Octopus suckers attach to a wide range of substrates in wet conditions, including rough surfaces. This amazing feature is made possible by the sucker's tissues, which are pliable to the substrate profile. Previous studies have described a peculiar internal structure that plays a fundamental role in the attachment and detachment processes of the sucker. In this work, we present a mechanical characterization of the tissues involved in the attachment process, which was performed using microindentation tests. We evaluated the elasticity modulus and viscoelastic parameters of the natural tissues (E ∼ 10 kPa) and measured the mechanical properties of some artificial materials that have previously been used in soft robotics. Such a comparison of biological prototypes and artificial material that mimics octopus-sucker tissue is crucial for the design of innovative artificial suction cups for use in wet environments. We conclude that the properties of the common elastomers that are generally used in soft robotics are quite dissimilar to the properties of biological suckers. PMID:24284894

  13. Mechanical properties of human dental enamel on the nanometre scale.

    PubMed

    Habelitz, S; Marshall, S J; Marshall, G W; Balooch, M

    2001-02-01

    Atomic force microscopy (AFM) combined with a nano-indentation technique was used to reveal the structure and to perform site-specific mechanical testing of the enamel of third molars. Nano-indentations (size<500 nm) were made in the cusp area to measure the mechanical properties of single enamel rods at different orientations. The influence of etching on the physical properties was studied and etching conditions that did not significantly alter the plastic-elastic response of enamel were defined. Elasticity and hardness were found to be a function of the microstructural texture. Mean Young's moduli of 87.5 (+/-2.2) and 72.2 (+/-4.5) GPa and mean hardness of 3.9+/-0.3 and 3.3+/-0.3 GPa were measured in directions parallel and perpendicular to the enamel rods, respectively. Analysis of variance showed that the differences were significant. The observed anisotropy of enamel is related to the alignment of fibre-like apatite crystals and the composite nature of enamel rods. Mechanical properties were also studied at different locations on single enamel rods. Compared to those in the head area of the rods, Young's moduli and hardness were lower in the tail area and in the inter-rod enamel, which can be attributed to changes in crystal orientation and the higher content of soft organic tissue in these areas.

  14. Structure and mechanical properties of Octopus vulgaris suckers

    PubMed Central

    Tramacere, Francesca; Kovalev, Alexander; Kleinteich, Thomas; Gorb, Stanislav N.; Mazzolai, Barbara

    2014-01-01

    In this study, we investigate the morphology and mechanical features of Octopus vulgaris suckers, which may serve as a model for the creation of a new generation of attachment devices. Octopus suckers attach to a wide range of substrates in wet conditions, including rough surfaces. This amazing feature is made possible by the sucker's tissues, which are pliable to the substrate profile. Previous studies have described a peculiar internal structure that plays a fundamental role in the attachment and detachment processes of the sucker. In this work, we present a mechanical characterization of the tissues involved in the attachment process, which was performed using microindentation tests. We evaluated the elasticity modulus and viscoelastic parameters of the natural tissues (E ∼ 10 kPa) and measured the mechanical properties of some artificial materials that have previously been used in soft robotics. Such a comparison of biological prototypes and artificial material that mimics octopus-sucker tissue is crucial for the design of innovative artificial suction cups for use in wet environments. We conclude that the properties of the common elastomers that are generally used in soft robotics are quite dissimilar to the properties of biological suckers. PMID:24284894

  15. Structure and mechanical properties of Octopus vulgaris suckers.

    PubMed

    Tramacere, Francesca; Kovalev, Alexander; Kleinteich, Thomas; Gorb, Stanislav N; Mazzolai, Barbara

    2014-02-01

    In this study, we investigate the morphology and mechanical features of Octopus vulgaris suckers, which may serve as a model for the creation of a new generation of attachment devices. Octopus suckers attach to a wide range of substrates in wet conditions, including rough surfaces. This amazing feature is made possible by the sucker's tissues, which are pliable to the substrate profile. Previous studies have described a peculiar internal structure that plays a fundamental role in the attachment and detachment processes of the sucker. In this work, we present a mechanical characterization of the tissues involved in the attachment process, which was performed using microindentation tests. We evaluated the elasticity modulus and viscoelastic parameters of the natural tissues (E ∼ 10 kPa) and measured the mechanical properties of some artificial materials that have previously been used in soft robotics. Such a comparison of biological prototypes and artificial material that mimics octopus-sucker tissue is crucial for the design of innovative artificial suction cups for use in wet environments. We conclude that the properties of the common elastomers that are generally used in soft robotics are quite dissimilar to the properties of biological suckers.

  16. Mechanical Property of HVOF Inconel 718 Coating for Aeronautic Repair

    NASA Astrophysics Data System (ADS)

    Lyphout, Christophe; Fasth, Angelica; Nylen, Per

    2014-02-01

    The module of elasticity is one of the most important mechanical properties defining the strength of a material which is a prerequisite to design a component from its early stage of conception to its field of application. When a material is to be thermally sprayed, mechanical properties of the deposited layers differ from the bulk material, mainly due to the anisotropy of the highly textured coating microstructure. The mechanical response of the deposited layers significantly influences the overall performance of the coated component. It is, therefore, of importance to evaluate the effective module of elasticity of the coating. Conventional experimental methods such as microindentation, nanoindentation and four-point bending tests have been investigated and their results vary significantly, mainly due to inhomogeneous characteristics of the coating microstructure. Synchrotron radiation coupled with a tensile test rig has been proposed as an alternative method to determine the coating anisotropic elastic behavior dependence on crystallographic orientations. The investigation was performed on Inconel 718 (IN718) HVOF coatings sprayed on IN718 substrates. Combining these experimental techniques yield a deeper understanding of the nature of the HVOF coating Young's modulus and thus a tool for Design Practice for repair applications.

  17. An Experimental Investigation of Shale Mechanical Properties Through Drained and Undrained Test Mechanisms

    NASA Astrophysics Data System (ADS)

    Islam, Md. Aminul; Skalle, Paal

    2013-11-01

    Shale mechanical properties are evaluated from laboratory tests after a complex workflow that covers tasks from sampling to testing. Due to the heterogeneous nature of shale, it is common to obtain inconsistent test results when evaluating the mechanical properties. In practice, this variation creates errors in numerical modeling when test results differ significantly, even when samples are from a similar core specimen. This is because the fundamental models are based on the supplied test data and a gap is, therefore, always observed during calibration. Thus, the overall goal of this study was to provide additional insight regarding the organization of the non-linear model input parameters in borehole simulations and to assist other researchers involved in the rock physics-related research fields. To achieve this goal, the following parallel activities were carried out: (1) perform triaxial testing with different sample orientations, i.e., 0°, 45°, 60°, and 90°, including the Brazilian test and CT scans, to obtain a reasonably accurate description of the anisotropic properties of shale; (2) apply an accurate interpretative method to evaluate the elastic moduli of shale; (3) evaluate and quantify the mechanical properties of shale by accounting for the beddings plane, variable confinement pressures, drained and undrained test mechanisms, and cyclic versus monotonic test effects. The experimental results indicate that shale has a significant level of heterogeneity. Postfailure analysis confirmed that the failure plane coincides nicely with the weak bedding plane. The drained Poisson’s ratios were, on average, 40 % or lower than the undrained rates. The drained Young’s modulus was approximately 48 % that of the undrained value. These mechanical properties were significantly impacted by the bedding plane orientation. Based on the Brazilian test, the predicted tensile strength perpendicular to the bedding plane was 12 % lower than the value obtained using the

  18. Mechanical Properties of Oil Palm Empty Fruit Bunch Fiber

    NASA Astrophysics Data System (ADS)

    Gunawan, Fergyanto E.; Homma, Hiroomi; Brodjonegoro, Satryo S.; Hudin, Afzer Bin Baseri; Zainuddin, Aryanti Binti

    In tropical countries such as Indonesia and Malaysia, the empty fruit bunches are wastes of the oil palm industry. The wastes are abundantly available and has reached a level that severely threats the environment. Therefore, it is a great need to find useful applications of those waste materials; but firstly, the mechanical properties of the EFB fiber should be quantified. In this work, a small tensile test machine is manufactured, and the tensile test is performed on the EFB fibers. The results show that the strength of the EFB fiber is strongly affected by the fiber diameter; however, the fiber strength is relatively low in comparison to other natural fibers.

  19. Shear mechanical properties of the spleen: experiment and analytical modelling.

    PubMed

    Nicolle, S; Noguer, L; Palierne, J-F

    2012-05-01

    This paper aims at providing the first shear mechanical properties of spleen tissue. Rheometric tests on porcine splenic tissues were performed in the linear and nonlinear regime, revealing a weak frequency dependence of the dynamic moduli in linear regime and a distinct strain-hardening effect in nonlinear regime. These behaviours are typical of soft tissues such as kidney and liver, with however a less pronounced strain-hardening for the spleen. An analytical model based on power laws is then proposed to describe the general shear viscoelastic behaviour of the spleen. PMID:22498291

  20. Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti-Ag sintered alloys.

    PubMed

    Chen, Mian; Zhang, Erlin; Zhang, Lan

    2016-05-01

    In this research, Ag element was selected as an antibacterial agent to develop an antibacterial Ti-Ag alloy by a powder metallurgy. The microstructure, phase constitution, mechanical properties, corrosion resistance and antibacterial properties of the Ti-Ag sintered alloys have been systematically studied by X-ray diffraction (XRD), scanning electron microscope (SEM), compressive test, electrochemical measurements and antibacterial test. The effects of the Ag powder size and the Ag content on the antibacterial property and mechanical property as well as the anticorrosion property have been investigated. The microstructure results have shown that Ti-Ag phase, residual pure Ag and Ti were the mainly phases in Ti-Ag(S75) sintered alloy while Ti2Ag was synthesized in Ti-Ag(S10) sintered alloy. The mechanical test indicated that Ti-Ag sintered alloy showed a much higher hardness and the compressive yield strength than cp-Ti but the mechanical properties were slightly reduced with the increase of Ag content. Electrochemical results showed that Ag powder size had a significant effect on the corrosion resistance of Ti-Ag sintered alloy. Ag content increased the corrosion resistance in a dose dependent way under a homogeneous microstructure. Antibacterial tests have demonstrated that antibacterial Ti-Ag alloy was successfully prepared. It was also shown that the Ag powder particle size and the Ag content influenced the antibacterial activity seriously. The reduction in the Ag powder size was benefit to the improvement in the antibacterial property and the Ag content has to be at least 3wt.% in order to obtain a strong and stable antibacterial activity against Staphylococcus aureus bacteria. The bacterial mechanism was thought to be related to the Ti2Ag and its distribution. PMID:26952433

  1. Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti-Ag sintered alloys.

    PubMed

    Chen, Mian; Zhang, Erlin; Zhang, Lan

    2016-05-01

    In this research, Ag element was selected as an antibacterial agent to develop an antibacterial Ti-Ag alloy by a powder metallurgy. The microstructure, phase constitution, mechanical properties, corrosion resistance and antibacterial properties of the Ti-Ag sintered alloys have been systematically studied by X-ray diffraction (XRD), scanning electron microscope (SEM), compressive test, electrochemical measurements and antibacterial test. The effects of the Ag powder size and the Ag content on the antibacterial property and mechanical property as well as the anticorrosion property have been investigated. The microstructure results have shown that Ti-Ag phase, residual pure Ag and Ti were the mainly phases in Ti-Ag(S75) sintered alloy while Ti2Ag was synthesized in Ti-Ag(S10) sintered alloy. The mechanical test indicated that Ti-Ag sintered alloy showed a much higher hardness and the compressive yield strength than cp-Ti but the mechanical properties were slightly reduced with the increase of Ag content. Electrochemical results showed that Ag powder size had a significant effect on the corrosion resistance of Ti-Ag sintered alloy. Ag content increased the corrosion resistance in a dose dependent way under a homogeneous microstructure. Antibacterial tests have demonstrated that antibacterial Ti-Ag alloy was successfully prepared. It was also shown that the Ag powder particle size and the Ag content influenced the antibacterial activity seriously. The reduction in the Ag powder size was benefit to the improvement in the antibacterial property and the Ag content has to be at least 3wt.% in order to obtain a strong and stable antibacterial activity against Staphylococcus aureus bacteria. The bacterial mechanism was thought to be related to the Ti2Ag and its distribution.

  2. Mechanism of Tennis Racket Spin Performance

    NASA Astrophysics Data System (ADS)

    Kawazoe, Yoshihiko; Okimoto, Kenji; Okimoto, Keiko

    Players often say that some strings provide a better grip and more spin than others, but ball spin did not depend on string type, gauge, or tension in pervious laboratory experiments. There was no research work on spin to uncover what is really happening during an actual tennis impact because of the difficulty of performing the appropriate experiments. The present paper clarified the mechanism of top spin and its improvement by lubrication of strings through the use of high-speed video analysis. It also provided a more detailed explanation of spin behavior by comparing a racket with lubricated strings with the famous “spaghetti” strung racket, which was banned in 1978 by the International Tennis Federation because it used plastic spaghetti tubing over the strings to reduce friction, resulting in excessive ball spin. As the main strings stretch and slide sideways more, the ball is given additional spin due to the restoring force parallel to the string face when the main strings spring back and the ball is released from the strings. Herein, we also showed that the additional spin results in a reduction of shock vibrations of the wrist joint during impact.

  3. Ultrasonic nondestructive evaluation, microstructure, and mechanical property interrelations

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1984-01-01

    Ultrasonic techniques for mechanical property characterizations are reviewed and conceptual models are advanced for explaining and interpreting the empirically based results. At present, the technology is generally empirically based and is emerging from the research laboratory. Advancement of the technology will require establishment of theoretical foundations for the experimentally observed interrelations among ultrasonic measurements, mechanical properties, and microstructure. Conceptual models are applied to ultrasonic assessment of fracture toughness to illustrate an approach for predicting correlations found among ultrasonic measurements, microstructure, and mechanical properties.

  4. Real-time observations of mechanical stimulus-induced enhancements of mechanical properties in osteoblast cells.

    PubMed

    Zhang, Xu; Liu, Xiaoli; Sun, Jialun; He, Shuojie; Lee, Imshik; Pak, Hyuk Kyu

    2008-09-01

    Osteoblast, playing a key role in the pathophysiology of osteoporosis, is one of the mechanical stress sensitive cells. The effects of mechanical load-induced changes of mechanical properties in osteoblast cells were studied at real-time. Osteoblasts obtained from young Wistar rats were exposed to mechanical loads in different frequencies and resting intervals generated by atomic force microscopy (AFM) probe tip and simultaneously measured the changes of the mechanical properties by AFM. The enhancement of the mechanical properties was observed and quantified by the increment of the apparent Young's modulus, E*. The observed mechanical property depended on the frequency of applied tapping loads. For the resting interval is 50s, the mechanical load-induced enhancement of E*-values disappears. It seems that the enhanced mechanical property was recover able under no additional mechanical stimulus.

  5. Mechanical properties of micro-injected HDPE composites

    NASA Astrophysics Data System (ADS)

    Bongiorno, A.; Pagano, C.; Agnelli, S.; Baldi, F.; Fassi, I.

    2016-03-01

    Micro-injection moulding is one of the key manufacturing technologies for the mass production of high value polymeric miniaturized-components. However, this process is not just a straightforward down scaling of the conventional injection moulding technique. Indeed, during the micro-injection the polymer melt is forced to flow at high strain rates through very small channels in non-isothermal conditions, and this can lead to complex microstructures and to parts with unexpected performances. In this work, the relationships among the processing conditions, the mechanical properties and the microstructural characteristics of miniaturized specimens obtained by injection moulding were investigated. Two model systems were considered with the same filler content of 15% wt. (HDPE-talc and HDPE-glass beads), representative of two different types of micro-composites: containing lamellar and spherical micro-particles, respectively. The attention was focused on the influence of the filler type and the process conditions on the mechanical behaviour, examined by uniaxial tensile tests and dynamic-mechanical analyses, and on the morphological characteristics of the specimens, examined by microscopy analyses. The results highlight that mechanical response of the miniaturized specimens is significantly affected by both the filler and the process conditions that can have an influence on the polymer microstructure. Lamellar composites showed the best performance due to the orientation of the talc particles during the micro-injection process, while, different morphologies of the skin/core transition region in dependence on the process temperatures were observable.

  6. Modeling the mechanical properties of liver fibrosis in rats.

    PubMed

    Zhu, Ying; Chen, Xin; Zhang, Xinyu; Chen, Siping; Shen, Yuanyuan; Song, Liang

    2016-06-14

    The progression of liver fibrosis changes the biomechanical properties of liver tissue. This study characterized and compared different liver fibrosis stages in rats in terms of viscoelasticity. Three viscoelastic models, the Voigt, Maxwell, and Zener models, were applied to experimental data from rheometer tests and then the elasticity and viscosity were estimated for each fibrosis stage. The study found that both elasticity and viscosity are correlated with the various stages of liver fibrosis. The study revealed that the Zener model is the optimal model for describing the mechanical properties of each fibrosis stage, but there is no significant difference between the Zener and Voigt models in their performance on liver fibrosis staging. Therefore the Voigt model can still be effectively used for liver fibrosis grading. PMID:27017300

  7. Local Mechanical Properties by Atomic Force Microscopy Nanoindentations

    NASA Astrophysics Data System (ADS)

    Tranchida, Davide; Piccarolo, Stefano

    The analysis of mechanical properties on a nanometer scale is a useful tool for combining information concerning texture organization obtained by microscopy with the properties of individual components. Moreover, this technique promotes the understanding of the hierarchical arrangement in complex natural materials as well in the case of simpler morphologies arising from industrial processes. Atomic Force Microscopy (AFM) can bridge morphological information, obtained with outstanding resolution, to local mechanical properties. When performing an AFM nanoindentation, the rough force curve, i.e., the plot of the voltage output from the photodiode vs. the voltage applied to the piezo-scanner, can be translated into a curve of the applied load vs. the penetration depth after a series of preliminary determinations and calibrations. However, the analysis of the unloading portion of the force curves collected for polymers does not lead to a correct evaluation of Young's modulus. The high slope of the unloading curves is not linked to an elastic behavior, as would be expected, but rather to a viscoelastic effect. This can be argued on the basis that the unloading curves are superimposed on the loading curves in the case of an ideal elastic behavior, as for rubbers, or generally in the case of materials with very short relaxation times. In contrast, when the relaxation time of the sample is close to or even much larger than the indentation time scale, very high slopes are recorded.

  8. Synthetic fuels handbook: properties, process and performance

    SciTech Connect

    Speight, J.

    2008-07-01

    The handbook is a comprehensive guide to the benefits and trade-offs of numerous alternative fuels, presenting expert analyses of the different properties, processes, and performance characteristics of each fuel. It discusses the concept systems and technology involved in the production of fuels on both industrial and individual scales. Chapters 5 and 7 are of special interest to the coal industry. Contents: Chapter 1. Fuel Sources - Conventional and Non-conventional; Chapter 2. Natural Gas; Chapter 3. Fuels From Petroleum and Heavy Oil; Chapter 4. Fuels From Tar Sand Bitumen; Chapter 5. Fuels From Coal; Chapter 6. Fuels From Oil Shale; Chapter 7. Fuels From Synthesis Gas; Chapter 8. Fuels From Biomass; Chapter 9. Fuels From Crops; Chapter 10. Fuels From Wood; Chapter 11. Fuels From Domestic and Industrial Waste; Chapter 12. Landfill Gas. 3 apps.

  9. Investigation of properties and performance of ceramic composite components

    SciTech Connect

    Stinchcomb, W.W.; Reifsnider, K.L.; Dunyak, T.J.

    1992-06-15

    The objective of the work reported herein is to develop an understanding of the mechanical behavior of advanced ceramic composites subjected to elevated temperature and dynamic (cyclic) loading, to develop a test system and test methods to obtain the properties and performance information required to design engineering components made from ceramic composite materials, and to provide critical and comprehensive evaluations of such materials to material synthesizers and developers to support and enhance progress in ceramic composite material development. The accomplishments of the investigation include the design, development, and demonstration of a high temperature, biaxial mechanical test facility for ceramic composite tubes and the development and validation of a performance simulation model (MRLife) for ceramic composites.

  10. Alkali-activated cementitious materials: Mechanisms, microstructure and properties

    NASA Astrophysics Data System (ADS)

    Jiang, Weimin

    The goal of this study was to examine the activation reaction, microstructure, properties, identify the mechanisms of activation, and achieve an enhanced understanding of activation processes occurring during the synthesis of alkali activated cementitious materials (AAC). The discussions classify the following categories. (1) alkali activated slag cement; (2) alkali activated portland-slag cement; (3) alkali activated fly ash-slag cement; (4) alkali activated pozzolana-lime cement; (5) alkali activated pozzolana cement. The activators involved are NaOH, KOH; Nasb2SOsb4;\\ Nasb2COsb3;\\ CaSOsb4, and soluble silicate of sodium and potassium. The effect of alkali activation on the microstructure of these materials were analyzed at the micro-nanometer scale by SEM, EDS, ESEM, and TEM. Also sp{29}Si and sp{27}Al MAS-NMR, IR, Raman, TGA, and DTA were performed to characterize the phase in these systems. Slag, fly ash, silica fume, as well as blended cements containing mixtures of these and other components were characterized. A set of ordinary portland cement paste samples served as a control. This study confirmed that AAC materials have great potential because they could generate very early high strength, greater durability and high performance. Among the benefits to be derived from this research is a better understanding of the factors that control concrete properties when using AAC materials, and by controlling the chemistry and processing to produce desired microstructures and properties, as well as their durability.

  11. Mechanical Properties of K Basin Sludge Constituents and Their Surrogates

    SciTech Connect

    Delegard, Calvin H.; Schmidt, Andrew J.; Chenault, Jeffrey W.

    2004-12-06

    A survey of the technical literature was performed to summarize the mechanical properties of inorganic components in K Basins sludge. The components included gibbsite, ferrihydrite, lepidocrocite and goethite, hematite, quartz, anorthite, calcite, basalt, Zircaloy, aluminum, and, in particular, irradiated uranium metal and uranium dioxide. Review of the technical literature showed that information on the hardness of uranium metal at irradiation exposures similar to those experienced by the N Reactor fuel present in the K Basins (typically up to 3000 MWd/t) were not available. Measurements therefore were performed to determine the hardness of coupons taken from three irradiated N Reactor uranium metal fuel elements taken from K Basins. Hardness values averaged 30 {+-} 8 Rockwell C units, similar to values previously reported for uranium irradiated to {approx}1200 MWd/t. The physical properties of candidate uranium metal and uranium dioxide surrogates were gathered and compared. Surrogates having properties closest to those of irradiated uranium metal appear to be alloys of tungsten. The surrogate for uranium dioxide, present both as particles and agglomerates in actual K Basin sludge, likely requires two materials. Cerium oxide, CeO2, was identified as a surrogate of the smaller UO2 particles while steel grit was identified for the UO2 agglomerates.

  12. Decoupling Mechanical and Ion Transport Properties in Polymer Electrolyte Membranes

    NASA Astrophysics Data System (ADS)

    McIntosh, Lucas D.

    Polymer electrolytes are mixtures of a polar polymer and salt, in which the polymer replaces small molecule solvents and provides a dielectric medium so that ions can dissociate and migrate under the influence of an external electric field. Beginning in the 1970s, research in polymer electrolytes has been primarily motivated by their promise to advance electrochemical energy storage and conversion devices, such as lithium ion batteries, flexible organic solar cells, and anhydrous fuel cells. In particular, polymer electrolyte membranes (PEMs) can improve both safety and energy density by eliminating small molecule, volatile solvents and enabling an all-solid-state design of electrochemical cells. The outstanding challenge in the field of polymer electrolytes is to maximize ionic conductivity while simultaneously addressing orthogonal mechanical properties, such as modulus, fracture toughness, or high temperature creep resistance. The crux of the challenge is that flexible, polar polymers best-suited for polymer electrolytes (e.g., poly(ethylene oxide)) offer little in the way of mechanical robustness. Similarly, polymers typically associated with superior mechanical performance (e.g., poly(methyl methacrylate)) slow ion transport due to their glassy polymer matrix. The design strategy is therefore to employ structured electrolytes that exhibit distinct conducting and mechanically robust phases on length scales of tens of nanometers. This thesis reports a remarkably simple, yet versatile synthetic strategy---termed polymerization-induced phase separation, or PIPS---to prepare PEMs exhibiting an unprecedented combination of both high conductivity and high modulus. This performance is enabled by co-continuous, isotropic networks of poly(ethylene oxide)/ionic liquid and highly crosslinked polystyrene. A suite of in situ, time-resolved experiments were performed to investigate the mechanism by which this network morphology forms, and it appears to be tied to the

  13. Wave-Mechanical Properties of Stationary States.

    ERIC Educational Resources Information Center

    Holden, Alan

    This monograph is a review of the quantum mechanical concepts presented in two other monographs, "The Nature of Atoms" and "Bonds Between Atoms," by the same author. It is assumed the reader is familiar with these ideas. The monograph sketches only those aspects of quantum mechanics that are of most direct use in picturing and calculating the…

  14. Investigation on mechanical properties of contemporary metallic bone plates: towards the development of composite bone plates.

    PubMed

    Hoque, M E; Zainal, N H; Syarif, J

    2008-07-01

    This study aims at investigating the mechanical properties of the contemporary metallic bone plates determining the effect of their length, width and thickness on the properties and compares with the composite bone plates. Three-points bending test was performed over the stainless steel plates of different length, width and thickness. The test results showed that different plates had different mechanical properties. However, the properties are still much higher than that of particular bones intended to be treated. Therefore, the reported findings strongly encourage developing composite bone plates with biocompatible polymers/fibers that would have modulated properties according to the requirements.

  15. Mechanical and physical properties of plasma-sprayed stabilized zirconia

    NASA Technical Reports Server (NTRS)

    Siemers, P. A.; Mehan, R. L.

    1983-01-01

    Physical and mechanical properties were determined for plasma-sprayed MgO- or Y2O3-stabilized ZrO2 thermal barrier coatings. Properties were determined for the ceramic coating in both the freestanding condition and as-bonded to a metal substrate. The properties of the NiCrAlY bond coating were also investigated.

  16. Investigation of the Mechanical Performance of Compliant Thermal Barriers

    NASA Technical Reports Server (NTRS)

    DeMange, Jeffrey J.; Bott, Robert J.; Dunlap, Patrick H.

    2011-01-01

    Compliant thermal barriers play a pivotal role in the thermal protection systems of advanced aerospace vehicles. Both the thermal properties and mechanical performance of these barriers are critical in determining their successful implementation. Due to the custom nature of many thermal barriers, designers of advanced spacecraft have little guidance as to the design, selection, and implementation of these elements. As part of an effort to develop a more fundamental understanding of the interrelationship between thermal barrier design and performance, mechanical testing of thermal barriers was conducted. Two different types of thermal barriers with several core insulation density levels ranging from 62 to 141 kg/cu m were investigated. Room-temperature compression tests were conducted on samples to determine load performance and assess thermal barrier resiliency. Results showed that the loading behavior of these thermal barriers was similar to other porous, low-density, compliant materials, such as elastomeric foams. Additionally, the insulation density level had a significant non-linear impact on the stiffness and peak loads of the thermal barriers. In contrast, neither the thermal barrier type nor the level of insulation density significantly influenced the room-temperature resiliency of the samples.

  17. Integrated design of castings: effect of porosity on mechanical performance

    NASA Astrophysics Data System (ADS)

    Hardin, R. A.; Beckermann, C.

    2012-07-01

    Porosity can significantly reduce the strength and durability of castings in service. An integrated design approach has been developed where casting simulation is combined with mechanical performance simulations. Predictions of the porosity distribution from the casting process simulation are transferred to and used in stress and fatigue life simulations. Thus, the effect of casting quality on service performance can be evaluated. Results of a study are presented where the measured porosity distribution in cast steel specimens is transferred to an elasto-plastic finite-element stress analysis model. Methods are developed to locally reduce the mechanical properties according to the porosity present, without having to resolve individual pores. Plastic deformation is modeled using porous metal plasticity theory. The predictions are compared to tensile measurements performed on the specimens. The complex deformations and the reductions in the ductility of the specimens due to porosity are predicted well. The predicted stresses are transferred to a fatigue analysis code that takes the porosity distribution into account as well. The measured and predicted fatigue lives are also in good agreement. Finally, the results of a case study are presented that illustrate the utility of the present integrated approach in optimizing the design of a steel casting.

  18. Phonon spectrum, mechanical and thermophysical properties of thorium carbide

    NASA Astrophysics Data System (ADS)

    Pérez Daroca, D.; Jaroszewicz, S.; Llois, A. M.; Mosca, H. O.

    2013-06-01

    In this work, we study, by means of density functional perturbation theory and the pseudopotential method, mechanical and thermophysical properties of thorium carbide. These properties are derived from the lattice dynamics in the quasi-harmonic approximation. The phonon spectrum of ThC presented in this article, to the best authors' knowledge, have not been studied, neither experimentally, nor theoretically. We compare mechanical properties, volume thermal expansion and molar specific capacities with previous results and find a very good agreement.

  19. Scanning Probe Evaluation of Electronic, Mechanical and Structural Material Properties

    NASA Astrophysics Data System (ADS)

    Virwani, Kumar

    2011-03-01

    We present atomic force microscopy (AFM) studies of a range of properties from three different classes of materials: mixed ionic electronic conductors, low-k dielectrics, and polymer-coated magnetic nanoparticles. (1) Mixed ionic electronic conductors are being investigated as novel diodes to drive phase-change memory elements. Their current-voltage characteristics are measured with direct-current and pulsed-mode conductive AFM (C-AFM). The challenges to reliability of the C-AFM method include the electrical integrity of the probe, the sample and the contacts, and the minimization of path capacitance. The role of C-AFM in the optimization of these electro-active materials will be presented. (2) Low dielectric constant (low-k) materials are used in microprocessors as interlayer insulators, a role directly affected by their mechanical performance. The mechanical properties of nanoporous silicate low-k thin films are investigated in a comparative study of nanomechanics measured by AFM and by traditional nanoindentation. Both methods are still undergoing refinement as reliable analytical tools for determining nanomechanical properties. We will focus on AFM, the faster of the two methods, and its developmental challenges of probe shape, cantilever force constant, machine compliance and calibration standards. (3) Magnetic nanoparticles are being explored for their use in patterned media for magnetic storage. Current methods for visualizing the core-shell structure of polymer-coated magnetic nanoparticles include dye-staining the polymer shell to provide contrast in transmission electron microscopy. AFM-based fast force-volume measurements provide direct visualization of the hard metal oxide core within the soft polymer shell based on structural property differences. In particular, the monitoring of adhesion and deformation between the AFM tip and the nanoparticle, particle-by-particle, provides a reliable qualitative tool to visualize core-shell contrast without the use

  20. Lunar soil properties and soil mechanics

    NASA Technical Reports Server (NTRS)

    Mitchell, J. K.; Houston, W. N.

    1974-01-01

    The long-range objectives were to develop methods of experimentation and analysis for the determination of the physical properties and engineering behavior of lunar surface materials under in situ environmental conditions. Data for this purpose were obtained from on-site manned investigations, orbiting and softlanded spacecraft, and terrestrial simulation studies. Knowledge of lunar surface material properties are reported for the development of models for several types of lunar studies and for the investigation of lunar processes. The results have direct engineering application for manned missions to the moon.

  1. The Effect of Aptitude and Experience on Mechanical Job Performance.

    ERIC Educational Resources Information Center

    Mayberry, Paul W.; Carey, Neil B.

    1997-01-01

    The validity of the Armed Services Vocational Aptitude Battery (ASVAB) in predicting mechanical job performance was studied with 891 automotive and 522 helicopter mechanics. The mechanical maintenance component of the ASVAB predicted hands-on performance, job knowledge, and training grades quite well, but experience was more predictive of…

  2. Physical and mechanical properties of icebergs

    SciTech Connect

    Gammon, P.H.; Bobby, W.; Gagnon, R.E.; Russell, W.E.

    1983-05-01

    Physical and mechanical characteristics of iceberg ice were studied from samples collected near the shores of eastern Newfoundland. Although the physical characteristics show considerable diversity, iceberg ice has some common features and is generally porous, lacks significant concentrations of dissolved materials, contains internal cracks and has an irregular interlocking grain structure. A review of mechanical testing of ice was carried out and an experimental setup was devised to reduce effects of improper contact between specimen and loading apparatus. Uniaxial compressive strength for iceberg ice was determined and compared with that for lake ice. The strength of iceberg ice was higher than that of lake ice but Young's Modulus for lake ice was higher.

  3. Automotive Mechanics Occupational Performance Survey. Interim Report.

    ERIC Educational Resources Information Center

    Borcher, Sidney D.; Leiter, Paul B.

    The purpose of this federally-funded interim report is to present the results of a task inventory analysis survey of automotive mechanics completed by project staff within the Instructional Systems Design Program at the Center for Vocational and Technical Education. Intended for use in curriculum development for vocational education programs in…

  4. Mechanical properties of continuously spun fibers of carbon nanotubes.

    PubMed

    Motta, Marcelo; Li, Ya-Li; Kinloch, Ian; Windle, Alan

    2005-08-01

    We report on the mechanical properties of fibers consisting of pure carbon nanotube fibers directly spun from an aerogel formed during synthesis by chemical vapor deposition. The continuous withdrawal of product from the gas phase imparts a high commercial potential to the process, either for the production of particularly strong fibers or for the economic production of bulk quantities of carbon nanotubes. Tensile tests were performed on fibers produced from the dissociation of three different hydrocarbons, namely, ethanol, ethylene glycol, and hexane, with a range of iron (catalyst) concentrations. The conditions were chosen to lie within the range known to enable satisfactory continuous spinning, the iron concentration being varied within this range. Increasing proportions of single wall nanotubes were found as the iron concentration was decreased, conditions which also produced fibers of best strength and stiffness. The maximum tensile strength obtained was 1.46 GPa (equivalent to 0.70 N/tex assuming a density of 2.1 g/cm(3)). The experiments indicate that significant improvements in the mechanical properties can be accomplished by optimizing the process conditions. PMID:16089483

  5. Mechanical and Electrical Properties of Aluminum/Epoxy Nanocomposites

    NASA Astrophysics Data System (ADS)

    Dong, Lina; Zhou, Wenying; Sui, Xuezhen; Wang, Zijun; Cai, Huiwu; Wu, Peng; Zhang, Yating; Zhou, Anning

    2016-11-01

    Surface-modified self-passivated aluminum (Al) nanoparticles were used for reinforcing epoxy (EP) resin, and the curing behavior, mechanical and electrical properties of the Al/EP nanocomposites were investigated. The incorporation of Al nanoparticles into EP significantly decreases the cure reaction enthalpy of the nancomposites, and the apparent activation energy of Al/EP systems is 64.96 kJ/mol. The coefficient of thermal expansion of the nanocomposites decreases with increasing the Al loading due to the strong interaction between the Al and the EP matrix. The storage modulus of the nanocomposites increases continuously with Al content, whereas, the glass transition temperature declines slightly. With increasing the Al content, the tensile modulus, flexural modulus and compressive modulus of the nanocomposites increase continuously compared with the neat one. The mechanical properties are improved by Al nanoparticles at low Al contents. The best overall dielectric and electrical performance are achieved about at 1 wt.% of Al concentration. The enhanced dielectric breakdown strength is mainly related to the insulating alumina shell on the surface of core Al and the strong interfacial interactions.

  6. Mechanical and Electrical Properties of Aluminum/Epoxy Nanocomposites

    NASA Astrophysics Data System (ADS)

    Dong, Lina; Zhou, Wenying; Sui, Xuezhen; Wang, Zijun; Cai, Huiwu; Wu, Peng; Zhang, Yating; Zhou, Anning

    2016-07-01

    Surface-modified self-passivated aluminum (Al) nanoparticles were used for reinforcing epoxy (EP) resin, and the curing behavior, mechanical and electrical properties of the Al/EP nanocomposites were investigated. The incorporation of Al nanoparticles into EP significantly decreases the cure reaction enthalpy of the nancomposites, and the apparent activation energy of Al/EP systems is 64.96 kJ/mol. The coefficient of thermal expansion of the nanocomposites decreases with increasing the Al loading due to the strong interaction between the Al and the EP matrix. The storage modulus of the nanocomposites increases continuously with Al content, whereas, the glass transition temperature declines slightly. With increasing the Al content, the tensile modulus, flexural modulus and compressive modulus of the nanocomposites increase continuously compared with the neat one. The mechanical properties are improved by Al nanoparticles at low Al contents. The best overall dielectric and electrical performance are achieved about at 1 wt.% of Al concentration. The enhanced dielectric breakdown strength is mainly related to the insulating alumina shell on the surface of core Al and the strong interfacial interactions.

  7. Bone mechanical properties and changes with osteoporosis.

    PubMed

    Osterhoff, Georg; Morgan, Elise F; Shefelbine, Sandra J; Karim, Lamya; McNamara, Laoise M; Augat, Peter

    2016-06-01

    This review will define the role of collagen and within-bone heterogeneity and elaborate the importance of trabecular and cortical architecture with regard to their effect on the mechanical strength of bone. For each of these factors, the changes seen with osteoporosis and ageing will be described and how they can compromise strength and eventually lead to bone fragility. PMID:27338221

  8. Supramolecular Polymer Nanocomposites - Improvement of Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Hinricher, Jesse; Neikirk, Colin; Priestley, Rodney

    2015-03-01

    Supramolecular polymers differ from traditional polymers in that their repeat units are connected by hydrogen bonds that can reversibly break and form under various stimuli. They can be more easily recycled than conventional materials, and their highly temperature dependent viscosities result in reduced energy consumption and processing costs. Furthermore, judicious selection of supramolecular polymer architecture and functionality allows the design of advanced materials including shape memory and self-healing materials. Supramolecular polymers have yet to see widespread use because they can't support much weight due to their inherent mechanical weakness. In order to address this issue, the mechanical strength of supramolecular polymer nanocomposites based on ureidopyrmidinone (UPy) telechelic poly(caprolactone) doped with surface activated silica nanoparticles was investigated by tensile testing and dynamic mechanical analysis. The effects of varying amounts and types of nanofiller surface functionality were investigated to glean insight into the contributions of filler-filler and filler-matrix interactions to mechanical reinforcement in supramolecular polymer nanocomposites. MRSEC NSF DMR 0819860 (PI: Prof. N. Phuan Ong) REU Site Grant: NSF DMR-1156422 (PI: Prof. Mikko Haataja)

  9. Ion plated gold films: Properties, tribological behavior and performance

    NASA Astrophysics Data System (ADS)

    Spalvins, Talivaldis

    The glow discharge energizing favorably modifies and controls the coating/substrate adherence and the nucleation and growth sequence of ion plated gold films. As a result the adherence, coherence, internal stresses, and morphology of the films are significantly improved. Gold ion plated films because of their graded coating/substrate interface and fine uniform densely packed microstructure not only improve the tribological properties but also induce a surface strengthening effect which improves the mechanical properties such as yield, tensile, and fatigue strength. Consequently significant improvements in the tribological performance of ion plated gold films as compared to vapor deposited gold films are shown in terms of decreased friction/wear and prolonged endurance life.

  10. Ion plated gold films: Properties, tribological behavior and performance

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis

    1987-01-01

    The glow discharge energizing favorably modifies and controls the coating/substrate adherence and the nucleation and growth sequence of ion plated gold films. As a result the adherence, coherence, internal stresses, and morphology of the films are significantly improved. Gold ion plated films because of their graded coating/substrate interface and fine uniform densely packed microstructure not only improve the tribological properties but also induce a surface strengthening effect which improves the mechanical properties such as yield, tensile, and fatigue strength. Consequently significant improvements in the tribological performance of ion plated gold films as compared to vapor deposited gold films are shown in terms of decreased friction/wear and prolonged endurance life.

  11. Mechanical and thermal properties of bulk ZrB2

    NASA Astrophysics Data System (ADS)

    Nakamori, Fumihiro; Ohishi, Yuji; Muta, Hiroaki; Kurosaki, Ken; Fukumoto, Ken-ichi; Yamanaka, Shinsuke

    2015-12-01

    ZrB2 appears to have formed in the fuel debris at the Fukushima Daiichi nuclear disaster site, through the reaction between Zircaloy cladding materials and the control rod material B4C. Since ZrB2 has a high melting point of 3518 K, the ceramic has been widely studied as a heat-resistant material. Although various studies on the thermochemical and thermophysical properties have been performed for ZrB2, significant differences exist in the data, possibly due to impurities or the porosity within the studied samples. In the present study, we have prepared a ZrB2 bulk sample with 93.1% theoretical density by sintering ZrB2 powder. On this sample, we have comprehensively examined the thermal and mechanical properties of ZrB2 by the measurement of specific heat, ultrasonic sound velocities, thermal diffusivity, and thermal expansion. Vickers hardness and fracture toughness were also measured and found to be 13-23 GPa and 1.8-2.8 MPa m0.5, respectively. The relationships between these properties were carefully examined in the present study.

  12. Tribomaterial factors in space mechanism brake performance

    NASA Technical Reports Server (NTRS)

    Hawthorne, H. M.

    1990-01-01

    The asbestos/phenolic pads of Shuttle Remote Manipulator System (SRMS) brakes are unsuitable for use in long life space mechanisms because their friction decreases on extended sliding in high vacuum. Dehydration of the material and accumulation of wear debris in the conforming interface of this tribosystem induces the permanent friction changes. Other polymer and some ceramic based materials exhibit similar frictional torque behavior due to the development of minimal contact patches by the interfacial debris. In contrast, high friction occurs when other ceramics form many small contacts throughout fine debris beds. Generating this latter interfacial structure during run-in ensures that the in-vacuo friction remains stable thereafter. Such materials with low wear rates are potential candidates for friction elements in SSRMS and similar mechanisms.

  13. Engineering properties and performance of dental crowns.

    PubMed

    Mitchell, C A; Orr, J F

    2005-07-01

    Dental crowns are used to replace damaged natural crowns of teeth and are fixed to prepared teeth with luting cements, which should provide an adhesive bond to the tooth structure giving reliable retention and minimal microleakage. Mechanical testing of crowns in vitro gives failure load distributions that are well described by Weibull models, comparing probabilities of survival and reliability. Fatigue testing of crowns is time consuming, but regression analysis to interpolate functions through data points quoting probability limits or applying Weibull analysis is achievable. A complementary approach is to conduct materials tests with appropriate interfacial geometries. Luting cements are used in thin layers of 40-150 microm. Contraction during polymerization is restrained by adhesion to substrates, allowing little relaxation of stresses. Conventional and resin-modified glass ionomer cements create thin zones of interaction with dentine and fail cohesively. The chevron notch short rod technique has been used to measure fracture toughness and rank cements. A development of this method, using chevron notch short bar specimens, permitted fracture toughness to be determined for luting cement--dentine substrate interfaces. Representative fracture experiments need to be developed to apply mixed mode conditions. The basic challenge to predict long-term performance from short-term laboratory tests remains.

  14. Mechanical Properties of Triaxial Braided Carbon/Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Bowman, C. L.; Roberts, G. D.; Braley, M. S.; Xie, M.; Booker, M. J.

    2003-01-01

    In an on-going effort to increase the safety and efficiency of turbine engines, the National Aeronautics and Space Administration is exploring lightweight alternatives to the metal containment structures that currently encase commercial jet engines. Epoxy reinforced with braided carbon fibers is a candidate structural material which may be suitable for an engine case. This paper reports flat-coupon mechanical-property experiments performed to compliment previously reported subcomponent impact testing and analytical simulation of containment structures. Triaxial-braid T700/5208 epoxy and triaxial-braid T700/M36 toughened epoxy composites were evaluated. Also, two triaxial-braid architectures (0 +/- 60 deg., 0 +/- 45 deg.) with the M36 resin were evaluated through tension, compression, and shear testing. Tensile behavior was compared between standard straight-sided specimens (ASTM D3039) and bowtie specimens. Both double-notch shear (ASTM D3846) and Iosepescu (ASTM D5379) tests were performed as well. The M36/0 +/- 45 deg. configuration yield the best response when measurements were made parallel to the axial tows. Conversely, the M36/0 +/- 60 deg. configuration was best when measurements were made perpendicular to the axial tows. The results were used to identify critical properties and to augment the analysis of impact experiments.

  15. Mechanical Properties of Triaxial Braided Carbon/Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Bowman, C. L.; Roberts, G. D.; Braley, M. S.; Xie, M.; Booker, M. J.

    2003-01-01

    In an on-going effort to increase the safety and efficiency of turbine engines, the National Aeronautics and Space Administration is exploring lightweight alternatives to the metal containment structures that currently encase commercial jet engines. Epoxy reinforced with braided carbon fibers is a candidate structural material which may be suitable for an engine case. This paper reports flat-coupon mechanical-property experiments performed to compliment previously reported subcomponent impact testing and analytical simulation of containment structures. Triaxial-braid T700/5208 epoxy and triaxial-braid T700h436 toughened epoxy composites were evaluated. Also, two triaxial-braid architectures (0 degrees plus or minus 60 degrees, and 0 degrees plus or minus 45 degrees) with the M36 resin were evaluated through tension, compression, and shear testing. Tensile behavior was compared between standard straight-sided specimens (ASTM D3039) and bow-tie specimens. Both double-notch shear (ASTM D3846) and Iosepescu (ASTM D5379) tests were performed as well. The M36/O degrees plus or minus 45 degrees configuration yield the best response when measurements were made parallel to the axial tows. Conversely, the M36/0 degrees plus or minus 60 degrees configuration was best when measurements were made perpendicular to the axial tows. The results were used to identify critical properties and to augment the analysis of impact experiments.

  16. Solar Sail Material Performance Property Response to Space Environmental Effects

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Semmel, Charles; Hovater, Mary; Nehls, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted to a solar sail can be increased, up to a factor of two, if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (Ll) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager and the L1 Diamond. The Environmental Effects Group at NASA s Marshall Space Flight Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar[TM], Teonex[TM], and CPl (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were

  17. Mechanical Performance of Rotomoulded Wollastonite-Reinforced Polyethylene Composites

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaowen; Easteal, Allan J.; Bhattacharyya, Debes

    This paper describes the development of a new processing technology for rotational moulding of wollastonite microfibre (WE) reinforced polyethylene (PE). Manufacturing wollastonite-polyethylene composites involved blending, compounding by extrusion, and granulating prior to rotational moulding. The properties of the resulting composites were characterised by tensile and impact strength measurements. The results show that tensile strength increases monotonically with the addition of wollastonite fibres, but impact strength is decreased. In addition, the processability is also decreased after adding more than 12 vol% WE because of increased viscosity. The effects of a coupling agent, maleated polyethylene (MAPE), on the mechanical performance and processability were also investigated. SEM analysis reveals good adhesion between the fibre reinforcements and polyethylene matrix at the fracture surface with the addition of MAPE. It is proposed that fillers with small particles with high aspect ratio (such as wollastonite) provide a large interfacial area between the filler and the polymer matrix, and may influence the mobility of the molecular chains.

  18. Mechanical properties of alumina porcelain during heating

    NASA Astrophysics Data System (ADS)

    Šín, Peter; Podoba, Rudolf; ŠtubÅa, Igor; Trník, Anton

    2014-11-01

    The mechanical strength and Young's modulus of green alumina porcelain (50 wt. % of kaolin, 25 wt. % of Al2O3, and 25 wt. % of feldspar) were measured during heating up to 900 °C and 1100 °C, respectively. To this end, we used the three point-bending method and modulated force thermomechanical analysis (mf-TMA). The loss liberation - of the physically bound water (20 - 250 °C) strengthens the sample and Young's modulus increases its values significantly. The dehydroxylation that takes place in the range of 400 - 650 °C causes a slight decrease in Young's modulus. On the other hand, the mechanical strength slightly increases in this temperature range, although it has a sudden drop at 420 °C. Beyond the dehydroxylation range, above 650 °C, both Young's modulus and mechanical strength increase. Above 950 °C, a sharp increase of Young's modulus is caused by the solid-state sintering and the new structure created by the high-temperature reactions in metakaolinite.

  19. Mechanical Properties of Intermediate Filament Proteins.

    PubMed

    Charrier, Elisabeth E; Janmey, Paul A

    2016-01-01

    Purified intermediate filament (IF) proteins can be reassembled in vitro to produce polymers closely resembling those found in cells, and these filaments form viscoelastic gels. The cross-links holding IFs together in the network include specific bonds between polypeptides extending from the filament surface and ionic interactions mediated by divalent cations. IF networks exhibit striking nonlinear elasticity with stiffness, as quantified by shear modulus, increasing an order of magnitude as the networks are deformed to large strains resembling those that soft tissues undergo in vivo. Individual IFs can be stretched to more than two or three times their resting length without breaking. At least 10 different rheometric methods have been used to quantify the viscoelasticity of IF networks over a wide range of timescales and strain magnitudes. The mechanical roles of different classes of cytoplasmic IFs on mesenchymal and epithelial cells in culture have also been studied by an even wider range of microrheological methods. These studies have documented the effects on cell mechanics when IFs are genetically or pharmacologically disrupted or when normal or mutant IF proteins are exogenously expressed in cells. Consistent with in vitro rheology, the mechanical role of IFs is more apparent as cells are subjected to larger and more frequent deformations.

  20. Mechanical properties of intermediate filament proteins

    PubMed Central

    Charrier, Elisabeth E.; Janmey, Paul A.

    2016-01-01

    Purified intermediate filament proteins can be reassembled in vitro to produce polymers closely resembling those found in cells, and these filament form viscoelastic gels. The crosslinks holding IFs together in the network include specific bonds between polypeptides extending from the filament surface and ionic interactions mediated by divalent cations. IF networks exhibit striking non-linear elasticity with stiffness, as quantified by shear modulus, increasing an order of magnitude as the networks are deformed to large stains resembling those that soft tissues undergo in vivo. Individual Ifs can be stretched to more than 2 or 3 times their resting length without breaking. At least ten different rheometric methods have been used to quantify the viscoelasticity of IF networks over a wide range of timescales and strain magnitudes. The mechanical roles of different classes of IF on mesenchymal and epithelial cells in culture have also been studied by an even wider range of microrheological methods. These studies have documented the effects on cell mechanics when IFs are genetically or pharmacologically disrupted or when normal or mutant IF proteins are exogenously expressed in cells. Consistent with in vitro rheology, the mechanical role of IFs is more apparent as cells are subjected to larger and more frequent deformations. PMID:26795466

  1. Mechanical Properties of the Frog Sarcolemma

    PubMed Central

    Fields, R. Wayne

    1970-01-01

    The elastic properties of cylindrical segments of sarcolemma were studied in single striated fibers of the frog semitendinosus muscle. All measurements were made on membranes of retraction zones, cell segments from which the sarcoplasm had retracted. Quantitative morphological studies indicated that three deforming forces interact with the intrinsic elastic properties of the sarcolemma to determine membrane configuration in retraction zone segments. The three deforming forces, namely intrazone pressure, axial fiber loads, and radial stresses introduced by retracted cell contents, could all be experimentally removed, permitting determination of the “undeformed” configuration of the sarcolemma. Analysis of these results indicated that membrane of intact fibers at rest length is about four times as wide and two-thirds as long as undeformed membrane. Membrane geometry was also studied as a function of internal hydrostatic pressure and axial loading to permit calculation of the circumferential and longitudinal tension-strain (T-S) diagrams. The sarcolemma exhibited nonlinear T-S properties concave to the tension axis in both directions. Circumferential T-S slopes (measures of membrane stiffness) ranged from 1500 to greater than 50,000 dynes/cm over the range of deformations investigated, while longitudinal T-S slopes varied from 23,000 to 225,000 dynes/cm. Thus, the membrane is anisotropic, being much stiffer in the longitudinal direction. Certain ramifications of the present results are discussed in relation to previous biomechanical studies of the sarcolemma and of other tissues. ImagesFigure 2Figure 3Figure 4 PMID:5439320

  2. The mechanical and strength properties of diamond.

    PubMed

    Field, J E

    2012-12-01

    Diamond is an exciting material with many outstanding properties; see, for example Field J E (ed) 1979 The Properties of Diamond (London: Academic) and Field J E (ed) 1992 The Properties of Natural and Synthetic Diamond (London: Academic). It is pre-eminent as a gemstone, an industrial tool and as a material for solid state research. Since natural diamonds grew deep below the Earth's surface before their ejection to mineable levels, they also contain valuable information for geologists. The key to many of diamond's properties is the rigidity of its structure which explains, for example, its exceptional hardness and its high thermal conductivity. Since 1953, it has been possible to grow synthetic diamond. Before then, it was effectively only possible to have natural diamond, with a small number of these found in the vicinity of meteorite impacts. Techniques are now available to grow gem quality synthetic diamonds greater than 1 carat (0.2 g) using high temperatures and pressures (HTHP) similar to those found in nature. However, the costs are high, and the largest commercially available industrial diamonds are about 0.01 carat in weight or about 1 mm in linear dimension. The bulk of synthetic diamonds used industrially are 600 µm or less. Over 75% of diamond used for industrial purposes today is synthetic material. In recent years, there have been two significant developments. The first is the production of composites based on diamond; these materials have a significantly greater toughness than diamond while still maintaining very high hardness and reasonable thermal conductivity. The second is the production at low pressures by metastable growth using chemical vapour deposition techniques. Deposition onto non-diamond substrates was first demonstrated by Spitsyn et al 1981 J. Cryst. Growth 52 219-26 and confirmed by Matsumoto et al 1982 Japan J. Appl. Phys. 21 L183-5. These developments have added further to the versatility of diamond. Two other groups of

  3. Marine Engine Mechanics. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Jones, Marion

    Several intermediate performance objectives and corresponding criterion measures are presented for each of ten terminal objectives for a two-semester course (3 hours daily). This 540-hour intermediate course includes advanced troubleshooting techniques on outboard marine engines, inboard-outboard marine engines, inboard marine engines, boat…

  4. Marine Engine Mechanics. Performance Objectives. Basic Course.

    ERIC Educational Resources Information Center

    Jones, Marion

    Several intermediate performance objectives and corresponding criterion measures are presented for each of six terminal objectives for a two-semester course (2 hours daily) which provides training in the terminology, construction, and function of both two- and four-cycle fuel-air mixture internal combustion engines with emphasis on outboard marine…

  5. Mechanical Properties of Particulate Reinforced Aluminium Alloy Matrix Composite

    SciTech Connect

    Sayuti, M.; Sulaiman, S.; Baharudin, B. T. H. T.; Arifin, M. K. A.; Suraya, S.; Vijayaram, T. R.

    2011-01-17

    This paper discusses the mechanical properties of Titanium Carbide (TiC) particulate reinforced aluminium-silicon alloy matrix composite. TiC particulate reinforced LM6 alloy matrix composites were fabricated by carbon dioxide sand molding process with different particulate weight fraction. Tensile strength, hardness and microstructure studies were conducted to determine the maximum load, tensile strength, modulus of elasticity and fracture surface analysis have been performed to characterize the morphological aspects of the test samples after tensile testing. Hardness values are measured for the TiC reinforced LM6 alloy composites and it has been found that it gradually increases with increased addition of the reinforcement phase. The tensile strength of the composites increased with the increase percentage of TiC particulate.

  6. Mechanical properties of lipid bilayers and regulation of mechanosensitive function

    PubMed Central

    Balleza, Daniel

    2012-01-01

    Material properties of lipid bilayers, including thickness, intrinsic curvature and compressibility regulate the function of mechanosensitive (MS) channels. This regulation is dependent on phospholipid composition, lateral packing and organization within the membrane. Therefore, a more complete framework to understand the functioning of MS channels requires insights into bilayer structure, thermodynamics and phospholipid structure, as well as lipid-protein interactions. Phospholipids and MS channels interact with each other mainly through electrostatic forces and hydrophobic matching, which are also crucial for antimicrobial peptides. They are excellent models for studying the formation and stabilization of membrane pores. Importantly, they perform equivalent responses as MS channels: (1) tilting in response to tension and (2) dissipation of osmotic gradients. Lessons learned from pore forming peptides could enrich our knowledge of mechanisms of action and evolution of these channels. Here, the current state of the art is presented and general principles of membrane regulation of mechanosensitive function are discussed. PMID:22790280

  7. Synthesis and mechanical properties of resilin-like hydrogels

    NASA Astrophysics Data System (ADS)

    Cui, Jun; Lackey, Melissa; Tew, Gregory; Crosby, Alfred

    2011-03-01

    Resilience measures a material's efficiency for mechanical energy storage. Many materials exhibit high resilience at low strains, but relatively few can maintain this performance at high strain levels. One of the most notable examples of a resilient material is resilin, a protein used strategically when Nature requires elasticity with minimal loss over large deformations. Similar to resilin in many aspects, we present a novel hydrogel network with well-defined architecture by introducing hydrophobic polydimethylsiloxane (PDMS) into hydrophilic polyethylene glycol (PEG)-based network. As a function of the PDMS to PEG ratio, we demonstrate that maximum water content can range from 97% to 80% and Young's modulus from 5kPa to 75kPa. Across this full range of network compositions and water content, the resiliency is nearly 100% for uniaxial strains exceeding 80%. This unique balance of properties is associated with two network attributes: uniformity in network connectivity and negligible secondary structures.

  8. Acousto-mechanical and thermal properties of clotted blood

    NASA Astrophysics Data System (ADS)

    Nahirnyak, Volodymyr M.; Yoon, S. Wang; Holland, Christy K.

    2005-04-01

    The efficacy of ultrasound-assisted thrombolysis as an adjunct treatment of ischemic stroke is being widely investigated. In order to determine the role of ultrasound hyperthermia in the process of blood clot disruption, the thermal and acousto-mechanical properties of clotted blood were measured in vitro. Whole blood clots were prepared from either fresh porcine or human blood by aliquoting 1.5 or 2.0 ml into 10 ml glass tubes (BD VacutainerTM, Franklin Lakes, NJ), immersing the tubes in a 37°C water bath for three hours and storing the clots at 5°C for at least three days prior to assessment of the properties, which ensured complete clot retraction. Direct calorimetric measurements using calibrated E-type thermocouples (Omega Engineering, Inc., Stanford, CT) were performed to determine the heat capacity and thermal conductivity of the human and porcine thrombi against a standard fluid, saline [0.9%]. The amplitude coefficient of attenuation of the clots was determined from 120 kHz to 3.5 MHz with a calibrated hydrophone (TC4038, RESON, Inc., Goleta, CA) in a 20+/-2°C water bath using the substitution method. The experimentally measured values of heat capacity, density, and thermal conductivity of porcine clotted blood are 3.23+/-0.46 J/g.K, 1.058+/-0.014 g/cm3, and 0.52+/-0.14 W/m.K. The attenuation coefficient ranged from 0.10 to 0.30 Nepers/cm over 120 kHz to 3.5 MHz. Measurements of the acousto-mechanical and thermal properties of clotted blood can be helpful in theoretical modeling of ultrasound hyperthermia in ultrasound-assisted thrombolysis.

  9. Quantifying tissue mechanical properties using photoplethysmography

    SciTech Connect

    Akl, Tony; Wilson, Mark A.; Ericson, Milton Nance; Cote, Gerard L.

    2014-01-01

    Photoplethysmography (PPG) is a non-invasive optical method that can be used to detect blood volume changes in the microvascular bed of tissue. The PPG signal comprises two components; a pulsatile waveform (AC) attributed to changes in the interrogated blood volume with each heartbeat, and a slowly varying baseline (DC) combining low frequency fluctuations mainly due to respiration and sympathetic nervous system activity. In this report, we investigate the AC pulsatile waveform of the PPG pulse for ultimate use in extracting information regarding the biomechanical properties of tissue and vasculature. By analyzing the rise time of the pulse in the diastole period, we show that PPG is capable of measuring changes in the Young s Modulus of tissue mimicking phantoms with a resolution of 4 KPa in the range of 12 to 61 KPa. In addition, the shape of the pulse can potentially be used to diagnose vascular complications by differentiating upstream from downstream complications. A Windkessel model was used to model changes in the biomechanical properties of the circulation and to test the proposed concept. The modeling data confirmed the response seen in vitro and showed the same trends in the PPG rise and fall times with changes in compliance and vascular resistance.

  10. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing.

    PubMed

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands.

  11. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing

    PubMed Central

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands. PMID:26601037

  12. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing.

    PubMed

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands. PMID:26601037

  13. Porosity and mechanical properties of zirconium ceramics

    SciTech Connect

    Kalatur, Ekaterina Narikovich, Anton; Buyakova, Svetlana E-mail: kulkov@ispms.tsc.ru; Kulkov, Sergey E-mail: kulkov@ispms.tsc.ru

    2014-11-14

    The article studies the porous ceramics consisting of ultra-fine ZrO{sub 2} powders. The porosity of ceramic samples varied from 15% to 80%. The structure of the ceramic materials had a cellular configuration. The distinctive feature of all experimentally obtained strain diagrams is their nonlinearity at low deformations characterized by the parabolic law. It was shown that the observed nonlinear elasticity for low deformations shown in strain diagrams is due to the mechanical instability of cellular elements of the ceramic framework.

  14. Interfaces with Tunable Mechanical and Radiosensitizing Properties.

    PubMed

    Berg, Nora G; Pearce, Brady L; Snyder, Patrick J; Rohrbaugh, Nathaniel; Nolan, Michael W; Adhikari, Prajesh; Khan, Saad A; Ivanisevic, Albena

    2016-08-31

    We report the fabrication of a composite containing nanostructured GaOOH and Matrigel with tunable radiosensitizing and stiffness properties. Composite characterization was done with microscopy and rheology. The utility of the interface was tested in vitro using fibroblasts. Cell viability and reactive oxygen species assays quantified the effects of radiation dosages and GaOOH concentrations. Fibroblasts' viability decreased with increasing concentration of GaOOH and composite stiffness. During ionizing radiation experiments the presence of the scintillating GaOOH triggered a different cellular response. Reactive oxygen species data demonstrated that one can reduce the amount of radiation needed to modulate the behavior of cells on interfaces with different stiffness containing a radiosensitizing material. PMID:26882455

  15. Effects of high energy radiation on the mechanical properties of epoxy graphite fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Gilbert, R. D.; Fornes, R. E.; Memory, J. D.

    1983-01-01

    The effects of high energy radiation on mechanical properties and on the molecular and structural properties of graphite fiber reinforced composites are assessed so that durability in space applications can be predicted. A listing of composite systems irradiated along with the maximum radiation dose applied and type of mechanical tests performed is shown. These samples were exposed to 1/2 MeV electrons.

  16. Primate dietary ecology in the context of food mechanical properties.

    PubMed

    Coiner-Collier, Susan; Scott, Robert S; Chalk-Wilayto, Janine; Cheyne, Susan M; Constantino, Paul; Dominy, Nathaniel J; Elgart, Alison A; Glowacka, Halszka; Loyola, Laura C; Ossi-Lupo, Kerry; Raguet-Schofield, Melissa; Talebi, Mauricio G; Sala, Enrico A; Sieradzy, Pawel; Taylor, Andrea B; Vinyard, Christopher J; Wright, Barth W; Yamashita, Nayuta; Lucas, Peter W; Vogel, Erin R

    2016-09-01

    Substantial variation exists in the mechanical properties of foods consumed by primate species. This variation is known to influence food selection and ingestion among non-human primates, yet no large-scale comparative study has examined the relationships between food mechanical properties and feeding strategies. Here, we present comparative data on the Young's modulus and fracture toughness of natural foods in the diets of 31 primate species. We use these data to examine the relationships between food mechanical properties and dietary quality, body mass, and feeding time. We also examine the relationship between food mechanical properties and categorical concepts of diet that are often used to infer food mechanical properties. We found that traditional dietary categories, such as folivory and frugivory, did not faithfully track food mechanical properties. Additionally, our estimate of dietary quality was not significantly correlated with either toughness or Young's modulus. We found a complex relationship among food mechanical properties, body mass, and feeding time, with a potential interaction between median toughness and body mass. The relationship between mean toughness and feeding time is straightforward: feeding time increases as toughness increases. However, when considering median toughness, the relationship with feeding time may depend upon body mass, such that smaller primates increase their feeding time in response to an increase in median dietary toughness, whereas larger primates may feed for shorter periods of time as toughness increases. Our results emphasize the need for additional studies quantifying the mechanical and chemical properties of primate diets so that they may be meaningfully compared to research on feeding behavior and jaw morphology.

  17. Primate dietary ecology in the context of food mechanical properties.

    PubMed

    Coiner-Collier, Susan; Scott, Robert S; Chalk-Wilayto, Janine; Cheyne, Susan M; Constantino, Paul; Dominy, Nathaniel J; Elgart, Alison A; Glowacka, Halszka; Loyola, Laura C; Ossi-Lupo, Kerry; Raguet-Schofield, Melissa; Talebi, Mauricio G; Sala, Enrico A; Sieradzy, Pawel; Taylor, Andrea B; Vinyard, Christopher J; Wright, Barth W; Yamashita, Nayuta; Lucas, Peter W; Vogel, Erin R

    2016-09-01

    Substantial variation exists in the mechanical properties of foods consumed by primate species. This variation is known to influence food selection and ingestion among non-human primates, yet no large-scale comparative study has examined the relationships between food mechanical properties and feeding strategies. Here, we present comparative data on the Young's modulus and fracture toughness of natural foods in the diets of 31 primate species. We use these data to examine the relationships between food mechanical properties and dietary quality, body mass, and feeding time. We also examine the relationship between food mechanical properties and categorical concepts of diet that are often used to infer food mechanical properties. We found that traditional dietary categories, such as folivory and frugivory, did not faithfully track food mechanical properties. Additionally, our estimate of dietary quality was not significantly correlated with either toughness or Young's modulus. We found a complex relationship among food mechanical properties, body mass, and feeding time, with a potential interaction between median toughness and body mass. The relationship between mean toughness and feeding time is straightforward: feeding time increases as toughness increases. However, when considering median toughness, the relationship with feeding time may depend upon body mass, such that smaller primates increase their feeding time in response to an increase in median dietary toughness, whereas larger primates may feed for shorter periods of time as toughness increases. Our results emphasize the need for additional studies quantifying the mechanical and chemical properties of primate diets so that they may be meaningfully compared to research on feeding behavior and jaw morphology. PMID:27542555

  18. Processing effects on the mechanical properties of tungsten heavy alloys

    NASA Technical Reports Server (NTRS)

    Kishi, Toshihito; German, R. M.

    1990-01-01

    Tungsten heavy alloys exhibit significant mechanical property sensitivities to the fabrication variables. These sensitivities are illustrated in this examination of vacuum sintering and the effects of composition, sintering temperature, and sintering time on the mechanical properties of tungsten heavy alloys. Measurements were conducted to assess the density, strength, hardness, and elongation dependencies. A detrimental aspect of vacuum sintering is matrix phase evaporation, although vacuum sintering does eliminate the need for postsintering heat treatments.

  19. Dynamic mechanical properties of an inlay composite.

    PubMed

    Dionysopoulos, P; Watts, D C

    1989-06-01

    A visible light-cured composite resin (Brilliant DI) has been studied over a wide range of temperature and frequency by a dynamic mechanical flexural method. The derived data of logarithmic modulus and loss tangent (tan delta) show considerable changes following a secondary-cure process applied to the material. This involved the application of heat and intense light with temperatures rising to 120 degrees C in 7 min. Following this oven-cure the resin phase exhibited enhanced stiffness with the activation-energy barrier for molecular motion at the glass-transition rising from 220 to 291 kJ/mol. This study clarifies the nature and extent of the internal molecular changes which may be produced in the fabrication of a composite inlay.

  20. Measuring the mechanical properties of molecular conformers

    NASA Astrophysics Data System (ADS)

    Jarvis, S. P.; Taylor, S.; Baran, J. D.; Champness, N. R.; Larsson, J. A.; Moriarty, P.

    2015-09-01

    Scanning probe-actuated single molecule manipulation has proven to be an exceptionally powerful tool for the systematic atomic-scale interrogation of molecular adsorbates. To date, however, the extent to which molecular conformation affects the force required to push or pull a single molecule has not been explored. Here we probe the mechanochemical response of two tetra(4-bromophenyl)porphyrin conformers using non-contact atomic force microscopy where we find a large difference between the lateral forces required for manipulation. Remarkably, despite sharing very similar adsorption characteristics, variations in the potential energy surface are capable of prohibiting probe-induced positioning of one conformer, while simultaneously permitting manipulation of the alternative conformational form. Our results are interpreted in the context of dispersion-corrected density functional theory calculations which reveal significant differences in the diffusion barriers for each conformer. These results demonstrate that conformational variation significantly modifies the mechanical response of even simple porpyhrins, potentially affecting many other flexible molecules.

  1. Mechanical Properties of Graphene Nanoplatelet/Carbon Fiber/Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    NASA Technical Reports Server (NTRS)

    Hadden, C. M.; Klimek-McDonald, D. R.; Pineda, E. J.; King, J. A.; Reichanadter, A. M.; Miskioglu, I.; Gowtham, S.; Odegard, G. M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite while the effect on the axial properties is shown to be insignificant.

  2. Mechanical Properties of Graphene Nanoplatelet/Carbon Fiber/Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    NASA Technical Reports Server (NTRS)

    Hadden, C. M.; Klimek-McDonald, D. R.; Pineda, E. J.; King, J. A.; Reichanadter, A. M.; Miskioglu, I.; Gowtham, S.; Odegard, G. M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.

  3. Mechanical Properties of Graphene Nanoplatelet Carbon Fiber Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    NASA Technical Reports Server (NTRS)

    Hadden, Cameron M.; Klimek-McDonald, Danielle R.; Pineda, Evan J.; King, Julie A.; Reichanadter, Alex M.; Miskioglu, Ibrahim; Gowtham, S.; Odegard, Gregory M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.

  4. Mechanical properties of a porous mullite material

    NASA Technical Reports Server (NTRS)

    Viens, Michael J.

    1991-01-01

    Modulus of rupture specimens were used to determine crack growth parameters of a porous mullite material. Strength testing was performed in ambient and moist environments. The power law crack growth rate parameters n and 1n B in 50 percent relative humidity were found to be 44.98 and 0.94, respectively. The inert strength, fracture toughness, and elastic modulus were also determined and found to be 19 MPa, 055 MPa(m) exp 1/2, and 11.6 GPa, respectively.

  5. Understanding and Tailoring the Mechanical Properties of LIGA Fabricated Materials

    SciTech Connect

    Buchheit, T.E.; Christenson, T.R.; Lavan, D.A.; Schmale, D.T.

    1999-01-25

    LIGA fabricated materials and components exhibit several processing issues affecting their metallurgical and mechanical properties, potentially limiting their usefulness for MEMS applications. For example, LIGA processing by metal electrodeposition is very sensitive to deposition conditions which causes significant processing lot variations of mechanical and metallurgical properties. Furthermore, the process produces a material with a highly textured lenticular rnicrostructural morphology suggesting an anisotropic material response. Understanding and controlling out-of-plane anisotropy is desirable for LIGA components designed for out-of-plane flexures. Previous work by the current authors focused on results from a miniature servo-hydraulic mechanical test frame constructed for characterizing LIGA materials. Those results demonstrated microstructural and mechanical properties dependencies with plating bath current density in LIGA fabricated nickel (LIGA Ni). This presentation builds on that work and fosters a methodology for controlling the properties of LIGA fabricated materials through processing. New results include measurement of mechanical properties of LIGA fabricated copper (LIGA Cu), out-of-plane and localized mechanical property measurements using compression testing and nanoindentation of LIGA Ni and LIGA Cu.

  6. Mechanical properties of nanotubes of polyelectrolyte multilayers

    NASA Astrophysics Data System (ADS)

    Cuenot, S.; Alem, H.; Louarn, G.; Demoustier-Champagne, S.; Jonas, A. M.

    2008-04-01

    The elastic properties of nanotubes fabricated by layer-by-layer (LbL) assembly of polyelectrolytes in the nanopores of polycarbonate track-etched membranes have been investigated by resonant contact Atomic Force Microscopy (AFM), for nanotube diameters in the range of 100 to 200nm. The elastic modulus of the nanotubes was computed from the resonance frequencies of a cantilever resting on freely suspended LbL nanotubes. An average value of 115MPa was found in air for Young's modulus of these nanostructures, well below the values reported for dry, flat multilayers, but in the range of values reported for water-swollen flat multilayers. These low values are most probably due to the lower degree of ionic cross-linking of LbL nanotubes and their consequently higher water content in air, resulting from the peculiar mode of growth of nanoconfined polyelectrolyte multilayers. The computation of the moment of inertia of the LbL nanostructures is only available in electronic form at 10.1140/epje/i2007-10291-3 and are accessible for authorised users.

  7. Mechanical Properties of Gels; Stress from Confined Fluids

    SciTech Connect

    George W. Scherer

    2009-12-01

    Abstract for Grant DE-FG02-97ER45642 Period: 1997-2002 Mechanical Properties of Gels 2002-2008 Stress from Confined Fluids Principal investigator: Prof. George W. Scherer Dept. Civil & Env. Eng./PRISM Eng. Quad. E-319 Princeton, NJ 08544 USA Recipient organization: Trustees of Princeton University 4 New South Princeton, NJ 08544 USA Abstract: The initial stage of this project, entitled Mechanical Properties of Gels, was dedicated to characterizing and explaining the properties of inorganic gels. Such materials, made by sol-gel processing, are of interest for fabrication of films, fibers, optical devices, advanced insulation and other uses. However, their poor mechanical properties are an impediment in some applications, so understanding the origin of these properties could lead to enhanced performance. Novel experimental methods were developed and applied to measure the stiffness and permeability of gels and aerogels. Numerical simulations were developed to reproduce the growth process of the gels, resulting in structures whose mechanical properties matched the measurements. The models showed that the gels are formed by the growth of relatively robust clusters of molecules that are joined by tenuous links whose compliance compromises the stiffness of the structure. Therefore, synthetic methods that enhance the links could significantly increase the rigidity of such gels. The next stage of the project focused on Stress from Confined Fluids. The first problem of interest was the enhanced thermal expansion coefficient of water that we measured in the nanometric pores of cement paste. This could have a deleterious effect on the resistance of concrete to rapid heating in fires, because the excessive thermal expansion of water in the pores of the concrete could lead to spalling and collapse. A series of experiments demonstrated that the expansion of water increases as the pore size decreases. To explain this behavior, we undertook a collaboration with Prof. Stephen

  8. Analgesic Drugs Alter Connective Tissue Remodeling and Mechanical Properties.

    PubMed

    Carroll, Chad C

    2016-01-01

    Exercising individuals commonly consume analgesics, but these medications alter tendon and skeletal muscle connective tissue properties, possibly limiting a person from realizing the full benefits of exercise training. I detail the novel hypothesis that analgesic medications alter connective tissue structure and mechanical properties by modifying fibroblast production of growth factors and matrix enzymes, which are responsible for extracellular matrix remodeling.

  9. Mechanical and Thermophysical Properties of Cerium Monopnictides

    NASA Astrophysics Data System (ADS)

    Bhalla, Vyoma; Singh, Devraj; Jain, S. K.

    2016-03-01

    The ultrasonic attenuation due to phonon-phonon interaction, thermoelastic relaxation and dislocation damping mechanisms has been investigated in cerium monopnictides CeX (X: N, P, As, Sb and Bi) for longitudinal and shear waves along {< }100{rangle }, {< }110{rangle } and {< }111{rangle } directions. The second- and third-order elastic constants of CeX have also been computed in the temperature range 0 K to 500 K using Coulomb and Born-Mayer potential upto second nearest neighbours. The computed values of these elastic constants have been applied to find out Young's moduli, bulk moduli, Breazeale's non-linearity parameters, Zener anisotropy, ultrasonic velocity, ultrasonic Grüneisen parameter, thermal relaxation time, acoustic coupling constants and ultrasonic attenuation. The fracture/toughness ratio is less than 1.75, which shows that the chosen materials are brittle in nature as found for other monopnictides. The drag coefficient acting on the motion of screw and edge dislocations due to shear and compressional phonon viscosities of the lattice have also been evaluated for both the longitudinal and shear waves. The thermoelastic loss and dislocation damping loss are negligible in comparison to loss due to Akhieser damping (phonon-phonon interaction). The obtained results for CeX are in qualitative agreement with other semi-metallic monopnictides.

  10. Mechanical Properties of Nanoscopic Lipid Domains.

    PubMed

    Nickels, Jonathan D; Cheng, Xiaolin; Mostofian, Barmak; Stanley, Christopher; Lindner, Benjamin; Heberle, Frederick A; Perticaroli, Stefania; Feygenson, Mikhail; Egami, Takeshi; Standaert, Robert F; Smith, Jeremy C; Myles, Dean A A; Ohl, Michael; Katsaras, John

    2015-12-23

    The lipid raft hypothesis presents insights into how the cell membrane organizes proteins and lipids to accomplish its many vital functions. Yet basic questions remain about the physical mechanisms that lead to the formation, stability, and size of lipid rafts. As a result, much interest has been generated in the study of systems that contain similar lateral heterogeneities, or domains. In the current work we present an experimental approach that is capable of isolating the bending moduli of lipid domains. This is accomplished using neutron scattering and its unique sensitivity to the isotopes of hydrogen. Combining contrast matching approaches with inelastic neutron scattering, we isolate the bending modulus of ∼13 nm diameter domains residing in 60 nm unilamellar vesicles, whose lipid composition mimics the mammalian plasma membrane outer leaflet. Importantly, the bending modulus of the nanoscopic domains differs from the modulus of the continuous phase surrounding them. From additional structural measurements and all-atom simulations, we also determine that nanoscopic domains are in-register across the bilayer leaflets. Taken together, these results inform a number of theoretical models of domain/raft formation and highlight the fact that mismatches in bending modulus must be accounted for when explaining the emergence of lateral heterogeneities in lipid systems and biological membranes.

  11. Porosity and mechanical properties of zirconium ceramics

    NASA Astrophysics Data System (ADS)

    Buyakova, S.; Sablina, T.; Kulkov, S.

    2015-11-01

    Has been studied a porous ceramics obtained from ultra-fine powders. Porous ceramic ZrO2(MgO), ZrO2(Y2O3) powder was prepared by pressing and subsequent sintering of compacts homologous temperatures ranging from 0.63 to 0.56 during the isothermal holding duration of 1 to 5 hours. The porosity of ceramic samples was from 15 to 80%. The structure of the ceramic materials produced from plasma-sprayed ZrO2 powder was represented as a system of cell and rod structure elements. Cellular structure formed by stacking hollow powder particles can be easily seen at the images of fracture surfaces of obtained ceramics. There were three types of pores in ceramics: large cellular hollow spaces, small interparticle pores which are not filled with powder particles and the smallest pores in the shells of cells. The cells generally did not have regular shapes. The size of the interior of the cells many times exceeded the thickness of the walls which was a single-layer packing of ZrO2 grains. A distinctive feature of all deformation diagrams obtained in the experiment was their nonlinearity at low deformations which was described by the parabolic law. It was shown that the observed nonlinear elasticity for low deformation on deformation diagrams is due to mechanical instability of the cellular elements in the ceramic carcass.

  12. Measuring the mechanical properties of molecular conformers

    PubMed Central

    Jarvis, S. P.; Taylor, S.; Baran, J. D.; Champness, N. R.; Larsson, J. A.; Moriarty, P.

    2015-01-01

    Scanning probe-actuated single molecule manipulation has proven to be an exceptionally powerful tool for the systematic atomic-scale interrogation of molecular adsorbates. To date, however, the extent to which molecular conformation affects the force required to push or pull a single molecule has not been explored. Here we probe the mechanochemical response of two tetra(4-bromophenyl)porphyrin conformers using non-contact atomic force microscopy where we find a large difference between the lateral forces required for manipulation. Remarkably, despite sharing very similar adsorption characteristics, variations in the potential energy surface are capable of prohibiting probe-induced positioning of one conformer, while simultaneously permitting manipulation of the alternative conformational form. Our results are interpreted in the context of dispersion-corrected density functional theory calculations which reveal significant differences in the diffusion barriers for each conformer. These results demonstrate that conformational variation significantly modifies the mechanical response of even simple porpyhrins, potentially affecting many other flexible molecules. PMID:26388232

  13. Porosity and mechanical properties of zirconium ceramics

    SciTech Connect

    Buyakova, S. Kulkov, S.; Sablina, T.

    2015-11-17

    Has been studied a porous ceramics obtained from ultra-fine powders. Porous ceramic ZrO{sub 2}(MgO), ZrO{sub 2}(Y{sub 2}O{sub 3}) powder was prepared by pressing and subsequent sintering of compacts homologous temperatures ranging from 0.63 to 0.56 during the isothermal holding duration of 1 to 5 hours. The porosity of ceramic samples was from 15 to 80%. The structure of the ceramic materials produced from plasma-sprayed ZrO{sub 2} powder was represented as a system of cell and rod structure elements. Cellular structure formed by stacking hollow powder particles can be easily seen at the images of fracture surfaces of obtained ceramics. There were three types of pores in ceramics: large cellular hollow spaces, small interparticle pores which are not filled with powder particles and the smallest pores in the shells of cells. The cells generally did not have regular shapes. The size of the interior of the cells many times exceeded the thickness of the walls which was a single-layer packing of ZrO{sub 2} grains. A distinctive feature of all deformation diagrams obtained in the experiment was their nonlinearity at low deformations which was described by the parabolic law. It was shown that the observed nonlinear elasticity for low deformation on deformation diagrams is due to mechanical instability of the cellular elements in the ceramic carcass.

  14. Mechanical properties of lanthanum and yttrium chromites

    SciTech Connect

    Paulik, S.W.; Armstrong, T.R.

    1996-12-31

    In an operating high-temperature (1000{degrees}C) solid oxide fuel cell (SOFC), the interconnect separates the fuel (P(O{sub 2}){approx}10{sup -16} atm) and the oxidant (P(O2){approx}10{sup 0.2} atm), while being electrically conductive and connecting the cells in series. Such severe atmospheric and thermal demands greatly reduce the number of viable candidate materials. Only two materials, acceptor substituted lanthanum chromite and yttrium chromite, meet these severe requirements. In acceptor substituted chromites (Sr{sup 2+} or Ca{sup 2+} for La{sup 3+}), charge compensation is primarily electronic in oxidizing conditions (through the formation of Cr{sup 4+}). Under reducing conditions, ionic charge compensation becomes significant as the lattice becomes oxygen deficient. The formation of oxygen vacancies is accompanied by the reduction of Cr{sup 4+} ions to Cr{sup 3+} and a resultant lattice expansion. The lattice expansion observed in large chemical potential gradients is not desirable and has been found to result in greatly reduced mechanical strength.

  15. Fluid mechanical properties of flames in enclosures

    SciTech Connect

    Rotman, D.A.; Pindera, M.Z.; Oppenheim, A.K.

    1988-07-01

    In an enclosure where the reacting medium is initially at rest, the flame first generates a flowfield that then gets stretched, i.e., its front is pulled along the surface by the flowfield in which it then finds itself residing. A methodology developed for numerical modeling of such fields is described. Of key significance in this respect is the zero Mach number model/endash/a reasonable idealization in view of the relatively high temperature, and hence sound speed, that exists, concomitantly with a comparatively low particle velocity, in the confinement of a combustion chamber. According to this model, the density gradient in the field is nullified, while across the flame front it approaches infinity. One has thus two regimes: one of the unburned medium and the other of the burned gas, each of spatially uniform density, separated by a flame front interface. The latter is endowed with four properties, of which the first two are purely kinematic and the others dynamic in nature, namely: 1) it is advected at the local velocity of flow; 2) it self-advances at the normal burning speed, the eigenvalue of the system; 3) it acts as the velocity source due to the exothermicity of the combustion process; and 4) it acts as the vorticity source due to the baroclinic effect generated by the pressure gradient along its surface and the density gradient across it. A solution obtained for a flame propagating in an oblong rectangular enclosure demonstrates that the latter has a significant influence upon the formation of the well known tulip shape. 12 refs., 4 figs.

  16. Process for predicting structural performance of mechanical systems

    DOEpatents

    Gardner, David R.; Hendrickson, Bruce A.; Plimpton, Steven J.; Attaway, Stephen W.; Heinstein, Martin W.; Vaughan, Courtenay T.

    1998-01-01

    A process for predicting the structural performance of a mechanical system represents the mechanical system by a plurality of surface elements. The surface elements are grouped according to their location in the volume occupied by the mechanical system so that contacts between surface elements can be efficiently located. The process is well suited for efficient practice on multiprocessor computers.

  17. Process for predicting structural performance of mechanical systems

    DOEpatents

    Gardner, D.R.; Hendrickson, B.A.; Plimpton, S.J.; Attaway, S.W.; Heinstein, M.W.; Vaughan, C.T.

    1998-05-19

    A process for predicting the structural performance of a mechanical system represents the mechanical system by a plurality of surface elements. The surface elements are grouped according to their location in the volume occupied by the mechanical system so that contacts between surface elements can be efficiently located. The process is well suited for efficient practice on multiprocessor computers. 12 figs.

  18. The effects of multiple repairs on Inconel 718 weld mechanical properties

    NASA Technical Reports Server (NTRS)

    Russell, C. K.; Nunes, A. C., Jr.; Moore, D.

    1991-01-01

    Inconel 718 weldments were repaired 3, 6, 9, and 13 times using the gas tungsten arc welding process. The welded panels were machined into mechanical test specimens, postweld heat treated, and nondestructively tested. Tensile properties and high cycle fatigue life were evaluated and the results compared to unrepaired weld properties. Mechanical property data were analyzed using the statistical methods of difference in means for tensile properties and difference in log means and Weibull analysis for high cycle fatigue properties. Statistical analysis performed on the data did not show a significant decrease in tensile or high cycle fatigue properties due to the repeated repairs. Some degradation was observed in all properties, however, it was minimal.

  19. Electronic, mechanical, and thermodynamic properties of americium dioxide

    NASA Astrophysics Data System (ADS)

    Lu, Yong; Yang, Yu; Zheng, Fawei; Wang, Bao-Tian; Zhang, Ping

    2013-10-01

    By performing density functional theory (DFT) +U calculations, we systematically study the electronic, mechanical, tensile, and thermodynamic properties of AmO2. It is found that the chemical bonding character in AmO2 is similar to that in PuO2, with smaller charge transfer and stronger covalent interactions between americium and oxygen atoms. The stress-strain relationship of AmO2 is examined along the three low-index directions, showing that the [1 0 0] and [1 1 1] directions are the strongest and weakest tensile directions, respectively, but the theoretical tensile strengths of AmO2 are smaller than those of PuO2. The phonon dispersion curves of AmO2 are calculated and the heat capacities as well as lattice expansion curve are subsequently determined. The lattice thermal conductivity of AmO2 is further evaluated and compared with attainable experiments. Our present work integrally reveals various physical properties of AmO2 and can be referenced for technological applications of AmO2 based materials.

  20. Mechanical and biological properties of keratose biomaterials.

    PubMed

    de Guzman, Roche C; Merrill, Michelle R; Richter, Jillian R; Hamzi, Rawad I; Greengauz-Roberts, Olga K; Van Dyke, Mark E

    2011-11-01

    The oxidized form of extractable human hair keratin proteins, commonly referred to as keratose, is gaining interest as a biomaterial for multiple tissue engineering studies including those directed toward peripheral nerve, spinal cord, skin, and bone regeneration. Unlike its disulfide cross-linked counterpart, kerateine, keratose does not possess a covalently cross-linked network structure and consequently displays substantially different characteristics. In order to understand its mode(s) of action and potential for clinical translatability, detailed characterization of the composition, physical properties, and biological responses of keratose biomaterials are needed. Keratose was obtained from end-cut human hair fibers by peracetic acid treatment, followed by base extraction, and subsequent dialysis. Analysis of lyophilized keratose powder determined that it contains 99% proteins by mass with amino acid content similar to human hair cortex. Metallic elements were also found in minute quantities. Protein oxidation led to disulfide bond cleavage and drastic reduction of free thiols due to conversion of sulfhydryl to sulfonic acid, chain fragmentation, and amino acid modifications. Mass spectrometry identified the major protein constituents as a heterogeneous mixture of 15 hair keratins (type I: K31-35 and K37-39, and type II: K81-86) with small amounts of epithelial keratins which exist in monomeric, dimeric, multimeric, and even degraded forms. Re-hydration with PBS enabled molecular assembly into an elastic solid-like hydrogel. Highly-porous scaffolds formed by lyophilization of the gel had the compression behavior of a cellular foam material and reverted back to gel upon wetting. Cytotoxicity assays showed that the EC50 for various cell lines were attained at 8-10 mg/mL keratose, indicating the non-toxic nature of the material. Implantation in mouse subcutaneous tissue pockets demonstrated that keratose resorption follows a rectangular hyperbolic regression

  1. Dynamic monitoring of cell mechanical properties using profile microindentation

    NASA Astrophysics Data System (ADS)

    Guillou, L.; Babataheri, A.; Puech, P.-H.; Barakat, A. I.; Husson, J.

    2016-02-01

    We have developed a simple and relatively inexpensive system to visualize adherent cells in profile while measuring their mechanical properties using microindentation. The setup allows simultaneous control of cell microenvironment by introducing a micropipette for the delivery of soluble factors or other cell types. We validate this technique against atomic force microscopy measurements and, as a proof of concept, measure the viscoelastic properties of vascular endothelial cells in terms of an apparent stiffness and a dimensionless parameter that describes stress relaxation. Furthermore, we use this technique to monitor the time evolution of these mechanical properties as the cells’ actin is depolymerized using cytochalasin-D.

  2. Dynamic monitoring of cell mechanical properties using profile microindentation

    PubMed Central

    Guillou, L.; Babataheri, A.; Puech, P.-H.; Barakat, A. I.; Husson, J.

    2016-01-01

    We have developed a simple and relatively inexpensive system to visualize adherent cells in profile while measuring their mechanical properties using microindentation. The setup allows simultaneous control of cell microenvironment by introducing a micropipette for the delivery of soluble factors or other cell types. We validate this technique against atomic force microscopy measurements and, as a proof of concept, measure the viscoelastic properties of vascular endothelial cells in terms of an apparent stiffness and a dimensionless parameter that describes stress relaxation. Furthermore, we use this technique to monitor the time evolution of these mechanical properties as the cells’ actin is depolymerized using cytochalasin-D. PMID:26857265

  3. Mechanical Properties of Shock-Damaged Rocks

    NASA Technical Reports Server (NTRS)

    He, Hongliang; Ahrens, T. J.

    1994-01-01

    Stress-strain tests were performed both on shock-damaged gabbro and limestone. The effective Young's modulus decreases with increasing initial damage parameter value, and an apparent work-softening process occurs prior to failure. To further characterize shock-induced microcracks, the longitudinal elastic wave velocity behavior of shock-damaged gabbro in the direction of compression up to failure was measured using an acoustic transmission technique under uniaxial loading. A dramatic increase in velocity was observed for the static compressive stress range of 0-50 MPa. Above that stress range, the velocity behavior of lightly damaged (D(sub 0) less than 0.1) gabbro is almost equal to unshocked gabbro. The failure strength of heavily-damaged (D(sub 0) greater than 0.1) gabbro is approx. 100-150 MPa, much lower than that of lightly damaged and unshocked gabbros (approx. 230-260 MPa). Following Nur's theory, the crack shape distribution was analyzed. The shock-induced cracks in gabbro appear to be largely thin penny-shaped cracks with c/a values below 5 x 10(exp -4). Moreover, the applicability of Ashby and Sammis's theory relating failure strength and damage parameter of shock-damaged rocks was examined and was found to yield a good estimate of the relation of shock-induced deficit in elastic modulus with the deficit in compressive strength.

  4. Solar Sail Material Performance Property Response to Space Environmental Effects

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Semmel, Charles; Hovater, Mary; Nehls, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted to a solar sail can be increased, up to a factor of two if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (L1) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager' and the L1 Diamond '. The Environmental Effects Group at NASA's Marshall Space Fliglit Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail3-'. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar TM, Teonexm, and CP1 (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were

  5. Mechanical Properties and Durability of "Waterless Concrete"

    NASA Technical Reports Server (NTRS)

    Toutanji, Houssam; Grugel, Richard N.

    2008-01-01

    Waterless concrete consists of molten elementary sulfur and aggregate. The aggregates in lunar environment will be lunar rocks and soil. Sulfur is present on the Moon in Troilite soil (FeS) and by oxidation soil iron and sulfur can be produced. Iron can be used to reinforce the sulfur concrete. Sulfur concrete specimens were cycled between liquid nitrogen (approximately 191 C) and room temperature (approximately 21 C) to simulate exposure to a lunar environment. Cycled and control specimens were subsequently tested in compression at room temperatures (approximately 21 C) and approximately 101 C. Test results showed that due to temperature cycling, compressive strength of cycled specimens was 20% of those non-cycled. Microscopic examination of the fracture surfaces from the cycled samples showed clear de-bonding of the sulfur from the aggregate material whereas it was seen well bonded in those non-cycled. This reduction in strength can be attributed to the large differences in thermal coefficients of expansion of the materials constituting the concrete which promoted cracking. Similar sulfur concrete mixtures were strengthened with short and long glass fibers. The glass fibers from lunar regolith simulant was melted in a 25 cc Pt-Rh crucible in a Sybron Thermoline high temperature MoSi2 furnace at melting temperatures of 1450 to 1600 C for times of 30 min to 1 hour. Glass fibers were cast from the melt into graphite crucibles and were annealed for a couple of hours at 600 C. Glass fibers and small rods were pulled from the melt. The glass melt wets the ceramic rod and long continuous glass fibers were easily hand drawn. The glass fibers were immediately coated with a protective polymer to maintain the mechanical strength. The glass fibers were used to reinforce sulfur concrete plated to improve the flexural strength of the sulfur concrete. Prisms beams strengthened with glass fibers were tested in 4-point bending test. Beams strengthened with glass fiber showed to

  6. Mechanical properties of single electrospun collagen type I fibers.

    PubMed

    Yang, Lanti; Fitié, Carel F C; van der Werf, Kees O; Bennink, Martin L; Dijkstra, Pieter J; Feijen, Jan

    2008-03-01

    The mechanical properties of single electrospun collagen fibers were investigated using scanning mode bending tests performed with an AFM. Electrospun collagen fibers with diameters ranging from 100 to 600 nm were successfully produced by electrospinning of an 8% w/v solution of acid soluble collagen in 1,1,1,3,3,3-hexafluoro-2-propanol (HFP). Circular dichroism (CD) spectroscopy showed that 45% of the triple helical structure of collagen molecules was denatured in the electrospun fibers. The electrospun fibers were water soluble and became insoluble after cross-linking with glutaraldehyde vapor for 24h. The bending moduli and shear moduli of both non- and cross-linked single electrospun collagen fibers were determined by scanning mode bending tests after depositing the fibers on glass substrates containing micro-channels. The bending moduli of the electrospun fibers ranged from 1.3 to 7.8 GPa at ambient conditions and ranged from 0.07 to 0.26 MPa when immersed in PBS buffer. As the diameter of the fibrils increased, a decrease in bending modulus was measured clearly indicating mechanical anisotropy of the fiber. Cross-linking of the electrospun fibers with glutaraldehyde vapor increased the shear modulus of the fiber from approximately 30 to approximately 50 MPa at ambient conditions. PMID:18082253

  7. Mechanical properties of an artificial vascularized human skin

    NASA Astrophysics Data System (ADS)

    Passot, A.; Cabodevila, G.

    2011-05-01

    In order to make blood sample tests an artificial skin similar to that of the baby's heel is modeled and realized. The most superficial bloodstream and the two main layers of the skin -epidermis and dermis- have to be recreated. Studies and capillaroscopies of the baby's heel give characteristics of these layers and the bloodstream. The skin is viscohyperelastic, but the choice of materials that will be used is based on the Young's modulus. The epidermis layer is based on a stronger less adhesive silicon rubber Elastosil. The dermis layer is composed of a mixture based on a very soft sticky silicon rubber Silgel and Sylgard. The mixture of Silgel with 5% Sylgard has an elastic modulus of 48 kPa which is similar to that of the dermis. The artificial skin is an assembly of several layers including a layer of Sylgard that is structured by a mold representing the capillary network and adapted to manufacturing processes in a clean room. Each layer is deposited by spin coating and is combined with the other through adhesion. Mechanical tests such as tension are performed to verify the mechanical properties of the artificial skin.

  8. Preparation and mechanical properties of graphene oxide: cement nanocomposites.

    PubMed

    Babak, Fakhim; Abolfazl, Hassani; Alimorad, Rashidi; Parviz, Ghodousi

    2014-01-01

    We investigate the performance of graphene oxide (GO) in improving mechanical properties of cement composites. A polycarboxylate superplasticizer was used to improve the dispersion of GO flakes in the cement. The mechanical strength of graphene-cement nanocomposites containing 0.1-2 wt% GO and 0.5 wt% superplasticizer was measured and compared with that of cement prepared without GO. We found that the tensile strength of the cement mortar increased with GO content, reaching 1.5%, a 48% increase in tensile strength. Ultra high-resolution field emission scanning electron microscopy (FE-SEM) used to observe the fracture surface of samples containing 1.5 wt% GO indicated that the nano-GO flakes were well dispersed in the matrix, and no aggregates were observed. FE-SEM observation also revealed good bonding between the GO surfaces and the surrounding cement matrix. In addition, XRD diffraction data showed growth of the calcium silicate hydrates (C-S-H) gels in GO cement mortar compared with the normal cement mortar.

  9. Preparation and Mechanical Properties of Graphene Oxide: Cement Nanocomposites

    PubMed Central

    Babak, Fakhim; Abolfazl, Hassani; Alimorad, Rashidi; Parviz, Ghodousi

    2014-01-01

    We investigate the performance of graphene oxide (GO) in improving mechanical properties of cement composites. A polycarboxylate superplasticizer was used to improve the dispersion of GO flakes in the cement. The mechanical strength of graphene-cement nanocomposites containing 0.1–2 wt% GO and 0.5 wt% superplasticizer was measured and compared with that of cement prepared without GO. We found that the tensile strength of the cement mortar increased with GO content, reaching 1.5%, a 48% increase in tensile strength. Ultra high-resolution field emission scanning electron microscopy (FE-SEM) used to observe the fracture surface of samples containing 1.5 wt% GO indicated that the nano-GO flakes were well dispersed in the matrix, and no aggregates were observed. FE-SEM observation also revealed good bonding between the GO surfaces and the surrounding cement matrix. In addition, XRD diffraction data showed growth of the calcium silicate hydrates (C-S-H) gels in GO cement mortar compared with the normal cement mortar. PMID:24574878

  10. Bioactive glass/hydroxyapatite composites: mechanical properties and biological evaluation.

    PubMed

    Bellucci, Devis; Sola, Antonella; Anesi, Alexandre; Salvatori, Roberta; Chiarini, Luigi; Cannillo, Valeria

    2015-06-01

    Bioactive glass/hydroxyapatite composites for bone tissue repair and regeneration have been produced and discussed. The use of a recently developed glass, namely BG_Ca/Mix, with its low tendency to crystallize, allowed one to sinter the samples at a relatively low temperature thus avoiding several adverse effects usually reported in the literature, such as extensive crystallization of the glassy phase, hydroxyapatite (HA) decomposition and reaction between HA and glass. The mechanical properties of the composites with 80wt.% BG_Ca/Mix and 20wt.% HA are sensibly higher than those of Bioglass® 45S5 reference samples due to the presence of HA (mechanically stronger than the 45S5 glass) and to the thermal behaviour of the BG_Ca/Mix, which is able to favour the sintering process of the composites. Biocompatibility tests, performed with murine fibroblasts BALB/3T3 and osteocites MLO-Y4 throughout a multi-parametrical approach, allow one to look with optimism to the produced composites, since both the samples themselves and their extracts do not induce negative effects in cell viability and do not cause inhibition in cell growth.

  11. Salt-leached silk scaffolds with tunable mechanical properties.

    PubMed

    Yao, Danyu; Dong, Sen; Lu, Qiang; Hu, Xiao; Kaplan, David L; Zhang, Bingbo; Zhu, Hesun

    2012-11-12

    Substrate mechanical properties have remarkable influences on cell behavior and tissue regeneration. Although salt-leached silk scaffolds have been used in tissue engineering, applications in softer tissue regeneration can be encumbered with excessive stiffness. In the present study, silk-bound water interactions were regulated by controlling processing to allow the preparation of salt-leached porous scaffolds with tunable mechanical properties. Increasing silk-bound water interactions resulted in reduced silk II (β-sheet crystal) formation during salt-leaching, which resulted in a modulus decrease in the scaffolds. The microstructures as well as degradation behavior were also changed, implying that this water control and salt-leaching approach can be used to achieve tunable mechanical properties. Considering the utility of silk in various fields of biomedicine, the results point to a new approach to generate silk scaffolds with controllable properties to better mimic soft tissues by combining scaffold preparation methods and silk self-assembly in aqueous solutions.

  12. Mechanical properties of carbon nanotube/polymer composites

    PubMed Central

    Arash, B.; Wang, Q.; Varadan, V. K.

    2014-01-01

    The remarkable mechanical properties of carbon nanotubes, such as high elastic modulus and tensile strength, make them the most ideal and promising reinforcements in substantially enhancing the mechanical properties of resulting polymer/carbon nanotube composites. It is acknowledged that the mechanical properties of the composites are significantly influenced by interfacial interactions between nanotubes and polymer matrices. The current challenge of the application of nanotubes in the composites is hence to determine the mechanical properties of the interfacial region, which is critical for improving and manufacturing the nanocomposites. In this work, a new method for evaluating the elastic properties of the interfacial region is developed by examining the fracture behavior of carbon nanotube reinforced poly (methyl methacrylate) (PMMA) matrix composites under tension using molecular dynamics simulations. The effects of the aspect ratio of carbon nanotube reinforcements on the elastic properties, i.e. Young's modulus and yield strength, of the interfacial region and the nanotube/polymer composites are investigated. The feasibility of a three-phase micromechanical model in predicting the elastic properties of the nanocomposites is also developed based on the understanding of the interfacial region. PMID:25270167

  13. Mechanical properties of carbon nanotubes and their polymer nanocomposites.

    PubMed

    Miyagawa, Hiroaki; Misra, Manjusri; Mohanty, Amar K

    2005-10-01

    More than 10 years have passed since carbon nanotubes (CNT) have been found during observations by transmission electron microscopy (TEM). Since then, one of the major applications of the CNT is the reinforcements of plastics in processing composite materials, because it was found by experiments that CNT possessed splendid mechanical properties. Various experimental methods are conducted in order to understand the mechanical properties of varieties of CNT and CNT-based composite materials. The systematized data of the past research results of CNT and their nanocomposites are extremely useful to improve processing and design criteria for new nanocomposites in further studies. Before the CNT observations, vapor grown carbon fibers (VGCF) were already utilized for composite applications, although there have been only few experimental data about the mechanical properties of VGCF. The structure of VGCF is similar to that of multi-wall carbon nanotubes (MWCNT), and the major benefit of VGCF is less commercial price. Therefore, this review article overviews the experimental results regarding the various mechanical properties of CNT, VGCF, and their polymer nanocomposites. The experimental methods and results to measure the elastic modulus and strength of CNT and VGCF are first discussed in this article. Secondly, the different surface chemical modifications for CNT and VGCF are reviewed, because the surface chemical modifications play an important role for polymer nanocomposite processing and properties. Thirdly, fracture and fatigue properties of CNT/polymer nanocomposites are reviewed, since these properties are important, especially when these new nanocomposite materials are applied for structural applications.

  14. Mechanical properties of carbon nanotube/polymer composites.

    PubMed

    Arash, B; Wang, Q; Varadan, V K

    2014-01-01

    The remarkable mechanical properties of carbon nanotubes, such as high elastic modulus and tensile strength, make them the most ideal and promising reinforcements in substantially enhancing the mechanical properties of resulting polymer/carbon nanotube composites. It is acknowledged that the mechanical properties of the composites are significantly influenced by interfacial interactions between nanotubes and polymer matrices. The current challenge of the application of nanotubes in the composites is hence to determine the mechanical properties of the interfacial region, which is critical for improving and manufacturing the nanocomposites. In this work, a new method for evaluating the elastic properties of the interfacial region is developed by examining the fracture behavior of carbon nanotube reinforced poly (methyl methacrylate) (PMMA) matrix composites under tension using molecular dynamics simulations. The effects of the aspect ratio of carbon nanotube reinforcements on the elastic properties, i.e. Young's modulus and yield strength, of the interfacial region and the nanotube/polymer composites are investigated. The feasibility of a three-phase micromechanical model in predicting the elastic properties of the nanocomposites is also developed based on the understanding of the interfacial region.

  15. Mechanical properties of carbon nanotube/polymer composites

    NASA Astrophysics Data System (ADS)

    Arash, B.; Wang, Q.; Varadan, V. K.

    2014-10-01

    The remarkable mechanical properties of carbon nanotubes, such as high elastic modulus and tensile strength, make them the most ideal and promising reinforcements in substantially enhancing the mechanical properties of resulting polymer/carbon nanotube composites. It is acknowledged that the mechanical properties of the composites are significantly influenced by interfacial interactions between nanotubes and polymer matrices. The current challenge of the application of nanotubes in the composites is hence to determine the mechanical properties of the interfacial region, which is critical for improving and manufacturing the nanocomposites. In this work, a new method for evaluating the elastic properties of the interfacial region is developed by examining the fracture behavior of carbon nanotube reinforced poly (methyl methacrylate) (PMMA) matrix composites under tension using molecular dynamics simulations. The effects of the aspect ratio of carbon nanotube reinforcements on the elastic properties, i.e. Young's modulus and yield strength, of the interfacial region and the nanotube/polymer composites are investigated. The feasibility of a three-phase micromechanical model in predicting the elastic properties of the nanocomposites is also developed based on the understanding of the interfacial region.

  16. Mechanical Properties of High Purity Niobium - Novel Measurements

    SciTech Connect

    Ganapati Myneni

    2003-09-01

    One of the procedures to improve the performance of superconducting niobium cavities is a heat treatment for several hours in an ultrahigh vacuum at temperatures between 800C and 1400C for hydrogen degassing or post-purification, respectively. However, it was recently observed with Spallation Neutron Source Project (SNS) prototype cavities, that a heat treatment at 800 C for even 1 hour degraded the mechanical properties of RRR niobium, in particular the yield strength. This lower strength resulted in cavity deformations during handling thus affecting both their resonant frequency and field profile. In addition to lowering the yield strength, it was observed in some lots of material that the Young's modulus was also apparently reduced by a factor of 2 as a result of the hydrogen outgassing at 800 C. Surprisingly, material received at other national laboratories exhibited similar anomalous behavior even without any heat treatments in vacuum. Based on these observations a multi-institutional collaborative basic research activity on high RRR niobium (determination of Nb yield strength as a function of grain size, work hardening, chemical composition, and heat treatment temperature) has been initiated by JLAB to gain a better understanding of the material properties affecting the mechanical behavior In this contribution, a brief review of the measurements at JLAB, at the Materials Science and Engineering Department of the University of Virginia, at the Analytical Chemistry and Metallurgy Divisions of the National Institute of Standard and Technology, Gaithersburg and in the Department of Physics, SUNY, Albany are presented. The measurements include yield strength, hardness, ultrasonic velocity, crystallographic structure, microstructure, determination of interstitial contents using internal friction; particular emphasis is placed on determining the hydrogen concentration in the niobium via Cold Neutron Prompt Gamma-Ray Activation Analysis and Neutron Incoherent

  17. Statistical properties of high performance cesium standards

    NASA Technical Reports Server (NTRS)

    Percival, D. B.

    1973-01-01

    The intermediate term frequency stability of a group of new high-performance cesium beam tubes at the U.S. Naval Observatory were analyzed from two viewpoints: (1) by comparison of the high-performance standards to the MEAN(USNO) time scale and (2) by intercomparisons among the standards themselves. For sampling times up to 5 days, the frequency stability of the high-performance units shows significant improvement over older commercial cesium beam standards.

  18. Mechanical Properties and Microstructure Investigation of Lead Free Solder

    NASA Technical Reports Server (NTRS)

    Wang, Qing; Gail, William F.; Johnson, R. Wayne; Strickland, Mark; Blanche, Jim

    2005-01-01

    While the electronics industry appears to be focusing on Sn-Ag-Cu as the alloy of choice for lead free electronics assembly, ,the exact composition varies by geographic region, supplier and user. Add to that dissolved copper and silver from the printed circuit board traces and surface finish, and there can be significant variation in the final solder joint composition. A systematic study of the mechanical and microstructural properties of Sn-Ag-Cu alloys with Ag varying from 2wt% to 4wt% and Cu varying from 0.5wt% to lSwt%, was undertaken in this research study. Different sample preparation techniques (water quenched, oil quenched and water quenched followed by reflow) were explored and the resulting microstructure compared to that of a typical reflowed lead free chip scale package (CSP) solder joint. Tensile properties (modulus, 0.2% yield strength and the ultimate tensile strength) and creep behavior of selected alloy compositions (Sn-4Ag-1 X u , Sn-4Ag-OSCu, Sn- 2Ag-1 X u , Sn-2Ag-OSCu, Sn-3.5Ag-O.SCu) were determined for three conditions: as- cast; aged for 100 hours at 125OC; and aged for 250 hours at 125OC. There was no significant difference in Young's Modulus as a function of alloy composition. After an initial decrease in modulus after 100 hours at 125"C, there was an insignificant change with further aging. The distribution of 0.2% strain yield stress and ultimate tensile strength as a function of alloy composition was more significant and decreased with aging time and temperature. The microstructures of these alloys were examined using light and scanning electron microscopy (LM and SEM) respectively and SEM based energy dispersive x-ray spectroscopy (EDS). Fracture surface and cross-section analysis were performed on the specimens after creep testing. The creep testing results and the effect of high temperature aging on mechanical properties is presented for the oil quenched samples. In general the microstructure of oil quenched specimen exhibited a

  19. Effects of Microwave Radiation on Selected Mechanical Properties of Silk

    NASA Astrophysics Data System (ADS)

    Reed, Emily Jane

    Impressive mechanical properties have served to peak interest in silk as an engineering material. In addition, the ease with which silk can be altered through processing has led to its use in various biomaterial applications. As the uses of silk branch into new territory, it is imperative (and inevitable) to discover the boundary conditions beyond which silk no longer performs as expected. These boundary conditions include factors as familiar as temperature and humidity, but may also include other less familiar contributions, such as exposure to different types of radiation. The inherent variations in mechanical properties of silk, as well as its sensitivity to moisture, suggest that in an engineering context silk is best suited for use in composite materials; that way, silk can be shielded from ambient moisture fluctuations, and the surrounding matrix allows efficient load transfer from weaker fibers to stronger ones. One such application is to use silk as a reinforcing fiber in epoxy composites. When used in this way, there are several instances in which exposure to microwave radiation is likely (for example, as a means of speeding epoxy cure rates), the effects of which remain mostly unstudied. It will be the purpose of this dissertation to determine whether selected mechanical properties of B. mori cocoon silk are affected by exposure to microwave radiation, under specified temperature and humidity conditions. Results of our analyses are directly applicable wherever exposure of silk to microwave radiation is possible, including in fiber reinforced epoxy composites (the entire composite may be microwaved to speed epoxy cure time), or when silk is used as a component in the material used to construct the radome of an aircraft (RADAR units use frequencies in the microwave range of the electromagnetic spectrum), or when microwave energy is used to sterilize biomaterials (such as cell scaffolds) made of silk. In general, we find that microwave exposure does not

  20. Mechanical Properties Comparing Composite Fiber Length to Amalgam

    PubMed Central

    Petersen, Richard C.; Liu, Perng-Ru

    2016-01-01

    Photocure fiber-reinforced composites (FRCs) with varying chopped quartz-fiber lengths were incorporated into a dental photocure zirconia-silicate particulate-filled composite (PFC) for mechanical test comparisons with a popular commercial spherical-particle amalgam. FRC lengths included 0.5-mm, 1.0 mm, 2.0 mm, and 3.0 mm all at a constant 28.2 volume percent. Four-point fully articulated fixtures were used according to American Standards Test Methods with sample dimensions of 2×2×50 mm3 across a 40 mm span to provide sufficient Euler flexural bending and prevent top-load compressive shear error. Mechanical properties for flexural strength, modulus, yield strength, resilience, work of fracture, critical strain energy release, critical stress intensity factor, and strain were obtained for comparison. Fiber length subsequently correlated with increasing all mechanical properties, p < 1.1×10−5. Although the modulus was significantly statistically higher for amalgam than all composites, all FRCs and even the PFC had higher values than amalgam for all other mechanical properties. Because amalgams provide increased longevity during clinical use compared to the standard PFCs, modulus would appear to be a mechanical property that might sufficiently reduce margin interlaminar shear stress and strain-related microcracking that could reduce failure rates. Also, since FRCs were tested with all mechanical properties that statistically significantly increased over the PFC, new avenues for future development could be provided toward surpassing amalgam in clinical longevity. PMID:27642629

  1. Mechanical Properties Comparing Composite Fiber Length to Amalgam

    PubMed Central

    Petersen, Richard C.; Liu, Perng-Ru

    2016-01-01

    Photocure fiber-reinforced composites (FRCs) with varying chopped quartz-fiber lengths were incorporated into a dental photocure zirconia-silicate particulate-filled composite (PFC) for mechanical test comparisons with a popular commercial spherical-particle amalgam. FRC lengths included 0.5-mm, 1.0 mm, 2.0 mm, and 3.0 mm all at a constant 28.2 volume percent. Four-point fully articulated fixtures were used according to American Standards Test Methods with sample dimensions of 2×2×50 mm3 across a 40 mm span to provide sufficient Euler flexural bending and prevent top-load compressive shear error. Mechanical properties for flexural strength, modulus, yield strength, resilience, work of fracture, critical strain energy release, critical stress intensity factor, and strain were obtained for comparison. Fiber length subsequently correlated with increasing all mechanical properties, p < 1.1×10−5. Although the modulus was significantly statistically higher for amalgam than all composites, all FRCs and even the PFC had higher values than amalgam for all other mechanical properties. Because amalgams provide increased longevity during clinical use compared to the standard PFCs, modulus would appear to be a mechanical property that might sufficiently reduce margin interlaminar shear stress and strain-related microcracking that could reduce failure rates. Also, since FRCs were tested with all mechanical properties that statistically significantly increased over the PFC, new avenues for future development could be provided toward surpassing amalgam in clinical longevity.

  2. Coupling of mechanical and electronic properties of carbon nanotubes.

    PubMed

    Cristancho, Dahiyana; Benitez, Laura; Seminario, Jorge M

    2013-12-01

    Because of the potential importance of carbon nanotubes (CNT) in renewable energy and other fields, molecular orbital ab initio calculations are used to study the relation between mechanical and electronic properties of such structures. We estimate a modulus of elasticity of 1.3 TPa and find out that the mechanism of CNT structure deformation is dependent on their chirality. Armchair and chiral nanotubes have ductile deformation fracture while zigzag have both ductile and brittle; on the other hand armchair nanotubes fracture and form two caps while chiral nanotubes adopt a helical-structure conformation. In addition, the energy gap between occupied and unoccupied molecular orbitals increases when nanotubes are under plastic deformation. This strong coupling between mechanical and electrical properties can be used to tune CNT mechanically to specific electronic bandgaps, affecting directly their electromagnetic absorption properties.

  3. Properties Of High-Performance Thermoplastics

    NASA Technical Reports Server (NTRS)

    Johnston, Norman J.; Hergenrother, Paul M.

    1992-01-01

    Report presents review of principal thermoplastics (TP's) used to fabricate high-performance composites. Sixteen principal TP's considered as candidates for fabrication of high-performance composites presented along with names of suppliers, Tg, Tm (for semicrystalline polymers), and approximate maximum processing temperatures.

  4. Correlation of microstructure and thermo-mechanical properties of a novel hydrogen transport membrane

    NASA Astrophysics Data System (ADS)

    Zhang, Yongjun

    A key part of the FutureGen concept is to support the production of hydrogen to fuel a "hydrogen economy," with the use of clean burning hydrogen in power-producing fuel cells, as well as for use as a transportation fuel. One of the key technical barriers to FutureGen deployment is reliable and efficient hydrogen separation technology. Most Hydrogen Transport Membrane (HTM) research currently focuses on separation technology and hydrogen flux characterization. No significant work has been performed on thermo-mechanical properties of HTMs. The objective of the thesis is to understand the structure-property correlation of HTM and to characterize (1) thermo mechanical properties under different reducing environments and thermal cycles (thermal shock), and (2) evaluate the stability of the novel HTM material. A novel HTM cermet bulk sample was characterized for its physical and mechanical properties at both room temperature and at elevated temperature up to 1000°C. Micro-structural properties and residual stresses were evaluated in order to understand the changing mechanism of the microstructure and its effects on the mechanical properties of materials. A correlation of the microstructural and thermo mechanical properties of the HTM system was established for both HTM and the substrate material. Mechanical properties of both selected structural ceramics and the novel HTM cermet bulk sample are affected mainly by porosity and microstructural features, such as grain size and pore size-distribution. The Young's Modulus (E-value) is positively correlated to the flexural strength for materials with similar crystallographic structure. However, for different crystallographic materials, physical properties are independent of mechanical properties. Microstructural properties, particularly, grain size and crystallographic structure, and thermodynamic properties are the main factors affecting the mechanical properties at both room and high temperatures. The HTM cermet behaves

  5. The effects of different size gold nanoparticles on mechanical properties of vascular smooth muscle cells under mechanical stretching

    NASA Astrophysics Data System (ADS)

    Kieu, Tri Minh

    Nanotechnology is an emerging and promising frontier for medicine and biomedical research due to its potential for applications such as drug delivery, imaging enhancement, and cancer treatment. While these materials may possess significant possibilities, the effects of these particles in the body and how the particles affect the cells is not fully understood. In this study, vascular smooth muscle cells (VSMCs) will be exposed to 5 and 20 nm diameter citrate AuNPs under mechanical conditions. The cytotoxicity properties of these particles will be investigated using LDH and MTT assays. Atomic force microscopy will be used to study how the size of the nanoparticles affect the mechanical properties of the VSMCs. Immunofluorescence staining for alpha actin will also be performed to enhance understanding of the phenotypic shift. The LDH and MTT cytotoxicity assay results demonstrated that neither 5 nor 20 nm diameter nanoparticles are cytotoxic to the cells. However, the mechanical properties and cell morphology of the VSMCs was altered. Under static conditions, both AuNP treatments decreased the mechanical properties of the cells. The size of the nanoparticles had a softening effect on elastic modulus of the cell and sign of a synthetic phenotype was observed. The VSMCs subjected to mechanical stretching exhibited higher elastic modulus compared to the static experimental groups. Again, both AuNPs treatments decreased the mechanical properties of the cells and signs of more synthetic phenotype was seen. However, the size of the nanoparticles did not have any influence on cell's elastic modulus unlike the static treated cells. The mechanical testing condition provided a better look at how these particles would affect the cells in vivo. While the nanoparticles are not cytotoxic to the VSMCs, they are altering the mechanical properties and phenotype of the cell.

  6. Mechanical properties of different types of space maintainers

    NASA Astrophysics Data System (ADS)

    Beldiman, M.-A.; Mârţu, I.; Leiţoiu, B.; Luchian, I.; Lupescu, O.; Bârcă, E. S.

    2015-11-01

    Currently, inside the oral cavity, the dental space maintainers are subjected to forces exerted on them when performing various functions; therefore, it is important to know how each of these mechanisms behave and respond to forces that are applied directly to them. The mechanical properties of the materials used in dentistry are defined by a set of characteristics representing the behaviour of their particular working conditions and it is qualitatively expressed by a number of parameters.The study aimed to determine the pressing force that can be taken by four 4 types of space maintainers frequently used in practice - fixed and removable, applied on four samples realized with human teeth extracted for orthodontic purposes. Static tests were carried out on a machine type short WDW-5 EC with a maximum force of 5 kN and a loading speed of 5 mm/min by a special testing machine, with an innovative appliance; data recording was automatically performed, using a computer with a special program that present the specific diagrams. Experimental determinations included the following aspects: to determine the maximum force that can be supported by each sample, and to observe the deformations. The values obtained indicate that the best option in terms of behavior under the conditions specified is the removable appliance, and the less functional version is the fixed space maintainer using brackets. According to tests conducted, the fracture strength was found to be more important for fixed space maintainers (band and loop, for example) so, in practice is using more frequent these types of space maintainers.

  7. Altered mechanical properties of the nucleus in disease.

    PubMed

    Lombardi, Maria Lucia; Lammerding, Jan

    2010-01-01

    In eukaryotic cells, the nucleus is the largest and most rigid organelle. Therefore, its physical properties contribute critically to the biomechanical behavior of cells, e.g., during amoeboid migration or perfusion through narrow capillaries. Furthermore, it has been speculated that nuclear deformations could directly allow cells to sense mechanical stress, e.g., by modulating the access of specific transcription factors to their binding sites. Defects in nuclear mechanics have also been reported in a variety of muscular dystrophies caused by mutations in nuclear envelope proteins, indicating an important role in the maintenance of cells in mechanically stressed tissue. These findings have prompted the growing field of nuclear mechanics to develop advanced experimental methods to study the physical properties of the nucleus as a function of nuclear structure and organization, and to understand its role in physiology and disease. These experimental techniques include micropipette aspiration, atomic force microscopy of isolated nuclei, cellular strain and compression experiments, and microneedle manipulation of intact cells. These experiments have provided important insights into the mechanical behavior of the nucleus under physiological conditions, the distinct mechanical contributions of the nuclear lamina and interior, and how mutations in nuclear envelope proteins associated with a variety of human diseases can cause distinct alterations in the physical properties of the nucleus and contribute to the disease mechanism. Here, we provide a brief overview of the most common experimental techniques and their application and discuss the implication of their results on our current understanding of nuclear mechanics.

  8. Metal Additive Manufacturing: A Review of Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Lewandowski, John J.; Seifi, Mohsen

    2016-07-01

    This article reviews published data on the mechanical properties of additively manufactured metallic materials. The additive manufacturing techniques utilized to generate samples covered in this review include powder bed fusion (e.g., EBM, SLM, DMLS) and directed energy deposition (e.g., LENS, EBF3). Although only a limited number of metallic alloy systems are currently available for additive manufacturing (e.g., Ti-6Al-4V, TiAl, stainless steel, Inconel 625/718, and Al-Si-10Mg), the bulk of the published mechanical properties information has been generated on Ti-6Al-4V. However, summary tables for published mechanical properties and/or key figures are included for each of the alloys listed above, grouped by the additive technique used to generate the data. Published values for mechanical properties obtained from hardness, tension/compression, fracture toughness, fatigue crack growth, and high cycle fatigue are included for as-built, heat-treated, and/or HIP conditions, when available. The effects of test orientation/build direction on properties, when available, are also provided, along with discussion of the potential source(s) (e.g., texture, microstructure changes, defects) of anisotropy in properties. Recommendations for additional work are also provided.

  9. Measurements and Characterizations of Mechanical Properties of Human Skins

    NASA Astrophysics Data System (ADS)

    Song, Han Wook; Park, Yon Kyu

    A skin is an indispensible organ for humans because it contributes to metabolism using its own biochemical functions and protects the human body from external stimuli. Recently, mechanical properties such as a thickness, a friction and an elastic coefficient have been used as a decision index in the skin physiology and in the skin care market due to the increased awareness of wellbeing issues. In addition, the use of mechanical properties is known to have good discrimination ability in the classification of human constitutions, which are used in the field of an alternative medicine. In this study, a system that measures mechanical properties such as a friction and an elastic coefficient is designed. The equipment consists of a load cell type (manufactured by the authors) for the measurements of a friction coefficient, a decompression tube for the measurement of an elastic coefficient. Using the proposed system, the mechanical properties of human skins from different constitutions were compared, and the relative repeatability error for measurements of mechanical properties was determined to be less than 2%. Combining the inspection results of medical doctors in the field of an alternative medicine, we could conclude that the proposed system might be applicable to a quantitative constitutional diagnosis between human constitutions within an acceptable level of uncertainty.

  10. Mechanical properties and in vitro degradation of bioresorbable knitted stents.

    PubMed

    Nuutinen, Juha-Pekka; Välimaa, Tero; Clerc, Claude; Törmälä, Pertti

    2002-01-01

    The aim of this study was to characterize the mechanical properties and in vitro degradation of bioresorbable knitted stents. Each stent was knitted using a single self-reinforced fibre made out of either PLLA or 96L/4D PLA or 80L/20G PLGA. The mechanical and physical properties of the fibres and stents were measured before and after gamma sterilization, as well as during in vitro degradation. The mechanical properties of the knitted stents made out of bioresorbable fibres were similar to those of commercially available metallic stents. The knitting geometry (loop height) had a marked effect on the mechanical properties of the stents. The rate of in vitro degradation in mechanical and physical properties for the PLLA and 96L/4D PLA stents was similar and significantly lower than that of the 80L/20G PLGA stents. The 80L/20G PLGA stents lost about 35% of their initial weight at 11 weeks. At this time, they had lost all their compression resistance strength. These data can be used as a guideline in planning further studies in vivo. PMID:12555898

  11. Deformation behavior and mechanical properties of amyloid protein nanowires.

    PubMed

    Solar, Max; Buehler, Markus J

    2013-03-01

    Amyloid fibrils are most often associated with their pathological role in diseases like Alzheimer's disease and Parkinson's disease, but they are now increasingly being considered for uses in functional engineering materials. They are among the stiffest protein fibers known but they are also rather brittle, and it is unclear how this combination of properties affects the behavior of amyloid structures at larger length scales, such as in films, wires or plaques. Using a coarse-grained model for amyloid fibrils, we study the mechanical response of amyloid nanowires and examine fundamental mechanical properties, including mechanisms of deformation and failure under tensile loading. We also explore the effect of varying the breaking strain and adhesion strength of the constituent amyloid fibrils on the properties of the larger structure. We find that deformation in the nanowires is controlled by a combination of fibril sliding and fibril failure and that there exists a transition from brittle to ductile behavior by either increasing the fibril failure strain or decreasing the strength of adhesion between fibrils. Furthermore, our results reveal that the mechanical properties of the nanowires are quite sensitive to changes in the properties of the individual fibrils, and the larger scale structures are found to be more mechanically robust than the constituent fibrils, for all cases considered. More broadly, this work demonstrates the promise of utilizing self-assembled biological building blocks in the development of hierarchical nanomaterials. PMID:23290516

  12. Microstructural influences on the mechanical properties of solder

    SciTech Connect

    Morris, J.W. Jr.; Goldstein, J.L.F.; Mei, Z.

    1993-04-01

    Intent of this book is to review analytic methods for predicting behavior of solder joints, based on continuum mechanics. The solder is treated as a continuous, homogeneous body, or composite of such bodies, whose mechanical behavior is uniform and governed by simple constitutive equations. The microstructure of a solder joint influences its mechanical properties in 3 ways: it governs deformation and failure; common solders deform inhomogeneously; and common solders are microstructurally unstable. The variety of microstructures often found in solder joints are briefly reviewed, and some of the ways are discussed in which the microstructure influences the common types of high-temperature mechanical behavior. 25 figs, 40 refs.

  13. FRAPCON-3: Modifications to fuel rod material properties and performance models for high-burnup application

    SciTech Connect

    Lanning, D.D.; Beyer, C.E.; Painter, C.L.

    1997-12-01

    This volume describes the fuel rod material and performance models that were updated for the FRAPCON-3 steady-state fuel rod performance code. The property and performance models were changed to account for behavior at extended burnup levels up to 65 Gwd/MTU. The property and performance models updated were the fission gas release, fuel thermal conductivity, fuel swelling, fuel relocation, radial power distribution, solid-solid contact gap conductance, cladding corrosion and hydriding, cladding mechanical properties, and cladding axial growth. Each updated property and model was compared to well characterized data up to high burnup levels. The installation of these properties and models in the FRAPCON-3 code along with input instructions are provided in Volume 2 of this report and Volume 3 provides a code assessment based on comparison to integral performance data. The updated FRAPCON-3 code is intended to replace the earlier codes FRAPCON-2 and GAPCON-THERMAL-2. 94 refs., 61 figs., 9 tabs.

  14. Mechanical Properties of Monolayers on the Surface of Water

    NASA Astrophysics Data System (ADS)

    Bohanon, Thomas Michael

    Heneicosanoic acid monolayers have many phases over a temperature range of 0 to 30^circ C. The structures of these phases have been well studied. All of these phases are ordered, and two of the phases appear to have long range order. However, little is known about the molecular interactions in these phases. In this work the shear modulus and viscosity of these phases are studied using a torsion pendulum. In order to study the mechanical properties in some phases of these monolayers, it was necessary to alter the accepted manner of compressing and measuring the surface pressure of these films. Generating capillary waves with an alternating electric field gradient is a non-contact way to measure the surface tension and study the mechanical properties of monolayers. The surface elasticity can be deduced and film inhomogeneity can be determined. A fiber optic detection system has been incorporated into a capillary wave apparatus. This instrument is also used to measure anomalous viscoelastic properties of valinomycin monolayers. Capillary wave measurements have been performed on uniaxially compressed Langmuir films both parallel and perpendicular to the direction of compression. A large change in surface tension anisotropy with a small change in pH was observed, signaling a phase transition. An apparatus that radially compresses monolayers on the surface of water was constructed. This mode of compression prevents the anisotropy that is observed in films that are compressed uniaxially. The area is changed using an elastic band stretched around twelve fingers which move synchronously. Isotherms obtained using this apparatus illustrate the difference between uniaxial compression and radial compression for a heneicosanoic acid monolayer. The shear response of heneicosanoic acid monolayers at different temperatures and pressures, has been studied using a torsion pendulum. The data fit well to a stretched exponential. This suggests that there is a continuous distribution of

  15. Relating chemical structure to the mechanical and electrical properties in organic crystalline semiconductors

    NASA Astrophysics Data System (ADS)

    Reyes-Martinez, Marcos; Crosby, Alfred; Briseno, Alejandro

    2015-03-01

    The study of the physical properties of organic single crystals (OSCs) has allowed the advent of a new generation of high-performance organic electronic devices. Despite the profound knowledge of the structural and electrical properties of OSCs, there is little research on their mechanical properties and the effects of strain on their electrical properties. This presentation brings new understanding of the intrinsic mechanical properties of organic semiconductors and the effect of deformation in charge transport phenomena. We utilize rubrene single crystals as model systems. Due to the limited dimensions of crystals and the associated handling difficulty, the wrinkling instability is chosen as a metrology tool for the in-plane elastic constants. To elucidate the effects of mechanical strain on charge transport, we take advantage of wrinkling as a unique way to strain the conducting channel of field-effect transistors in a non-destructive, reversible, and predictable manner and demonstrate the mechanical modulation of field-effect mobility. Our contributions are the first to quantitatively correlate the crystal structure and the mechanical properties of OSCs, as well as the first to study their electro-mechanical behavior. They also represent a significant step forward in structure-function relationships in organic semiconductors and lay the foundation for the effective use of organic semiconductors in mechanically demanding applications such as pressure sensors and electronic skins.

  16. Investigation of properties and performance of ceramic composite components. Final report on Phase 2

    SciTech Connect

    Curtin, W.A.; Reifsnider, K.L.; Oleksuk, L.L.S.; Stinchcomb, W.W.

    1994-10-31

    The purpose of Phase 2 of the Investigation of Properties and Performance of Ceramic Composite Components has been to build on and extend the work completed during Phase 1 to further advance the transition from properties of ceramic composite materials to performance of ceramic composite components used in fossil energy environments. The specific tasks of Phase 2 were: (1) develop and validate reliable and accurate high temperature, biaxial mechanical tests methods for structural ceramic composite components; (2) test and evaluate ceramic composite components, specifically tubes; (3) characterize long-term, mechanical performance of ceramic composite tubes at high temperatures; (4) develop a fundamental understanding of the mechanical degradation and performance limitations of ceramic composite components under service conditions; (5) develop predictive models for damage tolerance and reliability; and (6) relate component performance to microstructure and, thereby, provide feedback to the associated process-development effort, to improve performance. Accomplishments for each task are given.

  17. Development of data base with mechanical properties of un- and pre-irradiated VVER cladding

    SciTech Connect

    Asmolov, V.; Yegorova, L.; Kaplar, E.; Lioutov, K.; Smirnov, V.; Prokhorov, V.; Goryachev, A.

    1998-03-01

    Analysis of recent RIA test with PWR and VVER high burnup fuel, performed at CABRI, NSRR, IGR reactors has shown that the data base with mechanical properties of the preirradiated cladding is necessary to interpret the obtained results. During 1997 the corresponding cycle of investigations for VVER clad material was performed by specialists of NSI RRC KI and RIAR in cooperation with NRC (USA), IPSN (France) in two directions: measurements of mechanical properties of Zr-1%Nb preirradiated cladding versus temperature and strain rate; measurements of failure parameters for gas pressurized cladding tubes. Preliminary results of these investigations are presented in this paper.

  18. Impact and dynamic mechanical thermal properties of textile silk reinforced epoxy resin composites

    NASA Astrophysics Data System (ADS)

    Yang, K.; Guan, J.

    2016-07-01

    Silk fabric reinforced epoxy resin composites (SFRPs) were prepared using simple techniques of hand lay-up, hot-press and vacuum treatment, and a series of volume fractions of silk reinforcements were achieved. The impact properties and dynamic mechanical properties of SFRPs were investigated using a pendulum impact testing method and dynamic mechanical thermal analysis (DMTA). The results suggest that silk reinforcement could greatly enhance the mechanical performances of SFRPs. The impact strength reached a maximum of 71 kJ/m2 for 60%-silk SFRP, which demonstrated a potential of silk composites for defence and impact- resistant materials.

  19. Method of predicting mechanical properties of decayed wood

    DOEpatents

    Kelley, Stephen S.

    2003-07-15

    A method for determining the mechanical properties of decayed wood that has been exposed to wood decay microorganisms, comprising: a) illuminating a surface of decayed wood that has been exposed to wood decay microorganisms with wavelengths from visible and near infrared (VIS-NIR) spectra; b) analyzing the surface of the decayed wood using a spectrometric method, the method generating a first spectral data of wavelengths in VIS-NIR spectra region; and c) using a multivariate analysis to predict mechanical properties of decayed wood by comparing the first spectral data with a calibration model, the calibration model comprising a second spectrometric method of spectral data of wavelengths in VIS-NIR spectra obtained from a reference decay wood, the second spectral data being correlated with a known mechanical property analytical result obtained from the reference decayed wood.

  20. Bioinspired Reductionistic Peptide Engineering for Exceptional Mechanical Properties.

    PubMed

    Avinash, M B; Raut, Devaraj; Mishra, Manish Kumar; Ramamurty, Upadrasta; Govindaraju, T

    2015-11-03

    A simple solution-processing and self-assembly approach that exploits the synergistic interactions between multiple hydrogen bonded networks and aromatic interactions was utilized to synthesize molecular crystals of cyclic dipeptides (CDPs), whose molecular weights (~0.2 kDa) are nearly three orders of magnitude smaller than that of natural structural proteins (50-300 kDa). Mechanical properties of these materials, measured using the nanoindentation technique, indicate that the stiffness and strength are comparable and sometimes better than those of natural fibres. The measured mechanical responses were rationalized by recourse to the crystallographic structural analysis and intermolecular interactions in the self-assembled single crystals. With this work we highlight the significance of developing small molecule based bioinspired design strategies to emulate biomechanical properties. A particular advantage of the successfully demonstrated reductionistic strategy of the present work is its amenability for realistic industrial scale manufacturing of designer biomaterials with desired mechanical properties.

  1. Bioinspired Reductionistic Peptide Engineering for Exceptional Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Avinash, M. B.; Raut, Devaraj; Mishra, Manish Kumar; Ramamurty, Upadrasta; Govindaraju, T.

    2015-11-01

    A simple solution-processing and self-assembly approach that exploits the synergistic interactions between multiple hydrogen bonded networks and aromatic interactions was utilized to synthesize molecular crystals of cyclic dipeptides (CDPs), whose molecular weights (~0.2 kDa) are nearly three orders of magnitude smaller than that of natural structural proteins (50-300 kDa). Mechanical properties of these materials, measured using the nanoindentation technique, indicate that the stiffness and strength are comparable and sometimes better than those of natural fibres. The measured mechanical responses were rationalized by recourse to the crystallographic structural analysis and intermolecular interactions in the self-assembled single crystals. With this work we highlight the significance of developing small molecule based bioinspired design strategies to emulate biomechanical properties. A particular advantage of the successfully demonstrated reductionistic strategy of the present work is its amenability for realistic industrial scale manufacturing of designer biomaterials with desired mechanical properties.

  2. Bioinspired Reductionistic Peptide Engineering for Exceptional Mechanical Properties

    PubMed Central

    Avinash, M. B.; Raut, Devaraj; Mishra, Manish Kumar; Ramamurty, Upadrasta; Govindaraju, T.

    2015-01-01

    A simple solution-processing and self-assembly approach that exploits the synergistic interactions between multiple hydrogen bonded networks and aromatic interactions was utilized to synthesize molecular crystals of cyclic dipeptides (CDPs), whose molecular weights (~0.2 kDa) are nearly three orders of magnitude smaller than that of natural structural proteins (50–300 kDa). Mechanical properties of these materials, measured using the nanoindentation technique, indicate that the stiffness and strength are comparable and sometimes better than those of natural fibres. The measured mechanical responses were rationalized by recourse to the crystallographic structural analysis and intermolecular interactions in the self-assembled single crystals. With this work we highlight the significance of developing small molecule based bioinspired design strategies to emulate biomechanical properties. A particular advantage of the successfully demonstrated reductionistic strategy of the present work is its amenability for realistic industrial scale manufacturing of designer biomaterials with desired mechanical properties. PMID:26525957

  3. Thin Films of Quasicrystals: Optical, Electronic, and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Symko, Orest G.

    1998-03-01

    In order to extend some of the unusual properties of quasicrystals toward practical applications and to study fundamental aspects of these properties, we have developed a technology for the deposition of high quality thin films of quasicrystals on a variety of substrates. Mechanical support for the thin films is provided by the substrate as bulk quasicrystals are brittle. We have applied the thin films to studies of their optical, electrical, and mechanical properties as well as to coatings of biomedical devices. An important characteristic of a quasicrystal is its pseudogap in the electronic density of states; it is determined directly from optical transmission measurements. Optical and mechanical characteristics of the thin films provide strong support for the cluster nature of quasicrystals and emphasize their importance for coatings. When used in biomedical devices, thin film quasicrystalline coatings show remarkable strength, low friction, and non-stick behavior. This work was in collaboration with W. Park, E. Abdel-Rahman, and T. Klein.

  4. Electronic and Mechanical Properties of Hydrogen Functionalized Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Yang, Liu; Han, Jie; Jaffe, Richard L.; Arnold, Jim (Technical Monitor)

    2001-01-01

    We examined the electronic and mechanical properties of hydrogen functionalized carbon nanotubes. The functionalization pattern covers two extreme groups. One group has randomly selected functionalization sites including one to twenty percent of the carbon atoms. The other group has regularly patterned functional sites parallel to the tube axis. Metallic, small-gap semiconducting and large-gap semiconducting carbon nanotubes are studied. The results reveal that the electronic properties of the tubes are very sensitive to the degree of functionalization, with even one percent functionalization being enough to render metallic tubes semiconducting. On the other hand, the mechanical properties, like tensile modulus, are much less sensitive to functionalization. For carbon nanotubes functionalized with specific patterns, the electric properties depends strongly on the nature of the functionalization pattern.

  5. Mechanical properties and fiber type composition of chronically inactive muscles

    NASA Technical Reports Server (NTRS)

    Roy, R. R.; Zhong, H.; Monti, R. J.; Vallance, K. A.; Kim, J. A.; Edgerton, V. R.

    2000-01-01

    A role for neuromuscular activity in the maintenance of skeletal muscle properties has been well established. However, the role of activity-independent factors is more difficult to evaluate. We have used the spinal cord isolation model to study the effects of chronic inactivity on the mechanical properties of the hindlimb musculature in cats and rats. This model maintains the connectivity between the motoneurons and the muscle fibers they innervate, but the muscle unit is electrically "silent". Consequently, the measured muscle properties are activity-independent and thus the advantage of using this model is that it provides a baseline level (zero activity) from which regulatory factors that affect muscle cell homeostasis can be defined. In the present paper, we will present a brief review of our findings using the spinal cord isolation model related to muscle mechanical and fiber type properties.

  6. Coating Microstructure-Property-Performance Issues

    SciTech Connect

    Terry C. Totemeier; Richard N. Wright

    2005-05-01

    Results of studies on the relationships between spray parameters and performance of thermally-sprayed intermetallic coatings for high-temperature oxidation and corrosion resistance are presented. Coating performance is being assessed by corrosion testing of free-standing coatings, thermal cycling of coating substrates, and coating ductility measurement. Coating corrosion resistance was measured in a simulated coal combustion gas environment (N2-CO-CO2-H2O-H2S) at temperatures from 500 to 800°C using thermo-gravimetric analysis (TGA). TGA testing was also performed on a typical ferritic-martensitic steel, austenitic stainless steel, and a wrought Fe3Al-based alloy for direct comparison to coating behavior. FeAl and Fe3Al coatings showed corrosion rates slightly greater than that of wrought Fe3Al, but markedly lower than the steels at all temperatures. The corrosion rates of the coatings were relatively independent of temperature. Thermal cycling was performed on coated 316SS and nickel alloy 600 substrates from room temperature to 800°C to assess the relative effects of coating microstructure, residual stress, and thermal expansion mismatch on coating cracking by thermal fatigue. Measurement of coating ductility was made by acoustic emission monitoring of coated 316SS tensile specimens during loading.

  7. Modeling the Mechanical Performance of Die Casting Dies

    SciTech Connect

    R. Allen Miller

    2004-02-27

    The following report covers work performed at Ohio State on modeling the mechanical performance of dies. The focus of the project was development and particularly verification of finite element techniques used to model and predict displacements and stresses in die casting dies. The work entails a major case study performed with and industrial partner on a production die and laboratory experiments performed at Ohio State.

  8. Mechanical properties of the brain-skull interface.

    PubMed

    Mazumder, Mohammad Mynuddin Gani; Miller, Karol; Bunt, Stuart; Mostayed, Ahmed; Joldes, Grand; Day, Robert; Hart, Robin; Wittek, Adam

    2013-01-01

    Knowledge of the mechanical properties of the brain-skull interface is important for surgery simulation and injury biomechanics. These properties are known only to a limited extent. In this study we conducted in situ indentation of the sheep brain, and proposed to derive the macroscopic mechanical properties of the brain-skull interface from the results of these experiments. To the best of our knowledge, this is the first ever analysis of this kind. When conducting in situ indentation of the brain, the reaction force on the indentor was measured. After the indentation, a cylindrical sample of the brain tissue was extracted and subjected to uniaxial compression test. A model of the brain indentation experiment was built in the Finite Element (FE) solver ABAQUS™. In the model, the mechanical properties of the brain tissue were assigned as obtained from the uniaxial compression test and the brain-skull interface was modeled as linear springs. The interface stiffness (defined as sum of stiffnesses of the springs divided by the interface area) was varied to obtain good agreement between the calculated and experimentally measured indentor force-displacement relationship. Such agreement was found to occur for the brain-skull interface stiffness of 11.45 Nmm⁻¹/mm². This allowed identification of the overall mechanical properties of the brain-skull interface. PMID:23951996

  9. Effects of humidity on the mechanical properties of gecko setae.

    PubMed

    Prowse, Michael S; Wilkinson, Matt; Puthoff, Jonathan B; Mayer, George; Autumn, Kellar

    2011-02-01

    We tested the hypothesis that an increase in relative humidity (RH) causes changes in the mechanical properties of the keratin of adhesive gecko foot hairs (setae). We measured the effect of RH on the tensile deformation properties, fracture, and dynamic mechanical response of single isolated tokay gecko setae and strips of the smooth lamellar epidermal layer. The mechanical properties of gecko setae were strongly affected by RH. The complex elastic modulus (measured at 5 Hz) of a single seta at 80% RH was 1.2 GPa, only 39% of the value when dry. An increase in RH reduced the stiffness and increased the strain to failure. The loss tangent increased significantly with humidity, suggesting that water absorption produces a transition to a more viscous type of deformation. The influence of RH on the properties of the smooth epidermal layer was comparable with that of isolated seta, with the exception of stress at rupture. These values were two to four times greater for the setae than for the smooth layer. The changes in mechanical properties of setal keratin were consistent with previously reported increases in contact forces, supporting the hypothesis that an increase in RH softens setal keratin, which increases adhesion and friction.

  10. Mechanical property quantification of endothelial cells using scanning acoustic microscopy

    NASA Astrophysics Data System (ADS)

    Shelke, A.; Brand, S.; Kundu, T.; Bereiter-Hahn, J.; Blase, C.

    2012-04-01

    The mechanical properties of cells reflect dynamic changes of cellular organization which occur during physiologic activities like cell movement, cell volume regulation or cell division. Thus the study of cell mechanical properties can yield important information for understanding these physiologic activities. Endothelial cells form the thin inner lining of blood vessels in the cardiovascular system and are thus exposed to shear stress as well as tensile stress caused by the pulsatile blood flow. Endothelial dysfunction might occur due to reduced resistance to mechanical stress and is an initial step in the development of cardiovascular disease like, e.g., atherosclerosis. Therefore we investigated the mechanical properties of primary human endothelial cells (HUVEC) of different age using scanning acoustic microscopy at 1.2 GHz. The HUVECs are classified as young (tD < 90 h) and old (tD > 90 h) cells depending upon the generation time for the population doubling of the culture (tD). Longitudinal sound velocity and geometrical properties of cells (thickness) were determined using the material signature curve V(z) method for variable culture condition along spatial coordinates. The plane wave technique with normal incidence is assumed to solve two-dimensional wave equation. The size of the cells is modeled using multilayered (solid-fluid) system. The propagation of transversal wave and surface acoustic wave are neglected in soft matter analysis. The biomechanical properties of HUVEC cells are quantified in an age dependent manner.

  11. Transient dynamic mechanical properties of resilin-based elastomeric hydrogels

    PubMed Central

    Li, Linqing; Kiick, Kristi L.

    2014-01-01

    The outstanding high-frequency properties of emerging resilin-like polypeptides (RLPs) have motivated their development for vocal fold tissue regeneration and other applications. Recombinant RLP hydrogels show efficient gelation, tunable mechanical properties, and display excellent extensibility, but little has been reported about their transient mechanical properties. In this manuscript, we describe the transient mechanical behavior of new RLP hydrogels investigated via both sinusoidal oscillatory shear deformation and uniaxial tensile testing. Oscillatory stress relaxation and creep experiments confirm that RLP-based hydrogels display significantly reduced stress relaxation and improved strain recovery compared to PEG-based control hydrogels. Uniaxial tensile testing confirms the negligible hysteresis, reversible elasticity and superior resilience (up to 98%) of hydrated RLP hydrogels, with Young's modulus values that compare favorably with those previously reported for resilin and that mimic the tensile properties of the vocal fold ligament at low strain (<15%). These studies expand our understanding of the properties of these RLP materials under a variety of conditions, and confirm the unique applicability, for mechanically demanding tissue engineering applications, of a range of RLP hydrogels. PMID:24809044

  12. Hygrothermal ageing effect on mechanical properties of FRP laminates

    NASA Astrophysics Data System (ADS)

    Larbi, S.; Bensaada, R.; Bilek, A.; Djebali, S.

    2015-03-01

    The aim of this work is to study the effect of hygrothermal aging on mechanical properties of two composite materials (carbon fiber / epoxy and glass fiber E / vinylester). Two stratifications are studied for each material. Both materials are exposed to two different environments, the sea water and the deionized water at a temperature of 40°C. The kinetic of material absorption is plotted. We see an irreversible degradation of material caused by exposure time. The characterization of samples in the virgin state and the aged condition is achieved with three points bending tests. We can see significant loss of mechanical properties due to hygrothermal aging.

  13. Mechanical and Electrical Properties of Cryo-worked Cu

    NASA Astrophysics Data System (ADS)

    Bettinali, Livio; Tosti, Silvano; Pizzuto, Aldo

    2014-01-01

    For manufacturing the magnets of fusion machines pure copper of both high mechanical resistance and electrical conductivity is required. Though high purity copper guarantees high electrical conductivity, its mechanical properties may be not suitable for the applications in tokamaks. In this view, a new procedure developed for obtaining high purity copper with excellent mechanical strength is described in this work. Samples of oxygen free copper (OFC) have been worked by pressing in liquid nitrogen (77 K). It has been verified that the mechanical properties of the worked metal are strongly dependent on the strain rate. Very low strain rates permitted to attain values of tensile yield strength (550 MPa) significantly higher than those obtained by traditional cold-working at room temperature (450 MPa). The electrical conductivity of the cryo-worked Cu decreases with the tensile yield strength even though the hardest samples of tensile yield strength of 550 MPa exhibit still acceptable values of conductivity (about 94 % IACS at room temperature).

  14. Characterization of High Temperature Mechanical Properties Using Laser Ultrasound

    SciTech Connect

    David Hurley; Stephen Reese; Farhad Farzbod; Rory Kennedy

    2012-05-01

    Mechanical properties are controlled to a large degree by defect structures such as dislocations and grain boundaries. These microstructural features involve a perturbation of the perfect crystal lattice (i.e. strain fields). Viewed in this context, high frequency strain waves (i.e. ultrasound) provide a natural choice to study microstructure mediated mechanical properties. In this presentation we use laser ultrasound to probe mechanical properties of materials. This approach utilizes lasers to excite and detect ultrasonic waves, and as a consequence has unique advantages over other methods—it is noncontacting, requires no couplant or invasive sample preparation (other than that used in metallurgical analysis), and has the demonstrated capability to probe microstructure on a micron scale. Laser techniques are highly reproducible enabling sophisticated, microstructurally informed data analysis. Since light is being used for generation and detection of the ultrasonic wave, the specimen being examined is not mechanically coupled to the transducer. As a result, laser ultrasound can be carried out remotely, an especially attractive characteristic for in situ measurements in severe environments. Several examples involving laser ultrasound to measure mechanical properties in high temperature environments will be presented. Emphasis will be place on understanding the role of grain microstructure.

  15. Mechanical and tribological properties of ion beam-processed surfaces

    NASA Astrophysics Data System (ADS)

    Kodali, Padma

    A variety of surface modification and surface coating techniques are currently used in industry to modify the near-surface mechanical properties that influence the friction and wear behavior of metals, metallic alloys, ceramics, and polymers. Near-surface mechanical properties such as hardness and fracture toughness of a coating-substrate system can be tailored economically without changing the bulk properties of the system. The intent of this work was to broaden the applications of well-established surface modification techniques and to elucidate the various wear mechanisms that occur in sliding contact of ion-beam processed surfaces. The investigation included characterization and evaluation of coatings and modified surfaces synthesized by three surface engineering methods; namely, beam-line ion implantation, plasma-source ion implantation, and DC magnetron sputtering. Correlation among measured properties such as surface hardness, fracture toughness, and wear behavior was also examined. This dissertation focused on the following areas of research: (1) Investigating the mechanical and tribological properties of mixed implantation of carbon and nitrogen into single crystal silicon by beam-line implantation. (2) Characterizing the mechanical and tribological properties of diamond-like carbon (DLC) coatings processed by plasma source ion implantation. (3) Developing and evaluating metastable boron-carbon-nitrogen (BCN) compound coatings for mechanical and tribological properties. The surface hardness of a mixed carbon-nitrogen implant sample improved significantly compared to the unimplanted sample. However, the enhancement in the wear factor of this sample was found to be less significant than carbon-implanted samples. The presence of nitrogen might be responsible for the degraded wear behavior since nitrogen-implantation alone resulted in no improvement in the wear factor. Wear mechanisms that occurred in implanted and unimplanted surfaces tested against AIS152100

  16. Quadriceps Muscle Mechanical Simulator for Training of Vastus Medialis Obliquus and Vastus Lateralis Obliquus Mechanical Properties

    PubMed Central

    Irmak, Rafet; Irmak, Ahsen; Biçer, Gökhan

    2014-01-01

    Objectives: In classical anatomy quadriceps muscle has four heads. Clinical studies have demostrated 6 heads of this muscle. These heads were demostrated seperately not only by their functional properties,but also by innervation and kinesiological properties. In our previous study we have developed and demostrated electrophysiological properties of vastus medialis obliquus by an electronic patient simulator. The purpose of this study is to develop a mechanical simulator which can be used to demostrate mechanical properties of 6 heads of quadriceps muscle and the screw home mechanism. Methods: Quadriceps femoris muscle has 6 heads: rectus femoris, vastus intermedius, vastus medialis obliquus, vastus medialis longus, vastus lateralis obliquus and vastus lateralis longus. The fundamental mechanical properties of each head is seperated by insersio and angle of pull. Main design principle was to demostrate all heads with insersio and angle of pull properties. Second design principle was to demostrate the screw-home mechanism which is the result of difference in articular surfaces of medial and lateral of condyles of femur. Results: Final design of the simulator consists of three planes for demostration of angle of pull and pulling forces (patellar plane, proximal and distal planes) of each heads. On each plane channels were graved as origo and insersio for demostration of angle of pull. Distal plane was movable for demostration of pulling forces in different angels of knee flexion and extention. Also proximal plane was adjustable to demostrate different sitting and standing positions. Srew home mechanism was demostrated by specially designed hingle mechanism. Left and right side hingle mechanisms have different radii as femoral condyles and this difference can cause rotation in terminal extension as in the screw home mechanism. Conclusion: Vastus medialis obliquus, vastus lateralis obliquus and screw-home mechanism have clinical significance. We were not able to find

  17. [The effect of physical properties of chitosan on cell activity and on its mechanics property].

    PubMed

    Tian, Shengli; Ye, Zhiyi

    2012-12-01

    Chitosan is a natural biopolymer and is made up of D-glucosamine subunits linked by beta-(1,4) glycosidic bond. In recent years, the application of chitosan has attracted more and more attention because of its good biological function in cell biology. The properties of chitosan-based biomaterial are attributed to the physical properties and chemical composition of chitosan. The author of this paper summarized recent related studies and progresses of the influence of physical properties of chitosan on cell activity and cell mechanics property at home and abroad. The findings show that most studies mainly focused on the influence of chitosan and cell activity, while few were on cell mechanics property. The related studies of the influence of chitosan on cell will contribute to the explanation for the mechanism of the interaction between chitosan and cell, and provide the theoretical support for the further study.

  18. Mechanical properties of rat thoracic and abdominal aortas.

    PubMed

    Assoul, N; Flaud, P; Chaouat, M; Letourneur, D; Bataille, I

    2008-07-19

    Mechanical properties of abdominal and thoracic arteries of 2mm in diameter were determined from adults Wistar rats. A tensile testing instrument was used to obtain stress/strain curves with arteries immersed in physiological buffer at 37 degrees C. A displacement was applied on all arteries with various frequencies (1-7.5Hz) and strains (5-60%). From each curve a Young modulus was obtained using a mathematical model based on a nonlinear soft tissue model. No influence of frequency on modulus was evidenced in the tested range. Abdominal aortas, which were found slightly thicker than thoracic aortas, were characterized by a higher modulus. Due to the interest of decellularized biological materials, we also used SDS/Triton treated arteries, and found that the chemical treatment increased modulus of thoracic arteries. Tensile tests were also performed on thoracic aortas in the longitudinal and transversal directions. Longitudinal moduli were found higher than transversal moduli and the difference could be related to the longitudinal orientation of collagen fibers. These data and mathematical model seem useful in the design of new vascular synthetic or biological prostheses for the field of tissue engineering.

  19. Serum albumin-alginate coated beads: mechanical properties and stability.

    PubMed

    Edwards-Lévy, F; Lévy, M C

    1999-11-01

    According to a previously described method, alginate beads were prepared from a Na-alginate solution containing propylene glycol alginate (PGA) and human serum albumin (HSA). The solution was added dropwise to a CaCl2 solution. The beads were treated with NaOH, which started the formation of amide bonds between HSA and PGA at the periphery, giving a membrane. Batches of beads with increasingly thick membranes were prepared using growing concentrations of NaOH, and studied with a texture analyser. When raising NaOH concentration, the rupture strength progressively increased, and the resistance strength to a deformation of 50% of total height also increased before slightly decreasing for the highest NaOH concentration. Variations of bead elasticity were also observed. When the beads were prepared with saline reducing gelation time from 10 to 5 min, and reaction time from 15 to 5 min, mechanical properties varied more progressively with the NaOH concentration, while the results became more reproducible. A series of assays conducted with 0.01 M NaOH confirmed the importance of using a short gelation time, and saline rather than water. Stability assays were also performed. The results were compared to those of alginate-polylysine coated beads and showed the interest of the transacylation method. PMID:10535819

  20. Probing the mechanical properties of dental porcelain through nanoindentation

    NASA Astrophysics Data System (ADS)

    Manda, Marianthi; Moschakis, Nikolaos; Konstantinidis, Avraam; Christophilos, Demetrios; Papadopoulou, Lambrini; Koidis, Petros; Aifantis, Elias

    2012-11-01

    The purpose of this short communication is to report on some micro/nanoscale aspects of the mechanical behavior of dental porcelain. Specimens were characterized by micro-Raman spectroscopy and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). Massive nanoindentation experiments on the surface of the specimens were performed, and typical load-displacement or load-depth (P-h) curves were obtained, which in turn were used to determine the Young modulus (E) and nanoindentation hardness (n-H), based on the Oliver-Pharr method [1]. Statistical analyses were carried out to determine the Spearman’s rank correlation coefficient (Spearman’s ρ), along with non-parametric linear regression analysis by employing Kolmogorov-Smirnov and Two-Step Cluster tests. Densification due to grain boundary diffusion and open-pore elimination was revealed by SEM. EDS analysis indicated a leucite-dispersed silicate glass matrix, as well as its contamination by traces of other minerals. Raman spectroscopy supported the EDS assignments. The P-h curves suggested that inelastic deformation and material flow increases at larger depths. Spearman’s ρ value showed strong dependence of E and n-H on h, indicating the occurrence of a size effect. The logarithmic data of E and n-H as functions of h were fitted by using linear regression analysis. The data did not obey a normal distribution (as the Kolmogorov-Smirnov test showed) due to the chemical heterogeneity involved. The Two-Step Cluster analysis indicated clustering in four groups associated with the chemical heterogeneity of the surface. Similar works using nanoindentation to determine the mechanical properties of dental materials can be found, for example, in [2, 3]. Corresponding methods for extracting the values of E and n-H from P-h experimental curves can be found, for example, in [4-6].

  1. Characterization of mechanical and biochemical properties of developing embryonic tendon.

    PubMed

    Marturano, Joseph E; Arena, Jeffrey D; Schiller, Zachary A; Georgakoudi, Irene; Kuo, Catherine K

    2013-04-16

    Tendons have uniquely high tensile strength, critical to their function to transfer force from muscle to bone. When injured, their innate healing response results in aberrant matrix organization and functional properties. Efforts to regenerate tendon are challenged by limited understanding of its normal development. Consequently, there are few known markers to assess tendon formation and parameters to design tissue engineering scaffolds. We profiled mechanical and biological properties of embryonic tendon and demonstrated functional properties of developing tendon are not wholly reflected by protein expression and tissue morphology. Using force volume-atomic force microscopy, we found that nano- and microscale tendon elastic moduli increase nonlinearly and become increasingly spatially heterogeneous during embryonic development. When we analyzed potential biochemical contributors to modulus, we found statistically significant but weak correlation between elastic modulus and collagen content, and no correlation with DNA or glycosaminoglycan content, indicating there are additional contributors to mechanical properties. To investigate collagen cross-linking as a potential contributor, we inhibited lysyl oxidase-mediated collagen cross-linking, which significantly reduced tendon elastic modulus without affecting collagen morphology or DNA, glycosaminoglycan, and collagen content. This suggests that lysyl oxidase-mediated cross-linking plays a significant role in the development of embryonic tendon functional properties and demonstrates that changes in cross-links alter mechanical properties without affecting matrix content and organization. Taken together, these data demonstrate the importance of functional markers to assess tendon development and provide a profile of tenogenic mechanical properties that may be implemented in tissue engineering scaffold design to mechanoregulate new tendon regeneration.

  2. Mechanical properties and barrier function of healthy human skin.

    PubMed

    Pedersen, Louise; Jemec, Gregor B E

    2006-01-01

    The aim of this study was to investigate the relationship between the mechanical properties and the epidermal barrier function of the skin in vivo. A suction cup device commonly used for measurement of skin mechanics was used to provide a defined stress to the skin using the ventral forearm in 16 healthy volunteers. The integrity of the barrier function was assessed by trans-epidermal water loss and skin capacitance. In the first part of the study, changes in barrier function were measured following the application of standardized strain to the skin barrier. In the second part of the study changes in skin mechanics were assessed following standardized barrier removal. The Wilcoxon signed rank test and Spearman's rank correlation were used for statistical analysis. Significant increases were established in trans-epidermal water loss (p < 0.01) with concomitant significant decreases in capacitance (p < 0.05) following 400 mbar and 600 mbar of suction, suggesting that the mechanical integrity of the skin barrier was disrupted. A significant increase in distensibility (p < 0.05) and hysteresis (p < 0.01) was found following stripping, relating the role of the skin barrier to the overall mechanical properties of the skin. This study showed that the water permeability of the epidermis was significantly affected by the application of mechanical stress to the skin and vice versa, the mechanical properties of the skin were altered when the barrier was compromised. These observations suggest that the mechanical strength of the skin barrier may play a role in the development of, for example, friction dermatitis and other skin diseases affected by mechanical stress.

  3. Corrosion resistance and mechanical properties of alloy 803 for heat resisting applications

    SciTech Connect

    Ganesan, P.; Tassen, C.S.

    1997-08-01

    Alloy 803 was developed for applications as straight and twisted ID finned tubing in the petrochemical and chemical process industries, such as ethylene pyrolysis, that require enhanced resistance to oxidation and carburization in addition to adequate stress rupture strength. This paper presents the mechanical properties characterized for the alloy produced in other forms, such as plate, sheet and bar products, for applications in the heat treatment, chemical and petrochemical industries. The mechanical properties covered include room and high temperature tensile test results, impact strength, creep and stress rupture data for temperatures up to 2,000 F (1,093 C) at various stress levels. The preliminary results of the room and high temperature tensile and impact properties after long term exposures at intermediate temperatures are also presented. In addition to mechanical properties, the corrosion performance of alloy 803 in oxidation, sulfidation and carburization environments are presented.

  4. Enhanced mechanical properties and blood compatibility of PDMS/liquid crystal cross-linked membrane materials.

    PubMed

    Rao, Huaxin; Zhang, Ziyong; Liu, Fanna

    2013-04-01

    A novel polydimethylsiloxane/liquid crystal cross-linked membrane (PDMS/LC) was prepared by using PDMS containing vinyl groups and LCs containing unsaturated linkages as matrix materials. Mechanical properties, liquid crystalline performance and blood compatibility of the PDMS/LC cross-linked membrane containing different LC contents and LC groups were investigated, respectively. The results showed that mechanical properties of the membrane increased more significantly than those of pure PDMS membranes. The PDMS/LC cross-linked membrane also possessed better membrane-forming ability, lower hemolysis rate, less platelets adhesion and more favorable anti-coagulant properties. Additionally, mechanical properties and blood compatibility of the membrane can be enhanced simultaneously and obviously due to the introduction of the cholesteric liquid crystals and the application of the preferred cross-linked reaction without byproducts.

  5. Exploration of mechanisms underlying the strain-rate-dependent mechanical property of single chondrocytes

    SciTech Connect

    Nguyen, Trung Dung; Gu, YuanTong

    2014-05-05

    Based on the characterization by Atomic Force Microscopy, we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young's moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton and the intracellular fluid when the fixed chondrocytes are mainly governed by their intracellular fluid, which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic constitutive material model which can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.

  6. Mechanical Behavior of Agave Americana L. Fibres: Correlation Between Fine Structure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Msahli, S.; Chaabouni, Y.; Sakli, F.; Drean, J. Y.

    In this study, results of a mechanical behavior study of fibres extracted from the agave Americana L. plant, the most abundant variety in Tunisia, are presented. These results deal with the principal and mechanical characteristics of these fibres which are the elongation at break, the elasticity modulus and the rupture facture. These results permitted to situate these fibres, compared to the other textile fibres, as materials that can be used in technical applications such as reinforcing composites or geotextile. In order to understand the mechanical properties of these fibres, a correlation study between the properties already cited and the fine structure was done. The obtained results showed that the mechanical properties of agave Americana L. fibres are closely related to the individual fibers deformations and to the natural matrix (lignin and gums) that links these elementary fibres.

  7. Peripheral Quantitative Computed Tomography Predicts Humeral Diaphysis Torsional Mechanical Properties With Good Short-Term Precision.

    PubMed

    Weatherholt, Alyssa M; Avin, Keith G; Hurd, Andrea L; Cox, Jacob L; Marberry, Scott T; Santoni, Brandon G; Warden, Stuart J

    2015-01-01

    Peripheral quantitative computed tomography (pQCT) is a popular tool for noninvasively estimating bone mechanical properties. Previous studies have demonstrated that pQCT provides precise estimates that are good predictors of actual bone mechanical properties at popular distal imaging sites (tibia and radius). The predictive ability and precision of pQCT at more proximal sites remain unknown. The aim of the present study was to explore the predictive ability and short-term precision of pQCT estimates of mechanical properties of the midshaft humerus, a site gaining popularity for exploring the skeletal benefits of exercise. Predictive ability was determined ex vivo by assessing the ability of pQCT-derived estimates of torsional mechanical properties in cadaver humeri (density-weighted polar moment of inertia [I(P)] and polar strength-strain index [SSI(P)]) to predict actual torsional properties. Short-term precision was assessed in vivo by performing 6 repeat pQCT scans at the level of the midshaft humerus in 30 young, healthy individuals (degrees of freedom = 150), with repeat scans performed by the same and different testers and on the same and different days to explore the influences of different testers and time between repeat scans on precision errors. IP and SSI(P) both independently predicted at least 90% of the variance in ex vivo midshaft humerus mechanical properties in cadaveric bones. Overall values for relative precision error (root mean squared coefficients of variation) for in vivo measures of IP and SSI(P) at the midshaft humerus were <1.5% and were not influenced by pQCT assessments being performed by different testers or on different days. These data indicate that pQCT provides very good prediction of midshaft humerus mechanical properties with good short-term precision, with measures being robust against the influences of different testers and time between repeat scans. PMID:25454307

  8. Effect of entanglements on mechanical properties of glassy polymers

    NASA Astrophysics Data System (ADS)

    Hoy, Robert Scott

    Glass forming polymers are of great industrial importance and scientific interest because of their unique mechanical properties, which arise from the connectivity and random-walk-like structure of the constituent chains. In this thesis I study the relation of entanglements to the mechanical properties of model polymer glasses and brushes using molecular dynamics simulations. We perform extensive studies of glassy strain hardening, which stabilizes polymers against strain localization and fracture. Fundamental inconsistencies in existing entropic models of strain hardening imply that our understanding of its microscopic origins is far from complete. The dependence of stress on strain and entanglement density is consistent with experiment and entropic models. However, many of the assumptions of these models are totally inconsistent with our simulation results. The dependence on temperature, rate and interaction strength can be understood as reflecting changes in the plastic flow stress rather than a network entropy. A substantial energetic contribution to the stress rises rapidly as segments between entanglements are pulled taut. The thermal component of stress is less sensitive to entanglements, mostly irreversible, and directly related to the rate of local plastic arrangements. The deformation of the entanglement network is not affine to the macroscopic stretch. Entangled and unentangled chains show the same strain hardening when plotted against the microscopic chain orientation rather than the macroscopic strain. The entropic back stress responsible for shape recovery arises from chain orientation rather than entanglement. We also present some other results unrelated to strain hardening. We analyze the entanglement of polymer brushes embedded in long-chain melts and in implicit good and theta solvents. The melt-embedded brushes are more self-entangled than those in the solvents. The degree of self-entanglement of the brushes in the solvents follows a simple

  9. Infants' Understanding of Actions Performed by Mechanical Devices

    ERIC Educational Resources Information Center

    Boyer, Ty W.; Pan, J. Samantha; Bertenthal, Bennett I.

    2011-01-01

    Recent research suggests that 9-month-old infants tested in a modified version of the A-not-B search task covertly imitate actions performed by the experimenter. The current study examines whether infants also simulate actions performed by mechanical devices, and whether this varies with whether or not they have been familiarized with the devices…

  10. Mechanical and physical properties of modern boron fibers

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1978-01-01

    The results of accurate measurements of the modern boron fiber's Young's modulus, flexural modulus, shear modulus, and Poisson's ratio are reported. Physical property data concerning fiber density, thermal expansion, and resistance obtained during the course of the mechanical studies are also given.

  11. Sterilizing elastomeric chains without losing mechanical properties. Is it possible?

    PubMed Central

    Pithon, Matheus Melo; Ferraz, Caio Souza; Rosa, Francine Cristina Silva; Rosa, Luciano Pereira

    2015-01-01

    OBJECTIVE: To investigate the effects of different sterilization/disinfection methods on the mechanical properties of orthodontic elastomeric chains. METHODS: Segments of elastomeric chains with 5 links each were sent for sterilization by cobalt 60 (Co60) (20 KGy) gamma ray technology. After the procedure, the elastomeric chains were contaminated with clinical samples of Streptococcus mutans. Subsequently, the elastomeric chains were submitted to sterilization/disinfection tests carried out by means of different methods, forming six study groups, as follows: Group 1 (control - without contamination), Group 2 (70°GL alcohol), Group 3 (autoclave), Group 4 (ultraviolet), Group 5 (peracetic acid) and Group 6 (glutaraldehyde). After sterilization/disinfection, the effectiveness of these methods, by Colony forming units per mL (CFU/mL), and the mechanical properties of the material were assessed. Student's t-test was used to assess the number of CFUs while ANOVA and Tukey's test were used to assess elastic strength. RESULTS: Ultraviolet treatment was not completely effective for sterilization. No loss of mechanical properties occurred with the use of the different sterilization methods (p > 0.05). CONCLUSION: Biological control of elastomeric chains does not affect their mechanical properties. PMID:26154462

  12. Mechanical Properties of Irradiated Polarization-Maintaining Optical Fibers

    NASA Technical Reports Server (NTRS)

    Moeti, L.; Moghazy, S.; Ally, A.; Barnes, S.; Watkins, L.; Cuddihy, E.

    1996-01-01

    Polarization-maintaining optical fibers, referred to as PANDA fibers, were subjected to Cobalt 60 radiation (300,000 Rad). The mechanical properties of the PANDA fibers were measured after exposure to gamma radiation and compared to non-irradiated PANDA fibers.

  13. Barrier and Mechanical Properties of Starch-Clay Nanocomposite Films

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The poor barrier and mechanical properties of biopolymer-based food packaging can potentially be enhanced by the use of layered silicates (nanoclay) to produce nanocomposites. In this study, starch-clay nano-composites were synthesized by a melt extrusion method. Natural (MMT) and organically modifi...

  14. Switchable antimicrobial and antifouling hydrogels with enhanced mechanical properties.

    PubMed

    Cao, Bin; Tang, Qiong; Li, Linlin; Humble, Jayson; Wu, Haiyan; Liu, Lingyun; Cheng, Gang

    2013-08-01

    New switchable hydrogels are developed. Under acidic conditions, hydrogels undergo self-cyclization and can catch and kill bacteria. Under neutral/basic conditions, hydrogels undergo ring-opening and can release killed bacterial cells and resist protein adsorption and bacterial attachment. Smart hydrogels also show a dramatically improved mechanical property, which is highly desired for biomedical applications.

  15. Mechanical shear and tensile properties of selected biomass stems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignocellulosic biomass, such as big bluestem, corn stalk, intermediate wheat grass and switchgrass stem are abundant and dominant species in the Midwest region of US. There is a need to understand the mechanical properties for these crops for better handling and processing of the biomass feedstocks...

  16. Mechanical properties of hyaline and repair cartilage studied by nanoindentation.

    PubMed

    Franke, O; Durst, K; Maier, V; Göken, M; Birkholz, T; Schneider, H; Hennig, F; Gelse, K

    2007-11-01

    Articular cartilage is a highly organized tissue that is well adapted to the functional demands in joints but difficult to replicate via tissue engineering or regeneration. Its viscoelastic properties allow cartilage to adapt to both slow and rapid mechanical loading. Several cartilage repair strategies that aim to restore tissue and protect it from further degeneration have been introduced. The key to their success is the quality of the newly formed tissue. In this study, periosteal cells loaded on a scaffold were used to repair large partial-thickness cartilage defects in the knee joint of miniature pigs. The repair cartilage was analyzed 26 weeks after surgery and compared both morphologically and mechanically with healthy hyaline cartilage. Contact stiffness, reduced modulus and hardness as key mechanical properties were examined in vitro by nanoindentation in phosphate-buffered saline at room temperature. In addition, the influence of tissue fixation with paraformaldehyde on the biomechanical properties was investigated. Although the repair process resulted in the formation of a stable fibrocartilaginous tissue, its contact stiffness was lower than that of hyaline cartilage by a factor of 10. Fixation with paraformaldehyde significantly increased the stiffness of cartilaginous tissue by one order of magnitude, and therefore, should not be used when studying biomechanical properties of cartilage. Our study suggests a sensitive method for measuring the contact stiffness of articular cartilage and demonstrates the importance of mechanical analysis for proper evaluation of the success of cartilage repair strategies. PMID:17586107

  17. Enhanced Graphene Mechanical Properties through Ultrasmooth Copper Growth Substrates.

    PubMed

    Griep, Mark H; Sandoz-Rosado, Emil; Tumlin, Travis M; Wetzel, Eric

    2016-03-01

    The combination of extraordinary strength and stiffness in conjunction with exceptional electronic and thermal properties in lightweight two-dimensional materials has propelled graphene research toward a wide array of applications including flexible electronics and functional structural components. Tailoring graphene's properties toward a selected application requires precise control of the atomic layer growth process, transfer, and postprocessing procedures. To date, the mechanical properties of graphene are largely controlled through postprocess defect engineering techniques. In this work, we demonstrate the role of varied catalytic surface morphologies on the tailorability of subsequent graphene film quality and breaking strength, providing a mechanism to tailor the physical, electrical, and mechanical properties at the growth stage. A new surface planarization methodology that results in over a 99% reduction in Cu surface roughness allows for smoothness parameters beyond that reported to date in literature and clearly demonstrates the role of Cu smoothness toward a decrease in the formation of bilayer graphene defects, altered domain sizes, monolayer graphene sheet resistance values down to 120 Ω/□ and a 78% improvement in breaking strength. The combined electrical and mechanical enhancements achieved through this methodology allows for the direct growth of application quality flexible transparent conductive films with monolayer graphene. PMID:26882091

  18. Physical and mechanical properties of the lunar soil (a review)

    NASA Astrophysics Data System (ADS)

    Slyuta, E. N.

    2014-09-01

    We review the data on the physical and mechanical properties of the lunar soil that were acquired in the direct investigations on the lunar surface carried out in the manned and automatic missions and in the laboratory examination of the lunar samples returned to the Earth. In justice to the American manned program Apollo, we show that a large volume of the data on the properties of the lunar soil was also obtained in the Soviet automatic program Lunokhod and with the automatic space stations Luna-16, -20, and -24 that returned the lunar soil samples to the Earth. We consider all of the main physical and mechanical properties of the lunar soil, such as the granulometric composition, density and porosity, cohesion and adhesion, angle of internal friction, shear strength of loose soil, deformation characteristics (the deformation modulus and Poisson ratio), compressibility, and the bearing capacity, and show the change of some properties versus the depth. In most cases, the analytical dependence of the main parameters is presented, which is required in developing reliable engineering models of the lunar soil. The main physical and mechanical properties are listed in the summarizing table, and the currently available models and simulants of the lunar soil are reviewed.

  19. Hyperoxia alters the mechanical properties of alveolar epithelial cells.

    PubMed

    Roan, Esra; Wilhelm, Kristina; Bada, Alex; Makena, Patrudu S; Gorantla, Vijay K; Sinclair, Scott E; Waters, Christopher M

    2012-06-15

    Patients with severe acute lung injury are frequently administered high concentrations of oxygen (>50%) during mechanical ventilation. Long-term exposure to high levels of oxygen can cause lung injury in the absence of mechanical ventilation, but the combination of the two accelerates and increases injury. Hyperoxia causes injury to cells through the generation of excessive reactive oxygen species. However, the precise mechanisms that lead to epithelial injury and the reasons for increased injury caused by mechanical ventilation are not well understood. We hypothesized that alveolar epithelial cells (AECs) may be more susceptible to injury caused by mechanical ventilation if hyperoxia alters the mechanical properties of the cells causing them to resist deformation. To test this hypothesis, we used atomic force microscopy in the indentation mode to measure the mechanical properties of cultured AECs. Exposure of AECs to hyperoxia for 24 to 48 h caused a significant increase in the elastic modulus (a measure of resistance to deformation) of both primary rat type II AECs and a cell line of mouse AECs (MLE-12). Hyperoxia also caused remodeling of both actin and microtubules. The increase in elastic modulus was blocked by treatment with cytochalasin D. Using finite element analysis, we showed that the increase in elastic modulus can lead to increased stress near the cell perimeter in the presence of stretch. We then demonstrated that cyclic stretch of hyperoxia-treated cells caused significant cell detachment. Our results suggest that exposure to hyperoxia causes structural remodeling of AECs that leads to decreased cell deformability. PMID:22467640

  20. Mechanical properties of liquid-filled shellac composite capsules.

    PubMed

    Leick, Sabine; Kott, Maureen; Degen, Patrick; Henning, Stefan; Päsler, Tobias; Suter, Dieter; Rehage, Heinz

    2011-02-21

    This paper describes the mechanical properties of thin-walled, liquid-filled composite capsules consisting of calcium pectinate and shellac. In a series of experiments we measured the deformation of these particles in a spinning drop apparatus. For different pH-values we studied the elastic properties of these particles and compared the obtained results with the mechanical response measured by squeezing capsule experiments. In analogy to these experiments, we also investigated liquid-filled unloaded calcium pectinate capsules without the addition of shellac. The deformation properties of these experiments and the surface Young moduli were in good agreement. Furthermore we investigated the liquid-filled calcium pectinate and the composite capsules by NMR microscopy. These experiments allowed investigations of the membrane thickness and the kinetics of membrane growing. Additional characterizations by stress controlled small amplitude surface shear experiments of similar composed gel layers provided coherent results for the surface Young modulus.

  1. Processing dependence of mechanical properties of metallic glass nanowires

    SciTech Connect

    Zhang, Qi; Li, Mo; Li, Qi-Kai

    2015-02-16

    Compared to their crystalline counterparts, nanowires made of metallic glass have not only superb properties but also remarkable processing ability. They can be processed easily and cheaply like plastics via a wide range of methods. To date, the underlying mechanisms of how these different processing routes affect the wires' properties as well as the atomic structure remains largely unknown. Here, by using atomistic modeling, we show that different processing methods can greatly influence the mechanical properties. The nanowires made via focused ion beam milling and embossing exhibit higher strength but localized plastic deformation, whereas that made by casting from liquid shows excellent ductility with homogeneous deformation but reduced strength. The different responses are reflected sensitively in the underlying atomic structure and packing density, some of which have been observed experimentally. The presence of the gradient of alloy concentration and surface effect will be discussed.

  2. Custom impression trays: Part I--Mechanical properties.

    PubMed

    Breeding, L C; Dixon, D L; Moseley, J P

    1994-01-01

    Dimensional stability of custom impression trays is an important factor in determining the degree of accuracy achieved in forming a master cast. Such trays must remain stable over time and must not exhibit permanent deformation when a completed impression is removed from the oral cavity. Measurement of the mechanical properties allows comparison between various tray materials and is useful in interpreting data on stresses incurred during removal of the completed impression. In Part I of this three-part series, the various mechanical properties of five tray resins: one autopolymerizing polymethyl methacrylate, one light-polymerizing, and three brands of thermoplastic resins were recorded and compared. The thermoplastic resins studied in this investigation exhibited lower measured values for the strength and elastic modulus properties than the light-polymerizing resin and the autopolymerizing polymethyl methacrylate resin studied.

  3. Custom impression trays: Part I--Mechanical properties.

    PubMed

    Breeding, L C; Dixon, D L; Moseley, J P

    1994-01-01

    Dimensional stability of custom impression trays is an important factor in determining the degree of accuracy achieved in forming a master cast. Such trays must remain stable over time and must not exhibit permanent deformation when a completed impression is removed from the oral cavity. Measurement of the mechanical properties allows comparison between various tray materials and is useful in interpreting data on stresses incurred during removal of the completed impression. In Part I of this three-part series, the various mechanical properties of five tray resins: one autopolymerizing polymethyl methacrylate, one light-polymerizing, and three brands of thermoplastic resins were recorded and compared. The thermoplastic resins studied in this investigation exhibited lower measured values for the strength and elastic modulus properties than the light-polymerizing resin and the autopolymerizing polymethyl methacrylate resin studied. PMID:8120842

  4. The influence of microstructure on the mechanical properties of solder

    SciTech Connect

    Morris, J.W. Jr.; Reynolds, H.L.

    1996-06-01

    Solder joints in microelectronics devices consist of low-melting solder compositions that wet and join metal contacts and are, ordinarily, used at high homologous temperatures in the as-solidified condition. Differences in solidification rate and substrate interactions have the consequence that even solder joints of similar compositions exhibit a wide range of microstructures. The variation in microstructure causes a variation in properties; in particular, the high-temperature creep properties that govern much of the mechanical behavior of the solder may differ significantly from joint to joint. The present paper reviews the varieties of microstructure that are found in common solder joints, and describes some of the ways in which microstructural changes affect mechanical properties and joint reliability.

  5. Determining the Mechanical Properties of Lattice Block Structures

    NASA Technical Reports Server (NTRS)

    Wilmoth, Nathan

    2013-01-01

    Lattice block structures and shape memory alloys possess several traits ideal for solving intriguing new engineering problems in industries such as aerospace, military, and transportation. Recent testing at the NASA Glenn Research Center has investigated the material properties of lattice block structures cast from a conventional aerospace titanium alloy as well as lattice block structures cast from nickel-titanium shape memory alloy. The lattice block structures for both materials were sectioned into smaller subelements for tension and compression testing. The results from the cast conventional titanium material showed that the expected mechanical properties were maintained. The shape memory alloy material was found to be extremely brittle from the casting process and only compression testing was completed. Future shape memory alloy lattice block structures will utilize an adjusted material composition that will provide a better quality casting. The testing effort resulted in baseline mechanical property data from the conventional titanium material for comparison to shape memory alloy materials once suitable castings are available.

  6. Mechanical and thermal properties of the Czech marbles

    NASA Astrophysics Data System (ADS)

    Čáchová, Monika; Koňáková, Dana; Vejmelková, Eva; Keppert, Martin; Černý, Robert

    2016-06-01

    The paper is dealing with selected parameters of four marbles with respect to their utilization as building materials. Stones from four function quarries in the Czech Republic were chosen and scopes of physical properties were determined. Basic physical, mechanical and thermal properties belong among studied characteristics. Bulk density of studied marbles is in average 2750 kg/m3, matrix density 2770 kg/m3, open porosity 0.7%. Pore structure show similar distributions. Mechanical properties show more differences; however minimal value of compressive strength was 66.5 MPa, while maximum was 174 MPa. Thermal conductivity of studied marbles was about 2.955 W/mK. Last measured characteristic was specific heat capacity; its average value was 609 J/kgK.

  7. A review of mechanical and electromechanical properties of piezoelectric nanowires.

    PubMed

    Espinosa, Horacio D; Bernal, Rodrigo A; Minary-Jolandan, Majid

    2012-09-01

    Piezoelectric nanowires are promising building blocks in nanoelectronic, sensing, actuation and nanogenerator systems. In spite of great progress in synthesis methods, quantitative mechanical and electromechanical characterization of these nanostructures is still limited. In this article, the state-of-the art in experimental and computational studies of mechanical and electromechanical properties of piezoelectric nanowires is reviewed with an emphasis on size effects. The review covers existing characterization and analysis methods and summarizes data reported in the literature. It also provides an assessment of research needs and opportunities. Throughout the discussion, the importance of coupling experimental and computational studies is highlighted. This is crucial for obtaining unambiguous size effects of nanowire properties, which truly reflect the effect of scaling rather than a particular synthesis route. We show that such a combined approach is critical to establish synthesis-structure-property relations that will pave the way for optimal usage of piezoelectric nanowires. PMID:22581695

  8. Moisture effect on mechanical properties of polymeric composite materials

    NASA Astrophysics Data System (ADS)

    Airale, A. G.; Carello, M.; Ferraris, A.; Sisca, L.

    2016-05-01

    The influence of moisture on the mechanical properties of fibre-reinforced polymer matrix composites (PMCs) was investigated. Four materials had been take into account considering: both 2×2-Twill woven carbon fibre or glass fibre, thermosetting matrix (Epoxy Resin) or thermoplastic matrix (Polyphenylene Sulfide). The specimens were submitted for 1800 hours to a hygrothermic test to evaluate moisture absorption on the basis of the Fick's law and finally tested to verify the mechanical properties (ultimate tensile strength). The results showed that the absorbed moisture decreases those properties of composites which were dominated by the matrix or the interface, while was not detectable the influence of water on the considered fibre. An important result is that the diffusion coefficient is highest for glass/PPS and lowest for carbon/epoxy composite material. The results give useful suggestions for the design of vehicle components that are exposed to environmental conditions (rain, snow and humidity).

  9. Performance Properties of Graphite Reinforced Composites with Advanced Resin Matrices

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.

    1980-01-01

    This article looks at the effect of different resin matrices on thermal and mechanical properties of graphite composites, and relates the thermal and flammability properties to the anaerobic char yield of the resins. The processing parameters of graphite composites utilizing graphite fabric and epoxy or other advanced resins as matrices are presented. Thermoset resin matrices studied were: aminecured polyfunctional glycidyl aminetype epoxy (baseline), phenolicnovolac resin based on condensation of dihydroxymethyl-xylene and phenol cured with hexamine, two types of polydismaleimide resins, phenolic resin, and benzyl resin. The thermoplastic matrices studied were polyethersulfone and polyphenylenesulfone. Properties evaluated in the study included anaerobic char yield, limiting oxygen index, smoke evolution, moisture absorption, and mechanical properties at elevated temperatures including tensile, compressive, and short-beam shear strengths. Generally, it was determined that graphite composites with the highest char yield exhibited optimum fire-resistant properties.

  10. Energy transfer performance of mechanical nanoresonators coupled with electromagnetic fields

    PubMed Central

    2012-01-01

    We study the energy transfer performance in electrically and magnetically coupled mechanical nanoresonators. Using the resonant scattering theory, we show that magnetically coupled resonators can achieve the same energy transfer performance as for their electrically coupled counterparts or even outperform them within the scale of interest. Magnetic and electric coupling are compared in the nanotube radio, a realistic example of a nano-scale mechanical resonator. The energy transfer performance is also discussed for a newly proposed bio-nanoresonator composed of magnetosomes coated with a net of protein fibers. PMID:23075029

  11. Brillouin microspectroscopy of nanostructured biomaterials: photonics assisted tailoring mechanical properties

    NASA Astrophysics Data System (ADS)

    Meng, Zhaokai; Jaiswal, Manish K.; Chitrakar, Chandani; Thakur, Teena; Gaharwar, Akhilesh K.; Yakovlev, Vladislav V.

    2016-03-01

    Developing new biomaterials is essential for the next-generation of materials for bioenergy, bioelectronics, basic biology, medical diagnostics, cancer research, and regenerative medicine. Specifically, recent progress in nanotechnology has stimulated the development of multifunctional biomaterials for tissue engineering applications. The physical properties of nanocomposite biomaterials, including elasticity and viscosity, play key roles in controlling cell fate, which underlines therapeutic success. Conventional mechanical tests, including uniaxial compression and tension, dynamic mechanical analysis and shear rheology, require mechanical forces to be directly exerted onto the sample and therefore may not be suitable for in situ measurements or continuous monitoring of mechanical stiffness. In this study, we employ spontaneous Brillouin spectroscopy as a viscoelasticity-specific probing technique. We utilized a Brillouin spectrometer to characterize biomaterial's microscopic elasticity and correlated those with conventional mechanical tests (e.g., rheology).

  12. The effect of water on the mechanical properties of soluble and insoluble ceramic cements.

    PubMed

    Koh, Ilsoo; López, Alejandro; Pinar, Ana B; Helgason, Benedikt; Ferguson, Stephen J

    2015-11-01

    Ceramic cements are good candidates for the stabilization of fractured bone due to their potential ease of application and biological advantages. New formulations of ceramic cements have been tested for their mechanical properties, including strength, stiffness, toughness and durability. The changes in the mechanical properties of a soluble cement (calcium sulfate) upon water-saturation (saturation) was reported in our previous study, highlighting the need to test ceramic cements using saturated samples. It is not clear if the changes in the mechanical properties of ceramic cements are exclusive to soluble cements. Therefore the aim of the present study was to observe the changes in the mechanical properties of soluble and insoluble ceramic cements upon saturation. A cement with high solubility (calcium sulfate dihydrate, CSD) and a cement with low solubility (dicalcium phosphate dihydrate, DCPD) were tested. Three-point bending tests were performed on four different groups of: saturated CSD, non-saturated CSD, saturated DCPD, and non-saturated DCPD samples. X-ray diffraction analysis and scanning electron microscopy were also performed on a sample from each group. Flexural strength, effective flexural modulus and flexural strain at maximum stress, lattice volume, and crystal sizes and shape were compared, independently, between saturated and non-saturated groups of CSD and DCPD. Although material dissolution did not occur in all cases, all calculated mechanical properties decreased significantly in both CSD and DCPD upon saturation. The results indicate that the reductions in the mechanical properties of saturated ceramic cements are not dependent on the solubility of a ceramic cement. The outcome raised the importance of testing any implantable ceramic cements in saturated condition to estimate its in vivo mechanical properties.

  13. The effect of water on the mechanical properties of soluble and insoluble ceramic cements.

    PubMed

    Koh, Ilsoo; López, Alejandro; Pinar, Ana B; Helgason, Benedikt; Ferguson, Stephen J

    2015-11-01

    Ceramic cements are good candidates for the stabilization of fractured bone due to their potential ease of application and biological advantages. New formulations of ceramic cements have been tested for their mechanical properties, including strength, stiffness, toughness and durability. The changes in the mechanical properties of a soluble cement (calcium sulfate) upon water-saturation (saturation) was reported in our previous study, highlighting the need to test ceramic cements using saturated samples. It is not clear if the changes in the mechanical properties of ceramic cements are exclusive to soluble cements. Therefore the aim of the present study was to observe the changes in the mechanical properties of soluble and insoluble ceramic cements upon saturation. A cement with high solubility (calcium sulfate dihydrate, CSD) and a cement with low solubility (dicalcium phosphate dihydrate, DCPD) were tested. Three-point bending tests were performed on four different groups of: saturated CSD, non-saturated CSD, saturated DCPD, and non-saturated DCPD samples. X-ray diffraction analysis and scanning electron microscopy were also performed on a sample from each group. Flexural strength, effective flexural modulus and flexural strain at maximum stress, lattice volume, and crystal sizes and shape were compared, independently, between saturated and non-saturated groups of CSD and DCPD. Although material dissolution did not occur in all cases, all calculated mechanical properties decreased significantly in both CSD and DCPD upon saturation. The results indicate that the reductions in the mechanical properties of saturated ceramic cements are not dependent on the solubility of a ceramic cement. The outcome raised the importance of testing any implantable ceramic cements in saturated condition to estimate its in vivo mechanical properties. PMID:26210548

  14. Do Non-Collagenous Proteins Affect Skeletal Mechanical Properties?

    PubMed Central

    Morgan, Stacyann; Poundarik, Atharva A.; Vashishth, Deepak

    2015-01-01

    The remarkable mechanical behavior of bone is attributed to its complex nanocomposite structure that, in addition to mineral and collagen, comprises a variety of non-collagenous matrix proteins or NCPs. Traditionally, NCPs have been studied as signaling molecules in biological processes including bone formation, resorption and turnover. Limited attention has been given to their role in determining the mechanical properties of bone. Recent studies have highlighted that NCPs can indeed be lost or modified with aging, diseases and drug therapies. Homozygous and heterozygous mice models of key NCP provide a useful approach to determine the impact of NCPs on bone morphology as well as matrix quality, and to carry out detailed mechanical analysis for elucidating the pathway by which NCPs can affect the mechanical properties of bone. In this article, we present a systematic analysis of a large cohort of NCPs on bone’s structural and material hierarchy, and identify three principal pathways by which they determine bone’s mechanical properties. These pathways include alterations of bone morphological parameters crucial for bone’s structural competency, bone quality changes in key matrix parameters (mineral and collagen), and a direct role as load bearing structural proteins. PMID:26048282

  15. Do Non-collagenous Proteins Affect Skeletal Mechanical Properties?

    PubMed

    Morgan, Stacyann; Poundarik, Atharva A; Vashishth, Deepak

    2015-09-01

    The remarkable mechanical behavior of bone is attributed to its complex nanocomposite structure that, in addition to mineral and collagen, comprises a variety of non-collagenous matrix proteins or NCPs. Traditionally, NCPs have been studied as signaling molecules in biological processes including bone formation, resorption, and turnover. Limited attention has been given to their role in determining the mechanical properties of bone. Recent studies have highlighted that NCPs can indeed be lost or modified with aging, diseases, and drug therapies. Homozygous and heterozygous mice models of key NCP provide a useful approach to determine the impact of NCPs on bone morphology as well as matrix quality, and to carry out detailed mechanical analysis for elucidating the pathway by which NCPs can affect the mechanical properties of bone. In this article, we present a systematic analysis of a large cohort of NCPs on bone's structural and material hierarchy, and identify three principal pathways by which they determine bone's mechanical properties. These pathways include alterations of bone morphological parameters crucial for bone's structural competency, bone quality changes in key matrix parameters (mineral and collagen), and a direct role as load-bearing structural proteins.

  16. Influence of sedimentary environments on mechanical properties of clastic rocks

    NASA Astrophysics Data System (ADS)

    Meng, Zhaoping; Zhang, Jincai; Peng, Suping

    2006-10-01

    The sedimentary environments are the intrinsic factor controlling the mechanical properties of clastic rocks. Examining the relationship between rock sedimentary environments and rock mechanical properties gives a better understanding of rock deformation and failure mechanisms. In this study, more than 55 samples in coal measures were taken from seven different lithologic formations in eastern China. Using the optical microscope the sedimentary characteristics, such as components of clastic rocks and sizes of clastic grains were quantitatively tested and analyzed. The corresponding mechanical parameters were tested using the servo-controlled testing system. Different lithologic attributes in the sedimentary rocks sampled different stress-strain behaviors and failure characteristics under different confining pressures, mainly due to different compositions and textures. Results demonstrate that clastic rocks have the linear best-fit for Mohr-Coulomb failure criterion. The elastic moduli in clastic rocks are highly dependent upon confining pressures, unlike hard rocks. The envelope lines of the mechanical properties versus the contents of quartz, detritus of the grain diameter of more than 0.03 mm, and grain size in clastic rocks are given. The compressive strength or elastic modulus and the grain diameter have a non-monotonic relation and demonstrate the “grain-diameter softening” effect.

  17. Properties and performance of folded hypercubes

    SciTech Connect

    El-Amawy, A. ); Latifi, S. )

    1991-01-01

    In this paper, the authors propose and analyze a new hypercube-type structure, the {ital folded hypercube} (FHC), which is basically a standard hypercube with some extra links established between its nodes. The hardware overhead is almost 1/{ital n}, {ital n} being the dimensionality of the hypercube, which is negligible for large {ital n}. For this new design, optimal routing algorithms are developed and proven to be remarkably more efficient than those of the conventional {ital n}-cube. For one-to-one communication, each node can reach any other node in the network in at most ({ital n}/2) hops (each hop corresponds to the traversal of a single link), as opposed to {ital n} hops in the standard hypercube. One-to-all communication (broadcasting) can also be performed in only ({ital n}/2) steps yielding 50% improvement in broadcasting time over that of the standard hypercube. All routing algorithms are simple and easy to implement. Correctness proofs for the algorithms are given. For the proposed architecture, communication parameters such as average distance, message traffic density, and communication time delay are derived. In addition, some fault tolerance capabilities of this architecture are quantified and compared to those of the standard cube. {delta} show that the proposed structure offers substantial improvement over existing hypercube-type networks in terms of the above mentioned network parameters.

  18. Mechanical Properties of Non-Accreting Neutron Star Crusts

    NASA Astrophysics Data System (ADS)

    Hoffman, Kelsey L.; Heyl, J. S.

    2013-01-01

    The mechanical properties of a neutron star crust, such as breaking strain and shear modulus, have implications for the detection of gravitational waves from a neutron star as well as bursts from Soft Gamma-ray Repeaters (SGRs). These properties are calculated here for three different crustal compositions for a non-accreting neutron star that results from three different cooling histories, as well as for a pure iron crust. A simple shear is simulated using molecular dynamics to the crustal compositions by deforming the simulation box. The breaking strain and shear modulus are found to be similar in the four cases, with a breaking strain of ˜0.1 and a shear modulus of ˜1030 dyne cm-2 at a density of ρ = 1014g cm-3 for simulations with an initially perfect BCC lattice. With these crustal properties and the observed properties of PSR J2124-3358 the predicted strain amplitude of gravitational waves for a maximally deformed crust is found to be greater than the observational upper limits from LIGO. This suggests that the neutron star crust in this case may not be maximally deformed or it may not have a perfect BCC lattice structure. The implications of the calculated crustal properties of bursts from SGRs are also explored. The mechanical properties found for a perfect BCC lattice structure find that crustal events alone can not be ruled out for triggering the energy in SGR bursts.

  19. Mechanical properties of non-accreting neutron star crusts

    NASA Astrophysics Data System (ADS)

    Hoffman, Kelsey; Heyl, Jeremy

    2012-11-01

    The mechanical properties of a neutron star crust, such as breaking strain and shear modulus, have implications for the detection of gravitational waves from a neutron star as well as bursts from soft Gamma-ray repeaters (SGRs). These properties are calculated here for three different crustal compositions for a non-accreting neutron star that results from three different cooling histories, as well as for a pure iron crust. A simple shear is simulated using molecular dynamics to the crustal compositions by deforming the simulation box. The breaking strain and shear modulus are found to be similar in the four cases, with a breaking strain of ˜0.1 and a shear modulus of ˜1030 dyne cm-2 at a density of ρ = 1014 g cm-3 for simulations with an initially perfect body-centred cubic (BCC) lattice. With these crustal properties and the observed properties of PSR J2124-3358, the predicted strain amplitude of gravitational waves for a maximally deformed crust is found to be greater than the observational upper limits from LIGO. This suggests that the neutron star crust in this case may not be maximally deformed or it may not have a perfect BCC lattice structure. The implications of the calculated crustal properties of bursts from SGRs are also explored. The mechanical properties found for a perfect BCC lattice structure find that crustal events alone cannot be ruled out for triggering the energy in SGR bursts.

  20. Ultrasonic evaluation of the physical and mechanical properties of granites.

    PubMed

    Vasconcelos, G; Lourenço, P B; Alves, C A S; Pamplona, J

    2008-09-01

    Masonry is the oldest building material that survived until today, being used all over the world and being present in the most impressive historical structures as an evidence of spirit of enterprise of ancient cultures. Conservation, rehabilitation and strengthening of the built heritage and protection of human lives are clear demands of modern societies. In this process, the use of nondestructive methods has become much common in the diagnosis of structural integrity of masonry elements. With respect to the evaluation of the stone condition, the ultrasonic pulse velocity is a simple and economical tool. Thus, the central issue of the present paper concerns the evaluation of the suitability of the ultrasonic pulse velocity method for describing the mechanical and physical properties of granites (range size between 0.1-4.0 mm and 0.3-16.5 mm) and for the assessment of its weathering state. The mechanical properties encompass the compressive and tensile strength and modulus of elasticity, and the physical properties include the density and porosity. For this purpose, measurements of the longitudinal ultrasonic pulse velocity with distinct natural frequency of the transducers were carried out on specimens with different size and shape. A discussion of the factors that induce variations on the ultrasonic velocity is also provided. Additionally, statistical correlations between ultrasonic pulse velocity and mechanical and physical properties of granites are presented and discussed. The major output of the work is the confirmation that ultrasonic pulse velocity can be effectively used as a simple and economical nondestructive method for a preliminary prediction of mechanical and physical properties, as well as a tool for the assessment of the weathering changes of granites that occur during the serviceable life. This is of much interest due to the usual difficulties in removing specimens for mechanical characterization. PMID:18471849

  1. Ultrasonic evaluation of the physical and mechanical properties of granites.

    PubMed

    Vasconcelos, G; Lourenço, P B; Alves, C A S; Pamplona, J

    2008-09-01

    Masonry is the oldest building material that survived until today, being used all over the world and being present in the most impressive historical structures as an evidence of spirit of enterprise of ancient cultures. Conservation, rehabilitation and strengthening of the built heritage and protection of human lives are clear demands of modern societies. In this process, the use of nondestructive methods has become much common in the diagnosis of structural integrity of masonry elements. With respect to the evaluation of the stone condition, the ultrasonic pulse velocity is a simple and economical tool. Thus, the central issue of the present paper concerns the evaluation of the suitability of the ultrasonic pulse velocity method for describing the mechanical and physical properties of granites (range size between 0.1-4.0 mm and 0.3-16.5 mm) and for the assessment of its weathering state. The mechanical properties encompass the compressive and tensile strength and modulus of elasticity, and the physical properties include the density and porosity. For this purpose, measurements of the longitudinal ultrasonic pulse velocity with distinct natural frequency of the transducers were carried out on specimens with different size and shape. A discussion of the factors that induce variations on the ultrasonic velocity is also provided. Additionally, statistical correlations between ultrasonic pulse velocity and mechanical and physical properties of granites are presented and discussed. The major output of the work is the confirmation that ultrasonic pulse velocity can be effectively used as a simple and economical nondestructive method for a preliminary prediction of mechanical and physical properties, as well as a tool for the assessment of the weathering changes of granites that occur during the serviceable life. This is of much interest due to the usual difficulties in removing specimens for mechanical characterization.

  2. Chirality-Mediated Mechanical and Structural Properties of Oligopeptide Hydrogels

    SciTech Connect

    Taraban, Marc B.; Feng, Yue; Hammouda, Boualem; Hyland, Laura L.; Yu, Y. Bruce

    2012-10-29

    The origin and the effects of homochirality in the biological world continuously stimulate numerous hypotheses and much debate. This work attempts to look at the biohomochirality issue from a different angle - the mechanical properties of the bulk biomaterial and their relation to nanoscale structures. Using a pair of oppositely charged peptides that co-assemble into hydrogels, we systematically investigated the effect of chirality on the mechanical properties of these hydrogels through different combinations of syndiotactic and isotactic peptides. It was found that homochirality confers mechanical advantage, resulting in a higher elastic modulus and strain yield value. Yet, heterochirality confers kinetic advantage, resulting in faster gelation. Structurally, both homochiral and heterochiral hydrogels are made of fibers interconnected by lappet-like webs, but the homochiral peptide fibers are thicker and denser. These results highlight the possible role of biohomochirality in the evolution and/or natural selection of biomaterials.

  3. An Introduction to the Mechanical Properties of Ceramics

    NASA Astrophysics Data System (ADS)

    Green, David J.

    1998-09-01

    Over the past twenty-five years ceramics have become key materials in the development of many new technologies as scientists have been able to design these materials with new structures and properties. An understanding of the factors that influence their mechanical behavior and reliability is essential. This book will introduce the reader to current concepts in the field. It contains problems and exercises to help readers develop their skills. This is a comprehensive introduction to the mechanical properties of ceramics, and is designed primarily as a textbook for advanced undergraduates in materials science and engineering. It will also be of value as a supplementary text for more general courses and to industrial scientists and engineers involved in the development of ceramic-based products, materials selection and mechanical design.

  4. The influence of grain size on the mechanical properties ofsteel

    SciTech Connect

    Morris Jr., J.W.

    2001-05-01

    Many of the important mechanical properties of steel, including yield strength and hardness, the ductile-brittle transition temperature and susceptibility to environmental embrittlement can be improved by refining the grain size. The improvement can often be quantified in a constitutive relation that is an appropriate variant on the familiar Hall-Petch relation: the quantitative improvement in properties varies with d{sup -1/2}, where d is the grain size. Nonetheless, there is considerable uncertainty regarding the detailed mechanism of the grain size effect, and appropriate definition of ''grain size''. Each particular mechanism of strengthening and fracture suggests its own appropriate definition of the ''effective grain size'', and how it may be best controlled.

  5. Mechanical Properties of Materials with Nanometer Scale Microstructures

    SciTech Connect

    William D. Nix

    2004-10-31

    We have been engaged in research on the mechanical properties of materials with nanometer-scale microstructural dimensions. Our attention has been focused on studying the mechanical properties of thin films and interfaces and very small volumes of material. Because the dimensions of thin film samples are small (typically 1 mm in thickness, or less), specialized mechanical testing techniques based on nanoindentation, microbeam bending and dynamic vibration of micromachined structures have been developed and used. Here we report briefly on some of the results we have obtained over the past three years. We also give a summary of all of the dissertations, talks and publications completed on this grant during the past 15 years.

  6. Mechanisms of Microwave Loss Tangent in High Performance Dielectric Materials

    NASA Astrophysics Data System (ADS)

    Liu, Lingtao

    The mechanism of loss in high performance microwave dielectrics with complex perovskite structure, including Ba(Zn1/3Ta2/3)O 3, Ba(Cd1/3Ta2/3)O3, ZrTiO4-ZnNb 2O6, Ba(Zn1/3Nb2/3)O3, and BaTi4O9-BaZn2Ti4O11, has been investigated. We studied materials synthesized in our own lab and from commercial vendors. Then the measured loss tangent was correlated to the optical, structural, and electrical properties of the material. To accurately and quantitatively determine the microwave loss and Electron Paramagnetic Resonance (EPR) spectra as a function of temperature and magnetic field, we developed parallel plate resonator (PPR) and dielectric resonator (DR) techniques. Our studies found a marked increase in the loss at low temperatures is found in materials containing transition metal with unpaired d-electrons as a result of resonant spin excitations in isolated atoms (light doping) or exchange coupled clusters (moderate to high doping); a mechanism that differs from the usual suspects. The loss tangent can be drastically reduced by applying static magnetic fields. Our measurements also show that this mechanism significantly contributes to room temperature loss, but does not dominate. In order to study the electronic structure of these materials, we grew single crystal thin film dielectrics for spectroscopic studies, including angular resolved photoemission spectroscopy (ARPES) experiment. We have synthesized stoichiometric Ba(Cd1/3Ta2/3)O3 [BCT] (100) dielectric thin films on MgO (100) substrates using Pulsed Laser Deposition. Over 99% of the BCT film was found to be epitaxial when grown with an elevated substrate temperature of 635 °C, an enhanced oxygen pressures of 53 Pa and a Cd-enriched BCT target with a 1 mol BCT: 1.5 mol CdO composition. Analysis of ultra violet optical absorption results indicate that BCT has a bandgap of 4.9 eV.

  7. Indium telluride nanotubes: Solvothermal synthesis, growth mechanism, and properties

    SciTech Connect

    Zhou, Liyan; Yan, Shancheng; Lu, Tao; Shi, Yi; Wang, Jianyu; Yang, Fan

    2014-03-15

    A convenient solvothermal approach was applied for the first time to synthesize In{sub 2}Te{sub 3} nanotubes. The morphology of the resultant nanotubes was studied by scanning electron microscopy and transmission electron microscopy. Nanotubes with a relatively uniform diameter of around 500 nm, tube wall thickness of 50–100 nm, and average length of tens of microns were obtained. X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy were used to study the crystal structures, composition, and optical properties of the products. To understand the growth mechanism of the In{sub 2}Te{sub 3} nanotubes, we studied the influences of temperature, reaction time, and polyvinylpyrrolidone (PVP) and ethylene diamine (EDA) dosages on the final products. Based on the experimental results, a possible growth mechanism of In{sub 2}Te{sub 3} nanotubes was proposed. In this mechanism, TeO{sub 3}{sup −2} is first reduced to allow nucleation. Circumferential edges of these nucleated molecules attract further deposition, and nanotubes finally grow rapidly along the c-axis and relatively slowly along the circumferential direction. The surface area of the products was determined by BET and found to be 137.85 m{sup 2} g{sup −1}. This large surface area indicates that the nanotubes may be suitable for gas sensing and hydrogen storage applications. The nanotubes also showed broad light detection ranging from 300 nm to 1100 nm, which covers the UV–visible–NIR regions. Such excellent optical properties indicate that In{sub 2}Te{sub 3} nanotubes may enable significant advancements in new photodetection and photosensing applications. -- Graphical abstract: A convenient solvothermal approach was applied to synthesize In{sub 2}Te{sub 3} nanotubes, which has not been reported in the literature for our knowledge. Surface area of this material is 137.85 m{sup 2} g{sup −1} from the BET testing, and such a high value makes it probably suitable for gas sensing and

  8. Size-dependent mechanical properties of PVA nanofibers reduced via air plasma treatment

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Jin, Yu; Song, Xuefeng; Gao, Jingyun; Han, Xiaobing; Jiang, Xingyu; Zhao, Qing; Yu, Dapeng

    2010-03-01

    Organic nanowires/fibers have great potential in applications such as organic electronics and soft electronic techniques. Therefore investigation of their mechanical performance is of importance. The Young's modulus of poly(vinyl alcohol) (PVA) nanofibers was analyzed by scanning probe microscopy (SPM) methods. Air plasma treatment was used to reduce the nanofibers to different sizes. Size-dependent mechanical properties of PVA nanofibers were studied and revealed that the Young's modulus increased dramatically when the scales became very small (<80 nm).

  9. Structures and Mechanical Properties of Natural and Synthetic Diamonds

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1998-01-01

    A revolution in the diamond technology is in progress, as the low-pressure process becomes an industrial reality. It will soon be possible to take advantage of the demanding properties of diamond to develop a myriad of new applications, particularly for self-lubricating, wear-resistant, and superhard coatings. The production of large diamond films or sheets at low cost, a distinct possibility in the not-too-distant future, may drastically change tribology technology, particularly regarding solid lubricants and lubricating materials and systems. This paper reviews the structures and properties of natural and synthetic diamonds to gain a better understanding of the tribological properties of diamond and related materials. Atomic and crystal structure, impurities, mechanical properties, and indentation hardness of diamond are described.

  10. Characterization and modification of particulate properties to enhance filtration performance

    SciTech Connect

    Snyder, T.R.; Vann Bush, P.; Robinson, M.S.

    1990-06-01

    The specific objectives of this project are to characterize the particulate properties that determine the filtration performance of fabric filters, and to investigate methods for modifying these particulate properties to enhance filtration performance. Inherent in these objectives is the development of an experimental approach that will lead to full-scale implementation of beneficial conditioning processes identified during the project. The general approach has included a large number of laboratory evaluations to be followed by optional field tests of a new successful conditioning processes performed on a sidestream device. This project was divided into five tasks. The schedule followed for these tasks is shown in Figure 4. Tasks 2 and 3 each focus on one of the two complementary parts of the project. Task 2 Parametric Tests of Ashes and Fabrics, evaluates the degree to which ash properties and fabric design determine filtration performance. Task 3 Survey of Methods to Modify the Particle Filtration Properties, provides a literature review and laboratory study of techniques to modify ash properties. The results of these two tasks were used in Task 4 Proof-of-Concept Tests of Methods to Modify Particle Filtration Properties to demonstrate the effects on filtration performance of modifying ash properties. The findings of all the tasks are summarized in this Final Report. 13 refs.

  11. Mechanical properties of several iron-nickel meteorites

    SciTech Connect

    Mulford, Roberta N; El - Dasher, Bassem

    2011-01-06

    Iron-nickel meteorites exhibit a unique lamellar microstructure, consisting of small regions with steep-iron-nickel composition gradients. The microstructure arises as a result of slow cooling in a planetary core or other large mass. The microstructure is further influenced by variable concentrations of other elements such as phosphorous which may have influenced cooling and phase separation. Mechanical properties of these composite structures have been investigated using Vickers and spherical indentation, x-ray fluorescence, and EBSD. Direct observation of mechanical properties in these highly structured materials provides a valuable supplement to bulk measurements, which frequently exhibit large variation in dynamic properties, even within a single sample. Previous studies of the mechanical properties of a typical iron-nickel meteorite, a Diablo Canyon specimen, indicated that the strength of the composite was higher by almost an order of magnitude than values obtained from laboratory-prepared specimens. This was ascribed to the extreme work-hardening evident in the EBSD measurements. Additional specimens from the Canyon Diablo fall (type IAB, coarse octahedrite) and several fine octahedrite meteorites, from the Muonionalusta meteorite (IVA) and Gibeon fall (IVA), have been examined to establish a range of error on the previously measured yield, to determine the extent to which deformation upon reentry contributes to yield, and to establish the degree to which the strength varies as a function of microstructure.

  12. Mechanical Properties of Nanostructured Materials Determined Through Molecular Modeling Techniques

    NASA Technical Reports Server (NTRS)

    Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The potential for gains in material properties over conventional materials has motivated an effort to develop novel nanostructured materials for aerospace applications. These novel materials typically consist of a polymer matrix reinforced with particles on the nanometer length scale. In this study, molecular modeling is used to construct fully atomistic models of a carbon nanotube embedded in an epoxy polymer matrix. Functionalization of the nanotube which consists of the introduction of direct chemical bonding between the polymer matrix and the nanotube, hence providing a load transfer mechanism, is systematically varied. The relative effectiveness of functionalization in a nanostructured material may depend on a variety of factors related to the details of the chemical bonding and the polymer structure at the nanotube-polymer interface. The objective of this modeling is to determine what influence the details of functionalization of the carbon nanotube with the polymer matrix has on the resulting mechanical properties. By considering a range of degree of functionalization, the structure-property relationships of these materials is examined and mechanical properties of these models are calculated using standard techniques.

  13. Mechanical properties of DyBaCuO superconducting bulks

    NASA Astrophysics Data System (ADS)

    Fujimoto, H.; Shimada, H.; Yoshizawa, S.

    2007-10-01

    Melt-processed REBaCuO (RE: rare earth) superconductors have a high Jc at 77 K and a high magnetic field, which are expected to be used for high field applications such as superconducting permanent magnets with liquid nitrogen refrigeration, flywheels, current leads and so on. Mechanical properties such as flexural strength, fracture toughness and ductility are very crucial as well as the superconducting properties: Tc, Jc, and Hirr for industrial applications of high-Tc oxide superconductors. However, oxide superconductors have the intrinsic brittleness of the perovskite structure, thus, the strength and the fracture toughness of REBaCuO superconductors have been reported to be low and anisotropic. Therefore, we should investigate and improve mechanical properties to achieve structural reliability for applications. Large single domain of melt-processed REBaCuO (Dy-123) superconductors with Dy2BaCuO5 (Dy-211) particles and Ag2O of 10 wt% was fabricated with a seeding and temperature gradient method in air. In this study, we discuss mechanical properties such as the hardness and the surface roughness, and the flexural strength of the RE-123 bulk, measured at RT. The results of Vickers hardness, surface roughness and the flexural strength showed very important information for evaluating characteristics of RE-123 bulks.

  14. Mechanical properties of Municipal Solid Waste by SDMT

    SciTech Connect

    Castelli, Francesco; Maugeri, Michele

    2014-02-15

    Highlights: • The adoption of the SDMT for the measurements of MSW properties is proposed. • A comparison between SDMT results and laboratory tests was carried out. • A good reliability has been found in deriving waste properties by SDMT. • Results seems to be promising for the friction angle and Young’s modulus evaluation. - Abstract: In the paper the results of a geotechnical investigation carried on Municipal Solid Waste (MSW) materials retrieved from the “Cozzo Vuturo” landfill in the Enna area (Sicily, Italy) are reported and analyzed. Mechanical properties were determined both by in situ and laboratory large-scale one dimensional compression tests. While among in situ tests, Dilatomer Marchetti Tests (DMT) is used widely in measuring soil properties, the adoption of the DMT for the measurements of MSW properties has not often been documented in literature. To validate its applicability for the estimation of MSW properties, a comparison between the seismic dilatometer (SDMT) results and the waste properties evaluated by laboratory tests was carried out. Parameters for “fresh” and “degraded waste” have been evaluated. These preliminary results seems to be promising as concerns the assessment of the friction angle of waste and the evaluation of the S-wave in terms of shear wave velocity. Further studies are certainly required to obtain more representative values of the elastic parameters according to the SDMT measurements.

  15. Asbestos exposures of mechanics performing clutch service on motor vehicles.

    PubMed

    Cohen, Howard J; Van Orden, Drew R

    2008-03-01

    A study was conducted to assess historical asbestos exposures of mechanics performing clutch service on motor vehicles. For most of the 20th century, friction components used in brakes and manual transmission clutches contained approximately 25-60% chrysotile asbestos. Since the late 1960s, asbestos exposure assessment studies conducted on mechanics performing brake service have frequently reported levels below the current OSHA permissible exposure limit (PEL) of 0.1 fiber/cc (flcc). Although there is a robust asbestos exposure data set for mechanics performing brake service, there are almost no data for mechanics removing and replacing clutches in manual transmission vehicles. Personal and area airborne asbestos samples were collected during the removal of asbestos-containing clutches from 15 manual transmissions obtained from salvage facilities by an experienced mechanic. Clutch plates and debris were analyzed for asbestos using EPA and ISO published analytical methods. More than 100 personal and area air samples were collected and analyzed for asbestos fibers using NIOSH methods 7400 and 7402. A separate study involved a telephone survey of 16 automotive mechanics who began work prior to 1975. The mechanics were asked about the duration, frequency, and methods used to perform clutch service. Wear debris in the bell housing surrounding clutches had an average of 0.1% chrysotile asbestos by weight, a value consistent with similar reports of brake debris. Asbestos air sampling data collected averaged 0.047 flcc. Mechanics participating in the telephone survey indicated that clutch service was performed infrequently, the entire clutch assembly was normally replaced, and there was no need to otherwise handle the asbestos-containing clutch plates. These mechanics also confirmed that wet methods were most frequently used to clean debris from the bell housing. Combining the asbestos exposure that occurred when mechanics performed clutch service, along with the duration

  16. Asbestos exposures of mechanics performing clutch service on motor vehicles.

    PubMed

    Cohen, Howard J; Van Orden, Drew R

    2008-03-01

    A study was conducted to assess historical asbestos exposures of mechanics performing clutch service on motor vehicles. For most of the 20th century, friction components used in brakes and manual transmission clutches contained approximately 25-60% chrysotile asbestos. Since the late 1960s, asbestos exposure assessment studies conducted on mechanics performing brake service have frequently reported levels below the current OSHA permissible exposure limit (PEL) of 0.1 fiber/cc (flcc). Although there is a robust asbestos exposure data set for mechanics performing brake service, there are almost no data for mechanics removing and replacing clutches in manual transmission vehicles. Personal and area airborne asbestos samples were collected during the removal of asbestos-containing clutches from 15 manual transmissions obtained from salvage facilities by an experienced mechanic. Clutch plates and debris were analyzed for asbestos using EPA and ISO published analytical methods. More than 100 personal and area air samples were collected and analyzed for asbestos fibers using NIOSH methods 7400 and 7402. A separate study involved a telephone survey of 16 automotive mechanics who began work prior to 1975. The mechanics were asked about the duration, frequency, and methods used to perform clutch service. Wear debris in the bell housing surrounding clutches had an average of 0.1% chrysotile asbestos by weight, a value consistent with similar reports of brake debris. Asbestos air sampling data collected averaged 0.047 flcc. Mechanics participating in the telephone survey indicated that clutch service was performed infrequently, the entire clutch assembly was normally replaced, and there was no need to otherwise handle the asbestos-containing clutch plates. These mechanics also confirmed that wet methods were most frequently used to clean debris from the bell housing. Combining the asbestos exposure that occurred when mechanics performed clutch service, along with the duration

  17. Performance pressure and caffeine both affect cognitive performance, but likely through independent mechanisms.

    PubMed

    Boere, Julia J; Fellinger, Lizz; Huizinga, Duncan J H; Wong, Sebastiaan F; Bijleveld, Erik

    2016-02-01

    A prevalent combination in daily life, performance pressure and caffeine intake have both been shown to impact people's cognitive performance. Here, we examined the possibility that pressure and caffeine affect cognitive performance via a shared pathway. In an experiment, participants performed a modular arithmetic task. Performance pressure and caffeine intake were orthogonally manipulated. Findings indicated that pressure and caffeine both negatively impacted performance. However, (a) pressure vs. caffeine affected performance on different trial types, and (b) there was no hint of an interactive effect. So, though the evidence is indirect, findings suggest that pressure and caffeine shape performance via distinct mechanisms, rather than a shared one.

  18. [Mechanical properties and biological evaluation of buffalo horn material].

    PubMed

    Zhang, Quanbin; Zhou, Qunfei; Shan, Guanghua; Cao, Ping; Huang, Yaoxiong; Ao, Ningjian

    2014-12-01

    Mechanical properties and biological evaluation of buffalo horn material were examined in this study. The effects of sampling position of buffalo horn on mechanical properties were investigated with uniaxial tension and micron indentation tests. Meanwhile, the variation of element contents in different parts of buffalo horn was determined with elemental analysis, and the microstructure of the horn was measured with scanning electron microscopy. In addition, biological evaluation of buffalo horn was studied with hemolytic test, erythrocyte morphology, platelet and erythrocyte count, and implantation into mouse. Results showed that the buffalo horn had good mechanical properties and mechanical characteristic values of it gradually increased along with the growth direction of the horn, which may be closely related to its microstructure and element content of C, N, and S in different parts of the buffalo horn. On the other hand, because the buffalo horn does not have toxicity, it therefore does not cause hemolysis of erythrocyte and has a good affinity with it. Buffalo horn has good histocompatibility but meanwhile it may induce the platelet adhesion and aggregation. Even so, it does not continue to rise to induce a large number of platelet to aggregate with resulting blood clotting. Therefore, the buffalo horn material has been proved to possess good blood compatibility according to the preliminary evaluation. PMID:25868248

  19. Mechanical properties of fibroblasts depend on level of cancer transformation.

    PubMed

    Efremov, Yu M; Lomakina, M E; Bagrov, D V; Makhnovskiy, P I; Alexandrova, A Y; Kirpichnikov, M P; Shaitan, K V

    2014-05-01

    Recently, it was revealed that tumor cells are significantly softer than normal cells. Although this phenomenon is well known, it is connected with many questions which are still unanswered. Among these questions are the molecular mechanisms which cause the change in stiffness and the correlation between cell mechanical properties and their metastatic potential. We studied mechanical properties of cells with different levels of cancer transformation. Transformed cells in three systems with different transformation types (monooncogenic N-RAS, viral and cells of tumor origin) were characterized according to their morphology, actin cytoskeleton and focal adhesion organization. Transformation led to reduction of cell spreading and thus decreasing the cell area, disorganization of actin cytoskeleton, lack of actin stress fibers and decline in the number and size of focal adhesions. These alterations manifested in a varying degree depending on type of transformation. Force spectroscopy by atomic force microscopy with spherical probes was carried out to measure the Young's modulus of cells. In all cases the Young's moduli were fitted well by log-normal distribution. All the transformed cell lines were found to be 40-80% softer than the corresponding normal ones. For the cell system with a low level of transformation the difference in stiffness was less pronounced than for the two other systems. This suggests that cell mechanical properties change upon transformation, and acquisition of invasive capabilities is accompanied by significant softening.

  20. Mechanical Properties of Nanoworm Assembled by DNA and Nanoparticle Conjugates.

    PubMed

    Zhou, Yihua; Sohrabi, Salman; Tan, Jifu; Liu, Yaling

    2016-06-01

    Recently, DNA-nanoparticle conjugates have been widely used as building blocks for assembling complex nanostructures, due to their programmable recognitions, high cellular uptake and enhanced binding capabilities. In this study, a nanoworm structure, which can be applied in fields of drug targeting, image probing and thermal therapies, has been assembled by DNA-nanoparticle conjugates. Subsequently, its mechanical properties have been investigated due to their importance on the structural stability, transport and circulations of the nanoworm. Stiffness and strengths of the nanoworm under different deformation types are studied by coarse-grained molecular dynamics simulations. Effects of temperature, DNA coating density and particle size on mechanical properties of nanoworms are also thoroughly investigated. Results show that both resistance and strength of the nanoworm are the weakest along the axial direction, indicating it is more prone to be ruptured by a stretching force. i addition, DNA strands are found to be more important than nanoparticles in determining mechanical properties of the nanoworm. Moreover, both strength and resistance in regardless of directions are proved to be enhanced by decreasing the temperature, raising the DNA coating density and enlarging the particle size. This study is capable of serving as guidance for designing nanoworms with optimal mechanical strengths for applications.

  1. Mechanical Properties of Nanoworm Assembled by DNA and Nanoparticle Conjugates.

    PubMed

    Zhou, Yihua; Sohrabi, Salman; Tan, Jifu; Liu, Yaling

    2016-06-01

    Recently, DNA-nanoparticle conjugates have been widely used as building blocks for assembling complex nanostructures, due to their programmable recognitions, high cellular uptake and enhanced binding capabilities. In this study, a nanoworm structure, which can be applied in fields of drug targeting, image probing and thermal therapies, has been assembled by DNA-nanoparticle conjugates. Subsequently, its mechanical properties have been investigated due to their importance on the structural stability, transport and circulations of the nanoworm. Stiffness and strengths of the nanoworm under different deformation types are studied by coarse-grained molecular dynamics simulations. Effects of temperature, DNA coating density and particle size on mechanical properties of nanoworms are also thoroughly investigated. Results show that both resistance and strength of the nanoworm are the weakest along the axial direction, indicating it is more prone to be ruptured by a stretching force. i addition, DNA strands are found to be more important than nanoparticles in determining mechanical properties of the nanoworm. Moreover, both strength and resistance in regardless of directions are proved to be enhanced by decreasing the temperature, raising the DNA coating density and enlarging the particle size. This study is capable of serving as guidance for designing nanoworms with optimal mechanical strengths for applications. PMID:27427583

  2. Mechanical Properties of Murine and Porcine Ocular Tissues in Compression

    PubMed Central

    Worthington, Kristan S.; Wiley, Luke A.; Bartlett, Alexandra M.; Stone, Edwin M.; Mullins, Robert F.; Salem, Aliasger K.; Guymon, C. Allan; Tucker, Budd A.

    2014-01-01

    Sub-retinal implantation of foreign materials is becoming an increasingly common feature of novel therapies for retinal dysfunction. The ultimate compatibility of implants depends not only on their in vitro chemical compatibility, but also on how well the mechanical properties of the material match those of the native tissue. In order to optimize the mechanical properties of retinal implants, the mechanical properties of the mammalian retina itself must be carefully characterized. In this study, the compressive moduli of eye tissues, especially the retina, were probed using a dynamic mechanical analysis instrument in static mode. The retinal compressive modulus was lower than that of the sclera or cornea, but higher than that of the RPE and choroid. Compressive modulus remained relatively stable with age. Conversely, apparent retinal softening occurred at an early age in mice with inherited retinal degeneration. Compressive modulus is an important consideration for the design of retinal implants. Polymer scaffolds with moduli that are substantially different than that of the native tissue in which they will ultimately reside will be less likely to aid in the differentiation and development of the appropriate cell types in vitro and will have reduced biocompatibility in vivo. PMID:24613781

  3. Loops determine the mechanical properties of mitotic chromosomes

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Heermann, Dieter W.

    2013-03-01

    In mitosis, chromosomes undergo a condensation into highly compacted, rod-like objects. Many models have been put forward for the higher-order organization of mitotic chromosomes including radial loop and hierarchical folding models. Additionally, mechanical properties of mitotic chromosomes under different conditions were measured. However, the internal organization of mitotic chromosomes still remains unclear. Here we present a polymer model for mitotic chromosomes and show how chromatin loops play a major role for their mechanical properties. The key assumption of the model is the ability of the chromatin fibre to dynamically form loops with the help of binding proteins. Our results show that looping leads to a tight compaction and significantly increases the bending rigidity of chromosomes. Moreover, our qualitative prediction of the force elongation behaviour is close to experimental findings. This indicates that the internal structure of mitotic chromosomes is based on self-organization of the chromatin fibre. We also demonstrate how number and size of loops have a strong influence on the mechanical properties. We suggest that changes in the mechanical characteristics of chromosomes can be explained by an altered internal loop structure. YZ gratefully appreciates funding by the German National Academic Foundation (Studienstiftung des deutschen Volkes) and support by the Heidelberg Graduate School for Mathematical and Computational Methods in the Sciences (HGS MathComp).

  4. Mechanical properties of murine and porcine ocular tissues in compression.

    PubMed

    Worthington, Kristan S; Wiley, Luke A; Bartlett, Alexandra M; Stone, Edwin M; Mullins, Robert F; Salem, Aliasger K; Guymon, C Allan; Tucker, Budd A

    2014-04-01

    Sub-retinal implantation of foreign materials is becoming an increasingly common feature of novel therapies for retinal dysfunction. The ultimate compatibility of implants depends not only on their in vitro chemical compatibility, but also on how well the mechanical properties of the material match those of the native tissue. In order to optimize the mechanical properties of retinal implants, the mechanical properties of the mammalian retina itself must be carefully characterized. In this study, the compressive moduli of eye tissues, especially the retina, were probed using a dynamic mechanical analysis instrument in static mode. The retinal compressive modulus was lower than that of the sclera or cornea, but higher than that of the RPE and choroid. Compressive modulus remained relatively stable with age. Conversely, apparent retinal softening occurred at an early age in mice with inherited retinal degeneration. Compressive modulus is an important consideration for the design of retinal implants. Polymer scaffolds with moduli that are substantially different than that of the native tissue in which they will ultimately reside will be less likely to aid in the differentiation and development of the appropriate cell types in vitro and will have reduced biocompatibility in vivo. PMID:24613781

  5. Characterization of the mechanical properties of freestanding platinum thin films

    NASA Astrophysics Data System (ADS)

    Abbas, Khawar

    Many MEMS devices utilize nanocrystalline thin metallic films as mechanical structures, in particular, micro switching devices where these films are used as Ohmic contacts. But the elastic and plastic properties of these thin films (thickness < 1mum) are significantly different from those of the bulk material. At these scales the volume fraction of material defects such as: grain boundaries, dislocations and interstitials become quite significant and become a chief contributor to the physical and mechanical material properties. In order to effectively design MEMS devices it is important that these material properties are explored and mechanical behavior of the structure they form be characterized. Popular thin film materials used in MEMS devices are Aluminum (Al), Copper (Cu), Nickel (Ni) and Gold (Au). Platinum has traditionally gained acceptance into the MEMS industry because of its chemical inertness and high temperature stability. However the mechanical properties of platinum remains the least exploited. Platinum has a high Young's Modulus (164 GPa, for bulk) and high melting temperature (1768 °C) and therefore can be used as a 'thin film' structure (cantilever, a bridge or a membrane) in high temperature environments with high resistance to mechanical failure. The physical size of these thin film structure make it very difficult to handle them and employ traditional mechanical testing methodologies and techniques and therefore require custom test platforms. One such recently developed platform is presented in this dissertation. The test platform is comprised of a microfabricated cascaded thermal actuator system and test specimen. The cascaded thermal actuator system is capable of providing tens of microns of displacement and tens of milli-Newton forces simultaneously while applying a relatively low temperature gradient across the test specimen. The dimensions of the platform make its use possible in both the SEM/TEM environments and on a probe station under

  6. Woven glass fabric reinforced laminates based on polyolefin wastes: Thermal, mechanical and dynamic-mechanical properties

    NASA Astrophysics Data System (ADS)

    Russo, Pietro; Acierno, Domenico; Simeoli, Giorgio; Lopresto, Valentina

    2014-05-01

    Potentialities of polyolefin wastes in place of virgin polypropylene to produce composite laminates have been investigated. Plaques reinforced with a woven glass fabric were prepared by film-stacking technique and systematically analyzed in terms of thermal, mechanical and dynamic-mechanical properties. In case of PP matrices, the use of a typical compatibilizer to improve the adhesion at the interface has been considered. Thermal properties emphasized the chemical nature of plastic wastes. About mechanical properties, static tests showed an increase of flexural parameters for compatibilized systems due to the coupling effect between grafted maleic anhydride and silane groups on the surface of the glass fabric. These effects, maximized for composites based on car bumper wastes, is perfectly reflected in terms of storage modulus and damping ability of products as determined by single-cantilever bending dynamic tests.

  7. Dynamic performance of dissipative dielectric elastomers under alternating mechanical load

    NASA Astrophysics Data System (ADS)

    Zhang, Junshi; Chen, Hualing; Sheng, Junjie; Liu, Lei; Wang, Yongquan; Jia, Shuhai

    2014-07-01

    This paper presents a theoretical study about the effect of dissipation on the dynamic performance of a dielectric elastomer membrane subject to a combination of mechanical load and voltage. The thermodynamic dissipative model is given and the equation of motion is deduced by a free energy method. It is found that when the applied mechanical load and voltage are static, the membrane may reach a state of equilibrium after the viscoelastic relaxation. When the voltage is static but the mechanical load is sinusoidal, the membrane will resonate at multiple frequencies. The study result indicates that the viscoelasticity can reduce the natural frequency and increase the mean stretch of the dielectric elastomer. After the power source is cut off, the effect of current leakage on dynamic performance under alternating mechanical load is that the natural frequency increases and the mean stretch reduces.

  8. Mechanical properties and material characterization of polysialate structural composites

    NASA Astrophysics Data System (ADS)

    Foden, Andrew James

    One of the major concerns in using Fiber Reinforced Composites in applications that are subjected to fire is their resistance to high temperature. Some of the fabrics used in FRC, such as carbon, are fire resistant. However, almost all the resins used cannot withstand temperatures higher than 200°C. This dissertation deals with the development and use of a potassium aluminosilicate (GEOPOLYMER) resin that is inorganic and can sustain more than 1000°C. The results presented include the mechanical properties of the unreinforced polysialate matrix in tension, flexure, and compression as well as the strain capacities and surface energy. The mechanical properties of the matrix reinforced with several different fabrics were obtained in flexure, tension, compression and shear. The strength and stiffness of the composite was evaluated for each loading condition. Tests were conducted on unexposed samples as well as samples exposed to temperatures from 200 to 1000°C. Fatigue properties were determined using flexural loading. A study of the effect of several processing variables on the properties of the composite was undertaken to determine the optimum procedure for manufacturing composite plates. The processing variables studied were the curing temperature and pressure, and the post cure drying time required to remove any residual water. The optimum manufacturing conditions were determined using the void content, density, fiber volume fraction, and flexural strength. Analytical models are presented based on both micro and macro mechanical analysis of the composite. Classic laminate theory is used to evaluate the state of the composite as it is being loaded to determine the failure mechanisms. Several failure criteria theories are considered. The analysis is then used to explain the mechanical behavior of the composite that was observed during the experimental study.

  9. Mechanical and tribological properties of ion beam-processed surfaces

    SciTech Connect

    Kodali, P.

    1998-01-01

    The intent of this work was to broaden the applications of well-established surface modification techniques and to elucidate the various wear mechanisms that occur in sliding contact of ion-beam processed surfaces. The investigation included characterization and evaluation of coatings and modified surfaces synthesized by three surface engineering methods; namely, beam-line ion implantation, plasma-source ion implantation, and DC magnetron sputtering. Correlation among measured properties such as surface hardness, fracture toughness, and wear behavior was also examined. This dissertation focused on the following areas of research: (1) investigating the mechanical and tribological properties of mixed implantation of carbon and nitrogen into single crystal silicon by beam-line implantation; (2) characterizing the mechanical and tribological properties of diamond-like carbon (DLC) coatings processed by plasma source ion implantation; and (3) developing and evaluating metastable boron-carbon-nitrogen (BCN) compound coatings for mechanical and tribological properties. The surface hardness of a mixed carbon-nitrogen implant sample improved significantly compared to the unimplanted sample. However, the enhancement in the wear factor of this sample was found to be less significant than carbon-implanted samples. The presence of nitrogen might be responsible for the degraded wear behavior since nitrogen-implantation alone resulted in no improvement in the wear factor. DLC coatings have low friction, low wear factor, and high hardness. The fracture toughness of DLC coatings has been estimated for the first time. The wear mechanism in DLC coatings investigated with a ruby slider under a contact stress of 1 GPa was determined to be plastic deformation. The preliminary data on metastable BCN compound coatings indicated high friction, low wear factor, and high hardness.

  10. The mechanical and tribological properties of UHMWPE loaded ALN after mechanical activation for joint replacements.

    PubMed

    Gong, Kemeng; Qu, Shuxin; Liu, Yumei; Wang, Jing; Zhang, Yongchao; Jiang, Chongxi; Shen, Ru

    2016-08-01

    Ultra-high molecular weight polyethylene (UHMWPE) loaded with alendronate sodium (ALN) has tremendous potential as an orthopeadic biomaterial for joint replacements. However, poor mechanical and tribological properties of UHMWPE-ALN are still obstacle for further application. The purpose of this study was to investigate the effect and mechanism of mechanical activation on mechanical and tribological properties of 1wt% ALN-loaded UHMWPE (UHMWPE-ALN-ma). In this study, tensile test, small punch test and reciprocating sliding wear test were applied to characterize the mechanical and tribological properties of UHMWPE-ALN-ma. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) were employed to characterize UHMWPE-ALN-ma. Tensile test and small punch test showed that Young׳s modulus, tensile strength and work-to-failure (WTF) of UHMWPE-ALN-ma increased significantly compared to those of UHMWPE-ALN. The friction coefficients and wear factors of UHMWPE-ALN-ma both decreased significantly compared to those of UHMWPE-ALN. Mechanical activation obviously reduced type 1 (void) and type 2 (the disconnected and dislocated machining marks) fusion defects of UHMWPE-ALN-ma, which were revealed by SEM images of freeze fracture surfaces after etching and lateral surfaces of specimens after extension to fracture, respectively. It was attributed to peeled-off layers and chain scission of molecular chains of UHMWPE particles after mechanical activation, which were revealed by SEM images and FTIR spectra of UHMWPE-ALN-ma and UHMWPE-ALN, respectively. Moreover, EDS spectra revealed the more homogeneous distribution of ALN in UHMWPE-ALN-ma compared to that of UHMWPE-ALN. The present results showed that mechanical activation was a potential strategy to improve mechanical and tribological properties of UHMWPE-ALN-ma as an orthopeadic biomaterial for joint replacements. PMID:27104932

  11. The mechanical and tribological properties of UHMWPE loaded ALN after mechanical activation for joint replacements.

    PubMed

    Gong, Kemeng; Qu, Shuxin; Liu, Yumei; Wang, Jing; Zhang, Yongchao; Jiang, Chongxi; Shen, Ru

    2016-08-01

    Ultra-high molecular weight polyethylene (UHMWPE) loaded with alendronate sodium (ALN) has tremendous potential as an orthopeadic biomaterial for joint replacements. However, poor mechanical and tribological properties of UHMWPE-ALN are still obstacle for further application. The purpose of this study was to investigate the effect and mechanism of mechanical activation on mechanical and tribological properties of 1wt% ALN-loaded UHMWPE (UHMWPE-ALN-ma). In this study, tensile test, small punch test and reciprocating sliding wear test were applied to characterize the mechanical and tribological properties of UHMWPE-ALN-ma. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) were employed to characterize UHMWPE-ALN-ma. Tensile test and small punch test showed that Young׳s modulus, tensile strength and work-to-failure (WTF) of UHMWPE-ALN-ma increased significantly compared to those of UHMWPE-ALN. The friction coefficients and wear factors of UHMWPE-ALN-ma both decreased significantly compared to those of UHMWPE-ALN. Mechanical activation obviously reduced type 1 (void) and type 2 (the disconnected and dislocated machining marks) fusion defects of UHMWPE-ALN-ma, which were revealed by SEM images of freeze fracture surfaces after etching and lateral surfaces of specimens after extension to fracture, respectively. It was attributed to peeled-off layers and chain scission of molecular chains of UHMWPE particles after mechanical activation, which were revealed by SEM images and FTIR spectra of UHMWPE-ALN-ma and UHMWPE-ALN, respectively. Moreover, EDS spectra revealed the more homogeneous distribution of ALN in UHMWPE-ALN-ma compared to that of UHMWPE-ALN. The present results showed that mechanical activation was a potential strategy to improve mechanical and tribological properties of UHMWPE-ALN-ma as an orthopeadic biomaterial for joint replacements.

  12. High performance thermoplastics: A review of neat resin and composite properties

    NASA Technical Reports Server (NTRS)

    Johnston, Norman J.; Hergenrother, Paul M.

    1987-01-01

    A review was made of the principal thermoplastics used to fabricate high performance composites. Neat resin tensile and fracture toughness properties, glass transition temperatures (Tg), crystalline melt temperatures (Tm) and approximate processing conditions are presented. Mechanical properties of carbon fiber composites made from many of these thermoplastics are given, including flexural, longitudinal tensile, transverse tensile and in-plane shear properties as well as short beam shear and compressive strengths and interlaminar fracture toughness. Attractive features and problems involved in the use of thermo-plastics as matrices for high performance composites are discussed.

  13. Bubble growth and mechanical properties of tissue in decompression.

    PubMed

    Vann, R D; Clark, H G

    1975-09-01

    A survey of decompression literature leads to the conclusion that when tissue is subjected to gaseous supersaturation, pre-existing gas micronuclei grow into the gas bubbles which are routinely observed in decompression studies. These micronuclei may originate from mechanically induced tribonucleation or cavitation within joints. A new tissue model for decompression sickness based upon failure theory in rubber is proposed. The model shows theoretically that pre-existing sea-level nuclei can be stabilized at depth by elastic forces in tissue. These same elastic forces restrain the growth of nuclei when supersaturation occurs. Mechanical stress will lower the gaseous supersaturation required for growth of nuclei. Gaseous supersaturation, mechanical stress, and the elastic properties of various tissues interact to produce unbounded bubble growth leading to tissue lesions when combined gaseous and mechanical supersaturation exceeds a threshold value. The recommendation is made that the high levels of supersaturation generally used for the decompression of men be reduced.

  14. Micro-mechanical properties of bio-materials

    NASA Astrophysics Data System (ADS)

    Zakiev, V.; Markovsky, A.; Aznakayev, E.; Zakiev, I.; Gursky, E.

    2005-09-01

    Investigation of physical-mechanical characteristics of stomatologic materials (ceramics for crowns, silver amalgam, cements and materials on a polymeric basis) properties by the modern methods and correspondence their physical-mechanical properties to the physical-mechanical properties of native teeth is represented. The universal device "Micron-Gamma" is built for this purpose. This device allows investigate the physical-mechanical characteristics of stomatologic materials (an elastic modulus, micro-hardness, destruction energy, resistance to scratching) by the methods of continuous indentation, scanning and pricking. A new effective method as well as its device application for the investigation of surface layers of materials and their physical-mechanical properties by means of the constant indenting of an indenter is realized. This method is based on the automatic registration of loading (P) on the indenter with the simultaneous measurement of its indentation depth (h). The results of investigations are presented on a loading diagram P=f(h) and as a digital imaging on the PC. This diagram allows get not only more diverse characteristics in the real time regime but also gives new information about the stomatologic material properties. Therefore, we can to investigate the wide range of the physical-mechanical properties of stomatologic materials. "Micron-alpha" is digital detection device for light imaging applications. It enables to detect the very low material surface relief heights and restoration of surface micro topography by a sequence data processing of interferential data of partially coherent light also. "Micron-alpha" allows: to build 2D and 3D imaging of a material surface; to estimate the quantitatively characteristics of a material surface; to observe the imaging interferential pictures both in the white and in the monochromatic light; to carry out the investigation of blood cells, microbes and biological macromolecules profiles. The method allows

  15. Mechanical properties characterization and modeling of active polymer gels

    NASA Astrophysics Data System (ADS)

    Marra, Steven Paul

    Active polymer gels expand and contract in response to certain environmental stimuli, such as the application of an electric field or a change in the pH level of the surroundings. This ability to achieve large, reversible deformations with no external mechanical loading has generated much interest in the use of these gels as actuators and "artificial muscles." While much work has been done to study the behavior and properties of these gels, little information is available regarding the full constitutive description of the mechanical and actuation properties. This work focuses on developing a means of characterizing the mechanical properties of active polymer gels and describing how these properties evolve as the gel actuates. Poly(vinyl alcohol)-poly(acrylic acid) (PVA-PAA) gel was chosen as the model material for this work because it is relatively simple and safe to both fabricate and actuate. PVA-PAA gels are fabricated on-site using a solvent-casting technique. These gels expand when moved from acidic to basic solutions, and contract when moved from basic to acidic solutions. Citric acid and sodium bicarbonate were used as the testing solutions for this work. The mechanical properties of the gel were characterized by conducting uniaxial and biaxial tests on thin PVA-PAA gel films. A biaxial testing system has been developed which can measure stresses and deformations of these films in a variety of liquid environments. The experimental results on PVA-PAA gels show these materials to be relatively compliant, and slightly viscoelastic and compressible. These gels are also capable of large recoverable deformations in both acidic and basic environments. A thermodynamically consistent finite-elastic constitutive model was developed to describe the mechanical and actuation behaviors of active polymer gels. The mechanical properties of the gel are characterized by a free-energy function, and the model utilizes an evolving internal variable to describe the actuation

  16. Constitutive Modeling of the Mechanical Properties of Optical Fibers

    NASA Technical Reports Server (NTRS)

    Moeti, L.; Moghazy, S.; Veazie, D.; Cuddihy, E.

    1998-01-01

    Micromechanical modeling of the composite mechanical properties of optical fibers was conducted. Good agreement was obtained between the values of Young's modulus obtained by micromechanics modeling and those determined experimentally for a single mode optical fiber where the wave guide and the jacket are physically coupled. The modeling was also attempted on a polarization-maintaining optical fiber (PANDA) where the wave guide and the jacket are physically decoupled, and found not to applicable since the modeling required perfect bonding at the interface. The modeling utilized constituent physical properties such as the Young's modulus, Poisson's ratio, and shear modulus to establish bounds on the macroscopic behavior of the fiber.

  17. Study of mechanical properties of nanomaterials under high pressure

    NASA Astrophysics Data System (ADS)

    Sharma, Jyoti; Kaur, Namrat; Srivastava, A. K.

    2015-08-01

    In the present work, the study of physical properties and behaviour of nanomaterials i.e. n-γ- Al2O3and n-Si3C4 under high pressure is done. For this purpose Murnaghan equation of state is used. The applicability of Murnaghan equation of state is fully tested by calculating mechanical properties of nano materials i.e. volume compression (V/Vo), bulk modulus (KT) and relative isothermal compression coefficient (α(P)/α0) at different pressures. The present calculated values of compression curve for the cited nanomaterials come out to be in reasonable good agreement with the available experimental data.

  18. Workability and mechanical properties of alkali activated slag concrete

    SciTech Connect

    Collins, F.G.; Sanjayan, J.G.

    1999-03-01

    This paper reports the results of an investigation on concrete containing alkali activated slag (AAS) as the binder, with emphasis on achievement of reasonable workability and equivalent one-day strength to portland cement concrete at normal curing temperatures. Two types of activators were used: sodium hydroxide in combination with sodium carbonate and sodium silicate in combination with hydrated lime. The fresh concrete properties reported include slump and slump loss, air content, and bleed. Mechanical properties of AAS concrete, including compressive strength, elastic modulus, flexural strength, drying shrinkage, and creep are contrasted with those of portland cement concrete.

  19. Creatine Loading, Resistance Exercise Performance, and Muscle Mechanics.

    ERIC Educational Resources Information Center

    Stevenson, Scott W.; Dudley, Gary A.

    2001-01-01

    Examined whether creatine (CR) monohydrate loading would alter resistance exercise performance, isometric strength, or in vivo contractile properties of the quadriceps femoris muscle compared with placebo loading in resistance-trained athletes. Overall, CR loading did not provide an ergogenic benefit for the unilateral dynamic knee extension…

  20. High-performance computing in structural mechanics and engineering

    SciTech Connect

    Adeli, H.; Kamat, M.P.; Kulkarni, G.; Vanluchene, R.D. Georgia Inst. of Technology, Atlanta Montana State Univ., Bozeman )

    1993-07-01

    Recent advances in computer hardware and software have made multiprocessing a viable and attractive technology. This paper reviews high-performance computing methods in structural mechanics and engineering through the use of a new generation of multiprocessor computers. The paper presents an overview of vector pipelining, performance metrics for parallel and vector computers, programming languages, and general programming considerations. Recent developments in the application of concurrent processing techniques to the solution of structural mechanics and engineering problems are reviewed, with special emphasis on linear structural analysis, nonlinear structural analysis, transient structural analysis, dynamics of multibody flexible systems, and structural optimization. 64 refs.

  1. Electrical and dielectric properties of bovine trabecular bone - relationships with mechanical properties and mineral density

    NASA Astrophysics Data System (ADS)

    Sierpowska, J.; Töyräs, J.; Hakulinen, M. A.; Saarakkala, S.; Jurvelin, J. S.; Lappalainen, R.

    2003-03-01

    Interrelationships of trabecular bone electrical and dielectric properties with mechanical characteristics and density are poorly known. While electrical stimulation is used for healing fractures, better understanding of these relations has clinical importance. Furthermore, earlier studies have suggested that bone electrical and dielectric properties depend on the bone density and could, therefore, be used to predict bone strength. To clarify these issues, volumetric bone mineral density (BMDvol), electrical and dielectric as well as mechanical properties were determined from 40 cylindrical plugs of bovine trabecular bone. Phase angle, relative permittivity, loss factor and conductivity of wet bovine trabecular bone were correlated with Young's modulus, yield stress, ultimate strength, resilience and BMDvol. The reproducibility of in vitro electrical and dielectric measurements was excellent (standardized coefficient of variation less than 1%, for all parameters), especially at frequencies higher than 1 kHz. Correlations of electrical and dielectric parameters with the bone mechanical properties or density were frequency-dependent. The relative permittivity showed the strongest linear correlations with mechanical parameters (r > 0.547, p < 0.01, n = 40, at 50 kHz) and with BMDvol (r = 0.866, p < 0.01, n = 40, at 50 kHz). In general, linear correlations between relative permittivity and mechanical properties or BMDvol were highest at frequencies over 6 kHz. In addition, a significant site-dependent variation of electrical and dielectric characteristics, mechanical properties and BMDvol was revealed in bovine femur (p < 0.05, Kruskall-Wallis H-test). Based on the present results, we conclude that the measurement of electrical and dielectric properties provides quantitative information that is related to bone quantity and quality.

  2. Quantification of mechanical properties of human skin in vivo

    NASA Astrophysics Data System (ADS)

    Heinrich, Thorsten; Lunderstaedt, Reinhart A.

    2001-12-01

    Dermatologist as well as the cosmetical industry are interested in evaluating the mechanical properties of human skin. Many devices have been developed to measure skin's response to mechanical stress. In the presented paper a new approach to quantify the viscoelastic behavior of human skin on mechanical stress is proposed. Image processing techniques are used to detect the two-dimensional deformation of the skin in uniaxial tensile tests. The apparatus consists of a computer-controlled stepper motor drive mechanism to extend the skin, a load cell to measure displacement vector fields are calculated by a method based on local template matching and interpolation algorithms. From the displacement vector fields a strain tensor and the principal strain directions are evaluated. A model built up of springs and dashpots, is used to characterize the stress-strain-time relationships of skin and to obtain a set of parameters, which represent the instantaneous elasticity, the delayed elasticity and the viscosity of skin on loading. The results show the accuracy of the model. The method seems to be useful to investigate the influences of age, test area, cosmetics, etc. on the mechanical properties of human skin in vivo.

  3. Material properties and fracture mechanics in relation to ceramic machining

    SciTech Connect

    Griffith, L.V.

    1993-12-02

    Material removal rate, surface finish, and subsurface damage are largely governed by fracture mechanics and plastic deformation, when ceramics are machined using abrasive methods. A great deal of work was published on the fracture mechanics of ceramics in the late 1970s and early 1980s, although this work has never resulted in a comprehensive model of the fixed abrasive grinding process. However, a recently published model describes many of the most important features of the loose abrasive machining process, for example depth of damage, surface roughness, and material removal rate. Many of the relations in the loose abrasive machining model can be readily discerned from fracture mechanics models, in terms of material properties. By understanding the mechanisms of material removal, from a material properties perspective, we can better estimate how one material will machine in relation to another. Although the fracture mechanics models may have been developed for loose abrasive machining, the principles of crack initiation and propagation are equally valuable for fixed abrasive machining. This report provides a brief review of fracture in brittle materials, the stress distribution induced by abrasives, critical indenter loads, the extension of cracks, and the relation of the fracture process to material removal.

  4. Crosstalk between focal adhesions and material mechanical properties governs cell mechanics and functions.

    PubMed

    Fusco, Sabato; Panzetta, Valeria; Embrione, Valerio; Netti, Paolo A

    2015-09-01

    Mechanical properties of materials strongly influence cell fate and functions. Focal adhesions are involved in the extremely important processes of mechanosensing and mechanotransduction. To address the relationship between the mechanical properties of cell substrates, focal adhesion/cytoskeleton assembly and cell functions, we investigated the behavior of NIH/3T3 cells over a wide range of stiffness (3-1000kPa) using two of the most common synthetic polymers for cell cultures: polyacrylamide and polydimethylsiloxane. An overlapping stiffness region was created between them to compare focal adhesion characteristics and cell functions, taking into account their different time-dependent behavior. Indeed, from a rheological point of view, polyacrylamide behaves like a strong gel (elastically), whereas polydimethylsiloxane like a viscoelastic solid. First, focal adhesion characteristics and dynamics were addressed in terms of material stiffness, then cell spreading area, migration rate and cell mechanical properties were correlated with focal adhesion size and assembly. Focal adhesion size was found to increase in the whole range of stiffness and to be in agreement in the overlapping rigidity region for the investigated materials. Cell mechanics directly correlated with focal adhesion lengths, whereas migration rate followed an inverse correlation. Cell spreading correlated with the substrate stiffness on polyacrylamide hydrogel, while no specific trend was found on polydimethylsiloxane. Substrate mechanics can be considered as a key physical cue that regulates focal adhesion assembly, which in turn governs important cellular properties and functions. PMID:26004223

  5. Mechanical determinants of 100-m sprint running performance.

    PubMed

    Morin, Jean-Benoît; Bourdin, Muriel; Edouard, Pascal; Peyrot, Nicolas; Samozino, Pierre; Lacour, Jean-René

    2012-11-01

    Sprint mechanics and field 100-m performances were tested in 13 subjects including 9 non-specialists, 3 French national-level sprinters and a world-class sprinter, to further study the mechanical factors associated with sprint performance. 6-s sprints performed on an instrumented treadmill allowed continuous recording of step kinematics, ground reaction forces (GRF), and belt velocity and computation of mechanical power output and linear force-velocity relationships. An index of the force application technique was computed as the slope of the linear relationship between the decrease in the ratio of horizontal-to-resultant GRF and the increase in velocity. Mechanical power output was positively correlated to mean 100-m speed (P < 0.01), as was the theoretical maximal velocity production capability (P < 0.011), whereas the theoretical maximal force production capability was not. The ability to apply the resultant force backward during acceleration was positively correlated to 100-m performance (r (s) > 0.683; P < 0.018), but the magnitude of resultant force was not (P = 0.16). Step frequency, contact and swing time were significantly correlated to acceleration and 100-m performance (positively for the former, negatively for the two latter, all P < 0.05), whereas aerial time and step length were not (all P > 0.21). Last, anthropometric data of body mass index and lower-limb-to-height ratio showed no significant correlation with 100-m performance. We concluded that the main mechanical determinants of 100-m performance were (1) a "velocity-oriented" force-velocity profile, likely explained by (2) a higher ability to apply the resultant GRF vector with a forward orientation over the acceleration, and (3) a higher step frequency resulting from a shorter contact time. PMID:22422028

  6. Study of mechanical and thermal properties of soy flour elastomers

    NASA Astrophysics Data System (ADS)

    Allen, Kendra Alicia

    Bio-based plastics are becoming viable alternatives to petroleum-based plastics because they decrease dependence on petroleum derivatives and are more environmentally friendly. Raw materials such as soy flour are widely available, low cost, lightweight, stiffness and have high strength characteristics, but weak interfacial adhesion between the soy flour and the polymer poses a challenge. In this study, soy flour was utilized as a filler in thermoplastic elastomer composites. A surface modification called acetylation was investigated at soy flour concentrations of 10 wt%, 15 wt% and 20 wt%. The mechanical properties of the composites were then compared to that of elastomers without a filler. Chemical characterization of the acetylated soy flour was attempted in order to understand what occurs during the reaction and after completion. In the range of tests, soy flour loadings were observed to be inversely proportional to tensile strength for both the untreated and treated soy flour. However, the acetylated soy flour at 10 wt% concentration performed comparable to that of the neat rubber and resulted in an increase in tensile strength. Unexpectedly, the acetylation reaction increased elongation, which reduced stress within the composite and is believed to increase the adhesion of the soy flour to that of the elastomer. In the nuclear magnetic resonance (SS-NMR), the intensity for the treated soy flour was larger than that of the untreated soy flour for the acetyl groups that were attached to the soy flour, particularly, the carbonyl function group next to the deprotonated oxygen and the methyl group next to the carbonyl. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) indicated that the acetylated soy flour is slightly more thermally stable than the untreated soy flour. The treated soy flour also increased the decomposition temperature of the composite.

  7. Microstructure and mechanical properties of synthetic brow-suspension materials.

    PubMed

    Kwon, Kyung-Ah; Shipley, Rebecca J; Edirisinghe, Mohan; Ezra, Daniel George; Rose, Geoffrey E; Rayment, Andrew W; Best, Serena M; Cameron, Ruth E

    2014-02-01

    Levator palpebrae superioris (LPS) is a muscle responsible for lifting the upper eyelid and its malfunction leads to a condition called "ptosis", resulting in disfigurement and visual impairment. Severe ptosis is generally treated with "brow-suspension" surgery, whereby the eyelid is cross-connected to the mobile tissues above the eyebrow using a cord-like material, either natural (e.g. fascia lata harvested from the patient) or a synthetic cord. Synthetic brow-suspension materials are widely used, due to not requiring the harvesting of fascia lata that can be associated with pain and donor-site complications. The mechanical properties of some commonly-used synthetic brow-suspension materials were investigated--namely, monofilament polypropylene (Prolene®), sheathed braided polyamide (Supramid Extra® II), silicone frontalis suspension rod (Visitec® Seiff frontalis suspension set), woven polyester (Mersilene® mesh), and expanded polytetrafluoroethylene (Ptose-Up). Each material underwent a single tensile loading to the failure of the material, at three different displacement rates (1, 750 and 1500 mm/min). All the materials exhibited elastic-plastic tensile stress-strain behaviour with considerable differences in elastic modulus, ultimate tensile strength, elastic limit and work of fracture. The results suggest that, as compared to other materials, the silicone brow-suspension rod (Visitec® SFSS) might be the most suitable, providing relatively long-lasting stability and desirable performance. These findings, together with other factors such as commercial availability, cost and clinical outcomes, will provide clinicians with a more rational basis for selection of brow-suspension materials.

  8. Structure and mechanical properties of liquid crystalline filaments

    SciTech Connect

    Eremin, Alexey; Nemes, Alexandru; Stannarius, Ralf; Schulz, Mario; Nadasi, Hajnalka; Weissflog, Wolfgang

    2005-03-01

    The formation of stable freely suspended filaments is an interesting peculiarity of some liquid crystal phases. So far, little is known about their structure and stability. Similarly to free-standing smectic films, an internal molecular structure of the mesophase stabilizes these macroscopically well-ordered objects with length to diameter ratios of 10{sup 3} and above. In this paper, we report observations of smectic liquid crystal fibers formed by bent-shaped molecules in different mesophases. Our study, employing several experimental techniques, focuses on mechanical and structural aspects of fiber formation such as internal structure, stability, and mechanical and optical properties.

  9. Mechanical properties testing and results for thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Cruse, T. A.; Johnsen, B. P.; Nagy, A.

    1997-03-01

    Mechanical test data for thermal barrier coatings, including modulus, static strength, and fatigue strength data, are reviewed in support of the development of durability models for heat engine applica-tions. The materials include 7 and 8 wt % yttria partially stabilized zirconia (PSZ) as well as a cermet ma-terial (PSZ +10 wt % NiCoCrAlY). Both air plasma sprayed and electron beam physical vapor deposited coatings were tested. The data indicate the basic trends in the mechanical properties of the coatings over a wide range of isothermal conditions. Some of the trends are correlated with material density.

  10. Mental imagery in music performance: underlying mechanisms and potential benefits.

    PubMed

    Keller, Peter E

    2012-04-01

    This paper examines the role of mental imagery in music performance. Self-reports by musicians, and various other sources of anecdotal evidence, suggest that covert auditory, motor, and/or visual imagery facilitate multiple aspects of music performance. The cognitive and motor mechanisms that underlie such imagery include working memory, action simulation, and internal models. Together these mechanisms support the generation of anticipatory images that enable thorough action planning and movement execution that is characterized by efficiency, temporal precision, and biomechanical economy. In ensemble performance, anticipatory imagery may facilitate interpersonal coordination by enhancing online predictions about others' action timing. Overlap in brain regions subserving auditory imagery and temporal prediction is consistent with this view. It is concluded that individual differences in anticipatory imagery may be a source of variation in expressive performance excellence and the quality of ensemble cohesion. Engaging in effortful musical imagery is therefore justified when artistic perfection is the goal.

  11. Time-temperature superposition applied to PBX mechanical properties

    NASA Astrophysics Data System (ADS)

    Thompson, Darla; DeLuca, Racci; Wright, Walter J.

    2012-03-01

    The use of plastic-bonded explosives (PBXs) in weapon applications requires that they possess and maintain a level of structural/mechanical integrity. Uniaxial tension and compression experiments are typically used to characterize the mechanical response of materials over a wide range of temperatures and strain rates, providing the basis for predictive modeling in more complex geometries. After many years of data collection on a variety of PBX formulations, we have here applied the principles of time-temperature superposition to a mechanical properties database which includes PBX 9501, PBX 9502, PBXN-110, PBXN-9, and HPP (propellant). Consistencies are demonstrated between the results of quasi-static tension and compression, dynamic Split-Hopkinson Pressure Bar (SHPB) compression, and cantilever Dynamic Mechanical Analysis (DMA). Timetemperature relationships of maximum stress and corresponding strain values are analyzed, in addition to the more conventional analysis of modulus. The extensive analysis shows adherence to the principles of time-temperature superposition and correlations of mechanical response to binder glasstransition temperature (Tg) and specimen density. Direct ties exist between the time-temperature analysis and the underlying basis of a useful existing PBX mechanical model (ViscoSCRAM). Results give confidence that, with some limitations, mechanical response can be predicted at conditions not explicitly measured.

  12. Prediction of Mechanical Properties of Polymers With Various Force Fields

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The effect of force field type on the predicted elastic properties of a polyimide is examined using a multiscale modeling technique. Molecular Dynamics simulations are used to predict the atomic structure and elastic properties of the polymer by subjecting a representative volume element of the material to bulk and shear finite deformations. The elastic properties of the polyimide are determined using three force fields: AMBER, OPLS-AA, and MM3. The predicted values of Young s modulus and shear modulus of the polyimide are compared with experimental values. The results indicate that the mechanical properties of the polyimide predicted with the OPLS-AA force field most closely matched those from experiment. The results also indicate that while the complexity of the force field does not have a significant effect on the accuracy of predicted properties, small differences in the force constants and the functional form of individual terms in the force fields determine the accuracy of the force field in predicting the elastic properties of the polyimide.

  13. On the mechanical properties of selenite glass nanocomposites

    NASA Astrophysics Data System (ADS)

    Bar, Arun Kr.; Kundu, Ranadip; Roy, Debasish; Bhattacharya, Sanjib

    2016-05-01

    In this paper the room temperature micro-hardness of selenite glass-nanocomposites has been measured using a Vickers and Knoop micro hardness tester where the applied load varies from 0.01N to 0.98 N. A significant indentation size effect was observed for each sample at relatively low indentation test loads. The classical Meyer's law and the proportional specimen resistance model were used to analyze the micro-hardness behavior. It was found that the selenite glass-nanocomposite becomes harder with increasing CuI composition and the work hardening coefficient and mechanical properties like Young modulus, E, were also calculated. Our results open the way for the preparation, application and investigation of significant mechanical properties of new type of glass-nanocomposites.

  14. [A study of mechanical properties of orthodontic wires in tension].

    PubMed

    Konstantellos, B; Lagoudakis, M; Toutountzakis, N

    1990-12-01

    Orthodontic forces are applied to the teeth basically by means of different types of orthodontic wires. Knowledge of the mechanical properties of such wires are very helpful to the clinician in design and application of optimal force systems during orthodontic treatment. The basic mechanical properties were studied for 17 types of orthodontic wires (all rectangular and of the same size), in tension. Modulus of elasticity (E), yield strength (YS) and maximum elastic strain (Springback) (YS/E) were calculated for each type of wires. Stainless steel wires have demonstrated higher modulus of elasticity (and yield strength) in comparison with wires of nickel-titanium and beta titanium alloys. B-titanium wires showed higher modulus of elasticity than nickel-titanium ones. In addition stainless steel wires were found to have higher values for springback than cobalt-chromium ones and lower values (for the same variable) than nickel-titanium and B-titanium wires. PMID:2129597

  15. Synchronization properties of self-sustained mechanical oscillators.

    PubMed

    Arroyo, Sebastián I; Zanette, Damián H

    2013-05-01

    We study, both analytically and numerically, the dynamics of mechanical oscillators kept in motion by a feedback force, which is generated electronically from a signal produced by the oscillators themselves. This kind of self-sustained systems may become standard in the design of frequency-control devices at microscopic scales. Our analysis is thus focused on their synchronization properties under the action of external forces and on the joint dynamics of two to many coupled oscillators. Existence and stability of synchronized motion are assessed in terms of the mechanical properties of individual oscillators, namely, their natural frequencies and damping coefficients, and synchronization frequencies are determined. Similarities and differences with synchronization phenomena in other coupled oscillating systems are emphasized.

  16. Enhancement in mechanical properties of concrete due to blended ash

    SciTech Connect

    Naik, T.R.; Singh, S.S.; Hossain, M.M.

    1996-01-01

    This study was carried out to evaluate the effects of blended ash mixture on mechanical properties of concrete. In this study two reference mixtures were used. One of the mixtures was a no-fly ash mixture, and the other mixture contained 35% unblended Class C fly ash. Additional mixtures were composed of three blends of Class C and Class F fly ash while maintaining a total fly ash content of 40% of the total cementitious materials. Mechanical properties such as compressive strength, tensile strength, flexural strength, and modulus of elasticity were determined as a function of age ranging from 1 to 91 days. The results showed that blending of Class F fly ash with Class C fly ash showed either comparable or better results compared to either the reference mixture without fly ash or the unblended Class C fly ash concrete mixture at a fly ash concentration of 40% of total cementitious materials.

  17. Quantitative ultrasonic evaluation of mechanical properties of engineering materials

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1978-01-01

    Current progress in the application of ultrasonic techniques to nondestructive measurement of mechanical strength properties of engineering materials is reviewed. Even where conventional NDE techniques have shown that a part is free of overt defects, advanced NDE techniques should be available to confirm the material properties assumed in the part's design. There are many instances where metallic, composite, or ceramic parts may be free of critical defects while still being susceptible to failure under design loads due to inadequate or degraded mechanical strength. This must be considered in any failure prevention scheme that relies on fracture analysis. This review will discuss the availability of ultrasonic methods that can be applied to actual parts to assess their potential susceptibility to failure under design conditions.

  18. Enhanced Mechanical Properties in PVA/SWNT Composite Fibers

    NASA Astrophysics Data System (ADS)

    Sampson, William; Dalton, Alan

    2005-03-01

    Composite fibers of polyvinyl alcohol (PVA) and HiPco Single Walled Carbon Nanotubes (SWNT) have been developed at The University of Texas at Dallas that show greatly enhanced mechanical properties, with typical strengths of 1.8GPa and toughness in excess of that of spider silk, making these the toughest known fibers to date. However, the exact interactions leading to the enhanced mechanical properties are not as yet fully understood. We have used a series of Raman and DSC experiments to discover the nature of the strength-enhancing interactions in these composite materials. The results lead to the conclusion that the bulk of the improvements are due to SWNT-nucleated PVA crystallinity, with the SWNTs playing less of a direct role than we originally thought.

  19. Constitutive model of friction stir weld with consideration of its inhomogeneous mechanical properties

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Min, Junying; Wang, Bin; Lin, Jianping; Li, Fangfang; Liu, Jing

    2016-03-01

    In practical engineering, finite element(FE) modeling for weld seam is commonly simplified by neglecting its inhomogeneous mechanical properties. This will cause a significant loss in accuracy of FE forming analysis, in particular, for friction stir welded(FSW) blanks due to the large width and good formability of its weld seam. The inhomogeneous mechanical properties across weld seam need to be well characterized for an accurate FE analysis. Based on a similar AA5182 FSW blank, the metallographic observation and micro-Vickers hardness analysis upon the weld cross-section are performed to identify the interfaces of different sub-zones, i.e., heat affected zone(HAZ), thermal-mechanically affected zone(TMAZ) and weld nugget(WN). Based on the rule of mixture and hardness distribution, a constitutive model is established for each sub-zone to characterize the inhomogeneous mechanical properties across the weld seam. Uniaxial tensile tests of the AA5182 FSW blank are performed with the aid of digital image correlation(DIC) techniques. Experimental local stress-strain curves are obtained for different weld sub-zones. The experimental results show good agreement with those derived from the constitutive models, which demonstrates the feasibility and accuracy of these models. The proposed research gives an accurate characterization of inhomogeneous mechanical properties across the weld seam produced by FSW, which provides solutions for improving the FE simulation accuracy of FSW sheet forming.

  20. Mechanical properties of yttria-stabilized zirconia ceramics

    NASA Astrophysics Data System (ADS)

    Shirooyeh A, Mahmood R.

    Superplasticity is a well-known characteristic of Y2O 3-stabilized tetragonal zirconia (3Y-TZP) ceramic composites at elevated temperatures. The present investigation was originated to evaluate the potential of producing zirconia ceramics suitable for achieving superplasticity. High purity 3 mol% Y2O3-stabilized tetragonal zirconia (3Y-TZP) ceramic composites containing 20 wt% alumina were successfully consolidated by application of Cold Isostatic Pressing (CIP) followed by a subsequent sintering process. Constant-stress tensile creep experiments at elevated temperatures were conducted in order to examine plastic deformation behavior of the material. In addition to mechanical testing data, the microstructure observations confirmed superplastic properties of the ceramic composite. It is also known that in order to attain High Strain Rate Superplasticity (HSRS) in zirconia ceramics, it is essential to retain a stable fine-grained microstructure at high temperatures. Experiments have confirmed that adding a second soft phase such as spinel can facilitate to reach high strain-rate superplasticity in zirconia ceramics by suppressing grain growth during sintering process and enhancing cation diffusion. In the present investigation, homogenous 3Y-TZP ceramic composite powders containing 30 vol% MgAl2O4 spinel were successfully prepared through both physical-based and chemical-based methods. An electric current-activated method known as Spark Plasma Sintering (SPS) was employed for powder consolidation process. This is a very rapid electric current-activated sintering technique having a heating rate of 300 K/min. The powder preparation and consolidation steps were carried out over a wide range of conditions to ensure a homogenous nanocomposite. The experiments showed that fully-dense zirconia ceramics with an average initial grain size of the order of ˜100 nm can be sintered at the relatively low processing temperature of 1373 K in 10 min. In order to study the

  1. Improvement in mechanical properties of plasma sprayed hydroxyapatite coatings by Al2O3 reinforcement.

    PubMed

    Mittal, Manoj; Nath, S K; Prakash, Satya

    2013-07-01

    Thermal sprayed hydroxyapatite coatings suffer from poor mechanical properties like tensile strength, wear resistance, hardness, toughness and fatigue. The mechanical properties of hydroxyapatite coatings can be enhanced via incorporation of secondary bioinert reinforcement material. In this study an attempt has been made to improve the mechanical properties of plasma sprayed hydroxyapatite by reinforcing it with 10, 20 and 30% Al2O3. The plasma sprayed coatings have been characterized using FE-SEM/EDAX, XRD, AFM and FTIR spectroscopy. Corrosion studies have been done in simulated body fluid and abrasive wear studies have been performed on flat specimens on a disk wear tester. Microhardness, tensile strength and wear resistance are found to be increased with increasing Al2O3 content. All types of coatings show superior resistance against corrosion in simulated body fluid.

  2. Mechanical properties of stanene under uniaxial and biaxial loading: A molecular dynamics study

    SciTech Connect

    Mojumder, Satyajit; Amin, Abdullah Al; Islam, Md Mahbubul

    2015-09-28

    Stanene, a graphene like two dimensional honeycomb structure of tin has attractive features in electronics application. In this study, we performed molecular dynamics simulations using modified embedded atom method potential to investigate mechanical properties of stanene. We studied the effect of temperature and strain rate on mechanical properties of α-stanene for both uniaxial and biaxial loading conditions. Our study suggests that with the increasing temperature, both the fracture strength and strain of the stanene decrease. Uniaxial loading in zigzag direction shows higher fracture strength and strain compared to the armchair direction, while no noticeable variation in the mechanical properties is observed for biaxial loading. We also found at a higher loading rate, material exhibits higher fracture strength and strain. These results will aid further investigation of stanene as a potential nano-electronics substitute.

  3. Enhanced mechanical and thermal properties of regenerated cellulose/graphene composite fibers.

    PubMed

    Tian, Mingwei; Qu, Lijun; Zhang, Xiansheng; Zhang, Kun; Zhu, Shifeng; Guo, Xiaoqing; Han, Guangting; Tang, Xiaoning; Sun, Yaning

    2014-10-13

    In this study, a wet spinning method was applied to fabricate regenerated cellulose fibers filled with low graphene loading which was systematically characterized by SEM, TEM, FTIR and XRD techniques. Subsequently, the mechanical and thermal properties of the resulting fibers were investigated. With only 0.2 wt% loading of graphene, a ∼ 50% improvement of tensile strength and 25% enhancement of Young's modulus were obtained and the modified Halpin-Tsai model was built to predict the mechanical properties of composite fibers. Thermal analysis of the composite fibers showed remarkably enhanced thermal stability and dynamic heat transfer performance of graphene-filled cellulose composite fiber, also, the presence of graphene oxide can significantly enhance the thermal conductivity of the composite fiber. This work provided a facile way to improve mechanical and thermal properties of regenerated cellulose fibers. The resultant composite fibers have potential application in thermal insulation and reinforced fibrous materials.

  4. Mechanical and thermophysical properties of hot-pressed SYNROC B

    SciTech Connect

    Hoenig, C.L.; Newkirk, H.W.; Otto, R.A.; Brady, R.L.; Brown, A.E.; Ulrich, A.R.; Lum, R.C.

    1981-05-06

    The optimal SYNROC compositons for use with commercial waste are reviewed. Large amounts of powder (about 2.5 kg) were prepared by convention al ceramic operations to test the SYNROC concept on a processing scale. Samples, 15.2 cm in diameter, were hot pressed in graphite, and representative samples were cut for microstructural evaluations. Measured mechanical and thermophysical properties did not vary significantly as a function of sample location and were typical of titanate ceramic materials.

  5. Mechanical properties of D0 Run IIB silicon detector staves

    SciTech Connect

    Lanfranco, Giobatta; Fast, James; /Fermilab

    2001-06-01

    A proposed stave design for the D0 Run IIb silicon tracker outer layers featuring central cooling channels and a composite shell mechanical structure is evaluated for self-deflection and deflection due to external loads. This paper contains an introduction to the stave structure, a section devoted to composite lamina and laminate properties and finally a section discussing the beam deflections expected for assembled staves using these laminates.

  6. ORMOSIL thin films: tuning mechanical properties via a nanochemistry approach.

    PubMed

    Palmisano, Giovanni; Le Bourhis, Eric; Ciriminna, Rosaria; Tranchida, Davide; Pagliaro, Mario

    2006-12-19

    The mechanical properties (hardness and elastic modulus) of organically modified silicate thin films can be finely tuned by varying the degree of alkylation and thus the fraction of six- and four-membered siloxane rings in the organosilica matrix. This opens the way to large tunability of parameters that are of crucial practical importance for films that are finding increasing application in numerous fields ranging from microelectronics to chemical sensing.

  7. Rubber-toughened cyanate composites - Properties and toughening mechanism

    NASA Technical Reports Server (NTRS)

    Yang, P. C.; Woo, E. P.; Laman, S. A.; Jakubowski, J. J.; Pickelman, D. M.; Sue, H. J.

    1991-01-01

    Earlier work by Young et al. (1990) has shown that Dow experimental cyanate ester resin XU71787.02 is readily toughenable by rubber. A particularly effective rubber for this purpose is an experimental core-shell rubber which toughens the polymer by inducing shear yielding. This paper describes an investigation into the toughening mechanism in the corresponding carbon-fiber composite systems and the effect of fibers on composite properties. Resin-fiber interfacial shear strengths have been successfully correlated to the compressive strengths after impact and other key properties of composites based on rubber-toughened cyanate and several carbon fibers. The differences in the properties are explained by the difference in the functioning of the rubber particles during the fracture process.

  8. Vibrational, mechanical, and thermal properties of III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Dow, John D.

    1989-02-01

    Theories of the mechanical, vibrational, and electronic properties of 3 to 5 semiconductors were developed and applied to: (1) help determine the feasibility of InN-based visible and ultraviolet lasers and light detectors, (2) develop a theory of phonons in semiconductor alloys, (3) understand surface reconstruction of semiconductors, (4) predict the effects of atomic correlations on the light-scattering (Raman) properties of semiconductive alloys, (5) develop a new first principles pseudo-function implementation of local-density theory, (6) study the oxidation of GaAs, (7) develop a theory of scanning tunneling microscope images, and (8) understand the electronic and optical properties of highly strained artificial semiconductors and small semiconductor particles.

  9. Protocol dependence of mechanical properties in granular systems.

    PubMed

    Inagaki, S; Otsuki, M; Sasa, S

    2011-11-01

    We study the protocol dependence of the mechanical properties of granular media by means of computer simulations. We control a protocol of realizing disk packings in a systematic manner. In 2D, by keeping material properties of the constituents identical, we carry out compaction with various strain rates. The disk packings exhibit the strain rate dependence of the critical packing fraction above which the pressure becomes non-zero. The observed behavior contrasts with the well-studied jamming transitions for frictionless disk packings. We also observe that the elastic moduli of the disk packings depend on the strain rate logarithmically. Our results suggest that there exists a time-dependent state variable to describe macroscopic material properties of disk packings, which depend on its protocol.

  10. Mechanical properties of tendons: changes with sterilization and preservation.

    PubMed

    Smith, C W; Young, I S; Kearney, J N

    1996-02-01

    Tendon allografts are commonly used to replace damaged anterior cruciate ligaments (ACL). Some of the sterilization and preservation techniques used by tissue banks with tendon allografts are thought to impair the mechanical properties of graft tissues. The tensile mechanical properties of porcine toe extensor tendons were measured using a dynamic testing machine following either freezing, freeze-drying, freezing then irradiation at 25 kGy (2.5 MRad), freeze-drying then irradiation, or freeze-drying then ethylene oxide gas sterilization. There was a small but significant difference in Young's modulus between the frozen group (0.88 GPa + 0.09 SD) and both the fresh group (0.98 GPa 1 0.12 SD) and the frozen irradiated group (0.97 GPa 1 0.08 SD). No values of Young's modulus were obtained for the freeze-dried irradiated tendons. The ultimate tensile stress (UTS) of the freeze-dried irradiated group (4.7 MPa 1 4.8 SD) was significantly different from both the fresh and the frozen irradiated groups, being reduced by approximately 90 percent. There were no significant changes in UTS or Young's modulus between any of the other groups. If irradiation is to be used to sterilize a tendon replacement for an ACL it must take place after freeze-drying to maintain mechanical properties.

  11. Experimental study determining the mechanical properties of dental floss holders.

    PubMed

    Wolff, Anna; Pritsch, Maria; Dörfer, Christof; Staehle, Hans Jörg

    2011-06-01

    This study determined the mechanical properties of 19 dental floss holders. Eight single-use holders and 11 reusable ones were tested. An in vitro model with dental proximal contact strength of 8 N was created. Every device had to pass the proximal contact 30 times. We measured (1) the displacement of the floss [mm], (2) the force [N] necessary to pass the proximal contact after the 30th passage, (3) the loosening of the floss (offset [mm]), and (4) the change in the distance between the branches [mm]. Each measurement was repeated seven times. The results are displacement of the floss after 30 passages, 2.0 to 9.2 mm; passage force, 2.6 to 11 N; increases in branch distance, 0-2.9 mm; offset of the floss, 0-1.8 mm (all numbers are medians). Based on cleaning a full dentition (30 passages), we suggest introducing minimal requirements of <4 mm for the displacement of the floss, ≥11 N for the force, and <0.1 mm for the difference in branch distance and the offset. Only two products fulfilled our criteria. The tests show that dental floss holders vary extremely in their mechanical properties. Their effective use seems often impossible due to limited mechanical properties.

  12. Mechanical Properties of a Primary Cilium Measured by Resonant Oscillation

    NASA Astrophysics Data System (ADS)

    Resnick, Andrew

    Primary cilia are ubiquitous mammalian cellular substructures implicated in an ever-increasing number of regulatory pathways. The well-established `ciliary hypothesis' states that physical bending of the cilium (for example, due to fluid flow) initiates signaling cascades, yet the mechanical properties of the cilium remain incompletely measured, resulting in confusion regarding the biological significance of flow-induced ciliary mechanotransduction. In this work we measure the mechanical properties of a primary cilium by using an optical trap to induce resonant oscillation of the structure. Our data indicate 1), the primary cilium is not a simple cantilevered beam, 2), the base of the cilium may be modeled as a nonlinear rotatory spring, the linear spring constant `k' of the cilium base calculated to be (4.6 +/- 0.62)*10-12 N/rad and nonlinear spring constant ` α' to be (-1 +/- 0.34) *10-10 N/rad2 , and 3) the ciliary base may be an essential regulator of mechanotransduction signalling. Our method is also particularly suited to measure mechanical properties of nodal cilia, stereocilia, and motile cilia, anatomically similar structures with very different physiological functions.

  13. Fatigue and mechanical properties of nickel-titanium endodontic instruments.

    PubMed

    Kuhn, Grégoire; Jordan, Laurence

    2002-10-01

    Shape memory alloys are increasingly used in superelastic conditions under complex cyclic deformation situations. In these applications, it is very difficult to predict the service life based on the theoretical law. In the present work, fatigue properties of NiTi engine-driven rotary files have been characterized by using differential scanning calorimetry (DSC) and mechanical testing (bending). The DSC technique was used to measure precise transformation. The degree of deformation by bending was studied with combined DSC and mechanical property measurements. In these cold-worked files, the high dislocation density influences the reorientation processes and the crack growth. Some thermal treatments are involved in promoting some changes in the mechanical properties and transformation characteristics. Annealing around 400 degrees C shows good results; the recovery allows a compromise between an adequate density for the R-Phase germination and a low density to limit the brittleness of these instruments. In clinical usage, it is important to consider different canal shapes. It could be proposed that only few cycles of use is safe for very curved canals but to follow the manufacturer's advise for straight canals. PMID:12398171

  14. Fatigue and mechanical properties of nickel-titanium endodontic instruments.

    PubMed

    Kuhn, Grégoire; Jordan, Laurence

    2002-10-01

    Shape memory alloys are increasingly used in superelastic conditions under complex cyclic deformation situations. In these applications, it is very difficult to predict the service life based on the theoretical law. In the present work, fatigue properties of NiTi engine-driven rotary files have been characterized by using differential scanning calorimetry (DSC) and mechanical testing (bending). The DSC technique was used to measure precise transformation. The degree of deformation by bending was studied with combined DSC and mechanical property measurements. In these cold-worked files, the high dislocation density influences the reorientation processes and the crack growth. Some thermal treatments are involved in promoting some changes in the mechanical properties and transformation characteristics. Annealing around 400 degrees C shows good results; the recovery allows a compromise between an adequate density for the R-Phase germination and a low density to limit the brittleness of these instruments. In clinical usage, it is important to consider different canal shapes. It could be proposed that only few cycles of use is safe for very curved canals but to follow the manufacturer's advise for straight canals.

  15. Influence of mechanical properties on the combustion of propellants

    NASA Technical Reports Server (NTRS)

    Kumar, R. N.; Culick, F. E. C.

    1973-01-01

    Experimental study of the effects of minor compositional variables upon the combustion behavior of composite solid propellants. More specifically, it was attempted to determine the influence of ingredients that improve the mechanical properties upon the oscillatory combustion characteristics. Tests were carried out in the familiar Crawford bomb, a low-pressure L-star burner, and a high-pressure T-burner. Two families of propellants were investigated; each family consists of two propellants with a minor compositional variation between them. In the family that shows a decreasing (steady state) pressure index (n) with increasing pressures, all of the combustion characteristics are found to be very similar although the mechanical properties are widely different. In the other family, which shows an increasing n with increasing pressures, unmistakable differences are found between the two propellants in the low-pressure L-star instability behavior (along with the differences in the mechanical properties), while the other combustion characteristics are almost identical. The results are interpreted to be consistent with a theory that highlights the importance of condensed phase heat-transfer effects.

  16. Reconstruction of Sedimentary Rock Based on MechanicalProperties

    SciTech Connect

    Jin, Guodong; Patzek, Tad W.; Silin, Dmitry B.

    2004-05-04

    We describe a general, physics-based approach to numericalreconstruction of the geometrical structure and mechanical properties ofnatural sedimentary rock in 3D. Our procedure consists of three mainsteps: sedimentation, compaction, and diagenesis, followed by theverification of rock mechanical properties. The dynamic geologicprocesses of grain sedimentation and compaction are simulated by solvinga dimensionless form of Newton's equations of motion for an ensemble ofgrains. The diagenetic rock transformation is modeled using a cementationalgorithm, which accounts for the effect of rock grain size on therelative rate of cement overgrowth. Our emphasis is on unconsolidatedsand and sandstone. The main input parameters are the grain sizedistribution, the final rock porosity, the type and amount of cement andclay minerals, and grain mechanical properties: the inter-grain frictioncoefficient, the cement strength, and the grain stiffness moduli. We usea simulated 2D Fontainebleau sandstone to obtain the grain mechanicalproperties. This Fontainebleau sandstone is also used to study theinitiation, growth, and coalescence of micro-cracks under increasingvertical stress. The box fractal dimension of the micro-crackdistribution, and its variation with the applied stress areestimated.

  17. Photoresponsive Polysaccharide-Based Hydrogels with Tunable Mechanical Properties for Cartilage Tissue Engineering.

    PubMed

    Giammanco, Giuseppe E; Carrion, Bita; Coleman, Rhima M; Ostrowski, Alexis D

    2016-06-15

    Photoresponsive hydrogels were obtained by coordination of alginate-acrylamide hybrid gels (AlgAam) with ferric ions. The photochemistry of Fe(III)-alginate was used to tune the chemical composition, mechanical properties, and microstructure of the materials upon visible light irradiation. The photochemical treatment also induced changes in the swelling properties and transport mechanism in the gels due to the changes in material composition and microstructure. The AlgAam gels were biocompatible and could easily be dried and rehydrated with no change in mechanical properties. These gels showed promise as scaffolds for cartilage tissue engineering, where the photochemical treatment could be used to tune the properties of the material and ultimately change the growth and extracellular matrix production of chondrogenic cells. ATDC5 cells cultured on the hydrogels showed a greater than 2-fold increase in the production of sulfated glycosaminoglycans (sGAG) in the gels irradiated for 90 min compared to the dark controls. Our method provides a simple photochemical tool to postsynthetically control and adjust the chemical and mechanical environment in these gels, as well as the pore microstructure and transport properties. By changing these properties, we could easily access different levels of performance of these materials as substrates for tissue engineering.

  18. Electromagnetic shielding effectiveness and mechanical properties of graphite-based polymeric films

    NASA Astrophysics Data System (ADS)

    Kenanakis, G.; Vasilopoulos, K. C.; Viskadourakis, Z.; Barkoula, N.-M.; Anastasiadis, S. H.; Kafesaki, M.; Economou, E. N.; Soukoulis, C. M.

    2016-09-01

    Modern electronics have nowadays evolved to offer highly sophisticated devices. It is not rare; however, their operation can be affected or even hindered by the surrounding electromagnetic radiation. In order to provide protection from undesired external electromagnetic sources and to ensure their unaffected performance, electromagnetic shielding is thus necessary. In this work, both the electromagnetic and mechanical properties of graphite-based polymeric films are studied. The investigated films show efficient electromagnetic shielding performance along with good mechanical stiffness for a certain graphite concentration. To the best of our knowledge, the present study illustrates for the first time both the electromagnetic shielding and mechanical properties of the polymer composite samples containing graphite filler at such high concentrations (namely 60-70 %). Our findings indicate that these materials can serve as potential candidates for several electronics applications.

  19. Properties and Performance Attributes of Novel Co-extruded Polyolefin Battery Separator Materials. Part 2; Electrical Properties

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.

    2013-01-01

    As NASA prepares for its next era of manned spaceflight missions, advanced energy storage technologies are being developed and evaluated to address and enhance future mission needs and technical requirements. Cell-level components for advanced lithium-ion batteries possessing higher energy, more reliable performance and enhanced, inherent safety characteristics have been under development within the NASA infrastructure. A key component for safe and reliable cell performance is the cell separator, which separates the two energetic electrodes and functions to inhibit the occurrence of an internal short circuit but preserves an ionic current. Recently, a new generation of co-extruded separator films has been developed by ExxonMobil Chemical and introduced into their battery separator product portfolio. Several grades of this new separator material were evaluated with respect to dynamic mechanical properties and safety-related performance attributes, and the results of these evaluations were previously reported in "Part 1: Mechanical Properties" of this publication. This current paper presents safety-related performance results for these novel materials obtained by employing a complementary experimental methodology, which involved the analysis of separator impedance characteristics as a function of temperature. The experimental results from this study are discussed with respect to potential cell safety enhancement for future aerospace as well as for terrestrial energy storage needs, and they are compared with pertinent mechanical properties of these materials, as well as with current state-of-the practice separator materials.

  20. Do Stretch Durations Affect Muscle Mechanical and Neurophysiological Properties?

    PubMed

    Opplert, J; Genty, J-B; Babault, N

    2016-08-01

    The aim of the study was to determine whether stretching durations influence acute changes of mechanical and neurophysiological properties of plantar flexor muscles. Plantar flexors of 10 active males were stretched in passive conditions on an isokinetic dynamometer. Different durations of static stretching were tested in 5 randomly ordered experimental trials (1, 2, 3, 4 and 10×30-s). Fascicle stiffness index, evoked contractile properties and spinal excitability (Hmax/Mmax) were examined before (PRE), immediately after (POST0) and 5 min after (POST5) stretching. No stretch duration effect was recorded for any variable. Moreover, whatever the stretching duration, stiffness index, peak twitch torque and rate of force development were significantly lower at POST0 and POST5 as compared to PRE (P<0.05). Electromechanical delay was longer at POST0 and POST5 as compared to PRE (P<0.05). Whatever the stretch duration, no significant changes of Hmax/Mmax ratio were recorded. In conclusion, 30 s of static stretching to maximum tolerated discomfort is sufficient enough to alter mechanical properties of plantar flexor muscles, but 10×30 s does not significantly affect these properties further. Stretching does not impair spinal excitability. PMID:27191211

  1. Measurement of the Mechanical Properties of Intact Collagen Fibrils

    NASA Astrophysics Data System (ADS)

    Mercedes, H.; Heim, A.; Matthews, W. G.; Koob, T.

    2006-03-01

    Motivated by the genetic disorder Ehlers-Danlos syndrome (EDS), in which proper collagen synthesis is interrupted, we are investigating the structural and mechanical properties of collagen fibrils. The fibrous glycoprotein collagen is the most abundant protein found in the human body and plays a key role in the extracellular matrix of the connective tissue, the properties of which are altered in EDS. We have selected as our model system the collagen fibrils of the sea cucumber dermis, a naturally mutable tissue. This system allows us to work with native fibrils which have their proteoglycan complement intact, something that is not possible with reconstituted mammalian collagen fibrils. Using atomic force microscopy, we measure, as a function of the concentration of divalent cations, the fibril diameter, its response to force loading, and the changes in its rigidity. Through these experiments, we will shed light on the mechanisms which control the properties of the sea cucumber dermis and hope to help explain the altered connective tissue extracellular matrix properties associated with EDS.

  2. Mechanical and thermophysical properties of rare-earth monopnictides

    NASA Astrophysics Data System (ADS)

    Bhalla, Vyoma; Singh, Devraj; Jain, Sushil Kumar

    2016-08-01

    The present paper addresses the temperature dependent elastic, mechanical and thermal properties of NaCl structure (B1 type) holmium monopnictides, HoX (X = N, P, As, Sb, Bi) computed using Coulomb and Born repulsive potentials extended up to second nearest neighbors. The second-order elastic constants (SOECs) of single crystals HoX are calculated as a function of temperature in the range 0-500K. The compounds under study are found to be brittle in nature. Beside these calculations, the theoretical hardness has been obtained for various rare-earth monopnictides using the elastic properties in the polycrystalline approach. The obtained hardness values indicate HoN to be hard, but cannot be considered super hard. The anisotropic nature of the chosen single crystal is an important physical quantity in studying the directional dependent thermal properties such as Debye temperature and thermal conductivity computed using ultrasonic velocities along different crystallographic directions. The obtained results are discussed in correlation with mechanical and thermophysical properties of similar materials.

  3. Deterioration of Mechanical Properties of Discs in Chronically Inflamed TMJ

    PubMed Central

    Wang, X.D.; Cui, S.J.; Liu, Y.; Luo, Q.; Du, R.J.; Kou, X.X.; Zhang, J.N.; Zhou, Y.H.; Gan, Y.H.

    2014-01-01

    Temporomandibular joint (TMJ) discs frequently undergo degenerative changes in arthritis. However, the biomechanical properties of pathogenic discs remain to be explored. In this study, we evaluated the effects of chronic inflammation on the biomechanical properties of TMJ discs in rats. Chronic inflammation of TMJs was induced by double intra-articular injections of complete Freund’s adjuvant for 5 weeks, and biomechanical properties and ultrastructure of the discs were examined by mechanical testing, scanning electron microscopy, and transmission electron microscopy. The instantaneous compressive moduli of the anterior and posterior bands of discs in inflamed TMJs were decreased significantly compared with those in the control group. The instantaneous tensile moduli of the discs of inflamed TMJs also showed significant decreases in both the anterior-posterior and mesial-lateral directions. The relaxation moduli of the discs of inflamed TMJs showed nearly the same tendency as the instantaneous moduli. The surfaces of the discs of inflamed TMJs became rough and porous due to the loss of the superficial gel-like stratum, with many collagen fibers exposed and degradation of the sub-superficial collagen fibrils. Our results suggested that chronic inflammation of TMJ could lead to deterioration of mechanical properties and alteration of disc ultrastructure, which might contribute to TMJ disc displacement. PMID:25266714

  4. Characterizing Properties and Performance of 3D Printed Plastic Scintillators

    NASA Astrophysics Data System (ADS)

    McCormick, Jacob

    2015-10-01

    We are determining various characteristics of the performance of 3D printed scintillators. A scintillator luminesces when an energetic particle raises electrons to an excited state by depositing some of its energy in the atom. When these excited electrons fall back down to their stable states, they emit the excess energy as light. We have characterized the transmission spectrum, emission spectrum, and relative intensity of light produced by 3D printed scintillators. We are also determining mechanical properties such as tensile strength and compressibility, and the refractive index. The emission and transmission spectra were measured using a monochromator. By observing the transmission spectrum, we can see which optical wavelengths are absorbed by the scintillator. This is then used to correct the emission spectrum, since this absorption is present in the emission spectrum. Using photomultiplier tubes in conjunction with integration hardware (QDC) to measure the intensity of light emitted by 3D printed scintillators, we compare with commercial plastic scintillators. We are using the characterizations to determine if 3D printed scintillators are a viable alternative to commercial scintillators for use at Jefferson Lab in nuclear and accelerated physics detectors. I would like to thank Wouter Deconinck, as well as the Parity group at the College of William and Mary for all advice and assistance with my research.

  5. Mechanisms to create high performance pseudo-ductile composites

    NASA Astrophysics Data System (ADS)

    Wisnom, M. R.

    2016-07-01

    Current composites normally fail suddenly and catastrophically, which is an undesirable characteristic for many applications. This paper describes work as part of the High Performance Ductile Composite Technology programme (HiPerDuCT) on mechanisms to overcome this key limitation and introduce pseudo-ductility into the failure process.

  6. Mechanical Properties of Mineralized Collagen Fibrils As Influenced By Demineralization

    SciTech Connect

    Balooch, M.; Habelitz, S.; Kinney, J.H.; Marshall, S.J.; Marshall, G.W.

    2009-05-11

    Dentin and bone derive their mechanical properties from a complex arrangement of collagen type-I fibrils reinforced with nanocrystalline apatite mineral in extra- and intrafibrillar compartments. While mechanical properties have been determined for the bulk of the mineralized tissue, information on the mechanics of the individual fibril is limited. Here, atomic force microscopy was used on individual collagen fibrils to study structural and mechanical changes during acid etching. The characteristic 67 nm periodicity of gap zones was not observed on the mineralized fibril, but became apparent and increasingly pronounced with continuous demineralization. AFM-nanoindentation showed a decrease in modulus from 1.5 GPa to 50 MPa during acid etching of individual collagen fibrils and revealed that the modulus profile followed the axial periodicity. The nanomechanical data, Raman spectroscopy and SAXS support the hypothesis that intrafibrillar mineral etches at a substantially slower rate than the extrafibrillar mineral. These findings are relevant for understanding the biomechanics and design principles of calcified tissues derived from collagen matrices.

  7. Mechanical Properties of Type IV Pili in P. Aeruginosa

    NASA Astrophysics Data System (ADS)

    Lu, Shun; Touhami, Ahmed; Scheurwater, Edie; Harvey, Hanjeong; Burrows, Lori; Dutcher, John

    2009-03-01

    Type IV pili (Tfp) are thin flexible protein filaments that extend from the cell membrane of bacteria such as Pseudomonas aeruginosa and Neisseria gonorrhoeae. The mechanical properties of Tfp are of great importance since they allow bacteria to interact with and colonize various surfaces. In the present study, we have used atomic force microscopy (AFM) for both imaging and pulling on Tfp from P. aeruginosa (PAO1) and from its PilA, PilT, and FliC mutants. A single pilus filament was mechanically stretched and the resulting force-extension profiles were fitted using the worm-like-chain (WLC) model. The statistical distributions obtained for contour length, persistence length, and number of pili per bacteria pole, were used to evaluate the mechanical properties of a single pilus and the biogenesis functions of different proteins (PilA, PilT) involved in its assembly and disassembly. Importantly, the persistence length value of ˜ 1 μm measured in the present study, which is consistent with the curvature of the pili observed in our AFM images, is significantly lower than the value of 5 μm reported earlier by Skerker et al. (1). Our results shed new light on the role of mechanical forces that mediate bacteria-surface interactions and biofilm formation. 1- J.M. Skerker and H.C. Berg, Proc. Natl. Acad. Sci. USA, 98, 6901-6904 (2001).

  8. Time-Temperature Superposition Applied to PBX Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Thompson, Darla; Deluca, Racci

    2011-06-01

    The use of plastic-bonded explosives (PBXs) in weapon applications requires a certain level of structural/mechanical integrity. Uniaxial tension and compression experiments characterize the mechanical response of materials over a wide range of temperatures and strain rates, providing the basis for predictive modeling in more complex geometries. After years of data collection on a wide variety of PBX formulations, we have applied time-temperature superposition principles to a mechanical properties database which includes PBX 9501, PBX 9502, PBXN-110, PBXN-9, and HPP (propellant). The results of quasi-static tension and compression, SHPB compression, and cantilever DMA are compared. Time-temperature relationships of maximum stress and corresponding strain values are analyzed in addition to the more conventional analysis of modulus. Our analysis shows adherence to the principles of time-temperature superposition and correlations of mechanical response to the binder glass transition and specimen density. Direct ties relate time-temperature analysis to the underlying basis of existing PBX mechanical models (ViscoSCRAM). Results suggest that, within limits, mechanical response can be predicted at conditions not explicitly measured. LA-UR 11-01096.

  9. Nondestructive evaluation of hydrogel mechanical properties using ultrasound

    PubMed Central

    Walker, Jason M.; Myers, Ashley M.; Schluchter, Mark D.; Goldberg, Victor M.; Caplan, Arnold I.; Berilla, Jim A.; Mansour, Joseph M.; Welter, Jean F.

    2012-01-01

    The feasibility of using ultrasound technology as a noninvasive, nondestructive method for evaluating the mechanical properties of engineered weight-bearing tissues was evaluated. A fixture was designed to accurately and reproducibly position the ultrasound transducer normal to the test sample surface. Agarose hydrogels were used as phantoms for cartilage to explore the feasibility of establishing correlations between ultrasound measurements and commonly used mechanical tissue assessments. The hydrogels were fabricated in 1–10% concentrations with a 2–10 mm thickness. For each concentration and thickness, six samples were created, for a total of 216 gel samples. Speed of sound was determined from the time difference between peak reflections and the known height of each sample. Modulus was computed from the speed of sound using elastic and poroelastic models. All ultrasonic measurements were made using a 15 MHz ultrasound transducer. The elastic modulus was also determined for each sample from a mechanical unconfined compression test. Analytical comparison and statistical analysis of ultrasound and mechanical testing data was carried out. A correlation between estimates of compressive modulus from ultrasonic and mechanical measurements was found, but the correlation depended on the model used to estimate the modulus from ultrasonic measurements. A stronger correlation with mechanical measurements was found using the poroelastic rather than the elastic model. Results from this preliminary testing will be used to guide further studies of native and engineered cartilage. PMID:21773854

  10. Mechanical properties testing and results for thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Cruse, Thomas A.; Johnsen, B. P.; Nagy, Andrew

    1995-01-01

    The paper reports on several years of mechanical testing of thermal barrier coatings. The test results were generated to support the development of durability models for the coatings in heat engine applications. The test data that are reviewed include modulus, static strength, and fatigue strength data. The test methods and results are discussed, along with the significant difficulties inherent in mechanical testing of thermal barrier coating materials. The materials include 7 percent wt. and 8 percent wt. yttria, partially stabilized zirconia as well as a cermet material. Both low pressure plasma spray and electron-beam physical vapor deposited coatings were tested. The data indicate the basic trends in the mechanical properties of the coatings over a wide range of isothermal conditions. Some of the trends are correlated with material density.

  11. Mechanical properties testing and results for thermal barrier coatings

    SciTech Connect

    Cruse, T.A.; Johnsen, B.P.; Nagy, A.

    1995-10-01

    The paper reports on several years of mechanical testing of thermal barrier coatings. The test results were generated to support the development of durability models for the coatings in heat engine applications. The test data that are reviewed include modulus, static strength, and fatigue strength data. The test methods and results are discussed, along with the significant difficulties inherent in mechanical testing of thermal barrier coating materials. The materials include 7 percent wt. and 8 percent wt. yttria, partially stabilized zirconia as well as a cermet material. Both low pressure plasma spray and electron-beam physical vapor deposited coatings were tested. The data indicate the basic trends in the mechanical properties of the coatings over a wide range of isothermal conditions. Some of the trends are correlated with material density.

  12. Mechanical properties of Hysol EA-9394 structural adhesive

    SciTech Connect

    Guess, T.R.; Reedy, E.D.; Stavig, M.E.

    1995-02-01

    Dextor`s Hysol EA-9394 is a room temperature curable paste adhesive representative of the adhesives used in wind turbine blade joints. A mechanical testing program has been performed to characterize this adhesive. Tension, compression stress relaxation, flexural, butt tensile, and fracture toughness test results are reported.

  13. Thermo-mechanical and electrical properties of epoxy composites containing ceramic nanofillers

    SciTech Connect

    Scamardella, A. M.; Amendola, E.; Petrarca, C.; Acierno, D.

    2010-06-02

    Epoxy nanocomposites with ceramic nanoparticles, i.e. Al{sub 2}O{sub 3}, Tio{sub 2} and SiO{sub 2}, were prepared by combined dispersion techniques, namely mechanical mixing and sonication. The influence of fillers addition on thermal, mechanical and dielectric properties have been investigated by means of Differential Scanning Calorimetry (DSC), Dynamic-mechanical analysis (DMA) and dielectric spectroscopy to measure the dielectric permittivity, tan delta and volume resistivity. Morphological investigations by Scanning Electron Microscopy (SEM) has been also performed.

  14. In-Situ Mechanical Property Evaluation of Dielectric Ceramics in Multilayer Capacitors

    SciTech Connect

    Wereszczak, A.A.; Riester, L.; Breder, K.

    2000-04-03

    The Young's modulus, hardness, and fracture toughness of barium titanate dielectric ceramics in three commercially available multilayer capacitors (MLCs) were measured in-situ using indentation and a mechanical properties microprobe. The three MLCs were equivalent in size (0805), capacitance (0.1 uF) and dielectric type (X7R). The Young's modulus and hardness of the dielectric ceramics in the three MLCs were similar, while there were statistically significant differences in their fracture toughnesses. The results provide insight into the assessment of MLC mechanical reliability, and show that equivalent electrical MLC rating is not necessarily a guarantee that the dielectric ceramics in them will exhibit equivalent mechanical performance.

  15. Mechanical and hydraulic properties of rocks related to induced seismicity

    USGS Publications Warehouse

    Witherspoon, P.A.; Gale, J.E.

    1977-01-01

    Witherspoon, P.A. and Gale, J.E., 1977. Mechanical and hydraulic properties of rocks related to induced seismicity. Eng. Geol., 11(1): 23-55. The mechanical and hydraulic properties of fractured rocks are considered with regard to the role they play in induced seismicity. In many cases, the mechanical properties of fractures determine the stability of a rock mass. The problems of sampling and testing these rock discontinuities and interpreting their non-linear behavior are reviewed. Stick slip has been proposed as the failure mechanism in earthquake events. Because of the complex interactions that are inherent in the mechanical behavior of fractured rocks, there seems to be no simple way to combine the deformation characteristics of several sets of fractures when there are significant perturbations of existing conditions. Thus, the more important fractures must be treated as individual components in the rock mass. In considering the hydraulic properties, it has been customary to treat a fracture as a parallel-plate conduit and a number of mathematical models of fracture systems have adopted this approach. Non-steady flow in fractured systems has usually been based on a two-porosity model, which assumes the primary (intergranular) porosity contributes only to storage and the secondary (fracture) porosity contributes only to the overall conductivity. Using such a model, it has been found that the time required to achieve quasi-steady state flow in a fractured reservoir is one or two orders of magnitude greater than it is in a homogeneous system. In essentially all of this work, the assumption has generally been made that the fractures are rigid. However, it is clear from a review of the mechanical and hydraulic properties that not only are fractures easily deformed but they constitute the main flow paths in many rock masses. This means that one must consider the interaction of mechanical and hydraulic effects. A considerable amount of laboratory and field data is now

  16. Performance predictions for mechanical excavators in Yucca Mountain tuffs; Yucca Mountain Site Characterization Project

    SciTech Connect

    Ozdemir, L.; Gertsch, L.; Neil, D.; Friant, J.

    1992-09-01

    The performances of several mechanical excavators are predicted for use in the tuffs at Yucca Mountain: Tunnel boring machines, the Mobile Miner, a roadheader, a blind shaft borer, a vertical wheel shaft boring machine, raise drills, and V-Moles. Work summarized is comprised of three parts: Initial prediction using existing rock physical property information; Measurement of additional rock physical properties; and Revision of the initial predictions using the enhanced database. The performance predictions are based on theoretical and empirical relationships between rock properties and the forces-experienced by rock cutters and bits during excavation. Machine backup systems and excavation design aspects, such as curves and grades, are considered in determining excavator utilization factors. Instanteous penetration rate, advance rate, and cutter costs are the fundamental performance indicators.

  17. Size effects on mechanical and thermal properties of thin films

    NASA Astrophysics Data System (ADS)

    Alam, Md Tarekul

    Materials, from electronic to structural, exhibit properties that are sensitive to their composition and internal microstructures such as grain and precipitate sizes, crystalline phases, defects and dopants. Therefore, the research trend has been to obtain fundamental understanding in processing-structure-properties to develop new materials or new functionalities for engineering applications. The advent of nanotechnology has opened a new dimension to this research area because when material size is reduced to nanoscale, properties change significantly from the bulk values. This phenomenon expands the problem to 'size-processing-structure-propertiesfunctionalities'. The reinvigorated research for the last few decades has established size dependency of the material properties such as thermal conductivity, Young's modulus and yield strength, electrical resistivity, photo-conductance etc. It is generally accepted that classical physical laws can be used to scale down the properties up to 25-50 nm length-scale, below which their significant deviation or even breakdown occur. This dissertation probes the size effect from a different perspective by asking the question, if nanoscale size influences one physical domain, why it would not influence the coupling between two or more domains? Or in other words, if both mechanical and thermal properties are different at the nanoscale, can mechanical strain influence thermal conductivity? The hypothesis of size induced multi-domain coupling is therefore the foundation of this dissertation. It is catalyzed by the only few computational studies available in the literature while experimental validations have been non-existent owing to experimental challenges. The objective of this research is to validate this hypothesis, which will open a novel avenue to tune properties and functionalities of materials with the size induced multi-domain coupling. Single domain characterization itself is difficult at the nanoscale due to specimen

  18. Effect of diet on mechanical properties of horse's hair.

    PubMed

    Kania, Małgorzata; Mikołajewska, Dorota; Marycz, Krzysztof; Kobielarz, Magdalena

    2009-01-01

    The aim of this research was to assess the effect of diet supplementation with zinc and copper, in different chemical forms (organic and inorganic), on the mechanical properties of the hair of healthy English thoroughbred horses. Hairs were taken from 18 horses which had been fed with oats and hay for a period of 110 days. Twelve of the horses had been additionally given a daily dose of 700 g of highquality 44-ingredients Fohlengold St-Hippolyt muesli made by Muhle Ebert Dilheim. Six of them had received the muesli-containing organic zinc and copper (OS), while the other six horses had received the muesli-containing inorganic zinc and copper (IS). The mechanical properties of the hairs before and after the supplementation period were tested in a Synergie 100 (MTS) testing machine. Each of the hairs was loaded at a constant rate of 20 mm/min until rupture. Young modulus (E), breaking stress (Ru) and yield point (Rs) of the particular hairs were determined. No significant changes in the mechanical parameters were observed in the reference group in which the horses were fed with only oats and hay for the whole experimental period of 110 days. The supplementation of the diet with inorganic zinc and copper resulted in an increase in the elasticity and diameter of the hairs and in a simultaneous reduction in their strength. Whereas organic zinc and copper caused an increase in the elasticity and strength of the hairs and a simultaneous reduction in their diameter. It has been shown that the organic form of the supplemented trace zinc and copper (mainly copper) elements has a beneficial effect on the mechanical properties of the hairs since it results in an increase in both their elasticity and strength.

  19. Morphology, orientation, and mechanical properties of gelatin films

    SciTech Connect

    Blanton, T.N.; Tsou, A.H.

    1996-12-31

    Gelatin is a polypeptide derived from degradation and disorganization of collagen fibers and is the primary binder in photographic emulsions. Gelatin provides the mechanical integrity and strength to the photographic emulsion allowing for packaging, handling, and photofinishing operations. Gelatin films generated from aqueous-solution casting can exist in a semicrystalline or an amorphous state. When a gelatin solution is cooled below its helix-coil transition temperature, partial renaturation of gelatin to form triple helices can occur. The degree of renaturation in a coated film is dependent upon the drying temperature and the drying rate. During the drying process, gelatin crystals can be formed by lateral association of the triple helices through a mechanism of nucleation and growth of a fringed micelle structure. X-ray scattering techniques have been utilized to examine the morphology and orientation of gelatin films. Based on X-ray diffraction data, it is observed that aggregates of triple-helix rods lie parallel to the film plane but are symmetrically distributed within the film plane. Since a material`s physical and mechanical properties are related to its structure, it is necessary to understand and to characterize the morphological development in gelatin film formation. In this study, an X-ray diffractometer and pole figure goniometer were utilized to examine the structural development and orientation anisotropy in solid-state gelatin films. Also, in this study, the in-plane mechanical properties of a gelatin film were determined from a uniaxial tensile test, and the gelatin film properties in the thickness direction were extracted from an indentation test based on the finite element analysis of the indentation results using a viscoelastic material model.

  20. Mechanical properties of single electrospun drug-encapsulated nanofibres

    PubMed Central

    Chew, Sing Yian; Hufnagel, Todd C; Lim, Chwee Teck; Leong, Kam W

    2008-01-01

    The mechanical and structural properties of a surface play an important role in determining the morphology of attached cells, and ultimately their cellular functions. As such, mechanical and structural integrity are important design parameters for a tissue scaffold. Electrospun fibrous meshes are widely used in tissue engineering. When in contact with electrospun scaffolds, cells see the individual micro- or nanofibres as their immediate microenvironment. In this study, tensile testing of single electrospun nanofibres composed of poly(ε-caprolactone) (PCL), and its copolymer, poly(caprolactone-co-ethyl ethylene phosphate) (PCLEEP), revealed a size effect in the Young's modulus, E, and tensile strength, σT. Both strength and stiffness increase as the fibre diameter decreases from bulk (∼5 μm) into the nanometre region (200–300 nm). In particular, E and σT of individual PCL nanofibres were at least two-fold and an order of magnitude higher than that of PCL film, respectively. PCL films were observed to have more pronounced crystallographic texture than the nanofibres; however no difference in crystalline fraction, perfection, or texture was detected among the various fibres. When drugs were encapsulated into single PCLEEP fibres, mechanical properties were enhanced with 1–20 wt% of loaded retinoic acid, but weakened by 10–20 wt% of encapsulated bovine serum albumin. This understanding of the effect of size and drug and protein encapsulation on the mechanical properties of electrospun fibres may help in the optimization of tissue scaffold design that combines biochemical and biomechanical cues for tissue regeneration. PMID:19079553

  1. Mechanical properties of lunar regolith and lunar soil simulant

    NASA Technical Reports Server (NTRS)

    Perkins, Steven W.

    1989-01-01

    Through the Surveyor 3 and 7, and Apollo 11-17 missions a knowledge of the mechanical properties of Lunar regolith were gained. These properties, including material cohesion, friction, in-situ density, grain-size distribution and shape, and porosity, were determined by indirect means of trenching, penetration, and vane shear testing. Several of these properties were shown to be significantly different from those of terrestrial soils, such as an interlocking cohesion and tensile strength formed in the absence of moisture and particle cementation. To characterize the strength and deformation properties of Lunar regolith experiments have been conducted on a lunar soil simulant at various initial densities, fabric arrangements, and composition. These experiments included conventional triaxial compression and extension, direct tension, and combined tension-shear. Experiments have been conducted at low levels of effective confining stress. External conditions such as membrane induced confining stresses, end platten friction and material self weight have been shown to have a dramatic effect on the strength properties at low levels of confining stress. The solution has been to treat these external conditions and the specimen as a full-fledged boundary value problem rather than the idealized elemental cube of mechanics. Centrifuge modeling allows for the study of Lunar soil-structure interaction problems. In recent years centrifuge modeling has become an important tool for modeling processes that are dominated by gravity and for verifying analysis procedures and studying deformation and failure modes. Centrifuge modeling is well established for terrestrial enginering and applies equally as well to Lunar engineering. A brief review of the experiments is presented in graphic and outline form.

  2. Correlating P-wave Velocity with the Physico-Mechanical Properties of Different Rocks

    NASA Astrophysics Data System (ADS)

    Khandelwal, Manoj

    2013-04-01

    In mining and civil engineering projects, physico-mechanical properties of the rock affect both the project design and the construction operation. Determination of various physico-mechanical properties of rocks is expensive and time consuming, and sometimes it is very difficult to get cores to perform direct tests to evaluate the rock mass. The purpose of this work is to investigate the relationships between the different physico-mechanical properties of the various rock types with the P-wave velocity. Measurement of P-wave velocity is relatively cheap, non-destructive and easy to carry out. In this study, representative rock mass samples of igneous, sedimentary, and metamorphic rocks were collected from the different locations of India to obtain an empirical relation between P-wave velocity and uniaxial compressive strength, tensile strength, punch shear, density, slake durability index, Young's modulus, Poisson's ratio, impact strength index and Schmidt hammer rebound number. A very strong correlation was found between the P-wave velocity and different physico-mechanical properties of various rock types with very high coefficients of determination. To check the sensitivity of the empirical equations, Students t test was also performed, which confirmed the validity of the proposed correlations.

  3. Time-dependent mechanical properties of 3-D braided graphite/PEEK composites

    SciTech Connect

    Chu, J.N.; Ko, F.K. ); Song, J.W. )

    1992-07-01

    Poly(ether-ether-ketone) or PEEK, was developed as a high performance engineering material. In this study, 3-D braided AS4 graphite /PEEK (graphite/PEEK) composites were preformed and processed to investigate the combined performance of this new system. These manufactured composites were then characterized, using matrix digestion and wide angle x-ray diffraction, to determine their fiber volume fractions and degrees of crystallinity. After physical characterization, the mechanical response of these composites were evaluated at various temperatures. Experimental results from tensile measurements are compared to a fabric geometry model (FGM). This model predicts tensile strength based upon fiber and matrix properties, fiber volume fraction, and braiding angle. The model and experimental results are given here, and are in good agreement with each other. In order to study the time-dependent mechanical properties of these 3-D braided graphite/PEEK composites, their stress relaxation and dynamic mechanical properties were evaluated. The dynamic mechanical properties of PEEK composites are compared to short fiber and continuous fiber reinforced PEEK composites to determine the effects of fiber geometry.

  4. Measurement of Mechanical Properties of Cantilever Shaped Materials

    PubMed Central

    Finot, Eric; Passian, Ali; Thundat, Thomas

    2008-01-01

    Microcantilevers were first introduced as imaging probes in Atomic Force Microscopy (AFM) due to their extremely high sensitivity in measuring surface forces. The versatility of these probes, however, allows the sensing and measurement of a host of mechanical properties of various materials. Sensor parameters such as resonance frequency, quality factor, amplitude of vibration and bending due to a differential stress can all be simultaneously determined for a cantilever. When measuring the mechanical properties of materials, identifying and discerning the most influential parameters responsible for the observed changes in the cantilever response are important. We will, therefore, discuss the effects of various force fields such as those induced by mass loading, residual stress, internal friction of the material, and other changes in the mechanical properties of the microcantilevers. Methods to measure variations in temperature, pressure, or molecular adsorption of water molecules are also discussed. Often these effects occur simultaneously, increasing the number of parameters that need to be concurrently measured to ensure the reliability of the sensors. We therefore systematically investigate the geometric and environmental effects on cantilever measurements including the chemical nature of the underlying interactions. To address the geometric effects we have considered cantilevers with a rectangular or circular cross section. The chemical nature is addressed by using cantilevers fabricated with metals and/or dielectrics. Selective chemical etching, swelling or changes in Young's modulus of the surface were investigated by means of polymeric and inorganic coatings. Finally to address the effect of the environment in which the cantilever operates, the Knudsen number was determined to characterize the molecule-cantilever collisions. Also bimaterial cantilevers with high thermal sensitivity were used to discern the effect of temperature variations. When appropriate

  5. The mechanical properties of human ribs in young adult.

    PubMed

    Pezowicz, Celina; Głowacki, Maciej

    2012-01-01

    A good understanding of thoracic biomechanics is important for complete examination and control of chest behaviour under conditions of physiological and pathological work, and under the impact of external forces leading to traumatic loading of the chest. The purpose of the study was to analyse the mechanical properties of human ribs obtained from individuals under the age of 25 with scoliosis deformation and to correlate them with geometric properties of ribs. Thirty three fragments of ribs (9th to 12th) were tested in three-point bending. Rib fragments were collected intraoperatively from female patients treated for scoliosis in the thoracic, thoracolumbar, and lumbar spine. The results were used to determine the maximum failure force, stiffness, and Young's modulus. A significant relationship was found between the age and elastic modulus of the ribs. The analysis was carried out for two age groups, i.e., between the ages of 10 and 15 and between the ages of 16 and 22, and statistically significant differences were obtained for Young's modulus (p = 0.0001) amounting to, respectively, 2.79 ± 1.34 GPa for the first group and 7.44 ± 2.85 GPa for the second group. The results show a significant impact of age on the mechanical properties of ribs.

  6. Dynamic and mechanical properties of supported lipid bilayers

    NASA Astrophysics Data System (ADS)

    Wu, Hsing-Lun; Tsao, Heng-Kwong; Sheng, Yu-Jane

    2016-04-01

    Supported lipid bilayers (SLBs) offer an excellent model system for investigating the physico-chemical properties of the cell membrane. In this work, dynamic and mechanical properties of SLBs are explored by dissipative particle dynamics simulations for lipids with different architectures (chain length, kink, and asymmetry associated with lipid tails). It is found that the lateral diffusivity (Dx) and flip-flop rate (FF) grow with increasing temperature in both gel and liquid phases and can be described by an Arrhenius-like expression. Three regimes can be clearly identified for symmetric and asymmetric saturated lipids but only two regimes are observed for kinked lipids. Both Dx and FF grow with decreasing tail length and increasing number of kinks. The stretching (KA) and apparent bending (KB) moduli exhibit concave upward curves with temperature and the minima are attained at Tm. In general, the minima of KA and KB decrease with the chain length and increase with number of kinks. The typical relation among the bending modulus, area stretching modulus, and bilayer thickness is still followed, KB = βKAh2 and β is much smaller in the gel phase. The dynamic and mechanical properties of lipids with asymmetric tails are found to situate between their symmetric counterparts.

  7. Effects of prestresses on mechanical properties of isotropic graphite materials

    NASA Astrophysics Data System (ADS)

    Oku, T.; Kurumada, A.; Imamura, Y.; Kawamata, K.; Shiraishi, M.

    1998-10-01

    Graphite materials which are used for plasma facing components and other components are subjected to stresses due to the high heat flux from the fusion plasma. Some mechanical properties of graphite materials can change due to the prestresses. The property changes should be considered for the design of the plasma facing components. The purpose of this study is to examine the effects of prestresses on the mechanical properties of isotropic graphite materials. Compressive prestresses were applied to two kinds of isotropic fine-grained graphites (IG-430 and IG-11) at 298 K (both), 1873 K (IG-11), 2273 K (IG-11) and 2283 K (IG-430). As a result, the decrease in Young's modulus for IG-430 due to high-temperature prestressing was 56% which was much larger than the 6.4% that was due to prestressing at 298 K. The results for IG-11 were the same as those for IG-430 graphite. This finding was considered to be due primarily to a difference in degree of the preferred orientation of crystallites in the graphite on the basis of the Bacon anisotropy factor (BAF) obtained from X-ray diffraction measurement of the prestressed specimens. Furthermore, high-temperature compressive prestressing produced an increase in the strength of the isotropic graphite, although room temperature prestressing produced no such effect. The results obtained here suggest that the isotropic graphite which is subjected to high-temperature compressive stresses can become anisotropic in service.

  8. Optical and mechanical properties of thermally evaporated fluoride thin films

    SciTech Connect

    Zhang, K.; Fahey, R.; Jasinski, D.; Scarpino, C.; Dziendziel, R.; Burger, S.; DePoy, D.

    1998-06-08

    As a result of health and safety issues surrounding the use of radioactive materials on coated optical components, there has been renewed interest in coating materials whose optical and mechanical properties approach those offered by their radioactive counterparts. Due to the radioactive nature of ThF{sub 4} and its widespread use in optical coatings, the coating industry is examining other low index and non-radioactive fluorides as possible alternatives. In this paper, the authors present the results of an experimental study on the optical and mechanical properties of thermally evaporated ThF{sub 4}, DyF{sub 3}, CeF{sub 3}, LiF, HfF{sub 4}, IRX, and IRB thin films, where the materials were deposited at different substrate temperatures. The objective is to examine this series of fluorides under comparable deposition conditions and with respect to such material properties as: n and k, film stress, and environmental stability. The optical constants of these fluorides were evaluated over the wavelength region from 1.0 {micro}m to 12.5 {micro}m.

  9. Dynamic and mechanical properties of supported lipid bilayers.

    PubMed

    Wu, Hsing-Lun; Tsao, Heng-Kwong; Sheng, Yu-Jane

    2016-04-21

    Supported lipid bilayers (SLBs) offer an excellent model system for investigating the physico-chemical properties of the cell membrane. In this work, dynamic and mechanical properties of SLBs are explored by dissipative particle dynamics simulations for lipids with different architectures (chain length, kink, and asymmetry associated with lipid tails). It is found that the lateral diffusivity (Dx) and flip-flop rate (FF) grow with increasing temperature in both gel and liquid phases and can be described by an Arrhenius-like expression. Three regimes can be clearly identified for symmetric and asymmetric saturated lipids but only two regimes are observed for kinked lipids. Both Dx and FF grow with decreasing tail length and increasing number of kinks. The stretching (KA) and apparent bending (KB) moduli exhibit concave upward curves with temperature and the minima are attained at Tm. In general, the minima of KA and KB decrease with the chain length and increase with number of kinks. The typical relation among the bending modulus, area stretching modulus, and bilayer thickness is still followed, KB = βKAh(2) and β is much smaller in the gel phase. The dynamic and mechanical properties of lipids with asymmetric tails are found to situate between their symmetric counterparts. PMID:27389237

  10. High-Throughput Assessment of Cellular Mechanical Properties.

    PubMed

    Darling, Eric M; Di Carlo, Dino

    2015-01-01

    Traditionally, cell analysis has focused on using molecular biomarkers for basic research, cell preparation, and clinical diagnostics; however, new microtechnologies are enabling evaluation of the mechanical properties of cells at throughputs that make them amenable to widespread use. We review the current understanding of how the mechanical characteristics of cells relate to underlying molecular and architectural changes, describe how these changes evolve with cell-state and disease processes, and propose promising biomedical applications that will be facilitated by the increased throughput of mechanical testing: from diagnosing cancer and monitoring immune states to preparing cells for regenerative medicine. We provide background about techniques that laid the groundwork for the quantitative understanding of cell mechanics and discuss current efforts to develop robust techniques for rapid analysis that aim to implement mechanophenotyping as a routine tool in biomedicine. Looking forward, we describe additional milestones that will facilitate broad adoption, as well as new directions not only in mechanically assessing cells but also in perturbing them to passively engineer cell state.

  11. Monte Carlo studies of the mechanical properties of biopolymers

    NASA Astrophysics Data System (ADS)

    Sadeghi, Sara

    Biopolymers are one of the main components of living systems. Their sequence dictates their structure that ultimately determines their function. Many factors play key mechanical roles in the cell and one of the most abundant biopolymers that is involved in such tasks is the class of coiled-coil proteins. Various theoretical and experimental studies have been done to explore the mechanical properties of these proteins and there are now a number of single molecule measurements that measure their force response characteristics, making coiled-coils an excellent model system to test folding models connecting sequence to structure to function. In this thesis we have developed a coarse-grained atomistic model to study coiled-coil formation and explore both mechanical and thermal properties. Our model is able to reproduce known coiled-coil structures using only a simple hydrophobic-polar (HP) representation of their sequence and is able to explain the observed mechanical response measured in single molecule experiments. To address how common coiled-coil formation is with respect to all possible helix packs, we have evaluated the designability of the space of possible helical folds, defined as the number of sequences that can fold into a particular structure. We find that left-handed coils emerge as one of the most highly designable structures. From the designability calculation we can identify sequence patterns that design particular coiled-coil folds and mutations that lead to their instability. We also predict that designable coiled-coil structures are more mechanically stable than less designable helical packs. Keywords: Monte Carlo; coiled-coils; alpha-helices; transition force; transition temperature; designability

  12. Atomic vacancies significantly degrade the mechanical properties of phosphorene

    NASA Astrophysics Data System (ADS)

    Sha, Zhen-Dong; Pei, Qing-Xiang; Zhang, Ying-Yan; Zhang, Yong-Wei

    2016-08-01

    Due to low formation energies, it is very easy to create atomic defects in phosphorene during its fabrication process. How these atomic defects affect its mechanical behavior, however, remain unknown. Here, we report on a systematic study of the effect of atomic vacancies on the mechanical properties and failure behavior of phosphorene using molecular dynamics simulations. It is found that atomic vacancies induce local stress concentration and cause early bond-breaking, leading to a significant degradation of the mechanical properties of the material. More specifically, a 2% concentration of randomly distributed mono-vacancies is able to reduce the fracture strength by ∼40%. An increase in temperature from 10 to 400 K can further deteriorate the fracture strength by ∼60%. The fracture strength of defective phosphorene is also found to be affected by defect distribution. When the defects are patterned in a line, the reduction in fracture strength greatly depends on the tilt angle and the loading direction. Furthermore, we find that di-vacancies cause an even larger reduction in fracture strength than mono-vacancies when the loading is in an armchair direction. These findings provide important guidelines for the structural design of phosphorene in future applications.

  13. Atomic vacancies significantly degrade the mechanical properties of phosphorene.

    PubMed

    Sha, Zhen-Dong; Pei, Qing-Xiang; Zhang, Ying-Yan; Zhang, Yong-Wei

    2016-08-01

    Due to low formation energies, it is very easy to create atomic defects in phosphorene during its fabrication process. How these atomic defects affect its mechanical behavior, however, remain unknown. Here, we report on a systematic study of the effect of atomic vacancies on the mechanical properties and failure behavior of phosphorene using molecular dynamics simulations. It is found that atomic vacancies induce local stress concentration and cause early bond-breaking, leading to a significant degradation of the mechanical properties of the material. More specifically, a 2% concentration of randomly distributed mono-vacancies is able to reduce the fracture strength by ∼40%. An increase in temperature from 10 to 400 K can further deteriorate the fracture strength by ∼60%. The fracture strength of defective phosphorene is also found to be affected by defect distribution. When the defects are patterned in a line, the reduction in fracture strength greatly depends on the tilt angle and the loading direction. Furthermore, we find that di-vacancies cause an even larger reduction in fracture strength than mono-vacancies when the loading is in an armchair direction. These findings provide important guidelines for the structural design of phosphorene in future applications.

  14. Probing mechanical properties of living cells by magnetopneumography.

    PubMed

    Möller, W; Takenaka, S; Rust, M; Stahlhofen, W; Heyder, J

    1997-01-01

    Magnetopneumography (MPG) has been used to study long-term particle clearance from human lungs as well as cellular motility of pulmonary macrophages (PMs). This study describes an extension of the method enabling the measurement of mechanical properties of PM cells in vivo. Ferromagnetic microparticles are inhaled and then retained in the alveolar region of the lungs, where they are phagocytized within hours by PMs. The magnetic particles can be rotated in weak magnetic fields, and the response to this twisting shear (force) is detected as a macroscopic magnetic field producing a measure of cytoskeletal mechanics. Cytoplasmic viscosity is very high compared with that of water and is strongly non-Newtonian. Under rotational stresses from 0.4 to 6.4 Pa, it acts like a pseudoplastic fluid showing a characteristic shear rate dependence. The viscosity as well as the stiffness of the cytoskeleton increases with increasing shear stress as seems typical for living tissue and evidence for an intact cytoskeletal matrix. The particle recoil as measured by the amount of recoverable strain following a short twisting force describes a cytoplasmic elasticity that depends on both level and duration of stress. These investigations on the mechanical properties of living human cells are promising and should lead to better understanding of cellular dysfunction in disease as well as pathways for drug administration. PMID:10174196

  15. Mechanical properties of borophene films: a reactive molecular dynamics investigation

    NASA Astrophysics Data System (ADS)

    Quy Le, Minh; Mortazavi, Bohayra; Rabczuk, Timon

    2016-11-01

    The most recent experimental advances could provide ways for the fabrication of several atomic thick and planar forms of boron atoms. For the first time, we explore the mechanical properties of five types of boron films with various vacancy ratios ranging from 0.1–0.15, using molecular dynamics simulations with ReaxFF force field. It is found that the Young’s modulus and tensile strength decrease with increasing the temperature. We found that boron sheets exhibit an anisotropic mechanical response due to the different arrangement of atoms along the armchair and zigzag directions. At room temperature, 2D Young’s modulus and fracture stress of these five sheets appear in the range 63–136 N m‑1 and 12–19 N m‑1, respectively. In addition, the strains at tensile strength are in the ranges of 9%–14%, 11%–19%, and 10%–16% at 1, 300, and 600 K, respectively. This investigation not only reveals the remarkable stiffness of 2D boron, but establishes relations between the mechanical properties of the boron sheets to the loading direction, temperature and atomic structures.

  16. Mechanical properties for irradiated face-centred cubic nanocrystalline metals

    PubMed Central

    Xiao, X. Z.; Song, D. K.; Chu, H. J.; Xue, J. M.; Duan, H. L.

    2015-01-01

    In this paper, a self-consistent plasticity theory is proposed to model the mechanical behaviours of irradiated face-centred cubic nanocrystalline metals. At the grain level, a tensorial crystal model with both irradiation and grain size effects is applied for the grain interior (GI), whereas both grain boundary (GB) sliding with irradiation effect and GB diffusion are considered in modelling the behaviours of GBs. The elastic-viscoplastic self-consistent method with considering grain size distribution is developed to transit the microscopic behaviour of individual grains to the macroscopic properties of nanocrystals (NCs). The proposed theory is applied to model the mechanical properties of irradiated NC copper, and the feasibility and efficiency have been validated by comparing with experimental data. Numerical results show that: (i) irradiation-induced defects can lead to irradiation hardening in the GIs, but the hardening effect decreases with the grain size due to the increasing absorption of defects by GBs. Meanwhile, the absorbed defects would make the GBs softer than the unirradiated case. (ii) There exists a critical grain size for irradiated NC metals, which separates the grain size into the irradiation hardening dominant region (above the critical size) and irradiation softening dominant region (below the critical size). (iii) The distribution of grain size has a significant influence on the mechanical behaviours of both irradiated and unirradiated NCs. The proposed model can offer a valid theoretical foundation to study the irradiation effect on NC materials. PMID:27547091

  17. Mechanical properties of borophene films: a reactive molecular dynamics investigation.

    PubMed

    Le, Minh Quy; Mortazavi, Bohayra; Rabczuk, Timon

    2016-11-01

    The most recent experimental advances could provide ways for the fabrication of several atomic thick and planar forms of boron atoms. For the first time, we explore the mechanical properties of five types of boron films with various vacancy ratios ranging from 0.1-0.15, using molecular dynamics simulations with ReaxFF force field. It is found that the Young's modulus and tensile strength decrease with increasing the temperature. We found that boron sheets exhibit an anisotropic mechanical response due to the different arrangement of atoms along the armchair and zigzag directions. At room temperature, 2D Young's modulus and fracture stress of these five sheets appear in the range 63-136 N m(-1) and 12-19 N m(-1), respectively. In addition, the strains at tensile strength are in the ranges of 9%-14%, 11%-19%, and 10%-16% at 1, 300, and 600 K, respectively. This investigation not only reveals the remarkable stiffness of 2D boron, but establishes relations between the mechanical properties of the boron sheets to the loading direction, temperature and atomic structures. PMID:27678335

  18. Study on Thermal and Mechanical Properties of EPDM Insulation

    NASA Astrophysics Data System (ADS)

    Zhang, Zhong-Shui; Xu, Jin-Sheng; Chen, Xiong; Jiang, Jing

    As the most common insulation material of solid rocket motors, thermal and mechanical properties of ethylene propylene diene monomer (EPDM) composite are inspected in the study. Referring to the results of thermogravimetric analysis (TGA), composition and morphology of EPDM composite in different thermal degradation degree are investigated by scanning electron microscope (SEM) to inspect the mechanism of thermal insulation. Mechanical properties of EPDM composite in the state of pyrolysis are investigated by uniaxial tensile tests. At the state of initial pyrolysis, composite belongs to the category of hyperelastic-viscoelastic material. The tendency of tensile strength increased and elongation decreased with increasing of heating temperature. Composite behaves as the linear rule at the state of late pyrolysis, which belongs to the category of bittle. The elasticity modulus of curves are almost the same while the heating temperature ranges from 200°C to 300°C, and then gradually go down. The tensile strength of pyrolytic material reach the highest at the heating temperature of 300°C, and the virgin material has the largest elongation.

  19. Mechanical properties of borophene films: a reactive molecular dynamics investigation.

    PubMed

    Le, Minh Quy; Mortazavi, Bohayra; Rabczuk, Timon

    2016-11-01

    The most recent experimental advances could provide ways for the fabrication of several atomic thick and planar forms of boron atoms. For the first time, we explore the mechanical properties of five types of boron films with various vacancy ratios ranging from 0.1-0.15, using molecular dynamics simulations with ReaxFF force field. It is found that the Young's modulus and tensile strength decrease with increasing the temperature. We found that boron sheets exhibit an anisotropic mechanical response due to the different arrangement of atoms along the armchair and zigzag directions. At room temperature, 2D Young's modulus and fracture stress of these five sheets appear in the range 63-136 N m(-1) and 12-19 N m(-1), respectively. In addition, the strains at tensile strength are in the ranges of 9%-14%, 11%-19%, and 10%-16% at 1, 300, and 600 K, respectively. This investigation not only reveals the remarkable stiffness of 2D boron, but establishes relations between the mechanical properties of the boron sheets to the loading direction, temperature and atomic structures.

  20. Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils.

    PubMed

    Depalle, Baptiste; Qin, Zhao; Shefelbine, Sandra J; Buehler, Markus J

    2015-12-01

    Collagen is a ubiquitous protein with remarkable mechanical properties. It is highly elastic, shows large fracture strength and enables substantial energy dissipation during deformation. Most of the connective tissue in humans consists of collagen fibrils composed of a staggered array of tropocollagen molecules, which are connected by intermolecular cross-links. In this study, we report a three-dimensional coarse-grained model of collagen and analyze the influence of enzymatic cross-links on the mechanics of collagen fibrils. Two representatives immature and mature cross-links are implemented in the mesoscale model using a bottom-up approach. By varying the number, type and mechanical properties of cross-links in the fibrils and performing tensile test on the models, we systematically investigate the deformation mechanisms of cross-linked collagen fibrils. We find that cross-linked fibrils exhibit a three phase behavior, which agrees closer with experimental results than what was obtained using previous models. The fibril mechanical response is characterized by: (i) an initial elastic deformation corresponding to the collagen molecule uncoiling, (ii) a linear regime dominated by molecule sliding and (iii) the second stiffer elastic regime related to the stretching of the backbone of the tropocollagen molecules until the fibril ruptures. Our results suggest that both cross-link density and type dictate the stiffness of large deformation regime by increasing the number of interconnected molecules while cross-links mechanical properties determine the failure strain and strength of the fibril. These findings reveal that cross-links play an essential role in creating an interconnected fibrillar material of tunable toughness and strength.

  1. Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils

    PubMed Central

    Depalle, Baptiste; Qin, Zhao; Shefelbine, Sandra J.; Buehler, Markus J.

    2015-01-01

    Collagen is a ubiquitous protein with remarkable mechanical properties. It is highly elastic, shows large fracture strength and enables substantial energy dissipation during deformation. Most of the connective tissue in humans consists of collagen fibrils composed of a staggered array of tropocollagen molecules, which are connected by intermolecular cross-links. In this study, we report a three-dimensional coarse-grained model of collagen and analyze the influence of enzymatic cross-links on the mechanics of collagen fibrils. Two representatives immature and mature cross-links are implemented in the mesoscale model using a bottom-up approach. By varying the number, type and mechanical properties of cross-links in the fibrils and performing tensile test on the models, we systematically investigate the deformation mechanisms of cross-linked collagen fibrils. We find that cross-linked fibrils exhibit a three phase behavior, which agrees closer with experimental results than what was obtained using previous models. The fibril mechanical response is characterized by: (i) an initial elastic deformation corresponding to the collagen molecule uncoiling, (ii) a linear regime dominated by molecule sliding and (iii) the second stiffer elastic regime related to the stretching of the backbone of the tropocollagen molecules until the fibril ruptures. Our results suggest that both cross-link density and type dictate the stiffness of large deformation regime by increasing the number of interconnected molecules while cross-links mechanical properties determine the failure strain and strength of the fibril. These findings reveal that cross-links play an essential role in creating an interconnected fibrillar material of tunable toughness and strength. PMID:25153614

  2. Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced by Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Domack, Marcia S.; Tainger, Karen M.

    2006-01-01

    The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties demonstrated for electron beam deposited aluminum and titanium alloys are comparable to wrought products, although the microstructures of the deposits exhibit cast features. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. Tensile mechanical properties and microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains with interior dendritic structures, described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.

  3. Characterization of mechanical and thermal properties of advanced composite pultrusions. Final report

    SciTech Connect

    Vaughan, J.G.; Roux, J.A.; Mantena, P.R.

    1995-08-01

    This report summarizes the work performed by the Composite Materials Group at the University of Mississippi to characterize the mechanical and thermal properties of pultruded advanced composite materials. Considerable progress has been made on characterizing the effects of pultrusion process variables on the structural/dynamic and thermal properties of a mono-fiber type graphite-epoxy composite material system. The effects of process parameters on the mechanical properties of a mono-fiber type fiberglass-epoxy were also investigated and correlated with the degree of cure using differential scanning calorimetry (DSC) studies. The mechanical properties and the failure mechanisms of these hybrids were compared with those of the mono-fiber type glass/epoxy and graphite/epoxy pultruded composites. The static properties examined were flexural strength and modulus, short-beam shear strength and tensile strength. For the dynamic (modulus and damping) studies, the impulse frequency response technique was used for exciting the flat specimens into flexural, and the round specimens into torsional, modes of vibration using appropriately designed test fixtures. The results of these tests demonstrate the potential for the cost-effective production of stiff, light and well damped composite products having a number of practical applications. A three-dimensional numerical model which utilizes a fixed control volume based finite difference approach was also developed to predict the axial, radial and circumferential temperature and degree of cure profiles, which were found to be in close agreement with experimental results.

  4. Mechanical property degradation of graphite/polyimide composites after exposure to moisture or shuttle orbiter fluids

    NASA Technical Reports Server (NTRS)

    Lisagor, W. B.

    1979-01-01

    The effects of moisture exposure on the mechanical properties of graphite polyimide systems are presented. The mechanism of the degradation and the magnitude of the affect associated with specific mechanical properties is investigated. An experimental effort involving exposure to selected environmental variables and subsequent mechanical property testing and analysis is included.

  5. Mechanical Properties of ZnSe for the FEANICS Module

    NASA Technical Reports Server (NTRS)

    Salem, Jon

    2006-01-01

    Mechanical and physical properties of ZnSe windows to be used with the FEANICS (Flow Enclosure Accommodating Novel Investigations in Combustion of Solids) experiments were measured in order to determine design allowables. In addition, the literature on crack growth properties was summarized. The average Young's modulus, Poisson's ratio, equibiaxial fracture strength, flaw size, grain size, Knoop hardness, Vicker's hardness, and branching constant were 74.3 +/- 0.1 GPa, 0.31, 57.8 +/- 6.5 MPa, 21 4 mm, 43 +/- 9 micron, 0.97 +/- 0.02 GPa, 0.97 +/- 0.02 GPa, and 1.0 +/- 0.1 MPam(exp 0.5), respectively. The properties of current ZnSe made by chemical vapor deposition are in good agreement with those measured in the 1970's. The hardness of CVD ZnSe windows is about one twentieth of the sapphire window being replaced, and about one-sixth of that of window glass. Thus the ZnSe window must be handled with great care. The large grain size relative to the inherent crack size implies the need to use single crystal crack growth properties in the design process. In order to determine the local failure stresses in one of the test specimens, a solution for the stresses between the support ring and the edge of a circular plate load between concentric rings was derived.

  6. Low-temperature mechanical properties of glass/epoxy laminates

    NASA Astrophysics Data System (ADS)

    Reed, R. P.; Madhukar, M.; Thaicharoenporn, B.; Martovetsky, N. N.

    2014-01-01

    Selected mechanical properties of glass/epoxy laminate candidates for use in the electrical turn and ground insulation of the ITER Central solenoid (CS) modules were measured. Short-beam shear and flexural tests have been conducted on various E-glass cloth weaves/epoxy laminates at 295 and 77 K. Types of glass weave include 1581, 7500, 7781, and 38050, which represent both satin and plain weaves. The epoxy, planned for use for vacuum-pressure impregnation of the CS module, consists of an anhydride-cured bisphenol F resin system. Inter-laminar shear strength, flexural elastic modulus, and flexural strength have been measured. The data indicate that these properties are dependent on the volume percent of glass. Short-beam shear strength was measured as a function of the span-to-thickness ratio for all laminates at 77 K. Comprehensive fractography was conducted to obtain the failure mode of each short-beam shear test sample.

  7. Double-peak mechanical properties of carbon-nanotube fibers.

    PubMed

    Zhao, Jingna; Zhang, Xiaohua; Di, Jiangtao; Xu, Geng; Yang, Xiaojie; Liu, Xiangyang; Yong, Zhenzhong; Chen, Minghai; Li, Qingwen

    2010-11-22

    The introduction of twist during the spinning of carbon nanotubes from their arrays (forests) has been widely applied in making ultrastrong, stiff, and lightweight nanotube fibers. Here, for the first time, an important observation of a double-peak behavior of the tensile properties, as a function of the twist angle, that is different from the single peak of traditional fibers is reported. Raman spectra show that the new peak arises from the collapse of nanotubes, showing a strong "nano" element in applying the ancient draw-and-twist technique, besides the downsizing. A qualitative continuum model is also presented to describe the collapse-induced enhancement as well as traditional fibers. Our combined experimental and theoretical studies indicate the direction of full utilization of the nano element in improving the mechanical properties of nanotube fibers. PMID:20941775

  8. Mechanical Properties of High Strength Al-Mg Alloy Sheet

    NASA Astrophysics Data System (ADS)

    Choi, Bong-Jae; Hong, Kyung-Eui; Kim, Young-Jig

    The aim of this research is to develop the high strength Al alloy sheet for the automotive body. For the fabrication Al-Mg alloy sheet, the composition of alloying elements was designed by the properties database and CALPHAD (Calculation Phase Diagram) approach which can predict the phases during solidification using thermodynamic database. Al-Mg alloys were designed using CALPHAD approach according to the high content of Mg with minor alloying elements. After phase predictions by CALPHAD, designed Al-Mg alloys were manufactured. Addition of Mg in Al melts were protected by dry air/Sulphur hexafluoride (SF6) mixture gas which can control the severe Mg ignition and oxidation. After rolling procedure of manufactured Al-Mg alloys, mechanical properties were examined with the variation of the heat treatment conditions.

  9. Thermodynamics and statistical mechanics. [thermodynamic properties of gases

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The basic thermodynamic properties of gases are reviewed and the relations between them are derived from the first and second laws. The elements of statistical mechanics are then formulated and the partition function is derived. The classical form of the partition function is used to obtain the Maxwell-Boltzmann distribution of kinetic energies in the gas phase and the equipartition of energy theorem is given in its most general form. The thermodynamic properties are all derived as functions of the partition function. Quantum statistics are reviewed briefly and the differences between the Boltzmann distribution function for classical particles and the Fermi-Dirac and Bose-Einstein distributions for quantum particles are discussed.

  10. Low-temperature mechanical properties of glass/epoxy laminates

    SciTech Connect

    Reed, R. P.; Madhukar, M.; Thaicharoenporn, B.; Martovetsky, N. N.

    2014-01-27

    Selected mechanical properties of glass/epoxy laminate candidates for use in the electrical turn and ground insulation of the ITER Central solenoid (CS) modules were measured. Short-beam shear and flexural tests have been conducted on various E-glass cloth weaves/epoxy laminates at 295 and 77 K. Types of glass weave include 1581, 7500, 7781, and 38050, which represent both satin and plain weaves. The epoxy, planned for use for vacuum-pressure impregnation of the CS module, consists of an anhydride-cured bisphenol F resin system. Inter-laminar shear strength, flexural elastic modulus, and flexural strength have been measured. The data indicate that these properties are dependent on the volume percent of glass. Short-beam shear strength was measured as a function of the span-to-thickness ratio for all laminates at 77 K. Comprehensive fractography was conducted to obtain the failure mode of each short-beam shear test sample.

  11. Estimation of mechanical properties of nanomaterials using artificial intelligence methods

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, V.; Garg, A.; Wong, C. H.; Tai, K.

    2014-09-01

    Computational modeling tools such as molecular dynamics (MD), ab initio, finite element modeling or continuum mechanics models have been extensively applied to study the properties of carbon nanotubes (CNTs) based on given input variables such as temperature, geometry and defects. Artificial intelligence techniques can be used to further complement the application of numerical methods in characterizing the properties of CNTs. In this paper, we have introduced the application of multi-gene genetic programming (MGGP) and support vector regression to formulate the mathematical relationship between the compressive strength of CNTs and input variables such as temperature and diameter. The predictions of compressive strength of CNTs made by these models are compared to those generated using MD simulations. The results indicate that MGGP method can be deployed as a powerful method for predicting the compressive strength of the carbon nanotubes.

  12. Particle morphology influence on mechanical and biocompatibility properties of injection molded Ti alloy powder.

    PubMed

    Gülsoy, H Özkan; Gülsoy, Nagihan; Calışıcı, Rahmi

    2014-01-01

    Titanium and Titanium alloys exhibits properties that are excellent for various bio-applications. Metal injection molding is a processing route that offers reduction in costs, with the added advantage of near net-shape components. Different physical properties of Titanium alloy powders, shaped and processed via injection molding can achieve high complexity of part geometry with mechanical and bioactivity properties, similar or superior to wrought material. This study describes that the effect of particle morphology on the microstructural, mechanical and biocompatibility properties of injection molded Ti-6Al-4V (Ti64) alloy powder for biomaterials applications. Ti64 powders irregular and spherical in shape were injection molded with wax based binder. Binder debinding was performed in solvent and thermal method. After debinding the samples were sintered under high vacuum. Metallographic studies were determined to densification and the corresponding microstructural changes. Sintered samples were immersed in a simulated body fluid (SBF) with elemental concentrations that were comparable to those of human blood plasma for a total period of 15 days. Both materials were implanted in fibroblast culture for biocompatibility evaluations were carried out. The results show that spherical and irregular powder could be sintered to a maximum theoretical density. Maximum tensile strength was obtained for spherical shape powder sintered. The tensile strength of the irregular shape powder sintered at the same temperature was lower due to higher porosity. Finally, mechanical tests show that the irregular shape powder has lower mechanical properties than spherical shape powder. The sintered irregular Ti64 powder exhibited better biocompatibility than sintered spherical Ti64 powder. Results of study showed that sintered spherical and irregular Ti64 powders exhibited high mechanical properties and good biocompatibility properties. PMID:25201399

  13. Mechanical properties of low activation Cr-Mn austenitic steels changes in liquid lithium

    NASA Astrophysics Data System (ADS)

    Vertkov, A. V.; Evtikhin, V. A.; Lyublinski, I. E.; Syichev, A. A.; Demina, E. V.; Prusakova, M. D.

    1993-08-01

    The mechanical properties of Fe0.06C12Cr14Mn4NiAlMo, Fe0.10C12Cr20Mn W, Fe0.25C12Cr20Mn2W, Fe0.06C17Cr19Mn3NiNbN, Fe0.0713Cr20MnN steels attacked by liquid lithium were studied. Preexposure of steels was performed in static isothermal lithium at 723 and 873 K; in the hot leg of a convection loop at 723 K, and in inert atmosphere at 723 and 873 K for 2600 h. Lithium contained up to 400 ppm nitrogen and up to 1% hydrogen. The mechanical properties were determined by tensile test in lithium and in vacuum at a strain rate of 1×10 -5-1×10 -3 s -1. It was shown that mechanical properties of tested steels after exposure in the lithium changed more than for CrNi steels. The strong embrittlement of steels containing nitrogen is associated with intergranular penetration of lithium. The character of other steels mechanical properties changes is difficult to explain and may be associated with nometallic impurities redistribution and steel phase composition changes. The main mechanical properties change took place continually for the first 1000 h at 723 K exposure. Noticeable change in the mechanical properties of the steels exposed to lithium at 873 K occuredeven until 2600 h of exposure. The effect of strength and ductility reduction through absorption did not occur.

  14. Face-induced expectancies influence neural mechanisms of performance monitoring.

    PubMed

    Osinsky, Roman; Seeger, Jennifer; Mussel, Patrick; Hewig, Johannes

    2016-04-01

    In many daily situations, the consequences of our actions are predicted by cues that are often social in nature. For instance, seeing the face of an evaluator (e.g., a supervisor at work) may activate certain evaluative expectancies, depending on the history of prior encounters with that particular person. We investigated how such face-induced expectancies influence neurocognitive functions of performance monitoring. We recorded an electroencephalogram while participants completed a time-estimation task, during which they received performance feedback from a strict and a lenient evaluator. During each trial, participants first saw the evaluator's face before performing the task and, finally, receiving feedback. Therefore, faces could be used as predictive cues for the upcoming evaluation. We analyzed electrocortical signatures of performance monitoring at the stages of cue processing, task performance, and feedback reception. Our results indicate that, at the cue stage, seeing the strict evaluator's face results in an anticipatory preparation of fronto-medial monitoring mechanisms, as reflected by a sustained negative-going amplitude shift (i.e., the contingent negative variation). At the performance stage, face-induced expectancies of a strict evaluation rule led to increases of early performance monitoring signals (i.e., frontal-midline theta power). At the final stage of feedback reception, violations of outcome expectancies differentially affected the feedback-related negativity and frontal-midline theta power, pointing to a functional dissociation between these signatures. Altogether, our results indicate that evaluative expectancies induced by face-cues lead to adjustments of internal performance monitoring mechanisms at various stages of task processing.

  15. Face-induced expectancies influence neural mechanisms of performance monitoring.

    PubMed

    Osinsky, Roman; Seeger, Jennifer; Mussel, Patrick; Hewig, Johannes

    2016-04-01

    In many daily situations, the consequences of our actions are predicted by cues that are often social in nature. For instance, seeing the face of an evaluator (e.g., a supervisor at work) may activate certain evaluative expectancies, depending on the history of prior encounters with that particular person. We investigated how such face-induced expectancies influence neurocognitive functions of performance monitoring. We recorded an electroencephalogram while participants completed a time-estimation task, during which they received performance feedback from a strict and a lenient evaluator. During each trial, participants first saw the evaluator's face before performing the task and, finally, receiving feedback. Therefore, faces could be used as predictive cues for the upcoming evaluation. We analyzed electrocortical signatures of performance monitoring at the stages of cue processing, task performance, and feedback reception. Our results indicate that, at the cue stage, seeing the strict evaluator's face results in an anticipatory preparation of fronto-medial monitoring mechanisms, as reflected by a sustained negative-going amplitude shift (i.e., the contingent negative variation). At the performance stage, face-induced expectancies of a strict evaluation rule led to increases of early performance monitoring signals (i.e., frontal-midline theta power). At the final stage of feedback reception, violations of outcome expectancies differentially affected the feedback-related negativity and frontal-midline theta power, pointing to a functional dissociation between these signatures. Altogether, our results indicate that evaluative expectancies induced by face-cues lead to adjustments of internal performance monitoring mechanisms at various stages of task processing. PMID:26527096

  16. Mechanical properties of the gastrocnemius aponeurosis in wild turkeys

    PubMed Central

    Azizi, Emanuel; Halenda, Gregory M.; Roberts, Thomas J.

    2009-01-01

    In many muscles, the tendinous structures include both an extramuscular free tendon as well as a sheet-like aponeurosis. In both free tendons and aponeuroses the collagen fascicles are oriented primarily longitudinally, along the muscle's line of action. It is generally assumed that this axis represents the direction of loading for these structures. This assumption is well founded for free tendons, but aponeuroses undergo a more complex loading regime. Unlike free tendons, aponeuroses surround a substantial portion of the muscle belly and are therefore loaded both parallel (longitudinal) and perpendicular (transverse) to a muscle's line of action when contracting muscles bulge to maintain a constant volume. Given this biaxial loading pattern, it is critical to understand the mechanical properties of aponeuroses in both the longitudinal and transverse directions. In this study, we use uniaxial testing of isolated tissue samples from the aponeurosis of the lateral gastrocnemius of wild turkeys to determine mechanical properties of samples loaded longitudinally (along the muscle's line of action) and transversely (orthogonal to the line of action). We find that the aponeurosis has a significantly higher Young's modulus in the longitudinal than in the transverse direction. Our results also show that aponeuroses can behave as efficient springs in both the longitudinal and transverse directions, losing little energy to hysteresis. We also test the failure properties of aponeuroses to quantify the likely safety factor with which these structures operate during muscular force production. These results provide an essential foundation for understanding the mechanical function of aponeuroses as biaxially loaded biological springs. PMID:21120110

  17. Mechanical properties of a biodegradable bone regeneration scaffold

    NASA Technical Reports Server (NTRS)

    Porter, B. D.; Oldham, J. B.; He, S. L.; Zobitz, M. E.; Payne, R. G.; An, K. N.; Currier, B. L.; Mikos, A. G.; Yaszemski, M. J.

    2000-01-01

    Poly (Propylene Fumarate) (PPF), a novel, bulk erosion, biodegradable polymer, has been shown to have osteoconductive effects in vivo when used as a bone regeneration scaffold (Peter, S. J., Suggs, L. J., Yaszemski, M. J., Engel, P. S., and Mikos, A. J., 1999, J. Biomater. Sci. Polym. Ed., 10, pp. 363-373). The material properties of the polymer allow it to be injected into irregularly shaped voids in vivo and provide mechanical stability as well as function as a bone regeneration scaffold. We fabricated a series of biomaterial composites, comprised of varying quantities of PPF, NaCl and beta-tricalcium phosphate (beta-TCP), into the shape of right circular cylinders and tested the mechanical properties in four-point bending and compression. The mean modulus of elasticity in compression (Ec) was 1204.2 MPa (SD 32.2) and the mean modulus of elasticity in bending (Eb) was 1274.7 MPa (SD 125.7). All of the moduli were on the order of magnitude of trabecular bone. Changing the level of NaCl from 20 to 40 percent, by mass, did not decrease Ec and Eb significantly, but did decrease bending and compressive strength significantly. Increasing the beta-TCP from 0.25 g/g PPF to 0.5 g/g PPF increased all of the measured mechanical properties of PPF/NVP composites. These results indicate that this biodegradable polymer composite is an attractive candidate for use as a replacement scaffold for trabecular bone.

  18. Thermal and mechanical treatments for nickel and some nickel-base alloys: Effects on mechanical properties

    NASA Technical Reports Server (NTRS)

    Hall, A. M.; Beuhring, V. F.

    1972-01-01

    This report deals with heat treating and working nickel and nickel-base alloys, and with the effects of these operations on the mechanical properties of the materials. The subjects covered are annealing, solution treating, stress relieving, stress equalizing, age hardening, hot working, cold working, combinations of working and heat treating (often referred to as thermomechanical treating), and properties of the materials at various temperatures. The equipment and procedures used in working the materials are discussed, along with the common problems that may be encountered and the precautions and corrective measures that are available.

  19. Mechanical properties of several Fe-Ni meteorites

    SciTech Connect

    Mulford, Roberta N; El - Dasher, Bassem

    2010-10-28

    The strength and elastic constants of meteorites are of increasing interest as predictions of meteorite impacts on earth come within the realm of possibility. In addition, meteorite impacts on extraterrestrial bodies provide an excellent sampling tool for evaluation of planetary compositions and properties. Fe-Ni meteorites provide a well-defined group of materials of fairly uniform composition. Iron-nickel meteorites exhibit a unique lamellar microstructure, a Widmanstatten structure, consisting of small regions with steep-iron-nickel composition gradients. This microstructure is found in the Fe-Ni system only in meteorites, and is believed to arise as a result of slow cooling in a planetary core or other large mass. Meteorites with compositions consisting of between 5 and 17% nickel in iron are termed 'octahedrite,' and further characterized according to the width of the Ni-poor kamacite bands; 'fine,' (0.2-0.5 mm) 'medium,' (0.5-1.3 mm) and 'coarse,' (1.5-3.3 mm). Many meteorites have inclusions and structures indicating that the material has been shocked at some point early in its evolution. Several Iron-nickel meteorites have been examined using Vickers and spherical indentation, x-ray fluorescence, and EBSD. Direct observation of mechanical properties in these highly structured materials provides a valuable supplement to bulk measurements, which frequently exhibit large variation in dynamic properties, even within a single sample. Previous studies of the mechanical properties of a typical iron-nickel meteorite, a Diablo Canyon specimen, indicated that the strength of the composite was higher by almost an order of magnitude than values obtained from laboratory-prepared specimens. Additional meteorite specimens have been examined to establish a range of error on the previously measured yield, to determine the extent to which deformation upon re-entry contributes to yield, and to establish the degree to which the strength varies as a function of microstructure.

  20. Mechanical and thermal properties of planetologically important ices

    NASA Technical Reports Server (NTRS)

    Croft, Steven K.

    1987-01-01

    Two squences of ice composition were proposed for the icy satellites: a dense nebula model and a solar nebula model. Careful modeling of the structure, composition, and thermal history of satellites composed of these various ices requires quantitative information on the density, compressibility, thermal expansion, heat capacity, and thermal conductivity. Equations of state were fitted to the density data of the molecular ices. The unusual thermal and mechanical properties of the molecular and binary ices suggest a larger range of phenomena than previously anticipated, sufficiently complex perhaps to account for many of the unusual geologic phenomena found on the icy satellites.