Sample records for mechanical testing machine

  1. Design of a hydraulic bending machine

    Treesearch

    Steven G. Hankel; Marshall Begel

    2004-01-01

    To keep pace with customer demands while phasing out old and unserviceable test equipment, the staff of the Engineering Mechanics Laboratory (EML) at the USDA Forest Service, Forest Products Laboratory, designed and assembled a hydraulic bending test machine. The EML built this machine to test dimension lumber, nominal 2 in. thick and up to 12 in. deep, at spans up to...

  2. Machining and characterization of self-reinforced polymers

    NASA Astrophysics Data System (ADS)

    Deepa, A.; Padmanabhan, K.; Kuppan, P.

    2017-11-01

    This Paper focuses on obtaining the mechanical properties and the effect of the different machining techniques on self-reinforced composites sample and to derive the best machining method with remarkable properties. Each sample was tested by the Tensile and Flexural tests, fabricated using hot compaction test and those loads were calculated. These composites are machined using conventional methods because of lack of advanced machinery in most of the industries. The advanced non-conventional methods like Abrasive water jet machining were used. These machining techniques are used to get the better output for the composite materials with good mechanical properties compared to conventional methods. But the use of non-conventional methods causes the changes in the work piece, tool properties and more economical compared to the conventional methods. Finding out the best method ideal for the designing of these Self Reinforced Composites with and without defects and the use of Scanning Electron Microscope (SEM) analysis for the comparing the microstructure of the PP and PE samples concludes our process.

  3. Open Architecture Data System for NASA Langley Combined Loads Test System

    NASA Technical Reports Server (NTRS)

    Lightfoot, Michael C.; Ambur, Damodar R.

    1998-01-01

    The Combined Loads Test System (COLTS) is a new structures test complex that is being developed at NASA Langley Research Center (LaRC) to test large curved panels and cylindrical shell structures. These structural components are representative of aircraft fuselage sections of subsonic and supersonic transport aircraft and cryogenic tank structures of reusable launch vehicles. Test structures are subjected to combined loading conditions that simulate realistic flight load conditions. The facility consists of two pressure-box test machines and one combined loads test machine. Each test machine possesses a unique set of requirements or research data acquisition and real-time data display. Given the complex nature of the mechanical and thermal loads to be applied to the various research test articles, each data system has been designed with connectivity attributes that support both data acquisition and data management functions. This paper addresses the research driven data acquisition requirements for each test machine and demonstrates how an open architecture data system design not only meets those needs but provides robust data sharing between data systems including the various control systems which apply spectra of mechanical and thermal loading profiles.

  4. The reflection of evolving bearing faults in the stator current's extended park vector approach for induction machines

    NASA Astrophysics Data System (ADS)

    Corne, Bram; Vervisch, Bram; Derammelaere, Stijn; Knockaert, Jos; Desmet, Jan

    2018-07-01

    Stator current analysis has the potential of becoming the most cost-effective condition monitoring technology regarding electric rotating machinery. Since both electrical and mechanical faults are detected by inexpensive and robust current-sensors, measuring current is advantageous on other techniques such as vibration, acoustic or temperature analysis. However, this technology is struggling to breach into the market of condition monitoring as the electrical interpretation of mechanical machine-problems is highly complicated. Recently, the authors built a test-rig which facilitates the emulation of several representative mechanical faults on an 11 kW induction machine with high accuracy and reproducibility. Operating this test-rig, the stator current of the induction machine under test can be analyzed while mechanical faults are emulated. Furthermore, while emulating, the fault-severity can be manipulated adaptively under controllable environmental conditions. This creates the opportunity of examining the relation between the magnitude of the well-known current fault components and the corresponding fault-severity. This paper presents the emulation of evolving bearing faults and their reflection in the Extended Park Vector Approach for the 11 kW induction machine under test. The results confirm the strong relation between the bearing faults and the stator current fault components in both identification and fault-severity. Conclusively, stator current analysis increases reliability in the application as a complete, robust, on-line condition monitoring technology.

  5. Modelling of Mechanical Behavior at High Strain Rate of Ti-6al-4v Manufactured By Means of Direct Metal Laser Sintering Technique

    NASA Astrophysics Data System (ADS)

    Iannitti, Gianluca; Bonora, Nicola; Gentile, Domenico; Ruggiero, Andrew; Testa, Gabriel; Gubbioni, Simone

    2017-06-01

    In this work, the mechanical behavior of Ti-6Al-4V obtained by additive manufacturing technique was investigated, also considering the build direction. Dog-bone shaped specimens and Taylor cylinders were machined from rods manufactured by means of the EOSSINT M2 80 machine, based on Direct Metal Laser Sintering technique. Tensile tests were performed at strain rate ranging from 5E-4 s-1 to 1000 s-1 using an Instron electromechanical machine for quasistatic tests and a Direct-Tension Split Hopkinson Bar for dynamic tests. The mechanical strength of the material was described by a Johnson-Cook model modified to account for stress saturation occurring at high strain. Taylor cylinder tests and their corresponding numerical simulations were carried out in order to validate the constitutive model under a complex deformation path, high strain rates, and high temperatures.

  6. Creep Laboratory manual

    NASA Astrophysics Data System (ADS)

    Osgerby, S.; Loveday, M. S.

    1992-06-01

    A manual for the NPL Creep Laboratory, a collective name given to two testing laboratories, the Uniaxial Creep Laboratory and the Advanced High Temperature Mechanical Testing Laboratory, is presented. The first laboratory is devoted to uniaxial creep testing and houses approximately 50 high sensitivity creep machines including 10 constant stress cam lever machines. The second laboratory houses a low cycle fatigue testing machine of 100 kN capacity driven by a servo-electric actuator, five machines for uniaxial tensile creep testing of engineering ceramics at temperatures up to 1600C, and an electronic creep machine. Details of the operational procedures for carrying out uniaxial creep testing are given. Calibration procedures to be followed in order to comply with the specifications laid down by British standards, and to provide traceability back to the primary standards are described.

  7. 49 CFR 236.376 - Mechanical locking.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Mechanical locking. 236.376 Section 236.376 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... and Tests § 236.376 Mechanical locking. Mechanical locking in interlocking machine shall be tested...

  8. A portable fracture toughness tester for biological materials

    NASA Astrophysics Data System (ADS)

    Darvell, B. W.; Lee, P. K. D.; Yuen, T. D. B.; Lucas, P. W.

    1996-06-01

    A portable mechanical tester is described which is both lightweight and cheap to produce. The machine is simple and convenient to operate and requires only a minimum of personnel training. It can be used to measure the fundamental mechanical properties of pliant solids, particularly toughness (in the sense of `work of fracture') using either scissors or wedge tests. This is achieved through a novel hardware integration technique. The circuits are described. The use of the machine does not require a chart recorder but it can be linked to a personal computer, either to show force - displacement relationships or for data storage. The design allows the use of any relatively `soft' mechanical test, i.e. tests in which the deformability of the frame of the machine and its load cell do not introduce significant errors into the results. Examples of its use in measuring the toughness of biomaterials by scissors (paper, wood) and wedges (mung bean starch gels) are given.

  9. Achievement Test Program.

    ERIC Educational Resources Information Center

    Ohio State Dept. of Education, Columbus. Trade and Industrial Education Service.

    The Ohio Trade and Industrial Education Achievement Test battery is comprised of seven basic achievement tests: Machine Trades, Automotive Mechanics, Basic Electricity, Basic Electronics, Mechanical Drafting, Printing, and Sheet Metal. The tests were developed by subject matter committees and specialists in testing and research. The Ohio Trade and…

  10. Analysis of rolling contact spall life in 440 C steel bearing rims

    NASA Technical Reports Server (NTRS)

    Bastias, P. C.; Bhargava, V.; Bower, A. P.; Du, J.; Gupta, V.; Hahn, G. T.; Kulkarni, S. M.; Kumar, A. M.; Leng, X.; Rubin, C. A.

    1991-01-01

    The results of a two year study of the mechanisms of spall failure in the HPOTP bearings are described. The objective was to build a foundation for detailed analyses of the contact life in terms of: cyclic plasticity, contact mechanics, spall nucleation, and spall growth. Since the laboratory rolling contact testing is carried out in the 3 ball/rod contact fatigue testing machine, the analysis of the contacts and contact lives produced in this machine received attention. The results from the experimentally observed growth lives are compared with calculated predictions derived from the fracture mechanics calculations.

  11. Effect of Thermal and Chemical Treatment on the Microstructural, Mechanical and Machining Performance of W319 Al-Si-Cu Cast Alloy Engine Blocks and Directionally Solidified Machinability Test Blocks

    NASA Astrophysics Data System (ADS)

    Szablewski, Daniel

    The research presented in this work is focused on making a link between casting microstructural, mechanical and machining properties for 319 Al-Si sand cast components. In order to achieve this, a unique Machinability Test Block (MTB) is designed to simulate the Nemak V6 Al-Si engine block solidification behavior. This MTB is then utilized to cast structures with in-situ nano-alumina particle master alloy additions that are Mg based, as well as independent in-situ Mg additions, and Sr additions to the MTB. The Universal Metallurgical Simulator and Analyzer (UMSA) Technology Platform is utilized for characterization of each cast structure at different Secondary Dendrite Arm Spacing (SDAS) levels. The rapid quench method and Jominy testing is used to assess the capability of the nano-alumina master alloy to modify the microstructure at different SDAS levels. Mechanical property assessment of the MTB is done at different SDAS levels on cast structures with master alloy additions described above. Weibull and Quality Index statistical analysis tools are then utilized to assess the mechanical properties. The MTB is also used to study single pass high speed face milling and bi-metallic cutting operations where the Al-Si hypoeutectic structure is combined with hypereutectoid Al-Si liners and cast iron cylinder liners. These studies are utilized to aid the implementation of Al-Si liners into the Nemak V6 engine block and bi-metallic cutting of the head decks. Machining behavior is also quantified for the investigated microstructures, and the Silicon Modification Level (SiML) is utilized for microstructural analysis as it relates to the machining behavior.

  12. Express Control of the Mechanical Properties of High-Strength and Hard-to-Machine Materials at All Stages of the Technological Cycle of Producing Mechanical Engineering Products

    NASA Astrophysics Data System (ADS)

    Matyunin, V. M.; Marchenkov, A. Yu.; Demidov, A. N.; Karimbekov, M. A.

    2017-12-01

    It is shown that depth-sensing indentation can be used to perform express control of the mechanical properties of high-strength and hard-to-machine materials. This control can be performed at various stages of a technological cycle of processing materials and parts without preparing and testing tensile specimens, which will significantly reduce the consumption of materials, time, and labor.

  13. Experimental Investigation of Mechanical Behavior of an Oxide/Oxide Ceramic Composite in Interlaminar Shear and under Combined Tension-Torsion Loading

    DTIC Science & Technology

    2014-03-27

    testing machine was warmed up for at least 30 min using a cyclic command with a sine waveform in displacement control . Gripping sections of each test...the test specimen was inserted into the susceptor. Then the testing machine is placed in displacement control and the top portion of the specimen...the MTS software also triggered the operation of the high speed cameras. 31 The testing system was placed in displacement /rotation control and the

  14. Nano Mechanical Machining Using AFM Probe

    NASA Astrophysics Data System (ADS)

    Mostofa, Md. Golam

    Complex miniaturized components with high form accuracy will play key roles in the future development of many products, as they provide portability, disposability, lower material consumption in production, low power consumption during operation, lower sample requirements for testing, and higher heat transfer due to their very high surface-to-volume ratio. Given the high market demand for such micro and nano featured components, different manufacturing methods have been developed for their fabrication. Some of the common technologies in micro/nano fabrication are photolithography, electron beam lithography, X-ray lithography and other semiconductor processing techniques. Although these methods are capable of fabricating micro/nano structures with a resolution of less than a few nanometers, some of the shortcomings associated with these methods, such as high production costs for customized products, limited material choices, necessitate the development of other fabricating techniques. Micro/nano mechanical machining, such an atomic force microscope (AFM) probe based nano fabrication, has, therefore, been used to overcome some the major restrictions of the traditional processes. This technique removes material from the workpiece by engaging micro/nano size cutting tool (i.e. AFM probe) and is applicable on a wider range of materials compared to the photolithographic process. In spite of the unique benefits of nano mechanical machining, there are also some challenges with this technique, since the scale is reduced, such as size effects, burr formations, chip adhesions, fragility of tools and tool wear. Moreover, AFM based machining does not have any rotational movement, which makes fabrication of 3D features more difficult. Thus, vibration-assisted machining is introduced into AFM probe based nano mechanical machining to overcome the limitations associated with the conventional AFM probe based scratching method. Vibration-assisted machining reduced the cutting forces and burr formations through intermittent cutting. Combining the AFM probe based machining with vibration-assisted machining enhanced nano mechanical machining processes by improving the accuracy, productivity and surface finishes. In this study, several scratching tests are performed with a single crystal diamond AFM probe to investigate the cutting characteristics and model the ploughing cutting forces. Calibration of the probe for lateral force measurements, which is essential, is also extended through the force balance method. Furthermore, vibration-assisted machining system is developed and applied to fabricate different materials to overcome some of the limitations of the AFM probe based single point nano mechanical machining. The novelty of this study includes the application of vibration-assisted AFM probe based nano scale machining to fabricate micro/nano scale features, calibration of an AFM by considering different factors, and the investigation of the nano scale material removal process from a different perspective.

  15. [Effect of glyceryl triacetate on properties of PLA/PBAT blends].

    PubMed

    Yang, Nan; Wang, Xiyuan; Weng, Yunxuan; Jin, Yujuan; Zhang, Min

    2016-06-25

    Poly lactic acid (PLA)/Poly (butyleneadipate-co-terephthalate)(PBAT) and glyceryl triacetate (GTA) blend were prepared by torque rheometer, and the effect of GTA on thermodynamical performance, mechanical properties and microstructure of PLA/PBAT composites were studied using differential scanning calorimeter(DSC), dynamic mechanical analysis(DMA), universal testing machine, impact testing machine and scanning electron microscope(SEM). After adding GTA, Tg values of the two phases gradually became closer, blends cold crystallization temperature and melting temperature decreased. When with 3 phr GTA, the dispersed phase particle size of PLA/PBAT blend decreased. Mechanics performance test showed that the elongation at break and impact strength of the PLA/PBAT blend was greatly increased with 3 phr GTA, and the elongation at break increased 2.6 times, improved from 17.7% to 64.1%.

  16. Layered Plating Specimens For Mechanical Tests

    NASA Technical Reports Server (NTRS)

    Thompson, Linda B.; Flowers, Cecil E.

    1991-01-01

    Layered specimens readily made in standard sizes for tensile and other tests of mechanical properties. Standard specimen of metal ordinarily difficult to plate to standard grip thickness or diameter made by augmentation with easier-to-plate material followed by machining to standard size and shape.

  17. Mechanical Testing of Common-Use Polymeric Materials with an In-House-Built Apparatus

    ERIC Educational Resources Information Center

    Pedrosa, Cristiana; Mendes, Joaquim; Magalhaes, Fernao D.

    2006-01-01

    A low-cost tensile testing machine was built for testing polymeric films. This apparatus also allows for tear-strength and flexural tests. The experimental results, obtained from common-use materials, selected by the students, such as plastic bags, illustrate important aspects of the mechanical behavior of polymeric materials. Some of the tests…

  18. Development of a low energy micro sheet forming machine

    NASA Astrophysics Data System (ADS)

    Razali, A. R.; Ann, C. T.; Shariff, H. M.; Kasim, N. I.; Musa, M. A.; Ahmad, A. F.

    2017-10-01

    It is expected that with the miniaturization of materials being processed, energy consumption is also being `miniaturized' proportionally. The focus of this study was to design a low energy micro-sheet-forming machine for thin sheet metal application and fabricate a low direct current powered micro-sheet-forming machine. A prototype of low energy system for a micro-sheet-forming machine which includes mechanical and electronic elements was developed. The machine was tested for its performance in terms of natural frequency, punching forces, punching speed and capability, energy consumption (single punch and frequency-time based). Based on the experiments, the machine can do 600 stroke per minute and the process is unaffected by the machine's natural frequency. It was also found that sub-Joule of power was required for a single stroke of punching/blanking process. Up to 100micron thick carbon steel shim was successfully tested and punched. It concludes that low power forming machine is feasible to be developed and be used to replace high powered machineries to form micro-products/parts.

  19. Surface integrity and fatigue behaviour of electric discharged machined and milled austenitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundberg, Mattias, E-mail: mattias.lundberg@liu.se

    Machining of austenitic stainless steels can result in different surface integrities and different machining process parameters will have a great impact on the component fatigue life. Understanding how machining processes affect the cyclic behaviour and microstructure are of outmost importance in order to improve existing and new life estimation models. Milling and electrical discharge machining (EDM) have been used to manufacture rectangular four-point bend fatigue test samples; subjected to high cycle fatigue. Before fatigue testing, surface integrity characterisation of the two surface conditions was conducted using scanning electron microscopy, surface roughness, residual stress profiles, and hardness profiles. Differences in cyclicmore » behaviour were observed between the two surface conditions by the fatigue testing. The milled samples exhibited a fatigue limit. EDM samples did not show the same behaviour due to ratcheting. Recrystallized nano sized grains were identified at the severely plastically deformed surface of the milled samples. Large amounts of bent mechanical twins were observed ~ 5 μm below the surface. Grain shearing and subsequent grain rotation from milling bent the mechanical twins. EDM samples showed much less plastic deformation at the surface. Surface tensile residual stresses of ~ 500 MPa and ~ 200 MPa for the milled and EDM samples respectively were measured. - Highlights: •Milled samples exhibit fatigue behaviour, but not EDM samples. •Four-point bending is not suitable for materials exhibiting pronounced ratcheting. •LAGB density can be used to quantitatively measure plastic deformation. •Grain shearing and rotation result in bent mechanical twins. •Nano sized grains evolve due to the heat of the operation.« less

  20. Microstructural and hardness changes in aluminum alloy Al-7075: Correlating machining and equal channel angular pressing

    NASA Astrophysics Data System (ADS)

    Imbrogno, Stano; Segebade, Eric; Fellmeth, Andreas; Gerstenmeyer, Michael; Zanger, Frederik; Schulze, Volker; Umbrello, Domenico

    2017-10-01

    Recently, the study and understanding of surface integrity of various materials after machining is becoming one of the interpretative keys to quantify a product's quality and life cycle performance. The possibility to provide fundamental details about the mechanical response and the behavior of the affected material layers caused by thermo-mechanical loads resulting from machining operations can help the designer to produce parts with superior quality. The aim of this work is to study the experimental outcomes obtained from orthogonal cutting tests and a Severe Plastic Deformation (SPD) process known as Equal Channel Angular Pressing (ECAP) in order to find possible links regarding induced microstructural and hardness changes between machined surface layer and SPD-bulk material for Al-7075. This scientific investigation aims to establish the basis for an innovative method to study and quantify metallurgical phenomena that occur beneath the machined surface of bulk material.

  1. Laser-machined piezoelectric cantilevers for mechanical energy harvesting.

    PubMed

    Kim, HyunUk; Bedekar, Vishwas; Islam, Rashed Adnan; Lee, Woo-Ho; Leo, Don; Priya, Shashank

    2008-09-01

    In this study, we report results on a piezoelectric- material-based mechanical energy-harvesting device that was fabricated by combining laser machining with microelectronics packaging technology. It was found that the laser-machining process did not have significant effect on the electrical properties of piezoelectric material. The fabricated device was tested in the low-frequency regime of 50 to 1000 Hz at constant force of 8 g (where g = 9.8 m/s(2)). The device was found to generate continuous power of 1.13 microW at 870 Hz across a 288.5 kOmega load with a power density of 301.3 microW/cm(3).

  2. A tensile machine with a novel optical load cell for soft biological tissues application.

    PubMed

    Faturechi, Rahim; Hashemi, Ata; Abolfathi, Nabiollah

    2014-11-01

    The uniaxial tensile testing machine is the most common device used to measure the mechanical properties of industrial and biological materials. The need for a low-cost uniaxial tension testing device for small research centers has always been the subject of research. To address this need, a novel uniaxial tensile testing machine was designed and fabricated to measure the mechanical properties of soft biological tissues. The device is equipped with a new low-cost load cell which works based on the linear displacement/force relationship of beams. The deflection of the beam load cell is measured optically by a digital microscope with an accuracy of 1 µm. The stiffness of the designed load cell was experimentally and theoretically determined at 100 N mm(-1). The stiffness of the load cell can be easily adjusted according to the tissue's strength. The force-time behaviour of soft tissue specimens was obtained by an in-house image processing program. To demonstrate the efficiency of the fabricated device, the mechanical properties of amnion tissue was measured and compared with available data. The obtained results indicate a strong agreement with that of previous studies.

  3. Results of PBX 9501 and PBX 9502 Round-Robin Quasi-Static Tension Tests from JOWOG-9/39 Focused Exchange.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, D. G.

    2002-01-01

    A round-robin study was conducted with the participation of three laboratory facilities: Los Alamos National Laboratory (LANL), BWXT Pantex Plant (PX), and Lawrence Livermore National Laboratory (LLNL). The study involved the machining and quasi-static tension testing of two plastic-bonded high explosive (PBX) composites, PBX 9501 and PBX 9502. Nine tensile specimens for each type of PBX were to be machined at each of the three facilities; 3 of these specimens were to be sent to each of the participating materials testing facilities for tensile testing. The resultant data was analyzed to look for trends associated with specimen machining location and/ormore » trends associated with materials testing location. The analysis provides interesting insights into the variability and statistical nature of mechanical properties testing on PBX composites. Caution is warranted when results are compared/exchanged between testing facilities.« less

  4. Investigation of Dynamic Force/Vibration Transmission Characteristics of Four-Square Type Gear Durability Test Machines

    NASA Technical Reports Server (NTRS)

    Kahraman, Ahmet

    2002-01-01

    In this study, design requirements for a dynamically viable, four-square type gear test machine are investigated. Variations of four-square type gear test machines have been in use for durability and dynamics testing of both parallel- and cross-axis gear set. The basic layout of these machines is illustrated. The test rig is formed by two gear pairs, of the same reduction ratio, a test gear pair and a reaction gear pair, connected to each other through shafts of certain torsional flexibility to form an efficient, closed-loop system. A desired level of constant torque is input to the circuit through mechanical (a split coupling with a torque arm) or hydraulic (a hydraulic actuator) means. The system is then driven at any desired speed by a small DC motor. The main task in hand is the isolation of the test gear pair from the reaction gear pair under dynamic conditions. Any disturbances originated at the reaction gear mesh might potentially travel to the test gearbox, altering the dynamic loading conditions of the test gear mesh, and hence, influencing the outcome of the durability or dynamics test. Therefore, a proper design of connecting structures becomes a major priority. Also, equally important is the issue of how close the operating speed of the machine is to the resonant frequencies of the gear meshes. This study focuses on a detailed analysis of the current NASA Glenn Research Center gear pitting test machine for evaluation of its resonance and vibration isolation characteristics. A number of these machines as the one illustrated has been used over last 30 years to establish an extensive database regarding the influence of the gear materials, processes surface treatments and lubricants on gear durability. This study is intended to guide an optimum design of next generation test machines for the most desirable dynamic characteristics.

  5. Simulated Single Tooth Bending of High Temperature Alloys

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert, F.; Burke, Christopher

    2012-01-01

    Future unmanned space missions will require mechanisms to operate at extreme conditions in order to be successful. In some of these mechanisms, very high gear reductions will be needed to permit very small motors to drive other components at low rotational speed with high output torque. Therefore gearing components are required that can meet the mission requirements. In mechanisms such as this, bending fatigue strength capacity of the gears is very important. The bending fatigue capacity of a high temperature, nickel-based alloy, typically used for turbine disks in gas turbine engines and two tool steel materials with high vanadium content, were compared to that of a typical aerospace alloy-AISI 9310. Test specimens were fabricated by electro-discharge machining without post machining processing. Tests were run at 24 and at 490 C. As test temperature increased from 24 to 490 C the bending fatigue strength was reduced by a factor of five.

  6. Piezoelectric Response of Ferroelectric Ceramics Under Mechanical Stress

    DTIC Science & Technology

    2015-09-17

    dynamic response, and predict mechanical breakdown of electronic materials, numerous testing techniques such as very high-g machines , drop towers...James C. Hierholzer for building the custom test fixture, Michael D. Craft for his help with static capacitance measurements, Bryan J. Turner, Scott D...ISOLA 370HR Board Specimen Test Set-Up . . . . . . . . . . . . . . . . . . 59 3.3 Printed Circuit Board Electrical Layout

  7. Modification of Upper Thread Tensioner of Sewing Machine

    NASA Astrophysics Data System (ADS)

    Klouček, P.; Škop, P.

    Standard mechanical upper thread tensioner of sewing machines is more and more limited in use for industrial sewing machines due to increasing requests for quality and raising velocity of machines. If we omit mostly manual settings of force made only by sense, the most problematic things are influence of different friction coefficient of the different batch of threads and strong relation between thread tension and sewing machine velocity. The article describes the development focused to the elimination of the most significant disadvantages of a standard tensioner and mainly finding of new conception of the tensioner with electromagnetic brake, development and testing of its prototype.

  8. Thrown object testing of forest machine operator protective structures

    Treesearch

    S.E. Taylor; M.W. Veal; R.B. Rummer

    2003-01-01

    High-speed chains or rotating disks are commonly used to cut and process trees during forest harvesting operations. Mechanical failure or fatigue of these tools can lead to a potentially hazardous situation where fragments of chain or sawteeth are thrown through the operator enclosures on forest machines. This poster presentation discusses the development and...

  9. Characterization of irradiated AISI 316L stainless steel disks removed from the Spallation Neutron Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vevera, Bradley J; Hyres, James W; McClintock, David A

    2014-01-01

    Irradiated AISI 316L stainless steel disks were removed from the Spallation Neutron Source (SNS) for post-irradiation examination (PIE) to assess mechanical property changes due to radiation damage and erosion of the target vessel. Topics reviewed include high-resolution photography of the disk specimens, cleaning to remove mercury (Hg) residue and surface oxides, profile mapping of cavitation pits using high frequency ultrasonic testing (UT), high-resolution surface replication, and machining of test specimens using wire electrical discharge machining (EDM), tensile testing, Rockwell Superficial hardness testing, Vickers microhardness testing, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The effectiveness of the cleaning proceduremore » was evident in the pre- and post-cleaning photography and permitted accurate placement of the test specimens on the disks. Due to the limited amount of material available and the unique geometry of the disks, machine fixturing and test specimen design were critical aspects of this work. Multiple designs were considered and refined during mock-up test runs on unirradiated disks. The techniques used to successfully machine and test the various specimens will be presented along with a summary of important findings from the laboratory examinations.« less

  10. Effects of edge grinding and sealing on mechanical properties of machine damaged laminate composites

    NASA Astrophysics Data System (ADS)

    Asmatulu, Ramazan; Yeoh, Jason; Alarifi, Ibrahim M.; Alharbi, Abdulaziz

    2016-04-01

    Fiber reinforced composites have been utilized for a number of different applications, including aircraft, wind turbine, automobile, construction, manufacturing, and many other industries. During the fabrication, machining (waterjet, diamond and band saws) and assembly of these laminate composites, various edge and hole delamination, fiber pullout and other micro and nanocracks can be formed on the composite panels. The present study mainly focuses on the edge grinding and sealing of the machine damaged fiber reinforced composites, such as fiberglass, plain weave carbon fiber and unidirectional carbon fiber. The MTS tensile test results confirmed that the composite coupons from the grinding process usually produced better and consistent mechanical properties compared to the waterjet cut samples only. In addition to these studies, different types of high strength adhesives, such as EPON 828 and Loctite were applied on the edges of the prepared composite coupons and cured under vacuum. The mechanical tests conducted on these coupons indicated that the overall mechanical properties of the composite coupons were further improved. These processes can lower the labor costs on the edge treatment of the composites and useful for different industrial applications of fiber reinforced composites.

  11. Orbital fatigue tester for use in Skylab experiment T032

    NASA Technical Reports Server (NTRS)

    Sandorff, P. E.

    1973-01-01

    A prototype fatigue test machine is described which is suitable for use by an astronaut in conducting constant amplitude materials fatigue tests aboard a Skylab or space shuttle vehicle. The machine is comparised of a mechanical tester, which would be passed through a small (7.6-inch square) airlock to be supported in the space environment on an extendible boom, and a control console, which would provide remote control from within the space vehicle.

  12. Underground coal mine instrumentation and test

    NASA Technical Reports Server (NTRS)

    Burchill, R. F.; Waldron, W. D.

    1976-01-01

    The need to evaluate mechanical performance of mine tools and to obtain test performance data from candidate systems dictate that an engineering data recording system be built. Because of the wide range of test parameters which would be evaluated, a general purpose data gathering system was designed and assembled to permit maximum versatility. A primary objective of this program was to provide a specific operating evaluation of a longwall mining machine vibration response under normal operating conditions. A number of mines were visited and a candidate for test evaluation was selected, based upon management cooperation, machine suitability, and mine conditions. Actual mine testing took place in a West Virginia mine.

  13. Experimental Investigation of Fibre Reinforced Composite Materials Under Impact Load

    NASA Astrophysics Data System (ADS)

    Koppula, Sravani; Kaviti, Ajay kumar; Namala, Kiran kumar

    2018-03-01

    Composite materials are extensively used in various engineering applications. They have very high flexibility design which allows prescribe tailoring of material properties by lamination of composite fibres with reinforcement of resin to it. Complex failure condition prevail in the composite materials under the action of impact loads, major modes of failure in composite may include matrix cracking, fibre matrix, fibre breakage, de-bonding or de- lamination between composite plies. This paper describes the mechanical properties of glass fibre reinforced composite material under impact loading conditions through experimental setup. Experimental tests are performed according to ASTM standards using impact testing machines like Charpy test, computerized universal testing machine.

  14. Wear behavior of carbide tool coated with Yttria-stabilized zirconia nano particles.

    NASA Astrophysics Data System (ADS)

    Jadhav, Pavandatta M.; Reddy, Narala Suresh Kumar

    2018-04-01

    Wear mechanism takes predominant role in reducing the tool life during machining of Titanium alloy. Challenges of wear mechanisms such as variation in chip, high pressure loads and spring back are responsible for tool wear. In addition, many tool materials are inapt for machining due to low thermal conductivity and volume specific heat of these materials results in high cutting temperature during machining. To confront this issue Electrostatic Spray Coating (ESC) coating technique is utilized to enhance the tool life to an acceptable level. The Yttria Stabilized Zirconia (YSZ) acts as a thermal barrier coating having high thermal expansion coefficient and thermal shock resistance. This investigation focuses on the influence of YSZ nanocoating on the tungsten carbide tool material and improve the machinability of Ti-6Al-4V alloy. YSZ nano powder was coated on the tungsten carbide pin by using ESC technique. The coatings have been tested for wear and friction behavior by using a pin-on-disc tribological tester. The dry sliding wear test was performed on Titanium alloy (Ti-6Al-4V) disc and YSZ coated tungsten carbide (pin) at ambient atmosphere. The performance parameters like wear rate and temperature rise were considered upon performing the dry sliding test on Ti-6Al-4V alloy disc. The performance parameters were calculated by using coefficient of friction and frictional force values which were obtained from the pin on disc test. Substantial resistance to wear was achieved by the coating.

  15. Mesoplasticity approach to studies of the cutting mechanism in ultra-precision machining

    NASA Astrophysics Data System (ADS)

    Lee, Rongbin W. B.; Wang, Hao; To, Suet; Cheung, Chi Fai; Chan, Chang Yuen

    2014-03-01

    There have been various theoretical attempts by researchers worldwide to link up different scales of plasticity studies from the nano-, micro- and macro-scale of observation, based on molecular dynamics, crystal plasticity and continuum mechanics. Very few attempts, however, have been reported in ultra-precision machining studies. A mesoplasticity approach advocated by Lee and Yang is adopted by the authors and is successfully applied to studies of the micro-cutting mechanisms in ultra-precision machining. Traditionally, the shear angle in metal cutting, as well as the cutting force variation, can only be determined from cutting tests. In the pioneering work of the authors, the use of mesoplasticity theory enables prediction of the fluctuation of the shear angle and micro-cutting force, shear band formation, chip morphology in diamond turning and size effect in nano-indentation. These findings are verified by experiments. The mesoplasticity formulation opens up a new direction of studies to enable how the plastic behaviour of materials and their constitutive representations in deformation processing, such as machining can be predicted, assessed and deduced from the basic properties of the materials measurable at the microscale.

  16. Development of a synchrotron biaxial tensile device for in situ characterization of thin films mechanical response.

    PubMed

    Geandier, G; Thiaudière, D; Randriamazaoro, R N; Chiron, R; Djaziri, S; Lamongie, B; Diot, Y; Le Bourhis, E; Renault, P O; Goudeau, P; Bouaffad, A; Castelnau, O; Faurie, D; Hild, F

    2010-10-01

    We have developed on the DIFFABS-SOLEIL beamline a biaxial tensile machine working in the synchrotron environment for in situ diffraction characterization of thin polycrystalline films mechanical response. The machine has been designed to test compliant substrates coated by the studied films under controlled, applied strain field. Technological challenges comprise the sample design including fixation of the substrate ends, the related generation of a uniform strain field in the studied (central) volume, and the operations from the beamline pilot. Preliminary tests on 150 nm thick W films deposited onto polyimide cruciform substrates are presented. The obtained results for applied strains using x-ray diffraction and digital image correlation methods clearly show the full potentialities of this new setup.

  17. Wire electric-discharge machining and other fabrication techniques

    NASA Technical Reports Server (NTRS)

    Morgan, W. H.

    1983-01-01

    Wire electric discharge machining and extrude honing were used to fabricate a two dimensional wing for cryogenic wind tunnel testing. Electric-discharge cutting is done with a moving wire electrode. The cut track is controlled by means of a punched-tape program and the cutting feed is regulated according to the progress of the work. Electric-discharge machining involves no contact with the work piece, and no mechanical force is exerted. Extrude hone is a process for honing finish-machined surfaces by the extrusion of an abrasive material (silly putty), which is forced through a restrictive fixture. The fabrication steps are described and production times are given.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Michael J.

    The Hydrogen Fracture Toughness Tester (HFTT) is a mechanical testing machine designed for conducting fracture mechanics tests on materials in high-pressure hydrogen gas. The tester is needed for evaluating the effects of hydrogen on the cracking properties of tritium reservoir materials. It consists of an Instron Model 8862 Electromechanical Test Frame; an Autoclave Engineering Pressure Vessel, an Electric Potential Drop Crack Length Measurement System, associated computer control and data acquisition systems, and a high-pressure hydrogen gas manifold and handling system.

  19. Westinghouse programs in pulsed homopolar power supplies

    NASA Technical Reports Server (NTRS)

    Litz, D. C.; Mullan, E.

    1984-01-01

    This document details Westinghouse's ongoing study of homopolar machines since 1929 with the major effort occurring in the early 1970's to the present. The effort has enabled Westinghouse to develop expertise in the technology required for the design, fabrication and testing of such machines. This includes electrical design, electromagnetic analysis, current collection, mechanical design, advanced cooling, stress analysis, transient rotor performance, bearing analysis and seal technology. Westinghouse is using this capability to explore the use of homopolar machines as pulsed power supplies for future systems in both military and commercial applications.

  20. The influence of machining condition and cutting tool wear on surface roughness of AISI 4340 steel

    NASA Astrophysics Data System (ADS)

    Natasha, A. R.; Ghani, J. A.; Che Haron, C. H.; Syarif, J.

    2018-01-01

    Sustainable machining by using cryogenic coolant as the cutting fluid has been proven to enhance some machining outputs. The main objective of the current work was to investigate the influence of machining conditions; dry and cryogenic, as well as the cutting tool wear on the machined surface roughness of AISI 4340 steel. The experimental tests were performed using chemical vapor deposition (CVD) coated carbide inserts. The value of machined surface roughness were measured at 3 cutting intervals; beginning, middle, and end of the cutting based on the readings of the tool flank wear. The results revealed that cryogenic turning had the greatest influence on surface roughness when machined at lower cutting speed and higher feed rate. Meanwhile, the cutting tool wear was also found to influence the surface roughness, either improving it or deteriorating it, based on the severity and the mechanism of the flank wear.

  1. Mechanical shear and tensile characteristics of selected biomass stems

    USDA-ARS?s Scientific Manuscript database

    Mechanical characteristics (stress and energy of tensile and shear modes) of selected biomass stems, such as big bluestem, bromegrass, and Barlow wheat were determined. A high capacity MTI-100K universal testing machine attached with standard tensile clamps and designed fabricated double-shear devic...

  2. Usage of CT data in biomechanical research

    NASA Astrophysics Data System (ADS)

    Safonov, Roman A.; Golyadkina, Anastasiya A.; Kirillova, Irina V.; Kossovich, Leonid Y.

    2017-02-01

    Object of study: The investigation is focused on development of personalized medicine. The determination of mechanical properties of bone tissues based on in vivo data was considered. Methods: CT, MRI, natural experiments on versatile test machine Instron 5944, numerical experiments using Python programs. Results: The medical diagnostics methods, which allows determination of mechanical properties of bone tissues based on in vivo data. The series of experiments to define the values of mechanical parameters of bone tissues. For one and the same sample, computed tomography (CT), magnetic resonance imaging (MRI), ultrasonic investigations and mechanical experiments on single-column test machine Instron 5944 were carried out. The computer program for comparison of CT and MRI images was created. The grayscale values in the same points of the samples were determined on both CT and MRI images. The Haunsfield grayscale values were used to determine rigidity (Young module) and tensile strength of the samples. The obtained data was compared to natural experiments results for verification.

  3. Cycle life machine for AX-5 space suit

    NASA Technical Reports Server (NTRS)

    Schenberger, Deborah S.

    1990-01-01

    In order to accurately test the AX-5 space suit, a complex series of motions needed to be performed which provided a unique opportunity for mechanism design. The cycle life machine design showed how 3-D computer images can enhance mechanical design as well as help in visualizing mechanisms before manufacturing them. In the early stages of the design, potential problems in the motion of the joint and in the four bar linkage system were resolved using CAD. Since these problems would have been very difficult and tedious to solve on a drawing board, they would probably not have been addressed prior to fabrication, thus limiting the final design or requiring design modification after fabrication.

  4. Surface orientation effects on bending properties of surgical mesh are independent of tensile properties.

    PubMed

    Simon, David D; Andrews, Sharon M; Robinson-Zeigler, Rebecca; Valdes, Thelma; Woods, Terry O

    2018-02-01

    Current mechanical testing of surgical mesh focuses primarily on tensile properties even though implanted devices are not subjected to pure tensile loads. Our objective was to determine the flexural (bending) properties of surgical mesh and determine if they correlate with mesh tensile properties. The flexural rigidity values of 11 different surgical mesh designs were determined along three textile directions (machine, cross-machine, and 45° to machine; n = 5 for each) using ASTM D1388-14 while tracking surface orientation. Tensile testing was also performed on the same specimens using ASTM D882-12. Linear regressions were performed to compare mesh flexural rigidity to mesh thickness, areal mass density, filament diameter, ultimate tensile strength, and maximum extension. Of 33 mesh specimen groups, 30 had significant differences in flexural rigidity values when comparing surface orientations (top and bottom). Flexural rigidity and mesh tensile properties also varied with textile direction (machine and cross-machine). There was no strong correlation between the flexural and tensile properties, with mesh thickness having the best overall correlation with flexural rigidity. Currently, surface orientation is not indicated on marketed surgical mesh, and a single mesh may behave differently depending on the direction of loading. The lack of correlation between flexural stiffness and tensile properties indicates the need to examine mesh bending stiffness to provide a more comprehensive understanding of surgical mesh mechanical behaviors. Further investigation is needed to determine if these flexural properties result in the surgical mesh behaving mechanically different depending on implantation direction. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 854-862, 2018. © 2017 Wiley Periodicals, Inc.

  5. Anaesthesia machine: checklist, hazards, scavenging.

    PubMed

    Goneppanavar, Umesh; Prabhu, Manjunath

    2013-09-01

    From a simple pneumatic device of the early 20(th) century, the anaesthesia machine has evolved to incorporate various mechanical, electrical and electronic components to be more appropriately called anaesthesia workstation. Modern machines have overcome many drawbacks associated with the older machines. However, addition of several mechanical, electronic and electric components has contributed to recurrence of some of the older problems such as leak or obstruction attributable to newer gadgets and development of newer problems. No single checklist can satisfactorily test the integrity and safety of all existing anaesthesia machines due to their complex nature as well as variations in design among manufacturers. Human factors have contributed to greater complications than machine faults. Therefore, better understanding of the basics of anaesthesia machine and checking each component of the machine for proper functioning prior to use is essential to minimise these hazards. Clear documentation of regular and appropriate servicing of the anaesthesia machine, its components and their satisfactory functioning following servicing and repair is also equally important. Trace anaesthetic gases polluting the theatre atmosphere can have several adverse effects on the health of theatre personnel. Therefore, safe disposal of these gases away from the workplace with efficiently functioning scavenging system is necessary. Other ways of minimising atmospheric pollution such as gas delivery equipment with negligible leaks, low flow anaesthesia, minimal leak around the airway equipment (facemask, tracheal tube, laryngeal mask airway, etc.) more than 15 air changes/hour and total intravenous anaesthesia should also be considered.

  6. Anaesthesia Machine: Checklist, Hazards, Scavenging

    PubMed Central

    Goneppanavar, Umesh; Prabhu, Manjunath

    2013-01-01

    From a simple pneumatic device of the early 20th century, the anaesthesia machine has evolved to incorporate various mechanical, electrical and electronic components to be more appropriately called anaesthesia workstation. Modern machines have overcome many drawbacks associated with the older machines. However, addition of several mechanical, electronic and electric components has contributed to recurrence of some of the older problems such as leak or obstruction attributable to newer gadgets and development of newer problems. No single checklist can satisfactorily test the integrity and safety of all existing anaesthesia machines due to their complex nature as well as variations in design among manufacturers. Human factors have contributed to greater complications than machine faults. Therefore, better understanding of the basics of anaesthesia machine and checking each component of the machine for proper functioning prior to use is essential to minimise these hazards. Clear documentation of regular and appropriate servicing of the anaesthesia machine, its components and their satisfactory functioning following servicing and repair is also equally important. Trace anaesthetic gases polluting the theatre atmosphere can have several adverse effects on the health of theatre personnel. Therefore, safe disposal of these gases away from the workplace with efficiently functioning scavenging system is necessary. Other ways of minimising atmospheric pollution such as gas delivery equipment with negligible leaks, low flow anaesthesia, minimal leak around the airway equipment (facemask, tracheal tube, laryngeal mask airway, etc.) more than 15 air changes/hour and total intravenous anaesthesia should also be considered. PMID:24249887

  7. Development of a synchrotron biaxial tensile device for in situ characterization of thin films mechanical response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geandier, G.; Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, 91192 Gif sur Yvette; LPMTM, UPR 9001 CNRS, Universite Paris-Nord, 93430 Villetaneuse

    2010-10-15

    We have developed on the DIFFABS-SOLEIL beamline a biaxial tensile machine working in the synchrotron environment for in situ diffraction characterization of thin polycrystalline films mechanical response. The machine has been designed to test compliant substrates coated by the studied films under controlled, applied strain field. Technological challenges comprise the sample design including fixation of the substrate ends, the related generation of a uniform strain field in the studied (central) volume, and the operations from the beamline pilot. Preliminary tests on 150 nm thick W films deposited onto polyimide cruciform substrates are presented. The obtained results for applied strains usingmore » x-ray diffraction and digital image correlation methods clearly show the full potentialities of this new setup.« less

  8. Predictive Modeling and Optimization of Vibration-assisted AFM Tip-based Nanomachining

    NASA Astrophysics Data System (ADS)

    Kong, Xiangcheng

    The tip-based vibration-assisted nanomachining process offers a low-cost, low-effort technique in fabricating nanometer scale 2D/3D structures in sub-100 nm regime. To understand its mechanism, as well as provide the guidelines for process planning and optimization, we have systematically studied this nanomachining technique in this work. To understand the mechanism of this nanomachining technique, we firstly analyzed the interaction between the AFM tip and the workpiece surface during the machining process. A 3D voxel-based numerical algorithm has been developed to calculate the material removal rate as well as the contact area between the AFM tip and the workpiece surface. As a critical factor to understand the mechanism of this nanomachining process, the cutting force has been analyzed and modeled. A semi-empirical model has been proposed by correlating the cutting force with the material removal rate, which was validated using experimental data from different machining conditions. With the understanding of its mechanism, we have developed guidelines for process planning of this nanomachining technique. To provide the guideline for parameter selection, the effect of machining parameters on the feature dimensions (depth and width) has been analyzed. Based on ANOVA test results, the feature width is only controlled by the XY vibration amplitude, while the feature depth is affected by several machining parameters such as setpoint force and feed rate. A semi-empirical model was first proposed to predict the machined feature depth under given machining condition. Then, to reduce the computation intensity, linear and nonlinear regression models were also proposed and validated using experimental data. Given the desired feature dimensions, feasible machining parameters could be provided using these predictive feature dimension models. As the tip wear is unavoidable during the machining process, the machining precision will gradually decrease. To maintain the machining quality, the guideline for when to change the tip should be provided. In this study, we have developed several metrics to detect tip wear, such as tip radius and the pull-off force. The effect of machining parameters on the tip wear rate has been studied using these metrics, and the machining distance before a tip must be changed has been modeled using these machining parameters. Finally, the optimization functions have been built for unit production time and unit production cost subject to realistic constraints, and the optimal machining parameters can be found by solving these functions.

  9. Spin Glass Patch Planting

    NASA Technical Reports Server (NTRS)

    Wang, Wenlong; Mandra, Salvatore; Katzgraber, Helmut G.

    2016-01-01

    In this paper, we propose a patch planting method for creating arbitrarily large spin glass instances with known ground states. The scaling of the computational complexity of these instances with various block numbers and sizes is investigated and compared with random instances using population annealing Monte Carlo and the quantum annealing DW2X machine. The method can be useful for benchmarking tests for future generation quantum annealing machines, classical and quantum mechanical optimization algorithms.

  10. Throttle pneumatic impact mechanism equipped with afterburner idle-stroke chamber

    NASA Astrophysics Data System (ADS)

    Dedov, Alexey; Frantseva, Eleanor; Dmitriev, Mikhail

    2017-01-01

    Pneumatic impact mechanisms are widely used in construction, mining and other economic sectors of a country. Such mechanisms are a base for a wide range of machines of various types and dimensions from hand-held tools to mounted piling hammers with impact energy up to 10 000 J. This paper is aimed at creation of pneumatic impact mechanism with the improved characteristics, including operation, energy use, weight and size which is especially important in space-limited working conditions. The research methods include development of computer mathematical model that can solve equations system and test a prototype model at the experimental stand. As a result of conducted research the pneumatic impact mechanism with the improved characteristics was developed. An engineering method for calculating throttle pneumatic impact mechanisms with a preset value of impact energy from 1 to 20 000 was investigated. This method allows creating percussive machines of a wide range of application.

  11. Long-range nanopositioning and nanomeasuring machine for application to micro- and nanotechnology

    NASA Astrophysics Data System (ADS)

    Jäger, Gerd; Hausotte, Tino; Büchner, Hans-Joachim; Manske, Eberhard; Schmidt, Ingomar; Mastylo, Rostyslav

    2006-03-01

    The paper describes the operation of a high-precision long range three-dimensional nanopositioning and nanomeasuring machine (NPM-Machine). The NPM-Machine has been developed by the Institute of Process Measurement and Sensor Technology of the Technische Universität Ilmenau. The machine was successfully tested and continually improved in the last few years. The machines are operating successfully in several German and foreign research institutes including the Physikalisch-Technische Bundesanstalt (PTB). Three plane mirror miniature interferometers are installed into the NPM-machine having a resolution of less than 0,1 nm over the entire positioning and measuring range of 25 mm x 25 mm x 5 mm. An Abbe offset-free design of the three miniature plane mirror interferometers and applying a new concept for compensating systematic errors resulting from mechanical guide systems provide extraordinary accuracy with an expanded uncertainty of only 5 - 10 nm. The integration of several, optical and tactile probe systems and nanotools makes the NPM-Machine suitable for various tasks, such as large-area scanning probe microscopy, mask and wafer inspection, nanostructuring, biotechnology and genetic engineering as well as measuring mechanical precision workpieces, precision treatment and for engineering new material. Various developed probe systems have been integrated into the NPM-Machine. The measurement results of a focus sensor, metrological AFM, white light sensor, tactile stylus probe and of a 3D-micro-touch-probe are presented. Single beam-, double beam- and triple beam interferometers built in the NPM-Machine for six degrees of freedom measurements are described.

  12. Using Phun to Study ``Perpetual Motion'' Machines

    NASA Astrophysics Data System (ADS)

    Koreš, Jaroslav

    2012-05-01

    The concept of "perpetual motion" has a long history. The Indian astronomer and mathematician Bhaskara II (12th century) was the first person to describe a perpetual motion (PM) machine. An example of a 13th- century PM machine is shown in Fig. 1. Although the law of conservation of energy clearly implies the impossibility of PM construction, over the centuries numerous proposals for PM have been made, involving ever more elements of modern science in their construction. It is possible to test a variety of PM machines in the classroom using a program called Phun2 or its commercial version Algodoo.3 The programs are designed to simulate physical processes and we can easily simulate mechanical machines using them. They provide an intuitive graphical environment controlled with a mouse; a programming language is not needed. This paper describes simulations of four different (supposed) PM machines.4

  13. Effect of mesh-peel ply variation on mechanical properties of E-glas composite by infusion vacuum method

    NASA Astrophysics Data System (ADS)

    Abdurohman, K.; Siahaan, Mabe

    2018-04-01

    Composite materials made of glass fiber EW-135 with epoxy lycal resin with vacuum infusion method have been performed. The dried glass fiber is arranged in a mold then connected to a vacuum machine and a resin tube. Then, the vacuum machine is turned on and at the same time the resin is sucked and flowed into the mold. This paper reports on the effect of using mesh- peel ply singles on upper-side laminates called A and the effect of using double mesh-peel ply on upper and lower-side laminates call B with glass fiber arrangement is normal and ± 450 in vacuum infusion process. Followed by the manufacture of tensile test specimen and tested its tensile strength with universal test machine 100kN Tensilon RTF 2410, at room temperature with constant crosshead speed. From tensile test results using single and double layers showed that double mesh-peel ply can increase tensile strength 14% and Young modulus 17%.

  14. Development of a New Utm (universal Testing Machine) System for the Nano/micro In-Process Measurement

    NASA Astrophysics Data System (ADS)

    Kweon, Hyunkyu; Choi, Sungdae; Kim, Youngsik; Nam, Kiho

    Micro UTM (Universal Testing Machines) are becoming increasingly popular for testing the mechanical properties of MEMS materials, metal thin films, and micro-molecule materials1-2. And, new miniature testing machines that can perform in-process measurement in SEM, TEM, and SPM are also needed. In this paper, a new micro UTM with a precision positioning system that can be fine positioning stage. Coarse positioning is implemented by step motor. The size, load output and used in SEM, TEM, and SPM have been proposed. Bimorph type PZT precision actuator is used in displacement output of bimorph type UTM are 109×64×22(mm), about 35g, and 0.4 mm, respectively. And the displacement output is controlled in the block digital form. The results of the analysis and basic properties of positioning system and the UTM system are presented. In addition, the experiment results of in-process measurement during tensile load in SEM and AFM are showed.

  15. 49 CFR 236.340 - Electromechanical interlocking machine; locking between electrical and mechanical levers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... between electrical and mechanical levers. 236.340 Section 236.340 Transportation Other Regulations... Electromechanical interlocking machine; locking between electrical and mechanical levers. In electro-mechanical interlocking machine, locking between electric and mechanical levers shall be maintained so that mechanical...

  16. Failure modes of microstructured fibers with sacrificial bonds made by instability-assisted 3D printing

    NASA Astrophysics Data System (ADS)

    Zou, Shibo; Therriault, Daniel; Gosselin, Frederick

    A simple modification by increasing the deposition height on a commercially available 3D printer makes it a mechanical sewing machine due to the fluid mechanical instability. A variety of stitches-like patterns can be produced, similar to those by the Newtonian fluid mechanical sewing machine\\x9D, but with more interesting characteristics in the additional third dimension, which creates weakly fused bonds in some patterns. With these bonds, the fabricated fibers exhibit improved toughness in uniaxial tensile test. The toughening mechanism is found to be similar to the one in spider silk - the breaking of sacrificial bonds and the releasing of hidden length contribute significant dissipated energy to the system. However, the mechanical performance of these microstructured fibers is restricted by early fiber breakage as the number of sacrificial bonds increases. Here, we seek to understand the failure mechanisms of the microstructured fibers through tensile tests and finite element simulations. Static and dynamic failure are both found to cause early fiber breakage. These findings are helpful for the design optimization of microstructured fibers with high toughness and ductility, which can find potential use in impact protection and safety-critical applications.

  17. Test - Apollo-Soyuz Test Project (ASTP)

    NASA Image and Video Library

    1974-07-01

    S74-24671 (10 July 1974) --- Three Apollo-Soyuz Test Project (ASTP) engineers look over a Soyuz spacecraft docking system prior to an ASTP docking mechanism fitness test conducted in Building 13 at the Johnson Space Center (JSC). They are (left to right) Robert White, Vladimir Syromyatnikov and Yevgeniy Bobrov. White is the American chairman of ASTP Working Group Number 3, and Syromyatnikov is his Soviet counterpart. This working group is concerned with ASTP docking problems and procedures. White is with JSC's Spacecraft Design Division. Syromyatnikov is senior researcher of the Soviet State Research Institute of Machine Building. Bobrov is a junior researcher with the Institute of Machine Building. The joint United States - USSR ASTP docking mission in Earth orbit is scheduled for the summer of 1975.

  18. Research on mechanical and sensoric set-up for high strain rate testing of high performance fibers

    NASA Astrophysics Data System (ADS)

    Unger, R.; Schegner, P.; Nocke, A.; Cherif, C.

    2017-10-01

    Within this research project, the tensile behavior of high performance fibers, such as carbon fibers, is investigated under high velocity loads. This contribution (paper) focuses on the clamp set-up of two testing machines. Based on a kinematic model, weight optimized clamps are designed and evaluated. By analyzing the complex dynamic behavior of conventional high velocity testing machines, it has been shown that the impact typically exhibits an elastic characteristic. This leads to barely predictable breaking speeds and will not work at higher speeds when acceleration force exceeds material specifications. Therefore, a plastic impact behavior has to be achieved, even at lower testing speeds. This type of impact behavior at lower speeds can be realized by means of some minor test set-up adaptions.

  19. Mechanical characterization of Al-2024 reinforced with fly ash and E-glass by stir casting method

    NASA Astrophysics Data System (ADS)

    Ramesh, B. T.; Swamy, R. P.; Vinayak, Koppad

    2018-04-01

    The properties of MMCs enhance their handling in automotive and various applications for the reason that of encouraging properties of high stiffness and high strength, low density, high electrical and thermal conductivity, corrosion resistance, improved wear resistance etc. Metal Matrix Composites are a vital family of materials designed at achieving an improved combination of properties. Our paper deals through to fabricate Hybrid Composite by heating Al 2024 in furnace at a temperature of around 4000 C. E-Glass fiber & Fly ash will be added to the molten metal with changing weight fractions and stirred strongly. Then the ensuing composition will poured into the mould to obtain hybrid composite casting. Aluminium alloy (2024) is the matrix metal used in the present investigation. Fly ash and e-glass are used as the reinforced materials to produce the composite by stir casting. Fly ash is selected because of it is less expensive and low density reinforcement available in great quantities as solid disposal from thermal power plants. The Test specimen is prepared as per ASTM standards size by machining operations to conduct Tensile, Compression, Hardness, and wear test. The test specimens are furnished for tensile, compression strength and wear as per ASTM standard E8, E9 and G99 respectively using Universal Testing Machine and pin on disk machine. It is seen that the fabricated MMC obtained has got enhanced mechanical strength.

  20. Integrated micro-electro-mechanical sensor development for inertial applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, J.J.; Kinney, R.D.; Sarsfield, J.

    Electronic sensing circuitry and micro electro mechanical sense elements can be integrated to produce inertial instruments for applications unheard of a few years ago. This paper will describe the Sandia M3EMS fabrication process, inertial instruments that have been fabricated, and the results of initial characterization tests of micro-machined accelerometers.

  1. Combination of Universal Mechanical Testing Machine with Atomic Force Microscope for Materials Research

    PubMed Central

    Zhong, Jian; He, Dannong

    2015-01-01

    Surface deformation and fracture processes of materials under external force are important for understanding and developing materials. Here, a combined horizontal universal mechanical testing machine (HUMTM)-atomic force microscope (AFM) system is developed by modifying UMTM to combine with AFM and designing a height-adjustable stabilizing apparatus. Then the combined HUMTM-AFM system is evaluated. Finally, as initial demonstrations, it is applied to analyze the relationship among macroscopic mechanical properties, surface nanomorphological changes under external force, and fracture processes of two kinds of representative large scale thin film materials: polymer material with high strain rate (Parafilm) and metal material with low strain rate (aluminum foil). All the results demonstrate the combined HUMTM-AFM system overcomes several disadvantages of current AFM-combined tensile/compression devices including small load force, incapability for large scale specimens, disability for materials with high strain rate, and etc. Therefore, the combined HUMTM-AFM system is a promising tool for materials research in the future. PMID:26265357

  2. Combination of Universal Mechanical Testing Machine with Atomic Force Microscope for Materials Research.

    PubMed

    Zhong, Jian; He, Dannong

    2015-08-12

    Surface deformation and fracture processes of materials under external force are important for understanding and developing materials. Here, a combined horizontal universal mechanical testing machine (HUMTM)-atomic force microscope (AFM) system is developed by modifying UMTM to combine with AFM and designing a height-adjustable stabilizing apparatus. Then the combined HUMTM-AFM system is evaluated. Finally, as initial demonstrations, it is applied to analyze the relationship among macroscopic mechanical properties, surface nanomorphological changes under external force, and fracture processes of two kinds of representative large scale thin film materials: polymer material with high strain rate (Parafilm) and metal material with low strain rate (aluminum foil). All the results demonstrate the combined HUMTM-AFM system overcomes several disadvantages of current AFM-combined tensile/compression devices including small load force, incapability for large scale specimens, disability for materials with high strain rate, and etc. Therefore, the combined HUMTM-AFM system is a promising tool for materials research in the future.

  3. Fatigue and fracture mechanical behavior for Chinese A508-3 steel at room temperature

    NASA Astrophysics Data System (ADS)

    Shi, K. K.; Xie, H.; Zheng, B.; Fu, X. L.

    2018-06-01

    Material, A508-3 steel, has been used in nuclear reactor vessels. In the present study, fatigue and fracture mechanical behavior of Chinese A5083 steel at room temperature are studied by mechanical material testing machine (MTS). Test data of material’s mechanical behavior including uniaxial tension, low cycle fatigue (LCF), threshold value of stress intensity factor (SIF) range, fatigue crack growth (FCG), and fracture toughness is generated and given for further study. It is worth noting that the model in predicting FCG of material from LCF parameters is verified and discussed.

  4. Development of a CPM Machine for Injured Fingers.

    PubMed

    Fu, Yili; Zhang, Fuxiang; Ma, Xin; Meng, Qinggang

    2005-01-01

    Human fingers are easy to be injured. A CPM machine is a mechanism based on the rehabilitation theory of continuous passive motion (CPM). To develop a CPM machine for the clinic application in the rehabilitation of injured fingers is a significant task. Therefore, based on the theories of evidence based medicine (EBM) and CPM, we've developed a set of biomimetic mechanism after modeling the motions of fingers and analyzing its kinematics and dynamics analysis. We also design an embedded operating system based on ARM (a kind of 32-bit RISC microprocessor). The equipment can achieve the precise control of moving scope of fingers, finger's force and speed. It can serves as a rational checking method and a way of assessment for functional rehabilitation of human hands. Now, the first prototype has been finished and will start the clinical testing in Harbin Medical University shortly.

  5. An Attachable Electromagnetic Energy Harvester Driven Wireless Sensing System Demonstrating Milling-Processes and Cutter-Wear/Breakage-Condition Monitoring.

    PubMed

    Chung, Tien-Kan; Yeh, Po-Chen; Lee, Hao; Lin, Cheng-Mao; Tseng, Chia-Yung; Lo, Wen-Tuan; Wang, Chieh-Min; Wang, Wen-Chin; Tu, Chi-Jen; Tasi, Pei-Yuan; Chang, Jui-Wen

    2016-02-23

    An attachable electromagnetic-energy-harvester driven wireless vibration-sensing system for monitoring milling-processes and cutter-wear/breakage-conditions is demonstrated. The system includes an electromagnetic energy harvester, three single-axis Micro Electro-Mechanical Systems (MEMS) accelerometers, a wireless chip module, and corresponding circuits. The harvester consisting of magnets with a coil uses electromagnetic induction to harness mechanical energy produced by the rotating spindle in milling processes and consequently convert the harnessed energy to electrical output. The electrical output is rectified by the rectification circuit to power the accelerometers and wireless chip module. The harvester, circuits, accelerometer, and wireless chip are integrated as an energy-harvester driven wireless vibration-sensing system. Therefore, this completes a self-powered wireless vibration sensing system. For system testing, a numerical-controlled machining tool with various milling processes is used. According to the test results, the system is fully self-powered and able to successfully sense vibration in the milling processes. Furthermore, by analyzing the vibration signals (i.e., through analyzing the electrical outputs of the accelerometers), criteria are successfully established for the system for real-time accurate simulations of the milling-processes and cutter-conditions (such as cutter-wear conditions and cutter-breaking occurrence). Due to these results, our approach can be applied to most milling and other machining machines in factories to realize more smart machining technologies.

  6. An Attachable Electromagnetic Energy Harvester Driven Wireless Sensing System Demonstrating Milling-Processes and Cutter-Wear/Breakage-Condition Monitoring

    PubMed Central

    Chung, Tien-Kan; Yeh, Po-Chen; Lee, Hao; Lin, Cheng-Mao; Tseng, Chia-Yung; Lo, Wen-Tuan; Wang, Chieh-Min; Wang, Wen-Chin; Tu, Chi-Jen; Tasi, Pei-Yuan; Chang, Jui-Wen

    2016-01-01

    An attachable electromagnetic-energy-harvester driven wireless vibration-sensing system for monitoring milling-processes and cutter-wear/breakage-conditions is demonstrated. The system includes an electromagnetic energy harvester, three single-axis Micro Electro-Mechanical Systems (MEMS) accelerometers, a wireless chip module, and corresponding circuits. The harvester consisting of magnets with a coil uses electromagnetic induction to harness mechanical energy produced by the rotating spindle in milling processes and consequently convert the harnessed energy to electrical output. The electrical output is rectified by the rectification circuit to power the accelerometers and wireless chip module. The harvester, circuits, accelerometer, and wireless chip are integrated as an energy-harvester driven wireless vibration-sensing system. Therefore, this completes a self-powered wireless vibration sensing system. For system testing, a numerical-controlled machining tool with various milling processes is used. According to the test results, the system is fully self-powered and able to successfully sense vibration in the milling processes. Furthermore, by analyzing the vibration signals (i.e., through analyzing the electrical outputs of the accelerometers), criteria are successfully established for the system for real-time accurate simulations of the milling-processes and cutter-conditions (such as cutter-wear conditions and cutter-breaking occurrence). Due to these results, our approach can be applied to most milling and other machining machines in factories to realize more smart machining technologies. PMID:26907297

  7. 49 CFR 236.340 - Electromechanical interlocking machine; locking between electrical and mechanical levers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Electromechanical interlocking machine; locking between electrical and mechanical levers. 236.340 Section 236.340 Transportation Other Regulations... Electromechanical interlocking machine; locking between electrical and mechanical levers. In electro-mechanical...

  8. 49 CFR 236.340 - Electromechanical interlocking machine; locking between electrical and mechanical levers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Electromechanical interlocking machine; locking between electrical and mechanical levers. 236.340 Section 236.340 Transportation Other Regulations... Electromechanical interlocking machine; locking between electrical and mechanical levers. In electro-mechanical...

  9. 49 CFR 236.340 - Electromechanical interlocking machine; locking between electrical and mechanical levers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Electromechanical interlocking machine; locking between electrical and mechanical levers. 236.340 Section 236.340 Transportation Other Regulations... Electromechanical interlocking machine; locking between electrical and mechanical levers. In electro-mechanical...

  10. 49 CFR 236.340 - Electromechanical interlocking machine; locking between electrical and mechanical levers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Electromechanical interlocking machine; locking between electrical and mechanical levers. 236.340 Section 236.340 Transportation Other Regulations... Electromechanical interlocking machine; locking between electrical and mechanical levers. In electro-mechanical...

  11. Vibration Sensor Monitoring of Nickel-Titanium Alloy Turning for Machinability Evaluation.

    PubMed

    Segreto, Tiziana; Caggiano, Alessandra; Karam, Sara; Teti, Roberto

    2017-12-12

    Nickel-Titanium (Ni-Ti) alloys are very difficult-to-machine materials causing notable manufacturing problems due to their unique mechanical properties, including superelasticity, high ductility, and severe strain-hardening. In this framework, the aim of this paper is to assess the machinability of Ni-Ti alloys with reference to turning processes in order to realize a reliable and robust in-process identification of machinability conditions. An on-line sensor monitoring procedure based on the acquisition of vibration signals was implemented during the experimental turning tests. The detected vibration sensorial data were processed through an advanced signal processing method in time-frequency domain based on wavelet packet transform (WPT). The extracted sensorial features were used to construct WPT pattern feature vectors to send as input to suitably configured neural networks (NNs) for cognitive pattern recognition in order to evaluate the correlation between input sensorial information and output machinability conditions.

  12. Vibration Sensor Monitoring of Nickel-Titanium Alloy Turning for Machinability Evaluation

    PubMed Central

    Segreto, Tiziana; Karam, Sara; Teti, Roberto

    2017-01-01

    Nickel-Titanium (Ni-Ti) alloys are very difficult-to-machine materials causing notable manufacturing problems due to their unique mechanical properties, including superelasticity, high ductility, and severe strain-hardening. In this framework, the aim of this paper is to assess the machinability of Ni-Ti alloys with reference to turning processes in order to realize a reliable and robust in-process identification of machinability conditions. An on-line sensor monitoring procedure based on the acquisition of vibration signals was implemented during the experimental turning tests. The detected vibration sensorial data were processed through an advanced signal processing method in time-frequency domain based on wavelet packet transform (WPT). The extracted sensorial features were used to construct WPT pattern feature vectors to send as input to suitably configured neural networks (NNs) for cognitive pattern recognition in order to evaluate the correlation between input sensorial information and output machinability conditions. PMID:29231864

  13. Influence of implant surface topography on bone-regenerative potential and mechanical retention in the human maxilla and mandible.

    PubMed

    Wei, Niu; Bin, Shi; Jing, Zhou; Wei, Sun; Yingqiong, Zhao

    2014-06-01

    To evaluate the short- and mid-term effects of commercial pure (cp) titanium implant surface topography on osseointegration, bone-regenerative potential and mechanical retention in the human maxilla and mandible. 32 micro-implants with the same geometry but with four different surface treatments were implanted in the maxilla and mandible of eight patients. Each patient received four micro-implants, one of each type. Percentage of bone-to-implant contact analysis and histological evaluation was carried 3, 6 and 12 weeks after implantation. Furthermore, reverse removal torque tests were conducted 3 and 6 weeks after implantation to analyze functional bone attachment. Implant surfaces tested were: machined, grit-blasted, acid-etched, and grit-blasted with acid-etch. One-way ANOVA was performed using the multiple comparison Fisher's test to determine significance of observed differences among test groups. The level of significance was established at 5% (P < 0.05). Mean and standard deviations of the test groups were calculated. Surface roughness had a significant correlation with the evolution of bone regeneration. The surfaces with roughness Ra approximately 4 microim (grit-blasted and grit-blasted with acid-etch), showed rapid tissue colonization compared to machine and acid-etched surfaces. The results of reverse removal torque tests confirmed a significant correlation between surface roughness and functional bone attachment. Grit-blasted and grit-blasted with acid etched surfaces showed higher retention values compared to machine and acid-etched implants. This finding was supported by higher bone-to-implant contact observed for rougher surfaces (grit-blasted and grit-blasted with acid etching).

  14. Dynamic impact testing with servohydraulic testing machines

    NASA Astrophysics Data System (ADS)

    Bardenheier, R.; Rogers, G.

    2006-08-01

    The design concept of “Crashworthiness” requires the information on material behaviour under dynamic impact loading in order to describe and predict the crash behaviour of structures. Especially the transport related industries, like car, railway or aircraft industry, pursue the concept of lightweight design for a while now. The materials' maximum constraint during loading is pushed to permanently increasing figures. This means in terms of crashworthiness that the process of energy absorption in structures and the mechanical behaviour of materials must well understood and can be described appropriately by material models. In close cooperation with experts from various industries and research institutes Instron has developed throughout the past years a new family of servohydraulic testing machines specifically designed to cope with the dynamics of high rate testing. Main development steps are reflected versus their experimental necessities.

  15. Interpreting support vector machine models for multivariate group wise analysis in neuroimaging

    PubMed Central

    Gaonkar, Bilwaj; Shinohara, Russell T; Davatzikos, Christos

    2015-01-01

    Machine learning based classification algorithms like support vector machines (SVMs) have shown great promise for turning a high dimensional neuroimaging data into clinically useful decision criteria. However, tracing imaging based patterns that contribute significantly to classifier decisions remains an open problem. This is an issue of critical importance in imaging studies seeking to determine which anatomical or physiological imaging features contribute to the classifier’s decision, thereby allowing users to critically evaluate the findings of such machine learning methods and to understand disease mechanisms. The majority of published work addresses the question of statistical inference for support vector classification using permutation tests based on SVM weight vectors. Such permutation testing ignores the SVM margin, which is critical in SVM theory. In this work we emphasize the use of a statistic that explicitly accounts for the SVM margin and show that the null distributions associated with this statistic are asymptotically normal. Further, our experiments show that this statistic is a lot less conservative as compared to weight based permutation tests and yet specific enough to tease out multivariate patterns in the data. Thus, we can better understand the multivariate patterns that the SVM uses for neuroimaging based classification. PMID:26210913

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shetty, G. Rajesha; Kumar, R. Madhu; Rao, B. Lakshmeesha

    In this work, the structural and mechanical stability of silk fibroin/Hydroxypropylmethyl cellulose (SF-HPMC) blend films were characterized by X-ray diffraction (XRD) and Universal Testing Machine (UTM). The results indicate that with the introduction of HPMC, the interactions between SF and HPMC results in improved crystallite size and increase in mechanical properties. The blend film obtained is more flexible compared to pure SF film.

  17. Assessment of Mechanical Performance of Bone Architecture Using Rapid Prototyping Models

    NASA Astrophysics Data System (ADS)

    Saparin, Peter; Woesz, Alexander; Thomsen, Jasper S.; Fratzl, Peter

    2008-06-01

    The aim of this on-going research project is to assess the influence of bone microarchitecture on the mechanical performance of trabecular bone. A testing chain consist-ing of three steps was established: 1) micro computed tomography (μCT) imaging of human trabecular bone; 2) building of models of the bone from a light-sensitive polymer using Rapid Prototyping (RP); 3) mechanical testing of the models in a material testing machine. A direct resampling procedure was developed to convert μCT data into the format of the RP machine. Standardized parameters for production and testing of the plastic models were established by use of regular cellular structures. Next, normal, osteoporotic, and extreme osteoporotic vertebral trabecular bone architectures were re-produced by RP and compression tested. We found that normal architecture of vertebral trabecular bone exhibit behaviour characteristic of a cellular structure. In normal bone the fracture occurs at much higher strain values that in osteoporotic bone. After the fracture a normal trabecular architecture is able to carry much higher loads than an osteoporotic architecture. However, no statistically significant differences were found in maximal stress during uniaxial compression of the central part of normal, osteoporotic, and extreme osteoporotic vertebral trabecular bone. This supports the hypothesis that osteoporotic trabecular bone can compensate for a loss of trabeculae by thickening the remaining trabeculae in the loading direction (compensatory hypertrophy). The developed approach could be used for mechanical evaluation of structural data acquired non-invasively and assessment of changes in performance of bone architecture.

  18. Predicting the Performance of Chain Saw Machines Based on Shore Scleroscope Hardness

    NASA Astrophysics Data System (ADS)

    Tumac, Deniz

    2014-03-01

    Shore hardness has been used to estimate several physical and mechanical properties of rocks over the last few decades. However, the number of researches correlating Shore hardness with rock cutting performance is quite limited. Also, rather limited researches have been carried out on predicting the performance of chain saw machines. This study differs from the previous investigations in the way that Shore hardness values (SH1, SH2, and deformation coefficient) are used to determine the field performance of chain saw machines. The measured Shore hardness values are correlated with the physical and mechanical properties of natural stone samples, cutting parameters (normal force, cutting force, and specific energy) obtained from linear cutting tests in unrelieved cutting mode, and areal net cutting rate of chain saw machines. Two empirical models developed previously are improved for the prediction of the areal net cutting rate of chain saw machines. The first model is based on a revised chain saw penetration index, which uses SH1, machine weight, and useful arm cutting depth as predictors. The second model is based on the power consumed for only cutting the stone, arm thickness, and specific energy as a function of the deformation coefficient. While cutting force has a strong relationship with Shore hardness values, the normal force has a weak or moderate correlation. Uniaxial compressive strength, Cerchar abrasivity index, and density can also be predicted by Shore hardness values.

  19. Mathematical model of simple spalling formation during coal cutting with extracting machine

    NASA Astrophysics Data System (ADS)

    Gabov, V. V.; Zadkov, D. A.

    2018-05-01

    A single-mass model of a rotor shearer is analyzed. It is shown that rotor mining machines has large inertia moments and load dynamics. An extraction module model with selective movement of the cutting tool is represented. The peculiar feature of such extracting machines is fluid power drive cutter mechanism. They can steadily operate at large shear thickness, and locking modes are not an emergency for them. Comparing with shearers they have less inertional mass, but slower average cutting speed, and its momentary values depend on load. Basing on the equation of hydraulic fuel consumption balance the work of fluid power drive of extracting module cutter mechanism together with hydro pneumatic accumulator is analyzed. Spalling formation model during coal cutting with fluid power drive cutter mechanism and potential energy stores are suggested. Matching cutter speed with the speed of main crack expansion and amount of potential energy consumption, cutter load is determined only by ultimate stress at crack pole and friction. Tests of an extracting module cutter in real size model proved the stated theory.

  20. Preliminary Comparison of Properties between Ni-electroplated Stainless Steel Parts Fabricated with Laser Additive Manufacturing and Conventional Machining

    NASA Astrophysics Data System (ADS)

    Mäkinen, Mika; Jauhiainen, Eeva; Matilainen, Ville-Pekka; Riihimäki, Jaakko; Ritvanen, Jussi; Piili, Heidi; Salminen, Antti

    Laser additive manufacturing (LAM) is a fabrication technology, which enables production of complex parts from metallic materials with mechanical properties comparable to those of conventionally machined parts. These LAM parts are manufactured via melting metallic powder layer by layer with laser beam. Aim of this study is to define preliminarily the possibilities of using electroplating to supreme surface properties. Electrodeposited nickel and chromium as well as electroless (autocatalytic) deposited nickel was used to enhance laser additive manufactured and machined parts properties, like corrosion resistance, friction and wearing. All test pieces in this study were manufactured with a modified research AM equipment, equal to commercial EOS M series. The laser system used for tests was IPG 200 W CW fiber laser. The material used in this study for additive manufacturing was commercial stainless steel powder grade named SS316L. This SS316L is not equal to AISI 316L grade, but commercial name of this kind of powder is widely known in additive manufacturing as SS316L. Material used for fabrication of comparison test pieces (i.e. conventionally manufactured) was AISI 316L stainless steel bar. Electroplating was done in matrix cell and electroless was done in plastic sink properties of plated parts were tested within acetic acid salt spray corrosion chamber (AASS, SFS-EN-ISO 9227 standard). Adhesion of coating, friction and wearing properties were tested with Pin-On-Rod machine. Results show that in these preliminary tests, LAM parts and machined parts have certain differences due to manufacturing route and surface conditions. These have an effect on electroplated and electroless parts features on adhesion, corrosion, wearing and friction. However, further and more detailed studies are needed to fully understand these phenomena.

  1. A computerized test system for thermal-mechanical fatigue crack growth

    NASA Technical Reports Server (NTRS)

    Marchand, N.; Pelloux, R. M.

    1986-01-01

    A computerized testing system to measure fatigue crack growth under thermal-mechanical fatigue conditions is described. Built around a servohydraulic machine, the system is capable of a push-pull test under stress-controlled or strain-controlled conditions in the temperature range of 25 to 1050 C. Temperature and mechanical strain are independently controlled by the closed-loop system to simulate the complex inservice strain-temperature relationship. A d-c electrical potential method is used to measure crack growth rates. The correction procedure of the potential signal to take into account powerline and RF-induced noises and thermal changes is described. It is shown that the potential drop technique can be used for physical mechanism studies and for modelling crack tip processes.

  2. 3D Printing in Zero-G Experiment, In Space Manufacturing (LPS, 4)

    NASA Technical Reports Server (NTRS)

    Bean, Quincy; Cooper, Ken; Werkheiser, Niki

    2015-01-01

    The 3D Printing in Zero-G Experiment has been an ongoing effort for several years. In June 2014 the technology demonstration 3D printer was launched to the International Space Station. In November 2014 the first 21 parts were manufactured in orbit marking the beginning of a paradigm shift that will allow astronauts to be more self-sufficient and pave the way to larger scale orbital manufacturing. Prior to launch the 21 parts were built on the ground with the flight unit with the same feedstock. These ground control samples are to be tested alongside the flight samples in order to determine if there is a measurable difference between parts built on the ground vs. parts built in space. As of this writing, testing has not yet commenced. Tests to be performed are structured light scanning for volume and geometric discrepancies, CT scanning for density measurement, destructive testing of mechanical samples, and SEM analysis for inter-laminar adhesion discrepancies. Additionally, an ABS material characterization was performed on mechanical samples built from the same CAD files as the flight and ground samples on different machine / feedstock combinations. The purpose of this testing was twofold: first to obtain mechanical data in order to have a baseline comparison for the flight and ground samples and second to ascertain if there is a measurable difference between machines and feedstock.

  3. Laser Induced Damage of Potassium Dihydrogen Phosphate (KDP) Optical Crystal Machined by Water Dissolution Ultra-Precision Polishing Method

    PubMed Central

    Gao, Hang; Wang, Xu; Guo, Dongming; Liu, Ziyuan

    2018-01-01

    Laser induced damage threshold (LIDT) is an important optical indicator for nonlinear Potassium Dihydrogen Phosphate (KDP) crystal used in high power laser systems. In this study, KDP optical crystals are initially machined with single point diamond turning (SPDT), followed by water dissolution ultra-precision polishing (WDUP) and then tested with 355 nm nanosecond pulsed-lasers. Power spectral density (PSD) analysis shows that WDUP process eliminates the laser-detrimental spatial frequencies band of micro-waviness on SPDT machined surface and consequently decreases its modulation effect on the laser beams. The laser test results show that LIDT of WDUP machined crystal improves and its stability has a significant increase by 72.1% compared with that of SPDT. Moreover, a subsequent ultrasonic assisted solvent cleaning process is suggested to have a positive effect on the laser performance of machined KDP crystal. Damage crater investigation indicates that the damage morphologies exhibit highly thermal explosion features of melted cores and brittle fractures of periphery material, which can be described with the classic thermal explosion model. The comparison result demonstrates that damage mechanisms for SPDT and WDUP machined crystal are the same and WDUP process reveals the real bulk laser resistance of KDP optical crystal by removing the micro-waviness and subsurface damage on SPDT machined surface. This improvement of WDUP method makes the LIDT more accurate and will be beneficial to the laser performance of KDP crystal. PMID:29534032

  4. Automatic Quality Inspection of Percussion Cap Mass Production by Means of 3D Machine Vision and Machine Learning Techniques

    NASA Astrophysics Data System (ADS)

    Tellaeche, A.; Arana, R.; Ibarguren, A.; Martínez-Otzeta, J. M.

    The exhaustive quality control is becoming very important in the world's globalized market. One of these examples where quality control becomes critical is the percussion cap mass production. These elements must achieve a minimum tolerance deviation in their fabrication. This paper outlines a machine vision development using a 3D camera for the inspection of the whole production of percussion caps. This system presents multiple problems, such as metallic reflections in the percussion caps, high speed movement of the system and mechanical errors and irregularities in percussion cap placement. Due to these problems, it is impossible to solve the problem by traditional image processing methods, and hence, machine learning algorithms have been tested to provide a feasible classification of the possible errors present in the percussion caps.

  5. Experimental investigation of various surface integrity aspects in hard turning of AISI 4340 alloy steel with coated and uncoated cermet

    NASA Astrophysics Data System (ADS)

    Das, Anshuman; Patel, S. K.; Sateesh Kumar, Ch.; Biswal, B. B.

    2018-03-01

    The newer technological developments are exerting immense pressure on domain of production. These fabrication industries are busy finding solutions to reduce the costs of cutting materials, enhance the machined parts quality and testing different materials, which can be made versatile for cutting materials, which are difficult for machining. High-speed machining has been the domain of paramount importance for mechanical engineering. In this study, the variation of surface integrity parameters of hardened AISI 4340 alloy steel was analyzed. The surface integrity parameters like surface roughness, micro hardness, machined surface morphology and white layer of hardened AISI 4340 alloy steel were compared using coated and uncoated cermet inserts under dry cutting condition. From the results, it was deduced that coated insert outperformed uncoated one in terms of different surface integrity characteristics.

  6. DIMENSIONS OF TEACHER'S ATTITUDES TOWARD INSTRUCTIONAL MEDIA.

    ERIC Educational Resources Information Center

    TOBIAS, SIGMUND

    TEACHERS' RATINGS ON SIX 7-POINT SEMANTIC DIFFERENTIAL SCALES (GOOD-BAD, WORTHLESS-VALUABLE, FAIR-UNFAIR, MEANINGLESS-MEANINGFUL, WISE-FOOLISH, DISREPUTABLE-REPUTABLE) WERE OBTAINED FOR THE FOLLOWING TERMS--AUTOMATED INSTRUCTION, SELF-INSTRUCTIONAL PROGRAM, TEACHING MACHINE, MECHANIZED TUTOR, PROGRAMED TEST, PROGRAMED INSTRUCTION, TUTOR TEXT, WORK…

  7. Calculating utilization rates for rubber tired grapple skidders in the Southern United States

    Treesearch

    Jason D. Thompson

    2001-01-01

    Utilization rate is an important factor in calculating machine rates for forest harvesting machines. Machine rates allow an evaluation of harvesting system costs and facilitate comparisons between different systems and machines. There are many factors that affect utilization rate. These include mechanical delays, non-mechanical delays, operational lost time, and...

  8. Understanding dental CAD/CAM for restorations - dental milling machines from a mechanical engineering viewpoint. Part A: chairside milling machines.

    PubMed

    Lebon, Nicolas; Tapie, Laurent; Duret, Francois; Attal, Jean-Pierre

    2016-01-01

    The dental milling machine is an important device in the dental CAD/CAM chain. Nowadays, dental numerical controlled (NC) milling machines are available for dental surgeries (chairside solution). This article provides a mechanical engineering approach to NC milling machines to help dentists understand the involvement of technology in digital dentistry practice. First, some technical concepts and definitions associated with NC milling machines are described from a mechanical engineering viewpoint. The technical and economic criteria of four chairside dental NC milling machines that are available on the market are then described. The technical criteria are focused on the capacities of the embedded technologies of these milling machines to mill both prosthetic materials and types of shape restorations. The economic criteria are focused on investment costs and interoperability with third-party software. The clinical relevance of the technology is assessed in terms of the accuracy and integrity of the restoration.

  9. Hydraulic Fatigue-Testing Machine

    NASA Technical Reports Server (NTRS)

    Hodo, James D.; Moore, Dennis R.; Morris, Thomas F.; Tiller, Newton G.

    1987-01-01

    Fatigue-testing machine applies fluctuating tension to number of specimens at same time. When sample breaks, machine continues to test remaining specimens. Series of tensile tests needed to determine fatigue properties of materials performed more rapidly than in conventional fatigue-testing machine.

  10. Protecting Files Hosted on Virtual Machines With Out-of-Guest Access Control

    DTIC Science & Technology

    2017-12-01

    analyzes the design and methodology of the implemented mechanism, while Chapter 4 explains the test methodology, test cases, and performance testing ...SACL, we verify that the user or group accessing the file has sufficient permissions. If that is correct, the callback function returns control to...ferify. In the first section, we validate our design of ferify. Next, we explain the tests we performed to verify that ferify has the results we expected

  11. The hammer QSD-quick stop device for high speed machining and rubbing

    NASA Technical Reports Server (NTRS)

    Black, J. T.; James, C. R.

    1980-01-01

    A quick stop device (QSD) was designed for use in orthogonal machining and rubbing experiments. QSD's are used to obtain chip root samples that are representative of the deformation taking place during dynamic (actual) cutting conditions. These 'frozen' specimens are helpful in examining the plastic deformation that occurs in the regions of compression and shear which form the chip; the secondary shear at the tool-chip interface; and the nose ploughing/flank rubbing action which operates on the newly machined surface. The Hammer QSD employs a shear pin mechanism, broken by a flying hammer, which is traveling at the same velocity as the workpiece. The device has been successfully tested up to 6000 sfpm (30.48 m/sec).

  12. [A new machinability test machine and the machinability of composite resins for core built-up].

    PubMed

    Iwasaki, N

    2001-06-01

    A new machinability test machine especially for dental materials was contrived. The purpose of this study was to evaluate the effects of grinding conditions on machinability of core built-up resins using this machine, and to confirm the relationship between machinability and other properties of composite resins. The experimental machinability test machine consisted of a dental air-turbine handpiece, a control weight unit, a driving unit of the stage fixing the test specimen, and so on. The machinability was evaluated as the change in volume after grinding using a diamond point. Five kinds of core built-up resins and human teeth were used in this study. The machinabilities of these composite resins increased with an increasing load during grinding, and decreased with repeated grinding. There was no obvious correlation between the machinability and Vickers' hardness; however, a negative correlation was observed between machinability and scratch width.

  13. Investigation on Surface Insulation Strength of Machinable Ceramic Material under Pulsed Voltage in Vacuum

    NASA Astrophysics Data System (ADS)

    Zhang, Guan-Jun; Zhao, Wen-Bin; Ma, Xin-Pei; Li, Guang-Xin; Ma, Kui; Zheng, Nan; Yan, Zhang

    Ceramic material has been widely used as insulator in vacuum. Their high hardness and brittle property brings some difficulty in the application. A new kind of machinable ceramic was invented recently. The ceramic can be machined easily and accurately after being sintered, which provides the possibility of making the insulator with fine and complicated configuration. The paper studies its surface insulation performance and flashover phenomena under pulsed excitation in vacuum. The ceramic samples with different crystallization parameters are tested under the vacuum level of 10-4 Pa. The machinable ceramic behaves better surface insulation performance than comparative the Al2O3 and glass sample. The effect of crystallization level on the trap density and flashover current is also presented. After flashover shots many times, the surface microscopic patterns of different samples are observed to investigate the damage status, which can be explained by the thermal damage mechanism.

  14. Grindability and mechanical property of ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Changsheng; Chand, R.H.

    1996-12-31

    For cost-effective ceramic machining, material-specific machining methodology is needed. This requires characterizing ceramics from machining view point. In this paper, a preliminary study of the correlation between grindability and mechanical properties is reported. Results indicate that there exists complex correlations between grindability and mechanical properties such as hardness, fracture toughness and elasticity. Some ceramics of similar mechanical properties have different grindabilities, which implies that it is possible to develop ceramics of both superior mechanical properties and good grindability.

  15. Electromechanical Technician Skills Questionnaire.

    ERIC Educational Resources Information Center

    Anoka-Hennepin Technical Coll., Minneapolis, MN.

    This document contains test items to measure the job skills of electromechanical technicians. Questions are organized in four sections that cover the following topics: (1) shop math; (2) electricity and electronics; (3) mechanics and machining; and (4) plumbing, heating, ventilation and air conditioning, and welding skills. Questions call for…

  16. The Effect of Different Non-Metallic Inclusions on the Machinability of Steels.

    PubMed

    Ånmark, Niclas; Karasev, Andrey; Jönsson, Pär Göran

    2015-02-16

    Considerable research has been conducted over recent decades on the role of non‑metallic inclusions and their link to the machinability of different steels. The present work reviews the mechanisms of steel fractures during different mechanical machining operations and the behavior of various non-metallic inclusions in a cutting zone. More specifically, the effects of composition, size, number and morphology of inclusions on machinability factors (such as cutting tool wear, power consumption, etc .) are discussed and summarized. Finally, some methods for modification of non-metallic inclusions in the liquid steel are considered to obtain a desired balance between mechanical properties and machinability of various steel grades.

  17. Inspection of wear particles in oils by using a fuzzy classifier

    NASA Astrophysics Data System (ADS)

    Hamalainen, Jari J.; Enwald, Petri

    1994-11-01

    The reliability of stand-alone machines and larger production units can be improved by automated condition monitoring. Analysis of wear particles in lubricating or hydraulic oils helps diagnosing the wear states of machine parts. This paper presents a computer vision system for automated classification of wear particles. Digitized images from experiments with a bearing test bench, a hydraulic system with an industrial company, and oil samples from different industrial sources were used for algorithm development and testing. The wear particles were divided into four classes indicating different wear mechanisms: cutting wear, fatigue wear, adhesive wear, and abrasive wear. The results showed that the fuzzy K-nearest neighbor classifier utilized gave the same distribution of wear particles as the classification by a human expert.

  18. Properties of Free-Machining Aluminum Alloys at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Faltus, Jiří; Karlík, Miroslav; Haušild, Petr

    In areas close to the cutting tool the workpieces being dry machined could be heated up to 350°C and they may be impact loaded. Therefore it is of interest to study mechanical properties of corresponding materials at elevated temperatures. Free-machining alloys of Al-Cu and Al-Mg-Si systems containing Pb, Bi and Sn additions (AA2011, AA2111B, AA6262, and AA6023) were subjected to Charpy U notch impact test at the temperatures ranging from 20 to 350°C. The tested alloys show a sharp drop in notch impact strength KU at different temperatures. This drop of KU is caused by liquid metal embrittlement due to the melting of low-melting point dispersed phases which is documented by differential scanning calorimetry. Fracture surfaces of the specimens were observed using a scanning electron microscope. At room temperature, the fractures of all studied alloys exhibited similar ductile dimple fracture micromorphology, at elevated temperatures, numerous secondary intergranular cracks were observed.

  19. Design and performance tests of a distributed power-driven wheel loader

    NASA Astrophysics Data System (ADS)

    Jin, Xiaolin; Shi, Laide; Bian, Yongming

    2010-03-01

    An improved ZLM15B distributed power-driven wheel loader was designed, whose travel and brake system was accomplished by two permanent magnet synchronous motorized-wheels instead of traditional mechanical components, and whose hydraulic systems such as the working device system and steering system were both actuated by an induction motor. All above systems were flexibly coupled with 3-phase 380VAC electric power with which the diesel engine power is replaced. On the level cement road, traveling, braking, traction and steering tests were carried out separately under non-load and heavy-load conditions. Data show that machine speed is 5 km/h around and travel efficiency of motorized-wheels is above 95%; that machine braking deceleration is between 0.5 and 0.64 m/s2 but efficiency of motorized-wheels is less than 10%; that maximum machine traction is above 2t while efficiency of motorized-wheels is more than 90% and that adaptive differential steering can be smoothly achieved by motorized-wheels.

  20. Design and performance tests of a distributed power-driven wheel loader

    NASA Astrophysics Data System (ADS)

    Jin, Xiaolin; Shi, Laide; Bian, Yongming

    2009-12-01

    An improved ZLM15B distributed power-driven wheel loader was designed, whose travel and brake system was accomplished by two permanent magnet synchronous motorized-wheels instead of traditional mechanical components, and whose hydraulic systems such as the working device system and steering system were both actuated by an induction motor. All above systems were flexibly coupled with 3-phase 380VAC electric power with which the diesel engine power is replaced. On the level cement road, traveling, braking, traction and steering tests were carried out separately under non-load and heavy-load conditions. Data show that machine speed is 5 km/h around and travel efficiency of motorized-wheels is above 95%; that machine braking deceleration is between 0.5 and 0.64 m/s2 but efficiency of motorized-wheels is less than 10%; that maximum machine traction is above 2t while efficiency of motorized-wheels is more than 90% and that adaptive differential steering can be smoothly achieved by motorized-wheels.

  1. Study on Mechanical Properties of Barite Concrete under Impact Load

    NASA Astrophysics Data System (ADS)

    Chen, Z. F.; Cheng, K.; Wu, D.; Gan, Y. C.; Tao, Q. W.

    2018-03-01

    In order to research the mechanical properties of Barite concrete under impact load, a group of concrete compression tests was carried out under the impact load by using the drop test machine. A high-speed camera was used to record the failure process of the specimen during the impact process. The test results show that:with the increase of drop height, the loading rate, the peak load, the strain under peak load, the strain rate and the dynamic increase factor (DIF) all increase gradually. The ultimate tensile strain is close to each other, and the time of impact force decreases significantly, showing significant strain rate effect.

  2. From the History of Conferences on the Machine and Mechanism Science

    NASA Astrophysics Data System (ADS)

    Wojnarowski, J.

    2016-08-01

    In the course of the past sixty years of the Polish Committee for the Theory of Machines and Mechanisms (PC TMM) 24 scientific and didactic conferences have been held. The subject matter of these conferences, generally organized every other year, comprised problems of the classification, analysis and synthesis of mechanisms, the dynamics of machine systems, investigations concerning self-excited vibrations, the stability of the systems, the control of machines and biomechanics. The numbers of submitted papers as well as the number of participants substantiate the need of organizing such conferences, their importance and the activity of the Polish Committee of TMM for the purpose of creating a platform for the presentation and discussion of new research methods in the domain of mechanisms, machines, biomechanics and mechatronics.

  3. A comparison of the fracture resistance of three machinable ceramics after thermal and mechanical fatigue.

    PubMed

    Yang, Rui; Arola, Dwayne; Han, Zhihui; Zhang, Xiuyin

    2014-10-01

    Mechanical and thermal fatigue may affect ceramic restorations in the oral environment. The purpose of this study was to determine the influence of thermal and mechanical cycling on the fracture load and fracture patterns of 3 machinable ceramics. Seventy-two human third molar teeth were prepared for bonding ceramic specimens of Sirona CEREC Blocs, IPS e.maxCAD, or inCoris ZI meso blocks. The 24 specimens of each ceramic were divided into 4 groups (n=6), which underwent no preloading (control), thermocycling (5°C-55°C, 2000 cycles), mechanical cycling (10(5) cycles, 100 N), and thermocycling (5°C-55°C, 2000 cycles) plus mechanical cycling (10(5) cycles, 100 N). The specimens were subsequently loaded to failure, and both stereomicroscopy and scanning electron microscopy were used to investigate the fracture patterns. The data were analyzed with 2-way ANOVA and the Fisher exact probability test (α=.05). Mechanical and thermal cycling had a significant influence on the critical load to failure of the 3 ceramics. No significant difference was found between mechanical cycling for 10(5) times and thermocycling for 2000 times within the same ceramic. The specimens of inCoris ZI experienced significantly higher fracture loads for all the groups. The fracture patterns of the 3 machinable ceramics showed that failure mainly occurred at the cement-dentin interface. The effects of combined thermal and mechanical cycling on the fracture load of ceramics were more significant than any individual mode of cyclic fatigue. Overall, the inCoris ZI resisted thermal and mechanical fatigue better than the Sirona CEREC and IPS e.maxCAD. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  4. Electrical machines with superconducting windings. Part 3: Homopolar dc machines

    NASA Astrophysics Data System (ADS)

    Kullman, D.; Henninger, P.

    1981-01-01

    The losses in rotating liquid metal contacts and the problems in including liquid metals were theoretically and experimentally studied. These machines are shown realiable. For electric ship propulsion, they are a more efficient method of power transmission than mechanical gearboxes. However, weight reduction as compared to mechanical gearboxes can hardly be achieved with machines fully shielded by magnetic iron.

  5. A Teaching Model for Truss Structures

    ERIC Educational Resources Information Center

    Bigoni, Davide; Dal Corso, Francesco; Misseroni, Diego; Tommasini, Mirko

    2012-01-01

    A classroom demonstration model has been designed, machined and successfully tested in different learning environments to facilitate understanding of the mechanics of truss structures, in which struts are subject to purely axial load and deformation. Gaining confidence with these structures is crucial for the development of lattice models, which…

  6. Designing instruction to support mechanical reasoning: Three alternatives in the simple machines learning environment

    NASA Astrophysics Data System (ADS)

    McKenna, Ann Frances

    2001-07-01

    Creating a classroom environment that fosters a productive learning experience and engages students in the learning process is a complex endeavor. A classroom environment is dynamic and requires a unique synergy among students, teacher, classroom artifacts and events to achieve robust understanding and knowledge integration. This dissertation addresses this complex issue by developing, implementing, and investigating the simple machines learning environment (SIMALE) to support students' mechanical reasoning and understanding. SIMALE was designed to support reflection, collaborative learning, and to engage students in generative learning through multiple representations of concepts and successive experimentation and design activities. Two key components of SIMALE are an original web-based software tool and hands-on Lego activities. A research study consisting of three treatment groups was created to investigate the benefits of hands-on and web-based computer activities on students' analytic problem solving ability, drawing/modeling ability, and conceptual understanding. The study was conducted with two populations of students that represent a diverse group with respect to gender, ethnicity, academic achievement and social/economic status. One population of students in this dissertation study participated from the Mathematics, Engineering, and Science Achievement (MESA) program that serves minorities and under-represented groups in science and mathematics. The second group was recruited from the Academic Talent Development Program (ATDP) that is an academically competitive outreach program offered through the University of California at Berkeley. Results from this dissertation show success of the SIMALE along several dimensions. First, students in both populations achieved significant gains in analytic problem solving ability, drawing/modeling ability, and conceptual understanding. Second, significant differences that were found on pre-test measures were eliminated on post-test measures. Specifically, female students scored significantly lower than males on the overall pre-tests but scored as well as males on the same post-test measures. MESA students also scored significantly lower than ATDP students on pre-test measures but both populations scored equally well on the post-tests. This dissertation has therefore shown the SIMALE to support a collaborative, reflective, and generative learning environment. Furthermore, the SIMALE clearly contributes to students' mechanical reasoning and understanding of simple machines concepts for a diverse population of students.

  7. Comparison and Analysis on Mechanical Property and Machinability about Polyetheretherketone and Carbon-Fibers Reinforced Polyetheretherketone

    PubMed Central

    Ji, Shijun; Sun, Changrui; Zhao, Ji; Liang, Fusheng

    2015-01-01

    The aim of this paper is to compare the mechanical property and machinability of Polyetheretherketone (PEEK) and 30 wt% carbon-fibers reinforced Polyetheretherketone (PEEK CF 30). The method of nano-indentation is used to investigate the microscopic mechanical property. The evolution of load with displacement, Young’s modulus curves and hardness curves are analyzed. The results illustrate that the load-displacement curves of PEEK present better uniformity, and the variation of Young’s modulus and hardness of PEEK both change smaller at the experimental depth. The machinability between PEEK and PEEK CF 30 are also compared by the method of single-point diamond turning (SPDT), and the peak-to-valley value (PV) and surface roughness (Ra) are obtained to evaluate machinability of the materials after machining. The machining results show that PEEK has smaller PV and Ra, which means PEEK has superior machinability. PMID:28793428

  8. Comparison and Analysis on Mechanical Property and Machinability about Polyetheretherketone and Carbon-Fibers Reinforced Polyetheretherketone.

    PubMed

    Ji, Shijun; Sun, Changrui; Zhao, Ji; Liang, Fusheng

    2015-07-07

    The aim of this paper is to compare the mechanical property and machinability of Polyetheretherketone (PEEK) and 30 wt% carbon-fibers reinforced Polyetheretherketone (PEEK CF 30). The method of nano-indentation is used to investigate the microscopic mechanical property. The evolution of load with displacement, Young's modulus curves and hardness curves are analyzed. The results illustrate that the load-displacement curves of PEEK present better uniformity, and the variation of Young's modulus and hardness of PEEK both change smaller at the experimental depth. The machinability between PEEK and PEEK CF 30 are also compared by the method of single-point diamond turning (SPDT), and the peak-to-valley value (PV) and surface roughness (Ra) are obtained to evaluate machinability of the materials after machining. The machining results show that PEEK has smaller PV and Ra, which means PEEK has superior machinability.

  9. Life and Reliability Characteristics of TurboBrayton Coolers

    NASA Technical Reports Server (NTRS)

    Breedlove, Jeff J.; Zagarola, Mark; Nellis, Greg; Dolan, Frank; Swift, Walt; Gibbon, Judith; Obenschain, Arthur F. (Technical Monitor)

    2000-01-01

    Wear and internal contaminants are two of the primary factors that influence reliable, long-life operation of turbo-Brayton cryocoolers. This paper describes tests that have been conducted and methods that have been developed for turbo-Brayton components and systems to assure reliable operation. The turbomachines used in these coolers employ self-acting gas bearings to support the miniature high-speed shafts, thus providing vibration-free operation. Because the bearings are self-acting, rubbing contact occurs during initial start-up and shutdown of the machines. Bearings and shafts are designed to endure multiple stop/start cycles without producing particles or surface features that would impair the proper operation of the machines. Test results are presented for a variety of turbomachines used in these systems. The tests document extended operating life and start/stop cycling behavior for machines over a range of time and temperature scales. Contaminants such as moisture and other residual gas impurities can be a source of degraded operation if they freeze out in sufficient quantities to block flow passages or if they mechanically affect the operation of the machines. A post-fabrication bakeout procedure has been successfully used to reduce residual internal contamination to acceptable levels in a closed cycle system. The process was developed during space qualification tests on the NICMOS cryocooler. Moisture levels were sampled over a six-month time interval confirming the effectiveness of the technique. A description of the bakeout procedure is presented.

  10. The Effect of Layer Orientation on the Mechanical Properties and Microstructure of a Polymer

    NASA Astrophysics Data System (ADS)

    Vega, V.; Clements, J.; Lam, T.; Abad, A.; Fritz, B.; Ula, N.; Es-Said, O. S.

    2011-08-01

    Rapid Prototyping (RP) is a method used everywhere from the entertainment industry to healthcare. Layer orientation is an important aspect of the final product. The objective of this research was to evaluate the effect of layer orientation on the mechanical strength and toughness of a polymer. The polymer used was a combination of two materials, ZP 130 and ZB 58, fused together in the Z Corporation Spectrum Z510 Rapid Prototyping Machine. ZP 130 is a powder composed of vinyl polymer (2-20%), sulfate salt (0-5%), and plaster that contains <1% crystalline silica (50-95%). ZB 58 is a liquid composed of glycerol (1-10%), preservative (sorbic acid salt) (0-2%), surfactant (<1%), pigment (<1%), and water (85-95%). After removal from the machine the samples were sealed with Z bond 101 which is Beta-methoxyethyl cyanoacrylate (60-100%). The layer orientations studied were the crack arrestor, crack divider, and short transverse with various combinations of the three, for a total of seven orientations. The mechanical strength was evaluated using tensile testing and three-point bend testing. The toughness was evaluated by Izod impact testing. Five samples for tensile testing and three-point bend testing as well as 15 samples for the Izod impact test for each of the seven orientations were made. The total number of samples was 175. The crack arrestor orientation was the strongest main orientation for the tensile and three-point bend test. Weibull analysis was done on the Izod impact testing due to high variation in the results for the crack arrestor and short transverse directions. It was found that the layer orientation and surface roughness played a significant role in the penetration of the Z bond 101 coating and in the overall strength of the samples.

  11. EQUIPMENT FOR SPARK-ASSISTED MACHINING (OBORUDOVANIE DLYA ELEKTROISKROVOI OBRABOTKI),

    DTIC Science & Technology

    MACHINE TOOLS, * ELECTROEROSIVE MACHINING), MACHINE TOOL INDUSTRY, ELECTROFORMING, ELECTRODES, ELECTROLYTIC CAPACITORS, ELECTRIC DISCHARGES, TOLERANCES(MECHANICS), SURFACE ROUGHNESS, DIES, MOLDINGS, SYNTHETIC FIBERS, USSR

  12. Vane Pump Casing Machining of Dumpling Machine Based on CAD/CAM

    NASA Astrophysics Data System (ADS)

    Huang, Yusen; Li, Shilong; Li, Chengcheng; Yang, Zhen

    Automatic dumpling forming machine is also called dumpling machine, which makes dumplings through mechanical motions. This paper adopts the stuffing delivery mechanism featuring the improved and specially-designed vane pump casing, which can contribute to the formation of dumplings. Its 3D modeling in Pro/E software, machining process planning, milling path optimization, simulation based on UG and compiling post program were introduced and verified. The results indicated that adoption of CAD/CAM offers firms the potential to pursue new innovative strategies.

  13. Examination of the influence of coatings on thin superalloy sections. Volume 2: Detailed procedures and data. [corrosion resistance

    NASA Technical Reports Server (NTRS)

    Kaufman, M.

    1974-01-01

    The effects of an aluminide coating, Codep B-1, and of section thickness were investigated on two cast nickel base superalloys, Rene 80 and Rene 120. Cast section thicknesses ranged from 0.038 cm to 0.15 cm. Simulated engine exposures for 1000 hours at 899C or 982C in a jet fuel burner rig with cyclic air cooling were studied, as were the effects of surface machining before coating and re-machining and re-coating after exposures. The properties evaluated included tensile at room temperature., 871C and 982C, stress rupture at 760C, 871C, 982C and 1093C, high cycle mechanical fatigue at room temperature., and thermal fatigue with a 1093C peak temperature. Thin sections had tensile strengths similar to standard size bars up to 871C and lower strengths at 982C and above, with equivalent elongation, and stress rupture life was lower for thin sections at all test conditions. The aluminide coating lowered tensile and rupture strengths up to 871C, with greater effects on thinner specimens. Elevated temperature exposure lowered tensile and rupture strengths of thinner specimens at the lower test temperatures. Surface machining had little effect on properties, but re-machining after exposure reduced thickness and increased metallurgical changes enough to lower properties at most test conditions.

  14. Study of PVD AlCrN Coating for Reducing Carbide Cutting Tool Deterioration in the Machining of Titanium Alloys.

    PubMed

    Cadena, Natalia L; Cue-Sampedro, Rodrigo; Siller, Héctor R; Arizmendi-Morquecho, Ana M; Rivera-Solorio, Carlos I; Di-Nardo, Santiago

    2013-05-24

    The manufacture of medical and aerospace components made of titanium alloys and other difficult-to-cut materials requires the parallel development of high performance cutting tools coated with materials capable of enhanced tribological and resistance properties. In this matter, a thin nanocomposite film made out of AlCrN (aluminum-chromium-nitride) was studied in this research, showing experimental work in the deposition process and its characterization. A heat-treated monolayer coating, competitive with other coatings in the machining of titanium alloys, was analyzed. Different analysis and characterizations were performed on the manufactured coating by scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDXS), and X-ray diffraction (XRD). Furthermore, the mechanical behavior of the coating was evaluated through hardness test and tribology with pin-on-disk to quantify friction coefficient and wear rate. Finally, machinability tests using coated tungsten carbide cutting tools were executed in order to determine its performance through wear resistance, which is a key issue of cutting tools in high-end cutting at elevated temperatures. It was demonstrated that the specimen (with lower friction coefficient than previous research) is more efficient in machinability tests in Ti6Al4V alloys. Furthermore, the heat-treated monolayer coating presented better performance in comparison with a conventional monolayer of AlCrN coating.

  15. Study of PVD AlCrN Coating for Reducing Carbide Cutting Tool Deterioration in the Machining of Titanium Alloys

    PubMed Central

    Cadena, Natalia L.; Cue-Sampedro, Rodrigo; Siller, Héctor R.; Arizmendi-Morquecho, Ana M.; Rivera-Solorio, Carlos I.; Di-Nardo, Santiago

    2013-01-01

    The manufacture of medical and aerospace components made of titanium alloys and other difficult-to-cut materials requires the parallel development of high performance cutting tools coated with materials capable of enhanced tribological and resistance properties. In this matter, a thin nanocomposite film made out of AlCrN (aluminum–chromium–nitride) was studied in this research, showing experimental work in the deposition process and its characterization. A heat-treated monolayer coating, competitive with other coatings in the machining of titanium alloys, was analyzed. Different analysis and characterizations were performed on the manufactured coating by scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDXS), and X-ray diffraction (XRD). Furthermore, the mechanical behavior of the coating was evaluated through hardness test and tribology with pin-on-disk to quantify friction coefficient and wear rate. Finally, machinability tests using coated tungsten carbide cutting tools were executed in order to determine its performance through wear resistance, which is a key issue of cutting tools in high-end cutting at elevated temperatures. It was demonstrated that the specimen (with lower friction coefficient than previous research) is more efficient in machinability tests in Ti6Al4V alloys. Furthermore, the heat-treated monolayer coating presented better performance in comparison with a conventional monolayer of AlCrN coating. PMID:28809266

  16. Characterization of NiTi Shape Memory Damping Elements designed for Automotive Safety Systems

    NASA Astrophysics Data System (ADS)

    Strittmatter, Joachim; Clipa, Victor; Gheorghita, Viorel; Gümpel, Paul

    2014-07-01

    Actuator elements made of NiTi shape memory material are more and more known in industry because of their unique properties. Due to the martensitic phase change, they can revert to their original shape by heating when subjected to an appropriate treatment. This thermal shape memory effect (SME) can show a significant shape change combined with a considerable force. Therefore such elements can be used to solve many technical tasks in the field of actuating elements and mechatronics and will play an increasing role in the next years, especially within the automotive technology, energy management, power, and mechanical engineering as well as medical technology. Beside this thermal SME, these materials also show a mechanical SME, characterized by a superelastic plateau with reversible elongations in the range of 8%. This behavior is based on the building of stress-induced martensite of loaded austenite material at constant temperature and facilitates a lot of applications especially in the medical field. Both SMEs are attended by energy dissipation during the martensitic phase change. This paper describes the first results obtained on different actuator and superelastic NiTi wires concerning their use as damping elements in automotive safety systems. In a first step, the damping behavior of small NiTi wires up to 0.5 mm diameter was examined at testing speeds varying between 0.1 and 50 mm/s upon an adapted tensile testing machine. In order to realize higher testing speeds, a drop impact testing machine was designed, which allows testing speeds up to 4000 mm/s. After introducing this new type of testing machine, the first results of vertical-shock tests of superelastic and electrically activated actuator wires are presented. The characterization of these high dynamic phase change parameters represents the basis for new applications for shape memory damping elements, especially in automotive safety systems.

  17. The Effect of Different Non-Metallic Inclusions on the Machinability of Steels

    PubMed Central

    Ånmark, Niclas; Karasev, Andrey; Jönsson, Pär Göran

    2015-01-01

    Considerable research has been conducted over recent decades on the role of non-metallic inclusions and their link to the machinability of different steels. The present work reviews the mechanisms of steel fractures during different mechanical machining operations and the behavior of various non-metallic inclusions in a cutting zone. More specifically, the effects of composition, size, number and morphology of inclusions on machinability factors (such as cutting tool wear, power consumption, etc.) are discussed and summarized. Finally, some methods for modification of non-metallic inclusions in the liquid steel are considered to obtain a desired balance between mechanical properties and machinability of various steel grades. PMID:28787969

  18. Mechatronics technology in predictive maintenance method

    NASA Astrophysics Data System (ADS)

    Majid, Nurul Afiqah A.; Muthalif, Asan G. A.

    2017-11-01

    This paper presents recent mechatronics technology that can help to implement predictive maintenance by combining intelligent and predictive maintenance instrument. Vibration Fault Simulation System (VFSS) is an example of mechatronics system. The focus of this study is the prediction on the use of critical machines to detect vibration. Vibration measurement is often used as the key indicator of the state of the machine. This paper shows the choice of the appropriate strategy in the vibration of diagnostic process of the mechanical system, especially rotating machines, in recognition of the failure during the working process. In this paper, the vibration signature analysis is implemented to detect faults in rotary machining that includes imbalance, mechanical looseness, bent shaft, misalignment, missing blade bearing fault, balancing mass and critical speed. In order to perform vibration signature analysis for rotating machinery faults, studies have been made on how mechatronics technology is used as predictive maintenance methods. Vibration Faults Simulation Rig (VFSR) is designed to simulate and understand faults signatures. These techniques are based on the processing of vibrational data in frequency-domain. The LabVIEW-based spectrum analyzer software is developed to acquire and extract frequency contents of faults signals. This system is successfully tested based on the unique vibration fault signatures that always occur in a rotating machinery.

  19. Modelling rollover behaviour of exacavator-based forest machines

    Treesearch

    M.W. Veal; S.E. Taylor; Robert B. Rummer

    2003-01-01

    This poster presentation provides results from analytical and computer simulation models of rollover behaviour of hydraulic excavators. These results are being used as input to the operator protective structure standards development process. Results from rigid body mechanics and computer simulation methods agree well with field rollover test data. These results show...

  20. Preparation for Testing a Multi-Bay Box Subjected to Combined Loads

    NASA Technical Reports Server (NTRS)

    Rouse, Marshall; Jegley, Dawn

    2015-01-01

    The COmbined Loads Test System (COLTS) facility at NASA Langley Research Center provides a test capability to help develop validated structures technologies. The test machine was design to accommodate a range of fuselage structures and wing sections and subject them to both quasistatic and cyclic loading conditions. The COLTS facility is capable of testing fuselage barrels up to 4.6 m in diameter and 13.7 m long with combined mechanical, internal pressure, and thermal loads. The COLTS facility is currently being prepared to conduct a combined mechanical and pressure loading for a multi-bay pressure box to experimentally verify the structural performance of a composite structure which is 9.1 meters long and representative of a section of a hybrid wing body fuselage section in support of the Environmentally Responsible Aviation Project at NASA. This paper describes development of the multi-bay pressure box test using the COLTS facility. The multi-bay test article will be subjected to mechanical loads and internal pressure loads up to design ultimate load. Mechanical and pressure loads will be applied independently in some tests and simultaneously in others.

  1. Gastro-oesophageal reflux disease increases the risk of intensive care unit admittance and mechanical ventilation use among patients with chronic obstructive pulmonary disease: a nationwide population-based cohort study.

    PubMed

    Tsai, Chen-Liang; Lin, Yu-Huei; Wang, Meng-Ting; Chien, Li-Nien; Jeng, Chii; Chian, Chih-Feng; Perng, Wann-Cherng; Chiang, Chi-Huei; Chiou, Hung-Yi

    2015-03-24

    Gastro-oesophageal reflux disease (GORD) is common among chronic obstructive pulmonary disease (COPD) patients and may have a deleterious effect on COPD prognosis. However, few studies have investigated whether GORD increases the risk of severe outcomes such as intensive care unit (ICU) admittance or mechanical ventilator use among COPD patients. Propensity score matching by age, sex, comorbidities and COPD severity was used to match the 1,210 COPD patients with GORD sourced in this study to 2,420 COPD patients without GORD. The Kaplan-Meier method was used to explore the incidence of ICU admittance and machine ventilation with the log rank test being used to test for differences. Cox regression analysis was used to explore the risk of ICU admittance and mechanical ventilation use for patients with and without GORD. During the 12-month follow-up, GORD patients and non-GORD patients had 5.22 and 3.01 ICU admittances per 1000 person-months, and 4.34 and 2.41 mechanical ventilation uses per 1000 person-month, respectively. The log rank test revealed a difference in the incidence of ICU admittance and machine ventilation between the two cohorts. GORD was found to be an independent predicator of ICU admittance (adjusted hazard ratio (HRadj) 1.75, 95% confidence interval (CI) 1.28-2.38) and mechanical ventilation (HRadj 1.92, 95% CI 1.35-2.72). This is the first investigation to detect a significantly higher incidence rate and independently increased risk of admission to an ICU and mechanical ventilation use among COPD patients who subsequently developed GORD during the first year following their GORD diagnosis than COPD patients who did not develop GORD.

  2. Some aspects of precise laser machining - Part 1: Theory

    NASA Astrophysics Data System (ADS)

    Wyszynski, Dominik; Grabowski, Marcin; Lipiec, Piotr

    2018-05-01

    The paper describes the role of laser beam polarization and deflection on quality of laser beam machined parts made of difficult to cut materials (used for cutting tools). Application of efficient and precise cutting tool (laser beam) has significant impact on preparation and finishing operations of cutting tools for aviation part manufacturing. Understanding the phenomena occurring in the polarized light laser cutting gave possibility to design, build and test opto-mechanical instrumentation to control and maintain process parameters and conditions. The research was carried within INNOLOT program funded by Polish National Centre for Research and Development.

  3. Mechanical Fault Diagnosis of High Voltage Circuit Breakers Based on Variational Mode Decomposition and Multi-Layer Classifier.

    PubMed

    Huang, Nantian; Chen, Huaijin; Cai, Guowei; Fang, Lihua; Wang, Yuqiang

    2016-11-10

    Mechanical fault diagnosis of high-voltage circuit breakers (HVCBs) based on vibration signal analysis is one of the most significant issues in improving the reliability and reducing the outage cost for power systems. The limitation of training samples and types of machine faults in HVCBs causes the existing mechanical fault diagnostic methods to recognize new types of machine faults easily without training samples as either a normal condition or a wrong fault type. A new mechanical fault diagnosis method for HVCBs based on variational mode decomposition (VMD) and multi-layer classifier (MLC) is proposed to improve the accuracy of fault diagnosis. First, HVCB vibration signals during operation are measured using an acceleration sensor. Second, a VMD algorithm is used to decompose the vibration signals into several intrinsic mode functions (IMFs). The IMF matrix is divided into submatrices to compute the local singular values (LSV). The maximum singular values of each submatrix are selected as the feature vectors for fault diagnosis. Finally, a MLC composed of two one-class support vector machines (OCSVMs) and a support vector machine (SVM) is constructed to identify the fault type. Two layers of independent OCSVM are adopted to distinguish normal or fault conditions with known or unknown fault types, respectively. On this basis, SVM recognizes the specific fault type. Real diagnostic experiments are conducted with a real SF₆ HVCB with normal and fault states. Three different faults (i.e., jam fault of the iron core, looseness of the base screw, and poor lubrication of the connecting lever) are simulated in a field experiment on a real HVCB to test the feasibility of the proposed method. Results show that the classification accuracy of the new method is superior to other traditional methods.

  4. Mechanical Fault Diagnosis of High Voltage Circuit Breakers Based on Variational Mode Decomposition and Multi-Layer Classifier

    PubMed Central

    Huang, Nantian; Chen, Huaijin; Cai, Guowei; Fang, Lihua; Wang, Yuqiang

    2016-01-01

    Mechanical fault diagnosis of high-voltage circuit breakers (HVCBs) based on vibration signal analysis is one of the most significant issues in improving the reliability and reducing the outage cost for power systems. The limitation of training samples and types of machine faults in HVCBs causes the existing mechanical fault diagnostic methods to recognize new types of machine faults easily without training samples as either a normal condition or a wrong fault type. A new mechanical fault diagnosis method for HVCBs based on variational mode decomposition (VMD) and multi-layer classifier (MLC) is proposed to improve the accuracy of fault diagnosis. First, HVCB vibration signals during operation are measured using an acceleration sensor. Second, a VMD algorithm is used to decompose the vibration signals into several intrinsic mode functions (IMFs). The IMF matrix is divided into submatrices to compute the local singular values (LSV). The maximum singular values of each submatrix are selected as the feature vectors for fault diagnosis. Finally, a MLC composed of two one-class support vector machines (OCSVMs) and a support vector machine (SVM) is constructed to identify the fault type. Two layers of independent OCSVM are adopted to distinguish normal or fault conditions with known or unknown fault types, respectively. On this basis, SVM recognizes the specific fault type. Real diagnostic experiments are conducted with a real SF6 HVCB with normal and fault states. Three different faults (i.e., jam fault of the iron core, looseness of the base screw, and poor lubrication of the connecting lever) are simulated in a field experiment on a real HVCB to test the feasibility of the proposed method. Results show that the classification accuracy of the new method is superior to other traditional methods. PMID:27834902

  5. The effects of multiple repairs on Inconel 718 weld mechanical properties

    NASA Technical Reports Server (NTRS)

    Russell, C. K.; Nunes, A. C., Jr.; Moore, D.

    1991-01-01

    Inconel 718 weldments were repaired 3, 6, 9, and 13 times using the gas tungsten arc welding process. The welded panels were machined into mechanical test specimens, postweld heat treated, and nondestructively tested. Tensile properties and high cycle fatigue life were evaluated and the results compared to unrepaired weld properties. Mechanical property data were analyzed using the statistical methods of difference in means for tensile properties and difference in log means and Weibull analysis for high cycle fatigue properties. Statistical analysis performed on the data did not show a significant decrease in tensile or high cycle fatigue properties due to the repeated repairs. Some degradation was observed in all properties, however, it was minimal.

  6. Design and application of the falling vertical sorting machine

    NASA Astrophysics Data System (ADS)

    Zuo, Ping; Peng, Tao; Yang, Hai

    2018-04-01

    In the process of tobacco production, it is necessary to pack the smoke according to the needs of different customers. A sorting machine is used to pick up the cigarette at present, there is a launch channel machine, a percussible vertical machine, But in the sorting process, the rolling channel machine is different in terms of the quality of smoke and the frictional force. It is difficult to ensure the location and posture of the belt sorting line, which causes the manipulator to not grasp. The strike type vertical machine is difficult to control the parallelism of the smoke. Now this team has developed a falling sorting machine, which has solved the smoke drop of a cigarette to the transmission belt. There will not be no code, can satisfy most of the different types of smoke sorting and no damage to smoke status. The dynamic characteristics such as the angular error of the opening and closing mechanism are carried out by ADAMS software. The simulation results show that the maximum angular error is 0.016rad. Through the test of the device, the goods falling speed is 7031/hour, the good of the falling position error within 2mm, meet the crawl accuracy requirements of the palletizing robot.

  7. Methods, systems and apparatus for controlling operation of two alternating current (AC) machines

    DOEpatents

    Gallegos-Lopez, Gabriel [Torrance, CA; Nagashima, James M [Cerritos, CA; Perisic, Milun [Torrance, CA; Hiti, Silva [Redondo Beach, CA

    2012-06-05

    A system is provided for controlling two alternating current (AC) machines via a five-phase PWM inverter module. The system comprises a first control loop, a second control loop, and a current command adjustment module. The current command adjustment module operates in conjunction with the first control loop and the second control loop to continuously adjust current command signals that control the first AC machine and the second AC machine such that they share the input voltage available to them without compromising the target mechanical output power of either machine. This way, even when the phase voltage available to either one of the machines decreases, that machine outputs its target mechanical output power.

  8. Nerve Conduction Study on Sural Nerve among Nepalese Tailors Using Mechanical Sewing Machine.

    PubMed

    Yadav, Prakash Kumar; Yadav, Ram Lochan; Sharma, Deepak; Shah, Dev Kumar; Thakur, Dilip; Limbu, Nirmala; Islam, Md Nazrul

    2017-03-01

    The use of new technologies and innovations are out of access for people living in a developing country like Nepal. The mechanical sewing machine is still in existence at a large scale and dominant all over the country. Tailoring is one of the major occupations adopted by skilled people with lower socioeconomic status and education level. Sural nerves of both right and left legs are exposed to strenuous and chronic stress exerted by chronic paddling of mechanical sewing machine with legs. To evaluate the influence of chronic and strenuous paddling on right and left sural nerves. The study recruited 30 healthy male tailors with median age {34(31-37.25)} years (study group), and, 30 healthy male volunteers with age {34(32-36.25)} years (control group). Anthropometric measurements (age, height, weight, BMI and length of both right and left legs) as well as cardio respiratory measurements [Systolic Blood Pressure (SBP), Dystolic Blood Pressure (DBP), Pules Rate (PR) and Respiratory Rate (RR)] were recorded for each subject. Standard nerve conduction techniques using constant measured distances were applied to evaluate sural nerve (sensory) in both legs of each individual. The differences in variables between the study and control groups were tested using Student's t-test for parametric variables and Mann-Whitney U test for nonparametric variables. A p-value of ≤ 0.05 was considered significant. Age, height, weight, body mass index and leg length were not significantly different between tailors and control groups. Cardio respiratory measurements (SBP, DBP, PR and RR) were also not significantly altered between both the groups. The sensory nerve conduction velocities (m/s) of the right {44.23(42.72-47.83) vs 50(46- 54)} and left sural nerves {45.97±5.86 vs 50.67±6.59} m/s were found significantly reduced in tailors in comparison to control group. Similarly amplitudes (μv) of right sural (20.75±5.42 vs 24.10±5.45) and left sural nerves {18.2(12.43-21.8) vs 32.0(26.5-35.25)} were significantly less in tailors in comparison to control group whereas, latencies (ms) of right sural {2.6(2.2-2.7) vs 2.0(2.0-2.250} and left sural nerve {2.4(2.07-2.72) vs 2.0(2.0-2.0)} were found significantly high in tailors as compared with control group. Operating mechanical sewing machine by paddling chronically and arduously could have attributed to abnormal nerve conduction study parameters due to vibration effect of the machine on right and left sural nerves. The results of present study follow the trend towards presymptomatic or asymptomatic neuropathy similar to subclinical neuropathy.

  9. Nerve Conduction Study on Sural Nerve among Nepalese Tailors Using Mechanical Sewing Machine

    PubMed Central

    Yadav, Ram Lochan; Sharma, Deepak; Shah, Dev Kumar; Thakur, Dilip; Limbu, Nirmala; Islam, Md. Nazrul

    2017-01-01

    Introduction The use of new technologies and innovations are out of access for people living in a developing country like Nepal. The mechanical sewing machine is still in existence at a large scale and dominant all over the country. Tailoring is one of the major occupations adopted by skilled people with lower socioeconomic status and education level. Sural nerves of both right and left legs are exposed to strenuous and chronic stress exerted by chronic paddling of mechanical sewing machine with legs. Aim To evaluate the influence of chronic and strenuous paddling on right and left sural nerves. Materials and Methods The study recruited 30 healthy male tailors with median age {34(31-37.25)} years (study group), and, 30 healthy male volunteers with age {34(32-36.25)} years (control group). Anthropometric measurements (age, height, weight, BMI and length of both right and left legs) as well as cardio respiratory measurements [Systolic Blood Pressure (SBP), Dystolic Blood Pressure (DBP), Pules Rate (PR) and Respiratory Rate (RR)] were recorded for each subject. Standard nerve conduction techniques using constant measured distances were applied to evaluate sural nerve (sensory) in both legs of each individual. The differences in variables between the study and control groups were tested using Student’s t-test for parametric variables and Mann-Whitney U test for nonparametric variables. A p-value of ≤ 0.05 was considered significant. Results Age, height, weight, body mass index and leg length were not significantly different between tailors and control groups. Cardio respiratory measurements (SBP, DBP, PR and RR) were also not significantly altered between both the groups. The sensory nerve conduction velocities (m/s) of the right {44.23(42.72-47.83) vs 50(46- 54)} and left sural nerves {45.97±5.86 vs 50.67±6.59} m/s were found significantly reduced in tailors in comparison to control group. Similarly amplitudes (μv) of right sural (20.75±5.42 vs 24.10±5.45) and left sural nerves {18.2(12.43-21.8) vs 32.0(26.5-35.25)} were significantly less in tailors in comparison to control group whereas, latencies (ms) of right sural {2.6(2.2-2.7) vs 2.0(2.0-2.250} and left sural nerve {2.4(2.07-2.72) vs 2.0(2.0-2.0)} were found significantly high in tailors as compared with control group. Conclusion Operating mechanical sewing machine by paddling chronically and arduously could have attributed to abnormal nerve conduction study parameters due to vibration effect of the machine on right and left sural nerves. The results of present study follow the trend towards presymptomatic or asymptomatic neuropathy similar to subclinical neuropathy. PMID:28511376

  10. Tensile testing apparatus

    NASA Technical Reports Server (NTRS)

    Blackburn, L. B.; Ellingsworth, J. R. (Inventor)

    1985-01-01

    An improved mechanical extensometer is described for use with a constant load creep test machine. The dead weight of the extensometer is counterbalanced by two pairs of weights connected through a pulley system and to rod extension and leading into the furnace where the test sample is undergoing elevated temperature (above 500 F.) tensile testing. Novel gripper surfaces, conical tip and flat surface are provided in each sampling engaging platens to reduce the grip pressure normally required for attachment of the extensometer to the specimen and reduce initial specimen bending normally associated with foil-gage metal testing.

  11. Microstructure and Mechanical Properties of Bulk Nanostructured Cu-Ta Alloys Consolidated by Equal Channel Angular Extrusion

    DTIC Science & Technology

    2014-07-01

    5,9], W [16], Zr [17] and Nb [18]. These systems have shown moderate to extraordinarily high microstructural stability at elevated temperatures...cans were then either serial sectioned for shear punch testing or cut into compression samples using wire electric discharge machining. Through SEM...to resist deformation, but do not necessarily alter the dislocation mechanism operating during plastic deformation. There are a number of challenges

  12. Propulsion and Power Rapid Response R&D Support. Task Order 0006: Engineering Research, Testing, and Technical Analyses of Advanced Propulsion Combustion Concepts, Mechanical Systems, Lubricants and Fuels: Mechanical Systems

    DTIC Science & Technology

    2009-02-01

    element state data are provided. (3) The objective of the third study conducted by PKG, Inc. was to conduct geometric modeling of race defects...A., (1995), “The effect of test machine on the failure mode in lubricated rolling contact of silicon nitride,” Tribology International, Vol. 28, pp...A192. (10) Crook, A. W. (1952), A study of some impacts between metal bodies by a piezoelectric method, Proceedings of Royal Society, A212. (11

  13. Natural Fiber Cut Machine Semi-Automatic Linear Motion System for Empty Fiber Bunches: Re-designing for Local Use

    NASA Astrophysics Data System (ADS)

    Asfarizal; Kasim, Anwar; Gunawarman; Santosa

    2017-12-01

    Empty Palm bunches of fiber is local ingredient in Indonesia that easy to obtain. Empty Palm bunches of fiber can be obtained from the palm oil industry such as in West Pasaman. The character of the empty Palm bunches of fiber that is strong and pliable has high-potential for particle board. To transform the large quantities of fiber become particles in size 0-10 mm requires a specially designed cut machine. Therefore, the machine is designed in two-stage system that is mechanical system, structure and cutting knife. Components that have been made, assembled and then tested to reveal the ability of the machine to cut. The results showed that the straight back and forth motion cut machine is able to cut out the empty oil palm bunches of fiber with a length 0-1 cm, 2 cm, 8 cm and the surface of the cut is not stringy. The cutting capacity is at a length of 2 cm in the result 24.4 (kg/h) and 8 cm obtained results of up to 84 (kg/h)

  14. Methodology of selecting dozers for lignite open pit mines in Serbia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stojanovic, D.; Ignjatovic, D.; Kovacevic, S.

    1996-12-31

    Apart from the main production processes (coal and overburden mining, rail conveyors transportation and storage of excavated masses) performed by great-capacity mechanization at open pit mines, numerous and different auxiliary works, that often have crucial influence on both the work efficiency of main equipment and the maintenance of optimum technical conditions of machines and plants covering technological system of open pit, are present. Successful realization of work indispensably requires a proper and adequate selection of auxiliary machines according to their type quantity, capacity, power etc. thus highly respecting specific conditions existing at each and every open pit mine. A dozermore » is certainly the most important and representative auxiliary machine at single open pit mine. It is widely used in numerous works that, in fact, are preconditions for successful work of the main mechanization and consequently the very selection of a dozer ranges among the most important operations when selecting mechanization. This paper presents the methodology of dozers selection when lignite open pit mines are concerned. A mathematical model defining the volume of work required for dozers to perform at open pit mines and consequently the number of necessary dozers was designed. The model underwent testing in practice at big open pit mines and can be used in design of future open pits mines.« less

  15. 30 CFR 70.207 - Bimonthly sampling; mechanized mining units.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... air will be used to determine the average concentration for that mechanized mining unit. (e) Unless... sampling device as follows: (1) Conventional section using cutting machine. On the cutting machine operator or on the cutting machine within 36 inches inby the normal working position; (2) Conventional section...

  16. The electrical discharge machining of ceramics

    NASA Astrophysics Data System (ADS)

    Trueman, Christopher Stuart

    This study introduces the concept of developing a novel and rapid rough-machining methodology for spark eroding suitable ceramic compositions based on material removal by thermal shock induced spalling, as opposed to conventional melting mechanisms. The principal materials studied were TiB2 dispersion toughened SiC, and Syalon501 - a commercially available TiN toughened sialon ceramic specifically designed for spark erosion. A preliminary study was also carried out on a range of SiC:B4C composites. Machinability and material performance were assessed where appropriate using machining parameters, material removal rate tests, surface analysis, four-point flexure testing, and tool wear. The machining technologies which supported the different mechanisms of material removal were identified, and each mechanism investigated by analysis of captured debris and sectioning of the workpiece. The SiC:B4C composites were found to be spark erodible only with B4C levels above 50% (by mass), and material removal was found to be solely by melting mechanisms. A SiC:TiB2 composition with the addition of 26.5% TiB2 (by mass) was found to be more machinable than a composition with 10% TiB2 (by mass), achieving greater material removal rates owing to its higher electrical conductivity. An in-depth study of the latter (10%TiB2) SiC composition and Syalon501 revealed surprisingly robust materials. Under conventional sparking (no arcing), material was removed by combined dissociation, melting and evaporation. Syalon501 in particular behaved with a high degree of predictability, and neither material could be made to spall under conventional sparking. However, by imposing conditions which deliberately induced arcing, both compositions spalled large flakes of material (up to several hundred microns across) in the localised region of the arc-strike. Examination of captured debris and fracture facets of the spall interface revealed the existence of small "penny cracks", each characterised by the presence of a dispersed particle (of greater thermal expansion) at its centre acting as a stress- raising nucleation point under the intense thermal loading of arcing. Sub-surface cracks in the near horizontal and near-vertical planes were discovered in line with published models based on the application of a hot-spot to brittle material, and evidence of discrete crack propagation under the thermally punctuated pulses of successive sparking was identified. Similar sub-surface cracking was also confirmed in Syalon501 which had been subjected to arcing. Sectioning of the workpiece revealed shallow sub-surface cracks which followed the profile of the machined surface in the near-horizontal plane, and which often limited the extent of near-vertical cracking to the layer of material above the crack, thereby offering the potential for a reliable and fast "planning" technique in which material would be removed in shallow layers. This research has shown that the possibility exists for increased material removal rates and improved process efficiency under a spalling-based machining regime, in which layers of material are released by thermal-shock induced fracture caused by arcing. The viability of developing a new rough-machining technology for ceramics, in which material is "planed" away prior to fine surface finishing by conventional spark erosion has, therefore, been successfully demonstrated.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarthy, J.M.

    The theory and methodology of design of general-purpose machines that may be controlled by a computer to perform all the tasks of a set of special-purpose machines is the focus of modern machine design research. These seventeen contributions chronicle recent activity in the analysis and design of robot manipulators that are the prototype of these general-purpose machines. They focus particularly on kinematics, the geometry of rigid-body motion, which is an integral part of machine design theory. The challenges to kinematics researchers presented by general-purpose machines such as the manipulator are leading to new perspectives in the design and control ofmore » simpler machines with two, three, and more degrees of freedom. Researchers are rethinking the uses of gear trains, planar mechanisms, adjustable mechanisms, and computer controlled actuators in the design of modern machines.« less

  18. Methods And Systms For Analyzing The Degradation And Failure Of Mechanical Systems

    DOEpatents

    Jarrell, Donald B.; Sisk, Daniel R.; Hatley, Darrel D.; Kirihara, Leslie J.; Peters, Timothy J.

    2005-02-08

    Methods and systems for identifying, understanding, and predicting the degradation and failure of mechanical systems are disclosed. The methods include measuring and quantifying stressors that are responsible for the activation of degradation mechanisms in the machine component of interest. The intensity of the stressor may be correlated with the rate of physical degradation according to some determinable function such that a derivative relationship exists between the machine performance, degradation, and the underlying stressor. The derivative relationship may be used to make diagnostic and prognostic calculations concerning the performance and projected life of the machine. These calculations may be performed in real time to allow the machine operator to quickly adjust the operational parameters of the machinery in order to help minimize or eliminate the effects of the degradation mechanism, thereby prolonging the life of the machine. Various systems implementing the methods are also disclosed.

  19. Strain-rate behavior in tension of the tempered martensitic reduced activation steel Eurofer97

    NASA Astrophysics Data System (ADS)

    Cadoni, Ezio; Dotta, Matteo; Forni, Daniele; Spätig, Philippe

    2011-07-01

    The tensile properties of the high-chromium tempered martensitic reduced activation steel Eurofer97 were determined from tests carried out over a wide range of strain-rates on cylindrical specimens. The quasi-static tests were performed with a universal electro-mechanical machine, whereas a hydro-pneumatic machine and a JRC-split Hopkinson tensile bar apparatus were used for medium and high strain-rates respectively. This tempered martensitic stainless steel showed significant strain-rate sensitivity. The constitutive behavior was investigated within a framework of dislocations dynamics model using Kock's approach. The parameters of the model were determined and then used to predict the deformation range of the tensile deformation stability. A very good agreement between the experimental results and predictions of the model was found.

  20. Design and operating experience on the U.S. Department of Energy Experimental Mod-O 100 kW Wind Turbine

    NASA Technical Reports Server (NTRS)

    Glasgow, J. C.; Birchenough, A. G.

    1978-01-01

    The Mod-O 100 kW Experimental Wind Turbine was designed and fabricated by NASA, as part of the Federal Wind Energy Program, to assess technology requirements and engineering problems of large wind turbines. The machine became operational in October 1975 and has demonstrated successful operation in all of its design modes. During the course of its operations the machine has generated a wealth of experimental data and has served as a prototype developmental test bed for the Mod-OA operational wind turbines which are currently used on utility networks. This paper describes the mechanical and control systems as they evolved in operational tests and describes some of the experience with various systems in the downwind rotor configuration.

  1. An experimental investigation on orthogonal cutting of hybrid CFRP/Ti stacks

    NASA Astrophysics Data System (ADS)

    Xu, Jinyang; El Mansori, Mohamed

    2016-10-01

    Hybrid CFRP/Ti stack has been widely used in the modern aerospace industry owing to its superior mechanical/physical properties and excellent structural functions. Several applications require mechanical machining of these hybrid composite stacks in order to achieve dimensional accuracy and assembly performance. However, machining of such composite-to-metal alliance is usually an extremely challenging task in the manufacturing sectors due to the disparate natures of each stacked constituent and their respective poor machinability. Special issues may arise from the high force/heat generation, severe subsurface damage and rapid tool wear. To study the fundamental mechanisms controlling the bi-material machining, this paper presented an experimental study on orthogonal cutting of hybrid CFRP/Ti stack by using superior polycrystalline diamond (PCD) tipped tools. The utilized cutting parameters for hybrid CFRP/Ti machining were rigorously adopted through a compromise selection due to the disparate machinability behaviors of the CFRP laminate and Ti alloy. The key cutting responses in terms of cutting force generation, machined surface quality and tool wear mechanism were precisely addressed. The experimental results highlighted the involved five stages of CFRP/Ti cutting and the predominant crater wear and edge fracture failure governing the PCD cutting process.

  2. Testing Machine for Biaxial Loading

    NASA Technical Reports Server (NTRS)

    Demonet, R. J.; Reeves, R. D.

    1985-01-01

    Standard tensile-testing machine applies bending and tension simultaneously. Biaxial-loading test machine created by adding two test fixtures to commercial tensile-testing machine. Bending moment applied by substrate-deformation fixture comprising yoke and anvil block. Pneumatic tension-load fixture pulls up on bracket attached to top surface of specimen. Tension and deflection measured with transducers. Modified test apparatus originally developed to load-test Space Shuttle surface-insulation tiles and particuarly important for composite structures.

  3. Experimental studies on mechanical properties of T6 treated Al25Mg2Si2Cu4Fe alloy

    NASA Astrophysics Data System (ADS)

    Sondur, D. G.; Mallapur, D. G.; Udupa, K. Rajendra

    2018-04-01

    Effect of T6 treatment on the mechanical properties of Al25Mg2Si2Cu4Fe alloy was evaluated by conducting mechanical tests on test pieces using universal testing machine. Increase in the mechanical properties such as ultimate tensile strength, hardness and % elongation was observed. Microstructure characterization revealed the modification in the size and shapes of the precipitates formed during the homogenization process. This modification increases the anisotropy of the microstructure and the stresses in the as cast structure. The increase in the hardness of T6 treated alloy is due to the partial recrystallization, fragmentation and redistribution of primary Mg2Si phase, precipitation of fine θ, Q phases. The high volume fractions of uniformly dispersed hard β-particles greatly increase the flow stress and provide an appreciable impediment to plastic deformation. Thus increasing the hardness of the alloy.

  4. The sixth generation robot in space

    NASA Technical Reports Server (NTRS)

    Butcher, A.; Das, A.; Reddy, Y. V.; Singh, H.

    1990-01-01

    The knowledge based simulator developed in the artificial intelligence laboratory has become a working test bed for experimenting with intelligent reasoning architectures. With this simulator, recently, small experiments have been done with an aim to simulate robot behavior to avoid colliding paths. An automatic extension of such experiments to intelligently planning robots in space demands advanced reasoning architectures. One such architecture for general purpose problem solving is explored. The robot, seen as a knowledge base machine, goes via predesigned abstraction mechanism for problem understanding and response generation. The three phases in one such abstraction scheme are: abstraction for representation, abstraction for evaluation, and abstraction for resolution. Such abstractions require multimodality. This multimodality requires the use of intensional variables to deal with beliefs in the system. Abstraction mechanisms help in synthesizing possible propagating lattices for such beliefs. The machine controller enters into a sixth generation paradigm.

  5. Design and Application of a Solar Mobile Pond Aquaculture Water Quality-Regulation Machine Based in Bream Pond Aquaculture.

    PubMed

    Liu, Xingguo; Xu, Hao; Ma, Zhuojun; Zhang, Yongjun; Tian, Changfeng; Cheng, Guofeng; Zou, Haisheng; Lu, Shimin; Liu, Shijing; Tang, Rong

    2016-01-01

    Bream pond aquaculture plays a very important role in China's aquaculture industry and is the main source of aquatic products. To regulate and control pond water quality and sediment, a movable solar pond aquaculture water quality regulation machine (SMWM) was designed and used. This machine is solar-powered and moves on water, and its primary components are a solar power supply device, a sediment lifting device, a mechanism for walking on the water's surface and a control system. The solar power supply device provides power for the machine, and the water walking mechanism drives the machine's motion on the water. The sediment lifting device orbits the main section of the machine and affects a large area of the pond. Tests of the machine's mechanical properties revealed that the minimum illumination necessary for the SMWM to function is 13,000 Lx and that its stable speed on the water is 0.02-0.03 m/s. For an illumination of 13,000-52,500 Lx, the sediment lifting device runs at 0.13-0.35 m/s, and its water delivery capacity is 110-208 m(3)/h. The sediment lifting device is able to fold away, and the angle of the suction chamber can be adjusted, making the machine work well in ponds at different water depths from 0.5 m to 2 m. The optimal distance from the sediment lifting device to the bottom of the pond is 10-15 cm. In addition, adjusting the length of the connecting rod and the direction of the traction rope allows the SMWM to work in a pond water area greater than 80%. The analysis of water quality in Wuchang bream (Parabramis pekinensis) and silver carp (Hypophthalmichthys molitrix) culture ponds using the SMWM resulted in decreased NH3(+)-N and available phosphorus concentrations and increased TP concentrations. The TN content and the amount of available phosphorus in the sediment were reduced. In addition, the fish production showed that the SMWM enhanced the yields of Wuchang bream and silver carp by more than 30% and 24%, respectively. These results indicate that the SMWM may be suitable for Wuchang bream pond aquaculture in China and that it can be used in pond aquaculture for regulating and controlling water quality.

  6. Development of a Pressure Box to Evaluate Reusable-Launch-Vehicle Cryogenic-Tank Panels

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Sikora, Joseph; Maguire, James F.; Winn, Peter M.

    1996-01-01

    A cryogenic pressure-box test machine has been designed and is being developed to test full-scale reusable-launch-vehicle cryogenic-tank panels. This machine is equipped with an internal pressurization system, a cryogenic cooling system, and a heating system to simulate the mechanical and thermal loading conditions that are representative of a reusable-launch-vehicle mission profile. The cryogenic cooling system uses liquid helium and liquid nitrogen to simulate liquid hydrogen and liquid oxygen tank internal temperatures. A quartz lamp heating system is used for heating the external surface of the test panels to simulate cryogenic-tank external surface temperatures during re-entry of the launch vehicle. The pressurization system uses gaseous helium and is designed to be controlled independently of the cooling system. The tensile loads in the axial direction of the test panel are simulated by means of hydraulic actuators and a load control system. The hoop loads in the test panel are reacted by load-calibrated turnbuckles attached to the skin and frame elements of the test panel. The load distribution in the skin and frames can be adjusted to correspond to the tank structure by using these turnbuckles. The seal between the test panel and the cryogenic pressure box is made from a reinforced Teflon material which can withstand pressures greater than 52 psig at cryogenic temperatures. Analytical results and tests on prototype test components indicate that most of the cryogenic-tank loading conditions that occur in flight can be simulated in the cryogenic pressure-box test machine.

  7. Design and fabrication of metal briquette machine for shop floor

    NASA Astrophysics Data System (ADS)

    Pramod, R.; Kumar, G. B. Veeresh; Prashanth B., N.

    2017-07-01

    Efforts have to be taken to ensure efficient waste management system in shop floors, with minimum utilization of space and energy when it comes to disposing metal chips formed during machining processes. The salvaging of junk metallic chips and the us e of scrap are important for the economic production of a steelworks. For this purpose, we have fabricated a metal chip compaction machine, which can compact the metal chips into small briquettes. The project started with the survey of chips formed in shop floors and the practices involved in waste management. Study was done on the requirements for a better compaction. The heating chamber was designed taking into consideration the temperature required for an easy compaction of the metal chips. The power source for compaction and the pneumatic design for mechanism was done following the appropriate calculations regarding the air pressure provided and thrust required. The processes were tested under different conditions and found effective. The fabrication of the machine has been explained in detail and the results have been discussed.

  8. A structurally decoupled mechanism for measuring wrist torque in three degrees of freedom

    NASA Astrophysics Data System (ADS)

    Pan, Lizhi; Yang, Zhen; Zhang, Dingguo

    2015-10-01

    The wrist joint is a critical part of the human body for movement. Measuring the torque of the wrist with three degrees of freedom (DOFs) is important in some fields, including rehabilitation, biomechanics, ergonomics, and human-machine interfacing. However, the particular structure of the wrist joint makes it difficult to measure the torque in all three directions simultaneously. This work develops a structurally decoupled instrument for measuring and improving the measurement accuracy of 3-DOF wrist torque during isometric contraction. Three single-axis torque sensors were embedded in a customized mechanical structure. The dimensions and components of the instrument were designed based on requirement of manufacturability. A prototype of the instrument was machined, assembled, integrated, and tested. The results show that the structurally decoupled mechanism is feasible for acquiring wrist torque data in three directions either independently or simultaneously. As a case study, we use the device to measure wrist torques concurrently with electromyography signal acquisition in preparation for simultaneous and proportional myoelectric control of prostheses.

  9. A structurally decoupled mechanism for measuring wrist torque in three degrees of freedom.

    PubMed

    Pan, Lizhi; Yang, Zhen; Zhang, Dingguo

    2015-10-01

    The wrist joint is a critical part of the human body for movement. Measuring the torque of the wrist with three degrees of freedom (DOFs) is important in some fields, including rehabilitation, biomechanics, ergonomics, and human-machine interfacing. However, the particular structure of the wrist joint makes it difficult to measure the torque in all three directions simultaneously. This work develops a structurally decoupled instrument for measuring and improving the measurement accuracy of 3-DOF wrist torque during isometric contraction. Three single-axis torque sensors were embedded in a customized mechanical structure. The dimensions and components of the instrument were designed based on requirement of manufacturability. A prototype of the instrument was machined, assembled, integrated, and tested. The results show that the structurally decoupled mechanism is feasible for acquiring wrist torque data in three directions either independently or simultaneously. As a case study, we use the device to measure wrist torques concurrently with electromyography signal acquisition in preparation for simultaneous and proportional myoelectric control of prostheses.

  10. Measurement of material mechanical properties in microforming

    NASA Astrophysics Data System (ADS)

    Yun, Wang; Xu, Zhenying; Hui, Huang; Zhou, Jianzhong

    2006-02-01

    As the rapid market need of micro-electro-mechanical systems engineering gives it the wide development and application ranging from mobile phones to medical apparatus, the need of metal micro-parts is increasing gradually. Microforming technology challenges the plastic processing technology. The findings have shown that if the grain size of the specimen remains constant, the flow stress changes with the increasing miniaturization, and also the necking elongation and the uniform elongation etc. It is impossible to get the specimen material properties in conventional tensile test machine, especially in the high precision demand. Therefore, one new measurement method for getting the specimen material-mechanical property with high precision is initiated. With this method, coupled with the high speed of Charge Coupled Device (CCD) camera and high precision of Coordinate Measuring Machine (CMM), the elongation and tensile strain in the gauge length are obtained. The elongation, yield stress and other mechanical properties can be calculated from the relationship between the images and CCD camera movement. This measuring method can be extended into other experiments, such as the alignment of the tool and specimen, micro-drawing process.

  11. Mechanical evaluation of aluminum alloy ring fixator.

    PubMed

    Tosborvorn, Somboon; Cheechareon, Sukrom; Ruttanuchun, Kittiput; Sirivedin, Suparerk; Rhienumporn, Chaitawat

    2006-11-01

    To test the homemade ring fixator as a tool for correction of bony deformity. The authors developed an aluminum alloy ring fixator and tested it to find out the accuracy of manufacturing and strength of the ring systems under axial load with the Roundness Testing Machine and Lloyd Universal Testing Machine. The mean diameter of the twenty five-drill holes was 6.5843872 +/- 0.0521594 mm (mean +/- SD). Distance between particular drill holes, which reflected the precision of drilling, had a high accuracy with standard deviation from 0.1138 to 0.1870 mm. The roundness of the rings was 0.2421376 +/- 0.12437977 mm (mean +/- SD). The system structure had minimal permanent deformity at breaking point, mean yield strength of the system was 4786.9 +/- 14.353 N (mean +/- SD). This was caused by the failure of the wire. Mean stiffness of the system was 127 N./mm. The aluminum alloy ring fixator was strong enough and well tolerated for clinical usage

  12. Phenomenological study of a cellular material behaviour under dynamic loadings

    NASA Astrophysics Data System (ADS)

    Bouix, R.; Viot, Ph.; Lataillade, J.-L.

    2006-08-01

    Polypropylene foams are cellular materials, which are often use to fill structures subjected to crash or violent impacts. Therefore, it is necessary to know and to characterise in experiments their mechanical behaviour in compression at high strain rates. So, several apparatus have been used in order to highlight the influence of strain rate, material density and also temperature. A split Hopkinson Pressure Bar has been used for impact tests, a fly wheel to test theses materials at medium strain rate and an electro-mechanical testing machine associated to a climatic chamber for temperature tests. Then, a rheological model has been used in order to describe the material behaviour. The mechanical response to compression of these foams presents three typical domains: a linear elastic step, a wide collapse plateau stress, which leads to a densification, which are related to a standard rheological model.

  13. Complementary Machine Intelligence and Human Intelligence in Virtual Teaching Assistant for Tutoring Program Tracing

    ERIC Educational Resources Information Center

    Chou, Chih-Yueh; Huang, Bau-Hung; Lin, Chi-Jen

    2011-01-01

    This study proposes a virtual teaching assistant (VTA) to share teacher tutoring tasks in helping students practice program tracing and proposes two mechanisms of complementing machine intelligence and human intelligence to develop the VTA. The first mechanism applies machine intelligence to extend human intelligence (teacher answers) to evaluate…

  14. An Effective Mechanism for Virtual Machine Placement using Aco in IAAS Cloud

    NASA Astrophysics Data System (ADS)

    Shenbaga Moorthy, Rajalakshmi; Fareentaj, U.; Divya, T. K.

    2017-08-01

    Cloud computing provides an effective way to dynamically provide numerous resources to meet customer demands. A major challenging problem for cloud providers is designing efficient mechanisms for optimal virtual machine Placement (OVMP). Such mechanisms enable the cloud providers to effectively utilize their available resources and obtain higher profits. In order to provide appropriate resources to the clients an optimal virtual machine placement algorithm is proposed. Virtual machine placement is NP-Hard problem. Such NP-Hard problem can be solved using heuristic algorithm. In this paper, Ant Colony Optimization based virtual machine placement is proposed. Our proposed system focuses on minimizing the cost spending in each plan for hosting virtual machines in a multiple cloud provider environment and the response time of each cloud provider is monitored periodically, in such a way to minimize delay in providing the resources to the users. The performance of the proposed algorithm is compared with greedy mechanism. The proposed algorithm is simulated in Eclipse IDE. The results clearly show that the proposed algorithm minimizes the cost, response time and also number of migrations.

  15. Measurements of the Mechanisms of Laminar-Turbulent Transition in the Mach-6 Quiet Tunnel

    DTIC Science & Technology

    2012-02-28

    fairly complex axisymmetric models could be built on the 2001 CNC lathe in the department machine shop at a very affordable cost, (5) laminar flow seemed...produce laser-induced breakdown plasmas in a test cell, even at atmospheric pressure. Because of this, the contoured window and compensating optical

  16. The 1991-1992 walking robot design

    NASA Technical Reports Server (NTRS)

    Azarm, Shapour; Dayawansa, Wijesurija; Tsai, Lung-Wen; Peritt, Jon

    1992-01-01

    The University of Maryland Walking Machine team designed and constructed a robot. This robot was completed in two phases with supervision and suggestions from three professors and one graduate teaching assistant. Bob was designed during the Fall Semester 1991, then machined, assembled, and debugged in the Spring Semester 1992. The project required a total of 4,300 student hours and cost under $8,000. Mechanically, Bob was an exercise in optimization. The robot was designed to test several diverse aspects of robotic potential, including speed, agility, and stability, with simplicity and reliability holding equal importance. For speed and smooth walking motion, the footpath contained a long horizontal component; a vertical aspect was included to allow clearance of obstacles. These challenges were met with a leg design that utilized a unique multi-link mechanism which traveled a modified tear-drop footpath. The electrical requirements included motor, encoder, and voice control circuitry selection, manual controller manufacture, and creation of sensors for guidance. Further, there was also a need for selection of the computer, completion of a preliminary program, and testing of the robot.

  17. FDR Soil Moisture Sensor for Environmental Testing and Evaluation

    NASA Astrophysics Data System (ADS)

    Linmao, Ye; longqin, Xue; guangzhou, Zhang; haibo, Chen; likuai, Shi; zhigang, Wu; gouhe, Yu; yanbin, Wang; sujun, Niu; Jin, Ye; Qi, Jin

    To test the affect of environmental stresses on a adaptability of soil moisture capacitance sensor(FDR) a number of stresses were induced including vibrational shock as well as temperature and humidity through the use of a CH-I constant humidity chamber with variable temperature. A Vibrational platform was used to exam the resistance and structural integrity of the sensor after vibrations simulating the process of using, transporting and handling the sensor. A Impactive trial platform was used to test the resistance and structural integrity of the sensor after enduring repeated mechanical shocks. An CH-I constant humidity chamber with high-low temperature was used to test the adaptability of sensor in different environments with high temperature, low temperature and constant humidity. Otherwise, scope of magnetic force line of sensor was also tested in this paper. Test show:the capacitance type soil moisture sensor spread a feeling machine to bear heat, high wet and low temperature, at bear impact and vibration experiment in pass an examination, is a kind of environment to adapt to ability very strong instrument;Spread a feeling machine moreover electric field strength function radius scope 7 cms.

  18. A hybrid approach for nondestructive assessment and design optimisation and testing of in-service machinery

    NASA Astrophysics Data System (ADS)

    Rahman, Abdul Ghaffar Abdul; Noroozi, Siamak; Dupac, Mihai; Mahathir Syed Mohd Al-Attas, Syed; Vinney, John E.

    2013-03-01

    Complex rotating machinery requires regular condition monitoring inspections to assess their running conditions and their structural integrity to prevent catastrophic failures. Machine failures can be divided into two categories. First is the wear and tear during operation, they range from bearing defects, gear damage, misalignment, imbalance or mechanical looseness, for which simple condition-based maintenance techniques can easily detect the root cause and trigger remedial action process. The second factor in machine failure is caused by the inherent design faults that usually happened due to many reasons such as improper installation, poor servicing, bad workmanship and structural dynamics design deficiency. In fact, individual machines components are generally dynamically well designed and rigorously tested. However, when these machines are assembled on sight and linked together, their dynamic characteristics will change causing unexpected behaviour of the system. Since nondestructive evaluation provides an excellent alternative to the classical monitoring and proved attractive due to the possibility of performing reliable assessments of all types of machinery, the novel dynamic design verification procedure - based on the combination of in-service operation deflection shape measurement, experimental modal analysis and iterative inverse finite element analysis - proposed here allows quick identification of structural weakness, and helps to provide and verify the solutions.

  19. Research on mechanical properties of carbon fiber /polyamide reinforced PP composites

    NASA Astrophysics Data System (ADS)

    Chen, Xinghui; Yu, Qiang; Liu, Lixia; Ji, Wenhua; Yang, Li; Fan, Dongli

    2017-10-01

    The polyamide composites reinforced by carbon fiber/polypropylene are produced by injection molding processing. The flow abilities and mechanical properties of the CF/PA/PP composite materials are studied by the fusion index instrument and the universal testing machine. The results show that with the content of carbon fiber/polyamide increase, the impact breaking strength and the tensile property of the composite materials increase, which is instructive to the actual injection production of polypropylene products.

  20. Influence of gaseous hydrogen on the mechanical properties of high temperature alloys

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Tensile tests of six nickel-base and one cobalt-base alloy were conducted in 34.5 MN/sq m helium and hydrogen environments at temperatures from 297 K to 1,088 K. Mechanical properties tests of the nickel-base alloy MAR M-246 (Hf modified), in two cast conditions, were conducted in gaseous environments at temperatures from 297 K to 1,144 K and pressures from one atmosphere to 34.5 MN/sq m. The objective of this program was to obtain the mechanical properties of the various alloys proposed for use in space propulsion systems in a pure hydrogen environment at different temperatures and to compare with the mechanical properties in helium at the same conditions. All testing was conducted on solid specimens exposed to external gaseous pressure. Smooth and notched tensile properties were determined using ASTM tensile testing techniques, and creep-rupture life was determined using ASTM creep-rupture techniques. Low-cycle fatigue life was established by constant total strain and constant stress testing using smooth specimens and a closed-loop test machine.

  1. Control system software, simulation, and robotic applications

    NASA Technical Reports Server (NTRS)

    Frisch, Harold P.

    1991-01-01

    All essential existing capabilities needed to create a man-machine interaction dynamics and performance (MMIDAP) capability are reviewed. The multibody system dynamics software program Order N DISCOS will be used for machine and musculo-skeletal dynamics modeling. The program JACK will be used for estimating and animating whole body human response to given loading situations and motion constraints. The basic elements of performance (BEP) task decomposition methodologies associated with the Human Performance Institute database will be used for performance assessment. Techniques for resolving the statically indeterminant muscular load sharing problem will be used for a detailed understanding of potential musculotendon or ligamentous fatigue, pain, discomfort, and trauma. The envisioned capacity is to be used for mechanical system design, human performance assessment, extrapolation of man/machine interaction test data, biomedical engineering, and soft prototyping within a concurrent engineering (CE) system.

  2. Measuring large aspherics using a commercially available 3D-coordinate measuring machine

    NASA Astrophysics Data System (ADS)

    Otto, Wolfgang; Matthes, Axel; Schiehle, Heinz

    2000-07-01

    A CNC-controlled precision measuring machine is a very powerful tool in the optical shop not only to determine the surface figure, but also to qualify the radius of curvature and conic constant of aspherics. We used a commercially available 3D-coordinate measuring machine (CMM, ZEISS UPMC 850 CARAT S-ACC) to measure the shape of the GEMINI 1-m convex secondary mirrors at different lapping and polishing stages. To determine the measuring accuracy we compared the mechanical measurements with the results achieved by means of an interferometrical test setup. The data obtained in an early stage of polishing were evaluated in Zernike polynomials which show a very good agreement. The deviation concerning long wave rotational symmetrical errors was 20 nm rms, whereas the accuracy measuring of mid spatial frequency deviations was limited to about 100 nm rms.

  3. Characterization of Machine Variability and Progressive Heat Treatment in Selective Laser Melting of Inconel 718

    NASA Technical Reports Server (NTRS)

    Prater, T.; Tilson, W.; Jones, Z.

    2015-01-01

    The absence of an economy of scale in spaceflight hardware makes additive manufacturing an immensely attractive option for propulsion components. As additive manufacturing techniques are increasingly adopted by government and industry to produce propulsion hardware in human-rated systems, significant development efforts are needed to establish these methods as reliable alternatives to conventional subtractive manufacturing. One of the critical challenges facing powder bed fusion techniques in this application is variability between machines used to perform builds. Even with implementation of robust process controls, it is possible for two machines operating at identical parameters with equivalent base materials to produce specimens with slightly different material properties. The machine variability study presented here evaluates 60 specimens of identical geometry built using the same parameters. 30 samples were produced on machine 1 (M1) and the other 30 samples were built on machine 2 (M2). Each of the 30-sample sets were further subdivided into three subsets (with 10 specimens in each subset) to assess the effect of progressive heat treatment on machine variability. The three categories for post-processing were: stress relief, stress relief followed by hot isostatic press (HIP), and stress relief followed by HIP followed by heat treatment per AMS 5664. Each specimen (a round, smooth tensile) was mechanically tested per ASTM E8. Two formal statistical techniques, hypothesis testing for equivalency of means and one-way analysis of variance (ANOVA), were applied to characterize the impact of machine variability and heat treatment on six material properties: tensile stress, yield stress, modulus of elasticity, fracture elongation, and reduction of area. This work represents the type of development effort that is critical as NASA, academia, and the industrial base work collaboratively to establish a path to certification for additively manufactured parts. For future flight programs, NASA and its commercial partners will procure parts from vendors who will use a diverse range of machines to produce parts and, as such, it is essential that the AM community develop a sound understanding of the degree to which machine variability impacts material properties.

  4. Fatigue Behavior of Crystalline-Reinforced Glass-Ceramics.

    PubMed

    Vicari, Carolina Barbosa; Magalhães, Bárbara de Oliveira; Griggs, Jason Alan; Borba, Márcia

    2018-01-03

    To evaluate the fatigue behavior of two crystalline-reinforced ceramics: leucite-reinforced (VL) and lithium disilicate-based (VD) glass-ceramics. Bar-shaped specimens (16 × 4 × 1.2 mm) were produced for each ceramic using prefabricated CAD/CAM blocks. For each group, 30 specimens were subjected to a three-point flexural strength test in a universal testing machine. For VL and VD, 36 and 41 specimens were subjected to a cyclic fatigue test, respectively. The cyclic fatigue test was performed with a pneumatic mechanical cycling machine (1 Hz; 37°C distilled water). Specimens were tested at two stress levels for each preset lifetime (10 3 and 10 4 cycles for VL; 10 4 and 10 5 cycles for VD) following the boundary technique. Fractography was performed with a scanning electron microscope. Data were analyzed with Weibull analysis. There were significant differences among groups for characteristic strength (σ 0 ) and Weibull modulus (m), as the confidence intervals did not overlap. The VD group presented the highest values of σ 0 , but the lowest Weibull modulus. Both groups showed a reduction of approximately 60% of the initial flexural strength (σ f ) after cycling for 10 4 cycles. For VD tested in fatigue, there was no degradation of σ f when the number of cycles was increased from 10 4 to 10 5 . The VL group showed an 18% decrease in σ f when the number of cycles increased from 10 3 to 10 4 . Flexural strength values estimated for a 5% probability of failure were 36 MPa for VL and 55 MPa for VD, after 10 4 cycles. Both glass-ceramics showed similar strength degradation (60%) after a lifetime of 10 4 cycles, despite their distinct mechanical properties. Mechanical cycling in humid conditions proved to be an important factor for the degradation of the mechanical properties of crystalline-reinforced glass-ceramics. © 2018 by the American College of Prosthodontists.

  5. SU-G-BRB-02: An Open-Source Software Analysis Library for Linear Accelerator Quality Assurance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerns, J; Yaldo, D

    Purpose: Routine linac quality assurance (QA) tests have become complex enough to require automation of most test analyses. A new data analysis software library was built that allows physicists to automate routine linear accelerator quality assurance tests. The package is open source, code tested, and benchmarked. Methods: Images and data were generated on a TrueBeam linac for the following routine QA tests: VMAT, starshot, CBCT, machine logs, Winston Lutz, and picket fence. The analysis library was built using the general programming language Python. Each test was analyzed with the library algorithms and compared to manual measurements taken at the timemore » of acquisition. Results: VMAT QA results agreed within 0.1% between the library and manual measurements. Machine logs (dynalogs & trajectory logs) were successfully parsed; mechanical axis positions were verified for accuracy and MLC fluence agreed well with EPID measurements. CBCT QA measurements were within 10 HU and 0.2mm where applicable. Winston Lutz isocenter size measurements were within 0.2mm of TrueBeam’s Machine Performance Check. Starshot analysis was within 0.2mm of the Winston Lutz results for the same conditions. Picket fence images with and without a known error showed that the library was capable of detecting MLC offsets within 0.02mm. Conclusion: A new routine QA software library has been benchmarked and is available for use by the community. The library is open-source and extensible for use in larger systems.« less

  6. A SUGGESTED CURRICULUM GUIDE FOR ELECTRO-MECHANICAL TECHNOLOGY ORIENTED SPECIFICALLY TO THE COMPUTER AND BUSINESS MACHINE FIELDS. INTERIM REPORT.

    ERIC Educational Resources Information Center

    LESCARBEAU, ROLAND F.; AND OTHERS

    A SUGGESTED POST-SECONDARY CURRICULUM GUIDE FOR ELECTRO-MECHANICAL TECHNOLOGY ORIENTED SPECIFICALLY TO THE COMPUTER AND BUSINESS MACHINE FIELDS WAS DEVELOPED BY A GROUP OF COOPERATING INSTITUTIONS, NOW INCORPORATED AS TECHNICAL EDUCATION CONSORTIUM, INCORPORATED. SPECIFIC NEEDS OF THE COMPUTER AND BUSINESS MACHINE INDUSTRY WERE DETERMINED FROM…

  7. The Fluid Foil: The Seventh Simple Machine

    ERIC Educational Resources Information Center

    Mitts, Charles R.

    2012-01-01

    A simple machine does one of two things: create a mechanical advantage (lever) or change the direction of an applied force (pulley). Fluid foils are unique among simple machines because they not only change the direction of an applied force (wheel and axle); they convert fluid energy into mechanical energy (wind and Kaplan turbines) or vice versa,…

  8. The strength study of the rotating device driver indexing spatial mechanism

    NASA Astrophysics Data System (ADS)

    Zakharenkov, N. V.; Kvasov, I. N.

    2018-04-01

    The indexing spatial mechanisms are widely used in automatic machines. The mechanisms maximum load-bearing capacity measurement is possible based on both the physical and numerical models tests results. The paper deals with the driven disk indexing spatial cam mechanism numerical model at the constant angular cam velocity. The presented mechanism kinematics and geometry parameters and finite element model are analyzed in the SolidWorks design environment. The calculation initial data and missing parameters having been found from the structure analysis were identified. The structure and kinematics analysis revealed the mechanism failures possible reasons. The numerical calculations results showing the structure performance at the contact and bending stresses are represented.

  9. 3D-WOVEN FIBER-REINFORCED COMPOSITE FOR CAD/CAM DENTAL APPLICATION

    PubMed Central

    Petersen, Richard; Liu, Perng-Ru

    2016-01-01

    Three-dimensional (3D)-woven noncrimp fiber-reinforced composite (FRC) was tested for mechanical properties in the two principal directions of the main XY plane and compared to different Computer-Aided-Design/Computer-Aided-Machining (CAD/CAM) Dental Materials. The Dental Materials included ceramic with Vitablock Mark II®, ProCAD®, InCeram® Spinel, InCeram® Alumina and InCeram® Zirconia in addition to a resin-based 3M Corp. Paradigm® particulate-filled composite. Alternate material controls included Coors 300 Alumina Ceramic and a tungsten carbide 22% cobalt cermet. The 3D-woven FRC was vacuum assisted resin transfer molding processed as a one-depth-thickness ~19-mm preform with a vinyl-ester resin and cut into blocks similar to the commercial CAD/CAM Dental Materials. Mechanical test samples prepared for a flexural three-point span length of 10.0 mm were sectioned for minimum-depth cuts to compare machinability and fracture resistance between groups. 3D-woven FRC improved mechanical properties with significant statistical differences over all CAD/CAM Dental Materials and Coors Alumina Ceramic for flexural strength (p<0.001), resilience (p<0.05), work of fracture (p<0.001), strain energy release (p<0.05), critical stress intensity factor (p<0.001) and strain (p<0.001). PMID:27642198

  10. 3D-WOVEN FIBER-REINFORCED COMPOSITE FOR CAD/CAM DENTAL APPLICATION.

    PubMed

    Petersen, Richard; Liu, Perng-Ru

    2016-05-01

    Three-dimensional (3D)-woven noncrimp fiber-reinforced composite (FRC) was tested for mechanical properties in the two principal directions of the main XY plane and compared to different Computer-Aided-Design/Computer-Aided-Machining (CAD/CAM) Dental Materials. The Dental Materials included ceramic with Vitablock Mark II®, ProCAD®, InCeram® Spinel, InCeram® Alumina and InCeram® Zirconia in addition to a resin-based 3M Corp. Paradigm® particulate-filled composite. Alternate material controls included Coors 300 Alumina Ceramic and a tungsten carbide 22% cobalt cermet. The 3D-woven FRC was vacuum assisted resin transfer molding processed as a one-depth-thickness ~19-mm preform with a vinyl-ester resin and cut into blocks similar to the commercial CAD/CAM Dental Materials. Mechanical test samples prepared for a flexural three-point span length of 10.0 mm were sectioned for minimum-depth cuts to compare machinability and fracture resistance between groups. 3D-woven FRC improved mechanical properties with significant statistical differences over all CAD/CAM Dental Materials and Coors Alumina Ceramic for flexural strength (p<0.001), resilience (p<0.05), work of fracture (p<0.001), strain energy release (p<0.05), critical stress intensity factor (p<0.001) and strain (p<0.001).

  11. Pneumothorax - infants

    MedlinePlus

    ... easily. If the baby needs a breathing machine (mechanical ventilator), extra pressure on the baby's lungs, from ... problems. If the baby needs a breathing machine (mechanical ventilator), extra pressure on the baby's lungs from ...

  12. Quench-Induced Stresses in AA2618 Forgings for Impellers: A Multiphysics and Multiscale Problem

    NASA Astrophysics Data System (ADS)

    Chobaut, Nicolas; Saelzle, Peter; Michel, Gilles; Carron, Denis; Drezet, Jean-Marie

    2015-05-01

    In the fabrication of heat-treatable aluminum parts such as AA2618 compressor impellers for turbochargers, solutionizing and quenching are key steps to obtain the required mechanical characteristics. Fast quenching is necessary to avoid coarse precipitation as it reduces the mechanical properties obtained after heat treatment. However, fast quenching induces residual stresses that can cause unacceptable distortions during machining. Furthermore, the remaining residual stresses after final machining can lead to unfavorable stresses in service. Predicting and controlling internal stresses during the whole processing from heat treatment to final machining is therefore of particular interest to prevent negative impacts of residual stresses. This problem is multiphysics because processes such as heat transfer during quenching, precipitation phenomena, thermally induced deformations, and stress generation are interacting and need to be taken into account. The problem is also multiscale as precipitates of nanosize form during quenching at locations where the cooling rate is too low. This precipitation affects the local yield strength of the material and thus impacts the level of macroscale residual stresses. A thermomechanical model accounting for precipitation in a simple but realistic way is presented. Instead of modelling precipitation that occurs during quenching, the model parameters are identified using a limited number of tensile tests achieved after representative interrupted cooling paths in a Gleeble machine. The simulation results are compared with as-quenched residual stresses in a forging measured by neutron diffraction.

  13. 49 CFR 236.326 - Mechanical locking removed or disarranged; requirement for permitting train movements through...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Mechanical locking removed or disarranged... § 236.326 Mechanical locking removed or disarranged; requirement for permitting train movements through interlocking. When mechanical locking of interlocking machine is being changed or is removed from the machine...

  14. Mechanical Properties of Oil Palm Empty Fruit Bunch Fiber

    NASA Astrophysics Data System (ADS)

    Gunawan, Fergyanto E.; Homma, Hiroomi; Brodjonegoro, Satryo S.; Hudin, Afzer Bin Baseri; Zainuddin, Aryanti Binti

    In tropical countries such as Indonesia and Malaysia, the empty fruit bunches are wastes of the oil palm industry. The wastes are abundantly available and has reached a level that severely threats the environment. Therefore, it is a great need to find useful applications of those waste materials; but firstly, the mechanical properties of the EFB fiber should be quantified. In this work, a small tensile test machine is manufactured, and the tensile test is performed on the EFB fibers. The results show that the strength of the EFB fiber is strongly affected by the fiber diameter; however, the fiber strength is relatively low in comparison to other natural fibers.

  15. 30 CFR 70.207 - Bimonthly sampling; mechanized mining units.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sampling device as follows: (1) Conventional section using cutting machine. On the cutting machine operator or on the cutting machine within 36 inches inby the normal working position; (2) Conventional section shooting off the solid. On the loading machine operator or on the loading machine within 36 inches inby the...

  16. 30 CFR 70.207 - Bimonthly sampling; mechanized mining units.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sampling device as follows: (1) Conventional section using cutting machine. On the cutting machine operator or on the cutting machine within 36 inches inby the normal working position; (2) Conventional section shooting off the solid. On the loading machine operator or on the loading machine within 36 inches inby the...

  17. 30 CFR 70.207 - Bimonthly sampling; mechanized mining units.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sampling device as follows: (1) Conventional section using cutting machine. On the cutting machine operator or on the cutting machine within 36 inches inby the normal working position; (2) Conventional section shooting off the solid. On the loading machine operator or on the loading machine within 36 inches inby the...

  18. Strain rate effects on the mechanical behavior of two Dual Phase steels in tension

    NASA Astrophysics Data System (ADS)

    Cadoni, E.; Singh, N. K.; Forni, D.; Singha, M. K.; Gupta, N. K.

    2016-05-01

    This paper presents an experimental investigation on the strain rate sensitivity of Dual Phase steel 1200 (DP1200) and Dual Phase steel 1400 (DP1400) under uni-axial tensile loads in the strain rate range from 0.001 s-1 to 600 s-1. These materials are advanced high strength steels (AHSS) having high strength, high capacity to dissipate crash energy and high formability. Flat sheet specimens of the materials having gauge length 10 mm, width 4 mm and thickness 2 mm (DP1200) and 1.25 mm (DP1400), are tested at room temperature (20∘C) on electromechanical universal testing machine to obtain their stress-strain relation under quasi-static condition (0.001 s-1), and on Hydro-Pneumatic machine and modified Hopkinson bar to study their mechanical behavior at medium (3 s-1, and 18 s-1) and high strain rates (200 s-1, 400 s-1, and 600 s-1) respectively. Tests under quasi-static condition are performed at high temperature (200∘C) also, and found that tensile flow stress is a increasing function of temperature. The stress-strain data has been analysed to determine the material parameters of the Cowper-Symonds and the Johnson-Cook models. A simple modification of the Johnson-Cook model has been proposed in order to obtain a better fit of tests at high temperatures. Finally, the fractographs of the broken specimens are taken by scanning electron microscope (SEM) to understand the fracture mechanism of these advanced high strength steels at different strain rates.

  19. A Methodology for Protective Vibration Monitoring of Hydropower Units Based on the Mechanical Properties.

    PubMed

    Nässelqvist, Mattias; Gustavsson, Rolf; Aidanpää, Jan-Olov

    2013-07-01

    It is important to monitor the radial loads in hydropower units in order to protect the machine from harmful radial loads. Existing recommendations in the standards regarding the radial movements of the shaft and bearing housing in hydropower units, ISO-7919-5 (International Organization for Standardization, 2005, "ISO 7919-5: Mechanical Vibration-Evaluation of Machine Vibration by Measurements on Rotating Shafts-Part 5: Machine Sets in Hydraulic Power Generating and Pumping Plants," Geneva, Switzerland) and ISO-10816-5 (International Organization for Standardization, 2000, "ISO 10816-5: Mechanical Vibration-Evaluation of Machine Vibration by Measurements on Non-Rotating Parts-Part 5: Machine Sets in Hydraulic Power Generating and Pumping Plants," Geneva, Switzerland), have alarm levels based on statistical data and do not consider the mechanical properties of the machine. The synchronous speed of the unit determines the maximum recommended shaft displacement and housing acceleration, according to these standards. This paper presents a methodology for the alarm and trip levels based on the design criteria of the hydropower unit and the measured radial loads in the machine during operation. When a hydropower unit is designed, one of its design criteria is to withstand certain loads spectra without the occurrence of fatigue in the mechanical components. These calculated limits for fatigue are used to set limits for the maximum radial loads allowed in the machine before it shuts down in order to protect itself from damage due to high radial loads. Radial loads in hydropower units are caused by unbalance, shape deviations, dynamic flow properties in the turbine, etc. Standards exist for balancing and manufacturers (and power plant owners) have recommendations for maximum allowed shape deviations in generators. These standards and recommendations determine which loads, at a maximum, should be allowed before an alarm is sent that the machine needs maintenance. The radial bearing load can be determined using load cells, bearing properties multiplied by shaft displacement, or bearing bracket stiffness multiplied by housing compression or movement. Different load measurement methods should be used depending on the design of the machine and accuracy demands in the load measurement. The methodology presented in the paper is applied to a 40 MW hydropower unit; suggestions are presented for the alarm and trip levels for the machine based on the mechanical properties and radial loads.

  20. Qualification and cryogenic performance of cryomodule components at CEBAF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heckman, J.; Macha, K.; Fischer, J.

    1996-12-31

    At CEBAF an electron beam is accelerated by superconducting resonant niobium cavities which are operated submerged in superfluid helium. The accelerator has 42 1/4 cryomodules, each containing eight cavities. The qualification and design of components for the cryomodules under went stringent testing and evaluation for acceptance. Indium wire seals are used between the cavity and helium vessel interface to make a superfluid helium leak tight seal. Each cavity is equipped with a mechanical tuner assembly designed to stretch and compress the cavities. Two rotary feedthroughs are used to operate each mechanical tuner assembly. Ceramic feedthroughs not designed for super-fluid weremore » qualified for tuner and cryogenic instrumentation. To ensure long term integrity of the machine special attention is required for material specifications and machine processes. The following is to share the qualification methods, design and performance of the cryogenic cryomodule components.« less

  1. Support vector machine based decision for mechanical fault condition monitoring in induction motor using an advanced Hilbert-Park transform.

    PubMed

    Ben Salem, Samira; Bacha, Khmais; Chaari, Abdelkader

    2012-09-01

    In this work we suggest an original fault signature based on an improved combination of Hilbert and Park transforms. Starting from this combination we can create two fault signatures: Hilbert modulus current space vector (HMCSV) and Hilbert phase current space vector (HPCSV). These two fault signatures are subsequently analysed using the classical fast Fourier transform (FFT). The effects of mechanical faults on the HMCSV and HPCSV spectrums are described, and the related frequencies are determined. The magnitudes of spectral components, relative to the studied faults (air-gap eccentricity and outer raceway ball bearing defect), are extracted in order to develop the input vector necessary for learning and testing the support vector machine with an aim of classifying automatically the various states of the induction motor. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Research on the EDM Technology for Micro-holes at Complex Spatial Locations

    NASA Astrophysics Data System (ADS)

    Y Liu, J.; Guo, J. M.; Sun, D. J.; Cai, Y. H.; Ding, L. T.; Jiang, H.

    2017-12-01

    For the demands on machining micro-holes at complex spatial location, several key technical problems are conquered such as micro-Electron Discharge Machining (micro-EDM) power supply system’s development, the host structure’s design and machining process technical. Through developing low-voltage power supply circuit, high-voltage circuit, micro and precision machining circuit and clearance detection system, the narrow pulse and high frequency six-axis EDM machining power supply system is developed to meet the demands on micro-hole discharging machining. With the method of combining the CAD structure design, CAE simulation analysis, modal test, ODS (Operational Deflection Shapes) test and theoretical analysis, the host construction and key axes of the machine tool are optimized to meet the position demands of the micro-holes. Through developing the special deionized water filtration system to make sure that the machining process is stable enough. To verify the machining equipment and processing technical developed in this paper through developing the micro-hole’s processing flow and test on the real machine tool. As shown in the final test results: the efficient micro-EDM machining pulse power supply system, machine tool host system, deionized filtration system and processing method developed in this paper meet the demands on machining micro-holes at complex spatial locations.

  3. Experimental analysis of volumetric wear behavioural and mechanical properties study of as cast and 1Hr homogenized Al-25Mg2Si2Cu4Ni alloy at constant load

    NASA Astrophysics Data System (ADS)

    Harlapur, M. D.; Mallapur, D. G.; Udupa, K. Rajendra

    2018-04-01

    In the current study, an experimental analysis of volumetric wear behaviour and mechanical properties of aluminium (Al-25Mg2Si2Cu4Ni) alloy in as cast and 1Hr homogenized with T6 heat treatment is carried out at constant load. Pin-on-disc apparatus was used to carry out sliding wear test. Mechanical properties such as tensile, hardness and compression test on as-cast and 1 hr homogenized samples are measured. Universal testing machine was used to conduct the tensile and compressive test at room temperature. Brinell hardness tester was used to conduct the hardness test. The scanning electron microscope was used to analyze the worn-out wear surfaces. Wear results and mechanical properties shows that 1Hr homogenized Al-25Mg2Si2Cu4Ni alloy samples with T6 treated had better volumetric wear resistance, hardness, tensile and compressive strength as compared to as cast samples.

  4. Quantum optomechanical piston engines powered by heat

    NASA Astrophysics Data System (ADS)

    Mari, A.; Farace, A.; Giovannetti, V.

    2015-09-01

    We study two different models of optomechanical systems where a temperature gradient between two radiation baths is exploited for inducing self-sustained coherent oscillations of a mechanical resonator. From a thermodynamic perspective, such systems represent quantum instances of self-contained thermal machines converting heat into a periodic mechanical motion and thus they can be interpreted as nano-scale analogues of macroscopic piston engines. Our models are potentially suitable for testing fundamental aspects of quantum thermodynamics in the laboratory and for applications in energy efficient nanotechnology.

  5. Electronic vending machines for dispensing rapid HIV self-testing kits: a case study.

    PubMed

    Young, Sean D; Klausner, Jeffrey; Fynn, Risa; Bolan, Robert

    2014-02-01

    This short report evaluates the feasibility of using electronic vending machines for dispensing oral, fluid, rapid HIV self-testing kits in Los Angeles County. Feasibility criteria that needed to be addressed were defined as: (1) ability to find a manufacturer who would allow dispensing of HIV testing kits and could fit them to the dimensions of a vending machine, (2) ability to identify and address potential initial obstacles, trade-offs in choosing a machine location, and (3) ability to gain community approval for implementing this approach in a community setting. To address these issues, we contracted a vending machine company who could supply a customized, Internet-enabled machine that could dispense HIV kits and partnered with a local health center available to host the machine onsite and provide counseling to participants, if needed. Vending machines appear to be feasible technologies that can be used to distribute HIV testing kits.

  6. Electronic vending machines for dispensing rapid HIV self-testing kits: A case study

    PubMed Central

    Young, Sean D.; Klausner, Jeffrey; Fynn, Risa; Bolan, Robert

    2014-01-01

    This short report evaluates the feasibility of using electronic vending machines for dispensing oral, fluid, rapid HIV-self testing kits in Los Angeles County. Feasibility criteria that needed to be addressed were defined as: 1) ability to find a manufacturer who would allow dispensing of HIV testing kits and could fit them to the dimensions of a vending machine, 2) ability to identify and address potential initial obstacles, trade-offs in choosing a machine location, and 3) ability to gain community approval for implementing this approach in a community setting. To address these issues, we contracted a vending machine company who could supply a customized, Internet-enabled machine that could dispense HIV kits and partnered with a local health center available to host the machine onsite and provide counseling to participants, if needed. Vending machines appear to be feasible technologies that can be used to distribute HIV testing kits. PMID:23777528

  7. Tribology and total hip joint replacement: current concepts in mechanical simulation.

    PubMed

    Affatato, S; Spinelli, M; Zavalloni, M; Mazzega-Fabbro, C; Viceconti, M

    2008-12-01

    Interest in the rheology and effects of interacting surfaces is as ancient as man. This subject can be represented by a recently coined word: tribology. This term is derived from the Greek word "tribos" and means the "science of rubbing". Friction, lubrication, and wear mechanism in the common English language means the precise field of interest of tribology. Wear of total hip prosthesis is a significant clinical problem that involves, nowadays, a too high a number of patients. In order to acquire further knowledge on the tribological phenomena that involve hip prosthesis wear tests are conducted on employed materials to extend lifetime of orthopaedic implants. The most basic type of test device is the material wear machine, however, a more advanced one may more accurately reproduce some of the in vivo conditions. Typically, these apparatus are called simulators, and, while there is no absolute definition of a joint simulator, its description as a mechanical rig used to test a joint replacement, under conditions approximating those occurring in the human body, is acceptable. Simulator tests, moreover, can be used to conduct accelerated protocols that replicate/simulate particularly extreme conditions, thus establishing the limits of performance for the material. Simulators vary in their level of sophistication and the international literature reveals many interpretations of the design of machines used for joint replacement testing. This paper aims to review the current state of the art of the hip joint simulators worldwide. This is specified through a schematic overview by describing, in particular, constructive solutions adopted to reproduce in vivo conditions. An exhaustive commentary on the evolution and actually existing simulation standards is proposed by the authors. The need of a shared protocol among research laboratories all over the world could lead to a consensus conference.

  8. Smart manufacturing of complex shaped pipe components

    NASA Astrophysics Data System (ADS)

    Salchak, Y. A.; Kotelnikov, A. A.; Sednev, D. A.; Borikov, V. N.

    2018-03-01

    Manufacturing industry is constantly improving. Nowadays the most relevant trend is widespread automation and optimization of the production process. This paper represents a novel approach for smart manufacturing of steel pipe valves. The system includes two main parts: mechanical treatment and quality assurance units. Mechanical treatment is performed by application of the milling machine with implementation of computerized numerical control, whilst the quality assurance unit contains three testing modules for different tasks, such as X-ray testing, optical scanning and ultrasound testing modules. The advances of each of them provide reliable results that contain information about any failures of the technological process, any deviations of geometrical parameters of the valves. The system also allows detecting defects on the surface or in the inner structure of the component.

  9. Creation of operation algorithms for combined operation of anti-lock braking system (ABS) and electric machine included in the combined power plant

    NASA Astrophysics Data System (ADS)

    Bakhmutov, S. V.; Ivanov, V. G.; Karpukhin, K. E.; Umnitsyn, A. A.

    2018-02-01

    The paper considers the Anti-lock Braking System (ABS) operation algorithm, which enables the implementation of hybrid braking, i.e. the braking process combining friction brake mechanisms and e-machine (electric machine), which operates in the energy recovery mode. The provided materials focus only on the rectilinear motion of the vehicle. That the ABS task consists in the maintenance of the target wheel slip ratio, which depends on the tyre-road adhesion coefficient. The tyre-road adhesion coefficient was defined based on the vehicle deceleration. In the course of calculated studies, the following operation algorithm of hybrid braking was determined. At adhesion coefficient ≤0.1, driving axle braking occurs only due to the e-machine operating in the energy recovery mode. In other cases, depending on adhesion coefficient, the e-machine provides the brake torque, which changes from 35 to 100% of the maximum available brake torque. Virtual tests showed that values of the wheel slip ratio are close to the required ones. Thus, this algorithm makes it possible to implement hybrid braking by means of the two sources creating the brake torque.

  10. Experimental Observations for Determining the Maximum Torque Values to Apply to Composite Components Mechanically Joined With Fasteners (MSFC Center Director's Discretionary Fund Final Report, Proj. 03-13}

    NASA Technical Reports Server (NTRS)

    Thomas, F. P.

    2006-01-01

    Aerospace structures utilize innovative, lightweight composite materials for exploration activities. These structural components, due to various reasons including size limitations, manufacturing facilities, contractual obligations, or particular design requirements, will have to be joined. The common methodologies for joining composite components are the adhesively bonded and mechanically fastened joints and, in certain instances, both methods are simultaneously incorporated into the design. Guidelines and recommendations exist for engineers to develop design criteria and analyze and test composites. However, there are no guidelines or recommendations based on analysis or test data to specify a torque or torque range to apply to metallic mechanical fasteners used to join composite components. Utilizing the torque tension machine at NASA s Marshall Space Flight Center, an initial series of tests were conducted to determine the maximum torque that could be applied to a composite specimen. Acoustic emissions were used to nondestructively assess the specimens during the tests and thermographic imaging after the tests.

  11. Development of an Instrument for Prescribing Compensatory Education for Vocational Trainees. Vocational Education Project. Final Report.

    ERIC Educational Resources Information Center

    Roberts, Robert C.; And Others

    The document reports the development of three pre-entry criterion--referenced tests (Skill Checks) designed to assess an applicant's verbal and numerical competencies and to assist in the implementation of remedial education where needed, in the vocational training areas of office occupations, automotive mechanics, and machine shop. A general…

  12. Soft electroactive actuators and hard ratchet-wheels enable unidirectional locomotion of hybrid machine

    NASA Astrophysics Data System (ADS)

    Sun, Wenjie; Liu, Fan; Ma, Ziqi; Li, Chenghai; Zhou, Jinxiong

    2017-01-01

    Combining synergistically the muscle-like actuation of soft materials and load-carrying and locomotive capability of hard mechanical components results in hybrid soft machines that can exhibit specific functions. Here, we describe the design, fabrication, modeling and experiment of a hybrid soft machine enabled by marrying unidirectionally actuated dielectric elastomer (DE) membrane-spring system and ratchet wheels. Subjected to an applied voltage 8.2 kV at ramping velocity 820 V/s, the hybrid machine prototype exhibits monotonic uniaxial locomotion with an averaged velocity 0.5mm/s. The underlying physics and working mechanisms of the soft machine are verified and elucidated by finite element simulation.

  13. Balance Evaluation Systems

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NeuroCom's Balance Master is a system to assess and then retrain patients with balance and mobility problems and is used in several medical centers. NeuroCom received assistance in research and funding from NASA, and incorporated technology from testing mechanisms for astronauts after shuttle flights. The EquiTest and Balance Master Systems are computerized posturography machines that measure patient responses to movement of a platform on which the subject is standing or sitting, then provide assessments of the patient's postural alignment and stability.

  14. Effect of incorporation of zinc oxide nanoparticles on mechanical properties of conventional glass ionomer cements.

    PubMed

    Panahandeh, Narges; Torabzadeh, Hassan; Aghaee, Mohammadamin; Hasani, Elham; Safa, Saeed

    2018-01-01

    The aim of this study is to investigate the physical properties of conventional and resin-modified glass ionomer cements (GICs) compared to GICs supplemented with zinc oxide (ZnO) nanofiller particles at 5% (w/w). In this in vitro study, ZnO nanoparticles of different morphologies (nanospherical, nanorod, and nanoflower) were incorporated to glass ionomer powder. The samples were subjected to the flexural strength ( n = 20) and surface hardness test ( n = 12) using a universal testing machine and a Vickers hardness machine, respectively. Surface analysis and crystal structure of samples were performed with scanning electron microscope and X-radiation diffraction, respectively. The data were analyzed using one-way ANOVA, Shapiro-Wilk, and Tukey's tests ( P < 0.05). Flexural strength of glass ionomer containing nanoparticles was not significantly different from the control group ( P > 0.05). The surface hardness of the glass ionomer containing nanospherical or nanoflower ZnO was significantly lower than the control group ( P < 0.05). However, the surface hardness of glass ionomer containing nanorod ZnO was not significantly different from the control group ( P = 0.868). Incorporation of nanospherical and nanoflower ZnO to glass ionomer decreased their surface hardness, without any changes on their flexural strength. Incorporation of nanorod ZnO particles caused no effect on the mechanical properties.

  15. Porcelain surface conditioning protocols and shear bond strength of orthodontic brackets.

    PubMed

    Lestrade, Ashley M; Ballard, Richard W; Xu, Xiaoming; Yu, Qingzhao; Kee, Edwin L; Armbruster, Paul C

    2016-05-01

    The objective of the present study was to determine which of six bonding protocols yielded a clinically acceptable shear bond strength (SBS) of metal orthodontic brackets to CAD/CAM lithium disilicate porcelain restorations. A secondary aim was to determine which bonding protocol produced the least surface damage at debond. Sixty lithium disilicate samples were fabricated to replicate the facial surface of a mandibular first molar using a CEREC CAD/CAM machine. The samples were split into six test groups, each of which received different mechanical/chemical pretreatment protocols to roughen the porcelain surface prior to bonding a molar orthodontic attachment. Shear bond strength testing was conducted using an Instron machine. The mean, maximum, minimal, and standard deviation SBS values for each sample group including an enamel control were calculated. A t-test was used to evaluate the statistical significance between the groups. No significant differences were found in SBS values, with the exception of surface roughening with a green stone prior to HFA and silane treatment. This protocol yielded slightly higher bond strength which was statistically significant. Chemical treatment alone with HFA/silane yielded SBS values within an acceptable clinical range to withstand forces applied by orthodontic treatment and potentially eliminates the need to mechanically roughen the ceramic surface.

  16. Effect of the Machined Surfaces of AISI 4337 Steel to Cutting Conditions on Dry Machining Lathe

    NASA Astrophysics Data System (ADS)

    Rahim, Robbi; Napid, Suhardi; Hasibuan, Abdurrozzaq; Rahmah Sibuea, Siti; Yusmartato, Y.

    2018-04-01

    The objective of the research is to obtain a cutting condition which has a good chance of realizing dry machining concept on AISI 4337 steel material by studying surface roughness, microstructure and hardness of machining surface. The data generated from the experiment were then processed and analyzed using the standard Taguchi method L9 (34) orthogonal array. Testing of dry and wet machining used surface test and micro hardness test for each of 27 test specimens. The machining results of the experiments showed that average surface roughness (Raavg) was obtained at optimum cutting conditions when VB 0.1 μm, 0.3 μm and 0.6 μm respectively 1.467 μm, 2.133 μm and 2,800 μm fo r dry machining while which was carried out by wet machining the results obtained were 1,833 μm, 2,667 μm and 3,000 μm. It can be concluded that dry machining provides better surface quality of machinery results than wet machining. Therefore, dry machining is a good choice that may be realized in the manufacturing and automotive industries.

  17. Magnetic properties of Fe-Si steel depending on compressive and tensile stresses under sinusoidal and distorted excitations

    NASA Astrophysics Data System (ADS)

    Permiakov, V.; Pulnikov, A.; Dupré, L.; De Wulf, M.; Melkebeek, J.

    2003-05-01

    In this article, the magnetic properties of nonoriented electrical steel under sinusoidal and distorted excitations are investigated for the whole range of unidirectional mechanical stresses. The distorted flux obtained from the tooth tip of 3 kW induction machine at no-load test was put into the measurement system. The total losses increase for compressive stress both under sinusoidal and distorted excitations. For tensile elastic stresses, the total losses first decrease and then increase in a very similar way for both excitations. In contrast, the difference between total losses under sinusoidal and distorted magnetic fluxes becomes smaller with increase of the plastic strain. This work is a serious step toward complete characterization of the magnetic properties of electrical steel in the teeth area of induction machines. A deeper insight of that problem can improve the design of induction machines and other electromagnetic devices.

  18. Implementing finite state machines in a computer-based teaching system

    NASA Astrophysics Data System (ADS)

    Hacker, Charles H.; Sitte, Renate

    1999-09-01

    Finite State Machines (FSM) are models for functions commonly implemented in digital circuits such as timers, remote controls, and vending machines. Teaching FSM is core in the curriculum of many university digital electronic or discrete mathematics subjects. Students often have difficulties grasping the theoretical concepts in the design and analysis of FSM. This has prompted the author to develop an MS-WindowsTM compatible software, WinState, that provides a tutorial style teaching aid for understanding the mechanisms of FSM. The animated computer screen is ideal for visually conveying the required design and analysis procedures. WinState complements other software for combinatorial logic previously developed by the author, and enhances the existing teaching package by adding sequential logic circuits. WinState enables the construction of a students own FSM, which can be simulated, to test the design for functionality and possible errors.

  19. A novel representation for apoptosis protein subcellular localization prediction using support vector machine.

    PubMed

    Zhang, Li; Liao, Bo; Li, Dachao; Zhu, Wen

    2009-07-21

    Apoptosis, or programmed cell death, plays an important role in development of an organism. Obtaining information on subcellular location of apoptosis proteins is very helpful to understand the apoptosis mechanism. In this paper, based on the concept that the position distribution information of amino acids is closely related with the structure and function of proteins, we introduce the concept of distance frequency [Matsuda, S., Vert, J.P., Ueda, N., Toh, H., Akutsu, T., 2005. A novel representation of protein sequences for prediction of subcellular location using support vector machines. Protein Sci. 14, 2804-2813] and propose a novel way to calculate distance frequencies. In order to calculate the local features, each protein sequence is separated into p parts with the same length in our paper. Then we use the novel representation of protein sequences and adopt support vector machine to predict subcellular location. The overall prediction accuracy is significantly improved by jackknife test.

  20. A mechanical property and stress corrosion evaluation of 431 stainless steel alloy

    NASA Technical Reports Server (NTRS)

    Montano, J. W.

    1973-01-01

    The mechanical properties of type 431 stainless steel in two conditions: annealed bar and hardened and tempered bar are presented. Test specimens, manufactured from approximately 1.0 inch (2.54 cm) diameter bar stock, were tested at temperatures of 80 F (+26.7 C), 0 F (-17.8 C), -100 F (-73 C), and -200 F (-129 C). The test data indicated excellent tensile strength, notched/unnotched tensile ratio, ductility, shear, and impact properties at all testing temperatures. Results of the alternate immersion stress corrosion tests on stressed and unstressed longitudinal tensile specimens 0.1250 inch (0.3175 cm) diameter and transverse C-ring specimens, machined from 1.0 inch (2.54 cm) diameter bar stock, indicated that the material is not susceptible to stress corrosion cracking when tested in a 3.5 percent NaCl solution for 180 days.

  1. Fabrication and testing of a prototype longwall face alignment system

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Fabrication and testing of a laser system for instantaneous location of a longwall shearer are summarized. Calculations and measurements for the design of a laser based system for monitoring and controlling the trajectory of the shearing machine as it progresses along the longwall face are reported. An early version was fabricated by employing simple mechanical contrivances and a standard miners lamp. It is concluded that the advantages of the early version is the ability to test the longwall face without approval from the Mine Safety and Health Administration.

  2. Nondestructive evaluation of ceramic matrix composite combustor components.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, J. G.; Verrilli, M. J.; Stephan, R.

    Combustor liners fabricated from a SiC/SiC composite were nondestructively interrogated before and after combustion rig testing. The combustor liners were inspected by X-ray, ultrasonic and thermographic techniques. In addition, mechanical test results were obtained from witness coupons, representing the as-manufactured liners, and from coupons machined from the components after combustion exposure. Thermography indications were found to correlate with reduced material properties obtained after rig testing. Microstructural examination of the SiC/SiC liners revealed the thermography indications to be delaminations and damaged fiber tows.

  3. Development of hand rehabilitation system for paralysis patient - universal design using wire-driven mechanism.

    PubMed

    Yamaura, Hiroshi; Matsushita, Kojiro; Kato, Ryu; Yokoi, Hiroshi

    2009-01-01

    We have developed a hand rehabilitation system for patients suffering from paralysis or contracture. It consists of two components: a hand rehabilitation machine, which moves human finger joints with motors, and a data glove, which provides control of the movement of finger joints attached to the rehabilitation machine. The machine is based on the arm structure type of hand rehabilitation machine; a motor indirectly moves a finger joint via a closed four-link mechanism. We employ a wire-driven mechanism and develop a compact design that can control all three joints (i.e., PIP, DIP and MP ) of a finger and that offers a wider range of joint motion than conventional systems. Furthermore, we demonstrate the hand rehabilitation process, finger joints of the left hand attached to the machine are controlled by the finger joints of the right hand wearing the data glove.

  4. Machine Shop. Criterion-Referenced Test (CRT) Item Bank.

    ERIC Educational Resources Information Center

    Davis, Diane, Ed.

    This drafting criterion-referenced test item bank is keyed to the machine shop competency profile developed by industry and education professionals in Missouri. The 16 references used for drafting the test items are listed. Test items are arranged under these categories: orientation to machine shop; performing mathematical calculations; performing…

  5. Comparison of mechanical properties of three machinable ceramics with an experimental fluorophlogopite glass ceramic.

    PubMed

    Leung, Brian T W; Tsoi, James K H; Matinlinna, Jukka P; Pow, Edmond H N

    2015-09-01

    Fluorophlogopite glass ceramic (FGC) is a biocompatible, etchable, and millable ceramic with fluoride releasing property. However, its mechanical properties and reliability compared with other machinable ceramics remain undetermined. The purpose of this in vitro study was to compare the mechanical properties of 3 commercially available millable ceramic materials, IPS e.max CAD, Vitablocs Mark II, and Vita Enamic, with an experimental FGC. Each type of ceramic block was sectioned into beams (n=15) of standard dimensions of 2×2×15 mm. Before mechanical testing, specimens of the IPS e.max CAD group were further fired for final crystallization. Flexural strength was determined by the 3-point bend test with a universal loading machine at a cross head speed of 1 mm/min. Hardness was determined with a hardness tester with 5 Vickers hardness indentations (n=5) using a 1.96 N load and a dwell time of 15 seconds. Selected surfaces were examined by scanning electron microscopy and energy-dispersive x-ray spectroscopy. Data were analyzed by the 1-way ANOVA test and Weibull analysis (α=.05). Weibull parameters, including the Weibull modulus (m) as well as the characteristic strength at 63.2% (η) and 10.0% (B10), were obtained. A significant difference in flexural strength (P<.001) was found among groups, with IPS e.max CAD (341.88 ±40.25 MPa)>Vita Enamic (145.95 ±12.65 MPa)>Vitablocs Mark II (106.67 ±18.50 MPa), and FGC (117.61 ±7.62 MPa). The Weibull modulus ranged from 6.93 to 18.34, with FGC showing the highest Weibull modulus among the 4 materials. The Weibull plot revealed that IPS e.max CAD>Vita Enamic>FGC>Vitablocs Mark II for the characteristic strength at both 63.2% (η) and 10.0% (B10). Significant difference in Vickers hardness among groups (P<.001) was found with IPS e.max CAD (731.63 ±30.64 H(V))>Vitablocs Mark II (594.74 ±25.22 H(V))>Vita Enamic (372.29 ±51.23 H(V))>FGC (153.74 ±23.62 H(V)). The flexural strength and Vickers hardness of IPS e.max CAD were significantly higher than those of the 3 materials tested. The FGC's flexural strength was comparable with Vitablocs Mark II. The FGC's Weibull modulus was the highest, while its Vickers hardness was the lowest among the materials tested. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  6. Grain Boundary Engineering the Mechanical Properties of Allvac 718Plus(Trademark) Superalloy

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Telesman, Jack; Garg, Anita; Lin, Peter; Provenzano, virgil; Heard, Robert; Miller, Herbert M.

    2010-01-01

    Grain Boundary Engineering can enhance the population of structurally-ordered "low S" Coincidence Site Lattice (CSL) grain boundaries in the microstructure. In some alloys, these "special" grain boundaries have been reported to improve overall resistance to corrosion, oxidation, and creep resistance. Such improvements could be quite beneficial for superalloys, especially in conditions which encourage damage and cracking at grain boundaries. Therefore, the effects of GBE processing on high-temperature mechanical properties of the cast and wrought superalloy Allvac 718Plus (Allvac ATI) were screened. Bar sections were subjected to varied GBE processing, and then consistently heat treated, machined, and tested at 650 C. Creep, tensile stress relaxation, and dwell fatigue crack growth tests were performed. The influences of GBE processing on microstructure, mechanical properties, and associated failure modes are discussed.

  7. Method and apparatus for monitoring machine performance

    DOEpatents

    Smith, Stephen F.; Castleberry, Kimberly N.

    1996-01-01

    Machine operating conditions can be monitored by analyzing, in either the time or frequency domain, the spectral components of the motor current. Changes in the electric background noise, induced by mechanical variations in the machine, are correlated to changes in the operating parameters of the machine.

  8. 30 CFR 77.401 - Stationary grinding machines; protective devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Stationary grinding machines; protective... OF UNDERGROUND COAL MINES Safeguards for Mechanical Equipment § 77.401 Stationary grinding machines; protective devices. (a) Stationary grinding machines other than special bit grinders shall be equipped with...

  9. 30 CFR 77.401 - Stationary grinding machines; protective devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Stationary grinding machines; protective... OF UNDERGROUND COAL MINES Safeguards for Mechanical Equipment § 77.401 Stationary grinding machines; protective devices. (a) Stationary grinding machines other than special bit grinders shall be equipped with...

  10. Multi-Response Optimization of WEDM Process Parameters Using Taguchi Based Desirability Function Analysis

    NASA Astrophysics Data System (ADS)

    Majumder, Himadri; Maity, Kalipada

    2018-03-01

    Shape memory alloy has a unique capability to return to its original shape after physical deformation by applying heat or thermo-mechanical or magnetic load. In this experimental investigation, desirability function analysis (DFA), a multi-attribute decision making was utilized to find out the optimum input parameter setting during wire electrical discharge machining (WEDM) of Ni-Ti shape memory alloy. Four critical machining parameters, namely pulse on time (TON), pulse off time (TOFF), wire feed (WF) and wire tension (WT) were taken as machining inputs for the experiments to optimize three interconnected responses like cutting speed, kerf width, and surface roughness. Input parameter combination TON = 120 μs., TOFF = 55 μs., WF = 3 m/min. and WT = 8 kg-F were found to produce the optimum results. The optimum process parameters for each desired response were also attained using Taguchi’s signal-to-noise ratio. Confirmation test has been done to validate the optimum machining parameter combination which affirmed DFA was a competent approach to select optimum input parameters for the ideal response quality for WEDM of Ni-Ti shape memory alloy.

  11. High productivity machining of holes in Inconel 718 with SiAlON tools

    NASA Astrophysics Data System (ADS)

    Agirreurreta, Aitor Arruti; Pelegay, Jose Angel; Arrazola, Pedro Jose; Ørskov, Klaus Bonde

    2016-10-01

    Inconel 718 is often employed in aerospace engines and power generation turbines. Numerous researches have proven the enhanced productivity when turning with ceramic tools compared to carbide ones, however there is considerably less information with regard to milling. Moreover, no knowledge has been published about machining holes with this type of tools. Additional research on different machining techniques, like for instance circular ramping, is critical to expand the productivity improvements that ceramics can offer. In this a 3D model of the machining and a number of experiments with SiAlON round inserts have been carried out in order to evaluate the effect of the cutting speed and pitch on the tool wear and chip generation. The results of this analysis show that three different types of chips are generated and also that there are three potential wear zones. Top slice wear is identified as the most critical wear type followed by the notch wear as a secondary wear mechanism. Flank wear and adhesion are also found in most of the tests.

  12. Fatigue Behavior of Porous Ti-6Al-4V Made by Laser-Engineered Net Shaping.

    PubMed

    Razavi, Seyed Mohammad Javad; Bordonaro, Giancarlo G; Ferro, Paolo; Torgersen, Jan; Berto, Filippo

    2018-02-12

    The fatigue behavior and fracture mechanisms of additively manufactured Ti-6Al-4V specimens are investigated in this study. Three sets of testing samples were fabricated for the assessment of fatigue life. The first batch of samples was built by using Laser-Engineered Net Shaping (LENS) technology, a Direct Energy Deposition (DED) method. Internal voids and defects were induced in a second batch of samples by changing LENS machine processing parameters. Fatigue performance of these samples is compared to the wrought Ti-6Al-4V samples. The effects of machine-induced porosity are assessed on mechanical properties and results are presented in the form of SN curves for the three sets of samples. Fracture mechanisms are examined by using Scanning Electron Microscopy (SEM) to characterize the morphological characteristics of the failure surface. Different fracture surface morphologies are observed for porous and non-porous specimens due to the combination of head write speed and laser power. Formation of defects such as pores, unmelted regions, and gas entrapments affect the failure mechanisms in porous specimens. Non-porous specimens exhibit fatigue properties comparable with that of the wrought specimens, but porous specimens are found to show a tremendous reduced fatigue strength.

  13. Effet de l'usinage sur les proprietes mecaniques en tension et controle non-destructif des materiaux composites

    NASA Astrophysics Data System (ADS)

    Genereux, Louis-Alexandre

    The main goal of this work is to evaluate the impact of milling operations on the integrity of unidirectional carbon/epoxy laminate. Milling, often used for finishing composite structures, cause some damage in the form of craters, cracks and thermal damage to the matrix. Here, two approaches are used to qualify and quantify the amount of damage. First, two nondestructive testing methods, namely immersion ultrasonic inspection and pulsed thermography, are evaluated on samples with artificial defects. These techniques are then used on machined samples with realistic machining damages. Only ultrasounds allowed the detection and quantification of the machining damages, but only if the damages are at the surface of the laminate. The depth of damage depends primarily on the fiber orientation of the first ply with respect to the cutting direction. The ultrasonic inspections are also accompanied by scanning electron microscope observations. The second approach is to check whether the presence of the machining damage will affect the mechanical properties of the laminate. To do this, static tensile tests are performed on samples prepared by three different methods, namely, by abrasive diamond saw, by saw cut followed by sanding and finally by milling. The results show that the damages caused by the milling operation are not important enough to affect the ultimate stress and elastic modulus. Despite this, it would be interesting, for future works, to investigate this aspect in fatigue rather than with static tests. The presence of damages on the edge might promote delamination during cyclic loads.

  14. Increasing energy efficiency level of building production based on applying modern mechanization facilities

    NASA Astrophysics Data System (ADS)

    Prokhorov, Sergey

    2017-10-01

    Building industry in a present day going through the hard times. Machine and mechanism exploitation cost, on a field of construction and installation works, takes a substantial part in total building construction expenses. There is a necessity to elaborate high efficient method, which allows not only to increase production, but also to reduce direct costs during machine fleet exploitation, and to increase its energy efficiency. In order to achieve the goal we plan to use modern methods of work production, hi-tech and energy saving machine tools and technologies, and use of optimal mechanization sets. As the optimization criteria there are exploitation prime cost and set efficiency. During actual task-solving process we made a conclusion, which shows that mechanization works, energy audit with production juxtaposition, prime prices and costs for energy resources allow to make complex machine fleet supply, improve ecological level and increase construction and installation work quality.

  15. Strike action electromagnetic machine for immersion of rod elements into ground

    NASA Astrophysics Data System (ADS)

    Usanov, K. M.; Volgin, A. V.; Chetverikov, E. A.; Kargin, V. A.; Moiseev, A. P.; Ivanova, Z. I.

    2017-10-01

    During construction, survey work, and drilling shallow wells by striking, operations associated with dipping and removing the rod elements are the most common. At the same time relatively long, with small diameter, elements, in which the ratio of length to diameter l/d is 100 or more, constitute a significant proportion. At present, the application of power pulse linear electromagnetic motors to drive drum machines is recognized to be highly effective. However, the mechanical method of transmission of shocks does not allow dipping long longitudinally unstable core elements. In this case, mechanical energy must be transferred from the motor to the rod through its side surface. The design of the strike action electromagnetic machine with a through axial channel for non-mechanical end striking of the pile of long, longitudinally unstable metal rods is proposed. Electromagnetic striking machine for non-mechanical end striking rod elements provides operations characterized by ecological compatibility, safety and high quality.

  16. Estimation of wear in total hip replacement using a ten station hip simulator.

    PubMed

    Brummitt, K; Hardaker, C S

    1996-01-01

    The results of hip simulator tests on a total of 16 total hip joints, all of them 22.25 mm Charnley designs, are presented. Wear at up to 6.75 million cycles was assessed by using a coordinate measuring machine. The results gave good agreement with clinical estimates of wear rate on the same design of joint replacement from a number of sources. Good agreement was also obtained when comparison was made with the published results from more sophisticated simulators. The major source of variation in the results was found to occur in the first million cycles where creep predominates. The results of this study support the use of this type of simplified simulator for estimating wear in a total hip prosthesis. The capability to test a significant number of joints simultaneously may make this mechanism preferable to more complex machines in many cases.

  17. Damage of actively cooled plasma facing components of magnetic confinement controlled fusion machines

    NASA Astrophysics Data System (ADS)

    Chevet, G.; Schlosser, J.; Martin, E.; Herb, V.; Camus, G.

    2009-03-01

    Plasma facing components (PFCs) of magnetic fusion machines have high manufactured residual stresses and have to withstand important stress ranges during operation. These actively cooled PFCs have a carbon fibre composite (CFC) armour and a copper alloy heat sink. Cracks mainly appear in the CFC near the composite/copper interface. In order to analyse damage mechanisms, it is important to well simulate the damage mechanisms both of the CFC and the CFC/Cu interface. This study focuses on the mechanical behaviour of the N11 material for which the scalar ONERA damage model was used. The damage parameters of this model were identified by similarity to a neighbour material, which was extensively analysed, according to the few characterization test results available for the N11. The finite elements calculations predict a high level of damage of the CFC at the interface zone explaining the encountered difficulties in the PFCs fabrication. These results suggest that the damage state of the CFC cells is correlated with a conductivity decrease to explain the temperature increase of the armour surface under fatigue heat load.

  18. Hovering of a jellyfish-like flying machine

    NASA Astrophysics Data System (ADS)

    Ristroph, Leif; Childress, Stephen

    2013-11-01

    Ornithopters, or flapping-wing aircraft, offer an alternative to helicopters in achieving maneuverability at small scales, although stabilizing such aerial vehicles remains a key challenge. Here, we present a hovering machine that achieves self-righting flight using flapping wings alone, without relying on additional aerodynamic surfaces and without feedback control. We design, construct, and test-fly a prototype that opens and closes four wings, resembling the motions of swimming jellyfish more so than any insect or bird. Lift measurements and high-speed video of free-flight are used to inform an aerodynamic model that explains the stabilization mechanism. These results show the promise of flapping-flight strategies beyond those that directly mimic the wing motions of flying animals.

  19. Mechanisms & Other Systems. Stuff That Works! A Technology Curriculum for the Elementary Grades.

    ERIC Educational Resources Information Center

    Benenson, Gary

    This book focuses on devices and systems that transform motion or convert energy. Contents are divided into six chapters: (1) "Appetizers" includes activities that can be done individually to become familiar with the topic of machines and mechanisms; (2) "Concepts" provides a basis for machine and mechanism development; (3)…

  20. Current problems in the dynamics and design of mechanisms and machines

    NASA Astrophysics Data System (ADS)

    Kestel'Man, V. N.

    The papers contained in this volume deal with possible ways of improving the dynamic and structural properties of machines and mechanisms and also with problems associated with the design of aircraft equipment. Topics discussed include estimation of the stressed state of a model of an orbital film structure, a study of the operation of an aerodynamic angle transducer in flow of a hot gas, calculation of the efficiency of aircraft gear drives, and dynamic accuracy of a controlled manipulator. Papers are also presented on optimal synthesis of mechanical systems with variable properties, synthesis of mechanisms using initial kinematic chains, and using shape memory materials in the design of machines and mechanisms. (For individual items see A93-31202 to A93-31214)

  1. Reducing tool wear by partial cladding of critical zones in hot form tool by laser metal deposition

    NASA Astrophysics Data System (ADS)

    Vollmer, Robert; Sommitsch, Christof

    2017-10-01

    This paper points out a production method to reduce tool wear in hot stamping applications. Usually tool wear can be observed at locally strongly stressed areas superimposed with gliding movement between blank and tool surface. The shown solution is based on a partial laser cladding of the tool surface with a wear resistant coating to increase the lifespan of tool inserts. Preliminary studies showed good results applying a material combination of tungsten carbide particles embedded in a metallic matrix. Different Nickel based alloys welded on hot work tool steel (1.2343) were tested mechanically in the interface zone. The material with the best bonding characteristic is chosen and reinforced with spherical tungsten carbide particles in a second laser welding step. Since the machining of tungsten carbides is very elaborate a special manufacturing strategy is developed to reduce the milling effort as much as possible. On special test specimens milling tests are carried out to proof the machinability. As outlook a tool insert of a b-pillar is coated to perform real hot forming tests.

  2. Specification of a new de-stoner machine: evaluation of machining effects on olive paste's rheology and olive oil yield and quality.

    PubMed

    Romaniello, Roberto; Leone, Alessandro; Tamborrino, Antonia

    2017-01-01

    An industrial prototype of a partial de-stoner machine was specified, built and implemented in an industrial olive oil extraction plant. The partial de-stoner machine was compared to the traditional mechanical crusher to assess its quantitative and qualitative performance. The extraction efficiency of the olive oil extraction plant, olive oil quality, sensory evaluation and rheological aspects were investigated. The results indicate that by using the partial de-stoner machine the extraction plant did not show statistical differences with respect to the traditional mechanical crushing. Moreover, the partial de-stoner machine allowed recovery of 60% of olive pits and the oils obtained were characterised by more marked green fruitiness, flavour and aroma than the oils produced using the traditional processing systems. The partial de-stoner machine removes the limitations of the traditional total de-stoner machine, opening new frontiers for the recovery of pits to be used as biomass. Moreover, the partial de-stoner machine permitted a significant reduction in the viscosity of the olive paste. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. Rotor internal friction instability

    NASA Technical Reports Server (NTRS)

    Bently, D. E.; Muszynska, A.

    1985-01-01

    Two aspects of internal friction affecting stability of rotating machines are discussed. The first role of internal friction consists of decreasing the level of effective damping during rotor subsynchronous and backward precessional vibrations caused by some other instability mechanisms. The second role of internal frication consists of creating rotor instability, i.e., causing self-excited subsynchronous vibrations. Experimental test results document both of these aspects.

  4. Effects of heat input on mechanical properties of metal inert gas welded 1.6 mm thick galvanized steel sheet

    NASA Astrophysics Data System (ADS)

    Rafiqul, M. I.; Ishak, M.; Rahman, M. M.

    2012-09-01

    It is usually a lot easier and less expensive to galvanize steel before it is welded into useful products. Galvanizing afterwards is almost impossible. In this research work, Galvanized Steel was welded by using the ER 308L stainless steel filler material. This work was done to find out an alternative way of welding and investigate the effects of heat input on the mechanical properties of butt welded joints of Galvanized Steel. A 13.7 kW maximum capacity MIG welding machine was used to join 1.6 mm thick sheet of galvanized steel with V groove and no gap between mm. Heat inputs was gradually increased from 21.06 to 25.07 joules/mm in this study. The result shows almost macro defects free welding and with increasing heat input the ultimate tensile strength and welding efficiency decrease. The Vickers hardness also decreases at HAZ with increasing heat input and for each individual specimen; hardness was lowest in heat affected zone (HAZ), intermediate in base metal and maximum in welded zone. The fracture for all specimens was in the heat affected zone while testing in the universal testing machine.

  5. 10 CFR 431.294 - Uniform test method for the measurement of energy consumption of refrigerated bottled or canned...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... consumption of refrigerated bottled or canned beverage vending machines. 431.294 Section 431.294 Energy... EQUIPMENT Refrigerated Bottled or Canned Beverage Vending Machines Test Procedures § 431.294 Uniform test... machines. (a) Scope. This section provides test procedures for measuring, pursuant to EPCA, the energy...

  6. Application of a Fiber Optic Distributed Strain Sensor System to Woven E-Glass Composite

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Lopatin, Craig

    2001-01-01

    A distributed strain sensing system utilizing a series of identically written Bragg gratings along an optical fiber is examined for potential application to Composite Armored Vehicle health monitoring. A vacuum assisted resin transfer molding process was used to fabricate a woven fabric E-glass/composite panel with an embedded fiber optic strain sensor. Test samples machined from the panel were mechanically tested in 4-point bending. Experimental results are presented that show the mechanical strain from foil strain gages comparing well to optical strain from the embedded sensors. Also, it was found that the distributed strain along the sample length was consistent with the loading configuration.

  7. Virtual collaborative environments: programming and controlling robotic devices remotely

    NASA Astrophysics Data System (ADS)

    Davies, Brady R.; McDonald, Michael J., Jr.; Harrigan, Raymond W.

    1995-12-01

    This paper describes a technology for remote sharing of intelligent electro-mechanical devices. An architecture and actual system have been developed and tested, based on the proposed National Information Infrastructure (NII) or Information Highway, to facilitate programming and control of intelligent programmable machines (like robots, machine tools, etc.). Using appropriate geometric models, integrated sensors, video systems, and computing hardware; computer controlled resources owned and operated by different (in a geographic sense as well as legal sense) entities can be individually or simultaneously programmed and controlled from one or more remote locations. Remote programming and control of intelligent machines will create significant opportunities for sharing of expensive capital equipment. Using the technology described in this paper, university researchers, manufacturing entities, automation consultants, design entities, and others can directly access robotic and machining facilities located across the country. Disparate electro-mechanical resources will be shared in a manner similar to the way supercomputers are accessed by multiple users. Using this technology, it will be possible for researchers developing new robot control algorithms to validate models and algorithms right from their university labs without ever owning a robot. Manufacturers will be able to model, simulate, and measure the performance of prospective robots before selecting robot hardware optimally suited for their intended application. Designers will be able to access CNC machining centers across the country to fabricate prototypic parts during product design validation. An existing prototype architecture and system has been developed and proven. Programming and control of a large gantry robot located at Sandia National Laboratories in Albuquerque, New Mexico, was demonstrated from such remote locations as Washington D.C., Washington State, and Southern California.

  8. DOE-RCT-0003641 Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Edward; Lesster, Ted

    2014-07-30

    This program studied novel concepts for an Axial Flux Reluctance Machine to capture energy from marine hydrokinetic sources and compared their attributes to a Radial Flux Reluctance Machine which was designed under a prior Department of Energy program for the same application. Detailed electromagnetic and mechanical analyses were performed to determine the validity of the concept and to provide a direct comparison with the existing conventional Radial Flux Switched Reluctance Machine designed during the Advanced Wave Energy Conversion Project, DE-EE0003641. The alternate design changed the machine topology so that the flux that is switched flows axially rather than radially andmore » the poles themselves are long radially, as opposed to the radial flux machine that has pole pieces that are long axially. It appeared possible to build an axial flux machine that should be considerably more compact than the radial machine. In an “apples to apples” comparison, the same rules with regard to generating magnetic force and the fundamental limitations of flux density hold, so that at the heart of the machine the same torque equations hold. The differences are in the mechanical configuration that limits or enhances the change of permeance with rotor position, in the amount of permeable iron required to channel the flux via the pole pieces to the air-gaps, and in the sizing and complexity of the electrical winding. Accordingly it was anticipated that the magnetic component weight would be similar but that better use of space would result in a shorter machine with accompanying reduction in housing and support structure. For the comparison the pole count was kept the same at 28 though it was also expected that the radial tapering of the slots between pole pieces would permit a higher pole count machine, enabling the generation of greater power at a given speed in some future design. The baseline Radial Flux Machine design was established during the previous DOE program. Its characteristics were tabulated for use in comparing to the Axial Flux Machine. Three basic conceptual designs for the Axial Flux Machine were considered: (1) a machine with a single coil at the inner diameter of the machine, (2) a machine with a single coil at the outside diameter of the machine, and (3) a machine with a coil around each tooth. Slight variations of these basic configurations were considered during the study. Analysis was performed on these configurations to determine the best candidate design to advance to preliminary design, based on size, weight, performance, cost and manufacturability. The configuration selected as the most promising was the multi-pole machine with a coil around each tooth. This configuration provided the least complexity with respect to the mechanical configuration and manufacturing, which would yield the highest reliability and lowest cost machine of the three options. A preliminary design was performed on this selected configuration. For this first ever axial design of the multi rotor configuration the 'apples to apples' comparison was based on using the same length of rotor pole as the axial length of rotor pole in the radial machine and making the mean radius of the rotor in the axial machine the same as the air gap radius in the radial machine. The tooth to slot ratio at the mean radius of the axial machine was the same as the tooth to slot ratio of the radial machine. The comparison between the original radial flux machine and the new axial flux machine indicates that for the same torque, the axial flux machine diameter will be 27% greater, but it will have 30% of the length, and 76% of the weight. Based on these results, it is concluded that an axial flux reluctance machine presents a viable option for large generators to be used for the capture of wave energy. In the analysis of Task 4, below, it is pointed out that our selection of dimensional similarity for the 'apples to apples' comparison did not produce an optimum axial flux design. There is torque capability to spare, implying we could reduce the magnetic structure, but the winding area, constrained by the pole separation at the inner pole radius has a higher resistance than desirable, implying we need more room for copper. The recommendation is to proceed via one cycle of optimization and review to correct this unbalance and then proceed to a detailed design phase to produce manufacturing drawings, followed by the construction of a prototype to test the performance of the machine against predicted results.« less

  9. Electro-Mechanical Curriculum.

    ERIC Educational Resources Information Center

    EASTCONN Regional Educational Services Center, North Windham, CT.

    This electromechanical technician curriculum covers the following general areas: (1) basic soldering; (2) reading diagrams and following schematics; and (3) repairing circuitry and mechanics common to major appliances, vending machines, amusement equipment, and small office machines. The manual includes the following sections: (1) course…

  10. A comparative study of surface EMG classification by fuzzy relevance vector machine and fuzzy support vector machine.

    PubMed

    Xie, Hong-Bo; Huang, Hu; Wu, Jianhua; Liu, Lei

    2015-02-01

    We present a multiclass fuzzy relevance vector machine (FRVM) learning mechanism and evaluate its performance to classify multiple hand motions using surface electromyographic (sEMG) signals. The relevance vector machine (RVM) is a sparse Bayesian kernel method which avoids some limitations of the support vector machine (SVM). However, RVM still suffers the difficulty of possible unclassifiable regions in multiclass problems. We propose two fuzzy membership function-based FRVM algorithms to solve such problems, based on experiments conducted on seven healthy subjects and two amputees with six hand motions. Two feature sets, namely, AR model coefficients and room mean square value (AR-RMS), and wavelet transform (WT) features, are extracted from the recorded sEMG signals. Fuzzy support vector machine (FSVM) analysis was also conducted for wide comparison in terms of accuracy, sparsity, training and testing time, as well as the effect of training sample sizes. FRVM yielded comparable classification accuracy with dramatically fewer support vectors in comparison with FSVM. Furthermore, the processing delay of FRVM was much less than that of FSVM, whilst training time of FSVM much faster than FRVM. The results indicate that FRVM classifier trained using sufficient samples can achieve comparable generalization capability as FSVM with significant sparsity in multi-channel sEMG classification, which is more suitable for sEMG-based real-time control applications.

  11. The evolution of machining-induced surface of single-crystal FCC copper via nanoindentation

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Huang, Hu; Zhao, Hongwei; Ma, Zhichao; Yang, Yihan; Hu, Xiaoli

    2013-05-01

    The physical properties of the machining-induced new surface depend on the performance of the initial defect surface and deformed layer in the subsurface of the bulk material. In this paper, three-dimensional molecular dynamics simulations of nanoindentation are preformed on the single-point diamond turning surface of single-crystal copper comparing with that of pristine single-crystal face-centered cubic copper. The simulation results indicate that the nucleation of dislocations in the nanoindentation test on the machining-induced surface and pristine single-crystal copper is different. The dislocation embryos are gradually developed from the sites of homogeneous random nucleation around the indenter in the pristine single-crystal specimen, while the dislocation embryos derived from the vacancy-related defects are distributed in the damage layer of the subsurface beneath the machining-induced surface. The results show that the hardness of the machining-induced surface is softer than that of pristine single-crystal copper. Then, the nanocutting simulations are performed along different crystal orientations on the same crystal surface. It is shown that the crystal orientation directly influences the dislocation formation and distribution of the machining-induced surface. The crystal orientation of nanocutting is further verified to affect both residual defect generations and their propagation directions which are important in assessing the change of mechanical properties, such as hardness and Young's modulus, after nanocutting process.

  12. A hybrid prognostic model for multistep ahead prediction of machine condition

    NASA Astrophysics Data System (ADS)

    Roulias, D.; Loutas, T. H.; Kostopoulos, V.

    2012-05-01

    Prognostics are the future trend in condition based maintenance. In the current framework a data driven prognostic model is developed. The typical procedure of developing such a model comprises a) the selection of features which correlate well with the gradual degradation of the machine and b) the training of a mathematical tool. In this work the data are taken from a laboratory scale single stage gearbox under multi-sensor monitoring. Tests monitoring the condition of the gear pair from healthy state until total brake down following several days of continuous operation were conducted. After basic pre-processing of the derived data, an indicator that correlated well with the gearbox condition was obtained. Consecutively the time series is split in few distinguishable time regions via an intelligent data clustering scheme. Each operating region is modelled with a feed-forward artificial neural network (FFANN) scheme. The performance of the proposed model is tested by applying the system to predict the machine degradation level on unseen data. The results show the plausibility and effectiveness of the model in following the trend of the timeseries even in the case that a sudden change occurs. Moreover the model shows ability to generalise for application in similar mechanical assets.

  13. Advanced radial inflow turbine rotor program: Design and dynamic testing

    NASA Technical Reports Server (NTRS)

    Rodgers, C.

    1976-01-01

    The advancement of small, cooled, radial inflow turbine technology in the area of operation at higher turbine inlet temperature is discussed. The first step was accomplished by designing, fabricating, and subjecting to limited mechanical testing an advanced gas generator rotating assembly comprising a radial inflow turbine and two-stage centrifugal compressor. The radial inflow turbine and second-stage compressor were designed as an integrally machined monorotor with turbine cooling taking place basically by conduction to the compressor. Design turbine inlet rotor gas temperature, rotational speed, and overall gas generator compressor pressure ratio were 1422 K (2560 R), 71,222 rpm, and 10/1 respectively. Mechanical testing on a fabricated rotating assembly and bearing system covered 1,000 cold start/stop cycles and three spins to 120 percent design speed (85,466 rpm).

  14. The methodic of calculation for the need of basic construction machines on construction site when developing organizational and technological documentation

    NASA Astrophysics Data System (ADS)

    Zhadanovsky, Boris; Sinenko, Sergey

    2018-03-01

    Economic indicators of construction work, particularly in high-rise construction, are directly related to the choice of optimal number of machines. The shortage of machinery makes it impossible to complete the construction & installation work on scheduled time. Rates of performance of construction & installation works and labor productivity during high-rise construction largely depend on the degree of provision of construction project with machines (level of work mechanization). During calculation of the need for machines in construction projects, it is necessary to ensure that work is completed on scheduled time, increased level of complex mechanization, increased productivity and reduction of manual work, and improved usage and maintenance of machine fleet. The selection of machines and determination of their numbers should be carried out by using formulas presented in this work.

  15. Scanning Electron Microscopy Analysis of the Adaptation of Single-Unit Screw-Retained Computer-Aided Design/Computer-Aided Manufacture Abutments After Mechanical Cycling.

    PubMed

    Markarian, Roberto Adrian; Galles, Deborah Pedroso; Gomes França, Fabiana Mantovani

    To measure the microgap between dental implants and custom abutments fabricated using different computer-aided design/computer-aided manufacture (CAD/CAM) methods before and after mechanical cycling. CAD software (Dental System, 3Shape) was used to design a custom abutment for a single-unit, screw-retained crown compatible with a 4.1-mm external hexagon dental implant. The resulting stereolithography file was sent for manufacturing using four CAD/CAM methods (n = 40): milling and sintering of zirconium dioxide (ZO group), cobalt-chromium (Co-Cr) sintered via selective laser melting (SLM group), fully sintered machined Co-Cr alloy (MM group), and machined and sintered agglutinated Co-Cr alloy powder (AM group). Prefabricated titanium abutments (TI group) were used as controls. Each abutment was placed on a dental implant measuring 4.1× 11 mm (SA411, SIN) inserted into an aluminum block. Measurements were taken using scanning electron microscopy (SEM) (×4,000) on four regions of the implant-abutment interface (IAI) and at a relative distance of 90 degrees from each other. The specimens were mechanically aged (1 million cycles, 2 Hz, 100 N, 37°C) and the IAI width was measured again using the same approach. Data were analyzed using two-way analysis of variance, followed by the Tukey test. After mechanical cycling, the best adaptation results were obtained from the TI (2.29 ± 1.13 μm), AM (3.58 ± 1.80 μm), and MM (1.89 ± 0.98 μm) groups. A significantly worse adaptation outcome was observed for the SLM (18.40 ± 20.78 μm) and ZO (10.42 ± 0.80 μm) groups. Mechanical cycling had a marked effect only on the AM specimens, which significantly increased the microgap at the IAI. Custom abutments fabricated using fully sintered machined Co-Cr alloy and machined and sintered agglutinated Co-Cr alloy powder demonstrated the best adaptation results at the IAI, similar to those obtained with commercial prefabricated titanium abutments after mechanical cycling. The adaptation of custom abutments made by means of SLM or milling and sintering of zirconium dioxide were worse both before and after mechanical cycling.

  16. Study on mechanical properties of steel honeycomb panel three-point bending specimen under in-plane and out-plane transverse dynamic impact load

    NASA Astrophysics Data System (ADS)

    Zou, Guangping; Chang, Zhongliang; Xia, Xingyou; Zhang, Xueyi

    2010-03-01

    The metal honeycomb material has high strength and high stiffness, as a high-performance sandwich panel, it is an ideal lightweight structural material, and widely used in aviation, aerospace, shipbuilding and other fields. In this paper, the improved SHPB instrument is used for testing the in-plane and out-plane mechanical properties of the steel honeycomb panel three-point bending specimen, and also compare the results with the static in-plane and out-plane three-point bending experiments results which is tested by the INSTRON 4505 electronic universal testing machine, and then study the mechanical properties of the steel honeycomb panel three-point bending specimen under transverse dynamic impact load. From the results it can be see that, for the out-plane three point bending experiment, L direction mechanical properties is better than the W direction, and the honeycomb core play an important role during the specimen deformation, while for the in-plane three point bending experiment, the honeycomb core mechanical role is not distinctness.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angers, Crystal Plume; Bottema, Ryan; Buckley, Les

    Purpose: Treatment unit uptime statistics are typically used to monitor radiation equipment performance. The Ottawa Hospital Cancer Centre has introduced the use of Quality Control (QC) test success as a quality indicator for equipment performance and overall health of the equipment QC program. Methods: Implemented in 2012, QATrack+ is used to record and monitor over 1100 routine machine QC tests each month for 20 treatment and imaging units ( http://qatrackplus.com/ ). Using an SQL (structured query language) script, automated queries of the QATrack+ database are used to generate program metrics such as the number of QC tests executed and themore » percentage of tests passing, at tolerance or at action. These metrics are compared against machine uptime statistics already reported within the program. Results: Program metrics for 2015 show good correlation between pass rate of QC tests and uptime for a given machine. For the nine conventional linacs, the QC test success rate was consistently greater than 97%. The corresponding uptimes for these units are better than 98%. Machines that consistently show higher failure or tolerance rates in the QC tests have lower uptimes. This points to either poor machine performance requiring corrective action or to problems with the QC program. Conclusions: QATrack+ significantly improves the organization of QC data but can also aid in overall equipment management. Complimenting machine uptime statistics with QC test metrics provides a more complete picture of overall machine performance and can be used to identify areas of improvement in the machine service and QC programs.« less

  18. Methodologies for Combined Loads Tests Using a Multi-Actuator Test Machine

    NASA Technical Reports Server (NTRS)

    Rouse, Marshall

    2013-01-01

    The NASA Langley COmbined Loads Test System (COLTS) Facility was designed to accommodate a range of fuselage structures and wing sections and subject them to both quasistatic and cyclic loading conditions. Structural tests have been conducted in COLTS that address structural integrity issues of metallic and fiber reinforced composite aerospace structures in support of NASA Programs (i.e. the Aircraft Structural Integrity (ASIP) Program, High-Speed-Research program and the Supersonic Project, NASA Engineering and Safety Center (NESC) Composite Crew Module Project, and the Environmentally Responsible Aviation Program),. This paper presents experimental results for curved panels subjected to mechanical and internal pressure loads using a D-box test fixture. Also, results are presented that describe use of a checkout beam for development of testing procedures for a combined mechanical and pressure loading test of a Multi-bay box. The Multi-bay box test will be used to experimentally verify the structural performance of the Multi-bay box in support of the Environmentally Responsible Aviation Project at NASA Langley.

  19. 40 CFR 63.3960 - By what date must I conduct performance tests and other initial compliance demonstrations?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... performance test of one representative magnet wire coating machine for each group of identical or very similar... you complete the performance test of a representative magnet wire coating machine. The requirements in... operations, you may, with approval, conduct a performance test of a single magnet wire coating machine that...

  20. The relationship between reinforcement and gaming machine choice.

    PubMed

    Haw, John

    2008-03-01

    The present study assessed whether prior reinforcement experiences were related to gaming machine choice and the decision to change gaming machines during a session of gambling. Seventy undergraduate students (48 women, 22 men; mean age = 22.05 years) were presented with two visually identical simulated gaming machines in a practice phase. These simulated machines differed only in the rate of reinforcement. After the practice phase, participants were asked to choose a machine to play in the test phase and were allowed to change machines at will. Two measures of reinforcement were employed; frequency of wins and payback rate. Results indicated that neither measure of reinforcement was related to machine choice, but both were predictors of when participants changed machines. A post-hoc analysis of the 33 participants who changed machines during the test phase found a significant relationship between machine choice and prior reinforcement. For these participants, payback rate was significantly related to machine choice, unlike frequency of wins.

  1. Re-designing a mechanism for higher speed: A case history from textile machinery

    NASA Astrophysics Data System (ADS)

    Douglas, S. S.; Rooney, G. T.

    The generation of general mechanism design software which is the formulation of suitable objective functions is discussed. There is a consistent drive towards higher speeds in the development of industrial sewing machines. This led to experimental analyses of dynamic performance and to a search for improved design methods. The experimental work highlighted the need for smoothness of motion at high speed, component inertias, and frame structural stiffness. Smoothness is associated with transmission properties and harmonic analysis. These are added to other design requirements of synchronization, mechanism size, and function. Some of the mechanism trains in overedte sewing machines are shown. All these trains are designed by digital optimization. The design software combines analysis of the sewing machine mechanisms, formulation of objectives innumerical terms, and suitable mathematical optimization ttechniques.

  2. Mechanical properties of different types of space maintainers

    NASA Astrophysics Data System (ADS)

    Beldiman, M.-A.; Mârţu, I.; Leiţoiu, B.; Luchian, I.; Lupescu, O.; Bârcă, E. S.

    2015-11-01

    Currently, inside the oral cavity, the dental space maintainers are subjected to forces exerted on them when performing various functions; therefore, it is important to know how each of these mechanisms behave and respond to forces that are applied directly to them. The mechanical properties of the materials used in dentistry are defined by a set of characteristics representing the behaviour of their particular working conditions and it is qualitatively expressed by a number of parameters.The study aimed to determine the pressing force that can be taken by four 4 types of space maintainers frequently used in practice - fixed and removable, applied on four samples realized with human teeth extracted for orthodontic purposes. Static tests were carried out on a machine type short WDW-5 EC with a maximum force of 5 kN and a loading speed of 5 mm/min by a special testing machine, with an innovative appliance; data recording was automatically performed, using a computer with a special program that present the specific diagrams. Experimental determinations included the following aspects: to determine the maximum force that can be supported by each sample, and to observe the deformations. The values obtained indicate that the best option in terms of behavior under the conditions specified is the removable appliance, and the less functional version is the fixed space maintainer using brackets. According to tests conducted, the fracture strength was found to be more important for fixed space maintainers (band and loop, for example) so, in practice is using more frequent these types of space maintainers.

  3. A cost-effective, accurate machine for testing the torsional strength of sheep long bones.

    PubMed

    Jämsä, T; Jalovaara, P

    1996-07-01

    A cost-effective torsional testing machine for sheep long bones was constructed. The machine was fabricated on a disused standard turning lathe. The angular speed used was 6.5 degrees/s. A precision amplifier using modern low-noise, low-drift operational amplifiers was developed. The maximum torsional load was 250 Nm, the sensitivity 0.5 Nm and the total machine inaccuracy less than 1.0%. The standard error of torsional testing was 3.0% when seven pairs of intact sheep tibiae were tested.

  4. Development of testing machine for tunnel inspection using multi-rotor UAV

    NASA Astrophysics Data System (ADS)

    Iwamoto, Tatsuya; Enaka, Tomoya; Tada, Keijirou

    2017-05-01

    Many concrete structures are deteriorating to dangerous levels throughout Japan. These concrete structures need to be inspected regularly to be sure that they are safe enough to be used. The inspection method for these concrete structures is typically the impact acoustic method. In the impact acoustic method, the worker taps the surface of the concrete with a hammer. Thus, it is necessary to set up scaffolding to access tunnel walls for inspection. Alternatively, aerial work platforms can be used. However, setting up scaffolding and aerial work platforms is not economical with regard to time or money. Therefore, we developed a testing machine using a multirotor UAV for tunnel inspection. This test machine flies by a plurality of rotors, and it is pushed along a concrete wall and moved by using rubber crawlers. The impact acoustic method is used in this testing machine. This testing machine has a hammer to make an impact, and a microphone to acquire the impact sound. The impact sound is converted into an electrical signal and is wirelessly transmitted to the computer. At the same time, the position of the testing machine is measured by image processing using a camera. The weight and dimensions of the testing machine are approximately 1.25 kg and 500 mm by 500 mm by 250 mm, respectively.

  5. Mechanical monolithic horizontal sensor for low frequency seismic noise measurement

    NASA Astrophysics Data System (ADS)

    Acernese, Fausto; Giordano, Gerardo; Romano, Rocco; De Rosa, Rosario; Barone, Fabrizio

    2008-07-01

    This paper describes a mechanical monolithic horizontal sensor for geophysical applications developed at the University of Salerno. The instrument is basically a monolithic tunable folded pendulum, shaped with precision machining and electric discharge machining, that can be used both as seismometer and, in a force-feedback configuration, as accelerometer. The monolithic mechanical design and the introduction of laser interferometric techniques for the readout implementation makes it a very compact instrument, very sensitive in the low frequency seismic noise band, with a very good immunity to environmental noises. Many changes have been produced since last version (2007), mainly aimed to the improvement of the mechanics and of the optical readout of the instrument. In fact, we have developed and tested a prototype with elliptical hinges and mechanical tuning of the resonance frequency together with a laser optical lever and a new laser interferometer readout system. The theoretical sensitivity curve for both laser optical lever and laser interferometric readouts, evaluated on the basis of suitable theoretical models, shows a very good agreement with the experimental measurements. Very interesting scientific result is the measured natural resonance frequency of the instrument of 70mHz with a Q =140 in air without thermal stabilization. This result demonstrates the feasibility of a monolithic folded pendulum sensor with a natural resonance frequency of the order of millihertz with a more refined mechanical tuning.

  6. Mechanical monolithic sensor for low frequency seismic noise measurement

    NASA Astrophysics Data System (ADS)

    Acernese, Fausto; De Rosa, Rosario; Giordano, Gerardo; Romano, Rocco; Barone, Fabrizio

    2007-10-01

    This paper describes a mechanical monolithic sensor for geophysical applications developed at the University of Salerno. The instrument is basically a monolithic tunable folded pendulum, shaped with precision machining and electric-discharge-machining, that can be used both as seismometer and, in a force-feedback configuration, as accelerometer. The monolithic mechanical design and the introduction of laser interferometric techniques for the readout implementation make it a very compact instrument, very sensitive in the low-frequency seismic noise band, with a very good immunity to environmental noises. Many changes have been produced since last version (2006), mainly aimed to the improvement of the mechanics and of the optical readout of the instrument. In fact, we have developed and tested a prototype with elliptical hinges and mechanical tuning of the resonance frequency together with a new laser optical lever and laser interferometer readout system. The theoretical sensitivity curve for both laser optical lever and laser interferometric readouts, calculated on the basis of suitable theoretical models, shows a very good agreement with the experimental measurements. Very interesting scientific result is that the measured natural resonance frequency of the instrument is ~ 70mHz with a Q ~ 140 in air without thermal stabilization, demonstrating the feasibility of a monolithic FP sensor with a natural resonance frequency of the order of 5 mHz with a more refined mechanical tuning.

  7. Mechanical monolithic horizontal sensor for low frequency seismic noise measurement.

    PubMed

    Acernese, Fausto; Giordano, Gerardo; Romano, Rocco; De Rosa, Rosario; Barone, Fabrizio

    2008-07-01

    This paper describes a mechanical monolithic horizontal sensor for geophysical applications developed at the University of Salerno. The instrument is basically a monolithic tunable folded pendulum, shaped with precision machining and electric discharge machining, that can be used both as seismometer and, in a force-feedback configuration, as accelerometer. The monolithic mechanical design and the introduction of laser interferometric techniques for the readout implementation makes it a very compact instrument, very sensitive in the low frequency seismic noise band, with a very good immunity to environmental noises. Many changes have been produced since last version (2007), mainly aimed to the improvement of the mechanics and of the optical readout of the instrument. In fact, we have developed and tested a prototype with elliptical hinges and mechanical tuning of the resonance frequency together with a laser optical lever and a new laser interferometer readout system. The theoretical sensitivity curve for both laser optical lever and laser interferometric readouts, evaluated on the basis of suitable theoretical models, shows a very good agreement with the experimental measurements. Very interesting scientific result is the measured natural resonance frequency of the instrument of 70 mHz with a Q=140 in air without thermal stabilization. This result demonstrates the feasibility of a monolithic folded pendulum sensor with a natural resonance frequency of the order of millihertz with a more refined mechanical tuning.

  8. Stirling machine operating experience

    NASA Technical Reports Server (NTRS)

    Ross, Brad; Dudenhoefer, James E.

    1991-01-01

    Numerous Stirling machines have been built and operated, but the operating experience of these machines is not well known. It is important to examine this operating experience in detail, because it largely substantiates the claim that Stirling machines are capable of reliable and lengthy lives. The amount of data that exists is impressive, considering that many of the machines that have been built are developmental machines intended to show proof of concept, and were not expected to operate for any lengthy period of time. Some Stirling machines (typically free-piston machines) achieve long life through non-contact bearings, while other Stirling machines (typically kinematic) have achieved long operating lives through regular seal and bearing replacements. In addition to engine and system testing, life testing of critical components is also considered.

  9. A randomised controlled comparison of injection, thermal, and mechanical endoscopic methods of haemostasis on mesenteric vessels.

    PubMed

    Hepworth, C C; Kadirkamanathan, S S; Gong, F; Swain, C P

    1998-04-01

    A randomised controlled comparison of haemostatic efficacy of mechanical, injection, and thermal methods of haemostasis was undertaken using canine mesenteric vessels to test the hypothesis that mechanical methods of haemostasis are more effective in controlling haemorrhage than injection or thermal methods. The diameter of arteries in human bleeding ulcers measures up to 3.45 mm; mesenteric vessels up to 5 mm were therefore studied. Mesenteric vessels were randomised to treatment with injection sclerotherapy (adrenaline and ethanolamine), bipolar diathermy, or mechanical methods (band, clips, sewing machine, endoloops). The vessels were severed and haemostasis recorded. Injection sclerotherapy and clips failed to stop bleeding from vessels of 1 mm (n = 20) and 2 mm (n = 20). Bipolar diathermy was effective on 8/10 vessels of 2 mm but failed on 3 mm vessels (n = 5). Unstretched elastic bands succeeded on 13/15 vessels of 2 mm but on only 3/10 vessels of 3 mm. The sewing machine achieved haemostasis on 8/10 vessels of 4 mm but failed on 5 mm vessels (n = 5); endoloops were effective on all 5 mm vessels (n = 5). Only mechanical methods were effective on vessels greater than 2 mm in diameter. Some mechanical methods (banding and clips) were less effective than expected and need modification. Thermal and (effective) mechanical methods were significantly (p < 0.01) more effective than injection sclerotherapy. The most effective mechanical methods were significantly more effective (p < 0.01) than thermal or injection on vessels greater than 2 mm.

  10. Validated Feasibility Study of Integrally Stiffened Metallic Fuselage Panels for Reducing Manufacturing Costs

    NASA Technical Reports Server (NTRS)

    Pettit, R. G.; Wang, J. J.; Toh, C.

    2000-01-01

    The continual need to reduce airframe cost and the emergence of high speed machining and other manufacturing technologies has brought about a renewed interest in large-scale integral structures for aircraft applications. Applications have been inhibited, however, because of the need to demonstrate damage tolerance, and by cost and manufacturing risks associated with the size and complexity of the parts. The Integral Airframe Structures (IAS) Program identified a feasible integrally stiffened fuselage concept and evaluated performance and manufacturing cost compared to conventional designs. An integral skin/stiffener concept was produced both by plate hog-out and near-net extrusion. Alloys evaluated included 7050-T7451 plate, 7050-T74511 extrusion, 6013-T6511 extrusion, and 7475-T7351 plate. Mechanical properties, structural details, and joint performance were evaluated as well as repair, static compression, and two-bay crack residual strength panels. Crack turning behavior was characterized through panel tests and improved methods for predicting crack turning were developed. Manufacturing cost was evaluated using COSTRAN. A hybrid design, made from high-speed machined extruded frames that are mechanically fastened to high-speed machined plate skin/stringer panels, was identified as the most cost-effective manufacturing solution. Recurring labor and material costs of the hybrid design are up to 61 percent less than the current technology baseline.

  11. Is synthetic biology mechanical biology?

    PubMed

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

  12. Light-operated machines based on threaded molecular structures.

    PubMed

    Credi, Alberto; Silvi, Serena; Venturi, Margherita

    2014-01-01

    Rotaxanes and related species represent the most common implementation of the concept of artificial molecular machines, because the supramolecular nature of the interactions between the components and their interlocked architecture allow a precise control on the position and movement of the molecular units. The use of light to power artificial molecular machines is particularly valuable because it can play the dual role of "writing" and "reading" the system. Moreover, light-driven machines can operate without accumulation of waste products, and photons are the ideal inputs to enable autonomous operation mechanisms. In appropriately designed molecular machines, light can be used to control not only the stability of the system, which affects the relative position of the molecular components but also the kinetics of the mechanical processes, thereby enabling control on the direction of the movements. This step forward is necessary in order to make a leap from molecular machines to molecular motors.

  13. Knowledge-based load leveling and task allocation in human-machine systems

    NASA Technical Reports Server (NTRS)

    Chignell, M. H.; Hancock, P. A.

    1986-01-01

    Conventional human-machine systems use task allocation policies which are based on the premise of a flexible human operator. This individual is most often required to compensate for and augment the capabilities of the machine. The development of artificial intelligence and improved technologies have allowed for a wider range of task allocation strategies. In response to these issues a Knowledge Based Adaptive Mechanism (KBAM) is proposed for assigning tasks to human and machine in real time, using a load leveling policy. This mechanism employs an online workload assessment and compensation system which is responsive to variations in load through an intelligent interface. This interface consists of a loading strategy reasoner which has access to information about the current status of the human-machine system as well as a database of admissible human/machine loading strategies. Difficulties standing in the way of successful implementation of the load leveling strategy are examined.

  14. Mechanical properties of a new mica-based machinable glass ceramic for CAD/CAM restorations.

    PubMed

    Thompson, J Y; Bayne, S C; Heymann, H O

    1996-12-01

    Machinable ceramics (Vita Mark II and Dicor MGC) exhibit good short-term clinical performance, but long-term in vivo fracture resistance is still being monitored. The relatively low fracture toughness of currently available machinable ceramics restricts their use to conservative inlays and onlays. A new machinable glass ceramic (MGC-F) has been developed (Corning Inc.) with enhanced fluorescence and machinability. The purpose of this study was to characterize and compare key mechanical properties of MGC-F to Dicor MGC-Light, Dicor MGC-Dark, and Vita Mark II glass ceramics. The mean fracture toughness and indented biaxial flexure strength of MGC-F were each significantly greater (p < or = 0.01) than that of Dicor MGC-Light, Dicor MGC-Dark, and Vita Mark II ceramic materials. The results of this study indicate the potential for better in vivo fracture resistance of MGC-F compared with existing machinable ceramic materials for CAD/CAM restorations.

  15. Electroacoustic dewatering of food and other suspensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, B.C.; Zelinski, M.S.; Criner, C.L.

    1989-05-31

    The food processing industry is a large user of energy for evaporative drying due to limited effectiveness of conventional mechanical dewatering machines. Battelle's Electroacoustic Dewatering (EAD) process improves the performance of mechanical dewatering machines by superimposing electric and ultrasonic fields. A two phase development program to demonstrate the benefits of EAD was carried out in cooperation with the food processing industry, the National Food Processors Association (NFPA) and two equipment vendors. In Phase I, laboratory scale studies were carried out on a variety of food suspensions. The process was scaled up to small commercial scale in Phase II. The technicalmore » feasibility of EAD for a variety of food materials, without adversely affecting the food properties, was successfully demonstrated during this phase, which is the subject of this report. Two Process Research Units (PRUs) were designed and built through joint efforts between Battelle and two equipment vendors. A 0.5-meter wide belt press was tested on apple mash, corn fiber, and corn gluten at sites provided by two food processors. A high speed citrus juice finisher (a hybrid form of screw press and centrifuge) was tested on orange pulp. These tests were carried out jointly by Battelle, equipment vendors, NFPA, and food processors. The apple and citrus juice products were analyzed by food processors and NFPA. 26 figs., 30 tabs.« less

  16. Mechanical and wear properties of aluminum coating prepared by cold spraying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusof, Siti Nurul Akmal, E-mail: em-leo277@yahoo.com; Manap, Abreeza, E-mail: Abreeza@uniten.edu.my; Afandi, Nurfanizan Mohd

    In this study, aluminum (Al) powders were deposited onto Al substrates using cold spray to form a coating. The main objective is to investigate and compare the microstructure, mechanical and wear properties of Al coating to that of the Al substrate. The microstructure of the coating and substrate were observed using Scanning Electron Microscope (SEM). Hardness was evaluated using the Vickers Hardness test and wear properties were investigated using a pin-on-disk wear test machine. The elemental composition of the coating and substrate was determined using Energy-dispersive X-ray spectroscopy (EDX). Results showed that the friction coefficient and specific wear rate decreasedmore » while wear rate increased linearly with increasing load. It was found that the coating exhibit slightly better mechanical and wear properties compared to the substrate.« less

  17. Operation of micro and molecular machines: a new concept with its origins in interface science.

    PubMed

    Ariga, Katsuhiko; Ishihara, Shinsuke; Izawa, Hironori; Xia, Hong; Hill, Jonathan P

    2011-03-21

    A landmark accomplishment of nanotechnology would be successful fabrication of ultrasmall machines that can work like tweezers, motors, or even computing devices. Now we must consider how operation of micro- and molecular machines might be implemented for a wide range of applications. If these machines function only under limited conditions and/or require specialized apparatus then they are useless for practical applications. Therefore, it is important to carefully consider the access of functionality of the molecular or nanoscale systems by conventional stimuli at the macroscopic level. In this perspective, we will outline the position of micro- and molecular machines in current science and technology. Most of these machines are operated by light irradiation, application of electrical or magnetic fields, chemical reactions, and thermal fluctuations, which cannot always be applied in remote machine operation. We also propose strategies for molecular machine operation using the most conventional of stimuli, that of macroscopic mechanical force, achieved through mechanical operation of molecular machines located at an air-water interface. The crucial roles of the characteristics of an interfacial environment, i.e. connection between macroscopic dimension and nanoscopic function, and contact of media with different dielectric natures, are also described.

  18. Mobile Landing Platform with Core Capability Set (MLP w/CCS): Combined Initial Operational Test and Evaluation and Live Fire Test and Evaluation Report

    DTIC Science & Technology

    2015-07-01

    annex.   iii Self-defense testing was limited to structural test firing from each machine gun mount and an ammunition resupply drill. Robust self...provided in the classified annex. Self-   8 defense testing was limited to structural test firing from each machine gun mount and a single...Caliber Machine Gun Mount Structural Test Fire November 2014 San Diego, Offshore Ship Weapons Range Operating Independently       9 Section Three

  19. Finite machines, mental procedures, and modern physics.

    PubMed

    Lupacchini, Rossella

    2007-01-01

    A Turing machine provides a mathematical definition of the natural process of calculating. It rests on trust that a procedure of reason can be reproduced mechanically. Turing's analysis of the concept of mechanical procedure in terms of a finite machine convinced Gödel of the validity of the Church thesis. And yet, Gödel's later concern was that, insofar as Turing's work shows that "mental procedure cannot go beyond mechanical procedures", it would imply the same kind of limitation on human mind. He therefore deems Turing's argument to be inconclusive. The question then arises as to which extent a computing machine operating by finite means could provide an adequate model of human intelligence. It is argued that a rigorous answer to this question can be given by developing Turing's considerations on the nature of mental processes. For Turing such processes are the consequence of physical processes and he seems to be led to the conclusion that quantum mechanics could help to find a more comprehensive explanation of them.

  20. Fabrication and Tests of M240 Machine Gun Barrels Lined with Stellite 25

    DTIC Science & Technology

    2016-04-01

    ARL-TR-7662 ● APR 2016 US Army Research Laboratory Fabrication and Tests of M240 Machine Gun Barrels Lined with Stellite 25...Fabrication and Tests of M240 Machine Gun Barrels Lined with Stellite 25 by William S de Rosset and Sean Fudger Weapons and Materials Research...

  1. Washing machine related injuries in children: a continuing threat

    PubMed Central

    Warner, B; Kenney, B; Rice, M

    2003-01-01

    Objective: To describe washing machine related injuries in children in the United States. Methods: Injury data for 496 washing machine related injuries documented by the Consumer Product Safety Commission's National Electronic Injury Surveillance System and death certificate data files were analyzed. Gender, age, diagnosis, body part injured, disposition, location and mechanism of injury were considered in the analysis of data. Results: The upper extremities were most frequently injured in washing machine related injuries, especially with wringer machines. Fewer than 10% of patients required admission, but automatic washers accounted for most of these and for both of the deaths. Automatic washer injuries involved a wider range of injury mechanism, including 23 children who fell from the machines while in baby seats. Conclusions: Though most injuries associated with washing machines are minor, some are severe and devastating. Many of the injuries could be avoided with improvements in machine design while others suggest a need for increased education of potential dangers and better supervision of children if they are allowed access to areas where washing machines are operating. Furthermore, washing machines should only be used for their intended purpose. Given the limitations of educational efforts to prevent injuries, health professionals should have a major role in public education regarding these seemingly benign household appliances. PMID:14693900

  2. High speed turning of compacted graphite iron using controlled modulation

    NASA Astrophysics Data System (ADS)

    Stalbaum, Tyler Paul

    Compacted graphite iron (CGI) is a material which emerged as a candidate material to replace cast iron (CI) in the automotive industry for engine block castings. Its thermal and mechanical properties allow the CGI-based engines to operate at higher cylinder pressures and temperatures than CI-based engines, allowing for lower fuel emissions and increased fuel economy. However, these same properties together with the thermomechanical wear mode in the CGI-CBN system result in poor machinability and inhibit CGI from seeing wide spread use in the automotive industry. In industry, machining of CGI is done only at low speeds, less than V = 200 m/min, to avoid encountering rapid wear of the cutting tools during cutting. Studies have suggested intermittent cutting operations such as milling suffer less severe tool wear than continuous cutting. Furthermore, evidence that a hard sulfide layer which forms over the cutting edge in machining CI at high speeds is absent during machining CGI is a major factor in the difference in machinability of these material systems. The present study addresses both of these issues by modification to the conventional machining process to allow intermittent continuous cutting. The application of controlled modulation superimposed onto the cutting process -- modulation-assisted machining (MAM) -- is shown to be quite effective in reducing the wear of cubic boron nitride (CBN) tools when machining CGI at high machining speeds (> 500 m/min). The tool life is at least 20 times greater than found in conventional machining of CGI. This significant reduction in wear is a consequence of reduction in the severity of the tool-work contact conditions with MAM. The propensity for thermochemical wear of CBN is thus reduced. It is found that higher cutting speed (> 700 m/min) leads to lower tool wear with MAM. The MAM configuration employing feed-direction modulation appears feasible for implementation at high speeds and offers a solution to this challenging class of industrial machining applications. This study's approach is by series of high speed turning tests of CGI with CBN tools, comparing conventional machining to MAM for similar parameters otherwise, by tool wear measurements and machinability observations.

  3. Design and Application of a Solar Mobile Pond Aquaculture Water Quality-Regulation Machine Based in Bream Pond Aquaculture

    PubMed Central

    Liu, Xingguo; Xu, Hao; Ma, Zhuojun; Zhang, Yongjun; Tian, Changfeng; Cheng, Guofeng; Zou, Haisheng; Lu, Shimin; Liu, Shijing; Tang, Rong

    2016-01-01

    Bream pond aquaculture plays a very important role in China’s aquaculture industry and is the main source of aquatic products. To regulate and control pond water quality and sediment, a movable solar pond aquaculture water quality regulation machine (SMWM) was designed and used. This machine is solar-powered and moves on water, and its primary components are a solar power supply device, a sediment lifting device, a mechanism for walking on the water’s surface and a control system. The solar power supply device provides power for the machine, and the water walking mechanism drives the machine’s motion on the water. The sediment lifting device orbits the main section of the machine and affects a large area of the pond. Tests of the machine’s mechanical properties revealed that the minimum illumination necessary for the SMWM to function is 13,000 Lx and that its stable speed on the water is 0.02–0.03 m/s. For an illumination of 13,000–52,500 Lx, the sediment lifting device runs at 0.13–0.35 m/s, and its water delivery capacity is 110–208 m3/h. The sediment lifting device is able to fold away, and the angle of the suction chamber can be adjusted, making the machine work well in ponds at different water depths from 0.5 m to 2 m. The optimal distance from the sediment lifting device to the bottom of the pond is 10–15 cm. In addition, adjusting the length of the connecting rod and the direction of the traction rope allows the SMWM to work in a pond water area greater than 80%. The analysis of water quality in Wuchang bream (Parabramis pekinensis) and silver carp (Hypophthalmichthys molitrix) culture ponds using the SMWM resulted in decreased NH3+–N and available phosphorus concentrations and increased TP concentrations. The TN content and the amount of available phosphorus in the sediment were reduced. In addition, the fish production showed that the SMWM enhanced the yields of Wuchang bream and silver carp by more than 30% and 24%, respectively. These results indicate that the SMWM may be suitable for Wuchang bream pond aquaculture in China and that it can be used in pond aquaculture for regulating and controlling water quality. PMID:26789004

  4. Coupling machine learning with mechanistic models to study runoff production and river flow at the hillslope scale

    NASA Astrophysics Data System (ADS)

    Marçais, J.; Gupta, H. V.; De Dreuzy, J. R.; Troch, P. A. A.

    2016-12-01

    Geomorphological structure and geological heterogeneity of hillslopes are major controls on runoff responses. The diversity of hillslopes (morphological shapes and geological structures) on one hand, and the highly non linear runoff mechanism response on the other hand, make it difficult to transpose what has been learnt at one specific hillslope to another. Therefore, making reliable predictions on runoff appearance or river flow for a given hillslope is a challenge. Applying a classic model calibration (based on inverse problems technique) requires doing it for each specific hillslope and having some data available for calibration. When applied to thousands of cases it cannot always be promoted. Here we propose a novel modeling framework based on coupling process based models with data based approach. First we develop a mechanistic model, based on hillslope storage Boussinesq equations (Troch et al. 2003), able to model non linear runoff responses to rainfall at the hillslope scale. Second we set up a model database, representing thousands of non calibrated simulations. These simulations investigate different hillslope shapes (real ones obtained by analyzing 5m digital elevation model of Brittany and synthetic ones), different hillslope geological structures (i.e. different parametrizations) and different hydrologic forcing terms (i.e. different infiltration chronicles). Then, we use this model library to train a machine learning model on this physically based database. Machine learning model performance is then assessed by a classic validating phase (testing it on new hillslopes and comparing machine learning with mechanistic outputs). Finally we use this machine learning model to learn what are the hillslope properties controlling runoffs. This methodology will be further tested combining synthetic datasets with real ones.

  5. Composite Material Testing Data Reduction to Adjust for the Systematic 6-DOF Testing Machine Aberrations

    Treesearch

    Athanasios lliopoulos; John G. Michopoulos; John G. C. Hermanson

    2012-01-01

    This paper describes a data reduction methodology for eliminating the systematic aberrations introduced by the unwanted behavior of a multiaxial testing machine, into the massive amounts of experimental data collected from testing of composite material coupons. The machine in reference is a custom made 6-DoF system called NRL66.3 and developed at the NAval...

  6. Influence of the Cutting Conditions in the Surface Finishing of Turned Pieces of Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Huerta, M.; Arroyo, P.; Sánchez Carrilero, M.; Álvarez, M.; Salguero, J.; Marcos, M.

    2009-11-01

    Titanium is a material that, despite its high cost, is increasingly being introduced in the aerospace industry due to both, its weight, its mechanical properties and its corrosion potential, very close to that of carbon fiber based composite material. This fact allows using Ti to form Fiber Metal Laminates Machining operations are usually used in the manufacturing processes of Ti based aerospace structural elements. These elements must be machined under high surface finish requirements. Previous works have shown the relationship between the surface roughness and the tool changes in the first instants of turning processes. From these results, new tests have been performed in an aeronautical factory, in order to analyse roughness in final pieces.

  7. Experimental Study in Taguchi Method on Surface Quality Predication of HSM

    NASA Astrophysics Data System (ADS)

    Ji, Yan; Li, Yueen

    2018-05-01

    Based on the study of ball milling mechanism and machining surface formation mechanism, the formation of high speed ball-end milling surface is a time-varying and cumulative Thermos-mechanical coupling process. The nature of this problem is that the uneven stress field and temperature field affect the machined surface Process, the performance of the processing parameters in the processing interaction in the elastic-plastic materials produced by the elastic recovery and plastic deformation. The surface quality of machining surface is characterized by multivariable nonlinear system. It is still an indispensable and effective method to study the surface quality of high speed ball milling by experiments.

  8. Comparative investigation of vibration and current monitoring for prediction of mechanical and electrical faults in induction motor based on multiclass-support vector machine algorithms

    NASA Astrophysics Data System (ADS)

    Gangsar, Purushottam; Tiwari, Rajiv

    2017-09-01

    This paper presents an investigation of vibration and current monitoring for effective fault prediction in induction motor (IM) by using multiclass support vector machine (MSVM) algorithms. Failures of IM may occur due to propagation of a mechanical or electrical fault. Hence, for timely detection of these faults, the vibration as well as current signals was acquired after multiple experiments of varying speeds and external torques from an experimental test rig. Here, total ten different fault conditions that frequently encountered in IM (four mechanical fault, five electrical fault conditions and one no defect condition) have been considered. In the case of stator winding fault, and phase unbalance and single phasing fault, different level of severity were also considered for the prediction. In this study, the identification has been performed of the mechanical and electrical faults, individually and collectively. Fault predictions have been performed using vibration signal alone, current signal alone and vibration-current signal concurrently. The one-versus-one MSVM has been trained at various operating conditions of IM using the radial basis function (RBF) kernel and tested for same conditions, which gives the result in the form of percentage fault prediction. The prediction performance is investigated for the wide range of RBF kernel parameter, i.e. gamma, and selected the best result for one optimal value of gamma for each case. Fault predictions has been performed and investigated for the wide range of operational speeds of the IM as well as external torques on the IM.

  9. Technology of machine tools. Volume 3. Machine tool mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tlusty, J.

    1980-10-01

    The Machine Tool Task Force (MTTF) was formed to characterize the state of the art of machine tool technology and to identify promising future directions of this technology. This volume is one of a five-volume series that presents the MTTF findings; reports on various areas of the technology were contributed by experts in those areas.

  10. The Critical Compression Load for a Universal Testing Machine When the Specimen Is Loaded Through Knife Edges

    NASA Technical Reports Server (NTRS)

    Lundquist, Eugene E; Schwartz, Edward B

    1942-01-01

    The results of a theoretical and experimental investigation to determine the critical compression load for a universal testing machine are presented for specimens loaded through knife edges. The critical load for the testing machine is the load at which one of the loading heads becomes laterally instable in relation to the other. For very short specimens the critical load was found to be less than the rated capacity given by the manufacturer for the machine. A load-length diagram is proposed for defining the safe limits of the test region for the machine. Although this report is particularly concerned with a universal testing machine of a certain type, the basic theory which led to the derivation of the general equation for the critical load, P (sub cr) = alpha L can be applied to any testing machine operated in compression where the specimen is loaded through knife edges. In this equation, L is the length of the specimen between knife edges and alpha is the force necessary to displace the upper end of the specimen unit horizontal distance relative to the lower end of the specimen in a direction normal to the knife edges through which the specimen is loaded.

  11. CFCC: A Covert Flows Confinement Mechanism for Virtual Machine Coalitions

    NASA Astrophysics Data System (ADS)

    Cheng, Ge; Jin, Hai; Zou, Deqing; Shi, Lei; Ohoussou, Alex K.

    Normally, virtualization technology is adopted to construct the infrastructure of cloud computing environment. Resources are managed and organized dynamically through virtual machine (VM) coalitions in accordance with the requirements of applications. Enforcing mandatory access control (MAC) on the VM coalitions will greatly improve the security of VM-based cloud computing. However, the existing MAC models lack the mechanism to confine the covert flows and are hard to eliminate the convert channels. In this paper, we propose a covert flows confinement mechanism for virtual machine coalitions (CFCC), which introduces dynamic conflicts of interest based on the activity history of VMs, each of which is attached with a label. The proposed mechanism can be used to confine the covert flows between VMs in different coalitions. We implement a prototype system, evaluate its performance, and show that our mechanism is practical.

  12. Mechanized Packing and Delivery System for Entomopathogenic Nematodes in Infected Mealworm Cadavers

    USDA-ARS?s Scientific Manuscript database

    This document describes a mechanized system to pack mealworm (Tenebrio molitor) cadavers infected with entomopathogenic nematodes between two sheets of masking tape. The document is also an operation manual for the machine and provides all the machine specifications, and wiring and pneumatic diagram...

  13. Tissue Anisotropy Modeling Using Soft Composite Materials.

    PubMed

    Chanda, Arnab; Callaway, Christian

    2018-01-01

    Soft tissues in general exhibit anisotropic mechanical behavior, which varies in three dimensions based on the location of the tissue in the body. In the past, there have been few attempts to numerically model tissue anisotropy using composite-based formulations (involving fibers embedded within a matrix material). However, so far, tissue anisotropy has not been modeled experimentally. In the current work, novel elastomer-based soft composite materials were developed in the form of experimental test coupons, to model the macroscopic anisotropy in tissue mechanical properties. A soft elastomer matrix was fabricated, and fibers made of a stiffer elastomer material were embedded within the matrix material to generate the test coupons. The coupons were tested on a mechanical testing machine, and the resulting stress-versus-stretch responses were studied. The fiber volume fraction (FVF), fiber spacing, and orientations were varied to estimate the changes in the mechanical responses. The mechanical behavior of the soft composites was characterized using hyperelastic material models such as Mooney-Rivlin's, Humphrey's, and Veronda-Westmann's model and also compared with the anisotropic mechanical behavior of the human skin, pelvic tissues, and brain tissues. This work lays the foundation for the experimental modelling of tissue anisotropy, which combined with microscopic studies on tissues can lead to refinements in the simulation of localized fiber distribution and orientations, and enable the development of biofidelic anisotropic tissue phantom materials for various tissue engineering and testing applications.

  14. Tissue Anisotropy Modeling Using Soft Composite Materials

    PubMed Central

    Callaway, Christian

    2018-01-01

    Soft tissues in general exhibit anisotropic mechanical behavior, which varies in three dimensions based on the location of the tissue in the body. In the past, there have been few attempts to numerically model tissue anisotropy using composite-based formulations (involving fibers embedded within a matrix material). However, so far, tissue anisotropy has not been modeled experimentally. In the current work, novel elastomer-based soft composite materials were developed in the form of experimental test coupons, to model the macroscopic anisotropy in tissue mechanical properties. A soft elastomer matrix was fabricated, and fibers made of a stiffer elastomer material were embedded within the matrix material to generate the test coupons. The coupons were tested on a mechanical testing machine, and the resulting stress-versus-stretch responses were studied. The fiber volume fraction (FVF), fiber spacing, and orientations were varied to estimate the changes in the mechanical responses. The mechanical behavior of the soft composites was characterized using hyperelastic material models such as Mooney-Rivlin's, Humphrey's, and Veronda-Westmann's model and also compared with the anisotropic mechanical behavior of the human skin, pelvic tissues, and brain tissues. This work lays the foundation for the experimental modelling of tissue anisotropy, which combined with microscopic studies on tissues can lead to refinements in the simulation of localized fiber distribution and orientations, and enable the development of biofidelic anisotropic tissue phantom materials for various tissue engineering and testing applications. PMID:29853996

  15. Self-assembling fluidic machines

    NASA Astrophysics Data System (ADS)

    Grzybowski, Bartosz A.; Radkowski, Michal; Campbell, Christopher J.; Lee, Jessamine Ng; Whitesides, George M.

    2004-03-01

    This letter describes dynamic self-assembly of two-component rotors floating at the interface between liquid and air into simple, reconfigurable mechanical systems ("machines"). The rotors are powered by an external, rotating magnetic field, and their positions within the interface are controlled by: (i) repulsive hydrodynamic interactions between them and (ii) by localized magnetic fields produced by an array of small electromagnets located below the plane of the interface. The mechanical functions of the machines depend on the spatiotemporal sequence of activation of the electromagnets.

  16. Electro-mechanical energy conversion system having a permanent magnet machine with stator, resonant transfer link and energy converter controls

    DOEpatents

    Skeist, S. Merrill; Baker, Richard H.

    2006-01-10

    An electro-mechanical energy conversion system coupled between an energy source and an energy load comprising an energy converter device including a permanent magnet induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer to control the flow of power or energy through the permanent magnetic induction machine.

  17. Superconducting Coil Winding Machine Control System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nogiec, J. M.; Kotelnikov, S.; Makulski, A.

    The Spirex coil winding machine is used at Fermilab to build coils for superconducting magnets. Recently this ma-chine was equipped with a new control system, which al-lows operation from both a computer and a portable remote control unit. This control system is distributed between three layers, implemented on a PC, real-time target, and FPGA, providing respectively HMI, operational logic and direct controls. The system controls motion of all mechan-ical components and regulates the cable tension. Safety is ensured by a failsafe, redundant system.

  18. The Weibull probabilities analysis on the single kenaf fiber

    NASA Astrophysics Data System (ADS)

    Ibrahim, I.; Sarip, S.; Bani, N. A.; Ibrahim, M. H.; Hassan, M. Z.

    2018-05-01

    Kenaf fiber has a great potential to be replaced with the synthetic composite due to their advantages such as environmentally friendly and outstanding performance. However, the main issue of this natural fiber that to be used in structural composite is inconsistency of their mechanical properties. Here, the influence of the gage length on the mechanical properties of single kenaf fiber was evaluated. This fiber was tested using the Universal testing machine at a loading rate of 1mm per min following ASTM D3822 standard. In this study, the different length of treated fiber including 20, 30 and 40mm were being tested. Following, Weibull probabilities analysis was used to characterize the tensile strength and Young modulus of kenaf fiber. The predicted average tensile strength from this approach is in good agreement with experimental results for the obtained parameter.

  19. 3D-Printed Detector Band for Magnetic Off-Plane Flux Measurements in Laminated Machine Cores

    PubMed Central

    Pfützner, Helmut; Palkovits, Martin; Windischhofer, Andreas; Giefing, Markus

    2017-01-01

    Laminated soft magnetic cores of transformers, rotating machines etc. may exhibit complex 3D flux distributions with pronounced normal fluxes (off-plane fluxes), perpendicular to the plane of magnetization. As recent research activities have shown, detections of off-plane fluxes tend to be essential for the optimization of core performances aiming at a reduction of core losses and of audible noise. Conventional sensors for off-plane flux measurements tend to be either of high thickness, influencing the measured fluxes significantly, or require laborious preparations. In the current work, thin novel detector bands for effective and simple off-plane flux detections in laminated machine cores were manufactured. They are printed in an automatic way by an in-house developed 3D/2D assembler. The latter enables a unique combination of conductive and non-conductive materials. The detector bands were effectively tested in the interior of a two-package, three-phase model transformer core. They proved to be mechanically resilient, even for strong clamping of the core. PMID:29257063

  20. 3D-Printed Detector Band for Magnetic Off-Plane Flux Measurements in Laminated Machine Cores.

    PubMed

    Shilyashki, Georgi; Pfützner, Helmut; Palkovits, Martin; Windischhofer, Andreas; Giefing, Markus

    2017-12-19

    Laminated soft magnetic cores of transformers, rotating machines etc. may exhibit complex 3D flux distributions with pronounced normal fluxes (off-plane fluxes), perpendicular to the plane of magnetization. As recent research activities have shown, detections of off-plane fluxes tend to be essential for the optimization of core performances aiming at a reduction of core losses and of audible noise. Conventional sensors for off-plane flux measurements tend to be either of high thickness, influencing the measured fluxes significantly, or require laborious preparations. In the current work, thin novel detector bands for effective and simple off-plane flux detections in laminated machine cores were manufactured. They are printed in an automatic way by an in-house developed 3D/2D assembler. The latter enables a unique combination of conductive and non-conductive materials. The detector bands were effectively tested in the interior of a two-package, three-phase model transformer core. They proved to be mechanically resilient, even for strong clamping of the core.

  1. Framework for Infectious Disease Analysis: A comprehensive and integrative multi-modeling approach to disease prediction and management.

    PubMed

    Erraguntla, Madhav; Zapletal, Josef; Lawley, Mark

    2017-12-01

    The impact of infectious disease on human populations is a function of many factors including environmental conditions, vector dynamics, transmission mechanics, social and cultural behaviors, and public policy. A comprehensive framework for disease management must fully connect the complete disease lifecycle, including emergence from reservoir populations, zoonotic vector transmission, and impact on human societies. The Framework for Infectious Disease Analysis is a software environment and conceptual architecture for data integration, situational awareness, visualization, prediction, and intervention assessment. Framework for Infectious Disease Analysis automatically collects biosurveillance data using natural language processing, integrates structured and unstructured data from multiple sources, applies advanced machine learning, and uses multi-modeling for analyzing disease dynamics and testing interventions in complex, heterogeneous populations. In the illustrative case studies, natural language processing from social media, news feeds, and websites was used for information extraction, biosurveillance, and situation awareness. Classification machine learning algorithms (support vector machines, random forests, and boosting) were used for disease predictions.

  2. “Hydraulic Cushion” Type Overload Protection Devices Usable in Mechanical Presses. A Patent Study

    NASA Astrophysics Data System (ADS)

    Cioară, R.

    2016-11-01

    The possible consequences of machine-tool overload are well-known. In order to prevent such, machine-tools are equipped with various overload protection devices. Mechanical presses, intensively strained machine-tools, are typically equipped with three protection systems: against accidental access to the working area during machine deployment, against torque overload and force overload. Force overload protection systems include either destructible parts and are used in small to medium nominal force mechanical presses, or non-destructible ones used mostly in medium to large nominal force (H-frame) presses. A particular class of force overload protection systems without destructible parts are “hydraulic cushion” type devices. While such systems do not necessarily cause the machine to stop, the slide's stroke does not reach the initial dead centre and consequently cannot exert the designed technological force on the workpiece. By a patent study referencing 19 relevant patents the paper captures both the diversity of the constrictive solutions of “hydraulic cushion” type protection devices and their positioning modalities within the structure of a mechanical press. An important aim of the study is to highlight the reserve of creativity existing in this field, at least from the viewpoint of the hydraulic cushion positioning, as well as to emphasize the essential requirement of a relative motion between the mobile and the fixed parts of the tool, a motion of opposite sense to that of the slide-crank mechanism.

  3. Can Machine Scoring Deal with Broad and Open Writing Tests as Well as Human Readers?

    ERIC Educational Resources Information Center

    McCurry, Doug

    2010-01-01

    This article considers the claim that machine scoring of writing test responses agrees with human readers as much as humans agree with other humans. These claims about the reliability of machine scoring of writing are usually based on specific and constrained writing tasks, and there is reason for asking whether machine scoring of writing requires…

  4. The Hooey Machine.

    ERIC Educational Resources Information Center

    Scarnati, James T.; Tice, Craig J.

    1992-01-01

    Describes how students can make and use Hooey Machines to learn how mechanical energy can be transferred from one object to another within a system. The Hooey Machine is made using a pencil, eight thumbtacks, one pushpin, tape, scissors, graph paper, and a plastic lid. (PR)

  5. Time to B. cereus about hot chocolate.

    PubMed Central

    Nelms, P K; Larson, O; Barnes-Josiah, D

    1997-01-01

    OBJECTIVE: To determine the cause of illnesses experienced by employees of a Minneapolis manufacturing plant after drinking hot chocolate bought from a vending machine and to explore the prevalence of similar vending machine-related illnesses. METHODS: The authors inspected the vending machines at the manufacturing plant where employees reported illnesses and at other locations in the city where hot chocolate beverages were sold in machines. Tests were performed on dry mix, water, and beverage samples and on machine parts. RESULTS: Laboratory analyses confirmed the presence of B. cereus in dispensed beverages at a concentration capable of causing illness (170,000 count/gm). In citywide testing of vending machines dispensing hot chocolate, 7 of the 39 licensed machines were found to be contaminated, with two contaminated machines having B. cereus levels capable of causing illness. CONCLUSIONS: Hot chocolate sold in vending machines may contain organisms capable of producing toxins that under favorable conditions, can induce illness. Such illnesses are likely to be underreported. Even low concentrations of B. cereus may be dangerous for vulnerable populations such as the aged or immunosuppressed. Periodic testing of vending machines is thus warranted. The relationship between cleaning practices and B. cereus contamination is an issue for further study. PMID:9160059

  6. Time to B. cereus about hot chocolate.

    PubMed

    Nelms, P K; Larson, O; Barnes-Josiah, D

    1997-01-01

    To determine the cause of illnesses experienced by employees of a Minneapolis manufacturing plant after drinking hot chocolate bought from a vending machine and to explore the prevalence of similar vending machine-related illnesses. The authors inspected the vending machines at the manufacturing plant where employees reported illnesses and at other locations in the city where hot chocolate beverages were sold in machines. Tests were performed on dry mix, water, and beverage samples and on machine parts. Laboratory analyses confirmed the presence of B. cereus in dispensed beverages at a concentration capable of causing illness (170,000 count/gm). In citywide testing of vending machines dispensing hot chocolate, 7 of the 39 licensed machines were found to be contaminated, with two contaminated machines having B. cereus levels capable of causing illness. Hot chocolate sold in vending machines may contain organisms capable of producing toxins that under favorable conditions, can induce illness. Such illnesses are likely to be underreported. Even low concentrations of B. cereus may be dangerous for vulnerable populations such as the aged or immunosuppressed. Periodic testing of vending machines is thus warranted. The relationship between cleaning practices and B. cereus contamination is an issue for further study.

  7. Design and operating experience on the US Department of Energy experimental Mod-0 100-kW wind turbine

    NASA Technical Reports Server (NTRS)

    Glasgow, J. C.; Birchenough, A. G.

    1978-01-01

    The experimental wind turbine was designed and fabricated to assess technology requirements and engineering problems of large wind turbines. The machine has demonstrated successful operation in all of its design modes and served as a prototype developmental test bed for the Mod-0A operational wind turbines which are currently used on utility networks. The mechanical and control system are described as they evolved in operational tests and some of the experience with various systems in the downwind rotor configurations are elaborated.

  8. Machine Tests Optical Fibers In Flexure

    NASA Technical Reports Server (NTRS)

    Darejeh, Hadi; Thomas, Henry; Delcher, Ray

    1993-01-01

    Machine repeatedly flexes single optical fiber or cable or bundle of optical fibers at low temperature. Liquid nitrogen surrounds specimen as it is bent back and forth by motion of piston. Machine inexpensive to build and operate. Tests under repeatable conditions so candidate fibers, cables, and bundles evaluated for general robustness before subjected to expensive shock and vibration tests.

  9. Complete mechanical characterization of an external hexagonal implant connection: in vitro study, 3D FEM, and probabilistic fatigue.

    PubMed

    Prados-Privado, María; Gehrke, Sérgio A; Rojo, Rosa; Prados-Frutos, Juan Carlos

    2018-06-11

    The aim of this study was to fully characterize the mechanical behavior of an external hexagonal implant connection (ø3.5 mm, 10-mm length) with an in vitro study, a three-dimensional finite element analysis, and a probabilistic fatigue study. Ten implant-abutment assemblies were randomly divided into two groups, five were subjected to a fracture test to obtain the maximum fracture load, and the remaining were exposed to a fatigue test with 360,000 cycles of 150 ± 10 N. After mechanical cycling, all samples were attached to the torque-testing machine and the removal torque was measured in Newton centimeters. A finite element analysis (FEA) was then executed in ANSYS® to verify all results obtained in the mechanical tests. Finally, due to the randomness of the fatigue phenomenon, a probabilistic fatigue model was computed to obtain the probability of failure associated with each cycle load. FEA demonstrated that the fracture corresponded with a maximum stress of 2454 MPa obtained in the in vitro fracture test. Mean life was verified by the three methods. Results obtained by the FEA, the in vitro test, and the probabilistic approaches were in accordance. Under these conditions, no mechanical etiology failure is expected to occur up to 100,000 cycles. Graphical abstract ᅟ.

  10. Constitutive modeling of polycarbonate over a wide range of strain rates and temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Haitao; Zhou, Huamin; Huang, Zhigao; Zhang, Yun; Zhao, Xiaoxuan

    2017-02-01

    The mechanical behavior of polycarbonate was experimentally investigated over a wide range of strain rates (10^{-4} to 5× 103 s^{-1}) and temperatures (293 to 353 K). Compression tests under these conditions were performed using a SHIMADZU universal testing machine and a split Hopkinson pressure bar. Falling weight impact testing was carried out on an Instron Dynatup 9200 drop tower system. The rate- and temperature-dependent deformation behavior of polycarbonate was discussed in detail. Dynamic mechanical analysis (DMA) tests were utilized to observe the glass (α ) transition and the secondary (β ) transition of polycarbonate. The DMA results indicate that the α and β transitions have a dramatic influence on the mechanical behavior of polycarbonate. The decompose/shift/reconstruct (DSR) method was utilized to decompose the storage modulus into the α and β components and extrapolate the entire modulus, the α-component modulus and the β-component modulus. Based on three previous models, namely, Mulliken-Boyce, G'Sell-Jonas and DSGZ, an adiabatic model is proposed to predict the mechanical behavior of polycarbonate. The model considers the contributions of both the α and β transitions to the mechanical behavior, and it has been implemented in ABAQUS/Explicit through a user material subroutine VUMAT. The model predictions are proven to essentially coincide with the experimental results during compression testing and falling weight impact testing.

  11. Vibration Damping Analysis of Lightweight Structures in Machine Tools

    PubMed Central

    Aggogeri, Francesco; Borboni, Alberto; Merlo, Angelo; Pellegrini, Nicola; Ricatto, Raffaele

    2017-01-01

    The dynamic behaviour of a machine tool (MT) directly influences the machining performance. The adoption of lightweight structures may reduce the effects of undesired vibrations and increase the workpiece quality. This paper aims to present and compare a set of hybrid materials that may be excellent candidates to fabricate the MT moving parts. The selected materials have high dynamic characteristics and capacity to dampen mechanical vibrations. In this way, starting from the kinematic model of a milling machine, this study evaluates a number of prototypes made of Al foam sandwiches (AFS), Al corrugated sandwiches (ACS) and composite materials reinforced by carbon fibres (CFRP). These prototypes represented the Z-axis ram of a commercial milling machine. The static and dynamical properties have been analysed by using both finite element (FE) simulations and experimental tests. The obtained results show that the proposed structures may be a valid alternative to the conventional materials of MT moving parts, increasing machining performance. In particular, the AFS prototype highlighted a damping ratio that is 20 times greater than a conventional ram (e.g., steel). Its application is particularly suitable to minimize unwanted oscillations during high-speed finishing operations. The results also show that the CFRP structure guarantees high stiffness with a weight reduced by 48.5%, suggesting effective applications in roughing operations, saving MT energy consumption. The ACS structure has a good trade-off between stiffness and damping and may represent a further alternative, if correctly evaluated. PMID:28772653

  12. Fatigue Behavior of Porous Ti-6Al-4V Made by Laser-Engineered Net Shaping

    PubMed Central

    Bordonaro, Giancarlo G.; Berto, Filippo

    2018-01-01

    The fatigue behavior and fracture mechanisms of additively manufactured Ti-6Al-4V specimens are investigated in this study. Three sets of testing samples were fabricated for the assessment of fatigue life. The first batch of samples was built by using Laser-Engineered Net Shaping (LENS) technology, a Direct Energy Deposition (DED) method. Internal voids and defects were induced in a second batch of samples by changing LENS machine processing parameters. Fatigue performance of these samples is compared to the wrought Ti-6Al-4V samples. The effects of machine-induced porosity are assessed on mechanical properties and results are presented in the form of SN curves for the three sets of samples. Fracture mechanisms are examined by using Scanning Electron Microscopy (SEM) to characterize the morphological characteristics of the failure surface. Different fracture surface morphologies are observed for porous and non-porous specimens due to the combination of head write speed and laser power. Formation of defects such as pores, unmelted regions, and gas entrapments affect the failure mechanisms in porous specimens. Non-porous specimens exhibit fatigue properties comparable with that of the wrought specimens, but porous specimens are found to show a tremendous reduced fatigue strength. PMID:29439510

  13. A new class of high-G and long-duration shock testing machines

    NASA Astrophysics Data System (ADS)

    Rastegar, Jahangir

    2018-03-01

    Currently available methods and systems for testing components for survival and performance under shock loading suffer from several shortcomings for use to simulate high-G acceleration events with relatively long duration. Such events include most munitions firing and target impact, vehicular accidents, drops from relatively high heights, air drops, impact between machine components, and other similar events. In this paper, a new class of shock testing machines are presented that can be used to subject components to be tested to high-G acceleration pulses of prescribed amplitudes and relatively long durations. The machines provide for highly repeatable testing of components. The components are mounted on an open platform for ease of instrumentation and video recording of their dynamic behavior during shock loading tests.

  14. The remapping of space in motor learning and human-machine interfaces

    PubMed Central

    Mussa-Ivaldi, F.A.; Danziger, Z.

    2009-01-01

    Studies of motor adaptation to patterns of deterministic forces have revealed the ability of the motor control system to form and use predictive representations of the environment. One of the most fundamental elements of our environment is space itself. This article focuses on the notion of Euclidean space as it applies to common sensory motor experiences. Starting from the assumption that we interact with the world through a system of neural signals, we observe that these signals are not inherently endowed with metric properties of the ordinary Euclidean space. The ability of the nervous system to represent these properties depends on adaptive mechanisms that reconstruct the Euclidean metric from signals that are not Euclidean. Gaining access to these mechanisms will reveal the process by which the nervous system handles novel sophisticated coordinate transformation tasks, thus highlighting possible avenues to create functional human-machine interfaces that can make that task much easier. A set of experiments is presented that demonstrate the ability of the sensory-motor system to reorganize coordination in novel geometrical environments. In these environments multiple degrees of freedom of body motions are used to control the coordinates of a point in a two-dimensional Euclidean space. We discuss how practice leads to the acquisition of the metric properties of the controlled space. Methods of machine learning based on the reduction of reaching errors are tested as a means to facilitate learning by adaptively changing he map from body motions to controlled device. We discuss the relevance of the results to the development of adaptive human machine interfaces and optimal control. PMID:19665553

  15. Internally damped, self-arresting vertical drop-weight impact test apparatus

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R. (Inventor); Prasad, Chunchu B. (Inventor); Waters, Jr., William A. (Inventor); Stockum, Robert W. (Inventor); Walter, Manfred A. (Inventor)

    1996-01-01

    A vertical dropped-weight impact test machine has a dropped-weight barrel vertically supported on upper and lower support brackets. The dropped-weight barrel is chambered to receive a dropped-weight assembly having a latch pin at its upper end, a damping unit in the middle, and a tup at its lower end. The tup is adapted for gathering data during impact testing. The latch pin releasably engages a latch pin coupling assembly. The latch pin coupling assembly is attached to a winch via a halyard for raising and lowering the dropped-weight assembly. The lower end of the dropped-weight barrel is provided with a bounce-back arresting mechanism which is activated by the descending passage of the dropped-weight assembly. After striking the specimen, the dropped-weight assembly rebounds vertically and is caught by the bounce-back arresting mechanism. The damping unit of the dropped-weight assembly serves to dissipate energy from the rebounding dropped-weight assembly and prevents the dropped-weight assembly from rebounding from the self-arresting mechanism.

  16. Internally damped, self-arresting vertical drop-weight impact test apparatus

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R. (Inventor); Prasad, Chunchu B. (Inventor); Waters, Jr., William A. (Inventor); Stockum, Robert W. (Inventor); Water, Manfred A. (Inventor)

    1995-01-01

    A vertical dropped-weight impact test machine has a dropped-weight barrel vertically supported on upper and lower support brackets. The dropped-weight barrel is chambered to receive a dropped-weight assembly having a latch pin at its upper end, a damping unit in the middle, and a tup at its lower end. The tup is adapted for gathering data during impact testing. The latch pin releasably engages a latch pin coupling assembly. The latch pin coupling assembly is attached to a winch via a halyard for raising and lowering the dropped-weight assembly. The lower end of the dropped-weight barrel is provided with a bounce-back arresting mechanism which is activated by the descending passage of the dropped-weight assembly. After striking the specimen, the dropped-weight assembly rebounds vertically and is caught by the bounce-back arresting mechanism. The damping unit of the dropped-weight assembly serves to dissipate energy from the rebounding dropped-weight assembly and prevents the dropped-weight assembly from rebounding from the self-arresting mechanism.

  17. Buildup factor and mechanical properties of high-density cement mixed with crumb rubber and prompt gamma ray study

    NASA Astrophysics Data System (ADS)

    Aim-O, P.; Wongsawaeng, D.; Tancharakorn, S.; Sophon, M.

    2017-09-01

    High-density cement mixed with crumb rubber has been studied to be a gamma ray and neutron shielding material, especially for photonuclear reactions that may occur from accelerators where both types of radiation exist. The Buildup factors from gamma ray scattering, prompt and secondary gamma ray emissions from neutron capture and mechanical properties were evaluated. For buildup factor studies, two different geometries were used: narrow beam and broad beam. Prompt Gamma Neutron Activation Analysis (PGNAA) was carried out to determine the prompt and secondary gamma ray emissions. The compressive strength of samples was evaluated by using compression testing machine which was central point loading crushing test. The results revealed that addition of crumb rubber increased the buildup factor. Gamma ray spectra following PGNAA revealed no prompt or secondary gamma ray emission. Mechanical testing indicated that the compressive strength of the shielding material decreased with increasing volume percentage of crumb rubber.

  18. Mechanical evaluation of quad-helix appliance made of low-nickel stainless steel wire.

    PubMed

    dos Santos, Rogério Lacerda; Pithon, Matheus Melo

    2013-01-01

    The objective of this study was to test the hypothesis that there is no difference between stainless steel and low-nickel stainless steel wires as regards mechanical behavior. Force, resilience, and elastic modulus produced by Quad-helix appliances made of 0.032-inch and 0.036-inch wires were evaluated. Sixty Quad-helix appliances were made, thirty for each type of alloy, being fifteen for each wire thickness, 0.032-in and 0.036-in. All the archwires were submitted to mechanical compression test using an EMIC DL-10000 machine simulating activations of 4, 6, 9, and 12 mm. Analysis of variance (ANOVA) with multiple comparisons and Tukey's test were used (p < 0.05) to assess force, resilience, and elastic modulus. Statistically significant difference in the forces generated, resilience and elastic modulus were found between the 0.032-in and 0.036-in thicknesses (p < 0.05). Appliances made of low-nickel stainless steel alloy had force, resilience, and elastic modulus similar to those made of stainless steel alloy.

  19. 5 CFR 532.217 - Appropriated fund survey jobs.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... agency shall survey the following required jobs: Job title Job grade Janitor (Light) 1 Janitor (Heavy) 2... Equipment Operator 5 Truckdriver (Medium) 6 Truckdriver (Heavy) 7 Machine Tool Operator II 8 Machine Tool Operator I 9 Carpenter 9 Electrician 10 Automotive Mechanic 10 Sheet Metal Mechanic 10 Pipefitter 10 Welder...

  20. National Apprenticeship and Training Standards for Vending Machine Mechanics.

    ERIC Educational Resources Information Center

    Employment and Training Administration (DOL), Washington, DC.

    This booklet contains national standards for apprentices in vending machine mechanics. The main topic of the booklet, Provisions of Standards, includes the following: definitions of terms used in the booklet, apprenticeship qualifications, a statement on equal opportunity employment, explanation of probation, hours of work, credit for previous…

  1. A mechanical Turing machine: blueprint for a biomolecular computer

    PubMed Central

    Shapiro, Ehud

    2012-01-01

    We describe a working mechanical device that embodies the theoretical computing machine of Alan Turing, and as such is a universal programmable computer. The device operates on three-dimensional building blocks by applying mechanical analogues of polymer elongation, cleavage and ligation, movement along a polymer, and control by molecular recognition unleashing allosteric conformational changes. Logically, the device is not more complicated than biomolecular machines of the living cell, and all its operations are part of the standard repertoire of these machines; hence, a biomolecular embodiment of the device is not infeasible. If implemented, such a biomolecular device may operate in vivo, interacting with its biochemical environment in a program-controlled manner. In particular, it may ‘compute’ synthetic biopolymers and release them into its environment in response to input from the environment, a capability that may have broad pharmaceutical and biological applications. PMID:22649583

  2. Laser Machining of Melt Infiltrated Ceramic Matrix Composite

    NASA Technical Reports Server (NTRS)

    Jarmon, D. C.; Ojard, G.; Brewer, D.

    2012-01-01

    As interest grows in considering the use of ceramic matrix composites for critical components, the effects of different machining techniques, and the resulting machined surfaces, on strength need to be understood. This work presents the characterization of a Melt Infiltrated SiC/SiC composite material system machined by different methods. While a range of machining approaches were initially considered, only diamond grinding and laser machining were investigated on a series of tensile coupons. The coupons were tested for residual tensile strength, after a stressed steam exposure cycle. The data clearly differentiated the laser machined coupons as having better capability for the samples tested. These results, along with micro-structural characterization, will be presented.

  3. On the operation of machines powered by quantum non-thermal baths

    DOE PAGES

    Niedenzu, Wolfgang; Gelbwaser-Klimovsky, David; Kofman, Abraham G.; ...

    2016-08-02

    Diverse models of engines energised by quantum-coherent, hence non-thermal, baths allow the engine efficiency to transgress the standard thermodynamic Carnot bound. These transgressions call for an elucidation of the underlying mechanisms. Here we show that non-thermal baths may impart not only heat, but also mechanical work to a machine. The Carnot bound is inapplicable to such a hybrid machine. Intriguingly, it may exhibit dual action, concurrently as engine and refrigerator, with up to 100% efficiency. Here, we conclude that even though a machine powered by a quantum bath may exhibit an unconventional performance, it still abides by the traditional principlesmore » of thermodynamics.« less

  4. Test results for rotordynamic coefficients of anti-swirl self-injection seals

    NASA Technical Reports Server (NTRS)

    Kim, C. H.; Lee, Y. B.

    1994-01-01

    Test results are presented for rotordynamic coefficients and leakage for three annular seals which use anti-swirl self-injection concept to yield significant improvement in whirl frequency ratios as compared to smooth and damper seals. A new anti-swirl self-inection mechanism is achieved by deliberately machining self-injection holes inside the seal stator mechanism which is used to achieve effective reduction of the tangential flow which is considered as a prime cause of rotor instability in high performance turbomachinery. Test results show that the self-injection mechanism significantly improves whirl frequency ratios; however, the leakage performance degrades due to the introduction of the self-injection mechanism. Through a series of the test program, an optimum anti-swirl self-injection seal which uses a labyrinth stator surface with anti-axial flow injections is selected to obtain a significant improvement in the whirl frequency ratio as compared to a damper seal, while showing moderate leakage performance. Best whirl frequency ratio is achieved by an anti-swirl self-injection seal of 12 holes anti-swirl and 6 degree anti-leakage injection with a labyrinth surface configuration. When compared to a damper seal, the optimum configuration outperforms the whirl frequency ratio by a factor of 2.

  5. COMPRESSIVE FATIGUE IN TITANIUM DENTAL IMPLANTS SUBMITTED TO FLUORIDE IONS ACTION

    PubMed Central

    Ribeiro, Ana Lúcia Roselino; Noriega, Jorge Roberto; Dametto, Fábio Roberto; Vaz, Luís Geraldo

    2007-01-01

    The aim of this study was to assess the influence of a fluoridated medium on the mechanical properties of an internal hexagon implant-abutment set, by means of compression, mechanical cycling and metallographic characterization by scanning electronic microscopy. Five years of regular use of oral hygiene with a sodium fluoride solution content of 1500 ppm were simulated, immersing the samples in this medium for 184 hours, with the solutions being changed every 12 hours. Data were analyzed at a 95% confidence level with Fisher's exact test. After the action of fluoride ions, a negative influence occurred in the mechanical cycling test performed in a servohydraulic machine (Material Test System-810) set to a frequency of 15 Hz with 100,000 cycles and programmed to 60% of the maximum resistance of static compression test. The sets tended to fracture by compression on the screw, characterized by mixed ruptures with predominance of fragile fracture, as observed by microscopy. An evidence of corrosion by pitting on sample surfaces was found after the fluoride ions action. It may be concluded that prolonged contact with fluoride ions is harmful to the mechanical properties of commercially pure titanium structures. PMID:19089148

  6. Power electromagnetic strike machine for engineering-geological surveys

    NASA Astrophysics Data System (ADS)

    Usanov, K. M.; Volgin, A. V.; Chetverikov, E. A.; Kargin, V. A.; Moiseev, A. P.; Ivanova, Z. I.

    2017-10-01

    When implementing the processes of dynamic sensing of soils and pulsed nonexplosive seismic exploration, the most common and effective method is the strike one, which is provided by a variety of structure and parameters of pneumatic, hydraulic, electrical machines of strike action. The creation of compact portable strike machines which do not require transportation and use of mechanized means is important. A promising direction in the development of strike machines is the use of pulsed electromagnetic actuator characterized by relatively low energy consumption, relatively high specific performance and efficiency, and providing direct conversion of electrical energy into mechanical work of strike mass with linear movement trajectory. The results of these studies allowed establishing on the basis of linear electromagnetic motors the electromagnetic pulse machines with portable performance for dynamic sensing of soils and land seismic pulse of small depths.

  7. A New Type of Tea Baking Machine Based on Pro/E Design

    NASA Astrophysics Data System (ADS)

    Lin, Xin-Ying; Wang, Wei

    2017-11-01

    In this paper, the production process of wulong tea was discussed, mainly the effect of baking on the quality of tea. The suitable baking temperature of different tea was introduced. Based on Pro/E, a new type of baking machine suitable for wulong tea baking was designed. The working principle, mechanical structure and constant temperature timing intelligent control system of baking machine were expounded. Finally, the characteristics and innovation of new baking machine were discussed.The mechanical structure of this baking machine is more simple and reasonable, and can use the heat of the inlet and outlet, more energy saving and environmental protection. The temperature control part adopts fuzzy PID control, which can improve the accuracy and response speed of temperature control and reduce the dependence of baking operation on skilled experience.

  8. Design of an ultraprecision computerized numerical control chemical mechanical polishing machine and its implementation

    NASA Astrophysics Data System (ADS)

    Zhang, Chupeng; Zhao, Huiying; Zhu, Xueliang; Zhao, Shijie; Jiang, Chunye

    2018-01-01

    The chemical mechanical polishing (CMP) is a key process during the machining route of plane optics. To improve the polishing efficiency and accuracy, a CMP model and machine tool were developed. Based on the Preston equation and the axial run-out error measurement results of the m circles on the tin plate, a CMP model that could simulate the material removal at any point on the workpiece was presented. An analysis of the model indicated that lower axial run-out error led to lower material removal but better polishing efficiency and accuracy. Based on this conclusion, the CMP machine was designed, and the ultraprecision gas hydrostatic guideway and rotary table as well as the Siemens 840Dsl numerical control system were incorporated in the CMP machine. To verify the design principles of machine, a series of detection and machining experiments were conducted. The LK-G5000 laser sensor was employed for detecting the straightness error of the gas hydrostatic guideway and the axial run-out error of the gas hydrostatic rotary table. A 300-mm-diameter optic was chosen for the surface profile machining experiments performed to determine the CMP efficiency and accuracy.

  9. Information extraction from dynamic PS-InSAR time series using machine learning

    NASA Astrophysics Data System (ADS)

    van de Kerkhof, B.; Pankratius, V.; Chang, L.; van Swol, R.; Hanssen, R. F.

    2017-12-01

    Due to the increasing number of SAR satellites, with shorter repeat intervals and higher resolutions, SAR data volumes are exploding. Time series analyses of SAR data, i.e. Persistent Scatterer (PS) InSAR, enable the deformation monitoring of the built environment at an unprecedented scale, with hundreds of scatterers per km2, updated weekly. Potential hazards, e.g. due to failure of aging infrastructure, can be detected at an early stage. Yet, this requires the operational data processing of billions of measurement points, over hundreds of epochs, updating this data set dynamically as new data come in, and testing whether points (start to) behave in an anomalous way. Moreover, the quality of PS-InSAR measurements is ambiguous and heterogeneous, which will yield false positives and false negatives. Such analyses are numerically challenging. Here we extract relevant information from PS-InSAR time series using machine learning algorithms. We cluster (group together) time series with similar behaviour, even though they may not be spatially close, such that the results can be used for further analysis. First we reduce the dimensionality of the dataset in order to be able to cluster the data, since applying clustering techniques on high dimensional datasets often result in unsatisfying results. Our approach is to apply t-distributed Stochastic Neighbor Embedding (t-SNE), a machine learning algorithm for dimensionality reduction of high-dimensional data to a 2D or 3D map, and cluster this result using Density-Based Spatial Clustering of Applications with Noise (DBSCAN). The results show that we are able to detect and cluster time series with similar behaviour, which is the starting point for more extensive analysis into the underlying driving mechanisms. The results of the methods are compared to conventional hypothesis testing as well as a Self-Organising Map (SOM) approach. Hypothesis testing is robust and takes the stochastic nature of the observations into account, but is time consuming. Therefore, we successively apply our machine learning approach with the hypothesis testing approach in order to benefit from both the reduced computation time of the machine learning approach as from the robust quality metrics of hypothesis testing. We acknowledge support from NASA AISTNNX15AG84G (PI V. Pankratius)

  10. Structural health monitoring of wind turbine blades

    NASA Astrophysics Data System (ADS)

    Rumsey, Mark A.; Paquette, Joshua A.

    2008-03-01

    As electric utility wind turbines increase in size, and correspondingly, increase in initial capital investment cost, there is an increasing need to monitor the health of the structure. Acquiring an early indication of structural or mechanical problems allows operators to better plan for maintenance, possibly operate the machine in a de-rated condition rather than taking the unit off-line, or in the case of an emergency, shut the machine down to avoid further damage. This paper describes several promising structural health monitoring (SHM) techniques that were recently exercised during a fatigue test of a 9 meter glass-epoxy and carbon-epoxy wind turbine blade. The SHM systems were implemented by teams from NASA Kennedy Space Center, Purdue University and Virginia Tech. A commercial off-the-shelf acoustic emission (AE) NDT system gathered blade AE data throughout the test. At a fatigue load cycle rate around 1.2 Hertz, and after more than 4,000,000 fatigue cycles, the blade was diagnostically and visibly failing at the out-board blade spar-cap termination point at 4.5 meters. For safety reasons, the test was stopped just before the blade completely failed. This paper provides an overview of the SHM and NDT system setups and some current test results.

  11. Mechanical and Acoustic Characteristics of the Weld and the Base Metal Machine Part of Career Transport

    NASA Astrophysics Data System (ADS)

    Smirnov, Alexander N.; Knjaz'kov, Victor L.; Levashova, Elena E.; Ababkov, Nikolay V.; Pimonov, Maksim V.

    2018-01-01

    Currently, many industries use foreign-made machinery. There is no opportunity to purchase quality original spare parts for which machinery. Therefore, enterprises operating this equipment are looking for producers of analogues of various parts and assemblies. Quite often, the metal of such analog components turns out to be substandard, which leads to their breakdown at a much earlier date and the enterprises incur material losses. Due to the fact that the complex of performance characteristics and the resource of products are laid at the stage of their production, it is extremely important to control the quality of the raw materials. The structure, mechanical, acoustic and magnetic characteristics of metal samples of such destroyed details of quarry transport as hydraulic cylinders and detail “axis” of an excavator are investigated. A significant spread of data on the chemical composition of metal, hardness and characteristics of non-destructive testing is established, which gives grounds to recommend to manufacturers and suppliers of parts is more responsible to approach the incoming quality control. The results of the investigation of metal samples by destructive and non-destructive methods of control are compared, which showed that the spectral-acoustic method of nondestructive testing can be used to control the quality of the responsible machine parts under conditions of import substitution.

  12. Synthetic hardware performance analysis in virtualized cloud environment for healthcare organization.

    PubMed

    Tan, Chee-Heng; Teh, Ying-Wah

    2013-08-01

    The main obstacles in mass adoption of cloud computing for database operations in healthcare organization are the data security and privacy issues. In this paper, it is shown that IT services particularly in hardware performance evaluation in virtual machine can be accomplished effectively without IT personnel gaining access to actual data for diagnostic and remediation purposes. The proposed mechanisms utilized the hypothetical data from TPC-H benchmark, to achieve 2 objectives. First, the underlying hardware performance and consistency is monitored via a control system, which is constructed using TPC-H queries. Second, the mechanism to construct stress-testing scenario is envisaged in the host, using a single or combination of TPC-H queries, so that the resource threshold point can be verified, if the virtual machine is still capable of serving critical transactions at this constraining juncture. This threshold point uses server run queue size as input parameter, and it serves 2 purposes: It provides the boundary threshold to the control system, so that periodic learning of the synthetic data sets for performance evaluation does not reach the host's constraint level. Secondly, when the host undergoes hardware change, stress-testing scenarios are simulated in the host by loading up to this resource threshold level, for subsequent response time verification from real and critical transactions.

  13. Ada (Tradename) Compiler Validation Summary Report. International Business Machines Corporation. IBM Development System for the Ada Language for VM/CMS, Version 1.0. IBM 4381 (IBM System/370) under VM/CMS.

    DTIC Science & Technology

    1986-04-29

    COMPILER VALIDATION SUMMARY REPORT: International Business Machines Corporation IBM Development System for the Ada Language for VM/CMS, Version 1.0 IBM 4381...tested using command scripts provided by International Business Machines Corporation. These scripts were reviewed by the validation team. Test.s were run...s): IBM 4381 (System/370) Operating System: VM/CMS, release 3.6 International Business Machines Corporation has made no deliberate extensions to the

  14. One- and two-dimensional Stirling machine simulation using experimentally generated flow turbulence models

    NASA Technical Reports Server (NTRS)

    Goldberg, Louis F.

    1990-01-01

    Investigations of one- and two-dimensional (1- or 2-D) simulations of Stirling machines centered around experimental data generated by the U. of Minnesota Mechanical Engineering Test Rig (METR) are covered. This rig was used to investigate oscillating flows about a zero mean with emphasis on laminar/turbulent flow transitions in tubes. The Space Power Demonstrator Engine (SPDE) and in particular, its heater, were the subjects of the simulations. The heater was treated as a 1- or 2-D entity in an otherwise 1-D system. The 2-D flow effects impacted the transient flow predictions in the heater itself but did not have a major impact on overall system performance. Information propagation effects may be a significant issue in the simulation (if not the performance) of high-frequency, high-pressure Stirling machines. This was investigated further by comparing a simulation against an experimentally validated analytic solution for the fluid dynamics of a transmission line. The applicability of the pressure-linking algorithm for compressible flows may be limited by characteristic number (defined as flow path information traverses per cycle); this warrants further study. Lastly the METR was simulated in 1- and 2-D. A two-parameter k-w foldback function turbulence model was developed and tested against a limited set of METR experimental data.

  15. 42 CFR 84.97 - Test for carbon dioxide in inspired gas; open- and closed-circuit apparatus; maximum allowable...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... machine. An acceptable method for measuring the concentration of carbon dioxide is described in Bureau of Mines Report of Investigations 6865, A Machine-Test Method for Measuring Carbon Dioxide in the Inspired... of 10.5 liters. (3) A sedentary breathing machine cam will be used. (4) The apparatus will be tested...

  16. 42 CFR 84.97 - Test for carbon dioxide in inspired gas; open- and closed-circuit apparatus; maximum allowable...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... machine. An acceptable method for measuring the concentration of carbon dioxide is described in Bureau of Mines Report of Investigations 6865, A Machine-Test Method for Measuring Carbon Dioxide in the Inspired... of 10.5 liters. (3) A sedentary breathing machine cam will be used. (4) The apparatus will be tested...

  17. 42 CFR 84.97 - Test for carbon dioxide in inspired gas; open- and closed-circuit apparatus; maximum allowable...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... machine. An acceptable method for measuring the concentration of carbon dioxide is described in Bureau of Mines Report of Investigations 6865, A Machine-Test Method for Measuring Carbon Dioxide in the Inspired... of 10.5 liters. (3) A sedentary breathing machine cam will be used. (4) The apparatus will be tested...

  18. Mechanical behaviour study on SBR/EVA composite for FDM feedstock fabrication

    NASA Astrophysics Data System (ADS)

    Raveverma, P.; Ibrahim, M.; Sa'ude, N.; Yarwindran, M.; Nasharuddin, M.

    2017-04-01

    This paper presents the research development of a new SBR/EVA composite flexible feedstock material by the injection moulding machine. The material consists of poly (ethylene-co-vinyl acetate) in styrene butadiene rubber cross-linked by Dicumyl Peroxide. In this study, the mechanical behaviour of injection moulded SBR/EVA composite with different blend ratio investigated experimentally. The formulations of blend ratio with several combinations of a new SBR/EVA flexible feedstock was done by volume percentage (vol. %). Based on the result obtained from the mechanical testing done which is tensile and hardness the composite of SBR/EVA has the high potency to be fabricated as the flexible filament feedstock. The ratio of 80:20 which as an average hardness and tensile strength proved to be the suitable choice to be fabricated as the flexible filament feedstock. The study has reached its goals on the fabricating and testing a new PMC which is flexible.

  19. High-throughput state-machine replication using software transactional memory.

    PubMed

    Zhao, Wenbing; Yang, William; Zhang, Honglei; Yang, Jack; Luo, Xiong; Zhu, Yueqin; Yang, Mary; Luo, Chaomin

    2016-11-01

    State-machine replication is a common way of constructing general purpose fault tolerance systems. To ensure replica consistency, requests must be executed sequentially according to some total order at all non-faulty replicas. Unfortunately, this could severely limit the system throughput. This issue has been partially addressed by identifying non-conflicting requests based on application semantics and executing these requests concurrently. However, identifying and tracking non-conflicting requests require intimate knowledge of application design and implementation, and a custom fault tolerance solution developed for one application cannot be easily adopted by other applications. Software transactional memory offers a new way of constructing concurrent programs. In this article, we present the mechanisms needed to retrofit existing concurrency control algorithms designed for software transactional memory for state-machine replication. The main benefit for using software transactional memory in state-machine replication is that general purpose concurrency control mechanisms can be designed without deep knowledge of application semantics. As such, new fault tolerance systems based on state-machine replications with excellent throughput can be easily designed and maintained. In this article, we introduce three different concurrency control mechanisms for state-machine replication using software transactional memory, namely, ordered strong strict two-phase locking, conventional timestamp-based multiversion concurrency control, and speculative timestamp-based multiversion concurrency control. Our experiments show that speculative timestamp-based multiversion concurrency control mechanism has the best performance in all types of workload, the conventional timestamp-based multiversion concurrency control offers the worst performance due to high abort rate in the presence of even moderate contention between transactions. The ordered strong strict two-phase locking mechanism offers the simplest solution with excellent performance in low contention workload, and fairly good performance in high contention workload.

  20. Engineering of Impulse Mechanism for Mechanical Hander Power Tools

    NASA Astrophysics Data System (ADS)

    Nikolaevich Drozdov, Anatoliy

    2018-03-01

    The solution to the problem of human security in cities should be considered on the basis of an integrated and multidisciplinary approach, including issues of security and ecology in the application of technical means used to ensure the viability and development of technocracy. In this regard, an important task is the creation of a safe technique with improved environmental properties with high technological characteristics. This primarily relates to mechanised tool — the division of technological machines with built in engines is that their weight is fully or partially perceived by the operator’s hands, making the flow and control of the car. For this subclass of machines is characterized by certain features: a built-in motor, perception of at least part of their weight by the operator during the work, the implementation of feeding and management at the expense of the muscular power of the operator. Therefore, among the commonly accepted technical and economic characteristics, machines in this case, important ergonomic (ergonomics), regulation of levels which ensures the safety of the operator. To ergonomics include vibration, noise characteristics, mass, and force feeding machine operator. Vibration is a consequence of the dynamism of the system operator machine - processed object (environment) in which the engine energy is redistributed among all the structures, causing their instability. In the machine vibration caused by technological and constructive (transformative mechanisms) unbalance of individual parts of the drive, the presence of technological and design (impact mechanisms) clearances and other reasons. This article describes a new design of impulse mechanism for hander power tools (wrenches, screwdrivers) with enhanced torque. The article substantiates a simulation model of dynamic compression process in an operating chamber during impact, provides simulation results and outlines further lines of research.

  1. High-throughput state-machine replication using software transactional memory

    PubMed Central

    Yang, William; Zhang, Honglei; Yang, Jack; Luo, Xiong; Zhu, Yueqin; Yang, Mary; Luo, Chaomin

    2017-01-01

    State-machine replication is a common way of constructing general purpose fault tolerance systems. To ensure replica consistency, requests must be executed sequentially according to some total order at all non-faulty replicas. Unfortunately, this could severely limit the system throughput. This issue has been partially addressed by identifying non-conflicting requests based on application semantics and executing these requests concurrently. However, identifying and tracking non-conflicting requests require intimate knowledge of application design and implementation, and a custom fault tolerance solution developed for one application cannot be easily adopted by other applications. Software transactional memory offers a new way of constructing concurrent programs. In this article, we present the mechanisms needed to retrofit existing concurrency control algorithms designed for software transactional memory for state-machine replication. The main benefit for using software transactional memory in state-machine replication is that general purpose concurrency control mechanisms can be designed without deep knowledge of application semantics. As such, new fault tolerance systems based on state-machine replications with excellent throughput can be easily designed and maintained. In this article, we introduce three different concurrency control mechanisms for state-machine replication using software transactional memory, namely, ordered strong strict two-phase locking, conventional timestamp-based multiversion concurrency control, and speculative timestamp-based multiversion concurrency control. Our experiments show that speculative timestamp-based multiversion concurrency control mechanism has the best performance in all types of workload, the conventional timestamp-based multiversion concurrency control offers the worst performance due to high abort rate in the presence of even moderate contention between transactions. The ordered strong strict two-phase locking mechanism offers the simplest solution with excellent performance in low contention workload, and fairly good performance in high contention workload. PMID:29075049

  2. Splitter-bladed centrifugal compressor impeller designed for automotive gas turbine application. [at the Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Pampreen, R. C.

    1977-01-01

    Mechanical design and fabrication of two splitter-bladed centrifugal compressor impellers were completed for rig testing at NASA Lewis Research Center. These impellers were designed for automotive gas turbine application. The mechanical design was based on NASA specifications for blade-shape and flowpath configurations. The contractor made engineering drawings and performed calculations for mass and center-of-gravity, for stress and vibration analyses, and for shaft critical speed analysis. One impeller was machined to print; the other had a blade height and exit radius of 2.54 mm larger than print dimensions.

  3. Structure-property relation in HPMC polymer films plasticized with Sorbitol

    NASA Astrophysics Data System (ADS)

    Prakash, Y.; Somashekarappa, H.; Mahadevaiah, Somashekar, R.

    2013-06-01

    A correlation study on physical and mechanical properties of Hydroxy propyl-methylcellulose (HPMC) polymer films plasticized with different weight ratio of Sorbitol, prepared using solution casting method, was carried out using wide angle X-ray technique and universal testing machine. It is found that the crystallanity decreases as the concentration of Sorbitol increases up to a certain concentration and there afterwards increases. Measured Physical Properties like tensile strength decreases and elongation (%) increases indicating increase in the flexibility of the films. These observations confirm the correlation between microstructal parameters and mechanical properties of films. These films are suitable for packaging food products.

  4. Mechanical behaviour of cerclage material consisting of silicon rubber.

    PubMed

    Hinrichsen, G; Eberhardt, A; Springer, H

    1979-09-01

    Silicon rubber specimens of circular or rectangular cross-section (cross-section area between ca. 2 and 7 mm2) are used as cerclage bands. A series of commercial cerclage elements was investigated for mechanical characteristics, such as stress-strain behaviour and modulus of elasticity, using a tensile-testing machine. Large differences in these properties exist among the various specimens. Moreover, time-dependent effects, such as stress-relaxation, retardation, and creep, were analysed by the present investigations. One has to take into consideration that the initial length and stress of the cerclage band vary significantly with time after the operation.

  5. Implementation of an agile maintenance mechanic assignment methodology

    NASA Astrophysics Data System (ADS)

    Jimenez, Jesus A.; Quintana, Rolando

    2000-10-01

    The objective of this research was to develop a decision support system (DSS) to study the impact of introducing new equipment into a medical apparel plant from a maintenance organizational structure perspective. This system will enable the company to determine if their capacity is sufficient to meet current maintenance challenges. The DSS contains two database sets that describe equipment and maintenance resource profiles. The equipment profile specifies data such as mean time to failures, mean time to repairs, and minimum mechanic skill level required to fix each machine group. Similarly, maintenance-resource profile reports information about the mechanic staff, such as number and type of certifications received, education level, and experience. The DSS will then use this information to minimize machine downtime by assigning the highest skilled mechanics to machines with higher complexity and product value. A modified version of the simplex method, the transportation problem, was used to perform the optimization. The DSS was built using the Visual Basic for Applications (VBA) language contained in the Microsoft Excel environment. A case study was developed from current existing data. The analysis consisted of forty-two machine groups and six mechanic categories with ten skill levels. Results showed that only 56% of the mechanic workforce was utilized. Thus, the company had available resources for meeting future maintenance requirements.

  6. MEASUREMENT OF INDOOR AIR EMISSIONS FROM DRY-PROCESS PHOTOCOPY MACHINES

    EPA Science Inventory

    The article provides background information on indoor air emissions from office equipment, with emphasis on dry-process photocopy machines. The test method is described in detail along with results of a study to evaluate the test method using four dry-process photocopy machines. ...

  7. Simulation and Experimental Study on Surface Formation Mechanism in Machining of SiCp/Al Composites

    NASA Astrophysics Data System (ADS)

    Du, Jinguang; Zhang, Haizhen; He, Wenbin; Ma, Jun; Ming, Wuyi; Cao, Yang

    2018-03-01

    To intuitively reveal the surface formation mechanism in machining of SiCp/Al composites, in this paper the removal mode of reinforced particle and aluminum matrix, and their influence on surface formation mechanism were analyzed by single diamond grit cutting simulation and single diamond grit scratch experiment. Simulation and experiment results show that when the depth of cut is small, the scratched surface of the workpiece is relatively smooth; however, there are also irregular pits on the machined surface. When increasing the depth of cut, there are many obvious laminar structures on the scratched surface, and the surface appearance becomes coarser. When the cutting speed is small, the squeezing action of abrasive grit on SiC particles plays a dominant role in the extrusion of SiC particles. When increasing the cutting speed, SiC particles also occur broken or fractured; but the machined surface becomes smooth. When machining SiCp/Al composites, the SiC may happen in such removal ways, such as fracture, debonding, broken, sheared, pulled into and pulled out, etc. By means of reasonably developing micro cutting finite element simulation model of SiCp/Al composites could be used to analyze the surface formation process and particle removal way in different machining conditions.

  8. Thermal and Mechanical Property Characterization of the Advanced Disk Alloy LSHR

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Gayda, John; Telesman, Jack; Kantzos, Peter T.

    2005-01-01

    A low solvus, high refractory (LSHR) powder metallurgy disk alloy was recently designed using experimental screening and statistical modeling of composition and processing variables on sub-scale disks to have versatile processing-property capabilities for advanced disk applications. The objective of the present study was to produce a scaled-up disk and apply varied heat treat processes to enable full-scale demonstration of LSHR properties. Scaled-up disks were produced, heat treated, sectioned, and then machined into specimens for mechanical testing. Results indicate the LSHR alloy can be processed to produce fine and coarse grain microstructures with differing combinations of strength and time-dependent mechanical properties, for application at temperatures exceeding 1300 F.

  9. Physical Properties of Venous Stents: An Experimental Comparison.

    PubMed

    Dabir, Darius; Feisst, Andreas; Thomas, Daniel; Luetkens, Julian A; Meyer, Carsten; Kardulovic, Ana; Menne, Matthias; Steinseifer, Ulrich; Schild, Hans H; Kuetting, Daniel L R

    2018-06-01

    Iliocaval obstruction is a substantial contributor to chronic venous insufficiency and is increasingly being treated endovascularly with angioplasty and stent placement. Utilization of an appropriate stent for treatment is pivotal; however, until today, mechanical properties of venous stents remain unknown. We analyzed the radial resistive force, the chronic outward force, as well as the crush resistance of seven stent models [Zilver Vena (Cook, Bjaeverskov, Denmark), Sinus Venous, Sinus Obliquus and Sinus XL Flex (Optimed, Ettlingen, Germany), Vici (Veniti; St. Louis, USA), Wallstent (Boston Scientific, Marlborough, USA), and Venovo (Bard, Tempe, USA)] in vitro using a radial force testing machine (RX-650, Machine Solutions Inc., Flagstaff, AZ, USA) and a hardness testing machine (zwickiLine, Zwick Roell, Ulm, Germany). The Sinus Obliquus revealed the highest radial resistive force (19.41 N/cm) and the highest chronic outward force at 50 and 30% nominal diameter (7.93 N/cm at 50%, 16.97 N/cm at 30%) while the Venovo revealed the highest chronic outward force at 90 and 80% nominal diameter (4.83 N/cm at 90%, 5.37 N/cm at 80%). The radial resistive force and the chronic outward force of the Wallstent greatly depended on whether the stent ends were fixated. The Wallstent revealed the highest crush resistance at nominal diameters of 90% (0.46 N/cm) to 60% (1.16 N/cm). The Sinus Obliquus revealed the highest crush resistance at a nominal diameter of 50% (1.41 N/cm). Venous stents greatly differ regarding their mechanical properties. These results should be considered when choosing an appropriate stent for the treatment of venous obstruction.

  10. Effect of pressure difference on the quality of titanium casting.

    PubMed

    Watanabe, I; Watkins, J H; Nakajima, H; Atsuta, M; Okabe, T

    1997-03-01

    In casting titanium using a two-compartment casting machine, Herø et al. (1993) reported that the pressure difference between the melting chamber and the mold chamber affected the soundness of the castings. This study tested the hypothesis that differences in pressure produce castings with various amounts of porosity and different mechanical properties values. Plastic dumbbell-shaped patterns were invested with an alumina-based, phosphate-bonded investment material. Both chambers of the casting machine were evacuated to 6 x 10(-2) torr; the argon pressure difference was then adjusted to either 50, 150, 300, or 450 torr. The porosity of the cast specimens was determined by x-ray radiography and quantitative image analysis. Tensile strength and elongation were measured by means of a universal testing machine at a strain rate of 1.7 x 10(-4)/s. The fractured surfaces were examined by SEM. Changes in Vickers hardness with depth from the cast surface were measured on polished cross-sections of the specimens. Raising the argon pressure difference to 300 and 450 torr caused a significant increase in internal porosity and a resultant decrease in the engineering tensile strength and elongation. The highest tensile strength (approximately 540 MPa), elongation (approximately 10%), bulk hardness (HV50g 209), and lowest porosity level (approximately 0.8%) occurred in the specimens cast at 150 torr. Turbulence of the metal during casting was thought to be responsible for the increase in porosity levels with the increase in argon pressure difference. By choosing an argon pressure difference (around 150 torr) suitable for this geometry, we could produce castings which have adequate mechanical properties and low porosity levels.

  11. NREL`s variable speed test bed: Preliminary results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlin, P.W.; Fingersh, L.J.; Fuchs, E.F.

    1996-10-01

    Under an NREL subcontract, the Electrical and Computer Engineering Department of the University of Colorado (CU) designed a 20-kilowatt, 12-pole, permanent-magnet, electric generator and associated custom power electronics modules. This system can supply power over a generator speed range from 60 to 120 RPM. The generator was fabricated and assembled by the Denver electric-motor manufacturer, Unique Mobility, and the power electronics modules were designed and fabricated at the University. The generator was installed on a 56-foot tower in the modified nacelle of a Grumman Windstream 33 wind turbine in early October 1995. For checkout it was immediately loaded directly intomore » a three-phase resistive load in which it produced 3.5 kilowatts of power. Abstract only included. The ten-meter Grumman host wind machine is equipped with untwisted, untapered, NREL series S809 blades. The machine was instrumented to record both mechanical hub power and electrical power delivered to the utility. Initial tests are focusing on validating the calculated power surface. This mathematical surface shows the wind machine power as a function of both wind speed and turbine rotor speed. Upon the completion of this task, maximum effort will be directed toward filling a test matrix in which variable-speed operation will be contrasted with constant-speed mode by switching the variable speed control algorithm with the baseline constant speed control algorithm at 10 minutes time intervals. Other quantities in the test matrix will be analyzed to detect variable speed-effects on structural loads and power quality.« less

  12. Design and Optimization of Ultrasonic Vibration Mechanism using PZT for Precision Laser Machining

    NASA Astrophysics Data System (ADS)

    Kim, Woo-Jin; Lu, Fei; Cho, Sung-Hak; Park, Jong-Kweon; Lee, Moon G.

    As the aged population grows around the world, many medical instruments and devices have been developed recently. Among the devices, a drug delivery stent is a medical device which requires precision machining. Conventional drug delivery stent has problems of residual polymer and decoating because the drug is coated on the surface of stent with the polymer. If the drug is impregnated in the micro sized holes on the surface, the problems can be overcome because there is no need to use the polymer anymore. Micro sized holes are generally fabricated by laser machining; however, the fabricated holes do not have a high aspect ratio or a good surface finish. To overcome these problems, we propose a vibration-assisted machining mechanism with PZT (Piezoelectric Transducers) for the fabrication of micro sized holes. If the mechanism vibrates the eyepiece of the laser machining head, the laser spot on the workpiece will vibrate vertically because objective lens in the eyepiece shakes by the mechanism's vibration. According to the former researches, the vibrating frequency over 20 kHz and amplitude over 500 nm are preferable. The vibration mechanism has cylindrical guide, hollowed PZT and supports. In the cylinder, the eyepiece is mounted. The cylindrical guide has upper and low plates and side wall. The shape of plates and side wall are designed to have high resonating frequency and large amplitude of motion. The PZT is also selected to have high actuating force and high speed of motion. The support has symmetrical and rigid configuration. The mechanism secures linear motion of the eyepiece. This research includes sensitivity analysis and design of ultrasonic vibration mechanism. As a result of design, the requirements of high frequency and large amplitude are achieved.

  13. A strategy for enhancing shear strength and bending strength of FRP laminate using MWCNTs

    NASA Astrophysics Data System (ADS)

    Rawat, Prashant; Singh, K. K.

    2016-09-01

    Multi-wall carbon nanotubes (MWCNTs) promises to enhance mechanical properties exceptionally when it is doped with fiber reinforced polymer (FRP) composite. Glass fiber symmetrical laminate with eight layers of 4.0 mm thickness was fabricated by hand lay-up technique assisted by vacuum bagging method. Ply orientations for symmetrical laminate used [(0,90)/(+45,-45)/(+45,-45)/(0,90)//(90,0)/(+45,-45)/(+45,-45)/(90,0)]. MWCNTs reinforced three different samples (0 wt.%, 0.5 wt.% and 0.75 wt.% by weight) were tested on universal testing machine (UTM). Short beam strength test and inter laminar shear strength (ILSS) calculation have been done according to ASTM D2344 and ASTM D7264. UTM having maximum load capacity of 50 KN with loading rate of 0.1 mm/min to 50 mm/min was used for mechanical testing. Testing results justified that by adding 0.50 wt.% MWCNTs in symmetrical GFRP laminate can enhance inter laminar shear strength by 13.66% and bending strength by 44.22%.

  14. Engineering and fabrication cost considerations for cryogenic wind tunnel models

    NASA Technical Reports Server (NTRS)

    Boykin, R. M., Jr.; Davenport, J. B., Jr.

    1983-01-01

    Design and fabrication cost drivers for cryogenic transonic wind tunnel models are defined. The major cost factors for wind tunnel models are model complexity, tolerances, surface finishes, materials, material validation, and model inspection. The cryogenic temperatures require the use of materials with relatively high fracture toughness but at the same time high strength. Some of these materials are very difficult to machine, requiring extensive machine hours which can add significantly to the manufacturing costs. Some additional engineering costs are incurred to certify the materials through mechanical tests and nondestructive evaluation techniques, which are not normally required with conventional models. When instrumentation such as accelerometers and electronically scanned pressure modules is required, temperature control of these devices needs to be incorporated into the design, which requires added effort. Additional thermal analyses and subsystem tests may be necessary, which also adds to the design costs. The largest driver to the design costs is potentially the additional static and dynamic analyses required to insure structural integrity of the model and support system.

  15. Development of plasma chemical vaporization machining

    NASA Astrophysics Data System (ADS)

    Mori, Yuzo; Yamauchi, Kazuto; Yamamura, Kazuya; Sano, Yasuhisa

    2000-12-01

    Conventional machining processes, such as turning, grinding, or lapping are still applied for many materials including functional ones. But those processes are accompanied with the formation of a deformed layer, so that machined surfaces cannot perform their original functions. In order to avoid such points, plasma chemical vaporization machining (CVM) has been developed. Plasma CVM is a chemical machining method using neutral radicals, which are generated by the atmospheric pressure plasma. By using a rotary electrode for generation of plasma, a high density of neutral radicals was formed, and we succeeded in obtaining high removal rate of several microns to several hundred microns per minute for various functional materials such as fused silica, single crystal silicon, molybdenum, tungsten, silicon carbide, and diamond. Especially, a high removal rate equal to lapping in the mechanical machining of fused silica and silicon was realized. 1.4 nm (p-v) was obtained as a surface roughness in the case of machining a silicon wafer. The defect density of a silicon wafer surface polished by various machining method was evaluated by the surface photo voltage spectroscopy. As a result, the defect density of the surface machined by plasma CVM was under 1/100 in comparison with the surface machined by mechanical polishing and argon ion sputtering, and very low defect density which was equivalent to the chemical etched surface was realized. A numerically controlled CVM machine for x-ray mirror fabrication is detailed in the accompanying article in this issue.

  16. Utilization and cost for animal logging operations

    Treesearch

    Suraj P. Shrestha; Bobby L. Lanford

    2001-01-01

    Forest harvesting with animals is a labor-intensive operation. Due to the development of efficient machines and high volume demands from the forest products industry, mechanization of logging developed very fast, leaving behind the traditional horse and mule logging. It is expensive to use machines on smaller woodlots, which require frequent moves if mechanically...

  17. Experimental research of kinetic and dynamic characteristics of temperature movements of machines

    NASA Astrophysics Data System (ADS)

    Parfenov, I. V.; Polyakov, A. N.

    2018-03-01

    Nowadays, the urgency of informational support of machines at different stages of their life cycle is increasing in the form of various experimental characteristics that determine the criteria for working capacity. The effectiveness of forming the base of experimental characteristics of machines is related directly to the duration of their field tests. In this research, the authors consider a new technique that allows reducing the duration of full-scale testing of machines by 30%. To this end, three new indicator coefficients were calculated in real time to determine the moments corresponding to the characteristic points. In the work, new terms for thermal characteristics of machine tools are introduced: kinetic and dynamic characteristics of the temperature movements of the machine. This allow taking into account not only the experimental values for the temperature displacements of the elements of the carrier system of the machine, but also their derivatives up to the third order, inclusively. The work is based on experimental data obtained in the course of full-scale thermal tests of a drilling-milling and boring CNC machine.

  18. Study on intelligent processing system of man-machine interactive garment frame model

    NASA Astrophysics Data System (ADS)

    Chen, Shuwang; Yin, Xiaowei; Chang, Ruijiang; Pan, Peiyun; Wang, Xuedi; Shi, Shuze; Wei, Zhongqian

    2018-05-01

    A man-machine interactive garment frame model intelligent processing system is studied in this paper. The system consists of several sensor device, voice processing module, mechanical parts and data centralized acquisition devices. The sensor device is used to collect information on the environment changes brought by the body near the clothes frame model, the data collection device is used to collect the information of the environment change induced by the sensor device, voice processing module is used for speech recognition of nonspecific person to achieve human-machine interaction, mechanical moving parts are used to make corresponding mechanical responses to the information processed by data collection device.it is connected with data acquisition device by a means of one-way connection. There is a one-way connection between sensor device and data collection device, two-way connection between data acquisition device and voice processing module. The data collection device is one-way connection with mechanical movement parts. The intelligent processing system can judge whether it needs to interact with the customer, realize the man-machine interaction instead of the current rigid frame model.

  19. Tunable mechanical monolithic sensor with interferometric readout for low frequency seismic noise measurement

    NASA Astrophysics Data System (ADS)

    Acernese, F.; De Rosa, R.; Giordano, G.; Romano, R.; Barone, F.

    2008-03-01

    This paper describes a mechanical monolithic sensor for geophysical applications developed at the University of Salerno. The instrument is basically a monolithic tunable folded pendulum, shaped with precision machining and electric-discharge-machining, that can be used both as seismometer and, in a force-feedback configuration, as accelerometer. The monolithic mechanical design and the introduction of laser interferometric techniques for the readout implementation make it a very compact instrument, very sensitive in the low-frequency seismic noise band, with a very good immunity to environmental noises. Many changes have been produced since last version (2007), mainly aimed to the improvement of the mechanics and of the optical readout of the instrument. In fact, we have developed and tested a prototype with elliptical hinges and mechanical tuning of the resonance frequency together with a laser optical lever and a new laser interferometer readout system. The theoretical sensitivity curve both for both laser optical lever and laser interferometric readouts, evaluated on the basis of suitable theoretical models, shows a very good agreement with the experimental measurements. Very interesting scientific result, for example, is that the measured natural resonance frequency of the instrument is 70 mHz with a Q = 140 in air without thermal stabilization, demonstrating the feasibility of a monolithic FP sensor with a natural resonance frequency of the order of mHz with a more refined mechanical tuning. Results on the readout system based on polarimetric homodyne Michelson interferometer is discussed.

  20. Structural properties of H13 tool steel parts produced with use of selective laser melting technology

    NASA Astrophysics Data System (ADS)

    Šafka, J.; Ackermann, M.; Voleský, L.

    2016-04-01

    This paper deals with establishing of building parameters for 1.2344 (H13) tool steel processed using Selective Laser Melting (SLM) technology with layer thickness of 50 µm. In the first part of the work, testing matrix of models in the form of a cube with chamfered edge were built under various building parameters such as laser scanning speed and laser power. Resulting models were subjected to set of tests including measurement of surface roughness, inspection of inner structure with aid of Light Optical Microscopy and Scanning Electron Microscopy and evaluation of micro-hardness. These tests helped us to evaluate an influence of changes in building strategy to the properties of the resulting model. In the second part of the work, mechanical properties of the H13 steel were examined. For this purpose, the set of samples in the form of “dog bone” were printed under three different alignments towards the building plate and tested on universal testing machine. Mechanical testing of the samples should then reveal if the different orientation and thus different layering of the material somehow influence its mechanical properties. For this type of material, the producer provides the parameters for layer thickness of 30 µm only. Thus, our 50 µm building strategy brings shortening of the building time which is valuable especially for large models. Results of mechanical tests show slight variation in mechanical properties for various alignment of the sample.

  1. An Adaptive Genetic Association Test Using Double Kernel Machines.

    PubMed

    Zhan, Xiang; Epstein, Michael P; Ghosh, Debashis

    2015-10-01

    Recently, gene set-based approaches have become very popular in gene expression profiling studies for assessing how genetic variants are related to disease outcomes. Since most genes are not differentially expressed, existing pathway tests considering all genes within a pathway suffer from considerable noise and power loss. Moreover, for a differentially expressed pathway, it is of interest to select important genes that drive the effect of the pathway. In this article, we propose an adaptive association test using double kernel machines (DKM), which can both select important genes within the pathway as well as test for the overall genetic pathway effect. This DKM procedure first uses the garrote kernel machines (GKM) test for the purposes of subset selection and then the least squares kernel machine (LSKM) test for testing the effect of the subset of genes. An appealing feature of the kernel machine framework is that it can provide a flexible and unified method for multi-dimensional modeling of the genetic pathway effect allowing for both parametric and nonparametric components. This DKM approach is illustrated with application to simulated data as well as to data from a neuroimaging genetics study.

  2. Comparison between laser interferometric and calibrated artifacts for the geometric test of machine tools

    NASA Astrophysics Data System (ADS)

    Sousa, Andre R.; Schneider, Carlos A.

    2001-09-01

    A touch probe is used on a 3-axis vertical machine center to check against a hole plate, calibrated on a coordinate measuring machine (CMM). By comparing the results obtained from the machine tool and CMM, the main machine tool error components are measured, attesting the machine accuracy. The error values can b used also t update the error compensation table at the CNC, enhancing the machine accuracy. The method is easy to us, has a lower cost than classical test techniques, and preliminary results have shown that its uncertainty is comparable to well established techniques. In this paper the method is compared with the laser interferometric system, regarding reliability, cost and time efficiency.

  3. Effects of alkali treatment on the mechanical and thermal properties of Sansevieria trifasciata fiber

    NASA Astrophysics Data System (ADS)

    Mardiyati, Steven, Rizkiansyah, Raden Reza; Senoaji, A.; Suratman, R.

    2016-04-01

    In this study, Sansevieria trifasciata fibers were treated by NaOH with concentration 1%,3%, and 5wt% at 100°C for 2 hours. Chesson-Datta methods was used to determine the lignocellulose content of raw sansevieria fibers and to investigate effect of alkali treatment on lignin content of the fiber. Mechanical properties and thermal properties of treated and untreated fibers were measured by means of tensile testing machine and thermogravimetric analysis (TGA).The cellulose and lignin contents of raw sansevieria fiber obtained from Chesson-Datta method were 56% and 6% respectively. Mechanical testing of fibers showed the increase of tensile strength from 647 MPa for raw fibers to 902 MPa for 5wt% NaOH treated fibers. TGA result showed the alkali treatment increase the thermal resistance of fibers from 288°C for raw fibers to 307°C for 5% NaOH treated fiber. It was found that alkali treatment affect the mechanical properties and thermal properties of sansevieria fibers.

  4. Development of a Titanium Plate for Mandibular Angle Fractures with a Bone Defect in the Lower Border: Finite Element Analysis and Mechanical Test

    PubMed Central

    Goulart, Douglas Rangel; Kemmoku, Daniel Takanori; Noritomi, Pedro Yoshito

    2015-01-01

    ABSTRACT Objectives The aim of the present study was to develop a plate to treat mandibular angle fractures using the finite element method and mechanical testing. Material and Methods A three-dimensional model of a fractured mandible was generated using Rhinoceros 4.0 software. The models were exported to ANSYS®, in which a static application of displacement (3 mm) was performed in the first molar region. Three groups were assessed according to the method of internal fixation (2 mm system): two non-locking plates; two locking plates and a new design locking plate. The computational model was transferred to an in vitro experiment with polyurethane mandibles. Each group contained five samples and was subjected to a linear loading test in a universal testing machine. Results A balanced distribution of stress was associated with the new plate design. This plate modified the mechanical behavior of the fractured region, with less displacement between the fractured segments. In the mechanical test, the group with two locking plates exhibited greater resistance to the 3 mm displacement, with a statistically significant difference when compared with the new plate group (ANOVA, P = 0.016). Conclusions The new plate exhibited a more balanced distribution of stress. However, the group with two locking plates exhibited greater mechanical resistance. PMID:26539287

  5. Effect of the Machining Processes on Low Cycle Fatigue Behavior of a Powder Metallurgy Disk

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Kantzos, P.; Gabb, T. P.; Ghosn, L. J.

    2010-01-01

    A study has been performed to investigate the effect of various machining processes on fatigue life of configured low cycle fatigue specimens machined out of a NASA developed LSHR P/M nickel based disk alloy. Two types of configured specimen geometries were employed in the study. To evaluate a broach machining processes a double notch geometry was used with both notches machined using broach tooling. EDM machined notched specimens of the same configuration were tested for comparison purposes. Honing finishing process was evaluated by using a center hole specimen geometry. Comparison testing was again done using EDM machined specimens of the same geometry. The effect of these machining processes on the resulting surface roughness, residual stress distribution and microstructural damage were characterized and used in attempt to explain the low cycle fatigue results.

  6. Predicting the dissolution kinetics of silicate glasses using machine learning

    NASA Astrophysics Data System (ADS)

    Anoop Krishnan, N. M.; Mangalathu, Sujith; Smedskjaer, Morten M.; Tandia, Adama; Burton, Henry; Bauchy, Mathieu

    2018-05-01

    Predicting the dissolution rates of silicate glasses in aqueous conditions is a complex task as the underlying mechanism(s) remain poorly understood and the dissolution kinetics can depend on a large number of intrinsic and extrinsic factors. Here, we assess the potential of data-driven models based on machine learning to predict the dissolution rates of various aluminosilicate glasses exposed to a wide range of solution pH values, from acidic to caustic conditions. Four classes of machine learning methods are investigated, namely, linear regression, support vector machine regression, random forest, and artificial neural network. We observe that, although linear methods all fail to describe the dissolution kinetics, the artificial neural network approach offers excellent predictions, thanks to its inherent ability to handle non-linear data. Overall, we suggest that a more extensive use of machine learning approaches could significantly accelerate the design of novel glasses with tailored properties.

  7. An AST-ELM Method for Eliminating the Influence of Charging Phenomenon on ECT.

    PubMed

    Wang, Xiaoxin; Hu, Hongli; Jia, Huiqin; Tang, Kaihao

    2017-12-09

    Electrical capacitance tomography (ECT) is a promising imaging technology of permittivity distributions in multiphase flow. To reduce the effect of charging phenomenon on ECT measurement, an improved extreme learning machine method combined with adaptive soft-thresholding (AST-ELM) is presented and studied for image reconstruction. This method can provide a nonlinear mapping model between the capacitance values and medium distributions by using machine learning but not an electromagnetic-sensitive mechanism. Both simulation and experimental tests are carried out to validate the performance of the presented method, and reconstructed images are evaluated by relative error and correlation coefficient. The results have illustrated that the image reconstruction accuracy by the proposed AST-ELM method has greatly improved than that by the conventional methods under the condition with charging object.

  8. An AST-ELM Method for Eliminating the Influence of Charging Phenomenon on ECT

    PubMed Central

    Wang, Xiaoxin; Hu, Hongli; Jia, Huiqin; Tang, Kaihao

    2017-01-01

    Electrical capacitance tomography (ECT) is a promising imaging technology of permittivity distributions in multiphase flow. To reduce the effect of charging phenomenon on ECT measurement, an improved extreme learning machine method combined with adaptive soft-thresholding (AST-ELM) is presented and studied for image reconstruction. This method can provide a nonlinear mapping model between the capacitance values and medium distributions by using machine learning but not an electromagnetic-sensitive mechanism. Both simulation and experimental tests are carried out to validate the performance of the presented method, and reconstructed images are evaluated by relative error and correlation coefficient. The results have illustrated that the image reconstruction accuracy by the proposed AST-ELM method has greatly improved than that by the conventional methods under the condition with charging object. PMID:29232850

  9. Checkpoint repair for high-performance out-of-order execution machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwu, W.M.W.; Patt, Y.N.

    Out-or-order execution and branch prediction are two mechanisms that can be used profitably in the design of supercomputers to increase performance. Proper exception handling and branch prediction miss handling in an out-of-order execution machine to require some kind of repair mechanism which can restore the machine to a known previous state. In this paper the authors present a class of repair mechanisms using the concept of checkpointing. The authors derive several properties of checkpoint repair mechanisms. In addition, they provide algorithms for performing checkpoint repair that incur little overhead in time and modest cost in hardware, which also require nomore » additional complexity or time for use with write-back cache memory systems than they do with write-through cache memory systems, contrary to statements made by previous researchers.« less

  10. Effect of shot peening on the residual stress and mechanical behaviour of low-temperature and high-temperature annealed martensitic gear steel 18CrNiMo7-6

    NASA Astrophysics Data System (ADS)

    Yang, R.; Zhang, X.; Mallipeddi, D.; Angelou, N.; Toftegaard, H. L.; Li, Y.; Ahlström, J.; Lorentzen, L.; Wu, G.; Huang, X.

    2017-07-01

    A martensitic gear steel (18CrNiMo7-6) was annealed at 180 °C for 2h and at ˜ 750 °C for 1h to design two different starting microstructures for shot peening. One maintains the original as-transformed martensite while the other contains irregular-shaped sorbite together with ferrite. These two materials were shot peened using two different peening conditions. The softer sorbite + ferrite microstructure was shot peened using 0.6 mm conditioned cut steel shots at an average speed of 25 m/s in a conventional shot peening machine, while the harder tempered martensite steel was shot peened using 1.5 mm steel shots at a speed of 50 m/s in an in-house developed shot peening machine. The shot speeds in the conventional shot peening machine were measured using an in-house lidar set-up. The microstructure of each sample was characterized by optical and scanning electron microscopy, and the mechanical properties examined by microhardness and tensile testing. The residual stresses were measured using an Xstress 3000 G2R diffractometer equipped with a Cr Kα x-ray source. The correspondence between the residual stress profile and the gradient structure produced by shot peening, and the relationship between the microstructure and strength, are analyzed and discussed.

  11. Micro-Thermoelectric Generation Modules Fabricated with Low-Cost Mechanical Machining Processes

    NASA Astrophysics Data System (ADS)

    Liu, Dawei; Jin, A. J.; Peng, Wenbo; Li, Qiming; Gao, Hu; Zhu, Lianjun; Li, Fu; Zhu, Zhixiang

    2017-05-01

    Micro/small-scale thermoelectric generation modules are able to produce continuous, noise-free and reliable electricity power using low temperature differences that widely exist in nature or industry. These advantages bring them great application prospects in the fields of remote monitoring, microelectronics/micro-electromechanical systems (MEMS), medical apparatus and smart management system, which often require a power source free of maintenance and vibration. In this work, a prototypical thermoelectric module (12 mm × 12 mm × 0.8 mm) with 15 pairs of micro-scale thermoelectric legs (0.2 mm in width and 0.6 mm in height for each leg) is fabricated using a low-cost mechanical machining process. In this process, cutting and polishing are the main methods for the preparation of thermoelectric pairs from commercial polycrystalline materials and for the fabrication of electrode patterns. The as-fabricated module is tested for its power generation properties with the hot side heated by an electrical heater and the cold side by cold air. With the heater temperature of 375 K, the thermoelectric potential is about 9.1 mV, the short circuit current is about 14.5 mA, and the maximum output power is about 32.8 μW. The finite element method is applied to analyze the heat transfer of the module during our test. The temperature difference and heat flux are simulated, according to which the output powers at different temperatures are calculated, and the result is relatively consistent compared to the test results.

  12. 10 CFR 431.295 - Units to be tested.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... EQUIPMENT Refrigerated Bottled or Canned Beverage Vending Machines Test Procedures § 431.295 Units to be tested. For each basic model of refrigerated bottled or canned beverage vending machine selected for...

  13. Tensile properties of polyhydroxyalkanoate/polycaprolactone blends studied by rheo-optical near-infrared (NIR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Nishida, Masahiro; Ogura, Takashi; Shinzawa, Hideyuki; Nishida, Masakazu; Kanematsu, Wataru

    2016-11-01

    In order to improve the mechanical properties of Polyhydroxyalkanoate (PHA), the polycaprolactone (PCL) pellet was blended with a PHA-based pellet. The effects of the mixing ratio on the tensile properties, Young's modulus, tensile strength and elongation at break, were examined using a universal testing machine. When the mixing ration of PCL increased to 50%, the elongation at break of the polymer blend increased and the gauge area of tensile test specimens whitened and became porous. In order to understand this behavior, a rheo-optical characterization technique based on near-infrared (NIR) spectroscopy was applied to the mechanical deformation of the polymer blends during static tensile tests. Two-dimensional (2D) correlation of NIR spectra was then examined. It was found from peaks of ethyl group or methyl group that PCL was preferentially deformed. The difference in the deformation behavior is thought to be the cause of the porous structure.

  14. Linear Proof Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III

    1994-01-01

    This paper describes the mechanical design, analysis, fabrication, testing, and lessons learned by developing a uniquely designed spaceflight-like actuator. The linear proof mass actuator (LPMA) was designed to attach to both a large space structure and a ground test model without modification. Previous designs lacked the power to perform in a terrestrial environment while other designs failed to produce the desired accelerations or frequency range for spaceflight applications. Thus, the design for a unique actuator was conceived and developed at NASA Langley Research Center. The basic design consists of four large mechanical parts (mass, upper housing, lower housing, and center support) and numerous smaller supporting components including an accelerometer, encoder, and four drive motors. Fabrication personnel were included early in the design phase of the LPMA as part of an integrated manufacturing process to alleviate potential difficulties in machining an already challenging design. Operating testing of the LPMA demonstrated that the actuator is capable of various types of load functions.

  15. Linear Proof Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, S. E., III

    1995-01-01

    This paper describes the mechanical design, analysis, fabrication, testing, and lessons learned by developing a uniquely designed spaceflight-like actuator. The Linear Proof Mass Actuator (LPMA) was designed to attach to both a large space structure and a ground test model without modification. Previous designs lacked the power to perform in a terrestrial environment while other designs failed to produce the desired accelerations or frequency range for spaceflight applications. Thus, the design for a unique actuator was conceived and developed at NASA Langley Research Center. The basic design consists of four large mechanical parts (Mass, Upper Housing, Lower Housing, and Center Support) and numerous smaller supporting components including an accelerometer, encoder, and four drive motors. Fabrication personnel were included early in the design phase of the LPMA as part of an integrated manufacturing process to alleviate potential difficulties in machining an already challenging design. Operational testing of the LPMA demonstrated that the actuator is capable of various types of load functions.

  16. Man-Machine Communication Through a Teletypewriter.

    ERIC Educational Resources Information Center

    Rubinoff, Morris

    A ten-year research study designed a mechanized information system in the information processing field. Special attention was paid to implementation criteria entering into on-line retrieval through man-machine dialog from a remote typewriter or video terminal and four major areas were investigated: search strategies, machine stored indexer aids,…

  17. Mechanical properties of friction stir welded butt joint of steel/aluminium alloys: effect of tool geometry

    NASA Astrophysics Data System (ADS)

    Syafiq, W. M.; Afendi, M.; Daud, R.; Mazlee, M. N.; Majid, M. S. Abdul; Lee, Y. S.

    2017-10-01

    This paper described the mechanical properties from hardness testing and tensile testing of Friction Stir Welded (FSW) materials. In this project, two materials of aluminium and steel are welded using conventional milling machine and tool designed with different profile and shoulder size. During welding the temperature along the weld line is collected using thermocouples. Threaded pins was found to produce stronger joints than cylindrical pins. 20 mm diameter shoulder tool welded a slightly stronger joint than 18 mm diameter one, as well as softer nugget zone due to higher heat input. Threaded pins also contributed to higher weld temperature than cylindrical pins due to increase in pin contact surface. Generally, higher temperatures were recorded in aluminium side due to pin offset away from steel.

  18. Can machines think? A report on Turing test experiments at the Royal Society

    NASA Astrophysics Data System (ADS)

    Warwick, Kevin; Shah, Huma

    2016-11-01

    In this article we consider transcripts that originated from a practical series of Turing's Imitation Game that was held on 6 and 7 June 2014 at the Royal Society London. In all cases the tests involved a three-participant simultaneous comparison by an interrogator of two hidden entities, one being a human and the other a machine. Each of the transcripts considered here resulted in a human interrogator being fooled such that they could not make the 'right identification', that is, they could not say for certain which was the machine and which was the human. The transcripts presented all involve one machine only, namely 'Eugene Goostman', the result being that the machine became the first to pass the Turing test, as set out by Alan Turing, on unrestricted conversation. This is the first time that results from the Royal Society tests have been disclosed and discussed in a paper.

  19. Acceptability of using electronic vending machines to deliver oral rapid HIV self-testing kits: a qualitative study.

    PubMed

    Young, Sean D; Daniels, Joseph; Chiu, ChingChe J; Bolan, Robert K; Flynn, Risa P; Kwok, Justin; Klausner, Jeffrey D

    2014-01-01

    Rates of unrecognized HIV infection are significantly higher among Latino and Black men who have sex with men (MSM). Policy makers have proposed that HIV self-testing kits and new methods for delivering self-testing could improve testing uptake among minority MSM. This study sought to conduct qualitative assessments with MSM of color to determine the acceptability of using electronic vending machines to dispense HIV self-testing kits. African American and Latino MSM were recruited using a participant pool from an existing HIV prevention trial on Facebook. If participants expressed interest in using a vending machine to receive an HIV self-testing kit, they were emailed a 4-digit personal identification number (PIN) code to retrieve the test from the machine. We followed up with those who had tested to assess their willingness to participate in an interview about their experience. Twelve kits were dispensed and 8 interviews were conducted. In general, participants expressed that the vending machine was an acceptable HIV test delivery method due to its novelty and convenience. Acceptability of this delivery model for HIV testing kits was closely associated with three main factors: credibility, confidentiality, and convenience. Future research is needed to address issues, such as user-induced errors and costs, before scaling up the dispensing method.

  20. Mechanical splicing of superelastic Cu–Al–Mn alloy bars with headed ends

    NASA Astrophysics Data System (ADS)

    Kise, S.; Mohebbi, A.; Saiidi, M. S.; Omori, T.; Kainuma, R.; Shrestha, K. C.; Araki, Y.

    2018-06-01

    This paper examines the feasibility of mechanical splicing using a steel coupler to connect headed ends of superelastic Cu–Al–Mn alloy (Camalloy) bars and steel reinforcing bars to be used in concrete structures. Although threading of Camalloy is as easy as that of steel, mechanical splicing using threaded ends requires machining of Camalloy bars into dog-bone shape to avoid brittle fracture at the threaded ends. The machining process requires significant time and cost and wastes substantial amount of the material. This paper attempts to resolve this issue by applying mechanical splicing using steel couplers to connect headed ends of Camalloy and steel reinforcing bars. To study its feasibility, we prepare 3 specimens wherein both ends of each Camalloy bar (13 mm diameter and 300 mm length) are connected to steel reinforcing bars. The specimens are tested under monotonic, single-cycle, and full-cycle tension loading conditions. From these tests, we observed (1) excellent superelasticity with recoverable strain of around 6% and (2) large ductility with fracture strain of over 19%. It should be emphasized here that, in all the specimens, ductile fracture occurred at the locations apart from the headed ends. This is in sharp contrast with brittle fracture of headed superelastic Ni–Ti SMA bars, most of which took place around the headed ends. From the results of the microstructural analysis, we identified the following reasons for avoiding brittle fracture at the headed ends: (1) Precipitation hardening increases the strength around the boundary between the straight and headed (tapered) portions, where stress concentration takes place. (2) The strength of the straight portion does not increase significantly up to the ductile fracture if its grain orientation is close to 〈0 0 1〉.

  1. Mechanics of Cutting and Boring. Part 7. Dynamics and Energetics of Axial Rotation Machines,

    DTIC Science & Technology

    1981-12-01

    systematic analytical scheme that can be used to facilitate future work on the mechanics of cutting and boring machines. In the industrial sector, rock...Proceedings. Chapter 66, p. 1149-1158. Mellor, M. and I. Hawkes (1972) How to rate a hard-rock borer. World Construction, Sept, p. 21-23. (Also in Ingenieria

  2. Machinability of Green Powder Metallurgy Components: Part I. Characterization of the Influence of Tool Wear

    NASA Astrophysics Data System (ADS)

    Robert-Perron, Etienne; Blais, Carl; Pelletier, Sylvain; Thomas, Yannig

    2007-06-01

    The green machining process is an interesting approach for solving the mediocre machining behavior of high-performance powder metallurgy (PM) steels. This process appears as a promising method for extending tool life and reducing machining costs. Recent improvements in binder/lubricant technologies have led to high green strength systems that enable green machining. So far, tool wear has been considered negligible when characterizing the machinability of green PM specimens. This inaccurate assumption may lead to the selection of suboptimum cutting conditions. The first part of this study involves the optimization of the machining parameters to minimize the effects of tool wear on the machinability in turning of green PM components. The second part of our work compares the sintered mechanical properties of components machined in green state with other machined after sintering.

  3. Experiments and simulation of thermal behaviors of the dual-drive servo feed system

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Mei, Xuesong; Feng, Bin; Zhao, Liang; Ma, Chi; Shi, Hu

    2015-01-01

    The machine tool equipped with the dual-drive servo feed system could realize high feed speed as well as sharp precision. Currently, there is no report about the thermal behaviors of the dual-drive machine, and the current research of the thermal characteristics of machines mainly focuses on steady simulation. To explore the influence of thermal characterizations on the precision of a jib boring machine assembled dual-drive feed system, the thermal equilibrium tests and the research on thermal-mechanical transient behaviors are carried out. A laser interferometer, infrared thermography and a temperature-displacement acquisition system are applied to measure the temperature distribution and thermal deformation at different feed speeds. Subsequently, the finite element method (FEM) is used to analyze the transient thermal behaviors of the boring machine. The complex boundary conditions, such as heat sources and convective heat transfer coefficient, are calculated. Finally, transient variances in temperatures and deformations are compared with the measured values, and the errors between the measurement and the simulation of the temperature and the thermal error are 2 °C and 2.5 μm, respectively. The researching results demonstrate that the FEM model can predict the thermal error and temperature distribution very well under specified operating condition. Moreover, the uneven temperature gradient is due to the asynchronous dual-drive structure that results in thermal deformation. Additionally, the positioning accuracy decreases as the measured point became further away from the motor, and the thermal error and equilibrium period both increase with feed speeds. The research proposes a systematical method to measure and simulate the boring machine transient thermal behaviors.

  4. A Collaboration-Oriented M2M Messaging Mechanism for the Collaborative Automation between Machines in Future Industrial Networks

    PubMed Central

    Gray, John

    2017-01-01

    Machine-to-machine (M2M) communication is a key enabling technology for industrial internet of things (IIoT)-empowered industrial networks, where machines communicate with one another for collaborative automation and intelligent optimisation. This new industrial computing paradigm features high-quality connectivity, ubiquitous messaging, and interoperable interactions between machines. However, manufacturing IIoT applications have specificities that distinguish them from many other internet of things (IoT) scenarios in machine communications. By highlighting the key requirements and the major technical gaps of M2M in industrial applications, this article describes a collaboration-oriented M2M (CoM2M) messaging mechanism focusing on flexible connectivity and discovery, ubiquitous messaging, and semantic interoperability that are well suited for the production line-scale interoperability of manufacturing applications. The designs toward machine collaboration and data interoperability at both the communication and semantic level are presented. Then, the application scenarios of the presented methods are illustrated with a proof-of-concept implementation in the PicknPack food packaging line. Eventually, the advantages and some potential issues are discussed based on the PicknPack practice. PMID:29165347

  5. Mechanical and Histological Effects of Resorbable Blasting Media Surface Treatment on the Initial Stability of Orthodontic Mini-Implants

    PubMed Central

    2016-01-01

    Introduction. This study aimed to evaluate the effects of resorbable blasting media (RBM) treatment on early stability of orthodontic mini-implants by mechanical, histomorphometric, and histological analyses. Methods. Ninety-six (64 for mechanical study and 32 for histological study and histomorphometric analysis) titanium orthodontic mini-implants (OMIs) with machined (machined group) or RBM-treated (CaP) surface (RBM group) were implanted in the tibiae of 24 rabbits. Maximum initial torque (MIT) was measured during insertion, and maximum removal torque (MRT) and removal angular momentum (RAM) were measured at 2 and 4 weeks after implantation. Bone-to-implant contact (BIC) and bone area (BA) were analyzed at 4 weeks after implantation. Results. RBM group exhibited significantly lower MIT and significantly higher MRT and RAM at 2 weeks than machined group. No significant difference in MRT, RAM, and BIC between the two groups was noted at 4 weeks, although BA was significantly higher in RBM group than in machined group. RBM group showed little bone resorption, whereas machined group showed new bone formation after bone resorption. Conclusions. RBM surface treatment can provide early stability of OMIs around 2 weeks after insertion, whereas stability of machined surface OMIs may decrease in early stages because of bone resorption, although it can subsequently recover by new bone apposition. PMID:26942200

  6. National Machine Guarding Program: Part 1. Machine safeguarding practices in small metal fabrication businesses.

    PubMed

    Parker, David L; Yamin, Samuel C; Brosseau, Lisa M; Xi, Min; Gordon, Robert; Most, Ivan G; Stanley, Rodney

    2015-11-01

    Metal fabrication workers experience high rates of traumatic occupational injuries. Machine operators in particular face high risks, often stemming from the absence or improper use of machine safeguarding or the failure to implement lockout procedures. The National Machine Guarding Program (NMGP) was a translational research initiative implemented in conjunction with two workers' compensation insures. Insurance safety consultants trained in machine guarding used standardized checklists to conduct a baseline inspection of machine-related hazards in 221 business. Safeguards at the point of operation were missing or inadequate on 33% of machines. Safeguards for other mechanical hazards were missing on 28% of machines. Older machines were both widely used and less likely than newer machines to be properly guarded. Lockout/tagout procedures were posted at only 9% of machine workstations. The NMGP demonstrates a need for improvement in many aspects of machine safety and lockout in small metal fabrication businesses. © 2015 The Authors. American Journal of Industrial Medicine published by Wiley Periodicals, Inc.

  7. Influence of Stacking Sequence and Notch Angle on the Charpy Impact Behavior of Hybrid Composites

    NASA Astrophysics Data System (ADS)

    Behnia, S.; Daghigh, V.; Nikbin, K.; Fereidoon, A.; Ghorbani, J.

    2016-09-01

    The low-velocity impact behavior of hybrid composite laminates was investigated. The epoxy matrix was reinforced with aramid, glass, basalt, and carbon fabrics using the hand lay-up technique. Different stacking sequences and notch angles were and notch angles considered and tested using a Charpy impact testing machine to study the hybridization and notch angle effects on the impact response of the hybrid composites. The energy absorption capability of specimens with different stacking sequences and notch angles is compared and discussed. It is shown that the hybridization can enhance the mechanical performance of composite materials.

  8. [Auto-suture stapler EEA in surgery of the colon and rectum [author's transl)].

    PubMed

    Thiede, A; Troidl, H; Poser, H; Jostarndt, L; Hamelmann, H

    1980-01-01

    The increasing use of auto-suture staplers for gastrointestinal anastomoses makes it necessary to test the value of this new method of suturing. In a "pilot study" the practicability, the tightness and permeability of the anastomosis and complications were tested and analysed in a total of 30 colon and rectal anastomoses using the EEA-suture gun. The results of 14 colon resections and 16 low anterior resections justify the further use of the EEA auto-suture apparatus and raise the question of a prospective controlled random study in which manual and mechanical machine sutured anastomoses are compared.

  9. Thermal Error Test and Intelligent Modeling Research on the Spindle of High Speed CNC Machine Tools

    NASA Astrophysics Data System (ADS)

    Luo, Zhonghui; Peng, Bin; Xiao, Qijun; Bai, Lu

    2018-03-01

    Thermal error is the main factor affecting the accuracy of precision machining. Through experiments, this paper studies the thermal error test and intelligent modeling for the spindle of vertical high speed CNC machine tools in respect of current research focuses on thermal error of machine tool. Several testing devices for thermal error are designed, of which 7 temperature sensors are used to measure the temperature of machine tool spindle system and 2 displacement sensors are used to detect the thermal error displacement. A thermal error compensation model, which has a good ability in inversion prediction, is established by applying the principal component analysis technology, optimizing the temperature measuring points, extracting the characteristic values closely associated with the thermal error displacement, and using the artificial neural network technology.

  10. An Adaptive Genetic Association Test Using Double Kernel Machines

    PubMed Central

    Zhan, Xiang; Epstein, Michael P.; Ghosh, Debashis

    2014-01-01

    Recently, gene set-based approaches have become very popular in gene expression profiling studies for assessing how genetic variants are related to disease outcomes. Since most genes are not differentially expressed, existing pathway tests considering all genes within a pathway suffer from considerable noise and power loss. Moreover, for a differentially expressed pathway, it is of interest to select important genes that drive the effect of the pathway. In this article, we propose an adaptive association test using double kernel machines (DKM), which can both select important genes within the pathway as well as test for the overall genetic pathway effect. This DKM procedure first uses the garrote kernel machines (GKM) test for the purposes of subset selection and then the least squares kernel machine (LSKM) test for testing the effect of the subset of genes. An appealing feature of the kernel machine framework is that it can provide a flexible and unified method for multi-dimensional modeling of the genetic pathway effect allowing for both parametric and nonparametric components. This DKM approach is illustrated with application to simulated data as well as to data from a neuroimaging genetics study. PMID:26640602

  11. Vibration upshot of operating mechanical sewing machine: an insight into common peroneal nerve conduction study.

    PubMed

    Yadav, Prakash Kumar; Yadav, Ram Lochan; Sharma, Deepak; Shah, Dev Kumar; Sapkota, Niraj Khatri; Thakur, Dilip; Limbu, Nirmala; Islam, Md Nazrul

    2017-01-01

    Most of the people associated with tailoring occupation in Nepal are still using mechanical sewing machine as an alternative of new technology for tailoring. Common peroneal nerves of both right and left legs are exposed to strenuous and chronic stress exerted by vibration and paddling of mechanical sewing machine. The study included 30 healthy male tailors and 30 healthy male individuals. Anthropometric variables as well as cardio respiratory variables were determined for each subject. Standard Nerve Conduction Techniques using constant measured distances were applied to evaluate common peroneal nerve (motor) in both legs of each individual. Data were analyzed and compared between study and control groups using Man Whitney U test setting the significance level p  ≤ 0.05. Anthropometric and cardio respiratory variables were not significantly altered between the study and control groups. The Compound muscle action potential (CMAP) latency of common peroneal nerves of both right [(11.29 ± 1.25 vs. 10.03 ± 1.37), P  < 0.001] and left [(11.28 ± 1.38 vs. 10.05 ± 1.37), P  < 0.01] legs was found to be significantly prolonged in study group as compared to control group. The Amp-CMAP of common peroneal nerves of both right [(4.57 ± 1.21 vs. 6.22 ± 1.72), P  < 0.001] and left [(4.31 ± 1.55 vs. 6.25 ± 1.70), P  < 0.001] legs was found significantly reduced in study group as compared to control group. Similarly, the motor nerve conduction velocity (MNCV) of common peroneal nerves of both right [(43.72 ± 3.25 vs. 47.49 ± 4.17), P  < 0.001] and left [(42.51 ± 3.82 vs. 46.76 ± 4.51), P  < 0.001] legs was also found to be significantly reduced in study group in comparison to control group. Operating mechanical sewing machine by paddling chronically and arduously could have attributed to abnormal nerve conduction study parameters due to vibration effect of the machine on right and left common peroneal nerves. The results of present study follow the trend towards presymptomatic or asymptomatic neuropathy similar to subclinical neuropathy.

  12. New test structures and techniques for measurement of mechanical properties of MEMS materials

    NASA Astrophysics Data System (ADS)

    Sharpe, William N., Jr.; Yuan, Bin; Vaidyanathan, Ranji; Edwards, Richard L.

    1996-09-01

    This paper presents techniques and procedures for addressing the three major problems of mechanical testing of the thin films used in surface micromachined microelectromechanical systems--specimen handling, friction, and strain measurement. The polysilicon tensile specimens are fabricated with two supporting side strips on silicon wafers at the Microelectronic Center of North Carolina. The tensile specimen is released by etching away the wafer, and the two support strips are cut after the specimen is glued in the test machine. Friction is reduced by a linear air bearing in the load train, and strain is measured with a noncontacting technique based on laser interferometry between two gold lines on the tensile specimen. The Young's modulus of polysilicon is 170 +/- 7 GPa and the strength is 1.21 +/- 0.16 GPa from a series of 29 tests. preliminary measurements have been made of Poisson's ratio and the fatigue behavior, and an attempt is underway to measure the fracture toughness.

  13. Pulsed, Hydraulic Coal-Mining Machine

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.

    1986-01-01

    In proposed coal-cutting machine, piston forces water through nozzle, expelling pulsed jet that cuts into coal face. Spring-loaded piston reciprocates at end of travel to refill water chamber. Machine a onecylinder, two-cycle, internal-combustion engine, fueled by gasoline, diesel fuel, or hydrogen. Fuel converted more directly into mechanical energy of water jet.

  14. Machine cost analysis using the traditional machine-rate method and ChargeOut!

    Treesearch

    E. M. (Ted) Bilek

    2009-01-01

    Forestry operations require ever more use of expensive capital equipment. Mechanization is frequently necessary to perform cost-effective and safe operations. Increased capital should mean more sophisticated capital costing methodologies. However the machine rate method, which is the costing methodology most frequently used, dates back to 1942. CHARGEOUT!, a recently...

  15. New developments in operator protection for forest machines

    Treesearch

    Robert B. Rummer; S. Taylor; M. Veal

    2003-01-01

    Mechanization of forest operations ha greatly improved saftey of woods work. However, increasing use of machines has introduced new hazards that must be addressed. Two of these hazards are rollover of swing-type forestry machines (currently excluded from standard protection) and the hazard of thrown objects from cutting devices. Ongoing research projects are developing...

  16. Learn about Physical Science: Simple Machines. [CD-ROM].

    ERIC Educational Resources Information Center

    2000

    This CD-ROM, designed for students in grades K-2, explores the world of simple machines. It allows students to delve into the mechanical world and learn the ways in which simple machines make work easier. Animated demonstrations are provided of the lever, pulley, wheel, screw, wedge, and inclined plane. Activities include practical matching and…

  17. Comparison of machinability of manganese alloyed austempered ductile iron produced using conventional and two step austempering processes

    NASA Astrophysics Data System (ADS)

    Hegde, Ananda; Sharma, Sathyashankara

    2018-05-01

    Austempered Ductile Iron (ADI) is a revolutionary material with high strength and hardness combined with optimum ductility and toughness. The discovery of two step austempering process has lead to the superior combination of all the mechanical properties. However, because of the high strength and hardness of ADI, there is a concern regarding its machinability. In the present study, machinability of ADI produced using conventional and two step heat treatment processes is assessed using tool life and the surface roughness. Speed, feed and depth of cut are considered as the machining parameters in the dry turning operation. The machinability results along with the mechanical properties are compared for ADI produced using both conventional and two step austempering processes. The results have shown that two step austempering process has produced better toughness with good hardness and strength without sacrificing ductility. Addition of 0.64 wt% manganese did not cause any detrimental effect on the machinability of ADI, both in conventional and two step processes. Marginal improvement in tool life and surface roughness were observed in two step process compared to that with conventional process.

  18. Chaotic behaviour of Zeeman machines at introductory course of mechanics

    NASA Astrophysics Data System (ADS)

    Nagy, Péter; Tasnádi, Péter

    2016-05-01

    Investigation of chaotic motions and cooperative systems offers a magnificent opportunity to involve modern physics into the basic course of mechanics taught to engineering students. In the present paper it will be demonstrated that Zeeman Machine can be a versatile and motivating tool for students to get introductory knowledge about chaotic motion via interactive simulations. It works in a relatively simple way and its properties can be understood very easily. Since the machine can be built easily and the simulation of its movement is also simple the experimental investigation and the theoretical description can be connected intuitively. Although Zeeman Machine is known mainly for its quasi-static and catastrophic behaviour, its dynamic properties are also of interest with its typical chaotic features. By means of a periodically driven Zeeman Machine a wide range of chaotic properties of the simple systems can be demonstrated such as bifurcation diagrams, chaotic attractors, transient chaos and so on. The main goal of this paper is the presentation of an interactive learning material for teaching the basic features of the chaotic systems through the investigation of the Zeeman Machine.

  19. Applying Workspace Limitations in a Velocity-Controlled Robotic Mechanism

    NASA Technical Reports Server (NTRS)

    Abdallah, Muhammad E. (Inventor); Hargrave, Brian (Inventor); Platt, Robert J., Jr. (Inventor)

    2014-01-01

    A robotic system includes a robotic mechanism responsive to velocity control signals, and a permissible workspace defined by a convex-polygon boundary. A host machine determines a position of a reference point on the mechanism with respect to the boundary, and includes an algorithm for enforcing the boundary by automatically shaping the velocity control signals as a function of the position, thereby providing smooth and unperturbed operation of the mechanism along the edges and corners of the boundary. The algorithm is suited for application with higher speeds and/or external forces. A host machine includes an algorithm for enforcing the boundary by shaping the velocity control signals as a function of the reference point position, and a hardware module for executing the algorithm. A method for enforcing the convex-polygon boundary is also provided that shapes a velocity control signal via a host machine as a function of the reference point position.

  20. Internal force corrections with machine learning for quantum mechanics/molecular mechanics simulations.

    PubMed

    Wu, Jingheng; Shen, Lin; Yang, Weitao

    2017-10-28

    Ab initio quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulation is a useful tool to calculate thermodynamic properties such as potential of mean force for chemical reactions but intensely time consuming. In this paper, we developed a new method using the internal force correction for low-level semiempirical QM/MM molecular dynamics samplings with a predefined reaction coordinate. As a correction term, the internal force was predicted with a machine learning scheme, which provides a sophisticated force field, and added to the atomic forces on the reaction coordinate related atoms at each integration step. We applied this method to two reactions in aqueous solution and reproduced potentials of mean force at the ab initio QM/MM level. The saving in computational cost is about 2 orders of magnitude. The present work reveals great potentials for machine learning in QM/MM simulations to study complex chemical processes.

  1. High-Temperature Creep Behaviour and Positive Effect on Straightening Deformation of Q345c Continuous Casting Slab

    NASA Astrophysics Data System (ADS)

    Guo, Long; Zhang, Xingzhong

    2018-03-01

    Mechanical and creep properties of Q345c continuous casting slab subjected to uniaxial tensile tests at high temperature were considered in this paper. The minimum creep strain rate and creep rupture life equations whose parameters are calculated by inverse-estimation using the regression analysis were derived based on experimental data. The minimum creep strain rate under constant stress increases with the increase of the temperature from 1000 °C to 1200 °C. A new casting machine curve with the aim of fully using high-temperature creep behaviour is proposed in this paper. The basic arc segment is cancelled in the new curve so that length of the straightening area can be extended and time of creep behaviour can be increased significantly. For the new casting machine curve, the maximum straightening strain rate at the slab surface is less than the minimum creep strain rate. So slab straightening deformation based on the steel creep behaviour at high temperature can be carried out in the process of Q345c steel continuous casting. The effect of creep property at high temperature on slab straightening deformation is positive. It is helpful for the design of new casting machine and improvement of old casting machine.

  2. A multi-machine scaling of halo current rotation

    NASA Astrophysics Data System (ADS)

    Myers, C. E.; Eidietis, N. W.; Gerasimov, S. N.; Gerhardt, S. P.; Granetz, R. S.; Hender, T. C.; Pautasso, G.; Contributors, JET

    2018-01-01

    Halo currents generated during unmitigated tokamak disruptions are known to develop rotating asymmetric features that are of great concern to ITER because they can dynamically amplify the mechanical stresses on the machine. This paper presents a multi-machine analysis of these phenomena. More specifically, data from C-Mod, NSTX, ASDEX Upgrade, DIII-D, and JET are used to develop empirical scalings of three key quantities: (1) the machine-specific minimum current quench time, \

  3. A multi-machine scaling of halo current rotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, C. E.; Eidietis, N. W.; Gerasimov, S. N.

    Halo currents generated during unmitigated tokamak disruptions are known to develop rotating asymmetric features that are of great concern to ITER because they can dynamically amplify the mechanical stresses on the machine. This paper presents a multi-machine analysis of these phenomena. More specifically, data from C-Mod, NSTX, ASDEX Upgrade, DIII-D, and JET are used to develop empirical scalings of three key quantities: the machine-specific minimum current quench time,more » $$ \

  4. A multi-machine scaling of halo current rotation

    DOE PAGES

    Myers, C. E.; Eidietis, N. W.; Gerasimov, S. N.; ...

    2017-12-12

    Halo currents generated during unmitigated tokamak disruptions are known to develop rotating asymmetric features that are of great concern to ITER because they can dynamically amplify the mechanical stresses on the machine. This paper presents a multi-machine analysis of these phenomena. More specifically, data from C-Mod, NSTX, ASDEX Upgrade, DIII-D, and JET are used to develop empirical scalings of three key quantities: the machine-specific minimum current quench time,more » $$ \

  5. [The testing system for OCP of the digital X-ray machine].

    PubMed

    Wang, Yan; Mo, Guoming; Wang, Juru; Zhou, Tao; Yu, Jianguo

    2011-09-01

    In this paper, we designed a testing system for operator control panel of a high-voltage and high-frequency X-ray machine, and an online testing software for functional components, in order to help the testing engineers to improve their work efficiency.

  6. Sample Holder for Cryogenic Adhesive Shear Test

    NASA Technical Reports Server (NTRS)

    Ledbetter, F. E.; Clemons, J. M.; White, W. T.; Penn, B.; Semmel, M. L.

    1983-01-01

    Five samples tested in one cooldown. Holder mounted in testing machine. Submerged in cryogenic liquid held in cryostat. Movable crosshead of testing machine moves gradually downward. Samples placed under tension, one after another, starting with top one; each sample fails in turn before next is stressed.

  7. The Machine / Job Features Mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alef, M.; Cass, T.; Keijser, J. J.

    Within the HEPiX virtualization group and the Worldwide LHC Computing Grid’s Machine/Job Features Task Force, a mechanism has been developed which provides access to detailed information about the current host and the current job to the job itself. This allows user payloads to access meta information, independent of the current batch system or virtual machine model. The information can be accessed either locally via the filesystem on a worker node, or remotely via HTTP(S) from a webserver. This paper describes the final version of the specification from 2016 which was published as an HEP Software Foundation technical note, and themore » design of the implementations of this version for batch and virtual machine platforms. We discuss early experiences with these implementations and how they can be exploited by experiment frameworks.« less

  8. The machine/job features mechanism

    NASA Astrophysics Data System (ADS)

    Alef, M.; Cass, T.; Keijser, J. J.; McNab, A.; Roiser, S.; Schwickerath, U.; Sfiligoi, I.

    2017-10-01

    Within the HEPiX virtualization group and the Worldwide LHC Computing Grid’s Machine/Job Features Task Force, a mechanism has been developed which provides access to detailed information about the current host and the current job to the job itself. This allows user payloads to access meta information, independent of the current batch system or virtual machine model. The information can be accessed either locally via the filesystem on a worker node, or remotely via HTTP(S) from a webserver. This paper describes the final version of the specification from 2016 which was published as an HEP Software Foundation technical note, and the design of the implementations of this version for batch and virtual machine platforms. We discuss early experiences with these implementations and how they can be exploited by experiment frameworks.

  9. Hardness and compression resistance of natural rubber and synthetic rubber mixtures

    NASA Astrophysics Data System (ADS)

    Arguello, J. M.; Santos, A.

    2016-02-01

    This project aims to mechanically characterize through compression resistance and shore hardness tests, the mixture of hevea brasiliensis natural rubber with butadiene synthetic rubber (BR), styrene-butadiene rubber (SBR) and ethylene-propylene-diene monomer rubber (EPDM). For each of the studied mixtures were performed 10 tests, each of which increased by 10% the content of synthetic rubber in the mixture; each test consisted of carrying out five tests of compression resistance and five tests of shore hardness. The specimens were vulcanized on a temperature of 160°C, during an approximate time of 15 minutes, and the equipment used in the performance of the mechanical tests were a Shimadzu universal machine and a digital durometer. The results show that the A shore hardness increases directly proportional, with a linear trend, with the content of synthetic BR, SBR or EPDM rubber present in the mixture, being the EPDM the most influential. With respect to the compression resistance is observed that the content of BR or SBR increase this property directly proportional through a linear trend; while the EPDM content also increases but with a polynomial trend.

  10. Body_Machine? Encounters of the Human and the Mechanical in Education, Industry and Science

    ERIC Educational Resources Information Center

    Herman, Frederik; Priem, Karin; Thyssen, Geert

    2017-01-01

    This paper unveils the body_machine as a key element of dynamic mental maps that have come to shape both educational praxis and research. It traces and analyses instances in which the human and the mechanical encountered each other in metaphorical, material and visual forms, thereby blurring to some extent the boundaries between them while…

  11. Computer Aided Drafting and Design, Industrial Manufacturing Technician, and Mechanical Engineering Technician and Machine Tool, Die and Moldmaking Technology. Tech Prep Competency Profile.

    ERIC Educational Resources Information Center

    Mid-East Ohio Tech Prep Consortium, Zanesville.

    This document contains competency profiles in four areas: computer-aided drafting and design; industrial manufacturing technician; mechanical engineering technician; and machine tool, die, and moldmaking technology occupations. The profiles are intended for use in articulating tech prep programs from high school through associate degrees in Ohio.…

  12. Flow widening through a Darrieus wind turbine - Theory and experiment

    NASA Astrophysics Data System (ADS)

    Comolet, R.; Harajli, I.; Mercier Des Rochettes, P.; Yeznasni, A.

    1982-11-01

    A two-dimensional multiple stream tube model is developed for the air flow through a Darrieus wind turbine. The model is configured to account for the widening of the flux tubes as they cross the interior of the actuator disk. Note is made of the lateral broadening of the flow as it moves through the area, leaving a turbulent wake. A relation is defined between the variation in the kinetic energy of the flow and the aerodynamic forces acting on the blades. The global efficiency and the power output of the machine are calculated. Experimental results are reported for a machine equipped with two NACA 0015 blades, each 110 cm long and with a 10 cm chord. The Darrieus had a 1 m diam and was tested in a wind tunnel at wind speeds of 0-18 m/sec. Soap bubbles inflated with He were used for visualization. Power output was found to match prediction. The model is recommended for use in calculating the forces acting on the machine and studying vibration and fatigue causative mechanisms.

  13. Friction-Testing Machine

    NASA Technical Reports Server (NTRS)

    Benz, F. J.; Dixon, D. S.; Shaw, R. C.

    1986-01-01

    Testing machine evaluates wear and ignition characteristics of materials in rubbing contact. Offers advantages over other laboratory methods of measuring wear because it simulates operating conditions under which material will actually be used. Machine used to determine wear characteristics, rank and select materials for service with such active oxidizers as oxygen, halogens, and oxides of nitrogen, measure wear characteristics, and determine coefficients of friction.

  14. Chip formation and surface integrity in high-speed machining of hardened steel

    NASA Astrophysics Data System (ADS)

    Kishawy, Hossam Eldeen A.

    Increasing demands for high production rates as well as cost reduction have emphasized the potential for the industrial application of hard turning technology during the past few years. Machining instead of grinding hardened steel components reduces the machining sequence, the machining time, and the specific cutting energy. Hard turning Is characterized by the generation of high temperatures, the formation of saw toothed chips, and the high ratio of thrust to tangential cutting force components. Although a large volume of literature exists on hard turning, the change in machined surface physical properties represents a major challenge. Thus, a better understanding of the cutting mechanism in hard turning is still required. In particular, the chip formation process and the surface integrity of the machined surface are important issues which require further research. In this thesis, a mechanistic model for saw toothed chip formation is presented. This model is based on the concept of crack initiation on the free surface of the workpiece. The model presented explains the mechanism of chip formation. In addition, experimental investigation is conducted in order to study the chip morphology. The effect of process parameters, including edge preparation and tool wear on the chip morphology, is studied using Scanning Electron Microscopy (SEM). The dynamics of chip formation are also investigated. The surface integrity of the machined parts is also investigated. This investigation focusses on residual stresses as well as surface and sub-surface deformation. A three dimensional thermo-elasto-plastic finite element model is developed to predict the machining residual stresses. The effect of flank wear is introduced during the analysis. Although residual stresses have complicated origins and are introduced by many factors, in this model only the thermal and mechanical factors are considered. The finite element analysis demonstrates the significant effect of the heat generated during cutting on the residual stresses. The machined specimens are also examined using x-ray diffraction technique to clarify the effect of different speeds, feeds and depths of cut as well as different edge preparations on the residual stress distribution beneath the machined surface. A reasonable agreement between the predicted and measured residual stress is obtained. The results obtained demonstrate the possibility of eliminating the existence of high tensile residual stresses in the workpiece surface by selecting the proper cutting conditions. The machined surfaces are examined using SEM to study the effect of different process parameters and edge preparations on the quality of the machined surface. The phenomenon of material side flow is investigated to clarify the mechanism of this phenomenon. The effect of process parameters and edge preparations on sub-surface deformation is also investigated.

  15. Influence of Water Content on Mechanical Properties of Rock in Both Saturation and Drying Processes

    NASA Astrophysics Data System (ADS)

    Zhou, Zilong; Cai, Xin; Cao, Wenzhuo; Li, Xibing; Xiong, Cheng

    2016-08-01

    Water content has a pronounced influence on the properties of rock materials, which is responsible for many rock engineering hazards, such as landslides and karst collapse. Meanwhile, water injection is also used for the prevention of some engineering disasters like rock-bursts. To comprehensively investigate the effect of water content on mechanical properties of rocks, laboratory tests were carried out on sandstone specimens with different water contents in both saturation and drying processes. The Nuclear Magnetic Resonance technique was applied to study the water distribution in specimens with variation of water contents. The servo-controlled rock mechanics testing machine and Split Hopkinson Pressure Bar technique were used to conduct both compressive and tensile tests on sandstone specimens with different water contents. From the laboratory tests, reductions of the compressive and tensile strength of sandstone under static and dynamic states in different saturation processes were observed. In the drying process, all of the saturated specimens could basically regain their mechanical properties and recover its strength as in the dry state. However, for partially saturated specimens in the saturation and drying processes, the tensile strength of specimens with the same water content was different, which could be related to different water distributions in specimens.

  16. Mechanical Design, Simulation, and Testing of Self-Aligning Gaussian Telescope and Stand for ITER LFS Reflectometer Diagnostic

    NASA Astrophysics Data System (ADS)

    Broughton, Rachel; Gomez, Michael; Zolfaghari, Ali; Morris, Lewis

    2016-10-01

    A self-aligning Gaussian telescope has been designed to compensate for the effect of movement in the ITER vacuum vessel on the transmission line. The purpose of the setup is to couple microwaves into and out of the vessel across the vacuum windows while allowing for both slow movements of the vessel, due to thermal growth, and rapid movements, due to vibrations and disruptions. Additionally, a test stand has been designed specifically to hold this telescope in order to imitate these movements. Consequently, this will allow for the assessment of the efficacy in applying the self-aligning Gaussian telescope approach. The motions of the test stand, as well as the stress on the telescope mechanism, have been virtually simulated using ANSYS workbench. A prototype of this test stand and self-aligning telescope will be built using a combination of custom machined parts and ordered parts. The completed mechanism will be tested at the lab in four different ways: slow single- and multi-direction movements, rapid multi-direction movement, functional laser alignment and self-aligning tests, and natural frequency tests. Once the prototype successfully passes all requirements, it will be tested with microwaves in the LFSR transmission line test stand at General Atomics. This work is supported by US DOE Contract No. DE-AC02-09CH11466.

  17. Evaluation of total knee mechanics using a crouching simulator with a synthetic knee substitute.

    PubMed

    Lowry, Michael; Rosenbaum, Heather; Walker, Peter S

    2016-05-01

    Mechanical evaluation of total knees is frequently required for aspects such as wear, strength, kinematics, contact areas, and force transmission. In order to carry out such tests, we developed a crouching simulator, based on the Oxford-type machine, with novel features including a synthetic knee including ligaments. The instrumentation and data processing methods enabled the determination of contact area locations and interface forces and moments, for a full flexion-extension cycle. To demonstrate the use of the simulator, we carried out a comparison of two different total knee designs, cruciate retaining and substituting. The first part of the study describes the simulator design and the methodology for testing the knees without requiring cadaveric knee specimens. The degrees of freedom of the anatomic hip and ankle joints were reproduced. Flexion-extension was obtained by changing quadriceps length, while variable hamstring forces were applied using springs. The knee joint was represented by three-dimensional printed blocks on to which the total knee components were fixed. Pretensioned elastomeric bands of realistic stiffnesses passed through holes in the block at anatomical locations to represent ligaments. Motion capture of the knees during flexion, together with laser scanning and computer modeling, was used to reconstruct contact areas on the bearing surfaces. A method was also developed for measuring tibial component interface forces and moments as a comparative assessment of fixation. The method involved interposing Tekscan pads at locations on the interface. Overall, the crouching machine and the methodology could be used for many different mechanical measurements of total knee designs, adapted especially for comparative or parametric studies. © IMechE 2016.

  18. Coating glass-ionomer cements with a nanofilled resin.

    PubMed

    Bonifácio, Clarissa Calil; Werner, Arie; Kleverlaan, Cornelis Johanes

    2012-12-01

    The objective of this study was to investigate the effect of a nanofilled resin coat on the flexural strength (FS) and the early wear (after 50,000 and 200,000 cycles) of the glass-ionomer cements Fuji IX GP Extra (FIXE) and Ketac Molar Aplicap (KM). Specimens were prepared and half of them were coated with G-Coat plus. The uncoated specimens were used as controls. Flexural strength (n = 10) was evaluated after 24 h using a 3-point bending test on a universal testing machine (ISO 9917-2). Wear (n = 20) was evaluated after 50,000 and 200,000 cycles using the ACTA wear machine. One-way, two-way ANOVA and Tukey post-hoc tests were used to analyze differences in FS and wear. For FIXE the coat significantly increased the FS and the wear along the two time spans. KM did not show a significant difference in FS with the coat. Improvements in wear were observed only after 50,000 cycles. Based on these laboratory results, it is concluded that G-coat Plus is indicated in association with GP IX Extra with the aim to improve the mechanical properties of the former. However, this study is limited to a short-term observation.

  19. Unsteady flow phenomena in industrial centrifugal compressor stage

    NASA Technical Reports Server (NTRS)

    Bonciani, L.; Terrinoni, L.; Tesei, A.

    1982-01-01

    The results of an experimental investigation on a typical centrifugal compressor stage running on an atmospheric pressure test rig are shown. Unsteady flow was invariably observed at low flow well before surge. In order to determine the influence of the statoric components, the same impeller was repeatedly tested with the same vaneless diffuser, but varying return channel geometry. Experimental results show the strong effect exerted by the return channel, both on onset and on the behavior of unsteady flow. Observed phenomena have been found to confirm well the observed dynamic behavior of full load tested machines when gas density is high enough to cause appreciable mechanical vibrations. Therefore, testing of single stages at atmospheric pressure may provide a fairly accurate prediction of this kind of aerodynamic excitation.

  20. Extracting laboratory test information from biomedical text

    PubMed Central

    Kang, Yanna Shen; Kayaalp, Mehmet

    2013-01-01

    Background: No previous study reported the efficacy of current natural language processing (NLP) methods for extracting laboratory test information from narrative documents. This study investigates the pathology informatics question of how accurately such information can be extracted from text with the current tools and techniques, especially machine learning and symbolic NLP methods. The study data came from a text corpus maintained by the U.S. Food and Drug Administration, containing a rich set of information on laboratory tests and test devices. Methods: The authors developed a symbolic information extraction (SIE) system to extract device and test specific information about four types of laboratory test entities: Specimens, analytes, units of measures and detection limits. They compared the performance of SIE and three prominent machine learning based NLP systems, LingPipe, GATE and BANNER, each implementing a distinct supervised machine learning method, hidden Markov models, support vector machines and conditional random fields, respectively. Results: Machine learning systems recognized laboratory test entities with moderately high recall, but low precision rates. Their recall rates were relatively higher when the number of distinct entity values (e.g., the spectrum of specimens) was very limited or when lexical morphology of the entity was distinctive (as in units of measures), yet SIE outperformed them with statistically significant margins on extracting specimen, analyte and detection limit information in both precision and F-measure. Its high recall performance was statistically significant on analyte information extraction. Conclusions: Despite its shortcomings against machine learning methods, a well-tailored symbolic system may better discern relevancy among a pile of information of the same type and may outperform a machine learning system by tapping into lexically non-local contextual information such as the document structure. PMID:24083058

  1. A randomised controlled comparison of injection, thermal, and mechanical endoscopic methods of haemostasis on mesenteric vessels

    PubMed Central

    Hepworth, C; Kadirkamanathan, S; Gong, F; Swain, C

    1998-01-01

    Background and aims—A randomised controlled comparison of haemostatic efficacy of mechanical, injection, and thermal methods of haemostasis was undertaken using canine mesenteric vessels to test the hypothesis that mechanical methods of haemostasis are more effective in controlling haemorrhage than injection or thermal methods. The diameter of arteries in human bleeding ulcers measures up to 3.45 mm; mesenteric vessels up to 5 mm were therefore studied. 
Methods—Mesenteric vessels were randomised to treatment with injection sclerotherapy (adrenaline and ethanolamine), bipolar diathermy, or mechanical methods (band, clips, sewing machine, endoloops). The vessels were severed and haemostasis recorded. 
Results—Injection sclerotherapy and clips failed to stop bleeding from vessels of 1 mm (n=20) and 2 mm (n=20). Bipolar diathermy was effective on 8/10 vessels of 2 mm but failed on 3 mm vessels (n=5). Unstretched elastic bands succeeded on 13/15 vessels of 2 mm but on only 3/10 vessels of 3 mm. The sewing machine achieved haemostasis on 8/10 vessels of 4 mm but failed on 5 mm vessels (n=5); endoloops were effective on all 5 mm vessels (n=5). 
Conclusions—Only mechanical methods were effective on vessels greater than 2 mm in diameter. Some mechanical methods (banding and clips) were less effective than expected and need modification. Thermal and (effective) mechanical methods were significantly (p<0.01) more effective than injection sclerotherapy. The most effective mechanical methods were significantly more effective (p<0.01) than thermal or injection on vessels greater than 2mm. 

 Keywords: endoscopic haemostasis; mesenteric vessels PMID:9616305

  2. Thermal-mechanical modeling of laser ablation hybrid machining

    NASA Astrophysics Data System (ADS)

    Matin, Mohammad Kaiser

    2001-08-01

    Hard, brittle and wear-resistant materials like ceramics pose a problem when being machined using conventional machining processes. Machining ceramics even with a diamond cutting tool is very difficult and costly. Near net-shape processes, like laser evaporation, produce micro-cracks that require extra finishing. Thus it is anticipated that ceramic machining will have to continue to be explored with new-sprung techniques before ceramic materials become commonplace. This numerical investigation results from the numerical simulations of the thermal and mechanical modeling of simultaneous material removal from hard-to-machine materials using both laser ablation and conventional tool cutting utilizing the finite element method. The model is formulated using a two dimensional, planar, computational domain. The process simulation acronymed, LAHM (Laser Ablation Hybrid Machining), uses laser energy for two purposes. The first purpose is to remove the material by ablation. The second purpose is to heat the unremoved material that lies below the ablated material in order to ``soften'' it. The softened material is then simultaneously removed by conventional machining processes. The complete solution determines the temperature distribution and stress contours within the material and tracks the moving boundary that occurs due to material ablation. The temperature distribution is used to determine the distance below the phase change surface where sufficient ``softening'' has occurred, so that a cutting tool may be used to remove additional material. The model incorporated for tracking the ablative surface does not assume an isothermal melt phase (e.g. Stefan problem) for laser ablation. Both surface absorption and volume absorption of laser energy as function of depth have been considered in the models. LAHM, from the thermal and mechanical point of view is a complex machining process involving large deformations at high strain rates, thermal effects of the laser, removal of materials and contact between workpiece and tool. The theoretical formulation associated with LAHM for solving the thermal-mechanical problem using the finite element method is presented. The thermal formulation is incorporated in the user defined subroutines called by ABAQUS/Standard. The mechanical portion is modeled using ABAQUS/Explicit's general capabilities of modeling interactions involving contact and separation. The results obtained from the FEA simulations showed that the cutting force decrease considerably in both LAEM Surface Absorption (LARM-SA) and LAHM volume absorption (LAHM-VA) models relative to LAM model. It was observed that the HAZ can be expanded or narrowed depending on the laser speed and power. The cutting force is minimal at the last extent of the HAZ. In both the models the laser ablates material thus reducing material stiffness as well as relaxing the thermal stress. The stress values obtained showed compressive yield stress just below the ablated surface and chip. The failure occurs by conventional cutting where tensile stress exceeds the tensile strength of the material at that temperature. In this hybrid machining process the advantages of both the individual machining processes were realized.

  3. Progress on Fault Mechanisms for Gear Transmissions in Coal Cutting Machines: From Macro to Nano Models.

    PubMed

    Jiang, Yu; Zhang, Xiaogang; Zhang, Chao; Li, Zhixiong; Sheng, Chenxing

    2017-04-01

    Numerical modeling has been recognized as the dispensable tools for mechanical fault mechanism analysis. Techniques, ranging from macro to nano levels, include the finite element modeling boundary element modeling, modular dynamic modeling, nano dynamic modeling and so forth. This work firstly reviewed the progress on the fault mechanism analysis for gear transmissions from the tribological and dynamic aspects. Literature review indicates that the tribological and dynamic properties were separately investigated to explore the fault mechanism in gear transmissions. However, very limited work has been done to address the links between the tribological and dynamic properties and scarce researches have been done for coal cutting machines. For this reason, the tribo-dynamic coupled model was introduced to bridge the gap between the tribological and dynamic models in fault mechanism analysis for gear transmissions in coal cutting machines. The modular dynamic modeling and nano dynamic modeling techniques are expected to establish the links between the tribological and dynamic models. Possible future research directions using the tribo dynamic coupled model were summarized to provide potential references for researchers in the field.

  4. Acceptability of Using Electronic Vending Machines to Deliver Oral Rapid HIV Self-Testing Kits: A Qualitative Study

    PubMed Central

    Young, Sean D.; Daniels, Joseph; Chiu, ChingChe J.; Bolan, Robert K.; Flynn, Risa P.; Kwok, Justin; Klausner, Jeffrey D.

    2014-01-01

    Introduction Rates of unrecognized HIV infection are significantly higher among Latino and Black men who have sex with men (MSM). Policy makers have proposed that HIV self-testing kits and new methods for delivering self-testing could improve testing uptake among minority MSM. This study sought to conduct qualitative assessments with MSM of color to determine the acceptability of using electronic vending machines to dispense HIV self-testing kits. Materials and Methods African American and Latino MSM were recruited using a participant pool from an existing HIV prevention trial on Facebook. If participants expressed interest in using a vending machine to receive an HIV self-testing kit, they were emailed a 4-digit personal identification number (PIN) code to retrieve the test from the machine. We followed up with those who had tested to assess their willingness to participate in an interview about their experience. Results Twelve kits were dispensed and 8 interviews were conducted. In general, participants expressed that the vending machine was an acceptable HIV test delivery method due to its novelty and convenience. Discussion Acceptability of this delivery model for HIV testing kits was closely associated with three main factors: credibility, confidentiality, and convenience. Future research is needed to address issues, such as user-induced errors and costs, before scaling up the dispensing method. PMID:25076208

  5. Drilling Damage in Composite Material.

    PubMed

    Durão, Luís Miguel P; Tavares, João Manuel R S; de Albuquerque, Victor Hugo C; Marques, Jorge Filipe S; Andrade, Oscar N G

    2014-05-14

    The characteristics of carbon fibre reinforced laminates have widened their use from aerospace to domestic appliances, and new possibilities for their usage emerge almost daily. In many of the possible applications, the laminates need to be drilled for assembly purposes. It is known that a drilling process that reduces the drill thrust force can decrease the risk of delamination. In this work, damage assessment methods based on data extracted from radiographic images are compared and correlated with mechanical test results-bearing test and delamination onset test-and analytical models. The results demonstrate the importance of an adequate selection of drilling tools and machining parameters to extend the life cycle of these laminates as a consequence of enhanced reliability.

  6. Study on boring hardened materials dryly by ultrasonic vibration cutter

    NASA Astrophysics Data System (ADS)

    Zhang, Jiangzhong; Zhang, Heng; Zhang, Yue

    2011-05-01

    It has been one of the difficulties that high-precision hole on hardened materials is machined. The supersonic vibration boring acoustic system in the lathe in which supersonic wave energy is applied on tool is introduced to create pulse power on the cutting process. The separation vibration cutting is achieved by the pulse force. The comparative tests on boring accuracy and surface quality are carried. The quality of surface machined by this method is compared to that by grinding. This cutting is the green cutting. The boring process system is stability. Under the condition that the cutting speed is less than or equal to 1/3 the tool vibration speed, the cutting force is pulse force and the Cutting energy is of high concentration in time, space and direction. The pulse energy effects on the cutting unit in less than one ten-thousandth second. Traditional cutting of irregular movement elastic compression are eliminated. The cutting force is greatly reduced. The cutting temperature is at room temperature. The tool life is greatly increased. Shape precision and surface quality is greatly improved. The regulations of the ultrasonic vibration boring dry cutting of hardened material are also summarized. The test results show that the ultrasonic vibration cutting tool boring is of very superior cutting mechanism and is a high-precision deep-hole machining of hardened materials, efficient cutting methods.

  7. On the Use of Machine Learning Techniques for the Mechanical Characterization of Soft Biological Tissues.

    PubMed

    Cilla, M; Pérez-Rey, I; Martínez, M A; Peña, Estefania; Martínez, Javier

    2018-06-23

    Motivated by the search for new strategies for fitting a material model, a new approach is explored in the present work. The use of numerical and complex algorithms based on machine learning techniques such as support vector machines for regression, bagged decision trees and artificial neural networks is proposed for solving the parameter identification of constitutive laws for soft biological tissues. First, the mathematical tools were trained with analytical uniaxial data (circumferential and longitudinal directions) as inputs, and their corresponding material parameters of the Gasser, Ogden and Holzapfel strain energy function as outputs. The train and test errors show great efficiency during the training process in finding correlations between inputs and outputs; besides, the correlation coefficients were very close to 1. Second, the tool was validated with unseen observations of analytical circumferential and longitudinal uniaxial data. The results show an excellent agreement between the prediction of the material parameters of the SEF and the analytical curves. Finally, data from real circumferential and longitudinal uniaxial tests on different cardiovascular tissues were fitted, thus the material model of these tissues was predicted. We found that the method was able to consistently identify model parameters, and we believe that the use of these numerical tools could lead to an improvement in the characterization of soft biological tissues. This article is protected by copyright. All rights reserved.

  8. Predicting Protein-protein Association Rates using Coarse-grained Simulation and Machine Learning

    NASA Astrophysics Data System (ADS)

    Xie, Zhong-Ru; Chen, Jiawen; Wu, Yinghao

    2017-04-01

    Protein-protein interactions dominate all major biological processes in living cells. We have developed a new Monte Carlo-based simulation algorithm to study the kinetic process of protein association. We tested our method on a previously used large benchmark set of 49 protein complexes. The predicted rate was overestimated in the benchmark test compared to the experimental results for a group of protein complexes. We hypothesized that this resulted from molecular flexibility at the interface regions of the interacting proteins. After applying a machine learning algorithm with input variables that accounted for both the conformational flexibility and the energetic factor of binding, we successfully identified most of the protein complexes with overestimated association rates and improved our final prediction by using a cross-validation test. This method was then applied to a new independent test set and resulted in a similar prediction accuracy to that obtained using the training set. It has been thought that diffusion-limited protein association is dominated by long-range interactions. Our results provide strong evidence that the conformational flexibility also plays an important role in regulating protein association. Our studies provide new insights into the mechanism of protein association and offer a computationally efficient tool for predicting its rate.

  9. Predicting Protein–protein Association Rates using Coarse-grained Simulation and Machine Learning

    PubMed Central

    Xie, Zhong-Ru; Chen, Jiawen; Wu, Yinghao

    2017-01-01

    Protein–protein interactions dominate all major biological processes in living cells. We have developed a new Monte Carlo-based simulation algorithm to study the kinetic process of protein association. We tested our method on a previously used large benchmark set of 49 protein complexes. The predicted rate was overestimated in the benchmark test compared to the experimental results for a group of protein complexes. We hypothesized that this resulted from molecular flexibility at the interface regions of the interacting proteins. After applying a machine learning algorithm with input variables that accounted for both the conformational flexibility and the energetic factor of binding, we successfully identified most of the protein complexes with overestimated association rates and improved our final prediction by using a cross-validation test. This method was then applied to a new independent test set and resulted in a similar prediction accuracy to that obtained using the training set. It has been thought that diffusion-limited protein association is dominated by long-range interactions. Our results provide strong evidence that the conformational flexibility also plays an important role in regulating protein association. Our studies provide new insights into the mechanism of protein association and offer a computationally efficient tool for predicting its rate. PMID:28418043

  10. Predicting Protein-protein Association Rates using Coarse-grained Simulation and Machine Learning.

    PubMed

    Xie, Zhong-Ru; Chen, Jiawen; Wu, Yinghao

    2017-04-18

    Protein-protein interactions dominate all major biological processes in living cells. We have developed a new Monte Carlo-based simulation algorithm to study the kinetic process of protein association. We tested our method on a previously used large benchmark set of 49 protein complexes. The predicted rate was overestimated in the benchmark test compared to the experimental results for a group of protein complexes. We hypothesized that this resulted from molecular flexibility at the interface regions of the interacting proteins. After applying a machine learning algorithm with input variables that accounted for both the conformational flexibility and the energetic factor of binding, we successfully identified most of the protein complexes with overestimated association rates and improved our final prediction by using a cross-validation test. This method was then applied to a new independent test set and resulted in a similar prediction accuracy to that obtained using the training set. It has been thought that diffusion-limited protein association is dominated by long-range interactions. Our results provide strong evidence that the conformational flexibility also plays an important role in regulating protein association. Our studies provide new insights into the mechanism of protein association and offer a computationally efficient tool for predicting its rate.

  11. Characteristics of Crushing Energy and Fractal of Magnetite Ore under Uniaxial Compression

    NASA Astrophysics Data System (ADS)

    Gao, F.; Gan, D. Q.; Zhang, Y. B.

    2018-03-01

    The crushing mechanism of magnetite ore is a critical theoretical problem on the controlling of energy dissipation and machine crushing quality in ore material processing. Uniaxial crushing tests were carried out to research the deformation mechanism and the laws of the energy evolution, based on which the crushing mechanism of magnetite ore was explored. The compaction stage and plasticity and damage stage are two main compression deformation stages, the main transitional forms from inner damage to fracture are plastic deformation and stick-slip. In the process of crushing, plasticity and damage stage is the key link on energy absorption for that the specimen tends to saturate energy state approaching to the peak stress. The characteristics of specimen deformation and energy dissipation can synthetically reply the state of existed defects inner raw magnetite ore and the damage process during loading period. The fast releasing of elastic energy and the work done by the press machine commonly make raw magnetite ore thoroughly broken after peak stress. Magnetite ore fragments have statistical self-similarity and size threshold of fractal characteristics under uniaxial squeezing crushing. The larger ratio of releasable elastic energy and dissipation energy and the faster energy change rate is the better fractal properties and crushing quality magnetite ore has under uniaxial crushing.

  12. Laser and Surface Processes of NiTi Shape Memory Elements for Micro-actuation

    NASA Astrophysics Data System (ADS)

    Nespoli, Adelaide; Biffi, Carlo Alberto; Previtali, Barbara; Villa, Elena; Tuissi, Ausonio

    2014-04-01

    In the current microtechnology for actuation field, shape memory alloys (SMA) are considered one of the best candidates for the production of mini/micro devices thanks to their high power-to-weight ratio as function of the actuator weight and hence for their capability of generating high mechanical performance in very limited spaces. In the microscale the most suitable conformation of a SMA actuator is given by a planar wavy formed arrangement, i.e., the snake-like shape, which allows high strokes, considerable forces, and devices with very low sizes. This uncommon and complex geometry becomes more difficult to be realized when the actuator dimensions are scaled down to micrometric values. In this work, micro-snake-like actuators are laser machined using a nanosecond pulsed fiber laser, starting from a 120- μm-thick NiTi sheet. Chemical and electrochemical surface polishes are also investigated for the removal of the thermal damages of the laser process. Calorimetric and thermo-mechanical tests are accomplished to assess the NiTi microdevice performance after each step of the working process. It is shown that laser machining has to be followed by some post-processes in order to obtain a micro-actuator with good thermo-mechanical properties.

  13. The study on the nanomachining property and cutting model of single-crystal sapphire by atomic force microscopy.

    PubMed

    Huang, Jen-Ching; Weng, Yung-Jin

    2014-01-01

    This study focused on the nanomachining property and cutting model of single-crystal sapphire during nanomachining. The coated diamond probe is used to as a tool, and the atomic force microscopy (AFM) is as an experimental platform for nanomachining. To understand the effect of normal force on single-crystal sapphire machining, this study tested nano-line machining and nano-rectangular pattern machining at different normal force. In nano-line machining test, the experimental results showed that the normal force increased, the groove depth from nano-line machining also increased. And the trend is logarithmic type. In nano-rectangular pattern machining test, it is found when the normal force increases, the groove depth also increased, but rather the accumulation of small chips. This paper combined the blew by air blower, the cleaning by ultrasonic cleaning machine and using contact mode probe to scan the surface topology after nanomaching, and proposed the "criterion of nanomachining cutting model," in order to determine the cutting model of single-crystal sapphire in the nanomachining is ductile regime cutting model or brittle regime cutting model. After analysis, the single-crystal sapphire substrate is processed in small normal force during nano-linear machining; its cutting modes are ductile regime cutting model. In the nano-rectangular pattern machining, due to the impact of machined zones overlap, the cutting mode is converted into a brittle regime cutting model. © 2014 Wiley Periodicals, Inc.

  14. Study of Tool Wear Mechanisms and Mathematical Modeling of Flank Wear During Machining of Ti Alloy (Ti6Al4V)

    NASA Astrophysics Data System (ADS)

    Chetan; Narasimhulu, A.; Ghosh, S.; Rao, P. V.

    2015-07-01

    Machinability of titanium is poor due to its low thermal conductivity and high chemical affinity. Lower thermal conductivity of titanium alloy is undesirable on the part of cutting tool causing extensive tool wear. The main task of this work is to predict the various wear mechanisms involved during machining of Ti alloy (Ti6Al4V) and to formulate an analytical mathematical tool wear model for the same. It has been found from various experiments that adhesive and diffusion wear are the dominating wear during machining of Ti alloy with PVD coated tungsten carbide tool. It is also clear from the experiments that the tool wear increases with the increase in cutting parameters like speed, feed and depth of cut. The wear model was validated by carrying out dry machining of Ti alloy at suitable cutting conditions. It has been found that the wear model is able to predict the flank wear suitably under gentle cutting conditions.

  15. Detection of correct and incorrect measurements in real-time continuous glucose monitoring systems by applying a postprocessing support vector machine.

    PubMed

    Leal, Yenny; Gonzalez-Abril, Luis; Lorencio, Carol; Bondia, Jorge; Vehi, Josep

    2013-07-01

    Support vector machines (SVMs) are an attractive option for detecting correct and incorrect measurements in real-time continuous glucose monitoring systems (RTCGMSs), because their learning mechanism can introduce a postprocessing strategy for imbalanced datasets. The proposed SVM considers the geometric mean to obtain a more balanced performance between sensitivity and specificity. To test this approach, 23 critically ill patients receiving insulin therapy were monitored over 72 h using an RTCGMS, and a dataset of 537 samples, classified according to International Standards Organization (ISO) criteria (372 correct and 165 incorrect measurements), was obtained. The results obtained were promising for patients with septic shock or with sepsis, for which the proposed system can be considered as reliable. However, this approach cannot be considered suitable for patients without sepsis.

  16. Enhanced ultrasonically assisted turning of a β-titanium alloy.

    PubMed

    Maurotto, Agostino; Muhammad, Riaz; Roy, Anish; Silberschmidt, Vadim V

    2013-09-01

    Although titanium alloys have outstanding mechanical properties such as high hot hardness, a good strength-to-weight ratio and high corrosion resistance; their low thermal conductivity, high chemical affinity to tool materials severely impair their machinability. Ultrasonically assisted machining (UAM) is an advanced machining technique, which has been shown to improve machinability of a β-titanium alloy, namely, Ti-15-3-3-3, when compared to conventional turning processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. On Atwood's Machine with a Nonzero Mass String

    ERIC Educational Resources Information Center

    Tarnopolski, Mariusz

    2015-01-01

    Let us consider a classical high school exercise concerning two weights on a pulley and a string, illustrated in Fig. 1(a). A system like this is called an Atwood's machine and was invented by George Atwood in 1784 as a laboratory experiment to verify the mechanical laws of motion with constant acceleration. Nowadays, Atwood's machine is used for…

  18. Nanomeasuring and nanopositioning engineering

    NASA Astrophysics Data System (ADS)

    Jäger, G.; Hausotte, T.; Manske, E.; Büchner, H.-J.; Mastylo, R.; Dorozhovets, N.; Hofmann, N.

    2006-11-01

    The paper describes traceable nanometrology based on a nanopositioning machine with integrated nanoprobes. The operation of a high-precision long range three-dimensional nanopositioning and nanomeasuring machine (NPM-Machine) having a resolution of 0,1 nm over the positioning and measuring range of 25 mm x 25 mm x 5 mm is explained. An Abbe offset-free design of three miniature plan mirror interferometers and applying a new concept for compensating systematic errors resulting from mechanical guide systems provide very small uncertainties of measurement. The NPM-Machine has been developed by the Institute of Process Measurement and Sensor Technology of the Technische Universitaet Ilmenau and manufactured by the SIOS Messtechnik GmbH Ilmenau. The machines are operating successfully in several German and foreign research institutes including the Physikalisch-Technische Bundesanstalt (PTB), Germany. The integration of several, optical and tactile probe systems and nanotools makes the NPM-Machine suitable for various tasks, such as large-area scanning probe microscopy, mask and wafer inspection, nanostructuring, biotechnology and genetic engineering as well as measuring mechanical precision workpieces, precision treatment and for engineering new material. Various developed probe systems have been integrated into the NPM-Machine. The measurement results of a focus sensor, metrological AFM, white light sensor, tactile stylus probe and of a 3D-micro-touch-probe are presented. Single beam-, double beam- and triple beam interferometers built in the NPM-Machine for six degrees of freedom measurements are described.

  19. The Physics and Physical Chemistry of Molecular Machines.

    PubMed

    Astumian, R Dean; Mukherjee, Shayantani; Warshel, Arieh

    2016-06-17

    The concept of a "power stroke"-a free-energy releasing conformational change-appears in almost every textbook that deals with the molecular details of muscle, the flagellar rotor, and many other biomolecular machines. Here, it is shown by using the constraints of microscopic reversibility that the power stroke model is incorrect as an explanation of how chemical energy is used by a molecular machine to do mechanical work. Instead, chemically driven molecular machines operating under thermodynamic constraints imposed by the reactant and product concentrations in the bulk function as information ratchets in which the directionality and stopping torque or stopping force are controlled entirely by the gating of the chemical reaction that provides the fuel for the machine. The gating of the chemical free energy occurs through chemical state dependent conformational changes of the molecular machine that, in turn, are capable of generating directional mechanical motions. In strong contrast to this general conclusion for molecular machines driven by catalysis of a chemical reaction, a power stroke may be (and often is) an essential component for a molecular machine driven by external modulation of pH or redox potential or by light. This difference between optical and chemical driving properties arises from the fundamental symmetry difference between the physics of optical processes, governed by the Bose-Einstein relations, and the constraints of microscopic reversibility for thermally activated processes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Machinability of IPS Empress 2 framework ceramic.

    PubMed

    Schmidt, C; Weigl, P

    2000-01-01

    Using ceramic materials for an automatic production of ceramic dentures by CAD/CAM is a challenge, because many technological, medical, and optical demands must be considered. The IPS Empress 2 framework ceramic meets most of them. This study shows the possibilities for machining this ceramic with economical parameters. The long life-time requirement for ceramic dentures requires a ductile machined surface to avoid the well-known subsurface damages of brittle materials caused by machining. Slow and rapid damage propagation begins at break outs and cracks, and limits life-time significantly. Therefore, ductile machined surfaces are an important demand for machine dental ceramics. The machining tests were performed with various parameters such as tool grain size and feed speed. Denture ceramics were machined by jig grinding on a 5-axis CNC milling machine (Maho HGF 500) with a high-speed spindle up to 120,000 rpm. The results of the wear test indicate low tool wear. With one tool, you can machine eight occlusal surfaces including roughing and finishing. One occlusal surface takes about 60 min machining time. Recommended parameters for roughing are middle diamond grain size (D107), cutting speed v(c) = 4.7 m/s, feed speed v(ft) = 1000 mm/min, depth of cut a(e) = 0.06 mm, width of contact a(p) = 0.8 mm, and for finishing ultra fine diamond grain size (D46), cutting speed v(c) = 4.7 m/s, feed speed v(ft) = 100 mm/min, depth of cut a(e) = 0.02 mm, width of contact a(p) = 0.8 mm. The results of the machining tests give a reference for using IPS Empress(R) 2 framework ceramic in CAD/CAM systems. Copyright 2000 John Wiley & Sons, Inc.

  1. Laser assisted machining: a state of art review

    NASA Astrophysics Data System (ADS)

    Punugupati, Gurabvaiah; Kandi, Kishore Kumar; Bose, P. S. C.; Rao, C. S. P.

    2016-09-01

    Difficult-to-cut materials have increasing demand in aerospace and automobile industries due to their high yield stress, high strength to weight ratio, high toughness, high wear resistance, high creep, high corrosion resistivity, ability to retain high strength at high temperature, etc. The machinability of these advanced materials, using conventional methods of machining is typical due to the high temperature and pressure at the cutting zone and tool and properties such as low thermal conductivity, high cutting forces and cutting temperatures makes the materials difficult to machine. Laser assisted machining (LAM) is a new and innovative technique for machining the difficult-to-cut materials. This paper deals with a review on the advances in lasers, tools and the mechanism of machining using LAM and their effects.

  2. MO-FG-202-04: Gantry-Resolved Linac QA for VMAT: A Comprehensive and Efficient System Using An Electronic Portal Imaging Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zwan, B J; University of Newcastle, Newcastle, NSW; Barnes, M

    2016-06-15

    Purpose: To automate gantry-resolved linear accelerator (linac) quality assurance (QA) for volumetric modulated arc therapy (VMAT) using an electronic portal imaging device (EPID). Methods: A QA system for VMAT was developed that uses an EPID, frame-grabber assembly and in-house developed image processing software. The system relies solely on the analysis of EPID image frames acquired without the presence of a phantom. Images were acquired at 8.41 frames per second using a frame grabber and ancillary acquisition computer. Each image frame was tagged with a gantry angle from the linac’s on-board gantry angle encoder. Arc-dynamic QA plans were designed to assessmore » the performance of each individual linac component during VMAT. By analysing each image frame acquired during the QA deliveries the following eight machine performance characteristics were measured as a function of gantry angle: MLC positional accuracy, MLC speed constancy, MLC acceleration constancy, MLC-gantry synchronisation, beam profile constancy, dose rate constancy, gantry speed constancy, dose-gantry angle synchronisation and mechanical sag. All tests were performed on a Varian iX linear accelerator equipped with a 120 leaf Millennium MLC and an aS1000 EPID (Varian Medical Systems, Palo Alto, CA, USA). Results: Machine performance parameters were measured as a function of gantry angle using EPID imaging and compared to machine log files and the treatment plan. Data acquisition is currently underway at 3 centres, incorporating 7 treatment units, at 2 weekly measurement intervals. Conclusion: The proposed system can be applied for streamlined linac QA and commissioning for VMAT. The set of test plans developed can be used to assess the performance of each individual components of the treatment machine during VMAT deliveries as a function of gantry angle. The methodology does not require the setup of any additional phantom or measurement equipment and the analysis is fully automated to allow for regular routine testing.« less

  3. Mechanical properties and ultrastructural characteristics of a glass fiber-reinforced composite.

    PubMed

    García Barbero, Alvaro Enrique; Vera González, Vicente; García Barbero, Ernesto; Aliaga Vera, Ignacio

    2015-06-01

    To examine the ultrastructural characteristics of a fiber-reinforced composite (FRC) and its behavior in vitro as a framework for fixed partial dentures (FPDs). A total of 40 specimens were prepared using extracted teeth fixed in methacrylate blocks as supports for the FPD, then the specimens were divided into four groups depending on whether a retaining box was used to fix the FPD to the support teeth, and on whether a composite pontic was assembled on top of the fibers. Fracture testing was performed in a universal testing machine (1 mm/minute). Fracture strength values and failure types were statistically compared for each group. Using retaining boxes did not improve the mechanical behavior of the restorative system. The weakest element of the system was the composite tooth constructed on top of the FRC.

  4. A new methodology for predictive tool wear

    NASA Astrophysics Data System (ADS)

    Kim, Won-Sik

    An empirical approach to tool wear, which requires a series of machining tests for each combination of insert and work material, has been a standard practice for industries since early part of the twentieth century. With many varieties of inserts and work materials available for machining, the empirical approach is too experiment-intensive that the demand for the development of a model-based approach is increasing. With a model-based approach, the developed wear equation can be extended without additional machining experiments. The main idea is that the temperatures on the primary wear areas are increasing such that the physical properties of the tool material degrade substantially and consequently tool wear increases. Dissolution and abrasion are identified to be the main mechanisms for tool wear. Flank wear is predominantly a phenomenon of abrasion as evident by the presence of a scoring mark on the flank surface. Based on this statement, it is reasonable to expect that the flank-wear rate would increase with the content of hard inclusions. However, experimental flank wear results did not necessary correspond to the content of cementite phase present in the steels. Hence, other phenomena are believed to significantly affect wear behavior under certain conditions. When the cutting temperature in the flank interface is subjected to high enough temperatures, pearlitic structure austenizes. During the formation of a new austenitic phase, the existing carbon is dissolved into the ferrite matrix, which will reduce the abrasive action. To verify the austenitic transformation, turning tests were conducted with plain carbon steels. The machined surface areas are imaged using X-ray diffraction the Scanning Electron Microscope (SEM) and the Transmission Electron Microscope (TEM). On the other hand, crater wear occurs as a result of dissolution wear and abrasive wear. To verify the wear mechanisms of crater wear, various coating inserts as well as uncoated inserts were turned with various cutting conditions and the results were compared with the proposed analytical wear models. The crater surfaces after machining have been carefully studied to shed light on the physics behind the crater wear. In addition, the abrasive wear mechanism plays a major role in the development of crater wear. Laser shock processing (LSP) has been applied to locally relieve the deleterious tensile residual stresses on the crater surface of a coated tool, thus to improve the hardness of the coating. This thesis shows that LSP has indeed improve wear resistance of CVD coated alumina tool inserts, which has residual stress due to high processing temperature. LSP utilizes a very short laser pulse with high energy density, which induces high-pressure stress wave propagation. The residual stresses are relieved by incident shock waves on the coating surface. Residual stress levels of LSP CVD alumina-coated carbide insert were evaluated by the X-ray diffractometer. Based on these results, LSP parameters such as number of laser pulses and laser energy density can be controlled to reduce residual stress. Crater wear shows that the wear resistance increase with LSP treated tool inserts. Because the hardness data are used to predict the wear, the improvement in hardness and wear resistance shows that the mechanism of crater wear also involves abrasive wear.

  5. On the Stability of Jump-Linear Systems Driven by Finite-State Machines with Markovian Inputs

    NASA Technical Reports Server (NTRS)

    Patilkulkarni, Sudarshan; Herencia-Zapana, Heber; Gray, W. Steven; Gonzalez, Oscar R.

    2004-01-01

    This paper presents two mean-square stability tests for a jump-linear system driven by a finite-state machine with a first-order Markovian input process. The first test is based on conventional Markov jump-linear theory and avoids the use of any higher-order statistics. The second test is developed directly using the higher-order statistics of the machine s output process. The two approaches are illustrated with a simple model for a recoverable computer control system.

  6. High Temperature Monotonic and Cyclic Deformation in a Directionally Solidified Nickel-Base Superalloy.

    DTIC Science & Technology

    1986-05-01

    was conducted in air, using a SATEC Systems computer-controlled servohydraulic testing machine. This machine uses a minicomputer (Digital PDP 11/34...overall test program) was run. This test was performed using a feature of the SATEC machine called combinatorial feedback, which allowed a user-defined...Rn) l/T + (in Es /A)/n (4.3) Q can be calculated from 0*: b Q=n (4.4) Creep data for DS MAR-M246, containing no Hafnium, from Reference 99 was used to

  7. Analytical model for force prediction when machining metal matrix composites

    NASA Astrophysics Data System (ADS)

    Sikder, Snahungshu

    Metal Matrix Composites (MMC) offer several thermo-mechanical advantages over standard materials and alloys which make them better candidates in different applications. Their light weight, high stiffness, and strength have attracted several industries such as automotive, aerospace, and defence for their wide range of products. However, the wide spread application of Meal Matrix Composites is still a challenge for industry. The hard and abrasive nature of the reinforcement particles is responsible for rapid tool wear and high machining costs. Fracture and debonding of the abrasive reinforcement particles are the considerable damage modes that directly influence the tool performance. It is very important to find highly effective way to machine MMCs. So, it is important to predict forces when machining Metal Matrix Composites because this will help to choose perfect tools for machining and ultimately save both money and time. This research presents an analytical force model for predicting the forces generated during machining of Metal Matrix Composites. In estimating the generated forces, several aspects of cutting mechanics were considered including: shearing force, ploughing force, and particle fracture force. Chip formation force was obtained by classical orthogonal metal cutting mechanics and the Johnson-Cook Equation. The ploughing force was formulated while the fracture force was calculated from the slip line field theory and the Griffith theory of failure. The predicted results were compared with previously measured data. The results showed very good agreement between the theoretically predicted and experimentally measured cutting forces.

  8. Effect of Extrusion on the Mechanical and Rheological Properties of a Reinforced Poly(Lactic Acid): Reprocessing and Recycling of Biobased Materials.

    PubMed

    Peinado, Víctor; Castell, Pere; García, Lidia; Fernández, Ángel

    2015-10-19

    The aim of this research paper is to study the behaviour of a common used biopolymer (Poly(Lactic Acid) (PLA)) after several reprocesses and how two different types of additives (a melt strength enhancer and a nanoadditive) affect its mechanical and rheological properties. Systematic extraction of extrudate samples from a twin-screw compounder was done in order to study the effect in the properties of the reprocessed material. Detailed rheological tests on a capillary rheometer as well as mechanical studies on a universal tensile machine after preparation of injected specimens were carried out. Results evidenced that PLA and reinforced PLA materials can be reprocessed and recycled without a remarkable loss in their mechanical properties. Several processing restrictions and specific phenomena were identified and are explained in the present manuscript.

  9. High frequency testing of rubber mounts.

    PubMed

    Vahdati, Nader; Saunders, L Ken Lauderbaugh

    2002-04-01

    Rubber and fluid-filled rubber engine mounts are commonly used in automotive and aerospace applications to provide reduced cabin noise and vibration, and/or motion accommodations. In certain applications, the rubber mount may operate at frequencies as high as 5000 Hz. Therefore, dynamic stiffness of the mount needs to be known in this frequency range. Commercial high frequency test machines are practically nonexistent, and the best high frequency test machine on the market is only capable of frequencies as high as 1000 Hz. In this paper, a high frequency test machine is described that allows test engineers to study the high frequency performance of rubber mounts at frequencies up to 5000 Hz.

  10. Seminar for High School Students “Practice on Manufacturing Technology by Advanced Machine Tools”

    NASA Astrophysics Data System (ADS)

    Marui, Etsuo; Yamawaki, Masao; Taga, Yuken; Omoto, Ken'ichi; Miyaji, Reiji; Ogura, Takahiro; Tsubata, Yoko; Sakai, Toshimasa

    The seminar ‘Practice on Manufacturing Technology by Advanced Machine Tools’ for high school students was held at the supporting center for technology education of Gifu University, under the sponsorship of the Japan Society of Mechanical Engineers. This seminar was held, hoping that many students become interested in manufacturing through the experience of the seminar. Operating CNC milling machine and CNC wire-cut electric discharge machine, they made original nameplates. Participants made the program to control CNC machine tools themselves. In this report, some valuable results obtained through such experience are explained.

  11. Metal release from coffee machines and electric kettles.

    PubMed

    Müller, Frederic D; Hackethal, Christin; Schmidt, Roman; Kappenstein, Oliver; Pfaff, Karla; Luch, Andreas

    2015-01-01

    The release of elemental ions from 8 coffee machines and 11 electric kettles into food simulants was investigated. Three different types of coffee machines were tested: portafilter espresso machines, pod machines and capsule machines. All machines were tested subsequently on 3 days before and on 3 days after decalcification. Decalcification of the machines was performed with agents according to procedures as specified in the respective manufacturer's manuals. The electric kettles showed only a low release of the elements analysed. For the coffee machines decreasing concentrations of elements were found from the first to the last sample taken in the course of 1 day. Metal release on consecutive days showed a decreasing trend as well. After decalcification a large increase in the amounts of elements released was encountered. In addition, the different machine types investigated clearly differed in their extent of element release. By far the highest leaching, both quantitatively and qualitatively, was found for the portafilter machines. With these products releases of Pb, Ni, Mn, Cr and Zn were in the range and beyond the release limits as proposed by the Council of Europe. Therefore, a careful rinsing routine, especially after decalcification, is recommended for these machines. The comparably lower extent of release of one particular portafilter machine demonstrates that metal release at levels above the threshold that triggers health concerns are technically avoidable.

  12. Quantitative sensory testing response patterns to capsaicin- and ultraviolet-B–induced local skin hypersensitization in healthy subjects: a machine-learned analysis

    PubMed Central

    Lötsch, Jörn; Geisslinger, Gerd; Heinemann, Sarah; Lerch, Florian; Oertel, Bruno G.; Ultsch, Alfred

    2018-01-01

    Abstract The comprehensive assessment of pain-related human phenotypes requires combinations of nociceptive measures that produce complex high-dimensional data, posing challenges to bioinformatic analysis. In this study, we assessed established experimental models of heat hyperalgesia of the skin, consisting of local ultraviolet-B (UV-B) irradiation or capsaicin application, in 82 healthy subjects using a variety of noxious stimuli. We extended the original heat stimulation by applying cold and mechanical stimuli and assessing the hypersensitization effects with a clinically established quantitative sensory testing (QST) battery (German Research Network on Neuropathic Pain). This study provided a 246 × 10-sized data matrix (82 subjects assessed at baseline, following UV-B application, and following capsaicin application) with respect to 10 QST parameters, which we analyzed using machine-learning techniques. We observed statistically significant effects of the hypersensitization treatments in 9 different QST parameters. Supervised machine-learned analysis implemented as random forests followed by ABC analysis pointed to heat pain thresholds as the most relevantly affected QST parameter. However, decision tree analysis indicated that UV-B additionally modulated sensitivity to cold. Unsupervised machine-learning techniques, implemented as emergent self-organizing maps, hinted at subgroups responding to topical application of capsaicin. The distinction among subgroups was based on sensitivity to pressure pain, which could be attributed to sex differences, with women being more sensitive than men. Thus, while UV-B and capsaicin share a major component of heat pain sensitization, they differ in their effects on QST parameter patterns in healthy subjects, suggesting a lack of redundancy between these models. PMID:28700537

  13. Ada Compiler Validation Summary Report: Certificate Number: 890420W1. 10066 International Business Machines Corporation, IBM Development System for the Ada Language, AIX/RT Ada Compiler, Version 1.1.1, IBM RT PC 6150-125

    DTIC Science & Technology

    1989-04-20

    International Business Machines Corporation, IBM Development System. for the Ada Language AIX/RT Ada Compiler, Version 1.1.1, Wright-Patterson APB...Certificate Number: 890420V1.10066 International Business Machines Corporation IBM Development System for the Ada Language AIX/RT Ada Compiler, Version 1.1.1...TEST INFORMATION The compiler was tested using command scripts provided by International Business Machines Corporation and reviewed by the validation

  14. The wear of cross-linked polyethylene against itself.

    PubMed

    Joyce, T J; Ash, H E; Unsworth, A

    1996-01-01

    Cross-linked polyethylene (XLPE) may have an application as a material for an all-plastic surface replacement finger joint. It is inexpensive, biocompatible and can be injection-moulded into the complex shapes that are found on the ends of the finger bones. Further, the cross-linking of polyethylene has significantly improved its mechanical properties. Therefore, the opportunity exists for an all-XLPE joint, and so the wear characteristics of XLPE sliding against itself have been investigated. Wear tests were carried out on both reciprocating pin-on-plate machines and a finger function simulator. The reciprocating pin-on-plate machines had pins loaded at 10 N and 40 N. All pin-on-plate tests show wear factors from the plates very much greater than those of the pins. After 349 km of sliding, a mean wear factor of 0.46 x 10(-6) mm3/N m was found for the plates compared with 0.021 x 10(-6) mm3/N m for the pins. A fatigue mechanism may be causing this phenomenon of greater plate wear. Tests using the finger function simulator give an average wear rate of 0.22 x 10(-6) mm3/N m after 368 km. This sliding distance is equivalent to 12.5 years of use in vivo. The wear factors found were comparable with those of ultra-high molecular weight polyethylene (UHMWPE) against a metallic counterface and, therefore, as the loads across the finger joint are much less than those across the knee or the hip, it is probable that an all-XLPE finger joint will be viable from a wear point of view.

  15. Machine compliance in compression tests

    NASA Astrophysics Data System (ADS)

    Sousa, Pedro; Ivens, Jan; Lomov, Stepan V.

    2018-05-01

    The compression behavior of a material cannot be accurately determined if the machine compliance is not accounted prior to the measurements. This work discusses the machine compliance during a compressibility test with fiberglass fabrics. The thickness variation was measured during loading and unloading cycles with a relaxation stage of 30 minutes between them. The measurements were performed using an indirect technique based on the comparison between the displacement at a free compression cycle and the displacement with a sample. Relating to the free test, it has been noticed the nonexistence of machine relaxation during relaxation stage. Considering relaxation or not, the characteristic curves for a free compression cycle can be overlapped precisely in the majority of the points. For the compression test with sample, it was noticed a non-physical decrease of about 30 µm during the relaxation stage, what can be explained by the greater fabric relaxation in relation to the machine relaxation. Beyond the technique normally used, another technique was used which allows a constant thickness during relaxation. Within this second method, machine displacement with sample is simply subtracted to the machine displacement without sample being imposed as constant. If imposed as a constant it will remain constant during relaxation stage and it will suddenly decrease after relaxation. If constantly calculated it will decrease gradually during relaxation stage. Independently of the technique used the final result will remain unchanged. The uncertainty introduced by this imprecision is about ±15 µm.

  16. Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines

    PubMed Central

    Manoonpong, Poramate; Parlitz, Ulrich; Wörgötter, Florentin

    2013-01-01

    Living creatures, like walking animals, have found fascinating solutions for the problem of locomotion control. Their movements show the impression of elegance including versatile, energy-efficient, and adaptable locomotion. During the last few decades, roboticists have tried to imitate such natural properties with artificial legged locomotion systems by using different approaches including machine learning algorithms, classical engineering control techniques, and biologically-inspired control mechanisms. However, their levels of performance are still far from the natural ones. By contrast, animal locomotion mechanisms seem to largely depend not only on central mechanisms (central pattern generators, CPGs) and sensory feedback (afferent-based control) but also on internal forward models (efference copies). They are used to a different degree in different animals. Generally, CPGs organize basic rhythmic motions which are shaped by sensory feedback while internal models are used for sensory prediction and state estimations. According to this concept, we present here adaptive neural locomotion control consisting of a CPG mechanism with neuromodulation and local leg control mechanisms based on sensory feedback and adaptive neural forward models with efference copies. This neural closed-loop controller enables a walking machine to perform a multitude of different walking patterns including insect-like leg movements and gaits as well as energy-efficient locomotion. In addition, the forward models allow the machine to autonomously adapt its locomotion to deal with a change of terrain, losing of ground contact during stance phase, stepping on or hitting an obstacle during swing phase, leg damage, and even to promote cockroach-like climbing behavior. Thus, the results presented here show that the employed embodied neural closed-loop system can be a powerful way for developing robust and adaptable machines. PMID:23408775

  17. The effect of environmental factors on selected mechanical properties of zirconium dioxide

    NASA Astrophysics Data System (ADS)

    Wirwicki, W.; Andrzejewska, A.; Andryszczyk, M.; Siemianowski, P.

    2018-04-01

    In many centers around the world, research studies are carried out on the mechanical strength of dental materials and glued joints. A literature review shows the variety of testing techniques related to analyzing the strength and durability of the material itself and the glued joints. In dental ceramics, zirconium dioxide is most often used as a base material, and chemically it consists of 97% ZrO2 and 3% Y2O3. This study was to determine the mechanical properties of zirconium dioxide under different environmental conditions. The material is used for the production of dental crowns and tooth bridges in the CAD/CAM technology. This medium is currently one of the most advanced-generation materials used for prosthetic and implant restorations. They were then subjected to a three-point bending test on the Instron ElektroPlus E3000 durability machine. Storage conditions and time have a positive influence on reducing variation in zirconium resistance for active forces and destructive stresses.

  18. Internally damped, self-arresting vertical drop-weight apparatus

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R. (Inventor); Prasad, Chunchu B. (Inventor); Waters, William A. (Inventor); Stockum, Robert W. (Inventor); Walter, Manfred A. (Inventor)

    1994-01-01

    A vertical dropped-weight impact test machine has a dropped-weight barrel vertically supported on upper and lower support brackets. The dropped-weight barrel is chambered to receive a dropped-weight assembly having a latch pin at its upper end, a damping unit in the middle, and a tup at its lower end. The tup is adapted for gathering data during impact testing. The latch pin releasably engages a latch pin coupling assembly. The latch pin coupling assembly is attached to a winch via a halyard for raising and lowering the dropped-weight assembly. The lower end of the dropped-weight barrel is provided with a bounce-back arresting mechanism which is activated by the descending passage of the dropped-weight assembly. After striking the specimen, the dropped-weight assembly rebounds vertically and is caught by the bounce-back arresting mechanism. The damping unit of the dropped-weight assembly serves to dissipate energy from the rebounding dropped-weight assembly and prevents the dropped-weight assembly from rebounding from the self-arresting mechanism.

  19. Effect of Copper Coated SiC Reinforcements on Microstructure, Mechanical Properties and Wear of Aluminium Composites

    NASA Astrophysics Data System (ADS)

    Kori, P. S.; Vanarotti, Mohan; Angadi, B. M.; Nagathan, V. V.; Auradi, V.; Sakri, M. I.

    2017-08-01

    Experimental investigations are carried out to study the influence of copper coated Silicon carbide (SiC) reinforcements in Aluminum (Al) based Al-SiC composites. Wear behavior and mechanical Properties like, ultimate tensile strength (UTS) and hardness are studied in the present work. Experimental results clearly revealed that, an addition of SiC particles (5, 10 and 15 Wt %) has lead in the improvement of hardness and ultimate tensile strength. Al-SiC composites containing the Copper coated SiC reinforcements showed better improvement in mechanical properties compared to uncoated ones. Characterization of Al-SiC composites are carried out using optical photomicrography and SEM analysis. Wear tests are carried out to study the effects of composition and normal pressure using Pin-On Disc wear testing machine. Results suggested that, wear rate decreases with increasing SiC composition, further an improvement in wear resistance is observed with copper coated SiC reinforcements in the Al-SiC metal matrix composites (MMC’s).

  20. Design of Ultra-High-Power-Density Machine Optimized for Future Aircraft

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.

    2004-01-01

    The NASA Glenn Research Center's Structural Mechanics and Dynamics Branch is developing a compact, nonpolluting, bearingless electric machine with electric power supplied by fuel cells for future "more-electric" aircraft with specific power in the projected range of 50 hp/lb, whereas conventional electric machines generate usually 0.2 hp/lb. The use of such electric drives for propulsive fans or propellers depends on the successful development of ultra-high-power-density machines. One possible candidate for such ultra-high-power-density machines, a round-rotor synchronous machine with an engineering current density as high as 20,000 A/sq cm, was selected to investigate how much torque and power can be produced.

  1. Information, knowledge and the future of machines.

    PubMed

    MacFarlane, Alistair G J

    2003-08-15

    This wide-ranging survey considers the future of machines in terms of information, complexity and the growth of knowledge shared amongst agents. Mechanical and human agents are compared and contrasted, and it is argued that, for the foreseeable future, their roles will be complementary. The future development of machines is examined in terms of unions of human and machine agency evolving as part of economic activity. Limits to, and threats posed by, the continuing evolution of such a society of agency are considered.

  2. Single molecule detection, thermal fluctuation and life

    PubMed Central

    YANAGIDA, Toshio; ISHII, Yoshiharu

    2017-01-01

    Single molecule detection has contributed to our understanding of the unique mechanisms of life. Unlike artificial man-made machines, biological molecular machines integrate thermal noises rather than avoid them. For example, single molecule detection has demonstrated that myosin motors undergo biased Brownian motion for stepwise movement and that single protein molecules spontaneously change their conformation, for switching to interactions with other proteins, in response to thermal fluctuation. Thus, molecular machines have flexibility and efficiency not seen in artificial machines. PMID:28190869

  3. Machining of Aircraft Titanium with Abrasive-Waterjets for Fatigue Critical Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H. T.; Hovanski, Yuri; Dahl, Michael E.

    2010-10-04

    Laboratory tests were conducted to determine the fatigue performance of AWJ-machined aircraft titanium. Dog-bone specimens machined with AWJs were prepared and tested with and without sanding and dry-grit blasting with Al2O3 as secondary processes. The secondary processes were applied to remove the visual appearance of AWJ-generated striations and to clean up the garnet embedment. The fatigue performance of AWJ-machined specimens was compared with baseline specimens machined with CNC milling. Fatigue test results not only confirmed the findings of the aluminum dog-bone specimens but also further enhance the fatigue performance. In addition, titanium is known to be notoriously difficult to cutmore » with contact tools while AWJs cut it 34% faster than stainless steel. AWJ cutting and dry-grit blasting are shown to be a preferred combination for processing aircraft titanium that is fatigue critical.« less

  4. A 34-meter VAWT (Vertical Axis Wind Turbine) point design

    NASA Astrophysics Data System (ADS)

    Ashwill, T. D.; Berg, D. E.; Dodd, H. M.; Rumsey, M. A.; Sutherland, H. J.; Veers, P. S.

    The Wind Energy Division at Sandia National Laboratories recently completed a point design based on the 34-m Vertical Axis Wind Turbine (VAWT) Test Bed. The 34-m Test Bed research machine incorporates several innovations that improve Darrieus technology, including increased energy production, over previous machines. The point design differs minimally from the Test Bed; but by removing research-related items, its estimated cost is substantially reduced. The point design is a first step towards a Test-Bed-based commercial machine that would be competitive with conventional sources of power in the mid-1990s.

  5. Improved Tensile Test for Ceramics

    NASA Technical Reports Server (NTRS)

    Osiecki, R. A.

    1982-01-01

    For almost-nondestructive tensile testing of ceramics, steel rod is bonded to sample of ceramic. Assembly is then pulled apart in conventional tensile-test machine. Test destroys only shallow surface layer which can be machined away making specimen ready for other uses. Method should be useful as manufacturing inspection procedure for low-strength brittle materials.

  6. Mechanical properties evaluation of single and hybrid composites polyester reinforced bamboo, PALF and coir fiber

    NASA Astrophysics Data System (ADS)

    Rihayat, T.; Suryani, S.; Fauzi, T.; Agusnar, H.; Wirjosentono, B.; Syafruddin; Helmi; Zulkifli; Alam, P. N.; Sami, M.

    2018-03-01

    This study aims to determine the composition fiber natural of bamboo, pineapple leaf and coir in single and hybrid composite to see the best characteristics of tensile strength and flexural test by using a Universal Testing Machine (UTM) and observe the effect on the microstructure of the composite through optical and scanning electron microscopy. Bamboo, Palf and coir have synthesis from natural fiber was used as reinforcement in polyester composite using hand lay up or a hot-compression moulding while filler:matrix was used (45%:55wt.%, 70%:30wt.% and 15%:85wt.%). From the variation of the volume fraction between filler and matrix show that mechanical properties of composites increased with increasing amount of filler in the matrix. This is evidenced by the high mechanical properties A:B:C/Ps in compositions 45%: 55wt.% 136 Mpa while flexural strength 93 N and good structure surface morphology. This research has produced a hybrid composite materials that have high mechanical properties and bending compared with conventional synthetic fibers and other materials.

  7. A new wind energy conversion system

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.

    1975-01-01

    It is presupposed that vertical axis wind energy machines will be superior to horizontal axis machines on a power output/cost basis and the design of a new wind energy machine is presented. The design employs conical cones with sharp lips and smooth surfaces to promote maximum drag and minimize skin friction. The cones are mounted on a vertical axis in such a way as to assist torque development. Storing wind energy as compressed air is thought to be optimal and reasons are: (1) the efficiency of compression is fairly high compared to the conversion of mechanical energy to electrical energy in storage batteries; (2) the release of stored energy through an air motor has high efficiency; and (3) design, construction, and maintenance of an all-mechanical system is usually simpler than for a mechanical to electrical conversion system.

  8. Wind at Work.

    ERIC Educational Resources Information Center

    Adams, Stephen

    1998-01-01

    Describes a project in which students create wind machines to harness the wind's power and do mechanical work. Demonstrates kinetic and potential energy conversions and makes work and power calculations meaningful. Students conduct hands-on investigations with their machines. (DDR)

  9. Energy Landscapes: From Protein Folding to Molecular Assembly

    Science.gov Websites

    been used, for example, in DNA origami, in which artificial structures and machines are built in a mechanical processes and eventually to reproduce these in artificial machines. This conference will provide

  10. 41 CFR 50-204.5 - Machine guarding.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... possible and secured elsewhere if for any reason attachment to the machine is not possible. The guard shall... mechanism, so that the barrel, drum or container cannot revolve unless the guard enclosure is in place. (e...

  11. The Invention Convention: Mind Meets Simple Machines.

    ERIC Educational Resources Information Center

    Hadi-Tabassum, Samina

    1997-01-01

    Describes an Earth Day celebration where students had to design an invention made of simple machines that could crush an empty aluminum can through 10 rapid mechanical movements using materials foraged from the students' homes. (JRH)

  12. National machine guarding program: Part 1. Machine safeguarding practices in small metal fabrication businesses

    PubMed Central

    Yamin, Samuel C.; Brosseau, Lisa M.; Xi, Min; Gordon, Robert; Most, Ivan G.; Stanley, Rodney

    2015-01-01

    Background Metal fabrication workers experience high rates of traumatic occupational injuries. Machine operators in particular face high risks, often stemming from the absence or improper use of machine safeguarding or the failure to implement lockout procedures. Methods The National Machine Guarding Program (NMGP) was a translational research initiative implemented in conjunction with two workers' compensation insures. Insurance safety consultants trained in machine guarding used standardized checklists to conduct a baseline inspection of machine‐related hazards in 221 business. Results Safeguards at the point of operation were missing or inadequate on 33% of machines. Safeguards for other mechanical hazards were missing on 28% of machines. Older machines were both widely used and less likely than newer machines to be properly guarded. Lockout/tagout procedures were posted at only 9% of machine workstations. Conclusions The NMGP demonstrates a need for improvement in many aspects of machine safety and lockout in small metal fabrication businesses. Am. J. Ind. Med. 58:1174–1183, 2015. © 2015 The Authors. American Journal of Industrial Medicine published by Wiley Periodicals, Inc. PMID:26332060

  13. Fracture behavior of large-scale thin-sheet aluminum alloy

    NASA Technical Reports Server (NTRS)

    Dewit, Roland; Fields, Richard J.; Mordfin, Leonard; Low, Samuel R.; Harne, Donald

    1994-01-01

    A series of fracture tests on large-scale, pre-cracked, aluminum alloy panels is being carried out to examine and to characterize the process by which cracks propagate and link up in this material. Extended grips and test fixtures were specially designed to enable the panel specimens to be loaded in tension, in a 1780-kN-capacity universal testing machine. Twelve panel specimens, each consisting of a single sheet of bare 2024-T3 aluminum alloy, 3988 mm high, 2286 mm wide, and 1.016 mm thick are being fabricated with simulated through-cracks oriented horizontally at mid-height. Using existing information, a test matrix has been set up that explores regions of failure that are controlled by fracture mechanics, with additional tests near the boundary between plastic collapse and fracture. In addition, a variety of multiple site damage (MSD) configurations have been included to distinguish between various proposed linkage mechanisms. All tests but one use anti-buckling guides. At this writing seven specimens have been tested. Three were fabricated with a single central crack, three others had multiple cracks on each side of the central crack, and one had a single crack but no anti-buckling guides. Each fracture event was recorded on film, video, computer, magnetic tape, and occasionally optical microscopy. The visual showed the crack tip with a load meter in the field of view, using motion picture film for one tip and SVHS video tape for the other. The computer recorded the output of the testing machine load cell, the stroke, and twelve strain gages at 1.5 second intervals. A wideband FM magnetic tape recorder was used to record data from the same sources. The data were analyzed by two different procedures: (1) the plastic zone model based on the residual strength diagram; and (2) the R-curve. The first three tests were used to determine the basic material properties, and these results were then used in the analysis of the two subsequent tests with MSD cracks. There is good agreement between measured values and results obtained from the model.

  14. Elastic Multi-scale Mechanisms: Computation and Biological Evolution.

    PubMed

    Diaz Ochoa, Juan G

    2018-01-01

    Explanations based on low-level interacting elements are valuable and powerful since they contribute to identify the key mechanisms of biological functions. However, many dynamic systems based on low-level interacting elements with unambiguous, finite, and complete information of initial states generate future states that cannot be predicted, implying an increase of complexity and open-ended evolution. Such systems are like Turing machines, that overlap with dynamical systems that cannot halt. We argue that organisms find halting conditions by distorting these mechanisms, creating conditions for a constant creativity that drives evolution. We introduce a modulus of elasticity to measure the changes in these mechanisms in response to changes in the computed environment. We test this concept in a population of predators and predated cells with chemotactic mechanisms and demonstrate how the selection of a given mechanism depends on the entire population. We finally explore this concept in different frameworks and postulate that the identification of predictive mechanisms is only successful with small elasticity modulus.

  15. Retention strength of impression materials to a tray material using different adhesive methods: an in vitro study.

    PubMed

    Marafie, Yousef; Looney, Stephen; Nelson, Steven; Chan, Daniel; Browning, William; Rueggeberg, Frederick

    2008-12-01

    A new self-stick adhesive system has been purported to eliminate the need to use chemical adhesives with plastic impression trays; however, no testing has confirmed the claim. The purpose of this study was to compare the in vitro retentive strength of impression materials to plastic substrates having conventional adhesive (CA) or the self-stick adhesive system, with and without mechanical retention. Three types of impression materials (irreversible hydrocolloid (IH), vinyl polysiloxane (VPS), and polyether (PE)) were applied to polystyrene disc-shaped surfaces (33.68 cm(2)) that were held on the arms of a universal testing machine. The appropriate CA or the self-stick adhesive system (Self-Stick Dots) (SSD) was applied to the plates, which had either no mechanical retention, or equally spaced mechanical perforations (n=4). An in vivo pilot test determined the appropriate rate of plate separation. Plates with impression material were lowered to provide 4 mm of space, the material set, and plates were separated using the appropriate speed. Force at first separation was divided by plate area (peak stress). Five replications per test condition were made, and results were analyzed using ANOVA and Bonferroni-adjusted t tests (alpha=.05). Within each impression material/test combination, stress using SSD was significantly lower than CA (P<.05). Mechanical retention did not always provide significantly greater strength. The combination of mechanical retention and CA yielded the highest strength within each material type, except for PE, for which nonmechanical and CA strength did not differ from that of mechanical and CA. Use of the self-stick adhesive system provided significantly lower retentive strength to plastic tray material than chemical adhesives for irreversible hydrocolloid, vinyl polysiloxane, and polyether.

  16. Adaptive displays and controllers using alternative feedback.

    PubMed

    Repperger, D W

    2004-12-01

    Investigations on the design of haptic (force reflecting joystick or force display) controllers were conducted by viewing the display of force information within the context of several different paradigms. First, using analogies from electrical and mechanical systems, certain schemes of the haptic interface were hypothesized which may improve the human-machine interaction with respect to various criteria. A discussion is given on how this interaction benefits the electrical and mechanical system. To generalize this concept to the design of human-machine interfaces, three studies with haptic mechanisms were then synthesized and analyzed.

  17. Reconstructing the Antikythera Mechanism

    NASA Astrophysics Data System (ADS)

    Freeth, Tony

    The Antikythera Mechanism is a geared astronomical calculating machine from ancient Greece. The extraordinary nature of this device has become even more apparent in recent years as a result of research under the aegis of the Antikythera Mechanism Research Project (AMRP) - an international collaboration of scientists, historians, museum staff, engineers, and imaging specialists. Though many questions still remain, we may now be close to reconstructing the complete machine. As a technological artifact, it is unique in the ancient world. Its brilliant design conception means that it is a landmark in the history of science and technology.

  18. Development of a beam builder for automatic fabrication of large composite space structures

    NASA Technical Reports Server (NTRS)

    Bodle, J. G.

    1979-01-01

    The composite material beam builder which will produce triangular beams from pre-consolidated graphite/glass/thermoplastic composite material through automated mechanical processes is presented, side member storage, feed and positioning, ultrasonic welding, and beam cutoff are formed. Each process lends itself to modular subsystem development. Initial development is concentrated on the key processes for roll forming and ultrasonic welding composite thermoplastic materials. The construction and test of an experimental roll forming machine and ultrasonic welding process control techniques are described.

  19. Fungus Resistance of Plastics

    DTIC Science & Technology

    1951-08-17

    Phenolic Phenolic Phenolic Phe-nolle Genera^.’ General General Electrical Electrical! Punching Mechanical General Electrical Fine Machin ...spores» The resulting separate suspensions were mixed to obtain a composite : spore suspension ~för"üse in inocüla ting the test specimens© 79...7 {SQKT33SI3SDJ fltttg*.8..«t.J56 FÜtfOOS BIBlSTikÄ C£ HäST’Iö LAMINATS (EüHigjiTy EXBöSTJSB; METHOD JL-.-- Ör&ie 5 - 11G

  20. Prospective areas in the production technology of scientific equipment for space research

    NASA Technical Reports Server (NTRS)

    Breslavets, A. V.

    1974-01-01

    The average labor of individual types of operations in the percentage ratio of the total labor consumption of manufacturing scientific instruments and apparatus for space research is presented. The prospective areas in the production technology of billet, machining, mechanical assembly, installation and assembly, adjustment and regulation and testing and control operations are noted. Basic recommendations are made with respect to further reduction of labor consumption and an increase in the productivity of labor when manufacturing scientific equipment for space research.

  1. Microstructure and Properties of a Refractory NbCrMo0.5Ta0.5TiZr Alloy (Postprint)

    DTIC Science & Technology

    2014-04-01

    vacuum arc melting. To close shrinkage porosity, it was hot isostatically pressed (HIPd) at T = 1723K and P = 207MPa for 3 h. In both as-solidified and...and 1473 K in a computer-controlled Instron (Instron, Norwood, MA) mechanical testing machine out- fitted with a Brew vacuum furnace and silicon...temperature. For Zr and Ti, the parameter a was extrapolated from elevated temperatures [8]. The calculated ( Calc ) values of the lattice parameter of

  2. Direct metal laser deposition of titanium powder Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Bykovskiy, D. P.; Petrovskiy, V. N.; Sergeev, K. L.; Osintsev, A. V.; Dzhumaev, P. S.; Polskiy, V. I.

    2017-12-01

    The paper presents the results of mechanical properties study of the material produced by direct metal laser deposition of VT6 titanium powder. The properties were determined by the results of stretching at tensile testing machine, as well as compared with the properties of the same rolled material. These results show that obtained samples have properties on the level or even higher than that ones of the samples obtained from the rolled material in a certain range of technological regimes.

  3. Mechanical Properties of Spinal Ligaments for Rhesus Monkey, Baboon and Chimpanzee.

    DTIC Science & Technology

    1981-06-01

    isolate the spine, to grossly elevate the scapulae , and to expose the dorsal aspect of the rib cage. Using a Stryker saw, the rib,: were cut at least 2...Figure 10. The upper gripping plate was attached to the actuator of the testing machine and the lower plate to the load cell. The ligament sample was held...against these plates with stainless steel bands. On the surfaces of both the plates and the bands, a waterproof abrasive mesh (silicon carbide 120

  4. Thermomechanical Contact Phenomena and Wear of Sliding Components

    DTIC Science & Technology

    1989-07-31

    seals. Many of those methods were used in this study. • • I I i II I I I I I I I l1 2. METHDS Sliding wear tests were conducted on Inconel 625 seal rings...wear. These coatings have been used successfully in reducing the wear of machine tools , aircraft and automobile engine parts, etc. It is only recently...scanning electron microscopy were tools employed to determine the wear behavior and wear mechanism associated with the various chromium carbide and tungsten

  5. Identification of the mechanical properties of bicycle tyres for modelling of bicycle dynamics

    NASA Astrophysics Data System (ADS)

    Doria, Alberto; Tognazzo, Mauro; Cusimano, Gianmaria; Bulsink, Vera; Cooke, Adrian; Koopman, Bart

    2013-03-01

    Advanced simulation of the stability and handling properties of bicycles requires detailed road-tyre contact models. In order to develop these models, in this study, four bicycle tyres are tested by means of a rotating disc machine with the aim of measuring the components of tyre forces and torques that influence the safety and handling of bicycles. The effect of inflation pressure and tyre load is analysed. The measured properties of bicycle tyres are compared with those of motorcycle tyres.

  6. Design and fabrication of a micron scale free-standing specimen for uniaxial micro-tensile tests

    NASA Astrophysics Data System (ADS)

    Tang, Jun; Wang, Hong; Li, Shi Chen; Liu, Rui; Mao, Sheng Ping; Li, Xue Ping; Zhang, Cong Chun; Ding, Guifu

    2009-10-01

    This paper presents a novel design and fabrication of test chips with a nickel free-standing specimen for the micro uniaxial tensile test. To fabricate test chips on the quartz substrate significantly reduces the fabrication time, minimizes the number of steps and eliminates the effect of the wet anisotropic etching process on mechanical properties. The test chip can be gripped tightly to the test machine and aligned accurately in the pulling direction; furthermore, the approximately straight design of the specimen rather than the traditional dog-bone structure enables the strain be directly measured by a displacement sensor. Both finite-element method (FEM) analysis and experimental results indicate the reliability of the new design. The test chip can also be extended to other materials. The experimental measured Young's modulus of a thin nickel film and the ultimate tensile strength are approximately 94.5 Gpa and 1.76 Gpa, respectively. The results were substantially supported by the experiment on larger gauge specimens by a commercial dynamic mechanical analysis (DMA) instrument. These specimens were electroplated under the same conditions. The low Young's modulus and the high ultimate tensile strength might be explained by the fine grain in the electroplated structure.

  7. Low-cost single-crystal turbine blades, volume 2

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Dennis, R. E.; Heath, B. R.

    1984-01-01

    The overall objectives of Project 3 were to develop the exothermic casting process to produce uncooled single-crystal (SC) HP turbine blades in MAR-M 247 and higher strength derivative alloys and to validate the materials process and components through extensive mechanical property testing, rig testing, and 200 hours of endurance engine testing. These Program objectives were achieved. The exothermic casting process was successfully developed into a low-cost nonproperietary method for producing single-crystal castings. Single-crystal MAR-M 247 and two derivatives DS alloys developed during this project, NASAIR 100 and SC Alloy 3, were fully characterized through mechanical property testing. SC MAR-M 247 shows no significant improvement in strength over directionally solidified (DS) MAR-M 247, but the derivative alloys, NASAIR 100 and Alloy 3, show significant tensile and fatigue improvements. Firtree testing, holography, and strain-gauge rig testing were used to determine the effects of the anisotropic characteristics of single-crystal materials. No undesirable characteristics were found. In general, the single-crystal material behaved similarly to DS MAR-M 247. Two complete engine sets of SC HP turbine blades were cast using the exothermic casting process and fully machined. These blades were successfully engine-tested.

  8. Automated Tow Placement Processing and Characterization of Composites

    NASA Technical Reports Server (NTRS)

    Prabhakaran, R.

    2004-01-01

    The project had one of the initial objectives as automated tow placement (ATP), in which a robot was used to place a collimated band of pre-impregnated ribbons or a wide preconsolidated tape onto a tool surface. It was proposed to utilize the Automated Tow Placement machine that was already available and to fabricate carbon fiber reinforced PEEK (polyether-ether-ketone) matrix composites. After initial experiments with the fabrication of flat plates, composite cylinders were to be fabricated. Specimens from the fabricated parts were to be tested for mechanical characterization. A second objective was to conduct various types of tests for characterizing composite specimens cured by different fabrication processes.

  9. New numerical approach for the modelling of machining applied to aeronautical structural parts

    NASA Astrophysics Data System (ADS)

    Rambaud, Pierrick; Mocellin, Katia

    2018-05-01

    The manufacturing of aluminium alloy structural aerospace parts involves several steps: forming (rolling, forging …etc), heat treatments and machining. Before machining, the manufacturing processes have embedded residual stresses into the workpiece. The final geometry is obtained during this last step, when up to 90% of the raw material volume is removed by machining. During this operation, the mechanical equilibrium of the part is in constant evolution due to the redistribution of the initial stresses. This redistribution is the main cause for workpiece deflections during machining and for distortions - after unclamping. Both may lead to non-conformity of the part regarding the geometrical and dimensional specifications and therefore to rejection of the part or additional conforming steps. In order to improve the machining accuracy and the robustness of the process, the effect of the residual stresses has to be considered for the definition of the machining process plan and even in the geometrical definition of the part. In this paper, the authors present two new numerical approaches concerning the modelling of machining of aeronautical structural parts. The first deals with the use of an immersed volume framework to model the cutting step, improving the robustness and the quality of the resulting mesh compared to the previous version. The second is about the mechanical modelling of the machining problem. The authors thus show that in the framework of rolled aluminium parts the use of a linear elasticity model is functional in the finite element formulation and promising regarding the reduction of computation times.

  10. The effect of abrading and cutting instruments on machinability of dental ceramics.

    PubMed

    Sakoda, Satoshi; Nakao, Noriko; Watanabe, Ikuya

    2018-03-16

    The aim was to investigate the effect of machining instruments on machinability of dental ceramics. Four dental ceramics, including two zirconia ceramics were machined by three types (SiC, diamond vitrified, and diamond sintered) of wheels with a hand-piece engine and two types (diamond and carbide) of burs with a high-speed air turbine. The machining conditions used were abrading speeds of 10,000 and 15,000 r.p.m. with abrading force of 100 gf for the hand-piece engine, and a pressure of 200 kPa and a cutting force of 80 gf for the air-turbine hand-piece. The machinability efficiency was evaluated by volume losses after machining the ceramics. A high-abrading speed had high-abrading efficiency (high-volume loss) compared to low-abrading speed in all abrading instruments used. The diamond vitrified wheels demonstrated higher volume loss for two zirconia ceramics than those of SiC and diamond sintered wheels. When the high-speed air-turbine instruments were used, the diamond points showed higher volume losses compared to the carbide burs for one ceramic and two zirconia ceramics with high-mechanical properties. The results of this study indicated that the machinability of dental ceramics depends on the mechanical and physical properties of dental ceramics and machining instruments. The abrading wheels show autogenous action of abrasive grains, in which ground abrasive grains drop out from the binder during abrasion, then the binder follow to wear out, subsequently new abrasive grains come out onto the instrument surface (autogenous action) and increase the grinding amount (volume loss) of grinding materials.

  11. Investigation of approximate models of experimental temperature characteristics of machines

    NASA Astrophysics Data System (ADS)

    Parfenov, I. V.; Polyakov, A. N.

    2018-05-01

    This work is devoted to the investigation of various approaches to the approximation of experimental data and the creation of simulation mathematical models of thermal processes in machines with the aim of finding ways to reduce the time of their field tests and reducing the temperature error of the treatments. The main methods of research which the authors used in this work are: the full-scale thermal testing of machines; realization of various approaches at approximation of experimental temperature characteristics of machine tools by polynomial models; analysis and evaluation of modelling results (model quality) of the temperature characteristics of machines and their derivatives up to the third order in time. As a result of the performed researches, rational methods, type, parameters and complexity of simulation mathematical models of thermal processes in machine tools are proposed.

  12. Determining the compactive effort required to model pavement voids using the Corps of Engineers gyratory testing machine.

    DOT National Transportation Integrated Search

    1997-11-01

    Various agencies have used the Corps of Engineers gyratory testing machine (GTM) to design and test asphalt mixes. Materials properties such as shear strength and strain are measured during the compaction process. However, a compaction process duplic...

  13. Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine

    PubMed Central

    Aubin-Tam, Marie-Eve; Olivares, Adrian O.; Sauer, Robert T.; Baker, Tania A.; Lang, Matthew J.

    2011-01-01

    All cells employ ATP-powered proteases for protein-quality control and regulation. In the ClpXP protease, ClpX is a AAA+ machine that recognizes specific protein substrates, unfolds these molecules, and then translocates the denatured polypeptide through a central pore and into ClpP for degradation. Here, we use optical-trapping nanometry to probe the mechanics of enzymatic unfolding and translocation of single molecules of a multidomain substrate. Our experiments demonstrate the capacity of ClpXP and ClpX to perform mechanical work under load, reveal very fast and highly cooperative unfolding of individual substrate domains, suggest a translocation step size of 5–8 amino acids, and support a power-stroke model of denaturation in which successful enzyme-mediated unfolding of stable domains requires coincidence between mechanical pulling by the enzyme and a transient stochastic reduction in protein stability. We anticipate that single-molecule studies of the mechanical properties of other AAA+ proteolytic machines will reveal many shared features with ClpXP. PMID:21496645

  14. Thermal measurement of brake pad lining surfaces during the braking process

    NASA Astrophysics Data System (ADS)

    Piątkowski, Tadeusz; Polakowski, Henryk; Kastek, Mariusz; Baranowski, Pawel; Damaziak, Krzysztof; Małachowski, Jerzy; Mazurkiewicz, Łukasz

    2012-06-01

    This paper presents the test campaign concept and definition and the analysis of the recorded measurements. One of the most important systems in cars and trucks are brakes. The braking temperature on a lining surface can rise above 500°C. This shows how linings requirements are so strict and, what is more, continuously rising. Besides experimental tests, very supportive method for investigating processes which occur on the brake pad linings are numerical analyses. Experimental tests were conducted on the test machine called IL-68. The main component of IL-68 is so called frictional unit, which consists of: rotational head, which convey a shaft torque and where counter samples are placed and translational head, where samples of coatings are placed and pressed against counter samples. Due to the high rotational speeds and thus the rapid changes in temperature field, the infrared camera was used for testing. The paper presents results of analysis registered thermograms during the tests with different conditions. Furthermore, based on this testing machine, the numerical model was developed. In order to avoid resource demanding analyses only the frictional unit (described above) was taken into consideration. Firstly the geometrical model was performed thanks to CAD techniques, which in the next stage was a base for developing the finite element model. Material properties and boundary conditions exactly correspond to experimental tests. Computations were performed using a dynamic LS-Dyna code where heat generation was estimated assuming full (100%) conversion of mechanical work done by friction forces. Paper presents the results of dynamic thermomechanical analysis too and these results were compared with laboratory tests.

  15. Evaluation of an Integrated Multi-Task Machine Learning System with Humans in the Loop

    DTIC Science & Technology

    2007-01-01

    machine learning components natural language processing, and optimization...was examined with a test explicitly developed to measure the impact of integrated machine learning when used by a human user in a real world setting...study revealed that integrated machine learning does produce a positive impact on overall performance. This paper also discusses how specific machine learning components contributed to human-system

  16. Advantages of the experimental animal hollow organ mechanical testing system for the rat colon rupture pressure test.

    PubMed

    Ji, Chengdong; Guo, Xuan; Li, Zhen; Qian, Shuwen; Zheng, Feng; Qin, Haiqing

    2013-01-01

    Many studies have been conducted on colorectal anastomotic leakage to reduce the incidence of anastomotic leakage. However, how to precisely determine if the bowel can withstand the pressure of a colorectal anastomosis experiment, which is called anastomotic bursting pressure, has not been determined. A task force developed the experimental animal hollow organ mechanical testing system to provide precise measurement of the maximum pressure that an anastomotic colon can withstand, and to compare it with the commonly used method such as the mercury and air bag pressure manometer in a rat colon rupture pressure test. Forty-five male Sprague-Dawley rats were randomly divided into the manual ball manometry (H) group, the tracing machine manometry pressure gauge head (MP) group, and the experimental animal hollow organ mechanical testing system (ME) group. The rats in each group were subjected to a cut colon rupture pressure test after injecting anesthesia in the tail vein. Colonic end-to-end anastomosis was performed, and the rats were rested for 1 week before anastomotic bursting pressure was determined by one of the three methods. No differences were observed between the normal colon rupture pressure and colonic anastomotic bursting pressure, which were determined using the three manometry methods. However, several advantages, such as reduction in errors, were identified in the ME group. Different types of manometry methods can be applied to the normal rat colon, but the colonic anastomotic bursting pressure test using the experimental animal hollow organ mechanical testing system is superior to traditional methods. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  17. 30 CFR 75.1719-1 - Illumination in working places.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., hydraulic, pneumatic, or mechanical power supplied by a source located on the machine or transmitted to the machine by cables, ropes, or chains. (c) The lighting prescribed in this section shall be in addition to...

  18. 30 CFR 75.1719-1 - Illumination in working places.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., hydraulic, pneumatic, or mechanical power supplied by a source located on the machine or transmitted to the machine by cables, ropes, or chains. (c) The lighting prescribed in this section shall be in addition to...

  19. Cooperating with machines.

    PubMed

    Crandall, Jacob W; Oudah, Mayada; Tennom; Ishowo-Oloko, Fatimah; Abdallah, Sherief; Bonnefon, Jean-François; Cebrian, Manuel; Shariff, Azim; Goodrich, Michael A; Rahwan, Iyad

    2018-01-16

    Since Alan Turing envisioned artificial intelligence, technical progress has often been measured by the ability to defeat humans in zero-sum encounters (e.g., Chess, Poker, or Go). Less attention has been given to scenarios in which human-machine cooperation is beneficial but non-trivial, such as scenarios in which human and machine preferences are neither fully aligned nor fully in conflict. Cooperation does not require sheer computational power, but instead is facilitated by intuition, cultural norms, emotions, signals, and pre-evolved dispositions. Here, we develop an algorithm that combines a state-of-the-art reinforcement-learning algorithm with mechanisms for signaling. We show that this algorithm can cooperate with people and other algorithms at levels that rival human cooperation in a variety of two-player repeated stochastic games. These results indicate that general human-machine cooperation is achievable using a non-trivial, but ultimately simple, set of algorithmic mechanisms.

  20. Certification of highly complex safety-related systems.

    PubMed

    Reinert, D; Schaefer, M

    1999-01-01

    The BIA has now 15 years of experience with the certification of complex electronic systems for safety-related applications in the machinery sector. Using the example of machining centres this presentation will show the systematic procedure for verifying and validating control systems using Application Specific Integrated Circuits (ASICs) and microcomputers for safety functions. One section will describe the control structure of machining centres with control systems using "integrated safety." A diverse redundant architecture combined with crossmonitoring and forced dynamization is explained. In the main section the steps of the systematic certification procedure are explained showing some results of the certification of drilling machines. Specification reviews, design reviews with test case specification, statistical analysis, and walk-throughs are the analytical measures in the testing process. Systematic tests based on the test case specification, Electro Magnetic Interference (EMI), and environmental testing, and site acceptance tests on the machines are the testing measures for validation. A complex software driven system is always undergoing modification. Most of the changes are not safety-relevant but this has to be proven. A systematic procedure for certifying software modifications is presented in the last section of the paper.

  1. NASA Astrophysics Data System (ADS)

    Scapin, M.; Peroni, L.; Fichera, C.; Cambriani, A.

    2014-08-01

    High chromium ferritic/martensitic steel T91 (9% Cr, 1% Mo), on account of its radiation resistance, is a candidate material for nuclear reactor applications. Its joining by an impact method to create a cold joint is tested in the realm of scoping tests toward the safe operation of nuclear fuels, encapsulated in representative T91 materials. Hitherto, T91 mechanical characterization at high strain rates is relatively unknown, particularly, in relation to impact joining and also to nuclear accidents. In this study, the mechanical characterization of T91 steel was performed in tension by varying the strain-rate (10-3 up to 104 s-1) and temperature (20-800°C) on dog-bone specimens, using standard testing machines or Hopkinson Bar apparati. As expected, the material is both temperature and strain-rate sensitive and different sets of parameters for the Johnson-Cook strength model were extracted via a numerical inverse procedure, in order to obtain the most suitable set to be used in this field of applications.

  2. Microstructure and mechanical properties of nickel coated multi walled carbon nanotube reinforced stainless steel 316L matrix composites by laser sintering process

    NASA Astrophysics Data System (ADS)

    Mahanthesha, P.; Mohankumar, G. C.

    2018-04-01

    Electroless Ni coated Multi-walled Carbon nanotubes reinforced with Stainless Steel 316L matrix composite was developed by Direct Metal Laser Sintering process (DMLS). Homogeneous mixture of Stainless Steel 316L powder and carbon nanotubes in different vol. % was obtained by using double cone blender machine. Characterization of electroless Ni coated carbon nanotubes was done by using X-ray diffraction, FESEM and EDS. Test samples were fabricated at different laser scan speeds. Effect of process parameters and CNT vol. % content on solidification microstructure and mechanical properties of test samples was investigated by using Optical microscopy, FESEM, and Hounsfield tensometer. Experimental results reveal DMLS process parameters affect the density and microstructure of sintered parts. Dense parts with minimum porosity when processed at low laser scan speeds and low CNT vol. %. Tensile fractured surface of test specimens evidences the survival of carbon nanotubes under high temperature processing condition.

  3. Normalized stiffness ratios for mechanical characterization of isotropic acoustic foams.

    PubMed

    Sahraoui, Sohbi; Brouard, Bruno; Benyahia, Lazhar; Parmentier, Damien; Geslain, Alan

    2013-12-01

    This paper presents a method for the mechanical characterization of isotropic foams at low frequency. The objective of this study is to determine the Young's modulus, the Poisson's ratio, and the loss factor of commercially available foam plates. The method is applied on porous samples having square and circular sections. The main idea of this work is to perform quasi-static compression tests of a single foam sample followed by two juxtaposed samples having the same dimensions. The load and displacement measurements lead to a direct extraction of the elastic constants by means of normalized stiffness and normalized stiffness ratio which depend on Poisson's ratio and shape factor. The normalized stiffness is calculated by the finite element method for different Poisson ratios. The no-slip boundary conditions imposed by the loading rigid plates create interfaces with a complex strain distribution. Beforehand, compression tests were performed by means of a standard tensile machine in order to determine the appropriate pre-compression rate for quasi-static tests.

  4. Testing and Validating Machine Learning Classifiers by Metamorphic Testing☆

    PubMed Central

    Xie, Xiaoyuan; Ho, Joshua W. K.; Murphy, Christian; Kaiser, Gail; Xu, Baowen; Chen, Tsong Yueh

    2011-01-01

    Machine Learning algorithms have provided core functionality to many application domains - such as bioinformatics, computational linguistics, etc. However, it is difficult to detect faults in such applications because often there is no “test oracle” to verify the correctness of the computed outputs. To help address the software quality, in this paper we present a technique for testing the implementations of machine learning classification algorithms which support such applications. Our approach is based on the technique “metamorphic testing”, which has been shown to be effective to alleviate the oracle problem. Also presented include a case study on a real-world machine learning application framework, and a discussion of how programmers implementing machine learning algorithms can avoid the common pitfalls discovered in our study. We also conduct mutation analysis and cross-validation, which reveal that our method has high effectiveness in killing mutants, and that observing expected cross-validation result alone is not sufficiently effective to detect faults in a supervised classification program. The effectiveness of metamorphic testing is further confirmed by the detection of real faults in a popular open-source classification program. PMID:21532969

  5. Effect of Width of Kerf on Machining Accuracy and Subsurface Layer After WEDM

    NASA Astrophysics Data System (ADS)

    Mouralova, K.; Kovar, J.; Klakurkova, L.; Prokes, T.

    2018-02-01

    Wire electrical discharge machining is an unconventional machining technology that applies physical principles to material removal. The material is removed by a series of recurring current discharges between the workpiece and the tool electrode, and a `kerf' is created between the wire and the material being machined. The width of the kerf is directly dependent not only on the diameter of the wire used, but also on the machine parameter settings and, in particular, on the set of mechanical and physical properties of the material being machined. To ensure precise machining, it is important to have the width of the kerf as small as possible. The present study deals with the evaluation of the width of the kerf for four different metallic materials (some of which were subsequently heat treated using several methods) with different machine parameter settings. The kerf is investigated on metallographic cross sections using light and electron microscopy.

  6. Electrostatic sensors for SPIDER experiment: Design, manufacture of prototypes, and first tests

    NASA Astrophysics Data System (ADS)

    Brombin, M.; Spolaore, M.; Serianni, G.; Barzon, A.; Franchin, L.; Pasqualotto, R.; Pomaro, N.; Schiesko, L.; Taliercio, C.; Trevisan, L.

    2014-02-01

    A system of electrostatic sensors has been designed for the SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) experiment, prototype RF source of the ITER NBI (neutral beam injection). A prototype of the sensor system was manufactured and tested at the BATMAN (BAvarian Test MAchine for Negative ions) facility, where the plasma environment is similar to that of SPIDER. Different aspects concerning the mechanical manufacturing and the signal conditioning are presented, among them the RF compensation adopted to reduce the RF effects which could lead to overestimated values of the electron temperature. The first commissioning tests provided ion saturation current values in the range assumed for the design, so the deduced plasma density estimate is consistent with the expected values.

  7. Electrostatic sensors for SPIDER experiment: design, manufacture of prototypes, and first tests.

    PubMed

    Brombin, M; Spolaore, M; Serianni, G; Barzon, A; Franchin, L; Pasqualotto, R; Pomaro, N; Schiesko, L; Taliercio, C; Trevisan, L

    2014-02-01

    A system of electrostatic sensors has been designed for the SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) experiment, prototype RF source of the ITER NBI (neutral beam injection). A prototype of the sensor system was manufactured and tested at the BATMAN (BAvarian Test MAchine for Negative ions) facility, where the plasma environment is similar to that of SPIDER. Different aspects concerning the mechanical manufacturing and the signal conditioning are presented, among them the RF compensation adopted to reduce the RF effects which could lead to overestimated values of the electron temperature. The first commissioning tests provided ion saturation current values in the range assumed for the design, so the deduced plasma density estimate is consistent with the expected values.

  8. Electrostatic sensors for SPIDER experiment: Design, manufacture of prototypes, and first tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brombin, M., E-mail: matteo.brombin@igi.cnr.it; Spolaore, M.; Serianni, G.

    2014-02-15

    A system of electrostatic sensors has been designed for the SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) experiment, prototype RF source of the ITER NBI (neutral beam injection). A prototype of the sensor system was manufactured and tested at the BATMAN (BAvarian Test MAchine for Negative ions) facility, where the plasma environment is similar to that of SPIDER. Different aspects concerning the mechanical manufacturing and the signal conditioning are presented, among them the RF compensation adopted to reduce the RF effects which could lead to overestimated values of the electron temperature. The first commissioningmore » tests provided ion saturation current values in the range assumed for the design, so the deduced plasma density estimate is consistent with the expected values.« less

  9. Electromechanically Actuated Multifunctional Wireless Auxetic Device for Wound Management.

    PubMed

    Mir, Mariam; Ansari, Umar; Ali, Murtaza Najabat; Iftikhar, Muhammad Hassan Ul; Qayyum, Faisal

    2017-01-01

    The design and fabrication of a wound healing device for chronic wounds, with multiple functions for controlled drug delivery and exudate removal, has been described in this paper. The structural features have been machined and modified through laser cutting in a biocompatible polymer cast. Miniaturized versions of electronically actuated (lead-screw and pulley) mechanisms are used for the specific purpose of controlled drug delivery. These mechanisms have been studied and tested, being controlled through a microcontroller setup. An auxetic polymeric barrier membrane has been used for restricting the drug quantities administered. Drug delivery mechanisms are powered wirelessly, through an external, active RF component; this communicates with a passive component that is buried inside the wound healing device. The exudate removal efficiency of the device has been assessed through several simple tests using simulated wound exudate. It has been found that reasonably precise quantities of drug dosages to be administered to the wound site can be controlled through both drug delivery mechanisms; however, the lead-screw mechanism provides a better control of auxetic barrier membrane actuation and hence controlled drug delivery. We propose that this device can have potential clinical significance in controlled drug delivery and exudate removal in the management of chronic wounds.

  10. Mechanical properties of a bioabsorbable nerve guide tube for long nerve defects.

    PubMed

    Ichihara, S; Facca, S; Liverneaux, P; Inada, Y; Takigawa, T; Kaneko, K; Nakamura, T

    2015-09-01

    The mechanical properties of nerve guide tubes must be taken into consideration when they are being developed. We previously reported the feasibility of using 50:50 tubes in a canine 40mm peroneal nerve defect model, where 50:50 represents the proportion of poly(L-lactic) acid (PLLA) and polyglycolic acid (PGA). The aim of the current study was to show that 50:50 tubes have suitable mechanical properties for repairing long nerve defects. Four types of nerve guide tubes made with PLLA to PGA fiber ratios of 100:0 (i.e. 100% PLLA) (100:0 tube), 50:50 (50:50 tube), 10:90 (10:90 tube), and 0:100 (0:100 tube) were designed and created using a tubular braiding machine. Their mechanical properties were examined in vitro (up to 16 weeks). In compression testing, 50:50 tubes had the highest normalized force value, followed in order by the 100:0, 10:90, and 0:100 tubes up to 8 weeks after immersion. From the point of view of biomechanics and bioresorbability, out of the 4 tube types tested, 50:50 tubes appeared to have the optimal mechanical properties for longer nerve defects. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. Learning Machine Learning: A Case Study

    ERIC Educational Resources Information Center

    Lavesson, N.

    2010-01-01

    This correspondence reports on a case study conducted in the Master's-level Machine Learning (ML) course at Blekinge Institute of Technology, Sweden. The students participated in a self-assessment test and a diagnostic test of prerequisite subjects, and their results on these tests are correlated with their achievement of the course's learning…

  12. 29 CFR 1919.15 - Periodic tests, examinations and inspections.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Periodic tests, examinations and inspections. After being taken into use, every hoisting machine, all fixed... 29 Labor 7 2013-07-01 2013-07-01 false Periodic tests, examinations and inspections. 1919.15... the attachments, as a unit; and cranes and other hoisting machines with their accessory gear, as a...

  13. 29 CFR 1919.15 - Periodic tests, examinations and inspections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Periodic tests, examinations and inspections. After being taken into use, every hoisting machine, all fixed... 29 Labor 7 2010-07-01 2010-07-01 false Periodic tests, examinations and inspections. 1919.15... the attachments, as a unit; and cranes and other hoisting machines with their accessory gear, as a...

  14. 29 CFR 1919.15 - Periodic tests, examinations and inspections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Periodic tests, examinations and inspections. After being taken into use, every hoisting machine, all fixed... 29 Labor 7 2011-07-01 2011-07-01 false Periodic tests, examinations and inspections. 1919.15... the attachments, as a unit; and cranes and other hoisting machines with their accessory gear, as a...

  15. 29 CFR 1919.15 - Periodic tests, examinations and inspections.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Periodic tests, examinations and inspections. After being taken into use, every hoisting machine, all fixed... 29 Labor 7 2014-07-01 2014-07-01 false Periodic tests, examinations and inspections. 1919.15... the attachments, as a unit; and cranes and other hoisting machines with their accessory gear, as a...

  16. 29 CFR 1919.15 - Periodic tests, examinations and inspections.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Periodic tests, examinations and inspections. After being taken into use, every hoisting machine, all fixed... 29 Labor 7 2012-07-01 2012-07-01 false Periodic tests, examinations and inspections. 1919.15... the attachments, as a unit; and cranes and other hoisting machines with their accessory gear, as a...

  17. A novel diamond micro-/nano-machining process for the generation of hierarchical micro-/nano-structures

    NASA Astrophysics Data System (ADS)

    Zhu, Zhiwei; To, Suet; Ehmann, Kornel F.; Xiao, Gaobo; Zhu, Wule

    2016-03-01

    A new mechanical micro-/nano-machining process that combines rotary spatial vibrations (RSV) of a diamond tool and the servo motions of the workpiece is proposed and applied for the generation of multi-tier hierarchical micro-/nano-structures. In the proposed micro-/nano-machining system, the servo motion, as the primary cutting motion generated by a slow-tool-servo, is adopted for the fine generation of the primary surfaces with complex shapes. The RSV, as the tertiary cutting operation, is superimposed on the secondary fundamental rotary cutting motion to construct secondary nano-structures on the primary surface. Since the RSV system generally works at much higher frequencies and motion resolution than the primary and secondary motions, it leads to an inherent hierarchical cutting architecture. To investigate the machining performance, complex micro-/nano-structures were generated and explored by both numerical simulations and actual cutting tests. Rotary vibrations of the diamond tool at a constant rotational distance offer an inherent constant cutting velocity, leading to the ability for the generation of homogeneous micro-/nano-structures with fixed amplitudes and frequencies of the vibrations, even over large-scale surfaces. Furthermore, by deliberately combining the non-resonant three-axial vibrations and the servo motion, the generation of a variety of micro-/nano-structures with complex shapes and with flexibly tunable feature sizes can be achieved.

  18. Prediction of Protein-Protein Interaction Sites with Machine-Learning-Based Data-Cleaning and Post-Filtering Procedures.

    PubMed

    Liu, Guang-Hui; Shen, Hong-Bin; Yu, Dong-Jun

    2016-04-01

    Accurately predicting protein-protein interaction sites (PPIs) is currently a hot topic because it has been demonstrated to be very useful for understanding disease mechanisms and designing drugs. Machine-learning-based computational approaches have been broadly utilized and demonstrated to be useful for PPI prediction. However, directly applying traditional machine learning algorithms, which often assume that samples in different classes are balanced, often leads to poor performance because of the severe class imbalance that exists in the PPI prediction problem. In this study, we propose a novel method for improving PPI prediction performance by relieving the severity of class imbalance using a data-cleaning procedure and reducing predicted false positives with a post-filtering procedure: First, a machine-learning-based data-cleaning procedure is applied to remove those marginal targets, which may potentially have a negative effect on training a model with a clear classification boundary, from the majority samples to relieve the severity of class imbalance in the original training dataset; then, a prediction model is trained on the cleaned dataset; finally, an effective post-filtering procedure is further used to reduce potential false positive predictions. Stringent cross-validation and independent validation tests on benchmark datasets demonstrated the efficacy of the proposed method, which exhibits highly competitive performance compared with existing state-of-the-art sequence-based PPIs predictors and should supplement existing PPI prediction methods.

  19. Tempest gas turbine extends EGT product line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chellini, R.

    With the introduction of the 7.8 MW (mechanical output) Tempest gas turbine, ECT has extended the company`s line of its small industrial turbines. The new Tempest machine, featuring a 7.5 MW electric output and a 33% thermal efficiency, ranks above the company`s single-shaft Typhoon gas turbine, rated 3.2 and 4.9 MW, and the 6.3 MW Tornado gas turbine. All three machines are well-suited for use in combined heat and power (CHP) plants, as demonstrated by the fact that close to 50% of the 150 Typhoon units sold are for CHP applications. This experience has induced EGT, of Lincoln, England, tomore » announce the introduction of the new gas turbine prior to completion of the testing program. The present single-shaft machine is expected to be used mainly for industrial trial cogeneration. This market segment, covering the needs of paper mills, hospitals, chemical plants, ceramic industry, etc., is a typical local market. Cogeneration plants are engineered according to local needs and have to be assisted by local organizations. For this reason, to efficiently cover the world market, EGT has selected a number of associates that will receive from Lincoln completely engineered machine packages and will engineer the cogeneration system according to custom requirements. These partners will also assist the customer and dispose locally of the spares required for maintenance operations.« less

  20. Temperature corrections for mechanically graded lumber

    Treesearch

    David W. Green; James W. Evans; James D. Logan; Jim Allen

    1999-01-01

    The continuous lumber tester (CLT) is the most widely used grading machine in the world. With the CLT, the flatwise bending stiffness of lumber is measured as it passes through the machine. The modulus of elasticity (MOE) is calculated from the force required to bend the lumber to a fixed deflection of 7.94 mm (5/16 in.), and this MOE is used in assigning a machine...

Top