Science.gov

Sample records for mechanical vibrations

  1. Mechanical vibration of viscoelastic liquid droplets

    NASA Astrophysics Data System (ADS)

    Sharp, James; Harrold, Victoria

    2014-03-01

    The resonant vibrations of viscoelastic sessile droplets supported on different substrates were monitored using a simple laser light scattering technique. In these experiments, laser light was reflected from the surfaces of droplets of high Mw poly acrylamide-co-acrylic acid (PAA) dissolved in water. The scattered light was allowed to fall on the surface of a photodiode detector and a mechanical impulse was applied to the drops using a vibration motor mounted beneath the substrates. The mechanical impulse caused the droplets to vibrate and the scattered light moved across the surface of the photodiode. The resulting time dependent photodiode signal was then Fourier transformed to obtain the mechanical vibrational spectra of the droplets. The frequencies and widths of the resonant peaks were extracted for droplets containing different concentrations of PAA and with a range of sizes. This was repeated for PAA loaded water drops on surfaces which displayed different values of the three phase contact angle. The results were compared to a simple model of droplet vibration which considers the formation of standing wave states on the surface of a viscoelastic droplet. We gratefully acknowledge the support of the Leverhulme trust under grant number RPG-2012-702.

  2. Directional motion of liquid under mechanical vibrations

    NASA Astrophysics Data System (ADS)

    Costalonga, Maxime; Brunet, Philippe; Peerhossaini, Hassan

    2014-11-01

    When a liquid is submitted to mechanical vibrations, steady flows or motion can be generated by non-linear effects. One example is the steady acoustic streaming one can observe when an acoustic wave propagates in a fluid. At the scale of a droplet, steady motion of the whole amount of liquid can arise from zero-mean periodic forcing. As It has been observed by Brunet et al. (PRL 2007), a drop can climb an inclined surface when submitted to vertical vibrations above a threshold in acceleration. Later, Noblin et al. (PRL 2009) showed the velocity and the direction of motion of a sessile drop submitted to both horizontal and vertical vibrations can be tuned by the phase shift between these two excitations. Here we present an experimental study of the mean motion of a sessile drop under slanted vibrations, focusing on the effects of drop properties, as well as the inclination angle of the axis of vibrations. It is shown that the volume and viscosity strongly affect the drop mean velocity, and can even change the direction of its motion. In the case of a low viscous drop, gravity can become significant and be modulated by the inclination of the axis of vibrations. Contact line dynamic during the drop oscillations is also investigated.

  3. Mechanical vibration to electrical energy converter

    DOEpatents

    Kellogg, Rick Allen; Brotz, Jay Kristoffer

    2009-03-03

    Electromechanical devices that generate an electrical signal in response to an external source of mechanical vibrations can operate as a sensor of vibrations and as an energy harvester for converting mechanical vibration to electrical energy. The devices incorporate a magnet that is movable through a gap in a ferromagnetic circuit, wherein a coil is wound around a portion of the ferromagnetic circuit. A flexible coupling is used to attach the magnet to a frame for providing alignment of the magnet as it moves or oscillates through the gap in the ferromagnetic circuit. The motion of the magnet can be constrained to occur within a substantially linear range of magnetostatic force that develops due to the motion of the magnet. The devices can have ferromagnetic circuits with multiple arms, an array of magnets having alternating polarity and, encompass micro-electromechanical (MEM) devices.

  4. Mechanical vibrations of pendant liquid droplets.

    PubMed

    Temperton, Robert H; Smith, Michael I; Sharp, James S

    2015-07-01

    A simple optical deflection technique was used to monitor the vibrations of microlitre pendant droplets of deuterium oxide, formamide, and 1,1,2,2-tetrabromoethane. Droplets of different volumes of each liquid were suspended from the end of a microlitre pipette and vibrated using a small puff of nitrogen gas. A laser was passed through the droplets and the scattered light was collected using a photodiode. Vibration of the droplets resulted in the motion of the scattered beam and time-dependent intensity variations were recorded using the photodiode. These time-dependent variations were Fourier transformed and the frequencies and widths of the mechanical droplet resonances were extracted. A simple model of vibrations in pendant/sessile drops was used to relate these parameters to the surface tension, density and viscosity of the liquid droplets. The surface tension values obtained from this method were found to be in good agreement with results obtained using the standard pendant drop technique. Damping of capillary waves on pendant drops was shown to be similar to that observed for deep liquid baths and the kinematic viscosities obtained were in agreement with literature values for all three liquids studied.

  5. Imaging Mechanical Vibrations in Suspended Graphene Sheets

    NASA Astrophysics Data System (ADS)

    Garcia-Sanchez, D.; van der Zande, A. M.; Paulo, A. San; Lassagne, B.; McEuen, P. L.; Bachtold, A.

    2008-05-01

    We carried out measurements on nanoelectromechanical systems based on multilayer graphene sheets suspended over trenches in silicon oxide. The motion of the suspended sheets was electrostatically driven at resonance using applied radio-frequency voltages. The mechanical vibrations were detected using a novel form of scanning probe microscopy, which allowed identification and spatial imaging of the shape of the mechanical eigenmodes. In as many as half the resonators measured, we observed a new class of exotic nanoscale vibration eigenmodes not predicted by the elastic beam theory, where the amplitude of vibration is maximum at the free edges. By modeling the suspended sheets with the finite element method, these edge eigenmodes are shown to be the result of non-uniform stress with remarkably large magnitudes (up to 1.5 GPa). This non-uniform stress, which arises from the way graphene is prepared by pressing or rubbing bulk graphite against another surface, should be taken into account in future studies on electronic and mechanical properties of graphene.

  6. Control of Drop Motion by Mechanical Vibrations

    NASA Astrophysics Data System (ADS)

    Bestehorn, Michael

    2014-11-01

    Since the first experimental observations of Michael Faraday in 1831 it is known that a vibrating liquid may show an instability of its flat free surface with respect to oscillating regular surface patterns. We study thin liquid films on a horizontal substrate in the long wave approximation. The films are parametrically excited by mechanical horizontal or inclined oscillations. Inertia effects are taken into account and the standard thin film formulation is extended by a second equation for the vertically averaged mass flux. The films can be additionally unstable by Van der Waals forces on a partially wetting substrate, leading to the formation of drops. These drops can be manipulated by the vibrations to move in a desired direction. Linear results based on a damped complex valued Mathieu equation as well as fully nonlinear results using a reduced model will be presented, for more details see.

  7. Active vibration control in Duffing mechanical systems using dynamic vibration absorbers

    NASA Astrophysics Data System (ADS)

    Beltrán-Carbajal, F.; Silva-Navarro, G.

    2014-07-01

    This paper deals with the multi-frequency harmonic vibration suppression problem in forced Duffing mechanical systems using passive and active linear mass-spring-damper dynamic vibration absorbers. An active vibration absorption scheme is proposed to extend the vibrating energy dissipation capability of a passive dynamic vibration absorber for multiple excitation frequencies and, simultaneously, to perform reference position trajectory tracking tasks planned for the nonlinear primary system. A differential flatness-based disturbance estimation scheme is also described to estimate the unknown multiple time-varying frequency disturbance signal affecting the differentially flat nonlinear vibrating mechanical system dynamics. Some numerical simulation results are provided to show the efficient performance of the proposed active vibration absorption scheme and the fast estimation of the vibration disturbance signal.

  8. Vibrating-traction method for mechanical joint distraction.

    PubMed

    Minagi, S; Sakiya, M; Sato, T; Matsunaga, T; Natsuaki, N

    2000-08-01

    Mechanical static traction has been adopted as one of the treatment procedures for joint diseases and fractures. The effect of mechanical vibration on the mechanical traction of the temporomandibular joint was studied in six human subjects. A mechanical traction force of 2000 gf was applied as a dynamic traction force with mechanical vibration or as a static traction force. The dynamic traction force with vibration was applied for 5 min to the right temporomandibular joint using a vibrating-traction apparatus which generated mechanical vibrations of 1000, 3000 or 4000 Hz. Application of a static traction force for 5 min was used as a control condition. Vertical condylar displacement was mathematically evaluated from the deviation of the mandible using Eddy current displacement sensors which were attached to the maxillary dental arch. Among the three vibration frequencies, 3000 Hz resulted in the maximum vertical condylar displacement for all six subjects, showing the mean condylar displacement of 668+/-242 microm. In contrast, vibrations of 1000 and 4000 Hz showed a smaller traction effect. Application of the static traction force for 5 min resulted in a mean vertical condylar displacement of 5.7+/-4.9 microm, showing almost no traction effect to the joint. From the results of this study, it was revealed that vibrating traction could distract a joint more effectively than could static traction and that the traction force necessary for effective vibrating traction was less than that for static traction.

  9. Active vibration control using mechanical and electrical analogies

    NASA Astrophysics Data System (ADS)

    Torres-Perez, A.; Hassan, A.; Kaczmarczyk, S.; Picton, P.

    2016-05-01

    Mechanical-electrical analogous circuit models are widely used in electromechanical system design as they represent the function of a coupled electrical and mechanical system using an equivalent electrical system. This research uses electrical circuits to establish a discussion of simple active vibration control principles using two scenarios: an active vibration isolation system and an active dynamic vibration absorber (DVA) using a voice coil motor (VCM) actuator. Active control laws such as gain scheduling are intuitively explained using circuit analysis techniques. Active vibration control approaches are typically constraint by electrical power requirements. The electrical analogous is a fast approach for specifying power requirements on the experimental test platform which is based on a vibration shaker that provides the based excitation required for the single Degree- of-Freedom (1DoF) vibration model under study.

  10. Breakup of free liquid jets influenced by external mechanical vibrations

    NASA Astrophysics Data System (ADS)

    Lad, V. N.; Murthy, Z. V. P.

    2017-02-01

    The breakup of liquid jets has been studied with various test liquids using externally imposed mechanical vibrations. Images of the jets were captured by a high speed camera up to the speed of 1000 frames per second, and analyzed to obtain the profile of the jet and breakup length. The dynamics of the jets have also been studied to understand the effects of additives—a surfactant and polymer—incorporating externally imposed mechanical vibrations. Different types of breakup modes have been explored with respect to the Weber number and Ohnesorge number. The introduction of mechanical vibrations have caused jet breakup with separated droplets at a comparatively lower Weber number. The region of jet breakup by neck formation at constant jet velocities also contracted due to mechanical vibrations.

  11. Multi-mechanism vibration harvester combining inductive and piezoelectric mechanisms

    NASA Astrophysics Data System (ADS)

    Marin, Anthony; Priya, Shashank

    2012-04-01

    With increasing demand for wireless sensor nodes in automobile, aircraft and rail applications, the need for energy harvesters has been growing. In these applications, energy harvesters provide a more robust and inexpensive power solution than batteries. In order to enhance the power density of existing energy harvesters, a variety of multimodal energy harvesting techniques have been proposed. Multi-modal energy harvesters can be categorized as: (i) Multi-Source Energy Harvester (MSEH), (ii) Multi-Mechanism Energy Harvester (MMEH), and (iii) Single Source Multi-Mode Energy Harvester (S2M2EH). In this study, we focus on developing MMEH which combines the inductive and piezoelectric mechanisms. The multi-mechanism harvester was modeled using FEM techniques and theoretically analyzed to optimize the performance and reduce the overall shape and size similar to that of AA battery. The theoretical model combining analytical and FEM modeling techniques provides the system dynamics and output power for specific generator and cymbal geometry at various source conditions. In the proposed design, a cylindrical tube contains a magnetic levitation cavity where a center magnet oscillates through a copper coil. Piezoelectric cymbal transducers were mounted on the top and bottom sections of the cylindrical shell. In response to the external vibrations, electrical energy was harvested from the relative motion between magnet and coil through Faraday's effect and from the piezoelectric material through the direct piezoelectric effect. Experimental results validate the predictions from theoretical model and show the promise of multimodal harvester for powering wireless sensor nodes in automobile, aircraft, and rail applications.

  12. Vibrationally Assisted Electron Transfer Mechanism of Olfaction: Myth or Reality?

    PubMed Central

    Solov’yov, Ilia A.; Chang, Po-Yao; Schulten, Klaus

    2012-01-01

    Smell is a vital sense for animals. The mainstream explanation of smell is based on recognition of the odorant molecules through characteristics of their surface, e.g., shape, but certain experiments suggest that such recognition is complemented by recognition of vibrational modes. According to this suggestion an olfactory receptor is activated by electron transfer assisted through odorant vibrational excitation. The hundreds to thousands of different olfactory receptors in an animal recognize odorants over a discriminant landscape with surface properties and vibrational frequencies as the two major dimensions. In the present paper we introduce the vibrationally assisted mechanism of olfaction and demonstrate for several odorants that, indeed, a strong enhancement of an electron tunneling rate due to odorant vibrations can arise. We discuss in this regard the influence of odorant deuteration and explain, thereby, recent experiments performed on Drosophila melanogaster. Our demonstration is based on known physical properties of biological electron transfer and on ab initio calculations on odorants carried out for the purpose of the present study. We identify a range of physical characteristics which olfactory receptors and odorants must obey for the vibrationally assisted electron transfer mechanism to function. We argue that the stated characteristics are feasible for realistic olfactory receptors, noting, though, that the receptor structure presently is still unknown, but can be studied through homology modeling. PMID:22899100

  13. Mechanical model of carbon dioxide vibrational spectrum

    NASA Astrophysics Data System (ADS)

    Aldoshin, G. T.; Yakovlev, S. P.

    2016-12-01

    Classical dynamics methods have been used to study the nonlinear vibrations of a CO2 molecule. Consideration includes not only the anharmonicity valence angle, which enables one to explain the Fermi resonance, but also the physical nonlinearity of the force field (stiffness and softness of springs). In the farthest neighbor approximation (with regard to oxygen-oxygen interaction), a set of nonlinear differential equations in the Lagrangian form has been derived. Their analytical solution has been derived using the method of invariant normalization. The occurrence of a strange attractor has been discovered by numerical simulation. Recommendations for the selection of initial conditions are given that take into account the possibility of regular beatings that change into to chaotic beatings.

  14. Vibrational spectra and quantum mechanical calculations of antiretroviral drugs: Nevirapine

    NASA Astrophysics Data System (ADS)

    Ayala, A. P.; Siesler, H. W.; Wardell, S. M. S. V.; Boechat, N.; Dabbene, V.; Cuffini, S. L.

    2007-02-01

    Nevirapine (11-cyclopropyl-5,11-dihydro-4-methyl-6H-dipyrido[3,2-b:2',3'e][1,4]diazepin-6-one) is an antiretroviral drug belonging to the class of the non-nucleoside inhibitors of the HIV-1 virus reverse transcriptase. As most of this kind of antiretroviral drugs, nevirapine displays a butterfly-like conformation which is preserved in complexes with the HIV-1 reverse transcriptase. In this work, we present a detailed vibrational spectroscopy investigation of nevirapine by using mid-infrared, near-infrared, and Raman spectroscopies. These data are supported by quantum mechanical calculations, which allow us to characterize completely the vibrational spectra of this compound. Based on these results, we discuss the correlation between the vibrational modes and the crystalline structure of the most stable form of nevirapine.

  15. Measurement of dynamic surface tension by mechanically vibrated sessile droplets.

    PubMed

    Iwata, Shuichi; Yamauchi, Satoko; Yoshitake, Yumiko; Nagumo, Ryo; Mori, Hideki; Kajiya, Tadashi

    2016-04-01

    We developed a novel method for measuring the dynamic surface tension of liquids using mechanically vibrated sessile droplets. Under continuous mechanical vibration, the shape of the deformed droplet was fitted by numerical analysis, taking into account the force balance at the drop surface and the momentum equation. The surface tension was determined by optimizing four parameters: the surface tension, the droplet's height, the radius of the droplet-substrate contact area, and the horizontal symmetrical position of the droplet. The accuracy and repeatability of the proposed method were confirmed using drops of distilled water as well as viscous aqueous glycerol solutions. The vibration frequency had no influence on surface tension in the case of pure liquids. However, for water-soluble surfactant solutions, the dynamic surface tension gradually increased with vibration frequency, which was particularly notable for low surfactant concentrations slightly below the critical micelle concentration. This frequency dependence resulted from the competition of two mechanisms at the drop surface: local surface deformation and surfactant transport towards the newly generated surface.

  16. Measurement of dynamic surface tension by mechanically vibrated sessile droplets

    NASA Astrophysics Data System (ADS)

    Iwata, Shuichi; Yamauchi, Satoko; Yoshitake, Yumiko; Nagumo, Ryo; Mori, Hideki; Kajiya, Tadashi

    2016-04-01

    We developed a novel method for measuring the dynamic surface tension of liquids using mechanically vibrated sessile droplets. Under continuous mechanical vibration, the shape of the deformed droplet was fitted by numerical analysis, taking into account the force balance at the drop surface and the momentum equation. The surface tension was determined by optimizing four parameters: the surface tension, the droplet's height, the radius of the droplet-substrate contact area, and the horizontal symmetrical position of the droplet. The accuracy and repeatability of the proposed method were confirmed using drops of distilled water as well as viscous aqueous glycerol solutions. The vibration frequency had no influence on surface tension in the case of pure liquids. However, for water-soluble surfactant solutions, the dynamic surface tension gradually increased with vibration frequency, which was particularly notable for low surfactant concentrations slightly below the critical micelle concentration. This frequency dependence resulted from the competition of two mechanisms at the drop surface: local surface deformation and surfactant transport towards the newly generated surface.

  17. Hand-arm vibration syndrome in Swedish car mechanics

    PubMed Central

    Barregard, L; Ehrenstrom, L; Marcus, K

    2003-01-01

    Aims: To assess the occurrence of hand-arm vibration syndrome (HAVS) in Swedish car mechanics, and the relation between HAVS and duration of exposure. Methods: A total of 806 mechanics answered a questionnaire on vascular and neurological symptoms, and exposure to vibrations. Mechanics with symptoms, and some mechanics without symptoms, were invited to a clinical examination, including also a timed Allen test. Vascular and neurological symptoms were classified using the Stockholm Workshop scales. The mean daily exposure (mainly using nut-runners) was 14 minutes and the mean exposure duration, 12 years. Published data have shown vibration levels in nut-runners of about 3.5 m/s2. Results: In the questionnaire, 24% reported cold induced white finger (WF), 25% persistent numbness, and 13%, reduced grip force. The clinical examination showed a prevalence of vibration induced white finger (VWF) of about 15%, mainly in stage 2, and after 20 years, of 25%. A survival analysis showed similar results. We found that the International Organisation for Standardisation (ISO) model underestimates the risk of VWF. The incidence after 1975 was 19 cases per 1000 person-years. Slow refill times in the timed Allen test were common (15% had a refill time of >20 seconds), and associated with the presence of VWF. The clinical examination revealed neurological symptoms in the hands in about 25% of subjects, mainly at stage 2. After 20 years, the prevalence was 40%. The questionnaire items on WF and numbness both showed likelihood ratios of 13. Conclusion: HAVS is common among Swedish car mechanics in spite of short daily exposure times. This underlines the need for preventive measures. PMID:12660377

  18. RELATIONSHIP BETWEEN VIBRATIONS AND MECHANICAL SEAL LIFE IN CENTRIFUGAL PUMPS

    SciTech Connect

    Leishear, R; Jerald Newton, J; David Stefanko, D

    2007-04-30

    A reduction of vibrations in mechanical seals increases the life of the seals in centrifugal pumps by minimizing fatigue damage. Mechanical seals consist of two smooth seal faces. one face is stationary with respect to the pump. The other rotates. Between the faces a fluid film evaporates as the fluid moves radially outward across the seal face. ideally, the film evaporates as it reaches the outer surface of the seal faces, thereby preventing leakage from the pump and effectively lubricating the two surfaces. Relative vibrations between the two surfaces affect the fluid film and lead to stresses on the seal faces, which lead to fatigue damage. As the fluid film breaks down impacts between the two seal faces create tensile stresses on the faces, which cycle at the speed of the motor rotation. These cyclic stresses provide the mechanism leading to fatigue crack growth. The magnitude of the stress is directly related to the rate of crack growth and time to failure of a seal. Related to the stress magnitude, vibration data is related to the life of mechanical seals in pumps.

  19. Interactive Approach on Experiments in Mechanical Engineering : Vibration

    NASA Astrophysics Data System (ADS)

    Kumon, Makoto; Torigoe, Ippei; Mizumoto, Ikuro; Yamaguchi, Teruo; Kohzawa, Ryuichi; Ohshima, Yasutaka

    Experiments in the engineering education play important roles in motivating students to study voluntarily. A trial aiming to enhance this effect in the experiment of vibration at Mechanical System Engineering, Kumamoto University is introduced. The trial consists of 1) oral presentation by students, 2) web-based learning system and 3) feedback through reports. An evaluation by questionnaire was conducted to show the validity of this trial. This result revealed that the trial succeeded to encourage students.

  20. [Occupational therapy for work-related damage induced by mechanical vibration].

    PubMed

    Foti, C; Ciocchetti, E; Antignani, E; Pitruzzella, M; Laurini, A

    2010-01-01

    Vibrations are defined as repeated oscillatory movements of a body; they can be transmitted by contact to humans. From the point of view of physics, vibrations can be differentiated on the basis of frequency, wavelength, amplitude of the oscillation, velocity and acceleration. As far as concerns occupational hazards, two risk factors have been identified: the first involves low frequency vibrations (vehicle drivers), while the second involves high frequency vibrations (manual percussion tools). The transmission of vibration energy can be localized or generalized. Tertiary prevention of exposure to vibrations is based on the use of anti-vibration gloves (for vibrations of the hand and arm) and on anti-vibration shoes (for vibrations of the whole body). The damage caused by vibrations is due to reduced blood circulation and mechanical stimulation in the joints exposed.

  1. Lattice Metamaterials with Mechanically Tunable Poisson's Ratio for Vibration Control

    NASA Astrophysics Data System (ADS)

    Chen, Yanyu; Li, Tiantian; Scarpa, Fabrizio; Wang, Lifeng

    2017-02-01

    Metamaterials with artificially designed architectures are increasingly considered as new paradigmatic material systems with unusual physical properties. Here, we report a class of architected lattice metamaterials with mechanically tunable negative Poisson's ratios and vibration-mitigation capability. The proposed lattice metamaterials are built by replacing regular straight beams with sinusoidally shaped ones, which are highly stretchable under uniaxial tension. Our experimental and numerical results indicate that the proposed lattices exhibit extreme Poisson's-ratio variations between -0.7 and 0.5 over large tensile deformations up to 50%. This large variation of Poisson's-ratio values is attributed to the deformation pattern switching from bending to stretching within the sinusoidally shaped beams. The interplay between the multiscale (ligament and cell) architecture and wave propagation also enables remarkable broadband vibration-mitigation capability of the lattice metamaterials, which can be dynamically tuned by an external mechanical stimulus. The material design strategy provides insights into the development of classes of architected metamaterials with potential applications including energy absorption, tunable acoustics, vibration control, responsive devices, soft robotics, and stretchable electronics.

  2. The use of normal forms for analysing nonlinear mechanical vibrations

    PubMed Central

    Neild, Simon A.; Champneys, Alan R.; Wagg, David J.; Hill, Thomas L.; Cammarano, Andrea

    2015-01-01

    A historical introduction is given of the theory of normal forms for simplifying nonlinear dynamical systems close to resonances or bifurcation points. The specific focus is on mechanical vibration problems, described by finite degree-of-freedom second-order-in-time differential equations. A recent variant of the normal form method, that respects the specific structure of such models, is recalled. It is shown how this method can be placed within the context of the general theory of normal forms provided the damping and forcing terms are treated as unfolding parameters. The approach is contrasted to the alternative theory of nonlinear normal modes (NNMs) which is argued to be problematic in the presence of damping. The efficacy of the normal form method is illustrated on a model of the vibration of a taut cable, which is geometrically nonlinear. It is shown how the method is able to accurately predict NNM shapes and their bifurcations. PMID:26303917

  3. Design of mechanical components for vibration reduction in an atomic force microscope.

    PubMed

    Kim, Chulsoo; Jung, Jongkyu; Youm, Woosub; Park, Kyihwan

    2011-03-01

    Vibration is a key factor to be considered when designing the mechanical components of a high precision and high speed atomic force microscope (AFM). It is required to design the mechanical components so that they have resonant frequencies higher than the external and internal vibration frequencies. In this work, the mechanical vibration in a conventional AFM system is analyzed by considering its mechanical components, and a vibration reduction is then achieved by reconfiguring the mechanical components. To analyze the mechanical vibration, a schematic of the lumped model of the AFM system is derived and the vibrational influences of the AFM components are experimentally examined. Based on this vibration analysis, a reconfigured AFM system is proposed and its effects are compared to a conventional system through a series of simulations and experiments.

  4. Vibrational modes of ultrathin carbon nanomembrane mechanical resonators

    SciTech Connect

    Zhang, Xianghui E-mail: elke.scheer@uni-konstanz.de; Angelova, Polina; Gölzhäuser, Armin; Waitz, Reimar; Yang, Fan; Lutz, Carolin; Scheer, Elke E-mail: elke.scheer@uni-konstanz.de

    2015-02-09

    We report measurements of vibrational mode shapes of mechanical resonators made from ultrathin carbon nanomembranes (CNMs) with a thickness of approximately 1 nm. CNMs are prepared from electron irradiation induced cross-linking of aromatic self-assembled monolayers and the variation of membrane thickness and/or density can be achieved by varying the precursor molecule. Single- and triple-layer freestanding CNMs were made by transferring them onto Si substrates with square/rectangular orifices. The vibration of the membrane was actuated by applying a sinusoidal voltage to a piezoelectric disk on which the sample was glued. The vibrational mode shapes were visualized with an imaging Mirau interferometer using a stroboscopic light source. Several mode shapes of a square membrane can be readily identified and their dynamic behavior can be well described by linear response theory of a membrane with negligible bending rigidity. By applying Fourier transformations to the time-dependent surface profiles, the dispersion relation of the transverse membrane waves can be obtained and its linear behavior verifies the membrane model. By comparing the dispersion relation to an analytical model, the static stress of the membranes was determined and found to be caused by the fabrication process.

  5. System and method of active vibration control for an electro-mechanically cooled device

    DOEpatents

    Lavietes, Anthony D.; Mauger, Joseph; Anderson, Eric H.

    2000-01-01

    A system and method of active vibration control of an electro-mechanically cooled device is disclosed. A cryogenic cooling system is located within an environment. The cooling system is characterized by a vibration transfer function, which requires vibration transfer function coefficients. A vibration controller generates the vibration transfer function coefficients in response to various triggering events. The environments may differ by mounting apparatus, by proximity to vibration generating devices, or by temperature. The triggering event may be powering on the cooling system, reaching an operating temperature, or a reset action. A counterbalance responds to a drive signal generated by the vibration controller, based on the vibration signal and the vibration transfer function, which adjusts vibrations. The method first places a cryogenic cooling system within a first environment and then generates a first set of vibration transfer function coefficients, for a vibration transfer function of the cooling system. Next, the cryogenic cooling system is placed within a second environment and a second set of vibration transfer function coefficients are generated. Then, a counterbalance is driven, based on the vibration transfer function, to reduce vibrations received by a vibration sensitive element.

  6. The minimization of mechanical work in vibrated granular matter

    PubMed Central

    Clewett, James P. D.; Wade, Jack; Bowley, R. M.; Herminghaus, Stephan; Swift, Michael R.; Mazza, Marco G.

    2016-01-01

    Experiments and computer simulations are carried out to investigate phase separation in a granular gas under vibration. The densities of the dilute and the dense phase are found to follow a lever rule and obey an equation of state. Here we show that the Maxwell equal-areas construction predicts the coexisting pressure and binodal densities remarkably well, even though the system is far from thermal equilibrium. This construction can be linked to the minimization of mechanical work associated with density fluctuations without invoking any concept related to equilibrium-like free energies. PMID:27373719

  7. The minimization of mechanical work in vibrated granular matter

    NASA Astrophysics Data System (ADS)

    Clewett, James P. D.; Wade, Jack; Bowley, R. M.; Herminghaus, Stephan; Swift, Michael R.; Mazza, Marco G.

    2016-07-01

    Experiments and computer simulations are carried out to investigate phase separation in a granular gas under vibration. The densities of the dilute and the dense phase are found to follow a lever rule and obey an equation of state. Here we show that the Maxwell equal-areas construction predicts the coexisting pressure and binodal densities remarkably well, even though the system is far from thermal equilibrium. This construction can be linked to the minimization of mechanical work associated with density fluctuations without invoking any concept related to equilibrium-like free energies.

  8. Demonstration of Vibrational Braille Code Display Using Large Displacement Micro-Electro-Mechanical Systems Actuators

    NASA Astrophysics Data System (ADS)

    Watanabe, Junpei; Ishikawa, Hiroaki; Arouette, Xavier; Matsumoto, Yasuaki; Miki, Norihisa

    2012-06-01

    In this paper, we present a vibrational Braille code display with large-displacement micro-electro-mechanical systems (MEMS) actuator arrays. Tactile receptors are more sensitive to vibrational stimuli than to static ones. Therefore, when each cell of the Braille code vibrates at optimal frequencies, subjects can recognize the codes more efficiently. We fabricated a vibrational Braille code display that used actuators consisting of piezoelectric actuators and a hydraulic displacement amplification mechanism (HDAM) as cells. The HDAM that encapsulated incompressible liquids in microchambers with two flexible polymer membranes could amplify the displacement of the MEMS actuator. We investigated the voltage required for subjects to recognize Braille codes when each cell, i.e., the large-displacement MEMS actuator, vibrated at various frequencies. Lower voltages were required at vibration frequencies higher than 50 Hz than at vibration frequencies lower than 50 Hz, which verified that the proposed vibrational Braille code display is efficient by successfully exploiting the characteristics of human tactile receptors.

  9. Note: Reliable low-vibration piezo-mechanical shutter

    SciTech Connect

    Bauer, Michael Franzreb, Philipp Pierre; Widera, Artur; Spethmann, Nicolas

    2014-09-15

    We present a mechanical shutter based on a bending piezo-actuator. The shutter features an active aperture of about 2 mm, allowing for full extinction and lossless transmission of a beam. Acoustic noise and mechanical vibrations produced are very low and the shutter is outstandingly long-lived; a test device has undergone 20 × 10{sup 6} cycles without breaking. A reflector makes the shutter capable of reliably interrupting a beam with at least 2 W of cw power at 780 nm. The shutter is well suited to create pulses as short as 16 ms, while pulse lengths down to 1 ms are possible. The rise and fall times are approximately 120 µs, with a delay of 2 ms. Jitter stays below 10 µs, while long-term drifts stay well below 500 µs.

  10. Note: Reliable low-vibration piezo-mechanical shutter.

    PubMed

    Bauer, Michael; Franzreb, Philipp Pierre; Spethmann, Nicolas; Widera, Artur

    2014-09-01

    We present a mechanical shutter based on a bending piezo-actuator. The shutter features an active aperture of about 2 mm, allowing for full extinction and lossless transmission of a beam. Acoustic noise and mechanical vibrations produced are very low and the shutter is outstandingly long-lived; a test device has undergone 20 × 10(6) cycles without breaking. A reflector makes the shutter capable of reliably interrupting a beam with at least 2 W of cw power at 780 nm. The shutter is well suited to create pulses as short as 16 ms, while pulse lengths down to 1 ms are possible. The rise and fall times are approximately 120 µs, with a delay of 2 ms. Jitter stays below 10 µs, while long-term drifts stay well below 500 µs.

  11. Sexual dimorphism in auditory mechanics: tympanal vibrations of Cicada orni.

    PubMed

    Sueur, Jérôme; Windmill, James F C; Robert, Daniel

    2008-08-01

    In cicadas, the tympanum is anatomically intricate and employs complex vibrations as a mechanism for auditory frequency analysis. Using microscanning laser Doppler vibrometry, the tympanal mechanics of Cicada orni can be characterized in controlled acoustical conditions. The tympanum of C. orni moves following a simple drum-like motion, rather than the travelling wave found in a previous study of Cicadatra atra. There is a clear sexual dimorphism in the tympanal mechanics. The large male tympanum is unexpectedly insensitive to the dominant frequency of its own calling song, possibly a reflection of its dual purpose as a sound emitter and receiver. The small female tympanum appears to be mechanically sensitive to the dominant frequency of the male calling song and to high-frequency sound, a capacity never suspected before in these insects. This sexual dimorphism probably results from a set of selective pressures acting in divergent directions, which are linked to the different role of the sexes in sound reception and production. These discoveries serve to indicate that there is far more to be learnt about the development of the cicada ear, its biomechanics and evolution, and the cicada's acoustic behaviour.

  12. Nonlinear vibrational excitations in molecular crystals molecular mechanics calculations

    NASA Astrophysics Data System (ADS)

    Pumilia, P.; Abbate, S.; Baldini, G.; Ferro, D. R.; Tubino, R.

    1992-03-01

    The coupling constant for vibrational solitons χ has been examined in a molecular mechanics model for acetanilide (ACN) molecular crystal. According to A.C. Scott, solitons can form and propagate in solid acetanilide over a threshold energy value. This can be regarded as a structural model for the spines of hydrogen bond chains stabilizing the α helical structure of proteins. A one dimensional hydrogen bond chain of ACN has been built, for which we have found that, even though experimental parameters are correctly predicted, the excessive rigidity of the isolated chain prevents the formation of a localized distortion around the excitation. Yet, C=O coupling value with softer lattice modes could be rather high, allowing self-trapping to take place.

  13. Impeller leakage flow modeling for mechanical vibration control

    NASA Technical Reports Server (NTRS)

    Palazzolo, Alan B.

    1996-01-01

    HPOTP and HPFTP vibration test results have exhibited transient and steady characteristics which may be due to impeller leakage path (ILP) related forces. For example, an axial shift in the rotor could suddenly change the ILP clearances and lengths yielding dynamic coefficient and subsequent vibration changes. ILP models are more complicated than conventional-single component-annular seal models due to their radial flow component (coriolis and centrifugal acceleration), complex geometry (axial/radial clearance coupling), internal boundary (transition) flow conditions between mechanical components along the ILP and longer length, requiring moment as well as force coefficients. Flow coupling between mechanical components results from mass and energy conservation applied at their interfaces. Typical components along the ILP include an inlet seal, curved shroud, and an exit seal, which may be a stepped labyrinth type. Von Pragenau (MSFC) has modeled labyrinth seals as a series of plain annular seals for leakage and dynamic coefficient prediction. These multi-tooth components increase the total number of 'flow coupled' components in the ILP. Childs developed an analysis for an ILP consisting of a single, constant clearance shroud with an exit seal represented by a lumped flow-loss coefficient. This same geometry was later extended to include compressible flow. The objective of the current work is to: supply ILP leakage-force impedance-dynamic coefficient modeling software to MSFC engineers, base on incompressible/compressible bulk flow theory; design the software to model a generic geometry ILP described by a series of components lying along an arbitrarily directed path; validate the software by comparison to available test data, CFD and bulk models; and develop a hybrid CFD-bulk flow model of an ILP to improve modeling accuracy within practical run time constraints.

  14. Effects of Frequency and Acceleration Amplitude on Osteoblast Mechanical Vibration Responses: A Finite Element Study

    PubMed Central

    Hsu, Hung-Yao

    2016-01-01

    Bone cells are deformed according to mechanical stimulation they receive and their mechanical characteristics. However, how osteoblasts are affected by mechanical vibration frequency and acceleration amplitude remains unclear. By developing 3D osteoblast finite element (FE) models, this study investigated the effect of cell shapes on vibration characteristics and effect of acceleration (vibration intensity) on vibrational responses of cultured osteoblasts. Firstly, the developed FE models predicted natural frequencies of osteoblasts within 6.85–48.69 Hz. Then, three different levels of acceleration of base excitation were selected (0.5, 1, and 2 g) to simulate vibrational responses, and acceleration of base excitation was found to have no influence on natural frequencies of osteoblasts. However, vibration response values of displacement, stress, and strain increased with the increase of acceleration. Finally, stress and stress distributions of osteoblast models under 0.5 g acceleration in Z-direction were investigated further. It was revealed that resonance frequencies can be a monotonic function of cell height or bottom area when cell volumes and material properties were assumed as constants. These findings will be useful in understanding how forces are transferred and influence osteoblast mechanical responses during vibrations and in providing guidance for cell culture and external vibration loading in experimental and clinical osteogenesis studies. PMID:28074178

  15. Vibration-mediated Kondo transport in molecular junctions: conductance evolution during mechanical stretching

    PubMed Central

    Rakhmilevitch, David

    2015-01-01

    Summary The vibration-mediated Kondo effect attracted considerable theoretical interest during the last decade. However, due to lack of extensive experimental demonstrations, the fine details of the phenomenon were not addressed. Here, we analyze the evolution of vibration-mediated Kondo effect in molecular junctions during mechanical stretching. The described analysis reveals the different contributions of Kondo and inelastic transport. PMID:26734532

  16. The Effect of a Mechanical Arm System on Portable Grinder Vibration Emissions.

    PubMed

    McDowell, Thomas W; Welcome, Daniel E; Warren, Christopher; Xu, Xueyan S; Dong, Ren G

    2016-04-01

    Mechanical arm systems are commonly used to support powered hand tools to alleviate ergonomic stressors related to the development of workplace musculoskeletal disorders. However, the use of these systems can increase exposure times to other potentially harmful agents such as hand-transmitted vibration. To examine how these tool support systems affect tool vibration, the primary objectives of this study were to characterize the vibration emissions of typical portable pneumatic grinders used for surface grinding with and without a mechanical arm support system at a workplace and to estimate the potential risk of the increased vibration exposure time afforded by the use of these mechanical arm systems. This study also developed a laboratory-based simulated grinding task based on the ISO 28927-1 (2009) standard for assessing grinder vibrations; the simulated grinding vibrations were compared with those measured during actual workplace grinder operations. The results of this study demonstrate that use of the mechanical arm may provide a health benefit by reducing the forces required to lift and maneuver the tools and by decreasing hand-transmitted vibration exposure. However, the arm does not substantially change the basic characteristics of grinder vibration spectra. The mechanical arm reduced the average frequency-weighted acceleration by about 24% in the workplace and by about 7% in the laboratory. Because use of the mechanical arm system can increase daily time-on-task by 50% or more, the use of such systems may actually increase daily time-weighted hand-transmitted vibration exposures in some cases. The laboratory acceleration measurements were substantially lower than the workplace measurements, and the laboratory tool rankings based on acceleration were considerably different than those from the workplace. Thus, it is doubtful that ISO 28927-1 is useful for estimating workplace grinder vibration exposures or for predicting workplace grinder acceleration rank

  17. The Effect of a Mechanical Arm System on Portable Grinder Vibration Emissions

    PubMed Central

    McDowell, Thomas W.; Welcome, Daniel E.; Warren, Christopher; Xu, Xueyan S.; Dong, Ren G.

    2016-01-01

    Mechanical arm systems are commonly used to support powered hand tools to alleviate ergonomic stressors related to the development of workplace musculoskeletal disorders. However, the use of these systems can increase exposure times to other potentially harmful agents such as hand-transmitted vibration. To examine how these tool support systems affect tool vibration, the primary objectives of this study were to characterize the vibration emissions of typical portable pneumatic grinders used for surface grinding with and without a mechanical arm support system at a workplace and to estimate the potential risk of the increased vibration exposure time afforded by the use of these mechanical arm systems. This study also developed a laboratory-based simulated grinding task based on the ISO 28927-1 (2009) standard for assessing grinder vibrations; the simulated grinding vibrations were compared with those measured during actual workplace grinder operations. The results of this study demonstrate that use of the mechanical arm may provide a health benefit by reducing the forces required to lift and maneuver the tools and by decreasing hand-transmitted vibration exposure. However, the arm does not substantially change the basic characteristics of grinder vibration spectra. The mechanical arm reduced the average frequency-weighted acceleration by about 24% in the workplace and by about 7% in the laboratory. Because use of the mechanical arm system can increase daily time-on-task by 50% or more, the use of such systems may actually increase daily time-weighted hand-transmitted vibration exposures in some cases. The laboratory acceleration measurements were substantially lower than the workplace measurements, and the laboratory tool rankings based on acceleration were considerably different than those from the workplace. Thus, it is doubtful that ISO 28927-1 is useful for estimating workplace grinder vibration exposures or for predicting workplace grinder acceleration rank

  18. A piezoelectric six-DOF vibration energy harvester based on parallel mechanism: dynamic modeling, simulation, and experiment

    NASA Astrophysics Data System (ADS)

    Yuan, G.; Wang, D. H.

    2017-03-01

    Multi-directional and multi-degree-of-freedom (multi-DOF) vibration energy harvesting are attracting more and more research interest in recent years. In this paper, the principle of a piezoelectric six-DOF vibration energy harvester based on parallel mechanism is proposed to convert the energy of the six-DOF vibration to single-DOF vibrations of the limbs on the energy harvester and output voltages. The dynamic model of the piezoelectric six-DOF vibration energy harvester is established to estimate the vibrations of the limbs. On this basis, a Stewart-type piezoelectric six-DOF vibration energy harvester is developed and explored. In order to validate the established dynamic model and the analysis results, the simulation model of the Stewart-type piezoelectric six-DOF vibration energy harvester is built and tested with different vibration excitations by SimMechanics, and some preliminary experiments are carried out. The results show that the vibration of the limbs on the piezoelectric six-DOF vibration energy harvester can be estimated by the established dynamic model. The developed Stewart-type piezoelectric six-DOF vibration energy harvester can harvest the energy of multi-directional linear vibration and multi-axis rotating vibration with resonance frequencies of 17 Hz, 25 Hz, and 47 Hz. Moreover, the resonance frequencies of the developed piezoelectric six-DOF vibration energy harvester are not affected by the direction changing of the vibration excitation.

  19. Effect of vibration on microstructures and mechanical properties of 304 stainless steel GTA welds

    NASA Astrophysics Data System (ADS)

    Hsieh, Chih-Chun; Lai, Chien-Hong; Wu, Weite

    2013-07-01

    This study investigates the microstructures and mechanical properties of 304 stainless steel at various vibration frequencies during simultaneous vibration welding. The experimental results demonstrated that simultaneous vibration welding could accelerate the nucleation and grain refinement of the microstructures. The effect of the grain refinement was more evident at the resonant frequency (375 Hz) and a minimum content of residual δ-ferrite (4.0%). The γ phase grew in the preferential orientation of the (111) direction with and without vibration. The full width at half maximum of the diffraction peak widened after the vibration, which was attributed to the grain refinement. The residual stress could be efficiently removed through simultaneous vibration welding when the amplitude of the vibration was increased. Furthermore, the lowest residual stress (139 MPa) was found when the vibration frequency was 375 Hz. The hardness and Young's modulus exhibited slight increases with low and medium frequencies. The hardness values were increased by 7.6% and Young's modulus was increased by 15% when the vibration frequency was resonant (375 Hz).

  20. Mechanical vibration inhibits osteoclast formation by reducing DC-STAMP receptor expression in osteoclast precursor cells.

    PubMed

    Kulkarni, Rishikesh N; Voglewede, Philip A; Liu, Dawei

    2013-12-01

    It is well known that physical inactivity leads to loss of muscle mass, but it also causes bone loss. Mechanistically, osteoclastogenesis and bone resorption have recently been shown to be regulated by vibration. However, the underlying mechanism behind the inhibition of osteoclast formation is yet unknown. Therefore, we investigated whether mechanical vibration of osteoclast precursor cells affects osteoclast formation by the involvement of fusion-related molecules such as dendritic cell-specific transmembrane protein (DC-STAMP) and P2X7 receptor (P2X7R). RAW264.7 (a murine osteoclastic-like cell line) cells were treated with 20ng/ml receptor activator of NF-κB ligand (RANKL). For 3 consecutive days, the cells were subjected to 1h of mechanical vibration with 20μm displacement at a frequency of 4Hz and compared to the control cells that were treated under the same condition but without the vibration. After 5days of culture, osteoclast formation was determined. Gene expression of DC-STAMP and P2X7R by RAW264.7 cells was determined after 1h of mechanical vibration, while protein production of the DC-STAMP was determined after 6h of postincubation after vibration. As a result, mechanical vibration of RAW264.7 cells inhibited the formation of osteoclasts. Vibration down-regulated DC-STAMP gene expression by 1.6-fold in the presence of RANKL and by 1.4-fold in the absence of RANKL. Additionally, DC-STAMP protein production was also down-regulated by 1.4-fold in the presence of RANKL and by 1.2-fold in the absence of RANKL in RAW264.7 cells in response to mechanical vibration. However, vibration did not affect P2X7R gene expression. Mouse anti-DC-STAMP antibody inhibited osteoclast formation in the absence of vibration. Our results suggest that mechanical vibration of osteoclast precursor cells reduces DC-STAMP expression in osteoclast precursor cells leading to the inhibition of osteoclast formation.

  1. Vibrational spectrum at a water surface: a hybrid quantum mechanics/molecular mechanics molecular dynamics approach.

    PubMed

    Ishiyama, Tatsuya; Takahashi, Hideaki; Morita, Akihiro

    2012-03-28

    A hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulation is applied to the calculation of surface orientational structure and vibrational spectrum (second-order nonlinear susceptibility) at the vapor/water interface for the first time. The surface orientational structure of the QM water molecules is consistent with the previous MD studies, and the calculated susceptibility reproduces the experimentally reported one, supporting the previous results using the classical force field MD simulation. The present QM/MM MD simulation also demonstrates that the positive sign of the imaginary part of the second-order nonlinear susceptibility at the lower hydrogen bonding OH frequency region originates not from individual molecular orientational structure, but from cooperative electronic structure through the hydrogen bonding network.

  2. A Study of Mechanical Vibration Signal Transmission Using Position Modulated Optical Pulses

    NASA Astrophysics Data System (ADS)

    Yamashita, Ikuo; Oro, Kyoichi; Seikai, Shigeyuki

    A novel vibration sensing scheme using a technique of converting the vibration into position modulated optical pulses is described. The laser light whose wavelength changes at a cycle of several kHz is launched into a fiber and passes through an optical filter whose center wavelength is changed in proportion to the mechanical vibration with frequency lower than kHz. The output signal from the filter becomes time position modulated optical pulses because the laser light passes only when the both wavelengths coincide. The basic operation of the scheme is experimentally confirmed using a 5-km transmission line.

  3. Design and Optimization of Ultrasonic Vibration Mechanism using PZT for Precision Laser Machining

    NASA Astrophysics Data System (ADS)

    Kim, Woo-Jin; Lu, Fei; Cho, Sung-Hak; Park, Jong-Kweon; Lee, Moon G.

    As the aged population grows around the world, many medical instruments and devices have been developed recently. Among the devices, a drug delivery stent is a medical device which requires precision machining. Conventional drug delivery stent has problems of residual polymer and decoating because the drug is coated on the surface of stent with the polymer. If the drug is impregnated in the micro sized holes on the surface, the problems can be overcome because there is no need to use the polymer anymore. Micro sized holes are generally fabricated by laser machining; however, the fabricated holes do not have a high aspect ratio or a good surface finish. To overcome these problems, we propose a vibration-assisted machining mechanism with PZT (Piezoelectric Transducers) for the fabrication of micro sized holes. If the mechanism vibrates the eyepiece of the laser machining head, the laser spot on the workpiece will vibrate vertically because objective lens in the eyepiece shakes by the mechanism's vibration. According to the former researches, the vibrating frequency over 20 kHz and amplitude over 500 nm are preferable. The vibration mechanism has cylindrical guide, hollowed PZT and supports. In the cylinder, the eyepiece is mounted. The cylindrical guide has upper and low plates and side wall. The shape of plates and side wall are designed to have high resonating frequency and large amplitude of motion. The PZT is also selected to have high actuating force and high speed of motion. The support has symmetrical and rigid configuration. The mechanism secures linear motion of the eyepiece. This research includes sensitivity analysis and design of ultrasonic vibration mechanism. As a result of design, the requirements of high frequency and large amplitude are achieved.

  4. A study of the mechanical vibrations of a table-top extreme ultraviolet interference nanolithography tool.

    PubMed

    Prezioso, S; De Marco, P; Zuppella, P; Santucci, S; Ottaviano, L

    2010-04-01

    A prototype low cost table-top extreme ultraviolet (EUV) laser source (1.5 ns pulse duration, lambda=46.9 nm) was successfully employed as a laboratory scale interference nanolithography (INL) tool. Interference patterns were obtained with a simple Lloyd's mirror setup. Periodic structures on Polymethylmethacrylate/Si substrates were produced on large areas (8 mm(2)) with resolutions from 400 to 22.5 nm half pitch (the smallest resolution achieved so far with table-top EUV laser sources). The mechanical vibrations affecting both the laser source and Lloyd's setup were studied to determine if and how they affect the lateral resolution of the lithographic system. The vibration dynamics was described by a statistical model based on the assumption that the instantaneous position of the vibrating mechanical parts follows a normal distribution. An algorithm was developed to simulate the process of sample irradiation under different vibrations. The comparison between simulations and experiments allowed to estimate the characteristic amplitude of vibrations that was deduced to be lower than 50 nm. The same algorithm was used to reproduce the expected pattern profiles in the lambda/4 half pitch physical resolution limit. In that limit, a nonzero pattern modulation amplitude was obtained from the simulations, comparable to the peak-to-valley height (2-3 nm) measured for the 45 nm spaced fringes, indicating that the mechanical vibrations affecting the INL tool do not represent a limit in scaling down the resolution.

  5. Complex transport behaviors of rectangular graphene quantum dots subject to mechanical vibrations

    NASA Astrophysics Data System (ADS)

    Xu, Mengke; Wang, Yisen; Bao, Rui; Huang, Liang; Lai, Ying-Cheng

    2016-05-01

    Graphene-based mechanical resonators have attracted much attention due to their superior elastic properties and extremely low mass density. We investigate the effects of mechanical vibrations on electronic transport through graphene quantum dots, under the physically reasonable assumption that the time scale associated with electronic transport is much shorter than that with mechanical vibration so that, at any given time, an electron “sees” a static but deformed graphene sheet. We find that, besides periodic oscillation in the quantum transmission at the same frequency as that of mechanical vibrations, structures at finer scales can emerge as an intermediate state, which may lead to spurious higher-frequency components in the current through the device.

  6. Mechanism of vibrational energy dissipation of free OH groups at the air–water interface

    PubMed Central

    Hsieh, Cho-Shuen; Campen, R. Kramer; Okuno, Masanari; Backus, Ellen H. G.; Nagata, Yuki; Bonn, Mischa

    2013-01-01

    Interfaces of liquid water play a critical role in a wide variety of processes that occur in biology, a variety of technologies, and the environment. Many macroscopic observations clarify that the properties of liquid water interfaces significantly differ from those of the bulk liquid. In addition to interfacial molecular structure, knowledge of the rates and mechanisms of the relaxation of excess vibrational energy is indispensable to fully understand physical and chemical processes of water and aqueous solutions, such as chemical reaction rates and pathways, proton transfer, and hydrogen bond dynamics. Here we elucidate the rate and mechanism of vibrational energy dissipation of water molecules at the air–water interface using femtosecond two-color IR-pump/vibrational sum-frequency probe spectroscopy. Vibrational relaxation of nonhydrogen-bonded OH groups occurs at a subpicosecond timescale in a manner fundamentally different from hydrogen-bonded OH groups in bulk, through two competing mechanisms: intramolecular energy transfer and ultrafast reorientational motion that leads to free OH groups becoming hydrogen bonded. Both pathways effectively lead to the transfer of the excited vibrational modes from free to hydrogen-bonded OH groups, from which relaxation readily occurs. Of the overall relaxation rate of interfacial free OH groups at the air–H2O interface, two-thirds are accounted for by intramolecular energy transfer, whereas the remaining one-third is dominated by the reorientational motion. These findings not only shed light on vibrational energy dynamics of interfacial water, but also contribute to our understanding of the impact of structural and vibrational dynamics on the vibrational sum-frequency line shapes of aqueous interfaces. PMID:24191016

  7. Mechanism of vibrational energy dissipation of free OH groups at the air-water interface.

    PubMed

    Hsieh, Cho-Shuen; Campen, R Kramer; Okuno, Masanari; Backus, Ellen H G; Nagata, Yuki; Bonn, Mischa

    2013-11-19

    Interfaces of liquid water play a critical role in a wide variety of processes that occur in biology, a variety of technologies, and the environment. Many macroscopic observations clarify that the properties of liquid water interfaces significantly differ from those of the bulk liquid. In addition to interfacial molecular structure, knowledge of the rates and mechanisms of the relaxation of excess vibrational energy is indispensable to fully understand physical and chemical processes of water and aqueous solutions, such as chemical reaction rates and pathways, proton transfer, and hydrogen bond dynamics. Here we elucidate the rate and mechanism of vibrational energy dissipation of water molecules at the air-water interface using femtosecond two-color IR-pump/vibrational sum-frequency probe spectroscopy. Vibrational relaxation of nonhydrogen-bonded OH groups occurs at a subpicosecond timescale in a manner fundamentally different from hydrogen-bonded OH groups in bulk, through two competing mechanisms: intramolecular energy transfer and ultrafast reorientational motion that leads to free OH groups becoming hydrogen bonded. Both pathways effectively lead to the transfer of the excited vibrational modes from free to hydrogen-bonded OH groups, from which relaxation readily occurs. Of the overall relaxation rate of interfacial free OH groups at the air-H2O interface, two-thirds are accounted for by intramolecular energy transfer, whereas the remaining one-third is dominated by the reorientational motion. These findings not only shed light on vibrational energy dynamics of interfacial water, but also contribute to our understanding of the impact of structural and vibrational dynamics on the vibrational sum-frequency line shapes of aqueous interfaces.

  8. Vibrational spectra, electronic and quantum mechanical investigations on ciprofloxacin

    NASA Astrophysics Data System (ADS)

    Rajalakshmi, K.; Gunasekaran, S.; Kumaresan, S.

    2014-07-01

    The Fourier transform infrared and FT-Raman spectra of ciprofloxacin have been recorded in region 4,000-400 and 4,000-100 cm-1, respectively. A complete assignment and analysis of fundamental vibrational modes of the molecule have been carried out. The observed fundamental modes have been compared with harmonic vibrational frequencies computed using density functional theory calculations by employing B3LYP functional at 6-31 G ( d, p) level. The most stable geometry of compound under investigation has been determined from potential energy scan. The first-order hyperpolarizability ( β o ) and other related properties ( μ, α o ) of ciprofloxacin have been calculated using this theory on a finite field approach. UV-vis spectrum of the compound has been recorded and electronic properties, such as highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies have been calculated with B3LYP/6-31 G ( d, p) level. These calculated energies show that charge transfer occurs within molecule. The other molecular properties like molecular electrostatic potential, Mulliken population analysis and thermodynamic properties of title compound have also been calculated.

  9. Measurement of small mechanical vibrations of brain tissue exposed to extremely-low-frequency electric fields.

    PubMed

    Spiegel, R J; Ali, J S; Peoples, J F; Joines, W T

    1986-01-01

    Electromagnetic fields can interact with biological tissue both electrically and mechanically. This study investigated the mechanical interaction between brain tissue and an extremely-low-frequency (ELF) electric field by measuring the resultant vibrational amplitude. The exposure cell is a section of X-band waveguide that was modified by the addition of a center conductor to form a small TEM cell within the waveguide structure. The ELF signal is applied to the center conductor of the TEM cell. The applied ELF electric field generates an electrostrictive force on the surface of the brain tissue. This force causes the tissue to vibrate at a frequency equal to twice the frequency of the applied sinusoidal signal. An X-band signal is fed through the waveguide, scattered by the vibrating sample, and detected by a phase-sensitive receiver. Using a time-averaging spectrum analyzer, a vibration sensitivity of approximately 0.2 nmp-p can be achieved. The amplitude of the brain tissue vibrational response is constant for vibrational frequencies below 50 Hz; between 50 and 200 Hz resonant phenomena were observed; and above 200 Hz the amplitude fall-off is rapid.

  10. Relation between mechanical stiffness and vibration transmission of fracture callus: an experimental study on rabbit tibia.

    PubMed

    Akkus, O; Korkusuz, F; Akin, S; Akkas, N

    1998-01-01

    It has been suggested that the vibration transmission across a fracture is affected by the stages of healing of the fracture callus. This study aims to correlate the change in vibration transmission with mechanical stiffness of the callus measured by three-point bending. The right tibiae of male, three-month old local albino rabbits were osteotomized and stabilized by intramedullary fixation following open reduction. The intramedullary rods were removed on the 15th, 28th, 42nd and 90th days postoperatively and the tibiae were excised for vibration, three-point bending and bone mineral density analysis by quantitative computerized tomography (QCT). Optimum time for clinical weight bearing was determined by checking the convergence of the vibration parameters of the fractured tibia to those of the unfractured contralateral. The conclusions obtained from curvature analysis, based on vibration experiments, were in considerable correlation (Spearman's rank correlation coefficient r = 0.93, p = 0.003) with the conclusions obtained from the three-point bending test data which reflected the mechanical condition of the bone by direct means. However, no correlation between bone mineral density change and vibration transmission was noted.

  11. Vibration reduction of pneumatic percussive rivet tools: mechanical and ergonomic re-design approaches.

    PubMed

    Cherng, John G; Eksioglu, Mahmut; Kizilaslan, Kemal

    2009-03-01

    This paper presents a systematic design approach, which is the result of years of research effort, to ergonomic re-design of rivet tools, i.e. rivet hammers and bucking bars. The investigation was carried out using both ergonomic approach and mechanical analysis of the rivet tools dynamic behavior. The optimal mechanical design parameters of the re-designed rivet tools were determined by Taguchi method. Two ergonomically re-designed rivet tools with vibration damping/isolation mechanisms were tested against two conventional rivet tools in both laboratory and field tests. Vibration characteristics of both types of tools were measured by laboratory tests using a custom-made test fixture. The subjective field evaluations of the tools were performed by six experienced riveters at an aircraft repair shop. Results indicate that the isolation spring and polymer damper are very effective in reducing the overall level of vibration under both unweighted and weighted acceleration conditions. The mass of the dolly head and the housing played a significant role in the vibration absorption of the bucking bars. Another important result was that the duct iron has better vibration reducing capability compared to steel and aluminum for bucking bars. Mathematical simulation results were also consistent with the experimental results. Overall conclusion obtained from the study was that by applying the design principles of ergonomics and by adding vibration damping/isolation mechanisms to the rivet tools, the vibration level can significantly be reduced and the tools become safer and user friendly. The details of the experience learned, design modifications, test methods, mathematical models and the results are included in the paper.

  12. Sources of noise and vibration in a mechanical system with clearances

    SciTech Connect

    Akay, A.; Bengisu, M.T.

    1982-01-01

    Inherent in the design of any mechanism with moving parts is the requirement for clearances. In the case of an engine, this requirement is enhanced by the extremes of both load and temperature under which some parts are expected to function. Collision of the parts in these connections where clearances exist are influenced by transient combustion forces as well as inertial forces. Impacts in the joints of a system are a major source of sound, vibration and wear. The mechanism of sound generation follows the dynamic response of the system components. The resulting transient acoustic field is comprised of radiation from the forced and free vibrations of the system. Radiation due to inertial forces are generally of lower frequency whereas sounds produced by the impacts exhibit higher levels with higher spectral content. This study investigates the sound and vibration response of a four-bar mechanism in the absence of external forces.

  13. Interpreting nonlinear vibrational spectroscopy with the classical mechanical analogs of double-sided Feynman diagrams.

    PubMed

    Noid, W G; Loring, Roger F

    2004-10-15

    Observables in coherent, multiple-pulse infrared spectroscopy may be computed from a vibrational nonlinear response function. This response function is conventionally calculated quantum-mechanically, but the challenges in applying quantum mechanics to large, anharmonic systems motivate the examination of classical mechanical vibrational nonlinear response functions. We present an approximate formulation of the classical mechanical third-order vibrational response function for an anharmonic solute oscillator interacting with a harmonic solvent, which establishes a clear connection between classical and quantum mechanical treatments. This formalism permits the identification of the classical mechanical analog of the pure dephasing of a quantum mechanical degree of freedom, and suggests the construction of classical mechanical analogs of the double-sided Feynman diagrams of quantum mechanics, which are widely applied to nonlinear spectroscopy. Application of a rotating wave approximation permits the analytic extraction of signals obeying particular spatial phase matching conditions from a classical-mechanical response function. Calculations of the third-order response function for an anharmonic oscillator coupled to a harmonic solvent are compared to numerically correct classical mechanical results.

  14. Effects of ultrasonic vibration on the microstructure and mechanical properties of high alloying TiAl

    NASA Astrophysics Data System (ADS)

    Ruirun, Chen; Deshuang, Zheng; Tengfei, Ma; Hongsheng, Ding; Yanqing, Su; Jingjie, Guo; Hengzhi, Fu

    2017-01-01

    To modify the microstructure and enhance performances, the ultrasonic vibration is applied in the mould casting of TiAl alloy. The effects and mechanism of ultrasonic vibration on the solidifying microstructure and mechanical properties are investigated and the model for predicting lamellar colony size is established. After ultrasonic vibration, the coarse microstructure is well modified and lamellar colony is refined from 534 μm to 56 μm. Most of precipitated phases are dissolved into the lamellar colony leading to a homogenous element distribution. The phase ratio of α2-Ti3Al and γ-TiAl is increased, and the chemical composition is promoted to more close to equilibrium level by weakening the influence of β-alloying elements. The microhardness and yield strength are gradually improved by 23.72% and 181.88% due to the fine grain strengthening, while the compressive strength is enhanced by 24.47% through solution strengthening. The critical ultrasonic intensity (Ib) for TiAl alloy is estimated at 220 W cm‑2 and the model for average lamellar colony size is established as . The ultrasonic refinement efficiency exponentially increases as the ultrasonic vibration time with a theoretic limit maximum value of Elim = 88% and the dominating refinement mechanism by ultrasonic vibration is the cavitation-enhanced nucleation rather than cavitation-induced dendrite fragmentation.

  15. Effects of ultrasonic vibration on the microstructure and mechanical properties of high alloying TiAl

    PubMed Central

    Ruirun, Chen; Deshuang, Zheng; Tengfei, Ma; Hongsheng, Ding; Yanqing, Su; Jingjie, Guo; Hengzhi, Fu

    2017-01-01

    To modify the microstructure and enhance performances, the ultrasonic vibration is applied in the mould casting of TiAl alloy. The effects and mechanism of ultrasonic vibration on the solidifying microstructure and mechanical properties are investigated and the model for predicting lamellar colony size is established. After ultrasonic vibration, the coarse microstructure is well modified and lamellar colony is refined from 534 μm to 56 μm. Most of precipitated phases are dissolved into the lamellar colony leading to a homogenous element distribution. The phase ratio of α2-Ti3Al and γ-TiAl is increased, and the chemical composition is promoted to more close to equilibrium level by weakening the influence of β-alloying elements. The microhardness and yield strength are gradually improved by 23.72% and 181.88% due to the fine grain strengthening, while the compressive strength is enhanced by 24.47% through solution strengthening. The critical ultrasonic intensity (Ib) for TiAl alloy is estimated at 220 W cm−2 and the model for average lamellar colony size is established as . The ultrasonic refinement efficiency exponentially increases as the ultrasonic vibration time with a theoretic limit maximum value of Elim = 88% and the dominating refinement mechanism by ultrasonic vibration is the cavitation-enhanced nucleation rather than cavitation-induced dendrite fragmentation. PMID:28117451

  16. Light-transmission aggregometer using a vibration-induced disaggregation mechanism

    NASA Astrophysics Data System (ADS)

    Shin, S.; Jang, J. H.; Park, M. S.; Ku, Y. H.; Suh, J. S.

    2005-01-01

    The vibration-induced disaggregation technique of red blood cell (RBC) aggregates has been applied to design a new light-transmission aggregometer for measurement of aggregation index. For disaggregation of RBCs, the rotational shear flow in the Couette system is replaced with a simple low-frequency vibration in a disposable cavity slide glass. Using a vibration generator, one can disaggregate the RBC aggregates stored in the cavity slide glass. After applying the vibration for a specified duration, RBCs tend to reaggregate and instantaneous light-transmittance intensity is measured over time. A syllectogram (the transmitted light intensity versus time) consists of an initial decrease caused by the vibration-induced disaggregation, immediately followed by an increase in the light intensity due to RBC aggregation. The indices of aggregation are determined from the syllectogram using a curve-fitting program. The noble feature of this design is the vibration-induced disaggregation mechanism, which enables to incorporate disposable element that holds the blood sample.

  17. Vibration Stabilization of a Mechanical Model of a X-Band Linear Collider Final Focus Magnet

    SciTech Connect

    Frisch, Josef; Chang, Allison; Decker, Valentin; Doyle, Eric; Eriksson, Leif; Hendrickson, Linda; Himel, Thomas; Markiewicz, Thomas; Partridge, Richard; Seryi, Andrei; /SLAC

    2006-09-28

    The small beam sizes at the interaction point of a X-band linear collider require mechanical stabilization of the final focus magnets at the nanometer level. While passive systems provide adequate performance at many potential sites, active mechanical stabilization is useful if the natural or cultural ground vibration is higher than expected. A mechanical model of a room temperature linear collider final focus magnet has been constructed and actively stabilized with an accelerometer based system.

  18. Measurement of small mechanical vibrations of brain tissue exposed to extremely-low-frequency electric fields

    SciTech Connect

    Spiegel, R.J.; Ali, J.S.; Peoples, J.F.; Joines, W.T.

    1986-01-01

    Electromagnetic fields can interact with biological tissue both electrically and mechanically. This study investigated the mechanical interaction between brain tissue and an extremely-low-frequency (ELF) electric field by measuring the resultant vibrational amplitude. The exposure cell is a section of X-band waveguide that was modified by the addition of a center conductor to form a small TEM cell within the waveguide structure. The ELF signal is applied to the center conductor of the TEM cell. The applied ELF electric field generates an electrostrictive force on the surface of the brain tissue. This force causes the tissue to vibrate at a frequency equal to twice the frequency of the applied sinusoidal signal. An X-band signal is fed through the waveguide, scattered by the vibrating sample, and detected by a phrase-sensitive receiver. Using a time-averaging spectrum analyzer, a vibration sensitivity of approximately 0.2 nmpp can be achieved. The amplitude of the brain tissue vibrational frequencies below 50 Hz; between 50 and 200 Hz resonant phenomena were observed; and above 200 Hz the amplitude fall-off is rapid.

  19. Determination of mechanical properties of excised dog radii from lateral vibration experiments

    NASA Technical Reports Server (NTRS)

    Thompson, G. A.; Anliker, M.; Young, D. R.

    1973-01-01

    Experimental data which can be used as a guideline in developing a mathematical model for lateral vibrations of whole bone are reported. The study used wet and dry dog radii mounted in a cantilever configuration. Data are also given on the mechanical, geometric, and viscoelastic properties of bones.

  20. Vibration Damping Materials and Their Applications in Nano/Micro-Electro-Mechanical Systems: A Review.

    PubMed

    Choudhary, Nitin; Kaur, Davinder

    2015-03-01

    The present review explores an overall view of the vibration damping materials ranging from traditionally used viscoelastic materials for macroscale damping to hybrid thin film heterostructures for micro-electro-mechanical systems (MEMS). Vibration damping materials like rubbers, polymers, metals, metal-matrix composites and smart materials are reviewed in terms of damping capacity, stiffness, mechanical strength and figure of merit. Nanoscale shape memory alloys, piezoelectric materials, carbon nanotubes, their composites and thin films are promising materials for future nanoscale damping devices. The main focus of this article is on our development of new vibration damping approach for MEMS structures comprising of ferroelastic/ferroelastic thin film heterostructures. For the first time, nanoindentation has been explored as an alternative tool to evaluate the damping capability of actual components (e.g., thin films for MEMS) where production of dynamic mechanical analyzer (DMA) test samples is not feasible. A comprehensive insight on the existing vibration damping materials and our new approach would definitely trigger some important applications in nano- and micro-electro-mechanical systems.

  1. Micro Vibration Improvement of a Stepper Actuated Mechanism

    NASA Astrophysics Data System (ADS)

    Kozilek, Horst; Specht, Bernhard; Young, Sang-Soon; Lee, Sang Gyu

    2013-09-01

    A two axis X-Band Antenna Pointing Mechanism (APM) was developed by Astrium/KARI and flown on Kompsat-3 as downlink equipment. A second set of identical equipment will be flown on an identical follow-on space craft.The APM is a compact two axis pointing mechanism with an integrated Hold-down and Release Mechanism. The azimuth range is un-limited while the elevation range is 130deg. The System is equipped with Contactless X-Band Rotary Joints for RF Signal transfer. The rotational motion is executed by two identical stepper motors with harmonic drive gears acting to an external spur gear and controlled by an Astrium provided Stepper control electronic.

  2. Utilising Nonlinear Air Damping as a Soft Mechanical Stopper for MEMS Vibration Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Chen, Shao-Tuan; Du, Sijun; Arroyo, Emmanuelle; Jia, Yu; Seshia, Ashwin

    2016-11-01

    This paper reports on the theory and experimental verification of utilising air damping as a soft stopper mechanism for piezoelectric vibration energy harvesting to enhance shock resistance. Experiments to characterise device responsiveness under various vibration conditions were performed at different air pressure levels, and a dimensionless model was constructed with nonlinear damping terms included to model PVEH response. The relationship between the quadratic damping coefficient ζ n and air pressure is empirically established, and an optimal pressure level is calculated to trade off harvestable energy and device robustness for specific environmental conditions.

  3. Six-degree-of-freedom active vibration isolation using a Stewart platform mechanism

    NASA Technical Reports Server (NTRS)

    Geng, Zheng; Haynes, Leonard S.

    1993-01-01

    The design and control problems of a class of multidegree-of-freedom vibration isolation systems (VISs) based on a Stewart platform mechanism are studied. A prototype of a six-degree-of-freedom VIS for precision control of a wide range of space-based structures implemented in Intelligent Automation, Inc. is described. The feasibility of using a Stewart platform to achieve 6-degree-of-freedom vibration control in space applications is shown. A new Terfenol-D actuator characterized by significantly longer stroke than any commercially available Terfenol-D actuator and direct flux and strain sensors integral to the actuator is described.

  4. Contributions to Crustal Mechanics on Europa from Subterranean Ocean Vibrations

    NASA Astrophysics Data System (ADS)

    Hayes, Robert

    2016-03-01

    The recent discovery of subduction zones on Europa demonstrated a significant step forward in understanding the moon's surface mechanics. This work promotes the additional consideration that the surface mechanics have contributions from small relative pressure differentials in the subsurface ocean that create cracks in the surface which are then filled, sealed and healed. Crack formation can be small, as interior pressure can relatively easily breach the surface crust, generating cracks followed by common fracture formation backfilled with frozen liquid. This process will slowly increase the overall surface area of the moon with each sealed crack and fracture increasing the total surface area. This creeping growth of surface area monotonically decreases subsurface pressure which can eventually catastrophically subduct large areas of surface and so is consistent with current knowledge of observational topology on Europa. This tendency is attributed to a relatively lower energy threshold to crack the surface from interior overpressures, but a higher energy threshold to crush the spherical surface due to subsurface underpressures. Proposed mechanisms for pressure differentials include tidal forces whose Fourier components build up the resonant oscillatory modes of the subsurface ocean creating periodic under and overpressure events below the crust. This mechanism provides a means to continually reform the surface of the moon over short geological time scales. This work supported in part by federal Grant NRC-HQ-84-14-G-0059.

  5. A quill vibrating mechanism for a sounding apparatus in the streaked tenrec (Hemicentetes semispinosus).

    PubMed

    Endo, Hideki; Koyabu, Daisuke; Kimura, Junpei; Rakotondraparany, Felix; Matsui, Atsushi; Yonezawa, Takahiro; Shinohara, Akio; Hasegawa, Masami

    2010-05-01

    The streaked tenrec (Hemicentetes semispinosus) is equipped with a quill vibrating mechanism on the dorsal side of the caudal trunk that has evolved as an extraordinary sounding apparatus for communication. An arrangement of 15 or 16 light-brown quills was observed. Thickened cutaneous muscles were confirmed beneath quills. We named this structure the "quill vibrator disc" (QVD). The QVD was 16.8 mm long and 8.55 mm wide in a typical adult. Longitudinal musculature symmetrical about the sagittal plane was developed in the QVD. Myocytes were found immunohistochemically to contain mainly fast myosin but not slow myosin. These findings indicate that the QVD is a specialized apparatus in the cutaneous muscle that contributes to the vibration of quills and to the production of sound for communication.

  6. Radial vibration of free anisotropic nanoparticles based on nonlocal continuum mechanics.

    PubMed

    Ghavanloo, Esmaeal; Fazelzadeh, S Ahmad

    2013-02-22

    Radial vibration of spherical nanoparticles made of materials with anisotropic elasticity is theoretically investigated using nonlocal continuum mechanics. The anisotropic elastic model is reformulated using the nonlocal differential constitutive relations of Eringen. The nonlocal differential equation of radial motion is derived in terms of radial displacement. Cubic, hexagonal, trigonal and tetragonal symmetries of the elasticity are discussed. The suggested model is justified by a good agreement between the results given by the present model and available experimental data. Furthermore, the model is used to elucidate the effect of small scale on the vibration of several nanoparticles. Our results show that the small scale is essential for the radial vibration of the nanoparticles when the nanoparticle radius is smaller than 1.5 nm.

  7. Effect and kinetic mechanism of ultrasonic vibration on solidification of 7050 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Jiang, Ripeng; Li, Xiaoqian; Chen, Pinghu; Li, Ruiqing; Zhang, Xue

    2014-07-01

    The work described in this paper dealt with the effect of ultrasonic vibration on the solidification of 7050 aluminum alloy. Two experiments were carried out through introducing ultrasound into the semi-continuous direct-chill (DC) casting of aluminum alloy and into alloy solidifying in a crucible, respectively. Results show that ultrasonic vibration can refine grains in the whole cross-section of a billet in the first experiment and is able to increase the cooling rate within the temperature range from 625 °C to 590 °C in the other one. The mechanism of particle resonance caused by ultrasonic vibration was illustrated on the basis of theoretical analysis of the kinetics and energy conversion during the solidification. It is demonstrated that the kinetic energy of resonant particles are mainly from the latent heat energy of solidification, which can shorten the cooling time, inhibit the crystal growth and then lead to the grain refinement.

  8. Detection of nonlinear distortions in the vibration of acoustically driven mechanical systems using heterodyne vibrometry

    NASA Astrophysics Data System (ADS)

    Aerts, J. R. M.; Dirckx, J. J. J.; Pintelon, R.

    2008-06-01

    Recently, a measurement set-up was presented to detect small nonlinear distortions in the vibration of acoustically driven mechanical systems. A speaker generates a specially designed multisine excitation signal that drives the vibration of a test object. The generated sound pressure is measured with a probe microphone in front of the test object, and an heterodyne vibrometer measures the corresponding vibration. Due to the high degree of linearity of the heterodyne technique, very small nonlinear distortions can be detected. In this paper the set-up is used to verify whether small nonlinear distortions are present in the vibration of the middle ear system, which is classically considered to be a completely linear system. In vitro measurements on the right ear of an adult male gerbil proved that nonlinear distortions are present in the vibration of the tympanic membrane. Similar results were seen in measurements on the left ear. The influence of post-mortem changes on the nonlinear behaviour of the middle ear was verified in a number of successive measurements. These indicated that the nonlinear behaviour of the middle ear decreases in time.

  9. Muscular forearm activation in hand-grip tasks with superimposition of mechanical vibrations.

    PubMed

    Fattorini, L; Tirabasso, A; Lunghi, A; Di Giovanni, R; Sacco, F; Marchetti, E

    2016-02-01

    The purpose of this paper is to evaluate the muscular activation of the forearm, with or without vibration stimuli at different frequencies while performing a grip tasks of 45s at various level of exerted force. In 16 individuals, 9 females and 7 males, the surface electromyogram (EMG) of extensor carpi radialis longus and the flexor carpi ulnari muscles were assessed. At a short latency from onset EMG, RMS and the level of MU synchronization were assessed to evaluate the muscular adaptations. Whilst a trend of decay of EMG Median frequency (MDFd) was employed as an index of muscular fatigue. Muscular tasks consists of the grip of an instrumented handle at a force level of 20%, 30%, 40%, 60% of the maximum voluntary force. Vibration was supplied by a shaker to the hand in mono-frequential waves at 20, 30, 33 and 40Hz. In relation to EMG, RMS and MU synchronization, the muscular activation does not seem to change with the superimposition of the mechanical vibrations, on the contrary a lower MDFd was observed at 33Hz than in absence of vibration. This suggests an early muscular fatigue induced by vibration due to the fact that 33Hz is a resonance frequency for the hand-arm system.

  10. Mechanisms of active control for noise inside a vibrating cylinder

    NASA Technical Reports Server (NTRS)

    Lester, Harold C.; Fuller, Chris R.

    1987-01-01

    The active control of propeller-induced noise fields inside a flexible cylinder is studied with attention given to the noise reduction mechanisms inherent in the present coupled acoustic shell model. The active noise control model consists of an infinitely long aluminum cylinder with a radius of 0.4 m and a thickness of 0.001 m. Pressure maps are shown when the two external sources are driven in-phase at a frequency corresponding to Omega = 0.22.

  11. Suppressing self-excited vibrations of mechanical systems by impulsive force excitation

    NASA Astrophysics Data System (ADS)

    Pumhössel, Thomas

    2016-09-01

    In this contribution, self-excited mechanical systems subjected to force excitation of impulsive type are investigated. It is shown that applying force impulses which are equally spaced in time, but whose impulsive strength depends in a certain manner on the state-variables of the mechanical system, results in a periodic energy exchange between lower and higher modes of vibration. Moreover, in the theoretical case of Dirac delta impulses, it is possible that no energy crosses the system boundary while energy is transferred across modes, i.e. neither external energy is fed to the mechanical system, nor energy is extracted from the mechanical system. Shifting energy to higher modes of vibration, whose natural damping is larger compared to lower ones, results in a faster dissipation of energy. An analytical stability investigation is presented using the assumption of impulsive forcing of Dirac delta type, which allows deciding easily about the stability by evaluating the eigenvalues of the coefficient matrix of a corresponding set of difference equations. It is shown that the developed impulsive forcing concept is capable to suppress self-excited vibrations of mechanical systems. Some numerical results of a simple mechanical system with two degrees of freedom underline the presented approach.

  12. Effect of mechanical vibration on platinum particle agglomeration and growth in Polymer Electrolyte Membrane Fuel Cell catalyst layers

    NASA Astrophysics Data System (ADS)

    Diloyan, Georgiy; Sobel, Marcus; Das, Kiranmoy; Hutapea, Parsaoran

    2012-09-01

    The effect of mechanical vibration on Platinum (Pt) particle agglomeration and growth in the catalyst layer of a Membrane Electrode Assembly (MEA) for a Proton Exchange Membrane Fuel Cell (PEMFC) was investigated. A series of experiments were conducted using a 300-h accelerated test with potential cycling and transmission electron microscopy (TEM). Each of the 300-h accelerated tests used different constant mechanical vibration conditions (frequency and acceleration). It was observed that the average diameter of Pt particles under vibration is 10% smaller than the ones that were under no vibration conditions. The Pt particles in the order of 2-2.5 nm in the pristine state have grown to approximately 6 nm (after 300-h accelerated test without vibration condition) and to approximately 5.47 nm (after 300 h accelerated test under 1 g 20 Hz vibration condition).

  13. Design and test of a Bennet's doubler device with mechanical switches for vibrational energy harvesting

    NASA Astrophysics Data System (ADS)

    Ben Ouanes, M. A.; Lu, Y.; Samaali, H.; Basset, P.; Najar, F.

    2016-11-01

    In this work, we demonstrate that the use of self-synchronized mechanical switches in replacement of diodes into electrostatic vibration energy harvesters (e-VEH) can lead to better power generation. Indeed, mechanical switches have the advantage of no leakage current and no threshold voltage. As a proof of concept, we use the Bennet's doubler electrostatic generator. The proposed e-VEH is composed of two variable capacitors triggered by a central electrode taken as an inertial mass. Ambient vibrations induce inertial forces on the central electrode, as a result a voltage doubling is obtained at each operating cycle. The mechanical switches are directly fixed to the moving electrode. In addition, no dedicated pre-charge is required: the system starts with ambient electrical charges. The device is fabricated and tested under harmonic motion. A comparison between the proposed design and those using diodes under the same operating conditions shows an experimental direct increase of the harvested electrical power of around 28%.

  14. Stochastic model to monitor mechanical vibrations in pressurized water reactors

    SciTech Connect

    Shieh, D.J.; Upadhyaya, B.R.

    1984-01-01

    The feasibility of using neutron flux and core-exit temperature signals in PWRs for estimating core coolant flow velocity has been demonstrated using normal operational data from both the LOFT reactor and a commerical PWR. The LOFT analysis further showed that the core coolant velocity can be accurately monitored for various flow rates using the linear phase-frequency relationship in the frequency range 0.1 to 2 Hz. The development of the technique for monitoring core coolant velocity in PWRs provides a valuable alternative for flow measurement. Theoretical studies of core heat transfer in PWRs showed that the fluctuating heat sources have a dominating effect on the core-exit temperature compared to fluctuations of the coolant flow rate and core inlet coolant temperature. In the present analysis a detailed distributed parameter model of a PWR core was developed with the purpose of studying the following aspects of core coolant flow rate measurement: the mechanisms causing linear phase relationship between neutron flux and coolant temperature signals due to various perturbation sources; the effect of axial flux shape on the phase slope (or estimated transit delay time); and the relationship between transit delay time and effective distance of temperature noise propagation to maintain the flow velocity invariant.

  15. Vibration effect on cross-flow and co-flow focusing mechanism for droplet generation

    NASA Astrophysics Data System (ADS)

    Salari, Alinaghi; Dalton, Colin

    2015-03-01

    Microbubbles are widely used in many industries such as water treatment, drug coating, and ultrasonic contrast agents. Cross-flow focusing and co-flow focusing are considered basic mechanisms used for microbubble generation. Typically, to achieve micron-sized droplets requires structure dimensions in the same order of magnitude of the desired droplet sizes. In this paper we report a method of applying an external vibration to a cross-flow and co-flow focusing structure, which allows for smaller droplets to be generated. The junction dimension was 700×400 μm, and the channel width was 800 μm. The two assumed fluids are selected in a way that the Capillary number is high (Ca>10) to make use of necking effect occurred in the downstream. Linear vibration was exerted on the microchannel structure in the direction of central flow. A 2D structure was simulated using finite element software, and the numerical approach was then verified by comparing the experimental data of a typical cross-flow focusing structure taken from our previous study with the corresponding simulation assuming the same parameters. The results show that although the droplet generation regime depends on flow ratio (Qa/Qw) and vibration parameter (ampl×freq), Capillary number also has a significant effect on the regime. Briefly, applying a low-cost linear vibration to the conventional flow focusing structures can be used as an accurate controlling technique for increasing the chance of droplet generation. In fact, vibration motion can change the flow regime and breakup mechanism. It can also change the breakup point at which the droplets are formed.

  16. Protein Mass-Modulated Effects in the Catalytic Mechanism of Dihydrofolate Reductase: Beyond Promoting Vibrations

    PubMed Central

    2015-01-01

    The role of fast protein dynamics in enzyme catalysis has been of great interest in the past decade. Recent “heavy enzyme” studies demonstrate that protein mass-modulated vibrations are linked to the energy barrier for the chemical step of catalyzed reactions. However, the role of fast dynamics in the overall catalytic mechanism of an enzyme has not been addressed. Protein mass-modulated effects in the catalytic mechanism of Escherichia coli dihydrofolate reductase (ecDHFR) are explored by isotopic substitution (13C, 15N, and non-exchangeable 2H) of the wild-type ecDHFR (l-DHFR) to generate a vibrationally perturbed “heavy ecDHFR” (h-DHFR). Steady-state, pre-steady-state, and ligand binding kinetics, intrinsic kinetic isotope effects (KIEint) on the chemical step, and thermal unfolding experiments of both l- and h-DHFR show that the altered protein mass affects the conformational ensembles and protein–ligand interactions, but does not affect the hydride transfer at physiological temperatures (25–45 °C). Below 25 °C, h-DHFR shows altered transition state (TS) structure and increased barrier-crossing probability of the chemical step compared with l-DHFR, indicating temperature-dependent protein vibrational coupling to the chemical step. Protein mass-modulated vibrations in ecDHFR are involved in TS interactions at cold temperatures and are linked to dynamic motions involved in ligand binding at physiological temperatures. Thus, mass effects can affect enzymatic catalysis beyond alterations in promoting vibrations linked to chemistry. PMID:24820793

  17. Improved mechanical reliability of MEMS electret based vibration energy harvesters for automotive applications

    NASA Astrophysics Data System (ADS)

    Renaud, M.; Fujita, T.; Goedbloed, M.; de Nooijer, C.; van Schaijk, R.

    2014-11-01

    Current commercial wireless tire pressure monitoring systems (TPMS) require a battery as electrical power source. The battery limits the lifetime of the TPMS. This limit can be circumvented by replacing the battery by a vibration energy harvester. Autonomous wireless TPMS powered by MEMS electret based vibration energy harvester have been demonstrated. A remaining technical challenge to attain the grade of commercial product with these autonomous TPMS is the mechanical reliability of the MEMS harvester. It should survive the harsh conditions imposed by the tire environment, particularly in terms of mechanical shocks. As shown in this article, our first generation of harvesters has a shock resilience of 400 g, which is far from being sufficient for the targeted application. In order to improve this aspect, several types of shock absorbing structures are investigated. With the best proposed solution, the shock resilience of the harvesters is brought above 2500 g.

  18. Fixed Base Modal Testing Using the NASA GRC Mechanical Vibration Facility

    NASA Technical Reports Server (NTRS)

    Staab, Lucas D.; Winkel, James P.; Suarez, Vicente J.; Jones, Trevor M.; Napolitano, Kevin L.

    2016-01-01

    The Space Power Facility at NASA's Plum Brook Station houses the world's largest and most powerful space environment simulation facilities, including the Mechanical Vibration Facility (MVF), which offers the world's highest-capacity multi-axis spacecraft shaker system. The MVF was designed to perform sine vibration testing of a Crew Exploration Vehicle (CEV)-class spacecraft with a total mass of 75,000 pounds, center of gravity (cg) height above the table of 284 inches, diameter of 18 feet, and capability of 1.25 gravity units peak acceleration in the vertical and 1.0 gravity units peak acceleration in the lateral directions. The MVF is a six-degree-of-freedom, servo-hydraulic, sinusoidal base-shake vibration system that has the advantage of being able to perform single-axis sine vibration testing of large structures in the vertical and two lateral axes without the need to reconfigure the test article for each axis. This paper discusses efforts to extend the MVF's capabilities so that it can also be used to determine fixed base modes of its test article without the need for an expensive test-correlated facility simulation.

  19. Separating Fluid Shear Stress from Acceleration during Vibrations in Vitro: Identification of Mechanical Signals Modulating the Cellular Response

    PubMed Central

    Uzer, Gunes; Manske, Sarah L; Chan, M Ete; Chiang, Fu-Pen; Rubin, Clinton T; Frame, Mary D; Judex, Stefan

    2012-01-01

    The identification of the physical mechanism(s) by which cells can sense vibrations requires the determination of the cellular mechanical environment. Here, we quantified vibration-induced fluid shear stresses in vitro and tested whether this system allows for the separation of two mechanical parameters previously proposed to drive the cellular response to vibration – fluid shear and peak accelerations. When peak accelerations of the oscillatory horizontal motions were set at 1g and 60Hz, peak fluid shear stresses acting on the cell layer reached 0.5Pa. A 3.5-fold increase in fluid viscosity increased peak fluid shear stresses 2.6-fold while doubling fluid volume in the well caused a 2-fold decrease in fluid shear. Fluid shear was positively related to peak acceleration magnitude and inversely related to vibration frequency. These data demonstrated that peak shear stress can be effectively separated from peak acceleration by controlling specific levels of vibration frequency, acceleration, and/or fluid viscosity. As an example for exploiting these relations, we tested the relevance of shear stress in promoting COX-2 expression in osteoblast like cells. Across different vibration frequencies and fluid viscosities, neither the level of generated fluid shear nor the frequency of the signal were able to consistently account for differences in the relative increase in COX-2 expression between groups, emphasizing that the eventual identification of the physical mechanism(s) requires a detailed quantification of the cellular mechanical environment. PMID:23074384

  20. Low-frequency band gap mechanism of torsional vibration of lightweight elastic metamaterial shafts

    NASA Astrophysics Data System (ADS)

    Li, Lixia; Cai, Anjiang

    2016-07-01

    In this paper, the low-frequency band gap mechanism of torsional vibration is investigated for a kind of light elastic metamaterial (EM) shafts architecture comprised of a radial double-period element periodically as locally resonant oscillators with low frequency property. The dispersion relations are calculated by a method combining the transfer matrix and a lumped-mass method. The theoretical results agree well with finite method simulations, independent of the density of the hard material ring. The effects of the material parameters on the band gaps are further explored numerically. Our results show that in contrast to the traditional EM shaft, the weight of our proposed EM shaft can be reduced by 27% in the same band gap range while the vibration attenuation is kept unchanged, which is very convenient to instruct the potential engineering applications. Finally, the band edge frequencies of the lower band gaps for this light EM shaft are expressed analytically using physical heuristic models.

  1. Relaxation Mechanism of the SD Vibrational Stretch Mode in Amorphous As_2S_3

    NASA Astrophysics Data System (ADS)

    Engholm, J. R.; Rella, C. W.; Schwettman, H. A.; Happek, U.

    1996-03-01

    Impurity molecules in a glassy host such as SD in As_2S3 exhibit inhomogeneous broadening in their vibrational stretch mode absorption lines caused by a site-dependent redshift due to hydrogen bonding. We have performed pump-probe measurements using the Stanford Picosecond Free Electron Laser to study the relaxation lifetime of the SD vibrational stretch mode in As_2S3 at 1800 cm-1. We find a strongly frequency dependent lifetime across the absorption line on the order of 10-10 seconds, similar to that previously measured for SH impurity molecules in the same host. We use the temperature dependence of the stretch mode lifetimes and linear infrared spectroscopy to identify the relaxation mechanism. This work was supported in part by the Office of Naval Research, Grant No. N00014-94-1-1024.

  2. An efficient low frequency horizontal diamagnetic levitation mechanism based vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Palagummi, S.; Yuan, F. G.

    2016-04-01

    This article identifies and studies key parameters that characterize a horizontal diamagnetic levitation (HDL) mechanism based low frequency vibration energy harvester with the aim of enhancing performance metrics such as efficiency and volume figure of merit (FoMv). The HDL mechanism comprises of three permanent magnets and two diamagnetic plates. Two of the magnets, aka lifting magnets, are placed co-axially at a distance such that each attract a centrally located magnet, aka floating magnet, to balance its weight. This floating magnet is flanked closely by two diamagnetic plates which stabilize the levitation in the axial direction. The influence of the geometry of the floating magnet, the lifting magnet and the diamagnetic plate are parametrically studied to quantify their effects on the size, stability of the levitation mechanism and the resonant frequency of the floating magnet. For vibration energy harvesting using the HDL mechanism, a coil geometry and eddy current damping are critically discussed. Based on the analysis, an efficient experimental system is setup which showed a softening frequency response with an average system efficiency of 25.8% and a FoMv of 0.23% when excited at a root mean square acceleration of 0.0546 m/s2 and at frequency of 1.9 Hz.

  3. Reactive oxygen species regulatory mechanisms associated with rapid response of MC3T3-E1 cells for vibration stress.

    PubMed

    Zhang, Ling; Gan, Xueqi; Zhu, Zhuoli; Yang, Yang; He, Yuting; Yu, Haiyang

    2016-02-12

    Although many previous studies have shown that refractory period-dependent memory effect of vibration stress is anabolic for skeletal homeostasis, little is known about the rapid response of osteoblasts simply derived from vibration itself. In view of the potential role of reactive oxygen species (ROS) in mediating differentiated activity of osteoblasts, whether and how ROS regulates the rapid effect of vibration deserve to be demonstrated. Our findings indicated that MC3T3-E1 cells underwent decreased gene expression of Runx2, Col-I and ALP and impaired ALP activity accompanied by increased mitochondrial fission immediately after vibration loading. Moreover, we also revealed the involvement of ERK-Drp1 signal transduction in ROS regulatory mechanisms responsible for the rapid effect of vibration stress.

  4. Effect of wheelchair frame material on users' mechanical work and transmitted vibration.

    PubMed

    Chénier, Félix; Aissaoui, Rachid

    2014-01-01

    Wheelchair propulsion exposes the user to a high risk of shoulder injury and to whole-body vibration that exceeds recommendations of ISO 2631-1:1997. Reducing the mechanical work required to travel a given distance (WN-WPM, weight-normalized work-per-meter) can help reduce the risk of shoulder injury, while reducing the vibration transmissibility (VT) of the wheelchair frame can reduce whole-body vibration. New materials such as titanium and carbon are used in today's wheelchairs and are advertised to improve both parameters, but current knowledge on this matter is limited. In this study, WN-WPM and VT were measured simultaneously and compared between six folding wheelchairs (1 titanium, 1 carbon, and 4 aluminium). Ten able-bodied users propelled the six wheelchairs on three ground surfaces. Although no significant difference of WN-WPM was found between wheelchairs (P < 0.1), significant differences of VT were found (P < 0.05). The carbon wheelchair had the lowest VT. Contrarily to current belief, the titanium wheelchair VT was similar to aluminium wheelchairs. A negative correlation between VT and WN-WPM was found, which means that reducing VT may be at the expense of increasing WN-WPM. Based on our results, use of carbon in wheelchair construction seems promising to reduce VT without increasing WN-WPM.

  5. Electrostatic vibration energy harvester with combined effect of electrical nonlinearities and mechanical impact

    NASA Astrophysics Data System (ADS)

    Basset, P.; Galayko, D.; Cottone, F.; Guillemet, R.; Blokhina, E.; Marty, F.; Bourouina, T.

    2014-03-01

    This paper presents an advanced study including the design, characterization and theoretical analysis of a capacitive vibration energy harvester. Although based on a resonant electromechanical device, it is intended for operation in a wide frequency band due to the combination of stop-end effects and a strong biasing electrical field. The electrostatic transducer has an interdigited comb geometry with in-plane motion, and is obtained through a simple batch process using two masks. A continuous conditioning circuit is used for the characterization of the transducer. A nonlinear model of the coupled system ‘transduce-conditioning circuit’ is presented and analyzed employing two different semi-analytical techniques together with precise numerical modelling. Experimental results are in good agreement with results obtained from numerical modelling. With the 1 g amplitude of harmonic external acceleration at atmospheric pressure, the system transducer-conditioning circuit has a half-power bandwidth of more than 30% and converts more than 2 µW of the power of input mechanical vibrations over the range of 140 and 160 Hz. The harvester has also been characterized under stochastic noise-like input vibrations.

  6. Changes in joint stability with muscle contraction measured from transmission of mechanical vibration.

    PubMed

    Feltham, M G; van Dieën, J H; Coppieters, M W; Hodges, P W

    2006-01-01

    A non-invasive in vivo technique was developed to evaluate changes in wrist joint stability properties induced by increased co-activation of the forearm muscles in a gripping task. Mechanical vibration at 45, 50 and 55 Hz was applied to the radial head in ten healthy volunteers. Vibrations of the styloid process of the radius and the distal end of the metacarpal bone of the index finger were measured with triaxial accelerometers. Joint stability properties were quantified by the transfer function gain between accelerations on either side of the wrist-joint. Gain was calculated with the muscles at rest and at five force levels ranging from 5% to 25% of maximum grip force (%MF). During contraction the gain was significantly greater than in control trial (0%MF) for all contractions levels at 45 and 50 Hz and a trend for 15%MF and higher at 55 Hz. Group means of contraction force and gain were significantly correlated at 45 (R(2)=0.98) and 50 Hz (R(2)=0.72), but not at 55 Hz (R(2)=0.10). In conclusion, vibration transmission gain may provide a method to evaluate changes in joint stability properties.

  7. Effect of Wheelchair Frame Material on Users' Mechanical Work and Transmitted Vibration

    PubMed Central

    Aissaoui, Rachid

    2014-01-01

    Wheelchair propulsion exposes the user to a high risk of shoulder injury and to whole-body vibration that exceeds recommendations of ISO 2631-1:1997. Reducing the mechanical work required to travel a given distance (WN-WPM, weight-normalized work-per-meter) can help reduce the risk of shoulder injury, while reducing the vibration transmissibility (VT) of the wheelchair frame can reduce whole-body vibration. New materials such as titanium and carbon are used in today's wheelchairs and are advertised to improve both parameters, but current knowledge on this matter is limited. In this study, WN-WPM and VT were measured simultaneously and compared between six folding wheelchairs (1 titanium, 1 carbon, and 4 aluminium). Ten able-bodied users propelled the six wheelchairs on three ground surfaces. Although no significant difference of WN-WPM was found between wheelchairs (P < 0.1), significant differences of VT were found (P < 0.05). The carbon wheelchair had the lowest VT. Contrarily to current belief, the titanium wheelchair VT was similar to aluminium wheelchairs. A negative correlation between VT and WN-WPM was found, which means that reducing VT may be at the expense of increasing WN-WPM. Based on our results, use of carbon in wheelchair construction seems promising to reduce VT without increasing WN-WPM. PMID:25276802

  8. Measurement of mechanical quality factors of polymers in flexural vibration for high-power ultrasonic application.

    PubMed

    Wu, Jiang; Mizuno, Yosuke; Tabaru, Marie; Nakamura, Kentaro

    2016-07-01

    A method for measuring the mechanical quality factor (Q factor) of materials in large-amplitude flexural vibrations was devised on the basis of the original definition of the Q factor. The Q factor, the ratio of the reactive energy to the dissipated energy, was calculated from the vibration velocity distribution. The bar thickness was selected considering the effect of the thickness on the estimation error. In the experimental setup, a 1-mm-thick polymer-based bar was used as a sample and fixed on the top of a longitudinal transducer. Using transducers of different lengths, flexural waves in the frequency range of 20-90kHz were generated on the bar. The vibration strain in the experiment reached 0.06%. According to the Bernoulli-Euler model, the reactive energy and dissipated energy were estimated from the vertical velocity distribution on the bar, and the Q factors were measured as the driving frequency and strain were varied. The experimental results showed that the Q factors decrease as the driving frequencies and strains increase. At a frequency of 28.30kHz, the Q factor of poly(phenylene sulfide) (PPS) reached approximately 460 when the strain was smaller than 0.005%. PPS exhibited a much higher Q factor than the other tested polymers, which implies that it is a potentially applicable material as the elastomer for high-power ultrasonic devices.

  9. The potential of micro-electro-mechanical accelerometers in human vibration measurements

    NASA Astrophysics Data System (ADS)

    Tarabini, Marco; Saggin, Bortolino; Scaccabarozzi, Diego; Moschioni, Giovanni

    2012-01-01

    This paper evaluates the advantages and the drawbacks deriving from the use of MEMS (micro-electro-mechanical systems) accelerometers for hand-arm and whole-body vibration measurements. Metrological performances of different transducers were assessed through the identification of their frequency response function, linearity, floor noise and sensitivity to thermal and electromagnetic disturbances. Experimental results highlighted a standard instrumental uncertainty (including the nonlinearity) lower than 5% with the single frequency calibration procedure, such a value was reduced to 2%. The temperature effect was negligible and the electromagnetic disturbances sensitivity was comparable to that of the piezoelectric accelerometers. The compatibility of measurements obtained with MEMS accelerometers with those of piezoelectric-based measurement chains was verified for two specific applications. An example of direct transducer fixation on the skin for vibration transmissibility measurements is also presented. Thanks to the MEMS peculiarities - mainly small sizes and low cost - since novel approaches in the vibration monitoring could be pursued. For instance, it is possible to include by design MEMS accelerometers in any hand-held tool at the operator interface, or inside the seats structures of cars, tractors and trucks. This could be a viable solution to easily obtain repeatable exposure measurements and could also provide diagnostic signals for the tools or seats of functional monitoring.

  10. A Methodology for Protective Vibration Monitoring of Hydropower Units Based on the Mechanical Properties.

    PubMed

    Nässelqvist, Mattias; Gustavsson, Rolf; Aidanpää, Jan-Olov

    2013-07-01

    It is important to monitor the radial loads in hydropower units in order to protect the machine from harmful radial loads. Existing recommendations in the standards regarding the radial movements of the shaft and bearing housing in hydropower units, ISO-7919-5 (International Organization for Standardization, 2005, "ISO 7919-5: Mechanical Vibration-Evaluation of Machine Vibration by Measurements on Rotating Shafts-Part 5: Machine Sets in Hydraulic Power Generating and Pumping Plants," Geneva, Switzerland) and ISO-10816-5 (International Organization for Standardization, 2000, "ISO 10816-5: Mechanical Vibration-Evaluation of Machine Vibration by Measurements on Non-Rotating Parts-Part 5: Machine Sets in Hydraulic Power Generating and Pumping Plants," Geneva, Switzerland), have alarm levels based on statistical data and do not consider the mechanical properties of the machine. The synchronous speed of the unit determines the maximum recommended shaft displacement and housing acceleration, according to these standards. This paper presents a methodology for the alarm and trip levels based on the design criteria of the hydropower unit and the measured radial loads in the machine during operation. When a hydropower unit is designed, one of its design criteria is to withstand certain loads spectra without the occurrence of fatigue in the mechanical components. These calculated limits for fatigue are used to set limits for the maximum radial loads allowed in the machine before it shuts down in order to protect itself from damage due to high radial loads. Radial loads in hydropower units are caused by unbalance, shape deviations, dynamic flow properties in the turbine, etc. Standards exist for balancing and manufacturers (and power plant owners) have recommendations for maximum allowed shape deviations in generators. These standards and recommendations determine which loads, at a maximum, should be allowed before an alarm is sent that the machine needs maintenance. The radial

  11. The Effect of Mechanical Vibration Stimulation of Perception Subthreshold on the Muscle Force and Muscle Reaction Time of Lower Leg

    PubMed Central

    Kim, Huigyun; Kwak, Kiyoung; Kim, Dongwook

    2016-01-01

    The objective of this study is to investigate the effect of mechanical vibration stimulation on the muscle force and muscle reaction time of lower leg according to perception threshold and vibration frequency. A vibration stimulation with perception threshold intensity was applied on the Achilles tendon and tibialis anterior tendon. EMG measurement and analysis system were used to analyze the change of muscle force and muscle reaction time according to perception threshold and vibration frequency. A root-mean-square (RMS) value was extracted using analysis software and Maximum Voluntary Contraction (MVC) and Premotor Time (PMT) were analyzed. The measurement results showed that perception threshold was different from application sites of vibration frequency. Also, the muscle force and muscle reaction time showed difference according to the presence of vibration, frequency, and intensity. This result means that the vibration stimulation causes the change on the muscle force and muscle reaction time and affects the muscles of lower leg by the characteristics of vibration stimulation. PMID:27382244

  12. The apparent mass and mechanical impedance of the hand and the transmission of vibration to the fingers, hand, and arm

    NASA Astrophysics Data System (ADS)

    Concettoni, Enrico; Griffin, Michael

    2009-08-01

    Although hand-transmitted vibration causes injury and disease, most often evident in the fingers, the biodynamic responses of the fingers, hand, and arm are not yet well understood. A method of investigating the motion of the entire finger-hand-arm system, based on the simultaneous measurement of the biodynamic response at the driving point and the transmissibility to many points on the finger-hand-arm system, is illustrated. Fourteen male subjects participated in an experiment in which they pushed down on a vertically vibrating metal plate with their right forearm pronated and their elbow bent at 90°. The apparent mass and mechanical impedance of the finger-hand-arm system were measured for each of seven different contact conditions between the plate and the fingers and hand. Simultaneously, the vibration of the fingers, hand, and arm was measured at 41 locations using a scanning laser Doppler vibrometer. Transmissibilities showed how the vibration was transmitted along the arm and allowed the construction of spectral operating deflection shapes showing the vibration pattern of the fingers, hand, and arm for each of the seven contact conditions. The vibration patterns at critical frequencies for each contact condition have been used to explain features in the driving point biodynamic responses and the vibration behaviour of the hand-arm system. Spectral operating deflection shapes for the upper limb assist the interpretation of driving point biodynamic responses and help to advance understanding required to predict, explain, and control the various effects of hand-transmitted vibration.

  13. Assignment of absolute stereostructures through quantum mechanics electronic and vibrational circular dichroism calculations.

    PubMed

    Dai, Peng; Jiang, Nan; Tan, Ren-Xiang

    2016-01-01

    Elucidation of absolute configuration of chiral molecules including structurally complex natural products remains a challenging problem in organic chemistry. A reliable method for assigning the absolute stereostructure is to combine the experimental circular dichroism (CD) techniques such as electronic and vibrational CD (ECD and VCD), with quantum mechanics (QM) ECD and VCD calculations. The traditional QM methods as well as their continuing developments make them more applicable with accuracy. Taking some chiral natural products with diverse conformations as examples, this review describes the basic concepts and new developments of QM approaches for ECD and VCD calculations in solution and solid states.

  14. Micro-Vibration Performance Prediction of SEPTA24 Using SMeSim (RUAG Space Mechanism Simulator Tool)

    NASA Astrophysics Data System (ADS)

    Omiciuolo, Manolo; Lang, Andreas; Wismer, Stefan; Barth, Stephan; Szekely, Gerhard

    2013-09-01

    Scientific space missions are currently challenging the performances of their payloads. The performances can be dramatically restricted by micro-vibration loads generated by any moving parts of the satellites, thus by Solar Array Drive Assemblies too. Micro-vibration prediction of SADAs is therefore very important to support their design and optimization in the early stages of a programme. The Space Mechanism Simulator (SMeSim) tool, developed by RUAG, enhances the capability of analysing the micro-vibration emissivity of a Solar Array Drive Assembly (SADA) under a specified set of boundary conditions. The tool is developed in the Matlab/Simulink® environment throughout a library of blocks simulating the different components a SADA is made of. The modular architecture of the blocks, assembled by the user, and the set up of the boundary conditions allow time-domain and frequency-domain analyses of a rigid multi-body model with concentrated flexibilities and coupled- electronic control of the mechanism. SMeSim is used to model the SEPTA24 Solar Array Drive Mechanism and predict its micro-vibration emissivity. SMeSim and the return of experience earned throughout its development and use can now support activities like verification by analysis of micro-vibration emissivity requirements and/or design optimization to minimize the micro- vibration emissivity of a SADA.

  15. Folded Spring and Mechanically Switching SSHI for High Performance Miniature Piezoelectric Vibration Energy Harvester

    NASA Astrophysics Data System (ADS)

    Asanuma, H.; Okubo, H.; Komatsuzaki, T.; Iwata, Y.

    2016-11-01

    To downsize the clamp area and increase the output power of the harvester, we developed a miniature piezoelectric vibration energy harvester with combining a Z-shaped folded spring and a mechanically-switching SSHI (synchronized switch harvesting on inductor). The overall harvester size is 4×2×3 cm3. The FEM analysis revealed that the output power increases and the value of the 1st and 2nd resonance frequencies move closer as the angle of the Z-shaped spring decreases, therefore, the smaller angle would be more promising. The experimental results showed that the maximum output power of our harvester for the 1st (20.2 Hz) and 2nd (53.0 Hz) resonance frequencies at the applied acceleration of 4.9 m/s2 are 088 and 0.98 mW, respectively. The reason for a marked enhancement of the output power for the 2nd resonance frequency is attributed to the vertical movement of the 2nd vibrational mode which applies larger mechanical stress to the piezo ceramic and achieves better electrical contact between the tip of the Z-shaped spring and the spring plunger.

  16. Effect of mechanical vibration on platinum particle agglomeration and growth in proton exchange membrane fuel cell catalyst layer

    NASA Astrophysics Data System (ADS)

    Diloyan, Georgiy

    The objective of the current research is to study the effect of mechanical vibration on catalyst layer degradation via Platinum (Pt) particle agglomeration and growth in the membrane electrode assembly (MEA) of a proton exchange membrane fuel cell (PEM Fuel Cell). This study is of great importance, since many PEM fuel cells operate under a vibrating environment, such as the case of vehicular applications, and this may influence the catalyst layer degradation and fuel cell performance. Through extensive literature review, there are only few researches that have been studied the effect of mechanical vibration on PEM fuel cells. These studies focused only on PEM fuel cell performance under vibration for less than 50 hours and none of them considered the degradation of the fuel cell components, such as MEA and its catalyst layer. To study the effect of the mechanical vibration on the catalyst layer an accelerated test with potential cycling was specially designed to simulate a typical vehicle driving condition. The length of the accelerated test was designed to be 300 hour with potential cycling comprised of idle running, constant load, triangle (variable) load and overload running at various mechanical vibration conditions. These mechanical vibration conditions were as follows: 1g 20 Hz, 1g 40 Hz, 4g 20 Hz and 4g 40 Hz. No vibration tests were also conducted to study the influence of operating time and were used as a baseline for comparison study. The series of accelerated tests were followed by microscopy and spectroscopy analyses using environmental scanning electron microscopy (ESEM), transmission electron microscopy (TEM) and X-Ray diffraction (XRD). An ESEM was used to qualitatively analyze pristine and degraded catalyst. TEM and XRD were used to quantitatively analyze catalyst layer degradation via Pt agglomeration and growth in pristine and degraded states. For each test condition, PEM fuel cell performance by means of Voltage - Current (VI) curves was

  17. A new mechanism for OH vibrational relaxation leading to enhanced CO2 emissions in the nocturnal mesosphere

    NASA Astrophysics Data System (ADS)

    Sharma, Ramesh D.; Wintersteiner, Peter P.; Kalogerakis, Konstantinos S.

    2015-06-01

    On the basis of experimental and theoretical studies, this paper proposes a new mechanism that contributes to nocturnal 4.3 µm CO2 emissions. It suggests that collisions of ground state O atoms with highly vibrationally excited OH(v), produced by the reaction of H with O3, remove a substantial fraction of the OH(v) vibrational energy by a fast, spin-allowed, multiquantum vibration-to-electronic energy transfer (ET) process that generates O(1D): OH(v ≥ 5) + O(3P) → OH(0 ≤ v' ≤ v - 5) + O(1D). The electronically excited O(1D) atom is subsequently deactivated by collisions with N2 in a fast spin-forbidden ET process that leaves the N2 molecule with an average of 2.2 vibrational quanta. Finally, the vibrational excitation of N2 is transferred by a fast, near-resonant vibration-to-vibration ET process to the asymmetric stretch (v3) mode of CO2, which promptly radiates near 4.3 µm.

  18. Observation of terahertz vibrations in Pyrococcus furiosus rubredoxin via impulsive coherent vibrational spectroscopy and nuclear resonance vibrational spectroscopy--interpretation by molecular mechanics.

    PubMed

    Tan, Ming-Liang; Bizzarri, Anna Rita; Xiao, Yuming; Cannistraro, Salvatore; Ichiye, Toshiko; Manzoni, Cristian; Cerullo, Giulio; Adams, Michael W W; Jenney, Francis E; Cramer, Stephen P

    2007-03-01

    We have used impulsive coherent vibrational spectroscopy (ICVS) to study the Fe(S-Cys)(4) site in oxidized rubredoxin (Rd) from Pyrococcus furiosus (Pf). In this experiment, a 15 fs visible laser pulse is used to coherently pump the sample to an excited electronic state, and a second <10 fs pulse is used to probe the change in transmission as a function of the time delay. PfRd was observed to relax to the ground state by a single exponential decay with time constants of approximately 255-275 fs. Superimposed on this relaxation are oscillations caused by coherent excitation of vibrational modes in both excited and ground electronic states. Fourier transformation reveals the frequencies of these modes. The strongest ICV mode with 570 nm excitation is the symmetric Fe-S stretching mode near 310 cm(-1), compared to 313 cm(-1) in the low temperature resonance Raman. If the rubredoxin is pumped at 520 nm, a set of strong bands occurs between 20 and 110 cm(-1). Finally, there is a mode at approximately 500 cm(-1) which is similar to features near 508 cm(-1) in blue Cu proteins that have been attributed to excited state vibrations. Normal mode analysis using 488 protein atoms and 558 waters gave calculated spectra that are in good agreement with previous nuclear resonance vibrational spectra (NRVS) results. The lowest frequency normal modes are identified as collective motions of the entire protein or large segments of polypeptide. Motion in these modes may affect the polar environment of the redox site and thus tune the electron transfer functions in rubredoxins.

  19. Optimized energy harvesting from mechanical vibrations through piezoelectric actuators, based on a synchronized switching technique

    NASA Astrophysics Data System (ADS)

    Tsampas, P.; Roditis, G.; Papadimitriou, V.; Chatzakos, P.; Gan, Tat-Hean

    2013-05-01

    Increasing demand in mobile, autonomous devices has made energy harvesting a particular point of interest. Systems that can be powered up by a few hundreds of microwatts could feature their own energy extraction module. Energy can be harvested from the environment close to the device. Particularly, the ambient mechanical vibrations conversion via piezoelectric transducers is one of the most investigated fields for energy harvesting. A technique for optimized energy harvesting using piezoelectric actuators called "Synchronized Switching Harvesting" is explored. Comparing to a typical full bridge rectifier, the proposed harvesting technique can highly improve harvesting efficiency, even in a significantly extended frequency window around the piezoelectric actuator's resonance. In this paper, the concept of design, theoretical analysis, modeling, implementation and experimental results using CEDRAT's APA 400M-MD piezoelectric actuator are presented in detail. Moreover, we suggest design guidelines for optimum selection of the storage unit in direct relation to the characteristics of the random vibrations. From a practical aspect, the harvesting unit is based on dedicated electronics that continuously sense the charge level of the actuator's piezoelectric element. When the charge is sensed, to come to a maximum, it is directed to speedily flow into a storage unit. Special care is taken so that electronics operate at low voltages consuming a very small amount of the energy stored. The final prototype developed includes the harvesting circuit implemented with miniaturized, low cost and low consumption electronics and a storage unit consisting of a super capacitors array, forming a truly self-powered system drawing energy from ambient random vibrations of a wide range of characteristics.

  20. Evaluation of the behavior of ceramic powders under mechanical vibration and its effect on the mechanics of auto-granulation

    NASA Astrophysics Data System (ADS)

    Ku, Nicholas

    In ceramic powder processing, the correlations between the constituent particles and the product structure-property outcomes are well established. However, the influence of static powder properties on the dynamic bulk powder behavior in such advance powder processes remains elusive. A multi-scale evaluation is necessary to understand the full effects of the particle ensemble on the bulk powder behavior, ranging from the particle micro-scale to the bulk powder macro-scale. Fine powders, with particle size of 10 ?m or less, often exhibit cohesive behavior. Cohesion in powders can cause poor flowability, affect agglomerate formation, as well as induce powder caking, all of which can be detrimental to the processing of the powders and/or final product structure-property outcomes. For this reason, it is critical to correlate the causal properties of the powders to this detrimental behavior. In this study, the bulk behavior of ceramic powders is observed under a simple powder process: harmonic, mechanical vibration. Four powder samples, two titania and two alumina powders, were studied. The main difference between the two powder variants of each material is particle size. The two alumina (Al2O3) powder samples had a primary particle size at 50% less than, or d50 of, 0.5 and 2.3 microm and the titania (TiO2) powder samples had a d 50 particle size of 0.1 and 1 microm. Due to mechanical vibration, the titania powder variant with a primary particle size of 0.1 microm exhibited a clustering behavior known as auto-granulation. Auto-granulation is the growth of particle clusters within a dry, fine powder bed without the addition of any binder or liquid to the system. The amplitude and frequency of the mechanical vibration was varied to view the effect on the equilibrium granule size and density. Furthermore, imaging of cross-sections of the granules was conducted to provide insight into to the internal microstructure and measure the packing fraction of the constituent

  1. Magnetic field shift due to mechanical vibration in functional magnetic resonance imaging.

    PubMed

    Foerster, Bernd U; Tomasi, Dardo; Caparelli, Elisabeth C

    2005-11-01

    Mechanical vibrations of the gradient coil system during readout in echo-planar imaging (EPI) can increase the temperature of the gradient system and alter the magnetic field distribution during functional magnetic resonance imaging (fMRI). This effect is enhanced by resonant modes of vibrations and results in apparent motion along the phase encoding direction in fMRI studies. The magnetic field drift was quantified during EPI by monitoring the resonance frequency interleaved with the EPI acquisition, and a novel method is proposed to correct the apparent motion. The knowledge on the frequency drift over time was used to correct the phase of the k-space EPI dataset. Since the resonance frequency changes very slowly over time, two measurements of the resonance frequency, immediately before and after the EPI acquisition, are sufficient to remove the field drift effects from fMRI time series. The frequency drift correction method was tested "in vivo" and compared to the standard image realignment method. The proposed method efficiently corrects spurious motion due to magnetic field drifts during fMRI.

  2. Investigation of organometallic reaction mechanisms with one and two dimensional vibrational spectroscopy

    SciTech Connect

    Cahoon, James Francis

    2008-12-01

    One and two dimensional time-resolved vibrational spectroscopy has been used to investigate the elementary reactions of several prototypical organometallic complexes in room temperature solution. The electron transfer and ligand substitution reactions of photogenerated 17-electron organometallic radicals CpW(CO)3 and CpFe(CO)2 have been examined with one dimensional spectroscopy on the picosecond through microsecond time-scales, revealing the importance of caging effects and odd-electron intermediates in these reactions. Similarly, an investigation of the photophysics of the simple Fischer carbene complex Cr(CO)5[CMe(OMe)] showed that this class of molecule undergoes an unusual molecular rearrangement on the picosecond time-scale, briefly forming a metal-ketene complex. Although time-resolved spectroscopy has long been used for these types of photoinitiated reactions, the advent of two dimensional vibrational spectroscopy (2D-IR) opens the possibility to examine the ultrafast dynamics of molecules under thermal equilibrium conditions. Using this method, the picosecond fluxional rearrangements of the model metal carbonyl Fe(CO)5 have been examined, revealing the mechanism, time-scale, and transition state of the fluxional reaction. The success of this experiment demonstrates that 2D-IR is a powerful technique to examine the thermally-driven, ultrafast rearrangements of organometallic molecules in solution.

  3. Mechanical and Vibration Testing of Carbon Fiber Composite Material with Embedded Piezoelectric Sensors

    NASA Technical Reports Server (NTRS)

    Duffy, Kirsten P.; Lerch, Bradley A.; Wilmoth, Nathan G.; Kray, Nicholas; Gemeinhardt, Gregory

    2012-01-01

    Piezoelectric materials have been proposed as a means of decreasing turbomachinery blade vibration either through a passive damping scheme, or as part of an active vibration control system. For polymer matrix fiber composite (PMFC) blades, the piezoelectric elements could be embedded within the blade material, protecting the brittle piezoceramic material from the airflow and from debris. Before implementation of a piezoelectric element within a PMFC blade, the effect on PMFC mechanical properties needs to be understood. This study attempts to determine how the inclusion of a packaged piezoelectric patch affects the material properties of the PMFC. Composite specimens with embedded piezoelectric patches were tested in four-point bending, short beam shear, and flatwise tension configurations. Results show that the embedded piezoelectric material does decrease the strength of the composite material, especially in flatwise tension, attributable to failure at the interface or within the piezoelectric element itself. In addition, the sensing properties of the post-cured embedded piezoelectric materials were tested, and performed as expected. The piezoelectric materials include a non-flexible patch incorporating solid piezoceramic material, and two flexible patch types incorporating piezoelectric fibers. The piezoceramic material used in these patches was Navy Type-II PZT.

  4. Hydrodynamic mechanism behind the suppression of vortex-induced vibration with permeable meshes

    NASA Astrophysics Data System (ADS)

    Assi, Gustavo R. S.; Cicolin, Murilo M.; Freire, Cesar M.

    2016-11-01

    Vortex-induced vibration (VIV) induces resonant vibrations on elastic bluff bodies when exposed to a flow. A VIV suppressor called "ventilated trousers" (VT) - consisting of a flexible net with tens of bobbins fitted every other node - has been developed as a commercial solution. Only a few experiments in the literature have evaluated the effectiveness of the VT, but very little is know about the underlying mechanism behind the suppression. Experiments have been carried out in a water channel with models of circular cylinders fitted with three different permeable meshes. VIV response and drag were obtained for models free to oscillate in the cross-flow direction with low mass and damping (Re = 5 , 000 to 25,000). All meshes achieved an average 50% reduction of the peak amplitude and reduced the mean drag when compared to that of a bare cylinder. PIV visualization of the wake revealed that the VT produced a much longer vortex-formation length, thus explaining its enhanced efficiency in suppressing VIV and reducing drag. The geometry and distribution of the bobbins proved to be important parameters. PIV also revealed the rich three-dimensional flow structures created by the bobbins that disrupt the formation of a coherent vortex wake. FAPESP 11/00205-6, 14/50279-4; CNPq 306917/2015-7.

  5. Vibration characteristics of piezoelectric fiber composites under thermo-electro-mechanical loadings

    NASA Astrophysics Data System (ADS)

    Kim, Jun-Sik

    2011-11-01

    In this paper, vibration characteristics of piezoelectric fiber composite beams are presented. An asymptotic method based on virtual work principle is introduced first. The primary variables in thermo-electro-mechanical problems are asymptotically expanded in terms of the small parameter, which is done by taking the geometric slenderness of the beams. This subsequently renders a set of recursive virtual works at each order, in which the virtual works are separated into two parts: 2D microscopic problems and 1D macroscopic problems. These microscopic and macroscopic problems are systematically associated with each other, and thus the boundary conditions are affected by both of them. Cantilever beams under multiphysics environment are taken as a test-bed in order to illustrate the significance of edge effects and asymptotical correctness to the vibration characteristics of the beams. For the displacement prescribed boundary such as the clamped boundary, the stress weighted average conditions are applied to obtain the accurate prediction, which are known to be a good approximation (possibly the best candidate up to date).

  6. Vibration characteristics of piezoelectric fiber composites under thermo-electro-mechanical loadings

    NASA Astrophysics Data System (ADS)

    Kim, Jun-Sik

    2012-04-01

    In this paper, vibration characteristics of piezoelectric fiber composite beams are presented. An asymptotic method based on virtual work principle is introduced first. The primary variables in thermo-electro-mechanical problems are asymptotically expanded in terms of the small parameter, which is done by taking the geometric slenderness of the beams. This subsequently renders a set of recursive virtual works at each order, in which the virtual works are separated into two parts: 2D microscopic problems and 1D macroscopic problems. These microscopic and macroscopic problems are systematically associated with each other, and thus the boundary conditions are affected by both of them. Cantilever beams under multiphysics environment are taken as a test-bed in order to illustrate the significance of edge effects and asymptotical correctness to the vibration characteristics of the beams. For the displacement prescribed boundary such as the clamped boundary, the stress weighted average conditions are applied to obtain the accurate prediction, which are known to be a good approximation (possibly the best candidate up to date).

  7. Thermo Vacuum and Vibration Tests on a Shape Memory Alloy (SMA) Actuated Release Mechanism for Microsatellite

    NASA Astrophysics Data System (ADS)

    Gardi, R.

    2002-01-01

    eclipse condition, in witch the satellite and the mechanism are no more heated by the sun and they cool radiating energy toward the open space. The mechanism is lightweight and the SMA wires are 0.4 millimetres in diameter, making the system very sensible to the environmental changes and making it reach the equilibrium temperature in a few seconds. After solving the problems connected to the temperature measurement of a thin and light wire, we have simulated the thermal excursion expected during a typical LEO microsatellite mission, and we have observed the performance of the mechanism at high and low temperature, validating the mathematical model. It is needed that the mechanism does not open accidentally for excessive heating when it is not powered, and we have to prove that the mechanism will open, when powered, even if it is very cold. It is clear that when the wires are heated by solar radiation, it will be needed a minor amount of energy to cause the transition of the SMA wires from martensitic to austenitic phase and, when the wires are cold, the power system has to feed the mechanism for a longer time. We have compared the experimental data with the numeric prediction of the actuation times and we will see if the power needed is compatible with the power availability of a microsatellite. After the thermo-vacuum tests we are interested in the capability of the mechanism to bear the vibration of a space launch system. Since it is mounted on a steel rope, the system acts like a vibrating rope with masses applied on it. We have to see if the oscillations of the rope will not open the mechanism. Moreover, the SMA wires themselves can be modelled as vibrating ropes; we have to verify that their oscillation will not act like a shrinking of the wires, opening the mechanism. Using the shaker in our structure laboratory we will show that the mechanism will not accidentally open when it is shaken along different directions. We will compare the numeric predicted critical

  8. Harvesting broadband kinetic impact energy from mechanical triggering/vibration and water waves.

    PubMed

    Wen, Xiaonan; Yang, Weiqing; Jing, Qingshen; Wang, Zhong Lin

    2014-07-22

    We invented a triboelectric nanogenerator (TENG) that is based on a wavy-structured Cu-Kapton-Cu film sandwiched between two flat nanostructured PTFE films for harvesting energy due to mechanical vibration/impacting/compressing using the triboelectrification effect. This structure design allows the TENG to be self-restorable after impact without the use of extra springs and converts direct impact into lateral sliding, which is proved to be a much more efficient friction mode for energy harvesting. The working mechanism has been elaborated using the capacitor model and finite-element simulation. Vibrational energy from 5 to 500 Hz has been harvested, and the generator's resonance frequency was determined to be ∼100 Hz at a broad full width at half-maximum of over 100 Hz, producing an open-circuit voltage of up to 72 V, a short-circuit current of up to 32 μA, and a peak power density of 0.4 W/m(2). Most importantly, the wavy structure of the TENG can be easily packaged for harvesting the impact energy from water waves, clearly establishing the principle for ocean wave energy harvesting. Considering the advantages of TENGs, such as cost-effectiveness, light weight, and easy scalability, this approach might open the possibility for obtaining green and sustainable energy from the ocean using nanostructured materials. Lastly, different ways of agitating water were studied to trigger the packaged TENG. By analyzing the output signals and their corresponding fast Fourier transform spectra, three ways of agitation were evidently distinguished from each other, demonstrating the potential of the TENG for hydrological analysis.

  9. Mechanical detection and mode shape imaging of vibrational modes of micro and nanomechanical resonators by dynamic force microscopy

    NASA Astrophysics Data System (ADS)

    Paulo, A. S.; Black, J.; García-Sanchez, D.; Esplandiu, M. J.; Aguasca, A.; Bokor, J.; Perez-Murano, F.; Bachtold, A.

    2008-03-01

    We describe a method based on the use of higher order bending modes of the cantilever of a dynamic force microscope to characterize vibrations of micro and nanomechanical resonators at arbitrarily large resonance frequencies. Our method consists on using a particular cantilever eigenmode for standard feedback control in amplitude modulation operation while another mode is used for detecting and imaging the resonator vibration. In addition, the resonating sample device is driven at or near its resonance frequency with a signal modulated in amplitude at a frequency that matches the resonance of the cantilever eigenmode used for vibration detection. In consequence, this cantilever mode is excited with an amplitude proportional to the resonator vibration, which is detected with an external lock-in amplifier. We show two different application examples of this method. In the first one, acoustic wave vibrations of a film bulk acoustic resonator around 1.6 GHz are imaged. In the second example, bending modes of carbon nanotube resonators up to 3.1 GHz are characterized. In both cases, the method provides subnanometer-scale sensitivity and the capability of providing otherwise inaccessible information about mechanical resonance frequencies, vibration amplitude values and mode shapes.

  10. Fin whale sound reception mechanisms: skull vibration enables low-frequency hearing.

    PubMed

    Cranford, Ted W; Krysl, Petr

    2015-01-01

    Hearing mechanisms in baleen whales (Mysticeti) are essentially unknown but their vocalization frequencies overlap with anthropogenic sound sources. Synthetic audiograms were generated for a fin whale by applying finite element modeling tools to X-ray computed tomography (CT) scans. We CT scanned the head of a small fin whale (Balaenoptera physalus) in a scanner designed for solid-fuel rocket motors. Our computer (finite element) modeling toolkit allowed us to visualize what occurs when sounds interact with the anatomic geometry of the whale's head. Simulations reveal two mechanisms that excite both bony ear complexes, (1) the skull-vibration enabled bone conduction mechanism and (2) a pressure mechanism transmitted through soft tissues. Bone conduction is the predominant mechanism. The mass density of the bony ear complexes and their firmly embedded attachments to the skull are universal across the Mysticeti, suggesting that sound reception mechanisms are similar in all baleen whales. Interactions between incident sound waves and the skull cause deformations that induce motion in each bony ear complex, resulting in best hearing sensitivity for low-frequency sounds. This predominant low-frequency sensitivity has significant implications for assessing mysticete exposure levels to anthropogenic sounds. The din of man-made ocean noise has increased steadily over the past half century. Our results provide valuable data for U.S. regulatory agencies and concerned large-scale industrial users of the ocean environment. This study transforms our understanding of baleen whale hearing and provides a means to predict auditory sensitivity across a broad spectrum of sound frequencies.

  11. Fin Whale Sound Reception Mechanisms: Skull Vibration Enables Low-Frequency Hearing

    PubMed Central

    Cranford, Ted W.; Krysl, Petr

    2015-01-01

    Hearing mechanisms in baleen whales (Mysticeti) are essentially unknown but their vocalization frequencies overlap with anthropogenic sound sources. Synthetic audiograms were generated for a fin whale by applying finite element modeling tools to X-ray computed tomography (CT) scans. We CT scanned the head of a small fin whale (Balaenoptera physalus) in a scanner designed for solid-fuel rocket motors. Our computer (finite element) modeling toolkit allowed us to visualize what occurs when sounds interact with the anatomic geometry of the whale’s head. Simulations reveal two mechanisms that excite both bony ear complexes, (1) the skull-vibration enabled bone conduction mechanism and (2) a pressure mechanism transmitted through soft tissues. Bone conduction is the predominant mechanism. The mass density of the bony ear complexes and their firmly embedded attachments to the skull are universal across the Mysticeti, suggesting that sound reception mechanisms are similar in all baleen whales. Interactions between incident sound waves and the skull cause deformations that induce motion in each bony ear complex, resulting in best hearing sensitivity for low-frequency sounds. This predominant low-frequency sensitivity has significant implications for assessing mysticete exposure levels to anthropogenic sounds. The din of man-made ocean noise has increased steadily over the past half century. Our results provide valuable data for U.S. regulatory agencies and concerned large-scale industrial users of the ocean environment. This study transforms our understanding of baleen whale hearing and provides a means to predict auditory sensitivity across a broad spectrum of sound frequencies. PMID:25633412

  12. A six-axis hybrid vibration isolation system using active zero-power control supported by passive weight support mechanism

    NASA Astrophysics Data System (ADS)

    Emdadul Hoque, Md.; Mizuno, Takeshi; Ishino, Yuji; Takasaki, Masaya

    2010-08-01

    This paper presents a six-degree-of-freedom hybrid vibration isolation system integrated with an active negative suspension, an active-passive positive suspension and a passive weight support mechanism. The aim of the research consists in maximizing the system and control performances, and minimizing the system development and maintenance costs. The vibration isolation system is, fundamentally, developed by connecting an active negative suspension realized by zero-power control in series with an active-passive positive suspension. The system could effectively isolate ground vibrations in addition to suppress the effect of on-board generated direct disturbances of the six-axis motions, associated with vertical and horizontal directions. The system is further reinforced by introducing a passive weight support mechanism in parallel with the basic system. The modified system with zero-power control allows simplified design of the isolation table without power consumption. It also offers enhanced performance on direct disturbance suppression and large payload supporting capabilities, without degrading transmissibility characteristics. A mathematical model of the system is presented and, therefore, analyzed to demonstrate that zero-compliance to direct disturbance could be generated by the developed system. Experimental demonstrations validate the proposed concept that exhibits high stiffness of the isolation table to static and dynamic direct disturbances, and good transmissibility characteristics against ground vibration. Further improvements of the vibration isolation system and the control system are discussed as well.

  13. Modeling Stretching Modes of Common Organic Molecules with the Quantum Mechanical Harmonic Oscillator: An Undergraduate Vibrational Spectroscopy Laboratory Exercise

    ERIC Educational Resources Information Center

    Parnis, J. Mark; Thompson, Matthew G. K.

    2004-01-01

    An introductory undergraduate physical organic chemistry exercise that introduces the harmonic oscillator's use in vibrational spectroscopy is developed. The analysis and modeling exercise begins with the students calculating the stretching modes of common organic molecules with the help of the quantum mechanical harmonic oscillator (QMHO) model.

  14. Integrating Statistical Mechanics with Experimental Data from the Rotational-Vibrational Spectrum of HCl into the Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Findley, Bret R.; Mylon, Steven E.

    2008-01-01

    We introduce a computer exercise that bridges spectroscopy and thermodynamics using statistical mechanics and the experimental data taken from the commonly used laboratory exercise involving the rotational-vibrational spectrum of HCl. Based on the results from the analysis of their HCl spectrum, students calculate bulk thermodynamic properties…

  15. Damping Mechanisms for Microgravity Vibration Isolation (MSFC Center Director's Discretionary Fund Final Report, Project No. 94-07)

    NASA Technical Reports Server (NTRS)

    Whorton, M. S.; Eldridge, J. T.; Ferebee, R. C.; Lassiter, J. O.; Redmon, J. W., Jr.

    1998-01-01

    As a research facility for microgravity science, the International Space Station (ISS) will be used for numerous investigations such as protein crystal growth, combustion, and fluid mechanics experiments which require a quiescent acceleration environment across a broad spectrum of frequencies. These experiments are most sensitive to low-frequency accelerations and can tolerate much higher accelerations at higher frequency. However, the anticipated acceleration environment on ISS significantly exceeds the required acceleration level. The ubiquity and difficulty in characterization of the disturbance sources precludes source isolation, requiring vibration isolation to attenuate the anticipated disturbances to an acceptable level. This memorandum reports the results of research in active control methods for microgravity vibration isolation.

  16. Control of antenna-feed attitude and reflector vibrations in large spaceborne antennas by mechanical decoupling and movable dampers

    NASA Astrophysics Data System (ADS)

    Wang, P. K. C.; Hong, E. C.; Sarina, J. S.

    1983-07-01

    Simple, practical methods for damping reflector vibrations and designing antenna-feed attitude control systems in large deployable spaceborne antennas are proposed. The former involves a movable damper which is positioned so that the rate-of-change of total vibrational energy is minimized. The latter introduces a mechanical decoupler between the flexible boom and the antenna-feed, whereby the feed-attitude control system can be designed independent of boom dynamics. The validity of these approaches are substantiated by analytical studies, computer simulation, and experimental studies.

  17. Possible Mechanisms of Low Back Pain due to Whole-Body Vibration

    NASA Astrophysics Data System (ADS)

    Pope, M. H.; Wilder, D. G.; Magnusson, M.

    1998-08-01

    The investigators describe their multifaceted approach to the study of the relationship between whole-body vibration and low back pain.In vitroexperiments, using percutaneous pin-mounted accelerometers have shown that the natural frequency is at 4·5 Hz. The frequency response was affected by posture, seating, and seat-back inclination. The response appears to be largely determined by the rocking of the pelvis. Electromyographic studies have shown that muscle fatigue occurs under whole body vibration. After whole body vibration exposure the muscle response to a sudden load has greater latency. Vehicle driving may be a reason for low back pain or herniated nucleus pulposus. Prolonged seating exposure, coupled with the whole body vibration should be reduced for those recovering from these problems. Vibration attenuating seats, and correct ergonomic layout of the cabs may reduce the risks of recurrence.

  18. Mechanisms of free-surface breakup in vibration-induced liquid atomization

    NASA Astrophysics Data System (ADS)

    Vukasinovic, Bojan; Smith, Marc K.; Glezer, Ari

    2007-01-01

    The mechanisms of droplet formation that take place during vibration-induced drop atomization are investigated experimentally. Droplet ejection results from the breakup of transient liquid spikes that form following the localized collapse of free-surface waves. Breakup typically begins with capillary pinch-off of a droplet from the tip of the spike and can be followed by additional pinch-offs of satellite droplets if the corresponding capillary number is sufficiently small (e.g., in low-viscosity liquids). If the capillary number is increased (e.g., in viscous liquids), breakup first occurs near the base of the spike, with or without subsequent breakup of the detached, thread-like spike. The formation of these detached threads is governed by a breakup mechanism that is separated from the tip-dominated capillary pinch-off mechanism by an order of magnitude in terms of dimensionless driving frequency f*. The dependence of breakup time and unbroken spike length on fluid and driving parameters is established over a broad range of dimensionless driving frequencies (10-3

  19. Connections among several chaos feedback control approaches and chaotic vibration control of mechanical systems

    NASA Astrophysics Data System (ADS)

    Yang, Dixiong; Zhou, Jilei

    2014-11-01

    This study reveals the essential connections among several popular chaos feedback control approaches, such as delayed feedback control (DFC), stability transformation method (STM), adaptive adjustment method (AAM), parameter adjustment method, relaxed Newton method, and speed feedback control method (SFCM), etc. Meanwhile, the generality and practical applicability of these approaches are evaluated and compared. It is shown that for discrete chaotic maps, STM can be regarded as a kind of predictive feedback control, and AAM is actually a special case of STM which is merely effective for a particular dynamical system. The parameter adjustment method is only a different expression of the relaxed Newton method, and both of them represent just one search direction of STM, i.e., the gradient direction. Moreover, the intrinsic relation between the STM and SFCM for controlling the equilibrium of continuous autonomous systems is investigated, indicating that STM can be viewed as a special form of the SFCM. Finally, both the STM and SFCM are extended to control the chaotic vibrations of non-autonomous mechanical systems effectively.

  20. Mechanical Vibrations Reduce the Intervertebral Disc Swelling and Muscle Atrophy from Bed Rest

    NASA Technical Reports Server (NTRS)

    Holguin, Nilsson; Muir, Jesse; Evans, Harlan J.; Qin, Yi-Xian; Rubin, Clinton; Wagshul, Mark; Judex, Stefan

    2007-01-01

    Loss of functional weight bearing, such as experienced during space flight or bed rest (BR), distorts intervertebral disc (IVD) and muscle morphology. IVDs are avascular structures consisting of cells that may derive their nutrition and waste removal from the load induced fluid flow into and out of the disc. A diurnal cycle is produced by forces related to weight bearing and muscular activity, and comprised of a supine and erect posture over a 24 hr period. A diurnal cycle will include a disc volume change of approx. 10-13%. However, in space there are little or no diurnal changes because of the microgravity, which removes the gravitational load and compressive forces to the back muscles. The BR model and the etiology of the disc swelling and muscle atrophy could provide insight into those subjects confined to bed for chronic disease/injury and aging. We hypothesize that extremely low-magnitude, high frequency mechanical vibrations will abate the disc degeneration and muscle loss associated with long-term BR.

  1. Suppressing magneto-mechanical vibrations and noise in magnetostriction variation for three-phase power transformers

    NASA Astrophysics Data System (ADS)

    Hsu, Chang-Hung; Liu, Jui-Jung; Fu, Chao-Ming; Huang, Yi-Mei; Chang, Chia-Wen; Cheng, Shan-Jen

    2015-05-01

    This study investigated the effect of magnetostriction-induced core magnetomechanical vibrations and noise on the magnetic properties of power transformers. The magnetostriction of grain-oriented Si steels was found to be extremely sensitive to compressive stress applied along the rolling direction and to tensile stress applied along the transverse direction. The compressive stress increased the variation in the magnitude of magnetostriction, which is correlated with core vibration and noise. A 2D model of the power transformer was used to simulate the noise and vibration variables through a finite element analysis.

  2. An investigation of cutting mechanics in 2 dimensional ultrasonic vibration assisted milling toward chip thickness and chip formation

    NASA Astrophysics Data System (ADS)

    Rasidi, I. I.; Rafai, N. H.; Rahim, E. A.; Kamaruddin, S. A.; Ding, H.; Cheng, K.

    2015-12-01

    The purpose of this paper is to investigate the effects of 2 dimensional Ultrasonic Vibration Assisted Milling (UVAM) cutting mechanics, considering tool path trajectory and the effect on the chip thickness. The theoretical modelling of cutting mechanics is focused by considering the trajectory of the tool locus into the workpiece during the machining. The studies found the major advantages of VAM are come from the intermittent tool tip interaction phenomena between cutting tool and workpiece. The reduction of thinning chip thickness formations can be identifying advantages from vibration assisted milling in 2 dimensional. The finding will be discussing the comparison between conventional machining the potential of the advantages toward the chip thickness and chip formation in conclusion.

  3. Design and Vibration Sensitivity Analysis of a MEMS Tuning Fork Gyroscope with an Anchored Diamond Coupling Mechanism.

    PubMed

    Guan, Yanwei; Gao, Shiqiao; Liu, Haipeng; Jin, Lei; Niu, Shaohua

    2016-04-02

    In this paper, a new micromachined tuning fork gyroscope (TFG) with an anchored diamond coupling mechanism is proposed while the mode ordering and the vibration sensitivity are also investigated. The sense-mode of the proposed TFG was optimized through use of an anchored diamond coupling spring, which enables the in-phase mode frequency to be 108.3% higher than the anti-phase one. The frequencies of the in- and anti-phase modes in the sense direction are 9799.6 Hz and 4705.3 Hz, respectively. The analytical solutions illustrate that the stiffness difference ratio of the in- and anti-phase modes is inversely proportional to the output induced by the vibration from the sense direction. Additionally, FEM simulations demonstrate that the stiffness difference ratio of the anchored diamond coupling TFG is 16.08 times larger than the direct coupling one while the vibration output is reduced by 94.1%. Consequently, the proposed new anchored diamond coupling TFG can structurally increase the stiffness difference ratio to improve the mode ordering and considerably reduce the vibration sensitivity without sacrificing the scale factor.

  4. Design and Vibration Sensitivity Analysis of a MEMS Tuning Fork Gyroscope with an Anchored Diamond Coupling Mechanism

    PubMed Central

    Guan, Yanwei; Gao, Shiqiao; Liu, Haipeng; Jin, Lei; Niu, Shaohua

    2016-01-01

    In this paper, a new micromachined tuning fork gyroscope (TFG) with an anchored diamond coupling mechanism is proposed while the mode ordering and the vibration sensitivity are also investigated. The sense-mode of the proposed TFG was optimized through use of an anchored diamond coupling spring, which enables the in-phase mode frequency to be 108.3% higher than the anti-phase one. The frequencies of the in- and anti-phase modes in the sense direction are 9799.6 Hz and 4705.3 Hz, respectively. The analytical solutions illustrate that the stiffness difference ratio of the in- and anti-phase modes is inversely proportional to the output induced by the vibration from the sense direction. Additionally, FEM simulations demonstrate that the stiffness difference ratio of the anchored diamond coupling TFG is 16.08 times larger than the direct coupling one while the vibration output is reduced by 94.1%. Consequently, the proposed new anchored diamond coupling TFG can structurally increase the stiffness difference ratio to improve the mode ordering and considerably reduce the vibration sensitivity without sacrificing the scale factor. PMID:27049385

  5. Oximetry: a new non-invasive method to detect metabolic effects induced by a local application of mechanical vibration

    NASA Astrophysics Data System (ADS)

    Felici, A.; Trombetta, C.; Abundo, P.; Foti, C.; Rosato, N.

    2012-10-01

    Mechanical vibrations application is increasingly common in clinical practice due to the effectiveness induced by these stimuli on the human body. Local vibration (LV) application allows to apply and act only where needed, focusing the treatment on the selected body segment. An experimental device for LV application was used to generate the vibrations. The aim of this study was to detect and analyze the metabolic effects induced by LV on the brachial bicep muscle by means of an oximeter. This device monitors tissue and muscle oxygenation using NIRS (Near Infrared Spectroscopy) and is able to determine the concentration of haemoglobin and oxygen saturation in the tissue. In a preliminary stage we also investigated the effects induced by LV application, by measuring blood pressure, heart rate, oxygen saturation and temperature. These data confirmed that the effects induced by LV application are actually localized. The results of the measurements obtained using the oximeter during the vibration application, have shown a variation of the concentrations. In particular an increase of oxygenate haemoglobin was shown, probably caused by an increased muscle activity and/or a rise in local temperature detected during the application.

  6. Comparison of high‐intensity sound and mechanical vibration for cleaning porous titanium cylinders fabricated using selective laser melting

    PubMed Central

    Seiffert, Gary; Sutcliffe, Chris

    2015-01-01

    Abstract Orthopedic components, such as the acetabular cup in total hip joint replacement, can be fabricated using porous metals, such as titanium, and a number of processes, such as selective laser melting. The issue of how to effectively remove loose powder from the pores (residual powder) of such components has not been addressed in the literature. In this work, we investigated the feasibility of two processes, acoustic cleaning using high‐intensity sound inside acoustic horns and mechanical vibration, to remove residual titanium powder from selective laser melting‐fabricated cylinders. With acoustic cleaning, the amount of residual powder removed was not influenced by either the fundamental frequency of the horn used (75 vs. 230 Hz) or, for a given horn, the number of soundings (between 1 and 20). With mechanical vibration, the amount of residual powder removed was not influenced by the application time (10 vs. 20 s). Acoustic cleaning was found to be more reliable and effective in removal of residual powder than cleaning with mechanical vibration. It is concluded that acoustic cleaning using high‐intensity sound has significant potential for use in the final preparation stages of porous metal orthopedic components. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 117–123, 2017. PMID:26426906

  7. Comparison of high-intensity sound and mechanical vibration for cleaning porous titanium cylinders fabricated using selective laser melting.

    PubMed

    Seiffert, Gary; Hopkins, Carl; Sutcliffe, Chris

    2017-01-01

    Orthopedic components, such as the acetabular cup in total hip joint replacement, can be fabricated using porous metals, such as titanium, and a number of processes, such as selective laser melting. The issue of how to effectively remove loose powder from the pores (residual powder) of such components has not been addressed in the literature. In this work, we investigated the feasibility of two processes, acoustic cleaning using high-intensity sound inside acoustic horns and mechanical vibration, to remove residual titanium powder from selective laser melting-fabricated cylinders. With acoustic cleaning, the amount of residual powder removed was not influenced by either the fundamental frequency of the horn used (75 vs. 230 Hz) or, for a given horn, the number of soundings (between 1 and 20). With mechanical vibration, the amount of residual powder removed was not influenced by the application time (10 vs. 20 s). Acoustic cleaning was found to be more reliable and effective in removal of residual powder than cleaning with mechanical vibration. It is concluded that acoustic cleaning using high-intensity sound has significant potential for use in the final preparation stages of porous metal orthopedic components. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 117-123, 2017.

  8. The vibrational relaxation of NO in Ar: tunneling in a curve-crossing mechanism.

    PubMed

    Dashevskaya, E I; Nikitin, E E; Troe, J

    2015-01-07

    Experimental data for the vibrational relaxation NO(X(2)Π, v = 1) + Ar → NO(X(2)Π, v = 0) + Ar between 300 and 2000 K are analyzed. The measured rate coefficients k10 greatly exceed Landau-Teller values (LT)k10. This observation can be attributed to a mechanism involving curve-crossing of the (A'', v = 1) and (A', v = 0) vibronic states of the collision system. At high temperatures, the rate coefficients k10 are well represented by the thermally averaged Landau-Zener rate constant (LZ)k10 with an apparent Arrhenius activation energy Ea/kB near 4500 K. At intermediate temperatures, around T = 900 K, the measured k10 values are a factor of two higher than the extrapolated (LZ)k10 values. This deviation is attributed to tunneling in nonadiabatic curve-crossing transitions, which are analyzed within the Airy approximation (linear model for crossing diabatic curves) and an effective mass approach. This suggests a substantial contribution of hindered rotation of NO to the nonadiabatic perturbation. The extrapolation of the Airy probabilities to even lower temperatures (by the Landau-Lifshitz WKB tunneling expression for simple nonlinear model potentials) indicates a further marked increase of the tunneling contribution beyond the extrapolated (LZ)k10. Near 300 K, the k10 can be two to three orders of magnitude higher than the extrapolated (LZ)k10. This agrees with the limited available experimental data for NO-Ar relaxation near room temperature.

  9. Vibration mechanisms of spur gear pair in healthy and fault states

    NASA Astrophysics Data System (ADS)

    Li, Yongzhuo; Ding, Kang; He, Guolin; Lin, Huibin

    2016-12-01

    The vibration frequency components of gear system are complicated and changeful, some of those are even hard to explain. Based on the dynamic equations of a single-stage gear pair and some reasonable simplifications, frequency responses of the gear pair in healthy state and those suffering from different faults are analyzed, respectively. The excitation sources of vibration frequency components such as rotational frequency harmonics, mesh frequency harmonics, modulation sidebands and resonance frequency bands are investigated accordingly. The causes of the asymmetrical modulation sidebands around the mesh frequency harmonics, which are commonly appeared in the vibration spectrum of gear system, are explained. The effectiveness of the theoretical deductions is confirmed by dynamic simulations and experimental results.

  10. A novel triple-actuating mechanism of an active air mount for vibration control of precision manufacturing machines: experimental work

    NASA Astrophysics Data System (ADS)

    Kim, Hyung-Tae; Kim, Cheol-Ho; Choi, Seung-Bok; Moon, Seok-Jun; Song, Won-Gil

    2014-07-01

    With the goal of vibration control and isolation in a clean room, we propose a new type of air mount which consists of pneumatic, electromagnetic (EM), and magnetorheological (MR) actuators. The air mount is installed below a semiconductor manufacturing machine to reduce the adverse effects caused by unwanted vibration. The proposed mechanism integrates the forces in a parallel connection of the three actuators. The MR part is designed to operate in an air spring in which the EM part is installed. The control logic is developed with a classical method and a switching mode to avoid operational mismatch among the forces developed. Based on extended microprocessors, a portable, embedded controller is installed to execute both nonlinear logic and digital communication with the peripherals. The pneumatic forces constantly support the heavy weight of an upper structure and maintain the level of the air mount. The MR damper handles the transient response, while the EM controller reduces the resonance response, which is switched mutually with a threshold. Vibration is detected by laser displacement sensors which have submicron resolution. The impact test results of three tons load weight demonstrate practical feasibility by showing that the proposed triple-actuating mechanism can reduce the transient response as well as the resonance in the air mount, resulting in accurate motion of the semiconductor manufacturing machine.

  11. Mechanism of emergence of intense vibrations of turbines on the Sayano-Shushensk hydro power plant

    NASA Astrophysics Data System (ADS)

    Kurzin, V. B.; Seleznev, V. S.

    2010-07-01

    It is demonstrated that the level of vibrations of turbines on the Sayano-Shushensk hydro power plant is enhanced by the capability of a compressible fluid to perform its own hydroacoustic oscillations (which can be unstable) in the turbine duct. Based on the previously obtained results of solving the problem of natural hydroacoustic oscillations in the turbine duct and some ideas about turbine interaction with an unsteady compressible fluid flow, results of full-scale studies of turbine vibrations and seismic monitoring of the dam of the Sayano-Shushensk hydro power plant before and during the accident are analyzed.

  12. Digital holography for mechanical vibration measurements in rigid body displacement: elimination of the latter by means of a variable focal length adjustment

    NASA Astrophysics Data System (ADS)

    Pérez-López, Carlos; Mendoza Santoyo, Fernando; Gutiérrez Hernández, David Asael; Muñoz Solis, Silvino

    2008-06-01

    We present our investigation on the separation of mechanical vibrations from rigid body displacements. Pairs of digital holograms acquired between two consecutive time intervals from this type of events produce phase maps that contain both the vibration and rigid body motion information, or even further fully decorrelated phase maps after computer processing. In order to compensate for body displacements, a conjugate object-image experimental arrangement for digital holography is used to measure the mechanical vibrations in a rectangular flat plate. This is achieved by including an extra lens with variable focal length adjustments in front of the typical lens-aperture combination used in the optical head of a digital holographic set up. Out of plane data is obtained from a framed metal plate subjected to a known modal vibration that is also allowed to move perpendicularly to its surface. We will demonstrate that due to the power adjustment of the added lens the angular phase change in the digital hologram from the known object motion allows the separation of the vibration mode at the image plane. The proposed lens addition into a new optical head arrangement in digital holography combined with an a priori knowledge of the rigid body displacement is able to accurately separate the mechanical vibrations making it a promising method in experiments performed under noisy environments. This research suggests the inclusion of adaptive lenses to control the effective focal length when there is a need to separate two distinctive motion types, i.e., vibration from rigid body motion.

  13. Light-matter interaction: conversion of the optical energy and momentum to mechanical vibrations and phonons (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mansuripur, Masud

    2016-09-01

    Interactions between light and material media generally involve an exchange of energy and momentum. Whereas packets of electromagnetic radiation (i.e., photons) are known to carry energy as well as momentum, the eigen-modes of mechanical vibration (i.e., phonons) do not carry any momentum of their own. Considering that, in light-matter interactions, not only the total energy but also the total momentum (i.e., electromagnetic plus mechanical momentum) must be conserved, it becomes necessary to examine the momentum exchange mechanism in some detail. In this presentation, we describe the intricate means by which mechanical momentum is taken up and carried away by material media during reflection, refraction, and absorption of light pulses, thereby ensuring the conservation of linear momentum. Particular attention will be paid to periodically-structured media, which are capable of supporting acoustic as well as optical phonons.

  14. Down-regulation of adipogenesis of mesenchymal stem cells by oscillating high-gradient magnetic fields and mechanical vibration

    NASA Astrophysics Data System (ADS)

    Zablotskii, V.; Lunov, O.; Novotná, B.; Churpita, O.; Trošan, P.; HoláÅ, V.; Syková, E.; Dejneka, A.; Kubinová, Š.

    2014-09-01

    Nowadays, the focus in medicine on molecular genetics has resulted in a disregard for the physical basis of treatment even though many diseases originate from changes in cellular mechanics. Perturbations of the cellular nanomechanics promote pathologies, including cardiovascular disease and cancer. Furthermore, whilst the biological and therapeutic effects of magnetic fields are a well-established fact, to date the underlying mechanisms remain obscure. Here, we show that oscillating high-gradient magnetic field (HGMF) and mechanical vibration affect adipogenic differentiation of mesenchymal stem cells by the transmission of mechanical stress to the cell cytoskeleton, resulting in F-actin remodelling and subsequent down-regulation of adipogenic genes adiponectin, PPARγ, and AP2. Our findings propose an insight into the regulation of cellular nanomechanics, and provide a basis for better controlled down-regulation of stem cell adipogenesis by HGMF, which may facilitate the development of challenging therapeutic strategies suitable for the remote control of biological systems.

  15. Quantum mechanical calculation of electric fields and vibrational Stark shifts at active site of human aldose reductase

    NASA Astrophysics Data System (ADS)

    Wang, Xianwei; Zhang, John Z. H.; He, Xiao

    2015-11-01

    Recent advance in biophysics has made it possible to directly measure site-specific electric field at internal sites of proteins using molecular probes with C = O or C≡N groups in the context of vibrational Stark effect. These measurements directly probe changes of electric field at specific protein sites due to, e.g., mutation and are very useful in protein design. Computational simulation of the Stark effect based on force fields such as AMBER and OPLS, while providing good insight, shows large errors in comparison to experimental measurement due to inherent difficulties associated with point charge based representation of force fields. In this study, quantum mechanical calculation of protein's internal electrostatic properties and vibrational Stark shifts was carried out by using electrostatically embedded generalized molecular fractionation with conjugate caps method. Quantum calculated change of mutation-induced electric field and vibrational Stark shift is reported at the internal probing site of enzyme human aldose reductase. The quantum result is in much better agreement with experimental data than those predicted by force fields, underscoring the deficiency of traditional point charge models describing intra-protein electrostatic properties.

  16. Quantum mechanical calculation of electric fields and vibrational Stark shifts at active site of human aldose reductase

    SciTech Connect

    Wang, Xianwei; Zhang, John Z. H.; He, Xiao

    2015-11-14

    Recent advance in biophysics has made it possible to directly measure site-specific electric field at internal sites of proteins using molecular probes with C = O or C≡N groups in the context of vibrational Stark effect. These measurements directly probe changes of electric field at specific protein sites due to, e.g., mutation and are very useful in protein design. Computational simulation of the Stark effect based on force fields such as AMBER and OPLS, while providing good insight, shows large errors in comparison to experimental measurement due to inherent difficulties associated with point charge based representation of force fields. In this study, quantum mechanical calculation of protein’s internal electrostatic properties and vibrational Stark shifts was carried out by using electrostatically embedded generalized molecular fractionation with conjugate caps method. Quantum calculated change of mutation-induced electric field and vibrational Stark shift is reported at the internal probing site of enzyme human aldose reductase. The quantum result is in much better agreement with experimental data than those predicted by force fields, underscoring the deficiency of traditional point charge models describing intra-protein electrostatic properties.

  17. Molecular quantum mechanical gradients within the polarizable embedding approach—Application to the internal vibrational Stark shift of acetophenone

    SciTech Connect

    List, Nanna Holmgaard Jensen, Hans Jørgen Aagaard; Kongsted, Jacob; Beerepoot, Maarten T. P.; Gao, Bin; Ruud, Kenneth; Olsen, Jógvan Magnus Haugaard

    2015-01-21

    We present an implementation of analytical quantum mechanical molecular gradients within the polarizable embedding (PE) model to allow for efficient geometry optimizations and vibrational analysis of molecules embedded in large, geometrically frozen environments. We consider a variational ansatz for the quantum region, covering (multiconfigurational) self-consistent-field and Kohn–Sham density functional theory. As the first application of the implementation, we consider the internal vibrational Stark effect of the C=O group of acetophenone in different solvents and derive its vibrational linear Stark tuning rate using harmonic frequencies calculated from analytical gradients and computed local electric fields. Comparisons to PE calculations employing an enlarged quantum region as well as to a non-polarizable embedding scheme show that the inclusion of mutual polarization between acetophenone and water is essential in order to capture the structural modifications and the associated frequency shifts observed in water. For more apolar solvents, a proper description of dispersion and exchange–repulsion becomes increasingly important, and the quality of the optimized structures relies to a larger extent on the quality of the Lennard-Jones parameters.

  18. Molecular quantum mechanical gradients within the polarizable embedding approach--application to the internal vibrational Stark shift of acetophenone.

    PubMed

    List, Nanna Holmgaard; Beerepoot, Maarten T P; Olsen, Jógvan Magnus Haugaard; Gao, Bin; Ruud, Kenneth; Jensen, Hans Jørgen Aagaard; Kongsted, Jacob

    2015-01-21

    We present an implementation of analytical quantum mechanical molecular gradients within the polarizable embedding (PE) model to allow for efficient geometry optimizations and vibrational analysis of molecules embedded in large, geometrically frozen environments. We consider a variational ansatz for the quantum region, covering (multiconfigurational) self-consistent-field and Kohn-Sham density functional theory. As the first application of the implementation, we consider the internal vibrational Stark effect of the C=O group of acetophenone in different solvents and derive its vibrational linear Stark tuning rate using harmonic frequencies calculated from analytical gradients and computed local electric fields. Comparisons to PE calculations employing an enlarged quantum region as well as to a non-polarizable embedding scheme show that the inclusion of mutual polarization between acetophenone and water is essential in order to capture the structural modifications and the associated frequency shifts observed in water. For more apolar solvents, a proper description of dispersion and exchange-repulsion becomes increasingly important, and the quality of the optimized structures relies to a larger extent on the quality of the Lennard-Jones parameters.

  19. Molecular quantum mechanical gradients within the polarizable embedding approach—Application to the internal vibrational Stark shift of acetophenone

    NASA Astrophysics Data System (ADS)

    List, Nanna Holmgaard; Beerepoot, Maarten T. P.; Olsen, Jógvan Magnus Haugaard; Gao, Bin; Ruud, Kenneth; Jensen, Hans Jørgen Aagaard; Kongsted, Jacob

    2015-01-01

    We present an implementation of analytical quantum mechanical molecular gradients within the polarizable embedding (PE) model to allow for efficient geometry optimizations and vibrational analysis of molecules embedded in large, geometrically frozen environments. We consider a variational ansatz for the quantum region, covering (multiconfigurational) self-consistent-field and Kohn-Sham density functional theory. As the first application of the implementation, we consider the internal vibrational Stark effect of the C=O group of acetophenone in different solvents and derive its vibrational linear Stark tuning rate using harmonic frequencies calculated from analytical gradients and computed local electric fields. Comparisons to PE calculations employing an enlarged quantum region as well as to a non-polarizable embedding scheme show that the inclusion of mutual polarization between acetophenone and water is essential in order to capture the structural modifications and the associated frequency shifts observed in water. For more apolar solvents, a proper description of dispersion and exchange-repulsion becomes increasingly important, and the quality of the optimized structures relies to a larger extent on the quality of the Lennard-Jones parameters.

  20. Universal damping mechanism of quantum vibrations in deep sub-barrier fusion reactions

    NASA Astrophysics Data System (ADS)

    Ichikawa, Takatoshi; Matsuyanagi, Kenichi

    2015-08-01

    We demonstrate the damping of quantum octupole vibrations near the touching point when two colliding nuclei approach each other in the mass-asymmetric 16 O + 208 Pb system, for which the strong fusion hindrance was clearly observed. We, for the first time, apply the random-phase approximation method to the heavy-mass asymmetric dinuclear system to calculate the transition strength B (E 3 ) as a function of the center-of-mass distance. The obtained B (E 3 ) strengths are substantially damped near the touching point, because the single-particle wave functions of the two nuclei strongly mix with each other and a neck is formed. The energy-weighted sums of B (E 3 ) are also strongly correlated with the damping factor, which is phenomenologically introduced in the standard coupled-channel calculations to reproduce the fusion hindrance. This strongly indicates that the damping of the quantum vibrations universally occurs in the deep sub-barrier fusion reactions.

  1. Molecular Tuning of the Vibrational Thermal Transport Mechanisms in Fullerene Derivative Solutions.

    PubMed

    Szwejkowski, Chester J; Giri, Ashutosh; Warzoha, Ronald; Donovan, Brian F; Kaehr, Bryan; Hopkins, Patrick E

    2017-02-28

    Control over the thermal conductance from excited molecules into an external environment is essential for the development of customized photothermal therapies and chemical processes. This control could be achieved through molecule tuning of the chemical moieties in fullerene derivatives. For example, the thermal transport properties in the fullerene derivatives indene-C60 monoadduct (ICMA), indene-C60 bisadduct (ICBA), [6,6]-phenyl C61 butyric acid methyl ester (PCBM), [6,6]-phenyl C61 butyric acid butyl ester (PCBB), and [6,6]-phenyl C61 butyric acid octyl ester (PCBO) could be tuned by choosing a functional group such that its intrinsic vibrational density of states bridge that of the parent molecule and a liquid. However, this effect has never been experimentally realized for molecular interfaces in liquid suspensions. Using the pump-probe technique time domain thermotransmittance, we measure the vibrational relaxation times of photoexcited fullerene derivatives in solutions and calculate an effective thermal boundary conductance from the opto-thermally excited molecule into the liquid. We relate the thermal boundary conductance to the vibrational modes of the functional groups using density of states calculations from molecular dynamics. Our findings indicate that the attachment of an ester group to a C60 molecule, such as in PCBM, PCBB, and PCBO, provides low-frequency modes which facilitate thermal coupling with the liquid. This offers a channel for heat flow in addition to direct coupling between the buckyball and the liquid. In contrast, the attachment of indene rings to C60 does not supply the same low-frequency modes and, thus, does not generate the same enhancement in thermal boundary conductance. Understanding how chemical functionalization of C60 affects the vibrational thermal transport in molecule/liquid systems allows the thermal boundary conductance to be manipulated and adapted for medical and chemical applications.

  2. Vibrationally inelastic collisions of H+D2: a comparison of quantum mechanical, quasiclassical, and experimental results.

    PubMed

    Jambrina, P G; Aldegunde, J; Castillo, J F; Aoiz, F J; Sáez Rábanos, V

    2009-01-21

    A detailed comparison of quantum mechanical (QM) and quasiclassical trajectory (QCT) integral and differential cross sections (DCSs) as well as opacity functions is presented in this work for the vibrationally inelastic collisions of H+D(2)(v=0,j=0)-->H+D(2)(v(')=3,j(')) at 1.72 eV collision energy. These results are also compared with the experimental differential cross sections by Greaves et al. [Nature (London) 454, 88 (2008)]. The agreement between QCT and QM results is fairly good but some differences are appreciable, and it is shown that the experimental results are in a somewhat better agreement with the calculated QM DCS. The present results and their analysis confirm that the vibrational excitation takes place by elongation of the D-D bond in a "tug-of-war" mechanism, where the incoming H atom and one of the D atoms compete for the formation of a bond with the other D atom, as proposed by Greaves et al. It is also found that these collisions may give rise to the formation of short-lived collision complexes (tau(coll)=35-50 fs) that can be traced back to the presence of relatively deep wells in the potential surface when the original D-D bond is stretched. The analysis of the trajectories into v(')=3 reveals that most of them cross at least twice the reaction barrier via a recrossing mechanism.

  3. Mouse embryo motion and embryonic development from the 2-cell to blastocyst stage using mechanical vibration systems.

    PubMed

    Asano, Yuka; Matsuura, Koji

    2014-06-01

    We investigated the effect of mechanical stimuli on mouse embryonic development from the 2-cell to blastocyst stage to evaluate physical factors affecting embryonic development. Shear stress (SS) applied to embryos using two mechanical vibration systems (MVSs) was calculated by observing microscopic images of moving embryos during mechanical vibration (MV). The MVSs did not induce any motion of the medium and the diffusion rate using MVSs was the same as that under static conditions. Three days of culture using MVS did not improve embryonic development. MVS transmitted MV power more efficiently to embryos than other systems and resulted in a significant decrease in development to the morula or blastocyst stage after 2 days. Comparison of the results of embryo culture using dynamic culture systems demonstrated that macroscopic diffusion of secreted materials contributes to improved development of mouse embryos to the blastocyst stage. These results also suggest that the threshold of SS and MV to induce negative effects for mouse embryos at stages earlier than the blastocyst may be lower than that for the blastocyst, and that mouse embryos are more sensitive to physical and chemical stimuli than human or pig embryos because of their thinner zona pellucida.

  4. Characterization of the dominant structural vibration of hearing aid receivers: Towards the moderation of mechanical feedback in hearing aids

    NASA Astrophysics Data System (ADS)

    Varanda, Brenno R.

    Presented are the results from the experimental, analytical, and computational analyses accomplished to characterize the mechanical vibration of hearing aid receivers, a key electro-acoustic component of hearing aids. The function of a receiver in a hearing aid is to provide an amplified sound signal into the ear canal. Unfortunately, as the receiver produces sound, it also undergoes vibration which can be transmitted through the hearing aid package to the microphones, resulting in undesirable feedback oscillations. To gain more knowledge and control on the source of these feedback oscillations, a dynamic rigid body model of the receiver is proposed. The rigid body model captures the essential dynamic features of the receiver. The model is represented by two hinged rigid bodies, under an equal and opposite dynamic moment load, and connected to each other by a torsional spring and damper. The mechanical coupling ratio between the two rigid bodies is proved to be acoustically independent. A method is introduced to estimate the parameters for the proposed model using experimental data. An equivalent finite element analysis model is established and tested against a known and characterized mechanical attachment. The simulated model successfully predicts the structural dynamic response showing excellent agreement between the finite element analysis and measured results.

  5. Physical mechanisms of megahertz vibrations and nonlinear detection in ultrasonic force and related microscopies

    SciTech Connect

    Bosse, J. L.; Huey, B. D.; Tovee, P. D.; Kolosov, O. V.

    2014-04-14

    Use of high frequency (HF) vibrations at MHz frequencies in Atomic Force Microscopy (AFM) advanced nanoscale property mapping to video rates, allowed use of cantilever dynamics for mapping nanomechanical properties of stiff materials, sensing μs time scale phenomena in nanostructures, and enabled detection of subsurface features with nanoscale resolution. All of these methods critically depend on the generally poor characterized HF behaviour of AFM cantilevers in contact with a studied sample, spatial and frequency response of piezotransducers, and transfer of ultrasonic vibrations between the probe and a specimen. Focusing particularly on Ultrasonic Force Microscopy (UFM), this work is also applicable to waveguide UFM, heterodyne force microscopy, and near-field holographic microscopy, all methods that exploit nonlinear tip-surface force interactions at high frequencies. Leveraging automated multidimensional measurements, spectroscopic UFM (sUFM) is introduced to investigate a range of common experimental parameters, including piezotransducer excitation frequency, probed position, ultrasonic amplitude, cantilever geometry, spring constant, and normal force. Consistent with studies of influence of each of these factors, the data-rich sUFM signatures allow efficient optimization of ultrasonic-AFM based measurements, leading to best practices recommendations of using longer cantilevers with lower fundamental resonance, while at the same time increasing the central frequency of HF piezo-actuators, and only comparing results within areas on the order of few μm{sup 2} unless calibrated directly or compared with in-the-imaged area standards. Diverse materials such as Si, Cr, and photoresist are specifically investigated. This work thereby provides essential insight into the reliable use of MHz vibrations with AFM and provides direct evidence substantiating phenomena such as sensitivity to adhesion, diminished friction for certain ultrasonic conditions, and the

  6. Smartphones as experimental tools to measure acoustical and mechanical properties of vibrating rods

    NASA Astrophysics Data System (ADS)

    González, Manuel Á.; González, Miguel Á.

    2016-07-01

    Modern smartphones have calculation and sensor capabilities that make them suitable for use as versatile and reliable measurement devices in simple teaching experiments. In this work a smartphone is used, together with low cost materials, in an experiment to measure the frequencies emitted by vibrating rods of different materials, shapes and lengths. The results obtained with the smartphone have been compared with theoretical calculations and the agreement is good. Alternatively, physics students can perform the experiment described here and use their results to determine the dependencies of the obtained frequencies on the rod characteristics. In this way they will also practice research methods that they will probably use in their professional life.

  7. Free and forced vibration control of piezoelectric FGM plate subjected to electro-mechanical loading

    NASA Astrophysics Data System (ADS)

    Jadhav, Priyanka A.; Bajoria, Kamal M.

    2013-06-01

    This paper investigates the free and forced vibration analysis of a newly introduced metal based functionally graded (FG) plate integrated with a piezoelectric actuator and sensor at the top and bottom faces respectively. The material properties of the FG plate are assumed to be graded along the thickness direction according to a simple power law distribution in terms of the volume fraction of the constituents, while the Poisson ratio is assumed to be constant. The plate is simply supported at all edges. The finite element model is based on higher order shear deformation theory (HOST), the von Karman hypothesis and degenerated shell elements. The displacement component of the present model is expanded in Taylor’s series in terms of the thickness co-ordinate. The Hamilton principle is used to derive the equation of motion for the piezoelectric functionally graded material (FGM) plate. The free and forced vibration analysis of the simply supported piezoelectric FG plate is carried out to present the effect of the power law index and the piezoelectric layer. The present analysis is carried out on a newly introduced FGM, which is a mixture of aluminum and stainless steel. Stainless steel is a high strength material but it can rust in extreme cases, and aluminum does not rust but it is a low strength material. The FGM exhibits corrosion resistance as well as the high strength property in a single material. This new FGM will definitely help in the construction as well as the metal industry.

  8. Mechanical Vibration Characteristics for the Driving Part in Array of Microelectromechanical Systems Vibratory Gyroscopes

    NASA Astrophysics Data System (ADS)

    Miyake, Yoshinori; Hirata, Masaki; Suzuki, Kenichiro

    2012-09-01

    Over the past ten years, much effort to develop microelectromechanical system (MEMS) gyroscopes with the “tactical” and “inertial” grade has been made. Although several techniques are proposed to increase the sensitivity, each of them has serious tradeoffs with other characteristics. We propose a new approach to accomplish the increase in sensitivity. The overall gyroscope consists of gyroscope elements arrayed in an X-Y matrix. Each gyroscope element is connected with two types of beams, coupling and connecting beams, and is excited in the antiphase vibration mode. First, this array configuration takes the advantage of the large scale factor of N2, the square of the number of elements, for the sensitivity over a simply large chip (the sensitivity is proportional to N). Second, the vibrational characteristics are not changed from those for a single element irrespective of the number of elements. Therefore, much effort in design can be saved. 1×2 and 2×2 arrays with the resonant frequency of approximately 5 kHz were fabricated and evaluated in terms of the resonant frequency and amplitude for each element. They agreed well with those of a single gyroscope. This indicates that the proposed array helps to reduce the task of frequency tuning, which is needed for conventional 1×2 gyroscope arrays. It is also useful to fabricate a highly resonant gyroscope, which is immune to environmental noise.

  9. Theoretical vibrational spectroscopy of intermediates and the reaction mechanism of the guanosine triphosphate hydrolysis by the protein complex Ras-GAP

    NASA Astrophysics Data System (ADS)

    Khrenova, Maria G.; Grigorenko, Bella L.; Nemukhin, Alexander V.

    2016-09-01

    The structures and vibrational spectra of the reacting species upon guanosine triphosphate (GTP) hydrolysis to guanosine diphosphate and inorganic phosphate (Pi) trapped inside the protein complex Ras-GAP were analyzed following the results of QM/MM simulations. The frequencies of the phosphate vibrations referring to the reactants and to Pi were compared to those observed in the experimental FTIR studies. A good correlation between the theoretical and experimental vibrational data provides a strong support to the reaction mechanism of GTP hydrolysis by the Ras-GAP enzyme system revealed by the recent QM/MM modeling. Evolution of the vibrational bands associated with the inorganic phosphate Pi during the elementary stages of GTP hydrolysis is predicted.

  10. Fiber-based free-space optical coherent receiver with vibration compensation mechanism.

    PubMed

    Zhang, Ruochi; Wang, Jianmin; Zhao, Guang; Lv, Junyi

    2013-07-29

    We propose a novel fiber-based free-space optical (FSO) coherent receiver for inter-satellite communication. The receiver takes advantage of established fiber-optic components and utilizes the fine-pointing subsystem installed in FSO terminals to minimize the influence of satellite platform vibrations. The received beam is coupled to a single-mode fiber, and the coupling efficiency of the system is investigated both analytically and experimentally. A receiving sensitivity of -38 dBm is obtained at the forward error correction limit with a transmission rate of 22.4 Gbit/s. The proposed receiver is shown to be a promising component for inter-satellite optical communication.

  11. Electron-transfer boat-vibration mechanism for superconductivity in organic molecules based on BEDT-TTF

    SciTech Connect

    Demiralp, E.; Dasgupta, S.; Goddard, W.A. III

    1995-08-09

    The highest T{sub c} organic superconductors all involve the organic molecule bis(ethylenedithio)tetrathiafulvalene (denoted as BEDT-TTF or ET) coupled with an appropriate acceptor. This leads to ET, ET{sup +}, or (ET){sub 2}{sup +} species in the crystal. Using ab initio Hartree-Fock calculations (6-31G** basis set), we show that ET deforms to a boat structure with an energy 28 meV (0.65 kcal/mol) lower than that of planar ET (D{sub 2} symmetry). On the other hand, ET{sup +} is planar. Thus, conduction in this system leads to a coupling between charge transfer and the boat deformation vibrational modes at 20 cm{sup -1} (ET) and 28 cm{sup -1} (ET{sup +}). We suggest that this electron-phonon coupling is responsible for the superconductivity and predict the isotope shifts ({delta}T{sub c}) for experimental tests of the electron-transfer boat-vibration (ET-BV) mechanism. The low frequency of this boat mode and its coupling to various lattice modes could explain the sensitivity of T{sub c} to defects, impurities, and pressure. We suggest that new higher temperature organic donors can be sought by finding modifications that change the frequency and stability of this boat distortion mode. 25 refs., 5 figs., 4 tabs.

  12. Microstructure formation mechanism and properties of AZ61 alloy processed by melt treatment with vibrating cooling slope and semisolid rolling

    NASA Astrophysics Data System (ADS)

    Zhao, Zhan Yong; Guan, Ren Guo; Wang, Xiang; Li, Yang; Dong, Lei; Lee, Chong Soo; Liu, Chun Ming

    2013-09-01

    A melt treatment with a vibrating cooling slope and a semisolid rolling process to produce an AZ61 alloy strip was proposed. The microstructure formation mechanism and the properties of the AZ61 alloy produced by the proposed process were investigated. Due to the high cooling rate and stirring action caused by the vibration cooling slope, the nucleation rate was greatly improved, which caused the formation of fine spherical or rosette primary grains. During the rolling process, the solid fraction increased from the entrance to the exit of the roll gap, and under the shearing action of the roller, the distribution of solute in the melt was homogenous, and the primary grains grew further. When the casting temperature was 680 °C, a strip with a cross section of 4 mm×160 mm was produced and a homogeneous microstructure was obtained. The ultimate tensile strength of the AZ61 alloy strip produced by the proposed method reached 242 MPa, and the corresponding elongation to failure was 4%, which were better than those achieved in previous similar studies.

  13. Spin-orbit coupling mechanism of singlet oxygen a1Δg quenching by solvent vibrations

    NASA Astrophysics Data System (ADS)

    Minaev, B. F.

    2017-02-01

    Degenerate character of the O2(a1Δg) state and of the charge-transfer configurations (CTCs) from solvent to the oxygen open-shell orbitals explains the enhancement of spin-orbit coupling (SOC) which is necessary to overcome spin prohibition during singlet oxygen a1Δg quenching. The former mechanism of non-radiative transition O2(a1Δg) → O2(X3 Σg-) based on electronic energy transfer to the solvent vibrational levels (e-v mechanism) is supplemented here by explicit analysis of SOC effects mediated by solvent and O2 vibrations. The SOC matrix element between one component of the initial electronic excited singlet a1Δg state and the final ground triplet X3 Σg- state in the oxygen moiety is not equal to zero (as in free O2) in the collision complex with solvent molecule (M) when all possible CTCs of the type O2- …M+ are accounted for. Intermolecular configuration interaction between CTC and locally excited states obeys a simple symmetry selection rule which provides finally the SOC matrix element with a guarantee of large orbital rotation around the molecular oxygen axis creating a torque. The CTCs admixtures into the singlet and triplet wave functions in the collision complex O2…M ensure the SOC enhancement inside the O2 moiety and let the spin-prohibited singlet oxygen a1Δg quenching to become effectively allowed in terms of e-v mechanism. In the new model the solvent is not only a passive "sink" for the singlet oxygen excitation energy but serves as an active perturber of the oxygen open shell and finally - of the whole spin dynamics in the collision system.

  14. The vibrational spectrum of CaCO3 aragonite: A combined experimental and quantum-mechanical investigation

    NASA Astrophysics Data System (ADS)

    Carteret, Cédric; De La Pierre, Marco; Dossot, Manuel; Pascale, Fabien; Erba, Alessandro; Dovesi, Roberto

    2013-01-01

    The vibrational properties of CaCO3 aragonite have been investigated both theoretically, by using a quantum mechanical approach (all electron Gaussian type basis set and B3LYP HF-DFT hybrid functional, as implemented in the CRYSTAL code) and experimentally, by collecting polarized infrared (IR) reflectance and Raman spectra. The combined use of theory and experiment permits on the one hand to analyze the many subtle features of the measured spectra, on the other hand to evidentiate limits and deficiencies of both approaches. The full set of TO and LO IR active modes, their intensities, the dielectric tensor (in its static and high frequency components), and the optical indices have been determined, as well as the Raman frequencies. Tools such as isotopic substitution and graphical animation of the modes are available, that complement the analysis of the spectrum.

  15. Infrared and NMR spectra, tautomerism, vibrational assignment, normal coordinate analysis, and quantum mechanical calculations of 4-amino-5-pyrimidinecarbonitrile

    NASA Astrophysics Data System (ADS)

    Afifi, Mahmoud S.; Farag, Rabei S.; Shaaban, Ibrahim A.; Wilson, Lee D.; Zoghaib, Wajdi M.; Mohamed, Tarek A.

    2013-07-01

    The infrared (4000-200 cm-1) spectrum for 4-amino-5-pyrimidinecarbonitrile (APC, C5H4N4) was acquired in the solid phase. In addition, the 1H and 13C NMR spectra of APC were obtained in DMSO-d6 along with its mass spectrum. Initially, six isomers were hypothesized and then investigated by means of DFT/B3LYP and MP2(full) quantum mechanical calculations using a 6-31G(d) basis set. Moreover, the 1H and 13C NMR chemical shifts were predicted using a GIAO approximation at the 6-311+G(d,p) basis set and the B3LYP method with (and without) solvent effects using PCM method. The correlation coefficients showed good agreement between the experimental/theoretical chemical shift values of amino tautomers (1 and 2) rather than the eliminated imino tautomers (3-6), in agreement with the current quantum mechanical calculations. Structures 3-6 are less stable than the amino tautomers (1 and 2) by about 5206-8673 cm-1 (62.3-103.7 kJ/mol). The MP2(full)/6-31G(d) computational results favor the amino structure 1 with a pyramidal NH2 moiety and calculated real vibrational frequencies, however; structure 2 is considered a transition state owing to the calculated imaginary frequency. It is worth mentioning that, the calculated structural parameters suggest a strong conjugation between the amino nitrogen and pyrimidine ring. Aided by frequency calculations, normal coordinate analysis, force constants and potential energy distributions (PEDs), a complete vibrational assignment for the observed bands is proposed herein. Finally, NH2 internal rotation barriers for the stable non-planar isomer (1) were carried out using MP2(full)/6-31G(d) optimized structural parameters. Our results are discussed herein and compared to structural parameters for similar molecules whenever appropriate.

  16. Quantum-mechanical approach to predissociation of water dimers in the vibrational adiabatic representation: Importance of channel interactions

    SciTech Connect

    Mineo, H.; Kuo, J. L.; Niu, Y. L.; Lin, S. H.; Fujimura, Y.

    2015-08-28

    The results of application of the quantum-mechanical adiabatic theory to vibrational predissociation (VPD) of water dimers, (H{sub 2}O){sub 2} and (D{sub 2}O){sub 2}, are presented. We consider the VPD processes including the totally symmetric OH mode of the dimer and the bending mode of the fragment. The VPD in the adiabatic representation is induced by breakdown of the vibrational adiabatic approximation, and two types of nonadiabatic coupling matrix elements are involved: one provides the VPD induced by the low-frequency dissociation mode and the other provides the VPD through channel interactions induced by the low-frequency modes. The VPD rate constants were calculated using the Fermi golden rule expression. A closed form for the nonadiabatic transition matrix element between the discrete and continuum states was derived in the Morse potential model. All of the parameters used were obtained from the potential surfaces of the water dimers, which were calculated by the density functional theory procedures. The VPD rate constants for the two processes were calculated in the non-Condon scheme beyond the so-called Condon approximation. The channel interactions in and between the initial and final states were taken into account, and those are found to increase the VPD rates by 3(1) orders of magnitude for the VPD processes in (H{sub 2}O){sub 2} ((D{sub 2}O){sub 2}). The fraction of the bending-excited donor fragments is larger than that of the bending-excited acceptor fragments. The results obtained by quantum-mechanical approach are compared with both experimental and quasi-classical trajectory calculation results.

  17. Efficacy of focal mechanic vibration treatment on balance in Charcot-Marie-Tooth 1A disease: a pilot study.

    PubMed

    Pazzaglia, Costanza; Camerota, F; Germanotta, M; Di Sipio, E; Celletti, C; Padua, L

    2016-07-01

    Patients affected by Charcot-Marie-Tooth (CMT) disease experience an impaired balance. Although the causes of the postural instability are not fully understood, somatosensory system seems to play a key role. Mechanical vibration seems to act on the somatosensory system and to improve its function. The aim of our study was to evaluate the effects of focal mechanical vibration (fMV) on the balance of CMT 1A patients. We enrolled 14 genetically confirmed CMT 1A patients (8 female and 6 male, mean age 492 years, range 32-74, mean duration of disease: 13 years, range 1-30). Patients underwent a 3-day fMV treatment on quadriceps and triceps surae and were evaluated before the treatment as well as 1 week and 1 month after the end of the treatment. The primary outcome measure was the Berg Balance Scale (BBS) and the secondary were the Dynamic Gait Index (DGI), the 6 Min Walking Test (6MWT), the muscular strength of lower limbs, the Quality of Life (QoL) questionnaire and the stabilometric variables. The statistical analysis showed a significant modification of the BBS due to the effect of treatment (p < 0.05). A significant modification was also found in the DGI (p < 0.05). Concerning the stabilometric variables we found significant changes only for the eyes closed condition; in particular, a significant decrease was found in VelocityML (p < 0.05) and Sway path length (p < 0.05). The fMV treatment applied on lower limbs of CMT 1A patients determined an improvement of balance as detected by the BBS. The concurrent improvement of stabilometric variables in the eyes closed condition only suggests that fMV acts mostly on somatosensory afferences. Further studies are needed to confirm these data on a larger sample of CMT patients.

  18. Water Oxidation Mechanisms of Metal Oxide Catalysts by Vibrational Spectroscopy of Transient Intermediates.

    PubMed

    Zhang, Miao; Frei, Heinz

    2017-02-22

    Water oxidation is an essential reaction of an artificial photosystem for solar fuel generation because it provides electrons needed to reduce carbon dioxide or protons to a fuel. Earth-abundant metal oxides are among the most attractive catalytic materials for this reaction because of their robustness and scalability, but their efficiency poses a challenge. Knowledge of catalytic surface intermediates gained by vibrational spectroscopy under reaction conditions plays a key role in uncovering kinetic bottlenecks and provides a basis for catalyst design improvements. Recent dynamic infrared and Raman studies reveal the molecular identity of transient surface intermediates of water oxidation on metal oxides. Combined with ultrafast infrared observations of how charges are delivered to active sites of the metal oxide catalyst and drive the multielectron reaction, spectroscopic advances are poised to play a key role in accelerating progress toward improved catalysts for artificial photosynthesis. Expected final online publication date for the Annual Review of Physical Chemistry Volume 68 is April 20, 2017. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  19. Electron beam exposure mechanisms in hydrogen silsesquioxane investigated by vibrational spectroscopy and in-situ electron beam induced desorption

    SciTech Connect

    Olynick, D.L.; Cord, B.; Schipotinin, A.; Ogletree, D.F.; Schuck, P.J.

    2009-11-13

    Hydrogen Silsesquioxane (HSQ) is used as a high-resolution resist with resolution down below 10nm half-pitch. This material or materials with related functionalities could have widespread impact in nanolithography and nanoscience applications if the exposure mechanism was understood and instabilities controlled. Here we have directly investigated the exposure mechanism using vibrational spectroscopy (both Raman and Fourier transform Infrared) and electron beam desorption spectrocscopy (EBDS). In the non-networked HSQ system, silicon atoms sit at the corners of a cubic structure. Each silicon is bonded to a hydrogen atom and bridges 3 oxygen atoms (formula: HSiO3/2). For the first time, we have shown, via changes in the Si-H2 peak at ~;;2200 cm -1 in the Raman spectra and the release of SiHx products in EBID, that electron-bam exposed materials crosslinks via a redistribution reaction. In addition, we observe the release of significantly more H2 than SiH2 during EBID, which is indicative of additional reaction mechanisms. Additionally, we compare the behavior of HSQ in response to both thermal and electron-beam induced reactions.

  20. Enhancement of entanglement in distant mechanical vibrations via modulation in a coupled optomechanical system

    NASA Astrophysics Data System (ADS)

    Chen, Rong-Xin; Shen, Li-Tuo; Yang, Zhen-Biao; Wu, Huai-Zhi; Zheng, Shi-Biao

    2014-02-01

    We consider a coupled cavity optomechanical setup driven by a periodically modulated pump. We investigate the asymptotic behaviors of Heisenberg operator mean values and mechanical entanglement. It is shown that the system will acquire the same period of the modulation in the long time limit and, compared to the no modulation case, the mechanical entanglement can be significantly enhanced by periodic driving with more conservative system parameters and a higher permitted bath temperature. The mechanism of entanglement generation is discussed and an approximate optimal modulation frequency for small effective coupling is derived.

  1. Thermal Vibrational Convection

    NASA Astrophysics Data System (ADS)

    Gershuni, G. Z.; Lyubimov, D. V.

    1998-08-01

    Recent increasing awareness of the ways in which vibrational effects can affect low-gravity experiments have renewed interest in the study of thermal vibrational convection across a wide range of fields. For example, in applications where vibrational effects are used to provide active control of heat and mass transfer, such as in heat exchangers, stirrers, mineral separators and crystal growth, a sound understanding of the fundamental theory is required. In Thermal Vibrational Convection, the authors present the theory of vibrational effects caused by a static gravity field, and of fluid flows which appear under vibration in fluid-filled cavities. The first part of the book discusses fluid-filled cavities where the fluid motion only appears in the presence of temperature non-uniformities, while the second considers those situations where the vibrational effects are caused by a non-uniform field. Throughout, the authors concentrate on consideration of high frequency vibrations, where averaging methods can be successfully applied in the study of the phenomena. Written by two of the pioneers in this field, Thermal Vibrational Convection will be of great interest to scientists and engineers working in the many areas that are concerned with vibration, and its effect on heat and mass transfer. These include hydrodynamics, hydro-mechanics, low gravity physics and mechanics, and geophysics. The rigorous approach adopted in presenting the theory of this fascinating and highly topical area will facilitate a greater understanding of the phenomena involved, and will lead to the development of more and better-designed experiments.

  2. Vibration manual

    NASA Technical Reports Server (NTRS)

    Green, C.

    1971-01-01

    Guidelines of the methods and applications used in vibration technology at the MSFC are presented. The purpose of the guidelines is to provide a practical tool for coordination and understanding between industry and government groups concerned with vibration of systems and equipments. Topics covered include measuring, reducing, analyzing, and methods for obtaining simulated environments and formulating vibration specifications. Methods for vibration and shock testing, theoretical aspects of data processing, vibration response analysis, and techniques of designing for vibration are also presented.

  3. Mechanical-plowing-based high-speed patterning on hard material via advanced-control and ultrasonic probe vibration

    SciTech Connect

    Wang, Zhihua; Zou, Qingze; Tan, Jun; Jiang, Wei

    2013-11-15

    In this paper, we present a high-speed direct pattern fabrication on hard materials (e.g., a tungsten-coated quartz substrate) via mechanical plowing. Compared to other probe-based nanolithography techniques based on chemical- and/or physical-reactions (e.g., the Dip-pen technique), mechanical plowing is meritorious for its low cost, ease of process control, and capability of working with a wide variety of materials beyond conductive and/or soft materials. However, direct patterning on hard material faces two daunting challenges. First, the patterning throughput is ultimately hindered by the “writing” (plowing) speed, which, in turn, is limited by the adverse effects that can be excited/induced during high-speed, and/or large-range plowing, including the vibrational dynamics of the actuation system (the piezoelectric actuator, the cantilever, and the mechanical fixture connecting the cantilever to the actuator), the dynamic cross-axis coupling between different axes of motion, and the hysteresis and the drift effects related to the piezoelectric actuators. Secondly, it is very challenging to directly pattern on ultra-hard materials via plowing. Even with a diamond probe, the line depth of the pattern via continuous plowing on ultra-hard materials such as tungsten, is still rather small (<0.5 nm), particularly when the “writing” speed becomes high. To overcome these two challenges, we propose to utilize a novel iterative learning control technique to achieve precision tracking of the desired pattern during high-speed, large-range plowing, and introduce ultrasonic vibration of the probe in the normal (vertical) direction during the plowing process to enable direct patterning on ultra hard materials. The proposed approach was implemented to directly fabricate patterns on a mask with tungsten coating and quartz substrate. The experimental results demonstrated that a large-size pattern of four grooves (20 μm in length with 300 nm spacing between lines) can be

  4. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra

    NASA Astrophysics Data System (ADS)

    Fujihashi, Yuta; Fleming, Graham R.; Ishizaki, Akihito

    2015-06-01

    Recently, nuclear vibrational contribution signatures in two-dimensional (2D) electronic spectroscopy have attracted considerable interest, in particular as regards interpretation of the oscillatory transients observed in light-harvesting complexes. These transients have dephasing times that persist for much longer than theoretically predicted electronic coherence lifetime. As a plausible explanation for this long-lived spectral beating in 2D electronic spectra, quantum-mechanically mixed electronic and vibrational states (vibronic excitons) were proposed by Christensson et al. [J. Phys. Chem. B 116, 7449 (2012)] and have since been explored. In this work, we address a dimer which produces little beating of electronic origin in the absence of vibronic contributions, and examine the impact of protein-induced fluctuations upon electronic-vibrational quantum mixtures by calculating the electronic energy transfer dynamics and 2D electronic spectra in a numerically accurate manner. It is found that, at cryogenic temperatures, the electronic-vibrational quantum mixtures are rather robust, even under the influence of the fluctuations and despite the small Huang-Rhys factors of the Franck-Condon active vibrational modes. This results in long-lasting beating behavior of vibrational origin in the 2D electronic spectra. At physiological temperatures, however, the fluctuations eradicate the mixing, and hence, the beating in the 2D spectra disappears. Further, it is demonstrated that such electronic-vibrational quantum mixtures do not necessarily play a significant role in electronic energy transfer dynamics, despite contributing to the enhancement of long-lived quantum beating in 2D electronic spectra, contrary to speculations in recent publications.

  5. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra

    SciTech Connect

    Fujihashi, Yuta; Ishizaki, Akihito; Fleming, Graham R.

    2015-06-07

    Recently, nuclear vibrational contribution signatures in two-dimensional (2D) electronic spectroscopy have attracted considerable interest, in particular as regards interpretation of the oscillatory transients observed in light-harvesting complexes. These transients have dephasing times that persist for much longer than theoretically predicted electronic coherence lifetime. As a plausible explanation for this long-lived spectral beating in 2D electronic spectra, quantum-mechanically mixed electronic and vibrational states (vibronic excitons) were proposed by Christensson et al. [J. Phys. Chem. B 116, 7449 (2012)] and have since been explored. In this work, we address a dimer which produces little beating of electronic origin in the absence of vibronic contributions, and examine the impact of protein-induced fluctuations upon electronic-vibrational quantum mixtures by calculating the electronic energy transfer dynamics and 2D electronic spectra in a numerically accurate manner. It is found that, at cryogenic temperatures, the electronic-vibrational quantum mixtures are rather robust, even under the influence of the fluctuations and despite the small Huang-Rhys factors of the Franck-Condon active vibrational modes. This results in long-lasting beating behavior of vibrational origin in the 2D electronic spectra. At physiological temperatures, however, the fluctuations eradicate the mixing, and hence, the beating in the 2D spectra disappears. Further, it is demonstrated that such electronic-vibrational quantum mixtures do not necessarily play a significant role in electronic energy transfer dynamics, despite contributing to the enhancement of long-lived quantum beating in 2D electronic spectra, contrary to speculations in recent publications.

  6. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra.

    PubMed

    Fujihashi, Yuta; Fleming, Graham R; Ishizaki, Akihito

    2015-06-07

    Recently, nuclear vibrational contribution signatures in two-dimensional (2D) electronic spectroscopy have attracted considerable interest, in particular as regards interpretation of the oscillatory transients observed in light-harvesting complexes. These transients have dephasing times that persist for much longer than theoretically predicted electronic coherence lifetime. As a plausible explanation for this long-lived spectral beating in 2D electronic spectra, quantum-mechanically mixed electronic and vibrational states (vibronic excitons) were proposed by Christensson et al. [J. Phys. Chem. B 116, 7449 (2012)] and have since been explored. In this work, we address a dimer which produces little beating of electronic origin in the absence of vibronic contributions, and examine the impact of protein-induced fluctuations upon electronic-vibrational quantum mixtures by calculating the electronic energy transfer dynamics and 2D electronic spectra in a numerically accurate manner. It is found that, at cryogenic temperatures, the electronic-vibrational quantum mixtures are rather robust, even under the influence of the fluctuations and despite the small Huang-Rhys factors of the Franck-Condon active vibrational modes. This results in long-lasting beating behavior of vibrational origin in the 2D electronic spectra. At physiological temperatures, however, the fluctuations eradicate the mixing, and hence, the beating in the 2D spectra disappears. Further, it is demonstrated that such electronic-vibrational quantum mixtures do not necessarily play a significant role in electronic energy transfer dynamics, despite contributing to the enhancement of long-lived quantum beating in 2D electronic spectra, contrary to speculations in recent publications.

  7. Design of an adaptive-passive dynamic vibration absorber composed of a string-mass system equipped with negative stiffness tension adjusting mechanism

    NASA Astrophysics Data System (ADS)

    Acar, M. A.; Yilmaz, C.

    2013-01-01

    In this study, a new adaptive-passive dynamic vibration absorber design is discussed. The proposed design is composed of a string under variable tension with a central mass attachment as an undamped dynamic vibration absorber (DVA), a negative stiffness mechanism as a string tension adjustment aid and a tuning controller to make it adaptive. The dependency of the natural frequencies of this system on the string tension is determined analytically and verified using the finite element method. It is analytically shown that with the help of a negative stiffness element, the tuning force requirement is almost zero throughout the whole operation range. A string tension adjustment algorithm is proposed, which tunes the DVA system depending on the magnitude and frequency of the most dominant component of the vibration signal. Finally, a prototype of the system is built and a series of experiments are conducted on the prototype that validate the analytical and numerical calculations.

  8. Atomic and vibrational origins of mechanical toughness in bioactive cement during setting

    NASA Astrophysics Data System (ADS)

    Tian, Kun V.; Yang, Bin; Yue, Yuanzheng; Bowron, Daniel T.; Mayers, Jerry; Donnan, Robert S.; Dobó-Nagy, Csaba; Nicholson, John W.; Fang, De-Cai; Greer, A. Lindsay; Chass, Gregory A.; Greaves, G. Neville

    2015-11-01

    Bioactive glass ionomer cements (GICs) have been in widespread use for ~40 years in dentistry and medicine. However, these composites fall short of the toughness needed for permanent implants. Significant impediment to improvement has been the requisite use of conventional destructive mechanical testing, which is necessarily retrospective. Here we show quantitatively, through the novel use of calorimetry, terahertz (THz) spectroscopy and neutron scattering, how GIC's developing fracture toughness during setting is related to interfacial THz dynamics, changing atomic cohesion and fluctuating interfacial configurations. Contrary to convention, we find setting is non-monotonic, characterized by abrupt features not previously detected, including a glass-polymer coupling point, an early setting point, where decreasing toughness unexpectedly recovers, followed by stress-induced weakening of interfaces. Subsequently, toughness declines asymptotically to long-term fracture test values. We expect the insight afforded by these in situ non-destructive techniques will assist in raising understanding of the setting mechanisms and associated dynamics of cementitious materials.

  9. Vibrational, electronic absorption, thermal and mechanical analyses of organic nonlinear optical material guanidinium phthalate

    NASA Astrophysics Data System (ADS)

    Devi, T. Uma; Prabha, A. Josephine; Meenakshi, R.; Kalpana, G.; Dilip, C. Surendra

    2017-02-01

    The FTIR and UV spectroscopic analysis have been carried out on guanidinium phthalate (GUP) crystal, an organic nonlinear optical material. The spectra are interpreted with the aid of normal coordinate analysis following structure optimizations and force field calculations based on density functional theory (DFT). The thermogravimetric (TG) and differential thermal analysis (DTA) ensures the thermal stability of the compound. Vickers microhardness values reveals the mechanical strength of the crystal.

  10. Noninvasive Determination of Bone Mechanical Properties Using Vibration Response: A Refined Model and Validation in vivo

    NASA Technical Reports Server (NTRS)

    Roberts, S. G.; Hutchinson, T. M.; Arnaud, S. B.; Kiratli, B. J; Steele, C. R.

    1996-01-01

    Accurate non-invasive mechanical measurement of long bones is made difficult by the masking effect of surrounding soft tissues. Mechanical response tissue analysis (MRTA) offers a method for separating the effects of the soft tissue and bone; however, a direct validation has been lacking. A theoretical analysis of wave propagation through the compressed tissue revealed a strong mass effect dependent on the relative accelerations of the probe and bone. The previous mathematical model of the bone and overlying tissue system was reconfigured to incorporate the theoretical finding. This newer model (six-parameter) was used to interpret results using MRTA to determine bone cross-sectional bending stiffness, EI(sub MRTA). The relationship between EI(sub MRTA) and theoretical EI values for padded aluminum rods was R(sup 2) = 0.999. A biological validation followed using monkey tibias. Each bone was tested in vivo with the MRTA instrument. Postmortem, the same tibias were excised and tested to failure in three-point bending to determine EI(sub 3-PT) and maximum load. Diaphyseal bone mineral density (BMD) measurements were also made. The relationship between EI(sub 3-PT) and in vivo EI(sub MRTA) using the six-parameter model is strong (R(sup 2) = 0.947) and better than that using the older model (R(sup 2) = 0.645). EI(sub MRTA) and BMD are also highly correlated (R(sup 2) = 0.853). MRTA measurements in vivo and BMD ex vivo are both good predictors of scaled maximum strength (R(sup 2) = 0.915 and R(sup 2) = 0.894, respectively). This is the first biological validation of a non- invasive mechanical measurement of bone by comparison to actual values. The MRTA technique has potential clinical value for assessing long-bone mechanical properties.

  11. Noninvasive Determination of Bone Mechanical Properties using Vibration Response: A Refined Model and Validation in vivo

    NASA Technical Reports Server (NTRS)

    Roberts, S. G.; Hutchinson, T. M.; Arnaud, S. B.; Steele, C. R.; Kiratli, B. J.; Martin, R. B.

    1996-01-01

    Accurate non-invasive mechanical measurement of long bones is made difficult by the masking effect of surrounding soft tissues. Mechanical Response Tissue Analysis (MRTA) offers a method for separating the effects of the soft tissue and bone; however, a direct validation has been lacking. A theoretical analysis of wave propagation through the compressed tissue revealed a strong mass effect dependent on the relative accelerations of the probe and bone. The previous mathematical model of the bone and overlying tissue system was reconfigured to incorporate the theoretical finding. This newer model (six-parameter) was used to interpret results using MRTA to determine bone cross-sectional bending stiffness, EI(sub MRTA). The relationship between EI(MRTA) and theoretical EI values for padded aluminum rods was R(exp 2) = 0.999. A biological validation followed using monkey tibias. Each bone was tested in vivo with the MRTA instrument. Postmortem, the same tibias were excised and tested to failure in three-point bending to determine EI(sub 3-PT) and maximum load. Diaphyseal Bone Mineral Density (BMD) measurements were also made. The relationship between E(sub 3-PT) and in vivo EI(sub MRTA) using the six-parameter model is strong (R(exp 2) = 0.947) and better than that using the older model (R(exp 2) = 0.645). EI(MRTA) and BMD are also highly correlated (R(exp 2) = 0.853). MRTA measurements in vivo and BMD ex vivo are both good predictors of scaled maximum strength (R(exp 2) = 0.915 and R(exp 2) = 0.894, respectively). This is the first biological validation of a non-invasive mechanical measurement of bone by comparison to actual values. The MRTA technique has potential clinical value for assessing long-bone mechanical properties.

  12. Bimodal dynamics of mechanically constrained hydrogen bonds revealed by vibrational photon echoes

    NASA Astrophysics Data System (ADS)

    Bodis, Pavol; Yeremenko, Sergiy; Berná, José; Buma, Wybren J.; Leigh, David A.; Woutersen, Sander

    2011-04-01

    We have investigated the dynamics of the hydrogen bonds that connect the components of a [2]rotaxane in solution. In this rotaxane, the amide groups in the benzylic-amide macrocycle and the succinamide thread are connected by four equivalent N-HṡṡṡO=C hydrogen bonds. The fluctuations of these hydrogen bonds are mirrored by the frequency fluctuations of the NH-stretch modes, which are probed by means of three-pulse photon-echo peak shift spectroscopy. The hydrogen-bond fluctuations occur on three different time scales, with time constants of 0.1, 0.6, and ⩾200 ps. Comparing these three time scales to the ones found in liquid formamide, which contains the same hydrogen-bonded amide motif but without mechanical constraints, we find that the faster two components, which are associated with small-amplitude fluctuations in the strength of the N-HṡṡṡO=C hydrogen bonds, are very similar in the liquid and the rotaxane. However, the third component, which is associated with the breaking and subsequent reformation of hydrogen bonds, is found to be much slower in the rotaxane than in the liquid. It can be concluded that the mechanical bonding in a rotaxane does not influence the amplitude and time scale of the small-amplitude fluctuations of the hydrogen bonds, but strongly slows down the complete dissociation of these hydrogen bonds. This is probably because in a rotaxane breaking of the macrocycle-axle contacts is severely hindered by the mechanical constraints. The hydrogen-bond dynamics in rotaxane-based molecular machines can therefore be regarded as liquidlike on a time scale 1 ps and less, but structurally frozen on longer (up to at least 200 ps) time scales.

  13. Mechanism for Particle Transport and Size Sorting via Low-Frequency Vibrations

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Scott, James S.; Bar-Cohen, Yoseph; Badescu, Mircea; Bao, Xiaoqi

    2010-01-01

    There is a need for effective sample handling tools to deliver and sort particles for analytical instruments that are planned for use in future NASA missions. Specifically, a need exists for a compact mechanism that allows transporting and sieving particle sizes of powdered cuttings and soil grains that may be acquired by sampling tools such as a robotic scoop or drill. The required tool needs to be low mass and compact to operate from such platforms as a lander or rover. This technology also would be applicable to sample handling when transporting samples to analyzers and sorting particles by size.

  14. Nanoscale chemical and mechanical characterization of thin films:sum frequency generation (SFG) vibrational spectroscopy at buriedinterfaces

    SciTech Connect

    Kweskin, Sasha Joseph

    2006-01-01

    Sum frequency generation (SFG) surface vibrational spectroscopy was used to characterize interfaces pertinent to current surface engineering applications, such as thin film polymers and novel catalysts. An array of advanced surface science techniques like scanning probe microscopy (SPM), x-ray photoelectron spectroscopy (XPS), gas chromatography (GC) and electron microscopy were used to obtain experimental measurements complementary to SFG data elucidating polymer and catalyst surface composition, surface structure, and surface mechanical behavior. Experiments reported in this dissertation concentrate on three fundamental questions: (1) How does the interfacial molecular structure differ from that of the bulk in real world applications? (2) How do differences in chemical environment affect interface composition or conformation? (3) How do these changes correlate to properties such as mechanical or catalytic performance? The density, surface energy and bonding at a solid interface dramatically alter the polymer configuration, physics and mechanical properties such as surface glass transition, adhesion and hardness. The enhanced sensitivity of SFG at the buried interface is applied to three systems: a series of acrylates under compression, the compositions and segregation behavior of binary polymer polyolefin blends, and the changes in surface structure of a hydrogel as a function of hydration. In addition, a catalytically active thin film of polymer coated nanoparticles is investigated to evaluate the efficacy of SFG to provide in situ information for catalytic reactions involving small mass adsorption and/or product development. Through the use of SFG, in situ total internal reflection (TIR) was used to increase the sensitivity of SFG and provide the necessary specificity to investigate interfaces of thin polymer films and nanostructures previously considered unfeasible. The dynamic nature of thin film surfaces is examined and it is found that the non

  15. Finite element analysis of effective mechanical properties, vibration and acoustic performance of auxetic chiral core sandwich structures

    NASA Astrophysics Data System (ADS)

    Joshi, Hrishikesh Ravindra

    Honeycomb cellular materials are widely used in engineering applications due to their high strength to weight ratio and controllable effective mechanical properties. The effective properties are controlled by varying the geometry of the repetitive unit cells of honeycomb structure. Sandwich panels made of honeycomb cores are beneficial in many applications including vibration isolation and sound transmission reduction. Sandwich panels with standard honeycomb core configurations have previously been studied with regards to sound transmission behavior. It has been established that the auxetic honeycomb cores, having negative in-plane Poisson's ratio, exhibit higher sound transmission loss as compared to regular honeycomb cores. In this study, the vibration and sound transmission response of novel auxetic chiral honeycomb structures (both hexa-chiral and anti-tetra chiral), have been investigated in detail using finite element analysis with two-dimensional plane elasticity elements. Chiral honeycomb structures are made up of a linear tessellation of periodic unit cell, which consists of circular nodes of radius ' r ' connected to each other by tangent ligaments of length ' L '. The distance between two adjacent circular nodes is ' R '. These geometric parameters are tailored to obtain the chiral structure with desired effective mechanical properties of in-plane Poisson's ratio, Young's modulus and shear modulus. Results show that, for both the hexa-chiral and anti-tetra-chiral configurations with same thickness, structures with smaller node radius 'r' have higher in-plane negative Poisson's ratio, effective Young's modulus, and shear modulus. The Poisson's ratio of anti-tetra-chiral structure with small node radius and thickness is found to approach the limit of -1. A steady state dynamic response of the chiral honeycomb sandwich panel subjected to uniform pressure load on the bottom face-sheet is also investigated over a frequency range of 1 Hz to 2000 Hz. It is

  16. Atomic and vibrational origins of mechanical toughness in bioactive cement during setting

    PubMed Central

    Tian, Kun V.; Yang, Bin; Yue, Yuanzheng; Bowron, Daniel T.; Mayers, Jerry; Donnan, Robert S.; Dobó-Nagy, Csaba; Nicholson, John W.; Fang, De-Cai; Greer, A. Lindsay; Chass, Gregory A.; Greaves, G. Neville

    2015-01-01

    Bioactive glass ionomer cements (GICs) have been in widespread use for ∼40 years in dentistry and medicine. However, these composites fall short of the toughness needed for permanent implants. Significant impediment to improvement has been the requisite use of conventional destructive mechanical testing, which is necessarily retrospective. Here we show quantitatively, through the novel use of calorimetry, terahertz (THz) spectroscopy and neutron scattering, how GIC's developing fracture toughness during setting is related to interfacial THz dynamics, changing atomic cohesion and fluctuating interfacial configurations. Contrary to convention, we find setting is non-monotonic, characterized by abrupt features not previously detected, including a glass–polymer coupling point, an early setting point, where decreasing toughness unexpectedly recovers, followed by stress-induced weakening of interfaces. Subsequently, toughness declines asymptotically to long-term fracture test values. We expect the insight afforded by these in situ non-destructive techniques will assist in raising understanding of the setting mechanisms and associated dynamics of cementitious materials. PMID:26548704

  17. Thermo-mechanical vibration of a single-layer graphene sheet and a single-walled carbon nanotube on a substrate

    NASA Astrophysics Data System (ADS)

    Ding, Dongqing; Yang, Zhaoyao; Dong, Shuhong; Yu, Peishi; Zhao, Junhua

    2017-03-01

    The thermo-mechanical vibration of a single-layer graphene sheet (SLGP) and a single-walled carbon nanotube (SWCNT) on a substrate is studied by using a nonlocal elastic plate model and two nonlocal elastic beam models (including Timoshenko-beam model and Euler-beam model) with quantum effects, respectively. The effect of the van der Waals (vdW) interactions between the SLGP (or the SWCNT) and the substrate on the vibration is obtained. Checking against our molecular dynamics simulations shows that the present models are reasonable. In particular, the radial vibration of the SWCNT on the substrate with quantum effects is further derived through the continuum shell model due to the different vdW forces on each point of the SWCNT circumference. The present models show that the normalized transverse frequency decreases and the normalized radial frequency increases with increasing SWCNT radius, respectively. The radial amplitude of the SWCNT (or the amplitude of the SLGP) nonlinearly increases and the transverse amplitude of the SWCNT linearly increases with increasing temperature for a given distance, respectively. The obtained analytical solution should be of great importance for understanding the thermo-mechanical vibration of nanoelectronic devices on a substrate.

  18. Analysis and minimization of power flow in a mechanical vibration isolation system using a hybrid (active/passive) approach

    NASA Astrophysics Data System (ADS)

    Herdic, Peter C.; Houston, Brian H.; Corsaro, Robert D.; Judge, John A.

    2002-11-01

    Implementation of active control techniques in mechanical vibration isolation systems has been a challenging problem for a number of years where numerous physical control laws have been explored. An energy-based approach to the problem involving the energy transfer or power flow through the mount into the base structure is a first-principles approach to developing control laws and evaluating the system performance. A lumped-parameter model of a passive-active hybrid isolation mount has been developed and validated with experimental data. The mount device has a conventional passive compliant spring, embedded force and velocity sensors, and a piezoceramic actuation layer. This study investigates a complete set of possible layer configurations, that is, the optimal placement of sensors and actuator relative to the passive compliant isolator element. A number of different local physical control laws are examined and the level of power flow through the mount is used to evaluate the performance for the matrix of possible implementations. These results will be discussed with particular emphasis placed on the optimal control configuration and laws, and the related physics. a)Also with SFA, Inc., Largo, MD 20774.

  19. Quantum mechanical interpretation of intermolecular vibrational modes of crystalline poly-(R)-3-hydroxybutyrate observed in low-frequency Raman and terahertz spectra.

    PubMed

    Yamamoto, Shigeki; Morisawa, Yusuke; Sato, Harumi; Hoshina, Hiromichi; Ozaki, Yukihiro

    2013-02-21

    Low-frequency vibrational bands observed in the Raman and terahertz (THz) spectra in the region of 50-150 cm(-1) of crystalline powder poly-(R)-3-hydroxybutyrate (PHB) were assigned based on comparisons of the Raman and THz spectra, polarization directions of THz absorption spectra, and their congruities to quantum mechanically (QM) calculated spectra. This combination, Raman and THz spectroscopies and the QM simulations, has been rarely adopted in spite of its potential of reliable assignments of the vibrational bands. The QM simulation of a spectrum has already been popular in vibrational spectroscopies, but for low-frequency bands of polymers it is still a difficult task due to its large scales of systems and a fact that interactions among polymer chains should be considered in the calculation. In this study, the spectral calculations with the aid of the Cartesian-coordinate tensor transfer (CCT) method were applied successfully to the crystalline PHB, which include the explicit consideration of an intermolecular interaction among helical polymer chains. The agreements between the calculations and the experiments are good in both the Raman and THz spectra in terms of spectral shapes, frequencies, and intensities. A Raman active band at 79 cm(-1) was assigned to the intermolecular vibrational mode of the out-of-plane C═O + CH(3) vibration. A polarization state of the corresponding far-infrared absorption band at ∼82 cm(-1), perpendicular to the helix-elongation direction of PHB, was reproduced only under the explicit correction, which indicates that this polarized band originates from the interaction among the polymer chains. The calculation explored that the polarization direction of this band was along the a axis, which is consistent with the direction in which weak intermolecular hydrogen bonds are suggested between the C═O and CH(3) groups of two parallel polymer chains. The results obtained here have confirmed sensitivity of the low

  20. Improvement of vibration energy harvesters mechanical Q-factor through high density proof mass integration

    NASA Astrophysics Data System (ADS)

    Dompierre, A.; Fréchette, L. G.

    2016-11-01

    This paper reports on improvement of the mechanical Q-factor of resonant energy harvesters at ambient pressure via the use of tungsten proof masses by evaluating the impact of the mass size and density on the squeeze film damping. To this end, a simplified model is first proposed to evaluate cantilever beams deflection and the resulting fluid pressure build up between the mass and a near surface. The model, which accounts for simultaneous transverse and rotational motion of very long tip masses as well as for 2D fluid flow in the gap, is used to extract a scaling law for the device fluidic Q-factor Qf. This law states that Qf can be improved by either increasing the linear mass density of the tip mass or by reducing the side lengths compared to the gap height. The first approach is validated experimentally by adding a tungsten proof mass on a silicon based device and observing an improvement of the Q-factor by 103%, going from 430 to 871, while the resonance frequency drops from 457 to 127 Hz. In terms of fluidic Q-factor, this represents an increase from 562 to 1673. These results successfully demonstrate the benefits of integrating a tungsten mass to reduce the fluid losses while potentially reducing the device footprint.

  1. Structural, microstructural and vibrational characterization of apatite-type lanthanum silicates prepared by mechanical milling

    NASA Astrophysics Data System (ADS)

    Rodríguez-Reyna, E.; Fuentes, A. F.; Maczka, M.; Hanuza, J.; Boulahya, K.; Amador, U.

    2006-02-01

    Apatite-type lanthanum silicates have been successfully prepared at room temperature by dry milling hexagonal A-La 2O 3 and either amorphous or low cristobalite SiO 2. Milling a stochiometric mixture of these chemicals in a planetary ball mill with a moderate rotating disc speed (350 rpm), allows the formation of the target phase after only 3 h although longer milling times are needed to eliminate all SiO 2 and La 2O 3 traces. Thus, the mechanically activated chemical reaction proceeds faster when using amorphous silica instead of low cristobalite as silicon source and pure phases are obtained after only 9 and 18 h, respectively. As obtained powder phases are not amorphous and show an XRD pattern as well as IR and Raman bands characteristic of the lanthanum silicate. The domain size of the as-prepared phases varies gradually with the temperature of post-milling thermal treatment with activation energies of about 26(8) and 52(10) kJ mol -1 K -1 for the apatites obtained from amorphous silica and low-cristobalite, respectively. These values suggest crystallite growth to be favored when using amorphous silica as reactant.

  2. Mode-specific vibrational energy relaxation of amide I' and II' modes in N-methylacetamide/water clusters: intra- and intermolecular energy transfer mechanisms.

    PubMed

    Zhang, Yong; Fujisaki, Hiroshi; Straub, John E

    2009-04-02

    The mode-specific vibrational energy relaxation of the amide I' and amide II' modes in NMA-d(1)/(D(2)O)(n) (n = 0-3) clusters were studied using the time-dependent perturbation theory at the B3LYP/aug-cc-pvdz level. The amide modes were identified for each cluster based on the potential energy distribution of each mode. The vibrational population relaxation time constants were derived for the amide I' and II' modes. Results for the amide I' mode relaxation of NMA-d(1)/(D(2)O)(3) agree well with previous experimental results. The energy relaxation pathways were identified, and both intra- and intermolecular mechanisms were found to be important. The amide II' mode was identified in the energy transfer pathways from the excited amide I' mode of NMA-d(1)/(D(2)O)(n) (n = 1-3) clusters. The modes associated with methyl group deformation were found to play a role in the mechanism of energy transfer from both excited amide I' and II' modes. The kinetics of energy flow in the cluster were examined by solving a master equation describing the vibrational energy relaxation process from excited system mode as a multistep reaction with the third order Fermi resonance parameters as the reaction rate constants. The intramolecular energy transfer mechanism was found to dominate the short time energy flow dynamics, whereas the intermolecular mechanism was found to be dominant at longer times.

  3. Accurate Modelling of a Flexible-Link Planar Mechanism by Means of a Linearized Model in the State-Space Form for Design of a Vibration Controller

    NASA Astrophysics Data System (ADS)

    GASPARETTO, A.

    2001-02-01

    Vibration control of flexible link mechanisms with more than two flexible links is still an open question, mainly because defining a model that is adequate for the designing of a controller is a rather difficult task. In this work, an accurate dynamic non-linear model of a flexible-link planar mechanism is presented. In order to bring the system into a form that is suitable for the design of a vibration controller, the model is then linearized about an operating point, so as to achieve a linear model of the system in the standard state-space form of system theory. The linear model obtained, which is valid for whatever planar mechanism with any number of flexible link, is then applied to a four-bar planar linkage. Extensive simulation is carried out, aimed at comparing the system dynamic evolution, both in the open- and in the closed-loop case, using the non-linear model and the linearized one. The results prove that the error made by using the linearized system instead of the non-linear one is small. Therefore, it can be concluded that the model proposed in this work can constitute an effective basis for designing and testing many types of vibration controllers for flexible planar mechanisms.

  4. Low-Level Mechanical Vibrations can Reduce Bone Resorption and Enhance Bone Formation in the Growing Skeleton

    SciTech Connect

    Xie,L.; Jacobsen, J.; Busa, B.; Donahue, L.; Miller, L.; Rubin, C.; Judex, S.

    2006-01-01

    Short durations of extremely small magnitude, high-frequency, mechanical stimuli can promote anabolic activity in the adult skeleton. Here, it is determined if such signals can influence trabecular and cortical formative and resorptive activity in the growing skeleton, if the newly formed bone is of high quality, and if the insertion of rest periods during the loading phase would enhance the efficacy of the mechanical regimen. Eight-week-old female BALB/cByJ mice were divided into four groups, baseline control (n = 8), age-matched control (n = 10), whole-body vibration (WBV) at 45 Hz (0.3 g) for 15 min day{sup -1} (n = 10), and WBV that were interrupted every second by 10 of rest (WBV-R, n = 10). In vivo strain gaging of two additional mice indicated that the mechanical signal induced strain oscillations of approximately 10 microstrain on the periosteal surface of the proximal tibia. After 3 weeks of WBV, applied for 15 min each day, osteoclastic activity in the trabecular metaphysis and epiphysis of the tibia was 33% and 31% lower (P < 0.05) than in age-matched controls. Bone formation rates (BFR{center_dot}BS{sup -1}) on the endocortical surface of the metaphysis were 30% greater (P < 0.05) in WBV than in age-matched control mice but trabecular and middiaphyseal BFR were not significantly altered. The insertion of rest periods (WBV-R) failed to potentiate the cellular effects. Three weeks of either WBV or WBV-R did not negatively influence body mass, bone length, or chemical bone matrix properties of the tibia. These data indicate that in the growing skeleton, short daily periods of extremely small, high-frequency mechanical signals can inhibit trabecular bone resorption, site specifically attenuate the declining levels of bone formation, and maintain a high level of matrix quality. If WBV prove to be efficacious in the growing human skeleton, they may be able to provide the basis for a non-pharmacological and safe means to increase peak bone mass and, ultimately

  5. Enhanced micro-vibration sensitive high-damping capacity and mechanical strength achieved in Al matrix composites reinforced with garnet-like lithium electrolyte

    NASA Astrophysics Data System (ADS)

    Wang, Xian-Ping; Zhang, Yi; Xia, Yu; Jiang, Wei-Bing; Liu, Hui; Liu, Wang; Gao, Yun-Xia; Zhang, Tao; Fang, Qian-Feng

    2016-12-01

    A novel micro-vibration sensitive-type high-damping Al matrix composites reinforced with Li7-xLa3Zr2-xNbxO12 (LLZNO, x = 0.25) was designed and prepared using an advanced spark plasma sintering (SPS) technique. The damping capacity and mechanical properties of LLZNO/Al composites (LLZNO content: 0-40 wt.%) were found to be greatly improved by the LLZNO addition. The maximum damping capacity and the ultimate tensile strength (UTS) of LLZNO/Al composite can be respectively up to 0.033 and 101.2 MPa in the case of 20 wt.% LLZNO addition. The enhancement of damping and mechanical properties of the composites was ascribed to the intrinsic high-damping capacity and strengthening effects of hard LLZNO particulate. This investigation provides a new insight to sensitively suppress micro-vibration of payloads in the aerospace environment.

  6. Enhanced micro-vibration sensitive high-damping capacity and mechanical strength achieved in Al matrix composites reinforced with garnet-like lithium electrolyte

    NASA Astrophysics Data System (ADS)

    Wang, Xian-Ping; Zhang, Yi; Xia, Yu; Jiang, Wei-Bing; Liu, Hui; Liu, Wang; Gao, Yun-Xia; Zhang, Tao; Fang, Qian-Feng

    2017-03-01

    A novel micro-vibration sensitive-type high-damping Al matrix composites reinforced with Li7- x La3Zr2- x Nb x O12 (LLZNO, x = 0.25) was designed and prepared using an advanced spark plasma sintering (SPS) technique. The damping capacity and mechanical properties of LLZNO/Al composites (LLZNO content: 0-40 wt.%) were found to be greatly improved by the LLZNO addition. The maximum damping capacity and the ultimate tensile strength (UTS) of LLZNO/Al composite can be respectively up to 0.033 and 101.2 MPa in the case of 20 wt.% LLZNO addition. The enhancement of damping and mechanical properties of the composites was ascribed to the intrinsic high-damping capacity and strengthening effects of hard LLZNO particulate. This investigation provides a new insight to sensitively suppress micro-vibration of payloads in the aerospace environment.

  7. Numerical study into the morphology and formation mechanisms of three-dimensional particle structures in vibrated cylindrical cavities with various heating conditions

    NASA Astrophysics Data System (ADS)

    Lappa, Marcello

    2016-10-01

    The present analysis extends the author's earlier work [Lappa, Phys. Fluids 26, 093301 (2014), 10.1063/1.4893078] on the properties of patterns formed by the spontaneous accumulation and ordering of solid particles in certain types of flow. It is shown that under certain conditions, when subjected to vibrations to induce natural flow, nonisothermal fluids with dispersed solid particles are characterized by intervals of solid-pattern-forming behavior due to particle rearrangements preceded by intervals in which no recognizable structures of solid matter can be detected. The dynamics of these systems are highly nonlinear in nature. Because this family of particle attractors is known to exhibit strong sensitivity to the symmetry properties of the considered vibrated system and related geometrical constraints, the present study attempts to clarify the related dynamics in a geometry with curved walls (cylindrical enclosure). In particular, by assuming vibrations always directed perpendicularly to the imposed temperature gradient, we show that the morphology, spatial extension (percentage of physical volume occupied), separation (spatial distance), and mechanisms responsible for the formation of the resulting particle structures change significantly according to whether the temperature gradient is parallel or perpendicular to the symmetry axis of the cylinder. This indicates that the physics is not invariant with respect to 90° rotations in space of the specific forcing considered (direction of the imposed temperature gradient and associated perpendicular vibrations). Additional insights into the problem are obtained by assessing separately the influence played by the time-averaged (mean) and oscillatory effects. According to the numerical results, the intriguing diversity of particle agglomerates results from the different role or importance played by (curved or straight) boundaries in constraining particles and from the different structure and topology of the

  8. Mixed quantum-classical molecular dynamics analysis of the molecular-level mechanisms of vibrational frequency shifts.

    PubMed

    Morales, Christine M; Thompson, Ward H

    2007-06-28

    A detailed analysis of the origins of vibrational frequency shifts of diatomic molecules (I2 and ICl) in a rare gas (Xe) liquid is presented. Specifically, vibrationally adiabatic mixed quantum-classical molecular dynamics simulations are used to obtain the instantaneous frequency shifts and correlate the shifts to solvent configurations. With this approach, important mechanistic questions are addressed, including the following: How many solvent atoms determine the frequency shift? What solvent atom configurations lead to blue shifts, and which lead to red shifts? What is the effect of solute asymmetry? The mechanistic analysis can be generally applied and should be useful in understanding what information is provided by infrared and Raman spectra about the environment of the probed vibrational mode.

  9. Animal Communications Through Seismic Vibrations

    SciTech Connect

    Hill, Peggy

    2001-05-02

    Substrate vibration has been important to animals as a channel of communication for millions of years, but our literature on vibration in this context of biologically relevant information is only decades old. The jaw mechanism of the earliest land vertebrates allowed them to perceive substrate vibrations as their heads lay on the ground long before airborne sounds could be heard. Although the exact mechanism of vibration production and the precise nature of the wave produced are not always understood, recent development of affordable instrumentation to detect and measure vibrations has allowed researchers to answer increasingly sophisticated questions about how animals send and receive vibration signals. We now know that vibration provides information used in predator defense, prey detection, recruitment to food, mate choice, intrasexual competition, and maternal/brood social interactions in a variety of insect orders, spiders, crabs, scorpions, chameleons, frogs, golden moles, mole rats, kangaroos rats, wallabies, elephants and bison.

  10. New mechanism for the vibrational mode-specific proton-transfer reaction NH 3+ (ν) + NH 3 → NH 2 + NH 4+

    NASA Astrophysics Data System (ADS)

    Tachibana, Akitomo; Suzuki, Tetsuo; Yoshida, Naoto; Teramoto, Yasuhiro; Yamabe, Tokio

    1991-09-01

    A new mechanism has been presented for the vibrational mode-specific depression of the proton-transfer reaction NH 3+ (ν) + NH 3 → NH 2 + NH 4+. We adopt the standpoint of the ADO (average dipole orientation) theory, proposed by Su and Bowers (J. Chem. Phys. 58 (1973) 3027), and append a new long-range interaction created by a vibration-induced dipole to the ADO theory. A "reaction zone" concept is crucial in this approach; outside of the zone the long-range intermolecular interactions play a key role. A qualitatively good agreement is observed for the experimental result of the title reaction obtained by Chupka and Russel (J. Chem. Phys. 48 (1968) 1527).

  11. A semi analytical method for electro-thermo-mechanical nonlinear vibration analysis of nanobeam resting on the Winkler-Pasternak foundations with general elastic boundary conditions

    NASA Astrophysics Data System (ADS)

    Zarepour, Misagh; Amirhosein Hosseini, Seyed

    2016-08-01

    This study presents an examination of nonlinear free vibration of a nanobeam under electro-thermo-mechanical loading with elastic medium and various boundary conditions, especially the elastic boundary condition. The nanobeam is modeled as an Euler-Bernoulli beam. The von Kármán strain-displacement relationship together with Hamilton’s principle and Eringen’s theory are employed to derive equations of motion. The nonlinear free vibration frequency is obtained for simply supported (S-S) and elastic supported (E-E) boundary conditions. E-E boundary condition is a general and actual form of boundary conditions and it is chosen because of more realistic behavior. By applying the differential transform method (DTM), the nanobeam’s natural frequencies can be easily obtained for the two different boundary conditions mentioned above. Performing a precise study led to investigation of the influences of nonlocal parameter, temperature change, spring constants (either for elastic medium or boundary condition) and imposed electric potential on the nonlinear free vibration characteristics of nanobeam. The results for S-S and E-E nanobeams are compared with each other. In order to validate the results, some comparisons are presented between DTM results and open literature to show the accuracy of this new approach. It has been discovered that DTM solves the equations with minimum calculation cost.

  12. Cryoseism Vibrational Movement and Sorting of Detritus of Mars' Regolith Bedforms (E.G., ~ Streaks, Gullies): a New, Dry, Midsummer Antarctic Analogue Mechanism

    NASA Astrophysics Data System (ADS)

    Ford, A. B.

    2015-12-01

    "SNAP!, CRACK!, POP!" The sounds reverberated across newly shaded permafrost of unusual talus aprons (Ford & Andersen, 1967; J. Geol., 75, 722-732) of interior Antarctica (lats. >84°S; Thiel, Pensacola mtns.), coming from ice cracking under tensile failure (cryoseisms). Apron regoliths show conspicuously reversed downslope particle-size sorting and downslope-oriented lineations (debris-cleared tracts; stone stripes) formed by vibrational movement of detritus by midsummer, diurnal cracking of ice. Moving laterally by vibrations away from cracks, with downslope component by gravity, finer detritus becomes concentrated downslope from coarser debris of initial cliff fall — winnowed, as if on a gigantic vibrating shaking table. Slopes outside shade zones remain free of cracking. Diurnal midday shading of solar-warmed, debris-mantled permafrost- and glacier-surface ice at low ambient midsummer temperatures produces high strain-loading rates that exceed tensile toughness of inhomogeneous, polycrystalline ice containing zones of older but sealed cracks. This dry, mechanical, cryoseism mechanism is here proposed also for now waterless Mars and other icy Solar System bodies. Regolith features of Mars' cryosphere may appear different from anrarctic analogues owing to likely operation over tens if not hundreds of millions of years longer than on Earth. The strain distributions in tensile failure of ice better explain a common spacing uniformity of many martian linear features than others' proposed origins, and for some "active" streaks and gully channels, TARS, RSL and dune-slipface channels, as well as for dune orthogonality, diurnal moonquakes and asteroid-regolith detrital sorting (e.g., "rubble-pile" 25143-Itokawa). Because periodic shade from topography (canyons, craters, etc.) is needed, the mechanism is not expected on flattish terrains where more normal annual cooling rates produce the common polygonal tensile fracturing of ice

  13. The effects of vibration-reducing gloves on finger vibration.

    PubMed

    Welcome, Daniel E; Dong, Ren G; Xu, Xueyan S; Warren, Christopher; McDowell, Thomas W

    2014-01-01

    Vibration-reducing (VR) gloves have been used to reduce the hand-transmitted vibration exposures from machines and powered hand tools but their effectiveness remains unclear, especially for finger protection. The objectives of this study are to determine whether VR gloves can attenuate the vibration transmitted to the fingers and to enhance the understanding of the mechanisms of how these gloves work. Seven adult male subjects participated in the experiment. The fixed factors evaluated include hand force (four levels), glove condition (gel-filled, air bladder, no gloves), and location of the finger vibration measurement. A 3-D laser vibrometer was used to measure the vibrations on the fingers with and without wearing a glove on a 3-D hand-arm vibration test system. This study finds that the effect of VR gloves on the finger vibration depends on not only the gloves but also their influence on the distribution of the finger contact stiffness and the grip effort. As a result, the gloves increase the vibration in the fingertip area but marginally reduce the vibration in the proximal area at some frequencies below 100 Hz. On average, the gloves reduce the vibration of the entire fingers by less than 3% at frequencies below 80 Hz but increase at frequencies from 80 to 400 Hz. At higher frequencies, the gel-filled glove is more effective at reducing the finger vibration than the air bladder-filled glove. The implications of these findings are discussed.

  14. Quantum-mechanical study of energies, structures, and vibrational spectra of the H(D)Cl complexed with dimethyl ether

    SciTech Connect

    Boda, Łukasz Boczar, Marek; Gług, Maciej; Wójcik, Marek J.

    2015-11-28

    Interaction energies, molecular structure and vibrational frequencies of the binary complex formed between H(D)Cl and dimethyl ether have been obtained using quantum-chemical methods. Equilibrium and vibrationally averaged structures, harmonic and anharmonic wavenumbers of the complex and its deuterated isotopomer were calculated using harmonic and anharmonic second-order perturbation theory procedures with Density Functional Theory B3LYP and B2PLYP-D and ab initio Møller-Plesset second-order methods, and a 6-311++G(3d,3p) basis set. A phenomenological model describing anharmonic-type vibrational couplings within hydrogen bonds was developed to explain the unique broadening and fine structure, as well as the isotope effect of the Cl–H and Cl–D stretching IR absorption bands in the gaseous complexes with dimethyl ether, as an effect of hydrogen bond formation. Simulations of the rovibrational structure of the Cl–H and Cl–D stretching bands were performed and the results were compared with experimental spectra.

  15. Soil chemical insights provided through vibrational spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vibrational spectroscopy techniques provide a powerful approach to study environmental materials and processes. These multifunctional analysis tools can be used to probe molecular vibrations of solid, liquid, and gaseous samples for characterizing materials, elucidating reaction mechanisms, and exam...

  16. Vibrator improves spark erosion cutting process

    NASA Technical Reports Server (NTRS)

    Thrall, L. R.

    1966-01-01

    Variable frequency mechanical vibrator improves spark erosion cutting process. The vibration of the cutting tip permits continual flushing away of residue around the cut area with nondestructive electric transformer oil during the cutting process.

  17. VIBRATION COMPACTION

    DOEpatents

    Hauth, J.J.

    1962-07-01

    A method of compacting a powder in a metal container is described including the steps of vibrating the container at above and below the resonant frequency and also sweeping the frequency of vibration across the resonant frequency several times thereby following the change in resonant frequency caused by compaction of the powder. (AEC)

  18. Alternate stresses and temperature variation as factors of influence of ultrasonic vibration on mechanical and functional properties of shape memory alloys.

    PubMed

    Belyaev, Sergey; Volkov, Alexander; Resnina, Natalia

    2014-01-01

    It is known that the main factors in a variation in the shape memory alloy properties under insonation are heating of the material and alternate stresses action. In the present work the experimental study of the mechanical behaviour and functional properties of shape memory alloy under the action of alternate stresses and varying temperature was carried out. The data obtained had demonstrated that an increase in temperature of the sample resulted in a decrease or increase in deformation stress depending on the structural state of the TiNi sample. It was shown that in the case of the alloy in the martensitic state, a decrease in stress was observed, and on the other hand, in the austenitic state an increase in stress took place. It was found that action of alternate stresses led to appearance of strain jumps on the strain-temperature curves during cooling and heating the sample through the temperature range of martensitic transformation under the constant stress. The value of the strain jumps depended on the amplitude of alternate stresses and the completeness of martensitic transformation. It was shown that the heat action of ultrasonic vibration to the mechanical behaviour of shape memory alloys was due to the non-monotonic dependence of yield stress on the temperature. The force action of ultrasonic vibration to the functional properties was caused by formation of additional oriented martensite.

  19. Assessment of Excitation Mechanisms and Temporal Dependencies of Infrared Radiation from Vibrationally Excited Carbon Monoxide and Ozone in EXCEDE Experiments.

    DTIC Science & Technology

    1987-03-31

    2.2.2 Dissociative Excitation of Carbon Dioxide .. ..... .. 15 2.2.3 Vibrational Exchange with N2(v). .... ....... .. 18 2.2.4 Quenching of Metastable...Excitation of Carbon Dioxide As shown in Figures 1-2 and 2-2 the ambient CO2 concentration exceeds that of CO by about a factor of 3 at 100 kin, equals the...ASSESSEMENT OF EXCITATION MECHANSIMS AND TEMPORAL DEPENDENCIES OF INFRAREO RADIATION FROM VIBbRATIONALLY EXCITEO CARBON MONOXIDE AND OZONE IN EXCEDE

  20. The effects of vibration-reducing gloves on finger vibration

    PubMed Central

    Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.

    2015-01-01

    Vibration-reducing (VR) gloves have been used to reduce the hand-transmitted vibration exposures from machines and powered hand tools but their effectiveness remains unclear, especially for finger protection. The objectives of this study are to determine whether VR gloves can attenuate the vibration transmitted to the fingers and to enhance the understanding of the mechanisms of how these gloves work. Seven adult male subjects participated in the experiment. The fixed factors evaluated include hand force (four levels), glove condition (gel-filled, air bladder, no gloves), and location of the finger vibration measurement. A 3-D laser vibrometer was used to measure the vibrations on the fingers with and without wearing a glove on a 3-D hand-arm vibration test system. This study finds that the effect of VR gloves on the finger vibration depends on not only the gloves but also their influence on the distribution of the finger contact stiffness and the grip effort. As a result, the gloves increase the vibration in the fingertip area but marginally reduce the vibration in the proximal area at some frequencies below 100 Hz. On average, the gloves reduce the vibration of the entire fingers by less than 3% at frequencies below 80 Hz but increase at frequencies from 80 to 400 Hz. At higher frequencies, the gel-filled glove is more effective at reducing the finger vibration than the air bladder-filled glove. The implications of these findings are discussed. Relevance to industry Prolonged, intensive exposure to hand-transmitted vibration can cause hand-arm vibration syndrome. Vibration-reducing gloves have been used as an alternative approach to reduce the vibration exposure. However, their effectiveness for reducing finger-transmitted vibrations remains unclear. This study enhanced the understanding of the glove effects on finger vibration and provided useful information on the effectiveness of typical VR gloves at reducing the vibration transmitted to the fingers. The new

  1. The timing of onset of mechanical systole and diastole in reference to the QRS-T complex: a study to determine performance criteria for a non-invasive diastolic timed vibration massage system in treatment of potentially unstable cardiac disorders.

    PubMed

    Gill, Harjit; Hoffmann, Andrew

    2010-12-01

    Our institution is in development of a low frequency, non-invasive Diastolic Timed Vibrator (DTV) for use in emergency treatment of ST Elevation Myocardial Infarction (STEMI). It is preferable to avoid vibration emissions during the IsoVolumetric Contraction Period (IVCP) and at least the majority of mechanical systole thereafter, as systolic vibration may cause a negative inotropic effect in the ischemic heart. Furthermore diastolic vibration should preferably include the IsoVolumetric Relaxation Period (IVRP) which has been shown in clinical studies to improve cardiac performance and enhance coronary flow. Electrocardiographic (ECG) monitoring can be used to enable diastolic tracking, however, the timing of the phases of the cardiac cycle in relation to the ECG waveform must first be verified. The objective of this study was therefore to determine timing of onset of mechanical systole and diastole in reference to the QRS-T Complex. One hundred and twenty-three adult echocardiographic studies were assessed for the point of mitral and aortic valve closure in relation to the QRS complex and T wave in a representative population. We found that onset of mechanical systole occurred on and usually shortly after the peak of a first dominant QRS complex deflection, and onset of diastole occurred at the earliest on and most commonly beyond the peak or midpoint of the T wave. A DTV should ideally be able to stop vibrating on or before the peak of the first dominant deflection of a QRS complex, and begin vibrating near the peak of the T wave. Given early detection of ventricular depolarization can occur 10-20 ms prior to R wave peak, it is proposed that a DTV should preferably be able to stop vibrating within 10 ms of a triggered stop command. Onset of vibration during peak of T wave could be approximated by a rate adapted Q-T interval regression equation, and then fine tuned by manual adjustment during therapy.

  2. Kinetic anharmonic coupling in the trihalomethanes: A mechanism for rapid intramolecular redistribution of CH stretch vibrational energy

    SciTech Connect

    Green, W.H. Jr.; Lawrance, W.D.; Moore, C.B.

    1987-06-01

    The coupling of CH stretching and CH bending vibrations in trisubstituted methanes is analyzed. Improved spectroscopic constants, especially the cubic anharmonic stretch--bend coupling constants, are extracted from Fermi resonances in the overtone spectra of HCF/sub 3/ and HCCl/sub 3/. Both harmonic oscillator and Morse oscillator basis functions are used in the analysis and the results compared. That part of the coupling which arises from the kinetic energy as expressed in curvilinear coordinates is calculated and compared to the coupling calculated using the more conventional rectilinear treatment. Use of curvilinear coordinates is found to provide significant advantages. The formalism for curvilinear normal coordinates is clarified and generalized. From these calculations and the spectral analysis, one of the cubic anharmonic constants of the potential energy surface is extracted for comparison with ab initio calculations. The curvilinear model of the CH stretch--bend interaction tested for these isolated CH chromophores is expected to be useful in understanding CH bonds and vibrational energy flow in larger hydrocarbons.

  3. Real-time 1-D/2-D transient elastography on a standard ultrasound scanner using mechanically induced vibration.

    PubMed

    Azar, Reza Zahiri; Dickie, Kris; Pelissier, Laurent

    2012-10-01

    Transient elastography has been well established in the literature as a means of assessing the elasticity of soft tissue. In this technique, tissue elasticity is estimated from the study of the propagation of the transient shear waves induced by an external or internal source of vibration. Previous studies have focused mainly on custom single-element transducers and ultrafast scanners which are not available in a typical clinical setup. In this work, we report the design and implementation of a transient elastography system on a standard ultrasound scanner that enables quantitative assessment of tissue elasticity in real-time. Two new custom imaging modes are introduced that enable the system to image the axial component of the transient shear wave, in response to an externally induced vibration, in both 1-D and 2-D. Elasticity reconstruction algorithms that estimate the tissue elasticity from these transient waves are also presented. Simulation results are provided to show the advantages and limitations of the proposed system. The performance of the system is also validated experimentally using a commercial elasticity phantom.

  4. Study of the mechanisms of fragmentation and vibration in blasting operations. Final report. [Single, dual and 5 hole shots with delays

    SciTech Connect

    Winzer, S.R.

    1982-01-01

    A two-part study was conducted to determine the factors affecting the frequency and amplitude of blast-induced ground vibration. One part, conducted by the Photomechanics Laboratory of the Department of Mechanical Engineering of the University of Maryland, simulated and measured the surface displacements due to small explosive charges detonated on the surface of rock and a rock analog. The other part, conducted by Martin Marietta Laboratories, determined the effect of changing delay parameters on blast vibrations in precisely controlled small quarry blasts. The University of Maryland study measured the surface displacements due to explosive charges with holographic interferometry. the Martin Marietta study consisted of a test series of blasts in an operating quarry to determine the effect of precisely controlled delay timing on the frequency and amplitude of ground vibration. An aerial survey was conducted to produce a topographic map of the area to be studied, and reconnaissance geological mapping was carried out to determine the gross aspects of the deposit. Preliminary analysis of seismograph data indicated that dual-hole shots with short time delays generated seismograms which were indistinguishable from single-hole shot seismograms. Also, linar superposition of single-hole seismograms, appropriately delayed, would not reproduce the records generated by the multi-hole blasts. These results were not expected. Examination of the strain-gage records indicated that there was probably some interaction of strain pulses for the shorter delay shots, and that the interaction was non-linear with distance from the borehole. This non-linear interaction may be the cuase of the unexpected results. Five-hole shots show more complicated seismograms, which are a combination of the results of the two-hole shots and the local ground response.

  5. The Physics of Vibration

    NASA Astrophysics Data System (ADS)

    Pippard, A. B.

    1989-11-01

    The study of vibration in physical systems is an important part of almost all fields in physics and engineering. This work, originally published in two volumes, examines the classical aspects in Part I and the quantum oscillator in Part II. The classical linear vibrator is treated first and the underlying unity of all linear oscillations in electrical, mechanical and acoustic systems is emphasized. Following this the book turns to the treatment of nonlinear vibrations, a field with which engineers and physicists are generally less familiar. In Part II the emphasis turns to quantum systems, that is those systems which can only be adequately described by quantum mechanics. The treatment concentrates on vibrations in atoms and molecules and their interaction with electromagnetic radiation. The similarities of classical and quantum methods are stressed and the limits of the classical treatment are examined. Throughout the book, each phenomenon discussed is illustrated with many examples and theory and experiment are compared. Although the reader may find that the physics discussed is demanding and the concepts are subtle in places, all mathematics used is familiar to both engineers and experimental scientists. Although not a textbook this is a useful introduction to the more advanced mathematical treatment of vibrations as it bridges the gap between the basic principles and more specialized concepts. It will be of great interest to advanced undergraduates and postgraduates as well as applied mathematicians, physicists and engineers in university and industry.

  6. Effects of the ultrasonic flexural vibration on the interaction between the abrasive particles; pad and sapphire substrate during chemical mechanical polishing (CMP)

    NASA Astrophysics Data System (ADS)

    Xu, Wenhu; Lu, Xinchun; Pan, Guoshun; Lei, Yuanzhong; Luo, Jianbin

    2011-01-01

    In this paper, the technique of ultrasonic flexural vibration assisted chemical mechanical polishing (UFV-CMP) was used for sapphire substrate CMP. The functions of the polishing pad, the silica abrasive particles, and the chemical additives of the slurry such as pH value regulator and dispersant during the sapphire's UFV-CMP were investigated. The results showed that the actions of the ultrasonic and silica abrasive particles were the main factors in the sapphire material removal rate (MMR) and the chemical additives were helpful to decrease the roughness of sapphire. Then the effects of the flexural vibration on the interaction between the silica abrasive particles, pad and sapphire substrate from the kinematics and dynamics were investigated to explain why the MRR of UFV-CMP was bigger than that of the traditional CMP. It indicated that such functions improved the sapphire's MRR: the increasing of the contact silica particles' motion path lengths on the sapphire's surface, the enhancement of the contact force between the contact silica particles and the sapphire's surface, and the impaction of the suspending silica particles to the sapphire's surface.

  7. Exploring the Mechanism of Ultrafast Intersystem Crossing in Rhenium(I) Carbonyl Bipyridine Halide Complexes: Key Vibrational Modes and Spin-Vibronic Quantum Dynamics.

    PubMed

    Harabuchi, Yu; Eng, Julien; Gindensperger, Etienne; Taketsugu, Tetsuya; Maeda, Satoshi; Daniel, Chantal

    2016-05-10

    The mechanism of ultrafast intersystem crossing in rhenium(I) carbonyl bipyridine halide complexes Re(X)(CO)3(bpy) (X = Cl, Br, I) is studied by exploring the structural deformations when going from Franck-Condon (FC) to critical geometries in the low-lying singlet and triplet excited states and by selecting the key vibrational modes. The luminescent decay observed in [Re(Br)(CO)3(bpy)] is investigated by means of wavepacket propagations based on the multiconfiguration time-dependent Hartree (MCTDH) method. The dominant coordinates underlying the nonradiative decay process are extracted from minima, minimum energy seam of crossing (MESX) and minimum energy conical intersection (MECI) geometries obtained by the seam model function (SMF)/single-component artificial force induced reaction (SC-AFIR) approach. By choosing the normal modes used in MCTDH from the MECI and MESX geometries, not only the degenerate energy points but also the low-energy-gap regions are included. For this purpose a careful vibrational analysis is performed at each critical geometry and analyzed under the light of the pertinent nonadiabatic coupling terms obtained from the linear vibronic coupling (LVC) model augmented by spin-orbit coupling (SOC) in the electronic diabatic representation.

  8. Vibrational quenching of CO2(010) by collisions with O(3P) at thermal energies: A quantum-mechanical study

    NASA Astrophysics Data System (ADS)

    de Lara-Castells, M. P.; Hernández, Marta I.; Delgado-Barrio, G.; Villarreal, P.; López-Puertas, M.

    2006-04-01

    The CO2(010)-O(3P) vibrational energy transfer (VET) efficiency is a key input to aeronomical models of the energy budget of the upper atmospheres of Earth, Venus, and Mars. This work addresses the physical mechanisms responsible for the high efficiency of the VET process at the thermal energies existing in the terrestrial upper atmosphere (150 K<=T<=550 K). We present a quantum-mechanical study of the process within a reduced-dimensionality approach. In this model, all the particles remain along a plane and the O(3P) atom collides along the C2v symmetry axis of CO2, which can present bending oscillations around the linear arrangement, while the stretching C-O coordinates are kept fixed at their equilibrium values. Two kinds of scattering calculations are performed on high-quality ab initio potential energy surfaces (PESs). In the first approach, the calculations are carried out separately for each one of the three PESs correlating to O(3P). In the second approach, nonadiabatic effects induced by spin-orbit couplings (SOC) are also accounted for. The results presented here provide an explanation to some of the questions raised by the experiments and aeronomical observations. At thermal energies, nonadiabatic transitions induced by SOC play a key role in causing large VET efficiencies, the process being highly sensitive to the initial fine-structure level of oxygen. At higher energies, the two above-mentioned approaches tend to coincide towards an impulsive Landau-Teller mechanism of the vibrational to translational (V-T) energy transfer.

  9. Probing the structure and nano-scale mechanical properties of polymer surfaces with scanning force microscopy and sum frequency vibrational spectroscopy

    SciTech Connect

    Gracias, David Hugo

    1999-05-01

    Scanning Force Microscopy (SFM) has been used to quantitatively measure the elastic modulus, friction and hardness of polymer surfaces with special emphasis on polyethylene and polypropylene. In the experiments, tips of different radii of curvature ranging from 20 nm to 1000 nm have been used and the high pressure applied by the SFM have been observed to affect the values obtained in the measurements. The contact of the SFM tip with the polymer surface is explained by fitting the experimental curves to theoretical predictions of contact mechanics. Sum Frequency Generation (SFG) Vibrational Spectroscopy has been used to measure vibrational spectra of polymer surfaces in the vibrational range of 2700 to 3100 cm-1. Strong correlations are established between surface chemistry and surface structure as probed by SFG and mechanical properties measured by SFM on the surfaces. In these studies segregation of low surface energy moieties, from the bulk of the polymer to the surface have been studied. It was found that surface segregation occurs in miscible polymer blends and a small concentration of surface active polymer can be used to totally modify the surface properties of the blend. A novel high vacuum SFM was built to do temperature dependent measurements of mechanical changes occurring at the surface of polypropylene during the glass transition of the polymer. Using this instrument the modulus and friction of polypropylene was measured in the range of room temperature to ˜-60°C. An increase in the ordering of the backbone of the polymer chains below the glass transition measured by SFG correlates well with the increase in modulus measured on the same surface with SFM. Friction measurements have been done on polyethylene with three different instruments by applying loads ranging from nN to sub newton i.e. over eight orders of magnitude. Pressure and contact area effects were observed to play a significant role in determining the frictional response of the polymer

  10. Vibration generators

    SciTech Connect

    Lerwill, W.E.

    1980-09-16

    Apparatus for generating vibrations in a medium, such as the ground, comprises a first member which contacts the medium, means , preferably electromagnetic, which includes two relatively movable members for generating vibrations in the apparatus and means operatively connecting the said two members to said first member such that the relatively amplitudes of the movements of said three members can be adjusted to match the impedances of the apparatus and the medium.

  11. Vibration of Shells

    NASA Technical Reports Server (NTRS)

    Leissa, A. W.

    1973-01-01

    The vibrational characteristics and mechanical properties of shell structures are discussed. The subjects presented are: (1) fundamental equations of thin shell theory, (2) characteristics of thin circular cylindrical shells, (3) complicating effects in circular cylindrical shells, (4) noncircular cylindrical shell properties, (5) characteristics of spherical shells, and (6) solution of three-dimensional equations of motion for cylinders.

  12. Random Vibrations

    NASA Technical Reports Server (NTRS)

    Messaro. Semma; Harrison, Phillip

    2010-01-01

    Ares I Zonal Random vibration environments due to acoustic impingement and combustion processes are develop for liftoff, ascent and reentry. Random Vibration test criteria for Ares I Upper Stage pyrotechnic components are developed by enveloping the applicable zonal environments where each component is located. Random vibration tests will be conducted to assure that these components will survive and function appropriately after exposure to the expected vibration environments. Methodology: Random Vibration test criteria for Ares I Upper Stage pyrotechnic components were desired that would envelope all the applicable environments where each component was located. Applicable Ares I Vehicle drawings and design information needed to be assessed to determine the location(s) for each component on the Ares I Upper Stage. Design and test criteria needed to be developed by plotting and enveloping the applicable environments using Microsoft Excel Spreadsheet Software and documenting them in a report Using Microsoft Word Processing Software. Conclusion: Random vibration liftoff, ascent, and green run design & test criteria for the Upper Stage Pyrotechnic Components were developed by using Microsoft Excel to envelope zonal environments applicable to each component. Results were transferred from Excel into a report using Microsoft Word. After the report is reviewed and edited by my mentor it will be submitted for publication as an attachment to a memorandum. Pyrotechnic component designers will extract criteria from my report for incorporation into the design and test specifications for components. Eventually the hardware will be tested to the environments I developed to assure that the components will survive and function appropriately after exposure to the expected vibration environments.

  13. A 2D magnetic and 3D mechanical coupled finite element model for the study of the dynamic vibrations in the stator of induction motors

    NASA Astrophysics Data System (ADS)

    Martinez, J.; Belahcen, A.; Detoni, J. G.

    2016-01-01

    This paper presents a coupled Finite Element Model in order to study the vibrations in induction motors under steady-state. The model utilizes a weak coupling strategy between both magnetic and elastodynamic fields on the structure. Firstly, the problem solves the magnetic vector potential in an axial cut and secondly the former solution is coupled to a three dimensional model of the stator. The coupling is performed using projection based algorithms between the computed magnetic solution and the three-dimensional mesh. The three-dimensional model of the stator includes both end-windings and end-shields in order to give a realistic picture of the motor. The present model is validated using two steps. Firstly, a modal analysis hammer test is used to validate the material characteristic of this complex structure and secondly an array of accelerometer sensors is used in order to study the rotating waves using multi-dimensional spectral techniques. The analysis of the radial vibrations presented in this paper firstly concludes that slot harmonic components are visible when the motor is loaded. Secondly, the multidimensional spectrum presents the most relevant mechanical waves on the stator such as the ones produced by the space harmonics or the saturation of the iron core. The direct retrieval of the wave-number in a multi-dimensional spectrum is able to show the internal current distribution in a non-intrusive way. Experimental results for healthy induction motors are showing mechanical imbalances in a multi-dimensional spectrum in a more straightforward form.

  14. Definition of the intermediates and mechanism of the anticancer drug bleomycin using nuclear resonance vibrational spectroscopy and related methods.

    PubMed

    Liu, Lei V; Bell, Caleb B; Wong, Shaun D; Wilson, Samuel A; Kwak, Yeonju; Chow, Marina S; Zhao, Jiyong; Hodgson, Keith O; Hedman, Britt; Solomon, Edward I

    2010-12-28

    Bleomycin (BLM) is a glycopeptide anticancer drug capable of effecting single- and double-strand DNA cleavage. The last detectable intermediate prior to DNA cleavage is a low spin Fe(III) peroxy level species, termed activated bleomycin (ABLM). DNA strand scission is initiated through the abstraction of the C-4' hydrogen atom of the deoxyribose sugar unit. Nuclear resonance vibrational spectroscopy (NRVS) aided by extended X-ray absorption fine structure spectroscopy and density functional theory (DFT) calculations are applied to define the natures of Fe(III)BLM and ABLM as (BLM)Fe(III)─OH and (BLM)Fe(III)(η(1)─OOH) species, respectively. The NRVS spectra of Fe(III)BLM and ABLM are strikingly different because in ABLM the δFe─O─O bending mode mixes with, and energetically splits, the doubly degenerate, intense O─Fe─N(ax) transaxial bends. DFT calculations of the reaction of ABLM with DNA, based on the species defined by the NRVS data, show that the direct H-atom abstraction by ABLM is thermodynamically favored over other proposed reaction pathways.

  15. Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review

    SciTech Connect

    Doebling, S.W.; Farrar, C.R.; Prime, M.B.; Shevitz, D.W.

    1996-05-01

    This report contains a review of the technical literature concerning the detection, location, and characterization of structural damage via techniques that examine changes in measured structural vibration response. The report first categorizes the methods according to required measured data and analysis technique. The analysis categories include changes in modal frequencies, changes in measured mode shapes (and their derivatives), and changes in measured flexibility coefficients. Methods that use property (stiffness, mass, damping) matrix updating, detection of nonlinear response, and damage detection via neural networks are also summarized. The applications of the various methods to different types of engineering problems are categorized by type of structure and are summarized. The types of structures include beams, trusses, plates, shells, bridges, offshore platforms, other large civil structures, aerospace structures, and composite structures. The report describes the development of the damage-identification methods and applications and summarizes the current state-of-the-art of the technology. The critical issues for future research in the area of damage identification are also discussed.

  16. Definition of the intermediates and mechanism of the anticancer drug bleomycin using nuclear resonance vibrational spectroscopy and related methods.

    SciTech Connect

    Liu, L. V.; Bell, C. B., III; Wong, S. D.; Wilson, S. A.; Kwak, Y.; Chow, M.S.; Zhao, J.; Hodgson, K.O.; Hedman, B.; Solomon, E.I.

    2010-12-28

    Bleomycin (BLM) is a glycopeptide anticancer drug capable of effecting single- and double-strand DNA cleavage. The last detectable intermediate prior to DNA cleavage is a low spin Fe{sup III} peroxy level species, termed activated bleomycin (ABLM). DNA strand scission is initiated through the abstraction of the C-4{prime} hydrogen atom of the deoxyribose sugar unit. Nuclear resonance vibrational spectroscopy (NRVS) aided by extended X-ray absorption fine structure spectroscopy and density functional theory (DFT) calculations are applied to define the natures of Fe{sup III}BLM and ABLM as (BLM)Fe{sup III}-OH and (BLM)Fe{sup III}({eta}{sup 1}-OOH) species, respectively. The NRVS spectra of Fe{sup III}BLM and ABLM are strikingly different because in ABLM the {delta}Fe-O-O bending mode mixes with, and energetically splits, the doubly degenerate, intense O-Fe-N{sub ax} transaxial bends. DFT calculations of the reaction of ABLM with DNA, based on the species defined by the NRVS data, show that the direct H-atom abstraction by ABLM is thermodynamically favored over other proposed reaction pathways.

  17. The vibrating nerve impulse in Newton, Willis and Gassendi: first steps in a mechanical theory of communication.

    PubMed

    Wallace, Wes

    2003-02-01

    In later editions of his two major works, Isaac Newton proposed an electrical hypothesis of nervous transmission. According to this hypothesis, an electrical aether permeates the nerve and transmits vibrations along it. This implies that the nerve is a communication line, and potentially, an extension of the mind. The opposite view was held by Cartesian mechanists, who taught that the nerve is a power line, transmitting either pressure or tension, and that the mind is separate from the nervous system. The Newtonian model eventually supplanted the Cartesian model in the mid 18th century, and became a crucial part of the conceptual environment in which neuroscience originated. In this paper I examine the scientific origins of the Newtonian model of nervous transmission. I argue that Newton's model relies on prior work by Thomas Willis and Pierre Gassendi. Willis supplied the anatomical and physiological "hard data" upon which the model was built. But Gassendi, a generation before, laid out the conceptual foundations of the problem, including the principle of impulse-transmission, and the corrolary principle of the muscle as an autonomous generator of force. I conclude that Gassendi's work has been undeservedly neglected as a turning-point in the history of neuroscience.

  18. Definition of the intermediates and mechanism of the anticancer drug bleomycin using nuclear resonance vibrational spectroscopy and related methods

    PubMed Central

    Liu, Lei V.; Bell, Caleb B.; Wong, Shaun D.; Wilson, Samuel A.; Kwak, Yeonju; Chow, Marina S.; Zhao, Jiyong; Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.

    2010-01-01

    Bleomycin (BLM) is a glycopeptide anticancer drug capable of effecting single- and double-strand DNA cleavage. The last detectable intermediate prior to DNA cleavage is a low spin FeIII peroxy level species, termed activated bleomycin (ABLM). DNA strand scission is initiated through the abstraction of the C-4′ hydrogen atom of the deoxyribose sugar unit. Nuclear resonance vibrational spectroscopy (NRVS) aided by extended X-ray absorption fine structure spectroscopy and density functional theory (DFT) calculations are applied to define the natures of FeIIIBLM and ABLM as (BLM)FeIII─OH and (BLM)FeIII(η1─OOH) species, respectively. The NRVS spectra of FeIIIBLM and ABLM are strikingly different because in ABLM the δFe─O─O bending mode mixes with, and energetically splits, the doubly degenerate, intense O─Fe─Nax transaxial bends. DFT calculations of the reaction of ABLM with DNA, based on the species defined by the NRVS data, show that the direct H-atom abstraction by ABLM is thermodynamically favored over other proposed reaction pathways. PMID:21149675

  19. Force Limited Vibration Testing Monograph

    NASA Technical Reports Server (NTRS)

    Scharton, Terry D.

    1997-01-01

    The practice of limiting the shaker force in vibration tests was investigated at the NASA Jet Propulsion Laboratory (JPL) in 1990 after the mechanical failure of an aerospace component during a vibration test. Now force limiting is used in almost every major vibration test at JPL and in many vibration tests at NASA Goddard Space Flight Center (GSFC) and at many aerospace contractors. The basic ideas behind force limiting have been in the literature for several decades, but the piezo-electric force transducers necessary to conveniently implement force limiting have been available only in the last decade. In 1993, funding was obtained from the NASA headquarters Office of Chief Engineer to develop and document the technology needed to establish force limited vibration testing as a standard approach available to all NASA centers and aerospace contractors. This monograph is the final report on that effort and discusses the history, theory, and applications of the method in some detail.

  20. The origins of vibration theory

    NASA Astrophysics Data System (ADS)

    Dimarogonas, A. D.

    1990-07-01

    The Ionian School of natural philosophy introduced the scientific method of dealing with natural phenomena and the rigorous proofs for abstract propositions. Vibration theory was initiated by the Pythagoreans in the fifth century BC, in association with the theory of music and the theory of acoustics. They observed the natural frequency of vibrating systems and proved that it is a system property and that it does not depend on the excitation. Pythagoreans determined the fundamental natural frequencies of several simple systems, such as vibrating strings, pipes, vessels and circular plates. Aristoteles and the Peripatetic School founded mechanics and developed a fundamental understanding of statics and dynamics. In Alexandrian times there were substantial engineering developments in the field of vibration. The pendulum as a vibration, and probably time, measuring device was known in antiquity, and was further developed by the end of the first millennium AD.

  1. Nonlinear vibrational microscopy

    DOEpatents

    Holtom, Gary R.; Xie, Xiaoliang Sunney; Zumbusch, Andreas

    2000-01-01

    The present invention is a method and apparatus for microscopic vibrational imaging using coherent Anti-Stokes Raman Scattering or Sum Frequency Generation. Microscopic imaging with a vibrational spectroscopic contrast is achieved by generating signals in a nonlinear optical process and spatially resolved detection of the signals. The spatial resolution is attained by minimizing the spot size of the optical interrogation beams on the sample. Minimizing the spot size relies upon a. directing at least two substantially co-axial laser beams (interrogation beams) through a microscope objective providing a focal spot on the sample; b. collecting a signal beam together with a residual beam from the at least two co-axial laser beams after passing through the sample; c. removing the residual beam; and d. detecting the signal beam thereby creating said pixel. The method has significantly higher spatial resolution then IR microscopy and higher sensitivity than spontaneous Raman microscopy with much lower average excitation powers. CARS and SFG microscopy does not rely on the presence of fluorophores, but retains the resolution and three-dimensional sectioning capability of confocal and two-photon fluorescence microscopy. Complementary to these techniques, CARS and SFG microscopy provides a contrast mechanism based on vibrational spectroscopy. This vibrational contrast mechanism, combined with an unprecedented high sensitivity at a tolerable laser power level, provides a new approach for microscopic investigations of chemical and biological samples.

  2. Raman spectrum, quantum mechanical calculations and vibrational assignments of (95% α-TeO 2/5% Sm 2O 3) glass

    NASA Astrophysics Data System (ADS)

    Shaltout, I.; Mohamed, Tarek A.

    2007-06-01

    Chozen system of tellurite glasses doped with rare earth oxides (95% α-TeO 2 + 5% Sm 2O 3) was prepared by melt quenching. Consequently, the Raman spectrum (150-1250 cm -1) of the modified tellurite have been recorded. As a continuation to our normal coordinate analysis, force constants and quantum mechanical (QM) calculations for tbp TeO 44- (triagonal bipyramid, C2v) and TeO 3+1; Te 2O 76- (bridged tetrahedral), we have carried out ab initio frequency calculations for tpy TeO 32- (triagonal pyramidal, C3v and Cs) and tp TeO 32- (triagonal planar, D3h) ions. The quantum mechanical calculations at the levels of RHF, B3LYP and MP2 allow confident vibrational assignments and structural identification in the binary oxide glass (95% α-TeO 2 + 5% Sm 2O 3). The dominant three-dimensional network structures in the modified glass are triagonal pyramidal TeO 3 with minor features of short range distorted tbp TeO 4 and bridged tetrahedral unit of TeO 3+1, leading to a structure of infinite chain. Therefore, α-TeO 2/Sm 2O 3 (95/5%) glass experience structural changes from TeO 4 (tbp); Te 2O 7 (TeO 3+1) → TeO 3 (tpy).

  3. Blade Vibration Measurement System

    NASA Technical Reports Server (NTRS)

    Platt, Michael J.

    2014-01-01

    The Phase I project successfully demonstrated that an advanced noncontacting stress measurement system (NSMS) could improve classification of blade vibration response in terms of mistuning and closely spaced modes. The Phase II work confirmed the microwave sensor design process, modified the sensor so it is compatible as an upgrade to existing NSMS, and improved and finalized the NSMS software. The result will be stand-alone radar/tip timing radar signal conditioning for current conventional NSMS users (as an upgrade) and new users. The hybrid system will use frequency data and relative mode vibration levels from the radar sensor to provide substantially superior capabilities over current blade-vibration measurement technology. This frequency data, coupled with a reduced number of tip timing probes, will result in a system capable of detecting complex blade vibrations that would confound traditional NSMS systems. The hardware and software package was validated on a compressor rig at Mechanical Solutions, Inc. (MSI). Finally, the hybrid radar/tip timing NSMS software package and associated sensor hardware will be installed for use in the NASA Glenn spin pit test facility.

  4. Effect of low-level mechanical vibration on osteogenesis and osseointegration of porous titanium implants in the repair of long bone defects

    NASA Astrophysics Data System (ADS)

    Jing, Da; Tong, Shichao; Zhai, Mingming; Li, Xiaokang; Cai, Jing; Wu, Yan; Shen, Guanghao; Zhang, Xuhui; Xu, Qiaoling; Guo, Zheng; Luo, Erping

    2015-11-01

    Emerging evidence substantiates the potential of porous titanium alloy (pTi) as an ideal bone-graft substitute because of its excellent biocompatibility and structural properties. However, it remains a major clinical concern for promoting high-efficiency and high-quality osseointegration of pTi, which is beneficial for securing long-term implant stability. Accumulating evidence demonstrates the capacity of low-amplitude whole-body vibration (WBV) in preventing osteopenia, whereas the effects and mechanisms of WBV on osteogenesis and osseointegration of pTi remain unclear. Our present study shows that WBV enhanced cellular attachment and proliferation, and induced well-organized cytoskeleton of primary osteoblasts in pTi. WBV upregulated osteogenesis-associated gene and protein expression in primary osteoblasts, including OCN, Runx2, Wnt3a, Lrp6 and β-catenin. In vivo findings demonstrate that 6-week and 12-week WBV stimulated osseointegration, bone ingrowth and bone formation rate of pTi in rabbit femoral bone defects via μCT, histological and histomorphometric analyses. WBV induced higher ALP, OCN, Runx2, BMP2, Wnt3a, Lrp6 and β-catenin, and lower Sost and RANKL/OPG gene expression in rabbit femora. Our findings demonstrate that WBV promotes osteogenesis and osseointegration of pTi via its anabolic effect and potential anti-catabolic activity, and imply the promising potential of WBV for enhancing the repair efficiency and quality of pTi in osseous defects.

  5. Effect of low-level mechanical vibration on osteogenesis and osseointegration of porous titanium implants in the repair of long bone defects

    PubMed Central

    Jing, Da; Tong, Shichao; Zhai, Mingming; Li, Xiaokang; Cai, Jing; Wu, Yan; Shen, Guanghao; Zhang, Xuhui; Xu, Qiaoling; Guo, Zheng; Luo, Erping

    2015-01-01

    Emerging evidence substantiates the potential of porous titanium alloy (pTi) as an ideal bone-graft substitute because of its excellent biocompatibility and structural properties. However, it remains a major clinical concern for promoting high-efficiency and high-quality osseointegration of pTi, which is beneficial for securing long-term implant stability. Accumulating evidence demonstrates the capacity of low-amplitude whole-body vibration (WBV) in preventing osteopenia, whereas the effects and mechanisms of WBV on osteogenesis and osseointegration of pTi remain unclear. Our present study shows that WBV enhanced cellular attachment and proliferation, and induced well-organized cytoskeleton of primary osteoblasts in pTi. WBV upregulated osteogenesis-associated gene and protein expression in primary osteoblasts, including OCN, Runx2, Wnt3a, Lrp6 and β-catenin. In vivo findings demonstrate that 6-week and 12-week WBV stimulated osseointegration, bone ingrowth and bone formation rate of pTi in rabbit femoral bone defects via μCT, histological and histomorphometric analyses. WBV induced higher ALP, OCN, Runx2, BMP2, Wnt3a, Lrp6 and β-catenin, and lower Sost and RANKL/OPG gene expression in rabbit femora. Our findings demonstrate that WBV promotes osteogenesis and osseointegration of pTi via its anabolic effect and potential anti-catabolic activity, and imply the promising potential of WBV for enhancing the repair efficiency and quality of pTi in osseous defects. PMID:26601709

  6. Mechanical Vibration Mitigates the Decrease of Bone Quantity and Bone Quality of Leptin Receptor-Deficient Db/Db Mice by Promoting Bone Formation and Inhibiting Bone Resorption.

    PubMed

    Jing, Da; Luo, Erping; Cai, Jing; Tong, Shichao; Zhai, Mingming; Shen, Guanghao; Wang, Xin; Luo, Zhuojing

    2016-09-01

    Leptin, a major hormonal product of adipocytes, is involved in regulating appetite and energy metabolism. Substantial studies have revealed the anabolic actions of leptin on skeletons and bone cells both in vivo and in vitro. Growing evidence has substantiated that leptin receptor-deficient db/db mice exhibit decreased bone mass and impaired bone microstructure despite several conflicting results previously reported. We herein systematically investigated bone microarchitecture, mechanical strength, bone turnover and its potential molecular mechanisms in db/db mice. More importantly, we also explored an effective approach for increasing bone mass in leptin receptor-deficient animals in an easy and noninvasive manner. Our results show that deterioration of trabecular and cortical bone microarchitecture and decreases of skeletal mechanical strength-including maximum load, yield load, stiffness, energy, tissue-level modulus and hardness-in db/db mice were significantly ameliorated by 12-week, whole-body vibration (WBV) with 0.5 g, 45 Hz via micro-computed tomography (μCT), three-point bending, and nanoindentation examinations. Serum biochemical analysis shows that WBV significantly decreased serum tartrate-resistant acid phosphatase 5b (TRACP5b) and CTx-1 levels and also mitigated the reduction of serum osteocalcin (OCN) in db/db mice. Bone histomorphometric analysis confirmed that decreased bone formation-lower mineral apposition rate, bone formation rate, and osteoblast numbers in cancellous bone-in db/db mice were suppressed by WBV. Real-time PCR assays show that WBV mitigated the reductions of tibial alkaline phosphatase (ALP), OCN, Runt-related transcription factor 2 (RUNX2), type I collagen (COL1), BMP2, Wnt3a, Lrp6, and β-catenin mRNA expression, and prevented the increases of tibial sclerostin (SOST), RANK, RANKL, RANL/osteoprotegerin (OPG) gene levels in db/db mice. Our results show that WBV promoted bone quantity and quality in db/db mice with obvious

  7. [Exposure to whole body vibrations in workers moving heavy items by mechanical vehicles in the warehouse of a large retail outlet].

    PubMed

    Siciliano, E; Rossi, A; Nori, L

    2007-01-01

    Efficient warehouse management and item transportation is of fundamental importance in the commercial outlet in exam. Whole body vibrations have been measured in various types of machines, some of which not widely studied yet, like the electrical pallet truck. In some tasks (fork lifts drivers) vibrations propagate through the driving seat whereas in some other tasks (electrical pallet trucks, stackers), operated in a standing posture, vibrations propagate through the lower limbs. Results have been provided for a homogeneous job tasks. In particular conditions, the action level of the Italian national (and European) regulations on occupational exposure to WBV may be exceeded. The authors propose a simple system of probabilistic classification of the risk of exposure to whole body vibrations, based on the respective areas of the distribution which lay within the three risk classes.

  8. Quantum mechanics/molecular mechanics simulation of the ligand vibrations of the water-oxidizing Mn4CaO5 cluster in photosystem II.

    PubMed

    Nakamura, Shin; Noguchi, Takumi

    2016-10-11

    During photosynthesis, the light-driven oxidation of water performed by photosystem II (PSII) provides electrons necessary to fix CO2, in turn supporting life on Earth by liberating molecular oxygen. Recent high-resolution X-ray images of PSII show that the water-oxidizing center (WOC) is composed of an Mn4CaO5 cluster with six carboxylate, one imidazole, and four water ligands. FTIR difference spectroscopy has shown significant structural changes of the WOC during the S-state cycle of water oxidation, especially within carboxylate groups. However, the roles that these carboxylate groups play in water oxidation as well as how they should be properly assigned in spectra are unresolved. In this study, we performed a normal mode analysis of the WOC using the quantum mechanics/molecular mechanics (QM/MM) method to simulate FTIR difference spectra on the S1 to S2 transition in the carboxylate stretching region. By evaluating WOC models with different oxidation and protonation states, we determined that models of high-oxidation states, Mn(III)2Mn(IV)2, satisfactorily reproduced experimental spectra from intact and Ca-depleted PSII compared with low-oxidation models. It is further suggested that the carboxylate groups bridging Ca and Mn ions within this center tune the reactivity of water ligands bound to Ca by shifting charge via their π conjugation.

  9. Molecular vibrational energy flow

    NASA Astrophysics Data System (ADS)

    Gruebele, M.; Bigwood, R.

    This article reviews some recent work in molecular vibrational energy flow (IVR), with emphasis on our own computational and experimental studies. We consider the problem in various representations, and use these to develop a family of simple models which combine specific molecular properties (e.g. size, vibrational frequencies) with statistical properties of the potential energy surface and wavefunctions. This marriage of molecular detail and statistical simplification captures trends of IVR mechanisms and survival probabilities beyond the abilities of purely statistical models or the computational limitations of full ab initio approaches. Of particular interest is IVR in the intermediate time regime, where heavy-atom skeletal modes take over the IVR process from hydrogenic motions even upon X H bond excitation. Experiments and calculations on prototype heavy-atom systems show that intermediate time IVR differs in many aspects from the early stages of hydrogenic mode IVR. As a result, IVR can be coherently frozen, with potential applications to selective chemistry.

  10. The 58th Shock and Vibration Symposium, volume 1

    NASA Technical Reports Server (NTRS)

    Pilkey, Walter D. (Compiler); Pilkey, Barbara F. (Compiler)

    1987-01-01

    The proceedings of the 58th Shock and Vibration Symposium, held in Huntsville, Alabama, October 13 to 15, 1987 are given. Mechanical shock, dynamic analysis, space shuttle main engine vibration, isolation and damping, and analytical methods are discussed.

  11. Vibrational stability of graphene

    NASA Astrophysics Data System (ADS)

    Hu, Yangfan; Wang, Biao

    2013-05-01

    The mechanical stability of graphene as temperature rises is analyzed based on three different self-consistent phonon (SCP) models. Compared with three-dimensional (3-D) materials, the critical temperature Ti at which instability occurs for graphene is much closer to its melting temperature Tm obtained from Monte Carlo simulation (Ti ≃ 2Tm, K. V. Zakharchenko, A. Fasolino, J. H. Los, and M. I. Katsnelson, J. Phys. Condens. Matter 23, 202202). This suggests that thermal vibration plays a significant role in melting of graphene while melting for 3-D materials is often dominated by topologic defects. This peculiar property of graphene derives from its high structural anisotropy, which is characterized by the vibrational anisotropic coefficient (VAC), defined upon its Lindermann ratios in different directions. For any carbon based material with a graphene-like structure, the VAC value must be smaller than 5.4 to maintain its stability. It is also found that the high VAC value of graphene is responsible for its negative thermal expansion coefficient at low temperature range. We believe that the VAC can be regarded as a new criterion concerning the vibrational stability of any low-dimensional (low-D) materials.

  12. Vibration Induced Microfluidic Atomization

    NASA Astrophysics Data System (ADS)

    Yeo, Leslie; Qi, Aisha; Friend, James

    2008-11-01

    We demonstrate rapid generation of micron aerosol droplets in a microfluidic device in which a fluid drop is exposed to surface vibration as it sits atop a piezoelectric substrate. Little, however, is understood about the processes by which these droplets form due to the complex hydrodynamic processes that occur across widely varying length and time scales. Through experiments, scaling theory and numerical modelling, we elucidate the interfacial destabilization mechanisms that lead to droplet formation. Droplets form due to the axisymmetric break-up of cylindrical liquid jets ejected as a consequence of interfacial destabilization. Their 10 μm size correlates with the jet radius and the instability wavelength, both determined from a viscous-capillary dominant force balance and confirmed through a numerical solution. With the exception of drops that spread into thin films with thicknesses on the order of the boundary layer dimension, the free surface is always observed to vibrate at the capillary-viscous resonance frequency despite the surface vibration frequency being several orders larger. This is contrary to common assumptions used in deriving subharmonic models resulting in a Mathieu equation, which has commonly led to spurious predictions in the droplet size.

  13. Coal storage hopper with vibrating screen agitator

    SciTech Connect

    Daw, C.S.; Lackey, M.E.; Sy, R.L.

    1984-09-11

    The present invention is directed to a vibrating screen agitator in a coal storage hopper for assuring the uniform feed of coal having sufficient moisture content to effect agglomeration and bridging thereof in the coal hopper from the latter onto a conveyor mechanism. The vibrating screen agitator is provided by a plurality of transversely oriented and vertically spaced apart screens in the storage hopper with a plurality of vertically oriented rods attached to the screens. The rods are vibrated to effect the vibration of the screens and the breaking up of agglomerates in the coal which might impede the uniform flow of the coal from the hopper onto a conveyer.

  14. Coal storage hopper with vibrating screen agitator

    DOEpatents

    Daw, Charles S.; Lackey, Mack E.; Sy, Ronald L.

    1984-01-01

    The present invention is directed to a vibrating screen agitator in a coal storage hopper for assuring the uniform feed of coal having sufficient moisture content to effect agglomeration and bridging thereof in the coal hopper from the latter onto a conveyor mechanism. The vibrating screen agitator is provided by a plurality of transversely oriented and vertically spaced apart screens in the storage hopper with a plurality of vertically oriented rods attached to the screens. The rods are vibrated to effect the vibration of the screens and the breaking up of agglomerates in the coal which might impede the uniform flow of the coal from the hopper onto a conveyer.

  15. Noncontact Electromagnetic Vibration Source

    NASA Technical Reports Server (NTRS)

    Namkung, Min; Fulton, James P.; Wincheski, Buzz A.

    1994-01-01

    Metal aircraft skins scanned rapidly in vibration tests. Relatively simple combination of permanent magnets and electromagnet serves as noncontact vibration source for nondestructive testing of metal aircraft skins. In test, source excites vibrations, and vibration waveforms measured, then analyzed for changes in resonances signifying cracks and other flaws.

  16. Development of vibrating insoles.

    PubMed

    Hijmans, Juha M; Geertzen, Jan H B; Schokker, Bart; Postema, Klaas

    2007-12-01

    The objective of this study was to describe the development of vibrating insoles. Insoles, providing a subsensory mechanical noise signal to the plantar side of the feet, may improve balance in healthy young and older people and in patients with stroke or diabetic neuropathy. This study describes the requirements for the tactors, (tactile actuators) insole material and noise generator. A search for the components of vibrating insoles providing mechanical noise to the plantar side of the feet was performed. The mechanical noise signal should be provided by tactors built in an insole or shoe and should obtain an input signal from a noise generator and an amplifier. Possible tactors are electromechanical tactors, a piezo actuator or the VBW32 skin transducer. The Minirator MR1 of NTI, a portable MP3 player or a custom-made noise generator can provide these tactors with input. The tactors can be built in foam, silicone or cork insoles. In conclusion, a C2 electromechanical tactor, a piezo actuator or the VBW32 skin transducer, activated by a custom-made noise generator, built in a cork insole covered with a leather layer seems the ideal solution.

  17. Vibration analysis utilizing Mossbauer effect

    NASA Technical Reports Server (NTRS)

    Roughton, N. A.

    1967-01-01

    Measuring instrument analyzes mechanical vibrations in transducers at amplitudes in the range of a few to 100 angstroms. This instrument utilizes the Mossbauer effect, the phenomenon of the recoil-free emission and resonant absorption of nuclear gamma rays in solids.

  18. Vibration-induced liquefaction of granular suspensions.

    PubMed

    Hanotin, C; Kiesgen de Richter, S; Marchal, P; Michot, L J; Baravian, C

    2012-05-11

    We investigate the mechanical behavior of granular suspensions subjected to coupled vibrations and shear. At high shear stress, whatever the mechanical vibration energy and bead size, the system behaves like a homogeneous suspension of hard spheres. At low shear stress, in addition to a dependence on bead size, vibration energy drastically influences the viscosity of the material that can decrease by more than 2 orders of magnitude. All experiments can be rationalized by introducing a hydrodynamical Peclet number defined as the ratio between the lubrication stress induced by vibrations and granular pressure. The behavior of vibrated wet and dry granular materials can then be unified by assimilating the hookean stress in dry media to the lubrication stress in suspensions.

  19. Vibration-based photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Li, Rui; Rajian, Justin R.; Wang, Pu; Slipchenko, Mikhail N.; Cheng, Ji-Xin

    2013-03-01

    Photoacoustic imaging employing molecular overtone vibration as contrast mechanism opens a new avenue for deep tissue imaging with chemical bond selectivity. Here, we demonstrate vibration-based photoacoustic tomography with an imaging depth on the centimeter scale. To provide sufficient pulse energy at the overtone transition wavelengths, we constructed a compact, barium nitrite crystal-based Raman laser for excitation of 2nd overtone of C-H bond. Using a 5-ns Nd:YAG laser as pumping source, up to 105 mJ pulse energy at 1197 nm was generated. Vibrational photoacoutic spectroscopy and tomography of phantom (polyethylene tube) immersed in whole milk was performed. With a pulse energy of 47 mJ on the milk surface, up to 2.5 cm penetration depth was reached with a signal-to-noise ratio of 12.

  20. Recent Triplet Vibration Studies in RHIC

    SciTech Connect

    Thieberger, P.; Bonati, R.; Corbin, G.; Jain, A.; Minty, M.; McIntyre, G.; Montag, C.; Muratore, J.; Schultheiss, C.; Seberg, S.; Tuozzolo, J.

    2010-05-23

    We report on recent developments for mitigating vibrations of the quadrupole magnets near the interaction regions of the Relativistic Heavy Ion Collider (RHIC). High precision accelerometers, geophones, and a laser vibrometer were installed around one of the two interaction points to characterize the frequencies of the mechanical motion. In addition actuators were mounted directly on the quadrupole cryostats. Using as input the locally measured motion, dynamic damping of the mechanical vibrations has been demonstrated. In this report we present these measurements and measurements of the beam response. Future options for compensating the vibrations are discussed.

  1. Granular avalanches down inclined and vibrated planes.

    PubMed

    Gaudel, Naïma; Kiesgen de Richter, Sébastien; Louvet, Nicolas; Jenny, Mathieu; Skali-Lami, Salaheddine

    2016-09-01

    In this article, we study granular avalanches when external mechanical vibrations are applied. We identify conditions of flow arrest and compare with the ones classically observed for nonvibrating granular flows down inclines [Phys. Fluids 11, 542 (1999)PHFLE61070-663110.1063/1.869928]. We propose an empirical law to describe the thickness of the deposits with the inclination angle and the vibration intensity. The link between the surface velocity and the depth of the flow highlights a competition between gravity and vibrations induced flows. We identify two distinct regimes: (a) gravity-driven flows at large angles where vibrations do not modify dynamical properties but the deposits (scaling laws in this regime are in agreement with the literature for nonvibrating granular flows) and (b) vibrations-driven flows at small angles where no flow is possible without applied vibrations (in this last regime, the flow behavior can be properly described by a vibration induced activated process). We show, in this study, that granular flows down inclined planes can be finely tuned by external mechanical vibrations.

  2. Granular avalanches down inclined and vibrated planes

    NASA Astrophysics Data System (ADS)

    Gaudel, Naïma; Kiesgen de Richter, Sébastien; Louvet, Nicolas; Jenny, Mathieu; Skali-Lami, Salaheddine

    2016-09-01

    In this article, we study granular avalanches when external mechanical vibrations are applied. We identify conditions of flow arrest and compare with the ones classically observed for nonvibrating granular flows down inclines [Phys. Fluids 11, 542 (1999), 10.1063/1.869928]. We propose an empirical law to describe the thickness of the deposits with the inclination angle and the vibration intensity. The link between the surface velocity and the depth of the flow highlights a competition between gravity and vibrations induced flows. We identify two distinct regimes: (a) gravity-driven flows at large angles where vibrations do not modify dynamical properties but the deposits (scaling laws in this regime are in agreement with the literature for nonvibrating granular flows) and (b) vibrations-driven flows at small angles where no flow is possible without applied vibrations (in this last regime, the flow behavior can be properly described by a vibration induced activated process). We show, in this study, that granular flows down inclined planes can be finely tuned by external mechanical vibrations.

  3. Mechanism of Interaction between the General Anesthetic Halothane and a Model Ion Channel Protein, II: Fluorescence and Vibrational Spectroscopy Using a Cyanophenylalanine Probe

    SciTech Connect

    Liu, J.; Strzalka, J; Tronin, A; Johansson, J; Blasie, J

    2009-01-01

    We demonstrate that cyano-phenylalanine (PheCN) can be utilized to probe the binding of the inhalational anesthetic halothane to an anesthetic-binding, model ion channel protein hbAP-PheCN. The Trp to PheCN mutation alters neither the a-helical conformation nor the 4-helix bundle structure. The halothane binding properties of this PheCN mutant hbAP-PheCN, based on fluorescence quenching, are consistent with those of the prototype, hbAP1. The dependence of fluorescence lifetime as a function of halothane concentration implies that the diffusion of halothane in the nonpolar core of the protein bundle is one-dimensional. As a consequence, at low halothane concentrations, the quenching of the fluorescence is dynamic, whereas at high concentrations the quenching becomes static. The 4-helix bundle structure present in aqueous detergent solution and at the air-water interface, is preserved in multilayer films of hbAP-PheCN, enabling vibrational spectroscopy of both the protein and its nitrile label (-CN). The nitrile groups' stretching vibration band shifts to higher frequency in the presence of halothane, and this blue-shift is largely reversible. Due to the complexity of this amphiphilic 4-helix bundle model membrane protein, where four PheCN probes are present adjacent to the designed cavity forming the binding site within each bundle, all contributing to the infrared absorption, molecular dynamics (MD) simulation is required to interpret the infrared results. The MD simulations indicate that the blue-shift of -CN stretching vibration induced by halothane arises from an indirect effect, namely an induced change in the electrostatic protein environment averaged over the four probe oscillators, rather than a direct interaction with the oscillators. hbAP-PheCN therefore provides a successful template for extending these investigations of the interactions of halothane with the model membrane protein via vibrational spectroscopy, using cyano-alanine residues to form the

  4. Passive Vibration Reduction with Silicone Springs and Dynamic Absorber

    NASA Astrophysics Data System (ADS)

    Lee, Ji-hoon; Dong, Yanlu; Lee, Moon G.

    In the precision manufacturing field, the major structural components are often made of rigid and massive elements. Those mechanisms are so fluctuated by swaying of building and resonating of ground floor that the precision gets lower. As a result, quality of products is declined. So far, to minimize the influences of result from external irregular vibration, various technical methods of the absorbing vibration are used. For example, vibration isolation table which use air damper and heavy granite surface plate are used. But, these devices need high cost and low mobility. In this paper, our target is to analyze the external vibration and then to develop a mechanism which is able to reduce the effect. It is also able to be produced at a lower cost. Firstly, a silicone support is proposed as a simple vibration isolating mechanism. Swaying and resonating of a building have 2∼4 Hz vibrating frequency when a person is running on a treadmill, similar phenomena happen. Therefore, the supports are mounted under the running pad of a treadmill. This is a passive vibration isolator. The support is designed to have low stiffness and high deformation to isolate and absorb the vibration. As a result, it reduces the peak amplitude of vibration by about 80%. Secondly, a dynamic vibration absorber is developed to minimize the repetitive vibration. The absorber has a fundamental resonating frequency by its spring and mass. The resonating frequency is designed to have close value to the vibrating frequency of the treadmill. The length of beam can be adjusted to have variable resonance according to the external vibration. This absorber also reduces vibration by 84%. The passive vibration isolator and dynamic vibration absorber can be applied to precision equipments with repetitive motion or with disturbance of swaying of building.

  5. Characterization of the molecular structure and mechanical properties of polymer surfaces and protein/polymer interfaces by sum frequency generation vibrational spectroscopy and atomic force microscopy

    SciTech Connect

    Koffas, Telly Stelianos

    2004-01-01

    Sum frequency generation (SFG) vibrational spectroscopy, atomic force microscopy (AFM), and other complementary surface-sensitive techniques have been used to study the surface molecular structure and surface mechanical behavior of biologically-relevant polymer systems. SFG and AFM have emerged as powerful analytical tools to deduce structure/property relationships, in situ, for polymers at air, liquid and solid interfaces. The experiments described in this dissertation have been performed to understand how polymer surface properties are linked to polymer bulk composition, substrate hydrophobicity, changes in the ambient environment (e.g., humidity and temperature), or the adsorption of macromolecules. The correlation of spectroscopic and mechanical data by SFG and AFM can become a powerful methodology to study and engineer materials with tailored surface properties. The overarching theme of this research is the interrogation of systems of increasing structural complexity, which allows us to extend conclusions made on simpler model systems. We begin by systematically describing the surface molecular composition and mechanical properties of polymers, copolymers, and blends having simple linear architectures. Subsequent chapters focus on networked hydrogel materials used as soft contact lenses and the adsorption of protein and surfactant at the polymer/liquid interface. The power of SFG is immediately demonstrated in experiments which identify the chemical parameters that influence the molecular composition and ordering of a polymer chain's side groups at the polymer/air and polymer/liquid interfaces. In general, side groups with increasingly greater hydrophobic character will be more surface active in air. Larger side groups impose steric restrictions, thus they will tend to be more randomly ordered than smaller hydrophobic groups. If exposed to a hydrophilic environment, such as water, the polymer chain will attempt to orient more of its hydrophilic groups to the

  6. Portable vibration exciter

    NASA Technical Reports Server (NTRS)

    Beecher, L. C.; Williams, F. T.

    1970-01-01

    Gas-driven vibration exciter produces a sinusoidal excitation function controllable in frequency and in amplitude. It allows direct vibration testing of components under normal loads, removing the possibility of component damage due to high static pressure.

  7. Do Scaphoideus titanus (Hemiptera: Cicadellidae) nymphs use vibrational communication?

    NASA Astrophysics Data System (ADS)

    Chuche, Julien; Thiéry, Denis; Mazzoni, Valerio

    2011-07-01

    Small Auchenorrhyncha use substrate-borne vibrations to communicate. Although this behaviour is well known in adult leafhoppers, so far no studies have been published on nymphs. Here we checked the occurrence of vibrational communication in Scaphoideus titanus (Hemiptera: Cicadellidae) nymphs as a possible explanation of their aggregative distributions on host plants. We studied possible vibratory emissions of isolated and grouped nymphs, as well as their behavioural responses to vibration stimuli that simulated presence of conspecifics, to disturbance noise, white noise and predator spiders. None of our synthetic stimuli or pre-recorded substrate vibrations from nymphs elicited specific vibration responses and only those due to grooming or mechanical contacts of the insect with the leaf were recorded. Thus, S. titanus nymphs showed to not use species-specific vibrations neither for intra- nor interspecific communication and also did not produce alarm vibrations when facing potential predators. We conclude that their aggregative behaviour is independent from a vibrational communication.

  8. Vibrational relaxation of anharmonic oscillators in expanding flows

    NASA Technical Reports Server (NTRS)

    Ruffin, Stephen M.; Park, Chul

    1992-01-01

    Although the Landau-Teller vibrational model accurately predicts vibrational excitation process in post-shock and compressing flows, it under-predicts the rate of de-excitation in cooling and expanding flows. In the present paper, detailed calculations of the vibrational relaxation process of N2 and CO in cooling flows are conducted. A coupled set of vibrational transition rate equations and quasi-one-dimensional fluid dynamic equations is solved. Multiple quantum level transition rates are computed using SSH theory. The SSH transition rate results are compared with available experimental data and other theoretical models. Vibration-vibration exchange collisions are responsible for some vibrational relaxation acceleration in situations of high vibrational temperature and low translational temperature. The present results support the relaxation mechanisms proposed by Bray and by Treanor Rich and Rehm.

  9. Passively damped vibration welding system and method

    DOEpatents

    Tan, Chin-An; Kang, Bongsu; Cai, Wayne W.; Wu, Tao

    2013-04-02

    A vibration welding system includes a controller, welding horn, an anvil, and a passive damping mechanism (PDM). The controller generates an input signal having a calibrated frequency. The horn vibrates in a desirable first direction at the calibrated frequency in response to the input signal to form a weld in a work piece. The PDM is positioned with respect to the system, and substantially damps or attenuates vibration in an undesirable second direction. A method includes connecting the PDM having calibrated properties and a natural frequency to an anvil of an ultrasonic welding system. Then, an input signal is generated using a weld controller. The method includes vibrating a welding horn in a desirable direction in response to the input signal, and passively damping vibration in an undesirable direction using the PDM.

  10. Tunable Passive Vibration Suppressor

    NASA Technical Reports Server (NTRS)

    Boechler, Nicholas (Inventor); Dillon, Robert Peter (Inventor); Daraio, Chiara (Inventor); Davis, Gregory L. (Inventor); Shapiro, Andrew A. (Inventor); Borgonia, John Paul C. (Inventor); Kahn, Daniel Louis (Inventor)

    2016-01-01

    An apparatus and method for vibration suppression using a granular particle chain. The granular particle chain is statically compressed and the end particles of the chain are attached to a payload and vibration source. The properties of the granular particles along with the amount of static compression are chosen to provide desired filtering of vibrations.

  11. Hermetically sealed vibration damper

    NASA Technical Reports Server (NTRS)

    Wheatley, D. G.

    1969-01-01

    Simple fluidic vibration damper for installation at each pivotal mounting between gimbals isolates inertial measuring units from external vibration and other disruptive forces. Installation between each of the three gimbal axes can dampen vibration and shock in any direction while permitting free rotation of the gimbals.

  12. Vibrational spectra of cysteine zwitterion and mechanism of its formation: bulk and specific solvent effects and geometry optimization in aqueous media.

    PubMed

    Tiwari, Saumya; Mishra, P C

    2009-08-15

    Vibrational spectrum of the zwitterionic (Z)-forms of cysteine has been studied considering full geometry optimization under the bulk solvent effect of aqueous media combined with the solvent effect of up to three specific water molecules. The tautomerization barrier energy of the molecule from its normal (N) to the Z form has also been obtained. Geometry optimization was performed at the B3LYP/AUG-cc-pVDZ level which was followed by single point energy calculations at the MP2/AUG-cc-pVDZ level of theory in both gas phase and aqueous media. Transition states (TS) were located between the N and Z-forms of cysteine complexed with one to three water molecules and also without any complexed water molecule. The bulk solvent effect of aqueous media was treated using the integral equation formalism of the polarizable continuum model (IEF-PCM). It has been found that the barrier energy decreases with the increasing number of complexed water molecules significantly. Two conformers (A, B) of Z-cysteine are found to have comparable stabilities. It is shown that agreement between the experimentally observed and our calculated vibrational frequencies for Z-cysteine, at the present level of treatment, is improved significantly for 22 out of 27 frequencies. For these 22 frequencies, for the more stable conformer (A) of Z-cysteine, the rms value of differences between our calculated and experimentally observed frequencies reduces from 22 to 11 cm(-1) in going from 0 to 3 complexed water molecules. Certain vibrational frequencies have been identified with the help of which the conformers A and B of Z cysteine can be identified.

  13. Quantum mechanical calculations of vibrational population inversion in chemical reactions - Numerically exact L-squared-amplitude-density study of the H2Br reactive system

    NASA Technical Reports Server (NTRS)

    Zhang, Y. C.; Zhang, J. Z. H.; Kouri, D. J.; Haug, K.; Schwenke, D. W.

    1988-01-01

    Numerically exact, fully three-dimensional quantum mechanicl reactive scattering calculations are reported for the H2Br system. Both the exchange (H + H-prime Br to H-prime + HBr) and abstraction (H + HBR to H2 + Br) reaction channels are included in the calculations. The present results are the first completely converged three-dimensional quantum calculations for a system involving a highly exoergic reaction channel (the abstraction process). It is found that the production of vibrationally hot H2 in the abstraction reaction, and hence the extent of population inversion in the products, is a sensitive function of initial HBr rotational state and collision energy.

  14. Tunneling ionization of vibrationally excited nitrogen molecules

    NASA Astrophysics Data System (ADS)

    Kornev, Aleksei S.; Zon, Boris A.

    2015-09-01

    Ionization of molecular nitrogen plays an important role in the process of light-filament formation in air. In the present paper we theoretically investigated tunneling ionization of the valence 3 σg and 1 πu shells in a N2 molecule using a strong near-infrared laser field. This research is based on our previously proposed theory of anti-Stokes-enhanced tunneling ionization with quantum accounting for the vibrationally excited states of the molecules [A. S. Kornev and B. A. Zon, Phys. Rev. A 86, 043401 (2012), 10.1103/PhysRevA.86.043401]. We demonstrated that if the N2 molecule is ionized from the ground vibrational state, then the contribution of the 1 πu orbital is 0.5%. In contrast, for vibrationally excited states with a certain angle between the light polarization vector and the molecule axis, both shells can compete and even reverse their contributions due to the anti-Stokes mechanism. The structure constants of molecular orbitals are extracted from numerical solutions to the Hartree-Fock equations. This approach correctly takes into account the exchange interaction. Quantum consideration of vibrational motion results in the occurrence of the critical vibrational state, the tunneling ionization from which has the maximum rate. The numbers of the critical vibrational states are different for different valence shells. In addition, quantum description of vibrations changes the rate of ionization from the ground vibrational state by 20%-40% in comparison with the quasiclassical results.

  15. Vibration Testing of Stirling Power Convertors

    NASA Technical Reports Server (NTRS)

    Hughes, Bill; Goodnight, Thomas; McNelis, Mark E.; Suarez, Vicente J.; Schreiber, Jeff; Samorezov, Sergey

    2003-01-01

    to supply on- board electric spacecraft power for future NASA Deep-Space Missions, performing as an attractive alternative to Radioisotope Thermoelectric Generators (RTG). Usage of the Stirling technology is also being considered as the electric power source for future Mars rovers, whose mission profiles may exclude the use of photovoltaic power systems (such as exploring at high Martian latitudes or for missions of lengthy durations). GRC s Thermo-Mechanical Systems Branch (5490) provides Stirling technology expertise under a Space Act Agreement with the DOE. Additional vibration testing, by GRC s Structural Systems Dynamics Branch (7733, is planned to continue to demonstrate the Stirling power system s vibration capability as its technology and flight system designs progress.

  16. [Clinical aspects of vibration disease caused by general vibration].

    PubMed

    Tarasova, L A; Lagutina, G N; Komleva, L M; Suvorov, G A; Starozhuk, I A; Filatova, O V

    1989-01-01

    The clinico-functional examination of agricultural machine-operators, truck drivers, excavator and boring machine operators revealed that, under low-frequency general vibration, polymorphic pathologic changes occur in human organism. Those include peripheral vascular and neuritic disorders and changes in the vertebral column. The most peculiar symptoms of VD are dealt with. The data obtained show to the importance of further elaboration of differential diagnostic criteria of VD, specifying its pathogenic mechanisms and prevention measures working out.

  17. Vibration safety limits for magnetic resonance elastography.

    PubMed

    Ehman, E C; Rossman, P J; Kruse, S A; Sahakian, A V; Glaser, K J

    2008-02-21

    Magnetic resonance elastography (MRE) has been demonstrated to have potential as a clinical tool for assessing the stiffness of tissue in vivo. An essential step in MRE is the generation of acoustic mechanical waves within a tissue via a coupled mechanical driver. Motivated by an increasing volume of human imaging trials using MRE, the objectives of this study were to audit the vibration amplitude of exposure for our IRB-approved human MRE studies, to compare these values to a conservative regulatory standard for vibrational exposure and to evaluate the applicability and implications of this standard for MRE. MRE displacement data were examined from 29 MRE exams, including the liver, brain, kidney, breast and skeletal muscle. Vibrational acceleration limits from a European Union directive limiting occupational exposure to whole-body and extremity vibrations (EU 2002/44/EC) were adjusted for time and frequency of exposure, converted to maximum displacement values and compared to the measured in vivo displacements. The results indicate that the vibrational amplitudes used in MRE studies are below the EU whole-body vibration limit, and the EU guidelines represent a useful standard that could be readily accepted by Institutional Review Boards to define standards for vibrational exposures for MRE studies in humans.

  18. Vibration energy harvester optimization using artificial intelligence

    NASA Astrophysics Data System (ADS)

    Hadas, Z.; Ondrusek, C.; Kurfurst, J.; Singule, V.

    2011-06-01

    This paper deals with an optimization study of a vibration energy harvester. This harvester can be used as autonomous source of electrical energy for remote or wireless applications, which are placed in environment excited by ambient mechanical vibrations. The ambient energy of vibrations is usually on very low level but the harvester can be used as alternative source of energy for electronic devices with an expected low level of power consumption of several mW. The optimized design of the vibration energy harvester was based on previous development and the sensitivity of harvester design was improved for effective harvesting from mechanical vibrations in aeronautic applications. The vibration energy harvester is a mechatronic system which generates electrical energy from ambient vibrations due to precision tuning up generator parameters. The optimization study for maximization of harvested power or minimization of volume and weight are the main goals of our development. The optimization study of such complex device is complicated therefore artificial intelligence methods can be used for tuning up optimal harvester parameters.

  19. Vibration safety limits for magnetic resonance elastography

    NASA Astrophysics Data System (ADS)

    Ehman, E. C.; Rossman, P. J.; Kruse, S. A.; Sahakian, A. V.; Glaser, K. J.

    2008-02-01

    Magnetic resonance elastography (MRE) has been demonstrated to have potential as a clinical tool for assessing the stiffness of tissue in vivo. An essential step in MRE is the generation of acoustic mechanical waves within a tissue via a coupled mechanical driver. Motivated by an increasing volume of human imaging trials using MRE, the objectives of this study were to audit the vibration amplitude of exposure for our IRB-approved human MRE studies, to compare these values to a conservative regulatory standard for vibrational exposure and to evaluate the applicability and implications of this standard for MRE. MRE displacement data were examined from 29 MRE exams, including the liver, brain, kidney, breast and skeletal muscle. Vibrational acceleration limits from a European Union directive limiting occupational exposure to whole-body and extremity vibrations (EU 2002/44/EC) were adjusted for time and frequency of exposure, converted to maximum displacement values and compared to the measured in vivo displacements. The results indicate that the vibrational amplitudes used in MRE studies are below the EU whole-body vibration limit, and the EU guidelines represent a useful standard that could be readily accepted by Institutional Review Boards to define standards for vibrational exposures for MRE studies in humans.

  20. Anti-vibration gloves?

    PubMed

    Hewitt, Sue; Dong, Ren G; Welcome, Daniel E; McDowell, Thomas W

    2015-03-01

    For exposure to hand-transmitted vibration (HTV), personal protective equipment is sold in the form of anti-vibration (AV) gloves, but it remains unclear how much these gloves actually reduce vibration exposure or prevent the development of hand-arm vibration syndrome in the workplace. This commentary describes some of the issues that surround the classification of AV gloves, the assessment of their effectiveness and their applicability in the workplace. The available information shows that AV gloves are unreliable as devices for controlling HTV exposures. Other means of vibration control, such as using alternative production techniques, low-vibration machinery, routine preventative maintenance regimes, and controlling exposure durations are far more likely to deliver effective vibration reductions and should be implemented. Furthermore, AV gloves may introduce some adverse effects such as increasing grip force and reducing manual dexterity. Therefore, one should balance the benefits of AV gloves and their potential adverse effects if their use is considered.

  1. A passive vibration-cancelling isolation mount

    NASA Technical Reports Server (NTRS)

    Sykes, Alan O.

    1987-01-01

    An analysis of an idealized passive vibration-cancelling two-terminal mount with one degree of freedom at each mechanical terminal isolating a nonrigid machine from a nonrigid foundation is presented. To evaluate a vibration-cancelling (VC) mount, its effectiveness as a function of frequency is compared with the effectiveness of both conventional and compound mounts isolating a rigid machine from a nonrigid foundation. The comparisons indicate that a carefully designed and manufactured VC mount should provide substantially greater vibration reduction at its cancellation frequency than either a conventional or compound mount having the same low frequency stiffness, i.e., stiffness at the natural frequency of the machine mount system.

  2. The history of random vibrations through 1958

    NASA Astrophysics Data System (ADS)

    Paez, Thomas L.

    2006-11-01

    Interest in the analysis of random vibrations of mechanical systems started to grow about a half century ago in response to the need for a theory that could accurately predict structural response to jet engine noise and missile launch-induced environments. However, the work that enabled development of the theory of random vibrations started about a half century earlier. This paper discusses contributions to the theory of random vibrations from the time of Einstein to the time of an MIT workshop that was organized by Crandall in 1958.

  3. The nonlinear piezoelectric tuned vibration absorber

    NASA Astrophysics Data System (ADS)

    Soltani, P.; Kerschen, G.

    2015-07-01

    This paper proposes a piezoelectric vibration absorber, termed the nonlinear piezoelectric tuned vibration absorber (NPTVA), for the mitigation of nonlinear resonances of mechanical systems. The new feature of the NPTVA is that its nonlinear restoring force is designed according to a principle of similarity, i.e., the NPTVA should be an electrical analog of the nonlinear host system. Analytical formulas for the NPTVA parameters are derived using the homotopy perturbation method. Doing so, a nonlinear generalization of Den Hartog’s equal-peak tuning rule is developed for piezoelectric vibration absorbers.

  4. Magnetic bearings for vibration control

    NASA Technical Reports Server (NTRS)

    Schweitzer, G.

    1985-01-01

    A survey is presented on the research of the Institute of Mechanics of the ETH in the field of vibration control with magnetic bearings. It shows a method for modelling an elastic rotor so that it can be represented by a low order model amenable to control techniques. It deals with the control law and spill-over effects, and it also discusses experimental results for an active resonance damper.

  5. Active Inertial Vibration Isolators And Dampers

    NASA Technical Reports Server (NTRS)

    Laughlin, Darren; Blackburn, John; Smith, Dennis

    1994-01-01

    Report describes development of active inertial vibration isolators and dampers in which actuators electromagnet coils moving linearly within permanent magnetic fields in housings, somewhat as though massive, low-frequency voice coils in loudspeakers. Discusses principle of operation, electrical and mechanical considerations in design of actuators, characteristics of accelerometers, and frequency responses of control systems. Describes design and performance of one- and three-degree-of-freedom vibration-suppressing system based on concept.

  6. Speech Intelligibility with a Bone Vibrator

    DTIC Science & Technology

    2005-04-01

    sciences cognitives BP 73, 91223 Brétigny sur Orge, France lpellieux@imassa.fr ABSTRACT The FELIN project (Foot soldier with Integrated Equipment...must be made to reach levels allowing for intelligibility in noisy environments (notably for use in armoured vehicles). INTRODUCTION Project FELIN ...contact with the skin . Mechanical vibrations are transmitted through the skin , towards skull bones. Parts of the vibrations are channeled through

  7. Vibrational lifetimes of protein amide modes

    SciTech Connect

    Peterson, K.A.; Rella, C.A.

    1995-12-31

    Measurement of the lifetimes of vibrational modes in proteins has been achieved with a single frequency infrared pump-probe technique using the Stanford Picosecond Free-electron Laser, These are the first direct measurements of vibrational dynamics in the polyamide structure of proteins. In this study, modes associated with the protein backbone are investigated. Results for the amide I band, which consists mainly of the stretching motion of the carbonyl unit of the amide linkage, show that relaxation from the first vibrational excited level (v=1) to the vibrational ground state (v=0) occurs within 1.5 picoseconds with apparent first order kinetics. Comparison of lifetimes for myoglobin and azurin, which have differing secondary structures, show a small but significant difference. The lifetime for the amide I band of myoglobin is 300 femtoseconds shorter than for azurin. Further measurements are in progress on other backbone vibrational modes and on the temperature dependence of the lifetimes. Comparison of vibrational dynamics for proteins with differing secondary structure and for different vibrational modes within a protein will lead to a greater understanding of energy transfer and dissipation in biological systems. In addition, these results have relevance to tissue ablation studies which have been conducted with pulsed infrared lasers. Vibrational lifetimes are necessary for calculating the rate at which the energy from absorbed infrared photons is converted to equilibrium thermal energy within the irradiated volume. The very fast vibrational lifetimes measured here indicate that mechanisms which involve direct vibrational up-pumping of the amide modes with consecutive laser pulses, leading to bond breakage or weakening, are not valid.

  8. Nonlinear Vibrational Spectroscopy: a Method to Study Vibrational Self-Trapping

    NASA Astrophysics Data System (ADS)

    Hamm, Peter; Edler, Julian

    We review the capability of nonlinear vibrational spectroscopy to study vibrational self-trapping in hydrogen-bonded molecular crystals. For that purpose, the two relevant coupling mechanisms, excitonic coupling and nonlinear exciton-phonon coupling, are first introduced separately using appropriately chosen molecular systems as examples. Both coupling mechanisms are subsequently combined, yielding vibrational selftrapping. The experiments unambiguously prove that both the N-H and the C=O band of crystalline acetanilide (ACN), a model system for proteins, show vibrational self-trapping. The C=O band is self-trapped only at low enough temperature, while thermally induced disorder destroys the mechanism at room temperature. The binding energy of the N-H band, on the other hand, is considerably larger and self-trapping survives thermal fluctuations even at room temperature.

  9. Vibrating fuel grapple. [LMFBR

    DOEpatents

    Chertock, A.J.; Fox, J.N.; Weissinger, R.B.

    A reactor refueling method is described which utilizes a vibrating fuel grapple for removing spent fuel assemblies from a reactor core. It incorporates a pneumatic vibrator in the grapple head which allows additional withdrawal capability without exceeding the allowable axial force limit. The only moving part in the vibrator is a steel ball, pneumatically driven by a gas, such as argon, around a track, with centrifugal force created by the ball being transmitted through the grapple to the assembly handling socket.

  10. Vibrating fuel grapple

    DOEpatents

    Chertock, deceased, Alan J.; Fox, Jack N.; Weissinger, Robert B.

    1982-01-01

    A reactor refueling method utilizing a vibrating fuel grapple for removing spent fuel assemblies from a reactor core which incorporates a pneumatic vibrator in the grapple head, enabling additional withdrawal capability without exceeding the allowable axial force limit. The only moving part in the vibrator is a steel ball, pneumatically driven by a gas, such as argon, around a track, with centrifugal force created by the ball being transmitted through the grapple to the assembly handling socket.

  11. Driving an Active Vibration Balancer to Minimize Vibrations at the Fundamental and Harmonic Frequencies

    NASA Technical Reports Server (NTRS)

    Holliday, Ezekiel S. (Inventor)

    2014-01-01

    Vibrations of a principal machine are reduced at the fundamental and harmonic frequencies by driving the drive motor of an active balancer with balancing signals at the fundamental and selected harmonics. Vibrations are sensed to provide a signal representing the mechanical vibrations. A balancing signal generator for the fundamental and for each selected harmonic processes the sensed vibration signal with adaptive filter algorithms of adaptive filters for each frequency to generate a balancing signal for each frequency. Reference inputs for each frequency are applied to the adaptive filter algorithms of each balancing signal generator at the frequency assigned to the generator. The harmonic balancing signals for all of the frequencies are summed and applied to drive the drive motor. The harmonic balancing signals drive the drive motor with a drive voltage component in opposition to the vibration at each frequency.

  12. Shock and vibration digest. Volume 15, Number 6

    SciTech Connect

    Nagle-Eshleman, J.

    1983-06-01

    Partial Contents: Nonlinear Vibrations of Plates--a Review; Literature Review--Mechanical signature analysis, and Static and dynamic behavior of mechanical components assoicated with electrical transmission lines; and Abstracts from the Current Literature.

  13. Vibrational energy transport in the presence of intrasite vibrational energy redistribution.

    PubMed

    Schade, Marco; Hamm, Peter

    2009-07-28

    The mechanism of vibrational energy flow is studied in a regime where a diffusion equation is likely to break down, i.e., on length scales of a few chemical bonds and time scales of a few picoseconds. This situation occurs, for example, during photochemical reactions in protein environment. To that end, a toy model is introduced that on the one hand mimics the vibrational normal mode distribution of proteins, and on the other hand is small enough to numerically time propagate the system fully quantum mechanically. Comparing classical and quantum-mechanical results, the question is addressed to what extent the classical nature of the molecular dynamics simulations (which would be the only choice for the modeling of a real molecular system) affects the vibrational energy flow mechanism. Small differences are found which are due to the different ways classical and quantum mechanics distribute thermal energy over vibrational modes. In either case, a ballistic and a diffusive phase can be identified. For these small length and time scales, the latter is governed by intrasite vibrational energy redistribution, since vibrational energy does not necessarily thermalize completely within individual peptide units. Overall, the model suggests a picture that unifies many of the observations made recently in experiments.

  14. Frequency adjustable MEMS vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Podder, P.; Constantinou, P.; Amann, A.; Roy, S.

    2016-10-01

    Ambient mechanical vibrations offer an attractive solution for powering the wireless sensor nodes of the emerging “Internet-of-Things”. However, the wide-ranging variability of the ambient vibration frequencies pose a significant challenge to the efficient transduction of vibration into usable electrical energy. This work reports the development of a MEMS electromagnetic vibration energy harvester where the resonance frequency of the oscillator can be adjusted or tuned to adapt to the ambient vibrational frequency. Micro-fabricated silicon spring and double layer planar micro-coils along with sintered NdFeB micro-magnets are used to construct the electromagnetic transduction mechanism. Furthermore, another NdFeB magnet is adjustably assembled to induce variable magnetic interaction with the transducing magnet, leading to significant change in the spring stiffness and resonance frequency. Finite element analysis and numerical simulations exhibit substantial frequency tuning range (25% of natural resonance frequency) by appropriate adjustment of the repulsive magnetic interaction between the tuning and transducing magnet pair. This demonstrated method of frequency adjustment or tuning have potential applications in other MEMS vibration energy harvesters and micromechanical oscillators.

  15. MEMS reliability in a vibration environment

    SciTech Connect

    TANNER,DANELLE M.; WALRAVEN,JEREMY A.; HELGESEN,KAREN SUE; IRWIN,LLOYD W.; GREGORY,DANNY LYNN; STAKE,JOHN R.; SMITH,NORMAN F.

    2000-02-03

    MicroElectricalMechanical Systems (MEMS) were subjected to a vibration environment that had a peak acceleration of 120g and spanned frequencies from 20 to 2000 Hz. The device chosen for this test was a surface-micromachined microengine because it possesses many elements (springs, gears, rubbing surfaces) that may be susceptible to vibration. The microengines were unpowered during the test. The authors observed 2 vibration-related failures and 3 electrical failures out of 22 microengines tested. Surprisingly, the electrical failures also arose in four microengines in the control group indicating that they were not vibration related. Failure analysis revealed that the electrical failures were due to shorting of stationary comb fingers to the ground plane.

  16. Further understanding of the adsorption mechanism of N719 sensitizer on anatase TiO2 films for DSSC applications using vibrational spectroscopy and confocal Raman imaging.

    PubMed

    Lee, Kee Eun; Gomez, Mario A; Elouatik, Samir; Demopoulos, George P

    2010-06-15

    Vibrational spectroscopic studies of N719 dye-adsorbed TiO(2) films have been carried out by using SERRS, ATR-FTIR, and confocal Raman imaging. The high wavenumber region (3000-4000 cm(-1)) of dye adsorbed TiO(2) is analyzed via Raman and IR spectroscopy to investigate the role of surface hydroxyl groups in the anchoring mode. As a complementary technique, confocal Raman imaging is employed to study the distribution features of key dye groups (COO-, bipyridine, and C=O) on the anatase surface. Sensitized TiO(2) films made from two different nanocrystalline anatase powders are investigated: a commercial one (Dyesol) and our synthetic variety produced through aqueous synthesis. It is proposed the binding of the N719 dye to TiO(2) to occur through two neighboring carboxylic acid/carboxylate groups via a combination of bidentate-bridging and H-bonding involving a donating group from the N719 (and/or Ti-OH) units and acceptor from the Ti-OH (and/or N719) groups. The Raman imaging distribution of COO(-)(sym) on TiO(2) was used to show the covalent bonding, while the distribution of C=O mode was applied to observe the electrostatically bonded groups.

  17. Coherent acoustic vibrations in silicon submicron spiral arrays

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Masashi; Liu, Jianxun; Ye, Dexian; Lu, Toh-Ming

    2009-08-01

    Mechanical properties of complex silicon submicron structures have been studied both experimentally and theoretically using time resolved ultrafast spectroscopy and finite element analysis. Periodic and random arrays of single-turned silicon submircron spirals were grown using the oblique angle deposition technique. Resonant vibrational modes of the submicron spirals were coherently excited by femtosecond laser pulses. Excitation of multiple harmonics of the resonant vibrations has been observed, and the mode patterns of the excited vibrations in the submicron spirals have been calculated.

  18. Multiple direction vibration fixture

    DOEpatents

    Cericola, Fred; Doggett, James W.; Ernest, Terry L.; Priddy, Tommy G.

    1991-01-01

    An apparatus for simulating a rocket launch environment on a test item undergoing centrifuge testing by subjecting the item simultaneously or separately to vibration along an axis of centripetal force and along an axis perpendicular to the centripetal force axis. The apparatus includes a shaker motor supported by centrifuge arms and a right angle fixture pivotally connected to one of the shaker motor mounts. When the shaker motor vibrates along the centripetal force axis, the vibrations are imparted to a first side of the right angle fixture. The vibrations are transmitted 90 degrees around the pivot and are directed to a second side of the right angle fixture which imparts vibrations perpendicular to the centripetal force axis. The test item is in contact with a third side of the right angle fixture and receives both centripetal-force-axis vibrations and perpendicular axis vibrations simultaneously. A test item can be attached to the third side near the flexible coupling or near the air bag to obtain vibrations along the centripetal force axis or transverse to the centripetal force axis.

  19. [Vibration on agricultural tractors].

    PubMed

    Peretti, Alessandro; Delvecchio, Simone; Bonomini, Francesco; di Bisceglie, Anita Pasqua; Colosio, Claudio

    2013-01-01

    In the article, details related to the diffusion of agricultural tractors in Italy are given and considerations about the effects of vibration on operators, the sources of vibration and suggestions to reduce them are presented. The acceleration values observed in Italy amongst 244 tractors and levels of worker exposure are shown by means of histograms. The relevant data variability is discussed.

  20. Vibrational Schroedinger Cats

    NASA Technical Reports Server (NTRS)

    Kis, Z.; Janszky, J.; Vinogradov, An. V.; Kobayashi, T.

    1996-01-01

    The optical Schroedinger cat states are simple realizations of quantum states having nonclassical features. It is shown that vibrational analogues of such states can be realized in an experiment of double pulse excitation of vibrionic transitions. To track the evolution of the vibrational wave packet we derive a non-unitary time evolution operator so that calculations are made in a quasi Heisenberg picture.

  1. Vibration control in accelerators

    SciTech Connect

    Montag, C.

    2011-01-01

    In the vast majority of accelerator applications, ground vibration amplitudes are well below tolerable magnet jitter amplitudes. In these cases, it is necessary and sufficient to design a rigid magnet support structure that does not amplify ground vibration. Since accelerator beam lines are typically installed at an elevation of 1-2m above ground level, special care has to be taken in order to avoid designing a support structure that acts like an inverted pendulum with a low resonance frequency, resulting in untolerable lateral vibration amplitudes of the accelerator components when excited by either ambient ground motion or vibration sources within the accelerator itself, such as cooling water pumps or helium flow in superconducting magnets. In cases where ground motion amplitudes already exceed the required jiter tolerances, for instance in future linear colliders, passive vibration damping or active stabilization may be considered.

  2. Vibration in textile mills.

    PubMed

    Sorainen, E

    1988-12-01

    The vibration in nine halls of the six weaving mills was measured in 1978-80. The measurements were taken at regular intervals in the working area of the weavers, which was the wooden support attached to the machine or the floor of the textile mill. The accelerometer was mounted with screws onto the working area, and all vibration samples were analyzed immediately, in situ. The vibration of the floor was tangent to or exceeded slightly the "reduced comfort boundary" specified in International Standard ISO 2631/1 (1985) only in the areas where the floor was not against the ground. The greatest amount of vibration occurred on the supports which had been attached to the machines. On these supports the vibration in places exceeded the "fatigue-decreased proficiency boundary."

  3. Vibrational dephasing in matter-wave interferometers

    NASA Astrophysics Data System (ADS)

    Rembold, A.; Schütz, G.; Röpke, R.; Chang, W. T.; Hwang, I. S.; Günther, A.; Stibor, A.

    2017-03-01

    Matter-wave interferometry is a highly sensitive tool to measure small perturbations in a quantum system. This property allows the creation of precision sensors for dephasing mechanisms such as mechanical vibrations. They are a challenge for phase measurements under perturbing conditions that cannot be perfectly decoupled from the interferometer, e.g. for mobile interferometric devices or vibrations with a broad frequency range. Here, we demonstrate a method based on second-order correlation theory in combination with Fourier analysis, to use an electron interferometer as a sensor that precisely characterizes the mechanical vibration spectrum of the interferometer. Using the high spatial and temporal single-particle resolution of a delay line detector, the data allows to reveal the original contrast and spatial periodicity of the interference pattern from ‘washed-out’ matter-wave interferograms that have been vibrationally disturbed in the frequency region between 100 and 1000 Hz. Other than with electromagnetic dephasing, due to excitations of higher harmonics and additional frequencies induced from the environment, the parts in the setup oscillate with frequencies that can be different to the applied ones. The developed numerical search algorithm is capable to determine those unknown oscillations and corresponding amplitudes. The technique can identify vibrational dephasing and decrease damping and shielding requirements in electron, ion, neutron, atom and molecule interferometers that generate a spatial fringe pattern on the detector plane.

  4. Reduced-vibration tube array

    DOEpatents

    Bruck, Gerald J.; Bartolomeo, Daniel R.

    2004-07-20

    A reduced-vibration tube array is disclosed. The array includes a plurality of tubes in a fixed arrangement and a plurality of damping members positioned within the tubes. The damping members include contoured interface regions characterized by bracing points that selectively contact the inner surface of an associated tube. Each interface region is sized and shaped in accordance with the associated tube, so that the damping member bracing points are spaced apart a vibration-reducing distance from the associated tube inner surfaces at equilibrium. During operation, mechanical interaction between the bracing points and the tube inner surfaces reduces vibration by a damage-reducing degree. In one embodiment, the interface regions are serpentine shaped. In another embodiment, the interface regions are helical in shape. The interface regions may be simultaneously helical and serpentine in shape. The damping members may be fixed within the associated tubes, and damping member may be customized several interference regions having attributes chosen in accordance with desired flow characteristics and associated tube properties.

  5. Acoustic vibration can enhance bacterial biofilm formation.

    PubMed

    Murphy, Mark F; Edwards, Thomas; Hobbs, Glyn; Shepherd, Joanna; Bezombes, Frederic

    2016-12-01

    This paper explores the use of low-frequency-low-amplitude acoustic vibration on biofilm formation. Biofilm development is thought to be governed by a diverse range of environmental signals and much effort has gone into researching the effects of environmental factors including; nutrient availability, pH and temperature on the growth of biofilms. Many biofilm-forming organisms have evolved to thrive in mechanically challenging environments, for example soil yet, the effects of the physical environment on biofilm formation has been largely ignored. Exposure of Pseudomonas aeruginosa to vibration at 100, 800 and 1600 Hz for 48 h, resulted in a significant increase in biofilm formation compared with the control, with the greatest growth seen at 800 Hz vibration. The results also show that this increase in biofilm formation is accompanied with an increase in P. aeruginosa cell number. Acoustic vibration was also found to regulate the spatial distribution of biofilm formation in a frequency-dependent manner. Exposure of Staphylococcus aureus to acoustic vibration also resulted in enhanced biofilm formation with the greatest level of biofilm being formed following 48 h exposure at 1600 Hz. These results show that acoustic vibration can be used to control biofilm formation and therefore presents a novel and potentially cost effective means to manipulate the development and yield of biofilms in a range of important industrial and medical processes.

  6. Vibration sonoelastography and the detectability of lesions.

    PubMed

    Parker, K J; Fu, D; Graceswki, S M; Yeung, F; Levinson, S F

    1998-11-01

    Vibration sonoelastography has been developed for the detection of hard lesions in relatively soft tissue. The basic concept is to propagate low-amplitude and low-frequency shear waves (with displacements below 0.1 mm and frequencies typically below 1000 Hz) through deep organs, and displaying the vibration response in real-time using advanced color Doppler imaging techniques. A hard inhomogeneity, such as a tumor, will produce a localized disturbance in the vibration pattern, forming the basis for detection even when the tumor is isoechoic on B-scan images. This paper focuses on the important quantitative issues concerning the detectability or inherent contrast of lesions. The specific factors of lesion size, relative stiffness and vibration frequency are studied using theoretical models, finite element methods and experimental measurements on tissue-mimicking materials. The results indicate that detectability increases with vibration (shear wave) frequency; however, loss mechanisms ultimately limit the penetration of higher vibration frequencies (in the kHz range).

  7. On Kinetics Modeling of Vibrational Energy Transfer

    NASA Technical Reports Server (NTRS)

    Gilmore, John O.; Sharma, Surendra P.; Cavolowsky, John A. (Technical Monitor)

    1996-01-01

    Two models of vibrational energy exchange are compared at equilibrium to the elementary vibrational exchange reaction for a binary mixture. The first model, non-linear in the species vibrational energies, was derived by Schwartz, Slawsky, and Herzfeld (SSH) by considering the detailed kinetics of vibrational energy levels. This model recovers the result demanded at equilibrium by the elementary reaction. The second model is more recent, and is gaining use in certain areas of computational fluid dynamics. This model, linear in the species vibrational energies, is shown not to recover the required equilibrium result. Further, this more recent model is inconsistent with its suggested rate constants in that those rate constants were inferred from measurements by using the SSH model to reduce the data. The non-linear versus linear nature of these two models can lead to significant differences in vibrational energy coupling. Use of the contemporary model may lead to significant misconceptions, especially when integrated in computer codes considering multiple energy coupling mechanisms.

  8. Coal storage hopper with vibrating-screen agitator

    DOEpatents

    Daw, C.S.; Lackey, M.E.; Sy, R.L.

    1982-04-27

    The present invention is directed to a vibrating screen agitator in a coal storage hopper for assuring the uniform feed of coal having sufficient moisture content to effect agglomeration and bridging thereof in the coal hopper from the latter onto a conveyer mechanism. The vibrating scrren agitator is provided by a plurality of transversely oriented and vertically spaced apart screens in the storage hopper with a plurality of vertically oriented rods attached to the screens. The rods are vibrated to effect the vibration of the screens and the breaking up of agglomerates in the coal which might impede the uniform flow of the coal from the hopper onto a conveyer.

  9. The Shock and Vibration Digest, Volume 16, Number 10

    DTIC Science & Technology

    1984-10-01

    measurement and analysis; also vibration and include gears , bearing (fluid film and antifriction), shock environmental testing to prove survivability, shafts...vibration analysis of general equipment including the course are fundamental relationships, material bearings and gears using the time and frequency...September 16-20. 1985 Leszno, Poland INTERNATIONAL CONFERENCE ON ROTORDYNAMICS Applied Mechanics Institute, Technical University September 14-17, 1986 of

  10. Prediction of Radial Vibration in Switched Reluctance Machines

    SciTech Connect

    Lin, CJ; Fahimi, B

    2013-12-01

    Origins of vibration in switched reluctance machines (SRMs) are investigated. Accordingly, an input-output model based on the mechanical impulse response of the SRMis developed. The proposed model is derived using an experimental approach. Using the proposed approach, vibration of the stator frame is captured and experimentally verified.

  11. Random Vibrations: Assessment of the State of the Art

    SciTech Connect

    Paez, T.L.

    1999-02-23

    Random vibration is the phenomenon wherein random excitation applied to a mechanical system induces random response. We summarize the state of the art in random vibration analysis and testing, commenting on history, linear and nonlinear analysis, the analysis of large-scale systems, and probabilistic structural testing.

  12. Reduction of friction using piezoelectrically excited ultrasonic vibrations

    NASA Astrophysics Data System (ADS)

    Littmann, Walter; Storck, Heiner; Wallaschek, Joerg

    2001-07-01

    Piezoelectric materials are an important class of smart materials for the generation of mechanical ultrasonic vibrations. In industrial applications (for example ultrasonic cutting) the frictional contact of the vibrating tool with the workpiece is of special importance. A common observation at the contact zone is that frictional forces can be significantly reduced by superposition of ultrasonic vibrations. In this report we present a theoretical explanation for the reduction of friction. A basic system, consisting of a longitudinal ultrasonic vibrator sliding on a plane, is investigated. It is shown that a modification of Coulomb's friction law can be applied to this kind of vibrating friction contact. The macroscopically observed friction-force with ultrasonic vibration depends on the sliding velocity and the velocity of vibration: For sliding velocities higher than the vibration-amplitude the frictional force is not changed by vibration. But for small sliding velocities the friction-coefficient is significantly reduced and almost approaches zero for very slow sliding-velocity. The theoretical results were confirmed systematically by experimental investigations done on a specially designed test-rig. Energy considerations are used to calculate the ultrasonic energy which is required to achieve a prescribed reduction of the frictional forces. The model is also used for sensing the vibration-amplitude as well as the sliding-velocity without an additional sensor.

  13. Vibration and structureborne noise in space station

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.

    1986-01-01

    Analytical models and computer programs for structural response calculations under action of mechanical point loads were developed for single wall shells (composite or aluminum), double wall shells (composite or aluminum), and single wall or double wall circular plates (aluminum). The design configuration of the habitability modules of the space station concept are expected to be discretely stiffened cylindrical shells with truncated cone type end caps or flat but stiffened circular end plates. Analytical formulations and response calculations were performed for the case where the stiffened shell is represented by an orthotropic shell model. The natural frequencies can be calculated. For application to low frequency (below 1000Hz) vibrations and noise generation, such a model might be adequate to evaluate vibration and noise transmission characteristics of space station habitability modules. Parametric studies are now being performed to assess interior noise environment inside a habitability module to mechanically induced vibrations.

  14. A new method that indicates the peak stress of random vibration response

    NASA Astrophysics Data System (ADS)

    Yan, Yong; Xie, Peng; Xu, Zhen; Jin, Guang

    2012-09-01

    It is an important assessment targets that make a quantitative study of the peak stress of random vibration response during the mechanical properties design process of the space payload. Based on the equivalent of the destructive effect of the random vibration peak response and sine vibration response, the paper established the link between the two, obtained the sine vibration input function that equivalent to the destructive effect of the random vibration peak response. Considering the characteristic of the quantitative research that stress of sine vibration can be, the paper analyzed the stress of the sine vibration by the finite element method and indirectly accessed to the random vibration response peak stress which equivalent to the sine vibration destructive effect. This method worked very well to indicate the peak stress of random vibration response during the ground random vibration tests. The paper provided an effective means of predictive and validation method for the mechanical properties design and test during the ground random vibration test evaluation. The developments costs of the engineering can be significant saving and greatly shorten the development cycle by the method of the peak stress of random vibration response indicated during the ground tests. It is also helpful to improve the safety and reliability of the space load structure in order to avoid the failure or fatigue of the ground random vibration tests.

  15. Thermal Vibrational Convection in a Two-phase Stratified Liquid

    NASA Technical Reports Server (NTRS)

    Chang, Qingming; Alexander, J. Iwan D.

    2007-01-01

    The response of a two-phase stratified liquid system subject to a vibration parallel to an imposed temperature gradient is analyzed using a hybrid thermal lattice Boltzmann method (HTLB). The vibrations considered correspond to sinusoidal translations of a rigid cavity at a fixed frequency. The layers are thermally and mechanically coupled. Interaction between gravity-induced and vibration-induced thermal convection is studied. The ability of applied vibration to enhance the flow, heat transfer and interface distortion is investigated. For the range of conditions investigated, the results reveal that the effect of vibrational Rayleigh number and vibrational frequency on a two-phase stratified fluid system is much different than that for a single-phase fluid system. Comparisons of the response of a two-phase stratified fluid system with a single-phase fluid system are discussed.

  16. Plants respond to leaf vibrations caused by insect herbivore chewing.

    PubMed

    Appel, H M; Cocroft, R B

    2014-08-01

    Plant germination and growth can be influenced by sound, but the ecological significance of these responses is unclear. We asked whether acoustic energy generated by the feeding of insect herbivores was detected by plants. We report that the vibrations caused by insect feeding can elicit chemical defenses. Arabidopsis thaliana (L.) rosettes pre-treated with the vibrations caused by caterpillar feeding had higher levels of glucosinolate and anthocyanin defenses when subsequently fed upon by Pieris rapae (L.) caterpillars than did untreated plants. The plants also discriminated between the vibrations caused by chewing and those caused by wind or insect song. Plants thus respond to herbivore-generated vibrations in a selective and ecologically meaningful way. A vibration signaling pathway would complement the known signaling pathways that rely on volatile, electrical, or phloem-borne signals. We suggest that vibration may represent a new long distance signaling mechanism in plant-insect interactions that contributes to systemic induction of chemical defenses.

  17. Experimental vibration level analysis of a Francis turbine

    NASA Astrophysics Data System (ADS)

    Bucur, D. M.; Dunca, G.; Cǎlinoiu, C.

    2012-11-01

    In this study the vibration level of a Francis turbine is investigated by experimental work in site. Measurements are carried out for different power output values, in order to highlight the influence of the operation regimes on the turbine behavior. The study focuses on the turbine shaft to identify the mechanical vibration sources and on the draft tube in order to identify the hydraulic vibration sources. Analyzing the vibration results, recommendations regarding the operation of the turbine, at partial load close to minimum values, in the middle of the operating domain or close to maximum values of electric power, can be made in order to keep relatively low levels of vibration. Finally, conclusions are drawn in order to present the real sources of the vibrations.

  18. Vibration analysis of shell-and-tube heat exchangers: an overview-Part 2: vibration response, fretting-wear, guidelines

    NASA Astrophysics Data System (ADS)

    Pettigrew, M. J.; Taylor, C. E.

    2003-11-01

    Design guidelines were developed to prevent tube failures due to excessive flow-induced vibration in shell-and-tube heat exchangers. An overview of vibration analysis procedures and recommended design guidelines is presented in this paper. This paper pertains to liquid, gas and two-phase heat exchangers such as nuclear steam generators, reboilers, coolers, service water heat exchangers, condensers, and moisture-separator-reheaters. Part 2 of this paper covers forced vibration excitation mechanisms, vibration response prediction, resulting damage assessment, and acceptance criteria.

  19. Vibration Analysis and the Accelerometer

    ERIC Educational Resources Information Center

    Hammer, Paul

    2011-01-01

    Have you ever put your hand on an electric motor or motor-driven electric appliance and felt it vibrate? Ever wonder why it vibrates? What is there about the operation of the motor, or the object to which it is attached, that causes the vibrations? Is there anything "regular" about the vibrations, or are they the result of random causes? In this…

  20. Theoretical studies on vibrational spectra, thermodynamic properties, detonation properties and pyrolysis mechanism for 1,2-bis(2,4,6-trinitrophenyl) hydrazine.

    PubMed

    Xiao-Hong, Li; Rui-Zhou, Zhang; Xian-Zhou, Zhang

    2012-07-01

    The thermal stability and pyrolysis mechanism of 1,2-bis(2,4,6-trinitrophenyl) hydrazine were investigated based on fully optimized molecular geometric structures. The results demonstrate the existence of intramolecular hydrogen bond interactions 1,2-bis(2,4,6-trinitrophenyl) hydrazine. The assigned infrared spectrum was also obtained; the results reveal four main characteristic regions in the calculated IR spectra of the title compound. Detonation velocities (D) and pressures (P) were also evaluated by using Kamlet-Jacobs equations based on the calculated density and heat of formation. Thermal stability and the pyrolysis mechanism of 1,2-bis(2,4,6-trinitrophenyl) hydrazine were investigated by calculating the bond dissociation energies at the B3LYP/6-31 G* level.

  1. PREFACE: Vibrations at surfaces Vibrations at surfaces

    NASA Astrophysics Data System (ADS)

    Rahman, Talat S.

    2011-12-01

    This special issue is dedicated to the phenomenon of vibrations at surfaces—a topic that was indispensible a couple of decades ago, since it was one of the few phenomena capable of revealing the nature of binding at solid surfaces. For clean surfaces, the frequencies of modes with characteristic displacement patterns revealed how surface geometry, as well as the nature of binding between atoms in the surface layers, could be different from that in the bulk solid. Dispersion of the surface phonons provided further measures of interatomic interactions. For chemisorbed molecules on surfaces, frequencies and dispersion of the vibrational modes were also critical for determining adsorption sites. In other words, vibrations at surfaces served as a reliable means of extracting information about surface structure, chemisorption and overlayer formation. Experimental techniques, such as electron energy loss spectroscopy and helium-atom-surface scattering, coupled with infra-red spectroscopy, were continually refined and their resolutions enhanced to capture subtleties in the dynamics of atoms and molecules at surfaces. Theoretical methods, whether based on empirical and semi-empirical interatomic potential or on ab initio electronic structure calculations, helped decipher experimental observations and provide deeper insights into the nature of the bond between atoms and molecules in regions of reduced symmetry, as encountered on solid surfaces. Vibrations at surfaces were thus an integral part of the set of phenomena that characterized surface science. Dedicated workshops and conferences were held to explore the variety of interesting and puzzling features revealed in experimental and theoretical investigations of surface vibrational modes and their dispersion. One such conference, Vibrations at Surfaces, first organized by Harald Ibach in Juelich in 1980, continues to this day. The 13th International Conference on Vibrations at Surfaces was held at the University of

  2. NIF Ambient Vibration Measurements

    SciTech Connect

    Noble, C.R.; Hoehler, M.S., S.C. Sommer

    1999-11-29

    LLNL has an ongoing research and development project that includes developing data acquisition systems with remote wireless communication for monitoring the vibrations of large civil engineering structures. In order to establish the capability of performing remote sensing over an extended period of time, the researchers needed to apply this technology to a real structure. The construction of the National Ignition Facility provided an opportunity to test the data acquisition system on a large structure to monitor whether the facility is remaining within the strict ambient vibration guidelines. This document will briefly discuss the NIF ambient vibration requirements and summarize the vibration measurements performed during the Spring and Summer of 1999. In addition, a brief description of the sensors and the data acquisition systems will be provided in Appendix B.

  3. 2008 Vibrational Spectroscopy

    SciTech Connect

    Philip J. Reid

    2009-09-21

    The conference focuses on using vibrational spectroscopy to probe structure and dynamics of molecules in gases, liquids, and interfaces. The goal is to bring together a collection of researchers who share common interests and who will gain from discussing work at the forefront of several connected areas. The intent is to emphasize the insights and understanding that studies of vibrations provide about a variety of systems.

  4. Predicting vibrational failure of flexible ducting

    NASA Technical Reports Server (NTRS)

    Henry, R. H.

    1971-01-01

    Technique applies to liquid or gas transfer through flexible ducting and proves valuable in high velocity fluid flow cases. Fluid mechanism responsible for free bellows vibrational excitation also causes flexible hose oscillation. Static pressure stress influences flexible ducting fatigue life and is considered separately.

  5. Measuring vibration and torque with the oscillograph

    NASA Technical Reports Server (NTRS)

    Elsasser, R

    1924-01-01

    The recent development of technical science demands maximum reliability of functioning, together with maximum utilization of construction materials. For this purpose we must know what stresses are produced during functioning. One cause of great stresses are mechanical vibrations and this report describes a method of using an oscilloscope to measure the stresses of rapidly changing phenomena.

  6. a Hybrid-Type Active Vibration Isolation System Using Neural Networks

    NASA Astrophysics Data System (ADS)

    Ahn, K. G.; Pahk, H. J.; Jung, M. Y.; Cho, D. W.

    1996-05-01

    Vibration isolation of mechanical systems is achieved through either passive or active vibration control systems. Although a passive vibration isolation system offers simple and reliable means to protect mechanical systems from a vibration environment, it has inherent performance limitations, that is, its controllable frequency range is limited and the shape of its transmissibility does not change. Recently, in some applications, such as active suspensions or precise vibration systems, active vibration isolation systems have been employed to overcome the limitations of the passive systems. In this paper, a hybrid-type active vibration isolation system that uses electromagnetic and pneumatic force is developed, and a new control algorithm adopting neural networks is proposed. The characteristics of the hybrid system proposed in the paper were investigated via computer simulation and experiments. It was shown that the transmissibility of the vibration isolation system could be kept below 0.63 over the entire frequency range, including the resonance frequency.

  7. Vibrational and elastic properties of As4O6 and As4O6.2He at high pressures: Study of dynamical and mechanical stability

    NASA Astrophysics Data System (ADS)

    Cuenca-Gotor, V. P.; Gomis, O.; Sans, J. A.; Manjón, F. J.; Rodríguez-Hernández, P.; Muñoz, A.

    2016-10-01

    The formation of a new compound with stoichiometry As4O6.2He at relatively low pressure (3 GPa) has been recently reported when arsenolite (As4O6) powder is compressed with helium as a pressure-transmitting medium. In this work, we study the lattice dynamics of As4O6 and As4O6.2He at high pressures from an experimental and theoretical perspective by means of Raman scattering measurements and ab initio calculations and report the theoretical elastic properties of both compounds at high pressure. Raman scattering measurements show a completely different behaviour of As4O6 and As4O6.2He at high pressures. Furthermore, the theoretical calculation of phonon dispersion curves and elastic stiffness coefficients at high pressure in both compounds allow us to discuss their dynamical and mechanical stability under hydrostatic compression. Both compounds are dynamically stable even above 35 GPa, but As4O6 becomes mechanically unstable at pressures beyond 19.7 GPa. These results allow explaining the pressure-induced amorphization of As4O6 found experimentally above 15-20 GPa and the lack of observation of any instability in As4O6.2He up to the highest studied pressure (30 GPa).

  8. Force Limited Vibration Testing

    NASA Technical Reports Server (NTRS)

    Scharton, Terry; Chang, Kurng Y.

    2005-01-01

    This slide presentation reviews the concept and applications of Force Limited Vibration Testing. The goal of vibration testing of aerospace hardware is to identify problems that would result in flight failures. The commonly used aerospace vibration tests uses artificially high shaker forces and responses at the resonance frequencies of the test item. It has become common to limit the acceleration responses in the test to those predicted for the flight. This requires an analysis of the acceleration response, and requires placing accelerometers on the test item. With the advent of piezoelectric gages it has become possible to improve vibration testing. The basic equations have are reviewed. Force limits are analogous and complementary to the acceleration specifications used in conventional vibration testing. Just as the acceleration specification is the frequency spectrum envelope of the in-flight acceleration at the interface between the test item and flight mounting structure, the force limit is the envelope of the in-flight force at the interface . In force limited vibration tests, both the acceleration and force specifications are needed, and the force specification is generally based on and proportional to the acceleration specification. Therefore, force limiting does not compensate for errors in the development of the acceleration specification, e.g., too much conservatism or the lack thereof. These errors will carry over into the force specification. Since in-flight vibratory force data are scarce, force limits are often derived from coupled system analyses and impedance information obtained from measurements or finite element models (FEM). Fortunately, data on the interface forces between systems and components are now available from system acoustic and vibration tests of development test models and from a few flight experiments. Semi-empirical methods of predicting force limits are currently being developed on the basis of the limited flight and system test

  9. Exact free vibration analysis for mechanical system composed of Timoshenko beams with intermediate eccentric rigid body on elastic supports: An experimental and analytical investigation

    NASA Astrophysics Data System (ADS)

    Farghaly, S. H.; El-Sayed, T. A.

    2017-01-01

    The purpose of this article is to investigate the changes in the magnitude of natural frequencies and their associated modal shapes of Timoshenko beam with respect to different system design parameters. This beam includes an intermediate extended eccentric rigid mass mounted on two elastic segments. The equilibrium equations which govern the transverse and rotational motions are derived. The application of the developed system frequency equation is demonstrated by several illustrative examples. Several end and intermediate conditions are considered. The influence of, rotary inertia, shear deformation, axial load, eccentric mass and elastic segments step ratio on the system natural frequencies and mode shapes are conducted. Several sets of new results are presented. Comparison of the present model results with the experimental data for shaft integrated with intermediate rigid mass demonstrates the accuracy of the analysis in practical applications. The present model is valid for several industrial applications, such as mechanical, structural, naval and for wider range of applications.

  10. Multiaxis Rainflow Fatigue Methods for Nonstationary Vibration

    NASA Technical Reports Server (NTRS)

    Irvine, T.

    2016-01-01

    Mechanical structures and components may be subjected to cyclical loading conditions, including sine and random vibration. Such systems must be designed and tested accordingly. Rainflow cycle counting is the standard method for reducing a stress time history to a table of amplitude-cycle pairings prior to the Palmgren-Miner cumulative damage calculation. The damage calculation is straightforward for sinusoidal stress but very complicated for random stress, particularly for nonstationary vibration. This paper evaluates candidate methods and makes a recommendation for further study of a hybrid technique.

  11. Multimode vibrational couplings in resonant positron annihilation.

    PubMed

    d'A Sanchez, Sergio; Lima, Marco A P; Varella, Márcio T do N

    2011-09-02

    The mechanisms for multimode vibrational couplings in resonant positron annihilation are not well understood. We show that these resonances can arise from positron-induced distortions of the potential energy surface (target response to the positron field). Though these distortions can transfer energy into single- and multiquantum vibrations, they have so far been disregarded as a pathway to resonant annihilation. We also compare the existing annihilation theories and show that the currently accepted model can be cast as a special case of the Feshbach annihilation theory.

  12. Multiaxis Rainflow Fatigue Methods for Nonstationary Vibration

    NASA Astrophysics Data System (ADS)

    Irvine, T.

    2016-09-01

    Mechanical structures and components may be subjected to cyclical loading conditions, including sine and random vibration. Such systems must be designed and tested according. Rainflow cycle counting is the standard method for reducing a stress time history to a table of amplitude-cycle pairings prior to the Palmgren-Miner cumulative damage calculation. The damage calculation is straightforward for sinusoidal stress but very complicated for random stress, particularly for nonstationary vibration. This paper evaluates candidate methods and makes a recommendation for further study of a hybrid technique.

  13. Conformational and Vibrational Studies of Triclosan

    NASA Astrophysics Data System (ADS)

    Özişik, Haci; Bayari, S. Haman; Saǧlam, Semran

    2010-01-01

    The conformational equilibrium of triclosan (5-chloro-2-(2, 4-dichlorophenoxy) phenol) have been calculated using density functional theory (DFTe/B3LYP/6-311++G(d, p)) method. Four different geometries were found to correspond to energy minimum conformations. The IR spectrum of triclosan was measured in the 4000-400 cm-1 region. We calculated the harmonic frequencies and intensities of the most stable conformers in order to assist in the assignment of the vibrational bands in the experimental spectrum. The fundamental vibrational modes were characterized depending on their total energy distribution (TED%) using scaled quantum mechanical (SQM) force field method.

  14. Vibration-free stirling cryocooler for high definition microscopy

    NASA Astrophysics Data System (ADS)

    Riabzev, S. V.; Veprik, A. M.; Vilenchik, H. S.; Pundak, N.; Castiel, E.

    2009-12-01

    The normal operation of high definition Scanning Electronic and Helium Ion microscope tools often relies on maintaining particular components at cryogenic temperatures. This has traditionally been accomplished by using liquid coolants such as liquid Nitrogen. This inherently limits the useful temperature range to above 77 K, produces various operational hazards and typically involves elevated ownership costs, inconvenient logistics and maintenance. Mechanical coolers, over-performing the above traditional method and capable of delivering required (even below 77 K) cooling to the above cooled components, have been well-known elsewhere for many years, but their typical drawbacks, such as high purchasing cost, cooler size, low reliability and high power consumption have so far prevented their wide-spreading. Additional critical drawback is inevitable degradation of imagery performance originated from the wideband vibration export as typical for the operation of the mechanical cooler incorporating numerous movable components. Recent advances in the development of reliable, compact, reasonably priced and dynamically quiet linear cryogenic coolers gave rise to so-called "dry cooling" technologies aimed at eventually replacing the traditional use of outdated liquid Nitrogen cooling facilities. Although much improved these newer cryogenic coolers still produce relatively high vibration export which makes them incompatible with modern high definition microscopy tools. This has motivated further research activity towards developing a vibration free closed-cycle mechanical cryocooler. The authors have successfully adapted the standard low vibration Stirling cryogenic refrigerator (Ricor model K535-LV) delivering 5 W@40 K heat lift for use in vibration-sensitive high definition microscopy. This has been achieved by using passive mechanical counterbalancing of the main portion of the low frequency vibration export in combination with an active feed-forward multi

  15. Metal-ion effects on the polarization of metal-bound water and infrared vibrational modes of the coordinated metal center of Mycobacterium tuberculosis pyrazinamidase via quantum mechanical calculations.

    PubMed

    Salazar-Salinas, Karim; Baldera-Aguayo, Pedro A; Encomendero-Risco, Jimy J; Orihuela, Melvin; Sheen, Patricia; Seminario, Jorge M; Zimic, Mirko

    2014-08-28

    Mycobacterium tuberculosis pyrazinamidase (PZAse) is a key enzyme to activate the pro-drug pyrazinamide (PZA). PZAse is a metalloenzyme that coordinates in vitro different divalent metal cofactors in the metal coordination site (MCS). Several metals including Co(2+), Mn(2+), and Zn(2+) are able to reactivate the metal-depleted PZAse in vitro. We use quantum mechanical calculations to investigate the Zn(2+), Fe(2+), and Mn(2+) metal cofactor effects on the local MCS structure, metal-ligand or metal-residue binding energy, and charge distribution. Results suggest that the major metal-dependent changes occur in the metal-ligand binding energy and charge distribution. Zn(2+) shows the highest binding energy to the ligands (residues). In addition, Zn(2+) and Mn(2+) within the PZAse MCS highly polarize the O-H bond of coordinated water molecules in comparison with Fe(2+). This suggests that the coordination of Zn(2+) or Mn(2+) to the PZAse protein facilitates the deprotonation of coordinated water to generate a nucleophile for catalysis as in carboxypeptidase A. Because metal ion binding is relevant to enzymatic reaction, identification of the metal binding event is important. The infrared vibrational mode shift of the C═Nε (His) bond from the M. tuberculosis MCS is the best IR probe to metal complexation.

  16. Delayed resonator concept for vibration suppression using piezoelectric networks

    NASA Astrophysics Data System (ADS)

    Kammer, Ayhan S.; Olgac, Nejat

    2016-11-01

    Delayed resonators (DR) are a class of active vibration absorbers, where resonance in the absorber is achieved through a delayed feedback control. Studies on DR theory so far, have focused on traditional mechanical absorber structures with proof masses. Both in linear and rotational vibration applications, a mechanical substructure is brought to resonance; which, in turn, absorbs vibration from the primary structure. This study is a departure from the existing literature in the sense that the mechanical absorber structure is replaced by an electrical circuit that resonates. The tuning is achieved by the use of piezoelectric elements, which introduce a coupling between the mechanical and electrical components in the system. The resonance and desired vibration absorption are still the objectives but with a distinct feature, ‘without a proof mass’. This work unites the two fronts of research from this interesting angle, namely DR theory and piezoelectric networks, to benefit from their individual strengths.

  17. An improved method for testing performance of vidicons during vibration

    NASA Technical Reports Server (NTRS)

    Corson, B. R.

    1966-01-01

    Vidicon electron beam modulation is used for checking the performance of vidicons in mechanical vibration tests. The vidicon electron beam is modulated with an external signal during the write period thereby storing the image on the vidicon face.

  18. Implausibility of the vibrational theory of olfaction

    SciTech Connect

    Block, Eric; Ertem, Mehmed Z.; Jang, Seogjoo; Matsunami, Hiroaki; Sekharan, Sivakumar; Dethier, Berenice; Gundala, Sivaji; Pan, Yi; Li, Shengju; Li, Zhen; Lodge, Stephene N.; Ozbil, Mehmet; Jiang, Huihong; Penalba, Sonia Flores; Batista, Victor S.; Zhuang, Hanyi

    2015-04-21

    The vibrational theory of olfaction assumes that electron transfer occurs across odorants at the active sites of odorant receptors (ORs), serving as a sensitive measure of odorant vibrational frequencies, ultimately leading to olfactory perception. A previous study reported that human subjects differentiated hydrogen/deuterium isotopomers (isomers with isotopic atoms) of the musk compound cyclopentadecanone as evidence supporting the theory. Here, we find no evidence for such differentiation at the molecular level. In fact, we find that the human musk-recognizing receptor, OR5AN1, identified using a heterologous OR expression system and robustly responding to cyclopentadecanone and muscone, fails to distinguish isotopomers of these compounds in vitro. Furthermore, the mouse (methylthio)methanethiol (MTMT)-recognizing receptor, MOR244-3, and other selected human and mouse ORs, responded similarly to normal, deuterated, and ¹³C isotopomers of their respective ligands, paralleling our results with the musk receptor OR5AN1. These findings suggest that the proposed vibration theory does not apply to the human musk receptor OR5AN1, mouse thiol receptor MOR244-3, or other ORs examined. Also, contrary to the vibration theory predictions, muscone-d₃₀ lacks the 1,380-1,550 cm⁻¹ IR bands claimed to be essential for musk odor. Furthermore, our theoretical analysis shows that the proposed electron transfer mechanism of the vibrational frequencies of odorants could be easily suppressed by quantum effects of non-odorant molecular vibrational modes. As a result, these and other concerns about electron transfer at ORs, together with our extensive experimental data, argue against the plausibility of the vibration theory.

  19. Implausibility of the vibrational theory of olfaction

    DOE PAGES

    Block, Eric; Ertem, Mehmed Z.; Jang, Seogjoo; ...

    2015-04-21

    The vibrational theory of olfaction assumes that electron transfer occurs across odorants at the active sites of odorant receptors (ORs), serving as a sensitive measure of odorant vibrational frequencies, ultimately leading to olfactory perception. A previous study reported that human subjects differentiated hydrogen/deuterium isotopomers (isomers with isotopic atoms) of the musk compound cyclopentadecanone as evidence supporting the theory. Here, we find no evidence for such differentiation at the molecular level. In fact, we find that the human musk-recognizing receptor, OR5AN1, identified using a heterologous OR expression system and robustly responding to cyclopentadecanone and muscone, fails to distinguish isotopomers of thesemore » compounds in vitro. Furthermore, the mouse (methylthio)methanethiol (MTMT)-recognizing receptor, MOR244-3, and other selected human and mouse ORs, responded similarly to normal, deuterated, and ¹³C isotopomers of their respective ligands, paralleling our results with the musk receptor OR5AN1. These findings suggest that the proposed vibration theory does not apply to the human musk receptor OR5AN1, mouse thiol receptor MOR244-3, or other ORs examined. Also, contrary to the vibration theory predictions, muscone-d₃₀ lacks the 1,380-1,550 cm⁻¹ IR bands claimed to be essential for musk odor. Furthermore, our theoretical analysis shows that the proposed electron transfer mechanism of the vibrational frequencies of odorants could be easily suppressed by quantum effects of non-odorant molecular vibrational modes. As a result, these and other concerns about electron transfer at ORs, together with our extensive experimental data, argue against the plausibility of the vibration theory.« less

  20. Design of a nonlinear torsional vibration absorber

    NASA Astrophysics Data System (ADS)

    Tahir, Ammaar Bin

    Tuned mass dampers (TMD) utilizing linear spring mechanisms to mitigate destructive vibrations are commonly used in practice. A TMD is usually tuned for a specific resonant frequency or an operating frequency of a system. Recently, nonlinear vibration absorbers attracted attention of researchers due to some potential advantages they possess over the TMDs. The nonlinear vibration absorber, or the nonlinear energy sink (NES), has an advantage of being effective over a broad range of excitation frequencies, which makes it more suitable for systems with several resonant frequencies, or for a system with varying excitation frequency. Vibration dissipation mechanism in an NES is passive and ensures that there is no energy backflow to the primary system. In this study, an experimental setup of a rotational system has been designed for validation of the concept of nonlinear torsional vibration absorber with geometrically induced cubic stiffness nonlinearity. Dimensions of the primary system have been optimized so as to get the first natural frequency of the system to be fairly low. This was done in order to excite the dynamic system for torsional vibration response by the available motor. Experiments have been performed to obtain the modal parameters of the system. Based on the obtained modal parameters, the design optimization of the nonlinear torsional vibration absorber was carried out using an equivalent 2-DOF modal model. The optimality criterion was chosen to be maximization of energy dissipation in the nonlinear absorber attached to the equivalent 2-DOF system. The optimized design parameters of the nonlinear absorber were tested on the original 5-DOF system numerically. A comparison was made between the performance of linear and nonlinear absorbers using the numerical models. The comparison showed the superiority of the nonlinear absorber over its linear counterpart for the given set of primary system parameters as the vibration energy dissipation in the former is

  1. Vibration suppression of advanced space cryocoolers: an overview

    NASA Astrophysics Data System (ADS)

    Ross, Ronald G., Jr.

    2003-07-01

    Mechanical cryocoolers represent a significant enabling technology for precision space instruments by providing cryogenic temperatures for sensitive infrared, gamma-ray, and x-ray detectors. However, the vibration generated by the cryocooler's refrigeration compressor has long been identified as a critical integration issue. The key sensitivity is the extent to which the cooler's vibration harmonics excite spacecraft resonances and prevent on-board sensors from achieving their operational goals with respect to resolution and pointing accuracy. To reduce the cryocooler's vibration signature to acceptable levels, a variety of active vibration suppression technologies have been developed and implemented over the past 15 years. At this point, nearly all space cryocoolers have active vibration suppression systems built into their drive electronics that reduce the peak unbalanced forces to less than 1% of their original levels. Typical systems of today individually control the vibration in each of the cryocoolers lowest drive harmonics, with some controlling as many as 16 harmonics. A second vibration issue associated with cryocoolers is surviving launch. Here the same pistons and coldfingers that generate vibration during operation are often the most critical elements in terms of surviving high input acceleration levels. Since electrical power is generally not available during launch, passive vibration suppression technologies have been developed. Common vibration damping techniques include electrodynamic braking via shorted motor coils and the use of particle dampers on sensitive cryogenic elements. This paper provides an overview of the vibration characteristics of typical linear-drive space cryocoolers, outlines their history of development, and presents typical performance of the various active and passive vibration suppression systems being used.

  2. Transient absorption of vibrationally excited water

    NASA Astrophysics Data System (ADS)

    Bakker, H. J.; Nienhuys, H.-K.; Gallot, G.; Lascoux, N.; Gale, G. M.; Leicknam, J.-C.; Bratos, S.

    2002-02-01

    We study the spectral response of the transition between the first and the second excited state of the O-H stretch vibration of HDO dissolved in liquid D2O with two-color femtosecond mid-infrared spectroscopy. The spectral response of this transition differs strongly from the fundamental absorption spectrum of the O-H stretch vibration. In addition, excitation of the O-H stretch vibration is observed to lead to a change of the hydrogen-bond dynamics of liquid water. We show that both these observations can be described with a refined quantum-mechanical version of the Lippincott-Schroeder model for hydrogen-bonded OH⋯O systems.

  3. Acoustic vibrations of single suspended gold nanostructures

    NASA Astrophysics Data System (ADS)

    Major, Todd A.

    The acoustic vibrations for single gold nanowires and gold plates were studied using time-resolved ultrafast transient absorption. The objective of this work was to remove the contribution of the supporting substrate from the damping of the acoustic vibrations of the metal nano-objects. This was achieved by suspending the nano-objects across trenches created by photolithography and reactive ion etching. Transient absorption measurements for single suspended gold nanowires were initially completed in air and water environments. The acoustic vibrations for gold nanowires over the trench in air last typically for several nanoseconds, whereas gold nanowires in water are damped more quickly. Continuum mechanics models suggest that the acoustic impedance mismatch between air and water dominates the damping rate. Later transient absorption studies on single suspended gold nanowires were completed in glycerol and ethylene glycol environments. However, our continuum mechanical model suggests nearly complete damping in glycerol due to its high viscosity, but similar damping rates are seen between the two liquids. The continuum mechanics model thus incorrectly addresses high viscosity effects on the lifetimes of the acoustic vibrations, and more complicated viscoelastic interactions occur for the higher viscosity liquids. (Abstract shortened by UMI.).

  4. Vibration isolation system for cryogenic phonon-scintillation calorimeters

    NASA Astrophysics Data System (ADS)

    Lee, C.; Jo, H. S.; Kang, C. S.; Kim, G. B.; Kim, I.; Kim, S. R.; Kim, Y. H.; Lee, H. J.; So, J. H.; Yoon, Y. S.

    2017-02-01

    Cryogen-free dilution refrigerators are getting popular for rare event searches underground due to their advantages. However, the application of a pulse tube refrigerator introduces mechanical vibration that can translate into temperature fluctuation for calorimeters. The effect is significant in particular when the sensor is attached to a large absorber. A mechanical filter is installed to isolate the calorimeters from the vibration inside a cryogen-free dilution refrigerator while meeting thermal requirements.

  5. Carbon Nanotube Tape Vibrating Gyroscope

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis Stephen (Inventor)

    2016-01-01

    A vibrating gyroscope includes a piezoelectric strip having length and width dimensions. The piezoelectric strip includes a piezoelectric material and carbon nanotubes (CNTs) substantially aligned and polled along the strip's length dimension. A spindle having an axis of rotation is coupled to the piezoelectric strip. The axis of rotation is parallel to the strip's width dimension. A first capacitance sensor is mechanically coupled to the spindle for rotation therewith. The first capacitance sensor is positioned at one of the strip's opposing ends and is spaced apart from one of the strip's opposing faces. A second capacitance sensor is mechanically coupled to the spindle for rotation therewith. The second capacitance sensor is positioned at another of the strip's opposing ends and is spaced apart from another of the strip's opposing faces. A voltage source applies an AC voltage to the piezoelectric strip.

  6. Externally tuned vibration absorber

    DOEpatents

    Vincent, Ronald J.

    1987-09-22

    A vibration absorber unit or units are mounted on the exterior housing of a hydraulic drive system of the type that is powered from a pressure wave generated, e.g., by a Stirling engine. The hydraulic drive system employs a piston which is hydraulically driven to oscillate in a direction perpendicular to the axis of the hydraulic drive system. The vibration absorbers each include a spring or other resilient member having one side affixed to the housing and another side to which an absorber mass is affixed. In a preferred embodiment, a pair of vibration absorbers is employed, each absorber being formed of a pair of leaf spring assemblies, between which the absorber mass is suspended.

  7. Fiber optic vibration sensor

    DOEpatents

    Dooley, J.B.; Muhs, J.D.; Tobin, K.W.

    1995-01-10

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity. 2 figures.

  8. Fiber optic vibration sensor

    DOEpatents

    Dooley, Joseph B.; Muhs, Jeffrey D.; Tobin, Kenneth W.

    1995-01-01

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity.

  9. Transient vibration analytical modeling and suppressing for vibration absorber system under impulse excitation

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Yang, Bintang; Yu, Hu; Gao, Yulong

    2017-04-01

    The impulse excitation of mechanism causes transient vibration. In order to achieve adaptive transient vibration control, a method which can exactly model the response need to be proposed. This paper presents an analytical model to obtain the response of the primary system attached with dynamic vibration absorber (DVA) under impulse excitation. The impulse excitation which can be divided into single-impulse excitation and multi-impulse excitation is simplified as sinusoidal wave to establish the analytical model. To decouple the differential governing equations, a transform matrix is applied to convert the response from the physical coordinate to model coordinate. Therefore, the analytical response in the physical coordinate can be obtained by inverse transformation. The numerical Runge-Kutta method and experimental tests have demonstrated the effectiveness of the analytical model proposed. The wavelet of the response indicates that the transient vibration consists of components with multiple frequencies, and it shows that the modeling results coincide with the experiments. The optimizing simulations based on genetic algorithm and experimental tests demonstrate that the transient vibration of the primary system can be decreased by changing the stiffness of the DVA. The results presented in this paper are the foundations for us to develop the adaptive transient vibration absorber in the future.

  10. Vibrational spectroscopy of resveratrol

    NASA Astrophysics Data System (ADS)

    Billes, Ferenc; Mohammed-Ziegler, Ildikó; Mikosch, Hans; Tyihák, Ernő

    2007-11-01

    In this article the authors deal with the experimental and theoretical interpretation of the vibrational spectra of trans-resveratrol (3,5,4'-trihydroxy- trans-stilbene) of diverse beneficial biological activity. Infrared and Raman spectra of the compound were recorded; density functional calculations were carried out resulting in the optimized geometry and several properties of the molecule. Based on the calculated force constants, a normal coordinate analysis yielded the character of the vibrational modes and the assignment of the measured spectral bands.

  11. Development of vibration isolation platform for low amplitude vibration

    NASA Astrophysics Data System (ADS)

    Lee, Dae-Oen; Park, Geeyong; Han, Jae-Hung

    2014-03-01

    The performance of high precision payloads on board a satellite is extremely sensitive to vibration. Although vibration environment of a satellite on orbit is very gentle compared to the launch environment, even a low amplitude vibration disturbances generated by reaction wheel assembly, cryocoolers, etc may cause serious problems in performing tasks such as capturing high resolution images. The most commonly taken approach to protect sensitive payloads from performance degrading vibration is application of vibration isolator. In this paper, development of vibration isolation platform for low amplitude vibration is discussed. Firstly, single axis vibration isolator is developed by adapting three parameter model using bellows and viscous fluid. The isolation performance of the developed single axis isolator is evaluated by measuring force transmissibility. The measured transmissibility shows that both the low Q-factor (about 2) and the high roll-off rate (about -40 dB/dec) are achieved with the developed isolator. Then, six single axis isolators are combined to form Stewart platform in cubic configuration to provide multi-axis vibration isolation. The isolation performance of the developed multi-axis isolator is evaluated using a simple prototype reaction wheel model in which wheel imbalance is the major source of vibration. The transmitted force without vibration isolator is measured and compared with the transmitted force with vibration isolator. More than 20 dB reduction of the X and Y direction (radial direction of flywheel) disturbance is observed for rotating wheel speed of 100 Hz and higher.

  12. Detection of bearing damage by statistic vibration analysis

    NASA Astrophysics Data System (ADS)

    Sikora, E. A.

    2016-04-01

    The condition of bearings, which are essential components in mechanisms, is crucial to safety. The analysis of the bearing vibration signal, which is always contaminated by certain types of noise, is a very important standard for mechanical condition diagnosis of the bearing and mechanical failure phenomenon. In this paper the method of rolling bearing fault detection by statistical analysis of vibration is proposed to filter out Gaussian noise contained in a raw vibration signal. The results of experiments show that the vibration signal can be significantly enhanced by application of the proposed method. Besides, the proposed method is used to analyse real acoustic signals of a bearing with inner race and outer race faults, respectively. The values of attributes are determined according to the degree of the fault. The results confirm that the periods between the transients, which represent bearing fault characteristics, can be successfully detected.

  13. Vibration Propagation in Spider Webs

    NASA Astrophysics Data System (ADS)

    Hatton, Ross; Otto, Andrew; Elias, Damian

    Due to their poor eyesight, spiders rely on web vibrations for situational awareness. Web-borne vibrations are used to determine the location of prey, predators, and potential mates. The influence of web geometry and composition on web vibrations is important for understanding spider's behavior and ecology. Past studies on web vibrations have experimentally measured the frequency response of web geometries by removing threads from existing webs. The full influence of web structure and tension distribution on vibration transmission; however, has not been addressed in prior work. We have constructed physical artificial webs and computer models to better understand the effect of web structure on vibration transmission. These models provide insight into the propagation of vibrations through the webs, the frequency response of the bare web, and the influence of the spider's mass and stiffness on the vibration transmission patterns. Funded by NSF-1504428.

  14. Built-up edge investigation in vibration drilling of Al2024-T6.

    PubMed

    Barani, A; Amini, S; Paktinat, H; Fadaei Tehrani, A

    2014-07-01

    Adding ultrasonic vibrations to drilling process results in an advanced hybrid machining process, entitled "vibration drilling". This study presents the design and fabrication of a vibration drilling tool by which both rotary and vibrating motions are applied to drill simultaneously. High frequency and low amplitude vibrations were generated by an ultrasonic transducer with frequency of 19.65 kHz. Ultrasonic transducer was controlled by a MPI ultrasonic generator with 3 kW power. The drilling tool and workpiece material were HSS two-flute twist drill and Al2024-T6, respectively. The aim of this study was investigating on the effect of ultrasonic vibrations on built-up edge, surface quality, chip morphology and wear mechanisms of drill edges. Therefore, these factors were studied in both vibration and ordinary drilling. Based on the achieved results, vibration drilling offers less built-up edge and better surface quality compared to ordinary drilling.

  15. Active sensor/actuator assemblies for vibration damping, compensation, measurement, and testing

    NASA Astrophysics Data System (ADS)

    Ryaboy, Vyacheslav M.; Kasturi, Prakash S.

    2010-04-01

    The vibration control module known as IQ damper had been developed as part of active vibration damping system for optical tables and other precision vibration isolated platforms. The present work describes steps to expand the application of these units to other tasks, namely, (1) dynamic testing of structures and (2) compensation of forced vibration in local areas. The sensor-actuator assembly, including signal conditioning circuits, is designed as a compact dynamically symmetric module with mechanical interface to an optical table. The test data show that the vibration control modules can be used to measure dynamic compliance characteristics of optical tables with precision comparable to that of dedicated vibration measurement systems. Stable concerted work of active vibration control modules compensating forced harmonic vibration is demonstrated experimentally.

  16. Vibrational relaxation pathways of amide I and amide II modes in N-methylacetamide.

    PubMed

    Piatkowski, L; Bakker, H J

    2012-04-28

    We studied the vibrational energy relaxation mechanisms of the amide I and amide II modes of N-methylacetamide (NMA) monomers dissolved in bromoform using polarization-resolved femtosecond two-color vibrational spectroscopy. The results show that the excited amide I vibration transfers its excitation energy to the amide II vibration with a time constant of 8.3 ± 1 ps. In addition to this energy exchange process, we observe that the excited amide I and amide II vibrations both relax to a final thermal state. For the amide I mode this latter process dominates the vibrational relaxation of this mode. We find that the vibrational relaxation of the amide I mode depends on frequency which can be well explained from the presence of two subbands with different vibrational lifetimes (~1.1 ps on the low frequency side and ~2.7 ps on the high frequency side) in the amide I absorption spectrum.

  17. Review of the effects of translational whole-body vibration on continuous manual control performance

    NASA Astrophysics Data System (ADS)

    McLeod, R. W.; Griffin, M. J.

    1989-08-01

    A review of the literature concerned with experimental studies of the effects of translational whole-body vibration on continuous manual control performance is presented. Results from studies of the effects of vibration variables (vibration frequency, magnitude, axis, random vibration and multi-axis vibration) are compared. Evidence of the influence of control system variables (physical characteristics of the control, control gain, system dynamics and display variables) is also provided. Studies of the effects of vibration duration on manual control performance are reviewed separately. A behavioural model is presented to summarize the mechanisms (including vibration breakthrough, visual impairment, neuro-muscular interference and central effects) by which whole-body vibration may interfere with the performance of continuous manual control tasks. The model emphasizes the adaptive ability of the human operator.

  18. Vibration isolation and pressure compensation apparatus for sensitive instrumentation

    NASA Technical Reports Server (NTRS)

    Averill, R. D. (Inventor)

    1983-01-01

    A system for attenuating the inherent vibration associated with a mechanical refrigeration unit employed to cryogenically cool sensitive instruments used in measuring chemical constituents of the atmosphere is described. A modular system including an instrument housing and a reaction bracket with a refrigerator unit floated there between comprise the instrumentation system. A pair of evacuated bellows that "float' refrigerator unit and provide pressure compensation at all levels of pressure from seal level to the vacuum of space. Vibration isolators and when needed provide additional vibration damping for the refrigerator unit. A flexible thermal strap (20 K) serves to provide essentially vibration free thermal contact between cold tip of the refrigerator unit and the instrument component mounted on the IDL mount. Another flexible strap (77 K) serves to provide vibration free thermal contact between the TDL mount thermal shroud and a thermal shroud disposed about the thermal shaft.

  19. Measurement of Whole-Body Vibration Exposure from Garbage Trucks

    NASA Astrophysics Data System (ADS)

    Maeda, S.; Morioka, M.

    1998-08-01

    Japanese garbage truck drivers are exposed to mechanical whole-body vibration during their work. Some drivers have suffered from low back pain from this vibration. However, there is no evidence of a relationship between the whole-body vibration from the garbage trucks and low back pain or occupational disease, due to the lack of investigations. A field study was conducted in order to characterize the health risks associated with garbage truck work. Three different types of truck were tested at different loadings and on different road surfaces, with the vibrations measured at the driver/seat interface (x,y, andz-axes). The vibrations were compared with the health risk guidance according to Annex B of ISO 2631-1 [1]. The findings of this study indicated that Japanese garbage truck drivers should not operate trucks for 2.5 h in a day, under current working conditions.

  20. Vibration-assisted resonance in photosynthetic excitation-energy transfer

    NASA Astrophysics Data System (ADS)

    Irish, E. K.; Gómez-Bombarelli, R.; Lovett, B. W.

    2014-07-01

    Understanding how the effectiveness of natural photosynthetic energy-harvesting systems arises from the interplay between quantum coherence and environmental noise represents a significant challenge for quantum theory. Recently it has begun to be appreciated that discrete molecular vibrational modes may play an important role in the dynamics of such systems. Here we present a microscopic mechanism by which intramolecular vibrations may be able to contribute to the efficiency and directionality of energy transfer. Excited vibrational states create resonant pathways through the system, supporting fast and efficient energy transport. Vibrational damping together with the natural downhill arrangement of molecular energy levels gives intrinsic directionality to the energy flow. Analytical and numerical results demonstrate a significant enhancement of the efficiency and directionality of energy transport that can be directly related to the existence of resonances between vibrational and excitonic levels.

  1. A MEMS vibration energy harvester for automotive applications

    NASA Astrophysics Data System (ADS)

    van Schaijk, R.; Elfrink, R.; Oudenhoven, J.; Pop, V.; Wang, Z.; Renaud, M.

    2013-05-01

    The objective of this work is to develop MEMS vibration energy harvesters for tire pressure monitoring systems (TPMS), they can be located on the rim or on the inner-liner of the car tire. Nowadays TPMS modules are powered by batteries with a limited lifetime. A large effort is ongoing to replace batteries with small and long lasting power sources like energy harvesters [1]. The operation principle of vibration harvesters is mechanical resonance of a seismic mass, where mechanical energy is converted into electrical energy. In general, vibration energy harvesters are of specific interest for machine environments where random noise or repetitive shock vibrations are present. In this work we present the results for MEMS based vibration energy harvesting for applying on the rim or inner-liner. The vibrations on the rim correspond to random noise. A vibration energy harvester can be described as an under damped mass-spring system acting like a mechanical band-pass filter, and will resonate at its natural frequency [2]. At 0.01 g2/Hz noise amplitude the average power can reach the level that is required to power a simple wireless sensor node, approximately 10 μW [3]. The dominant vibrations on the inner-liner consist mainly of repetitive high amplitude shocks. With a shock, the seismic mass is displaced, after which the mass will "ring-down" at its natural resonance frequency. During the ring-down period, part of the mechanical energy is harvested. On the inner-liner of the tire repetitive (one per rotation) high amplitude (few hundred g) shocks occur. The harvester enables an average power of a few tens of μW [4], sufficient to power a more sophisticated wireless sensor node that can measure additional tire-parameters besides pressure. In this work we characterized MEMS vibration energy harvesters for noise and shock excitation. We validated their potential for TPMS modules by measurements and simulation.

  2. Flow-Induced Vibration of Circular Cylindrical Structures

    SciTech Connect

    Chen, Shoei-Sheng

    1985-06-01

    Flow-induced vibration is a term to denote those phenomena associated with the response of structures placed in or conveying fluid flow. More specifically, the terra covers those cases in which an interaction develops between fluid-dynamic forces and the inertia, damping or elastic forces in the structures. The study of these phenomena draws on three disciplines: (1) structural mechanics, (2) mechanical vibration, and (3) fluid dynamics. The vibration of circular cylinders subject to flow has been known to man since ancient times; the vibration of a wire at its natural frequency in response to vortex shedding was known in ancient Greece as aeolian tones. But systematic studies of the problem were not made until a century ago when Strouhal established the relationship between vortex shedding frequency and flow velocity for a given cylinder diameter. The early research in this area has beer summarized by Zdravkovich (1985) and Goldstein (1965). Flow-induced structural vibration has been experienced in numerous fields, including the aerospace industry, power generation/transmission (turbine blades, heat exchanger tubes, nuclear reactor components), civil engineering (bridges, building, smoke stacks), and undersea technology. The problems have usually been encountered or created accidentally through improper design. In most cases, a structural or mechanical component, designed to meet specific objectives, develops problems when the undesired effects of flow field have not been accounted for in the design. When a flow-induced vibration problem is noted in the design stage, the engineer has different options to eliminate the detrimental vibration. Unfortunately, in many situations, the problems occur after the components are already in operation; the "fix" usually is very costly. Flow-induced vibration comprises complex and diverse phenomena; subcritical vibration of nuclear fuel assemblies, galloping of transmission lines, flutter of pipes conveying fluid, and whirling

  3. Experience of an assessment of the vertical Francis hydroturbines vibration state at heads from 40 to 300 m

    NASA Astrophysics Data System (ADS)

    Dolmatov, E.; Zaharov, A.; Ilin, S.; Kuznetsov, I.; Nikiforov, A.

    2016-11-01

    The article covers a choice of main vibration parameter at an assessment of a vibration state of vertical Francis hydroturbines. At present time vibration velocity and vibration displacement are adopted as main parameters of non-rotating parts vibration in the international standard ISO 10816-5:2000 «Mechanical vibration — Evaluation of machine vibration by measurements on non-rotating parts — Part 5: Machine sets in hydraulic power generating and pumping plants» (further ISO 10816-5:2000). The hydraulic turbines refer to the slow-speed machines with rotation speed from 60 to 600 rpm (∼ 1 - 10 Hz). So maximum vibration displacements and dynamic stresses in hydraulic turbines supporting parts are in low-frequency region of vibration spectrum. In this report comparative data of hydro units supporting parts vibration velocity and vibration displacement measurements are presented. Using these data assessment of hydro units vibration state has been done. It is shown that the assessment of a hydro unit vibration state using parameter "vibration displacement" corresponds to the fundamental principles of operational reliability and fatigue strength of hydro units supporting parts. It is noted that when hydro units operate at small and partial loads with high low-frequency unsteady flow (f < frot) we have the smallest vibration velocity and the greatest vibration displacement of hydro units supporting parts. Specialists of LMZ (Saint-Petersburg) have developed Russian standard RD 24.023.117-88 «Vibration measurement and evaluation vibration state of vertical hydraulic turbines» which was published in 1989. In this document vibration displacement was considered as a main parameter. Evaluation of turbine vibration was performed according to the effecrive value of turbine supporting parts vibration displacement.

  4. Energy scavenging from environmental vibration.

    SciTech Connect

    Galchev, Tzeno; Apblett, Christopher Alan; Najafi, Khalil

    2009-10-01

    The goal of this project is to develop an efficient energy scavenger for converting ambient low-frequency vibrations into electrical power. In order to achieve this a novel inertial micro power generator architecture has been developed that utilizes the bi-stable motion of a mechanical mass to convert a broad range of low-frequency (< 30Hz), and large-deflection (>250 {micro}m) ambient vibrations into high-frequency electrical output energy. The generator incorporates a bi-stable mechanical structure to initiate high-frequency mechanical oscillations in an electromagnetic scavenger. This frequency up-conversion technique enhances the electromechanical coupling and increases the generated power. This architecture is called the Parametric Frequency Increased Generator (PFIG). Three generations of the device have been fabricated. It was first demonstrated using a larger bench-top prototype that had a functional volume of 3.7cm3. It generated a peak power of 558{micro}W and an average power of 39.5{micro}W at an input acceleration of 1g applied at 10 Hz. The performance of this device has still not been matched by any other reported work. It yielded the best power density and efficiency for any scavenger operating from low-frequency (<10Hz) vibrations. A second-generation device was then fabricated. It generated a peak power of 288{micro}W and an average power of 5.8{micro}W from an input acceleration of 9.8m/s{sup 2} at 10Hz. The device operates over a frequency range of 20Hz. The internal volume of the generator is 2.1cm{sup 3} (3.7cm{sup 3} including casing), half of a standard AA battery. Lastly, a piezoelectric version of the PFIG is currently being developed. This device clearly demonstrates one of the key features of the PFIG architecture, namely that it is suitable for MEMS integration, more so than resonant generators, by incorporating a brittle bulk piezoelectric ceramic. This is the first micro-scale piezoelectric generator capable of <10Hz operation. The

  5. Vibration-induced droplet atomization

    NASA Astrophysics Data System (ADS)

    Vukasinovic, Bojan

    The atomization of liquid drops is investigated experimentally using laser vibrometry, high-speed imaging, and particle tracking techniques. The spray is generated by a novel vibration-induced droplet atomization (VIDA) process in which a sessile drop is atomized by an underlying vibrating thin metal diaphragm, resulting in rapid ejection of small secondary droplets from the free surface of the primary drop. Under some conditions, the primary drop can be atomized extremely rapidly by a bursting-like mechanism (e.g., a 0.1 ml water drop can be atomized in 0.4 seconds). The present research has focused on four major areas: global characteristics of VIDA process, instability modes and free surface dynamics of the forced drop, mechanisms of the interface breakup, and parametric characterization of the ensuing spray. Prior to atomization, the drop free surface undergoes three transitions: from axisymmetric standing waves to azimuthal waves, to a newly-observed lattice mode, and to a disordered pre-ejection state. The droplet ejection results from localized collapse of surface troughs and initiation and ultimate breakup of momentary liquid spikes. Breakup begins with capillary pinch-off from spike tips and can be followed by additional pinching of liquid droplets. For a relatively low-viscosity liquid, e.g., water, a capillary-wave instability of the spike is observed in some cases, while for a very viscous liquid, e.g., a glycerin/water solution, the first breakup occurs near the stem of the spike, with or without subsequent breakup of the detached, elongated thread. Different mechanisms dominating the primary breakup of the spike are operative in the low- and high-viscosity ejection regimes. When ejection of the secondary droplets is triggered, the evolution and rate of atomization depend on the coupled dynamics of the primary drop and the vibrating diaphragm. Due to these dynamics, the process can be either self-intensifying or self-decaying. The resulting VIDA spray

  6. Compact Vibration Damper

    NASA Technical Reports Server (NTRS)

    Ivanco, Thomas G. (Inventor)

    2014-01-01

    A vibration damper includes a rigid base with a mass coupled thereto for linear movement thereon. Springs coupled to the mass compress in response to the linear movement along either of two opposing directions. A converter coupled to the mass converts the linear movement to a corresponding rotational movement. A rotary damper coupled to the converter damps the rotational movement.

  7. C0 Vibrational analysis

    SciTech Connect

    Moore, Craig D.; Johnson, Todd; Martens, Mike; Syphers, Mike; McCrory, E.; McGee, Mike; Reilly, Rob; /Fermilab

    1999-08-01

    This is an attempt to document some of the measurements and analysis relating to the modulation of the spill due to the vibration of the magnets in the new C0 area. Not all of the relevant graphs were saved at the time, however an attempt has been made to show representative illustrations albeit not in the proper chronological order.

  8. Friction induced rail vibrations

    NASA Astrophysics Data System (ADS)

    Kralov, Ivan; Sinapov, Petko; Nedelchev, Krasimir; Ignatov, Ignat

    2012-11-01

    A model of rail, considered as multiple supported beam, subjected on friction induced vibration is studied in this work using FEM. The model is presented as continuous system and the mass and elastic properties of a real object are taken into account. The friction forces are nonlinear functions of the relative velocity during slipping. The problem is solved using Matlab Simulink.

  9. Flow-induced vibration and instability of some nuclear-reactor-system components. [PWR

    SciTech Connect

    Chen, S.S.

    1983-01-01

    The high-velocity coolant flowing through a reactor system component is a source of energy that can induce component vibration and instability. In fact, many reactor components have suffered from excessive vibration and/or dynamic instability. The potential for detrimental flow-induced vibration makes it necessary that design engineers give detailed considerations to the flow-induced vibration problems. Flow-induced-vibration studies have been performed in many countries. Significant progress has been made in understanding the different phenomena and development of design guidelines to avoid damaging vibration. The purpose of this paper is to present an overview of the recent progress in several selected areas, to discuss some new results and to indentify future research needs. Specifically, the following areas will be presented: examples of flow-induced-vibration problems in reactor components; excitation mechanisms and component response characteristics; instability mechanisms and stability criteria; design considerations; and future research needs.

  10. Active vibration control of structures undergoing bending vibrations

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor)

    1995-01-01

    An active vibration control subassembly for a structure (such as a jet engine duct or a washing machine panel) undergoing bending vibrations caused by a source (such as the clothes agitator of the washing machine) independent of the subassembly. A piezoceramic actuator plate is vibratable by an applied electric AC signal. The plate is connected to the structure such that vibrations in the plate induced by the AC signal cause canceling bending vibrations in the structure and such that the plate is compressively pre-stressed along the structure when the structure is free of any bending vibrations. The compressive prestressing increases the amplitude of the canceling bending vibrations before the critical tensile stress level of the plate is reached. Preferably, a positive electric DC bias is also applied to the plate in its poling direction.

  11. Frequency-Dependent Attenuation of Blasting Vibration Waves

    NASA Astrophysics Data System (ADS)

    Zhou, Junru; Lu, Wenbo; Yan, Peng; Chen, Ming; Wang, Gaohui

    2016-10-01

    The dominant frequency, in addition to the peak particle velocity, is a critical factor for assessing adverse effects of the blasting vibration on surrounding structures; however, it has not been fully considered in blasting design. Therefore, the dominant frequency-dependent attenuation mechanism of blast-induced vibration is investigated in the present research. Starting with blasting vibration induced by a spherical charge propagating in an infinite viscoelastic medium, a modified expression of the vibration amplitude spectrum was derived to reveal the frequency dependency of attenuation. Then, ground vibration induced by more complex and more commonly used cylindrical charge that propagates in a semi-infinite viscoelastic medium was analyzed by numerical simulation. Results demonstrate that the absorptive property of the medium results in the frequency attenuation versus distance, whereas a rapid drop or fluctuation occurs during the attenuation of ground vibration. Fluctuation usually appears at moderate to far field, and the dominant frequency generally decreases to half the original value when rapid drop occurs. The decay rate discrepancy between different frequency components and the multimodal structure of vibration spectrum lead to the unsmooth frequency-dependent attenuation. The above research is verified by two field experiments. Furthermore, according to frequency-based vibration standards, frequency drop and fluctuation should be considered when evaluating blast safety. An optimized piecewise assessment is proposed for more accurate evaluation: With the frequency drop point as the breakpoint, the assessment is divided into two independent sections along the propagating path.

  12. Segregation simulation of binary granular matter under horizontal pendulum vibrations

    NASA Astrophysics Data System (ADS)

    Ma, Xuedong; Zhang, Yanbing; Ran, Heli; Zhang, Qingying

    2016-08-01

    Segregation of binary granular matter with different densities under horizontal pendulum vibrations was investigated through numerical simulation using a 3D discrete element method (DEM). The particle segregation mechanism was theoretically analyzed using gap filling, momentum and kinetic energy. The effect of vibrator geometry on granular segregation was determined using the Lacey mixing index. This study shows that dynamic changes in particle gaps under periodic horizontal pendulum vibrations create a premise for particle segregation. The momentum of heavy particles is higher than that of light particles, which causes heavy particles to sink and light particles to float. With the same horizontal vibration parameters, segregation efficiency and stability, which are affected by the vibrator with a cylindrical convex geometry, are superior to that of the original vibrator and the vibrator with a cross-bar structure. Moreover, vibrator geometry influences the segregation speed of granular matter. Simulation results of granular segregation by using the DEM are consistent with the final experimental results, thereby confirming the accuracy of the simulation results and the reliability of the analysis.

  13. Human mesenchymal stromal cells are mechanosensitive to vibration stimuli.

    PubMed

    Kim, I S; Song, Y M; Lee, B; Hwang, S J

    2012-12-01

    Low-magnitude high-frequency (LMHF) vibrations have the ability to stimulate bone formation and reduce bone loss. However, the anabolic mechanisms that are mediated by vibration in human bone cells at the cellular level remain unclear. We hypothesized that human mesenchymal stromal cells (hMSCs) display direct osteoblastic responses to LMHF vibration signals. Daily exposure to vibrations increased the proliferation of hMSCs, with the highest efficiency occurring at a peak acceleration of 0.3 g and vibrations at 30 to 40 Hz. Specifically, these conditions promoted osteoblast differentiation through an increase in alkaline phosphatase activity and in vitro matrix mineralization. The effect of vibration on the expression of osteogenesis-related factors differed depending on culture method. hMSCs that underwent vibration in a monolayer culture did not exhibit any changes in the expressions of these genes, while cells in three-dimensional culture showed increased expression of type I collagen, osteoprotegerin, or VEGF, and VEGF induction appeared in 2 different hMSC lines. These results are among the first to demonstrate a dose-response effect upon LMHF stimulation, thereby demonstrating that hMSCs are mechanosensitive to LMHF vibration signals such that they could facilitate the osteogenic process.

  14. Vibration isolation of automotive vehicle engine using periodic mounting systems

    NASA Astrophysics Data System (ADS)

    Asiri, S.

    2005-05-01

    Customer awareness and sensitivity to noise and vibration levels have been raised through increasing television advertisement, in which the vehicle noise and vibration performance is used as the main market differentiation. This awareness has caused the transportation industry to regard noise and vibration as important criteria for improving market shares. One industry that tends to be in the forefront of the technology to reduce the levels of noise and vibration is the automobile industry. Hence, it is of practical interest to reduce the vibrations induced structural responses. The automotive vehicle engine is the main source of mechanical vibrations of automobiles. The engine is vulnerable to the dynamic action caused by engine disturbance force in various speed ranges. The vibrations of the automotive vehicle engines may cause structural failure, malfunction of other parts, or discomfort to passengers because of high level noise and vibrations. The mounts of the engines act as the transmission paths of the vibrations transmitted from the excitation sources to the body of the vehicle and passengers. Therefore, proper design and control of these mounts are essential to the attenuation of the vibration of platform structures. To improve vibration resistant capacities of engine mounting systems, vibration control techniques may be used. For instance, some passive and semi-active dissipation devices may be installed at mounts to enhance vibration energy absorbing capacity. In the proposed study, a radically different concept is presented whereby periodic mounts are considered because these mounts exhibit unique dynamic characteristics that make them act as mechanical filters for wave propagation. As a result, waves can propagate along the periodic mounts only within specific frequency bands called the "Pass Bands" and wave propagation is completely blocked within other frequency bands called the "Stop Bands". The experimental arrangements, including the design of

  15. Mechanical Dissociation of Retinal Neurons with Vibration

    NASA Astrophysics Data System (ADS)

    Motomura, Tamami; Hayashida, Yuki; Murayama, Nobuki

    The neuromorphic device, which implements the functions of biological neural circuits by means of VLSI technology, has been collecting much attention in the engineering fields in the last decade. Concurrently, progress in neuroscience research has revealed the nonlinear computation in single neuron levels, suggesting that individual neurons are not merely the circuit elements but computational units. Thus, elucidating the properties of neuronal signal processing is thought to be an essential step for developing the next generation of neuromorphic devices. In the present study, we developed a method for dissociating single neurons from specific sublayers of mammalian retinas with using no proteolytic enzymes but rather combining tissue incubation in a low-Ca2+ medium and the vibro-dissociation technique developed for the slices of brains and spinal cords previously. Our method took shorter time of the procedure, and required less elaborated skill, than the conventional enzymatic method did; nevertheless it yielded enough number of the cells available for acute electrophysiological experiments. The isolated retinal neurons were useful for measuring the nonlinear membrane conductances as well as the spike firing properties under the perforated-patch whole-cell configuration. These neurons also enabled us to examine the effects of proteolytic enzymes on the membrane excitability in those cells.

  16. Food vibrations: Asian spice sets lips trembling

    PubMed Central

    Hagura, Nobuhiro; Barber, Harry; Haggard, Patrick

    2013-01-01

    Szechuan pepper, a widely used ingredient in the cuisine of many Asian countries, is known for the tingling sensation it induces on the tongue and lips. While the molecular mechanism by which Szechuan pepper activates tactile afferent fibres has been clarified, the tingling sensation itself has been less studied, and it remains unclear which fibres are responsible. We investigated the somatosensory perception of tingling in humans to identify the characteristic temporal frequency and compare this to the established selectivity of tactile afferents. Szechuan pepper was applied to the lower lip of participants. Participants judged the frequency of the tingling sensation on the lips by comparing this with the frequencies of mechanical vibrations applied to their right index finger. The perceived frequency of the tingling was consistently at around 50 Hz, corresponding to the range of tactile RA1 afferent fibres. Furthermore, adaptation of the RA1 channel by prolonged mechanical vibration reliably reduced the tingling frequency induced by Szechuan pepper, confirming that the frequency-specific tactile channel is shared between Szechuan pepper and mechanical vibration. Combining information about molecular reactions at peripheral receptors with quantitative psychophysical measurement may provide a unique method for characterizing unusual experiences by decomposing them into identifiable minimal units of sensation. PMID:24026819

  17. Intracellular recording from a spider vibration receptor.

    PubMed

    Gingl, Ewald; Burger, Anna-M; Barth, Friedrich G

    2006-05-01

    The present study introduces a new preparation of a spider vibration receptor that allows intracellular recording of responses to natural mechanical or electrical stimulation of the associated mechanoreceptor cells. The spider vibration receptor is a lyriform slit sense organ made up of 21 cuticular slits located on the distal end of the metatarsus of each walking leg. The organ is stimulated when the tarsus receives substrate vibrations, which it transmits to the organ's cuticular structures, reducing the displacement to about one tenth due to geometrical reasons. Current clamp recording was used to record action potentials generated by electrical or mechanical stimuli. Square pulse stimulation identified two groups of sensory cells, the first being single-spike cells which generated only one or two action potentials and the second being multi-spike cells which produced bursts of action potentials. When the more natural mechanical sinusoidal stimulation was applied, differences in adaptation rate between the two cell types remained. In agreement with prior extracellular recordings, both cell types showed a decrease in the threshold tarsus deflection with increasing stimulus frequency. Off-responses to mechanical stimuli have also been seen in the metatarsal organ for the first time.

  18. Vibration sensing method and apparatus

    DOEpatents

    Barna, B.A.

    1989-04-25

    A method and apparatus for nondestructive evaluation of a structure are disclosed. Resonant audio frequency vibrations are excited in the structure to be evaluated and the vibrations are measured and characterized to obtain information about the structure. The vibrations are measured and characterized by reflecting a laser beam from the vibrating structure and directing a substantial portion of the reflected beam back into the laser device used to produce the beam which device is capable of producing an electric signal containing information about the vibration. 4 figs.

  19. Vibration sensing method and apparatus

    DOEpatents

    Barna, B.A.

    1987-07-07

    A method and apparatus for nondestructive evaluation of a structure is disclosed. Resonant audio frequency vibrations are excited in the structure to be evaluated and the vibrations are measured and characterized to obtain information about the structure. The vibrations are measured and characterized by reflecting a laser beam from the vibrating structure and directing a substantial portion of the reflected beam back into the laser device used to produce the beam which device is capable of producing an electric signal containing information about the vibration. 4 figs.

  20. Vibration sensing method and apparatus

    SciTech Connect

    Barna, Basil A.

    1989-04-25

    A method and apparatus for nondestructive evaluation of a structure is disclosed. Resonant audio frequency vibrations are excited in the structure to be evaluated and the vibrations are measured and characterized to obtain information about the structure. The vibrations are measured and characterized by reflecting a laser beam from the vibrating structure and directing a substantial portion of the reflected beam back into the laser device used to produce the beam which device is capable of producing an electric signal containing information about the vibration.

  1. Quantum mechanical study of the structure and vibrational spectroscopic (FT-IR and FT-Raman), first-order hyperpolarizability, NBO and HOMO-LUMO studies of 4-bromo-3-nitroanisole

    NASA Astrophysics Data System (ADS)

    Balachandran, V.; Karunakaran, V.

    2013-04-01

    The FT-IR and FT-Raman spectra of 4-bromo-3-nitroanisole (BNA) molecule have been recorded in the region 4000-400 cm-1 and 3500-100 cm-1, respectively. Optimized geometrical structure, harmonic vibrational frequencies, intensities, reduced mass, force constants and depolarization ratio have been computed by ab initio HF and the B3LYP density functional levels using 6-311++G (d,p) basis set. The observed FT-IR and FT-Raman vibrational frequencies are analyzed and compared with theoretically predicted vibrational frequencies. The geometries and normal modes of vibration obtained from DFT method are in good agreement with the experimental data. The first-order hyperpolarizability (β) of the investigated molecule were computed using DFT calculations. Besides, charge transfer occurring in the molecule between HOMO and LUMO energies, frontier energy gap, molecular electrostatic potential (MEP) were calculated and analyzed. The influences of bromine atom, nitrile group and methyl group on the geometry of benzene and its normal modes of vibrations have also been discussed.

  2. Epidemiological and aetiological aspects of low back pain in vibration environments - an update.

    PubMed

    Wilder, D G; Pope, M H

    1996-03-01

    The article reviews the substantial body of epidemiological evidence linking vibration exposure and low back pain. Drivers appear to be at particular risk if exposures exceed those recommended by the ISO exposure limit. Various aetiological factors associated with vehicular vibration, flattening of the lumbar lordosis, increased motion segment flexibility, disc pressure and mechanical softening are discussed. Vibration studies of functional spinal units are also discussed, as are in vivo whole-body vibration experiments. Animal models have shown that vibration leads to compromised nutrition, higher disc pressures, release of neuropeptides, increased creep and histological changes.

  3. Vibration Measurement on Reticular Lamina and Basilar Membrane at Multiple Longitudinal Locations

    NASA Astrophysics Data System (ADS)

    Chen, Fangyi; Zha, Dingjun; Choudhury, Niloy; Fridberger, Anders; Nuttall, Alfred L.

    2011-11-01

    The longitudinal distribution of the organ of Corti vibration is important for both understanding the energy delivery and the timing of the cochlear amplification. Recent development on low coherence interferomtry technique allows measuring vibration inside the cochlea. The reticular lamina (RL) vibration spectrum demonstrates that RL vibration leads the basilar membrane (BM). This phase lead is consistent with the idea that the active process may lead the BM vibration. In this study, measurements on multiple longitudinal locations demonstrated similar phase lead. Results on this study suggests that there may be another longitudinal coupling mechanism inside the cochlea other than the traveling wave on BM.

  4. Effects of ultrasonic vibrations in micro-groove turning.

    PubMed

    Zhang, Chen; Guo, Ping; Ehmann, Kornel F; Li, Yingguang

    2016-04-01

    Ultrasonic vibration cutting is an efficient cutting process for mechanical micro-machining. This process can generate intricate surface textures with different geometric characteristics. Micro-grooves/micro-channels are among the most frequently encountered micro-structures and, as such, are the focus of this paper. The effectiveness of both the linear and ultrasonic elliptical vibration-assisted machining technique in micro-groove turning is analyzed and discussed in the paper. The paper first investigates the mechanisms of micro-groove generation induced by the linear and elliptical vibration modes. A simplified cutting force analysis method is given to compare the effectiveness of the two modes in micro-groove turning. The surface roughness of the generated micro-grooves is analyzed next and theoretical expressions are given for the two cases. Finally, micro-groove turning experiments are conducted to compare the influences of the two vibration modes on the cutting forces and the surface roughness. The experimental results show that linear vibration-assisted micro-groove turning leads to better surface roughness as compared to the elliptical vibration-assisted case, while elliptical vibration-assisted micro-groove turning shows advantages in terms of decreasing the cutting forces.

  5. Maladie des vibrations

    PubMed Central

    Shen, Shixin (Cindy); House, Ronald A.

    2017-01-01

    Résumé Objectif Permettre aux médecins de famille de comprendre l’épidémiologie, la pathogenèse, les symptômes, le diagnostic et la prise en charge de la maladie des vibrations, une maladie professionnelle importante et courante au Canada. Sources d’information Une recherche a été effectuée sur MEDLINE afin de relever les recherches et comptes rendus portant sur la maladie des vibrations. Une recherche a été effectuée sur Google dans le but d’obtenir la littérature grise qui convient au contexte canadien. D’autres références ont été tirées des articles relevés. Message principal La maladie des vibrations est une maladie professionnelle répandue touchant les travailleurs de diverses industries qui utilisent des outils vibrants. La maladie est cependant sous-diagnostiquée au Canada. Elle compte 3 éléments : vasculaire, sous la forme d’un phénomène de Raynaud secondaire; neurosensoriel; et musculosquelettique. Aux stades les plus avancés, la maladie des vibrations entraîne une invalidité importante et une piètre qualité de vie. Son diagnostic exige une anamnèse minutieuse, en particulier des antécédents professionnels, un examen physique, des analyses de laboratoire afin d’éliminer les autres diagnostics, et la recommandation en médecine du travail aux fins d’investigations plus poussées. La prise en charge consiste à réduire l’exposition aux vibrations, éviter les températures froides, abandonner le tabac et administrer des médicaments. Conclusion Pour assurer un diagnostic rapide de la maladie des vibrations et améliorer le pronostic et la qualité de vie, les médecins de famille devraient connaître cette maladie professionnelle courante, et pouvoir obtenir les détails pertinents durant l’anamnèse, recommander les patients aux cliniques de médecine du travail et débuter les demandes d’indemnisation de manière appropriée. PMID:28292812

  6. Thermoregulatory responses to heat and vibration in men

    NASA Technical Reports Server (NTRS)

    Spaul, W. A.; Spear, R. C.; Greenleaf, J. E.

    1986-01-01

    The effect of vibration on thermoregulatory responses was studied in heat-acclimated men exposed suddenly to simultaneous heat and whole body vibrations (WBVs) at two intensity levels, each at graded frequencies between 5 and 80 Hz. The mean rectal temperature (Tre) became elevated more quickly in the WBV exposures than in the controls (heat exposure alone). Both intensity- and frequency-dependent WBV relationships were recorded in localized blood flows and in sweat rates. Thus, vibration appears to reduce the efficiency of the cooling mechanisms during a heat exposure.

  7. Workmanship vibration test of the SAS-B spacecraft

    NASA Technical Reports Server (NTRS)

    Demas, L. J.

    1974-01-01

    The occurrence of a technical problem made it necessary to remove the transmitter from the SAS-B spacecraft. The transmitter was repaired and reinstalled in the spacecraft. After this operation it was necessary to test the mechanical properties of the reassembled spacecraft in a vibration test to be conducted near the spacecraft launching place on the San Marco Range in the Indian Ocean. A vibration system was, therefore, sent to San Marco. The design of the vibration system is discussed, giving attention also to alternative solutions for conducting the required tests.

  8. FIFI-LS diffraction grating vibration on SOFIA

    NASA Astrophysics Data System (ADS)

    Rebell, Felix; Beckmann, Simon; Bryant, Aaron; Colditz, Sebastian; Fischer, Christian; Fumi, Fabio; Hoenle, Rainer; Geis, Norbert; Iserlohe, Christof; Klein, Randolf; Krabbe, Alfred; Looney, Leslie; Poglitsch, Albrecht; Raab, Walfried; Savage, Maureen

    2016-08-01

    FIFI-LS (the Field Imaging Far Infrared Line Spectrometer for SOFIA) was successfully commissioned in 2014 during six flights on SOFIA. The observed wavelengths are set by rotating reflective gratings. In flight these gratings and their rotating mechanisms are exposed to vibrations. To quantify these vibrations, an acceleration sensor was placed on the exterior of the instrument. Simultaneously, the angle sensor of the grating was read out to analyze the movement of the grating. Based on this data, lab measurements were conducted to evaluate the effect of the vibrations on the image quality of FIFI-LS. The submitted paper will present the measured data and show the results of the analysis.

  9. Gerotor and bearing system for whirling mass orbital vibrator

    DOEpatents

    Brett, James Ford; Westermark, Robert Victor; Turner, Jr., Joey Earl; Lovin, Samuel Scott; Cole, Jack Howard; Myers, Will

    2007-02-27

    A gerotor and bearing apparatus for a whirling mass orbital vibrator which generates vibration in a borehole. The apparatus includes a gerotor with an inner gear rotated by a shaft having one less lobe than an outer gear. A whirling mass is attached to the shaft. At least one bearing is attached to the shaft so that the bearing engages at least one sleeve. A mechanism is provided to rotate the inner gear, the mass and the bearing in a selected rotational direction in order to cause the mass, the inner gear, and the bearing to backwards whirl in an opposite rotational direction. The backwards whirling mass creates seismic vibrations.

  10. Active vibration control of civil structures

    SciTech Connect

    Farrar, C.; Baker, W.; Fales, J.; Shevitz, D.

    1996-11-01

    This is a final report of a one year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Active vibration control (AVC) of structural and mechanical systems is one of the rapidly advancing areas of engineering research. The multifaceted nature of AVC covers many disciplines, such as sensors and instrumentation, numerical modeling, experimental mechanics, and advanced power systems. This work encompassed a review of the literature on active control of structures focusing both on active control hardware and on control algorithms, a design of an isolation systems using magneto-rheological fluid-filled (MRF) dampers and numerical simulations to study the enhanced vibration mitigation effects of this technology.

  11. Random vibration ESS adequacy prediction method

    NASA Astrophysics Data System (ADS)

    Lambert, Ronald G.

    Closed form analytical expressions have been derived and are used as part of the proposed method to quantitatively predict the adequacy of the random vibration portion of an Environmental Stress Screen (ESS) to meet its main objective for screening typical avionics electronic assemblies for workmanship defects without consuming excessive useful life. This method is limited to fatigue related defects (including initial damage/Fracture Mechanics effects) and requires defect fatigue and service environment parameter values. Examples are given to illustrate the method.

  12. Vibration and chaos control of non-linear torsional vibrating systems

    NASA Astrophysics Data System (ADS)

    El-Bassiouny, A. F.

    2006-07-01

    Vibration of a mechanical system is often an undesirable phenomenon, as it may cause damage, disturbance, discomfort and, sometimes, destruction of systems and structures. To reduce vibration, many methods can be used. The most famous method is using dynamic absorbers or dampers. In the present work, a non-linear elastomeric damper or absorber is used to control the torsional vibrations of the crankshaft in internal combustion engines, when subjected to both external and parametric excitation torques. The multiple time scale perturbation method is applied to determine the equations governing the modulation of both amplitudes and phases of the crankshaft and the absorber. These equations are used to determine the steady-state amplitudes and system stability. Numerical integration of the basic equations is applied to investigate the effects of the different parameters on system behavior. A comparison is made with the available published work. Some recommendations are given at the end of the work.

  13. Use of chaotic and random vibrations to generate high frequency test inputs: Part 2, Chaotic vibrations

    SciTech Connect

    Paez, T.L.; Gregory, D.L.

    1990-01-01

    This paper and a companion paper show that the traditional limits on amplitude and frequency that can be generated in a laboratory test on a vibration exciter can be substantially extended. This is accomplished by attaching a device to the shaker that permits controlled metal to metal impacts that generate a high acceleration, high frequency environment on a test surface. A companion paper derives some of the mechanical relations for the system. This paper shows that a sinusoidal shaker input can be used to excite deterministic chaotic dynamics of the system yielding a random vibration environment on the test surface, or a random motion of the shaker can be used to generate a random vibration environment on the test surface. Numerical examples are presented to show the kind of environments that can be generated in this system. 9 refs., 9 figs.

  14. Vibration-Response Analysis

    NASA Technical Reports Server (NTRS)

    Bowman, L. M.

    1986-01-01

    Dynamic behaviors of structures analyzed interactively. Interactive steadystate vibration-response program, VIBRA, developed. Frequency-response analyses commonly used in evaluating dynamic behaviors of structures subjected to cyclic external forces. VIBRA calculates frequency response using modalsuperposition approach. Method applicable to single or multiple forces applied to linear, proportionally damped structure in which damping is viscous or structural. VIBRA written in FORTRAN 77 for interactive execution.

  15. Noise and vibration control for HVAC and piping systems

    SciTech Connect

    Yerges, J.F.; Yerges, J.R.

    1997-10-01

    This article offers engineering advice on how to avoid noise and vibration problems through good mechanical engineering design and strategic communication with other members of the construction team. The design of ducted HVAC systems must address six distinct but related issues--airborne equipment noise, equipment vibration, ductborne fan noise, duct breakout noise, flow generated noise, and ductborne crosstalk. Each and every one of these issues must be addressed, or the design will fail.

  16. Changes in EMG activity in the upper trapezius muscle due to local vibration exposure.

    PubMed

    Aström, Charlotte; Lindkvist, Markus; Burström, Lage; Sundelin, Gunnevi; Karlsson, J Stefan

    2009-06-01

    Exposure to vibration is suggested as a risk factor for developing neck and shoulder disorders in working life. Mechanical vibration applied to a muscle belly or a tendon can elicit a reflex muscle contraction, also called tonic vibration reflex, but the mechanisms behind how vibration could cause musculoskeletal disorders has not yet been described. One suggestion has been that the vibration causes muscular fatigue. This study investigates whether vibration exposure changes the development of muscular fatigue in the trapezius muscle. Thirty-seven volunteers (men and women) performed a sub-maximal isometric shoulder elevation for 3 min. This was repeated four times, two times with induced vibration and two times without. Muscle activity was measured before and after each 3-min period to look at changes in the electromyography parameters. The result showed a significantly smaller mean frequency decrease when performing the shoulder elevation with vibration (-2.51 Hz) compared to without vibration (-4.04 Hz). There was also a slightly higher increase in the root mean square when exposed to vibration (5.7% of maximal voluntary contraction) compared to without (3.8% of maximal voluntary contraction); however, this was not statistically significant. The results of the present study indicate that short-time exposure to vibration has no negative acute effects on the fatiguing of upper trapezius muscle.

  17. Vibrational force alters mRNA expression in osteoblasts

    NASA Technical Reports Server (NTRS)

    Tjandrawinata, R. R.; Vincent, V. L.; Hughes-Fulford, M.

    1997-01-01

    Serum-deprived mouse osteoblastic (MC3T3E1) cells were subjected to a vibrational force modeled by NASA to simulate a space shuttle launch (7.83 G rms). The mRNA levels for eight genes were investigated to determine the effect of vibrational force on mRNA expression. The mRNA levels of two growth-related protooncogenes, c-fos and c-myc, were up-regulated significantly within 30 min after vibration, whereas those of osteocalcin as well as transforming growth factor-beta1 were decreased significantly within 3 h after vibration. No changes were detected in the levels of beta-actin, histone H4, or cytoplasmic phospholipase A2 after vibration. No basal levels of cyclooxygenase-2 expression were detected. In addition, the extracellular concentrations of prostaglandin E2 (PGE2), a potent autocrine/paracrine growth factor in bone, were not significantly altered after vibration most likely due to the serum deprivation state of the osteoblasts. In comparison with the gravitational launch profile, vibrational-induced changes in gene expression were greater both in magnitude and number of genes activated. Taken together, these data suggest that the changes in mRNA expression are due to a direct mechanical effect of the vibrational force on the osteoblast cells and not to changes in the local PGE2 concentrations. The finding that launch forces induce gene expression is of utmost importance since many of the biological experiments do not dampen vibrational loads on experimental samples. This lack of dampening of vibrational forces may partially explain why 1-G onboard controls sometimes do not reflect 1-G ground controls. These data may also suggest that scientists use extra ground controls that are exposed to launch forces, have these forces dampened on launched samples, or use facilities such as Biorack that provide an onboard 1-G centrufuge in order to control for space shuttle launch forces.

  18. Vibration isolation mounting system

    NASA Technical Reports Server (NTRS)

    Carter, Sam D. (Inventor); Bastin, Paul H. (Inventor)

    1995-01-01

    A system is disclosed for mounting a vibration producing device onto a spacecraft structure and also for isolating the vibration forces thereof from the structure. The system includes a mount on which the device is securely mounted and inner and outer rings. The rings and mount are concentrically positioned. The system includes a base (secured to the structure) and a set of links which are interconnected by a set of torsion bars which allow and resist relative rotational movement therebetween. The set of links are also rotatably connected to a set of brackets which are rigidly connected to the outer ring. Damped leaf springs interconnect the inner and outer rings and the mount allow relative translational movement therebetween in X and Y directions. The links, brackets and base are interconnected and configured so that they allow and resist translational movement of the device in the Z direction so that in combination with the springs they provide absorption of vibrational energy produced by the device in all three dimensions while providing rotational stiffness about all three axes to prevent undesired rotational motions.

  19. Analysis and Modelling of Muscles Motion during Whole Body Vibration

    NASA Astrophysics Data System (ADS)

    Cesarelli, M.; Fratini, A.; Bifulco, P.; La Gatta, A.; Romano, M.; Pasquariello, G.

    2009-12-01

    The aim of the study is to characterize the local muscles motion in individuals undergoing whole body mechanical stimulation. In this study we aim also to evaluate how subject positioning modifies vibration dumping, altering local mechanical stimulus. Vibrations were delivered to subjects by the use of a vibrating platform, while stimulation frequency was increased linearly from 15 to 60 Hz. Two different subject postures were here analysed. Platform and muscles motion were monitored using tiny MEMS accelerometers; a contra lateral analysis was also presented. Muscle motion analysis revealed typical displacement trajectories: motion components were found not to be purely sinusoidal neither in phase to each other. Results also revealed a mechanical resonant-like behaviour at some muscles, similar to a second-order system response. Resonance frequencies and dumping factors depended on subject and his positioning. Proper mechanical stimulation can maximize muscle spindle solicitation, which may produce a more effective muscle activation.

  20. Viscoelastic Flows in Simple Liquids Generated by Vibrating Nanostructures

    NASA Astrophysics Data System (ADS)

    Sader, John; Pelton, Matthew; Chakraborty, Debadi; Malachosky, Edward; Guyot-Sionnest, Philippe

    2014-11-01

    Newtonian fluid mechanics, in which the shear stress is proportional to the strain rate, is synonymous with the flow of simple liquids like water. We report the measurement and theoretical verification of non-Newtonian, viscoelastic flow phenomena produced by the high-frequency (>20 GHz) vibration of gold nanoparticles immersed in water-glycerol mixtures. The observed viscoelasticity is not due to molecular confinement, but is a bulk continuum effect arising from the short time scale of vibration. This represents the first direct mechanical measurement of the intrinsic viscoelastic properties of simple bulk liquids, and opens a new paradigm for understanding extremely high frequency fluid mechanics, nanoscale sensing technologies, and biophysical processes.

  1. Anti-correlated vibrations drive fast non-adiabatic light harvesting

    NASA Astrophysics Data System (ADS)

    Jonas, David

    2015-03-01

    We have recently shown that intramolecular vibrations shared across pigments can drive electronic energy transfer beyond the Born-Oppenheimer framework developed by Forster. The key features of this mechanism are a small change in vibrational equilibrium (less than the zero point amplitude) upon electronic excitation of the pigments and vibrational resonance with the adiabatic electronic energy gap. For identical pigments, delocalized, anti-correlated vibrations increase the speed of energy transfer. The same anti-correlated vibrations are excited by an electronically enhanced Raman process on the ground electronic state of photosynthetic antennas, and these vibrational wavepackets generate all of the reported signatures of photosynthetic energy transfer in femtosecond two-dimensional Fourier transform spectra. The talk will discuss how these results are generalized for differences between donor and acceptor and for multiple vibrations. This material is based upon work supported by the Air Force Office of Scientific Research under AFOSR Award No. FA9550-14-1-0258.

  2. Simulation of Satellite Vibration Test

    NASA Astrophysics Data System (ADS)

    Bettacchioli, Alain

    2014-06-01

    During every mechanical qualification test of satellites on vibrator, we systematically notice beating phenomena that appear every time we cross a mode's frequency. There could lead to an over-qualification of the tested specimen when the beating reaches a maximum and a under-qualification when the beating passes by a minimum. On a satellite, three lateral modes raise such a problem in a recurring way: the first structure mode (between 10 and 15 hertz) and the two tanks modes (between 35 and 50 hertz).To step forward in the resolution of this problem, we are developing a simulator which is based on the identification of the responses of the accelerometers that are fixed on the satellite and on the shaker slip table. The estimated transfer functions then allow to reconstruct at once the sensors response and the drive which generated them.For the simulation, we do not select all the sensors but only those on the slip table and those used to limit the input level (notching). We may also add those which were close to generate a notching.To perform its calculations, the simulator reproduces on one hand the unity amplitude signal (cola) which serves as frequency reference for the sweep achievement (generally 3 octaves per minute from 5 to 100 and even 150 Hertz), and on the other hand, the vibrator control loop. The drive amplitude is calculated at each cola's period by taking into account a compression factor. The control applied through the amplifier to the shaker coil is the product of this amplitude by the cola. The simulated measurements are updated at each sampling period thanks to the propagation of the identified model. The superposition of these curves on those supplied by real sensors during the tests allows to validate the simulation.Thereby, it seems possible to actively control the beatings thanks to a real-time corrector which uses these identifications.

  3. Vibrational averages along thermal lines

    NASA Astrophysics Data System (ADS)

    Monserrat, Bartomeu

    2016-01-01

    A method is proposed for the calculation of vibrational quantum and thermal expectation values of physical properties from first principles. Thermal lines are introduced: these are lines in configuration space parametrized by temperature, such that the value of any physical property along them is approximately equal to the vibrational average of that property. The number of sampling points needed to explore the vibrational phase space is reduced by up to an order of magnitude when the full vibrational density is replaced by thermal lines. Calculations of the vibrational averages of several properties and systems are reported, namely, the internal energy and the electronic band gap of diamond and silicon, and the chemical shielding tensor of L-alanine. Thermal lines pave the way for complex calculations of vibrational averages, including large systems and methods beyond semilocal density functional theory.

  4. A Detailed Level Kinetics Model of NO Vibrational Energy Distributions

    NASA Technical Reports Server (NTRS)

    Sharma, Surendra P.; Gilmore, John; Cavolowsky, John A. (Technical Monitor)

    1996-01-01

    Several contemporary problems have pointed to the desirability of a detailed level kinetics approach to modeling the distribution of vibrational energy in NO. Such a model is necessary when vibrational redistribution reactions are insufficient to maintain a Boltzmann distribution over the vibrational energy states. Recent calculations of the rate constant for the first reaction of the Zeldovich mechanism (N2 + O (goes to) NO + N) have suggested that the product NO is formed in high vibrational states. In shock layer flowfields, the product NO molecules may experience an insufficient number of collisions to establish a Boltzmann distribution over vibrational states, thus necessitating a level kinetics model. In other flows, such as expansions of high temperature air, fast, near-resonance vibrational energy exchanges with N2 and O2 may also require a level specific model for NO because of the relative rates of vibrational exchange and redistribution. The proposed report will integrate computational and experimental components to construct such a model for the NO molecule.

  5. Moving in the Right Direction: Protein Vibrational Steering Function.

    PubMed

    Niessen, Katherine A; Xu, Mengyang; Paciaroni, Alessandro; Orecchini, Andrea; Snell, Edward H; Markelz, Andrea G

    2017-03-14

    Nearly all protein functions require structural change, such as enzymes clamping onto substrates, and ion channels opening and closing. These motions are a target for possible new therapies; however, the control mechanisms are under debate. Calculations have indicated protein vibrations enable structural change. However, previous measurements found these vibrations only weakly depend on the functional state. By using the novel technique of anisotropic terahertz microscopy, we find that there is a dramatic change to the vibrational directionality with inhibitor binding to lysozyme, whereas the vibrational energy distribution, as measured by neutron inelastic scattering, is only slightly altered. The anisotropic terahertz measurements provide unique access to the directionality of the intramolecular vibrations, and immediately resolve the inconsistency between calculations and previous measurements, which were only sensitive to the energy distribution. The biological importance of the vibrational directions versus the energy distribution is revealed by our calculations comparing wild-type lysozyme with a higher catalytic rate double deletion mutant. The vibrational energy distribution is identical, but the more efficient mutant shows an obvious reorientation of motions. These results show that it is essential to characterize the directionality of motion to understand and control protein dynamics to optimize or inhibit function.

  6. Downhole Vibration Monitoring and Control System

    SciTech Connect

    Martin E. Cobern

    2007-09-30

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. The key feature of this system is its use of a magnetorheological fluid (MRF) to allow the damping coefficient to be changed extensively, rapidly and reversibly without the use of mechanical valves, but only by the application of a current. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. Much of the effort was devoted to the design and testing of the MRF damper, itself. The principal objectives of Phase II were: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in a drilling laboratory. Phase II concluded on January 31, 2006, and a final report was issued. Work on Phase III of the project began during the first quarter, 2006, with the objectives of building precommercial prototypes, testing them in a drilling laboratory and the field; developing and implementing a commercialization plan. All of these have been accomplished. The Downhole Vibration Monitoring & Control System (DVMCS) prototypes have been successfully proven in testing at the TerraTek drilling facility and at the Rocky Mountain Oilfield Test Center (RMOTC.) Based on the results of these tests, we have signed a definitive development and distribution agreement with Smith, and commercial deployment is underway. This current version of the DVMCS monitors and controls axial vibrations. Due to time and budget constraints of this program, it was not possible to complete a system that would also deal with lateral and torsional (stick-slip) vibrations as originally planned; however, this effort is continuing without DOE

  7. Vibration damping method and apparatus

    DOEpatents

    Redmond, James M.; Barney, Patrick S.; Parker, Gordon G.; Smith, David A.

    1999-01-01

    The present invention provides vibration damping method and apparatus that can damp vibration in more than one direction without requiring disassembly, that can accommodate varying tool dimensions without requiring re-tuning, and that does not interfere with tool tip operations and cooling. The present invention provides active dampening by generating bending moments internal to a structure such as a boring bar to dampen vibration thereof.

  8. Vibration damping method and apparatus

    DOEpatents

    Redmond, J.M.; Barney, P.S.; Parker, G.G.; Smith, D.A.

    1999-06-22

    The present invention provides vibration damping method and apparatus that can damp vibration in more than one direction without requiring disassembly, that can accommodate varying tool dimensions without requiring re-tuning, and that does not interfere with tool tip operations and cooling. The present invention provides active dampening by generating bending moments internal to a structure such as a boring bar to dampen vibration thereof. 38 figs.

  9. Vibrational autoionization in polyatomic molecules.

    PubMed

    Pratt, S T

    2005-01-01

    The vibrationally autoionizing Rydberg states of small polyatomic molecules provide a fascinating laboratory in which to study fundamental nonadiabatic processes. In this review, recent results on the vibrational mode dependence of vibrational autoionization are discussed. In general, autoionization rates depend strongly on the character of the normal mode driving the process and on the electronic character of the Rydberg electron. Although quantitative calculations based on multichannel quantum defect theory are available for some polyatomic molecules, including H3, only qualitative information exists for most molecules. This review shows how qualitative information, such as Walsh diagrams along different normal coordinates of the molecule, can provide insight into the vibrational autoionization rates.

  10. Frequency-dependence of psychophysical and physiological responses to hand-transmitted vibration.

    PubMed

    Griffin, Michael J

    2012-01-01

    This invited paper reviews experimental studies of the frequency-dependence of absolute thresholds for the perception of vibration, equivalent comfort contours, temporary changes in sensation caused by vibration, and reductions in finger blood flow caused by hand-transmitted vibration. Absolute thresholds depend on the contact conditions but for a typical hand grip the thresholds show greatest sensitivity to acceleration around 125 Hz. The frequency-dependence of discomfort caused by hand-transmitted vibration depends on vibration magnitude: similar to absolute thresholds at low magnitudes, but the discomfort at higher magnitudes is similar when the vibration velocity is similar (at frequencies between about 16 and 400 Hz). Hand-transmitted vibration induces temporary elevations in vibrotactile thresholds that reflect the sensory mechanisms excited by the vibration and are therefore highly dependent on the frequency of vibration. Hand-transmitted vibration reduces finger blood flow during and after exposure; when the vibration velocity is similar at all frequencies there is more vasoconstriction at frequencies greater than 63 Hz than at lower frequencies. A single frequency weighting cannot provide a good indication of how all effects of hand-transmitted vibration depend on vibration frequency. Furthermore, a single frequency weighting provides only an approximate indication of any single response, because many factors influence the frequency-dependence of responses to hand-transmitted vibration, including the magnitude of vibration, contact conditions, and individual differences. Although the frequency weighting in current standards extends from 8 to 1,000 Hz, frequencies greater than 400 Hz rarely increase the weighted value on tools and there is currently little psychophysical or physiological evidence of their effects.

  11. Turbine blade vibration dampening

    DOEpatents

    Cornelius, C.C.; Pytanowski, G.P.; Vendituoli, J.S.

    1997-07-08

    The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass ``M`` or combined mass ``CM`` of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics. 5 figs.

  12. Turbine blade vibration dampening

    DOEpatents

    Cornelius, Charles C.; Pytanowski, Gregory P.; Vendituoli, Jonathan S.

    1997-07-08

    The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass "M" or combined mass "CM" of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics.

  13. Cement mixing with vibrator

    SciTech Connect

    Allen, T.E.

    1991-07-09

    This patent describes a method of cementing a casing string in a bore hole of a well. It comprises introducing water and dry cement material into a mixing vessel; mixing the water and dry cement material in the mixing vessel to form a cement slurry, the slurry including lumps of the dry cement material, the mixing including steps of: agitating the slurry; and while agitating the slurry, transmitting vibrational energy into the slurry and thereby aiding disintegration and subsequent wetting of the lumps of the dry cement material in the slurry; and pumping the slurry into an annulus between the casing string and the bore hole.

  14. Chaotic vortex induced vibrations

    SciTech Connect

    Zhao, J.; Sheridan, J.; Leontini, J. S.; Lo Jacono, D.

    2014-12-15

    This study investigates the nature of the dynamic response of an elastically mounted cylinder immersed in a free stream. A novel method is utilized, where the motion of the body during a free vibration experiment is accurately recorded, and then a second experiment is conducted where the cylinder is externally forced to follow this recorded trajectory. Generally, the flow response during both experiments is identical. However, particular regimes exist where the flow response is significantly different. This is taken as evidence of chaos in these regimes.

  15. Nonlinear interferometric vibrational imaging.

    PubMed

    Marks, Daniel L; Boppart, Stephen A

    2004-03-26

    Coherent anti-Stokes Raman scattering (CARS) processes are "coherent," but the phase of the anti-Stokes radiation is lost by most incoherent spectroscopic CARS measurements. We propose a Raman microscopy imaging method called nonlinear interferometric vibrational imaging, which measures Raman spectra by obtaining the temporal anti-Stokes signal through nonlinear interferometry. With a more complete knowledge of the anti-Stokes signal, we show through simulations that a high-resolution Raman spectrum can be obtained of a molecule in a single pulse using broad band radiation. This could be useful for identifying the three-dimensional spatial distribution of molecular species in tissue.

  16. The Vibration Ring. Phase 1; [Seedling Fund

    NASA Technical Reports Server (NTRS)

    Asnani, Vivake M.; Krantz, Timothy L.; Delap, Damon C.; Stringer, David B.

    2014-01-01

    The vibration ring was conceived as a driveline damping device to prevent structure-borne noise in machines. It has the appearance of a metal ring, and can be installed between any two driveline components like an ordinary mechanical spacer. Damping is achieved using a ring-shaped piezoelectric stack that is poled in the axial direction and connected to an electrical shunt circuit. Surrounding the stack is a metal structure, called the compression cage, which squeezes the stack along its poled axis when excited by radial driveline forces. The stack in turn generates electrical energy, which is either dissipated or harvested using the shunt circuit. Removing energy from the system creates a net damping effect. The vibration ring is much stiffer than traditional damping devices, which allows it to be used in a driveline without disrupting normal operation. In phase 1 of this NASA Seedling Fund project, a combination of design and analysis was used to examine the feasibility of this concept. Several designs were evaluated using solid modeling, finite element analysis, and by creating prototype hardware. Then an analytical model representing the coupled electromechanical response was formulated in closed form. The model was exercised parametrically to examine the stiffness and loss factor spectra of the vibration ring, as well as simulate its damping effect in the context of a simplified driveline model. The results of this work showed that this is a viable mechanism for driveline damping, and provided several lessons for continued development.

  17. Nonlinear frequency response analysis of structural vibrations

    NASA Astrophysics Data System (ADS)

    Weeger, Oliver; Wever, Utz; Simeon, Bernd

    2014-12-01

    In this paper we present a method for nonlinear frequency response analysis of mechanical vibrations of 3-dimensional solid structures. For computing nonlinear frequency response to periodic excitations, we employ the well-established harmonic balance method. A fundamental aspect for allowing a large-scale application of the method is model order reduction of the discretized equation of motion. Therefore we propose the utilization of a modal projection method enhanced with modal derivatives, providing second-order information. For an efficient spatial discretization of continuum mechanics nonlinear partial differential equations, including large deformations and hyperelastic material laws, we employ the concept of isogeometric analysis. Isogeometric finite element methods have already been shown to possess advantages over classical finite element discretizations in terms of higher accuracy of numerical approximations in the fields of linear vibration and static large deformation analysis. With several computational examples, we demonstrate the applicability and accuracy of the modal derivative reduction method for nonlinear static computations and vibration analysis. Thus, the presented method opens a promising perspective on application of nonlinear frequency analysis to large-scale industrial problems.

  18. Silicon Micromachined Sensor for Broadband Vibration Analysis

    NASA Technical Reports Server (NTRS)

    Gutierrez, Adolfo; Edmans, Daniel; Cormeau, Chris; Seidler, Gernot; Deangelis, Dave; Maby, Edward

    1995-01-01

    The development of a family of silicon based integrated vibration sensors capable of sensing mechanical resonances over a broad range of frequencies with minimal signal processing requirements is presented. Two basic general embodiments of the concept were designed and fabricated. The first design was structured around an array of cantilever beams and fabricated using the ARPA sponsored multi-user MEMS processing system (MUMPS) process at the Microelectronics Center of North Carolina (MCNC). As part of the design process for this first sensor, a comprehensive finite elements analysis of the resonant modes and stress distribution was performed using PATRAN. The dependence of strain distribution and resonant frequency response as a function of Young's modulus in the Poly-Si structural material was studied. Analytical models were also studied. In-house experimental characterization using optical interferometry techniques were performed under controlled low pressure conditions. A second design, intended to operate in a non-resonant mode and capable of broadband frequency response, was proposed and developed around the concept of a cantilever beam integrated with a feedback control loop to produce a null mode vibration sensor. A proprietary process was used to integrat a metal-oxide semiconductor (MOS) sensing device, with actuators and a cantilever beam, as part of a compatible process. Both devices, once incorporated as part of multifunction data acquisition and telemetry systems will constitute a useful system for NASA launch vibration monitoring operations. Satellite and other space structures can benefit from the sensor for mechanical condition monitoring functions.

  19. CFD Simulations of Vibration Induced Droplet Ejection.

    NASA Astrophysics Data System (ADS)

    James, Ashley; Smith, Marc K.; Glezer, Ari

    1998-11-01

    Vibration-induced droplet ejection is a process that occurs when a liquid droplet is placed on a vibrating membrane. Above a critical value of the excitation amplitude, Faraday waves form on the surface of the drop. As the amplitude is increased secondary drops are ejected from the wave crests. A Navier-Stokes solver designed to simulate the transient fluid mechanics of the process is presented. The solver is based on a MAC method on a staggered grid. A volume of fluid method is implemented to track the free surface. The volume fraction is advected via a second-order, unsplit method that minimizes numerical diffusion of the interface. Surface tension is incorporated as a continuum surface force. This work is intended to provide a comprehensive description of the fluid dynamics involved in vibration-induced droplet ejection, with the aim of understanding the mechanism behind the ejection process. The evolution of the interface through droplet ejection will be simulated. The dependence of the ejection process on the driving parameters will be evaluated and the resonance characteristics of the drop will be determined. The results of the computations will be compared with experimental results.

  20. Vibration monitoring via nano-composite piezoelectric foam bushings

    NASA Astrophysics Data System (ADS)

    Bird, Evan T.; Merrell, A. Jake; Anderson, Brady K.; Newton, Cory N.; Rosquist, Parker G.; Fullwood, David T.; Bowden, Anton E.; Seeley, Matthew K.

    2016-11-01

    Most mechanical systems produce vibrations as an inherent side effect of operation. Though some vibrations are acceptable in operation, others can cause damage or signal a machine’s imminent failure. These vibrations would optimally be monitored in real-time, without human supervision to prevent failure and excessive wear in machinery. This paper explores a new alternative to currently-used machine-monitoring equipment, namely a piezoelectric foam sensor system. These sensors are made of a silicone-based foam embedded with nano- and micro-scale conductive particles. Upon impact, they emit an electric response that is directly correlated with impact energy, with no electrical power input. In the present work, we investigated their utility as self-sensing bushings on machinery. These sensors were found to accurately detect both the amplitude and frequency of typical machine vibrations. The bushings could potentially save time and money over other vibration sensing mechanisms, while simultaneously providing a potential control input that could be utilized for correcting vibrational imbalance.

  1. Non-classical method of modelling of vibrating mechatronic systems

    NASA Astrophysics Data System (ADS)

    Białas, K.; Buchacz, A.

    2016-08-01

    This work presents non-classical method of modelling of mechatronic systems by using polar graphs. The use of such a method enables the analysis and synthesis of mechatronic systems irrespective of the type and number of the elements of such a system. The method id connected with algebra of structural numbers. The purpose of this paper is also introduces synthesis of mechatronic system which is the reverse task of dynamics. The result of synthesis is obtaining system meeting the defined requirements. This approach is understood as design of mechatronic systems. The synthesis may also be applied to modify the already existing systems in order to achieve a desired result. The system was consisted from mechanical and electrical elements. Electrical elements were used as subsystem reducing unwanted vibration of mechanical system. The majority of vibration occurring in devices and machines is harmful and has a disadvantageous effect on their condition. Harmful impact of vibration is caused by the occurrence of increased stresses and the loss of energy, which results in faster wear machinery. Vibration, particularly low-frequency vibration, also has a negative influence on the human organism. For this reason many scientists in various research centres conduct research aimed at the reduction or total elimination of vibration.

  2. Vibration Considerations for Cryogenic Tanks Using Glass Bubbles Insulation

    NASA Technical Reports Server (NTRS)

    Werlink, Rudolph J.; Fesmire, James E.; Sass, Jared P.

    2011-01-01

    The use of glass bubbles as an efficient and practical thermal insulation system has been previously demonstrated in cryogenic storage tanks. One such example is a spherical, vacuum-jacketed liquid hydrogen vessel of 218,000 liter capacity where the boiloff rate has been reduced by approximately 50 percent. Further applications may include non-stationary tanks such as mobile tankers and tanks with extreme duty cycles or exposed to significant vibration environments. Space rocket launch events and mobile tanker life cycles represent two harsh cases of mechanical vibration exposure. A number of bulk fill insulation materials including glass bubbles, perlite powders, and aerogel granules were tested for vibration effects and mechanical behavior using a custom design holding fixture subjected to random vibration on an Electrodynamic Shaker. The settling effects for mixtures of insulation materials were also investigated. The vibration test results and granular particle analysis are presented with considerations and implications for future cryogenic tank applications. A thermal performance update on field demonstration testing of a 218,000 L liquid hydrogen storage tank, retrofitted with glass bubbles, is presented. KEYWORDS: Glass bubble, perlite, aerogel, insulation, liquid hydrogen, storage tank, mobile tanker, vibration.

  3. Analyzing wind turbine flow interaction through vibration data

    NASA Astrophysics Data System (ADS)

    Castellani, Francesco; D'Elia, Gianluca; Astolfi, Davide; Mucchi, Emiliano; Giorgio, Dalpiaz; Terzi, Ludovico

    2016-09-01

    Wind turbines commonly undergo non-stationary flow and, not rarely, even rather extreme phenomena. In particular, rough terrains represent a challenging testing ground, because of the combination of terrain-driven flow and wakes. It is therefore crucial to assess the impact of dynamic loads on the turbines. In this work, tower and drive-train vibrations are analyzed, from a subcluster of four turbines of a wind farm sited in a very complex terrain. The main outcome of the study is that it is possible to start from the analysis of wind conditions and interpret how wakes manifest in the vibrations of the turbines, both at structural level (tower vibrations) and at the drive-train level. This wind to gear approach therefore allows to build a connection between a flow phenomenon and a mechanical phenomenon (vibrations) and can be precious to assess loads in different working conditions.

  4. Vibrational modes and damping in the cochlear partition

    NASA Astrophysics Data System (ADS)

    O'Maoiléidigh, Dáibhid; Hudspeth, A. J.

    2015-12-01

    It has been assumed in models of cochlear mechanics that the primary role of the cochlear active process is to counteract the damping of the basilar membrane, the vibration of which is much larger in a living animal than post mortem. Recent measurements of the relative motion between the reticular lamina and basilar membrane imply that this assumption is incorrect. We propose that damping is distributed throughout the cochlear partition rather than being concentrated in the basilar membrane. In the absence of significant damping, the cochlear partition possesses three modes of vibration, each associated with its own locus of Hopf bifurcations. Hair-cell activity can amplify any of these modes if the system's operating point lies near the corresponding bifurcation. The distribution of damping determines which mode of vibration predominates. For physiological levels of damping, only one mode produces a vibration pattern consistent with experimental measurements of relative motion and basilar-membrane motion.

  5. Global nonresonant vibrational-photoelectron coupling in molecular photoionization

    NASA Astrophysics Data System (ADS)

    Poliakoff, Erwin; Das, Aloke; Hardy, David; Bozek, John; Aguilar, Alex; Lucchese, Robert

    2009-05-01

    Using photoelectron spectroscopy and Schwinger variational scattering theory, we have investigated the coupling between vibrational motion and the exiting photoelectron over extended ranges of photoelectron kinetic energy. Photoelectron spectroscopy is performed with vibrational resolution over uncommonly large ranges of energy (ca. 200 eV). We find clear and significant changes in vibrational branching ratios as a function of photon energy, in direct contradiction to predictions of the Franck-Condon principle. While it is well known that resonances lead to coupling between electronic and vibrational degrees of freedom, nonresonant mechanisms that result in such coupling are not expected or well-documented. Photoelectron spectra are presented for several electronic states of N2^+, CO^+, and NO^+, and we find that valence isoelectronic channels behave very differently, which is also surprising. Theoretical results indicate that Cooper minima are the underlying cause of these effects, and we are currently working to understand the reasons for the sensitivity of the Cooper minima on bond length.

  6. Smart actuators for active vibration control

    NASA Astrophysics Data System (ADS)

    Pourboghrat, Farzad; Daneshdoost, Morteza

    1998-07-01

    In this paper, the design and implementation of smart actuators for active vibration control of mechanical systems are considered. A smart actuator is composed of one or several layers of piezo-electric materials which work both as sensors and actuators. Such a system also includes micro- electronic or power electronic amplifiers, depending on the power requirements and applications, as well as digital signal processing systems for digital control implementation. In addition, PWM type micro/power amplifiers are used for control implementation. Such amplifiers utilize electronic switching components that allow for miniaturization, thermal efficiency, cost reduction, and precision controls that are robust to disturbances and modeling errors. An adaptive control strategy is then developed for vibration damping and motion control of cantilever beams using the proposed smart self-sensing actuators.

  7. National Transonic Facility Model and Tunnel Vibrations

    NASA Technical Reports Server (NTRS)

    Edwards, John W.

    1997-01-01

    Since coming online in 1984, the National Transonic Facility (NTF) cryogenic wind tunnel at the NASA Langley Research Center has provided unique high Reynolds number testing capability. While turbulence levels in the tunnel, expressed in terms of percent dynamic pressure, are typical of other transonic wind tunnels, the significantly increased load levels utilized to achieve flight Reynolds numbers, in conjunction with the unique structural design requirements for cryogenic operation, have brought forward the issue of model and model support structure vibrations. This paper reports new experimental measurements documenting aerodynamic and structural dynamics processes involved in such vibrations experienced in the NTF. In particular, evidence of local un-steady airloads developed about the model support strut is shown and related to well documented acoustic features known as "Parker" modes. Two-dimensional unsteady viscous computations illustrate this model support structure loading mechanism.

  8. Vibrational Heat Transport in Molecular Junctions.

    PubMed

    Segal, Dvira; Agarwalla, Bijay Kumar

    2016-05-27

    We review studies of vibrational energy transfer in a molecular junction geometry, consisting of a molecule bridging two heat reservoirs, solids or large chemical compounds. This setup is of interest for applications in molecular electronics, thermoelectrics, and nanophononics, and for addressing basic questions in the theory of classical and quantum transport. Calculations show that system size, disorder, structure, dimensionality, internal anharmonicities, contact interaction, and quantum coherent effects are factors that combine to determine the predominant mechanism (ballistic/diffusive), effectiveness (poor/good), and functionality (linear/nonlinear) of thermal conduction at the nanoscale. We review recent experiments and relevant calculations of quantum heat transfer in molecular junctions. We recount the Landauer approach, appropriate for the study of elastic (harmonic) phononic transport, and outline techniques that incorporate molecular anharmonicities. Theoretical methods are described along with examples illustrating the challenge of reaching control over vibrational heat conduction in molecules.

  9. C 2 formation in vibrationally excited CO

    NASA Astrophysics Data System (ADS)

    Wallaart, H. L.; Piar, B.; Perrin, M.-Y.; Martin, J.-P.

    1995-12-01

    The formation of C 2 has been observed following the vibrational excitation of CO. Emission from four different electronic states has been observed: Swan bands (d 3Πg → a 3Πu); Deslandres-d'Azambuja bands (C 1Πg → A 1Πu); Fox-Herzberg bands (e 3Πg → a 3Πu) and a Mulliken band ( D 1Σ u+ → X 1Σ g+). The vibrational populations in the electronic states have been determined from low-resolution emission spectra. The time-resolved behaviour of the emissions indicates that the upper states close to the dissociation limit are populated first, while the lower electronic states are populated following a time delay. Formation mechanisms are discussed.

  10. Structural and vibrational study of maprotiline

    NASA Astrophysics Data System (ADS)

    Yavuz, A. E.; Haman Bayarı, S.; Kazancı, N.

    2009-04-01

    Maprotiline ( N-methyl-9,10-ethanoanthracene-9(10H)-propanamine) is a tetra cyclic antidepressant. It is a highly selective inhibitor of norepinephrine reuptake. The solid and solution in CCl 4 and methanol infrared spectra of maprotiline were recorded. The fully optimized equilibrium structure of maprotiline was obtained from DFT calculations by using the B3LYP functional in combination with 6-31G and 6-311G(d,p) basis sets. The results of harmonic and anharmonic frequency calculations on maprotiline were presented. The vibrational spectra were interpreted, with the aid of normal coordinate analysis based on a scaled quantum mechanical (SQM) force field. Vibrational assignment of all the fundamentals was made using the total energy distribution (TED). The possible interaction between maprotiline and neurotransmitter serotonin (5-HT) were investigated.

  11. Bend-insensitive fiber based vibration sensor

    NASA Astrophysics Data System (ADS)

    Xu, Yanping; Lu, Ping; Baset, Farhana; Bhardwaj, Vedula Ravi; Bao, Xiaoyi

    2014-05-01

    We report two novel fiber-optic vibration sensors based on standard telecom bend-insensitive fiber (BIF). A tapered BIF forming a fiber Mach-Zehnder interferometer could measure continuous and damped vibration from 1 Hz up to 500 kHz. An enclosed microcantilever is fabricated inside the BIF by chemical etching and fusion spliced with a readout singlemode fiber that exhibits a frequency range from 5 Hz to 10 kHz with high signal-to-noise ratio (SNR) up to 68 dB. The unique double cladding structure of the BIF ensures both sensors with advantages of compactness, high resistance to the external disturbance and stronger mechanical strength.

  12. Vibrational relaxation of chloroiodomethane in cold argon

    NASA Astrophysics Data System (ADS)

    Jain, Amber; Sibert, Edwin L.

    2013-10-01

    Electronically exciting the C-I stretch in the molecule chloroiodomethane CH2ClI embedded in a matrix of argon at 12 K can lead to an isomer, iso-chloroiodomethane CH2Cl-I, that features a chlorine iodine bond. By temporally probing the isomer at two different frequencies of 435 nm and 485 nm, multiple timescales for isomerization and vibrational energy relaxation were inferred [T. J. Preston, et al., J. Chem. Phys. 135, 114503 (2011)]. This relaxation is studied theoretically using molecular dynamics by considering 2 and 3 dimensional models. Multiple decay rate constants of the same order of magnitude as the experiment are observed. These decay rate constants are interpreted within the context of the Landau-Teller theory. Sensitivity of the decay rate constants on the bath and system parameters shed more light into the mechanism of vibrational energy relaxation.

  13. Vibrational Heat Transport in Molecular Junctions

    NASA Astrophysics Data System (ADS)

    Segal, Dvira; Agarwalla, Bijay Kumar

    2016-05-01

    We review studies of vibrational energy transfer in a molecular junction geometry, consisting of a molecule bridging two heat reservoirs, solids or large chemical compounds. This setup is of interest for applications in molecular electronics, thermoelectrics, and nanophononics, and for addressing basic questions in the theory of classical and quantum transport. Calculations show that system size, disorder, structure, dimensionality, internal anharmonicities, contact interaction, and quantum coherent effects are factors that combine to determine the predominant mechanism (ballistic/diffusive), effectiveness (poor/good), and functionality (linear/nonlinear) of thermal conduction at the nanoscale. We review recent experiments and relevant calculations of quantum heat transfer in molecular junctions. We recount the Landauer approach, appropriate for the study of elastic (harmonic) phononic transport, and outline techniques that incorporate molecular anharmonicities. Theoretical methods are described along with examples illustrating the challenge of reaching control over vibrational heat conduction in molecules.

  14. Effects of vibrations and shocks on lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Brand, Martin J.; Schuster, Simon F.; Bach, Tobias; Fleder, Elena; Stelz, Manfred; Gläser, Simon; Müller, Jana; Sextl, Gerhard; Jossen, Andreas

    2015-08-01

    Lithium-ion batteries are increasingly used in mobile applications where mechanical vibrations and shocks are a constant companion. This work shows how these mechanical loads affect lithium-ion cells. Therefore pouch and cylindrical cells are stressed with vibrational and shock profiles according to the UN 38.3 standard. Additionally, a vibration test is set up to reflect stress in real-world applications and is carried out for 186 days. The effects of the load profiles on the tested cells are investigated by capacity measurement, impedance spectroscopy, micro-X-ray computed tomography and post mortem analyses. The mechanical stress has no effect on the investigated pouch cells. Although all tested cylindrical cells would pass the standard tests, in certain cells stressed in a vertical position the mandrel dispatched itself and struck against internal components. This caused bruised active materials, short circuits, a damaged current collector and current interrupt device. The investigations are not directly transferrable to all pouch or cylindrical cells but show that the mechanical cell design, especially the fixation of the internal components, determines whether a cell withstands vibrations and shocks. Depending on the cell design and the loading direction, long-term vibrational loads can have additional detrimental effects on lithium-ion cells compared to standard tests.

  15. Active Outer Hair Cells Affect the Sound-Evoked Vibration of the Reticular Lamina

    NASA Astrophysics Data System (ADS)

    Jacob, Stefan; Fridberger, Anders

    2011-11-01

    It is well established that the organ of Corti uses active mechanisms to enhance its sensitivity and frequency selectivity. Two possible mechanisms have been identified, both capable of producing mechanical forces, which can alter the sound-evoked vibration of the hearing organ. However, little is known about the effect of these forces on the sound-evoked vibration pattern of the reticular lamina. Current injections into scala media were used to alter the amplitude of the active mechanisms in the apex of the guinea pig temporal bone. We used time-resolved confocal imaging to access the vibration pattern of individual outer hair cells. During positive current injection the the sound-evoked vibration of outer hair cell row three increased while row one showed a small decrease. Negative currents reversed the observed effect. We conclude that the outer hair cell mediated modification of reticular lamina vibration patterns could contribute to the inner hair cell stimulation.

  16. Active control of sound fields in elastic cylinders by vibrational inputs

    NASA Technical Reports Server (NTRS)

    Jones, J. D.; Fuller, C. R.

    1987-01-01

    An experiment is performed to study the mechanisms of active control of sound fields in elastic cylinders via vibrational outputs. In the present method of control, a vibrational force input was used as the secondary control input to reduce the radiated acoustic field. For the frequencies considered, the active vibration technique provided good global reduction of interior sound even though only one actuator was used.

  17. The Shock and Vibration Bulletin. Part 1. Welcome, Keynote Address, Invited Papers.

    DTIC Science & Technology

    1980-09-01

    drive a 500-lb shaker from tape records of flight vibration . For the next eight years, intensive study, research and development was applied to...sinusoidal" vibration on mechanical shakers with simple data acquisition was adequate to test the much simpler equipment of the day, especially as it was...isolation, even the swept sinusoidal vibration to higher frequencies made possible by electrodynamic shakers was found wanting. Fortunately

  18. Relationship between the internal friction values of the specimen and the vibration system

    NASA Astrophysics Data System (ADS)

    Shui, Jiapeng; Pei, Huiyuan; Liu, Yongsong

    1999-04-01

    Expressions for the low frequency internal friction of a specimen and that of the vibration system of the internal friction measuring apparatus have been deduced for six linear mechanical models. It was found that in the case of forced vibration experiments, the internal friction expressions are different for different models. The relationships between the internal friction values of specimens and the vibration systems for different models have been obtained.

  19. Vibration Response of Airplane Structures

    NASA Technical Reports Server (NTRS)

    Theodorsen, Theodore; Gelalles, A G

    1935-01-01

    This report presents test results of experiments on the vibration-response characteristics of airplane structures on the ground and in flight. It also gives details regarding the construction and operation of vibration instruments developed by the National Advisory Committee for Aeronautics.

  20. Vibration Analysis by Speckle Interferometry,

    DTIC Science & Technology

    The vibrational modes of complex systems can be visualized with high sensitivity by laser light speckle interferometry. Electronic speckle pattern...interferometry (ESPI), in contrast to holography, does not use photo-chemical storage media but shows a live image of the vibrational modes created by

  1. Vibration analysis using digital correlation

    NASA Technical Reports Server (NTRS)

    Gilbert, John A.; Lehner, David L.; Dudderar, T. Dixon; Matthys, Donald R.

    1988-01-01

    This paper demonstrates the use of a computer-based optical method for locating the positions of nodes and antinodes in vibrating members. Structured light patterns are projected at an angle onto the vibrating surface using a 35 mm slide projector. The vibrating surface and the projected images are captured in a time averaged photograph which is subsequently digitized. The inherent fringe patterns are filtered to determine amplitudes of vibration, and computer programs are used to compare the time averaged images to images recorded prior to excitation to locate nodes and antinodes. Some of the influences of pattern regularity on digital correlation are demonstrated, and a speckle-based method for determining the mode shapes and the amplitudes of vibration with variable sensitivity is suggested.

  2. Vibrational transfer functions for complex structures

    NASA Technical Reports Server (NTRS)

    Jones, P. A.; Berry, R. L.

    1972-01-01

    Evaluation of effects of vibrational multiple frequency forcing functions is discussed. Computer program for developing vibrational transfer functions is described. Possible applications of computer program are enumerated.

  3. Gap junctional communication in osteocytes is amplified by low intensity vibrations in vitro.

    PubMed

    Uzer, Gunes; Pongkitwitoon, Suphannee; Ian, Cheng; Thompson, William R; Rubin, Janet; Chan, Meilin E; Judex, Stefan

    2014-01-01

    The physical mechanism by which cells sense high-frequency mechanical signals of small magnitude is unknown. During exposure to vibrations, cell populations within a bone are subjected not only to acceleratory motions but also to fluid shear as a result of fluid-cell interactions. We explored displacements of the cell nucleus during exposure to vibrations with a finite element (FE) model and tested in vitro whether vibrations can affect osteocyte communication independent of fluid shear. Osteocyte like MLO-Y4 cells were subjected to vibrations at acceleration magnitudes of 0.15 g and 1 g and frequencies of 30 Hz and 100 Hz. Gap junctional intracellular communication (GJIC) in response to these four individual vibration regimes was investigated. The FE model demonstrated that vibration induced dynamic accelerations caused larger relative nuclear displacement than fluid shear. Across the four regimes, vibrations significantly increased GJIC between osteocytes by 25%. Enhanced GJIC was independent of vibration induced fluid shear; there were no differences in GJIC between the four different vibration regimes even though differences in fluid shear generated by the four regimes varied 23-fold. Vibration induced increases in GJIC were not associated with altered connexin 43 (Cx43) mRNA or protein levels, but were dependent on Akt activation. Combined, the in silico and in vitro experiments suggest that externally applied vibrations caused nuclear motions and that large differences in fluid shear did not influence nuclear motion (<1%) or GJIC, perhaps indicating that vibration induced nuclear motions may directly increase GJIC. Whether the increase in GJIC is instrumental in modulating anabolic and anti-catabolic processes associated with the application of vibrations remains to be determined.

  4. Piezoelectric Bimorph Cantilever for Vibration-Producing-Hydrogen

    PubMed Central

    Zhang, Jun; Wu, Zheng; Jia, Yanmin; Kan, Junwu; Cheng, Guangming

    2013-01-01

    A device composed of a piezoelectric bimorph cantilever and a water electrolysis device was fabricated to realize piezoelectrochemical hydrogen production. The obvious output of the hydrogen and oxygen through application of a mechanical vibration of ∼0.07 N and ∼46.2 Hz was observed. This method provides a cost-effective, recyclable, environment-friendly and simple way to directly split water for hydrogen fuels by scavenging mechanical waste energy forms such as noise or traffic vibration in the environment. PMID:23271601

  5. Holographic study of a vibrating bell: An undergraduate laboratory experiment

    NASA Astrophysics Data System (ADS)

    Menou, Kristen; Audit, Benjamin; Boutillon, Xavier; Vach, Holger

    1998-05-01

    An experiment combining holography and musical acoustics is described. Structures of vibration modes of a bell are visualized by time-average holography under either acoustical or mechanical excitation. The vibration amplitude as measured by an accelerometer shows very good quantitative agreement with that determined from our holograms by fringe counting. An effect of degenerate level separation is shown in the mechanical case. It is argued that this experiment is not only very inexpensive for a physics laboratory already equipped for holography, but that it also strongly stimulates students to deepen their insight into a variety of different topics in applied physics.

  6. Stroboscopic Interferometer for Measuring Mirror Vibrations

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Robers, Ted

    2005-01-01

    Stroboscopic interferometry is a technique for measuring the modes of vibration of mirrors that are lightweight and, therefore, unavoidably flexible. The technique was conceived especially for modal characterization of lightweight focusing mirror segments to be deployed in outer space; however, the technique can be applied to lightweight mirrors designed for use on Earth as well as the modal investigation of other optical and mechanical structures. To determine the modal structure of vibration of a mirror, it is necessary to excite the mirror by applying a force that varies periodically with time at a controllable frequency. The excitation can utilize sinusoidal, square, triangular, or even asynchronous waveforms. Because vibrational modes occur at specific resonant frequencies, it is necessary to perform synchronous measurements and sweep the frequency to locate the significant resonant modes. For a given mode it is possible to step the phase of data acquisition in order to capture the modal behavior over a single cycle of the resonant frequency. In order to measure interferometrically the vibrational response of the mirror at a given frequency, an interferometer must be suitably aligned with the mirror and adjustably phase-locked with the excitation signal. As in conventional stroboscopic photography, the basic idea in stroboscopic interferometry is to capture an image of the shape of a moving object (in this case, the vibrating mirror) at a specified instant of time in the vibration cycle. Adjusting the phase difference over a full cycle causes the interference fringes to vary over the full range of motion for the mode at the excitation frequency. The interference-fringe pattern is recorded as a function of the phase difference, and, from the resulting data, the surface shape of the mirror for the given mode is extracted. In addition to the interferometer and the mirror to be tested, the equipment needed for stroboscopic interferometry includes an arbitrary

  7. Violin bow vibrations.

    PubMed

    Gough, Colin E

    2012-05-01

    The modal frequencies and bending mode shapes of a freely supported tapered violin bow are investigated by finite element analysis and direct measurement, with and without tensioned bow hair. Such computations are used with analytic models to model the admittance presented to the stretched bow hairs at the ends of the bow and to the string at the point of contact with the bow. Finite element computations are also used to demonstrate the influence of the lowest stick mode vibrations on the low frequency bouncing modes, when the hand-held bow is pressed against the string. The possible influence of the dynamic stick modes on the sound of the bowed instrument is briefly discussed.

  8. Structural Acoustics and Vibrations

    NASA Astrophysics Data System (ADS)

    Chaigne, Antoine

    This structural chapter is devoted to vibrations of structures and to their coupling with the acoustic field. Depending on the context, the radiated sound can be judged as desirable, as is mostly the case for musical instruments, or undesirable, like noise generated by machinery. In architectural acoustics, one main goal is to limit the transmission of sound through walls. In the automobile industry, the engineers have to control the noise generated inside and outside the passenger compartment. This can be achieved by means of passive or active damping. In general, there is a strong need for quieter products and better sound quality generated by the structures in our daily environment.

  9. Ross ice shelf vibrations

    NASA Astrophysics Data System (ADS)

    Bromirski, P. D.; Diez, A.; Gerstoft, P.; Stephen, R. A.; Bolmer, T.; Wiens, D. A.; Aster, R. C.; Nyblade, A.

    2015-09-01

    Broadband seismic stations were deployed across the Ross Ice Shelf (RIS) in November 2014 to study ocean gravity wave-induced vibrations. Initial data from three stations 100 km from the RIS front and within 10 km of each other show both dispersed infragravity (IG) wave and ocean swell-generated signals resulting from waves that originate in the North Pacific. Spectral levels from 0.001 to 10 Hz have the highest accelerations in the IG band (0.0025-0.03 Hz). Polarization analyses indicate complex frequency-dependent particle motions, with energy in several frequency bands having distinctly different propagation characteristics. The dominant IG band signals exhibit predominantly horizontal propagation from the north. Particle motion analyses indicate retrograde elliptical particle motions in the IG band, consistent with these signals propagating as Rayleigh-Lamb (flexural) waves in the ice shelf/water cavity system that are excited by ocean wave interactions nearer the shelf front.

  10. Spent Nuclear Fuel Vibration Integrity Study

    SciTech Connect

    Wang, Jy-An John; Wang, Hong; Jiang, Hao; Yan, Yong; Bevard, Bruce Balkcom

    2016-01-01

    The objective of this research is to collect dynamic experimental data on spent nuclear fuel (SNF) under simulated transportation environments using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT), the hot-cell testing technology developed at Oak Ridge National Laboratory (ORNL). The collected CIRFT data will be utilized to support ongoing spent fuel modeling activities, and support SNF transportation related licensing issues. Recent testing to understand the effects of hydride reorientation on SNF vibration integrity is also being evaluated. CIRFT results have provided insight into the fuel/clad system response to transportation related loads. The major findings of CIRFT on the HBU SNF are as follows: SNF system interface bonding plays an important role in SNF vibration performance, Fuel structure contributes to the SNF system stiffness, There are significant variations in stress and curvature of SNF systems during vibration cycles resulting from segment pellets and clad interaction, and SNF failure initiates at the pellet-pellet interface region and appears to be spontaneous. Because of the non-homogeneous composite structure of the SNF system, finite element analyses (FEA) are needed to translate the global moment-curvature measurement into local stress-strain profiles. The detailed mechanisms of the pellet-pellet and pellet-clad interactions and the stress concentration effects at the pellet-pellet interface cannot be readily obtained directly from a CIRFT system measurement. Therefore, detailed FEA is used to understand the global test response, and that data will also be presented.

  11. Density fluctuations in vibrated granular materials

    SciTech Connect

    Nowak, E.R.; Knight, J.B.; Ben-Naim, E.; Jaeger, H.M.; Nagel, S.R.

    1998-02-01

    We report systematic measurements of the density of a vibrated granular material as a function of time. Monodisperse spherical beads were confined to a cylindrical container and shaken vertically. Under vibrations, the density of the pile slowly reaches a final steady-state value about which the density fluctuates. We have investigated the frequency dependence and amplitude of these fluctuations as a function of vibration intensity {Gamma}. The spectrum of density fluctuations around the steady state value provides a probe of the internal relaxation dynamics of the system and a link to recent thermodynamic theories for the settling of granular material. In particular, we propose a method to evaluate the compactivity of a powder, first put forth by Edwards and co-workers, that is the analog to temperature for a quasistatic powder. We also propose a stochastic model based on free volume considerations that captures the essential mechanism underlying the slow relaxation. We compare our experimental results with simulations of a one-dimensional model for random adsorption and desorption. {copyright} {ital 1998} {ital The American Physical Society}

  12. Minimizing structural vibrations with Input Shaping (TM)

    NASA Technical Reports Server (NTRS)

    Singhose, Bill; Singer, Neil

    1995-01-01

    A new method for commanding machines to move with increased dynamic performance was developed. This method is an enhanced version of input shaping, a patented vibration suppression algorithm. This technique intercepts a command input to a system command that moves the mechanical system with increased performance and reduced residual vibration. This document describes many advanced methods for generating highly optimized shaping sequences which are tuned to particular systems. The shaping sequence is important because it determines the trade off between move/settle time of the system and the insensitivity of the input shaping algorithm to variations or uncertainties in the machine which can be controlled. For example, a system with a 5 Hz resonance that takes 1 second to settle can be improved to settle instantaneously using a 0.2 shaping sequence (thus improving settle time by a factor of 5). This system could vary by plus or minus 15% in its natural frequency and still have no apparent vibration. However, the same system shaped with a 0.3 second shaping sequence could tolerate plus or minus 40% or more variation in natural frequency. This document describes how to generate sequences that maximize performance, sequences that maximize insensitivity, and sequences that trade off between the two. Several software tools are documented and included.

  13. Vibrations of the carbon dioxide dimer

    NASA Astrophysics Data System (ADS)

    Chen, Hua; Light, J. C.

    2000-03-01

    Fully coupled four-dimensional quantum-mechanical calculations are presented for intermolecular vibrational states of rigid carbon dioxide dimer for J=0. The Hamiltonian operator is given in collision coordinates. The Hamiltonian matrix elements are evaluated using symmetrized products of spherical harmonics for angles and a potential optimized discrete variable representation (PO-DVR) for the intermolecular distance. The lowest ten or so states of each symmetry are reported for the potential energy surface (PES) given by Bukowski et al. [J. Chem. Phys. 110, 3785 (1999)]. Due to symmetries, there is no interconversion tunneling splitting for the ground state. Our calculations show that there is no tunneling shift of the ground state within our computation precision (0.01 cm-1). Analysis of the wave functions shows that only the ground states of each symmetry are nearly harmonic. The van der Waals frequencies and symmetry adapted force constants are found and compared to available experimental values. Strong coupling between the stretching coordinates and the bending coordinates are found for vibrationally excited states. The interconversion tunneling shifts are discussed for the vibrationally excited states.

  14. Harvesting Vibrational Energy Using Material Work Functions

    PubMed Central

    Varpula, Aapo; Laakso, Sampo J.; Havia, Tahvo; Kyynäräinen, Jukka; Prunnila, Mika

    2014-01-01

    Vibration energy harvesters scavenge energy from mechanical vibrations to energise low power electronic devices. In this work, we report on vibration energy harvesting scheme based on the charging phenomenon occurring naturally between two bodies with different work functions. Such work function energy harvester (WFEH) is similar to electrostatic energy harvester with the fundamental distinction that neither external power supplies nor electrets are needed. A theoretical model and description of different operation modes of WFEHs are presented. The WFEH concept is tested with macroscopic experiments, which agree well with the model. The feasibility of miniaturizing WFEHs is shown by simulating a realistic MEMS device. The WFEH can be operated as a charge pump that pushes charge and energy into an energy storage element. We show that such an operation mode is highly desirable for applications and that it can be realised with either a charge shuttle or with switches. The WFEH is shown to give equal or better output power in comparison to traditional electrostatic harvesters. Our findings indicate that WFEH has great potential in energy harvesting applications. PMID:25348004

  15. Vibrational spectroscopic characterization of fluoroquinolones

    NASA Astrophysics Data System (ADS)

    Neugebauer, U.; Szeghalmi, A.; Schmitt, M.; Kiefer, W.; Popp, J.; Holzgrabe, U.

    2005-05-01

    Quinolones are important gyrase inhibitors. Even though they are used as active agents in many antibiotics, the detailed mechanism of action on a molecular level is so far not known. It is of greatest interest to shed light on this drug-target interaction to provide useful information in the fight against growing resistances and obtain new insights for the development of new powerful drugs. To reach this goal, on a first step it is essential to understand the structural characteristics of the drugs and the effects that are caused by the environment in detail. In this work we report on Raman spectroscopical investigations of a variety of gyrase inhibitors (nalidixic acid, oxolinic acid, cinoxacin, flumequine, norfloxacin, ciprofloxacin, lomefloxacin, ofloxacin, enoxacin, sarafloxacin and moxifloxacin) by means of micro-Raman spectroscopy excited with various excitation wavelengths, both in the off-resonance region (532, 633, 830 and 1064 nm) and in the resonance region (resonance Raman spectroscopy at 244, 257 and 275 nm). Furthermore DFT calculations were performed to assign the vibrational modes, as well as for an identification of intramolecular hydrogen bonding motifs. The effect of small changes in the drug environment was studied by adding successively small amounts of water until physiological low concentrations of the drugs in aqueous solution were obtained. At these low concentrations resonance Raman spectroscopy proved to be a useful and sensitive technique. Supplementary information was obtained from IR and UV/vis spectroscopy.

  16. Localized vibrational modes in diamond

    NASA Astrophysics Data System (ADS)

    Murzaev, R. T.; Bachurin, D. V.; Korznikova, E. A.; Dmitriev, S. V.

    2017-03-01

    Discrete breather (DB) or, synonymously, intrinsic localized mode (ILM) is a spatially localized and time-periodic vibrational mode in a defect-free nonlinear lattice, e.g., in a crystal lattice. Standing DB and DB clusters (double and triple) are studied in diamond using molecular dynamics method with the AIREBO interatomic potentials. Single DB can be easily excited by applying initial shifts, A0, to a pair of nearest atoms along the valence bond in the opposite directions. Admissible excitation amplitudes are 0.09 ≤A0 /a0 ≤ 0.12, where a0 is the equilibrium interatomic distance. The core of a DB is a pair of nearest carbon atoms oscillating out-of-phase, while the neighboring atoms oscillate with one order of magnitude lower amplitudes. DB frequency is above the top of the phonon spectrum and increases with the oscillation amplitude. DB lives for more than 100 oscillation periods which approximately corresponds to 2 ps. The range of initial amplitudes and other conditions necessary for the excitation of double and triple DB clusters as well as their lifetime are investigated in detail. Two different mechanisms of energy exchange between DBs in the DB clusters are revealed, which is the main result of the present study. Our results contribute to a deeper understanding of the nonlinear lattice dynamics of diamond.

  17. Vibration-Based Damage Detection in Rotating Machinery

    SciTech Connect

    Farrar, C.R.; Duffey, T.A.

    1999-06-28

    Damage detection as determined from changes in the vibration characteristics of a system has been a popular research topic for the last thirty years. Numerous damage identification algorithms have been proposed for detecting and locating damage in structural and mechanical systems. To date, these damage-detection methods have shown mixed results. A particular application of vibration-based damage detection that has perhaps enjoyed the greatest success is that of damage detection in rotating machinery. This paper summarizes the state of technology in vibration-based damage detection applied to rotating machinery. The review interprets the damage detection process in terms of a statistical pattern recognition paradigm that encompasses all vibration-based damage detection methods and applications. The motivation for the study reported herein is to identify the reasons that vibration-based damage detection has been successfully applied to rotating machinery, but has yet to show robust applications to civil engineering infrastructure. The paper concludes by comparing and contrasting the vibration-based damage detection applied to rotating machinery with large civil engineering infrastructure applications.

  18. Effect of grease type on abnormal vibration of ball bearing

    NASA Astrophysics Data System (ADS)

    Itagaki, Takayoshi; Ohta, Hiroyuki; Igarashib, Teruo

    2003-12-01

    The abnormal vibration of ball bearings lubricated with grease was studied. The test bearings were lubricated with three types of grease: Li soap/silicone oil grease, Na soap/mineral oil grease and Li soap/mineral oil grease. In the experiments, the axial-loaded ball bearings were operated at a constant rotational speed, and the vibration and the outer ring temperatures of the test bearings were measured. In addition, the shear stress and shear rate of the greases were measured by a rheometer. The experimental results showed that the abnormal vibration occurs on the test bearings lubricated with all three types of grease. Based on the experimental results, the generating mechanisms of the abnormal vibrations were discussed. From the discussions, it seems reasonable to conclude: (1) Li soap/silicone oil grease and Na soap/mineral oil grease both have a negative damping moment characteristic. The abnormal vibrations of the ball bearings lubricated with these greases are generated by the negative damping moment. (2) The abnormal vibration of the ball bearings lubricated with Li soap/mineral oil grease is generated by the decreasing positive damping moment of the grease due to the rising temperature.

  19. Whole-body vibration exercise in postmenopausal osteoporosis.

    PubMed

    Weber-Rajek, Magdalena; Mieszkowski, Jan; Niespodziński, Bartłomiej; Ciechanowska, Katarzyna

    2015-03-01

    The report of the World Health Organization (WHO) of 2008 defines osteoporosis as a disease characterized by low bone mass and an increased risk of fracture. Postmenopausal osteoporosis is connected to the decrease in estrogens concentration as a result of malfunction of endocrine ovarian function. Low estrogens concentration causes increase in bone demineralization and results in osteoporosis. Physical activity, as a component of therapy of patients with osteoporosis, has been used for a long time now. One of the forms of safe physical activity is the vibration training. Training is to maintain a static position or execution of specific exercises involving the appropriate muscles on a vibrating platform, the mechanical vibrations are transmitted to the body of the patient. According to the piezoelectric theory, pressure induces bone formation in the electrical potential difference, which acts as a stimulant of the process of bone formation. Whole body vibration increases the level of growth hormone and testosterone in serum, preventing sarcopenia and osteoporosis. The aim of this study was to review the literature on vibration exercise in patients with postmenopausal osteoporosis based on the PubMed and Medline database. While searching the database, the following key words were used 'postmenopausal osteoporosis' and 'whole-body vibration exercise'.

  20. Whole-body vibration exercise in postmenopausal osteoporosis

    PubMed Central

    Mieszkowski, Jan; Niespodziński, Bartłomiej; Ciechanowska, Katarzyna

    2015-01-01

    The report of the World Health Organization (WHO) of 2008 defines osteoporosis as a disease characterized by low bone mass and an increased risk of fracture. Postmenopausal osteoporosis is connected to the decrease in estrogens concentration as a result of malfunction of endocrine ovarian function. Low estrogens concentration causes increase in bone demineralization and results in osteoporosis. Physical activity, as a component of therapy of patients with osteoporosis, has been used for a long time now. One of the forms of safe physical activity is the vibration training. Training is to maintain a static position or execution of specific exercises involving the appropriate muscles on a vibrating platform, the mechanical vibrations are transmitted to the body of the patient. According to the piezoelectric theory, pressure induces bone formation in the electrical potential difference, which acts as a stimulant of the process of bone formation. Whole body vibration increases the level of growth hormone and testosterone in serum, preventing sarcopenia and osteoporosis. The aim of this study was to review the literature on vibration exercise in patients with postmenopausal osteoporosis based on the PubMed and Medline database. While searching the database, the following key words were used ‘postmenopausal osteoporosis’ and ‘whole-body vibration exercise’. PMID:26327887

  1. Vibrational Spectroscopy of Ionic Liquids.

    PubMed

    Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C

    2017-01-04

    Vibrational spectroscopy has continued use as a powerful tool to characterize ionic liquids since the literature on room temperature molten salts experienced the rapid increase in number of publications in the 1990's. In the past years, infrared (IR) and Raman spectroscopies have provided insights on ionic interactions and the resulting liquid structure in ionic liquids. A large body of information is now available concerning vibrational spectra of ionic liquids made of many different combinations of anions and cations, but reviews on this literature are scarce. This review is an attempt at filling this gap. Some basic care needed while recording IR or Raman spectra of ionic liquids is explained. We have reviewed the conceptual basis of theoretical frameworks which have been used to interpret vibrational spectra of ionic liquids, helping the reader to distinguish the scope of application of different methods of calculation. Vibrational frequencies observed in IR and Raman spectra of ionic liquids based on different anions and cations are discussed and eventual disagreements between different sources are critically reviewed. The aim is that the reader can use this information while assigning vibrational spectra of an ionic liquid containing another particular combination of anions and cations. Different applications of IR and Raman spectroscopies are given for both pure ionic liquids and solutions. Further issues addressed in this review are the intermolecular vibrations that are more directly probed by the low-frequency range of IR and Raman spectra and the applications of vibrational spectroscopy in studying phase transitions of ionic liquids.

  2. Vibration control of rotor shaft

    NASA Technical Reports Server (NTRS)

    Nonami, K.

    1985-01-01

    Suppression of flexural forced vibration or the self-excited vibration of a rotating shaft system not by passive elements but by active elements is described. The distinctive feature of this method is not to dissipate the vibration energy but to provide the force cancelling the vibration displacement and the vibration velocity through the bearing housing in rotation. Therefore the bearings of this kind are appropriately named Active Control Bearings. A simple rotor system having one disk at the center of the span on flexible supports is investigated in this paper. The actuators of the electrodynamic transducer are inserted in the sections of the bearing housing. First, applying the optimal regulator of optimal control theory, the flexural vibration control of the rotating shaft and the vibration control of support systems are performed by the optimal state feedback system using these actuators. Next, the quasi-modal control based on a modal analysis is applied to this rotor system. This quasi-modal control system is constructed by means of optimal velocity feedback loops. The differences between optimal control and quasi-modal control are discussed and their merits and demerits are made clear. Finally, the experiments are described concerning only the optimal regulator method.

  3. Hybrid quantum/classical simulation of the vibrational relaxation of the bend fundamental in liquid water.

    PubMed

    Bastida, Adolfo; Zúñiga, José; Requena, Alberto; Miguel, Beatriz

    2009-11-28

    The Ehrenfest method with quantum corrections is used to describe the vibrational relaxation of the bend fundamental in liquid water. All the vibrational degrees of freedom of the water molecules are described using quantum mechanics, while the remaining translational and rotational degrees of freedom are described classically. The relaxation time obtained compares well with experiment and with relaxation times calculated using other theoretical approximations. The presence of resonant intermolecular vibrational energy (VV) transfer is established with a maximum percentage of excited molecules, different from the initial one, of 9.2%. It is found through an effective kinetic fit that two VV transfers occur before relaxation of water to the vibrational ground state.

  4. Effects of vocal fold epithelium removal on vibration in an excised human larynx model

    PubMed Central

    Tse, Justin R.; Zhang, Zhaoyan; Long, Jennifer L.

    2015-01-01

    This study investigated the impact of selective epithelial injury on phonation in an excised human larynx apparatus. With intact epithelium, the vocal folds exhibited a symmetrical vibration pattern with complete glottal closure during vibration. The epithelium was then enzymatically removed from one, then both vocal folds, which led to left-right asymmetric vibration and a decreased closed quotient. Although the mechanisms underlying these vibratory changes are unclear, these results demonstrate that some component of an intact surface layer may play an important role in achieving normal symmetric vibration and glottal closure. PMID:26233062

  5. The Shock and Vibration Digest. Volume 12, Number 11,

    DTIC Science & Technology

    1980-11-01

    displacements, elastic face; and w, normal to it. root constraint, attached shrouds, and damping mechanisms . Many of the references are listed in As depicted...Unfortunately, these requirements are often considerable magnitude. The frequencies and mode *Professor of Engineering Mechanics , Ohio Stare University, 155...34Vibration Analysis of Skewed of Beams, Plates and Shells," Ohio State Univ., Cantilever Systems: Helicoidal Shells and Plates," Dept. Engr. Mechanics

  6. AN ANALOG OF THE MICHELSON-MORLEY EXPERIMENT--GALILEAN RELATIVITY AND THE VIBRATING MEMBRANE,

    DTIC Science & Technology

    By placing moving boundary conditions on the wave equation for a vibrating membrane, we have obtained sets of velocity dependent standing waves. The vibrational modes and model patterns of the moving system were derived for a rectangular boundary frame. The system is shown to be a mechanical model of the Michelson-Morley experiment. (Author)

  7. Vibration energy harvesting from random force and motion excitations

    NASA Astrophysics Data System (ADS)

    Tang, Xiudong; Zuo, Lei

    2012-07-01

    A vibration energy harvester is typically composed of a spring-mass system with an electromagnetic or piezoelectric transducer connected in parallel with a spring. This configuration has been well studied and optimized for harmonic vibration sources. Recently, a dual-mass harvester, where two masses are connected in series by the energy transducer and a spring, has been proposed. The dual-mass vibration energy harvester is proved to be able to harvest more power and has a broader bandwidth than the single-mass configuration, when the parameters are optimized and the excitation is harmonic. In fact, some dual-mass vibration energy harvesters, such as regenerative vehicle suspensions and buildings with regenerative tuned mass dampers (TMDs), are subjected to random excitations. This paper is to investigate the dual-mass and single-mass vibration harvesters under random excitations using spectrum integration and the residue theorem. The output powers for these two types of vibration energy harvesters, when subjected to different random excitations, namely force, displacement, velocity and acceleration, are obtained analytically with closed-form expressions. It is also very interesting to find that the output power of the vibration energy harvesters under random excitations depends on only a few parameters in very simple and elegant forms. This paper also draws some important conclusions on regenerative vehicle suspensions and buildings with regenerative TMDs, which can be modeled as dual-mass vibration energy harvesters. It is found that, under white-noise random velocity excitation from road irregularity, the harvesting power from vehicle suspensions is proportional to the tire stiffness and road vertical excitation spectrum only. It is independent of the chassis mass, tire-wheel mass, suspension stiffness and damping coefficient. Under random wind force excitation, the power harvested from buildings with regenerative TMD will depends on the building mass only, not

  8. Active low-frequency vertical vibration isolation system for precision measurements

    NASA Astrophysics Data System (ADS)

    Wu, Kang; Li, Gang; Hu, Hua; Wang, Lijun

    2017-01-01

    Low-frequency vertical vibration isolation systems play important roles in precision measurements to reduce seismic and environmental vibration noise. Several types of active vibration isolation systems have been developed. However, few researches focus on how to optimize the test mass install position in order to improve the vibration transmissibility. An active low-frequency vertical vibration isolation system based on an earlier instrument, the Super Spring, is designed and implemented. The system, which is simple and compact, consists of two stages: a parallelogram-shaped linkage to ensure vertical motion, and a simple spring-mass system. The theoretical analysis of the vibration isolation system is presented, including terms erroneously ignored before. By carefully choosing the mechanical parameters according to the above analysis and using feedback control, the resonance frequency of the system is reduced from 2.3 to 0.03 Hz, a reduction by a factor of more than 75. The vibration isolation system is installed as an inertial reference in an absolute gravimeter, where it improved the scatter of the absolute gravity values by a factor of 5. The experimental results verifies the improved performance of the isolation system, making it particularly suitable for precision experiments. The improved vertical vibration isolation system can be used as a prototype for designing high-performance active vertical isolation systems. An improved theoretical model of this active vibration isolation system with beam-pivot configuration is proposed, providing fundamental guidelines for vibration isolator design and assembling.

  9. Design and performance analysis of a rotary traveling wave ultrasonic motor with double vibrators.

    PubMed

    Dong, Zhaopeng; Yang, Ming; Chen, Zhangqi; Xu, Liang; Meng, Fan; Ou, Wenchu

    2016-09-01

    This paper presents the development of a rotary traveling wave ultrasonic motor, in which a vibrating stator and vibrating rotor are combined in one motor. The stator and rotor are designed as similar structures an elastic body and a piezoelectric ceramic ring. In exciting of the piezoelectric ceramics, the elastic body of the stator and rotor will generate respective traveling waves, which force each other forward in the contact zone. Based on the elliptical rule of particle motion and matching principle of vibration, the design rules of two vibrators are determined. The finite element method is used to design the sizes of vibrators to ensure that they operate in resonance, and the simulation is verified by measuring the vibration with an impedance analyzer. It is found out that to maintain an appropriate contact between the stator and rotor, two vibrators need to be designed with close resonance frequencies, different vibration amplitudes, and be driven by an identical driving frequency. To analyze this innovative contact mechanism, particle velocity synthesis theory and contact force analysis using Hertz contact model are carried out. Finally, a prototype is fabricated and tested to verify the theoretical results. The test results show that the output performance of the motor driven by the two vibrators is significantly improved compared to the motor driven by a sole stator or rotor, which confirms the validity of the double-vibrator motor concept.

  10. U.S. TAG for ISO/TC43, Acoustics, IEC/TC29 Electroacoustics, and ISO/TC108/SC4 Human Exposure to Mechanical Vibration and Shock (Minutes of the Accredited Standards Committee on Bioacoustics, S3)

    DTIC Science & Technology

    1990-11-29

    May 1991 The meeting was called to order by Ms. L.A. Wilber , Chair S3, at 1:30 PM in the Lincoln Room, the Omni Inner Harbor Hotel, Baltimore...Academy of Otolaryngology (alternate for R.J. Naunton) Nixon, C. U.S. Air Force Toothman, E.H. FINCRP Wilber , L.A. Chair S3; ASA representative S3...Conduction Vibrator - D. Dirks, Chair Ms. Wilber said at the last meeting that she had contacted the working group chair to prepare the international

  11. [A vertical vibration model of human body in supine position].

    PubMed

    Sun, Jing-gong; Niu, Fu; Qi, Jian-cheng; Li, Ruo-xin

    2002-12-01

    Objective. To establish the models of head, abdomen, and chest of supine human body respectively under vertical vibration. Method. The mechanical impedance of 12 healthy volunteers aged 24-56 was measured under vertical white noise stimulus in the frequency range of 2-35 Hz. To explain these findings, the model of head was proposed, the models of abdomen and chest were computed by way of an optimization procedure. Result. The models of abdomen and chest are three-degree-of-freedom and the head is rigid. Conclusion. The mechanical impedance of the supine human body is linear and sole. The established models of head, abdomen and chest of supine human body when subjected to vertical vibration are useful for calculating and evaluating the comfort of supine human body under whole-body vibration.

  12. Scale modeling flow-induced vibrations of reactor components

    SciTech Connect

    Mulcahy, T M

    1982-06-01

    Similitude relationships currently employed in the design of flow-induced vibration scale-model tests of nuclear reactor components are reviewed. Emphasis is given to understanding the origins of the similitude parameters as a basis for discussion of the inevitable distortions which occur in design verification testing of entire reactor systems and in feature testing of individual component designs for the existence of detrimental flow-induced vibration mechanisms. Distortions of similitude parameters made in current test practice are enumerated and selected example tests are described. Also, limitations in the use of specific distortions in model designs are evaluated based on the current understanding of flow-induced vibration mechanisms and structural response.

  13. Helicopter vibration isolation: Design approach and test results

    NASA Astrophysics Data System (ADS)

    Lee, C.-M.; Goverdovskiy, V. N.; Sotenko, A. V.

    2016-03-01

    This paper presents a strategy based on the approach of designing and inserting into helicopter vibration isolation systems mountable mechanisms with springs of adjustable sign-changing stiffness for system stiffness control. A procedure to extend the effective area of stiffness control is presented; a set of parameters for sensitivity analysis and practical mechanism design is formulated. The validity and flexibility of the approach are illustrated by application to crewmen seat suspensions and vibration isolators for equipment protection containers. The strategy provides minimization of vibrations, especially in the infra-low frequency range which is the most important for crewmen efficiency and safety of the equipment. This also would prevent performance degradation of some operating systems. The effectiveness is demonstrated through measured data obtained from development and parallel flight tests of new and operating systems.

  14. Electromagnetic harvester for lateral vibration in rotating machines

    NASA Astrophysics Data System (ADS)

    de Araujo, Marcus Vinícius Vitoratti; Nicoletti, Rodrigo

    2015-02-01

    Energy harvesters are devices that convert mechanical energy, usually vibration, into electrical energy that can be used to supply low power circuits (e.g. sensors). In this work, an energy harvester is designed for converting the mechanical energy of the lateral vibrations of shafts into electrical energy. For that, permanent magnets are mounted in the shaft and coils are mounted in a fixed structure. A configuration analysis is performed to find the appropriated polarization of the magnets and orientation of the coils in order to have electromagnetic induction without resisting torque on the shaft. Experimental tests are done for different electrical configurations of the coils: independent, in series and, in parallel. The results show that more electric power is induced when the coils are connected in series, and vibration reduction is more evident when the coils are connected independently.

  15. Mixed quantum-classical simulations of the vibrational relaxation of photolyzed carbon monoxide in a hemoprotein.

    PubMed

    Schubert, Alexander; Falvo, Cyril; Meier, Christoph

    2016-08-07

    We present mixed quantum-classical simulations on relaxation and dephasing of vibrationally excited carbon monoxide within a protein environment. The methodology is based on a vibrational surface hopping approach treating the vibrational states of CO quantum mechanically, while all remaining degrees of freedom are described by means of classical molecular dynamics. The CO vibrational states form the "surfaces" for the classical trajectories of protein and solvent atoms. In return, environmentally induced non-adiabatic couplings between these states cause transitions describing the vibrational relaxation from first principles. The molecular dynamics simulation yields a detailed atomistic picture of the energy relaxation pathways, taking the molecular structure and dynamics of the protein and its solvent fully into account. Using the ultrafast photolysis of CO in the hemoprotein FixL as an example, we study the relaxation of vibrationally excited CO and evaluate the role of each of the FixL residues forming the heme pocket.

  16. Qualitative Behavior of the Low-Frequency Vibrational Dynamics of Microtubules and the Surrounding Water.

    PubMed

    Moix, Jeremy M; Parker, James E; Echchgadda, Ibtissam

    2017-04-13

    The dynamics of the low-frequency vibrational modes of microtubules play a key role in many theoretical models regarding their biological function. We analyze these dynamics through large scale, classical molecular dynamics simulations of a microtubule composed of 42 tubulin heterodimers to provide insights into the qualitative nature of the vibrational energy absorption and dissipation mechanisms. The computed microtubule absorption spectra and vibrational density of states in the terahertz regime are presented, along with an analysis of the vibrational dephasing rates of the tubulin monomer center of mass dynamics, which are shown to be overdamped. Additionally, the presence of the microtubule modifies the dynamical properties of the solvation shell structure within roughly 10 Å of the protein. These vibrational properties are similar to those seen in other globular proteins and indicate microtubules are unlikely candidates for any large scale collective vibrational processes in the terahertz regime such as Fröhlich condensates.

  17. Mixed quantum-classical simulations of the vibrational relaxation of photolyzed carbon monoxide in a hemoprotein

    NASA Astrophysics Data System (ADS)

    Schubert, Alexander; Falvo, Cyril; Meier, Christoph

    2016-08-01

    We present mixed quantum-classical simulations on relaxation and dephasing of vibrationally excited carbon monoxide within a protein environment. The methodology is based on a vibrational surface hopping approach treating the vibrational states of CO quantum mechanically, while all remaining degrees of freedom are described by means of classical molecular dynamics. The CO vibrational states form the "surfaces" for the classical trajectories of protein and solvent atoms. In return, environmentally induced non-adiabatic couplings between these states cause transitions describing the vibrational relaxation from first principles. The molecular dynamics simulation yields a detailed atomistic picture of the energy relaxation pathways, taking the molecular structure and dynamics of the protein and its solvent fully into account. Using the ultrafast photolysis of CO in the hemoprotein FixL as an example, we study the relaxation of vibrationally excited CO and evaluate the role of each of the FixL residues forming the heme pocket.

  18. Vibration dampener for dampening vibration of a tubular member

    DOEpatents

    Obermeyer, F.D.; Middlebrooks, W.B.; DeMario, E.E.

    1994-10-18

    Vibration dampener for dampening vibration of a tubular member, such as an instrumentation tube of the type found in nuclear reactor pressure vessels is disclosed. The instrumentation tube is received in an outer tubular member, such as a guide thimble tube. The vibration dampener comprises an annular sleeve which is attachable to the inside surface of the guide thimble tube and which is sized to surround the instrumentation tube. Dimples are attached to the interior wall of the sleeve for radially supporting the instrumentation tube. The wall of the sleeve has a flexible spring member, which is formed from the wall, disposed opposite the dimples for biasing the instrumentation tube into abutment with the dimples. Flow-induced vibration of the instrumentation tube will cause it to move out of contact with the dimples and further engage the spring member, which will flex a predetermined amount and exert a reactive force against the instrumentation tube to restrain its movement. The amount by which the spring member will flex is less than the unrestrained amplitude of vibration of the instrumentation tube. The reactive force exerted against the instrumentation tube will be sufficient to return it to its original axial position within the thimble tube. In this manner, vibration of the instrumentation tube is dampened so that in-core physics measurements are accurate and so that the instrumentation tube will not wear against the inside surface of the guide thimble tube. 14 figs.

  19. Vibration dampener for dampening vibration of a tubular member

    DOEpatents

    Obermeyer, Franklin D.; Middlebrooks, Willis B.; DeMario, Edmund E.

    1994-01-01

    Vibration dampener for dampening vibration of a tubular member, such as an instrumentation tube of the type found in nuclear reactor pressure vessels. The instrumentation tube is received in an outer tubular member, such as a guide thimble tube. The vibration dampener comprises an annular sleeve which is attachable to the inside surface of the guide thimble tube and which is sized to surround the instrumentation tube. Dimples are attached to the interior wall of the sleeve for radially supporting the instrumentation tube. The wall of the sleeve has a flexible spring member, which is formed from the wall, disposed opposite the dimples for biasing the instrumentation tube into abutment with the dimples. Flow-induced vibration of the instrumentation tube will cause it to move out of contact with the dimples and further engage the spring member, which will flex a predetermined amount and exert a reactive force against the instrumentation tube to restrain its movement. The amount by which the spring member will flex is less than the unrestrained amplitude of vibration of the instrumentation tube. The reactive force exerted against the instrumentation tube will be sufficient to return it to its original axial position within the thimble tube. In this manner, vibration of the instrumentation tube is dampened so that in-core physics measurements are accurate and so that the instrumentation tube will not wear against the inside surface of the guide thimble tube.

  20. Experimental study on elliptical vibration cutting for optical microstructures

    NASA Astrophysics Data System (ADS)

    Li, Guo; Che, Lin; Wang, Bo; Ding, Fei; Zhang, Chen Feng

    2014-08-01

    In the processing technology of optical microstructure, mechanical processing with high efficiency and quality is still dominating. However, with microstructure surface quality higher and higher, the precision and ultra precision cutting technology has been difficult to meet the needs of reality, and it still remains a big issue in production efficiency and cost. In this case, the elliptical vibration cutting method is created. At present, research on the effect of elliptical vibration cutting on surface quality of microstructures with special optical properties such as V-groove, micro pyramid and sinusoidal grid surface is rarely seen. This paper focuses on the elliptical vibration cutting process of arc groove and V-groove, aiming at finding the discipline of various parameters (frequency, amplitude, feed rate) and analyzing the surface quality through experiments. Firstly, the principle of elliptical vibration cutting is introduced, the cutting mechanism and the theoretical error are analyzed, and a vibration cutting system is designed for precision machining. Because the surface quality and burr play have a huge impact on optical microstructure, effects of the vibration frequency (0-2kHz), amplitude (0.5-2.5μm) as well as feed rate (6-30mm/min) on surface quality and burr suppression are analyzed. The experimental results show that compared to normal cutting, elliptical vibration cutting has obvious advantages. With the increases of the frequency and amplitude, the surface quality improves significantly, the surface roughness is changed from 61.5nm to 25.3nm, and burr has been suppressed to some extent.

  1. An electromagnetic inerter-based vibration suppression device

    NASA Astrophysics Data System (ADS)

    Gonzalez-Buelga, A.; Clare, L. R.; Neild, S. A.; Jiang, J. Z.; Inman, D. J.

    2015-05-01

    This paper describes how an inerter-based device for structural vibration suppression can be realized using an electromagnetic transducer such as a linear motor. When the motor shaft moves, a difference of voltage is generated across the transducer coil. The voltage difference is proportional to the relative velocity between its two terminals. The electromagnetic transducer will exert a force proportional to current following the Lorentz principle if the circuit is closed around the transducer coil. If an electronic circuit consisting of a capacitor, an inductance and a resistance with the appropriate configuration is connected, the resulting force reflected back into the mechanical domain is equivalent to that achieved by a mechanical inerter-based device. The proposed configuration is easy to implement and very versatile, provided a high quality conversion system with negligible losses. With the use of electromagnetic devices, a new generation of vibration absorbers can be realized, for example in the electrical domain it would be relatively uncomplicated to synthesize multi-frequency or real time tunable vibration absorbers by adding electrical components in parallel. In addition by using resistance emulators in the electrical circuits, part of the absorbed vibration energy can be converted into usable power. Here an electromagnetic tuned inerter damper (E-TID) is tested experimentally using real time dynamic substructuring. A voltage compensation unit was developed in order to compensate for coil losses. This voltage compensation unit requires power, which is acquired through harvesting from the vibration energy using a resistance emulator. A power balance analysis was developed in order to ensure the device can be self sufficient. Promising experimental results, using this approach, have been obtained and are presented in this paper. The ultimate goal of this research is the development of autonomous electromagnetic vibration absorbers, able to harvest energy

  2. Vibration Therapy in Management of Delayed Onset Muscle Soreness (DOMS)

    PubMed Central

    Imtiyaz, Shagufta

    2014-01-01

    Both athletic and nonathletic population when subjected to any unaccustomed or unfamiliar exercise will experience pain 24-72 hours postexercise. This exercise especially eccentric in nature caused primarily by muscle damage is known as delayed-onset muscle soreness (DOMS). This damage is characterized by muscular pain, decreased muscle force production, reduce range of motion and discomfort experienced. DOMS is due to microscopic muscle fiber tears. The presence of DOMS increases risk of injury. A reduced range of motion may lead to the incapability to efficiently absorb the shock that affect physical activity. Alterations to mechanical motion may increase strain placed on soft tissue structures. Reduced force output may signal compensatory recruitment of muscles, thus leading to unaccustomed stress on musculature. Differences in strength ratios may also cause excessive strain on unaccustomed musculature. A range of interventions aimed at decreasing symptoms of DOMS have been proposed. Although voluminous research has been done in this regard, there is little consensus among the practitioners regarding the most effective way of treating DOMS. Mechanical oscillatory motion provided by vibration therapy. Vibration could represent an effective exercise intervention for enhancing neuromuscular performance in athletes. Vibration has shown effectiveness in flexibility and explosive power. Vibration can apply either local area or whole body vibration. Vibration therapy improves muscular strength, power development, kinesthetic awareness, decreased muscle sore, increased range of motion, and increased blood flow under the skin. VT was effective for reduction of DOMS and regaining full ROM. Application of whole body vibration therapy in postexercise demonstrates less pressure pain threshold, muscle soreness along with less reduction maximal isometric and isokinetic voluntary strength and lower creatine kinase levels in the blood. PMID:25121012

  3. Vibration Therapy in Management of Delayed Onset Muscle Soreness (DOMS).

    PubMed

    Veqar, Zubia; Imtiyaz, Shagufta

    2014-06-01

    Both athletic and nonathletic population when subjected to any unaccustomed or unfamiliar exercise will experience pain 24-72 hours postexercise. This exercise especially eccentric in nature caused primarily by muscle damage is known as delayed-onset muscle soreness (DOMS). This damage is characterized by muscular pain, decreased muscle force production, reduce range of motion and discomfort experienced. DOMS is due to microscopic muscle fiber tears. The presence of DOMS increases risk of injury. A reduced range of motion may lead to the incapability to efficiently absorb the shock that affect physical activity. Alterations to mechanical motion may increase strain placed on soft tissue structures. Reduced force output may signal compensatory recruitment of muscles, thus leading to unaccustomed stress on musculature. Differences in strength ratios may also cause excessive strain on unaccustomed musculature. A range of interventions aimed at decreasing symptoms of DOMS have been proposed. Although voluminous research has been done in this regard, there is little consensus among the practitioners regarding the most effective way of treating DOMS. Mechanical oscillatory motion provided by vibration therapy. Vibration could represent an effective exercise intervention for enhancing neuromuscular performance in athletes. Vibration has shown effectiveness in flexibility and explosive power. Vibration can apply either local area or whole body vibration. Vibration therapy improves muscular strength, power development, kinesthetic awareness, decreased muscle sore, increased range of motion, and increased blood flow under the skin. VT was effective for reduction of DOMS and regaining full ROM. Application of whole body vibration therapy in postexercise demonstrates less pressure pain threshold, muscle soreness along with less reduction maximal isometric and isokinetic voluntary strength and lower creatine kinase levels in the blood.

  4. 49 CFR 178.819 - Vibration test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Vibration test. 178.819 Section 178.819... Vibration test. (a) General. The vibration test must be conducted for the qualification of all rigid IBC design types. Flexible IBC design types must be capable of withstanding the vibration test. (b)...

  5. 14 CFR 33.33 - Vibration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Vibration. 33.33 Section 33.33 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.33 Vibration. The... vibration and without imparting excessive vibration forces to the aircraft structure....

  6. 14 CFR 33.43 - Vibration test.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Vibration test. 33.43 Section 33.43... STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.43 Vibration test. (a) Each engine must undergo a vibration survey to establish the torsional and bending vibration...

  7. 14 CFR 33.33 - Vibration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Vibration. 33.33 Section 33.33 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.33 Vibration. The... vibration and without imparting excessive vibration forces to the aircraft structure....

  8. 14 CFR 33.33 - Vibration.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Vibration. 33.33 Section 33.33 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.33 Vibration. The... vibration and without imparting excessive vibration forces to the aircraft structure....

  9. 14 CFR 33.63 - Vibration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Vibration. 33.63 Section 33.63 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.63 Vibration. Each engine... because of vibration and without imparting excessive vibration forces to the aircraft structure....

  10. 49 CFR 178.819 - Vibration test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Vibration test. 178.819 Section 178.819... Vibration test. (a) General. The vibration test must be conducted for the qualification of all rigid IBC design types. Flexible IBC design types must be capable of withstanding the vibration test. (b)...

  11. 14 CFR 33.63 - Vibration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Vibration. 33.63 Section 33.63 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.63 Vibration. Each engine... because of vibration and without imparting excessive vibration forces to the aircraft structure....

  12. 14 CFR 33.33 - Vibration.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Vibration. 33.33 Section 33.33 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.33 Vibration. The... vibration and without imparting excessive vibration forces to the aircraft structure....

  13. 14 CFR 33.83 - Vibration test.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Vibration test. 33.83 Section 33.83... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.83 Vibration test. (a) Each engine must undergo vibration surveys to establish that the vibration characteristics of those components...

  14. 14 CFR 33.63 - Vibration.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Vibration. 33.63 Section 33.63 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.63 Vibration. Each engine... because of vibration and without imparting excessive vibration forces to the aircraft structure....

  15. 14 CFR 33.83 - Vibration test.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Vibration test. 33.83 Section 33.83... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.83 Vibration test. (a) Each engine must undergo vibration surveys to establish that the vibration characteristics of those components...

  16. 14 CFR 33.33 - Vibration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 33.33 Section 33.33 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.33 Vibration. The... vibration and without imparting excessive vibration forces to the aircraft structure....

  17. 14 CFR 33.63 - Vibration.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Vibration. 33.63 Section 33.63 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.63 Vibration. Each engine... because of vibration and without imparting excessive vibration forces to the aircraft structure....

  18. 14 CFR 33.63 - Vibration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 33.63 Section 33.63 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.63 Vibration. Each engine... because of vibration and without imparting excessive vibration forces to the aircraft structure....

  19. 49 CFR 178.819 - Vibration test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Vibration test. 178.819 Section 178.819... Vibration test. (a) General. The vibration test must be conducted for the qualification of all rigid IBC design types. Flexible IBC design types must be capable of withstanding the vibration test. (b)...

  20. PREFACE: International Conference on Vibration Problems (ICOVP-2015)

    NASA Astrophysics Data System (ADS)

    2015-12-01

    Vibrations produced by operating machine cause deleterious effect including excessive stresses in mechanical components and reduce the machine performance. Hence, it is important to minimize the vibrations to improve the machine performance. Machines need the materials wherein vibration characteristics such as frequency and amplitude are lower. The vibration characteristics depend on strength and other elastic constants. Therefore, study of the relation between vibration characteristics and the elastic constants of the material is very much important. In the domain of seismology, the knowledge of vibrations associated with an earthquake is needed for the mitigation plans. With the increased use of strong and light weight structures especially in defence and aero-space engineering applications, wherein, precision is very important, problems of vibrations arise. The knowledge of quality (mechanical properties) of bones comes from the study of vibrations in it. This knowledge may, for exmple, help to answer bone tissue remodelling problems. Unfortunately, vibrations mostly deal with destructive areas such as manufacturing industry, seismology, and bonemechanics. These days, mathematics has become a very important tool for Non- Destructive Evaluation (NDE) in the destructive areas. A very common issue in the said domains is that the pertinent problems result in non-linear coupled differential equations which are not easily solvable. Keeping the above facts in mind, the Department of Mathematics, Kakatiya University has organized the International Conference on Vibration Problems (ICOVP-2015) from February, 18-20, 2015 in collaboration with the Department of Mechanical Engineering, Kakatiya University, and Von-Karman Society, West Bengal. This association has already succeeded in organizing the Wave Mechanics and Vibration Conference (WMVC) in the year 2010. In the Conference, new research results were presented by the experts from eight countries. There were more than

  1. Experimental Analysis of a Piezoelectric Energy Harvesting System for Harmonic, Random, and Sine on Random Vibration

    SciTech Connect

    Cryns, Jackson W.; Hatchell, Brian K.; Santiago-Rojas, Emiliano; Silvers, Kurt L.

    2013-07-01

    Formal journal article Experimental analysis of a piezoelectric energy harvesting system for harmonic, random, and sine on random vibration Abstract: Harvesting power with a piezoelectric vibration powered generator using a full-wave rectifier conditioning circuit is experimentally compared for varying sinusoidal, random and sine on random (SOR) input vibration scenarios. Additionally, the implications of source vibration characteristics on harvester design are discussed. Studies in vibration harvesting have yielded numerous alternatives for harvesting electrical energy from vibrations but piezoceramics arose as the most compact, energy dense means of energy transduction. The rise in popularity of harvesting energy from ambient vibrations has made piezoelectric generators commercially available. Much of the available literature focuses on maximizing harvested power through nonlinear processing circuits that require accurate knowledge of generator internal mechanical and electrical characteristics and idealization of the input vibration source, which cannot be assumed in general application. In this manuscript, variations in source vibration and load resistance are explored for a commercially available piezoelectric generator. We characterize the source vibration by its acceleration response for repeatability and transcription to general application. The results agree with numerical and theoretical predictions for in previous literature that load optimal resistance varies with transducer natural frequency and source type, and the findings demonstrate that significant gains are seen with lower tuned transducer natural frequencies for similar source amplitudes. Going beyond idealized steady state sinusoidal and simplified random vibration input, SOR testing allows for more accurate representation of real world ambient vibration. It is shown that characteristic interactions from more complex vibrational sources significantly alter power generation and power processing

  2. Apparent Mass and Absorbed Power during Exposure to Whole-Body Vibration and Repeated Shocks

    NASA Astrophysics Data System (ADS)

    MANSFIELD, N. J.; HOLMLUND, P.; LUNDSTRÖM, R.

    2001-11-01

    Exposure to mechanical shocks might pose a greater health risk than exposure to continuous vibration. Previous studies have investigated subjective responses, muscle activity or transmission of vibration to the spine or head during shock. If there is a difference between biomechanic responses of the seated body to shocks when compared to continuous vibration, then this may indicate a more, or less, hazardous vibration waveform. This paper presents measurements of apparent mass and absorbed power during exposure to random vibration, repeated shocks and combinations of shocks and random vibration. Eleven male and 13 female subjects were exposed to 15 vibration conditions generated using an electro-dynamic shaker. Subjects were exposed to five 20 s acceleration waveforms with nominally identical power spectra (random vibration, equally spaced shocks, unequally spaced shocks, random combined with equally spaced shocks, random combined with unequally spaced shocks) at each of 0·5, 1·0 and 1·5 m/s2r.m.s. The general shapes of the apparent mass or absorbed power curves were not affected by stimulus type, indicating that the biomechanical response of the body is fundamentally the same when exposed to shocks or random vibration. Two non-linear effects were observed: apparent mass resonance frequencies were slightly higher for exposure to shocks; apparent mass and absorbed power resonance frequencies decreased with increases in vibration magnitude for each stimulus type. It is concluded that the two non-linear mechanisms operate simultaneously: a stiffening effect during exposure to shocks and a softening effect as vibration magnitudes increase. Total absorbed powers were greatest for shock stimuli and least for random vibration.

  3. Vibration interaction in a multiple flywheel system

    NASA Astrophysics Data System (ADS)

    Firth, Jordan; Black, Jonathan

    2012-03-01

    This paper investigates vibration interaction in a multiple flywheel system. Flywheels can be used for kinetic energy storage in a satellite Integrated Power and Attitude Control System (IPACS). One hitherto unstudied problem with IPACS is vibration interaction between multiple unbalanced wheels. This paper uses a linear state-space dynamics model to study the impact of vibration interaction. Specifically, imbalance-induced vibration inputs in one flywheel rotor are used to cause a resonant whirling vibration in another rotor. Extra-synchronous resonant vibrations are shown to exist, but with damping modeled the effect is minimal. Vibration is most severe when both rotors are spinning in the same direction.

  4. Coherent Exciton Dynamics in the Presence of Underdamped Vibrations.

    PubMed

    Dijkstra, Arend G; Wang, Chen; Cao, Jianshu; Fleming, Graham R

    2015-02-19

    Recent ultrafast optical experiments show that excitons in large biological light-harvesting complexes are coupled to molecular vibration modes. These high-frequency vibrations will not only affect the optical response, but also drive the exciton transport. Here, using a model dimer system, the frequency of the underdamped vibration is shown to have a strong effect on the exciton dynamics such that quantum coherent oscillations in the system can be present even in the case of strong noise. Two mechanisms are identified to be responsible for the enhanced transport efficiency: critical damping due to the tunable effective strength of the coupling to the bath, and resonance coupling where the vibrational frequency coincides with the energy gap in the system. The interplay of these two mechanisms determines parameters responsible for the most efficient transport, and these optimal control parameters are comparable to those in realistic light-harvesting complexes. Interestingly, oscillations in the excitonic coherence at resonance are suppressed in comparison to the case of an off-resonant vibration.

  5. Stress analysis of vibrating pipelines

    NASA Astrophysics Data System (ADS)

    Zachwieja, Janusz

    2017-03-01

    The pipelines are subject to various constraints variable in time. Those vibrations, if not monitored for amplitude and frequency, may result in both the fatigue damage in the pipeline profile at high stress concentration and the damage to the pipeline supports. If the constraint forces are known, the system response may be determined with high accuracy using analytical or numerical methods. In most cases, it may be difficult to determine the constraint parameters, since the industrial pipeline vibrations occur due to the dynamic effects of the medium in the pipeline. In that case, a vibration analysis is a suitable alternative method to determine the stress strain state in the pipeline profile. Monitoring the pipeline vibration levels involves a comparison between the measured vibration parameters and the permissible values as depicted in the graphs for a specific pipeline type. Unfortunately, in most cases, the studies relate to the petrochemical industry and thus large diameter, long and straight pipelines. For a pipeline section supported on both ends, the response in any profile at the entire section length can be determined by measuring the vibration parameters at two different profiles between the pipeline supports. For a straight pipeline section, the bending moments, variable in time, at the ends of the analysed section are a source of the pipe excitation. If a straight pipe section supported on both ends is excited by the bending moments in the support profile, the starting point for the stress analysis are the strains, determined from the Euler-Bernoulli equation. In practice, it is easier to determine the displacement using the experimental methods, since the factors causing vibrations are unknown. The industrial system pipelines, unlike the transfer pipelines, are straight sections at some points only, which makes it more difficult to formulate the equation of motion. In those cases, numerical methods can be used to determine stresses using the

  6. Smart accelerometer. [vibration damage detection

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1994-01-01

    The invention discloses methods and apparatus for detecting vibrations from machines which indicate an impending malfunction for the purpose of preventing additional damage and allowing for an orderly shutdown or a change in mode of operation. The method and apparatus is especially suited for reliable operation in providing thruster control data concerning unstable vibration in an electrical environment which is typically noisy and in which unrecognized ground loops may exist.

  7. CV-22 Human Vibration Evaluation

    DTIC Science & Technology

    2008-04-01

    of helmet-mounted equipment such as night vision goggles , helmet-mounted displays, and targeting systems. These systems may not function as...cabin door position, and AVSS setting. It is noted that the high levels of seat back vibration observed at the FE are most likely due to posture ...based on the vibration entering the seated occupant. These levels can vary depending on the occupant’s anthropometry, posture , and activity at the

  8. Experimental and numerical study of the effect of mold vibration on aluminum castings alloys

    NASA Astrophysics Data System (ADS)

    Abu-Dheir, Numan

    2005-07-01

    The recent advances in scientific and engineering tools have allowed researchers to integrate more science into manufacturing, leading to improved and new innovative processes. As a result, important accomplishments have been reached in the area of designing and engineering new materials for various industrial applications. This subject is of critical significance because of the impact it could have on the manufacturing industry. In the casting industry, obtaining the desired microstructure and properties during solidification may reduce or eliminate the need for costly thermo-mechanical processing prior to secondary manufacturing processes. Several techniques have been developed to alter and control the microstructure of castings during solidification including semi-solid processing, electromagnetic stirring, electromagnetic vibration, and mechanical vibration. Although it is established that mold vibration can significantly influence the structure and properties of castings, however, most of the studies are generally qualitative, limited to a small range of conditions and no attempts have been made to simulate the effect of vibration on casting microstructure. In this work, a detailed experimental and numerical investigation is carried out to advance the utilization of mold vibration as an effective tool for controlling and modifying the casting microstructure. The effects of a wide range of vibration amplitudes and frequencies on the solidification kinetics, microstructure formation and mechanical properties of Al-Si alloys are examined. Results show strong influence of mold vibration on the resulting casting. The presence of porosity was significantly reduced as a result of mold vibration. In addition, the changes in microstructure and mechanical properties can be successfully represented by the changes in solidification characteristics. Increasing the vibration amplitude tends to reduce the lamellar spacing and change the silicon morphology to become more

  9. Airfoil Vibration Dampers program

    NASA Technical Reports Server (NTRS)

    Cook, Robert M.

    1991-01-01

    The Airfoil Vibration Damper program has consisted of an analysis phase and a testing phase. During the analysis phase, a state-of-the-art computer code was developed, which can be used to guide designers in the placement and sizing of friction dampers. The use of this computer code was demonstrated by performing representative analyses on turbine blades from the High Pressure Oxidizer Turbopump (HPOTP) and High Pressure Fuel Turbopump (HPFTP) of the Space Shuttle Main Engine (SSME). The testing phase of the program consisted of performing friction damping tests on two different cantilever beams. Data from these tests provided an empirical check on the accuracy of the computer code developed in the analysis phase. Results of the analysis and testing showed that the computer code can accurately predict the performance of friction dampers. In addition, a valuable set of friction damping data was generated, which can be used to aid in the design of friction dampers, as well as provide benchmark test cases for future code developers.

  10. Vibrational modes of nanolines

    NASA Astrophysics Data System (ADS)

    Heyliger, Paul R.; Flannery, Colm M.; Johnson, Ward L.

    2008-04-01

    Brillouin-light-scattering spectra previously have been shown to provide information on acoustic modes of polymeric lines fabricated by nanoimprint lithography. Finite-element methods for modeling such modes are presented here. These methods provide a theoretical framework for determining elastic constants and dimensions of nanolines from measured spectra in the low gigahertz range. To make the calculations feasible for future incorporation in inversion algorithms, two approximations of the boundary conditions are employed in the calculations: the rigidity of the nanoline/substrate interface and sinusoidal variation of displacements along the nanoline length. The accuracy of these approximations is evaluated as a function of wavenumber and frequency. The great advantage of finite-element methods over other methods previously employed for nanolines is the ability to model any cross-sectional geometry. Dispersion curves and displacement patterns are calculated for modes of polymethyl methacrylate nanolines with cross-sectional dimensions of 65 nm × 140 nm and rectangular or semicircular tops. The vibrational displacements and dispersion curves are qualitatively similar for the two geometries and include a series of flexural, Rayleigh-like, and Sezawa-like modes. This paper is a contribution of the National Institute of Standards and Technology and is not subject to copyright in the United States.

  11. Measurement of rabbit eardrum vibration through stroboscopic digital holography

    NASA Astrophysics Data System (ADS)

    De Greef, Daniël; Dirckx, Joris J. J.

    2014-05-01

    In this work, we present a setup for high-power single shot stroboscopic digital holography and demonstrate it in an application on rabbit eardrum vibration measurement. The setup is able to make full-field time-resolved measurements of vibrating surfaces with a precision in the nanometer range in a broad frequency range. The height displacement of the measured object is visualized over the entire surface as a function of time. Vibration magnitude and phase maps can be extracted from these data, the latter proving to be very useful to reveal phase delays across the surface. Such deviations from modal motion indicate energy losses due to internal damping, in contrast to purely elastic mechanics. This is of great interest in middle ear mechanics and finite element modelling. In our setup, short laser pulses are fired at selected instants within the surface vibration period and are recorded by a CCD camera. The timing of the pulses and the exposure of the camera are synchronized to the vibration phase by a microprocessor. The high-power frequency-doubled Nd:YAG laser produces pulses containing up to 5 mJ of energy, which is amply sufficient to record single-shot holograms. As the laser pulse length is 8 ns and the smallest time step of the trigger electronics is 1 μs, vibration measurements of frequencies up to 250 kHz are achievable through this method, provided that the maximum vibration amplitude exceeds a few nanometers. In our application, middle ear mechanics, measuring frequencies extend from 5 Hz to 20 kHz. The experimental setup will be presented, as well as results of measurements on a stretched circular rubber membrane and a rabbit's eardrum. Two of the challenges when measuring biological tissues, such as the eardrum, are low reflectivity and fast dehydration. To increase reflectivity, a coating is applied and to counteract the undesirable effects of tissue dehydration, the measurement setup and software have been optimized for speed without compromising

  12. Measurement of rabbit eardrum vibration through stroboscopic digital holography

    SciTech Connect

    De Greef, Daniël; Dirckx, Joris J. J.

    2014-05-27

    In this work, we present a setup for high-power single shot stroboscopic digital holography and demonstrate it in an application on rabbit eardrum vibration measurement. The setup is able to make full-field time-resolved measurements of vibrating surfaces with a precision in the nanometer range in a broad frequency range. The height displacement of the measured object is visualized over the entire surface as a function of time. Vibration magnitude and phase maps can be extracted from these data, the latter proving to be very useful to reveal phase delays across the surface. Such deviations from modal motion indicate energy losses due to internal damping, in contrast to purely elastic mechanics. This is of great interest in middle ear mechanics and finite element modelling. In our setup, short laser pulses are fired at selected instants within the surface vibration period and are recorded by a CCD camera. The timing of the pulses and the exposure of the camera are synchronized to the vibration phase by a microprocessor. The high-power frequency-doubled Nd:YAG laser produces pulses containing up to 5 mJ of energy, which is amply sufficient to record single-shot holograms. As the laser pulse length is 8 ns and the smallest time step of the trigger electronics is 1 μs, vibration measurements of frequencies up to 250 kHz are achievable through this method, provided that the maximum vibration amplitude exceeds a few nanometers. In our application, middle ear mechanics, measuring frequencies extend from 5 Hz to 20 kHz. The experimental setup will be presented, as well as results of measurements on a stretched circular rubber membrane and a rabbit's eardrum. Two of the challenges when measuring biological tissues, such as the eardrum, are low reflectivity and fast dehydration. To increase reflectivity, a coating is applied and to counteract the undesirable effects of tissue dehydration, the measurement setup and software have been optimized for speed without compromising

  13. Mode-specific photoelectron scattering effects on CO2+(C 2Σg+) vibrations

    NASA Astrophysics Data System (ADS)

    Rathbone, G. J.; Poliakoff, E. D.; Bozek, John D.; Lucchese, R. R.; Lin, P.

    2004-01-01

    Using high-resolution photoelectron spectroscopy, we have determined the energy dependent vibrational branching ratios for the symmetric stretch [v+=(100)], bend [v+=(010)], and antisymmetric stretch [v+=(001)], as well as several overtones and combination bands in the 4σg-1 photoionization of CO2. Data were acquired over the range from 20-110 eV, and this wide spectral coverage highlighted that alternative vibrational modes exhibit contrasting behavior, even over a range usually considered to be dominated by atomic effects. Alternative vibrational modes exhibit qualitatively distinct energy dependences, and this contrasting mode-specific behavior underscores the point that vibrationally resolved measurements reflect the sensitivity of the electron scattering dynamics to well-defined changes in molecular geometry. In particular, such energy-dependent studies help to elucidate the mechanism(s) responsible for populating the symmetry forbidden vibrational levels [i.e., v+=(010), (001), (030), and (110)]. This is the first study in which vibrationally resolved data have been acquired as a function of energy for all of the vibrational modes of a polyatomic system. Theoretical Schwinger variational calculations are used to interpret the experimental data, and they indicate that a 4σg→kσu shape resonance is responsible for most of the excursions observed for the vibrational branching ratios. Generally, the energy dependent trends are reproduced well by theory, but a notable exception is the symmetric stretch vibrational branching ratio. The calculated results display a strong peak in the vibrational branching ratio while the experimental data show a pronounced minimum. This suggests an interference mechanism that is not accounted for in the single-channel adiabatic-nuclei calculations. Electronic branching ratios were also measured and compared to the vibrational branching ratios to assess the relative contributions of interchannel (i.e., Herzberg-Teller) versus

  14. Six degree of freedom active vibration damping for space application

    NASA Technical Reports Server (NTRS)

    Haynes, Leonard S.

    1993-01-01

    Work performed during the period 1 Jan. - 31 Mar. 1993 on six degree of freedom active vibration damping for space application is presented. A performance and cost report is included. Topics covered include: actuator testing; mechanical amplifier design; and neural network control system development and experimental evaluation.

  15. Automated Recognition of Advanced Vibration Features for Machinery Fault Classification

    DTIC Science & Technology

    2001-04-05

    fault " using transitional failure data for commercial grade gearboxes . Features will be extracted from accelerometer data obtained on the Mechanical...Machinery Fault Classification DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report: TITLE: New...thru ADP013516 UNCLASSIFIED AUTOMATED RECOGNITION OF ADVANCED VIBRATION FEATURES FOR MACHINERY FAULT CLASSIFICATION Katherine McClintic, Robert Campbell

  16. Temporal features of human tendon vibration illusions.

    PubMed

    Fuentes, Christina T; Gomi, Hiroaki; Haggard, Patrick

    2012-12-01

    Muscle spindles provide information about the position and movement of our bodies. One method for investigating spindle signals is tendon vibration. Vibration of flexor tendons can produce illusions of extension, and vibration of extensor tendons can produce illusions of flexion. Here we estimate the temporal resolution and persistence of these illusions. In Experiments 1 and 2, sequences of alternating vibration of wrist flexor and extensor tendons produced position illusions that varied with alternation period. When vibrations alternated at 1 Hz or slower, perceived position at the end of the sequence depended on the last vibration. When vibrations alternated every 0.3 s, perceived position was independent of the last vibration. Experiment 2 verified and extended these results using more trials and concurrent electromyographic recording. Although tendon vibrations sometimes induce reflexive muscle activity, we found no evidence that such activity contributed to these effects. Experiment 3 investigated how long position sense is retained when not updated by current information from spindles. Our first experiments suggested that vibrating antagonistic tendons simultaneously could produce conflicting inputs, leaving position sense reliant on memory of position prior to vibration onset. We compared variability in position sense after different durations of such double vibration. After 12 s of double vibration, variability across trials exceeded levels predicted from vibrations of flexor or extensor tendons alone. This suggests that position sense memory had decayed too much to substitute for the current conflicting sensory information. Together, our results provide novel, quantitative insight into the temporal properties of tendon vibration illusions.

  17. Analysis and control of the vibration of doubly fed wind turbine

    NASA Astrophysics Data System (ADS)

    Yu, Manye; Lin, Ying

    2017-01-01

    The fault phenomena of the violent vibration of certain doubly-fed wind turbine were researched comprehensively, and the dynamic characteristics, load and fault conditions of the system were discussed. Firstly, the structural dynamics analysis of wind turbine is made, and the dynamics mold is built. Secondly, the vibration testing of wind turbine is done with the German test and analysis systems BBM. Thirdly, signal should be analyzed and dealt with. Based on the experiment, spectrum analysis of the motor dynamic balance can be made by using signal processing toolbox of MATLAB software, and the analysis conclusions show that the vibration of wind turbine is caused by dynamic imbalance. The results show that integrating mechanical system dynamics theory with advanced test technology can solve the vibration problem more successfully, which is important in vibration diagnosis of mechanical equipment.

  18. Fluid dynamic aspects of cardiovascular behavior during low-frequency whole-body vibration

    NASA Technical Reports Server (NTRS)

    Nerem, R. M.

    1973-01-01

    The behavior of the cardiovascular system during low frequency whole-body vibration, such as encountered by astronauts during launch and reentry, is examined from a fluid mechanical viewpoint. The vibration characteristics of typical manned spacecraft and other vibration environments are discussed, and existing results from in vivo studies of the hemodynamic aspects of this problem are reviewed. Recent theoretical solutions to related fluid mechanical problems are then used in the interpretation of these results and in discussing areas of future work. The results are included of studies of the effects of vibration on the work done by the heart and on pulsatile flow in blood vessels. It is shown that important changes in pulse velocity, the instantaneous velocity profile, mass flow rate, and wall shear stress may occur in a pulsatile flow due to the presence of vibration. The significance of this in terms of changes in peripheral vascular resistance and possible damage to the endothelium of blood vessels is discussed.

  19. Miniature vibration isolation system for space applications

    NASA Astrophysics Data System (ADS)

    Quenon, Dan; Boyd, Jim; Buchele, Paul; Self, Rick; Davis, Torey; Hintz, Timothy L.; Jacobs, Jack H.

    2001-06-01

    In recent years, there has been a significant interest in, and move towards using highly sensitive, precision payloads on space vehicles. In order to perform tasks such as communicating at extremely high data rates between satellites using laser cross-links, or searching for new planets in distant solar systems using sparse aperture optical elements, a satellite bus and its payload must remain relatively motionless. The ability to hold a precision payload steady is complicated by disturbances from reaction wheels, control moment gyroscopes, solar array drives, stepper motors, and other devices. Because every satellite is essentially unique in its construction, isolating or damping unwanted vibrations usually requires a robust system over a wide bandwidth. The disadvantage of these systems is that they typically are not retrofittable and not tunable to changes in payload size or inertias. Previous work, funded by AFRL, DARPA, BMDO and others, developed technology building blocks that provide new methods to control vibrations of spacecraft. The technology of smart materials enables an unprecedented level of integration of sensors, actuators, and structures; this integration provides the opportunity for new structural designs that can adaptively influence their surrounding environment. To date, several demonstrations have been conducted to mature these technologies. Making use of recent advances in smart materials, microelectronics, Micro-Electro Mechanical Systems (MEMS) sensors, and Multi-Functional Structures (MFS), the Air Force Research Laboratory along with its partner DARPA, have initiated an aggressive program to develop a Miniature Vibration Isolation System (MVIS) (patent pending) for space applications. The MVIS program is a systems-level demonstration of the application of advanced smart materials and structures technology that will enable programmable and retrofittable vibration control of spacecraft precision payloads. The current effort has been awarded

  20. Quantum Mechanical Calculations of Vibrational Sum-Frequency-Generation (SFG) Spectra of Cellulose: Dependence of the CH and OH Peak Intensity on the Polarity of Cellulose Chains within the SFG Coherence Domain.

    PubMed

    Lee, Christopher M; Chen, Xing; Weiss, Philip A; Jensen, Lasse; Kim, Seong H

    2017-01-05

    Vibrational sum-frequency-generation (SFG) spectroscopy is capable of selectively detecting crystalline biopolymers interspersed in amorphous polymer matrices. However, the spectral interpretation is difficult due to the lack of knowledge on how spatial arrangements of crystalline segments influence SFG spectra features. Here we report time-dependent density functional theory (TD-DFT) calculations of cellulose crystallites in intimate contact with two different polarities: parallel versus antiparallel. TD-DFT calculations reveal that the CH/OH intensity ratio is very sensitive to the polarity of the crystallite packing. Theoretical calculations of hyperpolarizability tensors (βabc) clearly show the dependence of SFG intensities on the polarity of crystallite packing within the SFG coherence length, which provides the basis for interpretation of the empirically observed SFG features of native cellulose in biological systems.