Optimal Synthesis of Compliant Mechanisms using Subdivision and Commercial FEA (DETC2004-57497)
NASA Technical Reports Server (NTRS)
Hull, Patrick V.; Canfield, Stephen
2004-01-01
The field of distributed-compliance mechanisms has seen significant work in developing suitable topology optimization tools for their design. These optimal design tools have grown out of the techniques of structural optimization. This paper will build on the previous work in topology optimization and compliant mechanism design by proposing an alternative design space parameterization through control points and adding another step to the process, that of subdivision. The control points allow a specific design to be represented as a solid model during the optimization process. The process of subdivision creates an additional number of control points that help smooth the surface (for example a C(sup 2) continuous surface depending on the method of subdivision chosen) creating a manufacturable design free of some traditional numerical instabilities. Note that these additional control points do not add to the number of design parameters. This alternative parameterization and description as a solid model effectively and completely separates the design variables from the analysis variables during the optimization procedure. The motivation behind this work is to create an automated design tool from task definition to functional prototype created on a CNC or rapid-prototype machine. This paper will describe the proposed compliant mechanism design process and will demonstrate the procedure on several examples common in the literature.
Tamjidy, Mehran; Baharudin, B. T. Hang Tuah; Paslar, Shahla; Matori, Khamirul Amin; Sulaiman, Shamsuddin; Fadaeifard, Firouz
2017-01-01
The development of Friction Stir Welding (FSW) has provided an alternative approach for producing high-quality welds, in a fast and reliable manner. This study focuses on the mechanical properties of the dissimilar friction stir welding of AA6061-T6 and AA7075-T6 aluminum alloys. The FSW process parameters such as tool rotational speed, tool traverse speed, tilt angle, and tool offset influence the mechanical properties of the friction stir welded joints significantly. A mathematical regression model is developed to determine the empirical relationship between the FSW process parameters and mechanical properties, and the results are validated. In order to obtain the optimal values of process parameters that simultaneously optimize the ultimate tensile strength, elongation, and minimum hardness in the heat affected zone (HAZ), a metaheuristic, multi objective algorithm based on biogeography based optimization is proposed. The Pareto optimal frontiers for triple and dual objective functions are obtained and the best optimal solution is selected through using two different decision making techniques, technique for order of preference by similarity to ideal solution (TOPSIS) and Shannon’s entropy. PMID:28772893
Tamjidy, Mehran; Baharudin, B T Hang Tuah; Paslar, Shahla; Matori, Khamirul Amin; Sulaiman, Shamsuddin; Fadaeifard, Firouz
2017-05-15
The development of Friction Stir Welding (FSW) has provided an alternative approach for producing high-quality welds, in a fast and reliable manner. This study focuses on the mechanical properties of the dissimilar friction stir welding of AA6061-T6 and AA7075-T6 aluminum alloys. The FSW process parameters such as tool rotational speed, tool traverse speed, tilt angle, and tool offset influence the mechanical properties of the friction stir welded joints significantly. A mathematical regression model is developed to determine the empirical relationship between the FSW process parameters and mechanical properties, and the results are validated. In order to obtain the optimal values of process parameters that simultaneously optimize the ultimate tensile strength, elongation, and minimum hardness in the heat affected zone (HAZ), a metaheuristic, multi objective algorithm based on biogeography based optimization is proposed. The Pareto optimal frontiers for triple and dual objective functions are obtained and the best optimal solution is selected through using two different decision making techniques, technique for order of preference by similarity to ideal solution (TOPSIS) and Shannon's entropy.
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Pryputniewicz, Ryszard J.
1998-05-01
Increased demands on the performance and efficiency of mechanical components impose challenges on their engineering design and optimization, especially when new and more demanding applications must be developed in relatively short periods of time while satisfying design objectives, as well as cost and manufacturability. In addition, reliability and durability must be taken into consideration. As a consequence, effective quantitative methodologies, computational and experimental, should be applied in the study and optimization of mechanical components. Computational investigations enable parametric studies and the determination of critical engineering design conditions, while experimental investigations, especially those using optical techniques, provide qualitative and quantitative information on the actual response of the structure of interest to the applied load and boundary conditions. We discuss a hybrid experimental and computational approach for investigation and optimization of mechanical components. The approach is based on analytical, computational, and experimental resolutions methodologies in the form of computational, noninvasive optical techniques, and fringe prediction analysis tools. Practical application of the hybrid approach is illustrated with representative examples that demonstrate the viability of the approach as an effective engineering tool for analysis and optimization.
Perceptual attraction in tool use: evidence for a reliability-based weighting mechanism.
Debats, Nienke B; Ernst, Marc O; Heuer, Herbert
2017-04-01
Humans are well able to operate tools whereby their hand movement is linked, via a kinematic transformation, to a spatially distant object moving in a separate plane of motion. An everyday example is controlling a cursor on a computer monitor. Despite these separate reference frames, the perceived positions of the hand and the object were found to be biased toward each other. We propose that this perceptual attraction is based on the principles by which the brain integrates redundant sensory information of single objects or events, known as optimal multisensory integration. That is, 1 ) sensory information about the hand and the tool are weighted according to their relative reliability (i.e., inverse variances), and 2 ) the unisensory reliabilities sum up in the integrated estimate. We assessed whether perceptual attraction is consistent with optimal multisensory integration model predictions. We used a cursor-control tool-use task in which we manipulated the relative reliability of the unisensory hand and cursor position estimates. The perceptual biases shifted according to these relative reliabilities, with an additional bias due to contextual factors that were present in experiment 1 but not in experiment 2 The biased position judgments' variances were, however, systematically larger than the predicted optimal variances. Our findings suggest that the perceptual attraction in tool use results from a reliability-based weighting mechanism similar to optimal multisensory integration, but that certain boundary conditions for optimality might not be satisfied. NEW & NOTEWORTHY Kinematic tool use is associated with a perceptual attraction between the spatially separated hand and the effective part of the tool. We provide a formal account for this phenomenon, thereby showing that the process behind it is similar to optimal integration of sensory information relating to single objects. Copyright © 2017 the American Physiological Society.
Optimization in Cardiovascular Modeling
NASA Astrophysics Data System (ADS)
Marsden, Alison L.
2014-01-01
Fluid mechanics plays a key role in the development, progression, and treatment of cardiovascular disease. Advances in imaging methods and patient-specific modeling now reveal increasingly detailed information about blood flow patterns in health and disease. Building on these tools, there is now an opportunity to couple blood flow simulation with optimization algorithms to improve the design of surgeries and devices, incorporating more information about the flow physics in the design process to augment current medical knowledge. In doing so, a major challenge is the need for efficient optimization tools that are appropriate for unsteady fluid mechanics problems, particularly for the optimization of complex patient-specific models in the presence of uncertainty. This article reviews the state of the art in optimization tools for virtual surgery, device design, and model parameter identification in cardiovascular flow and mechanobiology applications. In particular, it reviews trade-offs between traditional gradient-based methods and derivative-free approaches, as well as the need to incorporate uncertainties. Key future challenges are outlined, which extend to the incorporation of biological response and the customization of surgeries and devices for individual patients.
Developing Optimized Trajectories Derived from Mission and Thermo-Structural Constraints
NASA Technical Reports Server (NTRS)
Lear, Matthew H.; McGrath, Brian E.; Anderson, Michael P.; Green, Peter W.
2008-01-01
In conjunction with NASA and the Department of Defense, the Johns Hopkins University Applied Physics Laboratory (JHU/APL) has been investigating analytical techniques to address many of the fundamental issues associated with solar exploration spacecraft and high-speed atmospheric vehicle systems. These issues include: thermo-structural response including the effects of thermal management via the use of surface optical properties for high-temperature composite structures; aerodynamics with the effects of non-equilibrium chemistry and gas radiation; and aero-thermodynamics with the effects of material ablation for a wide range of thermal protection system (TPS) materials. The need exists to integrate these discrete tools into a common framework that enables the investigation of interdisciplinary interactions (including analysis tool, applied load, and environment uncertainties) to provide high fidelity solutions. In addition to developing robust tools for the coupling of aerodynamically induced thermal and mechanical loads, JHU/APL has been studying the optimal design of high-speed vehicles as a function of their trajectory. Under traditional design methodology the optimization of system level mission parameters such as range and time of flight is performed independently of the optimization for thermal and mechanical constraints such as stress and temperature. A truly optimal trajectory should optimize over the entire range of mission and thermo-mechanical constraints. Under this research, a framework for the robust analysis of high-speed spacecraft and atmospheric vehicle systems has been developed. It has been built around a generic, loosely coupled framework such that a variety of readily available analysis tools can be used. The methodology immediately addresses many of the current analysis inadequacies and allows for future extension in order to handle more complex problems.
Kuhn-Tucker optimization based reliability analysis for probabilistic finite elements
NASA Technical Reports Server (NTRS)
Liu, W. K.; Besterfield, G.; Lawrence, M.; Belytschko, T.
1988-01-01
The fusion of probability finite element method (PFEM) and reliability analysis for fracture mechanics is considered. Reliability analysis with specific application to fracture mechanics is presented, and computational procedures are discussed. Explicit expressions for the optimization procedure with regard to fracture mechanics are given. The results show the PFEM is a very powerful tool in determining the second-moment statistics. The method can determine the probability of failure or fracture subject to randomness in load, material properties and crack length, orientation, and location.
Hybrid ABC Optimized MARS-Based Modeling of the Milling Tool Wear from Milling Run Experimental Data
García Nieto, Paulino José; García-Gonzalo, Esperanza; Ordóñez Galán, Celestino; Bernardo Sánchez, Antonio
2016-01-01
Milling cutters are important cutting tools used in milling machines to perform milling operations, which are prone to wear and subsequent failure. In this paper, a practical new hybrid model to predict the milling tool wear in a regular cut, as well as entry cut and exit cut, of a milling tool is proposed. The model was based on the optimization tool termed artificial bee colony (ABC) in combination with multivariate adaptive regression splines (MARS) technique. This optimization mechanism involved the parameter setting in the MARS training procedure, which significantly influences the regression accuracy. Therefore, an ABC–MARS-based model was successfully used here to predict the milling tool flank wear (output variable) as a function of the following input variables: the time duration of experiment, depth of cut, feed, type of material, etc. Regression with optimal hyperparameters was performed and a determination coefficient of 0.94 was obtained. The ABC–MARS-based model's goodness of fit to experimental data confirmed the good performance of this model. This new model also allowed us to ascertain the most influential parameters on the milling tool flank wear with a view to proposing milling machine's improvements. Finally, conclusions of this study are exposed. PMID:28787882
García Nieto, Paulino José; García-Gonzalo, Esperanza; Ordóñez Galán, Celestino; Bernardo Sánchez, Antonio
2016-01-28
Milling cutters are important cutting tools used in milling machines to perform milling operations, which are prone to wear and subsequent failure. In this paper, a practical new hybrid model to predict the milling tool wear in a regular cut, as well as entry cut and exit cut, of a milling tool is proposed. The model was based on the optimization tool termed artificial bee colony (ABC) in combination with multivariate adaptive regression splines (MARS) technique. This optimization mechanism involved the parameter setting in the MARS training procedure, which significantly influences the regression accuracy. Therefore, an ABC-MARS-based model was successfully used here to predict the milling tool flank wear (output variable) as a function of the following input variables: the time duration of experiment, depth of cut, feed, type of material, etc . Regression with optimal hyperparameters was performed and a determination coefficient of 0.94 was obtained. The ABC-MARS-based model's goodness of fit to experimental data confirmed the good performance of this model. This new model also allowed us to ascertain the most influential parameters on the milling tool flank wear with a view to proposing milling machine's improvements. Finally, conclusions of this study are exposed.
Advanced optimal design concepts for composite material aircraft repair
NASA Astrophysics Data System (ADS)
Renaud, Guillaume
The application of an automated optimization approach for bonded composite patch design is investigated. To do so, a finite element computer analysis tool to evaluate patch design quality was developed. This tool examines both the mechanical and the thermal issues of the problem. The optimized shape is obtained with a bi-quadratic B-spline surface that represents the top surface of the patch. Additional design variables corresponding to the ply angles are also used. Furthermore, a multi-objective optimization approach was developed to treat multiple and uncertain loads. This formulation aims at designing according to the most unfavorable mechanical and thermal loads. The problem of finding the optimal patch shape for several situations is addressed. The objective is to minimize a stress component at a specific point in the host structure (plate) while ensuring acceptable stress levels in the adhesive. A parametric study is performed in order to identify the effects of various shape parameters on the quality of the repair and its optimal configuration. The effects of mechanical loads and service temperature are also investigated. Two bonding methods are considered, as they imply different thermal histories. It is shown that the proposed techniques are effective and inexpensive for analyzing and optimizing composite patch repairs. It is also shown that thermal effects should not only be present in the analysis, but that they play a paramount role on the resulting quality of the optimized design. In all cases, the optimized configuration results in a significant reduction of the desired stress level by deflecting the loads away from rather than over the damage zone, as is the case with standard designs. Furthermore, the automated optimization ensures the safety of the patch design for all considered operating conditions.
Localized Overheating Phenomena and Optimization of Spark-Plasma Sintering Tooling Design
Giuntini, Diletta; Olevsky, Eugene A.; Garcia-Cardona, Cristina; Maximenko, Andrey L.; Yurlova, Maria S.; Haines, Christopher D.; Martin, Darold G.; Kapoor, Deepak
2013-01-01
The present paper shows the application of a three-dimensional coupled electrical, thermal, mechanical finite element macro-scale modeling framework of Spark Plasma Sintering (SPS) to an actual problem of SPS tooling overheating, encountered during SPS experimentation. The overheating phenomenon is analyzed by varying the geometry of the tooling that exhibits the problem, namely by modeling various tooling configurations involving sequences of disk-shape spacers with step-wise increasing radii. The analysis is conducted by means of finite element simulations, intended to obtain temperature spatial distributions in the graphite press-forms, including punches, dies, and spacers; to identify the temperature peaks and their respective timing, and to propose a more suitable SPS tooling configuration with the avoidance of the overheating as a final aim. Electric currents-based Joule heating, heat transfer, mechanical conditions, and densification are imbedded in the model, utilizing the finite-element software COMSOL™, which possesses a distinguishing ability of coupling multiple physics. Thereby the implementation of a finite element method applicable to a broad range of SPS procedures is carried out, together with the more specific optimization of the SPS tooling design when dealing with excessive heating phenomena. PMID:28811398
Systematic Propulsion Optimization Tools (SPOT)
NASA Technical Reports Server (NTRS)
Bower, Mark; Celestian, John
1992-01-01
This paper describes a computer program written by senior-level Mechanical Engineering students at the University of Alabama in Huntsville which is capable of optimizing user-defined delivery systems for carrying payloads into orbit. The custom propulsion system is designed by the user through the input of configuration, payload, and orbital parameters. The primary advantages of the software, called Systematic Propulsion Optimization Tools (SPOT), are a user-friendly interface and a modular FORTRAN 77 code designed for ease of modification. The optimization of variables in an orbital delivery system is of critical concern in the propulsion environment. The mass of the overall system must be minimized within the maximum stress, force, and pressure constraints. SPOT utilizes the Design Optimization Tools (DOT) program for the optimization techniques. The SPOT program is divided into a main program and five modules: aerodynamic losses, orbital parameters, liquid engines, solid engines, and nozzles. The program is designed to be upgraded easily and expanded to meet specific user needs. A user's manual and a programmer's manual are currently being developed to facilitate implementation and modification.
NASA Technical Reports Server (NTRS)
Rasmussen, John
1990-01-01
Structural optimization has attracted the attention since the days of Galileo. Olhoff and Taylor have produced an excellent overview of the classical research within this field. However, the interest in structural optimization has increased greatly during the last decade due to the advent of reliable general numerical analysis methods and the computer power necessary to use them efficiently. This has created the possibility of developing general numerical systems for shape optimization. Several authors, eg., Esping; Braibant & Fleury; Bennet & Botkin; Botkin, Yang, and Bennet; and Stanton have published practical and successful applications of general optimization systems. Ding and Homlein have produced extensive overviews of available systems. Furthermore, a number of commercial optimization systems based on well-established finite element codes have been introduced. Systems like ANSYS, IDEAS, OASIS, and NISAOPT are widely known examples. In parallel to this development, the technology of computer aided design (CAD) has gained a large influence on the design process of mechanical engineering. The CAD technology has already lived through a rapid development driven by the drastically growing capabilities of digital computers. However, the systems of today are still considered as being only the first generation of a long row of computer integrated manufacturing (CIM) systems. These systems to come will offer an integrated environment for design, analysis, and fabrication of products of almost any character. Thus, the CAD system could be regarded as simply a database for geometrical information equipped with a number of tools with the purpose of helping the user in the design process. Among these tools are facilities for structural analysis and optimization as well as present standard CAD features like drawing, modeling, and visualization tools. The state of the art of structural optimization is that a large amount of mathematical and mechanical techniques are available for the solution of single problems. By implementing collections of the available techniques into general software systems, operational environments for structural optimization have been created. The forthcoming years must bring solutions to the problem of integrating such systems into more general design environments. The result of this work should be CAD systems for rational design in which structural optimization is one important design tool among many others.
Adaptive Origami for Efficiently Folded Structures
2016-02-01
design optimization to find optimal origami patterns for in-plane compression. 3. Self-folding and programmable material systems were developed for...2014, 1st place in the Midwest and 2nd place in the National 2014 SAMPE student research symposium). • Design of self-folding and programmable ... material systems: Nafion SMP Programming: To integrate active materials into origami, mechanical analysis and optimization tools where applied to the
Improving Tools and Processes in Mechanical Design Collaboration
NASA Technical Reports Server (NTRS)
Briggs, Clark
2009-01-01
Cooperative product development projects in the aerospace and defense industry are held hostage to high cost and risk due to poor alignment of collaborative design tools and processes. This impasse can be broken if companies will jointly develop implementation approaches and practices in support of high value working arrangements. The current tools can be used to better advantage in many situations and there is reason for optimism that tool vendors will provide significant support.
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Naghipour Ghezeljeh, Paria; Bednarcyk, Brett A.
2018-01-01
This document describes a recently developed analysis tool that enhances the resident capabilities of the Micromechanics Analysis Code with the Generalized Method of Cells (MAC/GMC) and its application. MAC/GMC is a composite material and laminate analysis software package developed at NASA Glenn Research Center. The primary focus of the current effort is to provide a graphical user interface (GUI) capability that helps users optimize highly nonlinear viscoplastic constitutive law parameters by fitting experimentally observed/measured stress-strain responses under various thermo-mechanical conditions for braided composites. The tool has been developed utilizing the MATrix LABoratory (MATLAB) (The Mathworks, Inc., Natick, MA) programming language. Illustrative examples shown are for a specific braided composite system wherein the matrix viscoplastic behavior is represented by a constitutive law described by seven parameters. The tool is general enough to fit any number of experimentally observed stress-strain responses of the material. The number of parameters to be optimized, as well as the importance given to each stress-strain response, are user choice. Three different optimization algorithms are included: (1) Optimization based on gradient method, (2) Genetic algorithm (GA) based optimization and (3) Particle Swarm Optimization (PSO). The user can mix and match the three algorithms. For example, one can start optimization with either 2 or 3 and then use the optimized solution to further fine tune with approach 1. The secondary focus of this paper is to demonstrate the application of this tool to optimize/calibrate parameters for a nonlinear viscoplastic matrix to predict stress-strain curves (for constituent and composite levels) at different rates, temperatures and/or loading conditions utilizing the Generalized Method of Cells. After preliminary validation of the tool through comparison with experimental results, a detailed virtual parametric study is presented wherein the combined effects of temperature and loading rate on the predicted response of a braided composite is investigated.
Exact and Optimal Quantum Mechanics/Molecular Mechanics Boundaries.
Sun, Qiming; Chan, Garnet Kin-Lic
2014-09-09
Motivated by recent work in density matrix embedding theory, we define exact link orbitals that capture all quantum mechanical (QM) effects across arbitrary quantum mechanics/molecular mechanics (QM/MM) boundaries. Exact link orbitals are rigorously defined from the full QM solution, and their number is equal to the number of orbitals in the primary QM region. Truncating the exact set yields a smaller set of link orbitals optimal with respect to reproducing the primary region density matrix. We use the optimal link orbitals to obtain insight into the limits of QM/MM boundary treatments. We further analyze the popular general hybrid orbital (GHO) QM/MM boundary across a test suite of molecules. We find that GHOs are often good proxies for the most important optimal link orbital, although there is little detailed correlation between the detailed GHO composition and optimal link orbital valence weights. The optimal theory shows that anions and cations cannot be described by a single link orbital. However, expanding to include the second most important optimal link orbital in the boundary recovers an accurate description. The second optimal link orbital takes the chemically intuitive form of a donor or acceptor orbital for charge redistribution, suggesting that optimal link orbitals can be used as interpretative tools for electron transfer. We further find that two optimal link orbitals are also sufficient for boundaries that cut across double bonds. Finally, we suggest how to construct "approximately" optimal link orbitals for practical QM/MM calculations.
The mechanisms of labor division from the perspective of individual optimization
NASA Astrophysics Data System (ADS)
Zhu, Lirong; Chen, Jiawei; Di, Zengru; Chen, Liujun; Liu, Yan; Stanley, H. Eugene
2017-12-01
Although the tools of complexity research have been applied to the phenomenon of labor division, its underlying mechanisms are still unclear. Researchers have used evolutionary models to study labor division in terms of global optimization, but focusing on individual optimization is a more realistic, real-world approach. We do this by first developing a multi-agent model that takes into account information-sharing and learning-by-doing and by using simulations to demonstrate the emergence of labor division. We then use a master equation method and find that the computational results are consistent with the results of the simulation. Finally we find that the core underlying mechanisms that cause labor division are learning-by-doing, information cost, and random fluctuation.
Controlling the Transport of an Ion: Classical and Quantum Mechanical Solutions
2014-07-09
quantum systems: tools, achievements, and limitations Christiane P Koch Shortcuts to adiabaticity for an ion in a rotating radially- tight trap M Palmero...Keywords: coherent control, ion traps, quantum information, optimal control theory 1. Introduction Control methods are key enabling techniques in many...figure 6. 3.4. Feasibility analysis of quantum optimal control Numerical optimization of the wavepacket motion is expected to become necessary once
Efficient hybrid-symbolic methods for quantum mechanical calculations
NASA Astrophysics Data System (ADS)
Scott, T. C.; Zhang, Wenxing
2015-06-01
We present hybrid symbolic-numerical tools to generate optimized numerical code for rapid prototyping and fast numerical computation starting from a computer algebra system (CAS) and tailored to any given quantum mechanical problem. Although a major focus concerns the quantum chemistry methods of H. Nakatsuji which has yielded successful and very accurate eigensolutions for small atoms and molecules, the tools are general and may be applied to any basis set calculation with a variational principle applied to its linear and non-linear parameters.
NASA Astrophysics Data System (ADS)
Xing, Xi; Rey-de-Castro, Roberto; Rabitz, Herschel
2014-12-01
Optimally shaped femtosecond laser pulses can often be effectively identified in adaptive feedback quantum control experiments, but elucidating the underlying control mechanism can be a difficult task requiring significant additional analysis. We introduce landscape Hessian analysis (LHA) as a practical experimental tool to aid in elucidating control mechanism insights. This technique is applied to the dissociative ionization of CH2BrI using shaped fs laser pulses for optimization of the absolute yields of ionic fragments as well as their ratios for the competing processes of breaking the C-Br and C-I bonds. The experimental results suggest that these nominally complex problems can be reduced to a low-dimensional control space with insights into the control mechanisms. While the optimal yield for some fragments is dominated by a non-resonant intensity-driven process, the optimal generation of other fragments maa difficult task requiring significant additionaly be explained by a non-resonant process coupled to few level resonant dynamics. Theoretical analysis and modeling is consistent with the experimental observations.
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
2000-01-01
The purpose of this paper is to discuss grid generation issues and to challenge the grid generation community to develop tools suitable for automated multidisciplinary analysis and design optimization of aerospace vehicles. Special attention is given to the grid generation issues of computational fluid dynamics and computational structural mechanics disciplines.
Micro-Vibration Performance Prediction of SEPTA24 Using SMeSim (RUAG Space Mechanism Simulator Tool)
NASA Astrophysics Data System (ADS)
Omiciuolo, Manolo; Lang, Andreas; Wismer, Stefan; Barth, Stephan; Szekely, Gerhard
2013-09-01
Scientific space missions are currently challenging the performances of their payloads. The performances can be dramatically restricted by micro-vibration loads generated by any moving parts of the satellites, thus by Solar Array Drive Assemblies too. Micro-vibration prediction of SADAs is therefore very important to support their design and optimization in the early stages of a programme. The Space Mechanism Simulator (SMeSim) tool, developed by RUAG, enhances the capability of analysing the micro-vibration emissivity of a Solar Array Drive Assembly (SADA) under a specified set of boundary conditions. The tool is developed in the Matlab/Simulink® environment throughout a library of blocks simulating the different components a SADA is made of. The modular architecture of the blocks, assembled by the user, and the set up of the boundary conditions allow time-domain and frequency-domain analyses of a rigid multi-body model with concentrated flexibilities and coupled- electronic control of the mechanism. SMeSim is used to model the SEPTA24 Solar Array Drive Mechanism and predict its micro-vibration emissivity. SMeSim and the return of experience earned throughout its development and use can now support activities like verification by analysis of micro-vibration emissivity requirements and/or design optimization to minimize the micro- vibration emissivity of a SADA.
Optimized FPGA Implementation of the Thyroid Hormone Secretion Mechanism Using CAD Tools.
Alghazo, Jaafar M
2017-02-01
The goal of this paper is to implement the secretion mechanism of the Thyroid Hormone (TH) based on bio-mathematical differential eqs. (DE) on an FPGA chip. Hardware Descriptive Language (HDL) is used to develop a behavioral model of the mechanism derived from the DE. The Thyroid Hormone secretion mechanism is simulated with the interaction of the related stimulating and inhibiting hormones. Synthesis of the simulation is done with the aid of CAD tools and downloaded on a Field Programmable Gate Arrays (FPGAs) Chip. The chip output shows identical behavior to that of the designed algorithm through simulation. It is concluded that the chip mimics the Thyroid Hormone secretion mechanism. The chip, operating in real-time, is computer-independent stand-alone system.
NASA Astrophysics Data System (ADS)
Nor Khairusshima, M. K.; Hafiz Zakwan, B. Muhammad; Suhaily, M.; Sharifah, I. S. S.; Shaffiar, N. M.; Rashid, M. A. N.
2018-01-01
Carbon Fibre Reinforced Plastic (CFRP) composite has become one of famous materials in industry, such as automotive, aeronautics, aerospace and aircraft. CFRP is attractive due to its properties, which promising better strength and high specification of mechanical properties other than its high resistance to corrosion. Other than being abrasive material due to the carbon nature, CFRP is an anisotropic material, which the knowledge of machining metal and steel cannot be applied during machining CFRP. The improper technique and parameters used to machine CFRP may result in high tool wear. This paper is to study the tool wear of 8 mm diameter carbide cutting tool during milling CFRP. To predict the suitable cutting parameters within range of 3500-6220 (rev/min), 200-245 (mm/min), and 0.4-1.8 (mm) for cutting speed, speed, feed rate and depth of cut respectively, which produce optimized result (less tool wear), Response Surface Methodology (RSM) has been used. Based on the developed mathematical model, feed rate was identified as the primary significant item that influenced tool wear. The optimized cutting parameters are cutting speed, feed and depth of cut of 3500 rev/min, 200 mm/min and 0.5 mm, respectively, with tool wear of 0.0267 mm. It is also can be observed that as the cutting speed and feed rate increased the tool wear is increasing.
Coherent optimal control of photosynthetic molecules
NASA Astrophysics Data System (ADS)
Caruso, F.; Montangero, S.; Calarco, T.; Huelga, S. F.; Plenio, M. B.
2012-04-01
We demonstrate theoretically that open-loop quantum optimal control techniques can provide efficient tools for the verification of various quantum coherent transport mechanisms in natural and artificial light-harvesting complexes under realistic experimental conditions. To assess the feasibility of possible biocontrol experiments, we introduce the main settings and derive optimally shaped and robust laser pulses that allow for the faithful preparation of specified initial states (such as localized excitation or coherent superposition, i.e., propagating and nonpropagating states) of the photosystem and probe efficiently the subsequent dynamics. With these tools, different transport pathways can be discriminated, which should facilitate the elucidation of genuine quantum dynamical features of photosystems and therefore enhance our understanding of the role that coherent processes may play in actual biological complexes.
Tool geometry and damage mechanisms influencing CNC turning efficiency of Ti6Al4V
NASA Astrophysics Data System (ADS)
Suresh, Sangeeth; Hamid, Darulihsan Abdul; Yazid, M. Z. A.; Nasuha, Nurdiyanah; Ain, Siti Nurul
2017-12-01
Ti6Al4V or Grade 5 titanium alloy is widely used in the aerospace, medical, automotive and fabrication industries, due to its distinctive combination of mechanical and physical properties. Ti6Al4V has always been perverse during its machining, strangely due to the same mix of properties mentioned earlier. Ti6Al4V machining has resulted in shorter cutting tool life which has led to objectionable surface integrity and rapid failure of the parts machined. However, the proven functional relevance of this material has prompted extensive research in the optimization of machine parameters and cutting tool characteristics. Cutting tool geometry plays a vital role in ensuring dimensional and geometric accuracy in machined parts. In this study, an experimental investigation is actualized to optimize the nose radius and relief angles of the cutting tools and their interaction to different levels of machining parameters. Low elastic modulus and thermal conductivity of Ti6Al4V contribute to the rapid tool damage. The impact of these properties over the tool tips damage is studied. An experimental design approach is utilized in the CNC turning process of Ti6Al4V to statistically analyze and propose optimum levels of input parameters to lengthen the tool life and enhance surface characteristics of the machined parts. A greater tool nose radius with a straight flank, combined with low feed rates have resulted in a desirable surface integrity. The presence of relief angle has proven to aggravate tool damage and also dimensional instability in the CNC turning of Ti6Al4V.
Tool Steel Heat Treatment Optimization Using Neural Network Modeling
NASA Astrophysics Data System (ADS)
Podgornik, Bojan; Belič, Igor; Leskovšek, Vojteh; Godec, Matjaz
2016-11-01
Optimization of tool steel properties and corresponding heat treatment is mainly based on trial and error approach, which requires tremendous experimental work and resources. Therefore, there is a huge need for tools allowing prediction of mechanical properties of tool steels as a function of composition and heat treatment process variables. The aim of the present work was to explore the potential and possibilities of artificial neural network-based modeling to select and optimize vacuum heat treatment conditions depending on the hot work tool steel composition and required properties. In the current case training of the feedforward neural network with error backpropagation training scheme and four layers of neurons (8-20-20-2) scheme was based on the experimentally obtained tempering diagrams for ten different hot work tool steel compositions and at least two austenitizing temperatures. Results show that this type of modeling can be successfully used for detailed and multifunctional analysis of different influential parameters as well as to optimize heat treatment process of hot work tool steels depending on the composition. In terms of composition, V was found as the most beneficial alloying element increasing hardness and fracture toughness of hot work tool steel; Si, Mn, and Cr increase hardness but lead to reduced fracture toughness, while Mo has the opposite effect. Optimum concentration providing high KIc/HRC ratios would include 0.75 pct Si, 0.4 pct Mn, 5.1 pct Cr, 1.5 pct Mo, and 0.5 pct V, with the optimum heat treatment performed at lower austenitizing and intermediate tempering temperatures.
Song, Ting; Li, Nan; Zarepisheh, Masoud; Li, Yongbao; Gautier, Quentin; Zhou, Linghong; Mell, Loren; Jiang, Steve; Cerviño, Laura
2016-01-01
Intensity-modulated radiation therapy (IMRT) currently plays an important role in radiotherapy, but its treatment plan quality can vary significantly among institutions and planners. Treatment plan quality control (QC) is a necessary component for individual clinics to ensure that patients receive treatments with high therapeutic gain ratios. The voxel-weighting factor-based plan re-optimization mechanism has been proved able to explore a larger Pareto surface (solution domain) and therefore increase the possibility of finding an optimal treatment plan. In this study, we incorporated additional modules into an in-house developed voxel weighting factor-based re-optimization algorithm, which was enhanced as a highly automated and accurate IMRT plan QC tool (TPS-QC tool). After importing an under-assessment plan, the TPS-QC tool was able to generate a QC report within 2 minutes. This QC report contains the plan quality determination as well as information supporting the determination. Finally, the IMRT plan quality can be controlled by approving quality-passed plans and replacing quality-failed plans using the TPS-QC tool. The feasibility and accuracy of the proposed TPS-QC tool were evaluated using 25 clinically approved cervical cancer patient IMRT plans and 5 manually created poor-quality IMRT plans. The results showed high consistency between the QC report quality determinations and the actual plan quality. In the 25 clinically approved cases that the TPS-QC tool identified as passed, a greater difference could be observed for dosimetric endpoints for organs at risk (OAR) than for planning target volume (PTV), implying that better dose sparing could be achieved in OAR than in PTV. In addition, the dose-volume histogram (DVH) curves of the TPS-QC tool re-optimized plans satisfied the dosimetric criteria more frequently than did the under-assessment plans. In addition, the criteria for unsatisfied dosimetric endpoints in the 5 poor-quality plans could typically be satisfied when the TPS-QC tool generated re-optimized plans without sacrificing other dosimetric endpoints. In addition to its feasibility and accuracy, the proposed TPS-QC tool is also user-friendly and easy to operate, both of which are necessary characteristics for clinical use.
Ultimate explanations and suboptimal choice.
Vasconcelos, Marco; Machado, Armando; Pandeirada, Josefa N S
2018-07-01
Researchers have unraveled multiple cases in which behavior deviates from rationality principles. We propose that such deviations are valuable tools to understand the adaptive significance of the underpinning mechanisms. To illustrate, we discuss in detail an experimental protocol in which animals systematically incur substantial foraging losses by preferring a lean but informative option over a rich but non-informative one. To understand how adaptive mechanisms may fail to maximize food intake, we review a model inspired by optimal foraging principles that reconciles sub-optimal choice with the view that current behavioral mechanisms were pruned by the optimizing action of natural selection. To move beyond retrospective speculation, we then review critical tests of the model, regarding both its assumptions and its (sometimes counterintuitive) predictions, all of which have been upheld. The overall contention is that (a) known mechanisms can be used to develop better ultimate accounts and that (b) to understand why mechanisms that generate suboptimal behavior evolved, we need to consider their adaptive value in the animal's characteristic ecology. Copyright © 2018 Elsevier B.V. All rights reserved.
The Effects of Cryogenic Treatment on Cutting Tools
NASA Astrophysics Data System (ADS)
Kumar, Satish; Khedkar, Nitin K.; Jagtap, Bhushan; Singh, T. P.
2017-08-01
Enhancing the cutting tool life is important and economic factor to reduce the tooling as well as manufacturing cost. The tool life is improved considerably by 92 % after cryogenic treatment. The cryogenic treatment is a one-time permanent, sub-zero heat treatment that entirely changes cross-section of cutting tool. The cryogenic treatment is carried out with deep freezing of cutting tool materials to enhance physical and mechanical properties. The cryogenic treatment improves mechanical such as hardness, toughness and tribological properties such as wear resistance, coefficient of friction, surface finish, dimensional stability and stress relief. The deep cryogenic treatment is the most beneficial treatment applied on cutting tools. The cryogenic treatment is the most advanced heat treatment and popular to improve performance of the cutting tool. The optimization of cryogenic treatment variables is necessary to improve tool life. This study reviews the effects of cryogenic treatment on microstructure, tribological properties of tool steels and machining applications of cutting tool by investigating the surface and performing the surface characterization test like SEM. The economy of cutting tool can be achieved by deep cryogenic treatment.
Visualization tool for human-machine interface designers
NASA Astrophysics Data System (ADS)
Prevost, Michael P.; Banda, Carolyn P.
1991-06-01
As modern human-machine systems continue to grow in capabilities and complexity, system operators are faced with integrating and managing increased quantities of information. Since many information components are highly related to each other, optimizing the spatial and temporal aspects of presenting information to the operator has become a formidable task for the human-machine interface (HMI) designer. The authors describe a tool in an early stage of development, the Information Source Layout Editor (ISLE). This tool is to be used for information presentation design and analysis; it uses human factors guidelines to assist the HMI designer in the spatial layout of the information required by machine operators to perform their tasks effectively. These human factors guidelines address such areas as the functional and physical relatedness of information sources. By representing these relationships with metaphors such as spring tension, attractors, and repellers, the tool can help designers visualize the complex constraint space and interacting effects of moving displays to various alternate locations. The tool contains techniques for visualizing the relative 'goodness' of a configuration, as well as mechanisms such as optimization vectors to provide guidance toward a more optimal design. Also available is a rule-based design checker to determine compliance with selected human factors guidelines.
NASA Astrophysics Data System (ADS)
Soni, Sourabh Kumar; Thomas, Benedict
2018-04-01
The term "weldability" has been used to describe a wide variety of characteristics when a material is subjected to welding. In our analysis we perform experimental investigation to estimate the tensile strength of welded joint strength and then optimization of welding process parameters by using taguchi method and Artificial Neural Network (ANN) tool in MINITAB and MATLAB software respectively. The study reveals the influence on weldability of steel by varying composition of steel by mechanical characterization. At first we prepare the samples of different grades of steel (EN8, EN 19, EN 24). The samples were welded together by metal inert gas welding process and then tensile testing on Universal testing machine (UTM) was conducted for the same to evaluate the tensile strength of the welded steel specimens. Further comparative study was performed to find the effects of welding parameter on quality of weld strength by employing Taguchi method and Neural Network tool. Finally we concluded that taguchi method and Neural Network Tool is much efficient technique for optimization.
Structural Optimization for Reliability Using Nonlinear Goal Programming
NASA Technical Reports Server (NTRS)
El-Sayed, Mohamed E.
1999-01-01
This report details the development of a reliability based multi-objective design tool for solving structural optimization problems. Based on two different optimization techniques, namely sequential unconstrained minimization and nonlinear goal programming, the developed design method has the capability to take into account the effects of variability on the proposed design through a user specified reliability design criterion. In its sequential unconstrained minimization mode, the developed design tool uses a composite objective function, in conjunction with weight ordered design objectives, in order to take into account conflicting and multiple design criteria. Multiple design criteria of interest including structural weight, load induced stress and deflection, and mechanical reliability. The nonlinear goal programming mode, on the other hand, provides for a design method that eliminates the difficulty of having to define an objective function and constraints, while at the same time has the capability of handling rank ordered design objectives or goals. For simulation purposes the design of a pressure vessel cover plate was undertaken as a test bed for the newly developed design tool. The formulation of this structural optimization problem into sequential unconstrained minimization and goal programming form is presented. The resulting optimization problem was solved using: (i) the linear extended interior penalty function method algorithm; and (ii) Powell's conjugate directions method. Both single and multi-objective numerical test cases are included demonstrating the design tool's capabilities as it applies to this design problem.
Computational mechanics and physics at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
South, Jerry C., Jr.
1987-01-01
An overview is given of computational mechanics and physics at NASA Langley Research Center. Computational analysis is a major component and tool in many of Langley's diverse research disciplines, as well as in the interdisciplinary research. Examples are given for algorithm development and advanced applications in aerodynamics, transition to turbulence and turbulence simulation, hypersonics, structures, and interdisciplinary optimization.
KARMA: the observation preparation tool for KMOS
NASA Astrophysics Data System (ADS)
Wegner, Michael; Muschielok, Bernard
2008-08-01
KMOS is a multi-object integral field spectrometer working in the near infrared which is currently being built for the ESO VLT by a consortium of UK and German institutes. It is capable of selecting up to 24 target fields for integral field spectroscopy simultaneously by means of 24 robotic pick-off arms. For the preparation of observations with KMOS a dedicated preparation tool KARMA ("KMOS Arm Allocator") will be provided which optimizes the assignment of targets to these arms automatically, thereby taking target priorities and several mechanical and optical constraints into account. For this purpose two efficient algorithms, both being able to cope with the underlying optimization problem in a different way, were developed. We present the concept and architecture of KARMA in general and the optimization algorithms in detail.
Cherng, John G; Eksioglu, Mahmut; Kizilaslan, Kemal
2009-03-01
This paper presents a systematic design approach, which is the result of years of research effort, to ergonomic re-design of rivet tools, i.e. rivet hammers and bucking bars. The investigation was carried out using both ergonomic approach and mechanical analysis of the rivet tools dynamic behavior. The optimal mechanical design parameters of the re-designed rivet tools were determined by Taguchi method. Two ergonomically re-designed rivet tools with vibration damping/isolation mechanisms were tested against two conventional rivet tools in both laboratory and field tests. Vibration characteristics of both types of tools were measured by laboratory tests using a custom-made test fixture. The subjective field evaluations of the tools were performed by six experienced riveters at an aircraft repair shop. Results indicate that the isolation spring and polymer damper are very effective in reducing the overall level of vibration under both unweighted and weighted acceleration conditions. The mass of the dolly head and the housing played a significant role in the vibration absorption of the bucking bars. Another important result was that the duct iron has better vibration reducing capability compared to steel and aluminum for bucking bars. Mathematical simulation results were also consistent with the experimental results. Overall conclusion obtained from the study was that by applying the design principles of ergonomics and by adding vibration damping/isolation mechanisms to the rivet tools, the vibration level can significantly be reduced and the tools become safer and user friendly. The details of the experience learned, design modifications, test methods, mathematical models and the results are included in the paper.
mdtmFTP and its evaluation on ESNET SDN testbed
Zhang, Liang; Wu, Wenji; DeMar, Phil; ...
2017-04-21
In this paper, to address the high-performance challenges of data transfer in the big data era, we are developing and implementing mdtmFTP: a high-performance data transfer tool for big data. mdtmFTP has four salient features. First, it adopts an I/O centric architecture to execute data transfer tasks. Second, it more efficiently utilizes the underlying multicore platform through optimized thread scheduling. Third, it implements a large virtual file mechanism to address the lots-of-small-files (LOSF) problem. In conclusion, mdtmFTP integrates multiple optimization mechanisms, including–zero copy, asynchronous I/O, pipelining, batch processing, and pre-allocated buffer pools–to enhance performance. mdtmFTP has been extensively tested andmore » evaluated within the ESNET 100G testbed. Evaluations show that mdtmFTP can achieve higher performance than existing data transfer tools, such as GridFTP, FDT, and BBCP.« less
Verifying and Validating Proposed Models for FSW Process Optimization
NASA Technical Reports Server (NTRS)
Schneider, Judith
2008-01-01
This slide presentation reviews Friction Stir Welding (FSW) and the attempts to model the process in order to optimize and improve the process. The studies are ongoing to validate and refine the model of metal flow in the FSW process. There are slides showing the conventional FSW process, a couple of weld tool designs and how the design interacts with the metal flow path. The two basic components of the weld tool are shown, along with geometries of the shoulder design. Modeling of the FSW process is reviewed. Other topics include (1) Microstructure features, (2) Flow Streamlines, (3) Steady-state Nature, and (4) Grain Refinement Mechanisms
NASA Astrophysics Data System (ADS)
Kumar, Girish; Jain, Vipul; Gandhi, O. P.
2018-03-01
Maintenance helps to extend equipment life by improving its condition and avoiding catastrophic failures. Appropriate model or mechanism is, thus, needed to quantify system availability vis-a-vis a given maintenance strategy, which will assist in decision-making for optimal utilization of maintenance resources. This paper deals with semi-Markov process (SMP) modeling for steady state availability analysis of mechanical systems that follow condition-based maintenance (CBM) and evaluation of optimal condition monitoring interval. The developed SMP model is solved using two-stage analytical approach for steady-state availability analysis of the system. Also, CBM interval is decided for maximizing system availability using Genetic Algorithm approach. The main contribution of the paper is in the form of a predictive tool for system availability that will help in deciding the optimum CBM policy. The proposed methodology is demonstrated for a centrifugal pump.
Song, Ting; Li, Nan; Zarepisheh, Masoud; Li, Yongbao; Gautier, Quentin; Zhou, Linghong; Mell, Loren; Jiang, Steve; Cerviño, Laura
2016-01-01
Intensity-modulated radiation therapy (IMRT) currently plays an important role in radiotherapy, but its treatment plan quality can vary significantly among institutions and planners. Treatment plan quality control (QC) is a necessary component for individual clinics to ensure that patients receive treatments with high therapeutic gain ratios. The voxel-weighting factor-based plan re-optimization mechanism has been proved able to explore a larger Pareto surface (solution domain) and therefore increase the possibility of finding an optimal treatment plan. In this study, we incorporated additional modules into an in-house developed voxel weighting factor-based re-optimization algorithm, which was enhanced as a highly automated and accurate IMRT plan QC tool (TPS-QC tool). After importing an under-assessment plan, the TPS-QC tool was able to generate a QC report within 2 minutes. This QC report contains the plan quality determination as well as information supporting the determination. Finally, the IMRT plan quality can be controlled by approving quality-passed plans and replacing quality-failed plans using the TPS-QC tool. The feasibility and accuracy of the proposed TPS-QC tool were evaluated using 25 clinically approved cervical cancer patient IMRT plans and 5 manually created poor-quality IMRT plans. The results showed high consistency between the QC report quality determinations and the actual plan quality. In the 25 clinically approved cases that the TPS-QC tool identified as passed, a greater difference could be observed for dosimetric endpoints for organs at risk (OAR) than for planning target volume (PTV), implying that better dose sparing could be achieved in OAR than in PTV. In addition, the dose-volume histogram (DVH) curves of the TPS-QC tool re-optimized plans satisfied the dosimetric criteria more frequently than did the under-assessment plans. In addition, the criteria for unsatisfied dosimetric endpoints in the 5 poor-quality plans could typically be satisfied when the TPS-QC tool generated re-optimized plans without sacrificing other dosimetric endpoints. In addition to its feasibility and accuracy, the proposed TPS-QC tool is also user-friendly and easy to operate, both of which are necessary characteristics for clinical use. PMID:26930204
AstrodyToolsWeb an e-Science project in Astrodynamics and Celestial Mechanics fields
NASA Astrophysics Data System (ADS)
López, R.; San-Juan, J. F.
2013-05-01
Astrodynamics Web Tools, AstrodyToolsWeb (http://tastrody.unirioja.es), is an ongoing collaborative Web Tools computing infrastructure project which has been specially designed to support scientific computation. AstrodyToolsWeb provides project collaborators with all the technical and human facilities in order to wrap, manage, and use specialized noncommercial software tools in Astrodynamics and Celestial Mechanics fields, with the aim of optimizing the use of resources, both human and material. However, this project is open to collaboration from the whole scientific community in order to create a library of useful tools and their corresponding theoretical backgrounds. AstrodyToolsWeb offers a user-friendly web interface in order to choose applications, introduce data, and select appropriate constraints in an intuitive and easy way for the user. After that, the application is executed in real time, whenever possible; then the critical information about program behavior (errors and logs) and output, including the postprocessing and interpretation of its results (graphical representation of data, statistical analysis or whatever manipulation therein), are shown via the same web interface or can be downloaded to the user's computer.
The application of artificial intelligence in the optimal design of mechanical systems
NASA Astrophysics Data System (ADS)
Poteralski, A.; Szczepanik, M.
2016-11-01
The paper is devoted to new computational techniques in mechanical optimization where one tries to study, model, analyze and optimize very complex phenomena, for which more precise scientific tools of the past were incapable of giving low cost and complete solution. Soft computing methods differ from conventional (hard) computing in that, unlike hard computing, they are tolerant of imprecision, uncertainty, partial truth and approximation. The paper deals with an application of the bio-inspired methods, like the evolutionary algorithms (EA), the artificial immune systems (AIS) and the particle swarm optimizers (PSO) to optimization problems. Structures considered in this work are analyzed by the finite element method (FEM), the boundary element method (BEM) and by the method of fundamental solutions (MFS). The bio-inspired methods are applied to optimize shape, topology and material properties of 2D, 3D and coupled 2D/3D structures, to optimize the termomechanical structures, to optimize parameters of composites structures modeled by the FEM, to optimize the elastic vibrating systems to identify the material constants for piezoelectric materials modeled by the BEM and to identify parameters in acoustics problem modeled by the MFS.
Firmware Development Improves System Efficiency
NASA Technical Reports Server (NTRS)
Chern, E. James; Butler, David W.
1993-01-01
Most manufacturing processes require physical pointwise positioning of the components or tools from one location to another. Typical mechanical systems utilize either stop-and-go or fixed feed-rate procession to accomplish the task. The first approach achieves positional accuracy but prolongs overall time and increases wear on the mechanical system. The second approach sustains the throughput but compromises positional accuracy. A computer firmware approach has been developed to optimize this point wise mechanism by utilizing programmable interrupt controls to synchronize engineering processes 'on the fly'. This principle has been implemented in an eddy current imaging system to demonstrate the improvement. Software programs were developed that enable a mechanical controller card to transmit interrupts to a system controller as a trigger signal to initiate an eddy current data acquisition routine. The advantages are: (1) optimized manufacturing processes, (2) increased throughput of the system, (3) improved positional accuracy, and (4) reduced wear and tear on the mechanical system.
TERASHIMA, ICHIRO; ARAYA, TAKAO; MIYAZAWA, SHIN-ICHI; SONE, KOSEI; YANO, SATOSHI
2004-01-01
• Background and Aims The paper by Monsi and Saeki in 1953 (Japanese Journal of Botany 14: 22–52) was pioneering not only in mathematical modelling of canopy photosynthesis but also in eco-developmental studies of seasonal changes in leaf canopies. • Scope Construction and maintenance mechanisms of efficient photosynthetic systems at three different scaling levels—single leaves, herbaceous plants and trees—are reviewed mainly based on the nitrogen optimization theory. First, the nitrogen optimization theory with respect to the canopy and the single leaf is briefly introduced. Secondly, significance of leaf thickness in CO2 diffusion in the leaf and in leaf photosynthesis is discussed. Thirdly, mechanisms of adjustment of photosynthetic properties of the leaf within the herbaceous plant individual throughout its life are discussed. In particular, roles of sugar sensing, redox control and of cytokinin are highlighted. Finally, the development of a tree is considered. • Conclusions Various mechanisms contribute to construction and maintenance of efficient photosynthetic systems. Molecular backgrounds of these ecologically important mechanisms should be clarified. The construction mechanisms of the tree cannot be explained solely by the nitrogen optimization theory. It is proposed that the pipe model theory in its differential form could be a potential tool in future studies in this research area. PMID:15598701
Gambarota, Giulio
2017-07-15
Magnetic resonance spectroscopy (MRS) is a well established modality for investigating tissue metabolism in vivo. In recent years, many efforts by the scientific community have been directed towards the improvement of metabolite detection and quantitation. Quantum mechanics simulations allow for investigations of the MR signal behaviour of metabolites; thus, they provide an essential tool in the optimization of metabolite detection. In this review, we will examine quantum mechanics simulations based on the density matrix formalism. The density matrix was introduced by von Neumann in 1927 to take into account statistical effects within the theory of quantum mechanics. We will discuss the main steps of the density matrix simulation of an arbitrary spin system and show some examples for the strongly coupled two spin system. Copyright © 2016 Elsevier Inc. All rights reserved.
Giga-voxel computational morphogenesis for structural design
NASA Astrophysics Data System (ADS)
Aage, Niels; Andreassen, Erik; Lazarov, Boyan S.; Sigmund, Ole
2017-10-01
In the design of industrial products ranging from hearing aids to automobiles and aeroplanes, material is distributed so as to maximize the performance and minimize the cost. Historically, human intuition and insight have driven the evolution of mechanical design, recently assisted by computer-aided design approaches. The computer-aided approach known as topology optimization enables unrestricted design freedom and shows great promise with regard to weight savings, but its applicability has so far been limited to the design of single components or simple structures, owing to the resolution limits of current optimization methods. Here we report a computational morphogenesis tool, implemented on a supercomputer, that produces designs with giga-voxel resolution—more than two orders of magnitude higher than previously reported. Such resolution provides insights into the optimal distribution of material within a structure that were hitherto unachievable owing to the challenges of scaling up existing modelling and optimization frameworks. As an example, we apply the tool to the design of the internal structure of a full-scale aeroplane wing. The optimized full-wing design has unprecedented structural detail at length scales ranging from tens of metres to millimetres and, intriguingly, shows remarkable similarity to naturally occurring bone structures in, for example, bird beaks. We estimate that our optimized design corresponds to a reduction in mass of 2-5 per cent compared to currently used aeroplane wing designs, which translates into a reduction in fuel consumption of about 40-200 tonnes per year per aeroplane. Our morphogenesis process is generally applicable, not only to mechanical design, but also to flow systems, antennas, nano-optics and micro-systems.
Giga-voxel computational morphogenesis for structural design.
Aage, Niels; Andreassen, Erik; Lazarov, Boyan S; Sigmund, Ole
2017-10-04
In the design of industrial products ranging from hearing aids to automobiles and aeroplanes, material is distributed so as to maximize the performance and minimize the cost. Historically, human intuition and insight have driven the evolution of mechanical design, recently assisted by computer-aided design approaches. The computer-aided approach known as topology optimization enables unrestricted design freedom and shows great promise with regard to weight savings, but its applicability has so far been limited to the design of single components or simple structures, owing to the resolution limits of current optimization methods. Here we report a computational morphogenesis tool, implemented on a supercomputer, that produces designs with giga-voxel resolution-more than two orders of magnitude higher than previously reported. Such resolution provides insights into the optimal distribution of material within a structure that were hitherto unachievable owing to the challenges of scaling up existing modelling and optimization frameworks. As an example, we apply the tool to the design of the internal structure of a full-scale aeroplane wing. The optimized full-wing design has unprecedented structural detail at length scales ranging from tens of metres to millimetres and, intriguingly, shows remarkable similarity to naturally occurring bone structures in, for example, bird beaks. We estimate that our optimized design corresponds to a reduction in mass of 2-5 per cent compared to currently used aeroplane wing designs, which translates into a reduction in fuel consumption of about 40-200 tonnes per year per aeroplane. Our morphogenesis process is generally applicable, not only to mechanical design, but also to flow systems, antennas, nano-optics and micro-systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakhleh, Luay
I proposed to develop computationally efficient tools for accurate detection and reconstruction of microbes' complex evolutionary mechanisms, thus enabling rapid and accurate annotation, analysis and understanding of their genomes. To achieve this goal, I proposed to address three aspects. (1) Mathematical modeling. A major challenge facing the accurate detection of HGT is that of distinguishing between these two events on the one hand and other events that have similar "effects." I proposed to develop a novel mathematical approach for distinguishing among these events. Further, I proposed to develop a set of novel optimization criteria for the evolutionary analysis of microbialmore » genomes in the presence of these complex evolutionary events. (2) Algorithm design. In this aspect of the project, I proposed to develop an array of e cient and accurate algorithms for analyzing microbial genomes based on the formulated optimization criteria. Further, I proposed to test the viability of the criteria and the accuracy of the algorithms in an experimental setting using both synthetic as well as biological data. (3) Software development. I proposed the nal outcome to be a suite of software tools which implements the mathematical models as well as the algorithms developed.« less
Optimization of IBF parameters based on adaptive tool-path algorithm
NASA Astrophysics Data System (ADS)
Deng, Wen Hui; Chen, Xian Hua; Jin, Hui Liang; Zhong, Bo; Hou, Jin; Li, An Qi
2018-03-01
As a kind of Computer Controlled Optical Surfacing(CCOS) technology. Ion Beam Figuring(IBF) has obvious advantages in the control of surface accuracy, surface roughness and subsurface damage. The superiority and characteristics of IBF in optical component processing are analyzed from the point of view of removal mechanism. For getting more effective and automatic tool path with the information of dwell time, a novel algorithm is proposed in this thesis. Based on the removal functions made through our IBF equipment and the adaptive tool-path, optimized parameters are obtained through analysis the residual error that would be created in the polishing process. A Φ600 mm plane reflector element was used to be a simulation instance. The simulation result shows that after four combinations of processing, the surface accuracy of PV (Peak Valley) value and the RMS (Root Mean Square) value was reduced to 4.81 nm and 0.495 nm from 110.22 nm and 13.998 nm respectively in the 98% aperture. The result shows that the algorithm and optimized parameters provide a good theoretical for high precision processing of IBF.
SPOT: Optimization Tool for Network Adaptable Security
NASA Astrophysics Data System (ADS)
Ksiezopolski, Bogdan; Szalachowski, Pawel; Kotulski, Zbigniew
Recently we have observed the growth of the intelligent application especially with its mobile character, called e-anything. The implementation of these applications provides guarantee of security requirements of the cryptographic protocols which are used in the application. Traditionally the protocols have been configured with the strongest possible security mechanisms. Unfortunately, when the application is used by means of the mobile devices, the strongest protection can lead to the denial of services for them. The solution of this problem is introducing the quality of protection models which will scale the protection level depending on the actual threat level. In this article we would like to introduce the application which manages the protection level of the processes in the mobile environment. The Security Protocol Optimizing Tool (SPOT) optimizes the cryptographic protocol and defines the protocol version appropriate to the actual threat level. In this article the architecture of the SPOT is presented with a detailed description of the included modules.
On the design of innovative heterogeneous tests using a shape optimization approach
NASA Astrophysics Data System (ADS)
Aquino, J.; Campos, A. Andrade; Souto, N.; Thuillier, S.
2018-05-01
The development of full-field measurement methods enabled a new trend of mechanical tests. By providing the inhomogeneous strain field from the tests, these techniques are being widely used in sheet metal identification strategies, through heterogeneous mechanical tests. In this work, a heterogeneous mechanical test with an innovative tool/specimen shape, capable of producing rich heterogeneous strain paths providing extensive information on material behavior, is aimed. The specimen is found using a shape optimization process where a dedicated indicator that evaluates the richness of strain information is used. The methodology and results here presented are extended to non-specimen geometry dependence and to the non-dependence of the geometry parametrization through the use of the Ritz method for boundary value problems. Different curve models, such as Splines, B-Splines and NURBS, are used and C1 continuity throughout the specimen is guaranteed. Moreover, various optimization methods are used, deterministic and stochastic, in order to find the method or a combination of methods able to effectively minimize the cost function.
Vlachogiannis, J G
2003-01-01
Taguchi's technique is a helpful tool to achieve experimental optimization of a large number of decision variables with a small number of off-line experiments. The technique appears to be an ideal tool for improving the performance of X-ray medical radiographic screens under a noise source. Currently there are very many guides available for improving the efficiency of X-ray medical radiographic screens. These guides can be refined using a second-stage parameter optimization. based on Taguchi's technique, selecting the optimum levels of controllable X-ray radiographic screen factors. A real example of the proposed technique is presented giving certain performance criteria. The present research proposes the reinforcement of X-ray radiography by Taguchi's technique as a novel hardware mechanism.
NASA Astrophysics Data System (ADS)
Prokhorov, Sergey
2017-10-01
Building industry in a present day going through the hard times. Machine and mechanism exploitation cost, on a field of construction and installation works, takes a substantial part in total building construction expenses. There is a necessity to elaborate high efficient method, which allows not only to increase production, but also to reduce direct costs during machine fleet exploitation, and to increase its energy efficiency. In order to achieve the goal we plan to use modern methods of work production, hi-tech and energy saving machine tools and technologies, and use of optimal mechanization sets. As the optimization criteria there are exploitation prime cost and set efficiency. During actual task-solving process we made a conclusion, which shows that mechanization works, energy audit with production juxtaposition, prime prices and costs for energy resources allow to make complex machine fleet supply, improve ecological level and increase construction and installation work quality.
Zhou, Yongquan; Xie, Jian; Li, Liangliang; Ma, Mingzhi
2014-01-01
Bat algorithm (BA) is a novel stochastic global optimization algorithm. Cloud model is an effective tool in transforming between qualitative concepts and their quantitative representation. Based on the bat echolocation mechanism and excellent characteristics of cloud model on uncertainty knowledge representation, a new cloud model bat algorithm (CBA) is proposed. This paper focuses on remodeling echolocation model based on living and preying characteristics of bats, utilizing the transformation theory of cloud model to depict the qualitative concept: “bats approach their prey.” Furthermore, Lévy flight mode and population information communication mechanism of bats are introduced to balance the advantage between exploration and exploitation. The simulation results show that the cloud model bat algorithm has good performance on functions optimization. PMID:24967425
NASA Astrophysics Data System (ADS)
Monici, Monica; Basile, Venere; Cialdai, Francesca; Romano, Giovanni; Fusi, Franco; Conti, Antonio
2008-04-01
Many studies demonstrated that mechanical stress is a key factor for tissue homeostasis, while unloading induce loss of mass and impairment of function. Because of their physiological function, muscle, connective tissue, bone and cartilage dynamically interact with mechanical and gravitational stress, modifying their properties through the continuous modification of their composition. Indeed, it is known that mechanical stress increases the production of extracellular matrix (ECM) components by cells, but the mechanotransduction mechanisms and the optimal loading conditions required for an optimal tissue homeostasis are still unknown. Considering the importance of cell activation and ECM production in tissue regeneration, a proper use of mechanical stimulation could be a powerful tool in tissue repair and tissue engineering. Studies exploring advanced modalities for supplying mechanical stimuli are needed to increase our knowledge on mechanobiology and to develop effective clinical applications. Here we describe the effect of photomechanical stress, supplied by a pulsed Nd:YAG laser on ECM production by cells of connective tissues. Cell morphology, production of ECM molecules (collagens, fibronectin, mucopolysaccharides), cell adhesion and cell energy metabolism have been studied by using immunofluorescence and autofluorescence microscopy. The results show that photomechanical stress induces cytoskeleton remodelling, redistribution of membrane integrins, increase in production of ECM molecules. These results could be of consequence for developing clinical protocols for the treatment of connective tissue dideases by pulsed Nd:YAG laser.
NASA Astrophysics Data System (ADS)
Daneji, A.; Ali, M.; Pervaiz, S.
2018-04-01
Friction stir welding (FSW) is a form of solid state welding process for joining metals, alloys, and selective composites. Over the years, FSW development has provided an improved way of producing welding joints, and consequently got accepted in numerous industries such as aerospace, automotive, rail and marine etc. In FSW, the base metal properties control the material’s plastic flow under the influence of a rotating tool whereas, the process and tool parameters play a vital role in the quality of weld. In the current investigation, an array of square butt joints of 6061 Aluminum alloy was to be welded under varying FSW process and tool geometry related parameters, after which the resulting weld was evaluated for the corresponding mechanical properties and welding defects. The study incorporates FSW process and tool parameters such as welding speed, pin height and pin thread pitch as input parameters. However, the weld quality related defects and mechanical properties were treated as output parameters. The experimentation paves way to investigate the correlation between the inputs and the outputs. The correlation between inputs and outputs were used as tool to predict the optimized FSW process and tool parameters for a desired weld output of the base metals under investigation. The study also provides reflection on the effect of said parameters on a welding defect such as wormhole.
Effect of Weld Tool Geometry on Friction Stir Welded AA2219-T87 Properties
NASA Technical Reports Server (NTRS)
Querin, Joseph A.; Schneider, Judy A.
2008-01-01
In this study, flat panels of AA2219-T87 were friction stir welded (FSWed) using weld tools with tapered pins The three pin geometries of the weld tools included: 0 (straight cylinder), 30 , and 60 angles on the frustum. For each weld tool geometry, the FSW process parameters were optimized to eliminate defects. A constant heat input was maintained while varying the process parameters of spindle rpm and travel speed. This provided a constant heat input for each FSW weld panel while altering the hot working conditions imparted to the workpiece. The resulting mechanical properties were evaluated from tensile test results of the FSW joint.
Design Tool Using a New Optimization Method Based on a Stochastic Process
NASA Astrophysics Data System (ADS)
Yoshida, Hiroaki; Yamaguchi, Katsuhito; Ishikawa, Yoshio
Conventional optimization methods are based on a deterministic approach since their purpose is to find out an exact solution. However, such methods have initial condition dependence and the risk of falling into local solution. In this paper, we propose a new optimization method based on the concept of path integrals used in quantum mechanics. The method obtains a solution as an expected value (stochastic average) using a stochastic process. The advantages of this method are that it is not affected by initial conditions and does not require techniques based on experiences. We applied the new optimization method to a hang glider design. In this problem, both the hang glider design and its flight trajectory were optimized. The numerical calculation results prove that performance of the method is sufficient for practical use.
Geometry Modeling and Grid Generation for Design and Optimization
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
1998-01-01
Geometry modeling and grid generation (GMGG) have played and will continue to play an important role in computational aerosciences. During the past two decades, tremendous progress has occurred in GMGG; however, GMGG is still the biggest bottleneck to routine applications for complicated Computational Fluid Dynamics (CFD) and Computational Structures Mechanics (CSM) models for analysis, design, and optimization. We are still far from incorporating GMGG tools in a design and optimization environment for complicated configurations. It is still a challenging task to parameterize an existing model in today's Computer-Aided Design (CAD) systems, and the models created are not always good enough for automatic grid generation tools. Designers may believe their models are complete and accurate, but unseen imperfections (e.g., gaps, unwanted wiggles, free edges, slivers, and transition cracks) often cause problems in gridding for CSM and CFD. Despite many advances in grid generation, the process is still the most labor-intensive and time-consuming part of the computational aerosciences for analysis, design, and optimization. In an ideal design environment, a design engineer would use a parametric model to evaluate alternative designs effortlessly and optimize an existing design for a new set of design objectives and constraints. For this ideal environment to be realized, the GMGG tools must have the following characteristics: (1) be automated, (2) provide consistent geometry across all disciplines, (3) be parametric, and (4) provide sensitivity derivatives. This paper will review the status of GMGG for analysis, design, and optimization processes, and it will focus on some emerging ideas that will advance the GMGG toward the ideal design environment.
NASA Astrophysics Data System (ADS)
Ji, Shude; Li, Zhengwei; Zhou, Zhenlu; Wu, Baosheng
2017-10-01
This study focused on the effects of thread on hook and cold lap formation, lap shear property and impact toughness of alclad 2024-T4 friction stir lap welding (FSLW) joints. Except the traditional threaded pin tool (TR-tool), three new tools with different thread locations and orientations were designed. Results showed that thread significantly affected hook, cold lap morphologies and lap shear properties. The tool with tip-threaded pin (T-tool) fabricated joint with flat hook and cold lap, which resulted in shear fracture mode. The tools with bottom-threaded pin (B-tool) eliminated the hook. The tool with reverse-threaded pin (R-tool) widened the stir zone width. When using configuration A, the joints fabricated by the three new tools showed higher failure loads than the joint fabricated by the TR-tool. The joint using the T-tool owned the optimum impact toughness. This study demonstrated the significance of thread during FSLW and provided a reference to optimize tool geometry.
GPS-Lipid: a robust tool for the prediction of multiple lipid modification sites.
Xie, Yubin; Zheng, Yueyuan; Li, Hongyu; Luo, Xiaotong; He, Zhihao; Cao, Shuo; Shi, Yi; Zhao, Qi; Xue, Yu; Zuo, Zhixiang; Ren, Jian
2016-06-16
As one of the most common post-translational modifications in eukaryotic cells, lipid modification is an important mechanism for the regulation of variety aspects of protein function. Over the last decades, three classes of lipid modifications have been increasingly studied. The co-regulation of these different lipid modifications is beginning to be noticed. However, due to the lack of integrated bioinformatics resources, the studies of co-regulatory mechanisms are still very limited. In this work, we developed a tool called GPS-Lipid for the prediction of four classes of lipid modifications by integrating the Particle Swarm Optimization with an aging leader and challengers (ALC-PSO) algorithm. GPS-Lipid was proven to be evidently superior to other similar tools. To facilitate the research of lipid modification, we hosted a publicly available web server at http://lipid.biocuckoo.org with not only the implementation of GPS-Lipid, but also an integrative database and visualization tool. We performed a systematic analysis of the co-regulatory mechanism between different lipid modifications with GPS-Lipid. The results demonstrated that the proximal dual-lipid modifications among palmitoylation, myristoylation and prenylation are key mechanism for regulating various protein functions. In conclusion, GPS-lipid is expected to serve as useful resource for the research on lipid modifications, especially on their co-regulation.
Multidisciplinary Optimization for Aerospace Using Genetic Optimization
NASA Technical Reports Server (NTRS)
Pak, Chan-gi; Hahn, Edward E.; Herrera, Claudia Y.
2007-01-01
In support of the ARMD guidelines NASA's Dryden Flight Research Center is developing a multidisciplinary design and optimization tool This tool will leverage existing tools and practices, and allow the easy integration and adoption of new state-of-the-art software. Optimization has made its way into many mainstream applications. For example NASTRAN(TradeMark) has its solution sequence 200 for Design Optimization, and MATLAB(TradeMark) has an Optimization Tool box. Other packages, such as ZAERO(TradeMark) aeroelastic panel code and the CFL3D(TradeMark) Navier-Stokes solver have no built in optimizer. The goal of the tool development is to generate a central executive capable of using disparate software packages ina cross platform network environment so as to quickly perform optimization and design tasks in a cohesive streamlined manner. A provided figure (Figure 1) shows a typical set of tools and their relation to the central executive. Optimization can take place within each individual too, or in a loop between the executive and the tool, or both.
Synthetic Biology: Tools to Design, Build, and Optimize Cellular Processes
Young, Eric; Alper, Hal
2010-01-01
The general central dogma frames the emergent properties of life, which make biology both necessary and difficult to engineer. In a process engineering paradigm, each biological process stream and process unit is heavily influenced by regulatory interactions and interactions with the surrounding environment. Synthetic biology is developing the tools and methods that will increase control over these interactions, eventually resulting in an integrative synthetic biology that will allow ground-up cellular optimization. In this review, we attempt to contextualize the areas of synthetic biology into three tiers: (1) the process units and associated streams of the central dogma, (2) the intrinsic regulatory mechanisms, and (3) the extrinsic physical and chemical environment. Efforts at each of these three tiers attempt to control cellular systems and take advantage of emerging tools and approaches. Ultimately, it will be possible to integrate these approaches and realize the vision of integrative synthetic biology when cells are completely rewired for biotechnological goals. This review will highlight progress towards this goal as well as areas requiring further research. PMID:20150964
A dielectric logging tool with insulated collar for formation fluid detection around borehole
NASA Astrophysics Data System (ADS)
Wang, Bin; Li, Kang; Kong, Fan-Min; Zhao, Jia
2015-08-01
A dielectric tool with insulated collar for analyzing fluid saturation outside a borehole was introduced. The UWB (ultra-wideband) antenna mounted on the tool was optimized to launch a transient pulse. The broadband evaluation method provided more advantages when compared with traditional dielectric tools. The EM (electromagnetic) power distribution outside the borehole was studied, and it was shown that energy was propagated in two modes. Furthermore, the mechanism of the modes was discussed. In order to increase this tools' investigation depth, a novel insulated collar was introduced. In addition, operation in difference formations was discussed and this tool proved to be able to efficiently launch lateral EM waves. Response voltages indicated that the proposed scheme was able to evaluate the fluid saturation of reservoir formations and dielectric dispersion properties. It may be used as an alternative tool for imaging logging applications.
NASA Astrophysics Data System (ADS)
Grinyok, A.; Boychuk, I.; Perelygin, D.; Dantsevich, I.
2018-03-01
A complex method of the simulation and production design of open rotor propellers was studied. An end-to-end diagram was proposed for the evaluating, designing and experimental testing the optimal geometry of the propeller surface, for the machine control path generation as well as for simulating the cutting zone force condition and its relationship with the treatment accuracy which was defined by the propeller elastic deformation. The simulation data provided the realization of the combined automated path control of the cutting tool.
MUTLI-OBJECTIVE OPTIMIZATION OF MICROSTRUCTURE IN WROUGHT MAGNESIUM ALLOYS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radhakrishnan, Balasubramaniam; Gorti, Sarma B; Simunovic, Srdjan
2013-01-01
The microstructural features that govern the mechanical properties of wrought magnesium alloys include grain size, crystallographic texture, and twinning. Several processes based on shear deformation have been developed that promote grain refinement, weakening of the basal texture, as well as the shift of the peak intensity away from the center of the basal pole figure - features that promote room temperature ductility in Mg alloys. At ORNL, we are currently exploring the concept of introducing nano-twins within sub-micron grains as a possible mechanism for simultaneously improving strength and ductility by exploiting a potential dislocation glide along the twin-matrix interface amore » mechanism that was originally proposed for face-centered cubic materials. Specifically, we have developed an integrated modeling and optimization framework in order to identify the combinations of grain size, texture and twin spacing that can maximize strength-ductility combinations. A micromechanical model that relates microstructure to material strength is coupled with a failure model that relates ductility to a critical shear strain and a critical hydrostatic stress. The micro-mechanical model is combined with an optimization tool based on genetic algorithm. A multi-objective optimization technique is used to explore the strength-ductility space in a systematic fashion and identify optimum combinations of the microstructural parameters that will simultaneously maximize the strength-ductility in the alloy.« less
NASA Astrophysics Data System (ADS)
Yoshida, Hiroaki; Yamaguchi, Katsuhito; Ishikawa, Yoshio
The conventional optimization methods were based on a deterministic approach, since their purpose is to find out an exact solution. However, these methods have initial condition dependence and risk of falling into local solution. In this paper, we propose a new optimization method based on a concept of path integral method used in quantum mechanics. The method obtains a solutions as an expected value (stochastic average) using a stochastic process. The advantages of this method are not to be affected by initial conditions and not to need techniques based on experiences. We applied the new optimization method to a design of the hang glider. In this problem, not only the hang glider design but also its flight trajectory were optimized. The numerical calculation results showed that the method has a sufficient performance.
Model for Sucker-Rod Pumping Unit Operating Modes Analysis Based on SimMechanics Library
NASA Astrophysics Data System (ADS)
Zyuzev, A. M.; Bubnov, M. V.
2018-01-01
The article provides basic information about the process of a sucker-rod pumping unit (SRPU) model developing by means of SimMechanics library in the MATLAB Simulink environment. The model is designed for the development of a pump productivity optimal management algorithms, sensorless diagnostics of the plunger pump and pumpjack, acquisition of the dynamometer card and determination of a dynamic fluid level in the well, normalization of the faulty unit operation before troubleshooting is performed by staff as well as equilibrium ratio determining by energy indicators and outputting of manual balancing recommendations to achieve optimal power consumption efficiency. Particular attention is given to the application of various blocks from SimMechanics library to take into account the pumpjack construction principal characteristic and to obtain an adequate model. The article explains in depth the developed tools features for collecting and analysis of simulated mechanism data. The conclusions were drawn about practical implementation possibility of the SRPU modelling results and areas for further development of investigation.
Evolutionary Optimization of a Geometrically Refined Truss
NASA Technical Reports Server (NTRS)
Hull, P. V.; Tinker, M. L.; Dozier, G. V.
2007-01-01
Structural optimization is a field of research that has experienced noteworthy growth for many years. Researchers in this area have developed optimization tools to successfully design and model structures, typically minimizing mass while maintaining certain deflection and stress constraints. Numerous optimization studies have been performed to minimize mass, deflection, and stress on a benchmark cantilever truss problem. Predominantly traditional optimization theory is applied to this problem. The cross-sectional area of each member is optimized to minimize the aforementioned objectives. This Technical Publication (TP) presents a structural optimization technique that has been previously applied to compliant mechanism design. This technique demonstrates a method that combines topology optimization, geometric refinement, finite element analysis, and two forms of evolutionary computation: genetic algorithms and differential evolution to successfully optimize a benchmark structural optimization problem. A nontraditional solution to the benchmark problem is presented in this TP, specifically a geometrically refined topological solution. The design process begins with an alternate control mesh formulation, multilevel geometric smoothing operation, and an elastostatic structural analysis. The design process is wrapped in an evolutionary computing optimization toolset.
NASA Astrophysics Data System (ADS)
Grujicic, M.; Snipes, J. S.; Ramaswami, S.
2016-01-01
An alternative to the traditional trial-and-error empirical approach for the development of new materials is the so-called materials-by-design approach. Within the latter approach, a material is treated as a complex system and its design and optimization is carried out by employing computer-aided engineering analyses, predictive tools, and available material databases. In the present work, the materials-by-design approach is utilized to redesign a grade of high-strength low-alloy (HSLA) class of steels with improved mechanical properties (primarily strength and fracture toughness), processability (e.g., castability, hot formability, and weldability), and corrosion resistance. Toward that end, a number of material thermodynamics, kinetics of phase transformations, and physics of deformation and fracture computational models and databases have been developed/assembled and utilized within a multi-disciplinary, two-level material-by-design optimization scheme. To validate the models, their prediction is compared against the experimental results for the related steel HSLA100. Then the optimization procedure is employed to determine the optimal chemical composition and the tempering schedule for a newly designed grade of the HSLA class of steels with enhanced mechanical properties, processability, and corrosion resistance.
NASA Technical Reports Server (NTRS)
Johnson, Theodore F.; Waters, W. Allen; Singer, Thomas N.; Haftka, Raphael T.
2004-01-01
A next generation reusable launch vehicle (RLV) will require thermally efficient and light-weight cryogenic propellant tank structures. Since these tanks will be weight-critical, analytical tools must be developed to aid in sizing the thickness of insulation layers and structural geometry for optimal performance. Finite element method (FEM) models of the tank and insulation layers were created to analyze the thermal performance of the cryogenic insulation layer and thermal protection system (TPS) of the tanks. The thermal conditions of ground-hold and re-entry/soak-through for a typical RLV mission were used in the thermal sizing study. A general-purpose nonlinear FEM analysis code, capable of using temperature and pressure dependent material properties, was used as the thermal analysis code. Mechanical loads from ground handling and proof-pressure testing were used to size the structural geometry of an aluminum cryogenic tank wall. Nonlinear deterministic optimization and reliability optimization techniques were the analytical tools used to size the geometry of the isogrid stiffeners and thickness of the skin. The results from the sizing study indicate that a commercial FEM code can be used for thermal analyses to size the insulation thicknesses where the temperature and pressure were varied. The results from the structural sizing study show that using combined deterministic and reliability optimization techniques can obtain alternate and lighter designs than the designs obtained from deterministic optimization methods alone.
Cao, Hongrui; Niu, Linkai; He, Zhengjia
2012-01-01
Bearing defects are one of the most important mechanical sources for vibration and noise generation in machine tool spindles. In this study, an integrated finite element (FE) model is proposed to predict the vibration responses of a spindle bearing system with localized bearing defects and then the sensor placement for better detection of bearing faults is optimized. A nonlinear bearing model is developed based on Jones' bearing theory, while the drawbar, shaft and housing are modeled as Timoshenko's beam. The bearing model is then integrated into the FE model of drawbar/shaft/housing by assembling equations of motion. The Newmark time integration method is used to solve the vibration responses numerically. The FE model of the spindle-bearing system was verified by conducting dynamic tests. Then, the localized bearing defects were modeled and vibration responses generated by the outer ring defect were simulated as an illustration. The optimization scheme of the sensor placement was carried out on the test spindle. The results proved that, the optimal sensor placement depends on the vibration modes under different boundary conditions and the transfer path between the excitation and the response. PMID:23012514
NASA Astrophysics Data System (ADS)
Saranya, Kunaparaju; John Rozario Jegaraj, J.; Ramesh Kumar, Katta; Venkateshwara Rao, Ghanta
2016-06-01
With the increased trend in automation of modern manufacturing industry, the human intervention in routine, repetitive and data specific activities of manufacturing is greatly reduced. In this paper, an attempt has been made to reduce the human intervention in selection of optimal cutting tool and process parameters for metal cutting applications, using Artificial Intelligence techniques. Generally, the selection of appropriate cutting tool and parameters in metal cutting is carried out by experienced technician/cutting tool expert based on his knowledge base or extensive search from huge cutting tool database. The present proposed approach replaces the existing practice of physical search for tools from the databooks/tool catalogues with intelligent knowledge-based selection system. This system employs artificial intelligence based techniques such as artificial neural networks, fuzzy logic and genetic algorithm for decision making and optimization. This intelligence based optimal tool selection strategy is developed using Mathworks Matlab Version 7.11.0 and implemented. The cutting tool database was obtained from the tool catalogues of different tool manufacturers. This paper discusses in detail, the methodology and strategies employed for selection of appropriate cutting tool and optimization of process parameters based on multi-objective optimization criteria considering material removal rate, tool life and tool cost.
Tool Wear Monitoring Using Time Series Analysis
NASA Astrophysics Data System (ADS)
Song, Dong Yeul; Ohara, Yasuhiro; Tamaki, Haruo; Suga, Masanobu
A tool wear monitoring approach considering the nonlinear behavior of cutting mechanism caused by tool wear and/or localized chipping is proposed, and its effectiveness is verified through the cutting experiment and actual turning machining. Moreover, the variation in the surface roughness of the machined workpiece is also discussed using this approach. In this approach, the residual error between the actually measured vibration signal and the estimated signal obtained from the time series model corresponding to dynamic model of cutting is introduced as the feature of diagnosis. Consequently, it is found that the early tool wear state (i.e. flank wear under 40µm) can be monitored, and also the optimal tool exchange time and the tool wear state for actual turning machining can be judged by this change in the residual error. Moreover, the variation of surface roughness Pz in the range of 3 to 8µm can be estimated by the monitoring of the residual error.
Multidisciplinary Shape Optimization of a Composite Blended Wing Body Aircraft
NASA Astrophysics Data System (ADS)
Boozer, Charles Maxwell
A multidisciplinary shape optimization tool coupling aerodynamics, structure, and performance was developed for battery powered aircraft. Utilizing high-fidelity computational fluid dynamics analysis tools and a structural wing weight tool, coupled based on the multidisciplinary feasible optimization architecture; aircraft geometry is modified in the optimization of the aircraft's range or endurance. The developed tool is applied to three geometries: a hybrid blended wing body, delta wing UAS, the ONERA M6 wing, and a modified ONERA M6 wing. First, the optimization problem is presented with the objective function, constraints, and design vector. Next, the tool's architecture and the analysis tools that are utilized are described. Finally, various optimizations are described and their results analyzed for all test subjects. Results show that less computationally expensive inviscid optimizations yield positive performance improvements using planform, airfoil, and three-dimensional degrees of freedom. From the results obtained through a series of optimizations, it is concluded that the newly developed tool is both effective at improving performance and serves as a platform ready to receive additional performance modules, further improving its computational design support potential.
Development and testing of the cancer multidisciplinary team meeting observational tool (MDT-MOT)
Harris, Jenny; Taylor, Cath; Sevdalis, Nick; Jalil, Rozh; Green, James S.A.
2016-01-01
Abstract Objective To develop a tool for independent observational assessment of cancer multidisciplinary team meetings (MDMs), and test criterion validity, inter-rater reliability/agreement and describe performance. Design Clinicians and experts in teamwork used a mixed-methods approach to develop and refine the tool. Study 1 observers rated pre-determined optimal/sub-optimal MDM film excerpts and Study 2 observers independently rated video-recordings of 10 MDMs. Setting Study 2 included 10 cancer MDMs in England. Participants Testing was undertaken by 13 health service staff and a clinical and non-clinical observer. Intervention None. Main Outcome Measures Tool development, validity, reliability/agreement and variability in MDT performance. Results Study 1: Observers were able to discriminate between optimal and sub-optimal MDM performance (P ≤ 0.05). Study 2: Inter-rater reliability was good for 3/10 domains. Percentage of absolute agreement was high (≥80%) for 4/10 domains and percentage agreement within 1 point was high for 9/10 domains. Four MDTs performed well (scored 3+ in at least 8/10 domains), 5 MDTs performed well in 6–7 domains and 1 MDT performed well in only 4 domains. Leadership and chairing of the meeting, the organization and administration of the meeting, and clinical decision-making processes all varied significantly between MDMs (P ≤ 0.01). Conclusions MDT-MOT demonstrated good criterion validity. Agreement between clinical and non-clinical observers (within one point on the scale) was high but this was inconsistent with reliability coefficients and warrants further investigation. If further validated MDT-MOT might provide a useful mechanism for the routine assessment of MDMs by the local workforce to drive improvements in MDT performance. PMID:27084499
Development and testing of the cancer multidisciplinary team meeting observational tool (MDT-MOT).
Harris, Jenny; Taylor, Cath; Sevdalis, Nick; Jalil, Rozh; Green, James S A
2016-06-01
To develop a tool for independent observational assessment of cancer multidisciplinary team meetings (MDMs), and test criterion validity, inter-rater reliability/agreement and describe performance. Clinicians and experts in teamwork used a mixed-methods approach to develop and refine the tool. Study 1 observers rated pre-determined optimal/sub-optimal MDM film excerpts and Study 2 observers independently rated video-recordings of 10 MDMs. Study 2 included 10 cancer MDMs in England. Testing was undertaken by 13 health service staff and a clinical and non-clinical observer. None. Tool development, validity, reliability/agreement and variability in MDT performance. Study 1: Observers were able to discriminate between optimal and sub-optimal MDM performance (P ≤ 0.05). Study 2: Inter-rater reliability was good for 3/10 domains. Percentage of absolute agreement was high (≥80%) for 4/10 domains and percentage agreement within 1 point was high for 9/10 domains. Four MDTs performed well (scored 3+ in at least 8/10 domains), 5 MDTs performed well in 6-7 domains and 1 MDT performed well in only 4 domains. Leadership and chairing of the meeting, the organization and administration of the meeting, and clinical decision-making processes all varied significantly between MDMs (P ≤ 0.01). MDT-MOT demonstrated good criterion validity. Agreement between clinical and non-clinical observers (within one point on the scale) was high but this was inconsistent with reliability coefficients and warrants further investigation. If further validated MDT-MOT might provide a useful mechanism for the routine assessment of MDMs by the local workforce to drive improvements in MDT performance. © The Author 2016. Published by Oxford University Press in association with the International Society for Quality in Health Care; all rights reserved.
Optomechanical study and optimization of cantilever plate dynamics
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Pryputniewicz, Ryszard J.
1995-06-01
Optimum dynamic characteristics of an aluminum cantilever plate containing holes of different sizes and located at arbitrary positions on the plate are studied computationally and experimentally. The objective function of this optimization is the minimization/maximization of the natural frequencies of the plate in terms of such design variable s as the sizes and locations of the holes. The optimization process is performed using the finite element method and mathematical programming techniques in order to obtain the natural frequencies and the optimum conditions of the plate, respectively. The modal behavior of the resultant optimal plate layout is studied experimentally through the use of holographic interferometry techniques. Comparisons of the computational and experimental results show that good agreement between theory and test is obtained. The comparisons also show that the combined, or hybrid use of experimental and computational techniques complement each other and prove to be a very efficient tool for performing optimization studies of mechanical components.
NASA Technical Reports Server (NTRS)
Schneider, Judy; Nunes, Arthur C., Jr.; Brendel, Michael S.
2010-01-01
Although friction stir welding (FSW) was patented in 1991, process development has been based upon trial and error and the literature still exhibits little understanding of the mechanisms determining weld structure and properties. New concepts emerging from a better understanding of these mechanisms enhance the ability of FSW engineers to think about the FSW process in new ways, inevitably leading to advances in the technology. A kinematic approach in which the FSW flow process is decomposed into several simple flow components has been found to explain the basic structural features of FSW welds and to relate them to tool geometry and process parameters. Using this modelling approach, this study reports on a correlation between the features of the weld nugget, process parameters, weld tool geometry, and weld strength. This correlation presents a way to select process parameters for a given tool geometry so as to optimize weld strength. It also provides clues that may ultimately explain why the weld strength varies within the sample population.
NASA Astrophysics Data System (ADS)
Chen, Yunsheng; Lu, Xinghua
2018-05-01
The mechanical parts of the fuselage surface of the UAV are easily fractured by the action of the centrifugal load. In order to improve the compressive strength of UAV and guide the milling and planing of mechanical parts, a numerical simulation method of UAV fuselage compression under centrifugal load based on discrete element analysis method is proposed. The three-dimensional discrete element method is used to establish the splitting tensile force analysis model of the UAV fuselage under centrifugal loading. The micro-contact connection parameters of the UAV fuselage are calculated, and the yield tensile model of the mechanical components is established. The dynamic and static mechanical model of the aircraft fuselage milling is analyzed by the axial amplitude vibration frequency combined method. The correlation parameters of the cutting depth on the tool wear are obtained. The centrifugal load stress spectrum of the surface of the UAV is calculated. The meshing and finite element simulation of the rotor blade of the unmanned aerial vehicle is carried out to optimize the milling process. The test results show that the accuracy of the anti - compression numerical test of the UAV is higher by adopting the method, and the anti - fatigue damage capability of the unmanned aerial vehicle body is improved through the milling and processing optimization, and the mechanical strength of the unmanned aerial vehicle can be effectively improved.
The Neuroscience of Storing and Molding Tool Action Concepts: How "Plastic" is Grounded Cognition?
Mizelle, J C; Wheaton, Lewis A
2010-01-01
Choosing how to use tools to accomplish a task is a natural and seemingly trivial aspect of our lives, yet engages complex neural mechanisms. Recently, work in healthy populations has led to the idea that tool knowledge is grounded to allow for appropriate recall based on some level of personal history. This grounding has presumed neural loci for tool use, centered on parieto-temporo-frontal areas to fuse perception and action representations into one dynamic system. A challenge for this idea is related to one of its great benefits. For such a system to exist, it must be very plastic, to allow for the introduction of novel tools or concepts of tool use and modification of existing ones. Thus, learning new tool usage (familiar tools in new situations and new tools in familiar situations) must involve mapping into this grounded network while maintaining existing rules for tool usage. This plasticity may present a challenging breadth of encoding that needs to be optimally stored and accessed. The aim of this work is to explore the challenges of plasticity related to changing or incorporating representations of tool action within the theory of grounded cognition and propose a modular model of tool-object goal related accomplishment. While considering the neuroscience evidence for this approach, we will focus on the requisite plasticity for this system. Further, we will highlight challenges for flexibility and organization of already grounded tool actions and provide thoughts on future research to better evaluate mechanisms of encoding in the theory of grounded cognition.
Kobler, Jan-Philipp; Nuelle, Kathrin; Lexow, G Jakob; Rau, Thomas S; Majdani, Omid; Kahrs, Lueder A; Kotlarski, Jens; Ortmaier, Tobias
2016-03-01
Minimally invasive cochlear implantation is a novel surgical technique which requires highly accurate guidance of a drilling tool along a trajectory from the mastoid surface toward the basal turn of the cochlea. The authors propose a passive, reconfigurable, parallel robot which can be directly attached to bone anchors implanted in a patient's skull, avoiding the need for surgical tracking systems. Prior to clinical trials, methods are necessary to patient specifically optimize the configuration of the mechanism with respect to accuracy and stability. Furthermore, the achievable accuracy has to be determined experimentally. A comprehensive error model of the proposed mechanism is established, taking into account all relevant error sources identified in previous studies. Two optimization criteria to exploit the given task redundancy and reconfigurability of the passive robot are derived from the model. The achievable accuracy of the optimized robot configurations is first estimated with the help of a Monte Carlo simulation approach and finally evaluated in drilling experiments using synthetic temporal bone specimen. Experimental results demonstrate that the bone-attached mechanism exhibits a mean targeting accuracy of [Formula: see text] mm under realistic conditions. A systematic targeting error is observed, which indicates that accurate identification of the passive robot's kinematic parameters could further reduce deviations from planned drill trajectories. The accuracy of the proposed mechanism demonstrates its suitability for minimally invasive cochlear implantation. Future work will focus on further evaluation experiments on temporal bone specimen.
NASA Technical Reports Server (NTRS)
Meyn, Larry A.
2018-01-01
One of the goals of NASA's Revolutionary Vertical Lift Technology Project (RVLT) is to provide validated tools for multidisciplinary design, analysis and optimization (MDAO) of vertical lift vehicles. As part of this effort, the software package, RotorCraft Optimization Tools (RCOTOOLS), is being developed to facilitate incorporating key rotorcraft conceptual design codes into optimizations using the OpenMDAO multi-disciplinary optimization framework written in Python. RCOTOOLS, also written in Python, currently supports the incorporation of the NASA Design and Analysis of RotorCraft (NDARC) vehicle sizing tool and the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics II (CAMRAD II) analysis tool into OpenMDAO-driven optimizations. Both of these tools use detailed, file-based inputs and outputs, so RCOTOOLS provides software wrappers to update input files with new design variable values, execute these codes and then extract specific response variable values from the file outputs. These wrappers are designed to be flexible and easy to use. RCOTOOLS also provides several utilities to aid in optimization model development, including Graphical User Interface (GUI) tools for browsing input and output files in order to identify text strings that are used to identify specific variables as optimization input and response variables. This paper provides an overview of RCOTOOLS and its use
Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs.
Riehl, Brandon D; Park, Jae-Hong; Kwon, Il Keun; Lim, Jung Yul
2012-08-01
Mechanical cell stretching may be an attractive strategy for the tissue engineering of mechanically functional tissues. It has been demonstrated that cell growth and differentiation can be guided by cell stretch with minimal help from soluble factors and engineered tissues that are mechanically stretched in bioreactors may have superior organization, functionality, and strength compared with unstretched counterparts. This review explores recent studies on cell stretching in both two-dimensional (2D) and three-dimensional (3D) setups focusing on the applications of stretch stimulation as a tool for controlling cell orientation, growth, gene expression, lineage commitment, and differentiation and for achieving successful tissue engineering of mechanically functional tissues, including cardiac, muscle, vasculature, ligament, tendon, bone, and so on. Custom stretching devices and lab-specific mechanical bioreactors are described with a discussion on capabilities and limitations. While stretch mechanotransduction pathways have been examined using 2D stretch, studying such pathways in physiologically relevant 3D environments may be required to understand how cells direct tissue development under stretch. Cell stretch study using 3D milieus may also help to develop tissue-specific stretch regimens optimized with biochemical feedback, which once developed will provide optimal tissue engineering protocols.
Mechanical Stretching for Tissue Engineering: Two-Dimensional and Three-Dimensional Constructs
Riehl, Brandon D.; Park, Jae-Hong; Kwon, Il Keun
2012-01-01
Mechanical cell stretching may be an attractive strategy for the tissue engineering of mechanically functional tissues. It has been demonstrated that cell growth and differentiation can be guided by cell stretch with minimal help from soluble factors and engineered tissues that are mechanically stretched in bioreactors may have superior organization, functionality, and strength compared with unstretched counterparts. This review explores recent studies on cell stretching in both two-dimensional (2D) and three-dimensional (3D) setups focusing on the applications of stretch stimulation as a tool for controlling cell orientation, growth, gene expression, lineage commitment, and differentiation and for achieving successful tissue engineering of mechanically functional tissues, including cardiac, muscle, vasculature, ligament, tendon, bone, and so on. Custom stretching devices and lab-specific mechanical bioreactors are described with a discussion on capabilities and limitations. While stretch mechanotransduction pathways have been examined using 2D stretch, studying such pathways in physiologically relevant 3D environments may be required to understand how cells direct tissue development under stretch. Cell stretch study using 3D milieus may also help to develop tissue-specific stretch regimens optimized with biochemical feedback, which once developed will provide optimal tissue engineering protocols. PMID:22335794
An Update on Design Tools for Optimization of CMC 3D Fiber Architectures
NASA Technical Reports Server (NTRS)
Lang, J.; DiCarlo, J.
2012-01-01
Objective: Describe and up-date progress for NASA's efforts to develop 3D architectural design tools for CMC in general and for SIC/SiC composites in particular. Describe past and current sequential work efforts aimed at: Understanding key fiber and tow physical characteristics in conventional 2D and 3D woven architectures as revealed by microstructures in the literature. Developing an Excel program for down-selecting and predicting key geometric properties and resulting key fiber-controlled properties for various conventional 3D architectures. Developing a software tool for accurately visualizing all the key geometric details of conventional 3D architectures. Validating tools by visualizing and predicting the Internal geometry and key mechanical properties of a NASA SIC/SIC panel with a 3D orthogonal architecture. Applying the predictive and visualization tools toward advanced 3D orthogonal SiC/SIC composites, and combining them into a user-friendly software program.
NASA Astrophysics Data System (ADS)
Hanan, Lu; Qiushi, Li; Shaobin, Li
2016-12-01
This paper presents an integrated optimization design method in which uniform design, response surface methodology and genetic algorithm are used in combination. In detail, uniform design is used to select the experimental sampling points in the experimental domain and the system performance is evaluated by means of computational fluid dynamics to construct a database. After that, response surface methodology is employed to generate a surrogate mathematical model relating the optimization objective and the design variables. Subsequently, genetic algorithm is adopted and applied to the surrogate model to acquire the optimal solution in the case of satisfying some constraints. The method has been applied to the optimization design of an axisymmetric diverging duct, dealing with three design variables including one qualitative variable and two quantitative variables. The method of modeling and optimization design performs well in improving the duct aerodynamic performance and can be also applied to wider fields of mechanical design and seen as a useful tool for engineering designers, by reducing the design time and computation consumption.
Navy Enhanced Sierra Mechanics (NESM): Toolbox for predicting Navy shock and damage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moyer, Thomas; Stergiou, Jonathan; Reese, Garth
Here, the US Navy is developing a new suite of computational mechanics tools (Navy Enhanced Sierra Mechanics) for the prediction of ship response, damage, and shock environments transmitted to vital systems during threat weapon encounters. NESM includes fully coupled Euler-Lagrange solvers tailored to ship shock/damage predictions. NESM is optimized to support high-performance computing architectures, providing the physics-based ship response/threat weapon damage predictions needed to support the design and assessment of highly survivable ships. NESM is being employed to support current Navy ship design and acquisition programs while being further developed for future Navy fleet needs.
Navy Enhanced Sierra Mechanics (NESM): Toolbox for predicting Navy shock and damage
Moyer, Thomas; Stergiou, Jonathan; Reese, Garth; ...
2016-05-25
Here, the US Navy is developing a new suite of computational mechanics tools (Navy Enhanced Sierra Mechanics) for the prediction of ship response, damage, and shock environments transmitted to vital systems during threat weapon encounters. NESM includes fully coupled Euler-Lagrange solvers tailored to ship shock/damage predictions. NESM is optimized to support high-performance computing architectures, providing the physics-based ship response/threat weapon damage predictions needed to support the design and assessment of highly survivable ships. NESM is being employed to support current Navy ship design and acquisition programs while being further developed for future Navy fleet needs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durfee, Justin David; Frazier, Christopher Rawls; Bandlow, Alisa
This document describes the final software design of the Contingency Contractor Optimization Tool - Prototype. Its purpose is to provide the overall architecture of the software and the logic behind this architecture. Documentation for the individual classes is provided in the application Javadoc. The Contingency Contractor Optimization project is intended to address Department of Defense mandates by delivering a centralized strategic planning tool that allows senior decision makers to quickly and accurately assess the impacts, risks, and mitigation strategies associated with utilizing contract support. The Contingency Contractor Optimization Tool - Prototype was developed in Phase 3 of the OSD ATLmore » Contingency Contractor Optimization project to support strategic planning for contingency contractors. The planning tool uses a model to optimize the Total Force mix by minimizing the combined total costs for selected mission scenarios. The model optimizes the match of personnel types (military, DoD civilian, and contractors) and capabilities to meet mission requirements as effectively as possible, based on risk, cost, and other requirements.« less
Compressor and Turbine Multidisciplinary Design for Highly Efficient Micro-gas Turbine
NASA Astrophysics Data System (ADS)
Barsi, Dario; Perrone, Andrea; Qu, Yonglei; Ratto, Luca; Ricci, Gianluca; Sergeev, Vitaliy; Zunino, Pietro
2018-06-01
Multidisciplinary design optimization (MDO) is widely employed to enhance turbomachinery components efficiency. The aim of this work is to describe a complete tool for the aero-mechanical design of a radial inflow turbine and a centrifugal compressor. The high rotational speed of such machines and the high exhaust gas temperature (only for the turbine) expose blades to really high stresses and therefore the aerodynamics design has to be coupled with the mechanical one through an integrated procedure. The described approach employs a fully 3D Reynolds Averaged Navier-Stokes (RANS) solver for the aerodynamics and an open source Finite Element Analysis (FEA) solver for the mechanical integrity assessment. Due to the high computational cost of both these two solvers, a meta model, such as an artificial neural network (ANN), is used to speed up the optimization design process. The interaction between two codes, the mesh generation and the post processing of the results are achieved via in-house developed scripting modules. The obtained results are widely presented and discussed.
Optimization of factors to obtain cassava starch films with improved mechanical properties
NASA Astrophysics Data System (ADS)
Monteiro, Mayra; Oliveira, Victor; Santos, Francisco; Barros Neto, Eduardo; Silva, Karyn; Silva, Rayane; Henrique, João; Chibério, Abimaelle
2017-08-01
In this study, was investigated the optimization of the factors that significantly influenced the mechanical property improvement of cassava starch films through complete factorial design 23. The factors to be analyzed were cassava starch, glycerol and modified clay contents. A regression model was proposed by the factorial analysis, aiming to estimate the condition of the individual factors investigated in the optimum state of the mechanical properties of the biofilm, using the following statistical tool: desirability function and response surface. The response variable that delimits the improvement of the mechanical property of the biofilm is the tensile strength, such improvement is obtained by maximizing the response variable. The factorial analysis showed that the best combination of factor configurations to reach the best response was found to be: with 5g of cassava starch, 10% of glycerol and 5% of modified clay, both percentages in relation to the dry mass of starch used. In addition, the starch biofilm showing the lowest response contained 2g of cassava starch, 0% of modified clay and 30% of glycerol, and was consequently considered the worst biofilm.
Castilho, Miguel; Rodrigues, Jorge; Vorndran, Elke; Gbureck, Uwe; Quental, Carlos; Folgado, João; Fernandes, Paulo R
2017-01-01
Tibial tuberosity advancement (TTA) is a promising method for the treatment of cruciate ligament rupture in dogs that usually implies the implantation of a titanium cage as bone implant. This cage is non-biodegradable and fails in providing adequate implant-bone tissue integration. The objective of this work is to propose a new process chain for designing and manufacturing an alternative biodegradable cage that can fulfill specific patient requirements. A three-dimensional finite element model (3D FEM) of the TTA system was first created to evaluate the mechanical environment at cage domain during different stages of the dog walk. The cage microstructure was then optimized using a topology optimization tool, which addresses the accessed local mechanical requirements, and at same time ensures the maximum permeability to allow nutrient and oxygen supply to the implant core. The designed cage was then biofabricated by a 3D powder printing of tricalcium phosphate cement. This work demonstrates that the combination of a 3D FEM with a topology optimization approach enabled the design of a novel cage for TTA application with tailored permeability and mechanical properties, that can be successfully 3D printed in a biodegradable bioceramic material. These results support the potential of the design optimization strategy and fabrication method to the development of customized and bioresorbable implants for bone repair. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gaillac, Alexis; Ly, Céline
2018-05-01
Within the forming route of Zirconium alloy cladding tubes, hot extrusion is used to deform the forged billets into tube hollows, which are then cold rolled to produce the final tubes with the suitable properties for in-reactor use. The hot extrusion goals are to give the appropriate geometry for cold pilgering, without creating surface defects and microstructural heterogeneities which are detrimental for subsequent rolling. In order to ensure a good quality of the tube hollows, hot extrusion parameters have to be carefully chosen. For this purpose, finite element models are used in addition to experimental tests. These models can take into account the thermo-mechanical coupling conditions obtained in the tube and the tools during extrusion, and provide a good prediction of the extrusion load and the thermo-mechanical history of the extruded product. This last result can be used to calculate the fragmentation of the microstructure in the die and the meta-dynamic recrystallization after extrusion. To further optimize the manufacturing route, a numerical model of the cold pilgering process is also applied, taking into account the complex geometry of the tools and the pseudo-steady state rolling sequence of this incremental forming process. The strain and stress history of the tube during rolling can then be used to assess the damage risk thanks to the use of ductile damage models. Once validated vs. experimental data, both numerical models were used to optimize the manufacturing route and the quality of zirconium cladding tubes. This goal was achieved by selecting hot extrusion parameters giving better recrystallized microstructure that improves the subsequent formability. Cold pilgering parameters were also optimized in order to reduce the potential ductile damage in the cold rolled tubes.
NASA Astrophysics Data System (ADS)
Robert-Perron, Etienne; Blais, Carl; Pelletier, Sylvain; Thomas, Yannig
2007-06-01
The green machining process is an interesting approach for solving the mediocre machining behavior of high-performance powder metallurgy (PM) steels. This process appears as a promising method for extending tool life and reducing machining costs. Recent improvements in binder/lubricant technologies have led to high green strength systems that enable green machining. So far, tool wear has been considered negligible when characterizing the machinability of green PM specimens. This inaccurate assumption may lead to the selection of suboptimum cutting conditions. The first part of this study involves the optimization of the machining parameters to minimize the effects of tool wear on the machinability in turning of green PM components. The second part of our work compares the sintered mechanical properties of components machined in green state with other machined after sintering.
Fan, Mingyi; Hu, Jiwei; Cao, Rensheng; Xiong, Kangning; Wei, Xionghui
2017-12-21
Reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) magnetic nanocomposites were prepared and then applied in the Cu(II) removal from aqueous solutions. Scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and superconduction quantum interference device magnetometer were performed to characterize the nZVI/rGO nanocomposites. In order to reduce the number of experiments and the economic cost, response surface methodology (RSM) combined with artificial intelligence (AI) techniques, such as artificial neural network (ANN), genetic algorithm (GA) and particle swarm optimization (PSO), has been utilized as a major tool that can model and optimize the removal processes, because a tremendous advance has recently been made on AI that may result in extensive applications. Based on RSM, ANN-GA and ANN-PSO were employed to model the Cu(II) removal process and optimize the operating parameters, e.g., operating temperature, initial pH, initial concentration and contact time. The ANN-PSO model was proven to be an effective tool for modeling and optimizing the Cu(II) removal with a low absolute error and a high removal efficiency. Furthermore, the isotherm, kinetic, thermodynamic studies and the XPS analysis were performed to explore the mechanisms of Cu(II) removal process.
Ultrasonic grinding of optical materials
NASA Astrophysics Data System (ADS)
Cahill, Michael; Bechtold, Michael; Fess, Edward; Stephan, Thomas; Bechtold, Rob
2017-10-01
Hard ceramic optical materials such as sapphire, ALON, Spinel, PCA, or Silicon Carbide can present a significant challenge in manufacturing precision optical components due to their tough mechanical properties. These are also the same mechanical properties that make them desirable materials when used in harsh environments. Slow processing speeds, premature tool wear, and poor surface quality are common results of the tough mechanical properties of these materials. Often, as a preparatory stage for polishing, the finish of the ground surface greatly influences the polishing process and the resulting finished product. To overcome these challenges, OptiPro Systems has developed an ultrasonic assisted grinding technology, OptiSonic, which has been designed for the precision optics and ceramics industry. OptiSonic utilizes a custom tool holder designed to produce oscillations, in microns of amplitude, in line with the rotating spindle. A software package, IntelliSonic, is integral to the function of this platform. IntelliSonic can automatically characterize tooling during setup to identify and select the ideal resonant peak which to operate at. Then, while grinding, IntelliSonic continuously adjusts the output frequency for optimal grinding efficiency while in contact with the part. This helps maintain a highly consistent process under changing load conditions for a more precise surface. Utilizing a variety of instruments, tests have proven to show a reduction in force between tool and part by up to 50%, while increasing the surface quality and reducing tool wear. This paper will present the challenges associated with these materials and solutions created to overcome them.
Nelson, Carl A; Miller, David J; Oleynikov, Dmitry
2008-01-01
As modular systems come into the forefront of robotic telesurgery, streamlining the process of selecting surgical tools becomes an important consideration. This paper presents a method for optimal queuing of tools in modular surgical tool systems, based on patterns in tool-use sequences, in order to minimize time spent changing tools. The solution approach is to model the set of tools as a graph, with tool-change frequency expressed as edge weights in the graph, and to solve the Traveling Salesman Problem for the graph. In a set of simulations, this method has shown superior performance at optimizing tool arrangements for streamlining surgical procedures.
NASA Astrophysics Data System (ADS)
Treviranus, Jutta
Authoring tools that are accessible and that enable authors to produce accessible Web content play a critical role in web accessibility. Widespread use of authoring tools that comply to the W3C Authoring Tool Accessibility Guidelines (ATAG) would ensure that even authors who are neither knowledgeable about nor particularly motivated to produce accessible content do so by default. The principles and techniques of ATAG are discussed. Some examples of accessible authoring tools are described including authoring tool content management components such as TinyMCE. Considerations for creating an accessible collaborative environment are also covered. As part of providing accessible content, the debate between system-based personal optimization and one universally accessible site configuration is presented. The issues and potential solutions to address the accessibility crisis presented by the advent of rich internet applications are outlined. This challenge must be met to ensure that a large segment of the population is able to participate in the move toward the web as a two-way communication mechanism.
NASA Astrophysics Data System (ADS)
Vu, Duy-Duc; Monies, Frédéric; Rubio, Walter
2018-05-01
A large number of studies, based on 3-axis end milling of free-form surfaces, seek to optimize tool path planning. Approaches try to optimize the machining time by reducing the total tool path length while respecting the criterion of the maximum scallop height. Theoretically, the tool path trajectories that remove the most material follow the directions in which the machined width is the largest. The free-form surface is often considered as a single machining area. Therefore, the optimization on the entire surface is limited. Indeed, it is difficult to define tool trajectories with optimal feed directions which generate largest machined widths. Another limiting point of previous approaches for effectively reduce machining time is the inadequate choice of the tool. Researchers use generally a spherical tool on the entire surface. However, the gains proposed by these different methods developed with these tools lead to relatively small time savings. Therefore, this study proposes a new method, using toroidal milling tools, for generating toolpaths in different regions on the machining surface. The surface is divided into several regions based on machining intervals. These intervals ensure that the effective radius of the tool, at each cutter-contact points on the surface, is always greater than the radius of the tool in an optimized feed direction. A parallel plane strategy is then used on the sub-surfaces with an optimal specific feed direction for each sub-surface. This method allows one to mill the entire surface with efficiency greater than with the use of a spherical tool. The proposed method is calculated and modeled using Maple software to find optimal regions and feed directions in each region. This new method is tested on a free-form surface. A comparison is made with a spherical cutter to show the significant gains obtained with a toroidal milling cutter. Comparisons with CAM software and experimental validations are also done. The results show the efficiency of the method.
Path planning and parameter optimization of uniform removal in active feed polishing
NASA Astrophysics Data System (ADS)
Liu, Jian; Wang, Shaozhi; Zhang, Chunlei; Zhang, Linghua; Chen, Huanan
2015-06-01
A high-quality ultrasmooth surface is demanded in short-wave optical systems. However, the existing polishing methods have difficulties meeting the requirement on spherical or aspheric surfaces. As a new kind of small tool polishing method, active feed polishing (AFP) could attain a surface roughness of less than 0.3 nm (RMS) on spherical elements, although AFP may magnify the residual figure error or mid-frequency error. The purpose of this work is to propose an effective algorithm to realize uniform removal of the surface in the processing. At first, the principle of the AFP and the mechanism of the polishing machine are introduced. In order to maintain the processed figure error, a variable pitch spiral path planning algorithm and the dwell time-solving model are proposed. For suppressing the possible mid-frequency error, the uniformity of the synthesis tool path, which is generated by an arbitrary point at the polishing tool bottom, is analyzed and evaluated, and the angular velocity ratio of the tool spinning motion to the revolution motion is optimized. Finally, an experiment is conducted on a convex spherical surface and an ultrasmooth surface is finally acquired. In conclusion, a high-quality ultrasmooth surface can be successfully obtained with little degradation of the figure and mid-frequency errors by the algorithm.
Role of Pectoral Fin Flexibility in Robotic Fish Performance
NASA Astrophysics Data System (ADS)
Bazaz Behbahani, Sanaz; Tan, Xiaobo
2017-08-01
Pectoral fins play a vital role in the maneuvering and locomotion of fish, and they have become an important actuation mechanism for robotic fish. In this paper, we explore the effect of flexibility of robotic fish pectoral fins on the robot locomotion performance and mechanical efficiency. A dynamic model for the robotic fish is presented, where the flexible fin is modeled as multiple rigid elements connected via torsional springs and dampers. Blade element theory is used to capture the hydrodynamic force on the fin. The model is validated with experimental results obtained on a robotic fish prototype, equipped with 3D-printed fins of different flexibility. The model is then used to analyze the impacts of fin flexibility and power/recovery stroke speed ratio on the robot swimming speed and mechanical efficiency. It is found that, in general, flexible fins demonstrate advantages over rigid fins in speed and efficiency at relatively low fin-beat frequencies, while rigid fins outperform flexible fins at higher frequencies. For a given fin flexibility, the optimal frequency for speed performance differs from the optimal frequency for mechanical efficiency. In addition, for any given fin, there is an optimal power/recovery stroke speed ratio, typically in the range of 2-3, that maximizes the speed performance. Overall, the presented model offers a promising tool for fin flexibility and gait design, to achieve speed and efficiency objectives for robotic fish actuated with pectoral fins.
Research of a smart cutting tool based on MEMS strain gauge
NASA Astrophysics Data System (ADS)
Zhao, Y.; Zhao, Y. L.; Shao, YW; Hu, T. J.; Zhang, Q.; Ge, X. H.
2018-03-01
Cutting force is an important factor that affects machining accuracy, cutting vibration and tool wear. Machining condition monitoring by cutting force measurement is a key technology for intelligent manufacture. Current cutting force sensors exist problems of large volume, complex structure and poor compatibility in practical application, for these problems, a smart cutting tool is proposed in this paper for cutting force measurement. Commercial MEMS (Micro-Electro-Mechanical System) strain gauges with high sensitivity and small size are adopted as transducing element of the smart tool, and a structure optimized cutting tool is fabricated for MEMS strain gauge bonding. Static calibration results show that the developed smart cutting tool is able to measure cutting forces in both X and Y directions, and the cross-interference error is within 3%. Its general accuracy is 3.35% and 3.27% in X and Y directions, and sensitivity is 0.1 mV/N, which is very suitable for measuring small cutting forces in high speed and precision machining. The smart cutting tool is portable and reliable for practical application in CNC machine tool.
Optimization of the propulsion for multistage solid rocket motor launchers
NASA Astrophysics Data System (ADS)
Calabro, M.; Dufour, A.; Macaire, A.
2002-02-01
Some tools focused on a rapid multidisciplinary optimization capability for multistage launch vehicle design were developed at EADS-LV. These tools may be broken down into two categories, those related to propulsion design optimization and a computer code devoted to trajectories and under constraints optimization. Both are linked in order to obtain optimal vehicle design after an iterative process. After a description of the two categories tools, an example of application is given on a small space launcher.
Educational Tool for Optimal Controller Tuning Using Evolutionary Strategies
ERIC Educational Resources Information Center
Carmona Morales, D.; Jimenez-Hornero, J. E.; Vazquez, F.; Morilla, F.
2012-01-01
In this paper, an optimal tuning tool is presented for control structures based on multivariable proportional-integral-derivative (PID) control, using genetic algorithms as an alternative to traditional optimization algorithms. From an educational point of view, this tool provides students with the necessary means to consolidate their knowledge on…
Mai, Lan-Yin; Li, Yi-Xuan; Chen, Yong; Xie, Zhen; Li, Jie; Zhong, Ming-Yu
2014-05-01
The compatibility of traditional Chinese medicines (TCMs) formulae containing enormous information, is a complex component system. Applications of mathematical statistics methods on the compatibility researches of traditional Chinese medicines formulae have great significance for promoting the modernization of traditional Chinese medicines and improving clinical efficacies and optimizations of formulae. As a tool for quantitative analysis, data inference and exploring inherent rules of substances, the mathematical statistics method can be used to reveal the working mechanisms of the compatibility of traditional Chinese medicines formulae in qualitatively and quantitatively. By reviewing studies based on the applications of mathematical statistics methods, this paper were summarized from perspective of dosages optimization, efficacies and changes of chemical components as well as the rules of incompatibility and contraindication of formulae, will provide the references for further studying and revealing the working mechanisms and the connotations of traditional Chinese medicines.
Particle Swarm Optimization with Double Learning Patterns.
Shen, Yuanxia; Wei, Linna; Zeng, Chuanhua; Chen, Jian
2016-01-01
Particle Swarm Optimization (PSO) is an effective tool in solving optimization problems. However, PSO usually suffers from the premature convergence due to the quick losing of the swarm diversity. In this paper, we first analyze the motion behavior of the swarm based on the probability characteristic of learning parameters. Then a PSO with double learning patterns (PSO-DLP) is developed, which employs the master swarm and the slave swarm with different learning patterns to achieve a trade-off between the convergence speed and the swarm diversity. The particles in the master swarm and the slave swarm are encouraged to explore search for keeping the swarm diversity and to learn from the global best particle for refining a promising solution, respectively. When the evolutionary states of two swarms interact, an interaction mechanism is enabled. This mechanism can help the slave swarm in jumping out of the local optima and improve the convergence precision of the master swarm. The proposed PSO-DLP is evaluated on 20 benchmark functions, including rotated multimodal and complex shifted problems. The simulation results and statistical analysis show that PSO-DLP obtains a promising performance and outperforms eight PSO variants.
Computational mechanics analysis tools for parallel-vector supercomputers
NASA Technical Reports Server (NTRS)
Storaasli, Olaf O.; Nguyen, Duc T.; Baddourah, Majdi; Qin, Jiangning
1993-01-01
Computational algorithms for structural analysis on parallel-vector supercomputers are reviewed. These parallel algorithms, developed by the authors, are for the assembly of structural equations, 'out-of-core' strategies for linear equation solution, massively distributed-memory equation solution, unsymmetric equation solution, general eigensolution, geometrically nonlinear finite element analysis, design sensitivity analysis for structural dynamics, optimization search analysis and domain decomposition. The source code for many of these algorithms is available.
TEM study of the FSW nugget in AA2195-T81
NASA Technical Reports Server (NTRS)
Schneider, J. A.; Nunes, A. C., Jr.; Chen, P. S.; Steele, G.
2004-01-01
During fiiction stir welding (FSW) the material being joined is subjected to a thermal- mechanical process in which the temperature, strain and strain rates are not completely understood. To produce a defect fiee weld, process parameters for the weld and tool pin design must be chosen carefully. The ability to select the weld parameters based on the thermal processing requirements of the material, would allow optimization of mechanical properties in the weld region. In this study, an attempt is made to correlate the microstructure with the variation in thermal history the material experiences during the FSW process.
COMBINE*: An integrated opto-mechanical tool for laser performance modeling
NASA Astrophysics Data System (ADS)
Rehak, M.; Di Nicola, J. M.
2015-02-01
Accurate modeling of thermal, mechanical and optical processes is important for achieving reliable, high-performance high energy lasers such as those at the National Ignition Facility [1] (NIF). The need for this capability is even more critical for high average power, high repetition rate applications. Modeling the effects of stresses and temperature fields on optical properties allows for optimal design of optical components and more generally of the architecture of the laser system itself. Stresses change the indices of refractions and induce inhomogeneities and anisotropy. We present a modern, integrated analysis tool that efficiently produces reliable results that are used in our laser propagation tools such as VBL [5]. COMBINE is built on and supplants the existing legacy tools developed for the previous generations of lasers at LLNL but also uses commercially available mechanical finite element codes ANSYS or COMSOL (including computational fluid dynamics). The COMBINE code computes birefringence and wave front distortions due to mechanical stresses on lenses and slabs of arbitrary geometry. The stresses calculated typically originate from mounting support, vacuum load, gravity, heat absorption and/or attending cooling. Of particular importance are the depolarization and detuning effects of nonlinear crystals due to thermal loading. Results are given in the form of Jones matrices, depolarization maps and wave front distributions. An incremental evaluation of Jones matrices and ray propagation in a 3D mesh with a stress and temperature field is performed. Wavefront and depolarization maps are available at the optical aperture and at slices within the optical element. The suite is validated, user friendly, supported, documented and amenable to collaborative development. * COMBINE stands for Code for Opto-Mechanical Birefringence Integrated Numerical Evaluations.
Characterizing the lung tissue mechanical properties using a micromechanical model of alveolar sac
NASA Astrophysics Data System (ADS)
Karami, Elham; Seify, Behzad; Moghadas, Hadi; Sabsalinejad, Masoomeh; Lee, Ting-Yim; Samani, Abbas
2017-03-01
According to statistics, lung disease is among the leading causes of death worldwide. As such, many research groups are developing powerful tools for understanding, diagnosis and treatment of various lung diseases. Recently, biomechanical modeling has emerged as an effective tool for better understanding of human physiology, disease diagnosis and computer assisted medical intervention. Mechanical properties of lung tissue are important requirements for methods developed for lung disease diagnosis and medical intervention. As such, the main objective of this study is to develop an effective tool for estimating the mechanical properties of normal and pathological lung parenchyma tissue based on its microstructure. For this purpose, a micromechanical model of the lung tissue was developed using finite element (FE) method, and the model was demonstrated to have application in estimating the mechanical properties of lung alveolar wall. The proposed model was developed by assembling truncated octahedron tissue units resembling the alveoli. A compression test was simulated using finite element method on the created geometry and the hyper-elastic parameters of the alveoli wall were calculated using reported alveolar wall stress-strain data and an inverse optimization framework. Preliminary results indicate that the proposed model can be potentially used to reconstruct microstructural images of lung tissue using macro-scale tissue response for normal and different pathological conditions. Such images can be used for effective diagnosis of lung diseases such as Chronic Obstructive Pulmonary Disease (COPD).
Simulation of Medical Imaging Systems: Emission and Transmission Tomography
NASA Astrophysics Data System (ADS)
Harrison, Robert L.
Simulation is an important tool in medical imaging research. In patient scans the true underlying anatomy and physiology is unknown. We have no way of knowing in a given scan how various factors are confounding the data: statistical noise; biological variability; patient motion; scattered radiation, dead time, and other data contaminants. Simulation allows us to isolate a single factor of interest, for instance when researchers perform multiple simulations of the same imaging situation to determine the effect of statistical noise or biological variability. Simulations are also increasingly used as a design optimization tool for tomographic scanners. This article gives an overview of the mechanics of emission and transmission tomography simulation, reviews some of the publicly available simulation tools, and discusses trade-offs between the accuracy and efficiency of simulations.
Computational Screening of 2D Materials for Photocatalysis.
Singh, Arunima K; Mathew, Kiran; Zhuang, Houlong L; Hennig, Richard G
2015-03-19
Two-dimensional (2D) materials exhibit a range of extraordinary electronic, optical, and mechanical properties different from their bulk counterparts with potential applications for 2D materials emerging in energy storage and conversion technologies. In this Perspective, we summarize the recent developments in the field of solar water splitting using 2D materials and review a computational screening approach to rapidly and efficiently discover more 2D materials that possess properties suitable for solar water splitting. Computational tools based on density-functional theory can predict the intrinsic properties of potential photocatalyst such as their electronic properties, optical absorbance, and solubility in aqueous solutions. Computational tools enable the exploration of possible routes to enhance the photocatalytic activity of 2D materials by use of mechanical strain, bias potential, doping, and pH. We discuss future research directions and needed method developments for the computational design and optimization of 2D materials for photocatalysis.
Bidirectional optimization of the melting spinning process.
Liang, Xiao; Ding, Yongsheng; Wang, Zidong; Hao, Kuangrong; Hone, Kate; Wang, Huaping
2014-02-01
A bidirectional optimizing approach for the melting spinning process based on an immune-enhanced neural network is proposed. The proposed bidirectional model can not only reveal the internal nonlinear relationship between the process configuration and the quality indices of the fibers as final product, but also provide a tool for engineers to develop new fiber products with expected quality specifications. A neural network is taken as the basis for the bidirectional model, and an immune component is introduced to enlarge the searching scope of the solution field so that the neural network has a larger possibility to find the appropriate and reasonable solution, and the error of prediction can therefore be eliminated. The proposed intelligent model can also help to determine what kind of process configuration should be made in order to produce satisfactory fiber products. To make the proposed model practical to the manufacturing, a software platform is developed. Simulation results show that the proposed model can eliminate the approximation error raised by the neural network-based optimizing model, which is due to the extension of focusing scope by the artificial immune mechanism. Meanwhile, the proposed model with the corresponding software can conduct optimization in two directions, namely, the process optimization and category development, and the corresponding results outperform those with an ordinary neural network-based intelligent model. It is also proved that the proposed model has the potential to act as a valuable tool from which the engineers and decision makers of the spinning process could benefit.
Battery Lifetime Analysis and Simulation Tool (BLAST) Documentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neubauer, J.
2014-12-01
The deployment and use of lithium-ion (Li-ion) batteries in automotive and stationary energy storage applications must be optimized to justify their high up-front costs. Given that batteries degrade with use and storage, such optimizations must evaluate many years of operation. As the degradation mechanisms are sensitive to temperature, state-of-charge (SOC) histories, current levels, and cycle depth and frequency, it is important to model both the battery and the application to a high level of detail to ensure battery response is accurately predicted. To address these issues, the National Renewable Energy Laboratory (NREL) has developed the Battery Lifetime Analysis and Simulationmore » Tool (BLAST) suite. This suite of tools pairs NREL’s high-fidelity battery degradation model with a battery electrical and thermal performance model, application-specific electrical and thermal performance models of the larger system (e.g., an electric vehicle), application-specific system use data (e.g., vehicle travel patterns and driving data), and historic climate data from cities across the United States. This provides highly realistic long-term predictions of battery response and thereby enables quantitative comparisons of varied battery use strategies.« less
Material Distribution Optimization for the Shell Aircraft Composite Structure
NASA Astrophysics Data System (ADS)
Shevtsov, S.; Zhilyaev, I.; Oganesyan, P.; Axenov, V.
2016-09-01
One of the main goal in aircraft structures designing isweight decreasing and stiffness increasing. Composite structures recently became popular in aircraft because of their mechanical properties and wide range of optimization possibilities.Weight distribution and lay-up are keys to creating lightweight stiff strictures. In this paperwe discuss optimization of specific structure that undergoes the non-uniform air pressure at the different flight conditions and reduce a level of noise caused by the airflowinduced vibrations at the constrained weight of the part. Initial model was created with CAD tool Siemens NX, finite element analysis and post processing were performed with COMSOL Multiphysicsr and MATLABr. Numerical solutions of the Reynolds averaged Navier-Stokes (RANS) equations supplemented by k-w turbulence model provide the spatial distributions of air pressure applied to the shell surface. At the formulation of optimization problem the global strain energy calculated within the optimized shell was assumed as the objective. Wall thickness has been changed using parametric approach by an initiation of auxiliary sphere with varied radius and coordinates of the center, which were the design variables. To avoid a local stress concentration, wall thickness increment was defined as smooth function on the shell surface dependent of auxiliary sphere position and size. Our study consists of multiple steps: CAD/CAE transformation of the model, determining wind pressure for different flow angles, optimizing wall thickness distribution for specific flow angles, designing a lay-up for optimal material distribution. The studied structure was improved in terms of maximum and average strain energy at the constrained expense ofweight growth. Developed methods and tools can be applied to wide range of shell-like structures made of multilayered quasi-isotropic laminates.
NASA Astrophysics Data System (ADS)
Mahapatra, Prasant Kumar; Sethi, Spardha; Kumar, Amod
2015-10-01
In conventional tool positioning technique, sensors embedded in the motion stages provide the accurate tool position information. In this paper, a machine vision based system and image processing technique for motion measurement of lathe tool from two-dimensional sequential images captured using charge coupled device camera having a resolution of 250 microns has been described. An algorithm was developed to calculate the observed distance travelled by the tool from the captured images. As expected, error was observed in the value of the distance traversed by the tool calculated from these images. Optimization of errors due to machine vision system, calibration, environmental factors, etc. in lathe tool movement was carried out using two soft computing techniques, namely, artificial immune system (AIS) and particle swarm optimization (PSO). The results show better capability of AIS over PSO.
Sylos-Labini, Francesca; Ivanenko, Yuri P.
2014-01-01
Reduced gravity offers unique opportunities to study motor behavior. This paper aims at providing a review on current issues of the known tools and techniques used for hypogravity simulation and their effects on human locomotion. Walking and running rely on the limb oscillatory mechanics, and one way to change its dynamic properties is to modify the level of gravity. Gravity has a strong effect on the optimal rate of limb oscillations, optimal walking speed, and muscle activity patterns, and gait transitions occur smoothly and at slower speeds at lower gravity levels. Altered center of mass movements and interplay between stance and swing leg dynamics may challenge new forms of locomotion in a heterogravity environment. Furthermore, observations in the lack of gravity effects help to reveal the intrinsic properties of locomotor pattern generators and make evident facilitation of nonvoluntary limb stepping. In view of that, space neurosciences research has participated in the development of new technologies that can be used as an effective tool for gait rehabilitation. PMID:25247179
Verant, Michelle L; Bohuski, Elizabeth A; Lorch, Jeffery M; Blehert, David S
2016-03-01
The continued spread of white-nose syndrome and its impacts on hibernating bat populations across North America has prompted nationwide surveillance efforts and the need for high-throughput, noninvasive diagnostic tools. Quantitative real-time polymerase chain reaction (qPCR) analysis has been increasingly used for detection of the causative fungus, Pseudogymnoascus destructans, in both bat- and environment-associated samples and provides a tool for quantification of fungal DNA useful for research and monitoring purposes. However, precise quantification of nucleic acid from P. destructans is dependent on effective and standardized methods for extracting nucleic acid from various relevant sample types. We describe optimized methodologies for extracting fungal nucleic acids from sediment, guano, and swab-based samples using commercial kits together with a combination of chemical, enzymatic, and mechanical modifications. Additionally, we define modifications to a previously published intergenic spacer-based qPCR test for P. destructans to refine quantification capabilities of this assay. © 2016 The Author(s).
Verant, Michelle; Bohuski, Elizabeth A.; Lorch, Jeffrey M.; Blehert, David
2016-01-01
The continued spread of white-nose syndrome and its impacts on hibernating bat populations across North America has prompted nationwide surveillance efforts and the need for high-throughput, noninvasive diagnostic tools. Quantitative real-time polymerase chain reaction (qPCR) analysis has been increasingly used for detection of the causative fungus, Pseudogymnoascus destructans, in both bat- and environment-associated samples and provides a tool for quantification of fungal DNA useful for research and monitoring purposes. However, precise quantification of nucleic acid fromP. destructans is dependent on effective and standardized methods for extracting nucleic acid from various relevant sample types. We describe optimized methodologies for extracting fungal nucleic acids from sediment, guano, and swab-based samples using commercial kits together with a combination of chemical, enzymatic, and mechanical modifications. Additionally, we define modifications to a previously published intergenic spacer–based qPCR test for P. destructans to refine quantification capabilities of this assay.
NASA Technical Reports Server (NTRS)
Freeman, William T.; Ilcewicz, L. B.; Swanson, G. D.; Gutowski, T.
1992-01-01
A conceptual and preliminary designers' cost prediction model has been initiated. The model will provide a technically sound method for evaluating the relative cost of different composite structural designs, fabrication processes, and assembly methods that can be compared to equivalent metallic parts or assemblies. The feasibility of developing cost prediction software in a modular form for interfacing with state of the art preliminary design tools and computer aided design programs is being evaluated. The goal of this task is to establish theoretical cost functions that relate geometric design features to summed material cost and labor content in terms of process mechanics and physics. The output of the designers' present analytical tools will be input for the designers' cost prediction model to provide the designer with a data base and deterministic cost methodology that allows one to trade and synthesize designs with both cost and weight as objective functions for optimization. The approach, goals, plans, and progress is presented for development of COSTADE (Cost Optimization Software for Transport Aircraft Design Evaluation).
A three-dimensional inverse finite element analysis of the heel pad.
Chokhandre, Snehal; Halloran, Jason P; van den Bogert, Antonie J; Erdemir, Ahmet
2012-03-01
Quantification of plantar tissue behavior of the heel pad is essential in developing computational models for predictive analysis of preventive treatment options such as footwear for patients with diabetes. Simulation based studies in the past have generally adopted heel pad properties from the literature, in return using heel-specific geometry with material properties of a different heel. In exceptional cases, patient-specific material characterization was performed with simplified two-dimensional models, without further evaluation of a heel-specific response under different loading conditions. The aim of this study was to conduct an inverse finite element analysis of the heel in order to calculate heel-specific material properties in situ. Multidimensional experimental data available from a previous cadaver study by Erdemir et al. ("An Elaborate Data Set Characterizing the Mechanical Response of the Foot," ASME J. Biomech. Eng., 131(9), pp. 094502) was used for model development, optimization, and evaluation of material properties. A specimen-specific three-dimensional finite element representation was developed. Heel pad material properties were determined using inverse finite element analysis by fitting the model behavior to the experimental data. Compression dominant loading, applied using a spherical indenter, was used for optimization of the material properties. The optimized material properties were evaluated through simulations representative of a combined loading scenario (compression and anterior-posterior shear) with a spherical indenter and also of a compression dominant loading applied using an elevated platform. Optimized heel pad material coefficients were 0.001084 MPa (μ), 9.780 (α) (with an effective Poisson's ratio (ν) of 0.475), for a first-order nearly incompressible Ogden material model. The model predicted structural response of the heel pad was in good agreement for both the optimization (<1.05% maximum tool force, 0.9% maximum tool displacement) and validation cases (6.5% maximum tool force, 15% maximum tool displacement). The inverse analysis successfully predicted the material properties for the given specimen-specific heel pad using the experimental data for the specimen. The modeling framework and results can be used for accurate predictions of the three-dimensional interaction of the heel pad with its surroundings.
Patient-specific dosimetric endpoints based treatment plan quality control in radiotherapy.
Song, Ting; Staub, David; Chen, Mingli; Lu, Weiguo; Tian, Zhen; Jia, Xun; Li, Yongbao; Zhou, Linghong; Jiang, Steve B; Gu, Xuejun
2015-11-07
In intensity modulated radiotherapy (IMRT), the optimal plan for each patient is specific due to unique patient anatomy. To achieve such a plan, patient-specific dosimetric goals reflecting each patient's unique anatomy should be defined and adopted in the treatment planning procedure for plan quality control. This study is to develop such a personalized treatment plan quality control tool by predicting patient-specific dosimetric endpoints (DEs). The incorporation of patient specific DEs is realized by a multi-OAR geometry-dosimetry model, capable of predicting optimal DEs based on the individual patient's geometry. The overall quality of a treatment plan is then judged with a numerical treatment plan quality indicator and characterized as optimal or suboptimal. Taking advantage of clinically available prostate volumetric modulated arc therapy (VMAT) treatment plans, we built and evaluated our proposed plan quality control tool. Using our developed tool, six of twenty evaluated plans were identified as sub-optimal plans. After plan re-optimization, these suboptimal plans achieved better OAR dose sparing without sacrificing the PTV coverage, and the dosimetric endpoints of the re-optimized plans agreed well with the model predicted values, which validate the predictability of the proposed tool. In conclusion, the developed tool is able to accurately predict optimally achievable DEs of multiple OARs, identify suboptimal plans, and guide plan optimization. It is a useful tool for achieving patient-specific treatment plan quality control.
Cerutti, Guillaume; Ali, Olivier; Godin, Christophe
2017-01-01
Context: The shoot apical meristem (SAM), origin of all aerial organs of the plant, is a restricted niche of stem cells whose growth is regulated by a complex network of genetic, hormonal and mechanical interactions. Studying the development of this area at cell level using 3D microscopy time-lapse imaging is a newly emerging key to understand the processes controlling plant morphogenesis. Computational models have been proposed to simulate those mechanisms, however their validation on real-life data is an essential step that requires an adequate representation of the growing tissue to be carried out. Achievements: The tool we introduce is a two-stage computational pipeline that generates a complete 3D triangular mesh of the tissue volume based on a segmented tissue image stack. DRACO (Dual Reconstruction by Adjacency Complex Optimization) is designed to retrieve the underlying 3D topological structure of the tissue and compute its dual geometry, while STEM (SAM Tissue Enhanced Mesh) returns a faithful triangular mesh optimized along several quality criteria (intrinsic quality, tissue reconstruction, visual adequacy). Quantitative evaluation tools measuring the performance of the method along those different dimensions are also provided. The resulting meshes can be used as input and validation for biomechanical simulations. Availability: DRACO-STEM is supplied as a package of the open-source multi-platform plant modeling library OpenAlea (http://openalea.github.io/) implemented in Python, and is freely distributed on GitHub (https://github.com/VirtualPlants/draco-stem) along with guidelines for installation and use. PMID:28424704
NASA Astrophysics Data System (ADS)
S, Kyriacou; E, Kontoleontos; S, Weissenberger; L, Mangani; E, Casartelli; I, Skouteropoulou; M, Gattringer; A, Gehrer; M, Buchmayr
2014-03-01
An efficient hydraulic optimization procedure, suitable for industrial use, requires an advanced optimization tool (EASY software), a fast solver (block coupled CFD) and a flexible geometry generation tool. EASY optimization software is a PCA-driven metamodel-assisted Evolutionary Algorithm (MAEA (PCA)) that can be used in both single- (SOO) and multiobjective optimization (MOO) problems. In MAEAs, low cost surrogate evaluation models are used to screen out non-promising individuals during the evolution and exclude them from the expensive, problem specific evaluation, here the solution of Navier-Stokes equations. For additional reduction of the optimization CPU cost, the PCA technique is used to identify dependences among the design variables and to exploit them in order to efficiently drive the application of the evolution operators. To further enhance the hydraulic optimization procedure, a very robust and fast Navier-Stokes solver has been developed. This incompressible CFD solver employs a pressure-based block-coupled approach, solving the governing equations simultaneously. This method, apart from being robust and fast, also provides a big gain in terms of computational cost. In order to optimize the geometry of hydraulic machines, an automatic geometry and mesh generation tool is necessary. The geometry generation tool used in this work is entirely based on b-spline curves and surfaces. In what follows, the components of the tool chain are outlined in some detail and the optimization results of hydraulic machine components are shown in order to demonstrate the performance of the presented optimization procedure.
Fully Mechanically Controlled Automated Electron Microscopic Tomography
Liu, Jinxin; Li, Hongchang; Zhang, Lei; ...
2016-07-11
Knowledge of three-dimensional (3D) structures of each individual particles of asymmetric and flexible proteins is essential in understanding those proteins' functions; but their structures are difficult to determine. Electron tomography (ET) provides a tool for imaging a single and unique biological object from a series of tilted angles, but it is challenging to image a single protein for three-dimensional (3D) reconstruction due to the imperfect mechanical control capability of the specimen goniometer under both a medium to high magnification (approximately 50,000-160,000×) and an optimized beam coherence condition. Here, we report a fully mechanical control method for automating ET data acquisitionmore » without using beam tilt/shift processes. This method could reduce the accumulation of beam tilt/shift that used to compensate the error from the mechanical control, but downgraded the beam coherence. Our method was developed by minimizing the error of the target object center during the tilting process through a closed-loop proportional-integral (PI) control algorithm. The validations by both negative staining (NS) and cryo-electron microscopy (cryo-EM) suggest that this method has a comparable capability to other ET methods in tracking target proteins while maintaining optimized beam coherence conditions for imaging.« less
ToTem: a tool for variant calling pipeline optimization.
Tom, Nikola; Tom, Ondrej; Malcikova, Jitka; Pavlova, Sarka; Kubesova, Blanka; Rausch, Tobias; Kolarik, Miroslav; Benes, Vladimir; Bystry, Vojtech; Pospisilova, Sarka
2018-06-26
High-throughput bioinformatics analyses of next generation sequencing (NGS) data often require challenging pipeline optimization. The key problem is choosing appropriate tools and selecting the best parameters for optimal precision and recall. Here we introduce ToTem, a tool for automated pipeline optimization. ToTem is a stand-alone web application with a comprehensive graphical user interface (GUI). ToTem is written in Java and PHP with an underlying connection to a MySQL database. Its primary role is to automatically generate, execute and benchmark different variant calling pipeline settings. Our tool allows an analysis to be started from any level of the process and with the possibility of plugging almost any tool or code. To prevent an over-fitting of pipeline parameters, ToTem ensures the reproducibility of these by using cross validation techniques that penalize the final precision, recall and F-measure. The results are interpreted as interactive graphs and tables allowing an optimal pipeline to be selected, based on the user's priorities. Using ToTem, we were able to optimize somatic variant calling from ultra-deep targeted gene sequencing (TGS) data and germline variant detection in whole genome sequencing (WGS) data. ToTem is a tool for automated pipeline optimization which is freely available as a web application at https://totem.software .
Optimization of scaffold design for bone tissue engineering: A computational and experimental study.
Dias, Marta R; Guedes, José M; Flanagan, Colleen L; Hollister, Scott J; Fernandes, Paulo R
2014-04-01
In bone tissue engineering, the scaffold has not only to allow the diffusion of cells, nutrients and oxygen but also provide adequate mechanical support. One way to ensure the scaffold has the right properties is to use computational tools to design such a scaffold coupled with additive manufacturing to build the scaffolds to the resulting optimized design specifications. In this study a topology optimization algorithm is proposed as a technique to design scaffolds that meet specific requirements for mass transport and mechanical load bearing. Several micro-structures obtained computationally are presented. Designed scaffolds were then built using selective laser sintering and the actual features of the fabricated scaffolds were measured and compared to the designed values. It was possible to obtain scaffolds with an internal geometry that reasonably matched the computational design (within 14% of porosity target, 40% for strut size and 55% for throat size in the building direction and 15% for strut size and 17% for throat size perpendicular to the building direction). These results support the use of these kind of computational algorithms to design optimized scaffolds with specific target properties and confirm the value of these techniques for bone tissue engineering. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Optimal visual-haptic integration with articulated tools.
Takahashi, Chie; Watt, Simon J
2017-05-01
When we feel and see an object, the nervous system integrates visual and haptic information optimally, exploiting the redundancy in multiple signals to estimate properties more precisely than is possible from either signal alone. We examined whether optimal integration is similarly achieved when using articulated tools. Such tools (tongs, pliers, etc) are a defining characteristic of human hand function, but complicate the classical sensory 'correspondence problem' underlying multisensory integration. Optimal integration requires establishing the relationship between signals acquired by different sensors (hand and eye) and, therefore, in fundamentally unrelated units. The system must also determine when signals refer to the same property of the world-seeing and feeling the same thing-and only integrate those that do. This could be achieved by comparing the pattern of current visual and haptic input to known statistics of their normal relationship. Articulated tools disrupt this relationship, however, by altering the geometrical relationship between object properties and hand posture (the haptic signal). We examined whether different tool configurations are taken into account in visual-haptic integration. We indexed integration by measuring the precision of size estimates, and compared our results to optimal predictions from a maximum-likelihood integrator. Integration was near optimal, independent of tool configuration/hand posture, provided that visual and haptic signals referred to the same object in the world. Thus, sensory correspondence was determined correctly (trial-by-trial), taking tool configuration into account. This reveals highly flexible multisensory integration underlying tool use, consistent with the brain constructing internal models of tools' properties.
Noyes, Jane; Lewis, Mary; Bennett, Virginia; Widdas, David; Brombley, Karen
2014-01-01
To report the first large-scale realistic nurse-led implementation, optimization and evaluation of a complex children's continuing-care policy. Health policies are increasingly complex, involve multiple Government departments and frequently fail to translate into better patient outcomes. Realist methods have not yet been adapted for policy implementation. Research methodology - Evaluation using theory-based realist methods for policy implementation. An expert group developed the policy and supporting tools. Implementation and evaluation design integrated diffusion of innovation theory with multiple case study and adapted realist principles. Practitioners in 12 English sites worked with Consultant Nurse implementers to manipulate the programme theory and logic of new decision-support tools and care pathway to optimize local implementation. Methods included key-stakeholder interviews, developing practical diffusion of innovation processes using key-opinion leaders and active facilitation strategies and a mini-community of practice. New and existing processes and outcomes were compared for 137 children during 2007-2008. Realist principles were successfully adapted to a shorter policy implementation and evaluation time frame. Important new implementation success factors included facilitated implementation that enabled 'real-time' manipulation of programme logic and local context to best-fit evolving theories of what worked; using local experiential opinion to change supporting tools to more realistically align with local context and what worked; and having sufficient existing local infrastructure to support implementation. Ten mechanisms explained implementation success and differences in outcomes between new and existing processes. Realistic policy implementation methods have advantages over top-down approaches, especially where clinical expertise is low and unlikely to diffuse innovations 'naturally' without facilitated implementation and local optimization. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Gopalakrishnan, T.; Saravanan, R.
2017-03-01
Powerful management concepts step-up the quality of the product, time saving in producing the product thereby increase the production rate, improves tools and techniques, work culture, work place and employee motivation and morale. In this paper discussed about the case study of optimizing the tool design, tool parameters to cast off expansion plan according ECRS technique. The proposed designs and optimal tool parameters yielded best results and meet the customer demand without expansion plan. Hence the work yielded huge savings of money (direct and indirect cost), time and improved the motivation and more of employees significantly.
Development of Regional Excel-Based Stormwater/Nutrient BMP Optimization Tool (Opti-Tool)
During 2014, EPA Region 1 contracted with Tetra Tech, Inc. to work with a regional technical Advisory Committee to develop an Excel-based stormwater/nutrient BMP optimization tool (Opti-Tool) using regional precipitation data and regionally calibrated BMP performance data from UN...
A Unique Opportunity to Test Whether Cell Fusion is a Mechanism of Breast Cancer Metastasis
2013-07-01
populations. Last cycle we optimized electroporation conditions for T47D and human mesenchymal stem cell populations and this cycle we have improved our...specific receptor-ligand interactions necessary for cell fusion, to produce a target for drug therapy. Post-fusion events might also be investigated...new tools for the study of the complex processes of cell fusion. The inducible bipartite nature of these strategies assures the accurate
Computational mechanics analysis tools for parallel-vector supercomputers
NASA Technical Reports Server (NTRS)
Storaasli, O. O.; Nguyen, D. T.; Baddourah, M. A.; Qin, J.
1993-01-01
Computational algorithms for structural analysis on parallel-vector supercomputers are reviewed. These parallel algorithms, developed by the authors, are for the assembly of structural equations, 'out-of-core' strategies for linear equation solution, massively distributed-memory equation solution, unsymmetric equation solution, general eigen-solution, geometrically nonlinear finite element analysis, design sensitivity analysis for structural dynamics, optimization algorithm and domain decomposition. The source code for many of these algorithms is available from NASA Langley.
Model-based setup assistant for progressive tools
NASA Astrophysics Data System (ADS)
Springer, Robert; Gräler, Manuel; Homberg, Werner; Henke, Christian; Trächtler, Ansgar
2018-05-01
In the field of production systems, globalization and technological progress lead to increasing requirements regarding part quality, delivery time and costs. Hence, today's production is challenged much more than a few years ago: it has to be very flexible and produce economically small batch sizes to satisfy consumer's demands and avoid unnecessary stock. Furthermore, a trend towards increasing functional integration continues to lead to an ongoing miniaturization of sheet metal components. In the industry of electric connectivity for example, the miniaturized connectors are manufactured by progressive tools, which are usually used for very large batches. These tools are installed in mechanical presses and then set up by a technician, who has to manually adjust a wide range of punch-bending operations. Disturbances like material thickness, temperatures, lubrication or tool wear complicate the setup procedure. In prospect of the increasing demand of production flexibility, this time-consuming process has to be handled more and more often. In this paper, a new approach for a model-based setup assistant is proposed as a solution, which is exemplarily applied in combination with a progressive tool. First, progressive tools, more specifically, their setup process is described and based on that, the challenges are pointed out. As a result, a systematic process to set up the machines is introduced. Following, the process is investigated with an FE-Analysis regarding the effects of the disturbances. In the next step, design of experiments is used to systematically develop a regression model of the system's behaviour. This model is integrated within an optimization in order to calculate optimal machine parameters and the following necessary adjustment of the progressive tool due to the disturbances. Finally, the assistant is tested in a production environment and the results are discussed.
Kim, Hyun Uk; Charusanti, Pep; Lee, Sang Yup; Weber, Tilmann
2016-08-27
Covering: 2012 to 2016Metabolic engineering using systems biology tools is increasingly applied to overproduce secondary metabolites for their potential industrial production. In this Highlight, recent relevant metabolic engineering studies are analyzed with emphasis on host selection and engineering approaches for the optimal production of various prokaryotic secondary metabolites: native versus heterologous hosts (e.g., Escherichia coli) and rational versus random approaches. This comparative analysis is followed by discussions on systems biology tools deployed in optimizing the production of secondary metabolites. The potential contributions of additional systems biology tools are also discussed in the context of current challenges encountered during optimization of secondary metabolite production.
An orally available, brain-penetrant CAMKK2 inhibitor reduces food intake in rodent model.
Price, Daniel J; Drewry, David H; Schaller, Lee T; Thompson, Brian D; Reid, Paul R; Maloney, Patrick R; Liang, Xi; Banker, Periette; Buckholz, Richard G; Selley, Paula K; McDonald, Octerloney B; Smith, Jeffery L; Shearer, Todd W; Cox, Richard F; Williams, Shawn P; Reid, Robert A; Tacconi, Stefano; Faggioni, Federico; Piubelli, Chiara; Sartori, Ilaria; Tessari, Michela; Wang, Tony Y
2018-06-01
Hypothalamic CAMKK2 represents a potential mechanism for chemically affecting satiety and promoting weight loss in clinically obese patients. Single-digit nanomolar inhibitors of CAMKK2 were identified in three related ATP-competitive series. Limited optimization of kinase selectivity, solubility, and pharmacokinetic properties were undertaken on all three series, as SAR was often transferrable. Ultimately, a 2,4-diaryl 7-azaindole was optimized to afford a tool molecule that potently inhibits AMPK phosphorylation in a hypothalamus-derived cell line, is orally bioavailable, and crosses the blood-brain barrier. When dosed orally in rodents, compound 4 t limited ghrelin-induced food intake. Copyright © 2018 Elsevier Ltd. All rights reserved.
Optimization of turning process through the analytic flank wear modelling
NASA Astrophysics Data System (ADS)
Del Prete, A.; Franchi, R.; De Lorenzis, D.
2018-05-01
In the present work, the approach used for the optimization of the process capabilities for Oil&Gas components machining will be described. These components are machined by turning of stainless steel castings workpieces. For this purpose, a proper Design Of Experiments (DOE) plan has been designed and executed: as output of the experimentation, data about tool wear have been collected. The DOE has been designed starting from the cutting speed and feed values recommended by the tools manufacturer; the depth of cut parameter has been maintained as a constant. Wear data has been obtained by means the observation of the tool flank wear under an optical microscope: the data acquisition has been carried out at regular intervals of working times. Through a statistical data and regression analysis, analytical models of the flank wear and the tool life have been obtained. The optimization approach used is a multi-objective optimization, which minimizes the production time and the number of cutting tools used, under the constraint on a defined flank wear level. The technique used to solve the optimization problem is a Multi Objective Particle Swarm Optimization (MOPS). The optimization results, validated by the execution of a further experimental campaign, highlighted the reliability of the work and confirmed the usability of the optimized process parameters and the potential benefit for the company.
Dynamic optimization case studies in DYNOPT tool
NASA Astrophysics Data System (ADS)
Ozana, Stepan; Pies, Martin; Docekal, Tomas
2016-06-01
Dynamic programming is typically applied to optimization problems. As the analytical solutions are generally very difficult, chosen software tools are used widely. These software packages are often third-party products bound for standard simulation software tools on the market. As typical examples of such tools, TOMLAB and DYNOPT could be effectively applied for solution of problems of dynamic programming. DYNOPT will be presented in this paper due to its licensing policy (free product under GPL) and simplicity of use. DYNOPT is a set of MATLAB functions for determination of optimal control trajectory by given description of the process, the cost to be minimized, subject to equality and inequality constraints, using orthogonal collocation on finite elements method. The actual optimal control problem is solved by complete parameterization both the control and the state profile vector. It is assumed, that the optimized dynamic model may be described by a set of ordinary differential equations (ODEs) or differential-algebraic equations (DAEs). This collection of functions extends the capability of the MATLAB Optimization Tool-box. The paper will introduce use of DYNOPT in the field of dynamic optimization problems by means of case studies regarding chosen laboratory physical educational models.
Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices
NASA Astrophysics Data System (ADS)
Agarwal, Gunjan; Besuchet, Nicolas; Audergon, Basile; Paik, Jamie
2016-09-01
Soft actuators made from elastomeric active materials can find widespread potential implementation in a variety of applications ranging from assistive wearable technologies targeted at biomedical rehabilitation or assistance with activities of daily living, bioinspired and biomimetic systems, to gripping and manipulating fragile objects, and adaptable locomotion. In this manuscript, we propose a novel two-component soft actuator design and design tool that produces actuators targeted towards these applications with enhanced mechanical performance and manufacturability. Our numerical models developed using the finite element method can predict the actuator behavior at large mechanical strains to allow efficient design iterations for system optimization. Based on two distinctive actuator prototypes’ (linear and bending actuators) experimental results that include free displacement and blocked-forces, we have validated the efficacy of the numerical models. The presented extensive investigation of mechanical performance for soft actuators with varying geometric parameters demonstrates the practical application of the design tool, and the robustness of the actuator hardware design, towards diverse soft robotic systems for a wide set of assistive wearable technologies, including replicating the motion of several parts of the human body.
Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices
Agarwal, Gunjan; Besuchet, Nicolas; Audergon, Basile; Paik, Jamie
2016-01-01
Soft actuators made from elastomeric active materials can find widespread potential implementation in a variety of applications ranging from assistive wearable technologies targeted at biomedical rehabilitation or assistance with activities of daily living, bioinspired and biomimetic systems, to gripping and manipulating fragile objects, and adaptable locomotion. In this manuscript, we propose a novel two-component soft actuator design and design tool that produces actuators targeted towards these applications with enhanced mechanical performance and manufacturability. Our numerical models developed using the finite element method can predict the actuator behavior at large mechanical strains to allow efficient design iterations for system optimization. Based on two distinctive actuator prototypes’ (linear and bending actuators) experimental results that include free displacement and blocked-forces, we have validated the efficacy of the numerical models. The presented extensive investigation of mechanical performance for soft actuators with varying geometric parameters demonstrates the practical application of the design tool, and the robustness of the actuator hardware design, towards diverse soft robotic systems for a wide set of assistive wearable technologies, including replicating the motion of several parts of the human body. PMID:27670953
Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices.
Agarwal, Gunjan; Besuchet, Nicolas; Audergon, Basile; Paik, Jamie
2016-09-27
Soft actuators made from elastomeric active materials can find widespread potential implementation in a variety of applications ranging from assistive wearable technologies targeted at biomedical rehabilitation or assistance with activities of daily living, bioinspired and biomimetic systems, to gripping and manipulating fragile objects, and adaptable locomotion. In this manuscript, we propose a novel two-component soft actuator design and design tool that produces actuators targeted towards these applications with enhanced mechanical performance and manufacturability. Our numerical models developed using the finite element method can predict the actuator behavior at large mechanical strains to allow efficient design iterations for system optimization. Based on two distinctive actuator prototypes' (linear and bending actuators) experimental results that include free displacement and blocked-forces, we have validated the efficacy of the numerical models. The presented extensive investigation of mechanical performance for soft actuators with varying geometric parameters demonstrates the practical application of the design tool, and the robustness of the actuator hardware design, towards diverse soft robotic systems for a wide set of assistive wearable technologies, including replicating the motion of several parts of the human body.
Seasonal-Scale Optimization of Conventional Hydropower Operations in the Upper Colorado System
NASA Astrophysics Data System (ADS)
Bier, A.; Villa, D.; Sun, A.; Lowry, T. S.; Barco, J.
2011-12-01
Sandia National Laboratories is developing the Hydropower Seasonal Concurrent Optimization for Power and the Environment (Hydro-SCOPE) tool to examine basin-wide conventional hydropower operations at seasonal time scales. This tool is part of an integrated, multi-laboratory project designed to explore different aspects of optimizing conventional hydropower operations. The Hydro-SCOPE tool couples a one-dimensional reservoir model with a river routing model to simulate hydrology and water quality. An optimization engine wraps around this model framework to solve for long-term operational strategies that best meet the specific objectives of the hydrologic system while honoring operational and environmental constraints. The optimization routines are provided by Sandia's open source DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) software. Hydro-SCOPE allows for multi-objective optimization, which can be used to gain insight into the trade-offs that must be made between objectives. The Hydro-SCOPE tool is being applied to the Upper Colorado Basin hydrologic system. This system contains six reservoirs, each with its own set of objectives (such as maximizing revenue, optimizing environmental indicators, meeting water use needs, or other objectives) and constraints. This leads to a large optimization problem with strong connectedness between objectives. The systems-level approach used by the Hydro-SCOPE tool allows simultaneous analysis of these objectives, as well as understanding of potential trade-offs related to different objectives and operating strategies. The seasonal-scale tool will be tightly integrated with the other components of this project, which examine day-ahead and real-time planning, environmental performance, hydrologic forecasting, and plant efficiency.
Optimizing friction stir weld parameters of aluminum and copper using conventional milling machine
NASA Astrophysics Data System (ADS)
Manisegaran, Lohappriya V.; Ahmad, Nurainaa Ayuni; Nazri, Nurnadhirah; Noor, Amirul Syafiq Mohd; Ramachandran, Vignesh; Ismail, Muhammad Tarmizizulfika; Ahmad, Ku Zarina Ku; Daruis, Dian Darina Indah
2018-05-01
The joining of two of any particular materials through friction stir welding (FSW) are done by a rotating tool and the work piece material that generates heat which causes the region near the FSW tool to soften. This in return will mechanically intermix the work pieces. The first objective of this study is to join aluminum plates and copper plates by means of friction stir welding process using self-fabricated tools and conventional milling machine. This study also aims to investigate the optimum process parameters to produce the optimum mechanical properties of the welding joints for Aluminum plates and Copper plates. A suitable tool bit and a fixture is to be fabricated for the welding process. A conventional milling machine will be used to weld the aluminum and copper. The most important parameters to enable the process are speed and pressure of the tool (or tool design and alignment of the tool onto the work piece). The study showed that the best surface finish was produced from speed of 1150 rpm and tool bit tilted to 3°. For a 200mm × 100mm Aluminum 6061 with plate thickness of 2 mm at a speed of 1 mm/s, the time taken to complete the welding is only 200 seconds or equivalent to 3 minutes and 20 seconds. The Copper plates was successfully welded using FSW with tool rotation speed of 500 rpm, 700 rpm, 900 rpm, 1150 rpm and 1440 rpm and with welding traverse rate of 30 mm/min, 60 mm/min and 90 mm/min. As the conclusion, FSW using milling machine can be done on both Aluminum and Copper plates, however the weld parameters are different for the two types of plates.
NASA Astrophysics Data System (ADS)
Liu, Y.; Engel, B.; Collingsworth, P.; Pijanowski, B. C.
2017-12-01
Nutrient loading from the Maumee River watershed is a significant reason for the harmful algal blooms (HABs) problem in Lake Erie. Strategies to reduce nutrient loading from agricultural areas in the Maumee River watershed need to be explored. Best management practices (BMPs) are popular approaches for improving hydrology and water quality. Various scenarios of BMP implementation were simulated in the AXL watershed (an agricultural watershed in Maumee River watershed) using Soil and Water Assessment Tool (SWAT) and a new BMP cost tool to explore the cost-effectiveness of the practices. BMPs of interest included vegetative filter strips, grassed waterways, blind inlets, grade stabilization structures, wetlands, no-till, nutrient management, residue management, and cover crops. The following environmental concerns were considered: streamflow, Total Phosphorous (TP), Dissolved Reactive Phosphorus (DRP), Total Kjeldahl Nitrogen (TKN), and Nitrate+Nitrite (NOx). To obtain maximum hydrological and water quality benefits with minimum cost, an optimization tool was developed to optimally select and place BMPs by connecting SWAT, the BMP cost tool, and optimization algorithms. The optimization tool was then applied in AXL watershed to explore optimization focusing on critical areas (top 25% of areas with highest runoff volume/pollutant loads per area) vs. all areas of the watershed, optimization using weather data for spring (March to July, due to the goal of reducing spring phosphorus in watershed management plan) vs. full year, and optimization results of implementing BMPs to achieve the watershed management plan goal (reducing 2008 TP levels by 40%). The optimization tool and BMP optimization results can be used by watershed groups and communities to solve hydrology and water quality problems.
Mechanical System Analysis/Design Tool (MSAT) Quick Guide
NASA Technical Reports Server (NTRS)
Lee, HauHua; Kolb, Mark; Madelone, Jack
1998-01-01
MSAT is a unique multi-component multi-disciplinary tool that organizes design analysis tasks around object-oriented representations of configuration components, analysis programs and modules, and data transfer links between them. This creative modular architecture enables rapid generation of input stream for trade-off studies of various engine configurations. The data transfer links automatically transport output from one application as relevant input to the next application once the sequence is set up by the user. The computations are managed via constraint propagation - the constraints supplied by the user as part of any optimization module. The software can be used in the preliminary design stage as well as during the detail design of product development process.
Atomdroid: a computational chemistry tool for mobile platforms.
Feldt, Jonas; Mata, Ricardo A; Dieterich, Johannes M
2012-04-23
We present the implementation of a new molecular mechanics program designed for use in mobile platforms, the first specifically built for these devices. The software is designed to run on Android operating systems and is compatible with several modern tablet-PCs and smartphones available in the market. It includes molecular viewer/builder capabilities with integrated routines for geometry optimizations and Monte Carlo simulations. These functionalities allow it to work as a stand-alone tool. We discuss some particular development aspects, as well as the overall feasibility of using computational chemistry software packages in mobile platforms. Benchmark calculations show that through efficient implementation techniques even hand-held devices can be used to simulate midsized systems using force fields.
Description of operation of fast-response solenoid actuator in diesel fuel system model
NASA Astrophysics Data System (ADS)
Zhao, J.; Grekhov, L. V.; Fan, L.; Ma, X.; Song, E.
2018-03-01
The performance of the fast-response solenoid actuator (FRSA) of engine fuel systems is characterized by the response time of less than 0.1 ms and the necessity to take into consideration the non-stationary peculiarities of mechanical, hydraulic, electrical and magnetic processes. Simple models for magnetization in static and dynamic hysteresis are used for this purpose. The experimental study of the FRSA performance within the electro-hydraulic injector of the Common Rail demonstrated an agreement between the computational and experimental results. The computation of the processes is not only a tool for analysis, but also a tool for design and optimization of the solenoid actuator of new engine fuels systems.
Conceptual achievement of 1GBq activity in a Plasma Focus driven system.
Tabbakh, Farshid; Sadat Kiai, Seyed Mahmood; Pashaei, Mohammad
2017-11-01
This is an approach to evaluate the radioisotope production by means of typical dense plasma focus devices. The production rate of the appropriate positron emitters, F-18, N-13 and O-15 has been studied. The beam-target mechanism was simulated by GEANT4 Monte Carlo tool using QGSP_BIC and QGSP_INCLXX physic models as comparison. The results for positron emitters have been evaluated by reported experimental data and found conformity between simulations and experimental reports that leads to using this code as a reliable tool in optimizing the DPF driven systems for achieving to 1GBq activity of produced radioisotope. Copyright © 2017 Elsevier Ltd. All rights reserved.
New Applications for Phage Integrases
Fogg, Paul C.M.; Colloms, Sean; Rosser, Susan; Stark, Marshall; Smith, Margaret C.M.
2014-01-01
Within the last 25 years, bacteriophage integrases have rapidly risen to prominence as genetic tools for a wide range of applications from basic cloning to genome engineering. Serine integrases such as that from ϕC31 and its relatives have found an especially wide range of applications within diverse micro-organisms right through to multi-cellular eukaryotes. Here, we review the mechanisms of the two major families of integrases, the tyrosine and serine integrases, and the advantages and disadvantages of each type as they are applied in genome engineering and synthetic biology. In particular, we focus on the new areas of metabolic pathway construction and optimization, biocomputing, heterologous expression and multiplexed assembly techniques. Integrases are versatile and efficient tools that can be used in conjunction with the various extant molecular biology tools to streamline the synthetic biology production line. PMID:24857859
SPOT-A SENSOR PLACEMENT OPTIMIZATION TOOL FOR ...
journal article This paper presents SPOT, a Sensor Placement Optimization Tool. SPOT provides a toolkit that facilitates research in sensor placement optimization and enables the practical application of sensor placement solvers to real-world CWS design applications. This paper provides an overview of SPOT’s key features, and then illustrates how this tool can be flexibly applied to solve a variety of different types of sensor placement problems.
Update on HCDstruct - A Tool for Hybrid Wing Body Conceptual Design and Structural Optimization
NASA Technical Reports Server (NTRS)
Gern, Frank H.
2015-01-01
HCDstruct is a Matlab® based software tool to rapidly build a finite element model for structural optimization of hybrid wing body (HWB) aircraft at the conceptual design level. The tool uses outputs from a Flight Optimization System (FLOPS) performance analysis together with a conceptual outer mold line of the vehicle, e.g. created by Vehicle Sketch Pad (VSP), to generate a set of MSC Nastran® bulk data files. These files can readily be used to perform a structural optimization and weight estimation using Nastran’s® Solution 200 multidisciplinary optimization solver. Initially developed at NASA Langley Research Center to perform increased fidelity conceptual level HWB centerbody structural analyses, HCDstruct has grown into a complete HWB structural sizing and weight estimation tool, including a fully flexible aeroelastic loads analysis. Recent upgrades to the tool include the expansion to a full wing tip-to-wing tip model for asymmetric analyses like engine out conditions and dynamic overswings, as well as a fully actuated trailing edge, featuring up to 15 independently actuated control surfaces and twin tails. Several example applications of the HCDstruct tool are presented.
NASA Astrophysics Data System (ADS)
Nieto, Paulino José García; García-Gonzalo, Esperanza; Vilán, José Antonio Vilán; Robleda, Abraham Segade
2015-12-01
The main aim of this research work is to build a new practical hybrid regression model to predict the milling tool wear in a regular cut as well as entry cut and exit cut of a milling tool. The model was based on Particle Swarm Optimization (PSO) in combination with support vector machines (SVMs). This optimization mechanism involved kernel parameter setting in the SVM training procedure, which significantly influences the regression accuracy. Bearing this in mind, a PSO-SVM-based model, which is based on the statistical learning theory, was successfully used here to predict the milling tool flank wear (output variable) as a function of the following input variables: the time duration of experiment, depth of cut, feed, type of material, etc. To accomplish the objective of this study, the experimental dataset represents experiments from runs on a milling machine under various operating conditions. In this way, data sampled by three different types of sensors (acoustic emission sensor, vibration sensor and current sensor) were acquired at several positions. A second aim is to determine the factors with the greatest bearing on the milling tool flank wear with a view to proposing milling machine's improvements. Firstly, this hybrid PSO-SVM-based regression model captures the main perception of statistical learning theory in order to obtain a good prediction of the dependence among the flank wear (output variable) and input variables (time, depth of cut, feed, etc.). Indeed, regression with optimal hyperparameters was performed and a determination coefficient of 0.95 was obtained. The agreement of this model with experimental data confirmed its good performance. Secondly, the main advantages of this PSO-SVM-based model are its capacity to produce a simple, easy-to-interpret model, its ability to estimate the contributions of the input variables, and its computational efficiency. Finally, the main conclusions of this study are exposed.
NASA Astrophysics Data System (ADS)
Karwande, Amit H.; Rao, Seeram Srinivasa
2018-04-01
Friction stir welding (FSW) a welding process in which metals are joint by melting them at their solid state. In different engineering areas such as civil, mechanical, naval and aeronautical engineering beams are widely used of the magnesium alloys for different applications and that are joined by conventional inert gas welding process. Magnesium metal has less density and low melting point for that reason large heat generation in the common welding process so its necessity to adapt new welding process. FSW process increases the weld quality which observed under various mechanical testing by using different tool size.
NASA Technical Reports Server (NTRS)
1996-01-01
Various NASA Small Business Innovation Research grants from Marshall Space Flight Center, Langley Research Center and Ames Research Center were used to develop the 'kernel' of COMCO's modeling and simulation software, the PHLEX finite element code. NASA needed it to model designs of flight vehicles; one of many customized commercial applications is UNISIM, a PHLEX-based code for analyzing underground flows in oil reservoirs for Texaco, Inc. COMCO's products simulate a computational mechanics problem, estimate the solution's error and produce the optimal hp-adapted mesh for the accuracy the user chooses. The system is also used as a research or training tool in universities and in mechanical design in industrial corporations.
Watershed Management Optimization Support Tool (WMOST) Workshop.
EPA's Watershed Management Optimization Support Tool (WMOST) version 2 is a decision support tool designed to facilitate integrated water management by communities at the small watershed scale. WMOST allows users to look across management options in stormwater (including green i...
Salehi, Mojtaba; Bahreininejad, Ardeshir
2011-08-01
Optimization of process planning is considered as the key technology for computer-aided process planning which is a rather complex and difficult procedure. A good process plan of a part is built up based on two elements: (1) the optimized sequence of the operations of the part; and (2) the optimized selection of the machine, cutting tool and Tool Access Direction (TAD) for each operation. In the present work, the process planning is divided into preliminary planning, and secondary/detailed planning. In the preliminary stage, based on the analysis of order and clustering constraints as a compulsive constraint aggregation in operation sequencing and using an intelligent searching strategy, the feasible sequences are generated. Then, in the detailed planning stage, using the genetic algorithm which prunes the initial feasible sequences, the optimized operation sequence and the optimized selection of the machine, cutting tool and TAD for each operation based on optimization constraints as an additive constraint aggregation are obtained. The main contribution of this work is the optimization of sequence of the operations of the part, and optimization of machine selection, cutting tool and TAD for each operation using the intelligent search and genetic algorithm simultaneously.
Salehi, Mojtaba
2010-01-01
Optimization of process planning is considered as the key technology for computer-aided process planning which is a rather complex and difficult procedure. A good process plan of a part is built up based on two elements: (1) the optimized sequence of the operations of the part; and (2) the optimized selection of the machine, cutting tool and Tool Access Direction (TAD) for each operation. In the present work, the process planning is divided into preliminary planning, and secondary/detailed planning. In the preliminary stage, based on the analysis of order and clustering constraints as a compulsive constraint aggregation in operation sequencing and using an intelligent searching strategy, the feasible sequences are generated. Then, in the detailed planning stage, using the genetic algorithm which prunes the initial feasible sequences, the optimized operation sequence and the optimized selection of the machine, cutting tool and TAD for each operation based on optimization constraints as an additive constraint aggregation are obtained. The main contribution of this work is the optimization of sequence of the operations of the part, and optimization of machine selection, cutting tool and TAD for each operation using the intelligent search and genetic algorithm simultaneously. PMID:21845020
Additive manufacturing: Toward holistic design
Jared, Bradley H.; Aguilo, Miguel A.; Beghini, Lauren L.; ...
2017-03-18
Here, additive manufacturing offers unprecedented opportunities to design complex structures optimized for performance envelopes inaccessible under conventional manufacturing constraints. Additive processes also promote realization of engineered materials with microstructures and properties that are impossible via traditional synthesis techniques. Enthused by these capabilities, optimization design tools have experienced a recent revival. The current capabilities of additive processes and optimization tools are summarized briefly, while an emerging opportunity is discussed to achieve a holistic design paradigm whereby computational tools are integrated with stochastic process and material awareness to enable the concurrent optimization of design topologies, material constructs and fabrication processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jared, Bradley H.; Aguilo, Miguel A.; Beghini, Lauren L.
Here, additive manufacturing offers unprecedented opportunities to design complex structures optimized for performance envelopes inaccessible under conventional manufacturing constraints. Additive processes also promote realization of engineered materials with microstructures and properties that are impossible via traditional synthesis techniques. Enthused by these capabilities, optimization design tools have experienced a recent revival. The current capabilities of additive processes and optimization tools are summarized briefly, while an emerging opportunity is discussed to achieve a holistic design paradigm whereby computational tools are integrated with stochastic process and material awareness to enable the concurrent optimization of design topologies, material constructs and fabrication processes.
NASA Astrophysics Data System (ADS)
Golanski, L.; Guiot, A.; Pras, M.; Malarde, M.; Tardif, F.
2012-07-01
It is of great interest to set up a reproducible and sensitive method able to qualify nanomaterials before their market introduction in terms of their constitutive nanoparticle release-ability in usage. Abrasion was performed on polycarbonate, epoxy, and PA11 polymers containing carbone nanotubes (CNT) up to 4 %wt. Using Taber linear standard tool and standard abrasion conditions no release from polymer coatings containing CNT was measured. In this study, new practical tools inducing non-standardized stresses able to compete with van der Waals forces were developed and tested on model polymers, showing controlled CNT dispersion. These stresses are still realistic, corresponding to scratching, instantaneous mechanical shocks, and abrasion of the surface. They offer an efficient way to quantify if release is possible from nanomaterials under different mechanical stresses and therefore give an idea about the mechanisms that favors it. Release under mechanical shocks and hard abrasion was obtained using these tools but only when nanomaterials present a bad dispersion of CNT within the epoxy matrix. Under the same conditions no release was obtained from the same material presenting a good dispersion. The CNT used in this study showed an external diameter Dext = 12 nm, an internal diameter Din = 5 nm, and a mean length of 1 μm. Release from paints under hard abrasion using a standard rotative Taber tool was obtained from a intentionaly non-optimized paint containing SiO2 nanoparticles up to 35 %wt. The primary diameter of the SiO2 was estimated to be around 12 nm. A metallic rake was efficient to remove nanoparticles from a non-woven fabric nanomaterial.
Particle Swarm Optimization with Double Learning Patterns
Shen, Yuanxia; Wei, Linna; Zeng, Chuanhua; Chen, Jian
2016-01-01
Particle Swarm Optimization (PSO) is an effective tool in solving optimization problems. However, PSO usually suffers from the premature convergence due to the quick losing of the swarm diversity. In this paper, we first analyze the motion behavior of the swarm based on the probability characteristic of learning parameters. Then a PSO with double learning patterns (PSO-DLP) is developed, which employs the master swarm and the slave swarm with different learning patterns to achieve a trade-off between the convergence speed and the swarm diversity. The particles in the master swarm and the slave swarm are encouraged to explore search for keeping the swarm diversity and to learn from the global best particle for refining a promising solution, respectively. When the evolutionary states of two swarms interact, an interaction mechanism is enabled. This mechanism can help the slave swarm in jumping out of the local optima and improve the convergence precision of the master swarm. The proposed PSO-DLP is evaluated on 20 benchmark functions, including rotated multimodal and complex shifted problems. The simulation results and statistical analysis show that PSO-DLP obtains a promising performance and outperforms eight PSO variants. PMID:26858747
NASA Astrophysics Data System (ADS)
Sohn, Jung Woo; Jeon, Juncheol; Nguyen, Quoc Hung; Choi, Seung-Bok
2015-08-01
In this paper, a disc-type magneto-rheological (MR) brake is designed for a mid-sized motorcycle and its performance is experimentally evaluated. The proposed MR brake consists of an outer housing, a rotating disc immersed in MR fluid, and a copper wire coiled around a bobbin to generate a magnetic field. The structural configuration of the MR brake is first presented with consideration of the installation space for the conventional hydraulic brake of a mid-sized motorcycle. The design parameters of the proposed MR brake are optimized to satisfy design requirements such as the braking torque, total mass of the MR brake, and cruising temperature caused by the magnetic-field friction of the MR fluid. In the optimization procedure, the braking torque is calculated based on the Herschel-Bulkley rheological model, which predicts MR fluid behavior well at high shear rate. An optimization tool based on finite element analysis is used to obtain the optimized dimensions of the MR brake. After manufacturing the MR brake, mechanical performances regarding the response time, braking torque and cruising temperature are experimentally evaluated.
NASA Astrophysics Data System (ADS)
Roslund, Jonathan; Shir, Ofer M.; Bäck, Thomas; Rabitz, Herschel
2009-10-01
Optimization of quantum systems by closed-loop adaptive pulse shaping offers a rich domain for the development and application of specialized evolutionary algorithms. Derandomized evolution strategies (DESs) are presented here as a robust class of optimizers for experimental quantum control. The combination of stochastic and quasi-local search embodied by these algorithms is especially amenable to the inherent topology of quantum control landscapes. Implementation of DES in the laboratory results in efficiency gains of up to ˜9 times that of the standard genetic algorithm, and thus is a promising tool for optimization of unstable or fragile systems. The statistical learning upon which these algorithms are predicated also provide the means for obtaining a control problem’s Hessian matrix with no additional experimental overhead. The forced optimal covariance adaptive learning (FOCAL) method is introduced to enable retrieval of the Hessian matrix, which can reveal information about the landscape’s local structure and dynamic mechanism. Exploitation of such algorithms in quantum control experiments should enhance their efficiency and provide additional fundamental insights.
Watershed Management Optimization Support Tool v3
The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that facilitates integrated water management at the local or small watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed context that is, accou...
Generalized constitutive equations for piezo-actuated compliant mechanism
NASA Astrophysics Data System (ADS)
Cao, Junyi; Ling, Mingxiang; Inman, Daniel J.; Lin, Jin
2016-09-01
This paper formulates analytical models to describe the static displacement and force interactions between generic serial-parallel compliant mechanisms and their loads by employing the matrix method. In keeping with the familiar piezoelectric constitutive equations, the generalized constitutive equations of compliant mechanism represent the input-output displacement and force relations in the form of a generalized Hooke’s law and as analytical functions of physical parameters. Also significantly, a new model of output displacement for compliant mechanism interacting with piezo-stacks and elastic loads is deduced based on the generalized constitutive equations. Some original findings differing from the well-known constitutive performance of piezo-stacks are also given. The feasibility of the proposed models is confirmed by finite element analysis and by experiments under various elastic loads. The analytical models can be an insightful tool for predicting and optimizing the performance of a wide class of compliant mechanisms that simultaneously consider the influence of loads and piezo-stacks.
Watershed Management Optimization Support Tool (WMOST) ...
EPA's Watershed Management Optimization Support Tool (WMOST) version 2 is a decision support tool designed to facilitate integrated water management by communities at the small watershed scale. WMOST allows users to look across management options in stormwater (including green infrastructure), wastewater, drinking water, and land conservation programs to find the least cost solutions. The pdf version of these presentations accompany the recorded webinar with closed captions to be posted on the WMOST web page. The webinar was recorded at the time a training workshop took place for EPA's Watershed Management Optimization Support Tool (WMOST, v2).
Computational Cognitive Modeling of Adaptive Choice Behavior in a Dynamic Decision Paradigm
2006-02-01
Cognitive Psychology (Fu & Gray, in press), an exploration of the limits of ACT-R’s credit assignment mechanism published in the Cognitive System Research...Macmillan & Creelman , 2004) to "determine the optimal performance in a task, given the physical properties of the environment and stimuli" (Geisler, 2004...allocation for interactive behavior. Psychological Review, in press. Gray, W. D. 0., & Myers, C. W. (2005). From models to methods to models: Tools and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durfee, Justin David; Frazier, Christopher Rawls; Bandlow, Alisa
2016-05-01
The Contingency Contractor Optimization Tool - Prototype (CCOT-P) requires several third-party software packages. These are documented below for each of the CCOT-P elements: client, web server, database server, solver, web application and polling application.
Major, L; Janusz, M; Lackner, J M; Kot, M; Dyner, M; Major, B
2017-10-01
Recently, to reduce the residual stress and increase the mechanical properties of a-C:H coatings, metallic nanoparticles have been implanted into their structure. In the present work, to improve the properties of the coating, metallic nanoparticles, including Cu, Nb, Ta, Zr, AgPt and Ag, were inserted into the a-C:H structure. The applied biological and mechanical analysis allowed the optimal biotribological parameters to be indicated for the potential application as protective coatings for metallic medical tools. Wear mechanisms operating at the small length of the designed biotribological coating, such as a-C:H implanted by Zr nanoparticles, were studied by means of transmission electron microscopy (TEM). The TEM analysis confirmed very good coating adhesion to the metallic substrate. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Rajiv; Charit, Indrajit
2015-02-28
The objectives of this research were two-fold: (a) develop a methodology for microstructural optimization of alloys - genetic algorithm approach for alloy microstructural optimization using theoretical models based on fundamental micro-mechanisms, and (b) develop a new computationally designed Ni-Cr alloy for coal-fired power plant applications. The broader outcome of these objectives is expected to be creation of an integrated approach for ‘structural materials by microstructural design’. Three alloy systems were considered for computational optimization and validation, (i) Ni-20Cr (wt.%) base alloy using only solid solution strengthening, (ii) nano-Y2O3 containing Ni-20Cr-1.2Y2O3 (wt.%) alloy for dispersion strengthening and (iii) a sub-micron Al2O3more » for composite strengthening, Ni-20Cr-1.2Y2O3-5.0Al2O3 (wt.%). The specimens were synthesized by mechanical alloying and consolidated using spark plasma sintering. Detailed microstructural characterization was done along with initial mechanical properties to validate the computational prediction. A key target property is to have creep rate of 1x10-9 s-1 at 100 MPa and 800oC. The initial results were quite promising and require additional quantification of strengthening contributions from dislocation-particle attractive interaction and load transfer. The observed creep rate was in order of 10-9 s-1 for longer time creep test of Ni-20Cr -1.2Y2O3-5Al2O3, lending support to the overall approach pursued in this project.« less
NASA Astrophysics Data System (ADS)
Zhang, Zhiwei; Chen, Pei; Qin, Fei; An, Tong; Yu, Huiping
2018-05-01
Ultra-thin silicon wafer is highly demanded by semi-conductor industry. During wafer thinning process, the grinding technology will inevitably induce damage to the surface and subsurface of silicon wafer. To understand the mechanism of subsurface damage (SSD) layer formation and mechanical properties of SSD layer, atomistic simulation is the effective tool to perform the study, since the SSD layer is in the scale of nanometer and hardly to be separated from underneath undamaged silicon. This paper is devoted to understand the formation of SSD layer, and the difference between mechanical properties of damaged silicon in SSD layer and ideal silicon. With the atomistic model, the nano-grinding process could be performed between a silicon workpiece and diamond tool under different grinding speed. To reach a thinnest SSD layer, nano-grinding speed will be optimized in the range of 50-400 m/s. Mechanical properties of six damaged silicon workpieces with different depths of cut will be studied. The SSD layer from each workpiece will be isolated, and a quasi-static tensile test is simulated to perform on the isolated SSD layer. The obtained stress-strain curve is an illustration of overall mechanical properties of SSD layer. By comparing the stress-strain curves of damaged silicon and ideal silicon, a degradation of Young's modulus, ultimate tensile strength (UTS), and strain at fracture is observed.
Optimization-Based Inverse Identification of the Parameters of a Concrete Cap Material Model
NASA Astrophysics Data System (ADS)
Král, Petr; Hokeš, Filip; Hušek, Martin; Kala, Jiří; Hradil, Petr
2017-10-01
Issues concerning the advanced numerical analysis of concrete building structures in sophisticated computing systems currently require the involvement of nonlinear mechanics tools. The efforts to design safer, more durable and mainly more economically efficient concrete structures are supported via the use of advanced nonlinear concrete material models and the geometrically nonlinear approach. The application of nonlinear mechanics tools undoubtedly presents another step towards the approximation of the real behaviour of concrete building structures within the framework of computer numerical simulations. However, the success rate of this application depends on having a perfect understanding of the behaviour of the concrete material models used and having a perfect understanding of the used material model parameters meaning. The effective application of nonlinear concrete material models within computer simulations often becomes very problematic because these material models very often contain parameters (material constants) whose values are difficult to obtain. However, getting of the correct values of material parameters is very important to ensure proper function of a concrete material model used. Today, one possibility, which permits successful solution of the mentioned problem, is the use of optimization algorithms for the purpose of the optimization-based inverse material parameter identification. Parameter identification goes hand in hand with experimental investigation while it trying to find parameter values of the used material model so that the resulting data obtained from the computer simulation will best approximate the experimental data. This paper is focused on the optimization-based inverse identification of the parameters of a concrete cap material model which is known under the name the Continuous Surface Cap Model. Within this paper, material parameters of the model are identified on the basis of interaction between nonlinear computer simulations, gradient based and nature inspired optimization algorithms and experimental data, the latter of which take the form of a load-extension curve obtained from the evaluation of uniaxial tensile test results. The aim of this research was to obtain material model parameters corresponding to the quasi-static tensile loading which may be further used for the research involving dynamic and high-speed tensile loading. Based on the obtained results it can be concluded that the set goal has been reached.
Dietzek, Benjamin; Brüggemann, Ben; Pascher, Torbjörn; Yartsev, Arkady
2007-10-31
Using optimal control as a spectroscopic tool we decipher the details of the molecular dynamics of the essential multidimensional excited-state photoisomerization - a fundamental chemical reaction of key importance in biology. Two distinct nuclear motions are identified in addition to the overall bond-twisting motion: Initially, the reaction is dominated by motion perpendicular to the torsion coordinate. At later times, a second optically active vibration drives the system along the reaction path to the bottom of the excited-state potential. The time scales of the wavepacket motion on a different part of the excited-state potential are detailed by pump-shaped dump optimal control. This technique offers new means to control a chemical reaction far from the Franck-Condon point of absorption and to map details of excited-state reaction pathways revealing unique insights into the underlying reaction mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Advani, S.H.; Lee, T.S.; Moon, H.
1992-10-01
The analysis of pertinent energy components or affiliated characteristic times for hydraulic stimulation processes serves as an effective tool for fracture configuration designs optimization, and control. This evaluation, in conjunction with parametric sensitivity studies, provides a rational base for quantifying dominant process mechanisms and the roles of specified reservoir properties relative to controllable hydraulic fracture variables for a wide spectrum of treatment scenarios. Results are detailed for the following multi-task effort: (a) Application of characteristic time concept and parametric sensitivity studies for specialized fracture geometries (rectangular, penny-shaped, elliptical) and three-layered elliptic crack models (in situ stress, elastic moduli, and fracturemore » toughness contrasts). (b) Incorporation of leak-off effects for models investigated in (a). (c) Simulation of generalized hydraulic fracture models and investigation of the role of controllable vaxiables and uncontrollable system properties. (d) Development of guidelines for hydraulic fracture design and optimization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Advani, S.H.; Lee, T.S.; Moon, H.
1992-10-01
The analysis of pertinent energy components or affiliated characteristic times for hydraulic stimulation processes serves as an effective tool for fracture configuration designs optimization, and control. This evaluation, in conjunction with parametric sensitivity studies, provides a rational base for quantifying dominant process mechanisms and the roles of specified reservoir properties relative to controllable hydraulic fracture variables for a wide spectrum of treatment scenarios. Results are detailed for the following multi-task effort: (a) Application of characteristic time concept and parametric sensitivity studies for specialized fracture geometries (rectangular, penny-shaped, elliptical) and three-layered elliptic crack models (in situ stress, elastic moduli, and fracturemore » toughness contrasts). (b) Incorporation of leak-off effects for models investigated in (a). (c) Simulation of generalized hydraulic fracture models and investigation of the role of controllable vaxiables and uncontrollable system properties. (d) Development of guidelines for hydraulic fracture design and optimization.« less
A multi target approach to control chemical reactions in their inhomogeneous solvent environment
NASA Astrophysics Data System (ADS)
Keefer, Daniel; Thallmair, Sebastian; Zauleck, Julius P. P.; de Vivie-Riedle, Regina
2015-12-01
Shaped laser pulses offer a powerful tool to manipulate molecular quantum systems. Their application to chemical reactions in solution is a promising concept to redesign chemical synthesis. Along this road, theoretical developments to include the solvent surrounding are necessary. An appropriate theoretical treatment is helpful to understand the underlying mechanisms. In our approach we simulate the solvent by randomly selected snapshots from molecular dynamics trajectories. We use multi target optimal control theory to optimize pulses for the various arrangements of explicit solvent molecules simultaneously. This constitutes a major challenge for the control algorithm, as the solvent configurations introduce a large inhomogeneity to the potential surfaces. We investigate how the algorithm handles the new challenges and how well the controllability of the system is preserved with increasing complexity. Additionally, we introduce a way to statistically estimate the efficiency of the optimized laser pulses in the complete thermodynamical ensemble.
The economics of motion perception and invariants of visual sensitivity.
Gepshtein, Sergei; Tyukin, Ivan; Kubovy, Michael
2007-06-21
Neural systems face the challenge of optimizing their performance with limited resources, just as economic systems do. Here, we use tools of neoclassical economic theory to explore how a frugal visual system should use a limited number of neurons to optimize perception of motion. The theory prescribes that vision should allocate its resources to different conditions of stimulation according to the degree of balance between measurement uncertainties and stimulus uncertainties. We find that human vision approximately follows the optimal prescription. The equilibrium theory explains why human visual sensitivity is distributed the way it is and why qualitatively different regimes of apparent motion are observed at different speeds. The theory offers a new normative framework for understanding the mechanisms of visual sensitivity at the threshold of visibility and above the threshold and predicts large-scale changes in visual sensitivity in response to changes in the statistics of stimulation and system goals.
Yelk, Joseph; Sukharev, Maxim; Seideman, Tamar
2008-08-14
An optimal control approach based on multiple parameter genetic algorithms is applied to the design of plasmonic nanoconstructs with predetermined optical properties and functionalities. We first develop nanoscale metallic lenses that focus an incident plane wave onto a prespecified, spatially confined spot. Our results illustrate the mechanism of energy flow through wires and cavities. Next we design a periodic array of silver particles to modify the polarization of an incident, linearly polarized plane wave in a desired fashion while localizing the light in space. The results provide insight into the structural features that determine the birefringence properties of metal nanoparticles and their arrays. Of the variety of potential applications that may be envisioned, we note the design of nanoscale light sources with controllable coherence and polarization properties that could serve for coherent control of molecular, electronic, or electromechanical dynamics in the nanoscale.
NASA Astrophysics Data System (ADS)
Tahaei, Ali; Horley, Paul; Merlin, Mattia; Torres-Torres, David; Garagnani, Gian Luca; Praga, Rolando; Vázquez, Felipe J. García; Arizmendi-Morquecho, Ana
2017-03-01
This work is dedicated to optimization of carbide particle system in a weld bead deposited by PTAW technique over D2 tool steel with high chromium content. The paper reports partial melting of the original carbide grains of the Ni-based filling powder, and growing of the secondary carbide phase (Cr, Ni)_3W_3C in the form of dendrites with wide branches that enhanced mechanical properties of the weld. The optimization of bead parameters was made with design of experiment methodology complemented by a complex sample characterization including SEM, EDXS, XRD, and nanoindentation measurements. It was shown that the preheat of the substrate to a moderate temperature 523 K (250° C) establishes linear pattern of metal flow in the weld pool, resulting in the most homogeneous distribution of the primary carbides in the microstructure of weld bead.
Structural Design Optimization of Doubly-Fed Induction Generators Using GeneratorSE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sethuraman, Latha; Fingersh, Lee J; Dykes, Katherine L
2017-11-13
A wind turbine with a larger rotor swept area can generate more electricity, however, this increases costs disproportionately for manufacturing, transportation, and installation. This poster presents analytical models for optimizing doubly-fed induction generators (DFIGs), with the objective of reducing the costs and mass of wind turbine drivetrains. The structural design for the induction machine includes models for the casing, stator, rotor, and high-speed shaft developed within the DFIG module in the National Renewable Energy Laboratory's wind turbine sizing tool, GeneratorSE. The mechanical integrity of the machine is verified by examining stresses, structural deflections, and modal properties. The optimization results aremore » then validated using finite element analysis (FEA). The results suggest that our analytical model correlates with the FEA in some areas, such as radial deflection, differing by less than 20 percent. But the analytical model requires further development for axial deflections, torsional deflections, and stress calculations.« less
The R.E.D. tools: advances in RESP and ESP charge derivation and force field library building.
Dupradeau, François-Yves; Pigache, Adrien; Zaffran, Thomas; Savineau, Corentin; Lelong, Rodolphe; Grivel, Nicolas; Lelong, Dimitri; Rosanski, Wilfried; Cieplak, Piotr
2010-07-28
Deriving atomic charges and building a force field library for a new molecule are key steps when developing a force field required for conducting structural and energy-based analysis using molecular mechanics. Derivation of popular RESP charges for a set of residues is a complex and error prone procedure because it depends on numerous input parameters. To overcome these problems, the R.E.D. Tools (RESP and ESP charge Derive, ) have been developed to perform charge derivation in an automatic and straightforward way. The R.E.D. program handles chemical elements up to bromine in the periodic table. It interfaces different quantum mechanical programs employed for geometry optimization and computing molecular electrostatic potential(s), and performs charge fitting using the RESP program. By defining tight optimization criteria and by controlling the molecular orientation of each optimized geometry, charge values are reproduced at any computer platform with an accuracy of 0.0001 e. The charges can be fitted using multiple conformations, making them suitable for molecular dynamics simulations. R.E.D. allows also for defining charge constraints during multiple molecule charge fitting, which are used to derive charges for molecular fragments. Finally, R.E.D. incorporates charges into a force field library, readily usable in molecular dynamics computer packages. For complex cases, such as a set of homologous molecules belonging to a common family, an entire force field topology database is generated. Currently, the atomic charges and force field libraries have been developed for more than fifty model systems and stored in the RESP ESP charge DDataBase. Selected results related to non-polarizable charge models are presented and discussed.
Watershed Management Optimization Support Tool (WMOST) v3: User Guide
The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that facilitates integrated water management at the local or small watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed context that is, accou...
Watershed Management Optimization Support Tool (WMOST) v3: Theoretical Documentation
The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that facilitates integrated water management at the local or small watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed context, accounting fo...
Watershed Management Optimization Support Tool (WMOST) v2: Theoretical Documentation
The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that evaluates the relative cost-effectiveness of management practices at the local or watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed c...
Ojha, Saroj Kumar; Javdekar, Sadashiv Bhaskar; Dhir, Sangeeta
2015-01-01
Context: Plaque control has been shown to be pivotal in maintaining the optimal periodontal health. Mechanical plaque control is the most popular option for establishing the optimal oral health. Toothbrushes have been the novel tool for mechanical cleansing. However, the abrasive potential of the toothbrushes on the enamel surface is an area in gray. Aims: The aim of this in vitro study is to evaluate the abrasivity of the toothbrush versus the velcro fasteners. Materials and Methods: The mounted teeth of both the groups were subjected to abrasion test, and the tooth surfaces were observed for the possible abrasions from the oscillating strokes (toothbrush) and frictional contacts (hook and loop velcro) and examined under the scanning electron microscope. Results: Comparative assessment of both velcro (hook and loop) and toothbrush bristles did not reveal any evidence of abrasion on the tooth specimens. Conclusions: Veclro fasteners are safe and qualitatively at par to the manual toothbrush for their efficacy and efficiency in teeth cleansing PMID:26229264
NASA Astrophysics Data System (ADS)
Hatton, R. L.; Ding, Yang; Masse, Andrew; Choset, Howie; Goldman, Daniel
2011-11-01
Many animals move within in granular media such as desert sand. Recent biological experiments have revealed that the sandfish lizard uses an undulatory gait to swim within sand. Models reveal that swimming occurs in a frictional fluid in which inertial effects are small and kinematics dominate. To understand the fundamental mechanics of swimming in granular media (GM), we examine a model system that has been well-studied in Newtonian fluids: the three-link swimmer. We create a physical model driven by two servo-motors, and a discrete element simulation of the swimmer. To predict optimal gaits we use a recent geometric mechanics theory combined with empirically determined resistive force laws for GM. We develop a kinematic relationship between the swimmer's shape and position velocities and construct connection vector field and constraint curvature function visualizations of the system dynamics. From these we predict optimal gaits for forward, lateral and rotational motion. Experiment and simulation are in accord with the theoretical predictions; thus geometric tools can be used to study locomotion in GM.
NASA Technical Reports Server (NTRS)
2001-01-01
Analytical Mechanics Associates, Inc. (AMA), of Hampton, Virginia, created the EZopt software application through Small Business Innovation Research (SBIR) funding from NASA's Langley Research Center. The new software is a user-friendly tool kit that provides quick and logical solutions to complex optimal control problems. In its most basic form, EZopt converts process data into math equations and then proceeds to utilize those equations to solve problems within control systems. EZopt successfully proved its advantage when applied to short-term mission planning and onboard flight computer implementation. The technology has also solved multiple real-life engineering problems faced in numerous commercial operations. For instance, mechanical engineers use EZopt to solve control problems with robots, while chemical plants implement the application to overcome situations with batch reactors and temperature control. In the emerging field of commercial aerospace, EZopt is able to optimize trajectories for launch vehicles and perform potential space station- keeping tasks. Furthermore, the software also helps control electromagnetic devices in the automotive industry.
Optimal GENCO bidding strategy
NASA Astrophysics Data System (ADS)
Gao, Feng
Electricity industries worldwide are undergoing a period of profound upheaval. The conventional vertically integrated mechanism is being replaced by a competitive market environment. Generation companies have incentives to apply novel technologies to lower production costs, for example: Combined Cycle units. Economic dispatch with Combined Cycle units becomes a non-convex optimization problem, which is difficult if not impossible to solve by conventional methods. Several techniques are proposed here: Mixed Integer Linear Programming, a hybrid method, as well as Evolutionary Algorithms. Evolutionary Algorithms share a common mechanism, stochastic searching per generation. The stochastic property makes evolutionary algorithms robust and adaptive enough to solve a non-convex optimization problem. This research implements GA, EP, and PS algorithms for economic dispatch with Combined Cycle units, and makes a comparison with classical Mixed Integer Linear Programming. The electricity market equilibrium model not only helps Independent System Operator/Regulator analyze market performance and market power, but also provides Market Participants the ability to build optimal bidding strategies based on Microeconomics analysis. Supply Function Equilibrium (SFE) is attractive compared to traditional models. This research identifies a proper SFE model, which can be applied to a multiple period situation. The equilibrium condition using discrete time optimal control is then developed for fuel resource constraints. Finally, the research discusses the issues of multiple equilibria and mixed strategies, which are caused by the transmission network. Additionally, an advantage of the proposed model for merchant transmission planning is discussed. A market simulator is a valuable training and evaluation tool to assist sellers, buyers, and regulators to understand market performance and make better decisions. A traditional optimization model may not be enough to consider the distributed, large-scale, and complex energy market. This research compares the performance and searching paths of different artificial life techniques such as Genetic Algorithm (GA), Evolutionary Programming (EP), and Particle Swarm (PS), and look for a proper method to emulate Generation Companies' (GENCOs) bidding strategies. After deregulation, GENCOs face risk and uncertainty associated with the fast-changing market environment. A profit-based bidding decision support system is critical for GENCOs to keep a competitive position in the new environment. Most past research do not pay special attention to the piecewise staircase characteristic of generator offer curves. This research proposes an optimal bidding strategy based on Parametric Linear Programming. The proposed algorithm is able to handle actual piecewise staircase energy offer curves. The proposed method is then extended to incorporate incomplete information based on Decision Analysis. Finally, the author develops an optimal bidding tool (GenBidding) and applies it to the RTS96 test system.
Simultaneous optimization of micro-heliostat geometry and field layout using a genetic algorithm
NASA Astrophysics Data System (ADS)
Lazardjani, Mani Yousefpour; Kronhardt, Valentina; Dikta, Gerhard; Göttsche, Joachim
2016-05-01
A new optimization tool for micro-heliostat (MH) geometry and field layout is presented. The method intends simultaneous performance improvement and cost reduction through iteration of heliostat geometry and field layout parameters. This tool was developed primarily for the optimization of a novel micro-heliostat concept, which was developed at Solar-Institut Jülich (SIJ). However, the underlying approach for the optimization can be used for any heliostat type. During the optimization the performance is calculated using the ray-tracing tool SolCal. The costs of the heliostats are calculated by use of a detailed cost function. A genetic algorithm is used to change heliostat geometry and field layout in an iterative process. Starting from an initial setup, the optimization tool generates several configurations of heliostat geometries and field layouts. For each configuration a cost-performance ratio is calculated. Based on that, the best geometry and field layout can be selected in each optimization step. In order to find the best configuration, this step is repeated until no significant improvement in the results is observed.
Engineering of arteries in vitro
Huang, Angela H.; Niklason, Laura E.
2014-01-01
This review will focus on two elements that are essential for functional arterial regeneration in vitro: the mechanical environment and the bioreactors used for tissue growth. The importance of the mechanical environment to embryological development, vascular functionality, and vascular graft regeneration will be discussed. Bioreactors generate mechanical stimuli to simulate the biomechanical environment of the arterial system. This system has been used to reconstruct arterial grafts with appropriate mechanical strength for implantation by controlling the chemical and mechanical environments in which the grafts are grown. Bioreactors are powerful tools to study the effect of mechanical stimuli on extracellular matrix (ECM) architecture and the mechanical properties of engineered vessels. Hence biomimetic systems enable us to optimize chemo-biomechanical culture conditions to regenerate engineered vessels with physiological properties similar to those of native arterial vessels. In addition, this review will introduce and examine various approaches and techniques that have been used to engineer biologically-based vascular grafts, including collagen-based grafts, fibrin-gel grafts, cell sheet engineering, biodegradable polymers, and decellularization of native vessels. PMID:24399290
Optimization of Compressor Mounting Bracket of a Passenger Car
NASA Astrophysics Data System (ADS)
Kalsi, Sachin; Singh, Daljeet; Saini, J. S.
2018-05-01
In the present work, the CAE tools are used for the optimization of the compressor mounting bracket used in an automobile. Both static and dynamic analysis is done for the bracket. With the objective to minimize the mass and increase the stiffness of the bracket, the new design is optimized using shape and topology optimization techniques. The optimized design given by CAE tool is then validated experimentally. The new design results in lower level of vibrations, contribute to lower mass along with lesser cost which is effective in air conditioning system as well as the efficiency of a vehicle. The results given by CAE tool had a very good correlation with the experimental results.
Computational tool for optimizing the essential oils utilization in inhibiting the bacterial growth
El-Attar, Noha E; Awad, Wael A
2017-01-01
Day after day, the importance of relying on nature in many fields such as food, medical, pharmaceutical industries, and others is increasing. Essential oils (EOs) are considered as one of the most significant natural products for use as antimicrobials, antioxidants, antitumorals, and anti-inflammatories. Optimizing the usage of EOs is a big challenge faced by the scientific researchers because of the complexity of chemical composition of every EO, in addition to the difficulties to determine the best in inhibiting the bacterial activity. The goal of this article is to present a new computational tool based on two methodologies: reduction by using rough sets and optimization with particle swarm optimization. The developed tool dubbed as Essential Oil Reduction and Optimization Tool is applied on 24 types of EOs that have been tested toward 17 different species of bacteria. PMID:28919787
NASA Astrophysics Data System (ADS)
Kahrobaee, Saeed; Kashefi, Mehrdad
2015-03-01
Inaccurate heat treatment process could result in excessive amount of retained austenite, which degrades the mechanical properties, like strength, wear resistance, and hardness of cold work tool steel parts. Thus, to control the mechanical properties, quantitative measurement of the retained austenite is a critical step in optimizing the heat-treating parameters. X-ray diffraction method is the most frequently used technique for this purpose. This technique is, however, destructive and time consuming. Furthermore, it is not applicable to 100% quality inspection of industrial parts. In the present paper, the influence of austenitizing temperature on the retained austenite content and hardness of AISI D2 tool steel has been studied. Additionally, nondestructive magnetic hysteresis parameters of the samples including coercivity, magnetic saturation, and maximum differential permeability as well as their magnetic Barkhausen noise features (RMS peak voltage and peak position) have been investigated. The results revealed direct relations between magnetic saturation, differential permeability, and MBN peak amplitude with increasing austenitizing temperature due to the retained austenite formation. Besides, both parameters of coercivity and peak position had an inverse correlation with the retained austenite fraction.
Computational Tools and Algorithms for Designing Customized Synthetic Genes
Gould, Nathan; Hendy, Oliver; Papamichail, Dimitris
2014-01-01
Advances in DNA synthesis have enabled the construction of artificial genes, gene circuits, and genomes of bacterial scale. Freedom in de novo design of synthetic constructs provides significant power in studying the impact of mutations in sequence features, and verifying hypotheses on the functional information that is encoded in nucleic and amino acids. To aid this goal, a large number of software tools of variable sophistication have been implemented, enabling the design of synthetic genes for sequence optimization based on rationally defined properties. The first generation of tools dealt predominantly with singular objectives such as codon usage optimization and unique restriction site incorporation. Recent years have seen the emergence of sequence design tools that aim to evolve sequences toward combinations of objectives. The design of optimal protein-coding sequences adhering to multiple objectives is computationally hard, and most tools rely on heuristics to sample the vast sequence design space. In this review, we study some of the algorithmic issues behind gene optimization and the approaches that different tools have adopted to redesign genes and optimize desired coding features. We utilize test cases to demonstrate the efficiency of each approach, as well as identify their strengths and limitations. PMID:25340050
Object-Oriented Multi-Disciplinary Design, Analysis, and Optimization Tool
NASA Technical Reports Server (NTRS)
Pak, Chan-gi
2011-01-01
An Object-Oriented Optimization (O3) tool was developed that leverages existing tools and practices, and allows the easy integration and adoption of new state-of-the-art software. At the heart of the O3 tool is the Central Executive Module (CEM), which can integrate disparate software packages in a cross platform network environment so as to quickly perform optimization and design tasks in a cohesive, streamlined manner. This object-oriented framework can integrate the analysis codes for multiple disciplines instead of relying on one code to perform the analysis for all disciplines. The CEM was written in FORTRAN and the script commands for each performance index were submitted through the use of the FORTRAN Call System command. In this CEM, the user chooses an optimization methodology, defines objective and constraint functions from performance indices, and provides starting and side constraints for continuous as well as discrete design variables. The structural analysis modules such as computations of the structural weight, stress, deflection, buckling, and flutter and divergence speeds have been developed and incorporated into the O3 tool to build an object-oriented Multidisciplinary Design, Analysis, and Optimization (MDAO) tool.
Desensitized Optimal Filtering and Sensor Fusion Toolkit
NASA Technical Reports Server (NTRS)
Karlgaard, Christopher D.
2015-01-01
Analytical Mechanics Associates, Inc., has developed a software toolkit that filters and processes navigational data from multiple sensor sources. A key component of the toolkit is a trajectory optimization technique that reduces the sensitivity of Kalman filters with respect to model parameter uncertainties. The sensor fusion toolkit also integrates recent advances in adaptive Kalman and sigma-point filters for non-Gaussian problems with error statistics. This Phase II effort provides new filtering and sensor fusion techniques in a convenient package that can be used as a stand-alone application for ground support and/or onboard use. Its modular architecture enables ready integration with existing tools. A suite of sensor models and noise distribution as well as Monte Carlo analysis capability are included to enable statistical performance evaluations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frazier, Christopher Rawls; Durfee, Justin David; Bandlow, Alisa
The Contingency Contractor Optimization Tool – Prototype (CCOT-P) database is used to store input and output data for the linear program model described in [1]. The database allows queries to retrieve this data and updating and inserting new input data.
NASA Astrophysics Data System (ADS)
Sivarami Reddy, N.; Ramamurthy, D. V., Dr.; Prahlada Rao, K., Dr.
2017-08-01
This article addresses simultaneous scheduling of machines, AGVs and tools where machines are allowed to share the tools considering transfer times of jobs and tools between machines, to generate best optimal sequences that minimize makespan in a multi-machine Flexible Manufacturing System (FMS). Performance of FMS is expected to improve by effective utilization of its resources, by proper integration and synchronization of their scheduling. Symbiotic Organisms Search (SOS) algorithm is a potent tool which is a better alternative for solving optimization problems like scheduling and proven itself. The proposed SOS algorithm is tested on 22 job sets with makespan as objective for scheduling of machines and tools where machines are allowed to share tools without considering transfer times of jobs and tools and the results are compared with the results of existing methods. The results show that the SOS has outperformed. The same SOS algorithm is used for simultaneous scheduling of machines, AGVs and tools where machines are allowed to share tools considering transfer times of jobs and tools to determine the best optimal sequences that minimize makespan.
Combining Simulation Tools for End-to-End Trajectory Optimization
NASA Technical Reports Server (NTRS)
Whitley, Ryan; Gutkowski, Jeffrey; Craig, Scott; Dawn, Tim; Williams, Jacobs; Stein, William B.; Litton, Daniel; Lugo, Rafael; Qu, Min
2015-01-01
Trajectory simulations with advanced optimization algorithms are invaluable tools in the process of designing spacecraft. Due to the need for complex models, simulations are often highly tailored to the needs of the particular program or mission. NASA's Orion and SLS programs are no exception. While independent analyses are valuable to assess individual spacecraft capabilities, a complete end-to-end trajectory from launch to splashdown maximizes potential performance and ensures a continuous solution. In order to obtain end-to-end capability, Orion's in-space tool (Copernicus) was made to interface directly with the SLS's ascent tool (POST2) and a new tool to optimize the full problem by operating both simulations simultaneously was born.
State-of-the-art characterization techniques for advanced lithium-ion batteries
NASA Astrophysics Data System (ADS)
Lu, Jun; Wu, Tianpin; Amine, Khalil
2017-03-01
To meet future needs for industries from personal devices to automobiles, state-of-the-art rechargeable lithium-ion batteries will require both improved durability and lowered costs. To enhance battery performance and lifetime, understanding electrode degradation mechanisms is of critical importance. Various advanced in situ and operando characterization tools developed during the past few years have proven indispensable for optimizing battery materials, understanding cell degradation mechanisms, and ultimately improving the overall battery performance. Here we review recent progress in the development and application of advanced characterization techniques such as in situ transmission electron microscopy for high-performance lithium-ion batteries. Using three representative electrode systems—layered metal oxides, Li-rich layered oxides and Si-based or Sn-based alloys—we discuss how these tools help researchers understand the battery process and design better battery systems. We also summarize the application of the characterization techniques to lithium-sulfur and lithium-air batteries and highlight the importance of those techniques in the development of next-generation batteries.
Challenges of NDE simulation tool validation, optimization, and utilization for composites
NASA Astrophysics Data System (ADS)
Leckey, Cara A. C.; Seebo, Jeffrey P.; Juarez, Peter
2016-02-01
Rapid, realistic nondestructive evaluation (NDE) simulation tools can aid in inspection optimization and prediction of inspectability for advanced aerospace materials and designs. NDE simulation tools may someday aid in the design and certification of aerospace components; potentially shortening the time from material development to implementation by industry and government. Furthermore, ultrasound modeling and simulation are expected to play a significant future role in validating the capabilities and limitations of guided wave based structural health monitoring (SHM) systems. The current state-of-the-art in ultrasonic NDE/SHM simulation is still far from the goal of rapidly simulating damage detection techniques for large scale, complex geometry composite components/vehicles containing realistic damage types. Ongoing work at NASA Langley Research Center is focused on advanced ultrasonic simulation tool development. This paper discusses challenges of simulation tool validation, optimization, and utilization for composites. Ongoing simulation tool development work is described along with examples of simulation validation and optimization challenges that are more broadly applicable to all NDE simulation tools. The paper will also discuss examples of simulation tool utilization at NASA to develop new damage characterization methods for composites, and associated challenges in experimentally validating those methods.
Mechanism Design for Incentivizing Social Media Contributions
NASA Astrophysics Data System (ADS)
Singh, Vivek K.; Jain, Ramesh; Kankanhalli, Mohan
Despite recent advancements in user-driven social media platforms, tools for studying user behavior patterns and motivations remain primitive. We highlight the voluntary nature of user contributions and that users can choose when (and when not) to contribute to the common media pool. A Game theoretic framework is proposed to study the dynamics of social media networks where contribution costs are individual but gains are common. We model users as rational selfish agents, and consider domain attributes like voluntary participation, virtual reward structure, network effect, and public-sharing to model the dynamics of this interaction. The created model describes the most appropriate contribution strategy from each user's perspective and also highlights issues like 'free-rider' problem and individual rationality leading to irrational (i.e. sub-optimal) group behavior. We also consider the perspective of the system designer who is interested in finding the best incentive mechanisms to influence the selfish end-users so that the overall system utility is maximized. We propose and compare multiple mechanisms (based on optimal bonus payment, social incentive leveraging, and second price auction) to study how a system designer can exploit the selfishness of its users, to design incentive mechanisms which improve the overall task-completion probability and system performance, while possibly still benefiting the individual users.
Watershed Management Optimization Support Tool (WMOST) v2: User Manual and Case Studies
The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that evaluates the relative cost-effectiveness of management practices at the local or watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed c...
Decision Support for Resilient Communities: EPA’s Watershed Management Optimization Support Tool
The U.S. EPA Atlantic Ecology Division is releasing version 3 of the Watershed Management Optimization Support Tool (WMOST v3) in February 2018. WMOST is a decision-support tool that facilitates integrated water resources management (IWRM) by communities and watershed organizati...
The Watershed Management Optimization Support Tool (WMOST) is a public-domain software application designed to aid decision makers with integrated water resources management. The tool allows water resource managers and planners to screen a wide-range of management practices for c...
ConvAn: a convergence analyzing tool for optimization of biochemical networks.
Kostromins, Andrejs; Mozga, Ivars; Stalidzans, Egils
2012-01-01
Dynamic models of biochemical networks usually are described as a system of nonlinear differential equations. In case of optimization of models for purpose of parameter estimation or design of new properties mainly numerical methods are used. That causes problems of optimization predictability as most of numerical optimization methods have stochastic properties and the convergence of the objective function to the global optimum is hardly predictable. Determination of suitable optimization method and necessary duration of optimization becomes critical in case of evaluation of high number of combinations of adjustable parameters or in case of large dynamic models. This task is complex due to variety of optimization methods, software tools and nonlinearity features of models in different parameter spaces. A software tool ConvAn is developed to analyze statistical properties of convergence dynamics for optimization runs with particular optimization method, model, software tool, set of optimization method parameters and number of adjustable parameters of the model. The convergence curves can be normalized automatically to enable comparison of different methods and models in the same scale. By the help of the biochemistry adapted graphical user interface of ConvAn it is possible to compare different optimization methods in terms of ability to find the global optima or values close to that as well as the necessary computational time to reach them. It is possible to estimate the optimization performance for different number of adjustable parameters. The functionality of ConvAn enables statistical assessment of necessary optimization time depending on the necessary optimization accuracy. Optimization methods, which are not suitable for a particular optimization task, can be rejected if they have poor repeatability or convergence properties. The software ConvAn is freely available on www.biosystems.lv/convan. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Dermatologic Surgical Instruments: A History and Review.
Gandhi, Sumul A; Kampp, Jeremy T
2017-01-01
Dermatologic surgery requires precision and accuracy given the delicate nature of procedures performed. The use of the most appropriate instrument for each action helps optimize both functionality and cosmetic outcome. To review the history of surgical instruments used in dermatology, with a focus on mechanism and evolution to the instruments that are used in current practice. A comprehensive literature search was conducted via textbook and journal research for historic references while review of current references was conducted online using multiple search engines and PubMed. There are a number of articles that review instruments in dermatology, but this article adds a unique perspective in classifying their evolution, while also presenting them as levers that serve to increase human dexterity during the course of surgery. Surgical instruments allow fine manipulation of tissue, which in turn produces optimal outcomes. Surgical tools have been around since the dawn of man, and their evolution parallels the extent to which human civilization has specialized over time. This article describes the evolution of instruments from the general surgical armamentaria to the specialized tools that are used today.
Current advances in mathematical modeling of anti-cancer drug penetration into tumor tissues.
Kim, Munju; Gillies, Robert J; Rejniak, Katarzyna A
2013-11-18
Delivery of anti-cancer drugs to tumor tissues, including their interstitial transport and cellular uptake, is a complex process involving various biochemical, mechanical, and biophysical factors. Mathematical modeling provides a means through which to understand this complexity better, as well as to examine interactions between contributing components in a systematic way via computational simulations and quantitative analyses. In this review, we present the current state of mathematical modeling approaches that address phenomena related to drug delivery. We describe how various types of models were used to predict spatio-temporal distributions of drugs within the tumor tissue, to simulate different ways to overcome barriers to drug transport, or to optimize treatment schedules. Finally, we discuss how integration of mathematical modeling with experimental or clinical data can provide better tools to understand the drug delivery process, in particular to examine the specific tissue- or compound-related factors that limit drug penetration through tumors. Such tools will be important in designing new chemotherapy targets and optimal treatment strategies, as well as in developing non-invasive diagnosis to monitor treatment response and detect tumor recurrence.
NASA Technical Reports Server (NTRS)
Freeman, W.; Ilcewicz, L.; Swanson, G.; Gutowski, T.
1992-01-01
The Structures Technology Program Office (STPO) at NASA LaRC has initiated development of a conceptual and preliminary designers' cost prediction model. The model will provide a technically sound method for evaluating the relative cost of different composite structural designs, fabrication processes, and assembly methods that can be compared to equivalent metallic parts or assemblies. The feasibility of developing cost prediction software in a modular form for interfacing with state-of-the-art preliminary design tools and computer aided design programs is being evaluated. The goal of this task is to establish theoretical cost functions that relate geometric design features to summed material cost and labor content in terms of process mechanics and physics. The output of the designers' present analytical tools will be input for the designers' cost prediction model to provide the designer with a database and deterministic cost methodology that allows one to trade and synthesize designs with both cost and weight as objective functions for optimization. This paper presents the team members, approach, goals, plans, and progress to date for development of COSTADE (Cost Optimization Software for Transport Aircraft Design Evaluation).
PopED lite: An optimal design software for preclinical pharmacokinetic and pharmacodynamic studies.
Aoki, Yasunori; Sundqvist, Monika; Hooker, Andrew C; Gennemark, Peter
2016-04-01
Optimal experimental design approaches are seldom used in preclinical drug discovery. The objective is to develop an optimal design software tool specifically designed for preclinical applications in order to increase the efficiency of drug discovery in vivo studies. Several realistic experimental design case studies were collected and many preclinical experimental teams were consulted to determine the design goal of the software tool. The tool obtains an optimized experimental design by solving a constrained optimization problem, where each experimental design is evaluated using some function of the Fisher Information Matrix. The software was implemented in C++ using the Qt framework to assure a responsive user-software interaction through a rich graphical user interface, and at the same time, achieving the desired computational speed. In addition, a discrete global optimization algorithm was developed and implemented. The software design goals were simplicity, speed and intuition. Based on these design goals, we have developed the publicly available software PopED lite (http://www.bluetree.me/PopED_lite). Optimization computation was on average, over 14 test problems, 30 times faster in PopED lite compared to an already existing optimal design software tool. PopED lite is now used in real drug discovery projects and a few of these case studies are presented in this paper. PopED lite is designed to be simple, fast and intuitive. Simple, to give many users access to basic optimal design calculations. Fast, to fit a short design-execution cycle and allow interactive experimental design (test one design, discuss proposed design, test another design, etc). Intuitive, so that the input to and output from the software tool can easily be understood by users without knowledge of the theory of optimal design. In this way, PopED lite is highly useful in practice and complements existing tools. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Thermodynamics of Gas Turbine Cycles with Analytic Derivatives in OpenMDAO
NASA Technical Reports Server (NTRS)
Gray, Justin; Chin, Jeffrey; Hearn, Tristan; Hendricks, Eric; Lavelle, Thomas; Martins, Joaquim R. R. A.
2016-01-01
A new equilibrium thermodynamics analysis tool was built based on the CEA method using the OpenMDAO framework. The new tool provides forward and adjoint analytic derivatives for use with gradient based optimization algorithms. The new tool was validated against the original CEA code to ensure an accurate analysis and the analytic derivatives were validated against finite-difference approximations. Performance comparisons between analytic and finite difference methods showed a significant speed advantage for the analytic methods. To further test the new analysis tool, a sample optimization was performed to find the optimal air-fuel equivalence ratio, , maximizing combustion temperature for a range of different pressures. Collectively, the results demonstrate the viability of the new tool to serve as the thermodynamic backbone for future work on a full propulsion modeling tool.
Extension of an Object-Oriented Optimization Tool: User's Reference Manual
NASA Technical Reports Server (NTRS)
Pak, Chan-Gi; Truong, Samson S.
2015-01-01
The National Aeronautics and Space Administration Armstrong Flight Research Center has developed a cost-effective and flexible object-oriented optimization (O (sup 3)) tool that leverages existing tools and practices and allows easy integration and adoption of new state-of-the-art software. This object-oriented framework can integrate the analysis codes for multiple disciplines, as opposed to relying on one code to perform analysis for all disciplines. Optimization can thus take place within each discipline module, or in a loop between the O (sup 3) tool and the discipline modules, or both. Six different sample mathematical problems are presented to demonstrate the performance of the O (sup 3) tool. Instructions for preparing input data for the O (sup 3) tool are detailed in this user's manual.
Collins, Michael G.; Juvina, Ion; Gluck, Kevin A.
2016-01-01
When playing games of strategic interaction, such as iterated Prisoner's Dilemma and iterated Chicken Game, people exhibit specific within-game learning (e.g., learning a game's optimal outcome) as well as transfer of learning between games (e.g., a game's optimal outcome occurring at a higher proportion when played after another game). The reciprocal trust players develop during the first game is thought to mediate transfer of learning effects. Recently, a computational cognitive model using a novel trust mechanism has been shown to account for human behavior in both games, including the transfer between games. We present the results of a study in which we evaluate the model's a priori predictions of human learning and transfer in 16 different conditions. The model's predictive validity is compared against five model variants that lacked a trust mechanism. The results suggest that a trust mechanism is necessary to explain human behavior across multiple conditions, even when a human plays against a non-human agent. The addition of a trust mechanism to the other learning mechanisms within the cognitive architecture, such as sequence learning, instance-based learning, and utility learning, leads to better prediction of the empirical data. It is argued that computational cognitive modeling is a useful tool for studying trust development, calibration, and repair. PMID:26903892
Prediction of composites behavior undergoing an ATP process through data-mining
NASA Astrophysics Data System (ADS)
Martin, Clara Argerich; Collado, Angel Leon; Pinillo, Rubén Ibañez; Barasinski, Anaïs; Abisset-Chavanne, Emmanuelle; Chinesta, Francisco
2018-05-01
The need to characterize composite surfaces for distinct mechanical or physical processes leads to different manners of evaluate the state of the surface. During many manufacturing processes deformation occurs, thus hindering composite classification for fabrication processes. In this work we focus on the challenge of a priori identifying the surfaces' behavior in order to optimize manufacturing. We will propose and validate the curvature of the surface as a reliable parameter and we will develop a tool that allows the prediction of the surface behavior.
Radar polarimetry - Analysis tools and applications
NASA Technical Reports Server (NTRS)
Evans, Diane L.; Farr, Tom G.; Van Zyl, Jakob J.; Zebker, Howard A.
1988-01-01
The authors have developed several techniques to analyze polarimetric radar data from the NASA/JPL airborne SAR for earth science applications. The techniques determine the heterogeneity of scatterers with subregions, optimize the return power from these areas, and identify probable scattering mechanisms for each pixel in a radar image. These techniques are applied to the discrimination and characterization of geologic surfaces and vegetation cover, and it is found that their utility varies depending on the terrain type. It is concluded that there are several classes of problems amenable to single-frequency polarimetric data analysis, including characterization of surface roughness and vegetation structure, and estimation of vegetation density. Polarimetric radar remote sensing can thus be a useful tool for monitoring a set of earth science parameters.
The power of associative learning and the ontogeny of optimal behaviour.
Enquist, Magnus; Lind, Johan; Ghirlanda, Stefano
2016-11-01
Behaving efficiently (optimally or near-optimally) is central to animals' adaptation to their environment. Much evolutionary biology assumes, implicitly or explicitly, that optimal behavioural strategies are genetically inherited, yet the behaviour of many animals depends crucially on learning. The question of how learning contributes to optimal behaviour is largely open. Here we propose an associative learning model that can learn optimal behaviour in a wide variety of ecologically relevant circumstances. The model learns through chaining, a term introduced by Skinner to indicate learning of behaviour sequences by linking together shorter sequences or single behaviours. Our model formalizes the concept of conditioned reinforcement (the learning process that underlies chaining) and is closely related to optimization algorithms from machine learning. Our analysis dispels the common belief that associative learning is too limited to produce 'intelligent' behaviour such as tool use, social learning, self-control or expectations of the future. Furthermore, the model readily accounts for both instinctual and learned aspects of behaviour, clarifying how genetic evolution and individual learning complement each other, and bridging a long-standing divide between ethology and psychology. We conclude that associative learning, supported by genetic predispositions and including the oft-neglected phenomenon of conditioned reinforcement, may suffice to explain the ontogeny of optimal behaviour in most, if not all, non-human animals. Our results establish associative learning as a more powerful optimizing mechanism than acknowledged by current opinion.
The power of associative learning and the ontogeny of optimal behaviour
Enquist, Magnus; Lind, Johan
2016-01-01
Behaving efficiently (optimally or near-optimally) is central to animals' adaptation to their environment. Much evolutionary biology assumes, implicitly or explicitly, that optimal behavioural strategies are genetically inherited, yet the behaviour of many animals depends crucially on learning. The question of how learning contributes to optimal behaviour is largely open. Here we propose an associative learning model that can learn optimal behaviour in a wide variety of ecologically relevant circumstances. The model learns through chaining, a term introduced by Skinner to indicate learning of behaviour sequences by linking together shorter sequences or single behaviours. Our model formalizes the concept of conditioned reinforcement (the learning process that underlies chaining) and is closely related to optimization algorithms from machine learning. Our analysis dispels the common belief that associative learning is too limited to produce ‘intelligent’ behaviour such as tool use, social learning, self-control or expectations of the future. Furthermore, the model readily accounts for both instinctual and learned aspects of behaviour, clarifying how genetic evolution and individual learning complement each other, and bridging a long-standing divide between ethology and psychology. We conclude that associative learning, supported by genetic predispositions and including the oft-neglected phenomenon of conditioned reinforcement, may suffice to explain the ontogeny of optimal behaviour in most, if not all, non-human animals. Our results establish associative learning as a more powerful optimizing mechanism than acknowledged by current opinion. PMID:28018662
NASA Astrophysics Data System (ADS)
Cardenas, Nelson; Kyrish, Matthew; Taylor, Daniel; Fraelich, Margaret; Lechuga, Oscar; Claytor, Richard; Claytor, Nelson
2015-03-01
Electro-Chemical Polishing is routinely used in the anodizing industry to achieve specular surface finishes of various metals products prior to anodizing. Electro-Chemical polishing functions by leveling the microscopic peaks and valleys of the substrate, thereby increasing specularity and reducing light scattering. The rate of attack is dependent of the physical characteristics (height, depth, and width) of the microscopic structures that constitute the surface finish. To prepare the sample, mechanical polishing such as buffing or grinding is typically required before etching. This type of mechanical polishing produces random microscopic structures at varying depths and widths, thus the electropolishing parameters are determined in an ad hoc basis. Alternatively, single point diamond turning offers excellent repeatability and highly specific control of substrate polishing parameters. While polishing, the diamond tool leaves behind an associated tool mark, which is related to the diamond tool geometry and machining parameters. Machine parameters such as tool cutting depth, speed and step over can be changed in situ, thus providing control of the spatial frequency of the microscopic structures characteristic of the surface topography of the substrate. By combining single point diamond turning with subsequent electro-chemical etching, ultra smooth polishing of both rotationally symmetric and free form mirrors and molds is possible. Additionally, machining parameters can be set to optimize post polishing for increased surface quality and reduced processing times. In this work, we present a study of substrate surface finish based on diamond turning tool mark spatial frequency with subsequent electro-chemical polishing.
NASA Astrophysics Data System (ADS)
Maringanti, Chetan; Chaubey, Indrajeet; Popp, Jennie
2009-06-01
Best management practices (BMPs) are effective in reducing the transport of agricultural nonpoint source pollutants to receiving water bodies. However, selection of BMPs for placement in a watershed requires optimization of the available resources to obtain maximum possible pollution reduction. In this study, an optimization methodology is developed to select and place BMPs in a watershed to provide solutions that are both economically and ecologically effective. This novel approach develops and utilizes a BMP tool, a database that stores the pollution reduction and cost information of different BMPs under consideration. The BMP tool replaces the dynamic linkage of the distributed parameter watershed model during optimization and therefore reduces the computation time considerably. Total pollutant load from the watershed, and net cost increase from the baseline, were the two objective functions minimized during the optimization process. The optimization model, consisting of a multiobjective genetic algorithm (NSGA-II) in combination with a watershed simulation tool (Soil Water and Assessment Tool (SWAT)), was developed and tested for nonpoint source pollution control in the L'Anguille River watershed located in eastern Arkansas. The optimized solutions provided a trade-off between the two objective functions for sediment, phosphorus, and nitrogen reduction. The results indicated that buffer strips were very effective in controlling the nonpoint source pollutants from leaving the croplands. The optimized BMP plans resulted in potential reductions of 33%, 32%, and 13% in sediment, phosphorus, and nitrogen loads, respectively, from the watershed.
Distributed Method to Optimal Profile Descent
NASA Astrophysics Data System (ADS)
Kim, Geun I.
Current ground automation tools for Optimal Profile Descent (OPD) procedures utilize path stretching and speed profile change to maintain proper merging and spacing requirements at high traffic terminal area. However, low predictability of aircraft's vertical profile and path deviation during decent add uncertainty to computing estimated time of arrival, a key information that enables the ground control center to manage airspace traffic effectively. This paper uses an OPD procedure that is based on a constant flight path angle to increase the predictability of the vertical profile and defines an OPD optimization problem that uses both path stretching and speed profile change while largely maintaining the original OPD procedure. This problem minimizes the cumulative cost of performing OPD procedures for a group of aircraft by assigning a time cost function to each aircraft and a separation cost function to a pair of aircraft. The OPD optimization problem is then solved in a decentralized manner using dual decomposition techniques under inter-aircraft ADS-B mechanism. This method divides the optimization problem into more manageable sub-problems which are then distributed to the group of aircraft. Each aircraft solves its assigned sub-problem and communicate the solutions to other aircraft in an iterative process until an optimal solution is achieved thus decentralizing the computation of the optimization problem.
Optimized radiation-hardened erbium doped fiber amplifiers for long space missions
NASA Astrophysics Data System (ADS)
Ladaci, A.; Girard, S.; Mescia, L.; Robin, T.; Laurent, A.; Cadier, B.; Boutillier, M.; Ouerdane, Y.; Boukenter, A.
2017-04-01
In this work, we developed and exploited simulation tools to optimize the performances of rare earth doped fiber amplifiers (REDFAs) for space missions. To describe these systems, a state-of-the-art model based on the rate equations and the particle swarm optimization technique is developed in which we also consider the main radiation effect on REDFA: the radiation induced attenuation (RIA). After the validation of this tool set by confrontation between theoretical and experimental results, we investigate how the deleterious radiation effects on the amplifier performance can be mitigated following adequate strategies to conceive the REDFA architecture. The tool set was validated by comparing the calculated Erbium-doped fiber amplifier (EDFA) gain degradation under X-rays at ˜300 krad(SiO2) with the corresponding experimental results. Two versions of the same fibers were used in this work, a standard optical fiber and a radiation hardened fiber, obtained by loading the previous fiber with hydrogen gas. Based on these fibers, standard and radiation hardened EDFAs were manufactured and tested in different operating configurations, and the obtained data were compared with simulation data done considering the same EDFA structure and fiber properties. This comparison reveals a good agreement between simulated gain and experimental data (<10% as the maximum error for the highest doses). Compared to our previous results obtained on Er/Yb-amplifiers, these results reveal the importance of the photo-bleaching mechanism competing with the RIA that cannot be neglected for the modeling of the radiation-induced gain degradation of EDFAs. This implies to measure in representative conditions the RIA at the pump and signal wavelengths that are used as input parameters for the simulation. The validated numerical codes have then been used to evaluate the potential of some EDFA architecture evolutions in the amplifier performance during the space mission. Optimization of both the fiber length and the EDFA pumping scheme allows us to strongly reduce its radiation vulnerability in terms of gain. The presented approach is a complementary and effective tool for hardening by device techniques and opens new perspectives for the applications of REDFAs and lasers in harsh environments.
Advancing density functional theory to finite temperatures: methods and applications in steel design
NASA Astrophysics Data System (ADS)
Hickel, T.; Grabowski, B.; Körmann, F.; Neugebauer, J.
2012-02-01
The performance of materials such as steels, their high strength and formability, is based on an impressive variety of competing mechanisms on the microscopic/atomic scale (e.g. dislocation gliding, solid solution hardening, mechanical twinning or structural phase transformations). Whereas many of the currently available concepts to describe these mechanisms are based on empirical and experimental data, it becomes more and more apparent that further improvement of materials needs to be based on a more fundamental level. Recent progress for methods based on density functional theory (DFT) now makes the exploration of chemical trends, the determination of parameters for phenomenological models and the identification of new routes for the optimization of steel properties feasible. A major challenge in applying these methods to a true materials design is, however, the inclusion of temperature-driven effects on the desired properties. Therefore, a large range of computational tools has been developed in order to improve the capability and accuracy of first-principles methods in determining free energies. These combine electronic, vibrational and magnetic effects as well as structural defects in an integrated approach. Based on these simulation tools, one is now able to successfully predict mechanical and thermodynamic properties of metals with a hitherto not achievable accuracy.
Hickel, T; Grabowski, B; Körmann, F; Neugebauer, J
2012-02-08
The performance of materials such as steels, their high strength and formability, is based on an impressive variety of competing mechanisms on the microscopic/atomic scale (e.g. dislocation gliding, solid solution hardening, mechanical twinning or structural phase transformations). Whereas many of the currently available concepts to describe these mechanisms are based on empirical and experimental data, it becomes more and more apparent that further improvement of materials needs to be based on a more fundamental level. Recent progress for methods based on density functional theory (DFT) now makes the exploration of chemical trends, the determination of parameters for phenomenological models and the identification of new routes for the optimization of steel properties feasible. A major challenge in applying these methods to a true materials design is, however, the inclusion of temperature-driven effects on the desired properties. Therefore, a large range of computational tools has been developed in order to improve the capability and accuracy of first-principles methods in determining free energies. These combine electronic, vibrational and magnetic effects as well as structural defects in an integrated approach. Based on these simulation tools, one is now able to successfully predict mechanical and thermodynamic properties of metals with a hitherto not achievable accuracy.
Compliant mechanism road bicycle brake: a rigid-body replacement case study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsen, Brian M; Howell, Larry L; Magleby, Spencer P
2011-01-19
The design of high-performance bicycle brakes is complicated by the competing design objectives of increased performance and low weight. But this challenge also provides a good case study to demonstrate the design of compliant mechanisms to replace current rigid-link mechanisms. This paper briefly reviews current road brake designs, demonstrates the use of rigid-body replacement synthesis to design a compliant mechanism, and illustrates the combination of compliant mechanism design tools. The resulting concept was generated from the modified dual-pivot brake design and is a partially compliant mechanism where one pin has the dual role of a joint and a mounting pin.more » The pseudo-rigid-body model, finite element analysis, and optimization algorithms are used to generate design dimensions, and designs are considered for both titanium and E-glass flexures. The resulting design has the potential of reducing the part count and overall weight while maintaining a performance similar to the benchmark.« less
A General Multidisciplinary Turbomachinery Design Optimization system Applied to a Transonic Fan
NASA Astrophysics Data System (ADS)
Nemnem, Ahmed Mohamed Farid
The blade geometry design process is integral to the development and advancement of compressors and turbines in gas generators or aeroengines. A new airfoil section design capability has been added to an open source parametric 3D blade design tool. Curvature of the meanline is controlled using B-splines to create the airfoils. The curvature is analytically integrated to derive the angles and the meanline is obtained by integrating the angles. A smooth thickness distribution is then added to the airfoil to guarantee a smooth shape while maintaining a prescribed thickness distribution. A leading edge B-spline definition has also been implemented to achieve customized airfoil leading edges which guarantees smoothness with parametric eccentricity and droop. An automated turbomachinery design and optimization system has been created. An existing splittered transonic fan is used as a test and reference case. This design was more general than a conventional design to have access to the other design methodology. The whole mechanical and aerodynamic design loops are automated for the optimization process. The flow path and the geometrical properties of the rotor are initially created using the axi-symmetric design and analysis code (T-AXI). The main and splitter blades are parametrically designed with the created geometry builder (3DBGB) using the new added features (curvature technique). The solid model creation of the rotor sector with a periodic boundaries combining the main blade and splitter is done using MATLAB code directly connected to SolidWorks including the hub, fillets and tip clearance. A mechanical optimization is performed with DAKOTA (developed by DOE) to reduce the mass of the blades while keeping maximum stress as a constraint with a safety factor. A Genetic algorithm followed by Numerical Gradient optimization strategies are used in the mechanical optimization. The splittered transonic fan blades mass is reduced by 2.6% while constraining the maximum stress below 50% material yield strength using 2D sections thickness and chord multipliers. Once the initial design was mechanically optimized, a CFD optimization was performed to maximize efficiency and/or stall margin. The CFD grid generator (AUTOGRID) reads 3DBGB output and accounts for hub fillets and tip gaps. Single and Multi-objective Genetic Algorithm (SOGA, MOGA) optimization have been used with the CFD analysis system. In SOGA optimization, efficiency was increased by 3.525% from 78.364% to 81.889% while only changing 4 design parameters. For MOGA optimization with higher weighting efficiency than stall margin, the efficiency was increased by 2.651% from 78.364% to 81.015% while the static pressure recovery factor was increased from 0.37407 to 0.4812286 that consequently increases the stall margin. The design process starts with a hot shape design, and then a hot to cold transformation process is explained once the optimization process ends which smoothly subtracts the mechanical deflections from the hot shape. This transformation ensures an accurate tip clearance. The optimization modules can be customized by the user as one full optimization or multiple small ones. This allows the designer not to be eliminated from the design loop which helps in taking the right choice of parameters for the optimization and the final feasible design.
Implementation of a Low-Thrust Trajectory Optimization Algorithm for Preliminary Design
NASA Technical Reports Server (NTRS)
Sims, Jon A.; Finlayson, Paul A.; Rinderle, Edward A.; Vavrina, Matthew A.; Kowalkowski, Theresa D.
2006-01-01
A tool developed for the preliminary design of low-thrust trajectories is described. The trajectory is discretized into segments and a nonlinear programming method is used for optimization. The tool is easy to use, has robust convergence, and can handle many intermediate encounters. In addition, the tool has a wide variety of features, including several options for objective function and different low-thrust propulsion models (e.g., solar electric propulsion, nuclear electric propulsion, and solar sail). High-thrust, impulsive trajectories can also be optimized.
Topology and boundary shape optimization as an integrated design tool
NASA Technical Reports Server (NTRS)
Bendsoe, Martin Philip; Rodrigues, Helder Carrico
1990-01-01
The optimal topology of a two dimensional linear elastic body can be computed by regarding the body as a domain of the plane with a high density of material. Such an optimal topology can then be used as the basis for a shape optimization method that computes the optimal form of the boundary curves of the body. This results in an efficient and reliable design tool, which can be implemented via common FEM mesh generator and CAD type input-output facilities.
NASA Astrophysics Data System (ADS)
Heine, A.; Berger, M.
The classical meaning of motion design is the usage of laws of motion with convenient characteristic values. Whereas the software MOCAD supports a graphical and interactive mode of operation, among others by using an automatic polynomial interpolation. Besides a direct coupling for motion control systems, different file formats for data export are offered. The calculation of plane and spatial cam mechanisms is also based on the data, generated in the motion design module. Drawing on an example of an intermittent cam mechanism with an inside cam profile used as a new drive concept for indexing tables, the influence of motion design on the transmission properties is shown. Another example gives an insight into the calculation and export of envelope curves for cylindrical cam mechanisms. The gained geometry data can be used for generating realistic 3D-models in the CAD-system Pro/ENGINEER, using a special data exchange format.
Using Optimization to Improve Test Planning
2017-09-01
friendly and to display the output differently, the test and evaluation test schedule optimization model would be a good tool for the test and... evaluation schedulers. 14. SUBJECT TERMS schedule optimization, test planning 15. NUMBER OF PAGES 223 16. PRICE CODE 17. SECURITY CLASSIFICATION OF...make the input more user-friendly and to display the output differently, the test and evaluation test schedule optimization model would be a good tool
OPTIMAL WELL LOCATOR (OWL): A SCREENING TOOL FOR EVALUATING LOCATIONS OF MONITORING WELLS
The Optimal Well Locator ( OWL) program was designed and developed by USEPA to be a screening tool to evaluate and optimize the placement of wells in long term monitoring networks at small sites. The first objective of the OWL program is to allow the user to visualize the change ...
Cereda, Carlo W; Christensen, Søren; Campbell, Bruce Cv; Mishra, Nishant K; Mlynash, Michael; Levi, Christopher; Straka, Matus; Wintermark, Max; Bammer, Roland; Albers, Gregory W; Parsons, Mark W; Lansberg, Maarten G
2016-10-01
Differences in research methodology have hampered the optimization of Computer Tomography Perfusion (CTP) for identification of the ischemic core. We aim to optimize CTP core identification using a novel benchmarking tool. The benchmarking tool consists of an imaging library and a statistical analysis algorithm to evaluate the performance of CTP. The tool was used to optimize and evaluate an in-house developed CTP-software algorithm. Imaging data of 103 acute stroke patients were included in the benchmarking tool. Median time from stroke onset to CT was 185 min (IQR 180-238), and the median time between completion of CT and start of MRI was 36 min (IQR 25-79). Volumetric accuracy of the CTP-ROIs was optimal at an rCBF threshold of <38%; at this threshold, the mean difference was 0.3 ml (SD 19.8 ml), the mean absolute difference was 14.3 (SD 13.7) ml, and CTP was 67% sensitive and 87% specific for identification of DWI positive tissue voxels. The benchmarking tool can play an important role in optimizing CTP software as it provides investigators with a novel method to directly compare the performance of alternative CTP software packages. © The Author(s) 2015.
Watershed Management Optimization Support Tool (WMOST) v1: User Manual and Case Study Examples
The Watershed Management Optimization Support Tool (WMOST) is intended to be used as a screening tool as part of an integrated watershed management process such as that described in EPA’s watershed planning handbook (EPA 2008).1 The objective of WMOST is to serve as a public-doma...
NASA Astrophysics Data System (ADS)
Vasu, M.; Shivananda, Nayaka H.
2018-04-01
EN47 steel samples are machined on a self-centered lathe using Chemical Vapor Deposition of coated TiCN/Al2O3/TiN and uncoated tungsten carbide tool inserts, with nose radius 0.8mm. Results are compared with each other and optimized using statistical tool. Input (cutting) parameters that are considered in this work are feed rate (f), cutting speed (Vc), and depth of cut (ap), the optimization criteria are based on the Taguchi (L9) orthogonal array. ANOVA method is adopted to evaluate the statistical significance and also percentage contribution for each model. Multiple response characteristics namely cutting force (Fz), tool tip temperature (T) and surface roughness (Ra) are evaluated. The results discovered that coated tool insert (TiCN/Al2O3/TiN) exhibits 1.27 and 1.29 times better than the uncoated tool insert for tool tip temperature and surface roughness respectively. A slight increase in cutting force was observed for coated tools.
Collaboration pathway(s) using new tools for optimizing operational climate monitoring from space
NASA Astrophysics Data System (ADS)
Helmuth, Douglas B.; Selva, Daniel; Dwyer, Morgan M.
2014-10-01
Consistently collecting the earth's climate signatures remains a priority for world governments and international scientific organizations. Architecting a solution requires transforming scientific missions into an optimized robust `operational' constellation that addresses the needs of decision makers, scientific investigators and global users for trusted data. The application of new tools offers pathways for global architecture collaboration. Recent (2014) rulebased decision engine modeling runs that targeted optimizing the intended NPOESS architecture, becomes a surrogate for global operational climate monitoring architecture(s). This rule-based systems tools provide valuable insight for Global climate architectures, through the comparison and evaluation of alternatives considered and the exhaustive range of trade space explored. A representative optimization of Global ECV's (essential climate variables) climate monitoring architecture(s) is explored and described in some detail with thoughts on appropriate rule-based valuations. The optimization tools(s) suggest and support global collaboration pathways and hopefully elicit responses from the audience and climate science shareholders.
Preliminary Development of an Object-Oriented Optimization Tool
NASA Technical Reports Server (NTRS)
Pak, Chan-gi
2011-01-01
The National Aeronautics and Space Administration Dryden Flight Research Center has developed a FORTRAN-based object-oriented optimization (O3) tool that leverages existing tools and practices and allows easy integration and adoption of new state-of-the-art software. The object-oriented framework can integrate the analysis codes for multiple disciplines, as opposed to relying on one code to perform analysis for all disciplines. Optimization can thus take place within each discipline module, or in a loop between the central executive module and the discipline modules, or both. Six sample optimization problems are presented. The first four sample problems are based on simple mathematical equations; the fifth and sixth problems consider a three-bar truss, which is a classical example in structural synthesis. Instructions for preparing input data for the O3 tool are presented.
Investigation of the mechanical behaviour of the foot skin.
Fontanella, C G; Carniel, E L; Forestiero, A; Natali, A N
2014-11-01
The aim of this work was to provide computational tools for the characterization of the actual mechanical behaviour of foot skin, accounting for results from experimental testing and histological investigation. Such results show the typical features of skin mechanics, such as anisotropic configuration, almost incompressible behaviour, material and geometrical non linearity. The anisotropic behaviour is mainly determined by the distribution of collagen fibres along specific directions, usually identified as cleavage lines. To evaluate the biomechanical response of foot skin, a refined numerical model of the foot is developed. The overall mechanical behaviour of the skin is interpreted by a fibre-reinforced hyperelastic constitutive model and the orientation of the cleavage lines is implemented by a specific procedure. Numerical analyses that interpret typical loading conditions of the foot are performed. The influence of fibres orientation and distribution on skin mechanics is outlined also by a comparison with results using an isotropic scheme. A specific constitutive formulation is provided to characterize the mechanical behaviour of foot skin. The formulation is applied within a numerical model of the foot to investigate the skin functionality during typical foot movements. Numerical analyses developed accounting for the actual anisotropic configuration of the skin show lower maximum principal stress fields than results from isotropic analyses. The developed computational models provide reliable tools for the investigation of foot tissues functionality. Furthermore, the comparison between numerical results from anisotropic and isotropic models shows the optimal configuration of foot skin. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Hybrid, experimental and computational, investigation of mechanical components
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Pryputniewicz, Ryszard J.
1996-07-01
Computational and experimental methodologies have unique features for the analysis and solution of a wide variety of engineering problems. Computations provide results that depend on selection of input parameters such as geometry, material constants, and boundary conditions which, for correct modeling purposes, have to be appropriately chosen. In addition, it is relatively easy to modify the input parameters in order to computationally investigate different conditions. Experiments provide solutions which characterize the actual behavior of the object of interest subjected to specific operating conditions. However, it is impractical to experimentally perform parametric investigations. This paper discusses the use of a hybrid, computational and experimental, approach for study and optimization of mechanical components. Computational techniques are used for modeling the behavior of the object of interest while it is experimentally tested using noninvasive optical techniques. Comparisons are performed through a fringe predictor program used to facilitate the correlation between both techniques. In addition, experimentally obtained quantitative information, such as displacements and shape, can be applied in the computational model in order to improve this correlation. The result is a validated computational model that can be used for performing quantitative analyses and structural optimization. Practical application of the hybrid approach is illustrated with a representative example which demonstrates the viability of the approach as an engineering tool for structural analysis and optimization.
The Optimal Well Locator ( OWL) program was designed and developed by USEPA to be a screening tool to evaluate and optimize the placement of wells in long term monitoring networks at small sites. The first objective of the OWL program is to allow the user to visualize the change ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayanan, Badri; Sasikumar, Kiran; Mei, Zhi-Gang
2016-07-07
Zirconium nitride (ZrN) exhibits exceptional mechanical, chemical, and electrical properties, which make it attractive for a wide range of technological applications, including wear-resistant coatings, protection from corrosion, cutting/shaping tools, and nuclear breeder reactors. Despite its broad usability, an atomic scale understanding of the superior performance of ZrN, and its response to external stimuli, for example, temperature, applied strain, and so on, is not well understood. This is mainly due to the lack of interatomic potential models that accurately describe the interactions between Zr and N atoms. To address this challenge, we develop a modified embedded atom method (MEAM) interatomic potentialmore » for the Zr–N binary system by training against formation enthalpies, lattice parameters, elastic properties, and surface energies of ZrN (and, in some cases, also Zr3N4) obtained from density functional theory (DFT) calculations. The best set of MEAM parameters are determined by employing a multiobjective global optimization scheme driven by genetic algorithms. Our newly developed MEAM potential accurately reproduces structure, thermodynamics, energetic ordering of polymorphs, as well as elastic and surface properties of Zr–N compounds, in excellent agreement with DFT calculations and experiments. As a representative application, we employed molecular dynamics simulations based on this MEAM potential to investigate the atomic scale mechanisms underlying fracture of bulk and nanopillar ZrN under applied uniaxial strains, as well as the impact of strain rate on their mechanical behavior. These simulations indicate that bulk ZrN undergoes brittle fracture irrespective of the strain rate, while ZrN nanopillars show quasi-plasticity owing to amorphization at the crack front. The MEAM potential for Zr–N developed in this work is an invaluable tool to investigate atomic-scale mechanisms underlying the response of ZrN to external stimuli (e.g, temperature, pressure etc.), as well as other interesting phenomena such as precipitation.« less
Assessment of the Monitor Unit Objective tool for VMAT in the Eclipse treatment planning system.
Jiménez-Puertas, Sara; Sánchez-Artuñedo, David; Hermida-López, Marcelino
2018-01-01
This work aims to achieve the highest possible monitor units (MU) reduction using the MU Objective tool included in the Eclipse treatment planning system, while preserving the plan quality. The treatment planning system Eclipse (Varian Medical Systems, Palo Alto, CA) includes a control mechanism for the number of monitor units of volumetric modulated arc therapy (VMAT) plans, named the MU Objective tool. Forty prostate plans, 20 gynecological plans and 20 head and neck plans designed with VMAT were retrospectively studied. Each plan ( base plan ) was optimized without using the MU Objective tool, and it was re-optimized with different values of the Maximum MU ( MaxMU ) parameter of the MU Objective tool. MU differences were analyzed with a paired samples t -test and changes in plan quality were assessed with a set of parameters for OARs and PTVs. The average relative MU difference [Formula: see text] considering all treatment sites, was the highest when MaxMU = 400 (-4.2%, p < 0.001). For prostate plans, the lowest [Formula: see text] was obtained (-3.7%, p < 0.001). For head and neck plans [Formula: see text] was -7.3% ( p < 0.001) and for gynecological plans [Formula: see text] was 7.0% ( p = 0.002). Although similar MU reductions were observed for both sites, for some gynecological plans maximum differences were greater than 10%. All the assessed parameters for PTVs and OARs sparing showed average differences below 2%. For the three studied clinical sites, establishing MaxMU = 400 led to the optimum MU reduction, maintaining the original dose distribution and dosimetric parameters practically unaltered.
Optimized Mouse Models for Liver Fibrosis.
Kim, Yong Ook; Popov, Yury; Schuppan, Detlef
2017-01-01
Fibrosis is the excessive accumulation of extracellular matrix components due to chronic injury, with collagens as predominant structural components. Liver fibrosis can progress to cirrhosis, which is characterized by a severe distortion of the delicate hepatic vascular architecture, the shunting of the blood supply away from hepatocytes and the resultant functional liver failure. Cirrhosis is associated with a highly increased morbidity and mortality and represents the major hard endpoint in clinical studies of chronic liver diseases. Moreover, cirrhosis is a strong cofactor of primary liver cancer. In vivo models are indispensable tools to study the cellular and molecular mechanisms of liver fibrosis and to develop specific antifibrotic therapies towards clinical translation. Here, we provide a detailed description of select optimized mouse models of liver fibrosis and state-of-the-art fibrosis readouts.
Flyby Geometry Optimization Tool
NASA Technical Reports Server (NTRS)
Karlgaard, Christopher D.
2007-01-01
The Flyby Geometry Optimization Tool is a computer program for computing trajectories and trajectory-altering impulsive maneuvers for spacecraft used in radio relay of scientific data to Earth from an exploratory airplane flying in the atmosphere of Mars.
Data and Tools | Concentrating Solar Power | NREL
download. Solar Power tower Integrated Layout and Optimization Tool (SolarPILOT(tm)) The SolarPILOT is code rapid layout and optimization capability of the analytical DELSOL3 program with the accuracy and
Watershed Management Optimization Support Tool (WMOST) Webinar
This webinar will highlight version 3 of EPA’s Watershed Management Optimization Support Tool (WMOST). WMOST facilitates implementation of integrated water management by communities, utilities, watershed management organizations, consultants, and others. There can be many o...
DOT National Transportation Integrated Search
2015-09-01
This report describes an Alternative Fuel Transportation Optimization Tool (AFTOT), developed by the U.S. Department of Transportation (DOT) Volpe National Transportation Systems Center (Volpe) in support of the Federal Aviation Administration (FAA)....
Lu, Peng; Chen, Chang; Fu, Meihong; Fang, Jing; Gao, Jian; Zhu, Li; Liang, Rixin; Shen, Xin; Yang, Hongjun
2013-01-01
Recently, the pharmaceutical industry has shifted to pursuing combination therapies that comprise more than one active ingredient. Interestingly, combination therapies have been used for more than 2500 years in traditional Chinese medicine (TCM). Understanding optimal proportions and synergistic mechanisms of multi-component drugs are critical for developing novel strategies to combat complex diseases. A new multi-objective optimization algorithm based on least angle regression-partial least squares was proposed to construct the predictive model to evaluate the synergistic effect of the three components of a novel combination drug Yi-qi-jie-du formula (YJ), which came from clinical TCM prescription for the treatment of encephalopathy. Optimal proportion of the three components, ginsenosides (G), berberine (B) and jasminoidin (J) was determined via particle swarm optimum. Furthermore, the combination mechanisms were interpreted using PLS VIP and principal components analysis. The results showed that YJ had optimal proportion 3(G): 2(B): 0.5(J), and it yielded synergy in the treatment of rats impaired by middle cerebral artery occlusion induced focal cerebral ischemia. YJ with optimal proportion had good pharmacological effects on acute ischemic stroke. The mechanisms study demonstrated that the combination of G, B and J could exhibit the strongest synergistic effect. J might play an indispensable role in the formula, especially when combined with B for the acute stage of stroke. All these data in this study suggested that in the treatment of acute ischemic stroke, besides restoring blood supply and protecting easily damaged cells in the area of the ischemic penumbra as early as possible, we should pay more attention to the removal of the toxic metabolites at the same time. Mathematical system modeling may be an essential tool for the analysis of the complex pharmacological effects of multi-component drug. The powerful mathematical analysis method could greatly improve the efficiency in finding new combination drug from TCM. PMID:24236065
NASA Astrophysics Data System (ADS)
Wang, Jia; Hou, Xi; Wan, Yongjian; Shi, Chunyan
2017-10-01
An optimized method to calculate error correction capability of tool influence function (TIF) in certain polishing conditions will be proposed based on smoothing spectral function. The basic mathematical model for this method will be established in theory. A set of polishing experimental data with rigid conformal tool is used to validate the optimized method. The calculated results can quantitatively indicate error correction capability of TIF for different spatial frequency errors in certain polishing conditions. The comparative analysis with previous method shows that the optimized method is simpler in form and can get the same accuracy results with less calculating time in contrast to previous method.
Electron Beam Melting and Refining of Metals: Computational Modeling and Optimization
Vutova, Katia; Donchev, Veliko
2013-01-01
Computational modeling offers an opportunity for a better understanding and investigation of thermal transfer mechanisms. It can be used for the optimization of the electron beam melting process and for obtaining new materials with improved characteristics that have many applications in the power industry, medicine, instrument engineering, electronics, etc. A time-dependent 3D axis-symmetrical heat model for simulation of thermal transfer in metal ingots solidified in a water-cooled crucible at electron beam melting and refining (EBMR) is developed. The model predicts the change in the temperature field in the casting ingot during the interaction of the beam with the material. A modified Pismen-Rekford numerical scheme to discretize the analytical model is developed. These equation systems, describing the thermal processes and main characteristics of the developed numerical method, are presented. In order to optimize the technological regimes, different criteria for better refinement and obtaining dendrite crystal structures are proposed. Analytical problems of mathematical optimization are formulated, discretized and heuristically solved by cluster methods. Using important for the practice simulation results, suggestions can be made for EBMR technology optimization. The proposed tool is important and useful for studying, control, optimization of EBMR process parameters and improving of the quality of the newly produced materials. PMID:28788351
NASA Astrophysics Data System (ADS)
Hickmott, Curtis W.
Cellular core tooling is a new technology which has the capability to manufacture complex integrated monolithic composite structures. This novel tooling method utilizes thermoplastic cellular cores as inner tooling. The semi-rigid nature of the cellular cores makes them convenient for lay-up, and under autoclave temperature and pressure they soften and expand providing uniform compaction on all surfaces including internal features such as ribs and spar tubes. This process has the capability of developing fully optimized aerospace structures by reducing or eliminating assembly using fasteners or bonded joints. The technology is studied in the context of evaluating its capabilities, advantages, and limitations in developing high quality structures. The complex nature of these parts has led to development of a model using the Finite Element Analysis (FEA) software Abaqus and the plug-in COMPRO Common Component Architecture (CCA) provided by Convergent Manufacturing Technologies. This model utilizes a "virtual autoclave" technique to simulate temperature profiles, resin flow paths, and ultimately deformation from residual stress. A model has been developed simulating the temperature profile during curing of composite parts made with the cellular core technology. While modeling of composites has been performed in the past, this project will look to take this existing knowledge and apply it to this new manufacturing method capable of building more complex parts and develop a model designed specifically for building large, complex components with a high degree of accuracy. The model development has been carried out in conjunction with experimental validation. A double box beam structure was chosen for analysis to determine the effects of the technology on internal ribs and joints. Double box beams were manufactured and sectioned into T-joints for characterization. Mechanical behavior of T-joints was performed using the T-joint pull-off test and compared to traditional tooling methods. Components made with the cellular core tooling method showed an improved strength at the joints. It is expected that this knowledge will help optimize the processing of complex, integrated structures and benefit applications in aerospace where lighter, structurally efficient components would be advantageous.
Towards optogenetic control of spatiotemporal cardiac dynamics
NASA Astrophysics Data System (ADS)
Diaz-Maue, Laura; Luther, Stefan; Richter, Claudia
2018-02-01
Detailed understanding of mechanisms and instabilities underlying the onset, perpetuation, and control of cardiac arrhythmias is required for the development, further optimization, and translation of clinically applicable defibrillation methods. Recently, the potential use of optogenetic tools using structured illumination to control cardiac arrhythmia has been successfully demonstrated and photostimulation turned out to be a promising experimental tool to investigate the dynamics and mechanisms of multi-site pacing strategies for low-energy defibrillation. In order to study the relation between trigger and control mechanisms of arrhythmic cardiac conditions without external affecting factors like eventually damaging fiber poking, it is important to establish a non-invasive photostimulation method. Hence, we applied a custom-configured digital light processing micromirror array operated by a high-speed FPGA, which guarantees a high frequency control of stimulation patterns. The integration into a highly sophisticated optical experiment setup allows us to record photostimulation effects and to proof the light pulse as origin of cardiac excitation. Experiments with transgenic murine hearts demonstrate the successful induction and termination of cardiac dysrhythmia using light crafting tools. However, the complex spatiotemporal dynamics underlying arrhythmia critically depends on the ratio of the characteristic wavelength of arrhythmia and substrate size. Based on the experimental evidence regarding the feasibility of optical defibrillation in small mammals, the transfer in clinically relevant large animal models would be the next milestone to therapeutic translation. Thus, the presented experimental results of optogenetically modified murine hearts function as originator for ongoing studies involving principle design studies for therapeutic applicable optical defibrillation.
Tyler, Christopher J; Pérez-Jeldres, Tamara; Ehinger, Erik; Capaldo, Brian; Karuppuchamy, Thangaraj; Boyer, Joshua D; Patel, Derek; Dulai, Parambir; Boland, Brigid S; Lannigan, Joanne; Eckmann, Lars; Ernst, Peter B; Sandborn, William J; Ho, Samuel B; Rivera-Nieves, Jesús
2018-06-08
Novel therapeutics for inflammatory bowel disease (IBD) are under development, yet mechanistic readouts at the tissue level are lacking. Techniques to assess intestinal immune composition could represent a valuable tool for mechanism of action (MOA) studies of novel drugs. Mass cytometry enables analysis of intestinal inflammatory cell infiltrate and corresponding molecular fingerprints with unprecedented resolution. Here, we aimed to optimize the methodology for isolation and cryopreservation of cells from intestinal tissue to allow for the potential implementation of mass cytometry in MOA studies. We investigated key technical issues, including minimal tissue requirements, cell isolation protocols, and cell storage, using intestinal biopsies and peripheral blood from healthy individuals. High-dimensional mass cytometry was employed for the analyses of biopsy-derived intestinal cellular subsets. Dithiothreitol and mechanical dissociation decreased epithelial cell contamination and allowed for isolation of adequate cell numbers from 2 to 4 colonic or ileal biopsies (6 × 104±2 × 104) after a 20-minute collagenase digestion, allowing for reliable detection of most major immune cell subsets. Biopsies and antibody-labeled mononuclear cells could be cryopreserved for later processing and acquisition (viability > 70%; P < 0.05). Mass cytometry represents a unique tool for deep immunophenotyping intestinal cell composition. This technique has the potential to facilitate analysis of drug actions at the target tissue by identifying specific cellular subsets and their molecular signatures. Its widespread implementation may impact not only IBD research but also other gastrointestinal conditions where inflammatory cells play a role in pathogenesis.
Nonlinear Shaping Architecture Designed with Using Evolutionary Structural Optimization Tools
NASA Astrophysics Data System (ADS)
Januszkiewicz, Krystyna; Banachowicz, Marta
2017-10-01
The paper explores the possibilities of using Structural Optimization Tools (ESO) digital tools in an integrated structural and architectural design in response to the current needs geared towards sustainability, combining ecological and economic efficiency. The first part of the paper defines the Evolutionary Structural Optimization tools, which were developed specifically for engineering purposes using finite element analysis as a framework. The development of ESO has led to several incarnations, which are all briefly discussed (Additive ESO, Bi-directional ESO, Extended ESO). The second part presents result of using these tools in structural and architectural design. Actual building projects which involve optimization as a part of the original design process will be presented (Crematorium in Kakamigahara Gifu, Japan, 2006 SANAA“s Learning Centre, EPFL in Lausanne, Switzerland 2008 among others). The conclusion emphasizes that the structural engineering and architectural design mean directing attention to the solutions which are used by Nature, designing works optimally shaped and forming their own environments. Architectural forms never constitute the optimum shape derived through a form-finding process driven only by structural optimization, but rather embody and integrate a multitude of parameters. It might be assumed that there is a similarity between these processes in nature and the presented design methods. Contemporary digital methods make the simulation of such processes possible, and thus enable us to refer back to the empirical methods of previous generations.
A Clustering-Based Approach to Enriching Code Foraging Environment.
Niu, Nan; Jin, Xiaoyu; Niu, Zhendong; Cheng, Jing-Ru C; Li, Ling; Kataev, Mikhail Yu
2016-09-01
Developers often spend valuable time navigating and seeking relevant code in software maintenance. Currently, there is a lack of theoretical foundations to guide tool design and evaluation to best shape the code base to developers. This paper contributes a unified code navigation theory in light of the optimal food-foraging principles. We further develop a novel framework for automatically assessing the foraging mechanisms in the context of program investigation. We use the framework to examine to what extent the clustering of software entities affects code foraging. Our quantitative analysis of long-lived open-source projects suggests that clustering enriches the software environment and improves foraging efficiency. Our qualitative inquiry reveals concrete insights into real developer's behavior. Our research opens the avenue toward building a new set of ecologically valid code navigation tools.
Optimization of Shipboard Manning Levels Using Imprint Pro Forces Module
2015-09-01
NPS-OR-15-008 NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA OPTIMIZATION OF SHIPBOARD MANNING LEVELS USING IMPRINT PRO...Optimization of Shipboard Manning Levels Using IMPRINT Pro Forces Module 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...ABSTRACT The Improved Performance Research Integration Tool ( IMPRINT ) is a dynamic, stochastic, discrete-event modeling tool used to develop a model
Hull Form Design and Optimization Tool Development
2012-07-01
global minimum. The algorithm accomplishes this by using a method known as metaheuristics which allows the algorithm to examine a large area by...further development of these tools including the implementation and testing of a new optimization algorithm , the improvement of a rapid hull form...under the 2012 Naval Research Enterprise Intern Program. 15. SUBJECT TERMS hydrodynamic, hull form, generation, optimization, algorithm
[Optimization of end-tool parameters based on robot hand-eye calibration].
Zhang, Lilong; Cao, Tong; Liu, Da
2017-04-01
A new one-time registration method was developed in this research for hand-eye calibration of a surgical robot to simplify the operation process and reduce the preparation time. And a new and practical method is introduced in this research to optimize the end-tool parameters of the surgical robot based on analysis of the error sources in this registration method. In the process with one-time registration method, firstly a marker on the end-tool of the robot was recognized by a fixed binocular camera, and then the orientation and position of the marker were calculated based on the joint parameters of the robot. Secondly the relationship between the camera coordinate system and the robot base coordinate system could be established to complete the hand-eye calibration. Because of manufacturing and assembly errors of robot end-tool, an error equation was established with the transformation matrix between the robot end coordinate system and the robot end-tool coordinate system as the variable. Numerical optimization was employed to optimize end-tool parameters of the robot. The experimental results showed that the one-time registration method could significantly improve the efficiency of the robot hand-eye calibration compared with the existing methods. The parameter optimization method could significantly improve the absolute positioning accuracy of the one-time registration method. The absolute positioning accuracy of the one-time registration method can meet the requirements of the clinical surgery.
Blended near-optimal tools for flexible water resources decision making
NASA Astrophysics Data System (ADS)
Rosenberg, David
2015-04-01
State-of-the-art systems analysis techniques focus on efficiently finding optimal solutions. Yet an optimal solution is optimal only for the static modelled issues and managers often seek near-optimal alternatives that address un-modelled or changing objectives, preferences, limits, uncertainties, and other issues. Early on, Modelling to Generate Alternatives (MGA) formalized near-optimal as performance within a tolerable deviation from the optimal objective function value and identified a few maximally-different alternatives that addressed select un-modelled issues. This paper presents new stratified, Monte Carlo Markov Chain sampling and parallel coordinate plotting tools that generate and communicate the structure and full extent of the near-optimal region to an optimization problem. Plot controls allow users to interactively explore region features of most interest. Controls also streamline the process to elicit un-modelled issues and update the model formulation in response to elicited issues. Use for a single-objective water quality management problem at Echo Reservoir, Utah identifies numerous and flexible practices to reduce the phosphorus load to the reservoir and maintain close-to-optimal performance. Compared to MGA, the new blended tools generate more numerous alternatives faster, more fully show the near-optimal region, help elicit a larger set of un-modelled issues, and offer managers greater flexibility to cope in a changing world.
Habitat Design Optimization and Analysis
NASA Technical Reports Server (NTRS)
SanSoucie, Michael P.; Hull, Patrick V.; Tinker, Michael L.
2006-01-01
Long-duration surface missions to the Moon and Mars will require habitats for the astronauts. The materials chosen for the habitat walls play a direct role in the protection against the harsh environments found on the surface. Choosing the best materials, their configuration, and the amount required is extremely difficult due to the immense size of the design region. Advanced optimization techniques are necessary for habitat wall design. Standard optimization techniques are not suitable for problems with such large search spaces; therefore, a habitat design optimization tool utilizing genetic algorithms has been developed. Genetic algorithms use a "survival of the fittest" philosophy, where the most fit individuals are more likely to survive and reproduce. This habitat design optimization tool is a multi-objective formulation of structural analysis, heat loss, radiation protection, and meteoroid protection. This paper presents the research and development of this tool.
Advanced Structural Optimization Under Consideration of Cost Tracking
NASA Astrophysics Data System (ADS)
Zell, D.; Link, T.; Bickelmaier, S.; Albinger, J.; Weikert, S.; Cremaschi, F.; Wiegand, A.
2014-06-01
In order to improve the design process of launcher configurations in the early development phase, the software Multidisciplinary Optimization (MDO) was developed. The tool combines different efficient software tools such as Optimal Design Investigations (ODIN) for structural optimizations, Aerospace Trajectory Optimization Software (ASTOS) for trajectory and vehicle design optimization for a defined payload and mission.The present paper focuses to the integration and validation of ODIN. ODIN enables the user to optimize typical axis-symmetric structures by means of sizing the stiffening designs concerning strength and stability while minimizing the structural mass. In addition a fully automatic finite element model (FEM) generator module creates ready-to-run FEM models of a complete stage or launcher assembly.Cost tracking respectively future improvements concerning cost optimization are indicated.
Recent Developments and Research Progress on Friction Stir Welding of Titanium Alloys: An Overview
NASA Astrophysics Data System (ADS)
Karna, Sivaji; Cheepu, Muralimohan; Venkateswarulu, D.; Srikanth, V.
2018-03-01
Titanium and its alloys are joined by various welding processes. However, Fusion welding of titanium alloys resulted solidification problems like porosity, segregation and columnar grains. The problems occurred in conventional welding processes can be resolved using a solid state welding i.e. friction stir welding. Aluminium and Magnesium alloys were welded by friction stir welding. However alloys used for high temperature applications such as titanium alloys and steels are arduous to weld using friction stir welding process because of tool limitations. Present paper summarises the studies on joining of Titanium alloys using friction stir welding with different tool materials. Selection of tool material and effect of welding conditions on mechanical and microstructure properties of weldments were also reported. Major advantage with friction stir welding is, we can control the welding temperature above or below β-transus temperature by optimizing the process parameters. Stir zone in below beta transus condition consists of bi-modal microstructure and microstructure in above β-transus condition has large prior β- grains and α/β laths present in the grain. Welding experiments conducted below β- transus condition has better mechanical properties than welding at above β-transus condition. Hardness and tensile properties of weldments are correlated with the stir zone microstructure.
A Novel Shape Parameterization Approach
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
1999-01-01
This paper presents a novel parameterization approach for complex shapes suitable for a multidisciplinary design optimization application. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft objects animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in a similar manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminated plate structures) and high-fidelity analysis tools (e.g., nonlinear computational fluid dynamics and detailed finite element modeling). This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, and camber. The results are presented for a multidisciplinary design optimization application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, performance, and a simple propulsion module.
Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD)
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
2000-01-01
This paper presents a multidisciplinary shape parameterization approach. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft object animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in a similar manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminated plate structures) and high-fidelity (e.g., nonlinear computational fluid dynamics and detailed finite element modeling analysis tools. This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, camber, and free-form surface. Results are presented for a multidisciplinary design optimization application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, and a simple performance module.
3D optimization of a polymer MOEMS for active focusing of VCSEL beam
NASA Astrophysics Data System (ADS)
Abada, S.; Camps, T.; Reig, B.; Doucet, JB; Daran, E.; Bardinal, V.
2014-05-01
We report on the optimized design of a polymer-based actuator that can be directly integrated on a VCSEL for vertical beam scanning. Its operation principle is based on the vertical displacement of a SU-8 membrane including a polymer microlens. Under an applied thermal gradient, the membrane is shifted vertically due to thermal expansion in the actuation arms induced by Joule effect. This leads to a modification of microlens position and thus to a vertical scan of the laser beam. Membrane vertical displacements as high as 8μm for only 3V applied were recently experimentally obtained. To explain these performances, we developed a comprehensive tri-dimensional thermo-mechanical model that takes into account SU-8 material properties and precise MOEMS geometry. Out-of-plane mechanical coefficients and thermal conductivity were thus integrated in our 3D model (COMSOL Multiphysics). Vertical displacements extracted from these data for different actuation powers were successfully compared to experimental values, validating this modelling tool. Thereby, it was exploited to increase MOEMS electrothermal performance by a factor higher than 5.
OPTIMIZING BMP PLACEMENT AT WATERSHED-SCALE USING SUSTAIN
Watershed and stormwater managers need modeling tools to evaluate alternative plans for environmental quality restoration and protection needs in urban and developing areas. A watershed-scale decision-support system, based on cost optimization, provides an essential tool to suppo...
Physical Modeling of Contact Processes on the Cutting Tools Surfaces of STM When Turning
NASA Astrophysics Data System (ADS)
Belozerov, V. A.; Uteshev, M. H.
2016-08-01
This article describes how to create an optimization model of the process of fine turning of superalloys and steel tools from STM on CNC machines, flexible manufacturing units (GPM), machining centers. Creation of the optimization model allows you to link (unite) contact processes simultaneously on the front and back surfaces of the tool from STM to manage contact processes and the dynamic strength of the cutting tool at the top of the STM. Established optimization model of management of the dynamic strength of the incisors of the STM in the process of fine turning is based on a previously developed thermomechanical (physical, heat) model, which allows the system thermomechanical approach to choosing brands STM (domestic and foreign) for cutting tools from STM designed for fine turning of heat resistant alloys and steels.
Effect of Weld Tool Geometry on Friction Stir Welded Ti-6Al-4V
NASA Technical Reports Server (NTRS)
Querin, Joseph A.; Schneider, Judy A.
2008-01-01
In this study, flat 0.250" thick Ti-6Al-4V panels were friction stir welded (FSWed) using weld tools with tapered pins. The five different pin geometries of the weld tools included: 0 degree (straight cylinder), 15 degree, 30 degree, 45 degree, and 60 degree angles on the frustum. All weld tools had a smooth 7 degree concave shoulder and were made from microwave sintered tungsten carbide. For each weld tool geometry, the FSW process parameters were optimized to eliminate internal defects. All the welds were produced in position control with a 2.5 degree lead angle using a butt joint configuration for the panels. The process parameters of spindle rpm and travel speed were varied, altering the hot working conditions imparted to the workpiece. Load cells on the FSWing machine allowed for the torque, the plunge force, and the plow force to be recorded during welding. Resulting mechanical properties were evaluated from tensile tests results of the FSWjoints. Variations in the material flow were investigated by use of microstructural analysis including optical microscopy (OM), scanning electron microscopy (SEM), and orientation image mapping (aIM).
Computational analysis of liquid hypergolic propellant rocket engines
NASA Technical Reports Server (NTRS)
Krishnan, A.; Przekwas, A. J.; Gross, K. W.
1992-01-01
The combustion process in liquid rocket engines depends on a number of complex phenomena such as atomization, vaporization, spray dynamics, mixing, and reaction mechanisms. A computational tool to study their mutual interactions is developed to help analyze these processes with a view of improving existing designs and optimizing future designs of the thrust chamber. The focus of the article is on the analysis of the Variable Thrust Engine for the Orbit Maneuvering Vehicle. This engine uses a hypergolic liquid bipropellant combination of monomethyl hydrazine as fuel and nitrogen tetroxide as oxidizer.
NASA Astrophysics Data System (ADS)
Peczalski, K.; Palko, T.; Wojciechowski, D.; Dunajski, Z.; Kowalewski, M.
2013-04-01
The cardiac resynchronization therapy is an effective treatment for systolic failure patients. Independent electrical stimulation of left and right ventricle corrects mechanical ventricular dyssynchrony. About 30-40% treated patients do not respond to therapy. In order to improve clinical outcome authors propose the two channels impedance cardiography for assessment of ventricular dyssynchrony. The proposed method is intended for validation of patients diagnosis and optimization of pacemaker settings for cardiac resynchronization therapy. The preliminary study has showed that bichannel impedance cardiography is a promising tool for assessment of ventricular dyssynchrony.
CNV detection method optimized for high-resolution arrayCGH by normality test.
Ahn, Jaegyoon; Yoon, Youngmi; Park, Chihyun; Park, Sanghyun
2012-04-01
High-resolution arrayCGH platform makes it possible to detect small gains and losses which previously could not be measured. However, current CNV detection tools fitted to early low-resolution data are not applicable to larger high-resolution data. When CNV detection tools are applied to high-resolution data, they suffer from high false-positives, which increases validation cost. Existing CNV detection tools also require optimal parameter values. In most cases, obtaining these values is a difficult task. This study developed a CNV detection algorithm that is optimized for high-resolution arrayCGH data. This tool operates up to 1500 times faster than existing tools on a high-resolution arrayCGH of whole human chromosomes which has 42 million probes whose average length is 50 bases, while preserving false positive/negative rates. The algorithm also uses a normality test, thereby removing the need for optimal parameters. To our knowledge, this is the first formulation for CNV detecting problems that results in a near-linear empirical overall complexity for real high-resolution data. Copyright © 2012 Elsevier Ltd. All rights reserved.
An optimization model to agroindustrial sector in antioquia (Colombia, South America)
NASA Astrophysics Data System (ADS)
Fernandez, J.
2015-06-01
This paper develops a proposal of a general optimization model for the flower industry, which is defined by using discrete simulation and nonlinear optimization, whose mathematical models have been solved by using ProModel simulation tools and Gams optimization. It defines the operations that constitute the production and marketing of the sector, statistically validated data taken directly from each operation through field work, the discrete simulation model of the operations and the linear optimization model of the entire industry chain are raised. The model is solved with the tools described above and presents the results validated in a case study.
Application of simulation models for the optimization of business processes
NASA Astrophysics Data System (ADS)
Jašek, Roman; Sedláček, Michal; Chramcov, Bronislav; Dvořák, Jiří
2016-06-01
The paper deals with the applications of modeling and simulation tools in the optimization of business processes, especially in solving an optimization of signal flow in security company. As a modeling tool was selected Simul8 software that is used to process modeling based on discrete event simulation and which enables the creation of a visual model of production and distribution processes.
A simulation-optimization-based decision support tool for mitigating traffic congestion.
DOT National Transportation Integrated Search
2009-12-01
"Traffic congestion has grown considerably in the United States over the past twenty years. In this paper, we develop : a robust decision support tool based on simulation optimization to evaluate and recommend congestion-mitigation : strategies to tr...
Using biological principles to design MEMS
NASA Astrophysics Data System (ADS)
Scherge, M.; Gorb, S. N.
2000-09-01
In micromechanics the handling and positioning of microparts involves sophisticated assembly procedures and a good understanding of microtribological phenomena. Due to the very low object mass, adhesion between the micropart and the handling tool (usually a mechanical gripper) becomes a performance-limiting factor. Adhesion effects can be even larger than the force that frees the micropart from the handling tool thus making correct positioning impossible. Many useful design principles for optimized adhesion properties can be found in biological systems. In this paper adhesion between the foot of an insect and a surface was evaluated. The attachment pads of the great green bush cricket (Tettigonia viridissima) - used to attach the insect safely to a variety of different surfaces - were investigated to draw conclusions that could be implemented in future technical microsystems. It is shown that the attachment pads are flexible micromechanical units capable of self-adjusting to different scales of roughness. The erratic influence of capillary action due to adsorbed water is presumably suppressed by a hydrophobic layer on the pads. Attaching and releasing mechanisms as well as accurate measurement of the adhesion force are discussed in detail.
Pérez-Cota, Fernando; Smith, Richard J; Moradi, Emilia; Marques, Leonel; Webb, Kevin F; Clark, Matt
2015-10-01
At low frequencies ultrasound is a valuable tool to mechanically characterize and image biological tissues. There is much interest in using high-frequency ultrasound to investigate single cells. Mechanical characterization of vegetal and biological cells by measurement of Brillouin oscillations has been demonstrated using ultrasound in the GHz range. This paper presents a method to extend this technique from the previously reported single-point measurements and line scans into a high-resolution acoustic imaging tool. Our technique uses a three-layered metal-dielectric-metal film as a transducer to launch acoustic waves into the cell we want to study. The design of this transducer and measuring system is optimized to overcome the vulnerability of a cell to the exposure of laser light and heat without sacrificing the signal-to-noise ratio. The transducer substrate shields the cell from the laser radiation, efficiently generates acoustic waves, facilitates optical detection in transmission, and aids with heat dissipation away from the cell. This paper discusses the design of the transducers and instrumentation and presents Brillouin frequency images on phantom, fixed, and living cells.
NASA Astrophysics Data System (ADS)
Cheng, Jun; Gong, Yadong; Wang, Jinsheng
2013-11-01
The current research of micro-grinding mainly focuses on the optimal processing technology for different materials. However, the material removal mechanism in micro-grinding is the base of achieving high quality processing surface. Therefore, a novel method for predicting surface roughness in micro-grinding of hard brittle materials considering micro-grinding tool grains protrusion topography is proposed in this paper. The differences of material removal mechanism between convention grinding process and micro-grinding process are analyzed. Topography characterization has been done on micro-grinding tools which are fabricated by electroplating. Models of grain density generation and grain interval are built, and new predicting model of micro-grinding surface roughness is developed. In order to verify the precision and application effect of the surface roughness prediction model proposed, a micro-grinding orthogonally experiment on soda-lime glass is designed and conducted. A series of micro-machining surfaces which are 78 nm to 0.98 μm roughness of brittle material is achieved. It is found that experimental roughness results and the predicting roughness data have an evident coincidence, and the component variable of describing the size effects in predicting model is calculated to be 1.5×107 by reverse method based on the experimental results. The proposed model builds a set of distribution to consider grains distribution densities in different protrusion heights. Finally, the characterization of micro-grinding tools which are used in the experiment has been done based on the distribution set. It is concluded that there is a significant coincidence between surface prediction data from the proposed model and measurements from experiment results. Therefore, the effectiveness of the model is demonstrated. This paper proposes a novel method for predicting surface roughness in micro-grinding of hard brittle materials considering micro-grinding tool grains protrusion topography, which would provide significant research theory and experimental reference of material removal mechanism in micro-grinding of soda-lime glass.
Development of optimal grinding and polishing tools for aspheric surfaces
NASA Astrophysics Data System (ADS)
Burge, James H.; Anderson, Bill; Benjamin, Scott; Cho, Myung K.; Smith, Koby Z.; Valente, Martin J.
2001-12-01
The ability to grind and polish steep aspheric surfaces to high quality is limited by the tools used for working the surface. The optician prefers to use large, stiff tools to get good natural smoothing, avoiding small scale surface errors. This is difficult for steep aspheres because the tools must have sufficient compliance to fit the aspheric surface, yet we wish the tools to be stiff so they wear down high regions on the surface. This paper presents a toolkit for designing optimal tools that provide large scale compliance to fit the aspheric surface, yet maintain small scale stiffness for efficient polishing.
An optimization tool for satellite equipment layout
NASA Astrophysics Data System (ADS)
Qin, Zheng; Liang, Yan-gang; Zhou, Jian-ping
2018-01-01
Selection of the satellite equipment layout with performance constraints is a complex task which can be viewed as a constrained multi-objective optimization and a multiple criteria decision making problem. The layout design of a satellite cabin involves the process of locating the required equipment in a limited space, thereby satisfying various behavioral constraints of the interior and exterior environments. The layout optimization of satellite cabin in this paper includes the C.G. offset, the moments of inertia and the space debris impact risk of the system, of which the impact risk index is developed to quantify the risk to a satellite cabin of coming into contact with space debris. In this paper an optimization tool for the integration of CAD software as well as the optimization algorithms is presented, which is developed to automatically find solutions for a three-dimensional layout of equipment in satellite. The effectiveness of the tool is also demonstrated by applying to the layout optimization of a satellite platform.
Etude par elements finis du comportement thermo-chimiomecanique de la pâte monolithique
NASA Astrophysics Data System (ADS)
Girard, Pierre-Luc
Aluminum industry is in a fierce international competition requiring the constant improvement of the electrolysis cell effectiveness and longevity. The selection of the cell's materials components becomes an important factor to increase the cell's life. The ramming paste, used to seal the cathode lining, is compacted in the joints between the cathode and the side wall of the cell. It is a complex thermo-chemo-reactive material whose proprieties change with the evolution of his baking level. Therefore, the objective of this project is to propose a thermo-chemo-mechanical constitutive law for the ramming paste and implement it in the finite element software ANSYSRTM. A constitutive model was first chosen from the available literature on the subject. It is a pressure dependent model that uses hardening, softening and baking mechanisms in its definition to mimic the behavior of carbon-based materials. Subsequently, the numerical tool was validated using the finite element toolbox FESh++, which contains the most representative carbon-based thermochimio- mechanical material constitutive law at this time. Finally, a validation of the experimental setup BERTA (Banc d'essai de resistance thermomecanique ALCAN) was made in prevision of a larger scale experimental validation of the constitutive law in a near future. However, the analysis of the results shows that BERTA is not suited to adequately measure the mechanical deformation of such kind of material. Following this project, the numerical tool will be used in numerical simulation to introduce the various effects of the baking of the ramming paste during the cell startup. This new tool will help the industrial partner to enhance the understanding of Hall-Heroult cell start-up and optimize this critical step.
Collaboration pathway(s) using new tools for optimizing `operational' climate monitoring from space
NASA Astrophysics Data System (ADS)
Helmuth, Douglas B.; Selva, Daniel; Dwyer, Morgan M.
2015-09-01
Consistently collecting the earth's climate signatures remains a priority for world governments and international scientific organizations. Architecting a long term solution requires transforming scientific missions into an optimized robust `operational' constellation that addresses the collective needs of policy makers, scientific communities and global academic users for trusted data. The application of new tools offers pathways for global architecture collaboration. Recent rule-based expert system (RBES) optimization modeling of the intended NPOESS architecture becomes a surrogate for global operational climate monitoring architecture(s). These rulebased systems tools provide valuable insight for global climate architectures, by comparison/evaluation of alternatives and the sheer range of trade space explored. Optimization of climate monitoring architecture(s) for a partial list of ECV (essential climate variables) is explored and described in detail with dialogue on appropriate rule-based valuations. These optimization tool(s) suggest global collaboration advantages and elicit responses from the audience and climate science community. This paper will focus on recent research exploring joint requirement implications of the high profile NPOESS architecture and extends the research and tools to optimization for a climate centric case study. This reflects work from SPIE RS Conferences 2013 and 2014, abridged for simplification30, 32. First, the heavily securitized NPOESS architecture; inspired the recent research question - was Complexity (as a cost/risk factor) overlooked when considering the benefits of aggregating different missions into a single platform. Now years later a complete reversal; should agencies considering Disaggregation as the answer. We'll discuss what some academic research suggests. Second, using the GCOS requirements of earth climate observations via ECV (essential climate variables) many collected from space-based sensors; and accepting their definitions of global coverages intended to ensure the needs of major global and international organizations (UNFCCC and IPCC) are met as a core objective. Consider how new optimization tools like rule-based engines (RBES) offer alternative methods of evaluating collaborative architectures and constellations? What would the trade space of optimized operational climate monitoring architectures of ECV look like? Third, using the RBES tool kit (2014) demonstrate with application to a climate centric rule-based decision engine - optimizing architectural trades of earth observation satellite systems, allowing comparison(s) to existing architectures and gaining insights for global collaborative architectures. How difficult is it to pull together an optimized climate case study - utilizing for example 12 climate based instruments on multiple existing platforms and nominal handful of orbits; for best cost and performance benefits against the collection requirements of representative set of ECV. How much effort and resources would an organization expect to invest to realize these analysis and utility benefits?
Front panel engineering with CAD simulation tool
NASA Astrophysics Data System (ADS)
Delacour, Jacques; Ungar, Serge; Mathieu, Gilles; Hasna, Guenther; Martinez, Pascal; Roche, Jean-Christophe
1999-04-01
THe progress made recently in display technology covers many fields of application. The specification of radiance, colorimetry and lighting efficiency creates some new challenges for designers. Photometric design is limited by the capability of correctly predicting the result of a lighting system, to save on the costs and time taken to build multiple prototypes or bread board benches. The second step of the research carried out by company OPTIS is to propose an optimization method to be applied to the lighting system, developed in the software SPEOS. The main features of the tool requires include the CAD interface, to enable fast and efficient transfer between mechanical and light design software, the source modeling, the light transfer model and an optimization tool. The CAD interface is mainly a prototype of transfer, which is not the subjects here. Photometric simulation is efficiently achieved by using the measured source encoding and a simulation by the Monte Carlo method. Today, the advantages and the limitations of the Monte Carlo method are well known. The noise reduction requires a long calculation time, which increases with the complexity of the display panel. A successful optimization is difficult to achieve, due to the long calculation time required for each optimization pass including a Monte Carlo simulation. The problem was initially defined as an engineering method of study. The experience shows that good understanding and mastering of the phenomenon of light transfer is limited by the complexity of non sequential propagation. The engineer must call for the help of a simulation and optimization tool. The main point needed to be able to perform an efficient optimization is a quick method for simulating light transfer. Much work has been done in this area and some interesting results can be observed. It must be said that the Monte Carlo method wastes time calculating some results and information which are not required for the needs of the simulation. Low efficiency transfer system cost a lot of lost time. More generally, the light transfer simulation can be treated efficiently when the integrated result is composed of elementary sub results that include quick analytical calculated intersections. The first axis of research appear. The quick integration research and the quick calculation of geometric intersections. The first axis of research brings some general solutions also valid for multi-reflection systems. The second axis requires some deep thinking on the intersection calculation. An interesting way is the subdivision of space in VOXELS. This is an adapted method of 3D division of space according to the objects and their location. An experimental software has been developed to provide a validation of the method. The gain is particularly high in complex systems. An important reduction in the calculation time has been achieved.
Simple Example of Backtest Overfitting (SEBO)
DOE Office of Scientific and Technical Information (OSTI.GOV)
In the field of mathematical finance, a "backtest" is the usage of historical market data to assess the performance of a proposed trading strategy. It is a relatively simple matter for a present-day computer system to explore thousands, millions or even billions of variations of a proposed strategy, and pick the best performing variant as the "optimal" strategy "in sample" (i.e., on the input dataset). Unfortunately, such an "optimal" strategy often performs very poorly "out of sample" (i.e. on another dataset), because the parameters of the invest strategy have been oversit to the in-sample data, a situation known as "backtestmore » overfitting". While the mathematics of backtest overfitting has been examined in several recent theoretical studies, here we pursue a more tangible analysis of this problem, in the form of an online simulator tool. Given a input random walk time series, the tool develops an "optimal" variant of a simple strategy by exhaustively exploring all integer parameter values among a handful of parameters. That "optimal" strategy is overfit, since by definition a random walk is unpredictable. Then the tool tests the resulting "optimal" strategy on a second random walk time series. In most runs using our online tool, the "optimal" strategy derived from the first time series performs poorly on the second time series, demonstrating how hard it is not to overfit a backtest. We offer this online tool, "Simple Example of Backtest Overfitting (SEBO)", to facilitate further research in this area.« less
Development of a mechanism for nitrate photochemistry in snow.
Bock, Josué; Jacobi, Hans-Werner
2010-02-04
A reaction mechanism to reproduce photochemical processes in the snow is reported. We developed a box model to represent snow chemistry. Constrained by laboratory experiments carried out with artificial snow, we deduced first a reaction mechanism for N-containing species including 13 reactions. An optimization tool was developed to adjust systematically unknown photolysis rates of nitrate and nitrite (NO(2)(-)) and transfer rates of nitrogen oxides from the snow to the gas phase resulting in an optimum fit with respect to the experimental data. Further experiments with natural snow samples are presented, indicating that NO(2)(-) concentrations were much lower than in the artificial snow experiments. These observations were used to extend the reaction mechanism into a more general scheme including hydrogen peroxide (H(2)O(2)) and formaldehyde (HCHO) chemistry leading to a set of 18 reactions. The simulations indicate the importance of H(2)O(2) and HCHO as either a source or sink of hydroxyl radicals in the snow photochemistry mechanism. The addition of H(2)O(2) and HCHO in the mechanism allows the reproduction of the observed low NO(2)(-) concentration.
NASA Astrophysics Data System (ADS)
Pedersen, N. L.
2015-06-01
The strength of a gear is typically defined relative to durability (pitting) and load capacity (tooth-breakage). Tooth-breakage is controlled by the root shape and this gear part can be designed because there is no contact between gear pairs here. The shape of gears is generally defined by different standards, with the ISO standard probably being the most common one. Gears are manufactured using two principally different tools: rack tools and gear tools. In this work, the bending stress of involute teeth is minimized by shape optimization made directly on the final gear. This optimized shape is then used to find the cutting tool (the gear envelope) that can create this optimized gear shape. A simple but sufficiently flexible root parameterization is applied and emphasis is put on the importance of separating the shape parameterization from the finite element analysis of stresses. Large improvements in the stress level are found.
A learning–based approach to artificial sensory feedback leads to optimal integration
Dadarlat, Maria C.; O’Doherty, Joseph E.; Sabes, Philip N.
2014-01-01
Proprioception—the sense of the body’s position in space—plays an important role in natural movement planning and execution and will likewise be necessary for successful motor prostheses and Brain–Machine Interfaces (BMIs). Here, we demonstrated that monkeys could learn to use an initially unfamiliar multi–channel intracortical microstimulation (ICMS) signal, which provided continuous information about hand position relative to an unseen target, to complete accurate reaches. Furthermore, monkeys combined this artificial signal with vision to form an optimal, minimum–variance estimate of relative hand position. These results demonstrate that a learning–based approach can be used to provide a rich artificial sensory feedback signal, suggesting a new strategy for restoring proprioception to patients using BMIs as well as a powerful new tool for studying the adaptive mechanisms of sensory integration. PMID:25420067
Windsor, John A; Reddy, Nageshwar D
2017-01-01
The treatment of painful chronic pancreatitis remains controversial. The available evidence from two randomized controlled trials favor surgical intervention, whereas an endotherapy-first approach is widely practiced. Chronic pancreatitis is complex disease with different genetic and environmental factors, different pain mechanisms and different treatment modalities including medical, endoscopic, and surgical. The widely practiced step-up approach remains unproven. In designing future clinical trials there are some important pre-requisites including a more comprehensive pain assessment tool, the optimization of conservative medical treatment and interventional techniques. Consideration should be given to the need of a control arm and the optimal timing of intervention. Pending better designed studies, the practical way forward is to identify subgroups of patients who clearly warrant endotherapy or surgery first, and to design the future clinical trials for the remainder. PMID:28079861
Stockpiling Ventilators for Influenza Pandemics.
Huang, Hsin-Chan; Araz, Ozgur M; Morton, David P; Johnson, Gregory P; Damien, Paul; Clements, Bruce; Meyers, Lauren Ancel
2017-06-01
In preparing for influenza pandemics, public health agencies stockpile critical medical resources. Determining appropriate quantities and locations for such resources can be challenging, given the considerable uncertainty in the timing and severity of future pandemics. We introduce a method for optimizing stockpiles of mechanical ventilators, which are critical for treating hospitalized influenza patients in respiratory failure. As a case study, we consider the US state of Texas during mild, moderate, and severe pandemics. Optimal allocations prioritize local over central storage, even though the latter can be deployed adaptively, on the basis of real-time needs. This prioritization stems from high geographic correlations and the slightly lower treatment success assumed for centrally stockpiled ventilators. We developed our model and analysis in collaboration with academic researchers and a state public health agency and incorporated it into a Web-based decision-support tool for pandemic preparedness and response.
OPTIMIZING USABILITY OF AN ECONOMIC DECISION SUPPORT TOOL: PROTOTYPE OF THE EQUIPT TOOL.
Cheung, Kei Long; Hiligsmann, Mickaël; Präger, Maximilian; Jones, Teresa; Józwiak-Hagymásy, Judit; Muñoz, Celia; Lester-George, Adam; Pokhrel, Subhash; López-Nicolás, Ángel; Trapero-Bertran, Marta; Evers, Silvia M A A; de Vries, Hein
2018-01-01
Economic decision-support tools can provide valuable information for tobacco control stakeholders, but their usability may impact the adoption of such tools. This study aims to illustrate a mixed-method usability evaluation of an economic decision-support tool for tobacco control, using the EQUIPT ROI tool prototype as a case study. A cross-sectional mixed methods design was used, including a heuristic evaluation, a thinking aloud approach, and a questionnaire testing and exploring the usability of the Return of Investment tool. A total of sixty-six users evaluated the tool (thinking aloud) and completed the questionnaire. For the heuristic evaluation, four experts evaluated the interface. In total twenty-one percent of the respondents perceived good usability. A total of 118 usability problems were identified, from which twenty-six problems were categorized as most severe, indicating high priority to fix them before implementation. Combining user-based and expert-based evaluation methods is recommended as these were shown to identify unique usability problems. The evaluation provides input to optimize usability of a decision-support tool, and may serve as a vantage point for other developers to conduct usability evaluations to refine similar tools before wide-scale implementation. Such studies could reduce implementation gaps by optimizing usability, enhancing in turn the research impact of such interventions.
NASA Astrophysics Data System (ADS)
Dasgupta, S.; Mukherjee, S.
2016-09-01
One of the most significant factors in metal cutting is tool life. In this research work, the effects of machining parameters on tool under wet machining environment were studied. Tool life characteristics of brazed carbide cutting tool machined against mild steel and optimization of machining parameters based on Taguchi design of experiments were examined. The experiments were conducted using three factors, spindle speed, feed rate and depth of cut each having three levels. Nine experiments were performed on a high speed semi-automatic precision central lathe. ANOVA was used to determine the level of importance of the machining parameters on tool life. The optimum machining parameter combination was obtained by the analysis of S/N ratio. A mathematical model based on multiple regression analysis was developed to predict the tool life. Taguchi's orthogonal array analysis revealed the optimal combination of parameters at lower levels of spindle speed, feed rate and depth of cut which are 550 rpm, 0.2 mm/rev and 0.5mm respectively. The Main Effects plot reiterated the same. The variation of tool life with different process parameters has been plotted. Feed rate has the most significant effect on tool life followed by spindle speed and depth of cut.
Rocha, Joana; Coelho, Francisco J R C; Peixe, Luísa; Gomes, Newton C M; Calado, Ricardo
2014-11-11
For several years, knowledge on the microbiome associated with marine invertebrates was impaired by the challenges associated with the characterization of bacterial communities. With the advent of culture independent molecular tools it is possible to gain new insights on the diversity and richness of microorganisms associated with marine invertebrates. In the present study, we evaluated if different preservation and processing methodologies (prior to DNA extraction) can affect the bacterial diversity retrieved from snakelocks anemone Anemonia viridis. Denaturing gradient gel electrophoresis (DGGE) community fingerprints were used as proxy to determine the bacterial diversity retrieved (H'). Statistical analyses indicated that preservation significantly affects H'. The best approach to preserve and process A. viridis biomass for bacterial community fingerprint analysis was flash freezing in liquid nitrogen (preservation) followed by the use of a mechanical homogenizer (process), as it consistently yielded higher H'. Alternatively, biomass samples can be processed fresh followed by cell lyses using a mechanical homogenizer or mortar &pestle. The suitability of employing these two alternative procedures was further reinforced by the quantification of the 16S rRNA gene; no significant differences were recorded when comparing these two approaches and the use of liquid nitrogen followed by processing with a mechanical homogenizer.
Rocha, Joana; Coelho, Francisco J. R. C.; Peixe, Luísa; Gomes, Newton C. M.; Calado, Ricardo
2014-01-01
For several years, knowledge on the microbiome associated with marine invertebrates was impaired by the challenges associated with the characterization of bacterial communities. With the advent of culture independent molecular tools it is possible to gain new insights on the diversity and richness of microorganisms associated with marine invertebrates. In the present study, we evaluated if different preservation and processing methodologies (prior to DNA extraction) can affect the bacterial diversity retrieved from snakelocks anemone Anemonia viridis. Denaturing gradient gel electrophoresis (DGGE) community fingerprints were used as proxy to determine the bacterial diversity retrieved (H′). Statistical analyses indicated that preservation significantly affects H′. The best approach to preserve and process A. viridis biomass for bacterial community fingerprint analysis was flash freezing in liquid nitrogen (preservation) followed by the use of a mechanical homogenizer (process), as it consistently yielded higher H′. Alternatively, biomass samples can be processed fresh followed by cell lyses using a mechanical homogenizer or mortar & pestle. The suitability of employing these two alternative procedures was further reinforced by the quantification of the 16S rRNA gene; no significant differences were recorded when comparing these two approaches and the use of liquid nitrogen followed by processing with a mechanical homogenizer. PMID:25384534
Wieding, Jan; Wolf, Andreas; Bader, Rainer
2014-09-01
Treatment of large segmental bone defects, especially in load bearing areas, is a complex procedure in orthopedic surgery. The usage of additive manufacturing processes enables the creation of customized bone implants with arbitrary open-porous structure satisfying both the mechanical and the biological requirements for a sufficient bone ingrowth. Aim of the present numerical study was to optimize the geometrical parameters of open-porous titanium scaffolds to match the elastic properties of human cortical bone with respect to an adequate pore size. Three different scaffold designs (cubic, diagonal and pyramidal) were numerically investigated by using an optimization approach. Beam elements were used to create the lattice structures of the scaffolds. The design parameters strut diameter and pore size ranged from 0.2 to 1.5mm and from 0 to 3.0mm, respectively. In a first optimization step, the geometrical parameters were varied under uniaxial compression to obtain a structural modulus of 15GPa (Young׳s modulus of cortical bone) and a pore size of 800µm was aimed to enable cell ingrowth. Furthermore, the mechanical behavior of the optimized structures under bending and torsion was investigated. Results for bending modulus were between 9.0 and 14.5GPa. In contrast, shear modulus was lowest for cubic and pyramidal design of approximately 1GPa. Here, the diagonal design revealed a modulus of nearly 20GPa. In a second step, large-sized bone scaffolds were created and placed in a biomechanical loading situation within a 30mm segmental femoral defect, stabilized with an osteosynthesis plate and loaded with physiological muscle forces. Strut diameter for the 17 sections of each scaffold was optimized independently in order to match the biomechanical stability of intact bone. For each design, highest strut diameter was found at the dorsal/medial site of the defect and smallest strut diameter in the center. In conclusion, we demonstrated the possibility of providing optimized open-porous scaffolds for bone regeneration by considering both mechanical and biological aspects. Furthermore, the results revealed the need of the investigation and comparison of different load scenarios (compression, bending and torsion) as well as complex biomechanical loading for a profound characterization of different scaffold designs. The usage of a numerical optimization process was proven to be a feasible tool to reduce the amount of the required titanium material without influencing the biomechanical performance of the scaffold negatively. By using fully parameterized models, the optimization approach is adaptable to other scaffold designs and bone defect situations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Multifidelity Analysis and Optimization for Supersonic Design
NASA Technical Reports Server (NTRS)
Kroo, Ilan; Willcox, Karen; March, Andrew; Haas, Alex; Rajnarayan, Dev; Kays, Cory
2010-01-01
Supersonic aircraft design is a computationally expensive optimization problem and multifidelity approaches over a significant opportunity to reduce design time and computational cost. This report presents tools developed to improve supersonic aircraft design capabilities including: aerodynamic tools for supersonic aircraft configurations; a systematic way to manage model uncertainty; and multifidelity model management concepts that incorporate uncertainty. The aerodynamic analysis tools developed are appropriate for use in a multifidelity optimization framework, and include four analysis routines to estimate the lift and drag of a supersonic airfoil, a multifidelity supersonic drag code that estimates the drag of aircraft configurations with three different methods: an area rule method, a panel method, and an Euler solver. In addition, five multifidelity optimization methods are developed, which include local and global methods as well as gradient-based and gradient-free techniques.
Watershed Management Optimization Support Tool (WMOST) is a software application designed tofacilitate integrated water resources management across wet and dry climate regions. It allows waterresources managers and planners to screen a wide range of practices across their watersh...
Evans, Steven T; Stewart, Kevin D; Afdahl, Chris; Patel, Rohan; Newell, Kelcy J
2017-07-14
In this paper, we discuss the optimization and implementation of a high throughput process development (HTPD) tool that utilizes commercially available micro-liter sized column technology for the purification of multiple clinically significant monoclonal antibodies. Chromatographic profiles generated using this optimized tool are shown to overlay with comparable profiles from the conventional bench-scale and clinical manufacturing scale. Further, all product quality attributes measured are comparable across scales for the mAb purifications. In addition to supporting chromatography process development efforts (e.g., optimization screening), comparable product quality results at all scales makes this tool is an appropriate scale model to enable purification and product quality comparisons of HTPD bioreactors conditions. The ability to perform up to 8 chromatography purifications in parallel with reduced material requirements per run creates opportunities for gathering more process knowledge in less time. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Mueller, Martina; Wagner, Carol L; Annibale, David J; Knapp, Rebecca G; Hulsey, Thomas C; Almeida, Jonas S
2006-03-01
Approximately 30% of intubated preterm infants with respiratory distress syndrome (RDS) will fail attempted extubation, requiring reintubation and mechanical ventilation. Although ventilator technology and monitoring of premature infants have improved over time, optimal extubation remains challenging. Furthermore, extubation decisions for premature infants require complex informational processing, techniques implicitly learned through clinical practice. Computer-aided decision-support tools would benefit inexperienced clinicians, especially during peak neonatal intensive care unit (NICU) census. A five-step procedure was developed to identify predictive variables. Clinical expert (CE) thought processes comprised one model. Variables from that model were used to develop two mathematical models for the decision-support tool: an artificial neural network (ANN) and a multivariate logistic regression model (MLR). The ranking of the variables in the three models was compared using the Wilcoxon Signed Rank Test. The best performing model was used in a web-based decision-support tool with a user interface implemented in Hypertext Markup Language (HTML) and the mathematical model employing the ANN. CEs identified 51 potentially predictive variables for extubation decisions for an infant on mechanical ventilation. Comparisons of the three models showed a significant difference between the ANN and the CE (p = 0.0006). Of the original 51 potentially predictive variables, the 13 most predictive variables were used to develop an ANN as a web-based decision-tool. The ANN processes user-provided data and returns the prediction 0-1 score and a novelty index. The user then selects the most appropriate threshold for categorizing the prediction as a success or failure. Furthermore, the novelty index, indicating the similarity of the test case to the training case, allows the user to assess the confidence level of the prediction with regard to how much the new data differ from the data originally used for the development of the prediction tool. State-of-the-art, machine-learning methods can be employed for the development of sophisticated tools to aid clinicians' decisions. We identified numerous variables considered relevant for extubation decisions for mechanically ventilated premature infants with RDS. We then developed a web-based decision-support tool for clinicians which can be made widely available and potentially improve patient care world wide.
Optimization of Turbine Engine Cycle Analysis with Analytic Derivatives
NASA Technical Reports Server (NTRS)
Hearn, Tristan; Hendricks, Eric; Chin, Jeffrey; Gray, Justin; Moore, Kenneth T.
2016-01-01
A new engine cycle analysis tool, called Pycycle, was recently built using the OpenMDAO framework. This tool uses equilibrium chemistry based thermodynamics, and provides analytic derivatives. This allows for stable and efficient use of gradient-based optimization and sensitivity analysis methods on engine cycle models, without requiring the use of finite difference derivative approximation methods. To demonstrate this, a gradient-based design optimization was performed on a multi-point turbofan engine model. Results demonstrate very favorable performance compared to an optimization of an identical model using finite-difference approximated derivatives.
Multidisciplinary Design, Analysis, and Optimization Tool Development Using a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Pak, Chan-gi; Li, Wesley
2009-01-01
Multidisciplinary design, analysis, and optimization using a genetic algorithm is being developed at the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) to automate analysis and design process by leveraging existing tools to enable true multidisciplinary optimization in the preliminary design stage of subsonic, transonic, supersonic, and hypersonic aircraft. This is a promising technology, but faces many challenges in large-scale, real-world application. This report describes current approaches, recent results, and challenges for multidisciplinary design, analysis, and optimization as demonstrated by experience with the Ikhana fire pod design.!
Dynamic airway pressure-time curve profile (Stress Index): a systematic review.
Terragni, Pierpaolo; Bussone, Guido; Mascia, Luciana
2016-01-01
The assessment of respiratory mechanics at the bedside is necessary in order to identify the most protective ventilatory strategy. Indeed in the last 20 years, adverse effects of positive ventilation to the lung structures have led to a reappraisal of the objectives of mechanical ventilation. The ventilator setting requires repeated readjustment over the period of mechanical ventilation dependency and careful respiratory monitoring to minimize the risks, preventing further injury and permitting the lung and airways healing. Among the different methods that have been proposed and validated, the analysis of dynamic P-t curve (named Stress Index, SI) represents an adequate tool available at the bedside, repeatable and, therefore, able to identify the amount of overdistension occurring in the daily clinical practice, when modifying positive end-expiratory pressure. In this review we will analyze the evidence that supports respiratory mechanics assessment at the bedside and the application of the dynamic P/t curve profile (SI) to optimize protective ventilation in patients with acute respiratory failure.
Multiphase and multiscale approaches for modelling the injection of textured moulds
NASA Astrophysics Data System (ADS)
Nakhoul, Rebecca; Laure, Patrice; Silva, Luisa; Vincent, Michel
2016-10-01
Micro-injection moulding is frequently used for the mass production of devices in micro-medical technologies, micro-optics and micro-mechanics. This work focuses mainly on offering numerical tools to model the injection of micro-textured moulds. Such tools can predict the different filling scenarios of the micro-details and consequently offer optimal operating conditions (mould and melt temperatures, melt flow, stresses, etc.) to analyse the final part quality. To do so, a full Eulerian approach is used to model the injection of textured moulds at both the macroscopic and microscopic scales as usual industrial software cannot handle the filling of micro details. Since heat transfers with the mould are very relevant due to high cooling rates, the coupling between micro- and macro- simulations is primordial to insure a complete and accurate representation of textured mould injection.
National Combustion Code: A Multidisciplinary Combustor Design System
NASA Technical Reports Server (NTRS)
Stubbs, Robert M.; Liu, Nan-Suey
1997-01-01
The Internal Fluid Mechanics Division conducts both basic research and technology, and system technology research for aerospace propulsion systems components. The research within the division, which is both computational and experimental, is aimed at improving fundamental understanding of flow physics in inlets, ducts, nozzles, turbomachinery, and combustors. This article and the following three articles highlight some of the work accomplished in 1996. A multidisciplinary combustor design system is critical for optimizing the combustor design process. Such a system should include sophisticated computer-aided design (CAD) tools for geometry creation, advanced mesh generators for creating solid model representations, a common framework for fluid flow and structural analyses, modern postprocessing tools, and parallel processing. The goal of the present effort is to develop some of the enabling technologies and to demonstrate their overall performance in an integrated system called the National Combustion Code.
Shah, Viral; Choudhury, Bijaya Krushna
2017-11-01
A revolutionary paradigm shift is being observed currently, towards the use of therapeutic biologics for disease management. The present research was focused on designing an efficient dosage form for transdermal delivery of α-choriogonadotropin (high molecular weight biologic), through biodegradable polymeric microneedles. Polyvinylpyrrolidone-based biodegradable microneedle arrays loaded with high molecular weight polypeptide, α-choriogonadotropin, were fabricated for its systemic delivery via transdermal route. Varied process and formulation parameters were optimized for fabricating microneedle array, which in turn was expected to temporally rupture the stratum corneum layer of the skin, acting as a major barrier to drug delivery through transdermal route. The developed polymeric microneedles were optimized on the basis of quality attributes like mechanical strength, axial strength, insertion ratio, and insertion force analysis. The optimized polymeric microneedle arrays were characterized for in vitro drug release studies, ex vivo drug permeation studies, skin resealing studies, and in vivo pharmacokinetic studies. Results depicted that fabricated polymeric microneedle arrays with mechanical strength of above 5 N and good insertion ratio exhibited similar systemic bioavailability of α-choriogonadotropin in comparison to marketed subcutaneous injection formulation of α-choriogonadotropin. Thus, it was ultimately concluded that the designed drug delivery system can serve as an efficient tool for systemic delivery of therapeutic biologics, with an added benefit of overcoming the limitations of parenteral delivery, achieving better patient acceptability and compliance.
Improving piezo actuators for nanopositioning tasks
NASA Astrophysics Data System (ADS)
Seeliger, Martin; Gramov, Vassil; Götz, Bernt
2018-02-01
In recent years, numerous applications emerged on the market with seemingly contradicting demands. On one side, the structure size decreased while on the other side, the overall sample size and speed of operation increased. Although the principle usage of piezoelectric positioning solutions has become a standard in the field of micro- and nanopositioning, surface inspection and manipulation, piezosystem jena now enhanced the performance beyond simple control loop tuning and actuator design. In automated manufacturing machines, a given signal has to be tracked fast and precise. However, control systems naturally decrease the ability to follow this signal in real time. piezosystem jena developed a new signal feed forward system bypassing the PID control. This way, we could reduce signal tracking errors by a factor of three compared to a conventionally optimized PID control. Of course, PID-values still have to be adjusted to specific conditions, e.g. changing additional mass, to optimize the performance. This can now be done with a new automatic tuning tool designed to analyze the current setup, find the best fitting configuration, and also gather and display theoretical as well as experimental performance data. Thus, the control quality of a mechanical setup can be improved within a few minutes without the need of external calibration equipment. Furthermore, new mechanical optimization techniques that focus not only on the positioning device, but also take the whole setup into account, prevent parasitic motion down to a few nanometers.
Casian, Tibor; Iurian, Sonia; Bogdan, Catalina; Rus, Lucia; Moldovan, Mirela; Tomuta, Ioan
2017-12-01
This study proposed the development of oral lyophilisates with respect to pediatric medicine development guidelines, by applying risk management strategies and DoE as an integrated QbD approach. Product critical quality attributes were overviewed by generating Ishikawa diagrams for risk assessment purposes, considering process, formulation and methodology related parameters. Failure Mode Effect Analysis was applied to highlight critical formulation and process parameters with an increased probability of occurrence and with a high impact on the product performance. To investigate the effect of qualitative and quantitative formulation variables D-optimal designs were used for screening and optimization purposes. Process parameters related to suspension preparation and lyophilization were classified as significant factors, and were controlled by implementing risk mitigation strategies. Both quantitative and qualitative formulation variables introduced in the experimental design influenced the product's disintegration time, mechanical resistance and dissolution properties selected as CQAs. The optimum formulation selected through Design Space presented ultra-fast disintegration time (5 seconds), a good dissolution rate (above 90%) combined with a high mechanical resistance (above 600 g load). Combining FMEA and DoE allowed the science based development of a product with respect to the defined quality target profile by providing better insights on the relevant parameters throughout development process. The utility of risk management tools in pharmaceutical development was demonstrated.
E-novo: an automated workflow for efficient structure-based lead optimization.
Pearce, Bradley C; Langley, David R; Kang, Jia; Huang, Hongwei; Kulkarni, Amit
2009-07-01
An automated E-Novo protocol designed as a structure-based lead optimization tool was prepared through Pipeline Pilot with existing CHARMm components in Discovery Studio. A scaffold core having 3D binding coordinates of interest is generated from a ligand-bound protein structural model. Ligands of interest are generated from the scaffold using an R-group fragmentation/enumeration tool within E-Novo, with their cores aligned. The ligand side chains are conformationally sampled and are subjected to core-constrained protein docking, using a modified CHARMm-based CDOCKER method to generate top poses along with CDOCKER energies. In the final stage of E-Novo, a physics-based binding energy scoring function ranks the top ligand CDOCKER poses using a more accurate Molecular Mechanics-Generalized Born with Surface Area method. Correlation of the calculated ligand binding energies with experimental binding affinities were used to validate protocol performance. Inhibitors of Src tyrosine kinase, CDK2 kinase, beta-secretase, factor Xa, HIV protease, and thrombin were used to test the protocol using published ligand crystal structure data within reasonably defined binding sites. In-house Respiratory Syncytial Virus inhibitor data were used as a more challenging test set using a hand-built binding model. Least squares fits for all data sets suggested reasonable validation of the protocol within the context of observed ligand binding poses. The E-Novo protocol provides a convenient all-in-one structure-based design process for rapid assessment and scoring of lead optimization libraries.
ISOT_Calc: A versatile tool for parameter estimation in sorption isotherms
NASA Astrophysics Data System (ADS)
Beltrán, José L.; Pignatello, Joseph J.; Teixidó, Marc
2016-09-01
Geochemists and soil chemists commonly use parametrized sorption data to assess transport and impact of pollutants in the environment. However, this evaluation is often hampered by a lack of detailed sorption data analysis, which implies further non-accurate transport modeling. To this end, we present a novel software tool to precisely analyze and interpret sorption isotherm data. Our developed tool, coded in Visual Basic for Applications (VBA), operates embedded within the Microsoft Excel™ environment. It consists of a user-defined function named ISOT_Calc, followed by a supplementary optimization Excel macro (Ref_GN_LM). The ISOT_Calc function estimates the solute equilibrium concentration in the aqueous and solid phases (Ce and q, respectively). Hence, it represents a very flexible way in the optimization of the sorption isotherm parameters, as it can be carried out over the residuals of q, Ce, or both simultaneously (i.e., orthogonal distance regression). The developed function includes the most usual sorption isotherm models, as predefined equations, as well as the possibility to easily introduce custom-defined ones. Regarding the Ref_GN_LM macro, it allows the parameter optimization by using a Levenberg-Marquardt modified Gauss-Newton iterative procedure. In order to evaluate the performance of the presented tool, both function and optimization macro have been applied to different sorption data examples described in the literature. Results showed that the optimization of the isotherm parameters was successfully achieved in all cases, indicating the robustness and reliability of the developed tool. Thus, the presented software tool, available to researchers and students for free, has proven to be a user-friendly and an interesting alternative to conventional fitting tools used in sorption data analysis.
Watershed Management Optimization Support Tool (WMOST) v1: Theoretical Documentation
The Watershed Management Optimization Support Tool (WMOST) is a screening model that is spatially lumped with options for a daily or monthly time step. It is specifically focused on modeling the effect of management decisions on the watershed. The model considers water flows and ...
Analysis on design and optimization of dispersion-managed communication systems
NASA Astrophysics Data System (ADS)
El-Aasser, Mostafa A.; Dua, Puneit; Dutta, Niloy K.
2002-07-01
The variational method is a useful tool that can be used for design and optimization of dispersion-managed communication systems. Using this powerful tool, we evaluate the characteristics of a carrier signal for certain system parameters and describe several features of a dispersion-managed soliton.
Expert systems tools for Hubble Space Telescope observation scheduling
NASA Technical Reports Server (NTRS)
Miller, Glenn; Rosenthal, Don; Cohen, William; Johnston, Mark
1987-01-01
The utility of expert systems techniques for the Hubble Space Telescope (HST) planning and scheduling is discussed and a plan for development of expert system tools which will augment the existing ground system is described. Additional capabilities provided by these tools will include graphics-oriented plan evaluation, long-range analysis of the observation pool, analysis of optimal scheduling time intervals, constructing sequences of spacecraft activities which minimize operational overhead, and optimization of linkages between observations. Initial prototyping of a scheduler used the Automated Reasoning Tool running on a LISP workstation.
The economics of optimal urban groundwater management in southwestern USA
NASA Astrophysics Data System (ADS)
Hansen, Jason K.
2012-08-01
Groundwater serves as the primary water source for approximately 80% of public water systems in the United States, and for many more as a secondary source. Traditionally management relies on groundwater to meet rising demand by increasing supply, but climate uncertainty and population growth require more judicious management to achieve efficiency and sustainability. Over-pumping leads to groundwater overdraft and jeopardizes the ability of future users to depend on the resource. Optimal urban groundwater pumping can play a role in solving this conundrum. This paper investigates to what extent and under what circumstances controlled pumping improves social welfare. It considers management in a hydro-economic framework and finds the optimal pumping path and the optimal price path. These allow for the identification of the social benefit of controlled pumping, and the scarcity rent, which is one tool to sustainably manage groundwater resources. The model is numerically illustrated with a case study from Albuquerque, New Mexico (USA). The Albuquerque results indicate that, in the presence of strong demand growth, controlled pumping improves social welfare by 22%, extends use of the resource, and provides planners with a mechanism to advance the economic sustainability of groundwater.
2011-09-20
optimal portfolio point on the efficient frontier, for example, Portfolio B on the chart in Figure A1. Then, by subsequently changing some of the ... optimized portfolio controlling for risk using the IRM methodology and tool suite. Results indicate that both rapid and incremental implementation...Results of the KVA and SD scenario analysis provided the financial information required to forecast an optimized
The role of optimization in the next generation of computer-based design tools
NASA Technical Reports Server (NTRS)
Rogan, J. Edward
1989-01-01
There is a close relationship between design optimization and the emerging new generation of computer-based tools for engineering design. With some notable exceptions, the development of these new tools has not taken full advantage of recent advances in numerical design optimization theory and practice. Recent work in the field of design process architecture has included an assessment of the impact of next-generation computer-based design tools on the design process. These results are summarized, and insights into the role of optimization in a design process based on these next-generation tools are presented. An example problem has been worked out to illustrate the application of this technique. The example problem - layout of an aircraft main landing gear - is one that is simple enough to be solved by many other techniques. Although the mathematical relationships describing the objective function and constraints for the landing gear layout problem can be written explicitly and are quite straightforward, an approximation technique has been used in the solution of this problem that can just as easily be applied to integrate supportability or producibility assessments using theory of measurement techniques into the design decision-making process.
High density plasmas and new diagnostics: An overview (invited).
Celona, L; Gammino, S; Mascali, D
2016-02-01
One of the limiting factors for the full understanding of Electron Cyclotron Resonance Ion Sources (ECRISs) fundamental mechanisms consists of few types of diagnostic tools so far available for such compact machines. Microwave-to-plasma coupling optimisation, new methods of density overboost provided by plasma wave generation, and magnetostatic field tailoring for generating a proper electron energy distribution function, suitable for optimal ion beams formation, require diagnostic tools spanning across the entire electromagnetic spectrum from microwave interferometry to X-ray spectroscopy; these methods are going to be implemented including high resolution and spatially resolved X-ray spectroscopy made by quasi-optical methods (pin-hole cameras). The ion confinement optimisation also requires a complete control of cold electrons displacement, which can be performed by optical emission spectroscopy. Several diagnostic tools have been recently developed at INFN-LNS, including "volume-integrated" X-ray spectroscopy in low energy domain (2-30 keV, by using silicon drift detectors) or high energy regime (>30 keV, by using high purity germanium detectors). For the direct detection of the spatially resolved spectral distribution of X-rays produced by the electronic motion, a "pin-hole camera" has been developed also taking profit from previous experiences in the ECRIS field. The paper will give an overview of INFN-LNS strategy in terms of new microwave-to-plasma coupling schemes and advanced diagnostics supporting the design of new ion sources and for optimizing the performances of the existing ones, with the goal of a microwave-absorption oriented design of future machines.
Improved alignment evaluation and optimization : final report.
DOT National Transportation Integrated Search
2007-09-11
This report outlines the development of an enhanced highway alignment evaluation and optimization : model. A GIS-based software tool is prepared for alignment optimization that uses genetic algorithms for : optimal search. The software is capable of ...
NASA Astrophysics Data System (ADS)
Copur, Hanifi; Bilgin, Nuh; Balci, Cemal; Tumac, Deniz; Avunduk, Emre
2017-06-01
This study aims at determining the effects of single-, double-, and triple-spiral cutting patterns; the effects of tool cutting speeds on the experimental scale; and the effects of the method of yield estimation on cutting performance by performing a set of full-scale linear cutting tests with a conical cutting tool. The average and maximum normal, cutting and side forces; specific energy; yield; and coarseness index are measured and compared in each cutting pattern at a 25-mm line spacing, at varying depths of cut per revolution, and using two cutting speeds on five different rock samples. The results indicate that the optimum specific energy decreases by approximately 25% with an increasing number of spirals from the single- to the double-spiral cutting pattern for the hard rocks, whereas generally little effect was observed for the soft- and medium-strength rocks. The double-spiral cutting pattern appeared to be more effective than the single- or triple-spiral cutting pattern and had an advantage of lower side forces. The tool cutting speed had no apparent effect on the cutting performance. The estimation of the specific energy by the yield based on the theoretical swept area was not significantly different from that estimated by the yield based on the muck weighing, especially for the double- and triple-spiral cutting patterns and with the optimum ratio of line spacing to depth of cut per revolution. This study also demonstrated that the cutterhead and mechanical miner designs, semi-theoretical deterministic computer simulations and empirical performance predictions and optimization models should be based on realistic experimental simulations. Studies should be continued to obtain more reliable results by creating a larger database of laboratory tests and field performance records for mechanical miners using drag tools.
NASA Astrophysics Data System (ADS)
Veerakamolmal, Pitipong; Lee, Yung-Joon; Fasano, J. P.; Hale, Rhea; Jacques, Mary
2002-02-01
In recent years, there has been increased focus by regulators, manufacturers, and consumers on the issue of product end of life management for electronics. This paper presents an overview of a conceptual study designed to examine the costs and benefits of several different Product Take Back (PTB) scenarios for used electronics equipment. The study utilized a reverse logistics supply chain model to examine the effects of several different factors in PTB programs. The model was done using the IBM supply chain optimization tool known as WIT (Watson Implosion Technology). Using the WIT tool, we were able to determine a theoretical optimal cost scenario for PTB programs. The study was designed to assist IBM internally in determining theoretical optimal Product Take Back program models and determining potential incentives for increasing participation rates.
Optimal Sizing Tool for Battery Storage in Grid Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-09-24
The battery storage sizing tool developed at Pacific Northwest National Laboratory can be used to evaluate economic performance and determine the optimal size of battery storage in different use cases considering multiple power system applications. The considered use cases include i) utility owned battery storage, and ii) battery storage behind customer meter. The power system applications from energy storage include energy arbitrage, balancing services, T&D deferral, outage mitigation, demand charge reduction etc. Most of existing solutions consider only one or two grid services simultaneously, such as balancing service and energy arbitrage. ES-select developed by Sandia and KEMA is able tomore » consider multiple grid services but it stacks the grid services based on priorities instead of co-optimization. This tool is the first one that provides a co-optimization for systematic and local grid services.« less
Cascade Optimization Strategy for Aircraft and Air-Breathing Propulsion System Concepts
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Lavelle, Thomas M.; Hopkins, Dale A.; Coroneos, Rula M.
1996-01-01
Design optimization for subsonic and supersonic aircraft and for air-breathing propulsion engine concepts has been accomplished by soft-coupling the Flight Optimization System (FLOPS) and the NASA Engine Performance Program analyzer (NEPP), to the NASA Lewis multidisciplinary optimization tool COMETBOARDS. Aircraft and engine design problems, with their associated constraints and design variables, were cast as nonlinear optimization problems with aircraft weight and engine thrust as the respective merit functions. Because of the diversity of constraint types and the overall distortion of the design space, the most reliable single optimization algorithm available in COMETBOARDS could not produce a satisfactory feasible optimum solution. Some of COMETBOARDS' unique features, which include a cascade strategy, variable and constraint formulations, and scaling devised especially for difficult multidisciplinary applications, successfully optimized the performance of both aircraft and engines. The cascade method has two principal steps: In the first, the solution initiates from a user-specified design and optimizer, in the second, the optimum design obtained in the first step with some random perturbation is used to begin the next specified optimizer. The second step is repeated for a specified sequence of optimizers or until a successful solution of the problem is achieved. A successful solution should satisfy the specified convergence criteria and have several active constraints but no violated constraints. The cascade strategy available in the combined COMETBOARDS, FLOPS, and NEPP design tool converges to the same global optimum solution even when it starts from different design points. This reliable and robust design tool eliminates manual intervention in the design of aircraft and of air-breathing propulsion engines where it eases the cycle analysis procedures. The combined code is also much easier to use, which is an added benefit. This paper describes COMETBOARDS and its cascade strategy and illustrates the capability of the combined design tool through the optimization of a subsonic aircraft and a high-bypass-turbofan wave-rotor-topped engine.
Gschwind, Michael K
2013-07-23
Mechanisms for aggressively optimizing computer code are provided. With these mechanisms, a compiler determines an optimization to apply to a portion of source code and determines if the optimization as applied to the portion of source code will result in unsafe optimized code that introduces a new source of exceptions being generated by the optimized code. In response to a determination that the optimization is an unsafe optimization, the compiler generates an aggressively compiled code version, in which the unsafe optimization is applied, and a conservatively compiled code version in which the unsafe optimization is not applied. The compiler stores both versions and provides them for execution. Mechanisms are provided for switching between these versions during execution in the event of a failure of the aggressively compiled code version. Moreover, predictive mechanisms are provided for predicting whether such a failure is likely.
NASA Astrophysics Data System (ADS)
Kurosu, Keita; Takashina, Masaaki; Koizumi, Masahiko; Das, Indra J.; Moskvin, Vadim P.
2014-10-01
Although three general-purpose Monte Carlo (MC) simulation tools: Geant4, FLUKA and PHITS have been used extensively, differences in calculation results have been reported. The major causes are the implementation of the physical model, preset value of the ionization potential or definition of the maximum step size. In order to achieve artifact free MC simulation, an optimized parameters list for each simulation system is required. Several authors have already proposed the optimized lists, but those studies were performed with a simple system such as only a water phantom. Since particle beams have a transport, interaction and electromagnetic processes during beam delivery, establishment of an optimized parameters-list for whole beam delivery system is therefore of major importance. The purpose of this study was to determine the optimized parameters list for GATE and PHITS using proton treatment nozzle computational model. The simulation was performed with the broad scanning proton beam. The influences of the customizing parameters on the percentage depth dose (PDD) profile and the proton range were investigated by comparison with the result of FLUKA, and then the optimal parameters were determined. The PDD profile and the proton range obtained from our optimized parameters list showed different characteristics from the results obtained with simple system. This led to the conclusion that the physical model, particle transport mechanics and different geometry-based descriptions need accurate customization in planning computational experiments for artifact-free MC simulation.
Radiation Mitigation and Power Optimization Design Tools for Reconfigurable Hardware in Orbit
NASA Technical Reports Server (NTRS)
French, Matthew; Graham, Paul; Wirthlin, Michael; Wang, Li; Larchev, Gregory
2005-01-01
The Reconfigurable Hardware in Orbit (RHinO)project is focused on creating a set of design tools that facilitate and automate design techniques for reconfigurable computing in space, using SRAM-based field-programmable-gate-array (FPGA) technology. In the second year of the project, design tools that leverage an established FPGA design environment have been created to visualize and analyze an FPGA circuit for radiation weaknesses and power inefficiencies. For radiation, a single event Upset (SEU) emulator, persistence analysis tool, and a half-latch removal tool for Xilinx/Virtex-II devices have been created. Research is underway on a persistence mitigation tool and multiple bit upsets (MBU) studies. For power, synthesis level dynamic power visualization and analysis tools have been completed. Power optimization tools are under development and preliminary test results are positive.
Dataflow Design Tool: User's Manual
NASA Technical Reports Server (NTRS)
Jones, Robert L., III
1996-01-01
The Dataflow Design Tool is a software tool for selecting a multiprocessor scheduling solution for a class of computational problems. The problems of interest are those that can be described with a dataflow graph and are intended to be executed repetitively on a set of identical processors. Typical applications include signal processing and control law problems. The software tool implements graph-search algorithms and analysis techniques based on the dataflow paradigm. Dataflow analyses provided by the software are introduced and shown to effectively determine performance bounds, scheduling constraints, and resource requirements. The software tool provides performance optimization through the inclusion of artificial precedence constraints among the schedulable tasks. The user interface and tool capabilities are described. Examples are provided to demonstrate the analysis, scheduling, and optimization functions facilitated by the tool.
Side Flow Effect on Surface Generation in Nano Cutting
NASA Astrophysics Data System (ADS)
Xu, Feifei; Fang, Fengzhou; Zhang, Xiaodong
2017-05-01
The side flow of material in nano cutting is one of the most important factors that deteriorate the machined surface quality. The effects of the crystallographic orientation, feed, and the cutting tool geometry, including tool edge radius, rake angle and inclination angle, on the side flow are investigated employing molecular dynamics simulation. The results show that the stagnation region is formed in front of tool edge and it is characterized by the stagnation radius R s and stagnation height h s . The side flow is formed because the material at or under the stagnation region is extruded by the tool edge to flow to the side of the tool edge. Higher stagnation height would increase the size of the side flow. The anisotropic nature of the material which partly determines the stagnation region also influences the side flow due to the different deformation mechanism under the action of the tool edge. At different cutting directions, the size of the side flow has a great difference which would finally affect the machined surface quality. The cutting directions of {100} < 011>, {110} < 001>, and {110} < 1-10 > are beneficial to obtain a better surface quality with small side flow. Besides that, the side flow could be suppressed by reducing the feed and optimizing the cutting tool geometry. Cutting tool with small edge radius, large positive rake angle, and inclination angle would decrease the side flow and consequently improve the machined surface quality.
Side Flow Effect on Surface Generation in Nano Cutting.
Xu, Feifei; Fang, Fengzhou; Zhang, Xiaodong
2017-12-01
The side flow of material in nano cutting is one of the most important factors that deteriorate the machined surface quality. The effects of the crystallographic orientation, feed, and the cutting tool geometry, including tool edge radius, rake angle and inclination angle, on the side flow are investigated employing molecular dynamics simulation. The results show that the stagnation region is formed in front of tool edge and it is characterized by the stagnation radius R s and stagnation height h s . The side flow is formed because the material at or under the stagnation region is extruded by the tool edge to flow to the side of the tool edge. Higher stagnation height would increase the size of the side flow. The anisotropic nature of the material which partly determines the stagnation region also influences the side flow due to the different deformation mechanism under the action of the tool edge. At different cutting directions, the size of the side flow has a great difference which would finally affect the machined surface quality. The cutting directions of {100} < 011>, {110} < 001>, and {110} < 1-10 > are beneficial to obtain a better surface quality with small side flow. Besides that, the side flow could be suppressed by reducing the feed and optimizing the cutting tool geometry. Cutting tool with small edge radius, large positive rake angle, and inclination angle would decrease the side flow and consequently improve the machined surface quality.
Lesourd, Mathieu; Budriesi, Carla; Osiurak, François; Nichelli, Paolo F; Bartolo, Angela
2017-12-20
In the literature on apraxia of tool use, it is now accepted that using familiar tools requires semantic and mechanical knowledge. However, mechanical knowledge is nearly always assessed with production tasks, so one may assume that mechanical knowledge and familiar tool use are associated only because of their common motor mechanisms. This notion may be challenged by demonstrating that familiar tool use depends on an alternative tool selection task assessing mechanical knowledge, where alternative uses of tools are assumed according to their physical properties but where actual use of tools is not needed. We tested 21 left brain-damaged patients and 21 matched controls with familiar tool use tasks (pantomime and single tool use), semantic tasks and an alternative tool selection task. The alternative tool selection task accounted for a large amount of variance in the single tool use task and was the best predictor among all the semantic tasks. Concerning the pantomime of tool use task, group and individual results suggested that the integrity of the semantic system and preserved mechanical knowledge are neither necessary nor sufficient to produce pantomimes. These results corroborate the idea that mechanical knowledge is essential when we use tools, even when tasks assessing mechanical knowledge do not require the production of any motor action. Our results also confirm the value of pantomime of tool use, which can be considered as a complex activity involving several cognitive abilities (e.g., communicative skills) rather than the activation of gesture engrams. © 2017 The British Psychological Society.
Optimal design and uncertainty quantification in blood flow simulations for congenital heart disease
NASA Astrophysics Data System (ADS)
Marsden, Alison
2009-11-01
Recent work has demonstrated substantial progress in capabilities for patient-specific cardiovascular flow simulations. Recent advances include increasingly complex geometries, physiological flow conditions, and fluid structure interaction. However inputs to these simulations, including medical image data, catheter-derived pressures and material properties, can have significant uncertainties associated with them. For simulations to predict clinically useful and reliable output information, it is necessary to quantify the effects of input uncertainties on outputs of interest. In addition, blood flow simulation tools can now be efficiently coupled to shape optimization algorithms for surgery design applications, and these tools should incorporate uncertainty information. We present a unified framework to systematically and efficient account for uncertainties in simulations using adaptive stochastic collocation. In addition, we present a framework for derivative-free optimization of cardiovascular geometries, and layer these tools to perform optimization under uncertainty. These methods are demonstrated using simulations and surgery optimization to improve hemodynamics in pediatric cardiology applications.
Lunar Habitat Optimization Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
SanScoucie, M. P.; Hull, P. V.; Tinker, M. L.; Dozier, G. V.
2007-01-01
Long-duration surface missions to the Moon and Mars will require bases to accommodate habitats for the astronauts. Transporting the materials and equipment required to build the necessary habitats is costly and difficult. The materials chosen for the habitat walls play a direct role in protection against each of the mentioned hazards. Choosing the best materials, their configuration, and the amount required is extremely difficult due to the immense size of the design region. Clearly, an optimization method is warranted for habitat wall design. Standard optimization techniques are not suitable for problems with such large search spaces; therefore, a habitat wall design tool utilizing genetic algorithms (GAs) has been developed. GAs use a "survival of the fittest" philosophy where the most fit individuals are more likely to survive and reproduce. This habitat design optimization tool is a multiobjective formulation of up-mass, heat loss, structural analysis, meteoroid impact protection, and radiation protection. This Technical Publication presents the research and development of this tool as well as a technique for finding the optimal GA search parameters.
Design Optimization Tool for Synthetic Jet Actuators Using Lumped Element Modeling
NASA Technical Reports Server (NTRS)
Gallas, Quentin; Sheplak, Mark; Cattafesta, Louis N., III; Gorton, Susan A. (Technical Monitor)
2005-01-01
The performance specifications of any actuator are quantified in terms of an exhaustive list of parameters such as bandwidth, output control authority, etc. Flow-control applications benefit from a known actuator frequency response function that relates the input voltage to the output property of interest (e.g., maximum velocity, volumetric flow rate, momentum flux, etc.). Clearly, the required performance metrics are application specific, and methods are needed to achieve the optimal design of these devices. Design and optimization studies have been conducted for piezoelectric cantilever-type flow control actuators, but the modeling issues are simpler compared to synthetic jets. Here, lumped element modeling (LEM) is combined with equivalent circuit representations to estimate the nonlinear dynamic response of a synthetic jet as a function of device dimensions, material properties, and external flow conditions. These models provide reasonable agreement between predicted and measured frequency response functions and thus are suitable for use as design tools. In this work, we have developed a Matlab-based design optimization tool for piezoelectric synthetic jet actuators based on the lumped element models mentioned above. Significant improvements were achieved by optimizing the piezoceramic diaphragm dimensions. Synthetic-jet actuators were fabricated and benchtop tested to fully document their behavior and validate a companion optimization effort. It is hoped that the tool developed from this investigation will assist in the design and deployment of these actuators.
ASTROS: A multidisciplinary automated structural design tool
NASA Technical Reports Server (NTRS)
Neill, D. J.
1989-01-01
ASTROS (Automated Structural Optimization System) is a finite-element-based multidisciplinary structural optimization procedure developed under Air Force sponsorship to perform automated preliminary structural design. The design task is the determination of the structural sizes that provide an optimal structure while satisfying numerous constraints from many disciplines. In addition to its automated design features, ASTROS provides a general transient and frequency response capability, as well as a special feature to perform a transient analysis of a vehicle subjected to a nuclear blast. The motivation for the development of a single multidisciplinary design tool is that such a tool can provide improved structural designs in less time than is currently needed. The role of such a tool is even more apparent as modern materials come into widespread use. Balancing conflicting requirements for the structure's strength and stiffness while exploiting the benefits of material anisotropy is perhaps an impossible task without assistance from an automated design tool. Finally, the use of a single tool can bring the design task into better focus among design team members, thereby improving their insight into the overall task.
NASA Astrophysics Data System (ADS)
Sandrik, Suzannah
Optimal solutions to the impulsive circular phasing problem, a special class of orbital maneuver in which impulsive thrusts shift a vehicle's orbital position by a specified angle, are found using primer vector theory. The complexities of optimal circular phasing are identified and illustrated using specifically designed Matlab software tools. Information from these new visualizations is applied to explain discrepancies in locally optimal solutions found by previous researchers. Two non-phasing circle-to-circle impulsive rendezvous problems are also examined to show the applicability of the tools developed here to a broader class of problems and to show how optimizing these rendezvous problems differs from the circular phasing case.
NASA Astrophysics Data System (ADS)
Farahmand, Parisa; Kovacevic, Radovan
2014-12-01
In laser cladding, the performance of the deposited layers subjected to severe working conditions (e.g., wear and high temperature conditions) depends on the mechanical properties, the metallurgical bond to the substrate, and the percentage of dilution. The clad geometry and mechanical characteristics of the deposited layer are influenced greatly by the type of laser used as a heat source and process parameters used. Nowadays, the quality of fabricated coating by laser cladding and the efficiency of this process has improved thanks to the development of high-power diode lasers, with power up to 10 kW. In this study, the laser cladding by a high power direct diode laser (HPDDL) as a new heat source in laser cladding was investigated in detail. The high alloy tool steel material (AISI H13) as feedstock was deposited on mild steel (ASTM A36) by a HPDDL up to 8kW laser and with new design lateral feeding nozzle. The influences of the main process parameters (laser power, powder flow rate, and scanning speed) on the clad-bead geometry (specifically layer height and depth of the heat affected zone), and clad microhardness were studied. Multiple regression analysis was used to develop the analytical models for desired output properties according to input process parameters. The Analysis of Variance was applied to check the accuracy of the developed models. The response surface methodology (RSM) and desirability function were used for multi-criteria optimization of the cladding process. In order to investigate the effect of process parameters on the molten pool evolution, in-situ monitoring was utilized. Finally, the validation results for optimized process conditions show the predicted results were in a good agreement with measured values. The multi-criteria optimization makes it possible to acquire an efficient process for a combination of clad geometrical and mechanical characteristics control.
Donaldson, Finn E; Nyman, Edward; Coburn, James C
2015-07-16
Manufacturers and investigators of Total Hip Replacement (THR) bearings require tools to predict the contact mechanics resulting from diverse design and loading parameters. This study provides contact mechanics solutions for metal-on-metal (MoM) bearings that encompass the current design space and could aid pre-clinical design optimization and evaluation. Stochastic finite element (FE) simulation was used to calculate the head-on-cup contact mechanics for five thousand combinations of design and loading parameters. FE results were used to train a Random Forest (RF) surrogate model to rapidly predict the contact patch dimensions, contact area, pressures and plastic deformations for arbitrary designs and loading. In addition to widely observed polar and edge contact, FE results included ring-polar, asymmetric-polar, and transitional categories which have previously received limited attention. Combinations of design and load parameters associated with each contact category were identified. Polar contact pressures were predicted in the range of 0-200 MPa with no permanent deformation. Edge loading (with subluxation) was associated with pressures greater than 500 MPa and induced permanent deformation in 83% of cases. Transitional-edge contact (with little subluxation) was associated with intermediate pressures and permanent deformation in most cases, indicating that, even with ideal anatomical alignment, bearings may face extreme wear challenges. Surrogate models were able to accurately predict contact mechanics 18,000 times faster than FE analyses. The developed surrogate models enable rapid prediction of MoM bearing contact mechanics across the most comprehensive range of loading and designs to date, and may be useful to those performing bearing design optimization or evaluation. Published by Elsevier Ltd.
Optimization of Milling Parameters Employing Desirability Functions
NASA Astrophysics Data System (ADS)
Ribeiro, J. L. S.; Rubio, J. C. Campos; Abrão, A. M.
2011-01-01
The principal aim of this paper is to investigate the influence of tool material (one cermet and two coated carbide grades), cutting speed and feed rate on the machinability of hardened AISI H13 hot work steel, in order to identify the cutting conditions which lead to optimal performance. A multiple response optimization procedure based on tool life, surface roughness, milling forces and the machining time (required to produce a sample cavity) was employed. The results indicated that the TiCN-TiN coated carbide and cermet presented similar results concerning the global optimum values for cutting speed and feed rate per tooth, outperforming the TiN-TiCN-Al2O3 coated carbide tool.
Applications of colored petri net and genetic algorithms to cluster tool scheduling
NASA Astrophysics Data System (ADS)
Liu, Tung-Kuan; Kuo, Chih-Jen; Hsiao, Yung-Chin; Tsai, Jinn-Tsong; Chou, Jyh-Horng
2005-12-01
In this paper, we propose a method, which uses Coloured Petri Net (CPN) and genetic algorithm (GA) to obtain an optimal deadlock-free schedule and to solve re-entrant problem for the flexible process of the cluster tool. The process of the cluster tool for producing a wafer usually can be classified into three types: 1) sequential process, 2) parallel process, and 3) sequential parallel process. But these processes are not economical enough to produce a variety of wafers in small volume. Therefore, this paper will propose the flexible process where the operations of fabricating wafers are randomly arranged to achieve the best utilization of the cluster tool. However, the flexible process may have deadlock and re-entrant problems which can be detected by CPN. On the other hand, GAs have been applied to find the optimal schedule for many types of manufacturing processes. Therefore, we successfully integrate CPN and GAs to obtain an optimal schedule with the deadlock and re-entrant problems for the flexible process of the cluster tool.
BEopt-CA (Ex): A Tool for Optimal Integration of EE, DR and PV in Existing California Homes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christensen, Craig; Horowitz, Scott; Maguire, Jeff
2014-04-01
This project targeted the development of a software tool, BEopt-CA (Ex) (Building Energy Optimization Tool for California Existing Homes), that aims to facilitate balanced integration of energy efficiency (EE), demand response (DR), and photovoltaics (PV) in the residential retrofit1 market. The intent is to provide utility program managers and contractors in the EE/DR/PV marketplace with a means of balancing the integration of EE, DR, and PV
NASA Astrophysics Data System (ADS)
Besson, Pierre; Dominguez, Cesar; Voarino, Philippe; Garcia-Linares, Pablo; Weick, Clement; Lemiti, Mustapha; Baudrit, Mathieu
2015-09-01
The optical characterization and electrical performance evaluation are essential in the design and optimization of a concentrator photovoltaic system. The geometry, materials, and size of concentrator optics are diverse and different environmental conditions impact their performance. CEA has developed a new concentrator photovoltaic system characterization bench, METHOD, which enables multi-physics optimization studies. The lens and cell temperatures are controlled independently with the METHOD to study their isolated effects on the electrical and optical performance of the system. These influences can be studied in terms of their effect on optical efficiency, focal distance, spectral sensitivity, electrical efficiency, or cell current matching. Furthermore, the irradiance map of a concentrator optic can be mapped to study its variations versus the focal length or the lens temperature. The present work shows this application to analyze the performance of a Fresnel lens linking temperature to optical and electrical performance.
Zhang, Wenchao; Wang, Xiaoxia; Wu, Yiwei; Qi, Zhi; Yang, Rongjie
2018-04-02
Organic-inorganic hybrid macrocyclic compounds, cyclic polyphenylsilsesquioxanes (cyc-PSQs), have been synthesized through hydrolysis and condensation reactions of phenyltrichlorosilane. Structural characterization has revealed that cyc-PSQs consist of a closed-ring double-chain siloxane inorganic backbone bearing organic phenyl groups. The cyc-PSQ molecules have been simulated and structurally optimized using the Forcite tool as implemented in Materials Studio. Structurally optimized cyc-PSQs are highly symmetrical and regular with high stereoregularity, consistent with the dimensions of their experimentally derived structures. Thermogravimetric analysis showed that these macrocyclic compounds have excellent thermal stability. In addition to these perfectly structured compounds, macrocyclic compounds with the same ring ladder structure but bearing an additional Si-OH group, cyc-PSQs-OH, have also been synthesized. A possible mechanism for the formation of the closed-ring molecular structures of cyc-PSQs and cyc-PSQs-OH is proposed.
Stockpiling Ventilators for Influenza Pandemics
Araz, Ozgur M.; Morton, David P.; Johnson, Gregory P.; Damien, Paul; Clements, Bruce; Meyers, Lauren Ancel
2017-01-01
In preparing for influenza pandemics, public health agencies stockpile critical medical resources. Determining appropriate quantities and locations for such resources can be challenging, given the considerable uncertainty in the timing and severity of future pandemics. We introduce a method for optimizing stockpiles of mechanical ventilators, which are critical for treating hospitalized influenza patients in respiratory failure. As a case study, we consider the US state of Texas during mild, moderate, and severe pandemics. Optimal allocations prioritize local over central storage, even though the latter can be deployed adaptively, on the basis of real-time needs. This prioritization stems from high geographic correlations and the slightly lower treatment success assumed for centrally stockpiled ventilators. We developed our model and analysis in collaboration with academic researchers and a state public health agency and incorporated it into a Web-based decision-support tool for pandemic preparedness and response. PMID:28518041
Quantitative multimodality imaging in cancer research and therapy.
Yankeelov, Thomas E; Abramson, Richard G; Quarles, C Chad
2014-11-01
Advances in hardware and software have enabled the realization of clinically feasible, quantitative multimodality imaging of tissue pathophysiology. Earlier efforts relating to multimodality imaging of cancer have focused on the integration of anatomical and functional characteristics, such as PET-CT and single-photon emission CT (SPECT-CT), whereas more-recent advances and applications have involved the integration of multiple quantitative, functional measurements (for example, multiple PET tracers, varied MRI contrast mechanisms, and PET-MRI), thereby providing a more-comprehensive characterization of the tumour phenotype. The enormous amount of complementary quantitative data generated by such studies is beginning to offer unique insights into opportunities to optimize care for individual patients. Although important technical optimization and improved biological interpretation of multimodality imaging findings are needed, this approach can already be applied informatively in clinical trials of cancer therapeutics using existing tools. These concepts are discussed herein.
SHARPEN-systematic hierarchical algorithms for rotamers and proteins on an extended network.
Loksha, Ilya V; Maiolo, James R; Hong, Cheng W; Ng, Albert; Snow, Christopher D
2009-04-30
Algorithms for discrete optimization of proteins play a central role in recent advances in protein structure prediction and design. We wish to improve the resources available for computational biologists to rapidly prototype such algorithms and to easily scale these algorithms to many processors. To that end, we describe the implementation and use of two new open source resources, citing potential benefits over existing software. We discuss CHOMP, a new object-oriented library for macromolecular optimization, and SHARPEN, a framework for scaling CHOMP scripts to many computers. These tools allow users to develop new algorithms for a variety of applications including protein repacking, protein-protein docking, loop rebuilding, or homology model remediation. Particular care was taken to allow modular energy function design; protein conformations may currently be scored using either the OPLSaa molecular mechanical energy function or an all-atom semiempirical energy function employed by Rosetta. (c) 2009 Wiley Periodicals, Inc.
Systematic evaluation of common lubricants for optimal use in tablet formulation.
Paul, Shubhajit; Sun, Changquan Calvin
2018-05-30
As an essential formulation component for large-scale tablet manufacturing, the lubricant preserves tooling by reducing die-wall friction. Unfortunately, lubrication also often results in adverse effects on tablet characteristics, such as prolonged disintegration, slowed dissolution, and reduced mechanical strength. Therefore, the choice of lubricant and its optimal concentration in a tablet formulation is a critical decision in tablet formulation development to attain low die-wall friction while minimizing negative impact on other tablet properties. Three commercially available tablet lubricants, i.e., magnesium stearate, sodium stearyl fumerate, and stearic acid, were systematically investigated in both plastic and brittle matrices to elucidate their effects on reducing die-wall friction, tablet strength, tablet hardness, tablet friability, and tablet disintegration kinetics. Clear understanding of the lubrication efficiency of commonly used lubricants as well as their impact on tablet characteristics would help future tablet formulation efforts. Copyright © 2018 Elsevier B.V. All rights reserved.
Subsystem design in aircraft power distribution systems using optimization
NASA Astrophysics Data System (ADS)
Chandrasekaran, Sriram
2000-10-01
The research reported in this dissertation focuses on the development of optimization tools for the design of subsystems in a modern aircraft power distribution system. The baseline power distribution system is built around a 270V DC bus. One of the distinguishing features of this power distribution system is the presence of regenerative power from the electrically driven flight control actuators and structurally integrated smart actuators back to the DC bus. The key electrical components of the power distribution system are bidirectional switching power converters, which convert, control and condition electrical power between the sources and the loads. The dissertation is divided into three parts. Part I deals with the formulation of an optimization problem for a sample system consisting of a regulated DC-DC buck converter preceded by an input filter. The individual subsystems are optimized first followed by the integrated optimization of the sample system. It is shown that the integrated optimization provides better results than that obtained by integrating the individually optimized systems. Part II presents a detailed study of piezoelectric actuators. This study includes modeling, optimization of the drive amplifier and the development of a current control law for piezoelectric actuators coupled to a simple mechanical structure. Linear and nonlinear methods to study subsystem interaction and stability are studied in Part III. A multivariable impedance ratio criterion applicable to three phase systems is proposed. Bifurcation methods are used to obtain global stability characteristics of interconnected systems. The application of a nonlinear design methodology, widely used in power systems, to incrementally improve the robustness of a system to Hopf bifurcation instability is discussed.
Simultaneous Aerodynamic and Structural Design Optimization (SASDO) for a 3-D Wing
NASA Technical Reports Server (NTRS)
Gumbert, Clyde R.; Hou, Gene J.-W.; Newman, Perry A.
2001-01-01
The formulation and implementation of an optimization method called Simultaneous Aerodynamic and Structural Design Optimization (SASDO) is shown as an extension of the Simultaneous Aerodynamic Analysis and Design Optimization (SAADO) method. It is extended by the inclusion of structure element sizing parameters as design variables and Finite Element Method (FEM) analysis responses as constraints. The method aims to reduce the computational expense. incurred in performing shape and sizing optimization using state-of-the-art Computational Fluid Dynamics (CFD) flow analysis, FEM structural analysis and sensitivity analysis tools. SASDO is applied to a simple. isolated, 3-D wing in inviscid flow. Results show that the method finds the saine local optimum as a conventional optimization method with some reduction in the computational cost and without significant modifications; to the analysis tools.
Retractable tool bit having latch type catch mechanism
NASA Technical Reports Server (NTRS)
Voellmer, George (Inventor)
1993-01-01
A retractable tool bit assembly for a tool such as an allen key is presented. The assembly includes one or more spring loaded nestable or telescoping tubular sections together with a catch mechanism for capturing and holding the tool in its retracted position. The catch mechanism consists of a latch mechanism located in a base section and which engages a conically shaped tool head located at the inner end of the tool. The tool head adjoins an eccentric oval type neck portion which extends to a rear lip of the tool head. The latch mechanism releases when the ovular neck portion rotates about the catch members upon actuation of a rotary tool drive motor. When released, all the telescoping sections and the tool extends fully outward to a use position.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-02
... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-74,554] International Business Machines (IBM), Software Group Business Unit, Optim Data Studio Tools QA, San Jose, CA; Notice of... determination of the TAA petition filed on behalf of workers at International Business Machines (IBM), Software...
Modelling the failure behaviour of wind turbines
NASA Astrophysics Data System (ADS)
Faulstich, S.; Berkhout, V.; Mayer, J.; Siebenlist, D.
2016-09-01
Modelling the failure behaviour of wind turbines is an essential part of offshore wind farm simulation software as it leads to optimized decision making when specifying the necessary resources for the operation and maintenance of wind farms. In order to optimize O&M strategies, a thorough understanding of a wind turbine's failure behaviour is vital and is therefore being developed at Fraunhofer IWES. Within this article, first the failure models of existing offshore O&M tools are presented to show the state of the art and strengths and weaknesses of the respective models are briefly discussed. Then a conceptual framework for modelling different failure mechanisms of wind turbines is being presented. This framework takes into account the different wind turbine subsystems and structures as well as the failure modes of a component by applying several influencing factors representing wear and break failure mechanisms. A failure function is being set up for the rotor blade as exemplary component and simulation results have been compared to a constant failure rate and to empirical wind turbine fleet data as a reference. The comparison and the breakdown of specific failure categories demonstrate the overall plausibility of the model.
Optimal distribution of borehole geophones for monitoring CO2-injection-induced seismicity
NASA Astrophysics Data System (ADS)
Huang, L.; Chen, T.; Foxall, W.; Wagoner, J. L.
2016-12-01
The U.S. DOE initiative, National Risk Assessment Partnership (NRAP), aims to develop quantitative risk assessment methodologies for carbon capture, utilization and storage (CCUS). As part of tasks of the Strategic Monitoring Group of NRAP, we develop a tool for optimal design of a borehole geophones distribution for monitoring CO2-injection-induced seismicity. The tool consists of a number of steps, including building a geophysical model for a given CO2 injection site, defining target monitoring regions within CO2-injection/migration zones, generating synthetic seismic data, giving acceptable uncertainties in input data, and determining the optimal distribution of borehole geophones. We use a synthetic geophysical model as an example to demonstrate the capability our new tool to design an optimal/cost-effective passive seismic monitoring network using borehole geophones. The model is built based on the geologic features found at the Kimberlina CCUS pilot site located in southern San Joaquin Valley, California. This tool can provide CCUS operators with a guideline for cost-effective microseismic monitoring of geologic carbon storage and utilization.
Parameter identification and optimization of slide guide joint of CNC machine tools
NASA Astrophysics Data System (ADS)
Zhou, S.; Sun, B. B.
2017-11-01
The joint surface has an important influence on the performance of CNC machine tools. In order to identify the dynamic parameters of slide guide joint, the parametric finite element model of the joint is established and optimum design method is used based on the finite element simulation and modal test. Then the mode that has the most influence on the dynamics of slip joint is found through harmonic response analysis. Take the frequency of this mode as objective, the sensitivity analysis of the stiffness of each joint surface is carried out using Latin Hypercube Sampling and Monte Carlo Simulation. The result shows that the vertical stiffness of slip joint surface constituted by the bed and the slide plate has the most obvious influence on the structure. Therefore, this stiffness is taken as the optimization variable and the optimal value is obtained through studying the relationship between structural dynamic performance and stiffness. Take the stiffness values before and after optimization into the FEM of machine tool, and it is found that the dynamic performance of the machine tool is improved.
NASA Astrophysics Data System (ADS)
Bílek, Petr; Hrůza, Jakub
2018-06-01
This paper deals with an optimization of the cleaning process on a liquid flat-sheet filter accompanied by visualization of the inlet side of a filter. The cleaning process has a crucial impact on the hydrodynamic properties of flat-sheet filters. Cleaning methods avoid depositing of particles on the filter surface and forming a filtration cake. Visualization significantly helps to optimize the cleaning methods, because it brings new overall view on the filtration process in time. The optical method, described in the article, enables to see flow behaviour in a thin laser sheet on the inlet side of a tested filter during the cleaning process. Visualization is a strong tool for investigation of the processes on filters in details and it is also possible to determine concentration of particles after an image analysis. The impact of air flow rate, inverse pressure drop and duration on the cleaning mechanism is investigated in the article. Images of the cleaning process are compared to the hydrodynamic data. The tests are carried out on a pilot filtration setup for waste water treatment.
NASA Astrophysics Data System (ADS)
Xie, Yan; Li, Mu; Zhou, Jin; Zheng, Chang-zheng
2009-07-01
Agricultural machinery total power is an important index to reflex and evaluate the level of agricultural mechanization. It is the power source of agricultural production, and is the main factors to enhance the comprehensive agricultural production capacity expand production scale and increase the income of the farmers. Its demand is affected by natural, economic, technological and social and other "grey" factors. Therefore, grey system theory can be used to analyze the development of agricultural machinery total power. A method based on genetic algorithm optimizing grey modeling process is introduced in this paper. This method makes full use of the advantages of the grey prediction model and characteristics of genetic algorithm to find global optimization. So the prediction model is more accurate. According to data from a province, the GM (1, 1) model for predicting agricultural machinery total power was given based on the grey system theories and genetic algorithm. The result indicates that the model can be used as agricultural machinery total power an effective tool for prediction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bandlow, Alisa; Durfee, Justin David; Frazier, Christopher Rawls
2016-05-01
This requirements document serves as an addendum to the Contingency Contractor Optimization Phase 2, Requirements Document [1] and Phase 3 Requirements Document [2]. The Phase 2 Requirements document focused on the high-level requirements for the tool. The Phase 3 Requirements document provided more detailed requirements to which the engineering prototype was built in Phase 3. This document will provide detailed requirements for features and enhancements being added to the production pilot in the Phase 3 Sustainment.
NASA Astrophysics Data System (ADS)
Mohamed, Abdul Aziz; Hasan, Abu Bakar; Ghazali, Abu Bakar Mhd.
2017-01-01
Classification of large data into respected classes or groups could be carried out with the help of artificial intelligence (AI) tools readily available in the market. To get the optimum or best results, optimization tool could be applied on those data. Classification and optimization have been used by researchers throughout their works, and the outcomes were very encouraging indeed. Here, the authors are trying to share what they have experienced in three different areas of applied research.
High speed civil transport aerodynamic optimization
NASA Technical Reports Server (NTRS)
Ryan, James S.
1994-01-01
This is a report of work in support of the Computational Aerosciences (CAS) element of the Federal HPCC program. Specifically, CFD and aerodynamic optimization are being performed on parallel computers. The long-range goal of this work is to facilitate teraflops-rate multidisciplinary optimization of aerospace vehicles. This year's work is targeted for application to the High Speed Civil Transport (HSCT), one of four CAS grand challenges identified in the HPCC FY 1995 Blue Book. This vehicle is to be a passenger aircraft, with the promise of cutting overseas flight time by more than half. To meet fuel economy, operational costs, environmental impact, noise production, and range requirements, improved design tools are required, and these tools must eventually integrate optimization, external aerodynamics, propulsion, structures, heat transfer, controls, and perhaps other disciplines. The fundamental goal of this project is to contribute to improved design tools for U.S. industry, and thus to the nation's economic competitiveness.
NASA Astrophysics Data System (ADS)
Grujicic, M.; Ramaswami, S.; Snipes, J. S.; Yavari, R.; Yen, C.-F.; Cheeseman, B. A.
2015-01-01
Our recently developed multi-physics computational model for the conventional gas metal arc welding (GMAW) joining process has been upgraded with respect to its predictive capabilities regarding the process optimization for the attainment of maximum ballistic limit within the weld. The original model consists of six modules, each dedicated to handling a specific aspect of the GMAW process, i.e., (a) electro-dynamics of the welding gun; (b) radiation-/convection-controlled heat transfer from the electric arc to the workpiece and mass transfer from the filler metal consumable electrode to the weld; (c) prediction of the temporal evolution and the spatial distribution of thermal and mechanical fields within the weld region during the GMAW joining process; (d) the resulting temporal evolution and spatial distribution of the material microstructure throughout the weld region; (e) spatial distribution of the as-welded material mechanical properties; and (f) spatial distribution of the material ballistic limit. In the present work, the model is upgraded through the introduction of the seventh module in recognition of the fact that identification of the optimum GMAW process parameters relative to the attainment of the maximum ballistic limit within the weld region entails the use of advanced optimization and statistical sensitivity analysis methods and tools. The upgraded GMAW process model is next applied to the case of butt welding of MIL A46100 (a prototypical high-hardness armor-grade martensitic steel) workpieces using filler metal electrodes made of the same material. The predictions of the upgraded GMAW process model pertaining to the spatial distribution of the material microstructure and ballistic limit-controlling mechanical properties within the MIL A46100 butt weld are found to be consistent with general expectations and prior observations.
NASA Astrophysics Data System (ADS)
Aittokoski, Timo; Miettinen, Kaisa
2008-07-01
Solving real-life engineering problems can be difficult because they often have multiple conflicting objectives, the objective functions involved are highly nonlinear and they contain multiple local minima. Furthermore, function values are often produced via a time-consuming simulation process. These facts suggest the need for an automated optimization tool that is efficient (in terms of number of objective function evaluations) and capable of solving global and multiobjective optimization problems. In this article, the requirements on a general simulation-based optimization system are discussed and such a system is applied to optimize the performance of a two-stroke combustion engine. In the example of a simulation-based optimization problem, the dimensions and shape of the exhaust pipe of a two-stroke engine are altered, and values of three conflicting objective functions are optimized. These values are derived from power output characteristics of the engine. The optimization approach involves interactive multiobjective optimization and provides a convenient tool to balance between conflicting objectives and to find good solutions.
Spin Glass a Bridge Between Quantum Computation and Statistical Mechanics
NASA Astrophysics Data System (ADS)
Ohzeki, Masayuki
2013-09-01
In this chapter, we show two fascinating topics lying between quantum information processing and statistical mechanics. First, we introduce an elaborated technique, the surface code, to prepare the particular quantum state with robustness against decoherence. Interestingly, the theoretical limitation of the surface code, accuracy threshold, to restore the quantum state has a close connection with the problem on the phase transition in a special model known as spin glasses, which is one of the most active researches in statistical mechanics. The phase transition in spin glasses is an intractable problem, since we must strive many-body system with complicated interactions with change of their signs depending on the distance between spins. Fortunately, recent progress in spin-glass theory enables us to predict the precise location of the critical point, at which the phase transition occurs. It means that statistical mechanics is available for revealing one of the most interesting parts in quantum information processing. We show how to import the special tool in statistical mechanics into the problem on the accuracy threshold in quantum computation. Second, we show another interesting technique to employ quantum nature, quantum annealing. The purpose of quantum annealing is to search for the most favored solution of a multivariable function, namely optimization problem. The most typical instance is the traveling salesman problem to find the minimum tour while visiting all the cities. In quantum annealing, we introduce quantum fluctuation to drive a particular system with the artificial Hamiltonian, in which the ground state represents the optimal solution of the specific problem we desire to solve. Induction of the quantum fluctuation gives rise to the quantum tunneling effect, which allows nontrivial hopping from state to state. We then sketch a strategy to control the quantum fluctuation efficiently reaching the ground state. Such a generic framework is called quantum annealing. The most typical instance is quantum adiabatic computation based on the adiabatic theorem. The quantum adiabatic computation as discussed in the other chapter, unfortunately, has a crucial bottleneck for a part of the optimization problems. We here introduce several recent trials to overcome such a weakpoint by use of developments in statistical mechanics. Through both of the topics, we would shed light on the birth of the interdisciplinary field between quantum mechanics and statistical mechanics.
CFD research, parallel computation and aerodynamic optimization
NASA Technical Reports Server (NTRS)
Ryan, James S.
1995-01-01
Over five years of research in Computational Fluid Dynamics and its applications are covered in this report. Using CFD as an established tool, aerodynamic optimization on parallel architectures is explored. The objective of this work is to provide better tools to vehicle designers. Submarine design requires accurate force and moment calculations in flow with thick boundary layers and large separated vortices. Low noise production is critical, so flow into the propulsor region must be predicted accurately. The High Speed Civil Transport (HSCT) has been the subject of recent work. This vehicle is to be a passenger vehicle with the capability of cutting overseas flight times by more than half. A successful design must surpass the performance of comparable planes. Fuel economy, other operational costs, environmental impact, and range must all be improved substantially. For all these reasons, improved design tools are required, and these tools must eventually integrate optimization, external aerodynamics, propulsion, structures, heat transfer and other disciplines.
Towards computer-assisted surgery in shoulder joint replacement
NASA Astrophysics Data System (ADS)
Valstar, Edward R.; Botha, Charl P.; van der Glas, Marjolein; Rozing, Piet M.; van der Helm, Frans C. T.; Post, Frits H.; Vossepoel, Albert M.
A research programme that aims to improve the state of the art in shoulder joint replacement surgery has been initiated at the Delft University of Technology. Development of improved endoprostheses for the upper extremities (DIPEX), as this effort is called, is a clinically driven multidisciplinary programme consisting of many contributory aspects. A part of this research programme focuses on the pre-operative planning and per-operative guidance issues. The ultimate goal of this part of the DIPEX project is to create a surgical support infrastructure that can be used to predict the optimal surgical protocol and can assist with the selection of the most suitable endoprosthesis for a particular patient. In the pre-operative planning phase, advanced biomechanical models of the endoprosthesis fixation and the musculo-skeletal system of the shoulder will be incorporated, which are adjusted to the individual's morphology. Subsequently, the support infrastructure must assist the surgeon during the operation in executing his surgical plan. In the per-operative phase, the chosen optimal position of the endoprosthesis can be realised using camera-assisted tools or mechanical guidance tools. In this article, the pathway towards the desired surgical support infrastructure is described. Furthermore, we discuss the pre-operative planning phase and the per-operative guidance phase, the initial work performed, and finally, possible approaches for improving prosthesis placement.
Design of the VISITOR Tool: A Versatile ImpulSive Interplanetary Trajectory OptimizeR
NASA Technical Reports Server (NTRS)
Corpaccioli, Luca; Linskens, Harry; Komar, David R.
2014-01-01
The design of trajectories for interplanetary missions represents one of the most complex and important problems to solve during conceptual space mission design. To facilitate conceptual mission sizing activities, it is essential to obtain sufficiently accurate trajectories in a fast and repeatable manner. To this end, the VISITOR tool was developed. This tool modularly augments a patched conic MGA-1DSM model with a mass model, launch window analysis, and the ability to simulate more realistic arrival and departure operations. This was implemented in MATLAB, exploiting the built-in optimization tools and vector analysis routines. The chosen optimization strategy uses a grid search and pattern search, an iterative variable grid method. A genetic algorithm can be selectively used to improve search space pruning, at the cost of losing the repeatability of the results and increased computation time. The tool was validated against seven flown missions: the average total mission (Delta)V offset from the nominal trajectory was 9.1%, which was reduced to 7.3% when using the genetic algorithm at the cost of an increase in computation time by a factor 5.7. It was found that VISITOR was well-suited for the conceptual design of interplanetary trajectories, while also facilitating future improvements due to its modular structure.
Sub-diffraction nano manipulation using STED AFM.
Chacko, Jenu Varghese; Canale, Claudio; Harke, Benjamin; Diaspro, Alberto
2013-01-01
In the last two decades, nano manipulation has been recognized as a potential tool of scientific interest especially in nanotechnology and nano-robotics. Contemporary optical microscopy (super resolution) techniques have also reached the nanometer scale resolution to visualize this and hence a combination of super resolution aided nano manipulation ineluctably gives a new perspective to the scenario. Here we demonstrate how specificity and rapid determination of structures provided by stimulated emission depletion (STED) microscope can aid another microscopic tool with capability of mechanical manoeuvring, like an atomic force microscope (AFM) to get topological information or to target nano scaled materials. We also give proof of principle on how high-resolution real time visualization can improve nano manipulation capability within a dense sample, and how STED-AFM is an optimal combination for this job. With these evidences, this article points to future precise nano dissections and maybe even to a nano-snooker game with an AFM tip and fluorospheres.
NASA Astrophysics Data System (ADS)
Yan, Wentao; Lin, Stephen; Kafka, Orion L.; Lian, Yanping; Yu, Cheng; Liu, Zeliang; Yan, Jinhui; Wolff, Sarah; Wu, Hao; Ndip-Agbor, Ebot; Mozaffar, Mojtaba; Ehmann, Kornel; Cao, Jian; Wagner, Gregory J.; Liu, Wing Kam
2018-05-01
Additive manufacturing (AM) possesses appealing potential for manipulating material compositions, structures and properties in end-use products with arbitrary shapes without the need for specialized tooling. Since the physical process is difficult to experimentally measure, numerical modeling is a powerful tool to understand the underlying physical mechanisms. This paper presents our latest work in this regard based on comprehensive material modeling of process-structure-property relationships for AM materials. The numerous influencing factors that emerge from the AM process motivate the need for novel rapid design and optimization approaches. For this, we propose data-mining as an effective solution. Such methods—used in the process-structure, structure-properties and the design phase that connects them—would allow for a design loop for AM processing and materials. We hope this article will provide a road map to enable AM fundamental understanding for the monitoring and advanced diagnostics of AM processing.
Galvão, Tiago L P; Neves, Cristina S; Caetano, Ana P F; Maia, Frederico; Mata, Diogo; Malheiro, Eliana; Ferreira, Maria J; Bastos, Alexandre C; Salak, Andrei N; Gomes, José R B; Tedim, João; Ferreira, Mário G S
2016-04-15
Zinc-aluminum layered double hydroxides with nitrate intercalated (Zn(n)Al-NO3, n=Zn/Al) is an intermediate material for the intercalation of different functional molecules used in a wide range of industrial applications. The synthesis of Zn(2)Al-NO3 was investigated considering the time and temperature of hydrothermal treatment. By examining the crystallite size in two different directions, hydrodynamic particle size, morphology, crystal structure and chemical species in solution, it was possible to understand the crystallization and dissolution processes involved in the mechanisms of crystallite and particle growth. In addition, hydrogeochemical modeling rendered insights on the speciation of different metal cations in solution. Therefore, this tool can be a promising solution to model and optimize the synthesis of layered double hydroxide-based materials for industrial applications. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Yoshihara, H.
1978-01-01
The problem of designing the wing-fuselage configuration of an advanced transonic commercial airliner and the optimization of a supercruiser fighter are sketched, pointing out the essential fluid mechanical phenomena that play an important role. Such problems suggest that for a numerical method to be useful, it must be able to treat highly three dimensional turbulent separations, flows with jet engine exhausts, and complex vehicle configurations. Weaknesses of the two principal tools of the aerodynamicist, the wind tunnel and the computer, suggest a complementing combined use of these tools, which is illustrated by the case of the transonic wing-fuselage design. The anticipated difficulties in developing an adequate turbulent transport model suggest that such an approach may have to suffice for an extended period. On a longer term, experimentation of turbulent transport in meaningful cases must be intensified to provide a data base for both modeling and theory validation purposes.
Additive manufacturing of materials: Opportunities and challenges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babu, Sudarsanam Suresh; Love, Lonnie J.; Dehoff, Ryan R.
Additive manufacturing (also known as 3D printing) is considered a disruptive technology for producing components with topologically optimized complex geometries as well as functionalities that are not achievable by traditional methods. The realization of the full potential of 3D printing is stifled by a lack of computational design tools, generic material feedstocks, techniques for monitoring thermomechanical processes under in situ conditions, and especially methods for minimizing anisotropic static and dynamic properties brought about by microstructural heterogeneity. In this paper, we discuss the role of interdisciplinary research involving robotics and automation, process control, multiscale characterization of microstructure and properties, and high-performancemore » computational tools to address each of these challenges. In addition, emerging pathways to scale up additive manufacturing of structural materials to large sizes (>1 m) and higher productivities (5–20 kg/h) while maintaining mechanical performance and geometrical flexibility are also discussed.« less
Additive manufacturing of materials: Opportunities and challenges
Babu, Sudarsanam Suresh; Love, Lonnie J.; Dehoff, Ryan R.; ...
2015-11-01
Additive manufacturing (also known as 3D printing) is considered a disruptive technology for producing components with topologically optimized complex geometries as well as functionalities that are not achievable by traditional methods. The realization of the full potential of 3D printing is stifled by a lack of computational design tools, generic material feedstocks, techniques for monitoring thermomechanical processes under in situ conditions, and especially methods for minimizing anisotropic static and dynamic properties brought about by microstructural heterogeneity. In this paper, we discuss the role of interdisciplinary research involving robotics and automation, process control, multiscale characterization of microstructure and properties, and high-performancemore » computational tools to address each of these challenges. In addition, emerging pathways to scale up additive manufacturing of structural materials to large sizes (>1 m) and higher productivities (5–20 kg/h) while maintaining mechanical performance and geometrical flexibility are also discussed.« less
Simulation platform of LEO satellite communication system based on OPNET
NASA Astrophysics Data System (ADS)
Zhang, Yu; Zhang, Yong; Li, Xiaozhuo; Wang, Chuqiao; Li, Haihao
2018-02-01
For the purpose of verifying communication protocol in the low earth orbit (LEO) satellite communication system, an Optimized Network Engineering Tool (OPNET) based simulation platform is built. Using the three-layer modeling mechanism, the network model, the node model and the process model of the satellite communication system are built respectively from top to bottom, and the protocol will be implemented by finite state machine and Proto-C language. According to satellite orbit parameters, orbit files are generated via Satellite Tool Kit (STK) and imported into OPNET, and the satellite nodes move along their orbits. The simulation platform adopts time-slot-driven mode, divides simulation time into continuous time slots, and allocates slot number for each time slot. A resource allocation strategy is simulated on this platform, and the simulation results such as resource utilization rate, system throughput and packet delay are analyzed, which indicate that this simulation platform has outstanding versatility.
Experimental validation of docking and capture using space robotics testbeds
NASA Technical Reports Server (NTRS)
Spofford, John; Schmitz, Eric; Hoff, William
1991-01-01
This presentation describes the application of robotic and computer vision systems to validate docking and capture operations for space cargo transfer vehicles. Three applications are discussed: (1) air bearing systems in two dimensions that yield high quality free-flying, flexible, and contact dynamics; (2) validation of docking mechanisms with misalignment and target dynamics; and (3) computer vision technology for target location and real-time tracking. All the testbeds are supported by a network of engineering workstations for dynamic and controls analyses. Dynamic simulation of multibody rigid and elastic systems are performed with the TREETOPS code. MATRIXx/System-Build and PRO-MATLAB/Simulab are the tools for control design and analysis using classical and modern techniques such as H-infinity and LQG/LTR. SANDY is a general design tool to optimize numerically a multivariable robust compensator with a user-defined structure. Mathematica and Macsyma are used to derive symbolically dynamic and kinematic equations.
Numerical Flight Mechanics Analysis Of The SHEFEX I Ascent And Re-Entry Phases
NASA Astrophysics Data System (ADS)
Bartolome Calvo, Javier; Eggers, Thino
2011-08-01
The SHarp Edge Flight EXperiment (SHEFEX) I provides a huge amount of scientific data to validate numerical tools in hypersonic flows. These data allow the direct comparison of flight measurements with the current numerical tools available at DLR. Therefore, this paper is devoted to apply a recently developed direct coupling between aerodynamics and flight dynamics to the SHEFEX I flight. In a first step, mission analyses are carried out using the trajectory optimization program REENT 6D coupled to missile DATCOM. In a second step, the direct coupling between the trajectory program and the DLR TAU code, in which the unsteady Euler equations including rigid body motion are solved, is applied to analyze some interesting parts of ascent and re-entry phases of the flight experiment. The agreement of the numerical predictions with the obtained flight data is satisfactory assuming a variable fin deflection angle.
NASA Astrophysics Data System (ADS)
Makhesana, Mayur A.; Patel, K. M.; Mawandiya, B. K.
2018-04-01
Turning process is a very basic process in any field of mechanical application. During turning process, most of the energy is converted into heat because of the friction between work piece and tool. Heat generation can affect the surface quality of the work piece and tool life. To reduce the heat generation, Conventional Lubrication process is used in most of the industry. Minimum quantity lubrication has been an effective alternative to improve the performance of machining process. In this present work, effort has been made to study the effect of various process parameters on the surface roughness and power consumption during turning of EN8 steel material. Result revealed the effect of depth of cut and feed on the obtained surface roughness value. Further the effect of solid lubricant has been also studied and optimization of process parameters is also done for the turning process.
NASA Astrophysics Data System (ADS)
Yan, Wentao; Lin, Stephen; Kafka, Orion L.; Lian, Yanping; Yu, Cheng; Liu, Zeliang; Yan, Jinhui; Wolff, Sarah; Wu, Hao; Ndip-Agbor, Ebot; Mozaffar, Mojtaba; Ehmann, Kornel; Cao, Jian; Wagner, Gregory J.; Liu, Wing Kam
2018-01-01
Additive manufacturing (AM) possesses appealing potential for manipulating material compositions, structures and properties in end-use products with arbitrary shapes without the need for specialized tooling. Since the physical process is difficult to experimentally measure, numerical modeling is a powerful tool to understand the underlying physical mechanisms. This paper presents our latest work in this regard based on comprehensive material modeling of process-structure-property relationships for AM materials. The numerous influencing factors that emerge from the AM process motivate the need for novel rapid design and optimization approaches. For this, we propose data-mining as an effective solution. Such methods—used in the process-structure, structure-properties and the design phase that connects them—would allow for a design loop for AM processing and materials. We hope this article will provide a road map to enable AM fundamental understanding for the monitoring and advanced diagnostics of AM processing.
"Genetically Engineered" Nanoelectronics
NASA Technical Reports Server (NTRS)
Klimeck, Gerhard; Salazar-Lazaro, Carlos H.; Stoica, Adrian; Cwik, Thomas
2000-01-01
The quantum mechanical functionality of nanoelectronic devices such as resonant tunneling diodes (RTDs), quantum well infrared-photodetectors (QWIPs), quantum well lasers, and heterostructure field effect transistors (HFETs) is enabled by material variations on an atomic scale. The design and optimization of such devices requires a fundamental understanding of electron transport in such dimensions. The Nanoelectronic Modeling Tool (NEMO) is a general-purpose quantum device design and analysis tool based on a fundamental non-equilibrium electron transport theory. NEW was combined with a parallelized genetic algorithm package (PGAPACK) to evolve structural and material parameters to match a desired set of experimental data. A numerical experiment that evolves structural variations such as layer widths and doping concentrations is performed to analyze an experimental current voltage characteristic. The genetic algorithm is found to drive the NEMO simulation parameters close to the experimentally prescribed layer thicknesses and doping profiles. With such a quantitative agreement between theory and experiment design synthesis can be performed.
Roadmap to Long-Term Monitoring Optimization
This roadmap focuses on optimization of established long-term monitoring programs for groundwater. Tools and techniques discussed concentrate on methods for optimizing the monitoring frequency and spatial (three-dimensional) distribution of wells ...
NASA Astrophysics Data System (ADS)
Thomsen, Hanna; James, Jeemol; Farewell, Anne; Ericson, Marica B.
2018-02-01
Antimicrobial resistance is a serious global threat fueling an accelerated field of research aimed at developing novel antimicrobial therapies. A particular challenge is the treatment of microbial biofilms formed upon bacterial growth and often associated with chronic infections. Biofilms comprise bacteria that have adhered to a surface and formed 3D microcolonies, and demonstrate significantly increased antimicrobial resistance compared to the planktonic counterpart. A challenge in developing novel strategies for fighting these chronic infections is a lack of mechanistic understanding of what primarily contributes to enhanced drug resistance. Tools for noninvasive study of live biofilms are necessary to begin to understand these mechanisms on both a single cell and 3D level. Herein, a method by which multiphoton microscopy is implemented to study a biofilm model of Staphylococcus epidermidis to noninvasively visualize and measure penetration of compounds in 3D biofilm structure and two photon excitation was exploited for spatially confined photoinactivation and microscopy optimized for evaluation of microbiological viability at a microscopic level. Future studies are aimed at future development of the proposed techniques for detailed studies of, e.g., quorum sensing and mechanisms contributing to antimicrobial resistance.
Models of supply function equilibrium with applications to the electricity industry
NASA Astrophysics Data System (ADS)
Aromi, J. Daniel
Electricity market design requires tools that result in a better understanding of incentives of generators and consumers. Chapter 1 and 2 provide tools and applications of these tools to analyze incentive problems in electricity markets. In chapter 1, models of supply function equilibrium (SFE) with asymmetric bidders are studied. I prove the existence and uniqueness of equilibrium in an asymmetric SFE model. In addition, I propose a simple algorithm to calculate numerically the unique equilibrium. As an application, a model of investment decisions is considered that uses the asymmetric SFE as an input. In this model, firms can invest in different technologies, each characterized by distinct variable and fixed costs. In chapter 2, option contracts are introduced to a supply function equilibrium (SFE) model. The uniqueness of the equilibrium in the spot market is established. Comparative statics results on the effect of option contracts on the equilibrium price are presented. A multi-stage game where option contracts are traded before the spot market stage is considered. When contracts are optimally procured by a central authority, the selected profile of option contracts is such that the spot market price equals marginal cost for any load level resulting in a significant reduction in cost. If load serving entities (LSEs) are price takers, in equilibrium, there is no trade of option contracts. Even when LSEs have market power, the central authority's solution cannot be implemented in equilibrium. In chapter 3, we consider a game in which a buyer must repeatedly procure an input from a set of firms. In our model, the buyer is able to sign long term contracts that establish the likelihood with which the next period contract is awarded to an entrant or the incumbent. We find that the buyer finds it optimal to favor the incumbent, this generates more intense competition between suppliers. In a two period model we are able to completely characterize the optimal mechanism.
Conceptual Comparison of Population Based Metaheuristics for Engineering Problems
Green, Paul
2015-01-01
Metaheuristic algorithms are well-known optimization tools which have been employed for solving a wide range of optimization problems. Several extensions of differential evolution have been adopted in solving constrained and nonconstrained multiobjective optimization problems, but in this study, the third version of generalized differential evolution (GDE) is used for solving practical engineering problems. GDE3 metaheuristic modifies the selection process of the basic differential evolution and extends DE/rand/1/bin strategy in solving practical applications. The performance of the metaheuristic is investigated through engineering design optimization problems and the results are reported. The comparison of the numerical results with those of other metaheuristic techniques demonstrates the promising performance of the algorithm as a robust optimization tool for practical purposes. PMID:25874265
Conceptual comparison of population based metaheuristics for engineering problems.
Adekanmbi, Oluwole; Green, Paul
2015-01-01
Metaheuristic algorithms are well-known optimization tools which have been employed for solving a wide range of optimization problems. Several extensions of differential evolution have been adopted in solving constrained and nonconstrained multiobjective optimization problems, but in this study, the third version of generalized differential evolution (GDE) is used for solving practical engineering problems. GDE3 metaheuristic modifies the selection process of the basic differential evolution and extends DE/rand/1/bin strategy in solving practical applications. The performance of the metaheuristic is investigated through engineering design optimization problems and the results are reported. The comparison of the numerical results with those of other metaheuristic techniques demonstrates the promising performance of the algorithm as a robust optimization tool for practical purposes.
Optimality problem of network topology in stocks market analysis
NASA Astrophysics Data System (ADS)
Djauhari, Maman Abdurachman; Gan, Siew Lee
2015-02-01
Since its introduction fifteen years ago, minimal spanning tree has become an indispensible tool in econophysics. It is to filter the important economic information contained in a complex system of financial markets' commodities. Here we show that, in general, that tool is not optimal in terms of topological properties. Consequently, the economic interpretation of the filtered information might be misleading. To overcome that non-optimality problem, a set of criteria and a selection procedure of an optimal minimal spanning tree will be developed. By using New York Stock Exchange data, the advantages of the proposed method will be illustrated in terms of the power-law of degree distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnis Judzis
2004-07-01
This document details the progress to date on the ''OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE--A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING'' contract for the quarter starting April 2004 through June 2004. The DOE and TerraTek continue to wait for Novatek on the optimization portion of the testing program (they are completely rebuilding their fluid hammer). The latest indication is that the Novatek tool would be ready for retesting only 4Q 2004 or later. Smith International's hammer was tested in April of 2004 (2Q 2004 report). Accomplishments included the following: (1) TerraTek re-tested the ''optimized'' fluid hammermore » provided by Smith International during April 2004. Many improvements in mud hammer rates of penetration were noted over Phase 1 benchmark testing from November 2002. (2) Shell Exploration and Production in The Hague was briefed on various drilling performance projects including Task 8 ''Cutter Impact Testing''. Shell interest and willingness to assist in the test matrix as an Industry Advisor is appreciated. (3) TerraTek participated in a DOE/NETL Review meeting at Morgantown on April 15, 2004. The discussions were very helpful and a program related to the Mud Hammer optimization project was noted--Terralog modeling work on percussion tools. (4) Terralog's Dr. Gang Han witnessed some of the full-scale optimization testing of the Smith International hammer in order to familiarize him with downhole tools. TerraTek recommends that modeling first start with single cutters/inserts and progress in complexity. (5) The final equipment problem on the impact testing task was resolved through the acquisition of a high data rate laser based displacement instrument. (6) TerraTek provided Novatek much engineering support for the future re-testing of their optimized tool. Work was conducted on slip ring [electrical] specifications and tool collar sealing in the testing vessel with a reconfigured flow system on Novatek's collar.« less
Improving Environmental Model Calibration and Prediction
2011-01-18
REPORT Final Report - Improving Environmental Model Calibration and Prediction 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: First, we have continued to...develop tools for efficient global optimization of environmental models. Our algorithms are hybrid algorithms that combine evolutionary strategies...toward practical hybrid optimization tools for environmental models. 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 18-01-2011 13
The Hico Image Processing System: A Web-Accessible Hyperspectral Remote Sensing Toolbox
NASA Astrophysics Data System (ADS)
Harris, A. T., III; Goodman, J.; Justice, B.
2014-12-01
As the quantity of Earth-observation data increases, the use-case for hosting analytical tools in geospatial data centers becomes increasingly attractive. To address this need, HySpeed Computing and Exelis VIS have developed the HICO Image Processing System, a prototype cloud computing system that provides online, on-demand, scalable remote sensing image processing capabilities. The system provides a mechanism for delivering sophisticated image processing analytics and data visualization tools into the hands of a global user community, who will only need a browser and internet connection to perform analysis. Functionality of the HICO Image Processing System is demonstrated using imagery from the Hyperspectral Imager for the Coastal Ocean (HICO), an imaging spectrometer located on the International Space Station (ISS) that is optimized for acquisition of aquatic targets. Example applications include a collection of coastal remote sensing algorithms that are directed at deriving critical information on water and habitat characteristics of our vulnerable coastal environment. The project leverages the ENVI Services Engine as the framework for all image processing tasks, and can readily accommodate the rapid integration of new algorithms, datasets and processing tools.
NASA Astrophysics Data System (ADS)
Hamzah, Esah; Ourdjini, Ali; Ali, Mubarak; Akhter, Parvez; Hj. Mohd Toff, Mohd Radzi; Abdul Hamid, Mansor
In the present study, the effect of various N2 gas flow rates on friction coefficient and surface roughness of TiN-coated D2 tool steel was examined by a commercially available cathodic arc physical vapor deposition (CAPVD) technique. A Pin-on-Disc test was carried out to study the Coefficient of friction (COF) versus sliding distance. A surface roughness tester measured the surface roughness parameters. The minimum values for the COF and surface roughness were recorded at a N2 gas flow rate of 200 sccm. The increase in the COF and surface roughness at a N2 gas flow rate of 100 sccm was mainly attributed to an increase in both size and number of titanium particles, whereas the increase at 300 sccm was attributed to a larger number of growth defects generated during the coating process. These ideas make it possible to optimize the coating properties as a function of N2 gas flow rate for specific applications, e.g. cutting tools for automobiles, aircraft, and various mechanical parts.
An analytical method on the surface residual stress for the cutting tool orientation
NASA Astrophysics Data System (ADS)
Li, Yueen; Zhao, Jun; Wang, Wei
2010-03-01
The residual stress is measured by choosing 8 kinds orientations on cutting the H13 dies steel on the HSM in the experiment of this paper. The measured data shows on that the residual stress exists periodicity for the different rake angle (β) and side rake angle (θ) parameters, further study find that the cutting tool orientations have closed relationship with the residual stresses, and for the original of the machined residual stress on the surface from the cutting force and the axial force, it can be gained the simply model of tool-workpiece force, using the model it can be deduced the residual stress model, which is feasible to calculate the size of residual stress. And for almost all the measured residual stresses are compressed stress, the compressed stress size and the direction could be confirmed by the input data for the H13 on HSM. As the result, the residual stress model is the key for optimization of rake angle (β) and side rake angle (θ) in theory, using the theory the more cutting mechanism can be expressed.
Molecular aspects of development and regulation of endometriosis
2014-01-01
Endometriosis is a common and painful condition affecting women of reproductive age. While the underlying pathophysiology is still largely unknown, much advancement has been made in understanding the progression of the disease. In recent years, a great deal of research has focused on non-invasive diagnostic tools, such as biomarkers, as well as identification of potential therapeutic targets. In this article, we will review the etiology and cellular mechanisms associated with endometriosis as well as the current diagnostic tools and therapies. We will then discuss the more recent genomic and proteomic studies and how these data may guide development of novel diagnostics and therapeutics. The current diagnostic tools are invasive and current therapies primarily treat the symptoms of endometriosis. Optimally, the advancement of “-omic” data will facilitate the development of non-invasive diagnostic biomarkers as well as therapeutics that target the pathophysiology of the disease and halt, or even reverse, progression. However, the amount of data generated by these types of studies is vast and bioinformatics analysis, such as we present here, will be critical to identification of appropriate targets for further study. PMID:24927773
Optimal Design of Multitype Groundwater Monitoring Networks Using Easily Accessible Tools.
Wöhling, Thomas; Geiges, Andreas; Nowak, Wolfgang
2016-11-01
Monitoring networks are expensive to establish and to maintain. In this paper, we extend an existing data-worth estimation method from the suite of PEST utilities with a global optimization method for optimal sensor placement (called optimal design) in groundwater monitoring networks. Design optimization can include multiple simultaneous sensor locations and multiple sensor types. Both location and sensor type are treated simultaneously as decision variables. Our method combines linear uncertainty quantification and a modified genetic algorithm for discrete multilocation, multitype search. The efficiency of the global optimization is enhanced by an archive of past samples and parallel computing. We demonstrate our methodology for a groundwater monitoring network at the Steinlach experimental site, south-western Germany, which has been established to monitor river-groundwater exchange processes. The target of optimization is the best possible exploration for minimum variance in predicting the mean travel time of the hyporheic exchange. Our results demonstrate that the information gain of monitoring network designs can be explored efficiently and with easily accessible tools prior to taking new field measurements or installing additional measurement points. The proposed methods proved to be efficient and can be applied for model-based optimal design of any type of monitoring network in approximately linear systems. Our key contributions are (1) the use of easy-to-implement tools for an otherwise complex task and (2) yet to consider data-worth interdependencies in simultaneous optimization of multiple sensor locations and sensor types. © 2016, National Ground Water Association.
2013-01-01
The Global Fund is experiencing increased pressure to optimize results and improve its impact per dollar spent. It is also in transition from a provider of emergency funding, to a long-term, sustainable financing mechanism. This paper assesses the efficacy of current Global Fund investment and examines how health technology assessments (HTAs) can be used to provide guidance on the relative priority of health interventions currently subsidized by the Global Fund. In addition, this paper identifies areas where the application of HTAs can exert the greatest impact and proposes ways in which this tool could be incorporated, as a routine component, into application, decision, implementation, and monitoring and evaluation processes. Finally, it addresses the challenges facing the Global Fund in realizing the full potential of HTAs. PMID:23965222
Tool use disorders after left brain damage.
Baumard, Josselin; Osiurak, François; Lesourd, Mathieu; Le Gall, Didier
2014-01-01
In this paper we review studies that investigated tool use disorders in left-brain damaged (LBD) patients over the last 30 years. Four tasks are classically used in the field of apraxia: Pantomime of tool use, single tool use, real tool use and mechanical problem solving. Our aim was to address two issues, namely, (1) the role of mechanical knowledge in real tool use and (2) the cognitive mechanisms underlying pantomime of tool use, a task widely employed by clinicians and researchers. To do so, we extracted data from 36 papers and computed the difference between healthy subjects and LBD patients. On the whole, pantomime of tool use is the most difficult task and real tool use is the easiest one. Moreover, associations seem to appear between pantomime of tool use, real tool use and mechanical problem solving. These results suggest that the loss of mechanical knowledge is critical in LBD patients, even if all of those tasks (and particularly pantomime of tool use) might put differential demands on semantic memory and working memory.
Tool use disorders after left brain damage
Baumard, Josselin; Osiurak, François; Lesourd, Mathieu; Le Gall, Didier
2014-01-01
In this paper we review studies that investigated tool use disorders in left-brain damaged (LBD) patients over the last 30 years. Four tasks are classically used in the field of apraxia: Pantomime of tool use, single tool use, real tool use and mechanical problem solving. Our aim was to address two issues, namely, (1) the role of mechanical knowledge in real tool use and (2) the cognitive mechanisms underlying pantomime of tool use, a task widely employed by clinicians and researchers. To do so, we extracted data from 36 papers and computed the difference between healthy subjects and LBD patients. On the whole, pantomime of tool use is the most difficult task and real tool use is the easiest one. Moreover, associations seem to appear between pantomime of tool use, real tool use and mechanical problem solving. These results suggest that the loss of mechanical knowledge is critical in LBD patients, even if all of those tasks (and particularly pantomime of tool use) might put differential demands on semantic memory and working memory. PMID:24904487
Optimizing Mass Spectrometry Analyses: A Tailored Review on the Utility of Design of Experiments.
Hecht, Elizabeth S; Oberg, Ann L; Muddiman, David C
2016-05-01
Mass spectrometry (MS) has emerged as a tool that can analyze nearly all classes of molecules, with its scope rapidly expanding in the areas of post-translational modifications, MS instrumentation, and many others. Yet integration of novel analyte preparatory and purification methods with existing or novel mass spectrometers can introduce new challenges for MS sensitivity. The mechanisms that govern detection by MS are particularly complex and interdependent, including ionization efficiency, ion suppression, and transmission. Performance of both off-line and MS methods can be optimized separately or, when appropriate, simultaneously through statistical designs, broadly referred to as "design of experiments" (DOE). The following review provides a tutorial-like guide into the selection of DOE for MS experiments, the practices for modeling and optimization of response variables, and the available software tools that support DOE implementation in any laboratory. This review comes 3 years after the latest DOE review (Hibbert DB, 2012), which provided a comprehensive overview on the types of designs available and their statistical construction. Since that time, new classes of DOE, such as the definitive screening design, have emerged and new calls have been made for mass spectrometrists to adopt the practice. Rather than exhaustively cover all possible designs, we have highlighted the three most practical DOE classes available to mass spectrometrists. This review further differentiates itself by providing expert recommendations for experimental setup and defining DOE entirely in the context of three case-studies that highlight the utility of different designs to achieve different goals. A step-by-step tutorial is also provided.
Optimizing Mass Spectrometry Analyses: A Tailored Review on the Utility of Design of Experiments
Hecht, Elizabeth S.; Oberg, Ann L.; Muddiman, David
2016-01-01
SUMMARY Mass spectrometry (MS) has emerged as a tool that can analyze nearly all classes of molecules, with its scope rapidly expanding in the areas of post-translational modifications, MS instrumentation, and many others. Yet integration of novel analyte preparatory and purification methods with existing or novel mass spectrometers can introduce new challenges for MS sensitivity. The mechanisms that govern detection by MS are particularly complex and interdependent, including ionization efficiency, ion suppression, and transmission. Performance of both off-line and MS methods can be optimized separately or, when appropriate, simultaneously through statistical designs, broadly referred to as “design of experiments” (DOE). The following review provides a tutorial-like guide into the selection of DOE for MS experiments, the practices for modeling and optimization of response variables, and the available software tools that support DOE implementation in any laboratory. This review comes three years after the latest DOE review (Hibbert DB 2012), which provided a comprehensive overview on the types of designs available and their statistical construction. Since that time, new classes of DOE, such as the definitive screening design, have emerged and new calls have been made for mass spectrometrists to adopt the practice. Rather than exhaustively cover all possible designs, we have highlighted the three most practical DOE classes available to mass spectrometrists. This review further differentiates itself by providing expert recommendations for experimental setup and defining DOE entirely in the context of three case-studies that highlight the utility of different designs to achieve different goals. A step-by-step tutorial is also provided. PMID:26951559
NASA Astrophysics Data System (ADS)
Gaaz, Tayser Sumer; Sulong, Abu Bakar; Kadhum, Abdul Amir H.; Nassir, Mohamed H.; Al-Amiery, Ahmed A.
The variation of the results of the mechanical properties of halloysite nanotubes (HNTs) reinforced thermoplastic polyurethane (TPU) at different HNTs loadings was implemented as a tool for analysis. The preparation of HNTs-TPU nanocomposites was performed under four controlled parameters of mixing temperature, mixing speed, mixing time, and HNTs loading at three levels each to satisfy Taguchi method orthogonal array L9 aiming to optimize these parameters for the best measurements of tensile strength, Young's modulus, and tensile strain (known as responses). The maximum variation of the experimental results for each response was determined and analysed based on the optimized results predicted by Taguchi method and ANOVA. It was found that the maximum absolute variations of the three mentioned responses are 69%, 352%, and 126%, respectively. The analysis has shown that the preparation of the optimized tensile strength requires 1 wt.% HNTs loading (excluding 2 wt.% and 3 wt.%), mixing temperature of 190 °C (excluding 200 °C and 210 °C), and mixing speed of 30 rpm (excluding 40 rpm and 50 rpm). In addition, the analysis has determined that the mixing time at 20 min has no effect on the preparation. The mentioned analysis was fortified by ANOVA, images of FESEM, and DSC results. Seemingly, the agglomeration and distribution of HNTs in the nanocomposite play an important role in the process. The outcome of the analysis could be considered as a very important step towards the reliability of Taguchi method.
Framework for Multidisciplinary Analysis, Design, and Optimization with High-Fidelity Analysis Tools
NASA Technical Reports Server (NTRS)
Orr, Stanley A.; Narducci, Robert P.
2009-01-01
A plan is presented for the development of a high fidelity multidisciplinary optimization process for rotorcraft. The plan formulates individual disciplinary design problems, identifies practical high-fidelity tools and processes that can be incorporated in an automated optimization environment, and establishes statements of the multidisciplinary design problem including objectives, constraints, design variables, and cross-disciplinary dependencies. Five key disciplinary areas are selected in the development plan. These are rotor aerodynamics, rotor structures and dynamics, fuselage aerodynamics, fuselage structures, and propulsion / drive system. Flying qualities and noise are included as ancillary areas. Consistency across engineering disciplines is maintained with a central geometry engine that supports all multidisciplinary analysis. The multidisciplinary optimization process targets the preliminary design cycle where gross elements of the helicopter have been defined. These might include number of rotors and rotor configuration (tandem, coaxial, etc.). It is at this stage that sufficient configuration information is defined to perform high-fidelity analysis. At the same time there is enough design freedom to influence a design. The rotorcraft multidisciplinary optimization tool is built and substantiated throughout its development cycle in a staged approach by incorporating disciplines sequentially.
Subsonic Wing Optimization for Handling Qualities Using ACSYNT
NASA Technical Reports Server (NTRS)
Soban, Danielle Suzanne
1996-01-01
The capability to accurately and rapidly predict aircraft stability derivatives using one comprehensive analysis tool has been created. The PREDAVOR tool has the following capabilities: rapid estimation of stability derivatives using a vortex lattice method, calculation of a longitudinal handling qualities metric, and inherent methodology to optimize a given aircraft configuration for longitudinal handling qualities, including an intuitive graphical interface. The PREDAVOR tool may be applied to both subsonic and supersonic designs, as well as conventional and unconventional, symmetric and asymmetric configurations. The workstation-based tool uses as its model a three-dimensional model of the configuration generated using a computer aided design (CAD) package. The PREDAVOR tool was applied to a Lear Jet Model 23 and the North American XB-70 Valkyrie.
NASA Astrophysics Data System (ADS)
Vikram, K. Arun; Ratnam, Ch; Lakshmi, VVK; Kumar, A. Sunny; Ramakanth, RT
2018-02-01
Meta-heuristic multi-response optimization methods are widely in use to solve multi-objective problems to obtain Pareto optimal solutions during optimization. This work focuses on optimal multi-response evaluation of process parameters in generating responses like surface roughness (Ra), surface hardness (H) and tool vibration displacement amplitude (Vib) while performing operations like tangential and orthogonal turn-mill processes on A-axis Computer Numerical Control vertical milling center. Process parameters like tool speed, feed rate and depth of cut are considered as process parameters machined over brass material under dry condition with high speed steel end milling cutters using Taguchi design of experiments (DOE). Meta-heuristic like Dragonfly algorithm is used to optimize the multi-objectives like ‘Ra’, ‘H’ and ‘Vib’ to identify the optimal multi-response process parameters combination. Later, the results thus obtained from multi-objective dragonfly algorithm (MODA) are compared with another multi-response optimization technique Viz. Grey relational analysis (GRA).
Optimization of the Switch Mechanism in a Circuit Breaker Using MBD Based Simulation
Jang, Jin-Seok; Yoon, Chang-Gyu; Ryu, Chi-Young; Kim, Hyun-Woo; Bae, Byung-Tae; Yoo, Wan-Suk
2015-01-01
A circuit breaker is widely used to protect electric power system from fault currents or system errors; in particular, the opening mechanism in a circuit breaker is important to protect current overflow in the electric system. In this paper, multibody dynamic model of a circuit breaker including switch mechanism was developed including the electromagnetic actuator system. Since the opening mechanism operates sequentially, optimization of the switch mechanism was carried out to improve the current breaking time. In the optimization process, design parameters were selected from length and shape of each latch, which changes pivot points of bearings to shorten the breaking time. To validate optimization results, computational results were compared to physical tests with a high speed camera. Opening time of the optimized mechanism was decreased by 2.3 ms, which was proved by experiments. Switch mechanism design process can be improved including contact-latch system by using this process. PMID:25918740
Optimization Program for Drinking Water Systems
The Area-Wide Optimization Program (AWOP) provides tools and approaches for drinking water systems to meet water quality optimization goals and provide an increased – and sustainable – level of public health protection to their consumers.
Optimal design of low-density SNP arrays for genomic prediction: algorithm and applications
USDA-ARS?s Scientific Manuscript database
Low-density (LD) single nucleotide polymorphism (SNP) arrays provide a cost-effective solution for genomic prediction and selection, but algorithms and computational tools are needed for their optimal design. A multiple-objective, local optimization (MOLO) algorithm was developed for design of optim...
2012-01-05
learn about the latest designs , trends in fashion, and scientific breakthroughs in chair ergonomics . Using this tradeshow, the Furnishings Commodity...these tools is essential to designing the optimal contract that reaps the most value from the exchange. Therefore, this market intelligence guide is...portfolio matrix) that are transferrable to the not-for-profit sector are absent. Each of these tools is essential to designing the optimal contract that
Data Mining and Optimization Tools for Developing Engine Parameters Tools
NASA Technical Reports Server (NTRS)
Dhawan, Atam P.
1998-01-01
This project was awarded for understanding the problem and developing a plan for Data Mining tools for use in designing and implementing an Engine Condition Monitoring System. Tricia Erhardt and I studied the problem domain for developing an Engine Condition Monitoring system using the sparse and non-standardized datasets to be available through a consortium at NASA Lewis Research Center. We visited NASA three times to discuss additional issues related to dataset which was not made available to us. We discussed and developed a general framework of data mining and optimization tools to extract useful information from sparse and non-standard datasets. These discussions lead to the training of Tricia Erhardt to develop Genetic Algorithm based search programs which were written in C++ and used to demonstrate the capability of GA algorithm in searching an optimal solution in noisy, datasets. From the study and discussion with NASA LeRC personnel, we then prepared a proposal, which is being submitted to NASA for future work for the development of data mining algorithms for engine conditional monitoring. The proposed set of algorithm uses wavelet processing for creating multi-resolution pyramid of tile data for GA based multi-resolution optimal search.
OLTARIS: An Efficient Web-Based Tool for Analyzing Materials Exposed to Space Radiation
NASA Technical Reports Server (NTRS)
Slaba, Tony; McMullen, Amelia M.; Thibeault, Sheila A.; Sandridge, Chris A.; Clowdsley, Martha S.; Blatting, Steve R.
2011-01-01
The near-Earth space radiation environment includes energetic galactic cosmic rays (GCR), high intensity proton and electron belts, and the potential for solar particle events (SPE). These sources may penetrate shielding materials and deposit significant energy in sensitive electronic devices on board spacecraft and satellites. Material and design optimization methods may be used to reduce the exposure and extend the operational lifetime of individual components and systems. Since laboratory experiments are expensive and may not cover the range of particles and energies relevant for space applications, such optimization may be done computationally with efficient algorithms that include the various constraints placed on the component, system, or mission. In the present work, the web-based tool OLTARIS (On-Line Tool for the Assessment of Radiation in Space) is presented, and the applicability of the tool for rapidly analyzing exposure levels within either complicated shielding geometries or user-defined material slabs exposed to space radiation is demonstrated. An example approach for material optimization is also presented. Slabs of various advanced multifunctional materials are defined and exposed to several space radiation environments. The materials and thicknesses defining each layer in the slab are then systematically adjusted to arrive at an optimal slab configuration.
Fan, Mingyi; Hu, Jiwei; Cao, Rensheng; Ruan, Wenqian; Wei, Xionghui
2018-06-01
Water pollution occurs mainly due to inorganic and organic pollutants, such as nutrients, heavy metals and persistent organic pollutants. For the modeling and optimization of pollutants removal, artificial intelligence (AI) has been used as a major tool in the experimental design that can generate the optimal operational variables, since AI has recently gained a tremendous advance. The present review describes the fundamentals, advantages and limitations of AI tools. Artificial neural networks (ANNs) are the AI tools frequently adopted to predict the pollutants removal processes because of their capabilities of self-learning and self-adapting, while genetic algorithm (GA) and particle swarm optimization (PSO) are also useful AI methodologies in efficient search for the global optima. This article summarizes the modeling and optimization of pollutants removal processes in water treatment by using multilayer perception, fuzzy neural, radial basis function and self-organizing map networks. Furthermore, the results conclude that the hybrid models of ANNs with GA and PSO can be successfully applied in water treatment with satisfactory accuracies. Finally, the limitations of current AI tools and their new developments are also highlighted for prospective applications in the environmental protection. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mejid Elsiti, Nagwa; Noordin, M. Y.; Idris, Ani; Saed Majeed, Faraj
2017-10-01
This paper presents an optimization of process parameters of Micro-Electrical Discharge Machining (EDM) process with (γ-Fe2O3) nano-powder mixed dielectric using multi-response optimization Grey Relational Analysis (GRA) method instead of single response optimization. These parameters were optimized based on 2-Level factorial design combined with Grey Relational Analysis. The machining parameters such as peak current, gap voltage, and pulse on time were chosen for experimentation. The performance characteristics chosen for this study are material removal rate (MRR), tool wear rate (TWR), Taper and Overcut. Experiments were conducted using electrolyte copper as the tool and CoCrMo as the workpiece. Experimental results have been improved through this approach.
Optimization of Microelectronic Devices for Sensor Applications
NASA Technical Reports Server (NTRS)
Cwik, Tom; Klimeck, Gerhard
2000-01-01
The NASA/JPL goal to reduce payload in future space missions while increasing mission capability demands miniaturization of active and passive sensors, analytical instruments and communication systems among others. Currently, typical system requirements include the detection of particular spectral lines, associated data processing, and communication of the acquired data to other systems. Advances in lithography and deposition methods result in more advanced devices for space application, while the sub-micron resolution currently available opens a vast design space. Though an experimental exploration of this widening design space-searching for optimized performance by repeated fabrication efforts-is unfeasible, it does motivate the development of reliable software design tools. These tools necessitate models based on fundamental physics and mathematics of the device to accurately model effects such as diffraction and scattering in opto-electronic devices, or bandstructure and scattering in heterostructure devices. The software tools must have convenient turn-around times and interfaces that allow effective usage. The first issue is addressed by the application of high-performance computers and the second by the development of graphical user interfaces driven by properly developed data structures. These tools can then be integrated into an optimization environment, and with the available memory capacity and computational speed of high performance parallel platforms, simulation of optimized components can proceed. In this paper, specific applications of the electromagnetic modeling of infrared filtering, as well as heterostructure device design will be presented using genetic algorithm global optimization methods.
Optimizing the patient transport function at Mayo Clinic.
Kuchera, Dustin; Rohleder, Thomas R
2011-01-01
In this article, we report on the implementation of a computerized scheduling tool to optimize staffing for patient transport at the Mayo Clinic. The tool was developed and implemented in Microsoft Excel and Visual Basic for Applications and includes an easy-to-use interface. The tool allows transport management to consider the trade-offs between patient waiting time and staffing levels. While improved staffing efficiency was a desire of the project, it was important that patient service quality was also maintained. The results show that staffing could be reduced while maintaining historical patient service levels.
Search optimization of named entities from twitter streams
NASA Astrophysics Data System (ADS)
Fazeel, K. Mohammed; Hassan Mottur, Simama; Norman, Jasmine; Mangayarkarasi, R.
2017-11-01
With Enormous number of tweets, People often face difficulty to get exact information about those tweets. One of the approach followed for getting information about those tweets via Google. There is not any accuracy tool developed for search optimization and as well as getting information about those tweets. So, this system contains the search optimization and functionalities for getting information about those tweets. Another problem faced here are the tweets that contains grammatical errors, misspellings, non-standard abbreviations, and meaningless capitalization. So, these problems can be eliminated by the use of this tool. Lot of time can be saved and as well as by the use of efficient search optimization each information about those particular tweets can be obtained.
Neural Network Prediction of New Aircraft Design Coefficients
NASA Technical Reports Server (NTRS)
Norgaard, Magnus; Jorgensen, Charles C.; Ross, James C.
1997-01-01
This paper discusses a neural network tool for more effective aircraft design evaluations during wind tunnel tests. Using a hybrid neural network optimization method, we have produced fast and reliable predictions of aerodynamical coefficients, found optimal flap settings, and flap schedules. For validation, the tool was tested on a 55% scale model of the USAF/NASA Subsonic High Alpha Research Concept aircraft (SHARC). Four different networks were trained to predict coefficients of lift, drag, moment of inertia, and lift drag ratio (C(sub L), C(sub D), C(sub M), and L/D) from angle of attack and flap settings. The latter network was then used to determine an overall optimal flap setting and for finding optimal flap schedules.
Integrative systems modeling and multi-objective optimization
This presentation presents a number of algorithms, tools, and methods for utilizing multi-objective optimization within integrated systems modeling frameworks. We first present innovative methods using a genetic algorithm to optimally calibrate the VELMA and SWAT ecohydrological ...
A Single-Lap Joint Adhesive Bonding Optimization Method Using Gradient and Genetic Algorithms
NASA Technical Reports Server (NTRS)
Smeltzer, Stanley S., III; Finckenor, Jeffrey L.
1999-01-01
A natural process for any engineer, scientist, educator, etc. is to seek the most efficient method for accomplishing a given task. In the case of structural design, an area that has a significant impact on the structural efficiency is joint design. Unless the structure is machined from a solid block of material, the individual components which compose the overall structure must be joined together. The method for joining a structure varies depending on the applied loads, material, assembly and disassembly requirements, service life, environment, etc. Using both metallic and fiber reinforced plastic materials limits the user to two methods or a combination of these methods for joining the components into one structure. The first is mechanical fastening and the second is adhesive bonding. Mechanical fastening is by far the most popular joining technique; however, in terms of structural efficiency, adhesive bonding provides a superior joint since the load is distributed uniformly across the joint. The purpose of this paper is to develop a method for optimizing single-lap joint adhesive bonded structures using both gradient and genetic algorithms and comparing the solution process for each method. The goal of the single-lap joint optimization is to find the most efficient structure that meets the imposed requirements while still remaining as lightweight, economical, and reliable as possible. For the single-lap joint, an optimum joint is determined by minimizing the weight of the overall joint based on constraints from adhesive strengths as well as empirically derived rules. The analytical solution of the sin-le-lap joint is determined using the classical Goland-Reissner technique for case 2 type adhesive joints. Joint weight minimization is achieved using a commercially available routine, Design Optimization Tool (DOT), for the gradient solution while an author developed method is used for the genetic algorithm solution. Results illustrate the critical design variables as a function of adhesive properties and convergences of different joints based on the two optimization methods.
Aeroelastic Optimization Study Based on X-56A Model
NASA Technical Reports Server (NTRS)
Li, Wesley; Pak, Chan-Gi
2014-01-01
A design process which incorporates the object-oriented multidisciplinary design, analysis, and optimization (MDAO) tool and the aeroelastic effects of high fidelity finite element models to characterize the design space was successfully developed and established. Two multidisciplinary design optimization studies using an object-oriented MDAO tool developed at NASA Armstrong Flight Research Center were presented. The first study demonstrates the use of aeroelastic tailoring concepts to minimize the structural weight while meeting the design requirements including strength, buckling, and flutter. A hybrid and discretization optimization approach was implemented to improve accuracy and computational efficiency of a global optimization algorithm. The second study presents a flutter mass balancing optimization study. The results provide guidance to modify the fabricated flexible wing design and move the design flutter speeds back into the flight envelope so that the original objective of X-56A flight test can be accomplished.
Skeletal adaptation to external loads optimizes mechanical properties: fact or fiction
NASA Technical Reports Server (NTRS)
Turner, R. T.
2001-01-01
The skeleton adapts to a changing mechanical environment but the widely held concept that bone cells are programmed to respond to local mechanical loads to produce an optimal mechanical structure is not consistent with the high frequency of bone fractures. Instead, the author suggests that other important functions of bone compete with mechanical adaptation to determine structure. As a consequence of competing demands, bone architecture never achieves an optimal mechanical structure. c2001 Lippincott Williams & Wilkins, Inc.
H(2)- and H(infinity)-design tools for linear time-invariant systems
NASA Technical Reports Server (NTRS)
Ly, Uy-Loi
1989-01-01
Recent advances in optimal control have brought design techniques based on optimization of H(2) and H(infinity) norm criteria, closer to be attractive alternatives to single-loop design methods for linear time-variant systems. Significant steps forward in this technology are the deeper understanding of performance and robustness issues of these design procedures and means to perform design trade-offs. However acceptance of the technology is hindered by the lack of convenient design tools to exercise these powerful multivariable techniques, while still allowing single-loop design formulation. Presented is a unique computer tool for designing arbitrary low-order linear time-invarient controllers than encompasses both performance and robustness issues via the familiar H(2) and H(infinity) norm optimization. Application to disturbance rejection design for a commercial transport is demonstrated.
NASA Astrophysics Data System (ADS)
Martowicz, Adam; Uhl, Tadeusz
2012-10-01
The paper discusses the applicability of a reliability- and performance-based multi-criteria robust design optimization technique for micro-electromechanical systems, considering their technological uncertainties. Nowadays, micro-devices are commonly applied systems, especially in the automotive industry, taking advantage of utilizing both the mechanical structure and electronic control circuit on one board. Their frequent use motivates the elaboration of virtual prototyping tools that can be applied in design optimization with the introduction of technological uncertainties and reliability. The authors present a procedure for the optimization of micro-devices, which is based on the theory of reliability-based robust design optimization. This takes into consideration the performance of a micro-device and its reliability assessed by means of uncertainty analysis. The procedure assumes that, for each checked design configuration, the assessment of uncertainty propagation is performed with the meta-modeling technique. The described procedure is illustrated with an example of the optimization carried out for a finite element model of a micro-mirror. The multi-physics approach allowed the introduction of several physical phenomena to correctly model the electrostatic actuation and the squeezing effect present between electrodes. The optimization was preceded by sensitivity analysis to establish the design and uncertain domains. The genetic algorithms fulfilled the defined optimization task effectively. The best discovered individuals are characterized by a minimized value of the multi-criteria objective function, simultaneously satisfying the constraint on material strength. The restriction of the maximum equivalent stresses was introduced with the conditionally formulated objective function with a penalty component. The yielded results were successfully verified with a global uniform search through the input design domain.
Experimental validation of the RATE tool for inferring HLA restrictions of T cell epitopes.
Paul, Sinu; Arlehamn, Cecilia S Lindestam; Schulten, Veronique; Westernberg, Luise; Sidney, John; Peters, Bjoern; Sette, Alessandro
2017-06-21
The RATE tool was recently developed to computationally infer the HLA restriction of given epitopes from immune response data of HLA typed subjects without additional cumbersome experimentation. Here, RATE was validated using experimentally defined restriction data from a set of 191 tuberculosis-derived epitopes and 63 healthy individuals with MTB infection from the Western Cape Region of South Africa. Using this experimental dataset, the parameters utilized by the RATE tool to infer restriction were optimized, which included relative frequency (RF) of the subjects responding to a given epitope and expressing a given allele as compared to the general test population and the associated p-value in a Fisher's exact test. We also examined the potential for further optimization based on the predicted binding affinity of epitopes to potential restricting HLA alleles, and the absolute number of individuals expressing a given allele and responding to the specific epitope. Different statistical measures, including Matthew's correlation coefficient, accuracy, sensitivity and specificity were used to evaluate performance of RATE as a function of these criteria. Based on our results we recommend selection of HLA restrictions with cutoffs of p-value < 0.01 and RF ≥ 1.3. The usefulness of the tool was demonstrated by inferring new HLA restrictions for epitope sets where restrictions could not be experimentally determined due to lack of necessary cell lines and for an additional data set related to recognition of pollen derived epitopes from allergic patients. Experimental data sets were used to validate RATE tool and the parameters used by the RATE tool to infer restriction were optimized. New HLA restrictions were identified using the optimized RATE tool.
Translational PK/PD of Anti-Infective Therapeutics
Rathi, Chetan; Lee, Richard E.; Meibohm, Bernd
2016-01-01
Translational PK/PD modeling has emerged as a critical technique for quantitative analysis of the relationship between dose, exposure and response of antibiotics. By combining model components for pharmacokinetics, bacterial growth kinetics and concentration-dependent drug effects, these models are able to quantitatively capture and simulate the complex interplay between antibiotic, bacterium and host organism. Fine-tuning of these basic model structures allows to further account for complicating factors such as resistance development, combination therapy, or host responses. With this tool set at hand, mechanism-based PK/PD modeling and simulation allows to develop optimal dosing regimens for novel and established antibiotics for maximum efficacy and minimal resistance development. PMID:27978987
RNA interference: learning gene knock-down from cell physiology
Mocellin, Simone; Provenzano, Maurizio
2004-01-01
Over the past decade RNA interference (RNAi) has emerged as a natural mechanism for silencing gene expression. This ancient cellular antiviral response can be exploited to allow specific inhibition of the function of any chosen target gene. RNAi is proving to be an invaluable research tool, allowing much more rapid characterization of the function of known genes. More importantly, RNAi technology considerably bolsters functional genomics to aid in the identification of novel genes involved in disease processes. This review briefly describes the molecular principles underlying the biology of RNAi phenomenon and discuss the main technical issues regarding optimization of RNAi experimental design. PMID:15555080
NASA Astrophysics Data System (ADS)
Ghasemi Nanesa, Hadi
Cryogenic treatment, known as treating materials at sub-zero temperatures, has been added to conventional heat treatment cycle of high alloyed steels where martensitic transformation is incomplete after quenching to room temperature. Incomplete martensitic transformation occurs due to the effect of high content of alloying elements on pushing down martensite start and finish temperatures to very low values, specifically, on tool steels. In spite of obtaining significant improvements in mechanical and wear properties after cryogenic treatment, there is no cohesive picture about what exactly modifies the microstructure of tool steels during cryogenic treatment and therefore divergent opinions on the influence of process parameters are still reported. For example, the suggested time length for cryogenic treatment starts from few seconds to several days indicating the lack of understanding about micromechanisms responsible for microstructural evolution while holding at cryogenic temperatures. In this regard, the main objective of this project is to develop a better understanding on the fundamental micromechanisms operating during cryogenic treatment. To attain this objective, the following milestones are pursued. - To study the conventional cryogenic treatment and finding challenges. - To identify and characterize the optimum starting microstructure before cryogenic treatment. - To determine the important processing parameters those control the evolution of microstructure and hardness. - To investigate the interaction between carbide precipitation and martensitic transformation in the AISI D2 steel. - To propose an optimal cryogenic treatment for AISI D2 steel.
Opti-Tool: EPA Region 1's Stormwater Management Optimization Tool
Opti-Tool assists stormwater managers & consulting engineers in preparing technically sound & cost-effective watershed SW mgmt plans to achieve needed pollutant & volume reductions more affordably from developed landscapes throughout the New England Region
Analytical Tools to Improve Optimization Procedures for Lateral Flow Assays
Hsieh, Helen V.; Dantzler, Jeffrey L.; Weigl, Bernhard H.
2017-01-01
Immunochromatographic or lateral flow assays (LFAs) are inexpensive, easy to use, point-of-care medical diagnostic tests that are found in arenas ranging from a doctor’s office in Manhattan to a rural medical clinic in low resource settings. The simplicity in the LFA itself belies the complex task of optimization required to make the test sensitive, rapid and easy to use. Currently, the manufacturers develop LFAs by empirical optimization of material components (e.g., analytical membranes, conjugate pads and sample pads), biological reagents (e.g., antibodies, blocking reagents and buffers) and the design of delivery geometry. In this paper, we will review conventional optimization and then focus on the latter and outline analytical tools, such as dynamic light scattering and optical biosensors, as well as methods, such as microfluidic flow design and mechanistic models. We are applying these tools to find non-obvious optima of lateral flow assays for improved sensitivity, specificity and manufacturing robustness. PMID:28555034
Optimization and Simulation of SLM Process for High Density H13 Tool Steel Parts
NASA Astrophysics Data System (ADS)
Laakso, Petri; Riipinen, Tuomas; Laukkanen, Anssi; Andersson, Tom; Jokinen, Antero; Revuelta, Alejandro; Ruusuvuori, Kimmo
This paper demonstrates the successful printing and optimization of processing parameters of high-strength H13 tool steel by Selective Laser Melting (SLM). D-Optimal Design of Experiments (DOE) approach is used for parameter optimization of laser power, scanning speed and hatch width. With 50 test samples (1×1×1cm) we establish parameter windows for these three parameters in relation to part density. The calculated numerical model is found to be in good agreement with the density data obtained from the samples using image analysis. A thermomechanical finite element simulation model is constructed of the SLM process and validated by comparing the calculated densities retrieved from the model with the experimentally determined densities. With the simulation tool one can explore the effect of different parameters on density before making any printed samples. Establishing a parameter window provides the user with freedom for parameter selection such as choosing parameters that result in fastest print speed.
AITSO: A Tool for Spatial Optimization Based on Artificial Immune Systems
Zhao, Xiang; Liu, Yaolin; Liu, Dianfeng; Ma, Xiaoya
2015-01-01
A great challenge facing geocomputation and spatial analysis is spatial optimization, given that it involves various high-dimensional, nonlinear, and complicated relationships. Many efforts have been made with regard to this specific issue, and the strong ability of artificial immune system algorithms has been proven in previous studies. However, user-friendly professional software is still unavailable, which is a great impediment to the popularity of artificial immune systems. This paper describes a free, universal tool, named AITSO, which is capable of solving various optimization problems. It provides a series of standard application programming interfaces (APIs) which can (1) assist researchers in the development of their own problem-specific application plugins to solve practical problems and (2) allow the implementation of some advanced immune operators into the platform to improve the performance of an algorithm. As an integrated, flexible, and convenient tool, AITSO contributes to knowledge sharing and practical problem solving. It is therefore believed that it will advance the development and popularity of spatial optimization in geocomputation and spatial analysis. PMID:25678911
Testing the Birth Unit Design Spatial Evaluation Tool (BUDSET) in Australia: a pilot study.
Foureur, Maralyn J; Leap, Nicky; Davis, Deborah L; Forbes, Ian F; Homer, Caroline E S
2011-01-01
To pilot test the Birth Unit Design Spatial Evaluation Tool (BUDSET) in an Australian maternity care setting to determine whether such an instrument can measure the optimality of different birth settings. Optimally designed spaces to give birth are likely to influence a woman's ability to experience physiologically normal labor and birth. This is important in the current industrialized environment, where increased caesarean section rates are causing concerns. The measurement of an optimal birth space is currently impossible, because there are limited tools available. A quantitative study was undertaken to pilot test the discriminant ability of the BUDSET in eight maternity units in New South Wales, Australia. Five auditors trained in the use of the BUDSET assessed the birth units using the BUDSET, which is based on 18 design principles and is divided into four domains (Fear Cascade, Facility, Aesthetics, and Support) with three to eight assessable items in each. Data were independently collected in eight birth units. Values for each of the domains were aggregated to provide an overall Optimality Score for each birth unit. A range of Optimality Scores was derived for each of the birth units (from 51 to 77 out of a possible 100 points). The BUDSET identified units with low-scoring domains. Essentially these were older units and conventional labor ward settings. The BUDSET provides a way to assess the optimality of birth units and determine which domain areas may need improvement. There is potential for improvements to existing birth spaces, and considerable improvement can be made with simple low-cost modifications. Further research is needed to validate the tool.
2014-01-01
Background Heterologous gene expression is an important tool for synthetic biology that enables metabolic engineering and the production of non-natural biologics in a variety of host organisms. The translational efficiency of heterologous genes can often be improved by optimizing synonymous codon usage to better match the host organism. However, traditional approaches for optimization neglect to take into account many factors known to influence synonymous codon distributions. Results Here we define an alternative approach for codon optimization that utilizes systems level information and codon context for the condition under which heterologous genes are being expressed. Furthermore, we utilize a probabilistic algorithm to generate multiple variants of a given gene. We demonstrate improved translational efficiency using this condition-specific codon optimization approach with two heterologous genes, the fluorescent protein-encoding eGFP and the catechol 1,2-dioxygenase gene CatA, expressed in S. cerevisiae. For the latter case, optimization for stationary phase production resulted in nearly 2.9-fold improvements over commercial gene optimization algorithms. Conclusions Codon optimization is now often a standard tool for protein expression, and while a variety of tools and approaches have been developed, they do not guarantee improved performance for all hosts of applications. Here, we suggest an alternative method for condition-specific codon optimization and demonstrate its utility in Saccharomyces cerevisiae as a proof of concept. However, this technique should be applicable to any organism for which gene expression data can be generated and is thus of potential interest for a variety of applications in metabolic and cellular engineering. PMID:24636000
Extravehicular Activity Asteroid Exploration and Sample Collection Capability
NASA Technical Reports Server (NTRS)
Sipila, Stephanie A.; Scoville, Zebulon C.; Bowie, Jonathan T.; Buffington, Jesse A.
2014-01-01
One of the challenging primary objectives associated with NASA's Asteroid Redirect Crewed Mission (ARCM) is to demonstrate deep space Extravehicular Activity (EVA) and tools and to obtain asteroid samples to return to Earth for further study. Prior Shuttle and International Space Station (ISS) spacewalks have benefited from engineered EVA interfaces which have been designed and manufactured on Earth. Rigid structurally mounted handrails, and tools with customized interfaces and restraints optimize EVA performance. For ARCM, EVA complexity increases due to the uncertainty of the asteroid properties. The variability of rock size, shape and composition, as well as behavior of the asteroid capture mechanism will complicate EVA translation, tool restraint, and body stabilization. The unknown asteroid hardness and brittleness will complicate tool use. The rock surface will introduce added safety concerns for cut gloves and debris control. Feasible solutions to meet ARCM EVA objectives were identified using experience gained during Apollo, Shuttle, and ISS EVAs, terrestrial mountaineering practices, NASA Extreme Environment Mission Operations (NEEMO) 16 mission, and during Neutral Buoyancy Laboratory testing in the Modified Advanced Crew Escape Suit (MACES) suit. This paper will summarize the overall operational concepts for conducting EVAs for the ARCM mission including translation paths and body restraint methods, potential tools used to extract the samples, design implications for the Asteroid Redirect Vehicle (ARV) for EVA, and the results of early development testing of potential EVA tasks.
Tool Support for Software Lookup Table Optimization
Wilcox, Chris; Strout, Michelle Mills; Bieman, James M.
2011-01-01
A number of scientific applications are performance-limited by expressions that repeatedly call costly elementary functions. Lookup table (LUT) optimization accelerates the evaluation of such functions by reusing previously computed results. LUT methods can speed up applications that tolerate an approximation of function results, thereby achieving a high level of fuzzy reuse. One problem with LUT optimization is the difficulty of controlling the tradeoff between performance and accuracy. The current practice of manual LUT optimization adds programming effort by requiring extensive experimentation to make this tradeoff, and such hand tuning can obfuscate algorithms. In this paper we describe a methodology andmore » tool implementation to improve the application of software LUT optimization. Our Mesa tool implements source-to-source transformations for C or C++ code to automate the tedious and error-prone aspects of LUT generation such as domain profiling, error analysis, and code generation. We evaluate Mesa with five scientific applications. Our results show a performance improvement of 3.0× and 6.9× for two molecular biology algorithms, 1.4× for a molecular dynamics program, 2.1× to 2.8× for a neural network application, and 4.6× for a hydrology calculation. We find that Mesa enables LUT optimization with more control over accuracy and less effort than manual approaches.« less
Cost minimizing of cutting process for CNC thermal and water-jet machines
NASA Astrophysics Data System (ADS)
Tavaeva, Anastasia; Kurennov, Dmitry
2015-11-01
This paper deals with optimization problem of cutting process for CNC thermal and water-jet machines. The accuracy of objective function parameters calculation for optimization problem is investigated. This paper shows that working tool path speed is not constant value. One depends on some parameters that are described in this paper. The relations of working tool path speed depending on the numbers of NC programs frames, length of straight cut, configuration part are presented. Based on received results the correction coefficients for working tool speed are defined. Additionally the optimization problem may be solved by using mathematical model. Model takes into account the additional restrictions of thermal cutting (choice of piercing and output tool point, precedence condition, thermal deformations). At the second part of paper the non-standard cutting techniques are considered. Ones may lead to minimizing of cutting cost and time compared with standard cutting techniques. This paper considers the effectiveness of non-standard cutting techniques application. At the end of the paper the future research works are indicated.
Simulation techniques in hyperthermia treatment planning
Paulides, MM; Stauffer, PR; Neufeld, E; Maccarini, P; Kyriakou, A; Canters, RAM; Diederich, C; Bakker, JF; Van Rhoon, GC
2013-01-01
Clinical trials have shown that hyperthermia (HT), i.e. an increase of tissue temperature to 39-44°C, significantly enhance radiotherapy and chemotherapy effectiveness (1). Driven by the developments in computational techniques and computing power, personalized hyperthermia treatment planning (HTP) has matured and has become a powerful tool for optimizing treatment quality. Electromagnetic, ultrasound, and thermal simulations using realistic clinical setups are now being performed to achieve patient-specific treatment optimization. In addition, extensive studies aimed to properly implement novel HT tools and techniques, and to assess the quality of HT, are becoming more common. In this paper, we review the simulation tools and techniques developed for clinical hyperthermia, and evaluate their current status on the path from “model” to “clinic”. In addition, we illustrate the major techniques employed for validation and optimization. HTP has become an essential tool for improvement, control, and assessment of HT treatment quality. As such, it plays a pivotal role in the quest to establish HT as an efficacious addition to multi-modality treatment of cancer. PMID:23672453
VirSSPA- a virtual reality tool for surgical planning workflow.
Suárez, C; Acha, B; Serrano, C; Parra, C; Gómez, T
2009-03-01
A virtual reality tool, called VirSSPA, was developed to optimize the planning of surgical processes. Segmentation algorithms for Computed Tomography (CT) images: a region growing procedure was used for soft tissues and a thresholding algorithm was implemented to segment bones. The algorithms operate semiautomati- cally since they only need seed selection with the mouse on each tissue segmented by the user. The novelty of the paper is the adaptation of an enhancement method based on histogram thresholding applied to CT images for surgical planning, which simplifies subsequent segmentation. A substantial improvement of the virtual reality tool VirSSPA was obtained with these algorithms. VirSSPA was used to optimize surgical planning, to decrease the time spent on surgical planning and to improve operative results. The success rate increases due to surgeons being able to see the exact extent of the patient's ailment. This tool can decrease operating room time, thus resulting in reduced costs. Virtual simulation was effective for optimizing surgical planning, which could, consequently, result in improved outcomes with reduced costs.
Borukhovich, Efim; Du, Guanxing; Stratmann, Matthias; Boeff, Martin; Shchyglo, Oleg; Hartmaier, Alexander; Steinbach, Ingo
2016-01-01
Martensitic steels form a material class with a versatile range of properties that can be selected by varying the processing chain. In order to study and design the desired processing with the minimal experimental effort, modeling tools are required. In this work, a full processing cycle from quenching over tempering to mechanical testing is simulated with a single modeling framework that combines the features of the phase-field method and a coupled chemo-mechanical approach. In order to perform the mechanical testing, the mechanical part is extended to the large deformations case and coupled to crystal plasticity and a linear damage model. The quenching process is governed by the austenite-martensite transformation. In the tempering step, carbon segregation to the grain boundaries and the resulting cementite formation occur. During mechanical testing, the obtained material sample undergoes a large deformation that leads to local failure. The initial formation of the damage zones is observed to happen next to the carbides, while the final damage morphology follows the martensite microstructure. This multi-scale approach can be applied to design optimal microstructures dependent on processing and materials composition. PMID:28773791
Numerical optimization of three-dimensional coils for NSTX-U
Lazerson, S. A.; Park, J. -K.; Logan, N.; ...
2015-09-03
A tool for the calculation of optimal three-dimensional (3D) perturbative magnetic fields in tokamaks has been developed. The IPECOPT code builds upon the stellarator optimization code STELLOPT to allow for optimization of linear ideal magnetohydrodynamic perturbed equilibrium (IPEC). This tool has been applied to NSTX-U equilibria, addressing which fields are the most effective at driving NTV torques. The NTV torque calculation is performed by the PENT code. Optimization of the normal field spectrum shows that fields with n = 1 character can drive a large core torque. It is also shown that fields with n = 3 features are capablemore » of driving edge torque and some core torque. Coil current optimization (using the planned in-vessel and existing RWM coils) on NSTX-U suggest the planned coils set is adequate for core and edge torque control. In conclusion, comparison between error field correction experiments on DIII-D and the optimizer show good agreement.« less
Orbit design and optimization based on global telecommunication performance metrics
NASA Technical Reports Server (NTRS)
Lee, Seungwon; Lee, Charles H.; Kerridge, Stuart; Cheung, Kar-Ming; Edwards, Charles D.
2006-01-01
The orbit selection of telecommunications orbiters is one of the critical design processes and should be guided by global telecom performance metrics and mission-specific constraints. In order to aid the orbit selection, we have coupled the Telecom Orbit Analysis and Simulation Tool (TOAST) with genetic optimization algorithms. As a demonstration, we have applied the developed tool to select an optimal orbit for general Mars telecommunications orbiters with the constraint of being a frozen orbit. While a typical optimization goal is to minimize tele-communications down time, several relevant performance metrics are examined: 1) area-weighted average gap time, 2) global maximum of local maximum gap time, 3) global maximum of local minimum gap time. Optimal solutions are found with each of the metrics. Common and different features among the optimal solutions as well as the advantage and disadvantage of each metric are presented. The optimal solutions are compared with several candidate orbits that were considered during the development of Mars Telecommunications Orbiter.
NASA Technical Reports Server (NTRS)
Renaud, John E.; Batill, Stephen M.; Brockman, Jay B.
1998-01-01
This research effort is a joint program between the Departments of Aerospace and Mechanical Engineering and the Computer Science and Engineering Department at the University of Notre Dame. Three Principal Investigators; Drs. Renaud, Brockman and Batill directed this effort. During the four and a half year grant period, six Aerospace and Mechanical Engineering Ph.D. students and one Masters student received full or partial support, while four Computer Science and Engineering Ph.D. students and one Masters student were supported. During each of the summers up to four undergraduate students were involved in related research activities. The purpose of the project was to develop a framework and systematic methodology to facilitate the application of Multidisciplinary Design Optimization (N4DO) to a diverse class of system design problems. For all practical aerospace systems, the design of a systems is a complex sequence of events which integrates the activities of a variety of discipline "experts" and their associated "tools". The development, archiving and exchange of information between these individual experts is central to the design task and it is this information which provides the basis for these experts to make coordinated design decisions (i.e., compromises and trade-offs) - resulting in the final product design. Grant efforts focused on developing and evaluating frameworks for effective design coordination within a MDO environment. Central to these research efforts was the concept that the individual discipline "expert", using the most appropriate "tools" available and the most complete description of the system should be empowered to have the greatest impact on the design decisions and final design. This means that the overall process must be highly interactive and efficiently conducted if the resulting design is to be developed in a manner consistent with cost and time requirements. The methods developed as part of this research effort include; extensions to a sensitivity based Concurrent Subspace Optimization (CSSO) MDO algorithm; the development of a neural network response surface based CSSO-MDO algorithm; and the integration of distributed computing and process scheduling into the MDO environment. This report overviews research efforts in each of these focus. A complete bibliography of research produced with support of this grant is attached.
Characterization of N-doped polycrystalline diamond films deposited on microgrinding tools
NASA Astrophysics Data System (ADS)
Jackson, M. J.; Ahmed, W.
2005-10-01
Chemical vapor deposited diamond films have many industrial applications but are assuming increasing importance in the area of microengineering, most notably in the development of diamond coated microgrinding tools. For these applications the control of structure and morphology is of critical importance. The crystallite size, orientation, surface roughness, and the degree of sp 3 character have a profound effect on the tribological properties of the films deposited. In this article, we present experimental results on the effects of nitrogen doping on the surface morphology, crystallite size, and wear of microgrinding tools. The sp 3 character optimizes at 200 ppm nitrogen, and above this value the surface becomes much smoother and crystal sizes decrease considerably. Fracture-induced wear of the diamond grain is the most important mechanism of material removal from a microgrinding tool during the grinding process. Fracture occurs as a consequence of tensile stresses induced into diamond grains by grinding forces to which they are subjected. The relationship between the wear of diamond coated grinding tools, component grinding forces, and induced stresses in the model diamond grains is described in detail. A significant correlation was found between the maximum value of tensile stress induced in the diamond grain and the appropriate wheel-wear parameter (grinding ratio). It was concluded that the magnitude of tensile stresses induced in the diamond grain by grinding forces at the rake face is the best indicator of tool wear during the grinding process.
NASA Astrophysics Data System (ADS)
Khidhir, Basim A.; Mohamed, Bashir
2011-02-01
Machining parameters has an important factor on tool wear and surface finish, for that the manufacturers need to obtain optimal operating parameters with a minimum set of experiments as well as minimizing the simulations in order to reduce machining set up costs. The cutting speed is one of the most important cutting parameter to evaluate, it clearly most influences on one hand, tool life, tool stability, and cutting process quality, and on the other hand controls production flow. Due to more demanding manufacturing systems, the requirements for reliable technological information have increased. For a reliable analysis in cutting, the cutting zone (tip insert-workpiece-chip system) as the mechanics of cutting in this area are very complicated, the chip is formed in the shear plane (entrance the shear zone) and is shape in the sliding plane. The temperature contributed in the primary shear, chamfer and sticking, sliding zones are expressed as a function of unknown shear angle on the rake face and temperature modified flow stress in each zone. The experiments were carried out on a CNC lathe and surface finish and tool tip wear are measured in process. Machining experiments are conducted. Reasonable agreement is observed under turning with high depth of cut. Results of this research help to guide the design of new cutting tool materials and the studies on evaluation of machining parameters to further advance the productivity of nickel based alloy Hastelloy - 276 machining.
A Structural Health Monitoring Software Tool for Optimization, Diagnostics and Prognostics
2011-01-01
A Structural Health Monitoring Software Tool for Optimization, Diagnostics and Prognostics Seth S . Kessler1, Eric B. Flynn2, Christopher T...technology more accessible, and commercially practical. 1. INTRODUCTION Currently successful laboratory non- destructive testing and monitoring...PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES
Nonsmooth Optimization Algorithms, System Theory, and Software Tools
1993-04-13
Optimization Algorithms, System Theory , and Scftware Tools" AFOSR-90-OO68 L AUTHOR($) Elijah Polak -Professor and Principal Investigator 7. PERFORMING...NSN 754Q-01-2W0-S500 Standard Form 295 (69O104 Draft) F’wsa*W by hA Sit 230.1""V AFOSR-90-0068 NONSMO0 TH OPTIMIZA TION A L GORI THMS, SYSTEM THEORY , AND
Design Tools for Reconfigurable Hardware in Orbit (RHinO)
NASA Technical Reports Server (NTRS)
French, Mathew; Graham, Paul; Wirthlin, Michael; Larchev, Gregory; Bellows, Peter; Schott, Brian
2004-01-01
The Reconfigurable Hardware in Orbit (RHinO) project is focused on creating a set of design tools that facilitate and automate design techniques for reconfigurable computing in space, using SRAM-based field-programmable-gate-array (FPGA) technology. These tools leverage an established FPGA design environment and focus primarily on space effects mitigation and power optimization. The project is creating software to automatically test and evaluate the single-event-upsets (SEUs) sensitivities of an FPGA design and insert mitigation techniques. Extensions into the tool suite will also allow evolvable algorithm techniques to reconfigure around single-event-latchup (SEL) events. In the power domain, tools are being created for dynamic power visualiization and optimization. Thus, this technology seeks to enable the use of Reconfigurable Hardware in Orbit, via an integrated design tool-suite aiming to reduce risk, cost, and design time of multimission reconfigurable space processors using SRAM-based FPGAs.
Designing drugs on the internet? Free web tools and services supporting medicinal chemistry.
Ertl, Peter; Jelfs, Stephen
2007-01-01
The drug discovery process is supported by a multitude of freely available tools on the Internet. This paper summarizes some of the databases and tools that are of particular interest to medicinal chemistry. These include numerous data collections that provide access to valuable chemical data resources, allowing complex queries of compound structures, associated physicochemical properties and biological activities to be performed and, in many cases, providing links to commercial chemical suppliers. Further applications are available for searching protein-ligand complexes and identifying important binding interactions that occur. This is particularly useful for understanding the molecular recognition of ligands in the lead optimization process. The Internet also provides access to databases detailing metabolic pathways and transformations which can provide insight into disease mechanism, identify new targets entities or the potential off-target effects of a drug candidate. Furthermore, sophisticated online cheminformatics tools are available for processing chemical structures, predicting properties, and generating 2D or 3D structure representations--often required prior to more advanced analyses. The Internet provides a wealth of valuable resources that, if fully exploited, can greatly benefit the drug discovery community. In this paper, we provide an overview of some of the more important of these and, in particular, the freely accessible resources that are currently available.
NASA Astrophysics Data System (ADS)
Durga Prasada Rao, V.; Harsha, N.; Raghu Ram, N. S.; Navya Geethika, V.
2018-02-01
In this work, turning was performed to optimize the surface finish or roughness (Ra) of stainless steel 304 with uncoated and coated carbide tools under dry conditions. The carbide tools were coated with Titanium Aluminium Nitride (TiAlN) nano coating using Physical Vapour Deposition (PVD) method. The machining parameters, viz., cutting speed, depth of cut and feed rate which show major impact on Ra are considered during turning. The experiments are designed as per Taguchi orthogonal array and machining process is done accordingly. Then second-order regression equations have been developed on the basis of experimental results for Ra in terms of machining parameters used. Regarding the effect of machining parameters, an upward trend is observed in Ra with respect to feed rate, and as cutting speed increases the Ra value increased slightly due to chatter and vibrations. The adequacy of response variable (Ra) is tested by conducting additional experiments. The predicted Ra values are found to be a close match of their corresponding experimental values of uncoated and coated tools. The corresponding average % errors are found to be within the acceptable limits. Then the surface roughness equations of uncoated and coated tools are set as the objectives of optimization problem and are solved by using Differential Evolution (DE) algorithm. Also the tool lives of uncoated and coated tools are predicted by using Taylor’s tool life equation.
Generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB.
Lee, Leng-Feng; Umberger, Brian R
2016-01-01
Computer modeling, simulation and optimization are powerful tools that have seen increased use in biomechanics research. Dynamic optimizations can be categorized as either data-tracking or predictive problems. The data-tracking approach has been used extensively to address human movement problems of clinical relevance. The predictive approach also holds great promise, but has seen limited use in clinical applications. Enhanced software tools would facilitate the application of predictive musculoskeletal simulations to clinically-relevant research. The open-source software OpenSim provides tools for generating tracking simulations but not predictive simulations. However, OpenSim includes an extensive application programming interface that permits extending its capabilities with scripting languages such as MATLAB. In the work presented here, we combine the computational tools provided by MATLAB with the musculoskeletal modeling capabilities of OpenSim to create a framework for generating predictive simulations of musculoskeletal movement based on direct collocation optimal control techniques. In many cases, the direct collocation approach can be used to solve optimal control problems considerably faster than traditional shooting methods. Cyclical and discrete movement problems were solved using a simple 1 degree of freedom musculoskeletal model and a model of the human lower limb, respectively. The problems could be solved in reasonable amounts of time (several seconds to 1-2 hours) using the open-source IPOPT solver. The problems could also be solved using the fmincon solver that is included with MATLAB, but the computation times were excessively long for all but the smallest of problems. The performance advantage for IPOPT was derived primarily by exploiting sparsity in the constraints Jacobian. The framework presented here provides a powerful and flexible approach for generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB. This should allow researchers to more readily use predictive simulation as a tool to address clinical conditions that limit human mobility.
Generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB
Lee, Leng-Feng
2016-01-01
Computer modeling, simulation and optimization are powerful tools that have seen increased use in biomechanics research. Dynamic optimizations can be categorized as either data-tracking or predictive problems. The data-tracking approach has been used extensively to address human movement problems of clinical relevance. The predictive approach also holds great promise, but has seen limited use in clinical applications. Enhanced software tools would facilitate the application of predictive musculoskeletal simulations to clinically-relevant research. The open-source software OpenSim provides tools for generating tracking simulations but not predictive simulations. However, OpenSim includes an extensive application programming interface that permits extending its capabilities with scripting languages such as MATLAB. In the work presented here, we combine the computational tools provided by MATLAB with the musculoskeletal modeling capabilities of OpenSim to create a framework for generating predictive simulations of musculoskeletal movement based on direct collocation optimal control techniques. In many cases, the direct collocation approach can be used to solve optimal control problems considerably faster than traditional shooting methods. Cyclical and discrete movement problems were solved using a simple 1 degree of freedom musculoskeletal model and a model of the human lower limb, respectively. The problems could be solved in reasonable amounts of time (several seconds to 1–2 hours) using the open-source IPOPT solver. The problems could also be solved using the fmincon solver that is included with MATLAB, but the computation times were excessively long for all but the smallest of problems. The performance advantage for IPOPT was derived primarily by exploiting sparsity in the constraints Jacobian. The framework presented here provides a powerful and flexible approach for generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB. This should allow researchers to more readily use predictive simulation as a tool to address clinical conditions that limit human mobility. PMID:26835184
NASA Astrophysics Data System (ADS)
Latief, Yusuf; Berawi, Mohammed Ali; Basten, Van; Riswanto; Budiman, Rachmat
2017-07-01
Green building concept becomes important in current building life cycle to mitigate environment issues. The purpose of this paper is to optimize building construction performance towards green building premium cost, achieving green building rating tools with optimizing life cycle cost. Therefore, this study helps building stakeholder determining building fixture to achieve green building certification target. Empirically the paper collects data of green building in the Indonesian construction industry such as green building fixture, initial cost, operational and maintenance cost, and certification score achievement. After that, using value engineering method optimized green building fixture based on building function and cost aspects. Findings indicate that construction performance optimization affected green building achievement with increasing energy and water efficiency factors and life cycle cost effectively especially chosen green building fixture.
Role of Polymer Segregation on the Mechanical Behavior of All-Polymer Solar Cell Active Layers.
Balar, Nrup; Xiong, Yuan; Ye, Long; Li, Sunsun; Nevola, Daniel; Dougherty, Daniel B; Hou, Jianhui; Ade, Harald; O'Connor, Brendan T
2017-12-20
An all-polymer bulk heterojunction (BHJ) active layer that removes the use of commonly used small molecule electron acceptors is a promising approach to improve the thermomechanical behavior of organic solar cells. However, there has been limited research on their mechanical properties. Here, we report on the mechanical behavior of high-performance blade-coated all-polymer BHJ films cast using eco-friendly solvents. The mechanical properties considered include the elastic modulus, crack onset strain, and cohesive fracture energy. We show that the mechanical behavior of the blend is largely unaffected by significant changes in the segregation characteristics of the polymers, which was varied systematically through solvent formulation. In comparison to a polymer:fullerene BHJ counterpart, the all-polymer films were found to have lower stiffness and increased ductility. Yet, the fracture energy of the all-polymer films is not significantly improved compared to that of the polymer:fullerene films. This study highlights that improved mechanical behavior of all-polymer systems cannot be assumed, and that details of the molecular structure, molecular weight, and film morphology play an important role in both the optoelectronic and mechanical properties. Furthermore, we show that simple composite modeling provides a predictive tool for the mechanical properties of the polymer blend films, providing a framework to guide future optimization of the mechanical behavior.
Construct Validation of the FMS: Relationship between a Jump-Landing Task and FMS Items.
Kraus, Kornelius; Schütz, Elisabeth; Doyscher, Ralf
2017-08-29
Sports injuries and athletic performance are complex areas, which are characterized by manifold interdependencies. The landing error scoring system (LESS) is a valid screening tool to examine bilateral jump-landing mechanics. Whereas, the Functional Movement Screen (FMS) items are thought to operationalize flexibility and motor behaviour during low intense bodyweight patterns. The aim of the study was to explore possible interdependency of the diagnostic information of these screening tools. 53 athletes (age 23.3±2.1 yrs.) were tested in a sport scientific lab. In detail, 31 professional soccer players (3 Division) and 22 collegiate athletes were studied. Linear, partial correlational and cluster analysis were performed to examine possible trends. Generally, the sportsmen achieved a LESS score of 6.6±2 and a jumping height of 37±7.8cm. Partial correlational analysis indicates that trunk control (r=0.4; p<0.01) is moderately related to landing mechanics, which in turn was negatively related on LESS height (r=-0.67, p<0.01). In addition, clustering showed by trend, that a higher active straight leg raise (ASLR) score is related to better landing mechanics (ASLR score 1: LESS 6.9±1.8; n=15 vs. ASLR score 3: LESS 5.6±2.1; n=10). On the task-specific level, jump-landing mechanics were directly related to jumping performance in this cohort with poor mechanics. On unspecific analysis level, kinetic chain length (ASLR) and trunk control has been identified as potential moderator variables for landing mechanics, indicating that these parameter can limit landing mechanics and ought to be optimized within the individual´s context. A potential cognitive strategy shift from internal (FMS) to external focus (LESS) as well as different muscle recruitment patterns are potential explanations for the non-significant linear relationship between the FMS and LESS data.
Martian resource locations: Identification and optimization
NASA Astrophysics Data System (ADS)
Chamitoff, Gregory; James, George; Barker, Donald; Dershowitz, Adam
2005-04-01
The identification and utilization of in situ Martian natural resources is the key to enable cost-effective long-duration missions and permanent human settlements on Mars. This paper presents a powerful software tool for analyzing Martian data from all sources, and for optimizing mission site selection based on resource collocation. This program, called Planetary Resource Optimization and Mapping Tool (PROMT), provides a wide range of analysis and display functions that can be applied to raw data or imagery. Thresholds, contours, custom algorithms, and graphical editing are some of the various methods that can be used to process data. Output maps can be created to identify surface regions on Mars that meet any specific criteria. The use of this tool for analyzing data, generating maps, and collocating features is demonstrated using data from the Mars Global Surveyor and the Odyssey spacecraft. The overall mission design objective is to maximize a combination of scientific return and self-sufficiency based on utilization of local materials. Landing site optimization involves maximizing accessibility to collocated science and resource features within a given mission radius. Mission types are categorized according to duration, energy resources, and in situ resource utilization. Preliminary optimization results are shown for a number of mission scenarios.
CORSSTOL: Cylinder Optimization of Rings, Skin, and Stringers with Tolerance sensitivity
NASA Technical Reports Server (NTRS)
Finckenor, J.; Bevill, M.
1995-01-01
Cylinder Optimization of Rings, Skin, and Stringers with Tolerance (CORSSTOL) sensitivity is a design optimization program incorporating a method to examine the effects of user-provided manufacturing tolerances on weight and failure. CORSSTOL gives designers a tool to determine tolerances based on need. This is a decisive way to choose the best design among several manufacturing methods with differing capabilities and costs. CORSSTOL initially optimizes a stringer-stiffened cylinder for weight without tolerances. The skin and stringer geometry are varied, subject to stress and buckling constraints. Then the same analysis and optimization routines are used to minimize the maximum material condition weight subject to the least favorable combination of tolerances. The adjusted optimum dimensions are provided with the weight and constraint sensitivities of each design variable. The designer can immediately identify critical tolerances. The safety of parts made out of tolerance can also be determined. During design and development of weight-critical systems, design/analysis tools that provide product-oriented results are of vital significance. The development of this program and methodology provides designers with an effective cost- and weight-saving design tool. The tolerance sensitivity method can be applied to any system defined by a set of deterministic equations.
Tahmasbi, Vahid; Ghoreishi, Majid; Zolfaghari, Mojtaba
2017-11-01
The bone drilling process is very prominent in orthopedic surgeries and in the repair of bone fractures. It is also very common in dentistry and bone sampling operations. Due to the complexity of bone and the sensitivity of the process, bone drilling is one of the most important and sensitive processes in biomedical engineering. Orthopedic surgeries can be improved using robotic systems and mechatronic tools. The most crucial problem during drilling is an unwanted increase in process temperature (higher than 47 °C), which causes thermal osteonecrosis or cell death and local burning of the bone tissue. Moreover, imposing higher forces to the bone may lead to breaking or cracking and consequently cause serious damage. In this study, a mathematical second-order linear regression model as a function of tool drilling speed, feed rate, tool diameter, and their effective interactions is introduced to predict temperature and force during the bone drilling process. This model can determine the maximum speed of surgery that remains within an acceptable temperature range. Moreover, for the first time, using designed experiments, the bone drilling process was modeled, and the drilling speed, feed rate, and tool diameter were optimized. Then, using response surface methodology and applying a multi-objective optimization, drilling force was minimized to sustain an acceptable temperature range without damaging the bone or the surrounding tissue. In addition, for the first time, Sobol statistical sensitivity analysis is used to ascertain the effect of process input parameters on process temperature and force. The results show that among all effective input parameters, tool rotational speed, feed rate, and tool diameter have the highest influence on process temperature and force, respectively. The behavior of each output parameters with variation in each input parameter is further investigated. Finally, a multi-objective optimization has been performed considering all the aforementioned parameters. This optimization yielded a set of data that can considerably improve orthopedic osteosynthesis outcomes.
On optimization of energy harvesting from base-excited vibration
NASA Astrophysics Data System (ADS)
Tai, Wei-Che; Zuo, Lei
2017-12-01
This paper re-examines and clarifies the long-believed optimization conditions of electromagnetic and piezoelectric energy harvesting from base-excited vibration. In terms of electromagnetic energy harvesting, it is typically believed that the maximum power is achieved when the excitation frequency and electrical damping equal the natural frequency and mechanical damping of the mechanical system respectively. We will show that this optimization condition is only valid when the acceleration amplitude of base excitation is constant and an approximation for small mechanical damping when the excitation displacement amplitude is constant. To this end, a two-variable optimization analysis, involving the normalized excitation frequency and electrical damping ratio, is performed to derive the exact optimization condition of each case. When the excitation displacement amplitude is constant, we analytically show that, in contrast to the long-believed optimization condition, the optimal excitation frequency and electrical damping are always larger than the natural frequency and mechanical damping ratio respectively. In particular, when the mechanical damping ratio exceeds a critical value, the optimization condition is no longer valid. Instead, the average power generally increases as the excitation frequency and electrical damping ratio increase. Furthermore, the optimization analysis is extended to consider parasitic electrical losses, which also shows different results when compared with existing literature. When the excitation acceleration amplitude is constant, on the other hand, the exact optimization condition is identical to the long-believed one. In terms of piezoelectric energy harvesting, it is commonly believed that the optimal power efficiency is achieved when the excitation and the short or open circuit frequency of the harvester are equal. Via a similar two-variable optimization analysis, we analytically show that the optimal excitation frequency depends on the mechanical damping ratio and does not equal the short or open circuit frequency. Finally, the optimal excitation frequencies and resistive loads are derived in closed-form.
Springback optimization in automotive Shock Absorber Cup with Genetic Algorithm
NASA Astrophysics Data System (ADS)
Kakandikar, Ganesh; Nandedkar, Vilas
2018-02-01
Drawing or forming is a process normally used to achieve a required component form from a metal blank by applying a punch which radially draws the blank into the die by a mechanical or hydraulic action or combining both. When the component is drawn for more depth than the diameter, it is usually seen as deep drawing, which involves complicated states of material deformation. Due to the radial drawing of the material as it enters the die, radial drawing stress occurs in the flange with existence of the tangential compressive stress. This compression generates wrinkles in the flange. Wrinkling is unwanted phenomenon and can be controlled by application of a blank-holding force. Tensile stresses cause thinning in the wall region of the cup. Three main types of the errors occur in such a process are wrinkling, fracturing and springback. This paper reports a work focused on the springback and control. Due to complexity of the process, tool try-outs and experimentation may be costly, bulky and time consuming. Numerical simulation proves to be a good option for studying the process and developing a control strategy for reducing the springback. Finite-element based simulations have been used popularly for such purposes. In this study, the springback in deep drawing of an automotive Shock Absorber Cup is simulated with finite element method. Taguchi design of experiments and analysis of variance are used to analyze the influencing process parameters on the springback. Mathematical relations are developed to relate the process parameters and the resulting springback. The optimization problem is formulated for the springback, referring to the displacement magnitude in the selected sections. Genetic Algorithm is then applied for process optimization with an objective to minimize the springback. The results indicate that a better prediction of the springback and process optimization could be achieved with a combined use of these methods and tools.
Onwujekwe, Obinna; Malik, El-Fatih Mohamed; Mustafa, Sara Hassan; Mnzava, Abraham
2005-12-15
In order to optimally prioritize and use public and private budgets for equitable malaria vector control, there is a need to determine the level and determinants of consumer demand for different vector control tools. To determine the demand from people of different socio-economic groups for indoor residual house-spraying (IRHS), insecticide-treated nets (ITNs), larviciding with chemicals (LWC), and space spraying/fogging (SS) and the disease control implications of the result. Ratings and levels of willingness-to-pay (WTP) for the vector control tools were determined using a random cross-sectional sample of 720 householdes drawn from two states. WTP was elicited using the bidding game. An asset-based socio-economic status (SES) index was used to explore whether WTP was related to SES of the respondents. IRHS received the highest proportion of highest preferred rating (41.0%) followed by ITNs (23.1%). However, ITNs had the highest mean WTP followed by IRHS, while LWC had the least. The regression analysis showed that SES was positively and statistically significantly related to WTP across the four vector control tools and that the respondents' rating of IRHS and ITNs significantly explained their levels of WTP for the two tools. People were willing to pay for all the vector-control tools, but the demand for the vector control tools was related to the SES of the respondents. Hence, it is vital that there are public policies and financing mechanisms to ensure equitable provision and utilisation of vector control tools, as well as protecting the poor from cost-sharing arrangements.
Extending Our Understanding of Compliant Thermal Barrier Performance
NASA Technical Reports Server (NTRS)
Demange, Jeffrey J.; Finkbeiner, Joshua R.; Dunlap, Patrick H.
2014-01-01
Thermal barriers and seals are integral components in the thermal protection systems (TPS) of nearly all aerospace vehicles. They are used to minimize the flow of hot gases through interfaces and protect underlying temperature-sensitive components and systems. Although thermal barriers have been used extensively on many aerospace vehicles, the factors affecting their thermal and mechanical performance are not well-understood. Because of this, vehicle TPS designers are often left with little guidance on how to properly design and optimize these barriers. An ongoing effort to better understand thermal barrier performance and develop models and design tools is in progress at the NASA Glenn Research Center. Testing has been conducted to understand the degree to which insulation density influences structural performance and permeability. In addition, the development of both thermal and mechanical models is ongoing with the goal of providing an improved ability to design and implement these critical TPS components.
Yeganeh, Ali; Otoukesh, Babak; Kaghazian, Peyman; Yeganeh, Nima; Boddohi, Bahram; Moghtadaei, Mehdi
2015-01-01
Background: Orthopedics implants are important tools for treatment of bone fractures. Despite available recommendations for designing and making the implants, there are multiple cases of fracture of these implants in the body. Hence, in this study the frequency of failure of implants in long bones of lower extremities was evaluated. Methods and Materials: In this cross-sectional study, two types of fractured implants in the body were analyzed and underwent metalogical, mechanical, and modeling and stress-bending analysis. Results: The results revealed that the main cause of fractures was decreased mechanical resistance due to inappropriate chemical composition (especially decreased percentages of Nickel and Molybdenum). Conclusions: It may be concluded that following the standard chemical composition and use of optimal making method are the most important works for prevention of failure of implants. PMID:26843735
Electrical impedance tomography
Lobo, Beatriz; Hermosa, Cecilia; Abella, Ana
2018-01-01
Continuous assessment of respiratory status is one of the cornerstones of modern intensive care unit (ICU) monitoring systems. Electrical impedance tomography (EIT), although with some constraints, may play the lead as a new diagnostic and guiding tool for an adequate optimization of mechanical ventilation in critically ill patients. EIT may assist in defining mechanical ventilation settings, assess distribution of tidal volume and of end-expiratory lung volume (EELV) and contribute to titrate positive end-expiratory pressure (PEEP)/tidal volume combinations. It may also quantify gains (recruitment) and losses (overdistention or derecruitment), granting a more realistic evaluation of different ventilator modes or recruitment maneuvers, and helping in the identification of responders and non-responders to such maneuvers. Moreover, EIT also contributes to the management of life-threatening lung diseases such as pneumothorax, and aids in guiding fluid management in the critical care setting. Lastly, assessment of cardiac function and lung perfusion through electrical impedance is on the way. PMID:29430443
Malaterre, Vincent; Metz, Hendrik; Ogorka, Joerg; Gurny, Robert; Loggia, Nicoletta; Mäder, Karsten
2009-01-05
The mechanism of drug release from push-pull osmotic systems (PPOS) has been investigated by Magnetic Resonance Imaging (MRI) using a new benchtop apparatus. The signal intensity profiles of both PPOS layers were monitored non-invasively over time to characterize the hydration and swelling kinetics. The drug release performance was well-correlated to the hydration kinetics. The results show that (i) hydration and swelling critically depend on the tablet core composition, (ii) high osmotic pressure developed by the push layer may lead to bypassing the drug layer and incomplete drug release and (iii) the hydration of both the drug and the push layers needs to be properly balanced to efficiently deliver the drug. MRI is therefore a powerful tool to get insights on the drug delivery mechanism of push-pull osmotic systems, which enable a more efficient optimization of such formulations.
Arranz, Elena; Corredig, Milena; Guri, Anilda
2016-08-10
An in depth understanding of the underpinning mechanisms that relate to food disruption and processing in the gastrointestinal tract is necessary to achieve optimal intake of nutrients and their bioefficacy. Although in vivo trials can provide insights on physiological responses of nutrients, in vitro assays are often applied as tools to understand specific mechanisms, or as prescreening methods to determine the factors associated with the uptake of food components in the gastrointestinal tract. In vitro assays are also often utilized to design novel or improved food delivery systems. In this review the available approaches to study delivery and uptake of food bioactives and the associated challenges are discussed. For an in depth understanding of food processing in the gastrointestinal tract, it is necessary to apply multidisciplinary methodologies, at the interface between materials science, chemistry, physics and biology.
NASA Astrophysics Data System (ADS)
Fernández-González, Daniel; Martín-Duarte, Ramón; Ruiz-Bustinza, Íñigo; Mochón, Javier; González-Gasca, Carmen; Verdeja, Luis Felipe
2016-08-01
Blast furnace operators expect to get sinter with homogenous and regular properties (chemical and mechanical), necessary to ensure regular blast furnace operation. Blends for sintering also include several iron by-products and other wastes that are obtained in different processes inside the steelworks. Due to their source, the availability of such materials is not always consistent, but their total production should be consumed in the sintering process, to both save money and recycle wastes. The main scope of this paper is to obtain the least expensive iron ore blend for the sintering process, which will provide suitable chemical and mechanical features for the homogeneous and regular operation of the blast furnace. The systematic use of statistical tools was employed to analyze historical data, including linear and partial correlations applied to the data and fuzzy clustering based on the Sugeno Fuzzy Inference System to establish relationships among the available variables.
Dandel, Michael; Hetzer, Roland
2015-01-01
Even after incomplete myocardial recovery during mechanical circulatory support, long-term survival rates after ventricular assist device (VAD) explantation can be better than those expected after heart transplantation even for patients with chronic non-ischemic cardiomyopathy as the underlying cause for VAD implantation. The elective therapeutic use of ventricular assist devices for heart failure reversal in its early stage is a future goal. It may be possible to achieve it by developing tools to predict heart failure reversibility even before ventricular assist device implantation and increasing the number of weaning candidates by improvement of adjunctive therapies to optimize unloading-promoted recovery. Special attention is focused on the long-term stability of cardiac remission after VAD removal, the clinical relevance unloading-promoted myocardial recovery and on the current knowledge about a potential prediction of myocardial recovery during long-term VAD support already before VAD implantation.
Numerical Simulation and Mechanical Design for TPS Electron Beam Position Monitors
NASA Astrophysics Data System (ADS)
Hsueh, H. P.; Kuan, C. K.; Ueng, T. S.; Hsiung, G. Y.; Chen, J. R.
2007-01-01
Comprehensive study on the mechanical design and numerical simulation for the high resolution electron beam position monitors are key steps to build the newly proposed 3rd generation synchrotron radiation research facility, Taiwan Photon Source (TPS). With more advanced electromagnetic simulation tool like MAFIA tailored specifically for particle accelerator, the design for the high resolution electron beam position monitors can be tested in such environment before they are experimentally tested. The design goal of our high resolution electron beam position monitors is to get the best resolution through sensitivity and signal optimization. The definitions and differences between resolution and sensitivity of electron beam position monitors will be explained. The design consideration is also explained. Prototype deign has been carried out and the related simulations were also carried out with MAFIA. The results are presented here. Sensitivity as high as 200 in x direction has been achieved in x direction at 500 MHz.
Thermodynamical analysis of a quantum heat engine based on harmonic oscillators.
Insinga, Andrea; Andresen, Bjarne; Salamon, Peter
2016-07-01
Many models of heat engines have been studied with the tools of finite-time thermodynamics and an ensemble of independent quantum systems as the working fluid. Because of their convenient analytical properties, harmonic oscillators are the most frequently used example of a quantum system. We analyze different thermodynamical aspects with the final aim of the optimization of the performance of the engine in terms of the mechanical power provided during a finite-time Otto cycle. The heat exchange mechanism between the working fluid and the thermal reservoirs is provided by the Lindblad formalism. We describe an analytical method to find the limit cycle and give conditions for a stable limit cycle to exist. We explore the power production landscape as the duration of the four branches of the cycle are varied for short times, intermediate times, and special frictionless times. For short times we find a periodic structure with atolls of purely dissipative operation surrounding islands of divergent behavior where, rather than tending to a limit cycle, the working fluid accumulates more and more energy. For frictionless times the periodic structure is gone and we come very close to the global optimal operation. The global optimum is found and interestingly comes with a particular value of the cycle time.
Thermotaxis, circadian rhythms, and TRP channels in Drosophila
Bellemer, Andrew
2015-01-01
The fruit fly Drosophila melanogaster is a poikilothermic organism that must detect and respond to both fine and coarse changes in environmental temperature in order maintain optimal body temperature, synchronize behavior to daily temperature fluctuations, and to avoid potentially injurious environmental hazards. Members of the Transient Receptor Potential (TRP) family of cation channels are well known for their activation by changes in temperature and their essential roles in sensory transduction in both invertebrates and vertebrates. The Drosophila genome encodes 13 TRP channels, and several of these have key sensory transduction and modulatory functions in allowing larval and adult flies to make fine temperature discriminations to attain optimal body temperature, detect and avoid large environmental temperature fluctuations, and make rapid escape responses to acutely noxious stimuli. Drosophila use multiple, redundant signaling pathways and neural circuits to execute these behaviors in response to both increases and decreases in temperature of varying magnitudes and time scales. A plethora of powerful molecular and genetic tools and the fly's simple, well-characterized nervous system have given Drosophila neurobiologists a powerful platform to study the cellular and molecular mechanisms of TRP channel function and how these mechanisms are conserved in vertebrates, as well as how these channels function within sensorimotor circuits to generate both simple and complex thermosensory behaviors. PMID:27227026
Development of a Joint Hydrogen and Syngas Combustion Mechanism Based on an Optimization Approach.
Varga, Tamás; Olm, Carsten; Nagy, Tibor; Zsély, István Gy; Valkó, Éva; Pálvölgyi, Róbert; Curran, Henry J; Turányi, Tamás
2016-08-01
A comprehensive and hierarchical optimization of a joint hydrogen and syngas combustion mechanism has been carried out. The Kéromnès et al. ( Combust Flame , 2013, 160, 995-1011) mechanism for syngas combustion was updated with our recently optimized hydrogen combustion mechanism (Varga et al., Proc Combust Inst , 2015, 35, 589-596) and optimized using a comprehensive set of direct and indirect experimental data relevant to hydrogen and syngas combustion. The collection of experimental data consisted of ignition measurements in shock tubes and rapid compression machines, burning velocity measurements, and species profiles measured using shock tubes, flow reactors, and jet-stirred reactors. The experimental conditions covered wide ranges of temperatures (800-2500 K), pressures (0.5-50 bar), equivalence ratios ( ϕ = 0.3-5.0), and C/H ratios (0-3). In total, 48 Arrhenius parameters and 5 third-body collision efficiency parameters of 18 elementary reactions were optimized using these experimental data. A large number of directly measured rate coefficient values belonging to 15 of the reaction steps were also utilized. The optimization has resulted in a H 2 /CO combustion mechanism, which is applicable to a wide range of conditions. Moreover, new recommended rate parameters with their covariance matrix and temperature-dependent uncertainty ranges of the optimized rate coefficients are provided. The optimized mechanism was compared to 19 recent hydrogen and syngas combustion mechanisms and is shown to provide the best reproduction of the experimental data.
Development of a Joint Hydrogen and Syngas Combustion Mechanism Based on an Optimization Approach
Varga, Tamás; Olm, Carsten; Nagy, Tibor; Zsély, István Gy.; Valkó, Éva; Pálvölgyi, Róbert; Curran, Henry. J.
2016-01-01
ABSTRACT A comprehensive and hierarchical optimization of a joint hydrogen and syngas combustion mechanism has been carried out. The Kéromnès et al. (Combust Flame, 2013, 160, 995–1011) mechanism for syngas combustion was updated with our recently optimized hydrogen combustion mechanism (Varga et al., Proc Combust Inst, 2015, 35, 589–596) and optimized using a comprehensive set of direct and indirect experimental data relevant to hydrogen and syngas combustion. The collection of experimental data consisted of ignition measurements in shock tubes and rapid compression machines, burning velocity measurements, and species profiles measured using shock tubes, flow reactors, and jet‐stirred reactors. The experimental conditions covered wide ranges of temperatures (800–2500 K), pressures (0.5–50 bar), equivalence ratios (ϕ = 0.3–5.0), and C/H ratios (0–3). In total, 48 Arrhenius parameters and 5 third‐body collision efficiency parameters of 18 elementary reactions were optimized using these experimental data. A large number of directly measured rate coefficient values belonging to 15 of the reaction steps were also utilized. The optimization has resulted in a H2/CO combustion mechanism, which is applicable to a wide range of conditions. Moreover, new recommended rate parameters with their covariance matrix and temperature‐dependent uncertainty ranges of the optimized rate coefficients are provided. The optimized mechanism was compared to 19 recent hydrogen and syngas combustion mechanisms and is shown to provide the best reproduction of the experimental data. PMID:27840549
Towards the novel reasoning among particles in PSO by the use of RDF and SPARQL.
Fister, Iztok; Yang, Xin-She; Ljubič, Karin; Fister, Dušan; Brest, Janez; Fister, Iztok
2014-01-01
The significant development of the Internet has posed some new challenges and many new programming tools have been developed to address such challenges. Today, semantic web is a modern paradigm for representing and accessing knowledge data on the Internet. This paper tries to use the semantic tools such as resource definition framework (RDF) and RDF query language (SPARQL) for the optimization purpose. These tools are combined with particle swarm optimization (PSO) and the selection of the best solutions depends on its fitness. Instead of the local best solution, a neighborhood of solutions for each particle can be defined and used for the calculation of the new position, based on the key ideas from semantic web domain. The preliminary results by optimizing ten benchmark functions showed the promising results and thus this method should be investigated further.
Object-Oriented MDAO Tool with Aeroservoelastic Model Tuning Capability
NASA Technical Reports Server (NTRS)
Pak, Chan-gi; Li, Wesley; Lung, Shun-fat
2008-01-01
An object-oriented multi-disciplinary analysis and optimization (MDAO) tool has been developed at the NASA Dryden Flight Research Center to automate the design and analysis process and leverage existing commercial as well as in-house codes to enable true multidisciplinary optimization in the preliminary design stage of subsonic, transonic, supersonic and hypersonic aircraft. Once the structural analysis discipline is finalized and integrated completely into the MDAO process, other disciplines such as aerodynamics and flight controls will be integrated as well. Simple and efficient model tuning capabilities based on optimization problem are successfully integrated with the MDAO tool. More synchronized all phases of experimental testing (ground and flight), analytical model updating, high-fidelity simulations for model validation, and integrated design may result in reduction of uncertainties in the aeroservoelastic model and increase the flight safety.
NASA Technical Reports Server (NTRS)
Lung, Shun-fat; Pak, Chan-gi
2008-01-01
Updating the finite element model using measured data is a challenging problem in the area of structural dynamics. The model updating process requires not only satisfactory correlations between analytical and experimental results, but also the retention of dynamic properties of structures. Accurate rigid body dynamics are important for flight control system design and aeroelastic trim analysis. Minimizing the difference between analytical and experimental results is a type of optimization problem. In this research, a multidisciplinary design, analysis, and optimization (MDAO) tool is introduced to optimize the objective function and constraints such that the mass properties, the natural frequencies, and the mode shapes are matched to the target data as well as the mass matrix being orthogonalized.
NASA Technical Reports Server (NTRS)
Lung, Shun-fat; Pak, Chan-gi
2008-01-01
Updating the finite element model using measured data is a challenging problem in the area of structural dynamics. The model updating process requires not only satisfactory correlations between analytical and experimental results, but also the retention of dynamic properties of structures. Accurate rigid body dynamics are important for flight control system design and aeroelastic trim analysis. Minimizing the difference between analytical and experimental results is a type of optimization problem. In this research, a multidisciplinary design, analysis, and optimization [MDAO] tool is introduced to optimize the objective function and constraints such that the mass properties, the natural frequencies, and the mode shapes are matched to the target data as well as the mass matrix being orthogonalized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tahvili, Sahar; Österberg, Jonas; Silvestrov, Sergei
One of the most important factors in the operations of many cooperations today is to maximize profit and one important tool to that effect is the optimization of maintenance activities. Maintenance activities is at the largest level divided into two major areas, corrective maintenance (CM) and preventive maintenance (PM). When optimizing maintenance activities, by a maintenance plan or policy, we seek to find the best activities to perform at each point in time, be it PM or CM. We explore the use of stochastic simulation, genetic algorithms and other tools for solving complex maintenance planning optimization problems in terms ofmore » a suggested framework model based on discrete event simulation.« less
Systematic optimization of human pluripotent stem cells media using Design of Experiments
NASA Astrophysics Data System (ADS)
Marinho, Paulo A.; Chailangkarn, Thanathom; Muotri, Alysson R.
2015-05-01
Human pluripotent stem cells (hPSC) are used to study the early stages of human development in vitro and, increasingly due to somatic cell reprogramming, cellular and molecular mechanisms of disease. Cell culture medium is a critical factor for hPSC to maintain pluripotency and self-renewal. Numerous defined culture media have been empirically developed but never systematically optimized for culturing hPSC. We applied design of experiments (DOE), a powerful statistical tool, to improve the medium formulation for hPSC. Using pluripotency and cell growth as read-outs, we determined the optimal concentration of both basic fibroblast growth factor (bFGF) and neuregulin-1 beta 1 (NRG1β1). The resulting formulation, named iDEAL, improved the maintenance and passage of hPSC in both normal and stressful conditions, and affected trimethylated histone 3 lysine 27 (H3K27me3) epigenetic status after genetic reprogramming. It also enhances efficient hPSC plating as single cells. Altogether, iDEAL potentially allows scalable and controllable hPSC culture routine in translational research. Our DOE strategy could also be applied to hPSC differentiation protocols, which often require numerous and complex cell culture media.
Moss, Darren Michael; Marzolini, Catia; Rajoli, Rajith K R; Siccardi, Marco
2015-01-01
The pharmacokinetic properties of anti-infective drugs are a determinant part of treatment success. Pathogen replication is inhibited if adequate drug levels are achieved in target sites, whereas excessive drug concentrations linked to toxicity are to be avoided. Anti-infective distribution can be predicted by integrating in vitro drug properties and mathematical descriptions of human anatomy in physiologically based pharmacokinetic models. This method reduces the need for animal and human studies and is used increasingly in drug development and simulation of clinical scenario such as, for instance, drug-drug interactions, dose optimization, novel formulations and pharmacokinetics in special populations. We have assessed the relevance of physiologically based pharmacokinetic modeling in the anti-infective research field, giving an overview of mechanisms involved in model design and have suggested strategies for future applications of physiologically based pharmacokinetic models. Physiologically based pharmacokinetic modeling provides a powerful tool in anti-infective optimization, and there is now no doubt that both industry and regulatory bodies have recognized the importance of this technology. It should be acknowledged, however, that major challenges remain to be addressed and that information detailing disease group physiology and anti-infective pharmacodynamics is required if a personalized medicine approach is to be achieved.
A network-based approach for resistance transmission in bacterial populations.
Gehring, Ronette; Schumm, Phillip; Youssef, Mina; Scoglio, Caterina
2010-01-07
Horizontal transfer of mobile genetic elements (conjugation) is an important mechanism whereby resistance is spread through bacterial populations. The aim of our work is to develop a mathematical model that quantitatively describes this process, and to use this model to optimize antimicrobial dosage regimens to minimize resistance development. The bacterial population is conceptualized as a compartmental mathematical model to describe changes in susceptible, resistant, and transconjugant bacteria over time. This model is combined with a compartmental pharmacokinetic model to explore the effect of different plasma drug concentration profiles. An agent-based simulation tool is used to account for resistance transfer occurring when two bacteria are adjacent or in close proximity. In addition, a non-linear programming optimal control problem is introduced to minimize bacterial populations as well as the drug dose. Simulation and optimization results suggest that the rapid death of susceptible individuals in the population is pivotal in minimizing the number of transconjugants in a population. This supports the use of potent antimicrobials that rapidly kill susceptible individuals and development of dosage regimens that maintain effective antimicrobial drug concentrations for as long as needed to kill off the susceptible population. Suggestions are made for experiments to test the hypotheses generated by these simulations.
Battery Storage Evaluation Tool, version 1.x
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-10-02
The battery storage evaluation tool developed at Pacific Northwest National Laboratory is used to run a one-year simulation to evaluate the benefits of battery storage for multiple grid applications, including energy arbitrage, balancing service, capacity value, distribution system equipment deferral, and outage mitigation. This tool is based on the optimal control strategies to capture multiple services from a single energy storage device. In this control strategy, at each hour, a lookahead optimization is first formulated and solved to determine the battery base operating point. The minute-by-minute simulation is then performed to simulate the actual battery operation.
Interfacing Computer Aided Parallelization and Performance Analysis
NASA Technical Reports Server (NTRS)
Jost, Gabriele; Jin, Haoqiang; Labarta, Jesus; Gimenez, Judit; Biegel, Bryan A. (Technical Monitor)
2003-01-01
When porting sequential applications to parallel computer architectures, the program developer will typically go through several cycles of source code optimization and performance analysis. We have started a project to develop an environment where the user can jointly navigate through program structure and performance data information in order to make efficient optimization decisions. In a prototype implementation we have interfaced the CAPO computer aided parallelization tool with the Paraver performance analysis tool. We describe both tools and their interface and give an example for how the interface helps within the program development cycle of a benchmark code.
Springback effects during single point incremental forming: Optimization of the tool path
NASA Astrophysics Data System (ADS)
Giraud-Moreau, Laurence; Belchior, Jérémy; Lafon, Pascal; Lotoing, Lionel; Cherouat, Abel; Courtielle, Eric; Guines, Dominique; Maurine, Patrick
2018-05-01
Incremental sheet forming is an emerging process to manufacture sheet metal parts. This process is more flexible than conventional one and well suited for small batch production or prototyping. During the process, the sheet metal blank is clamped by a blank-holder and a small-size smooth-end hemispherical tool moves along a user-specified path to deform the sheet incrementally. Classical three-axis CNC milling machines, dedicated structure or serial robots can be used to perform the forming operation. Whatever the considered machine, large deviations between the theoretical shape and the real shape can be observed after the part unclamping. These deviations are due to both the lack of stiffness of the machine and residual stresses in the part at the end of the forming stage. In this paper, an optimization strategy of the tool path is proposed in order to minimize the elastic springback induced by residual stresses after unclamping. A finite element model of the SPIF process allowing the shape prediction of the formed part with a good accuracy is defined. This model, based on appropriated assumptions, leads to calculation times which remain compatible with an optimization procedure. The proposed optimization method is based on an iterative correction of the tool path. The efficiency of the method is shown by an improvement of the final shape.
Design, analysis, and applications of cellular contact-aided compliant mechanisms
NASA Astrophysics Data System (ADS)
Mehta, Vipul
A new class of compliant mechanisms utilizing the benefits of cellular geometry and contact are addressed in this work. The design, analysis, fabrication and testing of such structures for high-strain and high-strength applications is the focus of the present research. Cellular structures have relatively good strength-to-weight ratios. They also have a higher strain capability than solid structures. Contact during deformation reduces failure-causing bending stresses through stress relief, thereby enabling such cellular structures to be stretched more than the corresponding structures without contact. Both analytical and numerical models are developed to represent one specific mechanism. Several candidate materials are investigated for such mechanisms. Although the allowable strain of all these materials is small, the overall strain of the contact-aided cellular mechanisms is at least an order of magnitude greater than that of the constitutive material. Application of contact to different materials yields an improvement in the global strain capacity by more than 100% relative to cellular structures without contact. Experiments are conducted to validate the models, and good agreement is found. Size optimization is carried out to maximize the stress relief and the overall strain. Two main applications are considered in the present work. One application consists of a morphing aircraft skin for adaptive structures. Different material models such as linearly elastic and multi-linear elastic are examined. For linearly elastic materials, contact-induced stress-relief is advantageous and for nonlinear elastic materials, reduction of transverse deflection due to contact is useful. The proposed contact-aided skin structure is compared with a cellular skin without contact. The contact mechanism helps to increase the morphing capacity while decreasing the structural mass. Using contact-aided cellular mechanisms, the global strain capability is increased by as much as 37%. For a fixed global strain, the optimum contact-aided structure is 15% lighter than an optimum non-contact structure. Another application involves investigation of meso-scaled cellular structures. Two different materials are considered---nanoparticulate zirconia and particulate stainless steel. The lost mold rapid infiltration forming process is utilized to fabricate free standing cellular mechanisms. The analytical model is employed to address the tradeoffs between the manufacturing constraints and to design suitable contact-aided cellular mechanisms. A custom rig is developed to test these meso-scaled parts. Force displacement characteristics are experimentally obtained and compared against those found using the analytical model. Topology optimization tools are applied to the design of compliant cellular mechanisms with and without a contact mechanism. A two-step procedure is developed. For cellular structures without contact, an inverse homogenization method is employed. The compliant mechanism is optimized to yield prescribed elasticity coefficients and achieve a large effective elastic strain. To implement a contact mechanism in the second step, the continuum model of a non-contact structure is converted into a frame model. Only the non-overlapping designs are investigated exhaustively for stress relief. A differential evolution optimizer is used to maximize the stress relief. Four cell topologies are found for different effective properties corresponding to different structural requirements. For each such topology, a contact mechanism is devised that demonstrates stress relief. One such topology resulted a stress relief as high as 36%.
Open source Modeling and optimization tools for Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peles, S.
Open source modeling and optimization tools for planning The existing tools and software used for planning and analysis in California are either expensive, difficult to use, or not generally accessible to a large number of participants. These limitations restrict the availability of participants for larger scale energy and grid studies in the state. The proposed initiative would build upon federal and state investments in open source software, and create and improve open source tools for use in the state planning and analysis activities. Computational analysis and simulation frameworks in development at national labs and universities can be brought forward tomore » complement existing tools. An open source platform would provide a path for novel techniques and strategies to be brought into the larger community and reviewed by a broad set of stakeholders.« less
Microgrid Analysis Tools Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jimenez, Antonio; Haase, Scott G; Mathur, Shivani
2018-03-05
The over-arching goal of the Alaska Microgrid Partnership is to reduce the use of total imported fuel into communities to secure all energy services by at least 50% in Alaska's remote microgrids without increasing system life cycle costs while also improving overall system reliability, security, and resilience. One goal of the Alaska Microgrid Partnership is to investigate whether a combination of energy efficiency and high-contribution (from renewable energy) power systems can reduce total imported energy usage by 50% while reducing life cycle costs and improving reliability and resiliency. This presentation provides an overview of the following four renewable energy optimizationmore » tools. Information is from respective tool websites, tool developers, and author experience. Distributed Energy Resources Customer Adoption Model (DER-CAM) Microgrid Design Toolkit (MDT) Renewable Energy Optimization (REopt) Tool Hybrid Optimization Model for Electric Renewables (HOMER).« less
NASA Astrophysics Data System (ADS)
Hassan, Rania A.
In the design of complex large-scale spacecraft systems that involve a large number of components and subsystems, many specialized state-of-the-art design tools are employed to optimize the performance of various subsystems. However, there is no structured system-level concept-architecting process. Currently, spacecraft design is heavily based on the heritage of the industry. Old spacecraft designs are modified to adapt to new mission requirements, and feasible solutions---rather than optimal ones---are often all that is achieved. During the conceptual phase of the design, the choices available to designers are predominantly discrete variables describing major subsystems' technology options and redundancy levels. The complexity of spacecraft configurations makes the number of the system design variables that need to be traded off in an optimization process prohibitive when manual techniques are used. Such a discrete problem is well suited for solution with a Genetic Algorithm, which is a global search technique that performs optimization-like tasks. This research presents a systems engineering framework that places design requirements at the core of the design activities and transforms the design paradigm for spacecraft systems to a top-down approach rather than the current bottom-up approach. To facilitate decision-making in the early phases of the design process, the population-based search nature of the Genetic Algorithm is exploited to provide computationally inexpensive---compared to the state-of-the-practice---tools for both multi-objective design optimization and design optimization under uncertainty. In terms of computational cost, those tools are nearly on the same order of magnitude as that of standard single-objective deterministic Genetic Algorithm. The use of a multi-objective design approach provides system designers with a clear tradeoff optimization surface that allows them to understand the effect of their decisions on all the design objectives under consideration simultaneously. Incorporating uncertainties avoids large safety margins and unnecessary high redundancy levels. The focus on low computational cost for the optimization tools stems from the objective that improving the design of complex systems should not be achieved at the expense of a costly design methodology.
A reliable algorithm for optimal control synthesis
NASA Technical Reports Server (NTRS)
Vansteenwyk, Brett; Ly, Uy-Loi
1992-01-01
In recent years, powerful design tools for linear time-invariant multivariable control systems have been developed based on direct parameter optimization. In this report, an algorithm for reliable optimal control synthesis using parameter optimization is presented. Specifically, a robust numerical algorithm is developed for the evaluation of the H(sup 2)-like cost functional and its gradients with respect to the controller design parameters. The method is specifically designed to handle defective degenerate systems and is based on the well-known Pade series approximation of the matrix exponential. Numerical test problems in control synthesis for simple mechanical systems and for a flexible structure with densely packed modes illustrate positively the reliability of this method when compared to a method based on diagonalization. Several types of cost functions have been considered: a cost function for robust control consisting of a linear combination of quadratic objectives for deterministic and random disturbances, and one representing an upper bound on the quadratic objective for worst case initial conditions. Finally, a framework for multivariable control synthesis has been developed combining the concept of closed-loop transfer recovery with numerical parameter optimization. The procedure enables designers to synthesize not only observer-based controllers but also controllers of arbitrary order and structure. Numerical design solutions rely heavily on the robust algorithm due to the high order of the synthesis model and the presence of near-overlapping modes. The design approach is successfully applied to the design of a high-bandwidth control system for a rotorcraft.
Li, Sheng; Yao, Xinhua; Fu, Jianzhong
2014-07-16
Thermoelectric energy harvesting is emerging as a promising alternative energy source to drive wireless sensors in mechanical systems. Typically, the waste heat from spindle units in machine tools creates potential for thermoelectric generation. However, the problem of low and fluctuant ambient temperature differences in spindle units limits the application of thermoelectric generation to drive a wireless sensor. This study is devoted to presenting a transformer-based power management system and its associated control strategy to make the wireless sensor work stably at different speeds of the spindle. The charging/discharging time of capacitors is optimized through this energy-harvesting strategy. A rotating spindle platform is set up to test the performance of the power management system at different speeds. The experimental results show that a longer sampling cycle time will increase the stability of the wireless sensor. The experiments also prove that utilizing the optimal time can make the power management system work more effectively compared with other systems using the same sample cycle.
Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD)
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
2000-01-01
This paper presents a multidisciplinary shape parameterization approach. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft object animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in the same manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminate plate structures) and high-fidelity (e.g., nonlinear computational fluid dynamics and detailed finite element modeling) analysis tools. This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, camber, and free-form surface. Results are presented for a multidisciplinary application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, and a simple performance module.
Uniform, optimal signal processing of mapped deep-sequencing data.
Kumar, Vibhor; Muratani, Masafumi; Rayan, Nirmala Arul; Kraus, Petra; Lufkin, Thomas; Ng, Huck Hui; Prabhakar, Shyam
2013-07-01
Despite their apparent diversity, many problems in the analysis of high-throughput sequencing data are merely special cases of two general problems, signal detection and signal estimation. Here we adapt formally optimal solutions from signal processing theory to analyze signals of DNA sequence reads mapped to a genome. We describe DFilter, a detection algorithm that identifies regulatory features in ChIP-seq, DNase-seq and FAIRE-seq data more accurately than assay-specific algorithms. We also describe EFilter, an estimation algorithm that accurately predicts mRNA levels from as few as 1-2 histone profiles (R ∼0.9). Notably, the presence of regulatory motifs in promoters correlates more with histone modifications than with mRNA levels, suggesting that histone profiles are more predictive of cis-regulatory mechanisms. We show by applying DFilter and EFilter to embryonic forebrain ChIP-seq data that regulatory protein identification and functional annotation are feasible despite tissue heterogeneity. The mathematical formalism underlying our tools facilitates integrative analysis of data from virtually any sequencing-based functional profile.
Li, Sheng; Yao, Xinhua; Fu, Jianzhong
2014-01-01
Thermoelectric energy harvesting is emerging as a promising alternative energy source to drive wireless sensors in mechanical systems. Typically, the waste heat from spindle units in machine tools creates potential for thermoelectric generation. However, the problem of low and fluctuant ambient temperature differences in spindle units limits the application of thermoelectric generation to drive a wireless sensor. This study is devoted to presenting a transformer-based power management system and its associated control strategy to make the wireless sensor work stably at different speeds of the spindle. The charging/discharging time of capacitors is optimized through this energy-harvesting strategy. A rotating spindle platform is set up to test the performance of the power management system at different speeds. The experimental results show that a longer sampling cycle time will increase the stability of the wireless sensor. The experiments also prove that utilizing the optimal time can make the power management system work more effectively compared with other systems using the same sample cycle. PMID:25033189
Shah, Nirmal; Seth, Avinashkumar; Balaraman, R; Sailor, Girish; Javia, Ankur; Gohil, Dipti
2018-04-01
The objective of this work was to utilize a potential of microemulsion for the improvement in oral bioavailability of raloxifene hydrochloride, a BCS class-II drug with 2% bioavailability. Drug-loaded microemulsion was prepared by water titration method using Capmul MCM C8, Tween 20, and Polyethylene glycol 400 as oil, surfactant, and co-surfactant respectively. The pseudo-ternary phase diagram was constructed between oil and surfactants mixture to obtain appropriate components and their concentration ranges that result in large existence area of microemulsion. D-optimal mixture design was utilized as a statistical tool for optimization of microemulsion considering oil, S mix , and water as independent variables with percentage transmittance and globule size as dependent variables. The optimized formulation showed 100 ± 0.1% transmittance and 17.85 ± 2.78 nm globule size which was identically equal with the predicted values of dependent variables given by the design expert software. The optimized microemulsion showed pronounced enhancement in release rate compared to plain drug suspension following diffusion controlled release mechanism by the Higuchi model. The formulation showed zeta potential of value -5.88 ± 1.14 mV that imparts good stability to drug loaded microemulsion dispersion. Surface morphology study with transmission electron microscope showed discrete spherical nano sized globules with smooth surface. In-vivo pharmacokinetic study of optimized microemulsion formulation in Wistar rats showed 4.29-fold enhancements in bioavailability. Stability study showed adequate results for various parameters checked up to six months. These results reveal the potential of microemulsion for significant improvement in oral bioavailability of poorly soluble raloxifene hydrochloride.
NASA Astrophysics Data System (ADS)
Perez, Santiago; Karakus, Murat; Pellet, Frederic
2017-05-01
The great success and widespread use of impregnated diamond (ID) bits are due to their self-sharpening mechanism, which consists of a constant renewal of diamonds acting at the cutting face as the bit wears out. It is therefore important to keep this mechanism acting throughout the lifespan of the bit. Nonetheless, such a mechanism can be altered by the blunting of the bit that ultimately leads to a less than optimal drilling performance. For this reason, this paper aims at investigating the applicability of artificial intelligence-based techniques in order to monitor tool condition of ID bits, i.e. sharp or blunt, under laboratory conditions. Accordingly, topologically invariant tests are carried out with sharp and blunt bits conditions while recording acoustic emissions (AE) and measuring-while-drilling variables. The combined output of acoustic emission root-mean-square value (AErms), depth of cut ( d), torque (tob) and weight-on-bit (wob) is then utilized to create two approaches in order to predict the wear state condition of the bits. One approach is based on the combination of the aforementioned variables and another on the specific energy of drilling. The two different approaches are assessed for classification performance with various pattern recognition algorithms, such as simple trees, support vector machines, k-nearest neighbour, boosted trees and artificial neural networks. In general, Acceptable pattern recognition rates were obtained, although the subset composed by AErms and tob excels due to the high classification performances rates and fewer input variables.
Marsch, Lisa A; Dallery, Jesse
2012-06-01
The clinical community has a growing array of psychosocial interventions with a strong evidence base available for the treatment of SUDs. Considerable opportunity exists for leveraging technology in the delivery of evidence-based interventions to promote widespread reach and impact of evidence-based care. Data from this line of research to date are promising, and underscore the potential public health impact of technology-based therapeutic tools. To fully realize the potential of technology-delivered interventions, several areas of inquiry remain important. First, scientifically sound strategies should be explored to ensure technology-based interventions are optimally designed to produce maximal behavior change. Second, efficient and effective methods should be identified to integrate technology-based interventions into systems of care in a manner that is most responsive to the needs of individual users. Third, payment, privacy, and regulatory systems should be refined and extended to go beyond electronic medical records and telehealth/distance care models, and support the deployment of technology-based systems to enhance the quality, efficiency and cost-effectiveness of care. Fourth, the mechanisms underlying behavior change derived from technology-based treatments should be explicated, including new mechanisms that may be tapped via novel, technology-based tools. Such work will be critical in isolating mechanisms that are useful in predicting treatment response, and in ensuring that key ingredients are present in technology-based interventions as they are made widely available.
Denis, I; Potier, B; Vancassel, S; Heberden, C; Lavialle, M
2013-03-01
The increasing life expectancy in the populations of rich countries raises the pressing question of how the elderly can maintain their cognitive function. Cognitive decline is characterised by the loss of short-term memory due to a progressive impairment of the underlying brain cell processes. Age-related brain damage has many causes, some of which may be influenced by diet. An optimal diet may therefore be a practical way of delaying the onset of age-related cognitive decline. Nutritional investigations indicate that the ω-3 poyunsaturated fatty acid (PUFA) content of western diets is too low to provide the brain with an optimal supply of docosahexaenoic acid (DHA), the main ω-3 PUFA in cell membranes. Insufficient brain DHA has been associated with memory impairment, emotional disturbances and altered brain processes in rodents. Human studies suggest that an adequate dietary intake of ω-3 PUFA can slow the age-related cognitive decline and may also protect against the risk of senile dementia. However, despite the many studies in this domain, the beneficial impact of ω-3 PUFA on brain function has only recently been linked to specific mechanisms. This review examines the hypothesis that an optimal brain DHA status, conferred by an adequate ω-3 PUFA intake, limits age-related brain damage by optimizing endogenous brain repair mechanisms. Our analysis of the abundant literature indicates that an adequate amount of DHA in the brain may limit the impact of stress, an important age-aggravating factor, and influences the neuronal and astroglial functions that govern and protect synaptic transmission. This transmission, particularly glutamatergic neurotransmission in the hippocampus, underlies memory formation. The brain DHA status also influences neurogenesis, nested in the hippocampus, which helps maintain cognitive function throughout life. Although there are still gaps in our knowledge of the way ω-3 PUFA act, the mechanistic studies reviewed here indicate that ω-3 PUFA may be a promising tool for preventing age-related brain deterioration. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Di; Jin, Chunlian; Balducci, Patrick J.
2013-12-01
This volume presents the battery storage evaluation tool developed at Pacific Northwest National Laboratory (PNNL), which is used to evaluate benefits of battery storage for multiple grid applications, including energy arbitrage, balancing service, capacity value, distribution system equipment deferral, and outage mitigation. This tool is based on the optimal control strategies to capture multiple services from a single energy storage device. In this control strategy, at each hour, a look-ahead optimization is first formulated and solved to determine battery base operating point. The minute by minute simulation is then performed to simulate the actual battery operation. This volume provide backgroundmore » and manual for this evaluation tool.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gebraad, Pieter; Thomas, Jared J.; Ning, Andrew
This paper presents a wind plant modeling and optimization tool that enables the maximization of wind plant annual energy production (AEP) using yaw-based wake steering control and layout changes. The tool is an extension of a wake engineering model describing the steady-state effects of yaw on wake velocity profiles and power productions of wind turbines in a wind plant. To make predictions of a wind plant's AEP, necessary extensions of the original wake model include coupling it with a detailed rotor model and a control policy for turbine blade pitch and rotor speed. This enables the prediction of power productionmore » with wake effects throughout a range of wind speeds. We use the tool to perform an example optimization study on a wind plant based on the Princess Amalia Wind Park. In this case study, combined optimization of layout and wake steering control increases AEP by 5%. The power gains from wake steering control are highest for region 1.5 inflow wind speeds, and they continue to be present to some extent for the above-rated inflow wind speeds. The results show that layout optimization and wake steering are complementary because significant AEP improvements can be achieved with wake steering in a wind plant layout that is already optimized to reduce wake losses.« less
Aeroelastic Optimization Study Based on the X-56A Model
NASA Technical Reports Server (NTRS)
Li, Wesley W.; Pak, Chan-Gi
2014-01-01
One way to increase the aircraft fuel efficiency is to reduce structural weight while maintaining adequate structural airworthiness, both statically and aeroelastically. A design process which incorporates the object-oriented multidisciplinary design, analysis, and optimization (MDAO) tool and the aeroelastic effects of high fidelity finite element models to characterize the design space was successfully developed and established. This paper presents two multidisciplinary design optimization studies using an object-oriented MDAO tool developed at NASA Armstrong Flight Research Center. The first study demonstrates the use of aeroelastic tailoring concepts to minimize the structural weight while meeting the design requirements including strength, buckling, and flutter. Such an approach exploits the anisotropic capabilities of the fiber composite materials chosen for this analytical exercise with ply stacking sequence. A hybrid and discretization optimization approach improves accuracy and computational efficiency of a global optimization algorithm. The second study presents a flutter mass balancing optimization study for the fabricated flexible wing of the X-56A model since a desired flutter speed band is required for the active flutter suppression demonstration during flight testing. The results of the second study provide guidance to modify the wing design and move the design flutter speeds back into the flight envelope so that the original objective of X-56A flight test can be accomplished successfully. The second case also demonstrates that the object-oriented MDAO tool can handle multiple analytical configurations in a single optimization run.
Operative rigid bronchoscopy: indications, basic techniques and results.
Petrella, Francesco; Borri, Alessandro; Casiraghi, Monica; Cavaliere, Sergio; Donghi, Stefano; Galetta, Domenico; Gasparri, Roberto; Guarize, Juliana; Pardolesi, Alessandro; Solli, Piergiorgio; Tessitore, Adele; Venturino, Marco; Veronesi, Giulia; Spaggiari, Lorenzo
2014-05-27
Palliative airway treatments are essential to improve quality and length of life in lung cancer patients with central airway obstruction. Rigid bronchoscopy has proved to be an excellent tool to provide airway access and control in this cohort of patients. The main indication for rigid bronchoscopy in adult bronchology remains central airway obstruction due to neoplastic or non-neoplastic disease. We routinely use negative pressure ventilation (NPV) under general anaesthesia to prevent intraoperative apnoea and respiratory acidosis. This procedure allows opioid sparing, a shorter recovery time and avoids manually assisted ventilation, thereby reducing the amount of oxygen needed, while maintaining optimal surgical conditions. The major indication for NPV rigid bronchoscopy at our institution has been airway obstruction by neoplastic tracheobronchial tissue, mainly treated by laser-assisted mechanical dissection. When strictly necessary, we use silicone stents for neoplastic or cicatricial strictures, reserving metal stents to cover tracheo-oesophageal fistulae. NPV rigid bronchoscopy is an excellent tool for the endoscopic treatment of locally advanced tumours of the lung, especially when patients have exhausted the conventional therapeutic resources. Laser-assisted mechanical resection and stent placement are the most effective procedures for preserving quality of life in patients with advanced stage cancer. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-thoracic Surgery. All rights reserved.
Ovarian control and monitoring in amphibians.
Calatayud, N E; Stoops, M; Durrant, B S
2018-03-15
Amphibian evolution spans over 350 million years, consequently this taxonomic group displays a wide, complex array of physiological adaptations and their diverse modes of reproduction are a prime example. Reproduction can be affected by taxonomy, geographic and altitudinal distribution, and environmental factors. With some exceptions, amphibians can be categorized into discontinuous (strictly seasonal) and continuous breeders. Temperature and its close association with other proximate and genetic factors control reproduction via a tight relationship with circadian rhythms which drive genetic and hormonal responses to the environment. In recent times, the relationship of proximate factors and reproduction has directly or indirectly lead to the decline of this taxonomic group. Conservationists are tackling the rapid loss of species through a wide range of approaches including captive rescue. However, there is still much to be learned about the mechanisms of reproductive control and its requirements in order to fabricate species-appropriate captive environments that address a variety of reproductive strategies. As with other taxonomic groups, assisted reproductive technologies and other reproductive monitoring tools such as ultrasound, hormone analysis and body condition indices can assist conservationists in optimizing captive husbandry and breeding. In this review we discuss some of the mechanisms of ovarian control and the different tools being used to monitor female reproduction. Copyright © 2018 Elsevier Inc. All rights reserved.
Muscle synergy space: learning model to create an optimal muscle synergy
Alnajjar, Fady; Wojtara, Tytus; Kimura, Hidenori; Shimoda, Shingo
2013-01-01
Muscle redundancy allows the central nervous system (CNS) to choose a suitable combination of muscles from a number of options. This flexibility in muscle combinations allows for efficient behaviors to be generated in daily life. The computational mechanism of choosing muscle combinations, however, remains a long-standing challenge. One effective method of choosing muscle combinations is to create a set containing the muscle combinations of only efficient behaviors, and then to choose combinations from that set. The notion of muscle synergy, which was introduced to divide muscle activations into a lower-dimensional synergy space and time-dependent variables, is a suitable tool relevant to the discussion of this issue. The synergy space defines the suitable combinations of muscles, and time-dependent variables vary in lower-dimensional space to control behaviors. In this study, we investigated the mechanism the CNS may use to define the appropriate region and size of the synergy space when performing skilled behavior. Two indices were introduced in this study, one is the synergy stability index (SSI) that indicates the region of the synergy space, the other is the synergy coordination index (SCI) that indicates the size of the synergy space. The results on automatic posture response experiments show that SSI and SCI are positively correlated with the balance skill of the participants, and they are tunable by behavior training. These results suggest that the CNS has the ability to create optimal sets of efficient behaviors by optimizing the size of the synergy space at the appropriate region through interacting with the environment. PMID:24133444
A Kind of Optimization Method of Loading Documents in OpenOffice.org
NASA Astrophysics Data System (ADS)
Lan, Yuqing; Li, Li; Zhou, Wenbin
As a giant in open source community, OpenOffice.org has become the most popular office suite within Linux community. But OpenOffice.org is relatively slow while loading documents. Research shows that the most time consuming part is importing one page of whole document. If there are many pages in a document, the accumulation of time consumed can be astonishing. Therefore, this paper proposes a solution, which has improved the speed of loading documents through asynchronous importing mechanism: a document is not imported as a whole, but only part of the document is imported at first for display, then mechanism in the background is started to asynchronously import the remaining parts, and insert it into the drawing queue of OpenOffice.org for display. In this way, the problem can be solved and users don't have to wait for a long time. Application start-up time testing tool has been used to test the time consumed in loading different pages of documents before and after optimization of OpenOffice.org, then, we adopt the regression theory to analyse the correlation between the page number of documents and the loading time. In addition, visual modeling of the experimental data are acquired with the aid of matlab. An obvious increase in loading speed can be seen after a comparison of the time consumed to load a document before and after the solution is adopted. And then, using Microsoft Office compared with the optimized OpenOffice.org, their loading speeds are almost same. The results of the experiments show the effectiveness of this solution.
-device simulation tool for organic photovoltaics research. Current research focuses are (1) optimization optimization in organic photovoltaics. Dr. Graf graduated Phi Beta Kappa, with distinction, from Stanford
The In-Space Propulsion Technology Project Low-Thrust Trajectory Tool Suite
NASA Technical Reports Server (NTRS)
Dankanich, John W.
2008-01-01
The ISPT project released its low-thrust trajectory tool suite in March of 2006. The LTTT suite tools range in capabilities, but represent the state-of-the art in NASA low-thrust trajectory optimization tools. The tools have all received considerable updates following the initial release, and they are available through their respective development centers or the ISPT project website.
NASA Technical Reports Server (NTRS)
Renaud, John E.; Batill, Stephen M.; Brockman, Jay B.
1999-01-01
This research effort is a joint program between the Departments of Aerospace and Mechanical Engineering and the Computer Science and Engineering Department at the University of Notre Dame. The purpose of the project was to develop a framework and systematic methodology to facilitate the application of Multidisciplinary Design Optimization (MDO) to a diverse class of system design problems. For all practical aerospace systems, the design of a systems is a complex sequence of events which integrates the activities of a variety of discipline "experts" and their associated "tools". The development, archiving and exchange of information between these individual experts is central to the design task and it is this information which provides the basis for these experts to make coordinated design decisions (i.e., compromises and trade-offs) - resulting in the final product design. Grant efforts focused on developing and evaluating frameworks for effective design coordination within a MDO environment. Central to these research efforts was the concept that the individual discipline "expert", using the most appropriate "tools" available and the most complete description of the system should be empowered to have the greatest impact on the design decisions and final design. This means that the overall process must be highly interactive and efficiently conducted if the resulting design is to be developed in a manner consistent with cost and time requirements. The methods developed as part of this research effort include; extensions to a sensitivity based Concurrent Subspace Optimization (CSSO) NMO algorithm; the development of a neural network response surface based CSSO-MDO algorithm; and the integration of distributed computing and process scheduling into the MDO environment. This report overviews research efforts in each of these focus. A complete bibliography of research produced with support of this grant is attached.
Wen, Ping-Ping; Shi, Shao-Ping; Xu, Hao-Dong; Wang, Li-Na; Qiu, Jian-Ding
2016-10-15
As one of the most important reversible types of post-translational modification, protein methylation catalyzed by methyltransferases carries many pivotal biological functions as well as many essential biological processes. Identification of methylation sites is prerequisite for decoding methylation regulatory networks in living cells and understanding their physiological roles. Experimental methods are limitations of labor-intensive and time-consuming. While in silicon approaches are cost-effective and high-throughput manner to predict potential methylation sites, but those previous predictors only have a mixed model and their prediction performances are not fully satisfactory now. Recently, with increasing availability of quantitative methylation datasets in diverse species (especially in eukaryotes), there is a growing need to develop a species-specific predictor. Here, we designed a tool named PSSMe based on information gain (IG) feature optimization method for species-specific methylation site prediction. The IG method was adopted to analyze the importance and contribution of each feature, then select the valuable dimension feature vectors to reconstitute a new orderly feature, which was applied to build the finally prediction model. Finally, our method improves prediction performance of accuracy about 15% comparing with single features. Furthermore, our species-specific model significantly improves the predictive performance compare with other general methylation prediction tools. Hence, our prediction results serve as useful resources to elucidate the mechanism of arginine or lysine methylation and facilitate hypothesis-driven experimental design and validation. The tool online service is implemented by C# language and freely available at http://bioinfo.ncu.edu.cn/PSSMe.aspx CONTACT: jdqiu@ncu.edu.cnSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Hutton, Brian; Burry, Lisa D; Kanji, Salmaan; Mehta, Sangeeta; Guenette, Melanie; Martin, Claudio M; Fergusson, Dean A; Adhikari, Neill K; Egerod, Ingrid; Williamson, David; Straus, Sharon; Moher, David; Ely, E Wesley; Rose, Louise
2016-09-20
Sedatives and analgesics are administered to provide sedation and manage agitation and pain in most critically ill mechanically ventilated patients. Various sedation administration strategies including protocolized sedation and daily sedation interruption are used to mitigate drug pharmacokinetic limitations and minimize oversedation, thereby shortening the duration of mechanical ventilation. At present, it is unclear which strategy is most effective, as few have been directly compared. Our review will use network meta-analysis (NMA) to compare and rank sedation strategies to determine their efficacy and safety for mechanically ventilated patients. We will search the following from 1980 to March 2016: Ovid MEDLINE, CINAHL, Embase, PsycINFO, and Web of Science. We will also search the Cochrane Library, gray literature, and the International Clinical Trials Registry Platform. We will use a validated randomized control trial search filter to identify studies evaluating any strategy to optimize sedation in mechanically ventilated adult patients. Authors will independently extract data from eligible studies in duplicate and complete the Cochrane Risk of Bias tool. Our outcomes of interest include duration of mechanical ventilation, time to first extubation, ICU and hospital length of stay, re-intubation, tracheostomy, mortality, total sedative and opioid exposure, health-related quality of life, and adverse events. To inform our NMA, we will first conduct conventional pair-wise meta-analyses using random-effects models. Where appropriate, we will perform Bayesian NMA using WinBUGS software. There are multiple strategies to optimize sedation for mechanically ventilated patients. Current ICU guidelines recommend protocolized sedation or daily sedation interruption. Our systematic review incorporating NMA will provide a unified analysis of all sedation strategies to determine the relative efficacy and safety of interventions that may not have been compared directly. We will provide knowledge users, decision makers, and professional societies with ranking of multiple sedation strategies to inform future sedation guidelines. PROSPERO CRD42016037480.
area, which includes work on whole building energy modeling, cost-based optimization, model accuracy optimization tool used to provide support for the Building America program's teams and energy efficiency goals Colorado graduate student exploring enhancements to building optimization in terms of robustness and speed
CATO: a CAD tool for intelligent design of optical networks and interconnects
NASA Astrophysics Data System (ADS)
Chlamtac, Imrich; Ciesielski, Maciej; Fumagalli, Andrea F.; Ruszczyk, Chester; Wedzinga, Gosse
1997-10-01
Increasing communication speed requirements have created a great interest in very high speed optical and all-optical networks and interconnects. The design of these optical systems is a highly complex task, requiring the simultaneous optimization of various parts of the system, ranging from optical components' characteristics to access protocol techniques. Currently there are no computer aided design (CAD) tools on the market to support the interrelated design of all parts of optical communication systems, thus the designer has to rely on costly and time consuming testbed evaluations. The objective of the CATO (CAD tool for optical networks and interconnects) project is to develop a prototype of an intelligent CAD tool for the specification, design, simulation and optimization of optical communication networks. CATO allows the user to build an abstract, possible incomplete, model of the system, and determine its expected performance. Based on design constraints provided by the user, CATO will automatically complete an optimum design, using mathematical programming techniques, intelligent search methods and artificial intelligence (AI). Initial design and testing of a CATO prototype (CATO-1) has been completed recently. The objective was to prove the feasibility of combining AI techniques, simulation techniques, an optical device library and a graphical user interface into a flexible CAD tool for obtaining optimal communication network designs in terms of system cost and performance. CATO-1 is an experimental tool for designing packet-switching wavelength division multiplexing all-optical communication systems using a LAN/MAN ring topology as the underlying network. The two specific AI algorithms incorporated are simulated annealing and a genetic algorithm. CATO-1 finds the optimal number of transceivers for each network node, using an objective function that includes the cost of the devices and the overall system performance.