Science.gov

Sample records for mechanisms underlying effects

  1. Mechanisms underlying the hepatotoxic effects of ecstasy.

    PubMed

    Carvalho, Márcia; Pontes, Helena; Remião, Fernando; Bastos, Maria L; Carvalho, Félix

    2010-08-01

    3,4-Methylenedioxymethamphetamine (MDMA or ecstasy) is a worldwide illegally used amphetamine-derived designer drug known to be hepatotoxic to humans. Jaundice, hepatomegaly, centrilobular necrosis, hepatitis and fibrosis represent some of the adverse effects caused by MDMA in the liver. Although there is irrefutable evidence of MDMA-induced hepatocellular damage, the mechanisms responsible for that toxicity remain to be thoroughly clarified. One well thought-of mechanism imply MDMA metabolism in the liver into reactive metabolites as responsible for the MDMA-elicited hepatotoxicity. However, other factors, including MDMA-induced hyperthermia, the increase in neurotransmitters efflux, the oxidation of biogenic amines, polydrug abuse pattern, and environmental features accompanying illicit MDMA use, may increase the risk for liver complications. Liver damage patterns of MDMA in animals and humans and current research on the mechanisms underlying the hepatotoxic effects of MDMA will be highlighted in this review.

  2. Possible Mechanisms Underlying the Therapeutic Effects of Transcranial Magnetic Stimulation

    PubMed Central

    Chervyakov, Alexander V.; Chernyavsky, Andrey Yu.; Sinitsyn, Dmitry O.; Piradov, Michael A.

    2015-01-01

    Transcranial magnetic stimulation (TMS) is an effective method used to diagnose and treat many neurological disorders. Although repetitive TMS (rTMS) has been used to treat a variety of serious pathological conditions including stroke, depression, Parkinson’s disease, epilepsy, pain, and migraines, the pathophysiological mechanisms underlying the effects of long-term TMS remain unclear. In the present review, the effects of rTMS on neurotransmitters and synaptic plasticity are described, including the classic interpretations of TMS effects on synaptic plasticity via long-term potentiation and long-term depression. We also discuss the effects of rTMS on the genetic apparatus of neurons, glial cells, and the prevention of neuronal death. The neurotrophic effects of rTMS on dendritic growth and sprouting and neurotrophic factors are described, including change in brain-derived neurotrophic factor concentration under the influence of rTMS. Also, non-classical effects of TMS related to biophysical effects of magnetic fields are described, including the quantum effects, the magnetic spin effects, genetic magnetoreception, the macromolecular effects of TMS, and the electromagnetic theory of consciousness. Finally, we discuss possible interpretations of TMS effects according to dynamical systems theory. Evidence suggests that a rTMS-induced magnetic field should be considered a separate physical factor that can be impactful at the subatomic level and that rTMS is capable of significantly altering the reactivity of molecules (radicals). It is thought that these factors underlie the therapeutic benefits of therapy with TMS. Future research on these mechanisms will be instrumental to the development of more powerful and reliable TMS treatment protocols. PMID:26136672

  3. Age differences in the underlying mechanisms of stereotype threat effects.

    PubMed

    Popham, Lauren E; Hess, Thomas M

    2015-03-01

    The goals of the present study were to (a) examine whether age differences exist in the mechanisms underlying stereotype threat effects on cognitive performance and (b) examine whether emotion regulation abilities may buffer against threat effects on performance. Older and younger adults were exposed to positive or negative age-relevant stereotypes, allowing us to examine the impact of threat on regulatory focus and working memory. Self-reported emotion regulation measures were completed prior to the session. Older adults' performance under threat suggested a prevention-focused approach to the task, indexed by increased accuracy and reduced speed. The same pattern was observed in younger adults, but the effects were not as strong. Age differences emerged when examining the availability of working memory resources under threat, with young adults showing decrements, whereas older adults did not. Emotion regulation abilities moderated threat effects in young adults but not in older adults. The results provide support for the notion that stereotype threat may lead to underperformance through somewhat different pathways in older and younger adults. Future research should further examine whether the underlying reason for this age difference is rooted in age-related improvements in emotion regulation. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Age Differences in the Underlying Mechanisms of Stereotype Threat Effects

    PubMed Central

    Hess, Thomas M.

    2015-01-01

    Objectives. The goals of the present study were to (a) examine whether age differences exist in the mechanisms underlying stereotype threat effects on cognitive performance and (b) examine whether emotion regulation abilities may buffer against threat effects on performance. Method. Older and younger adults were exposed to positive or negative age-relevant stereotypes, allowing us to examine the impact of threat on regulatory focus and working memory. Self-reported emotion regulation measures were completed prior to the session. Results. Older adults’ performance under threat suggested a prevention-focused approach to the task, indexed by increased accuracy and reduced speed. The same pattern was observed in younger adults, but the effects were not as strong. Age differences emerged when examining the availability of working memory resources under threat, with young adults showing decrements, whereas older adults did not. Emotion regulation abilities moderated threat effects in young adults but not in older adults. Conclusions. The results provide support for the notion that stereotype threat may lead to underperformance through somewhat different pathways in older and younger adults. Future research should further examine whether the underlying reason for this age difference is rooted in age-related improvements in emotion regulation. PMID:24077743

  5. Effects of manual hyperinflation in preterm newborns under mechanical ventilation

    PubMed Central

    Viana, Camila Chaves; Nicolau, Carla Marques; Juliani, Regina Celia Turola Passos; de Carvalho, Werther Brunow; Krebs, Vera Lucia Jornada

    2016-01-01

    Objective To assess the effects of manual hyperinflation, performed with a manual resuscitator with and without the positive end-expiratory pressure valve, on the respiratory function of preterm newborns under mechanical ventilation. Methods Cross-sectional study of hemodynamically stable preterm newborns with gestational age of less than 32 weeks, under mechanical ventilation and dependent on it at 28 days of life. Manual hyperinflation was applied randomly, alternating the use or not of the positive end-expiratory pressure valve, followed by tracheal aspiration for ending the maneuver. For nominal data, the two-tailed Wilcoxon test was applied at the 5% significance level and 80% power. Results Twenty-eight preterm newborns, with an average birth weight of 1,005.71 ± 372.16g, an average gestational age of 28.90 ± 1.79 weeks, an average corrected age of 33.26 ± 1.78 weeks, and an average mechanical ventilation time of 29.5 (15 - 53) days, were studied. Increases in inspiratory and expiratory volumes occurred between time-points A5 (before the maneuver) and C1 (immediately after tracheal aspiration) in both the maneuver with the valve (p = 0.001 and p = 0.009) and without the valve (p = 0.026 and p = 0.001), respectively. There was also an increase in expiratory resistance between time-points A5 and C1 (p = 0.044). Conclusion Lung volumes increased when performing the maneuver with and without the valve, with a significant difference in the first minute after aspiration. There was a significant difference in expiratory resistance between the time-points A5 (before the maneuver) and C1 (immediately after tracheal aspiration) in the first minute after aspiration within each maneuver. PMID:27737427

  6. Mechanisms underlying the antihypertensive effects of garlic bioactives.

    PubMed

    Shouk, Reem; Abdou, Aya; Shetty, Kalidas; Sarkar, Dipayan; Eid, Ali H

    2014-02-01

    Cardiovascular disease remains the leading cause of death worldwide with hypertension being a major contributing factor to cardiovascular disease-associated mortality. On a population level, non-pharmacological approaches, such as alternative/complementary medicine, including phytochemicals, have the potential to ameliorate cardiovascular risk factors, including high blood pressure. Several epidemiological studies suggest an antihypertensive effect of garlic (Allium sativum) and of many its bioactive components. The aim of this review is to present an in-depth discussion regarding the molecular, biochemical and cellular rationale underlying the antihypertensive properties of garlic and its bioactive constituents with a primary focus on S-allyl cysteine and allicin. Key studies, largely from PubMed, were selected and screened to develop a comprehensive understanding of the specific role of garlic and its bioactive constituents in the management of hypertension. We also reviewed recent advances focusing on the role of garlic bioactives, S-allyl cysteine and allicin, in modulating various parameters implicated in the pathogenesis of hypertension. These parameters include oxidative stress, nitric oxide bioavailability, hydrogen sulfide production, angiotensin converting enzyme activity, expression of nuclear factor-κB and the proliferation of vascular smooth muscle cells. This review suggests that garlic and garlic derived bioactives have significant medicinal properties with the potential for ameliorating hypertension and associated morbidity; however, further clinical and epidemiological studies are required to determine completely the specific physiological and biochemical mechanisms involved in disease prevention and management.

  7. Self-DNA inhibitory effects: Underlying mechanisms and ecological implications

    PubMed Central

    Cartenì, Fabrizio; Bonanomi, Giuliano; Giannino, Francesco; Incerti, Guido; Vincenot, Christian Ernest; Chiusano, Maria Luisa; Mazzoleni, Stefano

    2016-01-01

    ABSTRACT DNA is usually known as the molecule that carries the instructions necessary for cell functioning and genetic inheritance. A recent discovery reported a new functional role for extracellular DNA. After fragmentation, either by natural or artificial decomposition, small DNA molecules (between ∼50 and ∼2000 bp) exert a species specific inhibitory effect on individuals of the same species. Evidence shows that such effect occurs for a wide range of organisms, suggesting a general biological process. In this paper we explore the possible molecular mechanisms behind those findings and discuss the ecological implications, specifically those related to plant species coexistence. PMID:26950417

  8. Mechanisms underlying the antimotion sickness effects of psychostimulants

    NASA Technical Reports Server (NTRS)

    Kohl, Randall L.; Lewis, Michael R.

    1987-01-01

    Data related to the mechanism responsible for the antimotion sickness effects of psychostimulants such as amphetamine are examined. From the analysis of current literature and new evidence, the following three hypotheses are suggested: (1) selective enhancement of dopaminergic, but not noradrenergic, transmission is sufficient to account for amphetamine-induced resistance and, perhaps, for natural resistance to motion sickness; (2) the site of this enhanced dopaminergic transmission is probably within the basal ganglia; and (3) the neuropharmacology of the basal ganglia, but not of the brain-stem vestibular areas, can account for the therapeutic synergism of scopolamine and amphetamine. The therapeutic action of psychostimulants may be dissociable from some of their side effects, particularly cardiovascular effects related to peripheral norepinephrine release.

  9. Mechanisms underlying the antihypertensive effect of Alstonia scholaris.

    PubMed

    Bello, Idris; Usman, Nasiba Salisu; Mahmud, Roziahanim; Asmawi, Mohd Zaini

    2015-12-04

    Alstonia scholaris has a long history of use in the Ayurveda traditional treatment of various ailments including hypertension. We have reported the blood pressure lowering activity of the extract of A. scholaris. The following research aim to delineate the pharmacological mechanism involve in the antihypertensive action. Vasorelaxant effect of the n-butanol fraction of A. scholaris (NBF-ASME) was evaluated on rat aorta pre-contracted with phenyelphrine (PE, 1 µM). Aortic rings preparation were pre-incubated with various antagonists like 1H-[1,2,4] oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ 10 μM), methylene blue (MB 10 μM), Nω-nitro-L-arginine methyl ester hydrochloride (l-NAME 10 μM), atropine (10 μM), indomethacin (1 μM), ML-9 and various K(+) channel blockers such as glibenclamide (10 μM) and tetraethyl ammonium (TEA 10 μM) for mechanism study. The results showed that pre-incubation of aortic rings with the extract (0.5, 1 and 2mg/mL) significantly inhibit the contractile response of the rings to phenylephrine-induced contraction (p<0.05-0.001). Removal of endothelium, incubation with L-NAME, indomethacin, atropine and propranolol did not significantly affect the relaxation effect of NBF-ASME. Furthermore, the K(+) channel blockers, TEA and glibenclamide showed no inhibitory effect. However, aortic rings pretreated with ODQ and ML-9 showed a significant suppression of the relaxation curve of NBF-ASME (p<0.01-0.001). In Ca(2+)-free solution, NBF-ASME inhibits the release of intracellular Ca(2+) from the sarcoplasmic reticulum. NBF-ASME also inhibits calcium chloride (CaCl2)-induced contraction in endothelium-denuded aortic rings. The results from this study suggests that A. scholaris exerts vasodilation via calcium channels blockade, direct activation of soluble guanylate cyclase and possibly by also inhibiting the formation of inositol 1, 4, 5-triphosphate. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Signaling mechanisms underlying the insulin-sensitizing effects of adiponectin.

    PubMed

    Cheng, Kenneth K Y; Lam, Karen S L; Wang, Baile; Xu, Aimin

    2014-01-01

    Adiponectin is an insulin-sensitizing adipokine with protective effects against a cluster of obesity-related metabolic and cardiovascular disorders. The adipokine exerts its insulin-sensitizing effects by alleviation of obesity-induced ectopic lipid accumulation, lipotoxicity and chronic inflammation, as well as by direct cross-talk with insulin signaling cascades. Adiponectin and insulin signaling pathways converge at the adaptor protein APPL1. On the one hand, APPL1 interacts with adiponectin receptors and mediates both metabolic and vascular actions of adiponectin through activation of AMP-activated protein kinase and p38 MAP kinase. On the other hand, APPL1 potentiates both the actions and secretion of insulin by fine-tuning the Akt activity in multiple insulin target tissues. In obese animals, reduced APPL1 expression contributes to both insulin resistance and defective insulin secretion. This review summarizes recent advances on the molecular mechanisms by which adiponectin sensitizes insulin actions, and discusses the roles of APPL1 in regulating both adiponectin and insulin signaling cascades.

  11. Poroelastic Mechanical Effects of Hemicelluloses on Cellulosic Hydrogels under Compression

    PubMed Central

    Lopez-Sanchez, Patricia; Cersosimo, Julie; Wang, Dongjie; Flanagan, Bernadine; Stokes, Jason R.; Gidley, Michael J.

    2015-01-01

    Hemicelluloses exhibit a range of interactions with cellulose, the mechanical consequences of which in plant cell walls are incompletely understood. We report the mechanical properties of cell wall analogues based on cellulose hydrogels to elucidate the contribution of xyloglucan or arabinoxylan as examples of two hemicelluloses displaying different interactions with cellulose. We subjected the hydrogels to mechanical pressures to emulate the compressive stresses experienced by cell walls in planta. Our results revealed that the presence of either hemicellulose increased the resistance to compression at fast strain rates. However, at slow strain rates, only xyloglucan increased composite strength. This behaviour could be explained considering the microstructure and the flow of water through the composites confirming their poroelastic nature. In contrast, small deformation oscillatory rheology showed that only xyloglucan decreased the elastic moduli. These results provide evidence for contrasting roles of different hemicelluloses in plant cell wall mechanics and man-made cellulose-based composite materials. PMID:25794048

  12. Examination of the Mechanisms Underlying Effectiveness of the Turtle Technique

    ERIC Educational Resources Information Center

    Drogan, Robin R.; Kern, Lee

    2014-01-01

    A significant number of young children exhibit challenging behaviors in preschool settings. A tiered framework of intervention has documented effectiveness in elementary and secondary schools, and recently has been extended to preschool settings. Although there is emerging research to support the effectiveness of Tier 1 (universal) and Tier 3…

  13. Examination of the Mechanisms Underlying Effectiveness of the Turtle Technique

    ERIC Educational Resources Information Center

    Drogan, Robin R.; Kern, Lee

    2014-01-01

    A significant number of young children exhibit challenging behaviors in preschool settings. A tiered framework of intervention has documented effectiveness in elementary and secondary schools, and recently has been extended to preschool settings. Although there is emerging research to support the effectiveness of Tier 1 (universal) and Tier 3…

  14. Mechanisms underlying the cardiac antifibrotic effects of losartan metabolites

    PubMed Central

    Miguel-Carrasco, José Luis; Beaumont, Javier; San José, Gorka; Moreno, María U.; López, Begoña; González, Arantxa; Zalba, Guillermo; Díez, Javier; Fortuño, Ana; Ravassa, Susana

    2017-01-01

    Excessive myocardial collagen deposition and cross-linking (CCL), a process regulated by lysyl oxidase (LOX), determines left ventricular (LV) stiffness and dysfunction. The angiotensin II antagonist losartan, metabolized to the EXP3179 and EXP3174 metabolites, reduces myocardial fibrosis and LV stiffness in hypertensive patients. Our aim was to investigate the differential influence of losartan metabolites on myocardial LOX and CCL in an experimental model of hypertension with myocardial fibrosis, and whether EXP3179 and EXP3174 modify LOX expression and activity in fibroblasts. In rats treated with NG-nitro-L-arginine methyl ester (L-NAME), administration of EXP3179 fully prevented LOX, CCL and connective tissue growth factor (CTGF) increase, as well as fibrosis, without normalization of blood pressure (BP). In contrast, administration of EXP3174 normalized BP and attenuated fibrosis but did not modify LOX, CCL and CTGF. In TGF-β1-stimulated fibroblasts, EXP3179 inhibited CTGF and LOX expression and activity with lower IC50 values than EXP3174. Our results indicate that, despite a lower antihypertensive effect, EXP3179 shows higher anti-fibrotic efficacy than EXP3174, likely through its ability to prevent the excess of LOX and CCL. It is suggested that the anti-fibrotic effect of EXP3179 may be partially mediated by the blockade of CTGF-induced LOX in fibroblasts. PMID:28157237

  15. Mechanisms underlying the cardiac antifibrotic effects of losartan metabolites.

    PubMed

    Miguel-Carrasco, José Luis; Beaumont, Javier; San José, Gorka; Moreno, María U; López, Begoña; González, Arantxa; Zalba, Guillermo; Díez, Javier; Fortuño, Ana; Ravassa, Susana

    2017-02-03

    Excessive myocardial collagen deposition and cross-linking (CCL), a process regulated by lysyl oxidase (LOX), determines left ventricular (LV) stiffness and dysfunction. The angiotensin II antagonist losartan, metabolized to the EXP3179 and EXP3174 metabolites, reduces myocardial fibrosis and LV stiffness in hypertensive patients. Our aim was to investigate the differential influence of losartan metabolites on myocardial LOX and CCL in an experimental model of hypertension with myocardial fibrosis, and whether EXP3179 and EXP3174 modify LOX expression and activity in fibroblasts. In rats treated with N(G)-nitro-L-arginine methyl ester (L-NAME), administration of EXP3179 fully prevented LOX, CCL and connective tissue growth factor (CTGF) increase, as well as fibrosis, without normalization of blood pressure (BP). In contrast, administration of EXP3174 normalized BP and attenuated fibrosis but did not modify LOX, CCL and CTGF. In TGF-β1-stimulated fibroblasts, EXP3179 inhibited CTGF and LOX expression and activity with lower IC50 values than EXP3174. Our results indicate that, despite a lower antihypertensive effect, EXP3179 shows higher anti-fibrotic efficacy than EXP3174, likely through its ability to prevent the excess of LOX and CCL. It is suggested that the anti-fibrotic effect of EXP3179 may be partially mediated by the blockade of CTGF-induced LOX in fibroblasts.

  16. The effects of divided attention on encoding processes under incidental and intentional learning instructions: underlying mechanisms?

    PubMed

    Naveh-Benjamin, Moshe; Guez, Jonathan; Hara, Yoko; Brubaker, Matthew S; Lowenschuss-Erlich, Iris

    2014-01-01

    Divided attention (DA) at encoding has been shown to significantly disrupt later memory for the studied information. However, what type of processing gets disrupted during DA remains unresolved. In this study, we assessed the degree to which strategic effortful processes are affected under DA by comparing the effects of DA at encoding under intentional and pure incidental learning instructions. In three experiments, participants studied list of words or word pairs under either full or divided attention. Results of three experiments, which used different methodologies, converged to show that the effects of DA at encoding reduce memory performance to the same degree under incidental and intentional learning. Secondary task performance indicated that encoding under intentional learning instructions was more effortful than under incidental learning instructions. In addition, the results indicated enhanced attention to the initial appearance of the words under both types of learning instructions. Results are interpreted to imply that other processes, rather than only strategic effortful ones, might be affected by DA at encoding.

  17. Cytopathic Effects Incited by Viroid RNAs and Putative Underlying Mechanisms

    PubMed Central

    Di Serio, Francesco; De Stradis, Angelo; Delgado, Sonia; Flores, Ricardo; Navarro, Beatriz

    2012-01-01

    Viroids are infectious agents identified only in plants so far. In contrast to viruses, the genome of viroids is composed of a tiny circular RNA (250–400 nt) not coding for proteins, but containing in its compact structure all the information needed for parasitizing the transcriptional and RNA trafficking machineries of their hosts. Viroid infections are frequently accompanied by cellular and developmental disorders that ultimately result in macroscopic symptoms. The molecular events linking the structural domains of viroid RNAs with cellular and macroscopic alterations remain largely unexplored, although significant progress has been lately achieved in one specific viroid-host combination, highlighting the ability of viroids to strongly interfere with their host RNA regulatory networks. Cytopathic effects induced by nuclear-replicating viroids, which were investigated since early studies on viroids, consist in irregular proliferations of cell membranes (paramural bodies or plasmalemmasomes), cell wall distortions, and chloroplast malformations. Different alternatives have been proposed regarding how these cytological alterations may influence the onset of macroscopic symptoms. Recently, the cytopathology and histopathology incited by a chloroplast-replicating viroid have been investigated in depth, with defects in chloroplast development having been related to specific molecular events that involve RNA silencing and impairment of chloroplast ribosomal RNA maturation. On this basis, a tentative model connecting specific cytopathologic alterations with symptoms has been put forward. Here, early and more recent studies addressing this issue will be reviewed and reassessed in the light of recent advances in the regulatory roles of small RNAs. PMID:23308076

  18. Mechanisms Underlying the Nonconsumptive Effects of Parasitoid Wasps on Aphids.

    PubMed

    Ingerslew, K S; Finke, D L

    2017-02-01

    Natural enemies need not consume herbivores to suppress herbivore populations. Behavioral interactions can adversely impact herbivore fitness from reduced time feeding, investment in defense, or injury from failed attacks. The importance of such "nonconsumptive effects" for herbivore suppression may vary across species based on the specificity and intensity of the herbivore defensive response. In a series of manipulative studies, we quantified the nature and consequences of nonconsumptive interactions between two parasitoid wasps, Aphidius ervi Haliday and Aphidius colemani Viereck, on two aphid species, pea aphids (Acyrthosiphon pisum (Harris)) and green peach aphids (Myzus persicae (Sulzer)). Both wasps successfully parasitize green peach aphids, but only A. ervi parasitizes pea aphids. We observed A. ervi antennating and stinging pea aphids and documented a decrease in pea aphid longevity in response to stinging even when the aphid survived the interaction and no mummy formed. The primary defensive tactic of pea aphids in response to either wasp species was dropping from the host plant. Both wasp species antennated and stung green peach aphids, but they elicited unique defensive behaviors. Green peach aphids kicked or emitted cornicle secretions in response to A. colemani but spent more time off the plant in the presence of A. ervi. Green peach aphid longevity and fecundity were not affected by wasp stings when the aphid survived and no mummy formed. Our study demonstrates the complexity of behavioral interactions between parasitoids and their potential hosts and contributes to a mechanistic understanding of variation in the nonconsumptive suppression of herbivore populations. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. The research on mechanical effect etching Si in pulsed laser micromaching under water

    NASA Astrophysics Data System (ADS)

    Yuhong, Long; Liangcai, Xiong; Tielin, Shi

    2011-02-01

    To explore further the influencing of mechanical effects on laser machining in the liquid, in the process of great-energy and short-pulsed laser irradiating matter in the liquid, the experiments of 248 nm laser etching n-Si under water were carried out. The removal mechanism of brittle material etched by mechanical effects, which is induced during high-energy and short-pulsed laser machining in the liquid, was discussed. In the paper, the approximate mechanics model of indentation fracture was used to analyze the mechanical effects for removing brittle materials of silicon when laser machining in the liquid. Based on this, a theoretical model of material removal rate was proposed; the experiment of laser machining under water was adopted to validate the model. The experimental results indicate that the removal rate of brittle material caused by shock forces is relatively great.

  20. The effects of different size gold nanoparticles on mechanical properties of vascular smooth muscle cells under mechanical stretching

    NASA Astrophysics Data System (ADS)

    Kieu, Tri Minh

    Nanotechnology is an emerging and promising frontier for medicine and biomedical research due to its potential for applications such as drug delivery, imaging enhancement, and cancer treatment. While these materials may possess significant possibilities, the effects of these particles in the body and how the particles affect the cells is not fully understood. In this study, vascular smooth muscle cells (VSMCs) will be exposed to 5 and 20 nm diameter citrate AuNPs under mechanical conditions. The cytotoxicity properties of these particles will be investigated using LDH and MTT assays. Atomic force microscopy will be used to study how the size of the nanoparticles affect the mechanical properties of the VSMCs. Immunofluorescence staining for alpha actin will also be performed to enhance understanding of the phenotypic shift. The LDH and MTT cytotoxicity assay results demonstrated that neither 5 nor 20 nm diameter nanoparticles are cytotoxic to the cells. However, the mechanical properties and cell morphology of the VSMCs was altered. Under static conditions, both AuNP treatments decreased the mechanical properties of the cells. The size of the nanoparticles had a softening effect on elastic modulus of the cell and sign of a synthetic phenotype was observed. The VSMCs subjected to mechanical stretching exhibited higher elastic modulus compared to the static experimental groups. Again, both AuNPs treatments decreased the mechanical properties of the cells and signs of more synthetic phenotype was seen. However, the size of the nanoparticles did not have any influence on cell's elastic modulus unlike the static treated cells. The mechanical testing condition provided a better look at how these particles would affect the cells in vivo. While the nanoparticles are not cytotoxic to the VSMCs, they are altering the mechanical properties and phenotype of the cell.

  1. Potential neural mechanisms underlying the effectiveness of early intervention for children with autism spectrum disorder.

    PubMed

    Sullivan, Katherine; Stone, Wendy L; Dawson, Geraldine

    2014-11-01

    Although evidence supports the efficacy of early intervention for improving outcomes for children with autism spectrum disorder (ASD), the mechanisms underlying their effectiveness remain poorly understood. This paper reviews the research literature on the neural bases of the early core deficits in ASD and proposes three key features of early intervention related to the neural mechanisms that may contribute to its effectiveness in improving deficit areas. These features include (1) the early onset of intensive intervention which capitalizes on the experience-expectant plasticity of the immature brain, (2) the use of treatment strategies that address core deficits in social motivation through an emphasis on positive social engagement and arousal modulation, and (3) promotion of complex neural networks and connectivity through thematic, multi-sensory and multi-domain teaching approaches. Understanding the mechanisms of effective early intervention will enable us to identify common or foundational active ingredients for promoting optimal outcomes in children with ASD.

  2. Potential neural mechanisms underlying the effectiveness of early intervention for children with autism spectrum disorder

    PubMed Central

    Sullivan, Katherine; Stone, Wendy L.; Dawson, Geraldine

    2014-01-01

    Although evidence supports the efficacy of early intervention for improving outcomes for children with autism spectrum disorder (ASD), the mechanisms underlying their effectiveness remain poorly understood. This paper reviews the research literature on the neural bases of the early core deficits in ASD and proposes three key features of early intervention related to the neural mechanisms that may contribute to its effectiveness in improving deficit areas. These features include (1) the early onset of intensive intervention which capitalizes on the experience-expectant plasticity of the immature brain, (2) the use of treatment strategies that address core deficits in social motivation through an emphasis on positive social engagement and arousal modulation, and (3) promotion of complex neural networks and connectivity through thematic, multi-sensory and multi-domain teaching approaches. Understanding the mechanisms of effective early intervention will enable us to identify common or foundational active ingredients for promoting optimal outcomes in children with ASD. PMID:25108609

  3. A Possible Mechanism Underlying the Effectiveness of Acupuncture in the Treatment of Drug Addiction

    PubMed Central

    Lee, Bong Hyo; Sohn, Sung Hoon

    2008-01-01

    Clinical trials are currently underway to determine the effectiveness of acupuncture in the treatment of drug addiction. While there are still many unanswered questions about the basic mechanisms of acupuncture, some evidence exists to suggest that acupuncture can play an important role in reducing reinforcing effects of abused drugs. The purpose of this article is to critically review these data. The neurochemical and behavioral evidence showed that acupuncture's role in suppressing the reinforcing effects of abused drugs takes place by modulating mesolimbic dopamine neurons. Also, several brain neurotransmitter systems such as serotonin, opioid and amino acids including GABA have been implicated in the modulation of dopamine release by acupuncture. These results provided clear evidence for the biological effects of acupuncture that ultimately may help us to understand how acupuncture can be used to treat abused drugs. Additional research using animal models is of primary importance to understanding the basic mechanism underlying acupuncture's effectiveness in the treatment of drug addiction. PMID:18830420

  4. Moderators of and mechanisms underlying stereotype threat effects on older adults' memory performance.

    PubMed

    Hess, Thomas M; Hinson, Joey T; Hodges, Elizabeth A

    2009-01-01

    Recent research has suggested that negative stereotypes about aging may have a detrimental influence on older adults' memory performance. This study sought to determine whether stereotype-based influences were moderated by age, education, and concerns about being stigmatized. Possible mechanisms underlying these influences on memory performance were also explored. The memory performance of adults aged 60 to 70 years and 71 to 82 years was examined under conditions designed to induce or eliminate stereotype threat. Threat was found to have a greater impact on performance in the young-old than in the old-old group, whereas the opposite was observed for the effects of stigma consciousness. In both cases, the effects were strongest for those with higher levels of education. Further analyses found little evidence in support of the mediating roles of affective responses or working memory. The only evidence of mediation was found with respect to recall predictions, suggesting a motivational basis of threat effects on performance. These findings highlight the specificity of stereotype threat effects in later adulthood as well as possible mechanisms underlying such effects.

  5. Moderators of and Mechanisms underlying Stereotype Threat Effects on Older Adults' Memory Performance

    PubMed Central

    Hess, Thomas M.; Hinson, Joey T.; Hodges, Elizabeth A.

    2009-01-01

    Recent research has suggested that negative stereotypes about aging may have a detrimental influence on older adults' memory performance. This study sought to determine whether stereotype-based influences were moderated by age, education, and concerns about being stigmatized. Possible mechanisms underlying these influences on memory performance were also explored. The memory performance of adults aged 60 to 70 years and 71 to 82 years was examined under conditions designed to induce or eliminate stereotype threat. Threat was found to have a greater impact on performance in the young-old than in the old-old group, whereas the opposite was observed for the effects of stigma consciousness. In both cases, the effects were strongest for those with higher levels of education. Further analyses found little evidence in support of the mediating roles of affective responses or working memory. The only evidence of mediation was found with respect to recall predictions, suggesting a motivational basis of threat effects on performance. These findings highlight the specificity of stereotype threat effects in later adults as well as possible mechanisms underlying such effects. PMID:19280445

  6. Effects of Delaying Transplanting on Agronomic Traits and Grain Yield of Rice under Mechanical Transplantation Pattern

    PubMed Central

    Liu, Qihua; Wu, Xiu; Ma, Jiaqing; Chen, Bocong; Xin, Caiyun

    2015-01-01

    A delay in the mechanical transplantation (MT) of rice seedlings frequently occurs in Huanghuai wheat-rice rotation cropping districts of China, due to the late harvest of wheat, the poor weather conditions and the insufficiency of transplanters, missing the optimum transplanting time and causing seedlings to age. To identify how delaying transplanting rice affects the agronomic characteristics including the growth duration, photosynthetic productivity and dry matter remobilization efficiency and the grain yield under mechanical transplanting pattern, an experiment with a split-plot design was conducted over two consecutive years. The main plot includes two types of cultivation: mechanical transplanting and artificial transplanting (AT). The subplot comprises four japonica rice cultivars. The results indicate that the rice jointing, booting, heading and maturity stages were postponed under MT when using AT as a control. The tiller occurrence number, dry matter weight per tiller, accumulative dry matter for the population, leaf area index, crop growth rate, photosynthetic potential, and dry matter remobilization efficiency of the leaf under MT significantly decreased compared to those under AT. In contrast, the reduction rate of the leaf area during the heading-maturity stage was markedly enhanced under MT. The numbers of effective panicles and filled grains per panicle and the grain yield significantly decreased under MT. A significant correlation was observed between the dry matter production, remobilization and distribution characteristics and the grain yield. We infer that, as with rice from old seedlings, the decrease in the tiller occurrence, the photosynthetic productivity and the assimilate remobilization efficiency may be important agronomic traits that are responsible for the reduced grain yield under MT. PMID:25875607

  7. Effects of different mechanized soil fertilization methods on corn soil fertility under continuous cropping

    NASA Astrophysics Data System (ADS)

    Shi, Qingwen; Wang, Huixin; Bai, Chunming; Wu, Di; Song, Qiaobo; Gao, Depeng; Dong, Zengqi; Cheng, Xin; Dong, Qiping; Zhang, Yahao; Mu, Jiahui; Chen, Qinghong; Liao, Wenqing; Qu, Tianru; Zhang, Chunling; Zhang, Xinyu; Liu, Yifei; Han, Xiaori

    2017-05-01

    Experiments for mechanized soil fertilization for corns were conducted in Faku demonstration zone. On this basis, we studied effects on corn soil fertility under continuous cropping due to different mechanized soil fertilization methods. Our study would serve as a theoretical basis further for mechanized soil fertilization improvement and soil quality improvement in brown soil area. Based on the survey of soil physical characteristics during different corn growth periods, we collected soil samples from different corn growth periods to determine and make statistical analysis accordingly. Stalk returning to field with deep tillage proved to be the most effective on available nutrient improvement for arable soil in the demonstration zone. Different mechanized soil fertilization methods were remarkably effective on total phosphorus improvement for arable soil in the demonstration zone, while less effective on total nitrogen or total potassium, and not so effective on C/N ratio in soil. Stalk returning with deep tillage was more favorable to improve content of organic matter in soil, when compared with surface application, and organic granular fertilizer more favorable when compared with decomposed cow dung for such a purpose, too.

  8. Mechanisms Underlying the Anti-Aging and Anti-Tumor Effects of Lithocholic Bile Acid

    PubMed Central

    Arlia-Ciommo, Anthony; Piano, Amanda; Svistkova, Veronika; Mohtashami, Sadaf; Titorenko, Vladimir I.

    2014-01-01

    Bile acids are cholesterol-derived bioactive lipids that play essential roles in the maintenance of a heathy lifespan. These amphipathic molecules with detergent-like properties display numerous beneficial effects on various longevity- and healthspan-promoting processes in evolutionarily distant organisms. Recent studies revealed that lithocholic bile acid not only causes a considerable lifespan extension in yeast, but also exhibits a substantial cytotoxic effect in cultured cancer cells derived from different tissues and organisms. The molecular and cellular mechanisms underlying the robust anti-aging and anti-tumor effects of lithocholic acid have emerged. This review summarizes the current knowledge of these mechanisms, outlines the most important unanswered questions and suggests directions for future research. PMID:25238416

  9. Size and Geometry Effects on the Mechanical Properties of Carrara Marble Under Dynamic Loadings

    NASA Astrophysics Data System (ADS)

    Zou, Chunjiang; Wong, Louis Ngai Yuen

    2016-05-01

    The effects of specimen size and geometry on the dynamic mechanical properties of Carrara marble including compressive strength, failure strain and elastic modulus are investigated in this research. Four different groups of specimens of different sizes and cross-sectional geometries are loaded under a wide range of strain rates by the split Hopkinson pressure bar setup. The experimental results indicate that all these mechanical properties are significantly influenced by the specimen size and geometry to different extent, hence highlighting the importance of taking into account of the specimen size and geometry in dynamic tests on rock materials. In addition, the transmission coefficient and the determination of strain rate under dynamic tests are discussed in detail.

  10. Multi-Targeted Mechanisms Underlying the Endothelial Protective Effects of the Diabetic-Safe Sweetener Erythritol

    PubMed Central

    de Cock, Peter; Dong, Hua; Hammock, Bruce D.; den Hartog, Gertjan J. M.; Bast, Aalt

    2013-01-01

    Diabetes is characterized by hyperglycemia and development of vascular pathology. Endothelial cell dysfunction is a starting point for pathogenesis of vascular complications in diabetes. We previously showed the polyol erythritol to be a hydroxyl radical scavenger preventing endothelial cell dysfunction onset in diabetic rats. To unravel mechanisms, other than scavenging of radicals, by which erythritol mediates this protective effect, we evaluated effects of erythritol in endothelial cells exposed to normal (7 mM) and high glucose (30 mM) or diabetic stressors (e.g. SIN-1) using targeted and transcriptomic approaches. This study demonstrates that erythritol (i.e. under non-diabetic conditions) has minimal effects on endothelial cells. However, under hyperglycemic conditions erythritol protected endothelial cells against cell death induced by diabetic stressors (i.e. high glucose and peroxynitrite). Also a number of harmful effects caused by high glucose, e.g. increased nitric oxide release, are reversed. Additionally, total transcriptome analysis indicated that biological processes which are differentially regulated due to high glucose are corrected by erythritol. We conclude that erythritol protects endothelial cells during high glucose conditions via effects on multiple targets. Overall, these data indicate a therapeutically important endothelial protective effect of erythritol under hyperglycemic conditions. PMID:23755276

  11. Multi-targeted mechanisms underlying the endothelial protective effects of the diabetic-safe sweetener erythritol.

    PubMed

    Boesten, Daniëlle M P H J; Berger, Alvin; de Cock, Peter; Dong, Hua; Hammock, Bruce D; den Hartog, Gertjan J M; Bast, Aalt

    2013-01-01

    Diabetes is characterized by hyperglycemia and development of vascular pathology. Endothelial cell dysfunction is a starting point for pathogenesis of vascular complications in diabetes. We previously showed the polyol erythritol to be a hydroxyl radical scavenger preventing endothelial cell dysfunction onset in diabetic rats. To unravel mechanisms, other than scavenging of radicals, by which erythritol mediates this protective effect, we evaluated effects of erythritol in endothelial cells exposed to normal (7 mM) and high glucose (30 mM) or diabetic stressors (e.g. SIN-1) using targeted and transcriptomic approaches. This study demonstrates that erythritol (i.e. under non-diabetic conditions) has minimal effects on endothelial cells. However, under hyperglycemic conditions erythritol protected endothelial cells against cell death induced by diabetic stressors (i.e. high glucose and peroxynitrite). Also a number of harmful effects caused by high glucose, e.g. increased nitric oxide release, are reversed. Additionally, total transcriptome analysis indicated that biological processes which are differentially regulated due to high glucose are corrected by erythritol. We conclude that erythritol protects endothelial cells during high glucose conditions via effects on multiple targets. Overall, these data indicate a therapeutically important endothelial protective effect of erythritol under hyperglycemic conditions.

  12. Mechanical properties and supporting effect of CRLD bolts under static pull test conditions

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-ming; Zhang, Yong; Wang, Dong; Yang, Jun; Xu, Hui-chen; He, Man-chao

    2017-01-01

    A device for supporting soft rock masses combined with a constant resistance structure characterized by constant resistance and large deformation at the end of a steel bar, known as the constant resistance and large deformation (CRLD) bolt, has recently been developed to counteract soft rock swelling that often occurs during deep mining. In order to further study the mechanical properties of the CRLD bolt, we investigated its mechanical properties by comparison with the conventional strength bolt (rebar) using static pull tests on many aspects, including supporting capacity, elongation, radial deformation, and energy absorption. The tests verified that the mechanical defects of the rebar, which include the decrease of bolt diameter, reduction of supporting capacity, and emergence and evolution of fracture until failure during the whole pull process, were caused by the Poisson's ratio effect. Due to the special structure set on the CRLD bolt, the bolt presents a seemingly unusual phenomenon of the negative Poisson's ratio effect, i.e., the diameter of the constant resistance structure increases while under-pulling. It is the very effect that ensures the extraordinary mechanical properties, including high resistance, large elongation, and strong energy absorption. According to the comparison and analysis of numerical simulation and field test, we can conclude that the CRLD bolt works better than the rebar bolt.

  13. Investigating the mechanisms underlying affective priming effects using a conditional pronunciation task.

    PubMed

    Pecchinenda, Anna; Ganteaume, Christiane; Banse, Rainer

    2006-01-01

    Recently, using a conditional pronunciation task, De Houwer and Randell (2004) reported evidence of affective priming effects only when pronunciation depended on the semantic category of targets. Although these findings support the notion that spreading of activation is the mechanism underlying affective priming effects, an explanation in terms of postlexical mechanism could not be ruled out. To clarify this point, we conducted two experiments in which nouns for both the to-be-pronounced as well as the not-to-be pronounced targets were used and all stimuli were affectively valenced words. In Experiment 1, the to-be-pronounced targets were object-words, and the not-to-be-pronounced targets were person-words, whereas in Experiment 2, the instructions were reversed. Results of experiment 1 showed affective priming effects only when pronunciation of target words was conditional upon their semantic category. Most importantly, affective priming effects were observed for both object-words (Experiment 1) and person-words (Experiment 2). These results are compatible with a spreading activation account, but not with a postlexical mechanism account of affective priming effects in the pronunciation task.

  14. Effects of intelligent control mechanism on multiple-vehicle collision under emergency

    NASA Astrophysics Data System (ADS)

    Li, Zhipeng; Chen, Lizhu

    2014-06-01

    In this paper, we study the effects of intelligent control mechanism on multiple-vehicle collision induced by a sudden stop. The control motion of following vehicles is extended by introducing their velocity relative to the braking one into the dynamic models. We study the dynamic process of multiple-vehicle collision under the new control mechanism with finding that the new control mechanism can effectively avoid the first following vehicle's collision with the stopped vehicle, and the new consideration behaves better in reducing the number of crumpled vehicles than the existing control method. We obtain the region maps of the multiple-vehicle collision for the new intelligent control. We show the dependence of the number of the crumpled vehicles on the initial headway, the sensitivity, and the intensity of the intelligent control. In addition, the effects of the transfer delay on multiple-vehicle collision are obtained by drawing the phase diagram of the multiple-vehicle collision for the new intelligent control with different transfer delays. It is revealed that the negative effects of the delay on the multiple-vehicle collision can be mitigated by enhancing the strength of the intelligent control.

  15. Effect of Physical Aging on Mechanical Behavior of an Elastomeric Glass under Combined Pressure and Temperature.

    DTIC Science & Technology

    1986-12-01

    NO. 3. RECIPIENT’S CATALOG NUMBER Technical Report No. 7 C.- 4. TITLE (and Subtitle) S . TYPE OF REPORT & PERIOD COVERED Effect of Physical Aging on...Mechanical Behavior of an Elastomeric Glass Under Combined Pressure and Temperature G. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(e) S . CONTRACT OR GRANT...NUMBER( s ) K. Vijayan and K. D. Pae NOOO14-82-K-0608 9. PERFORMING r" GANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK High PrE 3,ure

  16. Using technology to explore social networks and mechanisms underlying peer effects in classrooms.

    PubMed

    Guryan, Jonathan; Jacob, Brian; Klopfer, Eric; Groff, Jennifer

    2008-03-01

    Peer interactions among children have long interested social scientists. Identifying causal peer effects is difficult, and a number of studies have used random assignment to produce evidence that peers affect each other's outcomes. This focus by sociologists and economists on whether peers affect each other has not been matched by direct evidence on how these effects operate. The authors argue that one reason for the small number of studies in sociology and economics on the mechanisms underlying peer effects is the difficulty of collecting data on microinteractions. They argue technology reduces data collection costs relative to direct observation and allows for realistic school activities with randomly assigned peers. The authors describe a novel strategy for collecting data on peer interactions and discuss how this approach might shed light on mechanisms underlying peer influence. The centerpiece of this strategy is the use of handheld computers by middle and high school students as part of interactive math and science lessons called the Discussion Game. The handhelds collect data on interactions between students and track how students' answers evolve as they interact with different peers.

  17. A Hypothesis Regarding the Molecular Mechanism Underlying Dietary Soy-Induced Effects on Seizure Propensity

    PubMed Central

    Westmark, Cara Jean

    2014-01-01

    Numerous neurological disorders including fragile X syndrome, Down syndrome, autism, and Alzheimer’s disease are co-morbid with epilepsy. We have observed elevated seizure propensity in mouse models of these disorders dependent on diet. Specifically, soy-based diets exacerbate audiogenic-induced seizures in juvenile mice. We have also found potential associations between the consumption of soy-based infant formula and seizure incidence, epilepsy comorbidity, and autism diagnostic scores in autistic children by retrospective analyses of medical record data. In total, these data suggest that consumption of high levels of soy protein during postnatal development may affect neuronal excitability. Herein, we present our theory regarding the molecular mechanism underlying soy-induced effects on seizure propensity. We hypothesize that soy phytoestrogens interfere with metabotropic glutamate receptor signaling through an estrogen receptor-dependent mechanism, which results in elevated production of key synaptic proteins and decreased seizure threshold. PMID:25232349

  18. Cerebral mechanisms underlying the effects of music during a fatiguing isometric ankle-dorsiflexion task.

    PubMed

    Bigliassi, Marcelo; Karageorghis, Costas I; Nowicky, Alexander V; Orgs, Guido; Wright, Michael J

    2016-10-01

    The brain mechanisms by which music-related interventions ameliorate fatigue-related symptoms during the execution of fatiguing motor tasks are hitherto under-researched. The objective of the present study was to investigate the effects of music on brain electrical activity and psychophysiological measures during the execution of an isometric fatiguing ankle-dorsiflexion task performed until the point of volitional exhaustion. Nineteen healthy participants performed two fatigue tests at 40% of maximal voluntary contraction while listening to music or in silence. Electrical activity in the brain was assessed by use of a 64-channel EEG. The results indicated that music downregulated theta waves in the frontal, central, and parietal regions of the brain during exercise. Music also induced a partial attentional switching from associative thoughts to task-unrelated factors (dissociative thoughts) during exercise, which led to improvements in task performance. Moreover, participants experienced a more positive affective state while performing the isometric task under the influence of music.

  19. Preventive Effects of Poloxamer 188 on Muscle Cell Damage Mechanics Under Oxidative Stress.

    PubMed

    Wong, Sing Wan; Yao, Yifei; Hong, Ye; Ma, Zhiyao; Kok, Stanton H L; Sun, Shan; Cho, Michael; Lee, Kenneth K H; Mak, Arthur F T

    2017-04-01

    High oxidative stress can occur during ischemic reperfusion and chronic inflammation. It has been hypothesized that such oxidative challenges could contribute to clinical risks such as deep tissue pressure ulcers. Skeletal muscles can be challenged by inflammation-induced or reperfusion-induced oxidative stress. Oxidative stress reportedly can lower the compressive damage threshold of skeletal muscles cells, causing actin filament depolymerization, and reduce membrane sealing ability. Skeletal muscles thus become easier to be damaged by mechanical loading under prolonged oxidative exposure. In this study, we investigated the preventive effect of poloxamer 188 (P188) on skeletal muscle cells against extrinsic oxidative challenges (H2O2). It was found that with 1 mM P188 pre-treatment for 1 h, skeletal muscle cells could maintain their compressive damage threshold. The actin polymerization dynamics largely remained stable in term of the expression of cofilin, thymosin beta 4 and profilin. Laser photoporation demonstrated that membrane sealing ability was preserved even as the cells were challenged by H2O2. These findings suggest that P188 pre-treatment can help skeletal muscle cells retain their normal mechanical integrity in oxidative environments, adding a potential clinical use of P188 against the combined challenge of mechanical-oxidative stresses. Such effect may help to prevent deep tissue ulcer development.

  20. Diesel exhaust: current knowledge of adverse effects and underlying cellular mechanisms.

    PubMed

    Steiner, Sandro; Bisig, Christoph; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2016-07-01

    Diesel engine emissions are among the most prevalent anthropogenic pollutants worldwide, and with the growing popularity of diesel-fueled engines in the private transportation sector, they are becoming increasingly widespread in densely populated urban regions. However, a large number of toxicological studies clearly show that diesel engine emissions profoundly affect human health. Thus the interest in the molecular and cellular mechanisms underlying these effects is large, especially concerning the nature of the components of diesel exhaust responsible for the effects and how they could be eliminated from the exhaust. This review describes the fundamental properties of diesel exhaust as well as the human respiratory tract and concludes that adverse health effects of diesel exhaust not only emerge from its chemical composition, but also from the interplay between its physical properties, the physiological and cellular properties, and function of the human respiratory tract. Furthermore, the primary molecular and cellular mechanisms triggered by diesel exhaust exposure, as well as the fundamentals of the methods for toxicological testing of diesel exhaust toxicity, are described. The key aspects of adverse effects induced by diesel exhaust exposure described herein will be important for regulators to support or ban certain technologies or to legitimate incentives for the development of promising new technologies such as catalytic diesel particle filters.

  1. Effect of polymerization under pressure on indirect tensile mechanical properties of light-polymerized composites.

    PubMed

    Brosh, Tamar; Ferstand, Nechama; Cardash, Harold; Baharav, Haim

    2002-10-01

    Flaws developed during polymerization of restorative materials cause a decrease in mechanical properties. The aim of this study was to determine the effect of polymerization under pressure on the indirect tensile mechanical properties (stiffness and diametral tensile strength) of several light-polymerized composites. Five light-polymerized composites were tested: Brilliant, Z100, TPH Spectrum, Prodigy, and Pertac Hybrid. A total of 80 cylindrical disk specimens (6 mm x 2 mm) were prepared for each material in a special mold that enabled polymerization under pressure (PUP). An equal number of specimens were polymerized under surface pressures of 0,.35,.71 and 1.06 MPa (n = 20). Stiffness (N/mm) and diametral tensile strength (DTS) (MPa) were analyzed while loading the specimen to failure with a loading machine. Two-way analysis of variance and Weibull analyses were applied (alpha=5%). Material type had a statistically significant influence on both DTS and stiffness (P<.0001). Differences up to 33% in DTS and up to 70% in stiffness values were found among the tested materials. Loading (PUP) had a significant influence on stiffness (P<.03) and DTS (P<.0001). PUP caused an increase in DTS values for Brilliant, Z100, and Prodigy of about 20% (P<.001) and increased stiffness only for Brilliant (15%). However, the amount of pressure needed for the improvement was different between materials (interaction between materials and loadings) (P<.0005). Weibull statistics showed that PUP improved the chances for reducing flaws in a material. Polymerizing material under pressure can improve its DTS and stiffness. However, the pressure needed for the procedure is material dependent.

  2. Mechanism of reducing effective dry friction under shock and vibration effects (to theory of technogenic seismic sources)

    NASA Astrophysics Data System (ADS)

    Blekhman, I. I.; Vaisberg, L. A.; Vasilkov, V. B.

    2017-05-01

    A simple mechanical model illustrates that even very weak vibration or shock impacts can cause a significant displacement of bodies in contact by dry friction. The model is studied using the concepts of effective friction coefficients under vibration and elements of the vibrational displacement theory. The results are compared with those of earlier and new experiments. Their application to the theory of man-made earthquakes and the problem of increasing oil recovery from petroliferous layers through vibration effects is discussed.

  3. Antidepressant effects of ketamine: mechanisms underlying fast-acting novel antidepressants

    PubMed Central

    Browne, Caroline A.; Lucki, Irwin

    2013-01-01

    Newer antidepressants are needed for the many individuals with major depressive disorder (MDD) that do not respond adequately to treatment and because of a delay of weeks before the emergence of therapeutic effects. Recent evidence from clinical trials shows that the NMDA antagonist ketamine is a revolutionary novel antidepressant because it acts rapidly and is effective for treatment-resistant patients. A single infusion of ketamine alleviates depressive symptoms in treatment-resistant depressed patients within hours and these effects may be sustained for up to 2 weeks. Although the discovery of ketamine's effects has reshaped drug discovery for antidepressants, the psychotomimetic properties of this compound limit the use of this therapy to the most severely ill patients. In order to develop additional antidepressants like ketamine, adequate preclinical behavioral screening paradigms for fast-acting antidepressants need to be established and used to identify the underlying neural mechanisms. This review examines the preclinical literature attempting to model the antidepressant-like effects of ketamine. Acute administration of ketamine has produced effects in behavioral screens for antidepressants like the forced swim test, novelty suppression of feeding and in rodent models for depression. Protracted behavioral effects of ketamine have been reported to appear after a single treatment that last for days. This temporal pattern is similar to its clinical effects and may serve as a new animal paradigm for rapid antidepressant effects in humans. In addition, protracted changes in molecules mediating synaptic plasticity have been implicated in mediating the antidepressant-like behavioral effects of ketamine. Current preclinical studies are examining compounds with more specific pharmacological effects at glutamate receptors and synapses in order to develop additional rapidly acting antidepressants without the hallucinogenic side effects or abuse potential of ketamine

  4. Change of plans: an evaluation of the effectiveness and underlying mechanisms of successful talent transfer.

    PubMed

    Collins, Rosie; Collins, Dave; MacNamara, Aine; Jones, Martin Ian

    2014-01-01

    Talent transfer (TT) is a recently formalised process used to identify and develop talented athletes by selecting individuals who have already succeeded in one sport and transferring them to another. Despite the increasing popularity of TT amongst national organisations and sport governing body professionals, however, there is little empirical evidence as to its efficacy or how it may be most efficiently employed. Accordingly, this investigation was designed to gain a deeper understanding of the effectiveness and underlying mechanisms of TT, achieved through a two-part study. Stage 1 provided a quantitative analysis of the incidence and distribution or, in this respect, epidemiology of TT, finding the most popular transfer to be sprinting to bobsleigh, with an average transfer age of 19 years. Stage 2 scrutinised the TT process and explored the specific cases revealed in stage 1 by examining the perceptions of four sport science support specialists who had worked in TT settings, finding several emergent themes which, they felt, could explain the TT processes. The most prominent theme was the psychosocial mechanism of TT, an aspect currently missing from TT initiatives, suggesting that current TT systems are poorly structured and should redress their approach to develop a more integrated scheme that encompasses all potential mechanisms of transfer.

  5. General equilibrium effects of a supply side GHG mitigation option under the Clean Development Mechanism.

    PubMed

    Timilsina, Govinda R; Shrestha, Ram M

    2006-09-01

    The Clean Development Mechanism (CDM) under the Kyoto Protocol to the United Nations Framework Convention on Climate Change is considered a key instrument to encourage developing countries' participation in the mitigation of global climate change. Reduction of greenhouse gas (GHG) emissions through the energy supply and demand side activities are the main options to be implemented under the CDM. This paper analyses the general equilibrium effects of a supply side GHG mitigation option-the substitution of thermal power with hydropower--in Thailand under the CDM. A static multi-sector general equilibrium model has been developed for the purpose of this study. The key finding of the study is that the substitution of electricity generation from thermal power plants with that from hydropower plants would increase economic welfare in Thailand. The supply side option would, however, adversely affect the gross domestic product (GDP) and the trade balance. The percentage changes in economic welfare, GDP and trade balance increase with the level of substitution and the price of certified emission reduction (CER) units.

  6. Heavy-ion radiobiology: new approaches to delineate mechanisms underlying enhanced biological effectiveness

    NASA Technical Reports Server (NTRS)

    Blakely, E. A.; Kronenberg, A.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    Shortly after the discovery of polonium and radium by Marie Curie and her husband and colleague, Pierre Curie, it was learned that exposure to these alpha-particle emitters produced deleterious biological effects. The mechanisms underlying the increased biological effectiveness of densely ionizing radiations, including alpha particles, neutrons and highly energetic heavy charged particles, remain an active area of investigation. In this paper, we review recent advances in several areas of the radiobiology of these densely ionizing radiations, also known as heavy ions. Advances are described in the areas of DNA damage and repair, chromosome aberrations, mutagenesis, neoplastic transformation in vitro, genomic instability, normal tissue radiobiology and carcinogenesis in vivo. We focus on technical innovations, including novel applications of pulsed-field gel electrophoresis, fluorescence in situ hybridization (FISH), linkage analysis, and studies of gene expression and protein expression. We also highlight the use of new cellular and animal systems, including those with defined DNA repair deficiencies, as well as epithelial cell model systems to assess neoplastic transformation both in vitro and in vivo. The studies reviewed herein have had a substantial impact on our understanding of the genotoxic effects of heavy ions as well as their distinct effects on tissue homeostasis. The use of these radiations in cancer therapy is also discussed. The use of both heavy-ion and proton therapy is on the upswing in several centers around the world, due to their unique energy deposition characteristics that enhance the therapeutic effect and help reduce damage to normal tissue.

  7. Heavy-ion radiobiology: new approaches to delineate mechanisms underlying enhanced biological effectiveness.

    PubMed

    Blakely, E A; Kronenberg, A

    1998-11-01

    Shortly after the discovery of polonium and radium by Marie Curie and her husband and colleague, Pierre Curie, it was learned that exposure to these alpha-particle emitters produced deleterious biological effects. The mechanisms underlying the increased biological effectiveness of densely ionizing radiations, including alpha particles, neutrons and highly energetic heavy charged particles, remain an active area of investigation. In this paper, we review recent advances in several areas of the radiobiology of these densely ionizing radiations, also known as heavy ions. Advances are described in the areas of DNA damage and repair, chromosome aberrations, mutagenesis, neoplastic transformation in vitro, genomic instability, normal tissue radiobiology and carcinogenesis in vivo. We focus on technical innovations, including novel applications of pulsed-field gel electrophoresis, fluorescence in situ hybridization (FISH), linkage analysis, and studies of gene expression and protein expression. We also highlight the use of new cellular and animal systems, including those with defined DNA repair deficiencies, as well as epithelial cell model systems to assess neoplastic transformation both in vitro and in vivo. The studies reviewed herein have had a substantial impact on our understanding of the genotoxic effects of heavy ions as well as their distinct effects on tissue homeostasis. The use of these radiations in cancer therapy is also discussed. The use of both heavy-ion and proton therapy is on the upswing in several centers around the world, due to their unique energy deposition characteristics that enhance the therapeutic effect and help reduce damage to normal tissue.

  8. Heavy-ion radiobiology: new approaches to delineate mechanisms underlying enhanced biological effectiveness

    NASA Technical Reports Server (NTRS)

    Blakely, E. A.; Kronenberg, A.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    Shortly after the discovery of polonium and radium by Marie Curie and her husband and colleague, Pierre Curie, it was learned that exposure to these alpha-particle emitters produced deleterious biological effects. The mechanisms underlying the increased biological effectiveness of densely ionizing radiations, including alpha particles, neutrons and highly energetic heavy charged particles, remain an active area of investigation. In this paper, we review recent advances in several areas of the radiobiology of these densely ionizing radiations, also known as heavy ions. Advances are described in the areas of DNA damage and repair, chromosome aberrations, mutagenesis, neoplastic transformation in vitro, genomic instability, normal tissue radiobiology and carcinogenesis in vivo. We focus on technical innovations, including novel applications of pulsed-field gel electrophoresis, fluorescence in situ hybridization (FISH), linkage analysis, and studies of gene expression and protein expression. We also highlight the use of new cellular and animal systems, including those with defined DNA repair deficiencies, as well as epithelial cell model systems to assess neoplastic transformation both in vitro and in vivo. The studies reviewed herein have had a substantial impact on our understanding of the genotoxic effects of heavy ions as well as their distinct effects on tissue homeostasis. The use of these radiations in cancer therapy is also discussed. The use of both heavy-ion and proton therapy is on the upswing in several centers around the world, due to their unique energy deposition characteristics that enhance the therapeutic effect and help reduce damage to normal tissue.

  9. Changes in Mechanical Properties of Rat Bones under Simulated Effects of Microgravity and Radiation†

    NASA Astrophysics Data System (ADS)

    Walker, Azida H.; Perkins, Otis; Mehta, Rahul; Ali, Nawab; Dobretsov, Maxim; Chowdhury, Parimal

    The aim of this study was to determine the changes in elasticity and lattice structure in leg bone of rats which were: 1) under Hind-Limb Suspension (HLS) by tail for 2 weeks and 2) exposed to a total radiation of 10 Grays in 10 days. The animals were sacrificed at the end of 2 weeks and the leg bones were surgically removed, cleaned and fixed with a buffered solution. The mechanical strength of the bone (elastic modulus) was determined from measurement of bending of a bone when under an applied force. Two methodologies were used: i) a 3-point bending technique and ii) classical bending where bending is accomplished keeping one end fixed. Three point bending method used a captive actuator controlled by a programmable IDEA drive. This allowed incremental steps of 0.047 mm for which the force is measured. The data is used to calculate the stress and the strain. In the second method a mirror attached to the free end of the bone allowed a reflected laser beam spot to be tracked. This provided the displacement measurement as stress levels changed. Analysis of stress vs. strain graph together with solution of Euler-Bernoulli equation for a cantilever beam allowed determination of the elastic modulus of the leg bone for (i) control samples, (ii) HLS samples and (iii) HLS samples with radiation effects. To ascertain changes in the bone lattice structure, the bones were cross-sectioned and imaged with a 20 keV beam of electrons in a Scanning Electron Microscope (SEM). A backscattered detector and a secondary electron detector in the SEM provided the images from well-defined parts of the leg bones. Elemental compositions in combination with mechanical properties (elastic modulus and lattice structure) changes indicated weakening of the bones under space-like conditions of microgravity and radiation.

  10. Effectiveness of pimecrolimus cream for women patients with sensitive skin and its underlying mechanism.

    PubMed

    Xie, Zhi-qiang; Lan, Yu-zhen

    2012-08-01

    To investigate the effectiveness of pimecrolimus cream 1% for sensitive skin in adult women and its underlying mechanisms. The changes of subjective symptoms and signs were evaluated before and after the application of pimecrolimus cream 1% based on the severity of pruritus (SP) and severity of burning sensation (SB) scores, and on a basic syntax and molecular substrate (molecular psychophysics) of nociception and proprioception established by temperature-sensitive transient receptor potential (TRP) channels. The SP and SB scores were significantly decreased in 32 patients with sensitive skin after using topical pimecrolimus cream 1% (P<0.05). Twenty (62.5%) patients showed positive capsaicin-like response (i.e. burning with consequent rapid amelioration of pruritus or burning sensation) and 6 (18.8%) showed positive camphor-like response (i.e. warming with consequent rapid amelioration of pruritus) on application sites after using the topical pimecrolimus cream 1%, and 6 (18.8%) showed negative capsaicin-like response and/or negative camphor-like response. Pimecrolimus may rapidly inhibit or alleviate itch or burning sensation of patients with sensitive skin. The therapeutic effect of pimecrolimus is relevant to the mechanisms that activate or sensitize transient receptor potential vanilloid 1 (TRPV1) and desensitizes TRPV1 in the skin sensory afferents.

  11. Mechanisms underlying uremic encephalopathy.

    PubMed

    Scaini, Giselli; Ferreira, Gabriela Kozuchovski; Streck, Emilio Luiz

    2010-06-01

    In patients with renal failure, encephalopathy is a common problem that may be caused by uremia, thiamine deficiency, dialysis, transplant rejection, hypertension, fluid and electrolyte disturbances or drug toxicity. In general, encephalopathy presents with a symptom complex progressing from mild sensorial clouding to delirium and coma. This review discusses important issues regarding the mechanisms underlying the pathophysiology of uremic encephalopathy. The pathophysiology of uremic encephalopathy up to now is uncertain, but several factors have been postulated to be involved; it is a complex and probably multifactorial process. Hormonal disturbances, oxidative stress, accumulation of metabolites, imbalance in excitatory and inhibitory neurotransmitters, and disturbance of the intermediary metabolism have been identified as contributing factors. Despite continuous therapeutic progress, most neurological complications of uremia, like uremic encephalopathy, fail to fully respond to dialysis and many are elicited or aggravated by dialysis or renal transplantation. On the other hand, previous studies showed that antioxidant therapy could be used as an adjuvant therapy for the treatment of these neurological complications.

  12. Mechanisms underlying dual effects of serotonin during development of Helisoma trivolvis (Mollusca)

    PubMed Central

    2014-01-01

    Background Serotonin (5-HT) is well known as widely distributed modulator of developmental processes in both vertebrates and invertebrates. It is also the earliest neurotransmitter to appear during neuronal development. In aquatic invertebrates, which have larvae in their life cycle, 5-HT is involved in regulation of stages transition including larval metamorphosis and settlement. However, molecular and cellular mechanisms underlying developmental transition in aquatic invertebrate species are yet poorly understood. Earlier we demonstrated that in larvae of freshwater molluscs and marine polychaetes, endogenous 5-HT released from the neurons of the apical sensory organ (ASO) in response to external stimuli retarded larval development at premetamorphic stages, and accelerated it at metamorphic stages. Here we used a freshwater snail Helisoma trivolvis to study molecular mechanisms underlying these dual developmental effects of 5-HT. Results Larval development of H. trivolvis includes transition from premetamorphic to metamorphic stages and shares the main features of metamorphosis with free-swimming aquatic larvae. Three types of 5-HT receptors (5-HT1-, 5-HT4- and 5-HT7-like) are functionally active at premetamorphic (trochophore, veliger) and metamorphic (veliconcha) stages, and expression patterns of these receptors and respective G proteins undergo coordinated changes during development. Stimulation of these receptors modulated cAMP-dependent regulation of cell divisions. Expression of 5-HT4- and 5-HT7-like receptors and their downstream Gs protein was down-regulated during the transition of pre- to metamorphic stage, while expression of 5-HT1 -like receptor and its downstream Gi protein was upregulated. In accordance with relative amount of these receptors, stimulation of 5-HTRs at premetamorphic stages induces developmental retardation, while their stimulation at metamorphic stages induces developmental acceleration. Conclusions We present a novel molecular

  13. Evaluation of the behavior of ceramic powders under mechanical vibration and its effect on the mechanics of auto-granulation

    NASA Astrophysics Data System (ADS)

    Ku, Nicholas

    In ceramic powder processing, the correlations between the constituent particles and the product structure-property outcomes are well established. However, the influence of static powder properties on the dynamic bulk powder behavior in such advance powder processes remains elusive. A multi-scale evaluation is necessary to understand the full effects of the particle ensemble on the bulk powder behavior, ranging from the particle micro-scale to the bulk powder macro-scale. Fine powders, with particle size of 10 ?m or less, often exhibit cohesive behavior. Cohesion in powders can cause poor flowability, affect agglomerate formation, as well as induce powder caking, all of which can be detrimental to the processing of the powders and/or final product structure-property outcomes. For this reason, it is critical to correlate the causal properties of the powders to this detrimental behavior. In this study, the bulk behavior of ceramic powders is observed under a simple powder process: harmonic, mechanical vibration. Four powder samples, two titania and two alumina powders, were studied. The main difference between the two powder variants of each material is particle size. The two alumina (Al2O3) powder samples had a primary particle size at 50% less than, or d50 of, 0.5 and 2.3 microm and the titania (TiO2) powder samples had a d 50 particle size of 0.1 and 1 microm. Due to mechanical vibration, the titania powder variant with a primary particle size of 0.1 microm exhibited a clustering behavior known as auto-granulation. Auto-granulation is the growth of particle clusters within a dry, fine powder bed without the addition of any binder or liquid to the system. The amplitude and frequency of the mechanical vibration was varied to view the effect on the equilibrium granule size and density. Furthermore, imaging of cross-sections of the granules was conducted to provide insight into to the internal microstructure and measure the packing fraction of the constituent

  14. Selenium and anticarcinogenesis: underlying mechanisms.

    PubMed

    Jackson, Matthew I; Combs, Gerald F

    2008-11-01

    To discuss recent research related to anticarcinogenic mechanisms of selenium action in light of the underlying chemical/biochemical functions of the selenium species, likely to be executors of those effects. Recent studies in a variety of model systems have increased the understanding of the anticarcinogenic mechanisms of selenium compounds. These include effects on gene expression, DNA damage and repair, signaling pathways, regulation of cell cycle and apoptosis, metastasis and angiogenesis. These effects would appear to be related to the production of reactive oxygen species produced by the redox cycling, modification of protein-thiols and methionine mimicry. Three principle selenium metabolites appear to execute these effects: hydrogen selenide, methylselenol and selenomethionine. The fact that various selenium compounds can be metabolized to one or more of these species but differ in anticarcinogenic activity indicates competing pathways of their metabolic and chemical/biochemical disposition. Increasing knowledge of selenoprotein polymorphisms has shown that at least some are related to cancer risk and may affect carcinogenesis indirectly by influencing selenium metabolism. The anticarcinogenic effects of selenium compounds constitute intermediate mechanisms with several underlying chemical/biochemical mechanisms such as redox cycling, alteration of protein-thiol redox status and methionine mimicry.

  15. Adverse Effects from Clenbuterol and Ractopamine on Nematode Caenorhabditis elegans and the Underlying Mechanism

    PubMed Central

    Liu, Haicui; Sun, Lingmei; Gao, Wei; Wang, Dayong

    2014-01-01

    In the present study, we used Caenorhabditis elegans assay system to investigate in vivo toxicity from clentuberol and ractopamine and the possible underlying mechanism. Both acute and prolonged exposures to clentuberol or ractopamine decreased brood size and locomotion behavior, and induced intestinal autofluorescence and reactive oxygen species (ROS) production. Although acute exposure to the examined concentrations of clentuberol or ractopamine did not induce lethality, prolonged exposure to 10 µg/L of clentuberol and ractopamine reduced lifespan. At relatively high concentrations, ractopamine exhibited more severe toxicity than clentuberol on nematodes. Overexpression of sod-2 gene encoding a Mn-SOD to prevent induction of oxidative stress effectively inhibited toxicity from clentuberol or ractopamine. Besides oxidative stress, we found that clentuberol might reduce lifespan through influencing insulin/IGF signaling pathway; however, ractopamine might reduce lifespan through affecting both insulin/IGF signaling pathway and TOR signaling pathway. Ractopamine more severely decreased expression levels of daf-16, sgk-1, skn-1, and aak-2 genes than clentuberol, and increased expression levels of daf-2 and age-1 genes at the examined concentration. Therefore, the C. elegans assay system may be useful for assessing the possible toxicity from weight loss agents, and clentuberol and ractopamine may induce toxicity through different molecular mechanisms. PMID:24465573

  16. Effects of fatigue on microstructure and mechanical properties of bone organic matrix under compression.

    PubMed

    Trębacz, Hanna; Zdunek, Artur; Cybulska, Justyna; Pieczywek, Piotr

    2013-03-01

    The aim of the study was to investigate whether a fatigue induced weakening of cortical bone was revealed in microstructure and mechanical competence of demineralized bone matrix. Two types of cortical bone samples (plexiform and Haversian) were use. Bone slabs from the midshaft of bovine femora were subjected to cyclical bending. Fatigued and adjacent control samples were cut into cubes and demineralized in ethylenediaminetetraacetic acid. Demineralized samples were either subjected to microscopic quantitative image analysis, or compressed to failure (in longitudinal or transverse direction) with a simultaneous analysis of acoustic emission (AE). In fatigued samples porosity of organic matrix and average area of pores have risen, along with a change in the pores shape. The effect of fatigue depended on the type of the bone, being more pronounced in the plexiform than in Haversian tissue. Demineralized bone matrix was anisotropic under compressive loads in both types of cortical structure. The main result of fatigue pretreatment on mechanical parameters was a significant decrease of ultimate strain in the transverse direction in plexiform samples. The decrease of strain in this group was accompanied by a considerable increase of the fraction of large pores and a significant change in AE energy.

  17. Renal Protective Effect of Probucol in Rats with Contrast-Induced Nephropathy and its Underlying Mechanism

    PubMed Central

    Wang, Na; Wei, Ri-bao; Li, Qing-ping; Yang, Xi; Li, Ping; Huang, Meng-jie; Wang, Rui; Cai, Guang-yan; Chen, Xiang-mei

    2015-01-01

    Background Contrast-induced nephropathy (CIN) refers to acute renal damage that occurs after the use of contrast agents. This study investigated the renal protective effect of probucol in a rat model of contrast-induced nephropathy and the mechanism of its effect. Material/Methods Twenty-eight Wistar rats were randomly divided into the control group, model group, N-acetylcysteine(NAC) group, and probucol group. We used a rat model of iopromide-induced CIN. One day prior to modeling, the rats received gavage. At 24 h after the modeling, blood biochemistry and urine protein were assessed. Malondialdehyde (MDA) and superoxide dismutase (SOD) were measured in renal tissue. Kidney sections were created for histopathological examination. Results The model group of rats showed significantly elevated levels of blood creatinine, urea nitrogen, 24-h urine protein, histopathological scores, and parameters of oxidative stress (P<0.05). Both the NAC and probucol groups demonstrated significantly lower Scr, BUN, and urine protein levels compared to the model group (P<0.05), with no significant difference between these 2 groups. The NAC group and the probucol group had significantly lower MDA and higher SOD than the model group at 24 h after modeling (P<0.05). The 8-OHdG-positive tubule of the probucol group and NAC group were significantly lower than those of the model group (p=0.046, P=0.0008), with significant difference between these 2 groups (P=0.024). Conclusions Probucol can effectively reduce kidney damage caused by contrast agent. The underlying mechanism may be that probucol accelerates the recovery of renal function and renal pathology by reducing local renal oxidative stress. PMID:26408630

  18. Manufacturing Error Effects on Mechanical Properties and Dynamic Characteristics of Rotor Parts under High Acceleration

    NASA Astrophysics Data System (ADS)

    Jia, Mei-Hui; Wang, Cheng-Lin; Ren, Bin

    2017-07-01

    Stress, strain and vibration characteristics of rotor parts should be changed significantly under high acceleration, manufacturing error is one of the most important reason. However, current research on this problem has not been carried out. A rotor with an acceleration of 150,000 g is considered as the objective, the effects of manufacturing errors on rotor mechanical properties and dynamic characteristics are executed by the selection of the key affecting factors. Through the force balance equation of the rotor infinitesimal unit establishment, a theoretical model of stress calculation based on slice method is proposed and established, a formula for the rotor stress at any point derives. A finite element model (FEM) of rotor with holes is established with manufacturing errors. The changes of the stresses and strains of a rotor in parallelism and symmetry errors are analyzed, which verify the validity of the theoretical model. The pre-stressing modal analysis is performed based on the aforementioned static analysis. The key dynamic characteristics are analyzed. The results demonstrated that, as the parallelism and symmetry errors increase, the equivalent stresses and strains of the rotor slowly increase linearly, the highest growth rate does not exceed 4%, the maximum change rate of natural frequency is 0.1%. The rotor vibration mode is not significantly affected. The FEM construction method of the rotor with manufacturing errors can be utilized for the quantitative research on rotor characteristics, which will assist in the active control of rotor component reliability under high acceleration.

  19. Subcritical crack-growth behavior of borosilicate glass under cyclic loads: Evidence of a mechanical fatigue effect

    SciTech Connect

    Dill, S.J.; Dauskardt, R.H.; Bennison, S.J.

    1997-03-01

    Amorphous glasses are generally considered immune to mechanical fatigue effects associated with cyclic loading. In this study surprising new evidence is presented for a mechanical fatigue effect in borosilicate glass, in both moist air and dry nitrogen environments. The fatigue effect occurs at near threshold subcritical crack-growth rates (da/dt < 3 {times} 10{sup {minus}8} m/s) as the crack extension per cycle approaches the dimensions of the borosilicate glass network. While subcritical crack growth under cyclic loads at higher load levels is entirely consistent with environmentally assisted crack growth, lower growth rates actually exceed those measured under monotonic loads. This suggests a mechanical fatigue effect which accelerates subcritical crack-growth rates. Likely mechanisms for the mechanical fatigue effect are presented.

  20. Pharmacological mechanisms underlying the cardiovascular effects of the "bath salt" constituent 3,4-methylenedioxypyrovalerone (MDPV).

    PubMed

    Schindler, Charles W; Thorndike, Eric B; Suzuki, Masaki; Rice, Kenner C; Baumann, Michael H

    2016-12-01

    3,4-Methylenedioxypyrovalerone (MDPV) is a synthetic cathinone with stimulatory cardiovascular effects that can lead to serious medical complications. Here, we examined the pharmacological mechanisms underlying these cardiovascular actions of MDPV in conscious rats. Male Sprague-Dawley rats had telemetry transmitters surgically implanted for the measurement of BP and heart rate (HR). On test days, rats were placed individually in standard isolation cubicles. Following drug treatment, cardiovascular parameters were monitored for 3 h sessions. Racemic MDPV (0.3-3.0 mg·kg(-1) ) increased BP and HR in a dose-dependent manner. The S(+) enantiomer (0.3-3.0 mg·kg(-1) ) of MDPV produced similar effects, while the R(-) enantiomer (0.3-3.0 mg·kg(-1) ) had no effects. Neither of the hydroxylated phase I metabolites of MDPV altered cardiovascular parameters significantly from baseline. Pretreatment with the ganglionic blocker chlorisondamine (1 and 3 mg·kg(-1) ) antagonized the increases in BP and HR produced by 1 mg·kg(-1) MDPV. The α1 -adrenoceptor antagonist prazosin (0.3 mg·kg(-1) ) attenuated the increase in BP following MDPV, while the β-adrenoceptor antagonists propranolol (1 mg·kg(-1) ) and atenolol (1 and 3 mg·kg(-1) ) attenuated the HR increases. The S(+) enantiomer appeared to mediate the cardiovascular effects of MDPV, while the metabolites of MDPV did not alter BP or HR significantly; MDPV increased BP and HR through activation of central sympathetic outflow. Mixed-action α/β-adrenoceptor antagonists may be useful as treatments in counteracting the adverse cardiovascular effects of MDPV. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  1. Inhibitory Effects and Underlying Mechanism of 7-Hydroxyflavone Phosphate Ester in HeLa Cells

    PubMed Central

    Liu, Liguo; Chen, Xiaolan; Yang, Fang; Jin, Qi

    2012-01-01

    Chrysin and its phosphate ester have previously been shown to inhibit cell proliferation and induce apoptosis in Hela cells; however, the underlying mechanism remains to be characterized. In the present study, we therefore synthesized diethyl flavon-7-yl phosphate (FP, C19H19O6P) by a simplified Atheron-Todd reaction, and explored its anti-tumor characteristics and mechanisms. Cell proliferation, cell cycle progression and apoptosis were measured by MTS, flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling techniques, respectively in human cervical cancer HeLa cells treated with 7-hydroxyflavone (HF) and FP. p21, proliferating cell nuclear antigen (PCNA) and cAMP levels in Hela cells were analyzed by western blot and radioimmunoassay. Both HF and FP inhibited proliferation and induced apoptosis in HeLa cells via induction of PCNA/p21 expression, cleaved caspase-3/poly (ADP-ribose) polymerase (PARP)-1, elevation of cAMP levels, and cell cycle arrest with accumulation of cells in the G0/G1 fraction. The effects of FP were more potent than those of HF. The interactions of FP with Ca2+-calmodulin (CaM) and Ca2+-CaM-phosphodiesterase (PDE)1 were explored by electrospray ionization-mass spectrometry and fluorescence spectra. FP, but not HF, formed non-covalent complexes with Ca2+-CaM-PDE1, indicating that FP is an inhibitor of PDE1, and resulting in elevated cellular cAMP levels. It is possible that the elevated cAMP levels inhibit growth and induce apoptosis in Hela cells through induction of p21 and cleaved caspase-3/PARP-1 expression, and causing down-regulation of PCNA and cell cycle arrest with accumulation of cells in the G0/G1 and G2/M fractions. In conclusion, FP was shown to be a Ca2+-CaM-PDE inhibitor, which might account for its underlying anti-cancer mechanism in HeLa cells. These observations clearly demonstrate the special roles of phosphorylated flavonoids in biological processes, and suggest that FP might represent a potential

  2. Renoprotective effects of aliskiren on adenine-induced tubulointerstitial nephropathy: possible underlying mechanisms.

    PubMed

    Hussein, Abdelaziz M; Malek, Hala Abdel; Saad, Mohamed-Ahdy

    2016-08-01

    The present study investigated the possible renoprotective effect of direct renin inhibitor (aliskiren) on renal dysfunctions, as well as its underlying mechanisms in rat model of adenine-induced tubulointerstitial nephropathy. Forty male Sprague-Dawley rats were randomized into 4 groups; normal group, aliskiren group (normal rats received 10 mg/kg aliskiren), adenine group (animals received high-adenine diet for 4 weeks and saline for 12 weeks), and adenine + aliskiren group (animals received adenine for 4 weeks and aliskiren 10 mg/kg for 12 weeks). It was found that adenine caused significant decrease in body mass, Hb, HR, serum Ca(2+), eNOS and nrf2 expression, GSH, and catalase in kidney tissues with significant increase in arterial blood pressure (ABP), serum creatinine, BUN, plasma renin activity (PRA), K(+) and P, urinary albumin excretion (UAE), caspase-3, and MDA (lipid peroxidation marker) in kidney tissues compared to normal group (p < 0.05). Administration of aliskiren caused significant improvement in all studied parameters compared to adenine group (p < 0.05). We concluded that aliskiren has renoprotective effect against adenine-induced nephropathy. This might be due to inhibition of PRA, attenuation of oxidative stress, activation of Nrf2 and eNOS genes, and suppression of caspase-3.

  3. Mechanisms underlying the biphasic effect of vitamin K1 (phylloquinone) on arterial blood pressure.

    PubMed

    Tirapelli, Carlos R; Resstel, Leonardo B M; de Oliveira, Ana M; Corrêa, Fernando M A

    2008-07-01

    Phylloquinone (vitamin K(1), VK(1)) is widely used therapeutically and intravenous administration of this quinone can induce hypotension. We aimed to investigate the mechanisms underlying the effects induced by VK(1) on arterial blood pressure. With this purpose a catheter was inserted into the abdominal aorta of male Wistar rats for blood pressure and heart rate recording. Bolus intravenous injection of VK(1) (0.5-20 mgkg(-1)) produced a transient increase in blood pressure followed by a fall. Both the pressor and depressor response induced by VK(1) were dose-dependent. On the other hand, intravenous injection of VK(1) did not alter heart rate. The nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME, 10 and 20 mgkg(-1)) reduced both the increase and decrease in blood pressure induced by VK(1) (5 mgkg(-1)). On the other hand, indometacin (10 mg kg(-1)), a non-selective cyclooxygenase inhibitor, did not alter the increase in mean arterial pressure (MAP) induced by VK(1). However, VK(1)-induced fall in MAP was significantly attenuated by indometacin. We concluded that VK(1) induces a dose-dependent effect on blood pressure that consists of an acute increase followed by a more sustained decrease in MAP. The hypotension induced by VK(1) involves the activation of the nitric oxide (NO) pathway and the release of vasodilator prostanoid(s).

  4. Effects and underlying mechanisms of irisin on the proliferation and apoptosis of pancreatic β cells

    PubMed Central

    Du, Fang; Li, Xin; Wang, Mingming; Duan, Ruixue; Zhang, Jiaxin; Wu, Yaru; Zhang, Qi

    2017-01-01

    Pancreatic β cell dysfunction and reduction due to glucose toxicity play a crucial role in the development of type 2 diabetes mellitus (T2DM). Irisin, a novel exercise-induced myokine, reduces obesity, improves insulin resistance and lowers blood glucose by promoting the browning of white adipose tissue, thereby enhancing thermogenesis and increasing energy expenditure. Recent studies have reported that irisin promotes cell proliferation and protects cells from apoptosis. However, the effects of irisin on pancreatic β cells are unknown. Thus, the aim of this study was to investigate the effects and the potential underlying mechanisms of irisin on pancreatic β cell proliferation and apoptosis induced by high glucose. Both in vitro (INS-1 cells) and in vivo (a T2DM rat model) experiments were conducted. Irisin significantly increased the proliferation of INS-1 cells, with the most significant effect observed at 24 h with 100 ng/ml irisin. Irisin also promoted INS-1 cell proliferation via the ERK and p38 MAPK signaling pathways, protected the cells from high-glucose-induced apoptosis by regulating the expression of caspases, Bad, Bax, Bcl-2 and Bcl-xl, and improved pancreatic β cell function. Irisin significantly reduced the body weight and blood glucose values and increased the serum insulin levels of the diabetic rats. An oral glucose tolerance test (OGTT) indicated that irisin also improved the glucose tolerance of T2DM rats. Together, these findings suggest that irisin may have applications in the prevention and treatment of T2DM because of its protective effect on the secretion of pancreatic β cells. PMID:28394923

  5. Effects and underlying mechanisms of irisin on the proliferation and apoptosis of pancreatic β cells.

    PubMed

    Liu, Shiwei; Du, Fang; Li, Xin; Wang, Mingming; Duan, Ruixue; Zhang, Jiaxin; Wu, Yaru; Zhang, Qi

    2017-01-01

    Pancreatic β cell dysfunction and reduction due to glucose toxicity play a crucial role in the development of type 2 diabetes mellitus (T2DM). Irisin, a novel exercise-induced myokine, reduces obesity, improves insulin resistance and lowers blood glucose by promoting the browning of white adipose tissue, thereby enhancing thermogenesis and increasing energy expenditure. Recent studies have reported that irisin promotes cell proliferation and protects cells from apoptosis. However, the effects of irisin on pancreatic β cells are unknown. Thus, the aim of this study was to investigate the effects and the potential underlying mechanisms of irisin on pancreatic β cell proliferation and apoptosis induced by high glucose. Both in vitro (INS-1 cells) and in vivo (a T2DM rat model) experiments were conducted. Irisin significantly increased the proliferation of INS-1 cells, with the most significant effect observed at 24 h with 100 ng/ml irisin. Irisin also promoted INS-1 cell proliferation via the ERK and p38 MAPK signaling pathways, protected the cells from high-glucose-induced apoptosis by regulating the expression of caspases, Bad, Bax, Bcl-2 and Bcl-xl, and improved pancreatic β cell function. Irisin significantly reduced the body weight and blood glucose values and increased the serum insulin levels of the diabetic rats. An oral glucose tolerance test (OGTT) indicated that irisin also improved the glucose tolerance of T2DM rats. Together, these findings suggest that irisin may have applications in the prevention and treatment of T2DM because of its protective effect on the secretion of pancreatic β cells.

  6. Effect of Positive End-Expiratory Pressure on Central Venous Pressure in Patients under Mechanical Ventilation

    PubMed Central

    Shojaee, Majid; Sabzghabaei, Anita; Alimohammadi, Hossein; Derakhshanfar, Hojjat; Amini, Afshin; Esmailzadeh, Bahareh

    2017-01-01

    Introduction: Finding the probable governing pattern of PEEP and CVP changes is an area of interest for in-charge physicians and researchers. Therefore, the present study was designed with the aim of evaluating the relationship between the mentioned pressures. Methods: In this quasi-experimental study, patients under mechanical ventilation were evaluated with the aim of assessing the effect of PEEP change on CVP. Non-trauma patients, over 18 years of age, who were under mechanical ventilation and had stable hemodynamics, with inserted CV line were entered. After gathering demographic data, patients underwent 0, 5, and 10 cmH2O PEEPs and the respective CVPs of the mentioned points were recorded. The relationship of CVP and PEEP in different cut points were measured using SPSS 21.0 statistical software. Results: 60 patients with the mean age of 73.95 ± 11.58 years were evaluated (68.3% male). The most frequent cause of ICU admission was sepsis with 45.0%. 5 cmH2O increase in PEEP led to 2.47 ± 1.53 mean difference in CVP level. If the PEEP baseline is 0 at the time of 5 cmH2O increase, it leads to a higher raise in CVP compared to when the baseline is 5 cmH2O (2.47 ± 1.53 vs. 1.57 ± 1.07; p = 0.039). The relationship between CVP and 5 cmH2O (p = 0.279), and 10 cmH2O (p = 0.292) PEEP changes were not dependent on the baseline level of CVP. Conclusion: The findings of this study revealed the direct relationship between PEEP and CVP. Approximately, a 5 cmH2O increase in PEEP will be associated with about 2.5 cmH2O raise in CVP. When applying a 5 cmH2O PEEP increase, if the baseline PEEP is 0, it leads to a significantly higher raise in CVP compared to when it is 5 cmH2O (2.5 vs. 1.6). It seems that sex, history of cardiac failure, baseline CVP level, and hypertension do not have a significant effect in this regard. PMID:28286808

  7. The effects and underlying mechanism of excessive iodide on excessive fluoride-induced thyroid cytotoxicity.

    PubMed

    Liu, Hongliang; Zeng, Qiang; Cui, Yushan; Yu, Linyu; Zhao, Liang; Hou, Changchun; Zhang, Shun; Zhang, Lei; Fu, Gang; Liu, Yeming; Jiang, Chunyang; Chen, Xuemin; Wang, Aiguo

    2014-07-01

    In many regions, excessive fluoride and excessive iodide coexist in groundwater, which may lead to biphasic hazards to human thyroid. To explore fluoride-induced thyroid cytotoxicity and the mechanism underlying the effects of excessive iodide on fluoride-induced cytotoxicity, a thyroid cell line (Nthy-ori 3-1) was exposed to excessive fluoride and/or excessive iodide. Cell viability, lactate dehydrogenase (LDH) leakage, reactive oxygen species (ROS) formation, apoptosis, and the expression levels of inositol-requiring enzyme 1 (IRE1) pathway-related molecules were detected. Fluoride and/or iodide decreased cell viability and increased LDH leakage and apoptosis. ROS, the expression levels of glucose-regulated protein 78 (GRP78), IRE1, C/EBP homologous protein (CHOP), and spliced X-box-binding protein-1 (sXBP-1) were enhanced by fluoride or the combination of the two elements. Collectively, excessive fluoride and excessive iodide have detrimental influences on human thyroid cells. Furthermore, an antagonistic interaction between fluoride and excessive iodide exists, and cytotoxicity may be related to IRE1 pathway-induced apoptosis.

  8. Molecular mechanisms underlying the effects of statins in the central nervous system.

    PubMed

    McFarland, Amelia J; Anoopkumar-Dukie, Shailendra; Arora, Devinder S; Grant, Gary D; McDermott, Catherine M; Perkins, Anthony V; Davey, Andrew K

    2014-11-10

    3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, commonly referred to as statins, are widely used in the treatment of dyslipidaemia, in addition to providing primary and secondary prevention against cardiovascular disease and stroke. Statins' effects on the central nervous system (CNS), particularly on cognition and neurological disorders such as stroke and multiple sclerosis, have received increasing attention in recent years, both within the scientific community and in the media. Current understanding of statins' effects is limited by a lack of mechanism-based studies, as well as the assumption that all statins have the same pharmacological effect in the central nervous system. This review aims to provide an updated discussion on the molecular mechanisms contributing to statins' possible effects on cognitive function, neurodegenerative disease, and various neurological disorders such as stroke, epilepsy, depression and CNS cancers. Additionally, the pharmacokinetic differences between statins and how these may result in statin-specific neurological effects are also discussed.

  9. Molecular Mechanisms Underlying the Effects of Statins in the Central Nervous System

    PubMed Central

    McFarland, Amelia J.; Anoopkumar-Dukie, Shailendra; Arora, Devinder S.; Grant, Gary D.; McDermott, Catherine M.; Perkins, Anthony V.; Davey, Andrew K.

    2014-01-01

    3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, commonly referred to as statins, are widely used in the treatment of dyslipidaemia, in addition to providing primary and secondary prevention against cardiovascular disease and stroke. Statins’ effects on the central nervous system (CNS), particularly on cognition and neurological disorders such as stroke and multiple sclerosis, have received increasing attention in recent years, both within the scientific community and in the media. Current understanding of statins’ effects is limited by a lack of mechanism-based studies, as well as the assumption that all statins have the same pharmacological effect in the central nervous system. This review aims to provide an updated discussion on the molecular mechanisms contributing to statins’ possible effects on cognitive function, neurodegenerative disease, and various neurological disorders such as stroke, epilepsy, depression and CNS cancers. Additionally, the pharmacokinetic differences between statins and how these may result in statin-specific neurological effects are also discussed. PMID:25391045

  10. The underlying cellular mechanism in the effect of tetramethylpyrazine on the anion secretion of colonic mucosa.

    PubMed

    Zhao, Wen-Chao; Duan, Dong-Xiao; Wang, Zhi-Ju; Tang, Ning; Yan, Ming; Zhang, Gui-Hong; Xing, Ying

    2005-12-01

    The present study investigated the underlying cellular mechanism in the effect of ligustrazine (tetramethylpyrazine, TMP) on the anion secretion of colonic mucosa in rats using a short-circuit current (I(sc)) technique in conjunction with "tool drugs." (i) After a pretreatment of the tissues by bathing the bilateral surface with Cl(-)-free Krebs-Henseleit (K-H) solution for over an hour, a basolateral application of 1 mmol/l TMP produced an increase in I(sc), and the total charges transported for 30 min were about 8.7 +/- 1.4 mC/cm(2); an apical pretreatment of DPC and a basolateral addition of acetazolamide decreased the TMP-induced I(sc) by about 60% (P < 0.01) and 45% (P < 0.05), respectively; a basolateral application of 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), the inhibitor of Na(+)-HCO(3)(-) cotransporter (NBC), did not alter the TMP-induced I(sc). (ii) After the bilateral surface of mucosa was bathed with HCO(3)(-)-free K-H solution for over an hour, a basolateral application of 1 mmol/l TMP produced an increase in I(sc), and the total charges transported in 30 min were about 8.3 +/- 1.9 mC/cm(2); an apical pretreatment of DPC (1 mmol/l), the inhibitor of Cl(-) channels, decreased the TMP-induced Isc by about 84% (P < 0.01). The basolateral presence of bumetanide (0.1 mmol/l), the inhibitor of Na(+)-K(+)-Cl(-) cotransporter (NKCC), significantly reduced the TMP-evoked I(sc) by about 86% (P < 0.01). In conclusion, (i) ligustrazine could promote colonic mucosa secretion Cl(-) via apical Cl(-) channels and basolateral NKCC; (ii) ligustrazine could promote colonic mucosa secretion HCO(3)(-) via apical Cl(-) channels and the basolateral diffusion of CO(2).

  11. REVIEWMolecular mechanisms underlying physiological and receptor pleiotropic effects mediated by GLP-1R activation

    PubMed Central

    Pabreja, K; Mohd, M A; Koole, C; Wootten, D; Furness, S G B

    2014-01-01

    The incidence of type 2 diabetes in developed countries is increasing yearly with a significant negative impact on patient quality of life and an enormous burden on the healthcare system. Current biguanide and thiazolidinedione treatments for type 2 diabetes have a number of clinical limitations, the most serious long-term limitation being the eventual need for insulin replacement therapy (Table 1). Since 2007, drugs targeting the glucagon-like peptide-1 (GLP-1) receptor have been marketed for the treatment of type 2 diabetes. These drugs have enjoyed a great deal of success even though our underlying understanding of the mechanisms for their pleiotropic effects remain poorly characterized even while major pharmaceutical companies actively pursue small molecule alternatives. Coupling of the GLP-1 receptor to more than one signalling pathway (pleiotropic signalling) can result in ligand-dependent signalling bias and for a peptide receptor such as the GLP-1 receptor this can be exaggerated with the use of small molecule agonists. Better consideration of receptor signalling pleiotropy will be necessary for future drug development. This is particularly important given the recent failure of taspoglutide, the report of increased risk of pancreatitis associated with GLP-1 mimetics and the observed clinical differences between liraglutide, exenatide and the newly developed long-acting exenatide long acting release, albiglutide and dulaglutide. Linked ArticlesThis article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-5 PMID:23889512

  12. OMOSHI Effect: A New Mechanism for Mass Accretion under the Radiation Pressure in Massive Star Formation

    NASA Astrophysics Data System (ADS)

    Tanaka, Kei; Nakamoto, Taishi

    2009-08-01

    In a massive-star formation process, a high-mass accretion rate is considered to be needed to overcome the strong radiation pressure at the dust sublimation front. We examined the accretion structure near the dust sublimation front and found a new mechanism to overcome this radiation pressure. The weight of the accumulated mass in a stagnant flow near the dust sublimation front helps with the mass accretion. We call this mechanism the ``OMOSHI effect,'' where OMOSHI is an acronym for ``One Mechanism for Overcoming Stellar High radiation pressure by weight.'' OMOSHI is also a Japanese noun meaning a weight that is put on something to prevent it from moving. This mechanism relaxes the condition for the massive star formation.

  13. Study on fatigue damage characteristics of deformable mirrors under thermal-mechanical coupling effect.

    PubMed

    Chen, Lixia; Wu, Zhen; Zhang, Bin; Sun, Nianchun

    2016-11-01

    In a wavefront correction process, both the mechanical effect and the irradiation of a high-power continuous-wave laser distort the deformable mirror (DM) surface, which inevitably speeds up the fatigue damage of the DM. By utilizing the stress analysis model for the fatigue damage of the DM, the fatigue damage effects are analyzed quantitatively on the consideration of thermal-mechanical coupling effects, and the fatigue life prediction model has further been proposed based on the S-N curve and Miner cumulative damage theory. On this basis, thermal-mechanical conditions have been analyzed, and the influence of laser parameters on the fatigue life of the DM has also been discussed in detail. The results indicate that the increasing of maximum temperature rise of the DM leads to the increasing of stress, and further brings about the decreasing of the fatigue life. Meanwhile, the position at the rear surface of the DM subjected to the maximum stress always presents the minimum fatigue life. Furthermore, the laser irradiation makes the DM more easily damaged when the DM is correcting a distorted wavefront, and the fatigue life decreases with the increasing of irradiation time and power density for a given peak and valley (PV) value of the corrected wavefront. Additionally, the fatigue life also decreases with the increasing of power density and the decreasing of spot radius for a certain total irradiation. On the other hand, for the given laser parameters, the influence of the mechanical effect on fatigue life is gradually apparent with increasing PV value of the corrected wavefront, and when the PV value is more than 2λ, the mechanical effect instead of the thermal effect becomes the key factor for fatigue damage of the DM.

  14. Peripheral Afferent Mechanisms Underlying Acupuncture Inhibition of Cocaine Behavioral Effects in Rats

    PubMed Central

    Lee, Bong Hyo; Bae, Jong Han; Kim, Kwang Joong; Steffensen, Scott C.; Leem, Joong Woo; Yang, Chae Ha; Kim, Hee Young

    2013-01-01

    Administration of cocaine increases locomotor activity by enhancing dopamine transmission. To explore the peripheral mechanisms underlying acupuncture treatment for drug addiction, we developed a novel mechanical acupuncture instrument (MAI) for objective mechanical stimulation. The aim of this study was to evaluate whether acupuncture inhibition of cocaine-induced locomotor activity is mediated through specific peripheral nerves, the afferents from superficial or deep tissues, or specific groups of nerve fibers. Mechanical stimulation of acupuncture point HT7 with MAI suppressed cocaine-induced locomotor activity in a stimulus time-dependent manner, which was blocked by severing the ulnar nerve or by local anesthesia. Suppression of cocaine-induced locomotor activity was elicited after HT7 stimulation at frequencies of either 50 (for Meissner corpuscles) or 200 (for Pacinian corpuscles) Hz and was not affected by block of C/Aδ-fibers in the ulnar nerve with resiniferatoxin, nor generated by direct stimulation of C/Aδ-fiber afferents with capsaicin. These findings suggest that HT7 inhibition of cocaine-induced locomotor activity is mediated by A-fiber activation of ulnar nerve that originates in superficial and deep tissue. PMID:24260531

  15. Peripheral afferent mechanisms underlying acupuncture inhibition of cocaine behavioral effects in rats.

    PubMed

    Kim, Seol Ah; Lee, Bong Hyo; Bae, Jong Han; Kim, Kwang Joong; Steffensen, Scott C; Ryu, Yeon-Hee; Leem, Joong Woo; Yang, Chae Ha; Kim, Hee Young

    2013-01-01

    Administration of cocaine increases locomotor activity by enhancing dopamine transmission. To explore the peripheral mechanisms underlying acupuncture treatment for drug addiction, we developed a novel mechanical acupuncture instrument (MAI) for objective mechanical stimulation. The aim of this study was to evaluate whether acupuncture inhibition of cocaine-induced locomotor activity is mediated through specific peripheral nerves, the afferents from superficial or deep tissues, or specific groups of nerve fibers. Mechanical stimulation of acupuncture point HT7 with MAI suppressed cocaine-induced locomotor activity in a stimulus time-dependent manner, which was blocked by severing the ulnar nerve or by local anesthesia. Suppression of cocaine-induced locomotor activity was elicited after HT7 stimulation at frequencies of either 50 (for Meissner corpuscles) or 200 (for Pacinian corpuscles) Hz and was not affected by block of C/Aδ-fibers in the ulnar nerve with resiniferatoxin, nor generated by direct stimulation of C/Aδ-fiber afferents with capsaicin. These findings suggest that HT7 inhibition of cocaine-induced locomotor activity is mediated by A-fiber activation of ulnar nerve that originates in superficial and deep tissue.

  16. Snapping mechanical metamaterials under tension.

    PubMed

    Rafsanjani, Ahmad; Akbarzadeh, Abdolhamid; Pasini, Damiano

    2015-10-21

    A snapping mechanical metamaterial is designed, which exhibits a sequential snap-through behavior under tension. The tensile response of this mechanical metamaterial can be altered by tuning the architecture of the snapping segments to achieve a range of nonlinear mechanical responses, including monotonic, S-shaped, plateau, and non-monotonic snap-through behavior.

  17. Mechanisms underlying beneficial health effects of tea catechins to improve insulin resistance and endothelial dysfunction.

    PubMed

    Kim, Jeong-A

    2008-06-01

    Tea is a popular beverage with a number of putative beneficial health effects. A recent large epidemiological study in Japan demonstrates that increased tea consumption is associated with decreased cardiovascular mortality (but not cancer mortality) in a dose-dependent manner. The polyphenol epigallocatechin-3-gallate (EGCG) is the most abundant tea catechin. Beneficial effects of EGCG therapy have been reported in a number of human and animal studies. Emerging evidence suggests that EGCG may improve endothelial function, hypertension, coronary heart disease, obesity, insulin resistance, as well as glucose and lipid metabolism. Studies in cultured cells and animal models suggest molecular mechanisms for EGCG to activate specific cellular signaling pathways that may play major roles in prevention and amelioration of cardiovascular and metabolic diseases. In this review, the beneficial health effects of tea and molecular mechanisms of EGCG related to cardiovascular and metabolic diseases will be discussed.

  18. Effects of plant intraspecific diversity across three trophic levels: Underlying mechanisms and plant traits.

    PubMed

    Abdala-Roberts, Luis; Hernández-Cumplido, Johnattan; Chel-Guerrero, Luis; Betancur-Ancona, David; Benrey, Betty; Moreira, Xoaquín

    2016-10-01

    Although there is increasing recognition of the effects of plant intraspecific diversity on consumers, the mechanisms by which such effects cascade-up to higher trophic levels remain elusive. We evaluated the effects of plant (lima bean, Phaseolus lunatus) intraspecific diversity on a suite of insect herbivores (leaf-chewers, aphids, and seed-eating beetles) and their third trophic-level associates (parasitoids and aphid-tending ants). We established plots of three plants, classified as monocultures of one population source or polycultures with mixtures of three of the four population sources (N = 16 plots per level of diversity). Within each plot, plants were individually placed in pots and canopy contact was prevented, therefore eliminating diversity effects on consumers arising from changes in plant traits due to plant physical interactions. Plant diversity reduced damage by leaf-chewers as well as aphid abundance, and the latter effect in turn reduced ant abundance. In contrast, plant diversity increased the abundance of seed-eating beetles, but did not influence their associated parasitoids. There were no effects of diversity on seed traits potentially associated with seed predation, suggesting that differences in early season herbivory between monocultures and polycultures (a likely mechanism of diversity effects on plants since plant interactions were prevented) did not drive concomitant changes in plant traits. This study emphasizes that effects of plant intraspecific diversity on consumers are contingent upon differences in associate responses within and among higher trophic levels and suggests possible mechanisms by which such effects propagate up this food web. © 2016 Botanical Society of America.

  19. Molecular mechanisms underlying the immunomodulatory effects of mistletoe (Viscum album L.) extracts Iscador.

    PubMed

    Elluru, Sriramulu; Duong Van Huyen, Jean-Paul; Delignat, Sandrine; Prost, Fabienne; Bayry, Jagadeesh; Kazatchkine, Michel D; Kaveri, Srini V

    2006-06-01

    Viscum album (VA) preparations (Iscador) consist of aqueous extracts from different types of European mistletoe. Biologically active components of VA extracts include mistletoe lectins (ML) and viscotoxins. The treatment with VA extracts or with purified ML has been shown to be associated with tumor regression in several in vivo experimental models of tumoral implantation. The mechanisms underlying the anti-tumoral activity of VA or ML are complex and involve apoptosis, angiogenesis and immunomodulation. This review provides an account of the current status of the understanding of the VA-associated immunomodulation in various cell types including lymphoblastoid, monocytic or endothelial cell lines.

  20. Acupuncture and somatic nerve stimulation: mechanism underlying effects on cardiovascular and renal activities.

    PubMed

    Yao, T

    1993-01-01

    Acupuncture and acupuncture-like somatic nerve stimulation exert modulatory effects upon cardiovascular and renal activity under different physiological and pathophysiological conditions. It seems that acupuncture facilitates the physiological reflexes in response to changes in internal or external environment. Thus, acupuncture can lower high blood pressure in hypertensives, elevate low blood pressure in hypotensives, and promote urinary sodium excretion during hyperosmotic challenge, etc. Acupuncture effects are thought to be mediated by activation of the small myelinated fibres coming from muscle receptors. Preliminary studies show that different neurotransmitters and neuropeptides are involved in the effects of acupuncture.

  1. Advanced paternal age effects in neurodevelopmental disorders—review of potential underlying mechanisms

    PubMed Central

    Janecka, M; Mill, J; Basson, M A; Goriely, A; Spiers, H; Reichenberg, A; Schalkwyk, L; Fernandes, C

    2017-01-01

    Multiple epidemiological studies suggest a relationship between advanced paternal age (APA) at conception and adverse neurodevelopmental outcomes in offspring, particularly with regard to increased risk for autism and schizophrenia. Conclusive evidence about how age-related changes in paternal gametes, or age-independent behavioral traits affect neural development is still lacking. Recent evidence suggests that the origins of APA effects are likely to be multidimensional, involving both inherited predisposition and de novo events. Here we provide a review of the epidemiological and molecular findings to date. Focusing on the latter, we present the evidence for genetic and epigenetic mechanisms underpinning the association between late fatherhood and disorder in offspring. We also discuss the limitations of the APA literature. We propose that different hypotheses relating to the origins of the APA effects are not mutually exclusive. Instead, multiple mechanisms likely contribute, reflecting the etiological complexity of neurodevelopmental disorders. PMID:28140401

  2. Roux-en-Y gastric bypass: effects on feeding behavior and underlying mechanisms

    PubMed Central

    Manning, Sean; Pucci, Andrea; Batterham, Rachel L.

    2015-01-01

    Bariatric surgery is the most effective treatment for severe obesity, producing marked sustained weight loss with associated reduced morbidity and mortality. Roux-en-Y gastric bypass surgery (RYGBP), the most commonly performed procedure, was initially viewed as a hybrid restrictive-malabsorptive procedure. However, over the last decade, it has become apparent that alternative physiologic mechanisms underlie its beneficial effects. RYGBP-induced altered feeding behavior, including reduced appetite and changes in taste/food preferences, is now recognized as a key driver of the sustained postoperative weight loss. The brain ultimately determines feeding behavior, and here we review the mechanisms by which RYGBP may affect central appetite-regulating pathways. PMID:25729850

  3. Why do we slow down after an error? Mechanisms underlying the effects of posterror slowing.

    PubMed

    Jentzsch, Ines; Dudschig, Carolin

    2009-02-01

    People often become slower in their performance after committing an error, which is usually explained by strategic control adjustments towards a more conservative response threshold. The present study tested an alternative hypothesis for explaining posterror slowing in terms of behavioural interferences resulting from error monitoring by manipulating stimulus contrast and categorization difficulty in a choice reaction time task. The response-stimulus interval (RSI) was either short or long, using a between-subject (Experiment 1) and a within-subject design (Experiment 2). Posterror slowing was larger and posterror accuracy lower in short than in long RSI situations. Effects of stimulus contrast disappeared in posterror trials when RSI was short. At long RSIs, stimulus contrast was additive with posterror slowing. The results support the idea that at least two mechanisms contribute to posterror slowing: a capacity-limited error-monitoring process with the strongest influence at short RSIs and a criterion adjustment mechanism at longer RSIs.

  4. Probing Mechanical Properties of Jurkat Cells under the Effect of ART Using Oscillating Optical Tweezers

    PubMed Central

    2015-01-01

    Acute lymphoid leukemia is a common type of blood cancer and chemotherapy is the initial treatment of choice. Quantifying the effect of a chemotherapeutic drug at the cellular level plays an important role in the process of the treatment. In this study, an oscillating optical tweezer was employed to characterize the frequency-dependent mechanical properties of Jurkat cells exposed to the chemotherapeutic agent, artesunate (ART). A motion equation for a bead bound to a cell was applied to describe the mechanical characteristics of the cell cytoskeleton. By comparing between the modeling results and experimental results from the optical tweezer, the stiffness and viscosity of the Jurkat cells before and after the ART treatment were obtained. The results demonstrate a weak power-law dependency of cell stiffness with frequency. Furthermore, the stiffness and viscosity were increased after the treatment. Therefore, the cytoskeleton cell stiffness as the well as power-law coefficient can provide a useful insight into the chemo-mechanical relationship of drug treated cancer cells and may serve as another tool for evaluating therapeutic performance quantitatively. PMID:25928073

  5. Neurocognitive mechanisms underlying social learning in infancy: infants' neural processing of the effects of others' actions.

    PubMed

    Paulus, Markus; Hunnius, Sabine; Bekkering, Harold

    2013-10-01

    Social transmission of knowledge is one of the reasons for human evolutionary success, and it has been suggested that already human infants possess eminent social learning abilities. However, nothing is known about the neurocognitive mechanisms that subserve infants' acquisition of novel action knowledge through the observation of other people's actions and their consequences in the physical world. In an electroencephalogram study on social learning in infancy, we demonstrate that 9-month-old infants represent the environmental effects of others' actions in their own motor system, although they never achieved these effects themselves before. The results provide first insights into the neurocognitive basis of human infants' unique ability for social learning of novel action knowledge.

  6. Trained innate immunity as underlying mechanism for the long-term, nonspecific effects of vaccines.

    PubMed

    Blok, Bastiaan A; Arts, Rob J W; van Crevel, Reinout; Benn, Christine Stabell; Netea, Mihai G

    2015-09-01

    An increasing body of evidence shows that the innate immune system has adaptive characteristics that involve a heterologous memory of past insults. Both experimental models and proof-of-principle clinical trials show that innate immune cells, such as monocytes, macrophages, and NK cells, can provide protection against certain infections in vaccination models independently of lymphocytes. This process is regulated through epigenetic reprogramming of innate immune cells and has been termed "trained immunity." It has been hypothesized that induction of trained immunity is responsible for the protective, nonspecific effects induced by vaccines, such as BCG, measles vaccination, and other whole-microorganism vaccines. In this review, we will present the mechanisms of trained immunity responsible for the long-lasting effects of vaccines on the innate immune system.

  7. Molecular Mechanisms Underlying the Anti-depressant Effects of Resveratrol: a Review.

    PubMed

    de Oliveira, Marcos Roberto; Chenet, Aline Lukasievicz; Duarte, Adriane Ribeiro; Scaini, Giselli; Quevedo, João

    2017-07-10

    Major depression is a public health problem, affecting 121 million people worldwide. Patients suffering from depression present high rates of morbidity, causing profound economic and social impacts. Furthermore, patients with depression present cognitive impairments, which could influence on treatment adherence and long-term outcomes. The pathophysiology of major depression is not completely understood yet but involves reduced levels of monoamine neurotransmitters, bioenergetics, and redox disturbances, as well as inflammation and neuronal loss. Treatment with anti-depressants provides a complete remission of symptoms in approximately 50% of patients with major depression. However, these drugs may cause side effects, as sedation and weight gain. In this context, there is increasing interest in studies focusing on the anti-depressant effects of natural compounds found in the diet. Resveratrol is a polyphenolic phytoalexin (3,4',5-trihydroxystilbene; C14H12O3; MW 228.247 g/mol) and has been found in peanuts, berries, grapes, and wine and induces anti-oxidant, anti-inflammatory, and anti-apoptotic effects in several mammalian cell types. Resveratrol also elicits anti-depressant effects, as observed in experimental models using animals. Therefore, resveratrol may be viewed as a potential anti-depressant agent, as well as may serve as a model of molecule to be modified aiming to ameliorate depressive symptoms in humans. In the present review, we describe and discuss the anti-depressant effects of resveratrol focusing on the mechanism of action of this phytoalexin in different experimental models.

  8. Acute Mechanisms Underlying Antibody Effects in Anti–N-Methyl-D-Aspartate Receptor Encephalitis

    PubMed Central

    Moscato, Emilia H; Peng, Xiaoyu; Jain, Ankit; Parsons, Thomas D; Dalmau, Josep; Balice-Gordon, Rita J

    2014-01-01

    Objective A severe but treatable form of immune-mediated encephalitis is associated with antibodies in serum and cerebrospinal fluid (CSF) against the GluN1 subunit of the N-methyl-D-aspartate receptor (NMDAR). Prolonged exposure of hippocampal neurons to antibodies from patients with anti-NMDAR encephalitis caused a reversible decrease in the synaptic localization and function of NMDARs. However, acute effects of the antibodies, fate of the internalized receptors, type of neurons affected, and whether neurons develop compensatory homeostatic mechanisms were unknown and are the focus of this study. Methods Dissociated hippocampal neuron cultures and rodent brain sections were used for immunocytochemical, physiological, and molecular studies. Results Patient antibodies bind to NMDARs throughout the rodent brain, and decrease NMDAR cluster density in both excitatory and inhibitory hippocampal neurons. They rapidly increase the internalization rate of surface NMDAR clusters, independent of receptor activity. This internalization likely accounts for the observed decrease in NMDAR-mediated currents, as no evidence of direct blockade was detected. Once internalized, antibody-bound NMDARs traffic through both recycling endosomes and lysosomes, similar to pharmacologically induced NMDAR endocytosis. The antibodies are responsible for receptor internalization, as their depletion from CSF abrogates these effects in hippocampal neurons. We find that although anti-NMDAR antibodies do not induce compensatory changes in glutamate receptor gene expression, they cause a decrease in inhibitory synapse density onto excitatory hippocampal neurons. Interpretation Our data support an antibody-mediated mechanism of disease pathogenesis driven by immunoglobulin-induced receptor internalization. Antibody-mediated downregulation of surface NMDARs engages homeostatic synaptic plasticity mechanisms, which may inadvertently contribute to disease progression. Ann Neurol 2014;76:108–119 PMID

  9. Investigation of the mechanisms underlying the gastroprotective effect of cymbopogon citratus essential oil.

    PubMed

    Fernandes, Cn; De Souza, Hf; De Oliveria, G; Costa, Jgm; Kerntopf, Mr; Campos, Ar

    2012-01-01

    Cymbopogon citratus is a medicinal plant popularly used in Brazil for the treatment of various diseases, and the research interest in this plant is justifiable because of its potential medicinal value in stomachache and gastric ulcer. This study was aimed to test the validity of this practice by using experimental models of gastric ulcer and to clarify the mechanisms of gastroprotection by C. citratus leaves essential oil (EOCC). EOCC was evaluated for the ability to protect the gastric mucosa against injuries caused by necrotizing agents (absolute ethanol and aspirin) in rodents. The results of this study revealed that EOCC posses a dose-independent anti-ulcer effect against the different experimental models. EOCC pretreatment depicted a higher preventive index in ethanol-(88%) and aspirin-induced (76%) acute ulceration. On pretreatment of mice with indomethacin, the cyclooxygenase inhibitor slightly suppressed the gastroprotective effect of EOCC (48.5%). Furthermore, EOCC gastroprotection was not attenuated in mice pretreated with L-NAME (85.2%), glibenclamide (100%), or yohimbine (79.7%), the respective inhibitors of nitric oxide synthase, K(+) (ATP) channel activation, and α(2) receptors. These results confirmed the traditional use of C. citratus for the treatment of gastric ulcer. Thus, we provide the first evidence that EOCC reduces gastric damage induced by ethanol, at least in part, by mechanisms that involve endogenous prostaglandins.

  10. Investigation of the Mechanisms Underlying the Gastroprotective Effect of Cymbopogon Citratus Essential Oil

    PubMed Central

    Fernandes, CN; De Souza, HF; De Oliveria, G; Costa, JGM; Kerntopf, MR; Campos, AR

    2012-01-01

    Cymbopogon citratus is a medicinal plant popularly used in Brazil for the treatment of various diseases, and the research interest in this plant is justifiable because of its potential medicinal value in stomachache and gastric ulcer. This study was aimed to test the validity of this practice by using experimental models of gastric ulcer and to clarify the mechanisms of gastroprotection by C. citratus leaves essential oil (EOCC). EOCC was evaluated for the ability to protect the gastric mucosa against injuries caused by necrotizing agents (absolute ethanol and aspirin) in rodents. The results of this study revealed that EOCC posses a dose-independent anti-ulcer effect against the different experimental models. EOCC pretreatment depicted a higher preventive index in ethanol-(88%) and aspirin-induced (76%) acute ulceration. On pretreatment of mice with indomethacin, the cyclooxygenase inhibitor slightly suppressed the gastroprotective effect of EOCC (48.5%). Furthermore, EOCC gastroprotection was not attenuated in mice pretreated with L-NAME (85.2%), glibenclamide (100%), or yohimbine (79.7%), the respective inhibitors of nitric oxide synthase, K+ATP channel activation, and α2 receptors. These results confirmed the traditional use of C. citratus for the treatment of gastric ulcer. Thus, we provide the first evidence that EOCC reduces gastric damage induced by ethanol, at least in part, by mechanisms that involve endogenous prostaglandins. PMID:22523457

  11. Mechanisms underlying the effect of acupuncture on cognitive improvement: a systematic review of animal studies.

    PubMed

    Leung, Mason Chin Pang; Yip, Ka Keung; Ho, Yuen Shan; Siu, Flora Ka Wai; Li, Wai Chin; Garner, Belinda

    2014-09-01

    Acupuncture has been reported to be beneficial in treating cognitive impairment in various pathological conditions. This review describes the effort to understand the signaling pathways that underlie the acupunctural therapeutic effect on cognitive function. We searched the literature in 12 electronic databases from their inception to November 2013, with full text available and language limited to English. Twenty-three studies were identified under the selection criteria. All recruited animal studies demonstrate a significant positive effect of acupuncture on cognitive impairment. Findings suggest acupuncture may improve cognitive function through modulation of signaling pathways involved in neuronal survival and function, specifically, through promoting cholinergic neural transmission, facilitating dopaminergic synaptic transmission, enhancing neurotrophin signaling, suppressing oxidative stress, attenuating apoptosis, regulating glycometabolic enzymes and reducing microglial activation. However, the quality of reviewed studies has room for improvement. Further high-quality animal studies with randomization, blinding and estimation of sample size are needed to strengthen the recognition of group differences.

  12. The effect of ethyl acetate extract from persimmon leaves on Alzheimer's disease and its underlying mechanism.

    PubMed

    Huang, Shun-Wang; Wang, Wei; Zhang, Meng-Yu; Liu, Qing-Bo; Luo, Sheng-Yong; Peng, Ying; Sun, Bei; Wu, De-Ling; Song, Shao-Jiang

    2016-06-15

    Alzheimer's disease (AD) is one of the most prevalent neurodegenerative disorders characterized by neuronal loss in the brain and cognitive impairment. AD is now considered to be the third major cause of death in developed countries, after cardiovascular disease and cancer. Persimmon leaves are used as a popular folk medicine to treat hypertension, angina and internal haemorrhage in Cyangbhina, and it has been reported that ethyl acetate extract of persimmon leaves (EAPL) displays a potential therapeutic effect on neurodegenerative diseases. This study was designed to investigate the effects of EAPL on AD, to clarify the possible mechanism by which EAPL exerts its beneficial effects and prevents AD, and to determine the major constituents involved. AD model was established by bilateral injection of Aβ1-42 into the hippocampus of rats. The cognitive performance was determined by the Morris water maze and step-down tests. Superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), apoptosis, total and phosphorylated c-Jun NH2-terminal kinase (JNK/p-JNK), caspase-3, Bax and Bcl-2 were determined. In addition, a sensitive and reliable LC-QTOF-MS method was applied to identify the major compounds present in EAPL. EAPL at doses of 200mg/kg, 400mg/kg could markedly reduce the latency, significantly increase the time in the first quadrant and number of the target crossing times in Morris water maze test, markedly increase the latency and reduce the number of errors in the step-down test, significantly inhibit the reductions in SOD and GSH-Px activities, and increase the level of MDA. In addition, EAPL treatment attenuated neuronal apoptosis in the hippocampus, reduced the expression of p-JNK, caspase-3, and the relative ratio of Bax/Bcl-2. Meanwhile, 32 constituents were identified by LC-QTOF-MS/MS assays. The results indicate that EAPL has a potent protective effect on cognitive deficits induced by Aβ in rats and this effect appears to be

  13. Alveolar recruiting maneuver in dogs under general anesthesia: effects on alveolar ventilation, gas exchange, and respiratory mechanics.

    PubMed

    Staffieri, F; De Monte, V; De Marzo, C; Scrascia, F; Crovace, A

    2010-06-01

    The aim of this study was to evaluate the effects of a recruiting maneuver (RM) on lung aeration, gas exchange, and respiratory mechanics during general anesthesia in mechanically ventilated dogs. A thoracic computed tomography (CT) scan, an arterial blood sample, and measurement of respiratory mechanics were performed 10 min before (baseline) and both 5 and 30 min after a vital capacity RM in 10 dogs under general anesthesia. The RM was performed by inflating the lung at 40 cm H(2)O for 20 s. Lung aeration was estimated by analyzing the radiographic attenuation of the CT images. Lung aeration and gas exchange improved significantly 5 min after the RM compared to baseline and returned to values similar to baseline by 30 min. Static lung compliance was not significantly affected by the RM. An RM induces a temporary improvement in lung function in healthy dogs under general anesthesia.

  14. Mechanisms underlying apoptosis-inducing effects of Kaempferol in HT-29 human colon cancer cells.

    PubMed

    Lee, Hyun Sook; Cho, Han Jin; Yu, Rina; Lee, Ki Won; Chun, Hyang Sook; Park, Jung Han Yoon

    2014-02-17

    We previously noted that kaempferol, a flavonol present in vegetables and fruits, reduced cell cycle progression of HT-29 cells. To examine whether kaempferol induces apoptosis of HT-29 cells and to explore the underlying molecular mechanisms, cells were treated with various concentrations (0-60 μmol/L) of kaempferol and analyzed by Hoechst staining, Annexin V staining, JC-1 labeling of the mitochondria, immunoprecipitation, in vitro kinase assays, Western blot analyses, and caspase-8 assays. Kaempferol increased chromatin condensation, DNA fragmentation and the number of early apoptotic cells in HT-29 cells in a dose-dependent manner. In addition, kaempferol increased the levels of cleaved caspase-9, caspase-3 and caspase-7 as well as those of cleaved poly (ADP-ribose) polymerase. Moreover, it increased mitochondrial membrane permeability and cytosolic cytochrome c concentrations. Further, kaempferol decreased the levels of Bcl-xL proteins, but increased those of Bik. It also induced a reduction in Akt activation and Akt activity and an increase in mitochondrial Bad. Additionally, kaempferol increased the levels of membrane-bound FAS ligand, decreased those of uncleaved caspase-8 and intact Bid and increased caspase-8 activity. These results indicate that kaempferol induces the apoptosis of HT-29 cells via events associated with the activation of cell surface death receptors and the mitochondrial pathway.

  15. Uridine from Pleurotus giganteus and Its Neurite Outgrowth Stimulatory Effects with Underlying Mechanism

    PubMed Central

    Phan, Chia-Wei; David, Pamela; Wong, Kah-Hui; Naidu, Murali; Sabaratnam, Vikineswary

    2015-01-01

    Neurodegenerative diseases are linked to neuronal cell death and impairment of neurite outgrowth. An edible mushroom, Pleurotus giganteus was found to stimulate neurite outgrowth in vitro but the chemical constituents and the underlying mechanism is yet to be elucidated. The chemical constituents of P. giganteus (linoleic acid, oleic acid, cinnamic acid, caffeic acid, p-coumaric acid, succinic acid, benzoic acid, and uridine) were tested for neurite outgrowth activity. Uridine (100 μM) was found to increase the percentage of neurite-bearing cells of differentiating neuroblastoma (N2a) cells by 43.1±0.5%, which was 1.8-fold higher than NGF (50 ng/mL)-treated cells. Uridine which was present in P. giganteus (1.80±0.03 g/100g mushroom extract) increased the phosphorylation of extracellular-signal regulated kinases (ERKs) and protein kinase B (Akt). Further, phosphorylation of the mammalian target of rapamycin (mTOR) was also increased. MEK/ERK and PI3K-Akt-mTOR further induced phosphorylation of cAMP-response element binding protein (CREB) and expression of growth associated protein 43 (GAP43); all of which promoted neurite outgrowth of N2a cells. This study demonstrated that P. giganteus may enhance neurite outgrowth and one of the key bioactive molecules responsible for neurite outgrowth is uridine. PMID:26565787

  16. Uridine from Pleurotus giganteus and Its Neurite Outgrowth Stimulatory Effects with Underlying Mechanism.

    PubMed

    Phan, Chia-Wei; David, Pamela; Wong, Kah-Hui; Naidu, Murali; Sabaratnam, Vikineswary

    2015-01-01

    Neurodegenerative diseases are linked to neuronal cell death and impairment of neurite outgrowth. An edible mushroom, Pleurotus giganteus was found to stimulate neurite outgrowth in vitro but the chemical constituents and the underlying mechanism is yet to be elucidated. The chemical constituents of P. giganteus (linoleic acid, oleic acid, cinnamic acid, caffeic acid, p-coumaric acid, succinic acid, benzoic acid, and uridine) were tested for neurite outgrowth activity. Uridine (100 μM) was found to increase the percentage of neurite-bearing cells of differentiating neuroblastoma (N2a) cells by 43.1 ± 0.5%, which was 1.8-fold higher than NGF (50 ng/mL)-treated cells. Uridine which was present in P. giganteus (1.80 ± 0.03 g/100g mushroom extract) increased the phosphorylation of extracellular-signal regulated kinases (ERKs) and protein kinase B (Akt). Further, phosphorylation of the mammalian target of rapamycin (mTOR) was also increased. MEK/ERK and PI3K-Akt-mTOR further induced phosphorylation of cAMP-response element binding protein (CREB) and expression of growth associated protein 43 (GAP43); all of which promoted neurite outgrowth of N2a cells. This study demonstrated that P. giganteus may enhance neurite outgrowth and one of the key bioactive molecules responsible for neurite outgrowth is uridine.

  17. Mechanisms Underlying Apoptosis-Inducing Effects of Kaempferol in HT-29 Human Colon Cancer Cells

    PubMed Central

    Lee, Hyun Sook; Cho, Han Jin; Yu, Rina; Lee, Ki Won; Chun, Hyang Sook; Park, Jung Han Yoon

    2014-01-01

    We previously noted that kaempferol, a flavonol present in vegetables and fruits, reduced cell cycle progression of HT-29 cells. To examine whether kaempferol induces apoptosis of HT-29 cells and to explore the underlying molecular mechanisms, cells were treated with various concentrations (0–60 μmol/L) of kaempferol and analyzed by Hoechst staining, Annexin V staining, JC-1 labeling of the mitochondria, immunoprecipitation, in vitro kinase assays, Western blot analyses, and caspase-8 assays. Kaempferol increased chromatin condensation, DNA fragmentation and the number of early apoptotic cells in HT-29 cells in a dose-dependent manner. In addition, kaempferol increased the levels of cleaved caspase-9, caspase-3 and caspase-7 as well as those of cleaved poly (ADP-ribose) polymerase. Moreover, it increased mitochondrial membrane permeability and cytosolic cytochrome c concentrations. Further, kaempferol decreased the levels of Bcl-xL proteins, but increased those of Bik. It also induced a reduction in Akt activation and Akt activity and an increase in mitochondrial Bad. Additionally, kaempferol increased the levels of membrane-bound FAS ligand, decreased those of uncleaved caspase-8 and intact Bid and increased caspase-8 activity. These results indicate that kaempferol induces the apoptosis of HT-29 cells via events associated with the activation of cell surface death receptors and the mitochondrial pathway. PMID:24549175

  18. Mechanisms underlying the cytotoxic effect of propolis on human laryngeal epidermoid carcinoma cells.

    PubMed

    Frión-Herrera, Yahima; Díaz-García, Alexis; Ruiz-Fuentes, Jenny; Rodríguez-Sánchez, Hermis; Maurício Sforcin, José

    2017-08-08

    Propolis has been used as a traditional remedy for centuries because of its beneficial effects, including anticancer properties. The aim of this study was to compare the cytotoxic mechanism of Cuban red propolis (CP) and Brazilian green propolis (BP) on human laryngeal carcinoma (HEp-2) cells. Cell viability, leakage of lactate dehydrogenase, fluorescence staining, mitochondrial membrane potential (ΔΨm) and the expression of pro/anti-apoptotic genes were assessed. Cell viability and cytotoxic assays suggested a dose-dependent effect of CP and BP extracts with a possible association of intracellular reactive oxygen species production and decreased ΔΨm. Both samples induced apoptosis via activation of TP53, CASP3, BAX, P21 signalling, and downregulation of BCL2 and BCL-XL. CP exerted a higher cytotoxic effect than BP extract. Our findings suggest further investigation of the main components of each propolis sample, what may lead to the development of strategies for the treatment of laryngeal cancer.

  19. Epigenetic mechanisms underlying lifespan and age-related effects of dietary restriction and the ketogenic diet.

    PubMed

    Moreno, Cesar L; Mobbs, Charles V

    2016-11-22

    Aging constitutes the central risk factor for major diseases including many forms of cancer, neurodegeneration, and cardiovascular diseases. The aging process is characterized by both global and tissue-specific changes in gene expression across taxonomically diverse species. While aging has historically been thought to entail cell-autonomous, even stochastic changes, recent evidence suggests that modulation of this process can be hierarchal, wherein manipulations of nutrient-sensing neurons (e.g., in the hypothalamus) produce peripheral effects that may modulate the aging process itself. The most robust intervention extending lifespan, plausibly impinging on the aging process, involves different modalities of dietary restriction (DR). Lifespan extension by DR is associated with broad protection against diseases (natural and engineered). Here we review potential epigenetic processes that may link lifespan to age-related diseases, particularly in the context of DR and (other) ketogenic diets, focusing on brain and hypothalamic mechanisms.

  20. A Mechanism Underlying Preventive Effect of High-Intensity Training on Colon Cancer.

    PubMed

    Matsuo, Kaori; Sato, Koji; Suemoto, Ken; Miyamoto-Mikami, Eri; Fuku, Noriyuki; Higashida, Kazuhiko; Tsuji, Katsunori; Xu, Yuzhong; Liu, Xin; Iemitsu, Motoyuki; Hamaoka, Takafumi; Tabata, Izumi

    2017-09-01

    We examined effects of high-intensity training on chemically induced aberrant crypt foci (ACF) in rat colon. We also investigated mechanisms that may underlie the results obtained, with a focus on secreted protein acidic and rich in cysteine (SPARC), which has been proposed as an exercise-related factor of colon cancer prevention. After an administration of 1,2-dimethylhydrazine, F344 rats executed high-intensity intermittent swimming training (HIIST) (twelve 20-s swimming with a weight [16% body weight] with 10-s pauses between the bouts) 5 d·wk for 4 wk. The acute and chronic effects of the HIIST on SPARC were evaluated in rats. We evaluated the in vitro and in vivo effects of 5' AMP-activated protein kinase (AMPK) activator on SPARC in rat serum and epitrochlearis muscle. In human subjects, we determined serum SPARC after exhaustive bicycling consisting of six to seven bouts of exercise at 170% V˙O2max with 10-s rests between the bouts (high-intensity intermittent bicycling [HIIB]). The SPARC mRNA in human vastus lateralis was measured before and after the HIIB for 4 d·wk for 6 wk (HIIB-training [HIIBT]). The numbers of ACF were lower in the HIIST (47 ± 22) compared with the control (122 ± 47) rats (P < 0.05). SPARC in epitrochlearis and serum after HIIS of the trained rat was higher than that in the control resting rats. In vitro and vivo AMPK stimulation increased mRNA and SPARC protein in rat epitrochlearis, respectively. The human serum SPARC after the HIIB was elevated. SPARC mRNA in human muscle was elevated after the HIIBT. The results demonstrated that HIIST inhibits 1,2-dimethylhydrazine-induced colon ACF development. This effect may be explained by SPARC induction by the exercise intensity-related factor AMPK, potentially explaining the preventive effects of high-intensity intermittent exercise training against colon cancer.

  1. Enhancement of radiation effect using beta-lapachone and underlying mechanism

    PubMed Central

    Ahn, Ki Jung; Bai, Se Kyung; Song, Chang Won

    2013-01-01

    Beta-lapachone (β-Lap; 3,4-dihydro-2, 2-dimethyl-2H-naphthol[1, 2-b]pyran-5,6-dione) is a novel anti-cancer drug under phase I/II clinical trials. β-Lap has been demonstrated to cause apoptotic and necrotic death in a variety of human cancer cells in vitro and in vivo. The mechanisms underlying the β-Lap toxicity against cancer cells has been controversial. The most recent view is that β-Lap, which is a quinone compound, undergoes two-electron reduction to hydroquinone form utilizing NAD(P)H or NADH as electron source. This two-electron reduction of β-Lap is mediated by NAD(P)H:quinone oxidoreductase (NQO1), which is known to mediate the reduction of many quinone compounds. The hydroquinone forms of β-Lap then spontaneously oxidizes back to the original oxidized β-Lap, creating futile cycling between the oxidized and reduced forms of β-Lap. It is proposed that the futile recycling between oxidized and reduced forms of β-Lap leads to two distinct cell death pathways. First one is that the two-electron reduced β-Lap is converted first to one-electron reduced β-Lap, i.e., semiquinone β-Lap (SQ)·- causing production of reactive oxygen species (ROS), which then causes apoptotic cell death. The second mechanism is that severe depletion of NAD(P)H and NADH as a result of futile cycling between the quinone and hydroquinone forms of β-Lap causes severe disturbance in cellular metabolism leading to apoptosis and necrosis. The relative importance of the aforementioned two mechanisms, i.e., generation of ROS or depletion of NAD(P)H/NADH, may vary depending on cell type and environment. Importantly, the NQO1 level in cancer cells has been found to be higher than that in normal cells indicating that β-Lap may be preferentially toxic to cancer cells relative to non-cancer cells. The cellular level of NQO1 has been found to be significantly increased by divergent physical and chemical stresses including ionizing radiation. Recent reports clearly demonstrated that

  2. Molecular Mechanisms Underlying the Enhanced Analgesic Effect of Oxycodone Compared to Morphine in Chemotherapy-Induced Neuropathic Pain

    PubMed Central

    Thibault, Karine; Calvino, Bernard; Rivals, Isabelle; Marchand, Fabien; Dubacq, Sophie; McMahon, Stephen B.; Pezet, Sophie

    2014-01-01

    Oxycodone is a μ-opioid receptor agonist, used for the treatment of a large variety of painful disorders. Several studies have reported that oxycodone is a more potent pain reliever than morphine, and that it improves the quality of life of patients. However, the neurobiological mechanisms underlying the therapeutic action of these two opioids are only partially understood. The aim of this study was to define the molecular changes underlying the long-lasting analgesic effects of oxycodone and morphine in an animal model of peripheral neuropathy induced by a chemotherapic agent, vincristine. Using a behavioural approach, we show that oxycodone maintains an optimal analgesic effect after chronic treatment, whereas the effect of morphine dies down. In addition, using DNA microarray technology on dorsal root ganglia, we provide evidence that the long-term analgesic effect of oxycodone is due to an up-regulation in GABAB receptor expression in sensory neurons. These receptors are transported to their central terminals within the dorsal horn, and subsequently reinforce a presynaptic inhibition, since only the long-lasting (and not acute) anti-hyperalgesic effect of oxycodone was abolished by intrathecal administration of a GABAB receptor antagonist; in contrast, the morphine effect was unaffected. Our study demonstrates that the GABAB receptor is functionally required for the alleviating effect of oxycodone in neuropathic pain condition, thus providing new insight into the molecular mechanisms underlying the sustained analgesic action of oxycodone. PMID:24618941

  3. Molecular mechanisms underlying the enhanced analgesic effect of oxycodone compared to morphine in chemotherapy-induced neuropathic pain.

    PubMed

    Thibault, Karine; Calvino, Bernard; Rivals, Isabelle; Marchand, Fabien; Dubacq, Sophie; McMahon, Stephen B; Pezet, Sophie

    2014-01-01

    Oxycodone is a μ-opioid receptor agonist, used for the treatment of a large variety of painful disorders. Several studies have reported that oxycodone is a more potent pain reliever than morphine, and that it improves the quality of life of patients. However, the neurobiological mechanisms underlying the therapeutic action of these two opioids are only partially understood. The aim of this study was to define the molecular changes underlying the long-lasting analgesic effects of oxycodone and morphine in an animal model of peripheral neuropathy induced by a chemotherapic agent, vincristine. Using a behavioural approach, we show that oxycodone maintains an optimal analgesic effect after chronic treatment, whereas the effect of morphine dies down. In addition, using DNA microarray technology on dorsal root ganglia, we provide evidence that the long-term analgesic effect of oxycodone is due to an up-regulation in GABAB receptor expression in sensory neurons. These receptors are transported to their central terminals within the dorsal horn, and subsequently reinforce a presynaptic inhibition, since only the long-lasting (and not acute) anti-hyperalgesic effect of oxycodone was abolished by intrathecal administration of a GABAB receptor antagonist; in contrast, the morphine effect was unaffected. Our study demonstrates that the GABAB receptor is functionally required for the alleviating effect of oxycodone in neuropathic pain condition, thus providing new insight into the molecular mechanisms underlying the sustained analgesic action of oxycodone.

  4. The Mechanisms Underlying the Hypolipidaemic Effects of Grifola frondosa in the Liver of Rats

    PubMed Central

    Ding, Yinrun; Xiao, Chun; Wu, Qingping; Xie, Yizhen; Li, Xiangmin; Hu, Huiping; Li, Liangqiu

    2016-01-01

    The present study investigated the hypolipidaemic effects of Grifola frondosa and its regulation mechanism involved in lipid metabolism in liver of rats fed a high-cholesterol diet. The body weights and serum lipid levels of control rats, of hyperlipidaemic rats, and of hyperlipidaemic rats treated with oral G. frondosa were determined. mRNA expression and concentration of key lipid metabolism enzymes were investigated. Serum cholesterol, triacylglycerol, and low-density lipoprotein cholesterol levels were markedly decreased in hyperlipidaemic rats treated with G. frondosa compared with untreated hyperlipidaemic rats. mRNA expression of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), acyl-coenzyme A: cholesterol acyltransferase (ACAT2), apolipoprotein B (ApoB), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC1) were significantly down-regulated, while expression of cholesterol 7-alpha-hydroxylase (CYP7A1) was significantly up-regulated in the livers of treated rats compared with untreated hyperlipidaemic rats. The concentrations of these enzymes also paralleled the observed changes in mRNA expression. Two-dimensional polyacrylamide gel electrophoresis (2-DE) and Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF-MS) were used to identify 20 proteins differentially expressed in livers of rats treated with G. frondosa compared with untreated hyperlipidemic rats. Of these 20 proteins, seven proteins were down-regulated, and 13 proteins were up-regulated. These findings indicate that the hypolipidaemic effects of G. frondosa reflected its modulation of key enzymes involved in cholesterol and triacylglycerol biosynthesis, absorption, and catabolic pathways. G. frondosa may exert anti-atherosclerotic effects by inhibiting LDL oxidation through down-regulation and up-regulating proteins expression in the liver of rats. Therefore, G. frondosa may produce both hypolipidaemic and anti-atherosclerotic effects, and potentially

  5. Molecular mechanisms underlying the potential antiobesity-related diseases effect of cocoa polyphenols.

    PubMed

    Ali, Faisal; Ismail, Amin; Kersten, Sander

    2014-01-01

    Obesity and related metabolic diseases (e.g., type 2 diabetes, cardiovascular diseases, and hypertension) are the most prevailing nutrition-related issues in the world. An emerging feature of obesity is their relationship with chronic inflammation that begins in white adipose tissue and eventually becomes systemic. One potential dietary strategy to reduce glucose intolerance and inflammation is consumption of polyphenol-rich cocoa-like cocoa or their by-products. In vitro as well as in vivo data indicate that cocoa polyphenols (CPs) may exhibit antioxidant and anti-inflammatory properties. Polyphenols commonly found in cocoa have been reported to regulate lipid metabolism via inducing metabolic gene expression or activating transcription factors that regulate the expression of numerous genes, many of which play an important role in energy metabolism. Currently, several molecular targets (e.g., nuclear factor Kappa B, activated protein-1, peroxisome proliferator-activated receptors, liver X receptors, and adiponectin gene) have been identified, which may explain potential beneficial obesity-associated diseases effects of CPs. Further studies have been performed regarding the protective effects of CPs against metabolic diseases by suppressing transcription factors that antagonize lipid accumulation. Thus, polyphenols-rich cocoa products may diminish obesity-mediated metabolic diseases by multiple mechanisms, thereby attenuating chronic inflammation.

  6. Durability Prediction of Solid Oxide Fuel Cell Anode Material under Thermo-Mechanical and Fuel Gas Contaminants Effects

    SciTech Connect

    Iqbal, Gulfam; Guo, Hua; Kang , Bruce S.; Marina, Olga A.

    2011-01-10

    Solid Oxide Fuel Cells (SOFCs) operate under harsh environments, which cause deterioration of anode material properties and service life. In addition to electrochemical performance, structural integrity of the SOFC anode is essential for successful long-term operation. The SOFC anode is subjected to stresses at high temperature, thermal/redox cycles, and fuel gas contaminants effects during long-term operation. These mechanisms can alter the anode microstructure and affect its electrochemical and structural properties. In this research, anode material degradation mechanisms are briefly reviewed and an anode material durability model is developed and implemented in finite element analysis. The model takes into account thermo-mechanical and fuel gas contaminants degradation mechanisms for prediction of long-term structural integrity of the SOFC anode. The proposed model is validated experimentally using a NexTech ProbostatTM SOFC button cell test apparatus integrated with a Sagnac optical setup for simultaneously measuring electrochemical performance and in-situ anode surface deformation.

  7. Nanocrystals for dermal penetration enhancement - Effect of concentration and underlying mechanisms using curcumin as model.

    PubMed

    Vidlářová, Lucie; Romero, Gregori B; Hanuš, Jaroslav; Štěpánek, František; Müller, Rainer H

    2016-07-01

    Nanocrystals have received considerable attention in dermal application due to their ability to enhance delivery to the skin and overcome bioavailability issues caused by poor water and oil drug solubility. The objective of this study was to investigate the effect of nanocrystals on the mechanism of penetration behavior of curcumin as a model drug. Curcumin nanocrystals were produced by the smartCrystals® process, i.e. bead milling followed by high pressure homogenization. The mean particle size of the curcumin crystals was about 200nm. Stabilization was performed with alkyl polyglycoside surfactants. The distribution of curcumin within the skin was determined in vitro on cross-sections of porcine skin and visualized by fluorescent microscopy. The skin penetration profile was analyzed for the curcumin nanosuspension with decreasing concentrations (2%, 0.2%, 0.02% and 0.002% by weight) and compared to nanocrystals in a viscous hydroxypropylcellulose (HPC) gel. This study demonstrated there was minor difference between low viscous nanosuspension and the gel, but low viscosity seemed to favor skin penetration. Localization of curcumin was observed in the hair follicles, also contributing to skin uptake. Looking at the penetration of curcumin from formulations with decreasing nanocrystal concentration, formulations with 2%, 0.2% and 0.02% showed a similar penetration profile, whereas a significantly weaker fluorescence was observed in the case of a formulation containing 0.002% of curcumin nanocrystals. In this study we have shown that curcumin nanocrystals prepared by the smartCrystal® process are promising carriers in dermal application and furthermore, we identified the ideal concentration of 0.02% nanocrystals in dermal formulations. The comprehensive study of decreasing curcumin concentration in formulations revealed that the saturation solubility (Cs) is not the only determining factor for the penetration. A new mechanism based also on the concentration of the

  8. [Effects and underlying mechanism of berberine on renal tubulointerstitial injury in diabetic rats].

    PubMed

    Ma, Z J; Hu, S L; Wang, S S; Guo, X; Zhang, X N; Sun, B; Chen, L M

    2016-10-18

    Objective: To investigate the effect of Berberine on renal tubulointerstitial injury and its potential mechanism in rats with type 2 diabetes mellitus (T2DM). Methods: Thirty Sprague-Dawley rats were randomly divided into 3 groups: normal control rats (NC group), diabetic rats without drug treatment (DM group), diabetic rats treated with Berberine (BBR group) for 8 weeks. At the end of the study, blood and urine samples were collected for biochemical examination, and tubulointerstitial fibrosis was quantified by Hematoxylin and Eosin (HE) and Masson staining. The expressions of E-cadherin (E-cad), α-smooth muscle actin (α-SMA), nuclear factor-κB (NF-κB) and monocyte chemoattractant protein 1 (MCP-1) were detected by immunohistochemistry analysis, real-time polymerase chain reaction (RT-PCR) and Western blot analysis. Results: 24 h urinary microalbumin (mAlb)[(170.5±58.1) vs (253.7±53.0) mg]and urinary N-acetyl-glucosaminidase (NAG)[(33.5±7.2) vs (49.5±9.3)U/L]in diabetic rats were significantly decreased by BBR treatment(both P<0.05). The apparent renal tubulointerstitial injury was found in the DM group, which was ameliorated by BBR treatment. The expression of α-SMA, NF-κB and MCP-1 were significantly decreased, accompanied by increased expression of E-cad in BBR-treated DM rats (all P<0.05). Conclusion: BBR could ameliorate renal tubulointerstitial injury in diabetic rats, the mechanism of which may be associated with the amelioration of epithelial-mesenchymal transition (EMT) through suppressing the expression of the NF-κB and MCP-1.

  9. Anti-diabetic functions of soy isoflavone genistein: mechanisms underlying its effects on pancreatic β-cell function.

    PubMed

    Gilbert, Elizabeth R; Liu, Dongmin

    2013-02-01

    Type 2 diabetes is a result of chronic insulin resistance and loss of functional pancreatic β-cell mass. Strategies to preserve β-cell mass and a greater understanding of the mechanisms underlying β-cell turnover are needed to prevent and treat this devastating disease. Genistein, a naturally occurring soy isoflavone, is reported to have numerous health benefits attributed to multiple biological functions. Over the past 10 years, numerous studies have demonstrated that genistein has anti-diabetic effects, in particular, direct effects on β-cell proliferation, glucose-stimulated insulin secretion and protection against apoptosis, independent of its functions as an estrogen receptor agonist, antioxidant, or tyrosine kinase inhibitor. Effects are structure-specific and not common to all flavonoids. While there are limited data on the effects of genistein consumption in humans with diabetes, there are a plethora of animal and cell-culture studies that demonstrate a direct effect of genistein on β-cells at physiologically relevant concentrations (<10 μM). The effects appear to involve cAMP/PKA signaling and there are some studies that suggest an effect on epigenetic regulation of gene expression. This review focuses on the anti-diabetic effects of genistein in both in vitro and in vivo models and potential mechanisms underlying its direct effects on β-cells.

  10. Anti-diabetic functions of soy isoflavone genistein: mechanisms underlying effects on pancreatic β-cell function

    PubMed Central

    Gilbert, Elizabeth. R.; Liu, Dongmin

    2013-01-01

    Type 2 diabetes is a result of chronic insulin resistance and loss of functional pancreatic β-cell mass. Strategies to preserve β-cell mass and a greater understanding of the mechanisms underlying β-cell turnover are needed to prevent and treat this devastating disease. Genistein, a naturally-occurring soy isoflavone, is reported to have numerous health benefits attributed to multiple biological functions. Over the past 10 years, numerous studies have demonstrated that genistein has anti-diabetic effects, in particular, direct effects on β-cell proliferation, glucose-stimulated insulin secretion and protection against apoptosis, independent of its functions as an estrogen receptor agonist, antioxidant, or tyrosine kinase inhibitor. Effects are structure-specific and not common to all flavonoids. While there are limited data on the effects of genistein consumption in humans with diabetes, there are a plethora of animal and cell-culture studies that demonstrate, at physiologically-relevant concentrations (<10 µM), a direct effect of genistein on β-cells. The effects appear to involve cAMP/PKA signaling and there are some studies that suggest an effect on epigenetic regulation of gene expression. This review focuses on the anti-diabetic effects of genistein in both in-vitro and in-vivo models and potential mechanisms underlying its direct effects on β-cells. PMID:23160185

  11. Numerical simulation of effective mechanical properties of stochastic composites with consideration for structural evolution under intensive dynamic loading

    SciTech Connect

    Karakulov, Valerii V.; Smolin, Igor Yu. E-mail: skrp@ftf.tsu.ru; Skripnyak, Vladimir A. E-mail: skrp@ftf.tsu.ru

    2014-11-14

    Mechanical behavior of stochastic metal-ceramic composites with the aluminum matrix under high-rate deformation at shock-wave loading is numerically simulated with consideration for structural evolution. Effective values of mechanical parameters of metal-ceramic composites AlB{sub 4}C, AlSiC, and AlAl{sub 2}O{sub 3} are evaluated depending on different concentration of ceramic inclusions.

  12. The effects of acute alcohol intoxication on the cognitive mechanisms underlying false facial recognition.

    PubMed

    Colloff, Melissa F; Flowe, Heather D

    2016-06-01

    False face recognition rates are sometimes higher when faces are learned while under the influence of alcohol. Alcohol myopia theory (AMT) proposes that acute alcohol intoxication during face learning causes people to attend to only the most salient features of a face, impairing the encoding of less salient facial features. Yet, there is currently no direct evidence to support this claim. Our objective was to test whether acute alcohol intoxication impairs face learning by causing subjects to attend to a salient (i.e., distinctive) facial feature over other facial features, as per AMT. We employed a balanced placebo design (N = 100). Subjects in the alcohol group were dosed to achieve a blood alcohol concentration (BAC) of 0.06 %, whereas the no alcohol group consumed tonic water. Alcohol expectancy was controlled. Subjects studied faces with or without a distinctive feature (e.g., scar, piercing). An old-new recognition test followed. Some of the test faces were "old" (i.e., previously studied), and some were "new" (i.e., not previously studied). We varied whether the new test faces had a previously studied distinctive feature versus other familiar characteristics. Intoxicated and sober recognition accuracy was comparable, but subjects in the alcohol group made more positive identifications overall compared to the no alcohol group. The results are not in keeping with AMT. Rather, a more general cognitive mechanism appears to underlie false face recognition in intoxicated subjects. Specifically, acute alcohol intoxication during face learning results in more liberal choosing, perhaps because of an increased reliance on familiarity.

  13. Mechanisms of action underlying the antiandrogenic effects of the fungicide prochloraz

    SciTech Connect

    Laier, Peter; Metzdorff, Stine Broeng; Borch, Julie; Hagen, Marie Louise; Hass, Ulla; Christiansen, Sofie; Axelstad, Marta; Kledal, Thuri; Dalgaard, Majken; McKinnell, Chris; Brokken, Leon J.S.; Vinggaard, Anne Marie . E-mail: amv@dfvf.dk

    2006-06-01

    The fungicide prochloraz has got multiple mechanisms of action that may influence the demasculinizing and reproductive toxic effects of the compound. In the present study, Wistar rats were dosed perinatally with prochloraz (50 and 150 mg/kg/day) from gestational day (GD) 7 to postnatal day (PND) 16. Caesarian sections were performed on selected dams at GD 21, while others were allowed to give birth to pups that were followed until PND 16. Prochloraz caused mild dysgenesis of the male external genitalia as well as reduced anogenital distance and retention of nipples in male pups. An increased anogenital distance indicated virilization of female pups. Effects on steroidogenesis in male fetuses became evident as decreased testicular and plasma levels of testosterone and increased levels of progesterone. Ex vivo synthesis of both steroid hormones was qualitatively similarly affected by prochloraz. Immunohistochemistry of fetal testes showed increased expression of 17{alpha}-hydroxylase/17,20-lyase (P450c17) and a reduction in 17{beta}-hydroxysteroid dehydrogenase (type 10) expression, whereas no changes in expression of genes involved in testicular steroidogenesis were observed. Increased expression of P450c17 mRNA was observed in fetal male adrenals, and the androgen-regulated genes ornithine decarboxylase, prostatic binding protein C3 as well as insulin-like growth factor I mRNA were reduced in ventral prostates PND 16. These results indicate that reduced activity of P450c17 may be a primary cause of the disrupted fetal steroidogenesis and that an altered androgen metabolism may play a role as well. In vitro studies on human adrenocortical carcinoma cells supported the findings in vivo as reduced testosterone and increased progesterone levels were observed. Overall, these results together indicate that prochloraz acts directly on the fetal testis to inhibit steroidogenesis and that this effect is exhibited at protein, and not at genomic, level.

  14. Renoprotective effect of hypericum perforatum against diabetic nephropathy in rats: Insights in the underlying mechanisms.

    PubMed

    Abd El Motteleb, Dalia M; Abd El Aleem, Dalia I

    2017-01-12

    Oxidative stress and inflammation play a key role in the initiation and progression of diabetic nephropathy (DN). The present study aimed to investigate the possible protective effect of hypericum perforatum (HP) against DN. Rats were allocated into six groups; control: received normal saline, diabetic untreated (DM): received single dose of streptozotocin (STZ) after injection of nicotinamide (NA), gliclazide: received STZ,NA+ gliclazide (10mg/kg), DM+HP50, DM+HP100, DM+HP200:received STZ,NA and HP 50, 100, 200 mg/kg respectively. Gliclazide and HP were administered daily via gavage for 8 weeks. Serum glucose, insulin, kidney function and histopathological picture were assessed. Furthermore, oxidative/nitrosative stress, inflammatory cytokines, apoptotic and fibrotic markers were measured. Diabetic untreated group showed increase in serum glucose, urea, creatinine with albuminurea. Renal expression of protein for nuclear factor kappa-B (NF-кB), renal expression of inducible nitric oxide synthase (iNOS), cyclooxygenase II (COXII), collagen IV, fibronectin were elevated. Malondialdehyde (MDA), nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), intracellular adhesion molecule (ICAM-1), monocellular chemoattractant protein-1 (MCP-1), tumor growth factor- β (TGF-β), caspase-3 and cytochrome c contents were also increased consequently with decline of serum insulin, expression of peroxisome proliferator-activated receptor (PPARγ), renal reduced glutathione (GSH) content and superoxide dismutase (SOD) activity. Treatment with either gliclazide or HP mitigated the deleterious effects of STZ on the tested parameters. These findings indicate for the first time that HP may have a renoprotective effect against DN through reduction of oxidative/nitrosative stress, enhancement of antioxidant defense mechanisms, decline of inflammatory cytokines, antifibrotic, antiapoptotic and blood glucose lowering properties. This article is protected by

  15. Analysis of the mechanisms underlying the antinociceptive effect of epicatechin in diabetic rats.

    PubMed

    Quiñonez-Bastidas, Geovanna Nallely; Cervantes-Durán, Claudia; Rocha-González, Héctor Isaac; Murbartián, Janet; Granados-Soto, Vinicio

    2013-10-17

    The purpose of this study was to investigate the antinociceptive effect of epicatechin as well as the possible mechanisms of action in diabetic rats. Rats were injected with streptozotocin to produce hyperglycemia. The formalin test was used to assess the nociceptive activity. Acute pre-treatment with epicatechin (0.03-30 mg/kg, i.p.) prevented formalin-induced nociception in diabetic rats. Furthermore, daily or every other day treatment for 2 weeks with epicatechin (0.03-30 mg/kg, i.p.) also prevented formalin-induced nociception in diabetic rats. Acute epicatechin-induced antinociception was prevented by l-NAME (N(ω)-nitro-l-arginine methyl ester hydrochloride, 1-10mg/kg, non-selective nitric oxide synthesis inhibitor), 7-nitroindazole (0.1-1mg/kg, selective neuronal nitric oxide synthesis inhibitor), ODQ (1H-(1,2,4)-oxadiazolo(4,2-a)quinoxalin-1-one, 0.2-2mg/kg, guanylyl cyclase inhibitor) or glibenclamide (1-10mg/kg, ATP-sensitive K(+) channel blocker). Moreover, epicatechin (3mg/kg)-induced antinociception was fully prevented by methiothepin (0.1-1mg/kg, serotonergic receptor antagonist), WAY-100635 (0.03-0.3mg/kg, selective 5-HT1A receptor antagonist) or SB-224289 (0.03-0.3mg/kg, selective 5-HT1B receptor antagonist). In contrast, BRL-15572 (0.03-0.3mg/kg, selective 5-HT1D receptor antagonist) only slightly prevented the antinociceptive effect of epicatechin. Naloxone (0.1-1mg/kg, opioid antagonist) did not modify epicatechin's effect. Data suggest the involvement of the nitric oxide-cyclic GMP-K(+) channel pathway as well as activation of 5-HT1A and 5HT1B, and at a lesser extent, 5-HT1D, but not opioid, receptors in the antinociceptive effect of epicatechin in diabetic rats. Our data suggest that acute or chronic treatment with epicatechin may prove to be effective to treat nociceptive hypersensitivity in diabetic patients. © 2013.

  16. Mechanisms Underlying the Anti-Tumoral Effects of Citrus bergamia Juice

    PubMed Central

    Delle Monache, Simona; Sanità, Patrizia; Trapasso, Elena; Ursino, Maria Rita; Dugo, Paola; Russo, Marina; Ferlazzo, Nadia; Calapai, Gioacchino; Angelucci, Adriano; Navarra, Michele

    2013-01-01

    Based on the growing deal of data concerning the biological activity of flavonoid-rich natural products, the aim of the present study was to explore in vitro the potential anti-tumoral activity of Citrus Bergamia (bergamot) juice (BJ), determining its molecular interaction with cancer cells. Here we show that BJ reduced growth rate of different cancer cell lines, with the maximal growth inhibition observed in neuroblastoma cells (SH-SY5Y) after 72 hs of exposure to 5% BJ. The SH-SY5Y antiproliferative effect elicited by BJ was not due to a cytotoxic action and it did not induce apoptosis. Instead, BJ stimulated the arrest in the G1 phase of cell cycle and determined a modification in cellular morphology, causing a marked increase of detached cells. The inhibition of adhesive capacity on different physiologic substrates and on endothelial cells monolayer were correlated with an impairment of actin filaments, a reduction in the expression of the active form of focal adhesion kinase (FAK) that in turn caused inhibition of cell migration. In parallel, BJ seemed to hinder the association between the neural cell adhesion molecule (NCAM) and FAK. Our data suggest a mechanisms through which BJ can inhibit important molecular pathways related to cancer-associated aggressive phenotype and offer new suggestions for further studies on the role of BJ in cancer treatment. PMID:23613861

  17. Effect of Cooling Rate on Microstructure and Mechanical Properties of Eutectoid Steel Under Cyclic Heat Treatment

    NASA Astrophysics Data System (ADS)

    Maji, Soma; Subhani, Amir Raza; Show, Bijay Kumar; Maity, Joydeep

    2017-07-01

    A systematic study has been carried out to ascertain the effect of cooling rate on structure and mechanical properties of eutectoid steel subjected to a novel incomplete austenitization-based cyclic heat treatment process up to 4 cycles. Each cycle consists of a short-duration holding (6 min) at 775 °C (above A1) followed by cooling at different rates (furnace cooling, forced air cooling and ice-brine quenching). Microstructure and properties are found to be strongly dependent on cooling rate. In pearlitic transformation regime, lamellar disintegration completes in 61 h and 48 min for cyclic furnace cooling. This leads to a spheroidized structure possessing a lower hardness and strength than that obtained in as-received annealed condition. On contrary, lamellar disintegration does not occur for cyclic forced air cooling with high air flow rate (78 m3 h-1). Rather, a novel microstructure consisting of submicroscopic cementite particles in a `interweaved pearlite' matrix is developed after 4 cycles. This provides an enhancement in hardness (395 HV), yield strength (473 MPa) and UTS (830 MPa) along with retention of a reasonable ductility (%Elongation = 19) as compared to as-received annealed condition (hardness = 222 HV, YS = 358 MPa, UTS = 740 MPa, %Elongation = 21).

  18. Effects of epigallocatechin gallate on lipid metabolism and its underlying molecular mechanism in broiler chickens.

    PubMed

    Huang, J B; Zhang, Y; Zhou, Y B; Wan, X C; Zhang, J S

    2015-08-01

    The objective of this study was to investigate the effects of epigallocatechin gallate (EGCG) on fat metabolism and to establish the molecular mechanism of these effects in broilers. Seventy-two 28-day-old male Ross 308 broiler chickens were divided into three groups with different levels of EGCG supplementation for 4 weeks: normal control (NC) group, L-EGCG (a low-level supplement of EGCG, 40 mg/kg body weight daily) and H-EGCG (a high-level supplement of EGCG, 80 mg/kg body weight daily). After 4 weeks of oral administration, EGCG significantly reduced the level of abdominal fat deposition in broilers. The serum triglycerides and low-density lipoprotein cholesterol of chickens in H-EGCG group were also significantly decreased compared with the NC group, and the high-density lipoprotein cholesterol was notably increased at the same time. Moreover, the vital role of the liver and abdominal adipose tissue in lipid metabolism of poultry animals was examined through gene expression and enzyme activities related to fat anabolism and catabolism in these organs. Our data show that EGCG supplementation for 2 weeks significantly downregulated the expression of fatty acid synthesis and fat deposition-related genes, and upregulated the expression of genes involved in fatty acid β-oxidation and lipolysis genes. Simultaneously, the activities of hepatic fatty acid synthesis enzymes (fatty acid synthase and acetyl CoA carboxylase) were significantly decreased, and the activity of carnitine palmitoyl transferase-1 was notably elevated. The results suggest that EGCG could alleviate fat deposition in broilers through inhibiting fat anabolism and stimulating lipid catabolism in broilers. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  19. Effects of cerium on growth and physiological mechanism in plants under enhanced ultraviolet-B radiation.

    PubMed

    Liang, Chan-Juan; Huang, Xiao-Hua; Tao, Wen-Yi; Zhou, Qing

    2006-01-01

    Effect of cerium (Ce3+) on the growth, photosynthesis and antioxidant enzyme system in rape seedlings (Brassica juncea L.) exposed to two levels of UV-B radiation (T1: 0.15 W/m2 and T2: 0.35 W/m2) was studied by hydroponics under laboratory conditions. After 5 d of UV-B treatment, the aboveground growth indices were obviously decreased by 13.2%-44.1% (T1) and 21.4%-49.3% (T2), compared to CK, and except active absorption area of roots, the belowground indices by 14.1%-35.6% (T1) and 20.3%-42.6% (T2). For Ce+UV-B treatments, the aboveground and belowground growth indices were decreased respectively by 4.1%-23.6%, 5.2% -23.3% (Ce+T1) and 10.8%-28.4%, 7.0%-27.8% (Ce+T2), lower than those of UV-B treatments. The decrease of growth indices appeared to be the result of changes of physiological processes. Two levels of UV-B radiation induced the decrease in chlorophyll content, net photosynthesis rate, transpiration rate, stomatal conductance and water use efficiency by 11.2%-25.9% (T1) and 20.9%-56.9% (T2), whereas increase in membrane permeability and activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) by 6.9%, 22.8%, 21.5%, 9.5% (T1) and 36.6%, 122.3%, 103.5%, 208.9% (T2), respectively. The reduction of the photosynthetic parameters in Ce+UV-B treatments was lessened to 3.2%-13.8% (Ce+T1) and 4.9%-27.6% (Ce+T2), and the increase of membrane permeability and activities of antioxidant enzymes except POD in the same treatments were lessened to 2.4%, 8.4%, 6.6% (Ce+T1) and 30.1%, 116.7%, 75.4% (Ce+T2). These results indicate that the regulative effect of Ce on photosynthesis and antioxidant enzymatic function is the ecophysiological basis of alleviating the suppression of UV-B radiation on growth of seedlings. Furthermore, the protective effect of Ce on seedlings exposed to T1 level of UV-B radiation is superior to T2 level.

  20. Numerical and experimental studies of mechanisms underlying the effect of pulsed broadband terahertz radiation on nerve cells

    NASA Astrophysics Data System (ADS)

    Duka, M. V.; Dvoretskaya, L. N.; Babelkin, N. S.; Khodzitskii, M. K.; Chivilikhin, S. A.; Smolyanskaya, O. A.

    2014-08-01

    We have studied the mechanisms underlying the effect of pulsed broadband terahertz radiation on the growth of neurites of sensory ganglia using a comparative analysis of measured reflection spectra of ganglion neurites (in the frequency range 0.1 - 2.0 THz) and spectra obtained by numerical simulation with CST Microwave Studio. The observed changes are shown to be mainly due to pulse energy absorption in the ganglion neurites. Of particular interest are the observed single resonance frequencies related to resonance size effects, which can be used to irradiate ganglia in order to activate their growth.

  1. Numerical and experimental studies of mechanisms underlying the effect of pulsed broadband terahertz radiation on nerve cells

    SciTech Connect

    Duka, M V; Dvoretskaya, L N; Babelkin, N S; Khodzitskii, M K; Chivilikhin, S A; Smolyanskaya, O A

    2014-08-31

    We have studied the mechanisms underlying the effect of pulsed broadband terahertz radiation on the growth of neurites of sensory ganglia using a comparative analysis of measured reflection spectra of ganglion neurites (in the frequency range 0.1 – 2.0 THz) and spectra obtained by numerical simulation with CST Microwave Studio. The observed changes are shown to be mainly due to pulse energy absorption in the ganglion neurites. Of particular interest are the observed single resonance frequencies related to resonance size effects, which can be used to irradiate ganglia in order to activate their growth. (laser biophotonics)

  2. EndoBarrier gastrointestinal liner. Delineation of underlying mechanisms and clinical effects.

    PubMed

    Rohde, Ulrich

    2016-11-01

    Bariatric surgery (e.g. Roux-en-Y gastric bypass (RYGB)) has proven the most effective way of achieving sustainable weight losses and remission of type 2 diabetes (T2D). Studies indicate that the effectiveness of RYGB is mediated by an altered gastrointestinal tract anatomy, which in particular favours release of the gut incretin hormone glucagon-like peptide-1 (GLP-1). The EndoBarrier gastrointestinal liner or duodenal-jejunal bypass sleeve (DJBS) is an endoscopic deployable minimally invasive and fully reversible technique designed to mimic the bypass component of the RYGB. Not only GLP-1 is released when nutrients enter the gastrointestinal tract. Cholecystokinin (CCK), secreted from duodenal I cells, elicits gallbladder emptying. Traditionally, bile acids are thought of as essential elements for fat absorption. However, growing evidence suggests that bile acids have additional effects in metabolism. Thus, bile acids appear to increase GLP-1 secretion via activation of the TGR5 receptor on the intestinal L cell. Recently FXR receptors were postulated to contribute to GLP-1 secretion too. Furthermore, metformin has been shown to increase circulating GLP-1 levels but although the exact mechanism is not fully elucidated it may involve metformin-induced inhibition of bile acid reuptake from the small intestines. Small-sized studies reported varying degrees of weight loss and, in some, improvement of glucose metabolism. Therefore, the objectives of this thesis were to collect existing information on the DJBS in order to evaluate clinical efficacy and safety (study I and II). Furthermore, since the endocrine impact of the DJBS is not fully elucidated, and DJBS is expected to mimic RYGB, we investigated postprandial metabolic changes following 26 weeks of DJBS treatment in ten obese subjects with normal glucose tolerance (NGT) and nine matched patients with T2D (study III). Finally, we studied the single and combined effects of CCK induced gallbladder emptying and

  3. Is there a common mechanism underlying genomic instability, bystander effects and other nontargeted effects of exposure to ionizing radiation?

    NASA Technical Reports Server (NTRS)

    Morgan, William F.

    2003-01-01

    A number of nontargeted and delayed effects associated with radiation exposure have now been described. These include radiation-induced genomic instability, death-inducing and bystander effects, clastogenic factors and transgenerational effects. It is unlikely that these nontargeted effects are directly induced by cellular irradiation. Instead, it is proposed that some as yet to be identified secreted factor can be produced by irradiated cells that can stimulate effects in nonirradiated cells (death-inducing and bystander effects, clastogenic factors) and perpetuate genomic instability in the clonally expanded progeny of an irradiated cell. The proposed factor must be soluble and capable of being transported between cells by cell-to-cell gap junction communication channels. Furthermore, it must have the potential to stimulate cellular cytokines and/or reactive oxygen species. While it is difficult to imagine a role for such a secreted factor in contributing to transgenerational effects, the other nontargeted effects of radiation may all share a common mechanism.

  4. Is there a common mechanism underlying genomic instability, bystander effects and other nontargeted effects of exposure to ionizing radiation?

    NASA Technical Reports Server (NTRS)

    Morgan, William F.

    2003-01-01

    A number of nontargeted and delayed effects associated with radiation exposure have now been described. These include radiation-induced genomic instability, death-inducing and bystander effects, clastogenic factors and transgenerational effects. It is unlikely that these nontargeted effects are directly induced by cellular irradiation. Instead, it is proposed that some as yet to be identified secreted factor can be produced by irradiated cells that can stimulate effects in nonirradiated cells (death-inducing and bystander effects, clastogenic factors) and perpetuate genomic instability in the clonally expanded progeny of an irradiated cell. The proposed factor must be soluble and capable of being transported between cells by cell-to-cell gap junction communication channels. Furthermore, it must have the potential to stimulate cellular cytokines and/or reactive oxygen species. While it is difficult to imagine a role for such a secreted factor in contributing to transgenerational effects, the other nontargeted effects of radiation may all share a common mechanism.

  5. The effects of morphological irregularity on the mechanical behavior of interdigitated biological sutures under tension.

    PubMed

    Liu, Lei; Jiang, Yunyao; Boyce, Mary; Ortiz, Christine; Baur, Jeffery; Song, Juha; Li, Yaning

    2017-06-14

    Irregular interdigitated morphology is prevalent in biological sutures in nature. Suture complexity index has long been recognized as the most important morphological parameter to govern the mechanical properties of biological sutures. However, the suture complexity index alone does not reflect all aspects of suture morphology. The goal of this investigation was to determine that besides suture complexity index, whether the degree of morphological irregularity of biological sutures has influences on the mechanical properties, and if there is any, how to quantify these influences. To explore these issues, theoretical and finite element (FE) suture models with the same suture complexity index but different levels of morphological irregularity were developed. The quasi-static stiffness, strength for damage initiation and post-failure process of irregular sutures were studied. It was shown that for the same suture complexity index, when the level of morphological irregularity increases, the overall strain to failure will increase while tensile stiffness is retained; also, the total energy to fracture increases with a sacrifice in strength to damage initiation. These results reveal that morphological irregularity is another important independent parameter to govern and balance the mechanical properties of biological sutures. Therefore, from the mechanics point of view, the prevalence of irregular suture morphology in nature is a merit, not a defect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effects and underlying mechanisms of human opiorphin on colonic motility and nociception in mice.

    PubMed

    Tian, Xiao-zhu; Chen, Juan; Xiong, Wei; He, Tian; Chen, Qiang

    2009-07-01

    In the present study, we investigated the effects of human opiorphin on colonic motility and nociception in mice. In in vitro bioassay, opiorphin (10(-6) to 10(-4)M) caused colonic contraction in a concentration-dependent manner, which was completely blocked by naloxone and partially attenuated by beta-funaltrexamine and naltrindole. Moreover, opiorphin (10(-4)M) significantly enhanced the contractile response induced by Met-enkephalin. The data suggested that the effect of opiorphin on colonic contraction may be due to the protection of enkephalins. In in vivo bioassay, intracerebroventricular (i.c.v.) administration of opiorphin (1.25-10 microg/kg) dose- and time-dependently induced potent analgesic effect (ED(50)=3.22 microg/kg). This effect was fully blocked by naloxone and significantly inhibited by co-injection (i.c.v.) with beta-funaltrexamine or naltrindole, but not by nor-binaltorphimine, indicating the involvement of both mu- and delta-opioid receptors in the analgesic response evoked by opiorphin. In addition, i.c.v. administration of 5 microg/kg opiorphin produced the comparative effect as 10 microg/kg morphine on the analgesia, suggesting that opiorphin displayed more potent analgesic effect than that induced by morphine.

  7. Mechanisms underlying the inhibitory effect of the feed contaminant deoxynivalenol on glucose absorption in broiler chickens.

    PubMed

    Awad, W A; Ghareeb, K; Zentek, J

    2014-10-01

    Deoxynivalenol (DON), a major contaminant of cereals and grains, is of public health concern worldwide and has been shown to reduce the electrogenic transport of glucose. However, the full effects of Fusarium mycotoxins on nutrient absorption are still not clear. The aim of this study was to investigate whether decreased nutrient absorption was due to specific effects on transporter trafficking in the intestine and whether inhibition of phosphoinositol-3-kinase (PI-3-kinase) affected the electrogenic jejunal transport of glucose. Jejunal mucosa of 6-week-old broiler chickens were mounted in Ussing chambers and treated with DON, wortmannin (a specific inhibitor of PI-3-kinase), DON + wortmannin, phlorizin and cytochalasin B. DON was found to decrease the short-circuit current (Isc) after glucose addition. A similar decline in Isc after glucose addition was observed following pre-application of wortmannin, or phlorizin (Na(+)/glucose co-transporter, SGLT1 inhibitor). The results indicate that DON decreased glucose absorption in the absence of wortmannin or phlorizin but had no additional effect on glucose absorption in their presence. Glucose transport was not affected by cytochalasin B (facilitative glucose transporter, GLUT2 inhibitor). The study provides evidence that the suppressive effect of DON on the electrogenic transport of glucose may be due to an inhibitory activity of the PI3 kinase pathway and intestinal SGLT1. Furthermore, the effect of cytochalasin B on glucose transport in chicken tissues differs from that in mammals.

  8. Effects of suture position on left ventricular fluid mechanics under mitral valve edge-to-edge repair.

    PubMed

    Du, Dongxing; Jiang, Song; Wang, Ze; Hu, Yingying; He, Zhaoming

    2014-01-01

    Mitral valve (MV) edge-to-edge repair (ETER) is a surgical procedure for the correction of mitral valve regurgitation by suturing the free edge of the leaflets. The leaflets are often sutured at three different positions: central, lateral and commissural portions. To study the effects of position of suture on left ventricular (LV) fluid mechanics under mitral valve ETER, a parametric model of MV-LV system during diastole was developed. The distribution and development of vortex and atrio-ventricular pressure under different suture position were investigated. Results show that the MV sutured at central and lateral in ETER creates two vortex rings around two jets, compared with single vortex ring around one jet of the MV sutured at commissure. Smaller total orifices lead to a higher pressure difference across the atrio-ventricular leaflets in diastole. The central suture generates smaller wall shear stresses than the lateral suture, while the commissural suture generated the minimum wall shear stresses in ETER.

  9. Listening to Students: Examining Underlying Mechanisms That Contribute to the AVID Program's Effectiveness

    ERIC Educational Resources Information Center

    Llamas, Jasmín D.; López, Susana A.; Quirk, Matthew

    2014-01-01

    This study used a mixed-methods approach to examine the effects of the Advancement Via Individual Determination (AVID) program from the student perspective, specifically focusing on factors associated with student resilience. The AVID program aims to close the achievement gap among predominantly minority and low-income students without a family…

  10. Effects and underlying mechanisms of human opiorphin on cardiovascular activity in anesthetized rats.

    PubMed

    Tian, Xiao-zhu; Chen, Yong; Bai, Lu; Luo, Pan; Du, Xue-jing; Chen, Qiang; Tian, Xin-min

    2015-02-15

    The present study was performed to investigate the peripheral cardiovascular effects of opiorphin in anesthetized rats. Intravenous (i.v.) injection of opiorphin (50-500nmol/kg) caused marked dose-dependent increase in blood pressure and heart rate. The pressor and tachycardic responses induced by opiorphin (300nmol/kg, i.v.) were significantly decreased by pretreatment with angiotensin-converting enzyme inhibitor captopril or angiotensin II type 1 (AT1) receptor antagonist valsartan, which suggested that endogenous angiotensin may be involved in the response to opiorphin. Pretreatment with α-adrenoreceptor antagonist phentolamine and β-adrenoceptor antagonist propranolol respectively attenuated the pressor response induced by opiorphin. Propranolol, but not phentolamine, inhibited the tachycardic response. Moreover, reserpine blocked both responses to opiorphin. These findings indicated that the effects of opiorphin to increase blood pressure and heart rate might be due to the stimulation of sympathetic ganglia. Additionally, studies with bilaterally adrenalectomized rats showed that adrenal medulla may be involved in the cardiovascular regulation of opiorphin. In addition, pretreatment with nonselective opioid receptor antagonist naloxone did not modify the cardiovascular responses to opiorphin, suggesting that the effects of opiorphin were not related to the opioid system. Furthermore, radioimmunoassay (RIA) showed that opiorphin significantly increased endogenous levels of angiotensin II and angiotensin III. In summary, all the results indicate that the cardiovascular effects induced by opiorphin are mediated through the renin-angiotensin system (RAS), the sympathetic ganglia and adrenal medulla, but not the opioid system.

  11. Molecular Mechanism Underlying the Entomotoxic Effect of Colocasia esculenta Tuber Agglutinin against Dysdercus cingulatus

    PubMed Central

    Roy, Amit; Das, Sampa

    2015-01-01

    Colocasia esculenta tuber agglutinin (CEA), a mannose binding lectin, exhibits insecticidal efficacy against different hemipteran pests. Dysdercus cingulatus, red cotton bug (RCB), has also shown significant susceptibility to CEA intoxication. However, the molecular basis behind such entomotoxicity of CEA has not been addressed adequately. The present study elucidates the mechanism of insecticidal efficacy of CEA against RCB. Confocal and scanning electron microscopic analyses documented CEA binding to insect midgut tissue, resulting in an alteration of perimicrovillar membrane (PMM) morphology. Internalization of CEA into insect haemolymph and ovary was documented by western blotting analyses. Ligand blot followed by mass spectrometric identification revealed the cognate binding partners of CEA as actin, ATPase and cytochrome P450. Deglycosylation and mannose inhibition assays indicated the interaction to probably be mannose mediated. Bioinformatic identification of putative glycosylation or mannosylation sites in the binding partners further supports the sugar mediated interaction. Correlating entomotoxicity of CEA with immune histological and binding assays to the insect gut contributes to a better understanding of the insecticidal potential of CEA and endorses its future biotechnological application.

  12. Mechanisms underlying the effect of polysaccharides in the treatment of type 2 diabetes: A review.

    PubMed

    Wu, Jianjun; Shi, Songshan; Wang, Huijun; Wang, Shunchun

    2016-06-25

    Type 2 diabetes mellitus, a common metabolic and endocrine disorder worldwide, causes severe health and economic problems. At present, pharmacotherapy involving synthetic diabetic agents is clinically administered for diabetic therapy, which has certain side effects. Fortunately, various natural polysaccharides have anti-diabetic activity and use of these polysaccharides as adjuncts to conventional therapies is increasing in developing countries. A literature search was conducted to obtain relevant information of anti-diabetic polysaccharide from electronic databases, namely PubMed, Web of Science, ScienceDirect, and Springer, for the period 2011-2015. In total, 114 types of polysaccharides from 78 kinds of natural sources, namely plants, fungi, algae, animals, and bacteria, have shown anti-diabetic properties. In vivo and in vitro experiments have shown that administering these polysaccharides has hypoglycaemic effects and alleviates β-cell dysfunction in addtion to eliciting other anti-diabetic activities which are equally efficient to even more efficient than those of synthetic diabetic agents.

  13. Conserved molecular mechanisms underlying the effects of small molecule xenobiotic chemotherapeutics on cells

    PubMed Central

    SARIN, HEMANT

    2016-01-01

    For proper determination of the apoptotic potential of chemoxenobiotics in synergism, it is important to understand the modes, levels and character of interactions of chemoxenobiotics with cells in the context of predicted conserved biophysical properties. Chemoxenobiotic structures are studied with respect to atom distribution over molecular space, the predicted overall octanol-to-water partition coefficient (Log OWPC; unitless) and molecular size viz a viz van der Waals diameter (vdWD). The Log OWPC-to-vdWD (nm−1) parameter is determined, and where applicable, hydrophilic interacting moiety/core-to-vdWD (nm−1) and lipophilic incorporating hydrophobic moiety/core-to-vdWD (nm−1) parameters of their part-structures are determined. The cellular and sub-cellular level interactions of the spectrum of xenobiotic chemotherapies have been characterized, for which a classification system has been developed based on predicted conserved biophysical properties with respect to the mode of chemotherapeutic effect. The findings of this study are applicable towards improving the effectiveness of existing combination chemotherapy regimens and the predictive accuracy of personalized cancer treatment algorithms as well as towards the selection of appropriate novel xenobiotics with the potential to be potent chemotherapeutics for dendrimer nanoparticle-based effective transvascular delivery. PMID:26998284

  14. Mechanisms underlying the inhibitory effects of arsenic compounds on protein tyrosine phosphatase (PTP)

    SciTech Connect

    Rehman, Kanwal; Chen, Zhe; Wang, Wen Wen; Wang, Yan Wei; Sakamoto, Akira; Zhang, Yan Fang; Naranmandura, Hua; Suzuki, Noriyuki

    2012-09-15

    Arsenic binding to biomolecules is considered one of the major toxic mechanisms, which may also be related to the carcinogenic risks of arsenic in humans. At the same time, arsenic is also known to activate the phosphorylation-dependent signaling pathways including the epidermal growth factor receptor, the mitogen-activated protein kinase and insulin/insulin-like growth factor-1 pathways. These signaling pathways originate at the level of receptor tyrosine kinases whose phosphorylation status is regulated by opposing protein tyrosine phosphatase (PTP) activity. Reversible tyrosine phosphorylation, which is governed by the balanced action of protein tyrosine kinases and phosphatases, regulates important signaling pathways that are involved in the control of cell proliferation, adhesion and migration. In the present study, we have focused on the interaction of cellular PTPs with toxic trivalent arsenite (iAs{sup III}) and its intermediate metabolites such as monomethylarsonous acid (MMA{sup III}) and dimethylarsinous acid (DMA{sup III}) in vitro, and then determined the arsenic binding site in PTP by the use of recombinant PTPs (e.g., PTP1B and CD45). Interestingly, the activities of PTP1B (cytoplasm-form) or CD45 (receptor-linked form) were observed to be strongly inhibited by both methylated metabolites (i.e., MMA{sup III} and DMA{sup III}) but not by iAs{sup III}. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) has clearly confirmed that the organic intermediate, DMA{sup III} directly bound to the active site cysteine residue of PTP1B (e.g., Cys215), resulting in inhibition of enzyme activity. These results suggest that arsenic exposure may disturb the cellular signaling pathways through PTP inactivation. Highlights: ► This study focused on the interaction of PTPs with trivalent arsenicals in vitro. ► We for the first time confirmed that DMA{sup III} strongly inhibited activity of PTP1B. ► DMA{sup III} directly

  15. Chemopreventive and therapeutic effects of nimbolide in cancer: the underlying mechanisms.

    PubMed

    Bodduluru, Lakshmi Narendra; Kasala, Eshvendar Reddy; Thota, Nagaraju; Barua, Chandana C; Sistla, Ramakrishna

    2014-08-01

    Cancer chemoprevention is a strategy taken to block, reverse or retard the multistep process of carcinogenesis, including the blockage of its vital morphogenetic milestones viz. normal-preneoplasia-neoplasia-metastasis. Naturally occurring phytochemicals are becoming increasingly popular over synthetic drugs for several reasons, including safety, efficacy and easy availability. Nimbolide, a triterpene derived from the leaves and flowers of neem, is widely used in traditional medical practices for treating various human ailments. The neem limonoid exhibits multiple pharmacological effects among which its anticancer activity is the most promising. The preclinical and mechanistic studies carried over the decades have shown that nimbolide inhibits tumorigenesis and metastasis without any toxicity and unwanted side effects. Nimbolide exhibits anticancer activity through selective modulation of multiple cell signaling pathways linked to inflammation, survival, growth, invasion, angiogenesis and metastasis. The present review highlights the current knowledge on molecular targets that contribute to the observed anticancer activity of nimbolide related to (i) inhibition of carcinogenic activation and induction of antioxidant and carcinogen detoxification enzymes, (ii) induction of growth arrest and apoptosis; and (iii) suppression of proinflammatory signaling pathways related to cancer progression. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Effect of chemical and mechanical weed control on cassava yield, soil quality and erosion under cassava cropping system

    NASA Astrophysics Data System (ADS)

    Islami, Titiek; Wisnubroto, Erwin; Utomo, Wani

    2016-04-01

    Three years field experiments were conducted to study the effect of chemical and mechanical weed control on soil quality and erosion under cassava cropping system. The experiment were conducted at University Brawijaya field experimental station, Jatikerto, Malang, Indonesia. The experiments were carried out from 2011 - 2014. The treatments consist of three cropping system (cassava mono culture; cassava + maize intercropping and cassava + peanut intercropping), and two weed control method (chemical and mechanical methods). The experimental result showed that the yield of cassava first year and second year did not influenced by weed control method and cropping system. However, the third year yield of cassava was influence by weed control method and cropping system. The cassava yield planted in cassava + maize intercropping system with chemical weed control methods was only 24 t/ha, which lower compared to other treatments, even with that of the same cropping system used mechanical weed control. The highest cassava yield in third year was obtained by cassava + peanuts cropping system with mechanical weed control method. After three years experiment, the soil of cassava monoculture system with chemical weed control method possessed the lowest soil organic matter, and soil aggregate stability. During three years of cropping soil erosion in chemical weed control method, especially on cassava monoculture, was higher compared to mechanical weed control method. The soil loss from chemical control method were 40 t/ha, 44 t/ha and 54 t/ha for the first, second and third year crop. The soil loss from mechanical weed control method for the same years was: 36 t/ha, 36 t/ha and 38 t/ha. Key words: herbicide, intercropping, soil organic matter, aggregate stability.

  17. Effects and underlying mechanisms of curcumin on the proliferation of vascular smooth muscle cells induced by Chol:MßCD

    PubMed Central

    Qin, Li; Yang, Yun-Bo; Zhu, Bing-Yang; Chen, Lin-Xi; Zhang, Liang; Liao, Duan-Fang

    2009-01-01

    Proliferation of vascular smooth muscle cells (VSMCs) contributes to the development of various cardiovascular diseases. Curcumin, extracted from curcumae longae, has been shown a variety of beneficial effects on human health, including anti-atherosclerosis by mechanisms poorly understood. In the present study, we attempted to investigate whether curcumin has any effect on VSMCs proliferation and the potential mechanisms involved. Our data showed curcumin concentration-dependently abrogated the proliferation of primary rat VSMCs induced by Chol:MßCD. To explore the underlying cellular and molecular mechanisms, we found that curcumin was capable of restoring caveolin-1 expression which was reduced by Chol:MßCD treatment. Moreover, curcumin abrogated the increment of phospho-ERK1/2 and nuclear accumulation of ERK1/2 in primary rat VSMCs induced by Chol:MßCD, which led to a suppression of AP1 promoter activity stimulated by Chol:MßCD. In addition, curcumin was able to reverse cell cycle progression induced by Chol:MßCD, which was further supported by its down-regulation of cyclinD1 and E2F promoter activities in the presence of Chol:MßCD. Taking together, our data suggest curcumin inhibits Chol:MßCD-induced VSMCs proliferation via restoring caveolin-1 expression that leads to the suppression of over-activated ERK signaling and causes cell cycle arrest at G1/S phase. These novel findings support the beneficial potential of curcumin in cardiovascular disease. PMID:19101502

  18. [Effect of Zinc Doped Calcium Phosphate Coating on Bone Formation and the Underlying Biological Mechanism].

    PubMed

    Luo, Wenjing; Zhao, Jinghui; Meng, Xing; Ma, Shanshan; Sun, Qianyue; Guo, Tianqi; Wang, Yufeng; Zhou, Yanmin

    2015-12-01

    Implant surface modified coating can improve its osteoinductivity, about which simple calcium phosphate coating has been extensively studied. But it has slow osteointegration speed and poor antibacterial property, while other metal ions added, such as nano zinc ion, can compensate for these deficiencies. This paper describes the incorporation form, the effect on physical and chemical properties of the material and the antibacterial property of nano zinc, and summarizes the material's biological property given by calcium ion, zinc ion and inorganic phosphate (Pi), mainly focusing on the influence of these three inorganic ions on osteoblast proliferation, differentiation, protein synthesis and matrix mineralization in order to present the positive function of zinc doped calcium phosphate in the field of bone formation.

  19. Coaching as a Developmental Intervention in Organisations: A Systematic Review of Its Effectiveness and the Mechanisms Underlying It

    PubMed Central

    Grover, Simmy; Furnham, Adrian

    2016-01-01

    Purpose The primary aim of this paper is to conduct a thorough and systematic review of the empirical and practitioner research on executive, leadership and business coaching to assess the current empirical evidence for the effectiveness of coaching and the mechanisms underlying it. Background Organisations are increasingly using business coaching as an intervention to improve the productivity and performance of their senior personnel. A consequence of this increased application is the demand for empirical data to understand the process by which it operates and its demonstrable efficacy in achieving pre-set goals. Method This paper is a systematic review of the academic and practitioner literature pertaining to the effectiveness of business and executive coaching as a developmental intervention for organisations. It focuses on published articles, conference papers and theses that cover business, leadership or executive coaching within organisations over the last 10 years. Conclusions The main findings show that coaching is an effective tool that benefits organisations and a number of underlying facets contribute to this effectiveness. However, there is deficiency and scope for further investigation in key aspects of the academic research and we identify several areas that need further research and practitioner attention. ​ PMID:27416061

  20. Coaching as a Developmental Intervention in Organisations: A Systematic Review of Its Effectiveness and the Mechanisms Underlying It.

    PubMed

    Grover, Simmy; Furnham, Adrian

    2016-01-01

    The primary aim of this paper is to conduct a thorough and systematic review of the empirical and practitioner research on executive, leadership and business coaching to assess the current empirical evidence for the effectiveness of coaching and the mechanisms underlying it. Organisations are increasingly using business coaching as an intervention to improve the productivity and performance of their senior personnel. A consequence of this increased application is the demand for empirical data to understand the process by which it operates and its demonstrable efficacy in achieving pre-set goals. This paper is a systematic review of the academic and practitioner literature pertaining to the effectiveness of business and executive coaching as a developmental intervention for organisations. It focuses on published articles, conference papers and theses that cover business, leadership or executive coaching within organisations over the last 10 years. The main findings show that coaching is an effective tool that benefits organisations and a number of underlying facets contribute to this effectiveness. However, there is deficiency and scope for further investigation in key aspects of the academic research and we identify several areas that need further research and practitioner attention. ​.

  1. Effects of quercetin and menadione on intestinal calcium absorption and the underlying mechanisms.

    PubMed

    Marchionatti, Ana M; Pacciaroni, Adriana; Tolosa de Talamoni, Nori G

    2013-01-01

    Quercetin (QT) could be considered as a potential therapeutic agent for different diseases due to its antioxidant, anti-inflammatory, antiviral and anticancer properties. This study was designed to investigate the ability of QT to protect the chick intestine against menadione (MEN) induced injury in vivo and in vitro. Four-week old chicks (Gallus gallus) were treated i.p. with 2.5μmol of MEN/kg b.w. or with i.l. 50μM QT or both. QT protected the intestinal Ca(2+) absorption against the inhibition caused by MEN, but QT alone did not modify. Glutathione (GSH) depletion provoked by MEN in chick enterocytes was abolished by QT treatment, whereas QT alone did not modify the intestinal GSH content. The enhancement of GSH peroxidase activity produced by MEN was blocked by QT treatment. In contrast, superoxide dismutase activity remained high after simultaneous treatment of enterocytes with MEN and QT. The flavonol also avoided changes in the mitochondrial membrane permeability (swelling) produced by MEN. The FasL/Fas/caspase-3 pathway was activated by MEN, effect that was abrogated by QT. In conclusion, QT may be useful in preventing inhibition of chick intestinal Ca(2+) absorption caused by MEN or other substances that deplete GSH, by blocking the oxidative stress and the FasL/Fas/caspase-3 pathway activation.

  2. Studies on the regulatory effect of Peony-Glycyrrhiza Decoction on prolactin hyperactivity and underlying mechanism in hyperprolactinemia rat model.

    PubMed

    Wang, Di; Wang, Wei; Zhou, Yulin; Wang, Juan; Jia, Dongxu; Wong, Hei Kiu; Zhang, Zhang-Jin

    2015-10-08

    Clinical trials have demonstrated the beneficial effects of Peony-Glycyrrhiza Decoction (PGD) in alleviating antipsychotic-induced hyperprolactinemia (hyperPRL) in schizophrenic patients. In previous experiment, PGD suppressed prolactin (PRL) level in MMQ cells, involving modulating the expression of D2 receptor (DRD2) and dopamine transporter (DAT). In the present study, hyperPRL female rat model induced by dopamine blocker metoclopramide (MCP) was applied to further confirm the anti-hyperpPRL activity of PGD and underlying mechanism. In MCP-induced hyperPRL rats, the elevated serum PRL level was significantly suppressed by either PGD (2.5-10 g/kg) or bromocriptine (BMT) (0.6 mg/kg) administration for 14 days. However, in MCP-induced rats, only PGD restored the under-expressed serum progesterone (P) to control level. Both PGD and BMT administration restore the under-expression of DRD2, DAT and TH resulted from MCP in pituitary gland and hypothalamus. Compared to untreated group, hyperPRL animals had a marked reduction on DRD2 and DAT expression in the arcuate nucleus. PGD (10 g/kg) and BMT (0.6 mg/kg) treatment significant reversed the expression of DRD2 and DAT. Collectively, the anti-hyperPRL activity of PGD associates with the modulation of dopaminergic neuronal system and the restoration of serum progesterone level. Our finding supports PGD as an effective agent against hyperPRL.

  3. Effect of bisphenol a on occurrence and progression of prolactinoma and its underlying mechanisms

    PubMed Central

    Hao, Lanxiang; Zhang, Jing; Zhang, Yonghong; Hu, Haitao; Shao, Weiwei; Zhang, Xiaochen; Geng, Chunmei; Wang, Yanyan; Jiang, Ling

    2016-01-01

    Objective: To investigate the effects of Bisphenol A (BPA) on prolactin (PRL) release, pituitary cell proliferation, prolactinoma formation in estrogen-sensitive Fischer 344 (F344) rats. Materials and methods: Four-week-old female F344 rats were orally administered with different concentrations of BPA or intraperitoneal injection of estradiol benzoate (estradiolbenzoate, E2) for 12 weeks. Bodyweight, blood RPL level and pituitary weights were observed and recorded. Real-time PCR, western blot and immunohistochemistry analysis were used to detect the mRNA and protein levels of the proliferation markers, including proliferating cell neclear antigen (PCNA), pituitary tumor-transforming gene (PTTG) and its relevant marker ERα. Plasma and urine BPA concentration in patients with prolactinoma and healthy participants were measured as well. Results: Body weights of the rats treated with BPA were significantly decreased compared with those in the control group. The plasma PRL level and the pituitary weights of the rats were higher than those in the control group after BPA treatment. Compared with the control group, the pituitary mRNA and protein expression levels of PCNA and PTTG were significantly increased after BPA treatment. Moreover, ERα expression level was enhanced by the treatment of BPA in comparison with that of the control group. Finally, the plasma BPA concentration in the prolactin tumor patients was significantly higher than that in the healthy participants. Conclusion: BPA can significantly promote pituitary cell proliferation and prolactin secretion in F344 rats, which may have impact on the proliferation and secretion of pituitary cell function through the ERα pathway. PMID:27830003

  4. Protective effect of salidroside on contrast-induced nephropathy in comparison with N-acetylcysteine and its underlying mechanism.

    PubMed

    Xing, Yue; Wei, Ri-bao; Tang, Lu; Yang, Yue; Zheng, Xiao-yong; Wang, Zi-cheng; Gao, Yu-wei

    2015-04-01

    To study the prevention effect of salidroside on contrast-induced-nephropathy (CIN) and its underlying mechanism. A total of 24 Wistar rats were randomly divided into 4 groups with 6 in each group. Rats were firstly administrated with normal saline (control and model groups), N-acetylcysteine (NAC, NAC group) and salidroside (salidroside group) for 7 days before model establishment in each group, respectively. Histopathological analysis was performed by periodic acid-Schiff (PAS) staining. Oxidative stress related parameters including superoxide dismutase (SOD) and methane dicarboxylic aldehyde (MDA), nitric oxide (NO), angiotensin II (Ang II), 8-hydroxy-2'-deoxyguanosine (8-OHdG), mRNA and protein levels of endothelial nitric oxide synthase (eNOS), and nitric oxide synthase (NOS) activity were measured. Compared with the control group, the levels of MDA, Ang II and 8-OHdG were all significantly increased and levels of SOD, NO, and eNOS mRNA and protein were decreased significantly in the model group (P<0.05). Meanwhile, the NOS activity was also significantly decreased in the model group (P<0.05). In addition, the levels of these parameters were all improved in the NAC (P<0.05) and salidroside groups and no significant different was found between these two groups (P>0.05). Salidroside can be the potential substitute of NAC to prevent CIN. The underlying mechanism may be associated with oxidative stress damage caused by contrast agents.

  5. Physiological mechanisms contributing to the QTL-combination effects on improved performance of IR64 rice NILs under drought

    PubMed Central

    Henry, Amelia; Swamy, B. P. Mallikarjuna; Dixit, Shalabh; Torres, Rolando D.; Batoto, Tristram C.; Manalili, Mervin; Anantha, M. S.; Mandal, N. P.; Kumar, Arvind

    2015-01-01

    Characterizing the physiological mechanisms behind major-effect drought-yield quantitative trait loci (QTLs) can provide an understanding of the function of the QTLs—as well as plant responses to drought in general. In this study, we characterized rice (Oryza sativa L.) genotypes with QTLs derived from drought-tolerant traditional variety AdaySel that were introgressed into drought-susceptible high-yielding variety IR64, one of the most popular megavarieties in South Asian rainfed lowland systems. Of the different combinations of the four QTLs evaluated, genotypes with two QTLs (qDTY 2.2 + qDTY 4.1) showed the greatest degree of improvement under drought compared with IR64 in terms of yield, canopy temperature, and normalized difference vegetation index (NDVI). Furthermore, qDTY 2.2 and qDTY 4.1 showed a potential for complementarity in that they were each most effective under different severities of drought stress. Multiple drought-response mechanisms were observed to be conferred in the genotypes with the two-QTL combination: higher root hydraulic conductivity and in some cases greater root growth at depth. As evidenced by multiple leaf water status and plant growth indicators, these traits affected transpiration but not transpiration efficiency or harvest index. The results from this study highlight the complex interactions among major-effect drought-yield QTLs and the drought-response traits they confer, and the need to evaluate the optimal combinations of QTLs that complement each other when present in a common genetic background. PMID:25680791

  6. [Effect of thalidomide in a mouse model of paraquat-induced acute lung injury and the underlying mechanisms].

    PubMed

    Zhao, Guangju; Cai, Xiaoxia; She, Xingrong; Li, Dong; Hong, Guangliang; Wu, Bin; Li, Mengfang; Lu, Zhongqiu

    2014-11-01

    To investigate the effects of thalidomide in a mouse model of paraquat-induced acute lung injury and the mechanisms underlying the properties of thalidomide. Male ICR mice were randomly allocated into four groups: nomal control group (n = 30), thalidomide control group (n = 30), paraquat poisioning group (n = 30) and thalidomide treatment group (n = 90). Mice were sacrificed at 1d, 3d and 7d after paraquat poisioning. The level of (MDA) malondialdehyde, Superoxidedi-smutase (SOD) and glutathione (GSH) in the lung tissue were measuerd by chemical colorimetry. The expression of Nrf2 mRNA was determined by RT-PCR; Nuclear protein Nrf2 was abserved by Western blotting; Pathological changes of lung tissue were observed under light microscope by HE stain; the lung apoptosis cells were detected by TUNEL. The levels of MDA, SOD and the expressions Nrf2 mRNA and protein Nrf2 in lung tissue were all markedly increased in mice of paraquat poisioning group than those in nomal group at 1 d, 3 d, 7 d. In contrast, the levels of GSH were decreaseel (P<0.05). Compared with paraquat poisioning group, the pulmonary SOD, Nrf2 mRNA and protein were increased and the lung wet dry ratio were all significantly decreased in mice of THD treatment group at 1 d, 3 d, 7 d (P<0.05). THD alleviated the pulmonary damage in the lightmicroscope at 3d after paraquat poisioning. The apoptosis index was markedly decreased in THD treatment groups comparing to paraquat piosioning group (P<0.05). Lipid peroxide damage was one of the mechanisms of paraquat poisioning, thalidomide could attenuate paraquat-induced acute lung injury and its mechanism may be activating the Nrf2-ARE signaling pathway to protect mouse from Lipid peroxide damage.

  7. [Effects of mechanical stimulation of the soles' support zones on H-reflex characteristics under support unloading condition].

    PubMed

    Zakirova, A Z; Shigueva, T A; Tomilovskaya, E S; Kozlovskaya, I B

    2015-01-01

    The aim of the work was to study the effects of mechanical stimulation of the soles' support zones on state of m. soleus motoneurone pool in man under 7-days support unloading conditions, which was provided by "Dry Immersion" model. Before, during and after immersion exposure the excitability of m. soleus motoneurone pool was estimated by H-reflex amplitude normalized by the maximal amplitude of M-wave. The data registered in two groups of volunteers: "control" in which only immersion exposure was used and "experimental" in which stimulation of support zones of sole was carried out during Dry Immersion were compared. During immersion relative amplitude of H-reflex increased in the control group. These alterations were not revealed in the experimental group with daily application of the support stimulation in natural locomotion regimens during immersion.

  8. Potential Mechanisms underlying the Protective Effect of Pregnancy against Breast Cancer: A Focus on the IGF Pathway.

    PubMed

    Katz, Tiffany A

    2016-01-01

    A first full-term birth at an early age protects women against breast cancer by reducing lifetime risk by up to 50%. The underlying mechanism resulting in this protective effect remains unclear, but many avenues have been investigated, including lobular differentiation, cell fate, and stromal composition. A single pregnancy at an early age protects women for 30-40 years, and this long-term protection is likely regulated by a relatively stable yet still modifiable method, such as epigenetic reprograming. Long-lasting epigenetic modifications have been shown to be induced by pregnancy and to target the IGF pathway. Understanding how an early first full-term pregnancy protects against breast cancer and the role of epigenetic reprograming of the IGF system may aid in developing new preventative strategies for young healthy women in the future.

  9. Potential Mechanisms underlying the Protective Effect of Pregnancy against Breast Cancer: A Focus on the IGF Pathway

    PubMed Central

    Katz, Tiffany A.

    2016-01-01

    A first full-term birth at an early age protects women against breast cancer by reducing lifetime risk by up to 50%. The underlying mechanism resulting in this protective effect remains unclear, but many avenues have been investigated, including lobular differentiation, cell fate, and stromal composition. A single pregnancy at an early age protects women for 30–40 years, and this long-term protection is likely regulated by a relatively stable yet still modifiable method, such as epigenetic reprograming. Long-lasting epigenetic modifications have been shown to be induced by pregnancy and to target the IGF pathway. Understanding how an early first full-term pregnancy protects against breast cancer and the role of epigenetic reprograming of the IGF system may aid in developing new preventative strategies for young healthy women in the future. PMID:27833901

  10. The Protective Effects of Salubrinal on the Cartilage and Subchondral Bone of the Temporomandibular Joint under Various Compressive Mechanical Stimulations

    PubMed Central

    Zhang, Caixia; Chen, Sheng; Li, Huang

    2016-01-01

    Excessive mechanical loads on the temporomandibular joint (TMJ) can cause mandibular cartilage degradation and subchondral bone erosion, but the treatment of these conditions remains challenging. Salubrinal, which target eukaryotic translation initiation factor 2 alpha, has been shown to have multiple beneficial effects on skeletal tissue. Here, we examined the effect of a Salubrinal injection on the mandibular cartilage and subchondral bone of the TMJ under various compressive stresses. We conducted in vivo analyses in rat models using various compressive stresses (40 g and 80 g), and we observed time-related degeneration and pathological changes in the cartilage and subchondral bone of the TMJ at days 1, 3 and 7 through histological measurements, subcellular observation, and changes in proliferation and apoptosis. After the Salubrinal injection, the thickness of the cartilage recovered, and the pathological change was alleviated. In the Salubrinal/light (Sal/light) compressive stress group, the drug altered the proliferation and apoptosis of chondrocytes most significantly at day 1. In the Salubrinal/heavy (Sal/heavy) compressive stress group, the drug increased the proliferation of chondrocytes most significantly at day 1 and reduced the apoptosis of chondrocytes most significantly at day 7. Salubrinal also increased the area of the bone trabeculae and suppressed inflammatory responses and pathological change in the subchondral bone of the TMJ. Together, these results indicate that the administration of Salubrinal reduces apoptosis and strengthens the proliferation of chondrocyte to varying degrees at days 1, 3 and 7 under various compressive mechanical stresses, both of which contribute to the recovery of cartilage thickness and the alleviation of pathological change. Salubrinal also suppresses inflammatory responses and pathological change in the subchondral bone of the TMJ. PMID:27196267

  11. Local and Systemic Immune Mechanisms Underlying the Anti-Colitis Effects of the Dairy Bacterium Lactobacillus delbrueckii

    PubMed Central

    Santos Rocha, Clarissa; Gomes-Santos, Ana Cristina; Garcias Moreira, Thais; de Azevedo, Marcela; Diniz Luerce, Tessalia; Mariadassou, Mahendra; Longaray Delamare, Ana Paula; Langella, Philippe; Maguin, Emmanuelle; Azevedo, Vasco; Caetano de Faria, Ana Maria

    2014-01-01

    Several probiotic bacteria have been proposed for treatment or prevention of inflammatory bowel diseases (IBD), showing a protective effect in animal models of experimental colitis and for some of them also in human clinical trials. While most of these probiotic bacteria are isolated from the digestive tract, we recently reported that a Lactobacillus strain isolated from cheese, L. delbrueckii subsp. lactis CNRZ327 (Lb CNRZ327), also possesses anti-inflammatory effects in vitro and in vivo, demonstrating that common dairy bacteria may be useful in the treatment or prevention of IBD. Here, we studied the mechanisms underlying the protective effects of Lb CNRZ327 in vivo, in a mouse dextran sodium sulfate (DSS) colitis model. During colitis, Lb CNRZ327 modulated the production of TGF-β, IL-6, and IL-12 in colonic tissue and of TGF-β and IL-6 in the spleen, and caused an expansion of CD4+Foxp3+ regulatory T cells in the cecal lymph nodes. Moreover, a strong tendency to CD4+Foxp3+ expansion was also observed in the spleen. The results of this study for the first time show that orally administered dairy lactobacilli can not only modulate mucosal but also systemic immune responses and constitute an effective treatment of IBD. PMID:24465791

  12. Antitumor effects and the underlying mechanism of licochalcone A combined with 5-fluorouracil in gastric cancer cells

    PubMed Central

    Lin, Xiaolin; Tian, Lei; Wang, Lisha; Li, Wenyan; Xu, Qi; Xiao, Xiuying

    2017-01-01

    Licochalcone A (LCA) is a flavonoid extracted from licorice root that has antiparasitic, antibacterial and antitumor properties. Previous studies have revealed that LCA may be a novel treatment for gastric cancer. The present study further assessed the potential antitumor effects of LCA alone or in combination with 5-fluorouracil (5-FU), and the underlying mechanisms responsible for those effects in gastric cancer cells. The effects of LCA alone or in combination with 5-FU on SGC7901 and MKN-45 gastric cancer cell lines were studied using Cell Counting Kit-8, cell cycle, apoptosis and western blot analyses of cell check points and apoptosis-associated proteins. The results revealed that LCA inhibited cell proliferation, blocked cell cycle progression at the G2/M transition and induced apoptosis. Western blot analysis demonstrated that LCA treatment increased the levels of tumor proteins 21 and 27, as well as mouse double minute 2 homolog in gastric cancer cells. In addition, LCA treatment increased the expression levels of Bax, cleaved-poly ADP ribose polymerase, tumor protein 53 and caspase 3, and decreased the expression levels of Bcl-2. Therefore, the present study demonstrated that LCA alone or in combination with 5-FU may have significant anticancer effects on gastric cancer cells, and may be a novel therapeutic for the treatment of gastric cancer in the future. PMID:28454311

  13. Hexosamine Biosynthesis Is a Possible Mechanism Underlying Hypoxia’s Effects on Lipid Metabolism in Human Adipocytes

    PubMed Central

    O’Rourke, Robert W.; Meyer, Kevin A.; Gaston, Garen; White, Ashley E.; Lumeng, Carey N.; Marks, Daniel L.

    2013-01-01

    Introduction Hypoxia regulates adipocyte metabolism. Hexosamine biosynthesis is implicated in murine 3T3L1 adipocyte differentiation and is a possible underlying mechanism for hypoxia’s effects on adipocyte metabolism. Methods Lipid metabolism was studied in human visceral and subcutaneous adipocytes in in vitro hypoxic culture with adipophilic staining, glycerol release, and palmitate oxidation assays. Gene expression and hexosamine biosynthesis activation was studied with QRTPCR, immunofluorescence microscopy, and Western blotting. Results Hypoxia inhibits lipogenesis and induces basal lipolysis in visceral and subcutaneous human adipocytes. Hypoxia induces fatty acid oxidation in visceral adipocytes but had no effect on fatty acid oxidation in subcutaneous adipocytes. Hypoxia inhibits hexosamine biosynthesis in adipocytes. Inhibition of hexosamine biosynthesis with azaserine attenuates lipogenesis and induces lipolysis in adipocytes in normoxic conditions, while promotion of hexosamine biosynthesis with glucosamine in hypoxic conditions slightly increases lipogenesis. Conclusions Hypoxia’s net effect on human adipocyte lipid metabolism would be expected to impair adipocyte buffering capacity and contribute to systemic lipotoxicity. Our data suggest that hypoxia may mediate its effects on lipogenesis and lipolysis through inhibition of hexosamine biosynthesis. Hexosamine biosynthesis represents a target for manipulation of adipocyte metabolism. PMID:23967162

  14. [Effect of oxymatrine on vascular calcification of humans umbilical vein smooth muscle cells and its underlying mechanism].

    PubMed

    Wang, Xiumei; Zhang, Juan; Zhang, Minghao; Liu, Shuang; Li, Guizhong; Cao, Jun

    2012-04-01

    To observe the effect of oxymatrine (OMT) on calcification of humans umbilical vein smooth muscle cells and its underlying mechanism. Human umbilical vein smooth muscle cells (HUSMCs) were calcified by beta-giycerophos-phosphate (beta-GP) and then divided into 6 groups: the control group, the calcification group, the pure OMT group, and lower, middle and higher-dosage OMT groups. Cell calcification were observed by Von Kossa staining, calcium content in HUSMCs were determined by the colorimetric method, the alkaline phosphatase (ALP) activity in HUSMCs were determined by phenyl diphosphate-2-sodium, the osteocalcin (OC) level in HUSMCs were determined by radioimmunossay, the transforming growth factor-beta1 (TGF-beta1) level in HUSMC culture medium and the content changes in psmad2/3 and smad2/3 were determined by the ELISA method, and the expression of Core binding factor alpha1 (Cbfalpha1) protein in HUSMCs were determined by western blot method. Compared with the control group, the calcification group showed a great number of black granules among the smooth muscle cells and significant increase in the content of calcium and OC and the activity of ALP; OMT intervention can decrease the content of calcium, OC, TGF-beta1, psmad2/3 and Cbfalpha1 and the activity of ALP. And high-dosage OMT group had better effect than middle and low-dosage groups. OMT can effectively inhibit beta-GP-induced HUSMC calcification and its effect on reducing TGF-beta1, psmad2/3 and Cbfalpha1 may be one of its mechanisms in inhibiting HVSMC calcification.

  15. Chemosensitizing effects of carbon-based nanomaterials in cancer cells: enhanced apoptosis and inhibition of proliferation as underlying mechanisms

    NASA Astrophysics Data System (ADS)

    Erdmann, Kati; Ringel, Jessica; Hampel, Silke; Rieger, Christiane; Huebner, Doreen; Wirth, Manfred P.; Fuessel, Susanne

    2014-10-01

    Recent studies have shown that carbon nanomaterials such as carbon nanofibres (CNFs) and multi-walled carbon nanotubes (CNTs) can exert antitumor activities themselves and sensitize cancer cells to conventional chemotherapeutics such as carboplatin and cisplatin. In the present study, the chemosensitizing effect of CNFs and CNTs on cancer cells of urological origin was investigated regarding the underlying mechanisms. Prostate cancer (DU-145, PC-3) and bladder cancer (EJ28) cells were treated with carbon nanomaterials (CNFs, CNTs) and chemotherapeutics (carboplatin, cisplatin) alone as well as in combination for 24 h. Forty-eight (EJ28) or 72 h (DU-145, PC-3) after the end of treatment the effects on cellular proliferation, clonogenic survival, cell death rate and cell cycle distribution were evaluated. Depending on the cell line, simultaneous administration of chemotherapeutics and carbon nanomaterials produced an additional inhibition of cellular proliferation and clonogenic survival of up to 77% and 98%, respectively, compared to the inhibitory effects of the chemotherapeutics alone. These strongly enhanced antiproliferative effects were accompanied by an elevated cell death rate, which was predominantly mediated via apoptosis and not by necrosis. The antitumor effects of combinations with CNTs were less pronounced than those with CNFs. The enhanced effects of the combinatory treatments on cellular function were mostly of additive to partly synergistic nature. Furthermore, cell cycle analysis demonstrated an arrest at the G2/M phase mediated by a monotreatment with chemotherapeutics. Following combinatory treatments, mostly less than or nearly additive increases of cell fractions in the G2/M phase could be observed. In conclusion, the pronounced chemosensitizing effects of CNFs and CNTs were mediated by an enhanced apoptosis and inhibition of proliferation. The combination of carbon-based nanomaterials and conventional chemotherapeutics represents a novel

  16. Metabolomic and pharmacokinetic study on the mechanism underlying the lipid-lowering effect of oral-administrated berberine

    PubMed Central

    Gu, Shenghua; Cao, Bei; Sun, Runbin; Tang, Yueqing; Paletta, Janice L.; Wu, Xiao-Lei; Liu, Linsheng; Zha, Weibin; Zhao, Chunyan; Li, Yan; Radlon, Jason M.; Hylemon, Phillip B.; Zhou, Huiping; Aa, Jiye; Wang, Guangji

    2014-01-01

    Clinic and animal studies demonstrated that oral-administrated berberine had distinct lipid-lowering effect. However, pharmacokinetic studies showed berberine was poorly absorbed into the body so that the levels of berberine in the blood and target tissues were far below the effective concentrations revealed. To probe the underlying mechanism, the effect of berberine on biological system was studied on a high-fat-diet-induced hamster hyperlipidemia model. Our results showed that intragastric-administered berberine was poorly absorbed into circulation and most berberine accumulated in gut content. Although the bioavailability for intragastric-administered berberine was much lower than that of intraperitoneal-administered berberine, it had stronger lipid-lowing effect, indicating gastrointestinal is a potential target for hypolipidemic effect of berberine. Metabolomic study on both serum and gut content showed that oral-administrated berberine significantly regulated molecules involved in lipid metabolism, and increased the generation of bile acids in the hyperlipidemic model. DNA analysis revealed that the oral-administered berberine modulated the gut microbiota, and BBR showed a significant inhibition on the 7α-dehydroxylation conversion of cholic acid to deoxycholic acid, indicating a decreased elimination of bile acids in the gut. However, in model hamsters, elevated bile acids failed to down-regulate the expression and function of CYP7A1 in a negative feed-back way. It was suggested that the hypocholesterolemic effect for oral-administrated berberine is involved in its effect on modulating the turnover of bile acids and farnesoid X receptor signal pathway. PMID:25411028

  17. Method of determining the delayed fracture susceptibility of steel under the simultaneous effect of hydrogen and mechanical stresses

    SciTech Connect

    Mishin, V.M.; Beresnev, A.G.; Sarrak, V.I.

    1987-02-01

    The delayed fracture test is one of the most informative methods for evaluating the hydrogen embrittlement susceptibility of structural steels. However, in the majority of cases, delayed fracture tests under the simultaneous effect of the metal of mechanical stresses and a hydrogen-containing medium are carried out using methods which make it possible to obtain only the qualitative characteristics of the susceptibility to hydrogen embrittlement. The methods proposed by the authors in this paper include the mechanical tests of delayed fracture of the specimens, simultaneous saturation of the specimens with hydrogen, calculation of the maximum local tensile stresses ahead of the stress raiser, and determining the threshold value of these stresses below which no crack initiation takes place. The authors also propose a variation on the equipment with the following advantages: the specimen is loaded by pure bending to determine the elastic stress concentration factors required for calculating the maximum local tensile stresses; the intensity of the action of the working medium can be easily varied by the application of various electrolytes and cathodic current densities.

  18. Effects of soil mechanical resistance on nematode community structure under conventional sugarcane and remaining of Atlantic Forest.

    PubMed

    de Oliveira Cardoso, Mércia; Pedrosa, Elvira M R; Rolim, Mário M; Silva, Enio F F E; de Barros, Patrícia A

    2012-06-01

    Nematodes present high potential as a biological indicator of soil quality. In this work, it was evaluated relations between soil physical properties and nematode community under sugarcane cropping and remaining of Atlantic Forest areas in Northeastern Pernambuco, Brazil. Soil samples were collected from September to November 2009 along two 200-m transects in both remaining of Atlantic Forest and sugarcane field at deeps of 0-10, 10-20, 20-30, 30-40, and 40-50 cm. For soil characterization, it was carried out analysis of soil size, water content, total porosity, bulk density, and particle density. The level of soil mechanical resistance was evaluated through a digital penetrometer. Nematodes were extracted per 300 cm(3) of soil through centrifugal flotation in sucrose being quantified, classified according trophic habit, and identified in level of genus or family. Data were analyzed using Pearson correlation at 5% of probability. Geostatistical analysis showed that the penetration resistance, water content, total porosity, and bulk density on both forest and cultivated area exhibited spatial dependence at the sampled scale, and their experimental semivariograms were fitted to spherical and exponential models. In forest area, the ectoparasites and free-living nematodes exhibited spherical model. In sugarcane field, the soil nematodes exhibited pure nugget effect. Pratylenchus sp. and Helicotylenchus sp. were prevalent in sugarcane field, but in forest, there was prevalence of Dorylaimidae and Rhabditidae. Total amount of nematode did not differ between environments; however, community trophic structure in forest presented prevalence of free-living nematodes: omnivores followed by bacterial-feeding soil nematodes, while plant-feeding nematodes were prevalent in sugarcane field. The nematode diversity was higher in the remaining of Atlantic Forest. However, the soil mechanical resistance was higher under sugarcane cropping, affecting more directly the free

  19. StartReact Effects Support Different Pathophysiological Mechanisms Underlying Freezing of Gait and Postural Instability in Parkinson’s Disease

    PubMed Central

    Nonnekes, Jorik; de Kam, Digna; Nijhuis, Lars B. Oude; van Geel, Karin; Bloem, Bastiaan R.; Geurts, Alexander; Weerdesteyn, Vivian

    2015-01-01

    Introduction The pathophysiology underlying postural instability in Parkinson’s disease is poorly understood. The frequent co-existence with freezing of gait raises the possibility of shared pathophysiology. There is evidence that dysfunction of brainstem structures contribute to freezing of gait. Here, we evaluated whether dysfunction of these structures contributes to postural instability as well. Brainstem function was assessed by studying the StartReact effect (acceleration of latencies by a startling acoustic stimulus (SAS)). Methods We included 25 patients, divided in two different ways: 1) those with postural instability (HY = 3, n = 11) versus those without (HY<3, n = 14); and 2) those with freezing (n = 11) versus those without freezing (n = 14). We also tested 15 matched healthy controls. We tested postural responses by translating a balance platform in the forward direction, resulting in backward balance perturbations. In 25% of trials, the start of the balance perturbation was accompanied by a SAS. Results The amplitude of automatic postural responses and length of the first balance correcting step were smaller in patients with postural instability compared to patients without postural instability, but did not differ between freezers and non-freezers. In contrast, the StartReact effect was intact in patients with postural instability but was attenuated in freezers. Discussion We suggest that the mechanisms underlying freezing of gait and postural instability in Parkinson’s disease are at least partly different. Underscaling of automatic postural responses and balance-correcting steps both contribute to postural instability. The attenuated StartReact effect was seen only in freezers and likely reflects inadequate representation of motor programs at upper brainstem level. PMID:25803045

  20. Adrenal GRK2 lowering is an underlying mechanism for the beneficial sympathetic effects of exercise training in heart failure.

    PubMed

    Rengo, Giuseppe; Leosco, Dario; Zincarelli, Carmela; Marchese, Massimo; Corbi, Graziamaria; Liccardo, Daniela; Filippelli, Amelia; Ferrara, Nicola; Lisanti, Michael P; Koch, Walter J; Lymperopoulos, Anastasios

    2010-06-01

    Exercise training has been reported to exert beneficial effects on cardiac function and to reduce morbidity and mortality of chronic heart failure (HF). Augmented sympathetic nervous system (SNS) activity, leading to elevated circulating catecholamine (CA) levels, is a hallmark of chronic HF that significantly aggravates this disease. Exercise training has been shown to also reduce SNS overactivity in HF, but the underlying molecular mechanism(s) remain unidentified. We recently reported that adrenal G protein-coupled receptor kinase-2 (GRK2), an enzyme that regulates the sympathoinhibitory alpha(2)-adrenoceptors (alpha(2)-ARs) present in the CA-producing adrenal medulla, is upregulated in HF, contributing to the chronically elevated CA levels and SNS activity of the disease. In the present study, we tested whether exercise training can affect the adrenal GRK2-alpha(2)-AR-CA production system in the context of HF. For this purpose, a 10-wk-long exercise training regimen of adult male Sprague-Dawley rats starting at 4 wk postmyocardial infarction (post-MI) was employed, and examination at the end of this treatment period revealed significant amelioration of beta-AR-stimulated contractility in response to exercise training, accompanied by cardiac GRK2 reduction and restoration of circulating plasma CA levels. Importantly, adrenal GRK2 expression (72 + or - 5% reduction vs. post-MI untrained) and alpha(2)-AR number were also restored after exercise training in post-MI animals. These results suggest that exercise training restores the adrenal GRK2-alpha(2)-AR-CA production axis, and this might be part of the mechanism whereby this therapeutic modality normalizes sympathetic overdrive and impedes worsening of the failing heart.

  1. Mechanical buckling of artery under pulsatile pressure.

    PubMed

    Liu, Qin; Han, Hai-Chao

    2012-04-30

    Tortuosity that often occurs in carotid and other arteries has been shown to be associated with high blood pressure, atherosclerosis, and other diseases. However the mechanisms of tortuosity development are not clear. Our previous studies have suggested that arteries buckling could be a possible mechanism for the initiation of tortuous shape but artery buckling under pulsatile flow condition has not been fully studied. The objectives of this study were to determine the artery critical buckling pressure under pulsatile pressure both experimentally and theoretically, and to elucidate the relationship of critical pressures under pulsatile flow, steady flow, and static pressure. We first tested the buckling pressures of porcine carotid arteries under these loading conditions, and then proposed a nonlinear elastic artery model to examine the buckling pressures under pulsatile pressure conditions. Experimental results showed that under pulsatile pressure arteries buckled when the peak pressures were approximately equal to the critical buckling pressures under static pressure. This was also confirmed by model simulations at low pulse frequencies. Our results provide an effective tool to predict artery buckling pressure under pulsatile pressure.

  2. Mechanical Buckling of Artery under Pulsatile Pressure

    PubMed Central

    Liu, Qin; Han, Hai-Chao

    2012-01-01

    Tortuosity that often occurs in carotid and other arteries has been shown to be associated with high blood pressure, atherosclerosis, and other diseases. However the mechanisms of tortuosity development are not clear. Our previous studies have suggested that arteries buckling could be a possible mechanism for the initiation of tortuous shape but artery buckling under pulsatile flow condition has not been fully studied. The objectives of this study were to determine the artery critical buckling pressure under pulsatile pressure both experimentally and theoretically, and to elucidate the relationship of critical pressures under pulsatile flow, steady flow, and static pressure. We first tested the buckling pressures of porcine carotid arteries under these loading conditions, and then proposed a nonlinear elastic artery model to examine the buckling pressures under pulsatile pressure conditions. Experimental results showed that under pulsatile pressure arteries buckled when the peak pressures were approximately equal to the critical buckling pressures under static pressure. This was also confirmed by model simulations at low pulse frequencies. Our results provide an effective tool to predict artery buckling pressure under pulsatile pressure. PMID:22356844

  3. The effect of NFATc1 on vascular generation and the possible underlying mechanism in epithelial ovarian carcinoma.

    PubMed

    Li, Long; Yu, Jihui; Duan, Zhaoning; Dang, Hong-Xing

    2016-04-01

    We investigated the effect of nuclear factor of activated T cells c1 (NFATc1) on the growth and vascular generation of human ovarian carcinoma SKOV3 cell-transplanted tumors in nude mice and explored the possible underlying mechanism. NFATc1 siRNA was transfected into the SKOV3 cells, which were then subjected to immunofluorescence tests and real-time reverse transcription polymerase chain reaction (RT-PCR) to determine the transfection-induced inhibition rate. The tumor volumes in the nude mice in all groups were measured to determine the in vivo antitumor effect of NFATc1 siRNA. Immunohistochemical (IHC) methods were employed to detect NFATc1 expression in tumor tissue, combined with cytokeratin (CK) staining to label the epithelial origin of the tumor tissue. CD34 and podoplanin were used as markers for labeling microvessels and microlymphatic vessels, respectively. The densities of microvessels and microlymphatic vessels in each group were calculated and statistically analyzed. RT-PCR and western blotting were performed to detect the protein and mRNA expression levels of NFATc1, the ELR+ CXC chemokine interleukin (IL)-8, fibroblast growth factor-2 (FGF-2), and platelet-derived growth factor BB (PDGF BB) in xenografted tumor tissue in all groups. NFATc1 was highly expressed in tumor tissue in the control groups. The intervention group exhibited a tumor growth inhibition rate of 57.08% and presented a lower tumor weight and volume compared with the two control groups. In the control groups, the microvessel densities were 12.00 ± 1.65 and 11.47 ± 0.32, respectively, and the microlymphatic vessel densities were 10.03 ± 0.96 and 9.95 ± 1.12; these values were significantly higher than in the intervention group. RT-PCR and western blot shows that NFATc1 siRNA could markedly suppress the expression of IL-8, FGF-2 and PDGF BB at the mRNA and the protein level. In conclusion, it was shown that NFATc1 siRNA significantly suppresses the growth and vascular generation

  4. Renal Effects and Underlying Molecular Mechanisms of Long-Term Salt Content Diets in Spontaneously Hypertensive Rats

    PubMed Central

    Berger, Rebeca Caldeira Machado; Vassallo, Paula Frizera; Crajoinas, Renato de Oliveira; Oliveira, Marilene Luzia; Martins, Flávia Letícia; Nogueira, Breno Valentim; Motta-Santos, Daisy; Araújo, Isabella Binotti; Forechi, Ludimila; Girardi, Adriana Castello Costa; Santos, Robson Augusto Souza; Mill, José Geraldo

    2015-01-01

    Several evidences have shown that salt excess is an important determinant of cardiovascular and renal derangement in hypertension. The present study aimed to investigate the renal effects of chronic high or low salt intake in the context of hypertension and to elucidate the molecular mechanisms underlying such effects. To this end, newly weaned male SHR were fed with diets only differing in NaCl content: normal salt (NS: 0.3%), low salt (LS: 0.03%), and high salt diet (HS: 3%) until 7 months of age. Analysis of renal function, morphology, and evaluation of the expression of the main molecular components involved in the renal handling of albumin, including podocyte slit-diaphragm proteins and proximal tubule endocytic receptors were performed. The relationship between diets and the balance of the renal angiotensin-converting enzyme (ACE) and ACE2 enzymes was also examined. HS produced glomerular hypertrophy and decreased ACE2 and nephrin expressions, loss of morphological integrity of the podocyte processes, and increased proteinuria, characterized by loss of albumin and high molecular weight proteins. Conversely, severe hypertension was attenuated and renal dysfunction was prevented by LS since proteinuria was much lower than in the NS SHRs. This was associated with a decrease in kidney ACE/ACE2 protein and activity ratio and increased cubilin renal expression. Taken together, these results suggest that LS attenuates hypertension progression in SHRs and preserves renal function. The mechanisms partially explaining these findings include modulation of the intrarenal ACE/ACE2 balance and the increased cubilin expression. Importantly, HS worsens hypertensive kidney injury and decreases the expression nephrin, a key component of the slit diaphragm. PMID:26495970

  5. Neuroprotective effects of HTR1A antagonist WAY-100635 on scopolamine-induced delirium in rats and underlying molecular mechanisms.

    PubMed

    Qiu, Yimin; Chen, Dongmei; Huang, Xiaojing; Huang, Lina; Tang, Liang; Jiang, Jihong; Chen, Lianhua; Li, Shitong

    2016-10-19

    Limited surveys have assessed the performance of 5-hydroxytreptamine receptor 1A and its antagonist WAY-100635 in pharmacological manipulations targeting delirium therapies. The purpose of this paper was to assess the central pharmacological activity of WAY-100635 in a rat model of scopolamine-induced delirium and its underlying mechanism. A delirium rat model was established by intraperitoneal injection of scopolamine and behavioral changes evaluated through open field and elevated plus maze experiments. Concentrations of monoamines in the hippocampus and amygdalae were detected by high performance liquid chromatography. The effect of WAY-100635 on the recovery of rats from delirium was assessed by stereotactic injection of WAY-100635 and its mechanism of action determined by measuring mRNA and protein expression via real time PCR and western blotting methods. The total distance and the number of crossing and rearing in the elevated plus maze test and the time spent in the light compartment in the dark/light test of scopolamine-treated rats were significantly increased while the percentage of time spent in the open arms was decreased, showing the validity of the established delirium rat model. The measurement of the concentrations of noradrenaline, 3,4-dihydroxyphenylacetic acid, the homovanillic acid, 5-hydroxy-3-indoleacetic acid and serotonin concentrations in the cerebrospinal fluid (CSF) of scopolamine-induced delirium rats were significantly increased. The intra-hippocampus and intra-BLA injections of WAY-100635 improved the delirium-like behavior of rats by significantly reducing the expression of NLRP3 inflammasome and the release of IL1-β and IL8 into CSF. Taken together, these findings indicate that WAY-100635 may exert a therapeutic effect on post-operative delirium by controlling neurotransmission as well as suppressing neuroinflammation in the central nervous system.

  6. Mechanisms underlying the effects of inulin-type fructans on calcium absorption in the large intestine of rats.

    PubMed

    Raschka, Ladislav; Daniel, Hannelore

    2005-11-01

    Inulin-type fructans (inulin, oligofructose, fructooligosaccharides) in the diet do increase intestinal calcium absorption in animals and humans, but the underlying mechanism has not been identified. We therefore assessed the effects of fermentation of inulin-type fructans on transepithelial calcium transport in rat large intestine. Transepithelial calcium fluxes in vitro (Ussing chamber), effects on gene expression, mucosal morphology, and composition of luminal contents were determined in rats fed a standard diet and/or a diet containing 10% (w/w) 1/1 inulin-oligofructose mixture (INOF). Net transepithelial calcium transport in large intestine of rats fed a standard diet was increased by high mucosal calcium concentrations, the presence of 100 mmol/L mucosal short-chain fatty acids (SCFAs), the presence of 10 g/L INOF at the mucosal side, but not by reducing mucosal pH. Tissues from rats fed INOF did not show altered calcium transport when compared to controls. However, when flux data were based on the total caecal surface area, INOF-fed rats nearly doubled absorption rate in caecum. INOF feeding altered transcript levels of several mucosal genes that can be linked to transcellular and paracellular calcium transport processes. In addition, a decreased luminal pH in caecum with markedly increased caecal pools of total, soluble, and ionized calcium resulted from INOF ingestion. Thus, inulin-type fructans increase the large intestinal calcium absorption by different mechanisms including enhanced pools of soluble and ionized calcium, an increase in the absorptive surface predominantly in caecum, the increased concentrations of SCFAs, and by direct interaction with the intestinal tissue.

  7. Neural Mechanisms Underlying Breathing Complexity

    PubMed Central

    Hess, Agathe; Yu, Lianchun; Klein, Isabelle; De Mazancourt, Marine; Jebrak, Gilles; Mal, Hervé; Brugière, Olivier; Fournier, Michel; Courbage, Maurice; Dauriat, Gaelle; Schouman-Clayes, Elisabeth; Clerici, Christine; Mangin, Laurence

    2013-01-01

    Breathing is maintained and controlled by a network of automatic neurons in the brainstem that generate respiratory rhythm and receive regulatory inputs. Breathing complexity therefore arises from respiratory central pattern generators modulated by peripheral and supra-spinal inputs. Very little is known on the brainstem neural substrates underlying breathing complexity in humans. We used both experimental and theoretical approaches to decipher these mechanisms in healthy humans and patients with chronic obstructive pulmonary disease (COPD). COPD is the most frequent chronic lung disease in the general population mainly due to tobacco smoke. In patients, airflow obstruction associated with hyperinflation and respiratory muscles weakness are key factors contributing to load-capacity imbalance and hence increased respiratory drive. Unexpectedly, we found that the patients breathed with a higher level of complexity during inspiration and expiration than controls. Using functional magnetic resonance imaging (fMRI), we scanned the brain of the participants to analyze the activity of two small regions involved in respiratory rhythmogenesis, the rostral ventro-lateral (VL) medulla (pre-Bötzinger complex) and the caudal VL pons (parafacial group). fMRI revealed in controls higher activity of the VL medulla suggesting active inspiration, while in patients higher activity of the VL pons suggesting active expiration. COPD patients reactivate the parafacial to sustain ventilation. These findings may be involved in the onset of respiratory failure when the neural network becomes overwhelmed by respiratory overload We show that central neural activity correlates with airflow complexity in healthy subjects and COPD patients, at rest and during inspiratory loading. We finally used a theoretical approach of respiratory rhythmogenesis that reproduces the kernel activity of neurons involved in the automatic breathing. The model reveals how a chaotic activity in neurons can

  8. Mechanism of platelet functional changes and effects of anti-platelet agents on in vivo hemostasis under different gravity conditions.

    PubMed

    Li, Suping; Shi, Quanwei; Liu, Guanglei; Zhang, Weilin; Wang, Zhicheng; Wang, Yuedan; Dai, Kesheng

    2010-05-01

    Serious thrombotic and hemorrhagic problems or even fatalities evoked by either microgravity or hypergravity occur commonly in the world. We recently reported that platelet functions are inhibited in microgravity environments and activated under high-G conditions, which reveals the pathogenesis for gravity change-related hemorrhagic and thrombotic diseases. However, the mechanisms of platelet functional variations under different gravity conditions remain unclear. In this study we show that the amount of filamin A coimmunoprecipitated with GPIbalpha was enhanced in platelets exposed to modeled microgravity and, in contrast, was reduced in 8 G-exposed platelets. Hypergravity induced actin filament formation and redistribution, whereas actin filaments were reduced in platelets treated with modeled microgravity. Furthermore, intracellular Ca2+ levels were elevated by hypergravity. Pretreatment of platelets with the cell-permeable Ca2+ chelator BAPTA-AM had no effect on cytoskeleton reorganization induced by hypergravity but significantly reduced platelet aggregation induced by ristocetin/hypergravity. Two anti-platelet agents, aspirin and tirofiban, effectively reversed the shortened tail bleeding time and reduced the death rate of mice exposed to hypergravity. Furthermore, the increased P-selectin surface expression was obviously reduced in platelets from mice treated with aspirin/hypergravity compared with those from mice treated with hypergravity alone. These data suggest that the actin cytoskeleton reorganization and intracellular Ca2+ level play key roles in the regulation of platelet functions in different gravitational environments. The results with anti-platelet agents not only further confirm the activation of platelets in vivo but also suggest a therapeutic potential for hypergravity-induced thrombotic diseases.

  9. Mechanisms Underlying the Antiproliferative and Prodifferentiative Effects of Psoralen on Adult Neural Stem Cells via DNA Microarray

    PubMed Central

    Ning, You; Huang, Jian-Hua; Xia, Shi-Jin; Bian, Qin; Chen, Yang; Zhang, Xin-Min; Dong, Jing-Cheng; Shen, Zi-Yin

    2013-01-01

    Adult neural stem cells (NSCs) persist throughout life to replace mature cells that are lost during turnover, disease, or injury. The investigation of NSC creates novel treatments for central nervous system (CNS) injuries and neurodegenerative disorders. The plasticity and reparative potential of NSC are regulated by different factors, which are critical for neurological regenerative medicine research. We investigated the effects of Psoralen, which is the mature fruit of Psoralea corylifolia L., on NSC behaviors and the underlying mechanisms. The self-renewal and proliferation of NSC were examined. We detected neuron- and/or astrocyte-specific markers using immunofluorescence and Western blotting, which could evaluate NSC differentiation. Psoralen treatment significantly inhibited neurosphere formation in a dose-dependent manner. Psoralen treatment increased the expression of the astrocyte-specific marker but decreased neuron-specific marker expression. These results suggested that Psoralen was a differentiation inducer in astrocyte. Differential gene expression following Psoralen treatment was screened using DNA microarray and confirmed by quantitative real-time PCR. Our microarray study demonstrated that Psoralen could effectively regulate the specific gene expression profile of NSC. The genes involved in the classification of cellular differentiation, proliferation, and metabolism, the transcription factors belonging to Ets family, and the hedgehog pathway may be closely related to the regulation. PMID:23983781

  10. Neural mechanisms underlying the effects of face-based affective signals on memory for faces: a tentative model

    PubMed Central

    Tsukiura, Takashi

    2012-01-01

    In our daily lives, we form some impressions of other people. Although those impressions are affected by many factors, face-based affective signals such as facial expression, facial attractiveness, or trustworthiness are important. Previous psychological studies have demonstrated the impact of facial impressions on remembering other people, but little is known about the neural mechanisms underlying this psychological process. The purpose of this article is to review recent functional MRI (fMRI) studies to investigate the effects of face-based affective signals including facial expression, facial attractiveness, and trustworthiness on memory for faces, and to propose a tentative concept for understanding this affective-cognitive interaction. On the basis of the aforementioned research, three brain regions are potentially involved in the processing of face-based affective signals. The first candidate is the amygdala, where activity is generally modulated by both affectively positive and negative signals from faces. Activity in the orbitofrontal cortex (OFC), as the second candidate, increases as a function of perceived positive signals from faces; whereas activity in the insular cortex, as the third candidate, reflects a function of face-based negative signals. In addition, neuroscientific studies have reported that the three regions are functionally connected to the memory-related hippocampal regions. These findings suggest that the effects of face-based affective signals on memory for faces could be modulated by interactions between the regions associated with the processing of face-based affective signals and the hippocampus as a memory-related region. PMID:22837740

  11. Mechanisms underlying the inhibitory effects of tachykinin receptor antagonists on eosinophil recruitment in an allergic pleurisy model in mice

    PubMed Central

    Alessandri, Ana Letícia; Pinho, Vanessa; Souza, Danielle G; Castro, Maria Salete de A; Klein, André; Teixeira, Mauro M

    2003-01-01

    The activation of tachykinin NK receptors by neuropeptides may induce the recruitment of eosinophils in vivo. The aim of the present study was to investigate the effects and underlying mechanism(s) of the action of tachykinin receptor antagonists on eosinophil recruitment in a model of allergic pleurisy in mice. Pretreatment of immunized mice with capsaicin partially prevented the recruitment of eosinophils after antigen challenge, suggesting the potential contribution of sensory nerves for the recruitment of eosinophils Local (10–50 nmol per pleural cavity) or systemic (100–300 nmol per animal) pretreatment with the tachykinin NK1 receptor antagonist SR140333 prevented the recruitment of eosinophils induced by antigen challenge of immunized mice. Neither tachykinin NK2 nor NK3 receptor antagonists suppressed eosinophil recruitment. Pretreatment with SR140333 failed to prevent the antigen-induced increase of interleukin-5 concentrations in the pleural cavity. Similarly, SR140333 failed to affect the bone marrow eosinophilia observed at 48 h after antigen challenge of immunized mice. SR140333 induced a significant increase in the concentrations of antigen-induced eotaxin at 6 h after challenge. Antigen challenge of immunized mice induced a significant increase of Leucotriene B4 (LTB4) concentrations at 6 h after challenge. Pretreatment with SR140333 prevented the antigen-induced increase of LTB4 concentrations. Our data suggest an important role for NK1 receptor activation with consequent LTB4 release and eosinophil recruitment in a model of allergic pleurisy in the mouse. Tachykinins appear to be released mainly from peripheral endings of capsaicin-sensitive sensory neurons and may act on mast cells to facilitate antigen-driven release of LTB4. PMID:14585802

  12. Anti-ulcerogenic effect of cavidine against ethanol-induced acute gastric ulcer in mice and possible underlying mechanism.

    PubMed

    Li, Weifeng; Wang, Xiumei; Zhang, Hailin; He, Zehong; Zhi, Wenbing; Liu, Fang; Wang, Yu; Niu, Xiaofeng

    2016-09-01

    Cavidine, a major alkaloid compound isolated from Corydalis impatiens, has various pharmacological effects but its effect on gastric ulcer has not been previously explored. The current study aimed to investigate the possible anti-ulcerogenic potential of cavidine in the model of ethanol-induced gastric ulcer. Mice received cavidine (1, 5 or 10mg/kg, ig), cimetidine (CMD, 100mg/kg, ig) or vehicle at 12h and 1h before absolute ethanol administration (0.5mL/100g), and animals were euthanized 3h after ethanol ingestion. Gross and histological gastric lesions, biochemical, immunological and Western blot parameters were taken into consideration. The results showed that ethanol administration produced apparent mucosal injuries with morphological and histological damage, whereas cavidine pre-treatment reduced the gastric injuries. Cavidine pre-treatment also ameliorated the contents of malonaldehyde (MDA) and myeloperoxidase (MPO) activity, and increased the mucosa levels of glutathione (GSH), superoxide dismutase (SOD) and prostaglandin E2 (PGE2), relative to the model group. Also cavidine was able to decrease the levels of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), inhibit the up-regulation of cyclo-oxygenase-2 (COX-2) expression and activation of Nuclear factor-kappa B (NF-κB) pathway. Taken together, these results indicated that cavidine exerts a gastroprotective effect against gastric ulceration, and the underlying mechanism might be associated with the stimulation of PGE2, reduction of oxidative stress, suppression of NF-κB expression and subsequent reduced COX-2 and pro-inflammatory cytokines. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Antihypertensive and Antihypertrophic Effects of Acupuncture at PC6 Acupoints in Spontaneously Hypertensive Rats and the Underlying Mechanisms.

    PubMed

    Xin, Juan-Juan; Gao, Jun-Hong; Wang, Yuan-Yuan; Lu, Feng-Yan; Zhao, Yu-Xue; Jing, Xiang-Hong; Yu, Xiao-Chun

    2017-01-01

    The aim of this work is to investigate the effect of electroacupuncture (EA) at PC6 on the hypertension and myocardial hypertrophy in spontaneously hypertensive rats (SHRs). Thirty SHRs were randomized into model, SHR + EA, and SHR + Sham EA group with WKY rats as normal control. EA was applied once a day in 8 consecutive weeks. The blood pressure (BP), cardiac function, and hypertrophy as well as the underlying mechanisms were investigated. After EA treatment, the enhanced BP in SHR + EA group was significantly lower compared to both the period before EA and model group. Echocardiographic, morphological studies showed that the enhanced left ventricular anterior and posterior wall end-diastolic (LVAWd and LVPWd) thickness, diameters and cross-sectional area (CSA) of cardiac myocyte, as well as the ratio of heart weight to body weight (HW/BW), were markedly diminished in SHR + EA group, while the reduced left ventricular ejection fraction, left ventricular short axis fraction shortening, and E/A ratio were significantly ameliorated. The levels of Angiotensin-converting enzyme (ACE) and Angiotensin II Type 1 and 2 receptors (AT1R, AT2R) in SHRs were also significantly attenuated by EA. The results suggest that EA at bilateral PC6 could arrest the hypertension development and ameliorate the cardiac hypertrophy and malfunction in SHRs, which might be mediated by the regulation of ACE, AT1R, and AT2R.

  14. Antihypertensive and Antihypertrophic Effects of Acupuncture at PC6 Acupoints in Spontaneously Hypertensive Rats and the Underlying Mechanisms

    PubMed Central

    Xin, Juan-Juan; Gao, Jun-Hong; Wang, Yuan-Yuan; Lu, Feng-Yan; Zhao, Yu-Xue; Jing, Xiang-Hong

    2017-01-01

    The aim of this work is to investigate the effect of electroacupuncture (EA) at PC6 on the hypertension and myocardial hypertrophy in spontaneously hypertensive rats (SHRs). Thirty SHRs were randomized into model, SHR + EA, and SHR + Sham EA group with WKY rats as normal control. EA was applied once a day in 8 consecutive weeks. The blood pressure (BP), cardiac function, and hypertrophy as well as the underlying mechanisms were investigated. After EA treatment, the enhanced BP in SHR + EA group was significantly lower compared to both the period before EA and model group. Echocardiographic, morphological studies showed that the enhanced left ventricular anterior and posterior wall end-diastolic (LVAWd and LVPWd) thickness, diameters and cross-sectional area (CSA) of cardiac myocyte, as well as the ratio of heart weight to body weight (HW/BW), were markedly diminished in SHR + EA group, while the reduced left ventricular ejection fraction, left ventricular short axis fraction shortening, and E/A ratio were significantly ameliorated. The levels of Angiotensin-converting enzyme (ACE) and Angiotensin II Type 1 and 2 receptors (AT1R, AT2R) in SHRs were also significantly attenuated by EA. The results suggest that EA at bilateral PC6 could arrest the hypertension development and ameliorate the cardiac hypertrophy and malfunction in SHRs, which might be mediated by the regulation of ACE, AT1R, and AT2R. PMID:28293268

  15. MECHANICS OF CRACK BRIDGING UNDER DYNAMIC LOADS

    SciTech Connect

    N. SRIDHAR; ET AL

    2001-02-01

    A bridging law for fiber reinforced composites under dynamic crack propagation conditions has been derived. Inertial effects in the mechanism of fiber pullout during dynamic propagation of a bridged crack are critically examined for the first time. By reposing simple shear lag models of pullout as problems of dynamic wave propagation, the effect of the frictional coupling between the fibers and the matrix is accounted for in a fairly straightforward way. The solutions yield the time-dependent relationship between the crack opening displacement and the bridging traction. Engineering criteria and the role of material and geometrical parameters for significant inertial effects are identified.

  16. The molecular mechanism underlying the proliferating and preconditioning effect of vitamin C on adipose-derived stem cells.

    PubMed

    Kim, Ji Hye; Kim, Wang-Kyun; Sung, Young Kwan; Kwack, Mi Hee; Song, Seung Yong; Choi, Joon-Seok; Park, Sang Gyu; Yi, TacGhee; Lee, Hyun-Joo; Kim, Dae-Duk; Seo, Hyun Min; Song, Sun U; Sung, Jong-Hyuk

    2014-06-15

    Although adipose-derived stem cells (ASCs) show promise for cell therapy, there is a tremendous need for developing ASC activators. In the present study, we investigated whether or not vitamin C increases the survival, proliferation, and hair-regenerative potential of ASCs. In addition, we tried to find the molecular mechanisms underlying the vitamin C-mediated stimulation of ASCs. Sodium-dependent vitamin C transporter 2 (SVCT2) is expressed in ASCs, and mediates uptake of vitamin C into ASCs. Vitamin C increased the survival and proliferation of ASCs in a dose-dependent manner. Vitamin C increased ERK1/2 phosphorylation, and inhibition of the mitogen-activated protein kinase (MAPK) pathway attenuated the proliferation of ASCs. Microarray and quantitative polymerase chain reaction showed that vitamin C primarily upregulated expression of proliferation-related genes, including Fos, E2F2, Ier2, Mybl1, Cdc45, JunB, FosB, and Cdca5, whereas Fos knock-down using siRNA significantly decreased vitamin C-mediated ASC proliferation. In addition, vitamin C-treated ASCs accelerated the telogen-to-anagen transition in C3H/HeN mice, and conditioned medium from vitamin C-treated ASCs increased the hair length and the Ki67-positive matrix keratinocytes in hair organ culture. Vitamin C increased the mRNA expression of HGF, IGFBP6, VEGF, bFGF, and KGF, which may mediate hair growth promotion. In summary, vitamin C is transported via SVCT2, and increased ASC proliferation is mediated by the MAPK pathway. In addition, vitamin C preconditioning enhanced the hair growth promoting effect of ASCs. Because vitamin C is safe and effective, it could be used to increase the yield and regenerative potential of ASCs.

  17. Molecular Mechanisms Underlying Pituitary Pathogenesis.

    PubMed

    Sapochnik, Melanie; Nieto, Leandro Eduardo; Fuertes, Mariana; Arzt, Eduardo

    2016-04-01

    During the last years, progress has been made on the identification of mechanisms involved in anterior pituitary cell transformation and tumorigenesis. Oncogene activation, tumor suppressor gene inactivation, epigenetic changes, and microRNAs deregulation contribute to the initiation of pituitary tumors. Despite the high prevalence of pituitary adenomas, they are mostly benign, indicating that intrinsic mechanisms may regulate pituitary cell expansion. Senescence is characterized by an irreversible cell cycle arrest and represents an important protective mechanism against malignancy. Pituitary tumor transforming gene (PTTG) is an oncogene involved in early stages of pituitary tumor development, and also triggers a senescence response by activating DNA-damage signaling pathway. Cytokines, as well as many other factors, play an important role in pituitary physiology, affecting not only cell proliferation but also hormone secretion. Special interest is focused on interleukin-6 (IL-6) because its dual function of stimulating pituitary tumor cell growth but inhibiting normal pituitary cells proliferation. It has been demonstrated that IL-6 has a key role in promoting and maintenance of the senescence program in tumors. Senescence, triggered by PTTG activation and mediated by IL-6, may be a mechanism for explaining the benign nature of pituitary tumors.

  18. Beneficial effects of dark chocolate on exercise capacity in sedentary subjects: underlying mechanisms. A double blind, randomized, placebo controlled trial.

    PubMed

    Taub, Pam R; Ramirez-Sanchez, Israel; Patel, Minal; Higginbotham, Erin; Moreno-Ulloa, Aldo; Román-Pintos, Luis Miguel; Phillips, Paul; Perkins, Guy; Ceballos, Guillermo; Villarreal, Francisco

    2016-09-14

    In heart failure patients the consumption of (-)-epicatechin ((-)-Epi)-rich cocoa can restore skeletal muscle (SkM) mitochondrial structure and decrease biomarkers of oxidative stress. However, nothing is known about its effects on exercise capacity and underlying mechanisms in normal, sedentary subjects. Twenty normal, sedentary subjects (∼50 years old) were randomized to placebo or dark chocolate (DC) groups and consumed 20 g of the products for 3 months. Subjects underwent before and after treatment, bicycle ergometry to assess VO2 max and work, SkM biopsy to assess changes in mitochondrial density, function and oxidative stress and blood sampling to assess metabolic endpoints. Seventeen subjects completed the trial. In the DC group (n = 9), VO2 max increased (17% increase, p = 0.056) as well as maximum work (watts) achieved (p = 0.026) with no changes with placebo (n = 8). The DC group evidenced increases in HDL levels (p = 0.005) and decreased triglycerides (p = 0.07). With DC, SkM evidenced significant increases in protein levels for LKB1, AMPK and PGC1α and in their active forms (phosphorylated AMPK and LKB1) as well as in citrate synthase activity while no changes were observed in mitochondrial density. With DC, significant increases in SkM reduced glutathione levels and decreases in protein carbonylation were observed. Improvements in maximum work achieved and VO2 max may be due to DC activation of upstream control systems and enhancement of SkM mitochondria efficiency. Larger clinical studies are warranted to confirm these observations.

  19. Mechanisms Underlying Inflammation in Neurodegeneration

    PubMed Central

    Glass, Christopher K.; Saijo, Kaoru; Winner, Beate; Marchetto, Maria Carolina; Gage, Fred H.

    2010-01-01

    Inflammation is associated with many neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. In this Review, we discuss inducers, sensors, transducers, and effectors of neuroinflammation that contribute to neuronal dysfunction and death. Although inducers of inflammation may be generated in a disease-specific manner, there is evidence for a remarkable convergence in the mechanisms responsible for the sensing, transduction, and amplification of inflammatory processes that result in the production of neurotoxic mediators. A major unanswered question is whether pharmacological inhibition of inflammation pathways will be able to safely reverse or slow the course of disease. PMID:20303880

  20. The effect of preparation under vacuum and microwave drying on the mechanical properties of porcelain ceramic foam via polymeric sponge method

    NASA Astrophysics Data System (ADS)

    Shahatha, S. H.; Mohammed, M. A.

    2016-04-01

    In this paper was demonstrated the effect of preparation condition under vacuum and microwave drying on the mechanical properties of porcelain ceramic foam. The study was based on five different polymeric foam templates with thickness ranging from 0.5 to 4 cm. The templates were impregnated in ceramic slurry with solid loading ranging from 35 to 55 wt. % under vacuum pressure 10-1 Torr and then sintered to 1250°C. Effects of polymeric foam template thickness and solid loading quantity were evaluated based on porosity, density and mechanical properties (compressive and flexural strengths) of the ceramic foam.

  1. Mechanisms underlying the perifocal neuroprotective effect of the Nrf2–ARE signaling pathway after intracranial hemorrhage

    PubMed Central

    Yin, Xiao-ping; Chen, Zhi-ying; Zhou, Jun; Wu, Dan; Bao, Bing

    2015-01-01

    Background It has been found that nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2–ARE) signaling pathway plays a role in antioxidative response, anti-inflammatory response, and neuron-protection in intracerebral hemorrhage (ICH). The aim of this study is to explore mechanisms underlying the perifocal neuroprotective effect of the Nrf2–ARE signaling pathway after ICH. Methods There were a total of 90 rats with basal ganglia hemorrhage, which were randomly divided into the following four groups: ICH (Sprague–Dawley rats with autologous femoral arterial blood injection into the basal ganglia), sulforaphane (SFN) (SFN was intraperitoneally administered into rats), retinoic acid (RA) (RA was intraperitoneally administered into rats), and dimethyl sulfoxide (the rats were treated with dimethyl sulfoxide). We observed the neurological score of the rats in the different groups, and collected brain tissues for immunofluorescence, Western blot, and reverse transcription polymerase chain reaction to detect expression of Nrf2, heme oxygenase (HO-1), nuclear factor-κB (NF-κB), and tumor necrosis factor-α (TNF-α). Results The results indicated that neurological dysfunction of rats was significantly improved in the SFN group, and the expressions of Nrf2 and HO-1 in tissues surrounding the hemorrhage were increased. Also, the level of NF-κB and TNF-α were reduced compared to the ICH group. The RA group exhibited more severe neurological dysfunction and lower levels of Nrf2 and HO-1 than the SFN and ICH groups. Compared to the ICH group, the NF-κB and TNF-α expression in the RA groups was increased. In conclusion, RA inhibits Nrf2 dissociation and translocation into nucleus, thereby suppressing the anti-inflammatory effect of Nrf2–ARE signaling pathway. The activation of Nrf2–ARE signaling pathway by SFN can elevate expression of antioxidant enzyme HO-1, reduce perifocal inflammatory response after ICH, and thus may play a

  2. Behavioral mechanisms underlying nicotine reinforcement.

    PubMed

    Rupprecht, Laura E; Smith, Tracy T; Schassburger, Rachel L; Buffalari, Deanne M; Sved, Alan F; Donny, Eric C

    2015-01-01

    Cigarette smoking is the leading cause of preventable deaths worldwide, and nicotine, the primary psychoactive constituent in tobacco, drives sustained use. The behavioral actions of nicotine are complex and extend well beyond the actions of the drug as a primary reinforcer. Stimuli that are consistently paired with nicotine can, through associative learning, take on reinforcing properties as conditioned stimuli. These conditioned stimuli can then impact the rate and probability of behavior and even function as conditioning reinforcers that maintain behavior in the absence of nicotine. Nicotine can also act as a conditioned stimulus (CS), predicting the delivery of other reinforcers, which may allow nicotine to acquire value as a conditioned reinforcer. These associative effects, establishing non-nicotine stimuli as conditioned stimuli with discriminative stimulus and conditioned reinforcing properties as well as establishing nicotine as a CS, are predicted by basic conditioning principles. However, nicotine can also act non-associatively. Nicotine directly enhances the reinforcing efficacy of other reinforcing stimuli in the environment, an effect that does not require a temporal or predictive relationship between nicotine and either the stimulus or the behavior. Hence, the reinforcing actions of nicotine stem both from the primary reinforcing actions of the drug (and the subsequent associative learning effects) as well as the reinforcement enhancement action of nicotine which is non-associative in nature. Gaining a better understanding of how nicotine impacts behavior will allow for maximally effective tobacco control efforts aimed at reducing the harm associated with tobacco use by reducing and/or treating its addictiveness.

  3. Surface Damage Mechanism of Monocrystalline Si Under Mechanical Loading

    NASA Astrophysics Data System (ADS)

    Zhao, Qingliang; Zhang, Quanli; To, Suet; Guo, Bing

    2017-03-01

    Single-point diamond scratching and nanoindentation on monocrystalline silicon wafer were performed to investigate the surface damage mechanism of Si under the contact loading. The results showed that three typical stages of material removal appeared during dynamic scratching, and a chemical reaction of Si with the diamond indenter and oxygen occurred under the high temperature. In addition, the Raman spectra of the various points in the scratching groove indicated that the Si-I to β-Sn structure (Si-II) and the following β-Sn structure (Si-II) to amorphous Si transformation appeared under the rapid loading/unloading condition of the diamond grit, and the volume change induced by the phase transformation resulted in a critical depth (ductile-brittle transition) of cut (˜60 nm ± 15 nm) much lower than the theoretical calculated results (˜387 nm). Moreover, it also led to abnormal load-displacement curves in the nanoindentation tests, resulting in the appearance of elbow and pop-out effects (˜270 nm at 20 s, 50 mN), which were highly dependent on the loading/unloading conditions. In summary, phase transformation of Si promoted surface deformation and fracture under both static and dynamic mechanical loading.

  4. Experimental study on thermal effect on infiltration mechanisms of glycerol into ZSM-5 zeolite under cyclic loadings

    NASA Astrophysics Data System (ADS)

    Zhang, Yafei; Li, Na; Luo, Rui; Zhang, Yifeng; Zhou, Qulan; Chen, Xi

    2016-01-01

    Understanding the fundamental infiltration mechanisms under thermal response is of crucial importance to design and develop nanoporous energy systems. In this work, a glycerol/ZSM-5 zeolite-based pressure-driven energy absorption system was built, while the temperature-dependent intrusion of glycerol molecules into lyophobic nanopores of ZSM-5 zeolite and the underlying mechanisms were experimentally studied. By changing the system temperature, the correlations of infiltration pressure with the infiltration and defiltration percentages of the liquid phase under thermal response were explored. It turns out that lifting the system temperature will reduce the critical infiltration pressure barriers and change the system’s wettability. The equivalent surface tension and contact angle are calculated to elucidate the thermal dependence of the system’s wettability. Elevating system temperature can also help enlarge the entry area of the nanochannels and trigger more glycerol molecules to flow out of the nanochannels, which means an increase of the infiltration and defiltration percentages. Weakened hydrogen bonding interaction, temperature sensitivity of glycerol viscosity, and the inherent gas phase in the nanoporous channels may contribute to the infiltration and outflow process at a higher temperature level. Cyclic loadings were applied under each working condition to test the recoverability of the built system. Results showed that the system’s throughput shrank in the first three/four cycles and became stable afterwards. Lifting the system temperature could enhance both intrusion and extrusion processes, thus helping the system reach a faster throughput balance, which is beneficial in establishing a recoverable and reusable energy absorption/storage/conversion system.

  5. Metacognitive mechanisms underlying lucid dreaming.

    PubMed

    Filevich, Elisa; Dresler, Martin; Brick, Timothy R; Kühn, Simone

    2015-01-21

    Lucid dreaming is a state of awareness that one is dreaming, without leaving the sleep state. Dream reports show that self-reflection and volitional control are more pronounced in lucid compared with nonlucid dreams. Mostly on these grounds, lucid dreaming has been associated with metacognition. However, the link to lucid dreaming at the neural level has not yet been explored. We sought for relationships between the neural correlates of lucid dreaming and thought monitoring. Human participants completed a questionnaire assessing lucid dreaming ability, and underwent structural and functional MRI. We split participants based on their reported dream lucidity. Participants in the high-lucidity group showed greater gray matter volume in the frontopolar cortex (BA9/10) compared with those in the low-lucidity group. Further, differences in brain structure were mirrored by differences in brain function. The BA9/10 regions identified through structural analyses showed increases in blood oxygen level-dependent signal during thought monitoring in both groups, and more strongly in the high-lucidity group. Our results reveal shared neural systems between lucid dreaming and metacognitive function, in particular in the domain of thought monitoring. This finding contributes to our understanding of the mechanisms enabling higher-order consciousness in dreams.

  6. Effect of Microstructure and Texture on Anisotropy and Mechanical Properties of SAE 970X Steel Under Hot Rolling

    NASA Astrophysics Data System (ADS)

    Masoumi, Mohammad; Mohtadi-Bonab, M. A.; de Abreu, Hamilton Ferreira Gomes

    2016-07-01

    This paper presents the effect of microstructure and crystallographic texture by developed in hot rolling and different post-treatments on anisotropic and mechanical properties of SAE 970X steel. The experimental results showed that the hot-rolled sample followed by quenching and consequent tempering at 700 °C led to a significant improvement in anisotropic and mechanical properties. This happened due to the reduction in the number of grains oriented with {001} planes parallel to normal direction. Also, the formation of new strain-free and recrystallized grains associated with {111}//ND and {110}//ND directions improved the mechanical properties. These grains corresponded to the close-packed planes in BCC structure as well.

  7. BEHAVIORAL MECHANISMS UNDERLYING NICOTINE REINFORCEMENT

    PubMed Central

    Rupprecht, Laura E.; Smith, Tracy T.; Schassburger, Rachel L.; Buffalari, Deanne M.; Sved, Alan F.; Donny, Eric C.

    2015-01-01

    Cigarette smoking is the leading cause of preventable deaths worldwide and nicotine, the primary psychoactive constituent in tobacco, drives sustained use. The behavioral actions of nicotine are complex and extend well beyond the actions of the drug as a primary reinforcer. Stimuli that are consistently paired with nicotine can, through associative learning, take on reinforcing properties as conditioned stimuli. These conditioned stimuli can then impact the rate and probability of behavior and even function as conditioning reinforcers that maintain behavior in the absence of nicotine. Nicotine can also act as a conditioned stimulus, predicting the delivery of other reinforcers, which may allow nicotine to acquire value as a conditioned reinforcer. These associative effects, establishing non-nicotine stimuli as conditioned stimuli with discriminative stimulus and conditioned reinforcing properties as well as establishing nicotine as a conditioned stimulus, are predicted by basic conditioning principles. However, nicotine can also act non-associatively. Nicotine directly enhances the reinforcing efficacy of other reinforcing stimuli in the environment, an effect that does not require a temporal or predictive relationship between nicotine and either the stimulus or the behavior. Hence, the reinforcing actions of nicotine stem both from the primary reinforcing actions of the drug (and the subsequent associative learning effects) as well as the reinforcement enhancement action of nicotine which is non-associative in nature. Gaining a better understanding of how nicotine impacts behavior will allow for maximally effective tobacco control efforts aimed at reducing the harm associated with tobacco use by reducing and/or treating its addictiveness. PMID:25638333

  8. Investigation of the mechanisms underlying the hypophagic effects of the 5-HT and noradrenaline reuptake inhibitor, sibutramine, in the rat

    PubMed Central

    Jackson, Helen C; Bearham, M Clair; Hutchins, Lisa J; Mazurkiewicz, Sarah E; Needham, Andrew M; Heal, David J

    1997-01-01

    Sibutramine is a novel 5-hydroxytryptamine (5-HT) and noradrenaline reuptake inhibitor (serotonin- noradrenaline reuptake inhibitor, SNRI) which is currently being developed as a treatment for obesity. Sibutramine has been shown to decrease food intake in the rat. In this study we have used a variety of monoamine receptor antagonists to examine the pharmacological mechanisms underlying sibutramine-induced hypophagia. Individually-housed male Sprague-Dawley rats were maintained on reversed phase lighting with free access to food and water. Drugs were administered at 09 h 00 min and food intake was monitored over the following 8 h dark period. Sibutramine (10 mg kg−1, p.o.) produced a significant decrease in food intake during the 8 h following drug administration. This hypophagic response was fully antagonized by the α1-adrenoceptor antagonist, prazosin (0.3 and 1 mg kg−1, i.p.), and partially antagonized by the β1-adrenoceptor antagonist, metoprolol (3 and 10 mg kg−1, i.p.) and the 5-HT receptor antagonists, metergoline (non-selective; 0.3 mg kg−1, i.p.); ritanserin (5-HT2A/2C; 0.1 and 0.5 mg kg−1, i.p.) and SB200646 (5-HT2B/2C; 20 and 40 mg kg−1, p.o.). By contrast, the α2-adrenoceptor antagonist, RX821002 (0.3 and 1 mg kg−1, i.p.) and the β2-adrenoceptor antagonist, ICI 118,551 (3 and 10 mg kg−1, i.p.) did not reduce the decrease in food intake induced by sibutramine. These results demonstrate that β1-adrenoceptors, 5-HT2A/2C-receptors and particularly α1-adrenoceptors, are involved in the effects of sibutramine on food intake and are consistent with the hypothesis that sibutramine-induced hypophagia is related to its ability to inhibit the reuptake of both noradrenaline and 5-HT, with the subsequent activation of a variety of noradrenaline and 5-HT receptor systems. PMID:9283694

  9. Mechanical stability of iron under hydrostatic stresses

    NASA Astrophysics Data System (ADS)

    Mishra, K. L.; Thakur, O. P.; Thakur, K. P.

    1991-09-01

    A comprehensive investigation of the mechanics of iron subjected to arbitrary fluid pressure has been carried out. Apart from the classical elastic moduli ( k, μ, and μ') and conventional elastic moduli (Green and stretch moduli) computations are carried out for a family of generalised moduli of which the conventional moduli are just specific members. With the generalised moduli the mechanical stability of iron is investigated through Born criteria. It is found that classical stability, Green stability and stretch stability are all represented uniquely by the present generalised scheme. The definition of effective classical moduli under stresses enabled the amalgamation of the Born criteria of lattice stability into the single classical criteria of lattice stability of cubic crystal under hydrostatic loading environment. Computations are also carried out to investigate the coordinate and stress dependence of Young's modulus of elasticity, Poisson's ratio, mean velocity of elastic wave, and Debye temperature. Surprisingly, it is found that all these properties of solids play an important role in representing the mechanical stability of the solid. The path of uniaxial loading of iron is also investigated along with its internal energy variation on this path. This indicated the existance of stress-free fcc phase of iron on the path of uniaxial deformation at cell length a=3.6444 Å giving enthalpy of transformation (bcc→fcc) of 1.1 kJ/mol in good agreement with experimental results.

  10. Getting the Phenotypes Right: An Essential Ingredient for Understanding Aetiological Mechanisms Underlying Persistent Violence and Developing Effective Treatments

    PubMed Central

    Hodgins, Sheilagh; de Brito, Stephane; Simonoff, Emily; Vloet, Timo; Viding, Essi

    2009-01-01

    In order to reduce societal levels of violence, it is essential to advance understanding of the neurobiological mechanisms involved in initiating and maintaining individual patterns of physical aggression. New technologies such as Magnetic Resonance Imagining and analyses of DNA provide tools for identifying these mechanisms. The reliability and validity of the results of studies using these tools depend not only on aspects of the technology, but also on the methodological rigour with which the studies are conducted, particularly with respect to characterizing the phenotype. The present article discusses five challenges confronting scientists who aim to advance understanding of the neurobiological mechanisms associated with persistent violence. These challenges are: (1) to develop evidence-based hypotheses and to design studies that test alternate hypotheses; (2) to recruit samples that are homogeneous with respect to variables that may be linked to neurobiological mechanisms underpinning violent behaviour; (3) to use reliable and valid measures in order to fully characterize participants so that the external validity of the results is evident; (4) to restrict the range of age of participants so as not to confuse developmental change with group differences; and (5) to take account of sex. Our goal is to contribute to elevating methodological standards in this new field of research and to thereby improve the validity of results and move closer to finding effective ways to reduce violence. PMID:19949451

  11. Induction effects for heterochromatic brightness matching, heterochromatic flicker photometry, and minimally distinct border: implications for the neural mechanisms underlying induction.

    PubMed

    Gunther, Karen L; Dobkins, Karen R

    2005-10-01

    Brightness induction refers to the finding that the apparent brightness of a stimulus changes when surrounded by a black versus a white stimulus. In the current study, we investigated the effects of black/white surrounding stimuli on settings made between red and green stimuli on three different tasks: heterochromatic brightness matching (HBM), heterochromatic flicker photometry (HFP), and minimally distinct border (MDB). For HBM, subjects varied the relative luminance between the red and green stimuli so that the brightness of the two colors appeared equal. For the two other tasks, matches were made based on minimizing red/green flicker (HFP) or the saliency of a red/green border (MDB). For all three tasks, the presence of black/white surrounding stimuli significantly altered red/green settings, demonstrating the existence of induction effects. These results are discussed in terms of which underlying color pathways (L+ M versus L-M) may contribute to induction effects for the different tasks.

  12. Underlying mechanisms and effects of hydrated lime and selenium application on cadmium uptake by rice (Oryza sativa L.) seedlings.

    PubMed

    Huang, Gaoxiang; Ding, Changfeng; Guo, Fuyu; Li, Xiaogang; Zhang, Taolin; Wang, Xingxiang

    2017-06-27

    A pot experiment was conducted to investigate the effects of selenium (Se) and hydrated lime (Lime), applied alone or simultaneously (Se+Lime), on growth and cadmium (Cd) uptake and translocation in rice seedlings grown in an acid soil with three levels of Cd (slight, mild, and moderate contamination). In the soil with 0.41 mg kg(-1) Cd (slight Cd contamination), Se addition alone significantly decreased Cd accumulation in the root and shoot by 35.3 and 40.1%, respectively, but this tendency weakened when Cd level in the soil increased. However, Se+Lime treatment effectively reduced Cd accumulation in rice seedlings in the soil with higher Cd levels. The results also showed that Se application alone strongly increased Cd concentration in the iron plaque under slight Cd contamination, which was suggested as the main reason underlying the inhibition of Cd accumulation in rice seedlings. Se+Lime treatment also increased the ability of the iron plaques to restrict Cd uptake by rice seedlings across all Cd levels and dramatically decreased the available Cd concentration in the soil. These results suggest that Se application alone would be useful in the soil with low levels of Cd, and the effect would be enhanced when Se application is combined with hydrated lime at higher Cd levels.

  13. Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease

    PubMed Central

    Besler, Christian; Heinrich, Kathrin; Rohrer, Lucia; Doerries, Carola; Riwanto, Meliana; Shih, Diana M.; Chroni, Angeliki; Yonekawa, Keiko; Stein, Sokrates; Schaefer, Nicola; Mueller, Maja; Akhmedov, Alexander; Daniil, Georgios; Manes, Costantina; Templin, Christian; Wyss, Christophe; Maier, Willibald; Tanner, Felix C.; Matter, Christian M.; Corti, Roberto; Furlong, Clement; Lusis, Aldons J.; von Eckardstein, Arnold; Fogelman, Alan M.; Lüscher, Thomas F.; Landmesser, Ulf

    2011-01-01

    Therapies that raise levels of HDL, which is thought to exert atheroprotective effects via effects on endothelium, are being examined for the treatment or prevention of coronary artery disease (CAD). However, the endothelial effects of HDL are highly heterogeneous, and the impact of HDL of patients with CAD on the activation of endothelial eNOS and eNOS-dependent pathways is unknown. Here we have demonstrated that, in contrast to HDL from healthy subjects, HDL from patients with stable CAD or an acute coronary syndrome (HDLCAD) does not have endothelial antiinflammatory effects and does not stimulate endothelial repair because it fails to induce endothelial NO production. Mechanistically, this was because HDLCAD activated endothelial lectin-like oxidized LDL receptor 1 (LOX-1), triggering endothelial PKCβII activation, which in turn inhibited eNOS-activating pathways and eNOS-dependent NO production. We then identified reduced HDL-associated paraoxonase 1 (PON1) activity as one molecular mechanism leading to the generation of HDL with endothelial PKCβII-activating properties, at least in part due to increased formation of malondialdehyde in HDL. Taken together, our data indicate that in patients with CAD, HDL gains endothelial LOX-1– and thereby PKCβII-activating properties due to reduced HDL-associated PON1 activity, and that this leads to inhibition of eNOS-activation and the subsequent loss of the endothelial antiinflammatory and endothelial repair–stimulating effects of HDL. PMID:21701070

  14. Regulatory mechanisms underlying C4 photosynthesis.

    PubMed

    Wang, Lin; Peterson, Richard B; Brutnell, Thomas P

    2011-04-01

    C4 photosynthesis is an adaptation that evolved to alleviate the detrimental effects of photorespiration as a result of the gradual decline in atmospheric carbon dioxide levels. In most C4 plants, two cell types, bundle sheath and mesophyll, cooperate in carbon fixation, and, in so doing, are able to alleviate photorespiratory losses. Although much of the biochemistry is well characterized, little is known about the genetic mechanisms underlying the cell-type specificity driving C4 . However, several studies have shown that regulation acts at multiple levels, including transcriptional, post-transcriptional, post-translational and epigenetic. One example of such a regulatory mechanism is the cell-specific accumulation of major photorespiratory transcripts/proteins in bundle sheath cells, where ribulose-1,5-bisphosphate carboxylase/oxygenase is localized. Although many of the genes are expressed in the bundle sheath, some are expressed in both cell types, implicating post-transcriptional control mechanisms. Recently, ultra-high-throughput sequencing techniques and sophisticated mass spectrometry instrumentation have provided new opportunities to further our understanding of C4 regulation. Computational pipelines are being developed to accommodate the mass of data associated with these techniques. Finally, we discuss a readily transformable C4 grass--Setaria viridis--that has great potential to serve as a model for the genetic dissection of C4 photosynthesis in the grasses. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  15. Acoustoelastic effect of textured (Ba,Sr)TiO{sub 3} thin films under an initial mechanical stress

    SciTech Connect

    Kamel, Marwa; Mseddi, Souhir; Njeh, Anouar; Ben Ghozlen, Mohamed Hédi; Donner, Wolfgang

    2015-12-14

    Acoustoelastic (AE) analysis of initial stresses plays an important role as a nondestructive tool in current engineering. Two textured BST (Ba{sub 0.65}Sr{sub 0.35}TiO{sub 3}) thin films, with different substrate to target distance, were grown on Pt(111)/TiO{sub 2}/SiO{sub 2}/Si(001) substrate by rf-magnetron sputtering deposition techniques. A conventional “sin{sup 2} ψ” method to determine residual stress and strain in BST films by X-ray diffraction is applied. A laser acoustic waves (LA-waves) technique is used to generate surface acoustic waves (SAW) propagating in both samples. Young's modulus E and Poisson ratio ν of BST films in different propagation directions are derived from the measured dispersion curves. Estimation of effective second-order elastic constants of BST thin films in stressed states is served in SAW study. This paper presents an original investigation of AE effect in prestressed Ba{sub 0.65}Sr{sub 0.35}TiO{sub 3} films, where the effective elastic constants and the effect of texture on second and third order elastic tensor are considered and used. The propagation behavior of Rayleigh and Love waves in BST thin films under residual stress is explored and discussed. The guiding velocities affected by residual stresses, reveal some shifts which do not exceed four percent mainly in the low frequency range.

  16. Acoustoelastic effect of textured (Ba,Sr)TiO3 thin films under an initial mechanical stress

    NASA Astrophysics Data System (ADS)

    Kamel, Marwa; Mseddi, Souhir; Njeh, Anouar; Donner, Wolfgang; Ben Ghozlen, Mohamed Hédi

    2015-12-01

    Acoustoelastic (AE) analysis of initial stresses plays an important role as a nondestructive tool in current engineering. Two textured BST (Ba0.65Sr0.35TiO3) thin films, with different substrate to target distance, were grown on Pt(111)/TiO2/SiO2/Si(001) substrate by rf-magnetron sputtering deposition techniques. A conventional "sin2 ψ" method to determine residual stress and strain in BST films by X-ray diffraction is applied. A laser acoustic waves (LA-waves) technique is used to generate surface acoustic waves (SAW) propagating in both samples. Young's modulus E and Poisson ratio ν of BST films in different propagation directions are derived from the measured dispersion curves. Estimation of effective second-order elastic constants of BST thin films in stressed states is served in SAW study. This paper presents an original investigation of AE effect in prestressed Ba0.65Sr0.35TiO3 films, where the effective elastic constants and the effect of texture on second and third order elastic tensor are considered and used. The propagation behavior of Rayleigh and Love waves in BST thin films under residual stress is explored and discussed. The guiding velocities affected by residual stresses, reveal some shifts which do not exceed four percent mainly in the low frequency range.

  17. Effects of warm ischemia and reperfusion on the liver microcirculatory phenotype of rats: underlying mechanisms and pharmacological therapy

    PubMed Central

    Hide, Diana; Ortega-Ribera, Martí; Garcia-Pagan, Juan-Carlos; Peralta, Carmen; Bosch, Jaime; Gracia-Sancho, Jordi

    2016-01-01

    Warm ischemia and reperfusion (WIR) causes hepatic damage and may lead to liver failure, however the mechanisms involved are largely unknown. Here we have characterized the microcirculatory status and endothelial phenotype of livers undergoing WIR, and evaluated the use of simvastatin in WIR injury prevention. Male Wistar rats received simvastatin, or vehicle, 30 min before undergoing 60 min of partial warm ischemia (70%) followed by 2 h or 24 h of reperfusion. Hepatic and systemic hemodynamics, liver injury (AST, ALT, LDH), endothelial function (vasodilatation in response to acetylcholine), KLF2 and nitric oxide pathways, oxidative stress, inflammation (neutrophil and macrophage infiltration) and cell death were evaluated. Profound microcirculatory dysfunction occurred rapidly following WIR. This was evidenced by down-regulation of the KLF2 vasoprotective pathway, impaired vasodilatory capability and endothelial activation, altogether leading to increased hepatic vascular resistance and liver inflammation, with significant leukocyte infiltration, oxidative stress and cell death. Simvastatin preserved the hepatic endothelial phenotype, and blunted the detrimental effects of WIR on liver hemodynamics and organ integrity. In conclusion, WIR-induced injury to liver sinusoidal endothelial cells is mitigated by pre-treatment with Simvastatin probably through a KLF2-dependent mechanism. PMID:26905693

  18. Peeling mechanism of tomato under infrared heating

    USDA-ARS?s Scientific Manuscript database

    Critical behaviors of peeling tomatoes using infrared heat are thermally induced peel loosening and subsequent cracking. However, the mechanism of peel loosening and cracking due to infrared heating remains unclear. This study aimed at investigating the mechanism of peeling tomatoes under infrared h...

  19. The Pro-Proliferative Effects of Nicotine and Its Underlying Mechanism on Rat Airway Smooth Muscle Cells

    PubMed Central

    He, Fang; Li, Bing; Zhao, Zhuxiang; Zhou, Yumin; Hu, Guoping; Zou, Weifeng; Hong, Wei; Zou, Yimin; Jiang, Changbin; Zhao, Dongxing; Ran, Pixin

    2014-01-01

    Recent studies have shown that nicotine, a major component of cigarette smoke, can stimulate the proliferation of non-neuronal cells. Cigarette smoking can promote a variety of pulmonary and cardiovascular diseases, such as chronic obstructive pulmonary disease (COPD), atherosclerosis, and cancer. A predominant feature of COPD is airway remodeling, which includes increased airway smooth muscle (ASM) mass. The mechanisms underlying ASM remodeling in COPD have not yet been fully elucidated. Here, we show that nicotine induces a profound and time-dependent increase in DNA synthesis in rat airway smooth muscle cells (RASMCs) in vitro. Nicotine also significantly increased the number of RASMCs, which was associated with the increased expression of Cyclin D1, phosphorylation of the retinoblastoma protein (RB) and was dependent on the activation of Akt. The activation of Akt by nicotine occurred within minutes and depended upon the nicotinic acetylcholine receptors (nAchRs). Activated Akt increased the phosphorylation of downstream substrates such as GSK3β. Our data suggest that the binding of nicotine to the nAchRs on RASMCs can regulate cellular proliferation by activating the Akt pathway. PMID:24690900

  20. Effects of soy protein isolate on LEC rats, a model of Wilson disease: mechanisms underlying enhancement of liver cell damage.

    PubMed

    Yonezawa, Kayo; Nakagama, Hitoshi; Tajima, Rie; Ushigome, Mitsunori; Ogra, Yasumitsu; Suzuki, Kazuo T; Yoshikawa, Kunie; Nagao, Minako

    2003-03-07

    Soy-protein isolate (SPI) enhances liver cell damage in Long-Evans rats with a cinnamon-like coat color (LEC rats), which have a defect in Atp7b, the Wilson disease gene. Animals administered an SPI-diet from an age of six weeks died significantly earlier than those administered a control-diet, AIN-93G, from severe liver cell damage associated with jaundice. Since the liver copper level was higher with the SPI-diet than the control-diet, one of the reasons for SPI-toxicity to LEC rats might be due to the higher uptake of copper into liver cells. In the present study, liver levels of glutathione, and liver and intestinal mRNA and protein levels were determined for metallothionein, MT-1 and MT-2. Furthermore, liver and intestinal mRNA expression for the high affinity copper transporter, Ctr1, was determined. None of the parameters showed any significant differences between the SPI-diet and control-diet groups, except for Ctr1 mRNA levels in the liver. It is thus suggested that SPI enhances liver cell copper uptake through induction of Ctr1 expression and this might be the mechanism underlying increased liver damage in LEC rats.

  1. Numerical simulation of mechanical behaviour and prediction of effective properties of metal matrix composites with consideration for structural evolution under shock wave loading

    NASA Astrophysics Data System (ADS)

    Karakulov, V. V.; Smolin, I. Yu; Kulkov, S. N.

    2017-02-01

    Mechanical behaviour of stochastic metal-ceramic composite materials under shock wave loading was numerically simulated on mesoscopic scale level. Deformation of mesoscopic volumes of composites whose structure consisted of a metal matrix and randomly distributed ceramic inclusions was simulated. The results of numerical simulation were used for numerical evaluation of effective elastic and strength properties of metal-ceramic materials with different values of volume concentration of ceramic inclusions. The values of the effective mechanical characteristics of investigated materials were obtained, and the character of the dependence of the effective elastic and strength properties on the structure of composites was determined. It is shown that the dependence of the values of the effective elastic moduli on the volume concentration of ceramic inclusions is nonlinear and monotonically increasing. The values of the effective elastic limits increase with increasing concentration of the inclusions, however, for the considered composites, this dependence is not monotonic.

  2. Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells.

    PubMed

    Basu, Gargi D; Pathangey, Latha B; Tinder, Teresa L; Gendler, Sandra J; Mukherjee, Pinku

    2005-01-01

    Inhibitors of cyclo-oxygenase (COX)-2 are being extensively studied as anticancer agents. In the present study we evaluated the mechanisms by which a highly selective COX-2 inhibitor, celecoxib, affects tumor growth of two differentially invasive human breast cancer cell lines. MDA-MB-231 (highly invasive) and MDA-MB-468 (moderately invasive) cell lines were treated with varying concentrations of celecoxib in vitro, and the effects of this agent on cell growth and angiogenesis were monitored by evaluating cell proliferation, apoptosis, cell cycle arrest, and vasculogenic mimicry. The in vitro results of MDA-MB-231 cell line were further confirmed in vivo in a mouse xenograft model. The highly invasive MDA-MB-231 cells express higher levels of COX-2 than do the less invasive MDA-MB-468 cells. Celecoxib treatment inhibited COX-2 activity, indicated by prostaglandin E2 secretion, and caused significant growth arrest in both breast cancer cell lines. In the highly invasive MDA-MB-231 cells, the mechanism of celecoxib-induced growth arrest was by induction of apoptosis, associated with reduced activation of protein kinase B/Akt, and subsequent activation of caspases 3 and 7. In the less invasive MDA-MB-468 cells, growth arrest was a consequence of cell cycle arrest at the G0/G1 checkpoint. Celecoxib-induced growth inhibition was reversed by addition of exogenous prostaglandin E2 in MDA-MB-468 cells but not in MDA-MB-231 cells. Furthermore, MDA-MB-468 cells formed significantly fewer extracellular matrix associated microvascular channels in vitro than did the high COX-2 expressing MDA-MB-231 cells. Celecoxib treatment not only inhibited cell growth and vascular channel formation but also reduced vascular endothelial growth factor levels. The in vitro findings corroborated in vivo data from a mouse xenograft model in which daily administration of celecoxib significantly reduced tumor growth of MDA-MB-231 cells, which was associated with reduced vascularization and

  3. Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells

    PubMed Central

    Basu, Gargi D; Pathangey, Latha B; Tinder, Teresa L; Gendler, Sandra J; Mukherjee, Pinku

    2005-01-01

    Introduction Inhibitors of cyclo-oxygenase (COX)-2 are being extensively studied as anticancer agents. In the present study we evaluated the mechanisms by which a highly selective COX-2 inhibitor, celecoxib, affects tumor growth of two differentially invasive human breast cancer cell lines. Methods MDA-MB-231 (highly invasive) and MDA-MB-468 (moderately invasive) cell lines were treated with varying concentrations of celecoxib in vitro, and the effects of this agent on cell growth and angiogenesis were monitored by evaluating cell proliferation, apoptosis, cell cycle arrest, and vasculogenic mimicry. The in vitro results of MDA-MB-231 cell line were further confirmed in vivo in a mouse xenograft model. Results The highly invasive MDA-MB-231 cells express higher levels of COX-2 than do the less invasive MDA-MB-468 cells. Celecoxib treatment inhibited COX-2 activity, indicated by prostaglandin E2 secretion, and caused significant growth arrest in both breast cancer cell lines. In the highly invasive MDA-MB-231 cells, the mechanism of celecoxib-induced growth arrest was by induction of apoptosis, associated with reduced activation of protein kinase B/Akt, and subsequent activation of caspases 3 and 7. In the less invasive MDA-MB-468 cells, growth arrest was a consequence of cell cycle arrest at the G0/G1 checkpoint. Celecoxib-induced growth inhibition was reversed by addition of exogenous prostaglandin E2 in MDA-MB-468 cells but not in MDA-MB-231 cells. Furthermore, MDA-MB-468 cells formed significantly fewer extracellular matrix associated microvascular channels in vitro than did the high COX-2 expressing MDA-MB-231 cells. Celecoxib treatment not only inhibited cell growth and vascular channel formation but also reduced vascular endothelial growth factor levels. The in vitro findings corroborated in vivo data from a mouse xenograft model in which daily administration of celecoxib significantly reduced tumor growth of MDA-MB-231 cells, which was associated with

  4. Effect of nature-based sounds' intervention on agitation, anxiety, and stress in patients under mechanical ventilator support: a randomised controlled trial.

    PubMed

    Saadatmand, Vahid; Rejeh, Nahid; Heravi-Karimooi, Majideh; Tadrisi, Sayed Davood; Zayeri, Farid; Vaismoradi, Mojtaba; Jasper, Melanie

    2013-07-01

    Few studies have been conducted to investigate the effect of nature-based sounds (N-BS) on agitation, anxiety level and physiological signs of stress in patients under mechanical ventilator support. Non-pharmacological nursing interventions such as N-BS can be less expensive and efficient ways to alleviate anxiety and adverse effects of sedative medications in patients under mechanical ventilator support. This study was conducted to identify the effect of the nature-based sounds' intervention on agitation, anxiety level and physiological stress responses in patients under mechanical ventilation support. A randomized placebo-controlled trial design was used to conduct this study. A total of 60 patients aged 18-65 years under mechanical ventilation support in an intensive care unit were randomly assigned to the control and experimental groups. The patients in the intervention group received 90 min of N-BS. Pleasant nature sounds were played to the patients using media players and headphones. Patients' physiological signs were taken immediately before the intervention and at the 30th, 60th, 90th minutes and 30 min after the procedure had finished. The physiological signs of stress assessed were heart rate, respiratory rate, and blood pressure. Data were collected over eight months from Oct 2011 to June 2012. Anxiety levels and agitation were assessed using the Faces Anxiety Scale and Richmond Agitation Sedation Scale, respectively. The experimental group had significantly lower systolic blood pressure, diastolic blood pressure, anxiety and agitation levels than the control group. These reductions increased progressively in the 30th, 60th, 90th minutes, and 30 min after the procedure had finished indicating a cumulative dose effect. N-BS can provide an effective method of decreasing potentially harmful physiological responses arising from anxiety in mechanically ventilated patients. Nurses can incorporate N-BS intervention as a non-pharmacologic intervention into the

  5. [Mechanism of dwarfing effect of tomato (Solanum lycopersicon) seedlings induced by cold-shock treatment under high temperature stress].

    PubMed

    Li, Sheng-li; Bi, Ming-ming; Chen, Fei; Sun, Zhi-qiang

    2015-07-01

    To explore the dwarfing mechanism of tomato seedlings induced by cold-shock treatment followed by high temperature, tomato seedlings were subjected to cold-shock treatment once a day at 8:00 with temperature of 5, 10 and 15 °C for 10, 20 and 30 min, respectively, and ethylene production rate was measured. Plant height, ethylene production and gibberellin (GA3) content of the seedlings treated with T10 °C D10 min (cold-shock with 10 °C for 10 min), coupled with utilization of growth regulators, were also evaluated. The results showed that the release of ethylene was increased with the decrease of cold-shock temperature and extension of treatment time. The cold-shock treatment of 5 °C and 30 min had the highest ethylene production rate of 60.3 nL h-1 . g-1, which was 6.5 times of the control. None of ethephon (ETH), silver thiosulphate (STS), GA, or paclobutrazol (PP333) could completely block high ethylene production induced by cold-shock treatment. Tomato seedlings with cold-shock treatment (T10 °C D10 min ) resulted in reduction in GA3 content by 38.1% compared with the value of control (130.6 µg . g-1). Neither ethephon nor STS had significant effect on the dwarfing induced by cold-shock. However, GA3 weakened the dwarfing effect induced by cold-shock treatment (T10 °C D10 min), while PP333 greatly enhanced it. The dwarfing effect by cold-shock treatment of T10 °C D10 min was equivalent to that of application of 4.0 mg . L-1 PP333 based on the seedling height as an evaluation indicator. It was concluded that cold-shock treatment stimulated shoot ethylene production and blocked GA3 synthesis. GA3 played a vital role in dwarfing effect on tomato seedling induced by cold-shock treatment. Cold-shock with 10 °C and duration of 10 min could promote the growth of tomato seedlings with shorter stem and higher dry mass accumulation.

  6. Possible mechanism underlying the effect of Heshouwuyin, a tonifying kidney herb, on sperm quality in aging rats

    PubMed Central

    2014-01-01

    Background Herb mixtures are used as alternatives to hormone therapy in China for the treatment of partial androgen deficiency in aging men. However, the compositions of these herb mixtures are complex and their mechanisms are often unknown. This study investigates the effect of Heshouwuyin, a Chinese herbal compound for invigorating the kidney, on the control of testosterone secretion and sperm function. Methods Aged Wistar rats were administered with Heshouwuyin. A Shouwu pill group and young group were used as controls. Results Morphology, chemiluminescence, fluorescence immunohistochemistry, and western blot showed that the epididymal sperm of naturally aged rats had intact plasma membranes. They also had abnormal mitochondrial function and DNA integrity, a significant decline in serum testosterone levels, and significant pathological changes in the structure of testicular tissues. Heshouwuyin significantly improved sperm function and serum testosterone levels, and improved testicular morphology. Moreover, the curative efficacy of Heshouwuyin after 60 days was better than that of Heshouwuyin after 30 days and the Shouwu pill group. Conclusion Heshouwuyin exerts an important role in controlling testosterone secretion and sperm function. PMID:25034094

  7. Investigation of lignin deposition on cellulose during hydrothermal pretreatment, its effect on cellulose hydrolysis, and underlying mechanisms.

    PubMed

    Li, Hongjia; Pu, Yunqiao; Kumar, Rajeev; Ragauskas, Arthur J; Wyman, Charles E

    2014-03-01

    In dilute acid pretreatment of lignocellulosic biomass, lignin has been shown to form droplets that deposit on the cellulose surface and retard enzymatic digestion of cellulose (Donohoe et al., 2008; Selig et al., 2007). However, studies of this nature are limited for hydrothermal pretreatment, with the result that the corresponding mechanisms that inhibit cellulosic enzymes are not well understood. In this study, scanning electron microscope (SEM) and wet chemical analysis of solids formed by hydrothermal pretreatment of a mixture of Avicel cellulose and poplar wood showed that lignin droplets from poplar wood relocated onto the Avicel surface. In addition, nuclear magnetic resonance (NMR) showed higher S/G ratios in deposited lignin than the initial lignin in poplar wood. Furthermore, the lignin droplets deposited on Avicel significantly impeded cellulose hydrolysis. A series of tests confirmed that blockage of the cellulose surface by lignin droplets was the main cause of cellulase inhibition. The results give new insights into the fate of lignin in hydrothermal pretreatment and its effects on enzymatic hydrolysis.

  8. Neurophysiological and neurocognitive mechanisms underlying the effects of yoga-based practices: towards a comprehensive theoretical framework

    PubMed Central

    Schmalzl, Laura; Powers, Chivon; Henje Blom, Eva

    2015-01-01

    During recent decades numerous yoga-based practices (YBP) have emerged in the West, with their aims ranging from fitness gains to therapeutic benefits and spiritual development. Yoga is also beginning to spark growing interest within the scientific community, and yoga-based interventions have been associated with measureable changes in physiological parameters, perceived emotional states, and cognitive functioning. YBP typically involve a combination of postures or movement sequences, conscious regulation of the breath, and various techniques to improve attentional focus. However, so far little if any research has attempted to deconstruct the role of these different component parts in order to better understand their respective contribution to the effects of YBP. A clear operational definition of yoga-based therapeutic interventions for scientific purposes, as well as a comprehensive theoretical framework from which testable hypotheses can be formulated, is therefore needed. Here we propose such a framework, and outline the bottom-up neurophysiological and top-down neurocognitive mechanisms hypothesized to be at play in YBP. PMID:26005409

  9. Analysis of algae growth mechanism and water bloom prediction under the effect of multi-affecting factor.

    PubMed

    Wang, Li; Wang, Xiaoyi; Jin, Xuebo; Xu, Jiping; Zhang, Huiyan; Yu, Jiabin; Sun, Qian; Gao, Chong; Wang, Lingbin

    2017-03-01

    The formation process of algae is described inaccurately and water blooms are predicted with a low precision by current methods. In this paper, chemical mechanism of algae growth is analyzed, and a correlation analysis of chlorophyll-a and algal density is conducted by chemical measurement. Taking into account the influence of multi-factors on algae growth and water blooms, the comprehensive prediction method combined with multivariate time series and intelligent model is put forward in this paper. Firstly, through the process of photosynthesis, the main factors that affect the reproduction of the algae are analyzed. A compensation prediction method of multivariate time series analysis based on neural network and Support Vector Machine has been put forward which is combined with Kernel Principal Component Analysis to deal with dimension reduction of the influence factors of blooms. Then, Genetic Algorithm is applied to improve the generalization ability of the BP network and Least Squares Support Vector Machine. Experimental results show that this method could better compensate the prediction model of multivariate time series analysis which is an effective way to improve the description accuracy of algae growth and prediction precision of water blooms.

  10. Neurophysiological and neurocognitive mechanisms underlying the effects of yoga-based practices: towards a comprehensive theoretical framework.

    PubMed

    Schmalzl, Laura; Powers, Chivon; Henje Blom, Eva

    2015-01-01

    During recent decades numerous yoga-based practices (YBP) have emerged in the West, with their aims ranging from fitness gains to therapeutic benefits and spiritual development. Yoga is also beginning to spark growing interest within the scientific community, and yoga-based interventions have been associated with measureable changes in physiological parameters, perceived emotional states, and cognitive functioning. YBP typically involve a combination of postures or movement sequences, conscious regulation of the breath, and various techniques to improve attentional focus. However, so far little if any research has attempted to deconstruct the role of these different component parts in order to better understand their respective contribution to the effects of YBP. A clear operational definition of yoga-based therapeutic interventions for scientific purposes, as well as a comprehensive theoretical framework from which testable hypotheses can be formulated, is therefore needed. Here we propose such a framework, and outline the bottom-up neurophysiological and top-down neurocognitive mechanisms hypothesized to be at play in YBP.

  11. Online awareness of functional tasks following ABI: the effect of task experience and associations with underlying mechanisms.

    PubMed

    Rotenberg-Shpigelman, Shlomit; Rosen-Shilo, Lee; Maeir, Adina

    2014-01-01

    Self-awareness is a significant predictor of neurorehabilitation process and outcome and encompasses metacognitive knowledge and online awareness. The literature focuses primarily on intellectual awareness and research on online awareness is lacking. To examine online awareness for functional tasks, how it is affected by task experience and its relationships with neurogenic and psychogenic factors. Thirty six adults with ABI attending neurorehabilitation participated in this study. Online awareness was measured as the discrepancy between subjective ratings of performance and performance on functional tasks, as rated by experienced therapists. Participants' ratings were recorded before and immediately after task experience, as well as following a mediated review of task steps. The Impaired Self-Awareness scale (ISA) and the Denial of Disability scale (DD) rated neurogenic and psychogenic mechanisms of unawareness. Results indicated significant differences between therapists' and participants' ratings before and after IADL task performance, and following mediation. Participants typically overestimated their functional independence and did not significantly change their ratings after task experience. Significant moderate to strong correlations were found between online awareness measures and both DD and ISA scales. Overestimation of functional independence is common in persons with ABI, is related to both neurogenic and psychogenic factors and is not significantly affected by single task experience. Further studies are required to examine the effect of theoretically driven awareness interventions in neurorehabilitation.

  12. Protective effects of tannic acid on pressure overload-induced cardiac hypertrophy and underlying mechanisms in rats.

    PubMed

    Chu, Li; Li, Pinya; Song, Tao; Han, Xue; Zhang, Xuan; Song, Qiongtao; Liu, Tao; Zhang, Yuanyuan; Zhang, Jianping

    2017-09-01

    The aim of this study was to examine the cardioprotective effects and latent mechanism of tannic acid (TA) on cardiac hypertrophy. Abdominal aortic banding (AAB) was used to induce pressure overload-induced cardiac hypertrophy in male Wistar rats, sham-operated rats served as controls. AAB rats were treated with TA (20 and 40 mg/kg) or captoril. Abdominal aortic banding rats that received TA showed ameliorated pathological changes in cardiac morphology and coefficients, decreased cardiac hypertrophy and apoptosis, a reduction in over expressions of angiotensin type 1 receptor (AT1 R), angiotensin type 2 receptor (AT2 R), phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and transforming growth factor-β (TGF-β) mRNA, and modified expression of matrix metal proteinase-9 (MMP-9) mRNA in AAB rat hearts. Furthermore, TA treatment contributed to a decrease in malondialdehyde (MDA) and endothelin-1 (ET-1) activities and content, while it caused an increase in superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), nitric oxide (NO) and endothelial NO synthase (e-NOS). Furthermore, TA downregulated expression of tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β), bax, caspase-3 and upregulated expression of bcl-2. Tannic acid displayed obvious suppression of AAB-induced cardiac hypertrophy in rats. The cardioprotective effects of TA may be attributed to multitargeted inhibition of oxidative stress, inflammation, fibrosis and apoptosis in addition to an increase in NO levels, decrease in ET-1 levels, and downregulation of angiotensin receptors and the phosphorylation of ERK1/2. © 2017 Royal Pharmaceutical Society.

  13. Deformation Mechanisms of Gum Metals Under Nanoindentation

    NASA Astrophysics Data System (ADS)

    Sankaran, Rohini Priya

    Gum Metal is a set of multi-component beta-Ti alloys designed and developed by Toyota Central R&D Labs in 2003 to have a nearly zero shear modulus in the direction. After significant amounts of cold-work (>90%), these alloys were found to have yield strengths at a significant fraction of the predicted ideal strengths and exhibited very little work hardening. It has been speculated that this mechanical behavior may be realized through an ideal shear mechanism as opposed to conventional plastic deformation mechanisms, such as slip, and that such a mechanism may be realized through a defect structure termed "nanodisturbance". It is furthermore theorized that for near ideal strength to be attained, dislocations need to be pinned at sufficiently high stresses. It is the search for these defects and pinning points that motivates the present study. However, the mechanism of plastic deformation and the true origin of specific defect structures unique to gum metals is still controversial, mainly due to the complexity of the beta-Ti alloy system and the heavily distorted lattice exhibited in cold worked gum metals, rendering interpretation of images difficult. Accordingly, the first aim of this study is to clarify the starting as-received microstructures of gum metal alloys through conventional transmission electron microscopy (TEM) and aberration-corrected high resolution scanning transmission electron microscopy with high-angle annular dark field detector (HAADF-HRSTEM) imaging. To elucidate the effects of beta-stability and starting microstructure on the deformation behavior of gum metals and thus to provide adequate context for potentially novel deformation structures, we investigate three alloy conditions: gum metal that has undergone solution heat treatment (STGM), gum metal that has been heavily cold worked (CWGM), and a solution treated alloy of nominal gum metal composition, but leaner in beta-stabilizing content (ST Ref-1). In order to directly relate observed

  14. Effects of monocrotophos on the reproductive axis in the male goldfish (Carassius auratus): potential mechanisms underlying vitellogenin induction.

    PubMed

    Tian, Hua; Ru, Shaoguo; Bing, Xin; Wang, Wei

    2010-06-01

    Monocrotophos (MCP) is a highly toxic organophosphorus pesticide that has been banned in many countries. Both vitellogenin mRNA expression and secretion were significantly induced in male goldfish by exposure to an MCP-based pesticide, suggesting that MCP has significant estrogenic properties. To elucidate the mechanisms of action of MCP on vitellogenin induction, we used radioimmunoassay to examine the effect of MCP treatment on plasma 17beta-estradiol and testosterone levels in male goldfish (Carassius auratus). We also investigated the potential impacts of MCP treatment on aromatase expression, on the synthesis and secretion of pituitary gonadotropins and on the regulation of hypothalamic gonadotropin-releasing hormones by real-time PCR and radioimmunoassay. Experiments were carried out during the period of gonadal late recrudescence following a 21-day exposure to 0.01, 0.10 and 1.00 mg L(-1) of a pesticide containing 40% MCP in a semi-static exposure system. The results indicated that males in each MCP treatment group had much higher plasma levels of 17beta-estradiol, suggesting that the induction of VTG production by MCP was indirectly caused by elevated levels of endogenous 17beta-estradiol. MCP-induced plasma 17beta-estradiol levels via interference with the reproductive axis at multiple potential sites in male goldfish: (a) MCP exposure enhanced the mRNA expression of gonadal aromatase, the enzyme that converts androgens into estrogens, consequently reducing plasma levels of testosterone and increasing plasma concentrations of 17beta-estradiol; (b) MCP treatment increased follicle-stimulating hormone beta subunit mRNA expression and protein secretion and decreased luteinizing hormone beta subunit mRNA expression and protein secretion, thus interfering with gonadotropin synthesis and secretion at the pituitary level and leading to the disruption of reproductive endocrine control and androgen and estrogen balance.

  15. A preliminary study of the mechanical effects of polymer crystallization in the vicinity of a rigid cylindrical inclusion: Homogeneous crystallization under plane strain

    SciTech Connect

    Ma, R.; Negahban, M.

    1995-12-31

    The objective of this study is to investigate the effect of crystallization on the mechanical response of a polymer containing a rigid cylindrical inclusion under different loading conditions and under the plane strain restriction. As will be shown, external loading and crystallization can both induce an inhomogeneous distribution of stress and deformation in the vicinity of a cylindrical inclusion and can also interact with each other. Crystallization is a process of transition of the polymer`s microstructure from disordered state to an ordered one. This transition occurs in many polymers, such as polyethylene, polypropylene, nylon, and natural rubber. The process of crystallization gives rise to a macroscopic deformation, reducing the macroscopic volume, and it can increase the toughness and rigidity of a polymer. For example, for natural rubber crystallization causes a two order of magnitude increase in the elastic moduli. Moreover, crystallization can result in stress relaxation under constant uniaxial extension and creep under constant load. These effects have been captured in a constitutive model developed by Negahban, Wineman and Ma, which has been shown to be in good agreement with experimental results. This presentation provides (1) a theoretical evaluation of the effect of crystallization on the distribution of stress and mechanical moduli under axisymmetric loading and an estimation of the idual stress resulting from crystallization in the vicinity of a cylindrical inclusion; and (2) a numerical simulation of the stress distribution in the vicinity of an inclusion due to crystallization under both constant displacement loading and constant traction loading. All results are for plane strain conditions. Results show that an inhomogeneous distribution of stress and deformation is developed in the vicinity of the inclusion due to the external loading and/or due to crystallization.

  16. Directional motion of liquid under mechanical vibrations

    NASA Astrophysics Data System (ADS)

    Costalonga, Maxime; Brunet, Philippe; Peerhossaini, Hassan

    2014-11-01

    When a liquid is submitted to mechanical vibrations, steady flows or motion can be generated by non-linear effects. One example is the steady acoustic streaming one can observe when an acoustic wave propagates in a fluid. At the scale of a droplet, steady motion of the whole amount of liquid can arise from zero-mean periodic forcing. As It has been observed by Brunet et al. (PRL 2007), a drop can climb an inclined surface when submitted to vertical vibrations above a threshold in acceleration. Later, Noblin et al. (PRL 2009) showed the velocity and the direction of motion of a sessile drop submitted to both horizontal and vertical vibrations can be tuned by the phase shift between these two excitations. Here we present an experimental study of the mean motion of a sessile drop under slanted vibrations, focusing on the effects of drop properties, as well as the inclination angle of the axis of vibrations. It is shown that the volume and viscosity strongly affect the drop mean velocity, and can even change the direction of its motion. In the case of a low viscous drop, gravity can become significant and be modulated by the inclination of the axis of vibrations. Contact line dynamic during the drop oscillations is also investigated.

  17. Molecular mechanics of silk nanostructures under varied mechanical loading.

    PubMed

    Bratzel, Graham; Buehler, Markus J

    2012-06-01

    Spider dragline silk is a self-assembling tunable protein composite fiber that rivals many engineering fibers in tensile strength, extensibility, and toughness, making it one of the most versatile biocompatible materials and most inviting for synthetic mimicry. While experimental studies have shown that the peptide sequence and molecular structure of silk have a direct influence on the stiffness, toughness, and failure strength of silk, few molecular-level analyses of the nanostructure of silk assemblies, in particular, under variations of genetic sequences have been reported. In this study, atomistic-level structures of wildtype as well as modified MaSp1 protein from the Nephila clavipes spider dragline silk sequences, obtained using an in silico approach based on replica exchange molecular dynamics and explicit water molecular dynamics, are subjected to simulated nanomechanical testing using different force-control loading conditions including stretch, pull-out, and peel. The authors have explored the effects of the poly-alanine length of the N. clavipes MaSp1 peptide sequence and identify differences in nanomechanical loading conditions on the behavior of a unit cell of 15 strands with 840-990 total residues used to represent a cross-linking β-sheet crystal node in the network within a fibril of the dragline silk thread. The specific loading condition used, representing concepts derived from the protein network connectivity at larger scales, have a significant effect on the mechanical behavior. Our analysis incorporates stretching, pull-out, and peel testing to connect biochemical features to mechanical behavior. The method used in this study could find broad applications in de novo design of silk-like tunable materials for an array of applications.

  18. Molecular Mechanisms Underlying the In Vitro Anti-Inflammatory Effects of a Flavonoid-Rich Ethanol Extract from Chinese Propolis (Poplar Type)

    PubMed Central

    Wang, Kai; Ping, Shun; Huang, Shuai; Hu, Lin; Xuan, Hongzhuan; Zhang, Cuiping; Hu, Fuliang

    2013-01-01

    China produces the greatest amount of propolis but there is still lack of basic studies on its pharmacological mechanisms. Our previous study found that ethanol extract from Chinese propolis (EECP) exerted excellent anti-inflammatory effects in vivo but mechanisms of action were elusive. To further clarify the possible mechanisms underlying the anti-inflammatory effects of Chinese propolis (poplar type), we utilized EECP to analyze its chemical composition and evaluated its potential anti-inflammatory effects in vitro. High-performance liquid chromatography (HPLC) profile indicated that EECP contained abundant flavonoids, including rutin, myricetin, quercetin, kaempferol, apigenin, pinocembrin, chrysin, and galangin. Next we found that EECP could significantly inhibit the production of NO, IL-1β, and IL-6 in lipopolysaccharide- (LPS-) stimulated RAW 264.7 cells and suppress mRNA expression of iNOS, IL-1β, and IL-6 in a time- and dose-dependent manner. Furthermore, we found that EECP could suppress the phosphorylation of IκBα and AP-1 but did not affect IκBα's degradation. In addition, using a reporter assay, we found that EECP could block the activation of NF-κB in TNF-α-stimulated HEK 293T cells. Our findings give new insights for understanding the mechanisms involved in the anti-inflammatory effects by Chinese propolis and provide additional references for using propolis in alternative and complementary therapies. PMID:23401705

  19. DNA under Force: Mechanics, Electrostatics, and Hydration

    PubMed Central

    Li, Jingqiang; Wijeratne, Sithara S.; Qiu, Xiangyun; Kiang, Ching-Hwa

    2015-01-01

    Quantifying the basic intra- and inter-molecular forces of DNA has helped us to better understand and further predict the behavior of DNA. Single molecule technique elucidates the mechanics of DNA under applied external forces, sometimes under extreme forces. On the other hand, ensemble studies of DNA molecular force allow us to extend our understanding of DNA molecules under other forces such as electrostatic and hydration forces. Using a variety of techniques, we can have a comprehensive understanding of DNA molecular forces, which is crucial in unraveling the complex DNA functions in living cells as well as in designing a system that utilizes the unique properties of DNA in nanotechnology.

  20. [Discussion on the novel clues for studying the underlying mechanisms of acupuncture-induced potentiation of the curative effect of medicines].

    PubMed

    Cui, Jing-Jing; Gao, Jun-Hong; Wang, Yu-min; Ma, Shu-hua; Hu, Jian-jiang; Ma, Yan-yan; Yu, Xiao-chun

    2010-04-01

    Acupuncture combined with drugs has been widely used in the treatment of various clinical conditions and can produce a stronger or more beneficial curative effect than either separate acupuncture or chemical drug does. However, the mechanisms underlying the additive or synergetic effects of acupuncture plus drugs are not well understood so far. Based on careful review and analysis of the literature accumulated, the authors proposed several aspects possibly involving the additive or synergetic effects produced by acupuncture plus drugs. For instance, acupuncture stimulation at acupoints may influence the drug concentration in blood and/or in target organ and the bioavailability of the drug via modulating the drug absorption, distribution and metabolism in the body. In addition, the curative effect of drug may also be strengthened by acupuncture stimulation via altering the signaling pathways of the targeted specific receptors and via potentiating the resultant responsiveness or sensitivity of the cells in the target organ in responding to the drugs administered. The ideas mentioned above may raise the novel clues for further studying the mechanisms underlying acupuncture-produced increase of the curative effects of medicines.

  1. Numerical investigation of effective mechanical properties of metal-ceramic composites with reinforcing inclusions of different shapes under intensive dynamic impacts

    NASA Astrophysics Data System (ADS)

    Karakulov, Valerii V.; Smolin, Igor Yu.; Skripnyak, Vladimir A.

    2016-11-01

    In the present paper, the results of numerical simulation of high-rate deformation of stochastic metal-ceramic composite materials Al-50% B4C, Al-50% SiC, and Al-50% Al2O3 at the mesoscopic scale level under loading by a plane shock wave are presented. Deformation of the mesoscopic volume of a composite, whose structure consists of the aluminum matrix and randomly distributed reinforcing ceramic inclusions, is numerically simulated. The results of the numerical simulation are used for the investigation of special features of the mechanical behavior at the mesoscopic scale level under shock-wave loading and for the numerical evaluation of effective elastic and strength properties of metal-ceramic composites with reinforcing ceramic inclusions of different shapes. Values of effective sound velocities, elastic moduli and elastic limits of investigated materials are obtained, and the character of the dependence of the effective elastic and strength properties on the structure parameters of composites is determined. The simulation results show that values of effective mechanical characteristics weakly depend on the shape of reinforcing inclusions and mainly are defined by their volume concentration.

  2. Possible mechanism underlying the effect of Semax on the formation of indomethacin-induced ulcers in rats.

    PubMed

    Zhuikova, S E; Sergeev, V I; Samonina, G E; Myasoedov, N F

    2002-06-01

    Intraperitoneal injection of Semax (synthetic analogue of ACTH4-7, MEHFPGP) in a dose of 50 mg/kg produced a protective effect on rats with experimental indomethacin-induced ulcers. Experiments on narcotized rats showed that Semax in the studied dose had no effect on basal blood flow in the stomach, but prevented reduction of blood flow induced by indomethacin. The antiulcer effect of Semax is probably related to improvement of blood flow in the gastric wall disturbed by indomethacin.

  3. Temperature-Dependent Effects on the Mechanical Behavior and Deformation Substructure of Haynes 188 Under Low-Cycle Fatigue

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The mechanical behavior of a cobalt-nickel-chromium-tungsten superalloy, Haynes 188, is being critically examined at the NASA Lewis Research Center. This dynamic, strain-aging (DSA) alloy is used for combustor liners in many military and commercial aircraft turbine engines and for the liquid oxygen posts in the main injectors of the space shuttle main engine. Its attractive features include a good combination of high monotonic yield and tensile strength, and excellent fabricability, weldability, and resistance to high-temperature oxidation for prolonged exposures.

  4. Acute effects of intermittent hemodialysis and sustained low-efficiency hemodialysis (SLED) on the pulmonary function of patients under mechanical ventilation.

    PubMed

    Steinhorst, Renata Campos; Vieira, José Mauro; Abdulkader, Regina C R M

    2007-01-01

    The effects of hemodialysis (HD) on pulmonary function are still controversial. The objective of this study was to evaluate the effect of intermittent hemodialysis (IHD) and sustained low-efficiency dialysis (SLED) on the respiratory mechanics of ICU patients under invasive mechanical ventilation. We prospectively studied 31 patients. Laboratory and respiratory evaluation (static and dynamic compliance and resistance) was performed pre- and post-HD. Forty HD sessions were studied and grouped in: SLED (n = 17; Qa = 200-250 mL/min, Qd = 300 mL/min) and IHD (n = 23; Qa = 250-300 mL/min, Qd = 500 mL/min). There was no difference between the groups according to age, gender, comorbidities, APACHE II, and cause of mechanical ventilation, but pre-HD, patients in the IHD group had higher levels of plasma creatinine (5.4 +/- 2.0 vs. 4.2 +/- 1.3 mg/dL, p = 0.048) and platelets (286 +/- 186 vs. 174 +/- 95 10(3)/mm(2), p = 0.032) and lower arterial pH (7.37 +/- 0.07 vs. 7.42 +/- 0.05, p = 0.02). The efficiency of the treatment was similar (p > 0.05) with both types of HD regarding fluid removal, urea reduction rate, and decrease in plasma creatinine. Pre-HD, the ventilatory conditions of both groups were similar (p > 0.05) except for pressure support ventilation and airflow resistance. There were no changes (pre- versus post-HD p > 0.05) induced either by IHD or SLED in the ratio PaO(2)/FiO(2) or in any measured ventilatory parameter. In conclusion, neither IHD nor SLED modifies the pulmonary function of patients under mechanical ventilation.

  5. Mechanism underlying the bio-effects of an electromagnetic field based on the Huang-Ferrell model.

    PubMed

    Geng, D Y; Hu, G; Wang, L; Jia, N; Wang, F X

    2016-06-27

    To understand the beneficial and harmful bio-effects of extremely low frequency electromagnetic fields, we studied the MAPK/ERK signaling pathway based on the Huang-Ferrell model. The sensitivity analysis method was used to study the influence of the model parameters on the activity of ERK, and to further investigate the key biochemical reactions and proteins. The results of the simulation show that an increase in the reaction rate of MAPK/ERK kinase had little effect on ERK activation and the steady-state molecular number. However, a decrease in the reaction rate of MAPK/ERK kinase significantly affected the trigger time of ERK activation and decreased the steady-state molecular number. Together with the biological significance of ERK activity, our findings indicate that the effects of electromagnetic fields are a result of the decrease in the reaction rate of MAPK/ERK kinase, which eventually determines whether these effects cause physical damage or are beneficial in treatment.

  6. Beneficial effects of platelet-derived growth factor on hemorrhagic shock in rats and the underlying mechanisms.

    PubMed

    Liu, Liangming; Zhang, Jie; Zhu, Yu; Xiao, Xudong; Peng, Xiaoyong; Yang, Guangming; Zang, Jiatao; Liu, Shangqing; Li, Tao

    2014-11-01

    Studies have shown that local application of platelet-derived growth factor (PDGF) can be used for the treatment of acute and chronic wounds. We investigated if systemic application of PDGF has a protective effect on acute hemorrhagic shock in rats in the present study. Using hemorrhagic shock rats and isolated superior mesenteric arteries, the effects of PDGF-BB on hemodynamics, animal survival, and vascular reactivity as well as the roles of the gap junction proteins connexin (Cx)40 and Cx43, PKC, and Rho kinase were observed. PDGF-BB (1–15 μg/kg iv) significantly improved the hemodynamics and blood perfusion to vital organs (liver and kidney) as well as vascular reactivity and improved the animal survival in hemorrhagic shock rats. PDGF recovering shock-induced vascular hyporeactivity depended on the integrity of the endothelium and myoendothelial gap junction. Cx43 antisense oligodeoxynucleotide abolished these improving effects of PDGF, whereas Cx40 oligodeoxynucleotide did not. Further study indicated that PDGF increased the activity of Rho kinase and PKC as well as vascular Ca2+ sensitivity, whereas it did not interfere with the intracellular Ca2+ concentration in hypoxia-treated vascular smooth muscle cells. In conclusion, systemic application of PDGF-BB may exert beneficial effects on hemorrhagic shock, which are closely related to the improvement of vascular reactivity and hemodynamics. The improvement of PDGF-BB in vascular reactivity is vascular endothelium and myoendothelial gap junction dependent. Cx43, Rho kinase, and PKC play very important role in this process. These findings suggest that PDGF may be a potential measure to treat acute clinical critical diseases such as severe trauma, shock, and sepsis.

  7. Conversation Effects on Neural Mechanisms Underlying Reaction Time to Visual Events while Viewing a Driving Scene using MEG

    PubMed Central

    Bowyer, Susan M.; Hsieh, Li; Moran, John E.; Young, Richard A.; Manoharan, Arun; Liao, Chia-cheng Jason; Malladi, Kiran; Yu, Ya-Ju; Chiang, Yow-Ren; Tepley, Norman

    2009-01-01

    Magnetoencephalography (MEG) imaging examined the neural mechanisms that modulate reaction times to visual events while viewing a driving video, with and without a conversation. Twenty-four subjects ages 18–65 were monitored by whole-head MEG. The primary tasks were to monitor a driving video and to depress a foot pedal in response to a small red light presented to the left or below the driving scene at unpredictable times. The behavioral reaction time (RT) to the lights was recorded. The secondary task was a hands-free conversation. The subject pressed a button to answer a ring tone, and then covertly answered pre-recorded non-emotional questions such as “What is your birth date?” RTs for the conversation task (1043ms, SE=65ms) were slightly longer than for the primary task (baseline no conversation (944ms, SE=48ms). During the primary task RTs were inversely related to the amount of brain activity detected by MEG in the right superior parietal lobe (Brodmann’s Area 7). Brain activity was seen in the 200 to 300 ms range after the onset of the red light and in the visual cortex (BA 19) about 85 ms after the red light. Conversation reduced the strengths of these regression relationships and increased mean RT. Conversation may contribute to increased reaction times by (1) damping brain activation in specific regions during specific time windows, or (2) reducing facilitation from attention inputs into those areas. These laboratory findings should not be interpreted as indicative of real-world driving, without on-road validation, and comparison to other in-vehicle tasks. PMID:18992728

  8. Non-THC cannabinoids inhibit prostate carcinoma growth in vitro and in vivo: pro-apoptotic effects and underlying mechanisms

    PubMed Central

    De Petrocellis, Luciano; Ligresti, Alessia; Schiano Moriello, Aniello; Iappelli, Mariagrazia; Verde, Roberta; Stott, Colin G; Cristino, Luigia; Orlando, Pierangelo; Di Marzo, Vincenzo

    2013-01-01

    BACKGROUND AND PURPOSE Cannabinoid receptor activation induces prostate carcinoma cell (PCC) apoptosis, but cannabinoids other than Δ9-tetrahydrocannabinol (THC), which lack potency at cannabinoid receptors, have not been investigated. Some of these compounds antagonize transient receptor potential melastatin type-8 (TRPM8) channels, the expression of which is necessary for androgen receptor (AR)-dependent PCC survival. EXPERIMENTAL APPROACH We tested pure cannabinoids and extracts from Cannabis strains enriched in particular cannabinoids (BDS), on AR-positive (LNCaP and 22RV1) and -negative (DU-145 and PC-3) cells, by evaluating cell viability (MTT test), cell cycle arrest and apoptosis induction, by FACS scans, caspase 3/7 assays, DNA fragmentation and TUNEL, and size of xenograft tumours induced by LNCaP and DU-145 cells. KEY RESULTS Cannabidiol (CBD) significantly inhibited cell viability. Other compounds became effective in cells deprived of serum for 24 h. Several BDS were more potent than the pure compounds in the presence of serum. CBD-BDS (i.p.) potentiated the effects of bicalutamide and docetaxel against LNCaP and DU-145 xenograft tumours and, given alone, reduced LNCaP xenograft size. CBD (1–10 µM) induced apoptosis and induced markers of intrinsic apoptotic pathways (PUMA and CHOP expression and intracellular Ca2+). In LNCaP cells, the pro-apoptotic effect of CBD was only partly due to TRPM8 antagonism and was accompanied by down-regulation of AR, p53 activation and elevation of reactive oxygen species. LNCaP cells differentiated to androgen-insensitive neuroendocrine-like cells were more sensitive to CBD-induced apoptosis. CONCLUSIONS AND IMPLICATIONS These data support the clinical testing of CBD against prostate carcinoma. LINKED ARTICLE This article is commented on by Pacher et al., pp. 76–78 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2012.02121.x PMID:22594963

  9. Protective effect of Momordica charantia water extract against liver injury in restraint-stressed mice and the underlying mechanism.

    PubMed

    Deng, Yuanyuan; Tang, Qin; Zhang, Yan; Zhang, Ruifen; Wei, Zhencheng; Tang, Xiaojun; Zhang, Mingwei

    2017-01-01

    Background: Momordica charantia is used in China for its jianghuo (heat-clearing and detoxifying) effects. The concept of shanghuo (the antonym of jianghuo, excessive internal heat) in traditional Chinese medicine is considered a type of stress response of the body. The stress process involves internal organs, especially the liver. Objective: We hypothesized that Momordica charantia water extract (MWE) has a hepatoprotective effect and can protect the body from stress. The aim of this study was to investigate the possible effects of MWE against liver injury in restraint-stressed mice. Design: The mice were intragastrically administered with MWE (250, 500 and 750 mg/kg bw) daily for 7 days. The Normal Control (NC) and Model groups were administered distilled water. A positive control group was intragastrically administered vitamin C 250 mg/kg bw. After the last administration, mice were restrained for 20 h. Results: MWE reduced the serum AST and ALT, reduced the NO content and the protein expression level of iNOSin the liver; significantly reduced the mitochondrial ROS content, increased the mitochondrial membrane potential and the activities of mitochondrial respiratory chain complexes I and II in restraint-stressed mice. Conclusions: The results indicate that MWE has a protective effect against liver injury in restraint-stressed mice. Abbreviations: MWE: Momordica charantia water extract; M. charantia: Momordica charantia L.; ROS: reactive oxygen species; NO: nitric oxide; iNOS: inducible nitric oxide synthase; IL-1β: interleukin-1 beta; TNF-α: tumor necrosis factor alpha; IL-6: interleukin 6; IFN-γ: interferon gamma; VC: vitamin C; ALT: alanine transaminase; AST: aspartate aminotransferase; GSH: glutathione; GSH-PX: glutathione peroxidase; MDA: malondialdehyde; BCA: bicinchoninic acid; TBARS: thiobarbituric acid reactive substances; Trolox: 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid; JC-B: Janus Green B; DW: dry weight; FC: Folin-Ciocalteu; GAE

  10. Protective effect of Momordica charantia water extract against liver injury in restraint-stressed mice and the underlying mechanism

    PubMed Central

    Deng, Yuanyuan; Tang, Qin; Zhang, Yan; Zhang, Ruifen; Wei, Zhencheng; Tang, Xiaojun; Zhang, Mingwei

    2017-01-01

    ABSTRACT Background: Momordica charantia is used in China for its jianghuo (heat-clearing and detoxifying) effects. The concept of shanghuo (the antonym of jianghuo, excessive internal heat) in traditional Chinese medicine is considered a type of stress response of the body. The stress process involves internal organs, especially the liver. Objective: We hypothesized that Momordica charantia water extract (MWE) has a hepatoprotective effect and can protect the body from stress. The aim of this study was to investigate the possible effects of MWE against liver injury in restraint-stressed mice. Design: The mice were intragastrically administered with MWE (250, 500 and 750 mg/kg bw) daily for 7 days. The Normal Control (NC) and Model groups were administered distilled water. A positive control group was intragastrically administered vitamin C 250 mg/kg bw. After the last administration, mice were restrained for 20 h. Results: MWE reduced the serum AST and ALT, reduced the NO content and the protein expression level of iNOSin the liver; significantly reduced the mitochondrial ROS content, increased the mitochondrial membrane potential and the activities of mitochondrial respiratory chain complexes I and II in restraint-stressed mice. Conclusions: The results indicate that MWE has a protective effect against liver injury in restraint-stressed mice. Abbreviations: MWE: Momordica charantia water extract; M. charantia: Momordica charantia L.; ROS: reactive oxygen species; NO: nitric oxide; iNOS: inducible nitric oxide synthase; IL-1β: interleukin-1 beta; TNF-α: tumor necrosis factor alpha; IL-6: interleukin 6; IFN-γ: interferon gamma; VC: vitamin C; ALT: alanine transaminase; AST: aspartate aminotransferase; GSH: glutathione; GSH-PX: glutathione peroxidase; MDA: malondialdehyde; BCA: bicinchoninic acid; TBARS: thiobarbituric acid reactive substances; Trolox: 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid; JC-B: Janus Green B; DW: dry weight; FC: Folin

  11. The Chronic Protective Effects of Limb Remote Preconditioning and the Underlying Mechanisms Involved in Inflammatory Factors in Rat Stroke

    PubMed Central

    Chen, Xiaoyuan; Zhao, Heng

    2012-01-01

    We recently demonstrated that limb remote preconditioning (LRP) protects against focal ischemia measured 2 days post-stroke. Here, we studied whether LRP provides long-term protection and improves neurological function. We also investigated whether LRP transmits its protective signaling via the afferent nerve pathways from the preconditioned limb to the ischemic brain and whether inflammatory factors are involved in LRP, including the novel galectin-9/Tim-3 inflammatory cell signaling pathway, which induces cell death in lymphocytes. LRP in the left hind femoral artery was performed immediately before stroke. LRP reduced brain injury size both at 2 days and 60 days post-stroke and improved behavioral outcomes for up to 2 months. The sensory nerve inhibitors capsaicin and hexamethonium, a ganglion blocker, abolished the protective effects of LRP. In addition, LRP inhibited edema formation and blood-brain barrier (BBB) permeability measured 2 days post-stroke. Western blot and immunostaining analysis showed that LRP inhibited protein expression of both galectin-9 and T-cell immunoglobulin domain and mucin domain 3 (Tim-3), which were increased after stroke. In addition, LRP decreased iNOS and nitrotyrosine protein expression after stroke. In conclusion, LRP executes long-term protective effects against stroke and may block brain injury by inhibiting activities of the galectin-9/Tim-3 pathway, iNOS, and nitrotyrosine. PMID:22347410

  12. Molecular mechanism underlying the antiproliferative effect of suppressor of cytokine signaling-1 in non-small-cell lung cancer cells.

    PubMed

    Shimada, Kazuki; Serada, Satoshi; Fujimoto, Minoru; Nomura, Shintaro; Nakatsuka, Rie; Harada, Emi; Iwahori, Kota; Tachibana, Isao; Takahashi, Tsuyoshi; Kumanogoh, Atsushi; Kishimoto, Tadamitsu; Naka, Tetsuji

    2013-11-01

    Lung cancer (LC) is the major cause of death by cancer and the number of LC patients is increasing worldwide. This study investigated the therapeutic potential of gene delivery using suppressor of cytokine signaling 1 (SOCS-1), an endogenous inhibitor of intracellular signaling pathways, for the treatment of LC. To examine the antitumor effect of SOCS-1 overexpression on non-small-cell lung cancer (NSCLC) cells, NSCLC cells (A549, LU65, and PC9) were infected with adenovirus-expressing SOCS-1 vector. The cell proliferation assay showed that A549 and LU65, but not PC9, were sensitive to SOCS-1 gene-mediated suppression of cell growth. Although JAK inhibitor I could also inhibit proliferation of A549 and LU65 cells, SOCS-1 gene delivery appeared to be more potent as SOCS-1 could suppress focal adhesion kinase and epidermal growth factor receptor, as well as the JAK/STAT3 signaling pathway. Enhanced phosphorylation of the p53 protein was detected by means of phospho-kinase array in SOCS-1 overexpressed A549 cells compared with control cells, whereas no phosphorylation of p53 was observed when JAK inhibitor I was used. Furthermore, treatment with adenoviral vector AdSOCS-1 in vivo significantly suppressed NSCLC proliferation in a xenograft model. These results suggest that the overexpression of SOCS-1 gene is effective for antitumor therapy by suppressing the JAK/STAT, focal adhesion kinase, and epidermal growth factor receptor signaling pathways and enhancing p53-mediated antitumor activity in NSCLC. © 2013 Japanese Cancer Association.

  13. Deciphering an underlying mechanism of differential cellular effects of nanoparticles: an example of Bach-1 dependent induction of HO-1 expression by gold nanorod.

    PubMed

    Fan, Zhenlin; Yang, Xiao; Li, Yiye; Li, Suping; Niu, Shiwen; Wu, Xiaochun; Wei, Jingyan; Nie, Guangjun

    2012-12-01

    Gold nanoparticles are extensively investigated for their potential biomedical applications. Therefore, it is pertinent to thoroughly evaluate their biological effects at different levels and their underlying molecular mechanism. Frequently, there are discrepancies about the biological effects of various gold nanoparticles among the reports dealing with different models. Most of the studies focused on the different biological effects of various nano-properties of the nanomaterials. We hypothesize that the biological models with different metabolic processes would be taken into account to explain the observed discrepancies of biological effects of nanomaterials. Herein, by using mouse embryo fibroblast cell line (MEF-1) and human embryonal lung fibroblast cell line (MRC-5) as in vitro models, we studied the cellular effects of gold nanorods (AuNRs) coated with poly (diallyldimethyl ammonium chloride) (PDDAC), polyethylene glycol and polystyrene sulfonae (PSS). We found that all three AuNRs had no effects on cellular viability at the concentration of 1 nM; however, AuNRs that coated with PDDAC and PSS induced significant up-regulation of heme oxygenase-1 (HO-1) which was believed to be involved in cellular defense activities in MEF-1 but not in MRC-5 cells. Further study showed that the low fundamental expression of transcription factor Bach-1, the major regulator of HO-1 expression, in MEF-1 was responsible for the up-regulation of HO-1 induced by the AuNRs. Our results indicate that although AuNRs we used are non-cytotoxic, they cell-specifically induce change of gene expression, such as HO-1. Our current study provides a good example to explain the molecular mechanisms of differential biological effects of nanomaterials in different cellular models. This finding raises a concern on evaluation of cellular effects of nanoparticles where the cell models should be critically considered.

  14. The effect of Shenmai injection on the proliferation of Rat airway smooth muscle cells in asthma and underlying mechanism.

    PubMed

    Zhao, Limin; Wu, Jizhen; Zhang, Xiaoyu; Kuang, Hongyan; Guo, Yali; Ma, Lijun

    2013-09-08

    Over-proliferation of airway smooth muscle cell (ASMC) is one of the important contributors to airway remodeling in asthma. The aim of this study was to investigate the effect of Shenmai injection (SMI) on the proliferation of the rat ASMC in asthma. Rats were randomly divided into three groups: the control group, the asthma group, and the SMI treatment group. Reverse transcription-polymerase chain reaction (RT-PCR) and immunocytochemistry staining were used to detect the mRNA and protein expression of transient receptor potential vanilloid 1 (TRPV1) and proliferating cell nuclear antigen (PCNA) in rat ASMC respectively. Intracellular Ca²⁺ concentration ( [Ca²⁺](i)) in rat ASMC were measured with Fluo-3/AM by confocal microscopy. The proliferation was detected by MTT assay. Compared with the control group, the asthma group showed an increased expression of TRPV1 and [Ca²⁺](i) in rat ASMC. The expression of PCNA and absorbance of MTT assay in asthma rat ASMC was also significantly increased. SMI could significantly decrease the expression of TRPV1 channel and [Ca²⁺](i) in the asthmatic rat ASMC. Furthermore, the expression of PCNA and absorbance of MTT assay in asthmatic rat ASMC was significantly reduced after SMI treatment. SMI may prevent asthma-induced ASMC over-proliferation probably by inhibiting the expression of TRPV1 channel, which regulates the intracellular calcium concentration.

  15. Elucidation of mechanisms underlying the protective effects of olive leaf extract against lead-induced neurotoxicity in Wistar rats.

    PubMed

    Seddik, Leila; Bah, Thierno Madjou; Aoues, Abdelkader; Slimani, Miloud; Benderdour, Mohamed

    2011-01-01

    Recently, we identified that olive leaf extract (OLE) prevents lead (Pb)-induced abnormalities in behavior and neurotransmitters production in chronic Pb exposure in rats. The aim of the present study was to provide additional evidence that OLE acts as an anti-apoptotic, anti-inflammatory, and antioxidant mediator in Pb exposed rats. 4-weeks old Wistar rats were exposed or not to 250 mg/l Pb for 13-weeks and then exposed to tap water containing or not 0.1% OLE for additional 2-weeks. Atomic absorption spectrophotometry showed significantly elevated Pb levels in the hippocampus and serum and reaches 5 and 42 µg/mg tissue, respectively. In the hippocampus, the examination of markers of apoptosis and inflammation revealed an increase in caspase-3 activity and DNA fragmentation as well as tumor necrosis factor alpha, interleukin-1 beta and prostaglandin E2 in Pb-exposed rats. In addition, our findings showed that Pb induced 4-hydroxynonenal production and inhibited antioxidant-related enzyme activity, such as glutathione-S-transferase as wells as energy metabolism-related enzyme activity, such as NADP-isocitrate dehydrogenase and glucose transporter. Upon examination of signaling pathways involved in apoptosis process, we found that Pb induced p38 mitogen activated protein kinase (MAPK) and Akt phosphorylation, but in contrast, inhibited that of ERK(1/2). Interestingly, OLE administration diminished tissue Pb deposition and prevented all Pb effects. In the frontal cortex, our data also showed that OLE-abolished Pb-induced caspase-3 activity and DNA fragmentation. Collectively, these data support the use of OLE by traditional medicine to counter Pb neurotoxicity.

  16. The Osteogenesis Effect and Underlying Mechanisms of Local Delivery of gAPN in Extraction Sockets of Beagle Dogs.

    PubMed

    Hu, Hongcheng; Pu, Yinfei; Lu, Songhe; Zhang, Kuo; Guo, Yuan; Lu, Hui; Li, Deli; Li, Xuefen; Li, Zichen; Wu, Yuwei; Tang, Zhihui

    2015-10-20

    A plastic and biodegradable bone substitute consists of poly (L-lactic-co-glycolic) acid and 30 wt % β-tricalcium phosphate has been previously fabricated, but its osteogenic capability required further improvement. We investigated the use of globular adiponectin (gAPN) as an anabolic agent for tissue-engineered bone using this scaffold. A qualitative analysis of the bone regeneration process was carried out using μCT and histological analysis 12 weeks after implantation. CBCT (Cone Beam Computed Tomography) superimposition was used to characterise the effect of the different treatments on bone formation. In this study, we also explored adiponectin's (APN) influence on primary cultured human jaw bone marrow mesenchymal stem cells gene expressions involved in the osteogenesis. We found OPEN ACCESS Int. J. Mol. Sci. 2015, 16 24947 that composite scaffolds loaded with gAPN or bone morphogenetic protein 2 (BMP2) exhibited significantly increased bone formation and mineralisation following 12 weeks in the extraction sockets of beagle dogs, as well as enhanced expression of osteogenic markers. In vitro investigation revealed that APN also promoted osteoblast differentiation of primary cultured human jaw bone marrow mesenchymal stem cells (h-JBMMSCs), accompanied by increased activity of alkaline phosphatase, greater mineralisation, and production of the osteoblast-differentiated genes osteocalcin, bone sialoprotein and collagen type I, which was reversed by APPL1 siRNA. Therefore, the composite scaffold loaded with APN exhibited superior activity for guided bone regeneration compared with blank control or Bio-Oss® (a commercially available product). The composite scaffold with APN has significant potential for clinical applications in bone tissue engineering.

  17. Morphology and Molecular Mechanisms of Hepatic Injury in Rats under Simulated Weightlessness and the Protective Effects of Resistance Training.

    PubMed

    Du, Fang; Ding, Ye; Zou, Jun; Li, Zhili; Tian, Jijing; She, Ruiping; Wang, Desheng; Wang, Huijuan; Lv, Dongqiang; Chang, Lingling

    2015-01-01

    This study investigated the effects of long-term simulated weightlessness on liver morphology, enzymes, glycogen, and apoptosis related proteins by using two-month rat-tail suspension model (TS), and liver injury improvement by rat-tail suspension with resistance training model (TS&RT). Microscopically the livers of TS rats showed massive granular degeneration, chronic inflammation, and portal fibrosis. Mitochondrial and endoplasmic reticulum swelling and loss of membrane integrity were observed by transmission electron microscopy (TEM). The similar, but milder, morphological changes were observed in the livers of TS&RT rats. Serum biochemistry analysis revealed that the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were significantly higher (p<0.05) in TS rats than in controls. The levels of ALT and AST in TS&RT rats were slightly lower than in RT rats, but they were insignificantly higher than in controls. However, both TS and TS&RT rats had significantly lower levels (p<0.05) of serum glucose and hepatic glycogen than in controls. Immunohistochemistry demonstrated that the expressions of Bax, Bcl-2, and active caspase-3 were higher in TS rats than in TS&RT and control rats. Real-time polymerase chain reaction (real-time PCR) showed that TS rats had higher mRNA levels (P < 0.05) of glucose-regulated protein 78 (GRP78) and caspase-12 transcription than in control rats; whereas mRNA expressions of C/EBP homologous protein (CHOP) and c-Jun N-terminal kinase (JNK) were slightly higher in TS rats. TS&RT rats showed no significant differences of above 4 mRNAs compared with the control group. Our results demonstrated that long-term weightlessness caused hepatic injury, and may trigger hepatic apoptosis. Resistance training slightly improved hepatic damage.

  18. Morphology and Molecular Mechanisms of Hepatic Injury in Rats under Simulated Weightlessness and the Protective Effects of Resistance Training

    PubMed Central

    Zou, Jun; Li, Zhili; Tian, Jijing; She, Ruiping; Wang, Desheng; Wang, Huijuan; Lv, Dongqiang; Chang, Lingling

    2015-01-01

    This study investigated the effects of long-term simulated weightlessness on liver morphology, enzymes, glycogen, and apoptosis related proteins by using two-month rat-tail suspension model (TS), and liver injury improvement by rat-tail suspension with resistance training model (TS&RT). Microscopically the livers of TS rats showed massive granular degeneration, chronic inflammation, and portal fibrosis. Mitochondrial and endoplasmic reticulum swelling and loss of membrane integrity were observed by transmission electron microscopy (TEM). The similar, but milder, morphological changes were observed in the livers of TS&RT rats. Serum biochemistry analysis revealed that the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were significantly higher (p<0.05) in TS rats than in controls. The levels of ALT and AST in TS&RT rats were slightly lower than in RT rats, but they were insignificantly higher than in controls. However, both TS and TS&RT rats had significantly lower levels (p<0.05) of serum glucose and hepatic glycogen than in controls. Immunohistochemistry demonstrated that the expressions of Bax, Bcl-2, and active caspase-3 were higher in TS rats than in TS&RT and control rats. Real-time polymerase chain reaction (real-time PCR) showed that TS rats had higher mRNA levels (P < 0.05) of glucose-regulated protein 78 (GRP78) and caspase-12 transcription than in control rats; whereas mRNA expressions of C/EBP homologous protein (CHOP) and c-Jun N-terminal kinase (JNK) were slightly higher in TS rats. TS&RT rats showed no significant differences of above 4 mRNAs compared with the control group. Our results demonstrated that long-term weightlessness caused hepatic injury, and may trigger hepatic apoptosis. Resistance training slightly improved hepatic damage. PMID:26000905

  19. Proinflammatory effect of high-mobility group protein B1 on keratinocytes: an autocrine mechanism underlying psoriasis development.

    PubMed

    Zhang, Weigang; Guo, Sen; Li, Bing; Liu, Lin; Ge, Rui; Cao, Tianyu; Wang, Huina; Gao, Tianwen; Wang, Gang; Li, Chunying

    2017-02-01

    Psoriasis is an autoimmune skin disease, in which keratinocytes play a crucial pathogenic role. High-mobility group protein B1 (HMGB1) is an inflammatory factor that can be released from keratinocyte nuclei in psoriatic lesions. We aimed to investigate the proinflammatory effect of HMGB1 on keratinocytes and the contribution of HMGB1 to psoriasis development. Normal human keratinocytes were treated with recombinant human HMGB1, and the production of inflammatory factors and the intermediary signalling pathways were examined. Furthermore, the imiquimod-induced psoriasis-like mouse model was used to investigate the role of HMGB1 in psoriasis development in vivo. A total of 11 inflammatory factors were shown to be upregulated by HMGB1 in keratinocytes, among which interleukin (IL)-18 showed the greatest change. We then found that activation of the nuclear factor-κB signalling pathway and inflammasomes accounted for HMGB1-induced IL-18 expression and secretion. Moreover, HMGB1 and downstream IL-18 contributed to the development of psoriasiform dermatitis in the imiquimod-treated mice. In addition, T-helper 17 immune response in the psoriasis-like mouse model could be inhibited by both HMGB1 and IL-18 blockade. Our findings indicate that HMGB1 secreted from keratinocytes can facilitate the production and secretion of inflammatory factors such as IL-18 in keratinocytes in an autocrine way, thus promoting the development of psoriasis. Blocking the proinflammatory function of the HMGB1-IL-18 axis may be useful for psoriasis treatment in the future. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  20. The protective effects and underlying mechanism of an anti-oligomeric Aβ42 single-chain variable fragment antibody.

    PubMed

    Zhang, Yuan; Chen, Xu; Liu, Jinyu; Zhang, Yingjiu

    2015-12-01

    Oligomeric Aβ42 aggregates have been identified as one of the major neurotoxic components of Alzheimer's disease (AD). Immunotherapy targeted against these Aβ42 aggregates has been proposed as an appropriate therapeutic approach for the treatment of AD. Here, we report an anti-oligomeric Aβ42 single-chain variable fragment (scFv) antibody, named MO6, obtained from the human antibody library of a healthy donor. ScFv MO6 specifically recognized and bound to the oligomeric Aβ42 (Aβ42 oligomers and immature protofibrils; 18-37 kDa), and reduced their levels mainly by blocking their formation, although scFv MO6 also induced disaggregation of Aβ42 aggregates. More importantly, scFv MO6 ameliorated or attenuated Aβ42-induced cytotoxicity and increased cell viability by up to 33%. Furthermore, scFv MO6 efficiently passed through an in vitro blood-brain barrier (BBB) model with a delivery efficiency of 66% after 60 min post-administration. ScFv MO6 is a monovalent antibody with an affinity constant (KD) of 5.2×10(-6) M for Aβ42 oligomers. Molecular docking simulations of Aβ42 to scFv MO6 revealed that the approach and specific binding of scFv MO6 to oligomeric Aβ42 aggregates was achieved by conformational recognition and directed induction, which resulted in a more dynamic adaptation of Aβ42 to scFv MO6, occurring mainly in the N-terminal (3-4), middle (12-19) and C-terminal (34-42) regions of Aβ42. This binding mode of scFv MO6 to Aβ42 explains its protective effects against oligomeric Aβ42. Our findings may be applied for the design of a smaller antibody specific for Aβ42 oligermers.

  1. Mechanisms Underlying AF: Triggers, Rotors, Other?

    PubMed

    Krummen, David E; Hebsur, Shrinivas; Salcedo, Jon; Narayan, Sanjiv M; Lalani, Gautam G; Schricker, Amir A

    2015-04-01

    There is ongoing debate regarding the precise mechanisms underlying atrial fibrillation (AF). An improved understanding of these mechanisms is urgently needed to improve interventional strategies to suppress and eliminate AF, since the success of current strategies is suboptimal. At present, guidelines for AF ablation focus on pulmonary vein (PV) isolation for the prevention of arrhythmia. Additional targets are presently unclear, and include additional linear ablation and electrogram-guided substrate modification, without clear mechanistic relevance. PV and non-PV triggers are likely central in the first few seconds of AF initiation. Rapid activation from such triggers interacts with transitional mechanisms including conduction velocity slowing, action potential duration (APD) alternans, and steep APD restitution to cause conduction block and initiate functional reentry. However, complete suppression of potential triggers has proven elusive, and the intra-procedural mapping and targeting of transitional mechanisms has not been reported. A growing body of research implicates electrical rotors and focal sources as central mechanisms for the maintenance of AF. In several recent series, they were observed in nearly all patients with sustained arrhythmia. Ablation of rotor and focal source sites, prior to pulmonary vein isolation, substantially modulated atrial fibrillation in a high proportion of patients, and improved ablation outcomes versus pulmonary vein isolation alone. These results have subsequently been confirmed in multicenter series, and the improved outcomes have been found to persist to a mean follow-up of 3 years. Recently, rotors have been observed by multiple groups using diverse technologies. These findings represent a paradigm shift in AF, focusing on sustaining mechanisms, as is currently done with other arrhythmias such as atrioventricular node reentrant tachycardia. Studies are currently underway to assess the optimal strategy for the application

  2. Anti-cancer Effect and Underlying Mechanism(s) of Kaempferol, a Phytoestrogen, on the Regulation of Apoptosis in Diverse Cancer Cell Models.

    PubMed

    Kim, Seung-Hee; Choi, Kyung-Chul

    2013-12-31

    Phytoestrogens exist in edible compounds commonly found in fruits or plants. For long times, phytoestrogens have been used for therapeutic treatments against human diseases, and they can be promising ingredients for future pharmacological industries. Kaempferol is a yellow compound found in grapes, broccoli and yellow fruits, which is one of flavonoid as phytoestrogens. Kaempferol has been suggested to have an antioxidant and anti-inflammatory effect. In past decades, many studies have been performed to examine anti-toxicological role(s) of kaempferol against human cancers. It has been shown that kaempferol may be involved in the regulations of cell cycle, metastasis, angiogenesis and apoptosis in various cancer cell types. Among them, there have been a few of the studies to examine a relationship between kaempferol and apoptosis. Thus, in this review, we highlight the effect(s) of kaempferol on the regulation of apoptosis in diverse cancer cell models. This could be a forecast in regard to use of kaempferol as promising treatment against human diseases.

  3. Anti-cancer Effect and Underlying Mechanism(s) of Kaempferol, a Phytoestrogen, on the Regulation of Apoptosis in Diverse Cancer Cell Models

    PubMed Central

    Kim, Seung-Hee

    2013-01-01

    Phytoestrogens exist in edible compounds commonly found in fruits or plants. For long times, phytoestrogens have been used for therapeutic treatments against human diseases, and they can be promising ingredients for future pharmacological industries. Kaempferol is a yellow compound found in grapes, broccoli and yellow fruits, which is one of flavonoid as phytoestrogens. Kaempferol has been suggested to have an antioxidant and anti-inflammatory effect. In past decades, many studies have been performed to examine anti-toxicological role(s) of kaempferol against human cancers. It has been shown that kaempferol may be involved in the regulations of cell cycle, metastasis, angiogenesis and apoptosis in various cancer cell types. Among them, there have been a few of the studies to examine a relationship between kaempferol and apoptosis. Thus, in this review, we highlight the effect(s) of kaempferol on the regulation of apoptosis in diverse cancer cell models. This could be a forecast in regard to use of kaempferol as promising treatment against human diseases. PMID:24578792

  4. Cellular and molecular mechanisms underlying muscular dystrophy

    PubMed Central

    2013-01-01

    The muscular dystrophies are a group of heterogeneous genetic diseases characterized by progressive degeneration and weakness of skeletal muscle. Since the discovery of the first muscular dystrophy gene encoding dystrophin, a large number of genes have been identified that are involved in various muscle-wasting and neuromuscular disorders. Human genetic studies complemented by animal model systems have substantially contributed to our understanding of the molecular pathomechanisms underlying muscle degeneration. Moreover, these studies have revealed distinct molecular and cellular mechanisms that link genetic mutations to diverse muscle wasting phenotypes. PMID:23671309

  5. Modelling RNA folding under mechanical tension

    PubMed Central

    VIEREGG, JEFFREY R.; TINOCO, IGNACIO

    2006-01-01

    We investigate the thermodynamics and kinetics of RNA unfolding and refolding under mechanical tension. The hierarchical nature of RNA structure and the existence of thermodynamic parameters for base pair formation based on nearest-neighbour interactions allows modelling of sequence-dependent folding dynamics for any secondary structure. We calculate experimental observables such as the transition force for unfolding, the end-to-end distribution function and its variance, as well as kinetic information, for a representative RNA sequence and for a sequence containing two homopolymer segments: A.U and G.C. PMID:16969426

  6. Effectiveness and underlying mechanisms of a group-based cognitive behavioural therapy-based indicative prevention program for children with elevated anxiety levels.

    PubMed

    van Starrenburg, Manon L A; Kuijpers, Rowella C W M; Hutschemaekers, Giel J M; Engels, Rutger C M E

    2013-07-05

    Anxiety is a problem for many children, particularly because of its negative consequences not only on the wellbeing of the child, but also on society. Adequate prevention and treatment might be the key in tackling this problem. Cognitive behavioural therapy (CBT) has been found effective for treating anxiety disorders. "Coping Cat" is one of the few evidence-based CBT programs designed to treat anxiety symptoms in children. The main aim of this project is to conduct a Randomized Controlled Trial (RCT) to evaluate the effectiveness of a Dutch version of Coping Cat as an indicative group-based prevention program. The second aim is to gain insight into the mechanisms underlying its effectiveness. Coping Cat will be tested in Dutch primary school children grades five through eight (ages 7 to 13) with elevated levels of anxiety. This RCT has two conditions: 130 children will be randomly assigned to the experimental (N=65, Coping Cat) and control groups (N=65, no program). All children and their mothers will be asked to complete baseline, post intervention, and 3-month follow-up assessments. In addition, children in both the experimental and control group will be asked to complete 12 weekly questionnaires matched to the treatment sessions. Main outcome measure will be the child's anxiety symptoms level (SCAS). Four potential mediators will be examined, namely active coping, positive cognitive restructuring, self efficacy and cognitions about ones coping ability (from now on coping cognitions). It is hypothesized that children in the experimental condition will experience reduced levels of anxiety in comparison with the control group. Further, active coping, positive cognitive restructuring, and coping cognitions are expected to mediate program effectiveness. If Coping Cat proves effective as a prevention program and working mechanisms can be found, this group-based approach might lead to the development of a cost-effective program suitable for prevention purposes that

  7. Multimodal nociceptive mechanisms underlying chronic pelvic pain

    PubMed Central

    HELLMAN, Kevin M.; PATANWALA, Insiyyah Y.; POZOLO, Kristen E.; TU, Frank F.

    2015-01-01

    Objective To evaluate candidate mechanisms underlying the pelvic floor dysfunction in women with chronic pelvic pain and/or painful bladder syndrome/interstitial cystitis. Notably, prior studies have not consistently controlled for potential confounding by psychological or anatomical factors. Study Design As part of a larger study on pelvic floor pain dysfunction and bladder pain sensitivity, we compared a measure of mechanical pain sensitivity, pressure pain thresholds, between women with pelvic pain and pain-free controls. We also assessed a novel pain measure using degree and duration of post-exam pain aftersensation, and conducted structural and functional assessments of the pelvic floor to account for any potential confounding. Phenotypic specificity of pelvic floor measures was assessed with receiver-operator characteristic curves adjusted for prevalence. Results A total of 23 women with chronic pelvic pain, 23 painful bladder syndrome, and 42 pain-free controls completed the study. Women with chronic pelvic pain or painful bladder syndrome exhibited enhanced pain sensitivity with lower pressure pain thresholds (1.18 [interquartile range: 0.87–1.41] kg/cm2) than pain-free participants (1.48 [1.11–1.76] kg/cm2; p<0.001) and prolonged pain aftersensation (3.5 [0–9] vs 0 [0–1] minutes; p< 0.001). Although genital hiatus (p<0.01) was wider in women with chronic pelvic pain there were no consistently observed group differences in pelvic floor anatomy, muscle tone or strength. The combination of pressure pain thresholds and aftersensation duration correlated with severity of pelvic floor tenderness (R2 =41–51, p’s< 0.01). Even after adjustment for prevalence, the combined metrics discriminated pain-free controls from women with chronic pelvic pain or painful bladder syndrome (area under the curve=0.87). Conclusion Both experimental assessment of pelvic floor pain thresholds and measurement of sustained pain are independently associated with pelvic pain

  8. Neural mechanisms underlying selective attention to threat.

    PubMed

    Bishop, Sonia J

    2008-01-01

    Biased competition models of selective attention suggest that attentional competition is influenced both by bottom-up sensory mechanisms sensitive to stimulus salience and top-down control mechanisms that support the processing of task-relevant stimuli. This provides a framework for investigating the neural mechanisms underlying selective attention to threat. Both subcortical regions implicated in threat detection--specifically the amygdala--and prefrontal cortical regions implicated in top-down attentional control are activated in response to task-irrelevant threat stimuli. A number of questions including the automaticity of the amygdala response to threat distractors, the modulation by anxiety of the amygdala and prefrontal response to these stimuli, and the impact of genetic and environmental factors upon this circuitry are addressed. The empirical literature is considered in the context of theoretical accounts of the neural substrate of selective attention and conscious awareness. It is suggested that the neural activity provoked by a given visual stimulus is influenced by factors impacting upon the strength of the bottom-up trace (e.g., presentation time, backward masking), stimulus salience (including threat relatedness), competition with other visual stimuli for perceptual processing resources, and the augmentation of the stimulus trace by allocation of top-down attentional resources. Individual differences in trait and state anxiety, and in genetic makeup, are thought to modulate the influence of stimulus valence and top-down attention through their impact upon amygdala and prefrontal function.

  9. Subcellular mechanisms underlying digitalis-induced arrhythmias: role of calcium/calmodulin-dependent kinase II (CaMKII) in the transition from an inotropic to an arrhythmogenic effect.

    PubMed

    Gonano, Luis Alberto; Petroff, Martín Vila

    2014-12-01

    Cardiotonic glycosides or digitalis are positive inotropes used in clinical practice for the treatment of heart failure, which also exist as endogenous ligands of the Na(+)/K(+) ATPase. An increase in the intracellular Ca2+ content mediates their positive inotropic effect, but has also been proposed as a trigger of life-threatening arrhythmias. Although the mechanisms involved in the positive inotropic effect of these compounds have been extensively studied, those underlying their arrhythmogenic action remain ill defined. Recent evidence has placed posttranslational modifications of the ryanodine receptor (RyR2), leading to arrhythmogenic Ca2+ release, in the centre of the storm. In this review we will examine, in depth, the mechanisms that generate the arrhythmogenic substrate, focussing on the role played by the RyR2 and how its CaMKII-dependent regulation may shift the balance from an inotropic to an arrhythmogenic Ca2+ release. Finally, we will provide evidence suggesting that stabilising RyR2 function could result in a potential new strategy to prevent cardiotonic glycoside-induced arrhythmias that could lead to a safer and more extensive use of these compounds.

  10. The mechanism underlying the synergetic hypocholesterolemic effect of sesamin and α-tocopherol in rats fed a high-cholesterol diet.

    PubMed

    Rogi, Tomohiro; Tomimori, Namino; Ono, Yoshiko; Kiso, Yoshinobu

    2011-01-01

    Sesamin is a major lignan in sesame seed. We confirmed that ingestion of sesamin and α-tocopherol synergistically reduced the concentration of blood cholesterol in rats given a high-cholesterol diet. To elucidate the molecular mechanism behind this effect, we analyzed the gene-expression profiles in rat liver after co-ingestion of sesamin and α-tocopherol. Six-week-old male Sprague-Dawley rats were fed a 1% cholesterol diet (HC) or HC containing 0.2% sesamin, 1% α-tocopherol or sesamin + α-tocopherol for 10 days. Blood samples were collected on days 1, 3, 7, and 10 and livers were excised on day 10. The gene expressions of ATP-binding cassette, sub-family G (WHITE), members 5 (ABCG5) and 8 (ABCG8) were significantly increased, while the gene expression of apolipoprotein (Apo) A4 was significantly decreased. ABCG5 and ABCG8 form a functional heterodimer that acts as a cholesterol efflux transporter, which contributes to the excretion of cholesterol from the liver. ApoA4 controls the secretion of ApoB, which is a component of low-density-lipoprotein cholesterol. These studies indicate that the cholesterol-lowering mechanism underlying the effects of co-ingestion of sesamin and α-tocopherol might be attributable to increased biliary excretion of cholesterol and reduced ApoB secretion into the bloodstream.

  11. Mechanical response of cardiovascular stents under vascular dynamic bending.

    PubMed

    Xu, Jiang; Yang, Jie; Huang, Nan; Uhl, Christopher; Zhou, Yihua; Liu, Yaling

    2016-02-20

    Currently, the effect of vascular dynamic bending (VDB) has not been fully considered when studying cardiovascular stents' long-term mechanical properties, as the previous studies about stent's mechanical properties mostly focus on the effect of vascular pulsation (VP). More and more clinical reports suggested that the effect of VDB have a significant impact on stent. In this paper, an explicit-implicit coupling simulation method was applied to analyze the mechanical responses of cardiovascular stents considering the effect of VDB. The effect of VP on stent mechanical properties was also studied and compared to the effect of VDB. The results showed that the dynamic bending deformation occurred in stents due to the effect of VDB. The effects of VDB and VP resulted in alternating stress states of the stent, while the VDB alternate stresses effective on the stent were almost three times larger than that of the VP. The stress concentration under VDB mainly occurred in bridge struts and the maximal stress was located in the middle loops of the stent. However, the stress distributed uniformly in the stents under the effect of VP. Stent fracture occurred more frequently as a result of VDB with the predicted fracture position located in the bridging struts of the stent. These results are consistent with the reported data in clinical literatures. The stress of the vessel under VDB was higher, than that caused by VP. The results showed that the effect of VDB has a significant impact on the stent's stress distribution, fatigue performance and overall stress on the vessel, thus it is necessary to be considered when analyzing stent's long-term mechanical properties. Meanwhile, the results showed that the explicit-implicit coupling simulation can be applied to analyze stent mechanical properties.

  12. On the central mechanism underlying ghrelin's chronic pro-obesity effects in rats: new insights from studies exploiting a potent ghrelin receptor antagonist.

    PubMed

    Salomé, N; Hansson, C; Taube, M; Gustafsson-Ericson, L; Egecioglu, E; Karlsson-Lindahl, L; Fehrentz, J A; Martinez, J; Perrissoud, D; Dickson, S L

    2009-09-01

    In the present study, we explore the central nervous system mechanism underlying the chronic central effects of ghrelin with respect to increasing body weight and body fat. Specifically, using a recently developed ghrelin receptor antagonist, GHS-R1A (JMV2959), we investigate the role of GHS-R1A in mediating the effects of ghrelin on energy balance and on hypothalamic gene expression. As expected, in adult male rats, chronic central treatment with ghrelin for 14 days, when compared to vehicle-treated control rats, resulted in an increased body weight, lean mass and fat mass (assessed by dual X-ray absorptiometry), dissected white fat pad weight, cumulative food intake, food efficiency, respiratory exchange ratio and a decrease of energy expenditure. Co-administration of the ghrelin receptor antagonist JMV2959 suppressed/blocked the majority of these effects, with the notable exception of ghrelin-induced food intake and food efficiency. The hypothesis emerging from these data, namely that GHS-R1A mediates the chronic effects of ghrelin on fat accumulation, at least partly independent of food intake, is discussed in light of the accompanying data regarding the hypothalamic genes coding for peptides and receptors involved in energy balance regulation, which were found to have altered expression in these studies.

  13. Effects and underlying mechanisms of curcumin on the proliferation of vascular smooth muscle cells induced by Chol:M{beta}CD

    SciTech Connect

    Qin Li; Yang Yunbo; Tuo Qinhui; Zhu Bingyang; Chen Linxi; Zhang Liang Liao Duanfang

    2009-02-06

    Proliferation of vascular smooth muscle cells (VSMCs) contributes to the development of various cardiovascular diseases. Curcumin, extracted from Curcumae longae, has been shown a variety of beneficial effects on human health, including anti-atherosclerosis by mechanisms poorly understood. In the present study, we attempted to investigate whether curcumin has any effect on VSMCs proliferation and the potential mechanisms involved. Our data showed curcumin concentration-dependently abrogated the proliferation of primary rat VSMCs induced by Chol:M{beta}CD. To explore the underlying cellular and molecular mechanisms, we found that curcumin was capable of restoring caveolin-1 expression which was reduced by Chol:M{beta}CD treatment. Moreover, curcumin abrogated the increment of phospho-ERK1/2 and nuclear accumulation of ERK1/2 in primary rat VSMCs induced by Chol:M{beta}CD, which led to a suppression of AP-1 promoter activity stimulated by Chol:M{beta}CD. In addition, curcumin was able to reverse cell cycle progression induced by Chol:M{beta}CD, which was further supported by its down-regulation of cyclinD1 and E2F promoter activities in the presence of Chol:M{beta}CD. Taking together, our data suggest curcumin inhibits Chol:M{beta}CD-induced VSMCs proliferation via restoring caveolin-1 expression that leads to the suppression of over-activated ERK signaling and causes cell cycle arrest at G1/S phase. These novel findings support the beneficial potential of curcumin in cardiovascular disease.

  14. Mechanisms Underlying the Anti-Inflammatory Effects of Clinacanthus nutans Lindau Extracts: Inhibition of Cytokine Production and Toll-Like Receptor-4 Activation.

    PubMed

    Mai, Chun W; Yap, Kok S I; Kho, Mee T; Ismail, Nor H; Yusoff, Khatijah; Shaari, Khozirah; Chin, Swee Y; Lim, Erin S H

    2016-01-01

    Clinacanthus nutans has had a long history of use in folk medicine in Malaysia and Southeast Asia; mostly in the relief of inflammatory conditions. In this study, we investigated the effects of different extracts of C. nutans upon lipopolysaccharide (LPS) induced inflammation in order to identify its mechanism of action. Extracts of leaves and stem bark of C. nutans were prepared using polar and non-polar solvents to produce four extracts, namely polar leaf extract (LP), non-polar leaf extract (LN), polar stem extract (SP), and non-polar stem extracts (SN). The extracts were standardized by determining its total phenolic and total flavonoid contents. Its anti-inflammatory effects were assessed on LPS induced nitrite release in RAW264.7 macrophages and Toll-like receptor (TLR-4) activation in TLR-4 transfected human embryonic kidney cells (HEK-Blue(TM)-hTLR4 cells). The levels of inflammatory cytokines (TNF-α, IFN-γ, IL-1β, IL-6, IL-12p40, and IL-17) in treated RAW264.7 macrophages were quantified to verify its anti-inflammatory effects. Western blotting was used to investigate the effect of the most potent extract (LP) on TLR-4 related inflammatory proteins (p65, p38, ERK, JNK, IRF3) in RAW264.7 macrophages. All four extracts produced a significant, concentration-dependent reduction in LPS-stimulated nitric oxide, LPS-induced TLR-4 activation in HEK-Blue(TM)-hTLR4 cells and LPS-stimulated cytokines production in RAW264.7 macrophages. The most potent extract, LP, also inhibited all LPS-induced TLR-4 inflammatory proteins. These results provide a basis for understanding the mechanisms underlying the previously demonstrated anti-inflammatory activity of C. nutans extracts.

  15. Mechanisms Underlying the Anti-Inflammatory Effects of Clinacanthus nutans Lindau Extracts: Inhibition of Cytokine Production and Toll-Like Receptor-4 Activation

    PubMed Central

    Mai, Chun W.; Yap, Kok S. I.; Kho, Mee T.; Ismail, Nor H.; Yusoff, Khatijah; Shaari, Khozirah; Chin, Swee Y.; Lim, Erin S. H.

    2016-01-01

    Clinacanthus nutans has had a long history of use in folk medicine in Malaysia and Southeast Asia; mostly in the relief of inflammatory conditions. In this study, we investigated the effects of different extracts of C. nutans upon lipopolysaccharide (LPS) induced inflammation in order to identify its mechanism of action. Extracts of leaves and stem bark of C. nutans were prepared using polar and non-polar solvents to produce four extracts, namely polar leaf extract (LP), non-polar leaf extract (LN), polar stem extract (SP), and non-polar stem extracts (SN). The extracts were standardized by determining its total phenolic and total flavonoid contents. Its anti-inflammatory effects were assessed on LPS induced nitrite release in RAW264.7 macrophages and Toll-like receptor (TLR-4) activation in TLR-4 transfected human embryonic kidney cells (HEK-BlueTM-hTLR4 cells). The levels of inflammatory cytokines (TNF-α, IFN-γ, IL-1β, IL-6, IL-12p40, and IL-17) in treated RAW264.7 macrophages were quantified to verify its anti-inflammatory effects. Western blotting was used to investigate the effect of the most potent extract (LP) on TLR-4 related inflammatory proteins (p65, p38, ERK, JNK, IRF3) in RAW264.7 macrophages. All four extracts produced a significant, concentration-dependent reduction in LPS-stimulated nitric oxide, LPS-induced TLR-4 activation in HEK-BlueTM-hTLR4 cells and LPS-stimulated cytokines production in RAW264.7 macrophages. The most potent extract, LP, also inhibited all LPS-induced TLR-4 inflammatory proteins. These results provide a basis for understanding the mechanisms underlying the previously demonstrated anti-inflammatory activity of C. nutans extracts. PMID:26869924

  16. Mechanisms underlying transcranial direct current stimulation in rehabilitation.

    PubMed

    Roche, N; Geiger, M; Bussel, B

    2015-09-01

    For a few years, the non-invasive modulation of motor cortex has become the centre of much attention because of its possible clinical impact. Among the different mechanism allowing to modify motor-cortex excitability, transcranial direct current stimulation (tDCS), with its efficacy and ease of use, plays a major role. The aim of this review is to improve the understanding of the underlying mechanisms of the tDCS effect in the field of rehabilitation. The mechanisms underlying tDCS effects when applied over the motor cortex differ depending on the polarity used. Moreover, the mechanisms underlying these effects differ during stimulation (per-stimulation) and after the end of it (after-effects). This review highlights the known mechanisms involved in tDCS effects on brain excitability and illustrates that most remain not well understood and debated. Further studies are necessary to elucidate the mode of action of tDCS and determine the best paradigm of stimulation depending on the goals.

  17. Innate immunesenescence: underlying mechanisms and clinical relevance.

    PubMed

    Hazeldine, Jon; Lord, Janet M

    2015-04-01

    A well-established feature of physiological ageing is altered immune function, a phenomenon termed immunesenescence. Thought to be responsible in part for the increased incidence and severity of infection reported by older adults, as well as the age-related decline in vaccine efficacy and autoimmunity, immunesenescence affects both the innate and adaptive arms of the immune system. Whilst much is known regarding the impact of age on adaptive immunity, innate immunity has received far less attention from immune gerontologists. However, over the last decade it has become increasingly apparent that this non-specific arm of the immune response undergoes considerable functional and phenotypical alterations with age. Here, we provide a detailed overview of innate immunesenescence and its underlying molecular mechanisms, and highlight those studies whose results indicate that changes in innate immunity with age have a significant impact upon the health and well-being of older adults.

  18. Mechanical buckling of veins under internal pressure.

    PubMed

    Martinez, Ricky; Fierro, Cesar A; Shireman, Paula K; Han, Hai-Chao

    2010-04-01

    Venous tortuosity is associated with multiple disease states and is often thought to be a consequence of venous hypertension and chronic venous disease. However, the underlying mechanisms of vein tortuosity are unclear. We hypothesized that increased pressure causes vein buckling that leads to a tortuous appearance. The specific aim of this study was to determine the critical buckling pressure of veins. We determined the buckling pressure of porcine jugular veins and measured the mechanical properties of these veins. Our results showed that the veins buckle when the transmural pressure exceeds a critical pressure that is strongly related to the axial stretch ratio in the veins. The critical pressures of the eight veins tested were 14.2 +/- 5.4 and 26.4 +/- 9.0 mmHg at axial stretch ratio 1.5 and 1.7, respectively. In conclusion, veins buckle into a tortuous shape at high lumen pressures or reduced axial stretch ratios. Our results are useful in understanding the development of venous tortuosity associated with varicose veins, venous valvular insufficiency, diabetic retinopathy, and vein grafts.

  19. Mechanisms underlying methamphetamine-related dental disease.

    PubMed

    Clague, Jason; Belin, Thomas R; Shetty, Vivek

    2017-06-01

    The authors clarified the causal mechanisms underlying the high prevalence of dental disease encountered in people who habitually use methamphetamine (meth). Using a stratified sampling approach, the authors conducted comprehensive oral examinations and psychosocial assessments for 571 study participants who used meth. Three calibrated dentists, who used National Health and Nutrition Examination Survey (NHANES) protocols, characterized the study participants' dental disease. The authors also collected data related to study participants' history of meth use and other attributes linked to dental disease. Study participants who used meth manifested higher rates of xerostomia and caries experience compared with NHANES control participants. Participants who used meth had a higher level of daily consumption of sugary beverages compared with NHANES control participants. Smoking meth did not increase caries experience over other modes of intake. Dental hygiene was a significant determinant of dental health outcomes. Mode of intake and frequency of meth use have a minimal impact on dental health outcomes. Behaviors, such as sugary beverage consumption and poor oral hygiene, better explain dental health outcomes. Having a better understanding of the causal mechanisms of "meth mouth" sets the stage for clinicians to provide more personalized interventions and management of dental disease in people who use meth. Copyright © 2017 American Dental Association. Published by Elsevier Inc. All rights reserved.

  20. Two distinct neural mechanisms underlying indirect reciprocity.

    PubMed

    Watanabe, Takamitsu; Takezawa, Masanori; Nakawake, Yo; Kunimatsu, Akira; Yamasue, Hidenori; Nakamura, Mitsuhiro; Miyashita, Yasushi; Masuda, Naoki

    2014-03-18

    Cooperation is a hallmark of human society. Humans often cooperate with strangers even if they will not meet each other again. This so-called indirect reciprocity enables large-scale cooperation among nonkin and can occur based on a reputation mechanism or as a succession of pay-it-forward behavior. Here, we provide the functional and anatomical neural evidence for two distinct mechanisms governing the two types of indirect reciprocity. Cooperation occurring as reputation-based reciprocity specifically recruited the precuneus, a region associated with self-centered cognition. During such cooperative behavior, the precuneus was functionally connected with the caudate, a region linking rewards to behavior. Furthermore, the precuneus of a cooperative subject had a strong resting-state functional connectivity (rsFC) with the caudate and a large gray matter volume. In contrast, pay-it-forward reciprocity recruited the anterior insula (AI), a brain region associated with affective empathy. The AI was functionally connected with the caudate during cooperation occurring as pay-it-forward reciprocity, and its gray matter volume and rsFC with the caudate predicted the tendency of such cooperation. The revealed difference is consistent with the existing results of evolutionary game theory: although reputation-based indirect reciprocity robustly evolves as a self-interested behavior in theory, pay-it-forward indirect reciprocity does not on its own. The present study provides neural mechanisms underlying indirect reciprocity and suggests that pay-it-forward reciprocity may not occur as myopic profit maximization but elicit emotional rewards.

  1. Two distinct neural mechanisms underlying indirect reciprocity

    PubMed Central

    Watanabe, Takamitsu; Takezawa, Masanori; Nakawake, Yo; Kunimatsu, Akira; Yamasue, Hidenori; Nakamura, Mitsuhiro; Miyashita, Yasushi; Masuda, Naoki

    2014-01-01

    Cooperation is a hallmark of human society. Humans often cooperate with strangers even if they will not meet each other again. This so-called indirect reciprocity enables large-scale cooperation among nonkin and can occur based on a reputation mechanism or as a succession of pay-it-forward behavior. Here, we provide the functional and anatomical neural evidence for two distinct mechanisms governing the two types of indirect reciprocity. Cooperation occurring as reputation-based reciprocity specifically recruited the precuneus, a region associated with self-centered cognition. During such cooperative behavior, the precuneus was functionally connected with the caudate, a region linking rewards to behavior. Furthermore, the precuneus of a cooperative subject had a strong resting-state functional connectivity (rsFC) with the caudate and a large gray matter volume. In contrast, pay-it-forward reciprocity recruited the anterior insula (AI), a brain region associated with affective empathy. The AI was functionally connected with the caudate during cooperation occurring as pay-it-forward reciprocity, and its gray matter volume and rsFC with the caudate predicted the tendency of such cooperation. The revealed difference is consistent with the existing results of evolutionary game theory: although reputation-based indirect reciprocity robustly evolves as a self-interested behavior in theory, pay-it-forward indirect reciprocity does not on its own. The present study provides neural mechanisms underlying indirect reciprocity and suggests that pay-it-forward reciprocity may not occur as myopic profit maximization but elicit emotional rewards. PMID:24591599

  2. In in-vitro evaluation of effect of different finish lines on marginal adaptation in metal-ceramic restorations under thermo-mechanical loading.

    PubMed

    Gupta, Ridhima

    2011-01-01

    The aim of this study was to evaluate the marginal gap in terms of cement film thickness associated with shoulder, shoulder with 45° bevel, shoulder with 30° bevel and chamfer, under thermo-mechanical loading. Forty human mandibular molars were prepared and restored with ceramo-metal crowns. Teeth were thermo-mechanically loaded and vertically sectioned to evaluate the cement film thickness. Shoulder with 45° bevel provided the least marginal gap as compared with all the tested finish lines.

  3. Anti-inflammatory effect as a mechanism of effectiveness underlying the clinical benefits of pelotherapy in osteoarthritis patients: regulation of the altered inflammatory and stress feedback response

    NASA Astrophysics Data System (ADS)

    Ortega, E.; Gálvez, I.; Hinchado, M. D.; Guerrero, J.; Martín-Cordero, L.; Torres-Piles, S.

    2017-04-01

    The purpose of the present investigation was to evaluate whether an anti-inflammatory effect together with an improvement of the regulation of the interaction between the inflammatory and stress responses underlies the clinical benefits of pelotherapy in osteoarthritis (OA) patients. This study evaluated the effects of a 10-day cycle of pelotherapy at the spa centre `El Raposo' (Spain) in a group of 21 OA patients diagnosed with primary knee OA. Clinical assessments included pain intensity using a visual analog scale; pain, stiffness and physical function using the Western Ontario and McMaster Universities Arthritis Index; and health-related quality of life using the EuroQol-5D questionnaire. Serum inflammatory cytokine levels (IL-1β, TNF-α, IL-8, IL-6, IL-10 and TGF-β) were evaluated using the Bio-Plex® Luminex® system. Circulating neuroendocrine-stress biomarkers, such as cortisol and extracellular 72 kDa heat shock protein (eHsp72), were measured by ELISA. After the cycle of mud therapy, OA patients improved the knee flexion angle and OA-related pain, stiffness and physical function, and they reported a better health-related quality of life. Serum concentrations of IL-1β, TNF-α, IL-8, IL-6 and TGF-β, as well as eHsp72, were markedly decreased. Besides, systemic levels of cortisol increased significantly. These results confirm that the clinical benefits of mud therapy may well be mediated, at least in part, by its systemic anti-inflammatory effects and neuroendocrine-immune regulation in OA patients. Thus, mud therapy could be an effective alternative treatment in the management of OA.

  4. Effect and mechanisms underlying scorpion toxin action from Androctonus australis garzonii on atrial natriuretic peptide in rat atria: an in vitro study.

    PubMed

    Soualmia, Hayet; Abroug, Fekri; Djeridane, Yasmina

    2008-03-01

    Scorpion envenomation is considered public health problem in Northern African countries. The mechanisms of cardiac dysfunction following scorpion envenomation are not fully understood. This study examined the effect and mechanisms underlying scorpion toxin action from Androctonus australis garzonii on atrial natriuretic peptide (ANP) release from rat atrium using in vitro organ perifusion. Male Sprague Dawley rats were used in this study. Three experiments were conducted. In experiment 1, atrial tissues were exposed either to Krebs-bicarbonate buffer medium (control) or to scorpion toxin (10(-8) M to 10(-6) M). In experiment 2, animals were chemically sympathectomized with a single intraperitoneal injection of 6-hydroxydopamine (6-OHDOPA) at a dose of 40 microg/g 24 h before sacrifice. Vehicle-treated rats served as control. Atrial tissues were collected and perifused in the presence of 10(-6) M scorpion toxin. In experiment 3, atrial tissues were exposed to 10(-6) M scorpion toxin either in the absence or presence of 10(-6) M propranolol (a beta-adrenoceptor blocker), or 10(-6) M tetrodotoxin (a sodium channel blocker). ANP levels released in the perifusion medium were determined by radioimmunoassay. The scorpion toxin at 10(-6) M induced a significant (p<0.01) increase (106%) in ANP levels. This effect was decreased (20%) by 6-OHDOPA. Propranolol and tetrodotoxin significantly (p<0.01) inhibited 55% and 60%, respectively, the toxin-induced ANP release. The data show that the North African scorpion toxin from Androctonus australis garzonii increases the ANP release in rat atrium through stimulation of sympathetic cardiac nerves and sodium channels activation.

  5. Molecular mechanisms underlying the effect of the novel BK channel opener GoSlo: involvement of the S4/S5 linker and the S6 segment.

    PubMed

    Webb, Timothy I; Kshatri, Aravind Singh; Large, Roddy J; Akande, Adebola Morayo; Roy, Subhrangsu; Sergeant, Gerard P; McHale, Noel G; Thornbury, Keith D; Hollywood, Mark A

    2015-02-17

    GoSlo-SR-5-6 is a novel large-conductance Ca(2+)-activated K(+) (BK) channel agonist that shifts the activation V1/2 of these channels in excess of -100 mV when applied at a concentration of 10 μM. Although the structure-activity relationship of this family of molecules has been established, little is known about how they open BK channels. To help address this, we used a combination of electrophysiology, mutagenesis, and mathematical modeling to investigate the molecular mechanisms underlying the effect of GoSlo-SR-5-6. Our data demonstrate that the effects of this agonist are practically abolished when three point mutations are made: L227A in the S4/S5 linker in combination with S317R and I326A in the S6C region. Our data suggest that GoSlo-SR-5-6 interacts with the transmembrane domain of the channel to enhance pore opening. The Horrigan-Aldrich model suggests that GoSlo-SR-5-6 works by stabilizing the open conformation of the channel and the activated state of the voltage sensors, yet decouples the voltage sensors from the pore gate.

  6. Mechanical stability of trees under dynamic loads.

    PubMed

    James, Kenneth R; Haritos, Nicholas; Ades, Peter K

    2006-10-01

    Tree stability in windstorms and tree failure are important issues in urban areas where there can be risks of damage to people and property and in forests where wind damage causes economic loss. Current methods of managing trees, including pruning and assessment of mechanical strength, are mainly based on visual assessment or the experience of people such as trained arborists. Only limited data are available to assess tree strength and stability in winds, and most recent methods have used a static approach to estimate loads. Recent research on the measurement of dynamic wind loads and the effect on tree stability is giving a better understanding of how different trees cope with winds. Dynamic loads have been measured on trees with different canopy shapes and branch structures including a palm (Washingtonia robusta), a slender Italian cypress (Cupressus sempervirens) and trees with many branches and broad canopies including hoop pine (Araucaria cunninghamii) and two species of eucalypt (Eucalyptus grandis, E. teretecornus). Results indicate that sway is not a harmonic, but is very complex due to the dynamic interaction of branches. A new dynamic model of a tree is described, incorporating the dynamic structural properties of the trunk and branches. The branch mass contributes a dynamic damping, termed mass damping, which acts to reduce dangerous harmonic sway motion of the trunk and so minimizes loads and increases the mechanical stability of the tree. The results from 12 months of monitoring sway motion and wind loading forces are presented and discussed.

  7. Human Cooperation and Its Underlying Mechanisms.

    PubMed

    Strang, Sabrina; Park, Soyoung Q

    2017-01-01

    Cooperation is a uniquely human behavior and can be observed across cultures. In order to maintain cooperative behavior in society, people are willing to punish deviant behavior on their own expenses and even without any personal benefits. Cooperation has been object of research in several disciplines. Psychologists, economists, sociologists, biologists, and anthropologists have suggested several motives possibly underlying cooperative behavior. In recent years, there has been substantial progress in understanding neural mechanisms enforcing cooperation. Psychological as well as economic theories were tested for their plausibility using neuroscientific methods. For example, paradigms from behavioral economics were adapted to be tested in the magnetic resonance imaging (MRI) scanner. Also, related brain functions were modulated by using transmagnetic brain stimulation (TMS). While cooperative behavior has often been associated with positive emotions, noncooperative behavior was found to be linked to negative emotions. On a neural level, the temporoparietal junction (TPJ), the striatum, and other reward-related brain areas have been shown to be activated by cooperation, whereas noncooperation has mainly been associated with activity in the insula.

  8. Underlying mechanisms for commuting and migration processes

    NASA Astrophysics Data System (ADS)

    Simini, Filippo; Barabasi, Albert-Laszlo; Bagrow, James

    2012-02-01

    Both frequent commuting and long-term migration are complex human processes that strongly depend on socio-demographic, spatial, political, and even economic factors. We can describe both processes using weighted networks, in which nodes represent geographic locations and link weights denote the flux of individuals who commute (or migrate) between locations. Although both processes concern the movements of individuals, they are very different: commuting takes place on a daily (or weekly) basis and always between the same two locations, while migration is a rare, one-way displacement. Despite these differences, a recently proposed stochastic model, the Radiation model, provides evidence that both processes may be successfully described by the same underlying mechanism. For example, quantities of interest for either process, such as the distributions of trip length and destination populations, appear remarkably similar to the model's predictions. We explore the similarities and differences between commuting and migration both empirically, using census data for the United States, and theoretically, by comparing these commuting and migration networks to the predictions given by the Radiation model.

  9. An underlying geometrical manifold for Hamiltonian mechanics

    NASA Astrophysics Data System (ADS)

    Horwitz, L. P.; Yahalom, A.; Levitan, J.; Lewkowicz, M.

    2017-02-01

    We show that there exists an underlying manifold with a conformal metric and compatible connection form, and a metric type Hamiltonian (which we call the geometrical picture), that can be put into correspondence with the usual Hamilton-Lagrange mechanics. The requirement of dynamical equivalence of the two types of Hamiltonians, that the momenta generated by the two pictures be equal for all times, is sufficient to determine an expansion of the conformal factor, defined on the geometrical coordinate representation, in its domain of analyticity with coefficients to all orders determined by functions of the potential of the Hamiltonian-Lagrange picture, defined on the Hamilton-Lagrange coordinate representation, and its derivatives. Conversely, if the conformal function is known, the potential of a Hamilton-Lagrange picture can be determined in a similar way. We show that arbitrary local variations of the orbits in the Hamilton-Lagrange picture can be generated by variations along geodesics in the geometrical picture and establish a correspondence which provides a basis for understanding how the instability in the geometrical picture is manifested in the instability of the the original Hamiltonian motion.

  10. Molecular Mechanisms Underlying Peritoneal EMT and Fibrosis

    PubMed Central

    Strippoli, Raffaele; Moreno-Vicente, Roberto; Battistelli, Cecilia; Cicchini, Carla; Noce, Valeria; Amicone, Laura; Marchetti, Alessandra; del Pozo, Miguel Angel; Tripodi, Marco

    2016-01-01

    Peritoneal dialysis is a form of renal replacement alternative to the hemodialysis. During this treatment, the peritoneal membrane acts as a permeable barrier for exchange of solutes and water. Continual exposure to dialysis solutions, as well as episodes of peritonitis and hemoperitoneum, can cause acute/chronic inflammation and injury to the peritoneal membrane, which undergoes progressive fibrosis, angiogenesis, and vasculopathy, eventually leading to discontinuation of the peritoneal dialysis. Among the different events controlling this pathological process, epithelial to mesenchymal transition of mesothelial cells plays a main role in the induction of fibrosis and in subsequent functional deterioration of the peritoneal membrane. Here, the main extracellular inducers and cellular players are described. Moreover, signaling pathways acting during this process are elucidated, with emphasis on signals delivered by TGF-β family members and by Toll-like/IL-1β receptors. The understanding of molecular mechanisms underlying fibrosis of the peritoneal membrane has both a basic and a translational relevance, since it may be useful for setup of therapies aimed at counteracting the deterioration as well as restoring the homeostasis of the peritoneal membrane. PMID:26941801

  11. The peripheral and central mechanisms underlying itch

    PubMed Central

    Lee, Jae Seung; Han, Jasmin Sanghyun; Lee, Kyeongho; Bang, Juwon; Lee, Hyosang

    2016-01-01

    Itch is one of the most distressing sensations that substantially impair quality of life. It is a cardinal symptom of many skin diseases and is also caused by a variety of systemic disorders. Unfortunately, currently available itch medications are ineffective in many chronic itch conditions, and they often cause undesirable side effects. To develop novel therapeutic strategies, it is essential to identify primary afferent neurons that selectively respond to itch mediators as well as the central nervous system components that process the sensation of itch and initiate behavioral responses. This review summarizes recent progress in the study of itch, focusing on itch-selective receptors, signaling molecules, neuronal pathways from the primary sensory neurons to the brain, and potential decoding mechanisms based on which itch is distinguished from pain. [BMB Reports 2016; 49(9): 474-487] PMID:27418284

  12. Environmental genotoxicity: Probing the underlying mechanisms

    SciTech Connect

    Shugart, L.; Theodorakis, C.

    1993-12-31

    Environmental pollution is a complex issue because of the diversity of anthropogenic agents, both chemical and physical, that have been detected and catalogued. The consequences to biota from exposure to genotoxic agents present an additional problem because of the potential for these agents to produce adverse change at the cellular and organismal levels. Past studies in genetic toxicology at the Oak Ridge National Laboratory have focused on structural damage to the DNA of environmental species that may occur after exposure to genotoxic agents and the use of this information to document exposure and to monitor remediation. In an effort to predict effects at the population, community and ecosystem levels, current studies in genetic ecotoxicology are attempting to characterize the biological mechanisms at the gene level that regulate and limit the response of an individual organism to genotoxic factors in their environment.

  13. Environmental genotoxicity: probing the underlying mechanisms.

    PubMed Central

    Shugart, L; Theodorakis, C

    1994-01-01

    Environmental pollution is a complex issue because of the diversity of anthropogenic agents, both chemical and physical, that have been detected and catalogued. The consequences to biota from exposure to genotoxic agents present an additional problem because of the potential for these agents to produce adverse change at the cellular and organismal levels. Past studies in genetic toxicology at the Oak Ridge National Laboratory have focused on structural damage to the DNA of environmental species that may occur after exposure to genotoxic agents and the use of this information to document exposure and to monitor remediation. In an effort to predict effects at the population, community, and ecosystem levels, current studies in genetic ecotoxicology are attempting to characterize the biologic mechanisms at the gene level that regulate and limit the response of an individual organism to genotoxic factors in their environment. PMID:7713026

  14. Effect of fiber distribution and realignment on the nonlinear and inhomogeneous mechanical properties of human supraspinatus tendon under longitudinal tensile loading.

    PubMed

    Lake, Spencer P; Miller, Kristin S; Elliott, Dawn M; Soslowsky, Louis J

    2009-12-01

    Tendon exhibits nonlinear stress-strain behavior that may be partly due to movement of collagen fibers through the extracellular matrix. While a few techniques have been developed to evaluate the fiber architecture of other soft tissues, the organizational behavior of tendon under load has not been determined. The supraspinatus tendon (SST) of the rotator cuff is of particular interest for investigation due to its complex mechanical environment and corresponding inhomogeneity. In addition, SST injury occurs frequently with limited success in treatment strategies, illustrating the need for a better understanding of SST properties. Therefore, the objective of this study was to quantitatively evaluate the inhomogeneous tensile mechanical properties, fiber organization, and fiber realignment under load of human SST utilizing a novel polarized light technique. Fiber distributions were found to become more aligned under load, particularly during the low stiffness toe-region, suggesting that fiber realignment may be partly responsible for observed nonlinear behavior. Fiber alignment was found to correlate significantly with mechanical parameters, providing evidence for strong structure-function relationships in tendon. Human SST exhibits complex, inhomogeneous mechanical properties and fiber distributions, perhaps due to its complex loading environment. Surprisingly, histological grade of degeneration did not correlate with mechanical properties.

  15. Effect of fiber distribution and realignment on the nonlinear and inhomogeneous mechanical properties of human supraspinatus tendon under longitudinal tensile loading

    PubMed Central

    Lake, Spencer P.; Miller, Kristin S.; Elliott, Dawn M.; Soslowsky, Louis J.

    2010-01-01

    Tendon exhibits nonlinear stress-strain behavior that may be due, in part, to movement of collagen fibers through the extracellular matrix. While a few techniques have been developed to evaluate the fiber architecture of other soft tissues, the organizational behavior of tendon under load has not been determined. The supraspinatus tendon (SST) of the rotator cuff is of particular interest for investigation due to its complex mechanical environment and corresponding inhomogeneity. In addition, SST injury occurs frequently with limited success in treatment strategies, illustrating the need for a better understanding of SST properties. Therefore, the objective of this study was to quantitatively evaluate the inhomogeneous tensile mechanical properties, fiber organization and fiber realignment under load of human SST utilizing a novel polarized light technique. Fiber distributions were found to become more aligned under load, particularly during the low stiffness toe-region, suggesting that fiber realignment may be partly responsible for observed nonlinear behavior. Fiber alignment was found to correlate significantly with mechanical parameters, providing evidence for strong structure-function relationships in tendon. Human SST exhibits complex, inhomogeneous mechanical properties and fiber distributions, perhaps due to its complex loading environment. Surprisingly, histological grade of degeneration did not correlate with mechanical properties. PMID:19544524

  16. Mechanical annealing under low-amplitude cyclic loading in micropillars

    NASA Astrophysics Data System (ADS)

    Cui, Yi-nan; Liu, Zhan-li; Wang, Zhang-jie; Zhuang, Zhuo

    2016-04-01

    Mechanical annealing has been demonstrated to be an effective method for decreasing the overall dislocation density in submicron single crystal. However, simultaneously significant shape change always unexpectedly happens under extremely high monotonic loading to drive the pre-existing dislocations out of the free surfaces. In the present work, through in situ TEM experiments it is found that cyclic loading with low stress amplitude can drive most dislocations out of the submicron sample with virtually little change of the shape. The underlying dislocation mechanism is revealed by carrying out discrete dislocation dynamic (DDD) simulations. The simulation results indicate that the dislocation density decreases within cycles, while the accumulated plastic strain is small. By comparing the evolution of dislocation junction under monotonic, cyclic and relaxation deformation, the cumulative irreversible slip is found to be the key factor of promoting junction destruction and dislocation annihilation at free surface under low-amplitude cyclic loading condition. By introducing this mechanics into dislocation density evolution equations, the critical conditions for mechanical annealing under cyclic and monotonic loadings are discussed. Low-amplitude cyclic loading which strengthens the single crystal without seriously disturbing the structure has the potential applications in the manufacture of defect-free nano-devices.

  17. Prediction of glycosaminoglycan synthesis in intervertebral disc under mechanical loading.

    PubMed

    Gao, Xin; Zhu, Qiaoqiao; Gu, Weiyong

    2016-09-06

    The loss of glycosaminoglycan (GAG) content is a major biochemical change during intervertebral disc (IVD) degeneration. Abnormal mechanical loading is one of the major factors causing disc degeneration. In this study, a multiscale mathematical model was developed to quantify the effect of mechanical loading on GAG synthesis. This model was based on a recently developed cell volume dependent GAG synthesis theory that predicts the variation of GAG synthesis rate of a cell under the influence of mechanical stimuli, and the biphasic theory that describes the deformation of IVD under mechanical loading. The GAG synthesis (at the cell level) was coupled with the mechanical loading (at the tissue level) via a cell-matrix unit approach which established a relationship between the variation of cell dilatation and the local tissue dilatation. This multiscale mathematical model was used to predict the effect of static load (creep load) on GAG synthesis in bovine tail discs. The predicted results are in the range of experimental results. This model was also used to investigate the effect of static (0.2MPa) and diurnal loads (0.1/0.3MPa and 0.15/0.25MPa in 12/12 hours shift with an average of 0.2MPa over a cycle) on GAG synthesis. It was found that static load and diurnal loads have different effects on GAG synthesis in a diurnal cycle, and the diurnal load effects depend on the amplitude of the load. The model is important to understand the effect of mechanical loading at the tissue level on GAG synthesis at the cellular level, as well as to optimize the mechanical loading in growing engineered tissue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Molecular mechanisms underlying protective effects of quercetin against mitochondrial dysfunction and progressive dopaminergic neurodegeneration in cell culture and MitoPark transgenic mouse models of Parkinson's Disease.

    PubMed

    Ay, Muhammet; Luo, Jie; Langley, Monica; Jin, Huajun; Anantharam, Vellareddy; Kanthasamy, Arthi; Kanthasamy, Anumantha G

    2017-06-01

    Quercetin, one of the major flavonoids in plants, has been recently reported to have neuroprotective effects against neurodegenerative processes. However, since the molecular signaling mechanisms governing these effects are not well clarified, we evaluated quercetin's effect on the neuroprotective signaling events in dopaminergic neuronal models and further tested its efficacy in the MitoPark transgenic mouse model of Parkinson's disease (PD). Western blot analysis revealed that quercetin significantly induced the activation of two major cell survival kinases, protein kinase D1 (PKD1) and Akt in MN9D dopaminergic neuronal cells. Furthermore, pharmacological inhibition or siRNA knockdown of PKD1 blocked the activation of Akt, suggesting that PKD1 acts as an upstream regulator of Akt in quercetin-mediated neuroprotective signaling. Quercetin also enhanced cAMP response-element binding protein phosphorylation and expression of the cAMP response-element binding protein target gene brain-derived neurotrophic factor. Results from qRT-PCR, Western blot analysis, mtDNA content analysis, and MitoTracker assay experiments revealed that quercetin augmented mitochondrial biogenesis. Quercetin also increased mitochondrial bioenergetics capacity and protected MN9D cells against 6-hydroxydopamine-induced neurotoxicity. To further evaluate the neuroprotective efficacy of quercetin against the mitochondrial dysfunction underlying PD, we used the progressive dopaminergic neurodegenerative MitoPark transgenic mouse model of PD. Oral administration of quercetin significantly reversed behavioral deficits, striatal dopamine depletion, and TH neuronal cell loss in MitoPark mice. Together, our findings demonstrate that quercetin activates the PKD1-Akt cell survival signaling axis and suggest that further exploration of quercetin as a promising neuroprotective agent for treating PD may offer clinical benefits. © 2017 International Society for Neurochemistry.

  19. G-protein-coupled receptor 30-mediated antiapoptotic effect of estrogen on spinal motor neurons following injury and its underlying mechanisms.

    PubMed

    Chen, Jingyu; Hu, Rong; Ge, Hongfei; Duanmu, Wangsheng; Li, Yuhong; Xue, Xingseng; Hu, Shengli; Feng, Hua

    2015-08-01

    Spinal cord injury (SCI) may result in severe dysfunction of motor neurons. G-protein-coupled receptor 30 (GPR30) expression in the motor neurons of the ventral horn of the spinal cord mediates neuroprotection through estrogen signaling. The present study explored the antiapoptotic effect of estrogen, mediated by GPR30 following SCI, and the mechanisms underlying this effect. Spinal motor neurons from rats were cultured in vitro in order to establish cell models of oxygen and glucose deprivation (OGD). The effects of estrogen, the estrogen agonist, G1, and the estrogen inhibitor, G15, on motor neurons were observed using MTT assays. The effects of E2, G1 and G15 on spinal motor neuron apoptosis following OGD, were detected using flow cytometry. The role of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) inhibitor, LY294002, was also determined using flow cytometry. Rat SCI models were established. E2, G1 and E2+LY294002 were administered in vivo. Motor function was scored at 3, 7, 14, 21 and 28 d following injury, using Basso-Beattie-Bresnahan (BBB) standards. Cell activity in the estrogen and G1 groups was higher than that in the solvent group, whereas cell activity in the E2+G15 group was lower than that in the E2 group (P<0.05). Following OGD, the proportion of apoptotic cells significantly increased (P<0.05). The proportion in the estrogen group was significantly lower than that in the solvent group, whereas the proportion of apoptotic cells in the E2+G15 and E2+LY294002 groups was higher than that in the E2 group (P<0.05). Treatment with E2 and G1 led to upregulation of P-Akt expression in normal cells and post-OGD cells. The BBB scores of rats in the E2 and G1 groups were higher than those in the placebo group (P<0.05). The BBB scores of the E2+LY294002 group were lower than those of the E2 group (P<0.05). Estrogen thus appears to exert a protective effect on spinal motor neurons following OGD, via GPR30. The PI3K/Akt pathway may be one of those

  20. Anti-inflammatory and anti-allergic effects and underlying mechanisms of Huang-Lian-Jie-Du extract: Implication for atopic dermatitis treatment.

    PubMed

    Chen, Yunlong; Xian, Yanfang; Lai, Zhengquan; Loo, Steven; Chan, Wood Yee; Lin, Zhi-Xiu

    2016-06-05

    Huang-Lian-Jie-Du Decoction (HLJDD), a well-known Chinese herbal formula recorded in the Tang dynasty, is composed of Coptidis rhizoma (Huang-Lian), Scutellariae radix (Huang-Qin), Phellodendri Chinensis cortex (Huang-Bai) and Gardenia fructus (Zhi-Zi). It has clinical efficacy of purging fire for removing toxin and is commonly used for the treatment of disease including Alzheimer's disease, stroke and gastrointestinal disorders. HLJDD is also frequently applied for the treatment of various skin diseases, such as atopic dermatitis (AD) and various types of eczema. The aim of this study is to investigate the anti-inflammatory and anti-allergic actions of Huang-Lian-Jie-Du ethanolic extract (HLJDE) and to elucidate underlying molecular mechanisms of action using relevant in vitro experimental models. The anti-inflammatory effects of HLJDE were investigated through evaluating the change of nitric oxide (NO) and the production of several cytokines and chemokines in lipopolysaccharide (LPS)-stimulated RAW264.7 cell line. Expression of mitogen-activated protein kinases (MAPKs), NF-κB p65 phosphorylation, inhibitor-κBα (IκBα) degradation were further investigated to elucidate its anti-inflammatory molecular mechanisms. Meanwhile, the anti-allergic activities of HLJDE was also evaluated using antigen-induced RBL-2H3 cell line. β-hexosaminidase and histamine release and selected cytokines and chemokines were measured to evaluate the anti-allergic activities of HLJDE. In addition, intracellular Ca(2+)level, MAPKs and Lyn phosphorylation were further investigated to reveal its anti-allergic molecular mechanisms. HLJDE could significantly suppress the secretion of NO, IL-1β, IL-4, MCP-1 and GM-CSF in RAW264.7 cells in a dose-dependent manner. In addition, HLJDE also markedly reduced the phosphorylation of MAPKs, and inhibited the transcriptional activity of NF-κB and IκBα degradation. Furthermore, HLJDE exerted marked anti-allergic activity through inhibiting the

  1. Neuroprotective effect of water extract of Panax ginseng on corticosterone-induced apoptosis in PC12 cells and its underlying molecule mechanisms.

    PubMed

    Jiang, Yumao; Li, Zongyang; Liu, Yamin; Liu, Xinmin; Chang, Qi; Liao, Yonghong; Pan, Ruile

    2015-01-15

    The root of Panax ginseng C.A. Meyer (Family Araliaceae) is an important medicinal plant which has been employed as a panacea for more than 2,000 years in China. It has the actions of invigorating primordial qi, recovering pulse and desertion, engendering liquid, and calming spirit. The water extract of Panax ginseng (WEG) has been used to treat kinds of central nervous system disorders, such as depression, insomnia, Alzheimer׳s disease and Parkinson׳s disease. Our previous work has demonstrated that WEG possessed antidepressant-like activities in both acute and chronic stress models of depression. Nevertheless, there are no studies on the cytoprotection and potential mechanisms of WEG on corticosterone-induced apoptosis. The present study focuses on cytoprotection against corticosterone-induced neurotoxicity in PC12 cells and its underlying molecule mechanisms of the antidepressant-like effect of WEG. The PC12 cells were treated with 250 μmol/L corticosterone in the absence or presence of WEG for 24h, then 3-(4,5-dimethy thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, lactate dehydrogenase (LDH) detection, Hoechst33342 staining and TUNEL staining were investigated to confirm the neuroprotection of WEG. Then, mitochondrial permeability transition pore (mPTP), mitochondrial membrane potential (MMP), intracellular Ca(2+) ([Ca(2+)]i), reactive oxygen species (ROS) concentration, and the expression level of glucocorticoid receptor (GR), heat shock protein 90 (Hsp90), histone deactylase 6 (HDAC6), glucose-regulated protein 78 (GRP78), growth arrest and DNA damage inducible protein 153 (GADD153), X-box DNA-binding protein-1 (XBP-1), caspase-12, cytochrome C, inhibitor of caspase-activated deoxyribonuclease (ICAD), caspase-3 and caspase-9 were assessed by Western Blot analysis to understand the molecule mechanisms of neuroprotection of WEG. WEG partly reversed corticosterone-induced damage in PC12 cells, which increased cell viability, decreased LDH release

  2. Mechanisms underlying the auditory continuity illusion

    NASA Astrophysics Data System (ADS)

    Pressnitzer, Daniel; Tardieu, Julien; Ragot, Richard; Baillet, Sylvain

    2004-05-01

    This study investigates the auditory continuity illusion, combining psychophysics and magnetoencephalography. Stimuli consisted of amplitude-modulated (AM) noise interrupted by bursts of louder, unmodulated noise. Subjective judgments confirmed that the AM was perceived as continuous, a case of illusory continuity. Psychophysical measurements showed that the illusory modulation had little effect on the detection of a physical modulation, i.e., the illusory modulation produced no modulation masking. Duration discrimination thresholds for the AM noise segments, however, were elevated by the illusion. A whole-head magnetoencephalographic system was used to record brain activity when listeners attended passively to the stimuli. The AM noise produced a modulated magnetic activity, the auditory steady-state response. The illusory modulation did not produce such a response, instead, a possible neural correlate of the illusion was found in transient evoked responses. When the AM was interrupted by silence, oscillatory activity in the gamma-band range as well as slow evoked potentials were observed at each AM onset. In the case of the illusion, these neural responses were largely reduced. Both sets of results are inconsistent with a restoration of the modulation in the case of illusory continuity. Rather, they point to a role for onset-detection mechanisms in auditory scene analysis.

  3. Molecular mechanisms underlying chemical liver injury

    PubMed Central

    Gu, Xinsheng; Manautou, Jose E.

    2013-01-01

    The liver is necessary for survival. Its strategic localisation, blood flow and prominent role in the metabolism of xenobiotics render this organ particularly susceptible to injury by chemicals to which we are ubiquitously exposed. The pathogenesis of most chemical-induced liver injuries is initiated by the metabolic conversion of chemicals into reactive intermediate species, such as electrophilic compounds or free radicals, which can potentially alter the structure and function of cellular macromolecules. Many reactive intermediate species can produce oxidative stress, which can be equally detrimental to the cell. When protective defences are overwhelmed by excess toxicant insult, the effects of reactive intermediate species lead to deregulation of cell signalling pathways and dysfunction of biomolecules, leading to failure of target organelles and eventual cell death. A myriad of genetic factors determine the susceptibility of specific individuals to chemical-induced liver injury. Environmental factors, lifestyle choices and pre-existing pathological conditions also have roles in the pathogenesis of chemical liver injury. Research aimed at elucidating the molecular mechanism of the pathogenesis of chemical-induced liver diseases is fundamental for preventing or devising new modalities of treatment for liver injury by chemicals. PMID:22306029

  4. A preliminary investigation of the mechanisms underlying the effect of berberine in preventing high-fat diet-induced insulin resistance in rats.

    PubMed

    Gu, J-J; Gao, F-Y; Zhao, T Y

    2012-10-01

    Berberine exerts insulin resistance-improving effects, the underlying mechanism of which is not well understood. We herein aimed to examine the effects of berberine on mediators of insulin signaling in pancreatic β- and α- islet cells and hepatocytes using a rat obesity model. Rats were fed the following diets for 22 weeks: normal control (NC); normal+berberine (NC+BBR 200 mg/kg/day); high-fat (HF); HF+BBR(1) (BBR 100 mg/kg/day); HF+BBR(2) (BBR 200 mg/kg/day). Metabolic parameters were assessed and mediators of insulin signaling were quantified by immunohistochemistry. The HF diet significantly increased body weight (BW), visceral fat (VF), the visceral fat to BW ratio (VF/BW), and insulin resistance index in the HF group compared with the NC group. Both doses of BBR significantly reduced HF diet-induced increases in BW, VF, and VF/BW. IR and IRS-1 expression in β-cells was significantly lower in the HF group, but not the HF+BBR groups, compared with the NC and NC+BBR groups. Glucagon expression in α-cells was significantly higher in the HF group compared with all other groups. IR expression in α-cells was significantly lower in the HF group compared with the NC, NC+BBR, and HF+BBR(2) groups. IR expression in hepatocytes was significantly lower in the HF group compared with all groups. Our preliminary findings suggest that berberine may ameliorate the development of insulin resistance by differentially preventing alterations in expression of IR, IRS-1, and glucagon in β-cells, α-cells, and hepatocytes.

  5. Chlorpromazine and ethanol intoxication: an underlying mechanism.

    PubMed

    Messiha, F S

    1985-01-01

    The in vitro effect of chlorpromazine on hepatic alcohol dehydrogenase (L-ADH) was studied as a function of sex and species. The presence of chlorpromazine, 50 muMol, in reaction mixture noncompetitively inhibited rat L-ADH in a dose dependent fashion in the concentration range between 5 X 10(-5) Mol and 10(-4) Mol. This drug concentration also inhibited L-ADH of albino mice of both sexes, but chlorpromazine-produced a decrease in Km which was greater in the female than in the male mouse. Likewise, chlorpromazine, 50 muMol, noncompetitively inhibited mouse L-ADH of C57BL/6J, a mouse strain with ethanol preference, but without a concomitant change in the apparent Km. The KI50 determination indicates 3.5 fold lower concentration requirement of the drug in the C57BL mouse strain compared to that of the albino rat liver preparation. The results suggest that the inhibitory action of the drug on L-ADH and the genetic factor involved may influence the legal limit of serum ethanol concentration during alcohol intoxication in subjects under psychotropic medications. A medical forensic implication is suggested.

  6. Mechanical behavior of concrete and related porous materials under partial saturation: The effective stress and the viscous softening due to movement of nanometer-scale pore fluid

    NASA Astrophysics Data System (ADS)

    Vlahinic, Ivan

    It has been said that porous materials are like music: the gaps are as important as the filled-in bits. In other words, in addition to the solid structure, pore characteristics such as size and morphology play a crucial role in defining the overall physical properties of the porous materials. This work goes a step further and examines the behaviors of some porous media that arise when the pore network is occupied by two fluids, principally air and water, as a result of drying or wetting. Such a state gives rise to fluid capillarity which can generate significant negative fluid pressures. In the first part, a constitutive model for drying of an elastic porous medium is proposed and then extended to derive a novel expression for effective stress in partially saturated media. The model is motivated by the fact that in a system that is saturated by two different fluids, two different pressure inherently act on the surfaces of the pore network. This causes a non-uniform strain field in the solid structure, something that is not explicitly accounted for in the classic formulations of this problem. We use some standard micromechanical homogenization techniques to estimate the extent of the 'non-uniformity' and on this basis, evaluate the validity of the classic Bishop effective stress expression for partially saturated materials. In the second part, we examine a diverse class of porous materials which behave in an unexpected (and even counterintuitive) way under the internal moisture fluctuations. In particular, during wetting and drying alike, the solid viscosity of these materials appears to soften, sometimes by an order of magnitude or more. Under load, this can lead to significantly increased rates of deformations. On account of the recent experimental and theoretical findings on the nature of water flow in nanometer-size hydrophillic spaces, we provide a physical explanation for the viscous softening and propose a constitutive law on this basis. To this end, it also

  7. Linkages of plant–soil feedbacks and underlying invasion mechanisms

    PubMed Central

    Inderjit; Cahill, James F.

    2015-01-01

    Soil microbial communities and processes have repeatedly been shown to impact plant community assembly and population growth. Soil-driven effects may be particularly pronounced with the introduction of plants to non-native ranges, as introduced plants are not typically accompanied by transference of local soil communities. Here we describe how the mechanisms by which soil community processes influence plant growth overlap with several known and well-described mechanisms of plant invasion. Critically, a given soil community process may either facilitate or limit invasion, depending upon local conditions and the specific mechanisms of soil processes involved. Additionally, as soil communities typically consist of species with short generation times, the net consequences of plant–soil feedbacks for invasion trajectories are likely to change over time, as ecological and evolutionary adjustments occur. Here we provide an overview of the ecological linkages of plant–soil feedbacks and underlying mechanisms of invasion. PMID:25784668

  8. Investigation of defect nucleation in titanium under mechanical loading

    SciTech Connect

    Zolnikov, Konstantin P. Kryzhevich, Dmitrij S.; Korchuganov, Aleksandr V.; Psakhie, Sergey G.

    2014-11-14

    The paper undertakes a study of plastic deformation in a titanium crystallite under mechanical loading (uniaxial tension and indentation) in terms of atomic mechanisms of its generation and development. The molecular dynamics method with many-body interatomic potentials is employed. It is shown that there is a threshold strain, at which a crystal reveals the generation of local structural transformations associated with changes in atomic configurations of the first and second coordination spheres. The onset of plastic deformation in a crystallite is accompanied by a stepwise decrease in potential energy. The effect of free surfaces and grain boundaries on the generation of local structural transformations in a titanium crystallite is investigated.

  9. Toxic effects of male Perna viridis gonad exposed to BaP, DDT and their mixture: A metabolomic and proteomic study of the underlying mechanism.

    PubMed

    Song, Qinqin; Zheng, Pengfei; Qiu, Liguo; Jiang, Xiu; Zhao, Hongwei; Zhou, Hailong; Han, Qian; Diao, Xiaoping

    2016-01-05

    Benzo(a)pyrene and dichlorodiphenyltrichloroethane are typical persistent organic pollutants, and also the widespread environmental estrogens with known toxicity towards green mussels Perna viridis. In this study, the toxicological effects of BaP and DDT and their mixture were assessed in green mussel gonads using proteomic and metabolomic approaches. Metabolomics by NMR spectroscopy revealed that BaP did not show obvious metabolite changes in the gonad of male green mussel. DDT mainly caused some disturbance of osmotic regulation and energy metabolism by changing BCAAs, alanine, threonine, arginine, etc., unknown metabolite (3.53 ppm), glycine, homarine and ATP at different levels. However, the mixture of BaP and DDT mainly caused some disturbance in osmotic regulation and energy metabolism by differentially altering branched chain amino acids, glutamate, alanine, arginine, unknown metabolite (3.53 ppm), glycine, 4-aminobutyrate, dimethylglycine, homarine and ATP. The results suggest that DDT alone may cause most of metabolites changes in the mixture exposed male mussel gonad, and the results also show that the male P. viridis gonad was more sensitive to DDT than BaP exposures. Proteomic study showed that BaP, DDT and their mixture may have different modes of action. Proteomic responses revealed that BaP induced signal transduction, oxidative stress, spermatogenesis, etc. in the male green mussel gonad; whereas DDT exposure altered proteins that were associated with signal transduction, oxidative stress, cytoskeleton and cell structure, cellular organization, energy metabolism, etc. However, the mixture of BaP and DDT affected proteins related to cytoskeleton and cell structure, oxidative stress, cellular organization, etc. This research demonstrated that metabolomic and proteomic approaches could better elucidate the underlying mechanism of environmental pollutants gonad toxicity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Effect of external PEEP in patients under controlled mechanical ventilation with an auto-PEEP of 5 cmH2O or higher.

    PubMed

    Natalini, Giuseppe; Tuzzo, Daniele; Rosano, Antonio; Testa, Marco; Grazioli, Michele; Pennestrì, Vincenzo; Amodeo, Guido; Berruto, Francesco; Fiorillo, Marialinda; Peratoner, Alberto; Tinnirello, Andrea; Filippini, Matteo; Marsilia, Paolo F; Minelli, Cosetta; Bernardini, Achille

    2016-12-01

    In some patients with auto-positive end-expiratory pressure (auto-PEEP), application of PEEP lower than auto-PEEP maintains a constant total PEEP, therefore reducing the inspiratory threshold load without detrimental cardiovascular or respiratory effects. We refer to these patients as "complete PEEP-absorbers." Conversely, adverse effects of PEEP application could occur in patients with auto-PEEP when the total PEEP rises as a consequence. From a pathophysiological perspective, all subjects with flow limitation are expected to be "complete PEEP-absorbers," whereas PEEP should increase total PEEP in all other patients. This study aimed to empirically assess the extent to which flow limitation alone explains a "complete PEEP-absorber" behavior (i.e., absence of further hyperinflation with PEEP), and to identify other factors associated with it. One hundred patients with auto-PEEP of at least 5 cmH2O at zero end-expiratory pressure (ZEEP) during controlled mechanical ventilation were enrolled. Total PEEP (i.e., end-expiratory plateau pressure) was measured both at ZEEP and after applied PEEP equal to 80 % of auto-PEEP measured at ZEEP. All measurements were repeated three times, and the average value was used for analysis. Forty-seven percent of the patients suffered from chronic pulmonary disease and 52 % from acute pulmonary disease; 61 % showed flow limitation at ZEEP, assessed by manual compression of the abdomen. The mean total PEEP was 7 ± 2 cmH2O at ZEEP and 9 ± 2 cmH2O after the application of PEEP (p < 0.001). Thirty-three percent of the patients were "complete PEEP-absorbers." Multiple logistic regression was used to predict the behavior of "complete PEEP-absorber." The best model included a respiratory rate lower than 20 breaths/min and the presence of flow limitation. The predictive ability of the model was excellent, with an overoptimism-corrected area under the receiver operating characteristics curve of 0.89 (95 % CI 0

  11. Giant panda׳s tooth enamel: Structure, mechanical behavior and toughening mechanisms under indentation.

    PubMed

    Weng, Z Y; Liu, Z Q; Ritchie, R O; Jiao, D; Li, D S; Wu, H L; Deng, L H; Zhang, Z F

    2016-12-01

    The giant panda׳s teeth possess remarkable load-bearing capacity and damage resistance for masticating bamboos. In this study, the hierarchical structure and mechanical behavior of the giant panda׳s tooth enamel were investigated under indentation. The effects of loading orientation and location on mechanical properties of the enamel were clarified and the evolution of damage in the enamel under increasing load evaluated. The nature of the damage, both at and beneath the indentation surfaces, and the underlying toughening mechanisms were explored. Indentation cracks invariably were seen to propagate along the internal interfaces, specifically the sheaths between enamel rods, and multiple extrinsic toughening mechanisms, e.g., crack deflection/twisting and uncracked-ligament bridging, were active to shield the tips of cracks from the applied stress. The giant panda׳s tooth enamel is analogous to human enamel in its mechanical properties, yet it has superior hardness and Young׳s modulus but inferior toughness as compared to the bamboo that pandas primarily feed on, highlighting the critical roles of the integration of underlying tissues in the entire tooth and the highly hydrated state of bamboo foods. Our objective is that this study can aid the understanding of the structure-mechanical property relations in the tooth enamel of mammals and further provide some insight on the food habits of the giant pandas.

  12. Molecular mechanisms underlying the Arabidopsis circadian clock.

    PubMed

    Nakamichi, Norihito

    2011-10-01

    A wide range of biological processes exhibit circadian rhythm, enabling plants to adapt to the environmental day-night cycle. This rhythm is generated by the so-called 'circadian clock'. Although a number of genetic approaches have identified >25 clock-associated genes involved in the Arabidopsis clock mechanism, the molecular functions of a large part of these genes are not known. Recent comprehensive studies have revealed the molecular functions of several key clock-associated proteins. This progress has provided mechanistic insights into how key clock-associated proteins are integrated, and may help in understanding the essence of the clock's molecular mechanisms.

  13. The Mechanism Underlying Inhibition of Saccadic Return

    ERIC Educational Resources Information Center

    Ludwig, Casimir J. H.; Farrell, Simon; Ellis, Lucy A.; Gilchrist, Iain D.

    2009-01-01

    Human observers take longer to re-direct gaze to a previously fixated location. Although there has been some exploration of the characteristics of inhibition of saccadic return (ISR), the exact mechanisms by which ISR operates are currently unknown. In the framework of accumulation models of response times, in which evidence is integrated over…

  14. On Logical Error Underlying Classical Mechanics

    NASA Astrophysics Data System (ADS)

    Kalanov, Temur Z.

    2012-03-01

    The logical analysis of the general accepted description of mechanical motion of material point M in classical mechanics is proposed. The key idea of the analysis is as follows. Let point M be moved in the positive direction of the axis O 1ptx. Motion is characterized by a change of coordinate x,( t ) -- continuous function of time t(because motion is a change in general). If δ,->;0;δ,;=;0, then δ,;->;0δ,;=;0, i.e., according to practice and formal logic, value of coordinate does not change and, hence, motion does not exist. But, contrary to practice and formal logic, differential calculus and classical mechanics contain the assertion that velocity δ,;->;0;δ,δ,;exists without motion. Then velocity δ,;->;0;δ,δ,;is not real (i.e. not physical) quantity, but fictitious quantity. Therefore, use of non-physical (unreal) quantity (i.e. the first and second derivatives of function) in classical mechanics is a logic error.

  15. The Mechanism Underlying Inhibition of Saccadic Return

    ERIC Educational Resources Information Center

    Ludwig, Casimir J. H.; Farrell, Simon; Ellis, Lucy A.; Gilchrist, Iain D.

    2009-01-01

    Human observers take longer to re-direct gaze to a previously fixated location. Although there has been some exploration of the characteristics of inhibition of saccadic return (ISR), the exact mechanisms by which ISR operates are currently unknown. In the framework of accumulation models of response times, in which evidence is integrated over…

  16. Damage Evolution On Mechanical Parts Under Cyclic Loading

    NASA Astrophysics Data System (ADS)

    Lestriez, P.; Bogard, F.; Shan, J. L.; Guo, Y. Q.

    2007-05-01

    This paper presents a fatigue damage model, based on the continuum damage mechanics and general thermodynamic theory, proposed by Lemaitre and Chaboche, for rolling bearings under very numerous loading cycles. A flow surface of fatigue using the Sines criterion is adopted. The coupling between the hardening plasticity and damage effects is considered in the constitutive equations. An explicit algorithm of weak coupling leads to a calculation very fast. This fatigue damage model is implemented into Abaqus/Explicit using a Vumat user's subroutine. Moreover, the damage variable in function of time is transformed into a function of number of cycles. An algorithm of cycle jump, with a criterion for choosing the number increment of cycles, is proposed, which allows to largely reduce the CPU time. The present damage simulation allows to determine the lifetime of mechanical parts under cyclic loading.

  17. Understanding the molecular mechanisms underlying the effects of light intensity on flavonoid production by RNA-seq analysis in Epimedium pseudowushanense B.L.Guo.

    PubMed

    Pan, Junqian; Chen, Haimei; Guo, Baolin; Liu, Chang

    2017-01-01

    Epimedium pseudowushanense B.L.Guo, a light-demanding shade herb, is used in traditional medicine to increase libido and strengthen muscles and bones. The recognition of the health benefits of Epimedium has increased its market demand. However, its resource recycling rate is low and environmentally dependent. Furthermore, its natural sources are endangered, further increasing prices. Commercial culture can address resource constraints of it.Understanding the effects of environmental factors on the production of its active components would improve the technology for cultivation and germplasm conservation. Here, we studied the effects of light intensities on the flavonoid production and revealed the molecular mechanism using RNA-seq analysis. Plants were exposed to five levels of light intensity through the periods of germination to flowering, the flavonoid contents were measured using HPLC. Quantification of epimedin A, epimedin B, epimedin C, and icariin showed that the flavonoid contents varied with different light intensity levels. And the largest amount of epimedin C was produced at light intensity level 4 (I4). Next, the leaves under the treatment of three light intensity levels ("L", "M" and "H") with the largest differences in the flavonoid content, were subjected to RNA-seq analysis. Transcriptome reconstruction identified 43,657 unigenes. All unigene sequences were annotated by searching against the Nr, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. In total, 4008, 5260, and 3591 significant differentially expressed genes (DEGs) were identified between the groups L vs. M, M vs. H and L vs. H. Particularly, twenty-one full-length genes involved in flavonoid biosynthesis were identified. The expression levels of the flavonol synthase, chalcone synthase genes were strongly associated with light-induced flavonoid abundance with the highest expression levels found in the H group. Furthermore, 65 transcription factors, including 31

  18. Basic Mechanisms Underlying Postchemotherapy Cognitive Impairment

    DTIC Science & Technology

    2010-04-01

    hippocampus is involved in a number of important functions, including memory formation and retrieval, learning, and neuroendocrine and mood regulation...cognitive deficits in humans; however, the mechanism is not known. Neurogenesis, the formation of new nerve cells, occurs throughout adulthood and is...these agents produce cognitive impairment by disrupting neurogenesis in the hippocampus . The experiments in this Concept grant began to develop and

  19. G-CSF and cognitive dysfunction in elderly diabetic mice with cerebral small vessel disease: Preventive intervention effects and underlying mechanisms.

    PubMed

    Guan, Zhu-Fei; Tao, Ying-Hong; Zhang, Xiao-Ming; Guo, Qi-Lin; Liu, Ying-Chao; Zhang, Yu; Wang, Yan-Mei; Ji, Gang; Wu, Guo-Feng; Wang, Na-Na; Yang, Hao; Yu, Zhong-Yu; Guo, Jing-Chun; Zhou, Hou-Guang

    2017-06-01

    Although cognitive dysfunction is a common neurological complication in elderly patients with diabetes, the mechanisms underlying this relationship remain unclear, and effective preventive interventions have yet to be developed. Thus, this study investigated the preventive effects and mechanisms of action associated with granulocyte colony-stimulating factor (G-CSF) on cognitive dysfunction in elderly diabetic mice with cerebral small vessel disease. This study included 40 male db/db diabetic and wild-type (WT) mice that were categorized into the following four groups at the age of 3 weeks: db/db group (DG), db/db+G-CSF group (DGG), WT group (WG), and WT+G-CSF group (WGG). The mice were fed normal diets for 4 months and then given G-CSF (75 μg/kg) via intraperitoneal injections for 1 month. At 7.5 months of age, the cognitive abilities of the mice were assessed with the Y-maze test and the Social Choice Test; body weight, blood pressure (BP), and blood glucose measurements were obtained throughout the study. Brain imaging and blood oxygen level-dependent (BOLD) contrast imaging analyses were performed with a small animal magnetic resonance imaging (MRI) system, autophagosome levels were detected with a transmission electron microscope (TEM), hippocampal neurons were assessed with hematoxylin and eosin (HE) staining, and protein expressions and distributions were evaluated using immunohistochemistry and Western blot analyses. (i) The body weight and blood glucose levels of the DG and DGG mice were significantly higher than those of the WG and WGG mice; (ii) social choice and spatial memory capabilities were significantly reduced in DG mice but were recovered by G-CSF in DGG mice; (iii) the MRI scans revealed multiple lacunar lesions and apparent hippocampal atrophy in the brains of DG mice, but G-CSF reduced the number of lacunar lesions and ameliorated hippocampal atrophy; (iv) the MRI-BOLD scans showed a downward trend in whole-brain activity and reductions

  20. Investigation of Mechanisms Underlying Odor Recognition.

    DTIC Science & Technology

    1984-02-01

    olfactory epithelium of the rat using a procedure similar to that used in .amphibian forms (e.g., Kubie & Moulton, 1979). The detailed description of most...distinct differences in responsiveness of the underlying receptor sheet depending upon the region stimulated (e.g., Kauer & Moulton, 1979; Kubie M...patterns of olfactory bulb neurons using odor stimulation of small nasal areas in the salamander. J. Physiol. (London), 1974, 243, 717-737. Kubie , J.S

  1. Amount of fear extinction changes its underlying mechanisms

    PubMed Central

    An, Bobae; Kim, Jihye; Park, Kyungjoon; Lee, Sukwon; Song, Sukwoon; Choi, Sukwoo

    2017-01-01

    There has been a longstanding debate on whether original fear memory is inhibited or erased after extinction. One possibility that reconciles this uncertainty is that the inhibition and erasure mechanisms are engaged in different phases (early or late) of extinction. In this study, using single-session extinction training and its repetition (multiple-session extinction training), we investigated the inhibition and erasure mechanisms in the prefrontal cortex and amygdala of rats, where neural circuits underlying extinction reside. The inhibition mechanism was prevalent with single-session extinction training but faded when single-session extinction training was repeated. In contrast, the erasure mechanism became prevalent when single-session extinction training was repeated. Moreover, ablating the intercalated neurons of amygdala, which are responsible for maintaining extinction-induced inhibition, was no longer effective in multiple-session extinction training. We propose that the inhibition mechanism operates primarily in the early phase of extinction training, and the erasure mechanism takes over after that. DOI: http://dx.doi.org/10.7554/eLife.25224.001 PMID:28671550

  2. Mechanisms underlying skin disorders induced by EGFR inhibitors

    PubMed Central

    Holcmann, Martin; Sibilia, Maria

    2015-01-01

    The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is frequently mutated or overexpressed in a large number of tumors such as carcinomas or glioblastoma. Inhibitors of EGFR activation have been successfully established for the therapy of some cancers and are more and more frequently being used as first or later line therapies. Although the side effects induced by inhibitors of EGFR are less severe than those observed with classic cytotoxic chemotherapy and can usually be handled by out-patient care, they may still be a cause for dose reduction or discontinuation of treatment that can reduce the effectiveness of antitumor therapy. The mechanisms underlying these cutaneous side effects are only partly understood. Important questions, such as the reasons for the correlation between the intensity of the side effects and the efficiency of treatment with EGFR inhibitors, remain to be answered. Optimized adjuvant strategies to accompany anti-EGFR therapy need to be found for optimal therapeutic application and improved quality of life of patients. Here, we summarize current literature on the molecular and cellular mechanisms underlying the cutaneous side effects induced by EGFR inhibitors and provide evidence that keratinocytes are probably the optimal targets for adjuvant therapy aimed at alleviating skin toxicities. PMID:27308503

  3. Mechanisms Underlying Early Medieval Droughts in Mesoamerica

    NASA Astrophysics Data System (ADS)

    Bhattacharya, T.; Chiang, J. C. H.

    2015-12-01

    Multidecadal drought during the early Medieval Climate Anomaly (MCA, 800-1200 CE) in Mesoamerica has been implicated in the demise of many pre-Columbian societies, including the Maya. The mechanisms behind these droughts, however, are poorly understood. Researchers most often interpret these records as tracking the mean position of the ITCZ, with a southward shifted ITCZ resulting in Mesoamerican drought. This is puzzling, however, because our dynamical understanding of the ITCZ and its role in interhemispheric heat transport would suggest a more northward shifted ITCZ during the MCA. Here, we evaluate two hypotheses to reconcile existing proxies and dynamics. First, we assess whether evidence for dry conditions during the MCA is robust across multiple Mesoamerican proxy records, focusing on the influence of radiometric dating uncertainty on estimates of drought timing. Second, we use control simulations of CCSM4 and HadCM3, as well as a broader synthesis of oceanic and terrestrial proxies, to explore the mechanisms responsible for long-term drought in Mesoamerica. Ultimately, we suggest that a temporary slowdown of the AMOC, either internally or externally forced, combined with local and regional land surface feedbacks can explain these droughts in Mesoamerica.

  4. Synaptic mechanisms underlying persistent cocaine craving.

    PubMed

    Wolf, Marina E

    2016-06-01

    Although it is challenging for individuals with cocaine addiction to achieve abstinence, the greatest difficulty is avoiding relapse to drug taking, which is often triggered by cues associated with prior cocaine use. This vulnerability to relapse persists for long periods (months to years) after abstinence is achieved. Here, I discuss rodent studies of cue-induced cocaine craving during abstinence, with a focus on neuronal plasticity in the reward circuitry that maintains high levels of craving. Such work has the potential to identify new therapeutic targets and to further our understanding of experience-dependent plasticity in the adult brain under normal circumstances and in the context of addiction.

  5. Synaptic mechanisms underlying persistent cocaine craving

    PubMed Central

    Wolf, Marina E.

    2017-01-01

    Although it is challenging for individuals with cocaine addiction to achieve abstinence, the greatest difficulty is avoiding relapse to drug taking, which is often triggered by cues associated with prior cocaine use. This vulnerability to relapse persists for long periods (months to years) after abstinence is achieved. Here I discuss rodent studies of cue-induced cocaine craving during abstinence, with a focus on neuronal plasticity in the reward circuitry that maintains high levels of craving. Such work has the potential to identify new therapeutic targets and further our understanding of experience-dependent plasticity in the adult brain under normal circumstances and in the context of addiction. PMID:27150400

  6. Autophagy as a Possible Underlying Mechanism of Nanomaterial Toxicity

    PubMed Central

    Cohignac, Vanessa; Landry, Marion Julie; Boczkowski, Jorge; Lanone, Sophie

    2014-01-01

    The rapid development of nanotechnologies is raising safety concerns because of the potential effects of engineered nanomaterials on human health, particularly at the respiratory level. Since the last decades, many in vivo studies have been interested in the pulmonary effects of different classes of nanomaterials. It has been shown that some of them can induce toxic effects, essentially depending on their physico-chemical characteristics, but other studies did not identify such effects. Inflammation and oxidative stress are currently the two main mechanisms described to explain the observed toxicity. However, the exact underlying mechanism(s) still remain(s) unknown and autophagy could represent an interesting candidate. Autophagy is a physiological process in which cytoplasmic components are digested via a lysosomal pathway. It has been shown that autophagy is involved in the pathogenesis and the progression of human diseases, and is able to modulate the oxidative stress and pro-inflammatory responses. A growing amount of literature suggests that a link between nanomaterial toxicity and autophagy impairment could exist. In this review, we will first summarize what is known about the respiratory effects of nanomaterials and we will then discuss the possible involvement of autophagy in this toxicity. This review should help understand why autophagy impairment could be taken as a promising candidate to fully understand nanomaterials toxicity.

  7. [The CK2 inhibitor quninalizarin enhances the anti-proliferative effect of icotinib on EGFR-TKIs-resistant cell lines and its underlying mechanisms].

    PubMed

    Zhou, Y; Zhang, S; Li, K; Li, Q W; Zhou, F Z; Li, Z Y; Ma, H; Dong, X R; Liu, L; Wu, G; Meng, R

    2016-02-01

    To explore whether quninalizarin, an specific inhibitor of protein kinase CK2, could sensitize icotinib in EGFR-TKIs (epithelial growth factor receptor-tyrosine kinase inhibitor)-resistant cell lines and uncover the underlying mechanisms. MTT assay was performed to evaluate the inhibitory effect of quninalizarin, icotinib or the combination of both on cell proliferation in several lung adenocarcinoma cell lines. Western blot assay was used to assess if combined inhibition of EGFR and protein kinase CK2 by icotinib and quninalizarin, exerts effect on the expression and phosphorylation of major proteins of EGFR signaling pathways. The IC50 of HCC827, H1650, H1975 and A549 cells for icotinib were (8.07±2.00)μmol/L, (66.01±6.64)μmol/L, (265.60±9.47)μmol/L and (87.88±6.8)μmol/L, respectively, indicating that HCC827 cells are sensitive to icotinib, and the H1650, H1975 and A549 cells are relatively resistant to icotinib. When treated with both quninalizarin and icotinib in the concentration of 50 μmol/L, the viability of H1650, H1975 and A549 cells was (40.64±3.73)%, (65.74±3.27)% and (44.96±0.48)%, respectively, significantly lower than that of H1650, H1975 and A549 cells treated with 50 μmol/L icotinib alone (55.05±1.22)%, (71.98±1.60)% and (61.74±6.18)%, respectively (P<0.01 for all). When treated with both 100 μmol/L quninalizarin and 100 μmol/L icotinib, the viability of H1650, H1975 and A549 ells were (23.35±0.81)%, (55.70±1.03)%, (33.42±1.33)%, respectively, significantly lower than the viability of H1650, H1975 and A549 cells treated with 100 μmol/L icotinib alone (40.57±2.65)%, (62.40±2.05)% and (44.97±8.20)%, respectively, (P<0.01 for all). The two-way ANOVA analysis showed that compared with the viability of EGFR-TKIs-resistant cells (H1650, H1975, A549) treated with 50 μmol/L and 100 μmol/L icotinib alone, the viability of cells treated with icotinib and quinalizarin were significantly suppressed, and the differences were

  8. Thyroid Function in Human Obesity: Underlying Mechanisms.

    PubMed

    Fontenelle, L C; Feitosa, M M; Severo, J S; Freitas, T E C; Morais, J B S; Torres-Leal, F L; Henriques, G S; do Nascimento Marreiro, D

    2016-12-01

    Obesity is associated with several metabolic and endocrine disorders; and changes in plasma concentrations, secretion patterns, and clearance of various hormones are observed in obese patients. In this context, recent research has shown that overweight can influence the function of the thyroid gland, usually leading to increased thyrotropin concentrations and changes in the ratio between the hormones triiodothyronine and thyroxine, though within the normal range. The etiology of these changes is still unclear; however, several mechanisms have been proposed including the adaptive process to increase energy expenditure, hyperleptinemia, changes in the activity of deiodinases, the presence of thyroid hormones resistance, chronic low-grade inflammation, and insulin resistance. Although the clinical implications have not been clarified, studies suggest that these changes in the thyroid function of obese individuals may contribute to the worsening of metabolic complications and the development of diseases in the thyroid gland. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Neural mechanisms underlying the evolvability of behaviour

    PubMed Central

    Katz, Paul S.

    2011-01-01

    The complexity of nervous systems alters the evolvability of behaviour. Complex nervous systems are phylogenetically constrained; nevertheless particular species-specific behaviours have repeatedly evolved, suggesting a predisposition towards those behaviours. Independently evolved behaviours in animals that share a common neural architecture are generally produced by homologous neural structures, homologous neural pathways and even in the case of some invertebrates, homologous identified neurons. Such parallel evolution has been documented in the chromatic sensitivity of visual systems, motor behaviours and complex social behaviours such as pair-bonding. The appearance of homoplasious behaviours produced by homologous neural substrates suggests that there might be features of these nervous systems that favoured the repeated evolution of particular behaviours. Neuromodulation may be one such feature because it allows anatomically defined neural circuitry to be re-purposed. The developmental, genetic and physiological mechanisms that contribute to nervous system complexity may also bias the evolution of behaviour, thereby affecting the evolvability of species-specific behaviour. PMID:21690127

  10. Neural mechanisms underlying the evolvability of behaviour.

    PubMed

    Katz, Paul S

    2011-07-27

    The complexity of nervous systems alters the evolvability of behaviour. Complex nervous systems are phylogenetically constrained; nevertheless particular species-specific behaviours have repeatedly evolved, suggesting a predisposition towards those behaviours. Independently evolved behaviours in animals that share a common neural architecture are generally produced by homologous neural structures, homologous neural pathways and even in the case of some invertebrates, homologous identified neurons. Such parallel evolution has been documented in the chromatic sensitivity of visual systems, motor behaviours and complex social behaviours such as pair-bonding. The appearance of homoplasious behaviours produced by homologous neural substrates suggests that there might be features of these nervous systems that favoured the repeated evolution of particular behaviours. Neuromodulation may be one such feature because it allows anatomically defined neural circuitry to be re-purposed. The developmental, genetic and physiological mechanisms that contribute to nervous system complexity may also bias the evolution of behaviour, thereby affecting the evolvability of species-specific behaviour.

  11. Stellar performance: mechanisms underlying Milky Way orientation in dung beetles.

    PubMed

    Foster, James J; El Jundi, Basil; Smolka, Jochen; Khaldy, Lana; Nilsson, Dan-Eric; Byrne, Marcus J; Dacke, Marie

    2017-04-05

    Nocturnal dung beetles (Scarabaeus satyrus) are currently the only animals that have been demonstrated to use the Milky Way for reliable orientation. In this study, we tested the capacity of S. satyrus to orient under a range of artificial celestial cues, and compared the properties of these cues with images of the Milky Way simulated for a beetle's visual system. We find that the mechanism that permits accurate stellar orientation under the Milky Way is based on an intensity comparison between different regions of the Milky Way. We determined the beetles' contrast sensitivity for this task in behavioural experiments in the laboratory, and found that the resulting threshold of 13% is sufficient to detect the contrast between the southern and northern arms of the Milky Way under natural conditions. This mechanism should be effective under extremely dim conditions and on nights when the Milky Way forms a near symmetrical band that crosses the zenith. These findings are discussed in the context of studies of stellar orientation in migratory birds and itinerant seals.This article is part of the themed issue 'Vision in dim light'. © 2017 The Author(s).

  12. Spinal segmental and supraspinal mechanisms underlying the pain-relieving effects of spinal cord stimulation: an experimental study in a rat model of neuropathy.

    PubMed

    Barchini, J; Tchachaghian, S; Shamaa, F; Jabbur, S J; Meyerson, B A; Song, Z; Linderoth, B; Saadé, N E

    2012-07-26

    Spinal cord stimulation (SCS) may alleviate certain forms of neuropathic pain; its mechanisms of action are, however, not fully understood. Previous studies have mainly been focused onto segmental spinal mechanisms, though there is evidence indicating a supraspinal involvement. This study aims to evaluate the relative importance of segmental and supraspinal mechanisms related to the activation of the dorsal columns (DCs). Rats were used to induce the spared nerve injury neuropathy and simultaneously subjected to chronic bilateral DC lesions at the C6-C8 level. Two pairs of miniature electrodes were implanted in each animal, with a monopolar system placed in the dorsal epidural space at a low thoracic level (below lesion) and a bipolar system placed onto the dorsal column nuclei (above lesion). Stimulation (50 Hz, 0.2 ms, 2-4V, 5 min) was applied via either type of electrodes, and tests for sensitivity to tactile and thermal stimuli were used to assess its inhibitory effects. Various receptor antagonists {bicuculline (GABA(A)), saclofen (GABA(B)), ketanserine (5HT(2)), methysergide (5HT(1-2)), phentolamine (α-adrenergic), propranolol (β-adrenergic), sulpiride (D(2)/D(3) dopamine) or saline were injected prior to the SCS. Rostral and caudal stimulations produced a comparable inhibition of neuropathic manifestations, and these effects were attenuated by about 50% after DC lesions. Pretreatment with the various receptor antagonists differentially influenced the effects of rostral and caudal stimulation. Our findings suggest that both supraspinal and segmental mechanisms are activated by SCS, and that in this model with DC lesions, rostral and caudal stimulations may activate different synaptic circuitries and transmitter systems.

  13. The basics and underlying mechanisms of mucoadhesion.

    PubMed

    Smart, John D

    2005-11-03

    Mucoadhesion is where two surfaces, one of which is a mucous membrane, adhere to each other. This has been of interest in the pharmaceutical sciences in order to enhance localised drug delivery, or to deliver 'difficult' molecules (proteins and oligonucleotides) into the systemic circulation. Mucoadhesive materials are hydrophilic macromolecules containing numerous hydrogen bond forming groups, the carbomers and chitosans being two well-known examples. The mechanism by which mucoadhesion takes place has been said to have two stages, the contact (wetting) stage followed by the consolidation stage (the establishment of the adhesive interactions). The relative importance of each stage will depend on the individual application. For example, adsorption is a key stage if the dosage form cannot be applied directly to the mucosa of interest, while consolidation is important if the formulation is exposed to significant dislodging stresses. Adhesive joint failure will inevitably occur as a result of overhydration of a dosage form, or as a result of epithelia or mucus turnover. New mucoadhesive materials with optimal adhesive properties are now being developed, and these should enhance the potential applications of this technology.

  14. The Antidiabetic Potential of Quercetin: Underlying Mechanisms.

    PubMed

    Eid, Hoda M; Haddad, Pierre S

    2017-01-01

    The dramatic increase in modern lifestyle diseases such as cancer, cardiovascular diseases and diabetes has renewed researchers' interest to explore nature as a source of novel therapeutic agents. Flavonoids are a large group of polyphenols that are widely present in the human diet. They have shown promising therapeutic activities against a wide variety of ailments. One of the most widely distributed and most extensively studied flavonoid is the flavonol quercetin. Its powerful antioxidant and anti-inflammatory activities are well documented and are thought to play a role in treating and protecting against diseases including diabetes, cancer, neurodegenerative and cardiovascular diseases. The purpose of this review is to shed light on quercetin therapeutic potential as an antidiabetic agent. Quercetin was reported to interact with many molecular targets in small intestine, pancreas, skeletal muscle, adipose tissue and liver to control whole-body glucose homeostasis. Mechanisms of action of quercetin are pleiotropic and involve the inhibition of intestinal glucose absorption, insulin secretory and insulin-sensitizing activities as well as improved glucose utilization in peripheral tissues. Initial studies suggested poor bioavailability of quercetin. However, recent reports have shown that quercetin was detected in the plasma after food or supplements consumption and has a long half-life in human body. Despite the wealth of in vitro and in vivo results supporting the antidiabetic potential of quercetin, its efficacy in diabetic human subjects is yet to be explored. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Elucidating the mechanisms underlying the beneficial health effects of dietary pollen on honey bees (Apis mellifera) infested by Varroa mite ectoparasites.

    PubMed

    Annoscia, Desiderato; Zanni, Virginia; Galbraith, David; Quirici, Anna; Grozinger, Christina; Bortolomeazzi, Renzo; Nazzi, Francesco

    2017-07-24

    Parasites and pathogens of the honey bee (Apis mellifera) are key factors underlying colony losses, which are threatening the beekeeping industry and agriculture as a whole. To control the spread and development of pathogen infections within the colony, honey bees use plant resins with antibiotic activity, but little is known about the properties of other substances, that are mainly used as a foodstuff, for controlling possible diseases both at the individual and colony level. In this study, we tested the hypothesis that pollen is beneficial for honey bees challenged with the parasitic mite Varroa destructor associated to the Deformed Wing Virus. First, we studied the effects of pollen on the survival of infested bees, under laboratory and field conditions, and observed that a pollen rich diet can compensate the deleterious effects of mite parasitization. Subsequently, we characterized the pollen compounds responsible for the observed positive effects. Finally, based on the results of a transcriptomic analysis of parasitized bees fed with pollen or not, we developed a comprehensive framework for interpreting the observed effects of pollen on honey bee health, which incorporates the possible effects on cuticle integrity, energetic metabolism and immune response.

  16. Empirical extraction of mechanisms underlying real world network generation

    NASA Astrophysics Data System (ADS)

    Itzhack, Royi; Muchnik, Lev; Erez, Tom; Tsaban, Lea; Goldenberg, Jacob; Solomon, Sorin; Louzoun, Yoram

    2010-11-01

    The generation mechanisms of real world networks have been described using multiple models. The mathematical features of these models are usually extrapolated from statistical properties of a snapshot of these networks. We here propose an alternative method based on direct measurement of a sequence of consecutive snapshots to uncover the dynamics underlying real world generation. We assume that the probability of adding a node or an edge depends only on local features surrounding the newly added node/edge, and directly measure the contribution of these features to the node/edge addition probability. These measurements are performed using newly defined N-node local structures. Each N-node local structure represents the configuration of edges surrounding a newly added edge. The N-node local structure measurements reproduce for some networks the now classical addition of edges between high degree node mechanisms. It also provides quantitative estimates of more complex mechanisms driving other networks’ evolution, such as the effect of common first and second neighbors. This new methodology reveals the relative importance of different generation mechanisms. We show, for example, that the main mechanism driving hyperlink addition between two websites is the existence of a third website linking to both the source and the target of the new hyperlink.

  17. Mechanical properties of a collagen fibril under simulated degradation.

    PubMed

    Malaspina, David C; Szleifer, Igal; Dhaher, Yasin

    2017-11-01

    Collagen fibrils are a very important component in most of the connective tissue in humans. An important process associated with several physiological and pathological states is the degradation of collagen. Collagen degradation is usually mediated by enzymatic and non-enzymatic processes. In this work we use molecular dynamics simulations to study the influence of simulated degradation on the mechanical properties of the collagen fibril. We applied tensile stress to the collagen fiber at different stages of degradation. We compared the difference in the fibril mechanical priorities due the removal of enzymatic crosslink, surface degradation and volumetric degradation. As anticipated, our results indicated that, regardless of the degradation scenario, fibril mechanical properties is reduced. The type of degradation mechanism (crosslink, surface or volumetric) expressed differential effect on the change in the fibril stiffness. Our simulation results showed dramatic change in the fibril stiffness with a small amount of degradation. This suggests that the hierarchical structure of the fibril is a key component for the toughness and is very sensitive to changes in the organization of the fibril. The overall results are intended to provide a theoretical framework for the understanding the mechanical behavior of collagen fibrils under degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. [Molecular mechanisms underlying thermosensation in mammals].

    PubMed

    Sokabe, Takaaki; Tominaga, Makoto

    2009-07-01

    Sensing environmental temperature is one of the most important fundamental functions of the living things on the earth. Recently, it has been revealed that several members of the TRP ion channel super family are activated by temperature changes. A number of reports clearly demonstrate that thermal activation of these thermosensitive TRP channels contributes to various temperature-dependent responses in vivo, such as thermosensation, thermotaxis, and the regulation of cellular/tissue functions at physiological body temperature. Nine TRP channels have been reported to respond to a physiological range of temperatures in mammals. TRPV1 and TRPV2 expressed in nociceptive neurons are activated by heat (> 43 degrees C and > 52 degrees C, respectively), and TRPV1-null mice show defects in sensing noxious heat. TRPV3 and TRPV4 are predominantly expressed in skin keratinocytes rather than in sensory neurons, and the gene knock-out of each channel causes abnormal thermotaxis in vivo. TRPM8, which senses cold temperatures (< 27 degrees C), is expressed in nociceptive and non-nociceptive neurons and its loss impairs cold sensitivity. TRPA1 is expressed in nociceptive neurons and acts as a sensor for various harmful stimuli, whereas its responsiveness to noxious cold stimuli is controversial even after the analysis of mice lacking the channel. Other thermoTRPs, TRPM2, TRPM4, and TRPM5 are not expressed in sensory neurons, and are reportedly involved in several functions at physiological body temperatures including insulin secretion, taste sensation, and immune response. In this review, I summarize the molecular mechanisms of thermosensation in mammals by focusing on thermosensitive TRP channels.

  19. Mechanisms underlying neglect recovery after prism adaptation.

    PubMed

    Serino, Andrea; Angeli, Valentina; Frassinetti, Francesca; Làdavas, Elisabetta

    2006-01-01

    Prism adaptation (PA) has been demonstrated to be effective in improving hemispatial neglect. However not all patients seem to benefit from this procedure. Thus, the objective of the present work is to provide behavioural and neuroanatomical predictors of recovery by exploring the reorganization of low-order visuo-motor behaviour and high-order visuo-spatial representation induced by PA. To this end, 16 neglect patients (experimental group) were submitted to a PA treatment for 10 daily sessions. Neglect and oculo-motor responses were assessed before the treatment, 1 week, 1 and 3 months after the treatment. Eight control patients, who received general cognitive stimulation, were submitted to the same tests at the same time interval. The results showed that experimental patients obtained, as a consequence of PA, a long lasting neglect recovery, a reorganization of low-order visuo-motor behaviour during and after prism exposure (error reduction and after-effect, respectively) and a leftward deviation of oculo-motor responses. Importantly, the level of error reduction obtained in the first week of treatment was predictive of neglect recovery and the amelioration of oculo-motor responses, and the degree of eye movement deviation was positively related to neglect amelioration. Finally, the study of patients' neuroanatomical data showed that severe occipital lesions were associated with a lack of error reduction, poor neglect recovery and reduced oculo-motor system amelioration. In conclusion, the present results suggest that low-order visuo-motor reorganization induced by PA promotes a resetting of the oculo-motor system leading to an improvement in high-order visuo-spatial representation able to ameliorate neglect.

  20. Mechanisms Underlying T Cell Immunosenescence: Aging and Cytomegalovirus Infection

    PubMed Central

    Tu, Wenjuan; Rao, Sudha

    2016-01-01

    The ability of the human immune system to protect against infectious disease declines with age and efficacy of vaccination reduces significantly in the elderly. Aging of the immune system, also termed as immunosenescence, involves many changes in human T cell immunity that is characterized by a loss in naïve T cell population and an increase in highly differentiated CD28- memory T cell subset. There is extensive data showing that latent persistent human cytomegalovirus (HCMV) infection is also associated with age-related immune dysfunction in the T cells, which might enhance immunosenescence. Understanding the molecular mechanisms underlying age-related and HCMV-related immunosenescence is critical for the development of effective age-targeted vaccines and immunotherapies. In this review, we will address the role of both aging and HCMV infection that contribute to the T cell senescence and discuss the potential molecular mechanisms in aged T cells. PMID:28082969

  1. Ferroelastic domain switching dynamics under electrical and mechanical excitations

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Britson, Jason; Nelson, Christopher T.; Jokisaari, Jacob R.; Duan, Chen; Trassin, Morgan; Baek, Seung-Hyub; Guo, Hua; Li, Linze; Wang, Yiran; Chu, Ying-Hao; Minor, Andrew M.; Eom, Chang-Beom; Ramesh, Ramamoorthy; Chen, Long-Qing; Pan, Xiaoqing

    2014-05-01

    In thin film ferroelectric devices, switching of ferroelastic domains can significantly enhance electromechanical response. Previous studies have shown disagreement regarding the mobility or immobility of ferroelastic domain walls, indicating that switching behaviour strongly depends on specific microstructures in ferroelectric systems. Here we study the switching dynamics of individual ferroelastic domains in thin Pb(Zr0.2,Ti0.8)O3 films under electrical and mechanical excitations by using in situ transmission electron microscopy and phase-field modelling. We find that ferroelastic domains can be effectively and permanently stabilized by dislocations at the substrate interface while similar domains at free surfaces without pinning dislocations can be removed by either electric or stress fields. For both electrical and mechanical switching, ferroelastic switching is found to occur most readily at the highly active needle points in ferroelastic domains. Our results provide new insights into the understanding of polarization switching dynamics as well as the engineering of ferroelectric devices.

  2. Peripheral Receptor Mechanisms Underlying Orofacial Muscle Pain and Hyperalgesia

    NASA Astrophysics Data System (ADS)

    Saloman, Jami L.

    gated ion channels form functional complexes in nociceptors. It is also important to further elucidate peripheral anti-nociceptive mechanisms to improve clinical utilization of currently available analgesics and uncover additional therapeutic targets. A side project examined the mechanisms underlying sex differences in the anti-hyperalgesic effects of delta opioid receptors (DORs). This study provides evidence of a sex difference in the potency at DORs that is mediated by differences in the expression of ATP-sensitive potassium channels. Collectively, understanding detailed molecular events that underlie the development of pathological pain conditions could benefit future pharmacotherapies.

  3. Study of convective mechanisms under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Langbein, D.; Heide, W.

    This paper reports on the various contributions of spreading, of capillarity and of Marangoni convection on the mixing and demixing of transparent liquids exhibiting a miscibility gap. Such liquid pairs are model systems for monotectic metallic alloys. The experiences from parabolic flights and from two sounding rocket experiments on the system methanol/cyclohexane (TEXUS 7 and 9) are compared with the results of the Spacelab-D1 experiment FPM-03. The liquid pair chosen in the latter was paraffin oil/benzylbenzoate. The main contributions to mixing and demixing were: Thermal and solutal Marangoni convection at the free liquid surface during heating. It results in a rapid schlieren movement. Marangoni migration of bubbles. They moved to the surface and eventually vanished. The spreading of one component along the supporting disks, as required by theory close to the critical point. Capillary effects like the rupture of the inner of the two liquid columns about 4 min after beginning of heating. Due to spreading and mixing the minimum volume condition for stability has been reached and a Rayleigh instability arose. Since also the liquid recovery into the reservoir worked correctly, a second, unscheduled run with higher heater temperature and shorter heating time was granted. It was intended to observe the resulting faster spreading and Marangoni convection. Further valuable information on the contributions to separation has been obtained.

  4. Neuronal Mechanisms Underlying Attention Deficit Hyperactivity Disorder

    PubMed Central

    Brennan, Avis R.; Arnsten, Amy F.T.

    2010-01-01

    Neuropsychological and imaging studies indicate that attention deficit hyperactivity disorder (ADHD) is associated with alterations in prefrontal cortex (PFC) and its connections to striatum and cerebellum. Research in animals, in combination with observations of patients with cortical lesions, has shown that the PFC is critical for the regulation of behavior, attention, and affect using representational knowledge. The PFC is important for sustaining attention over a delay, inhibiting distraction, and dividing attention, while more posterior cortical areas are essential for perception and the allocation of attentional resources. The PFC in the right hemisphere is especially important for behavioral inhibition. Lesions to the PFC produce a profile of distractibility, forgetfulness, impulsivity, poor planning, and locomotor hyperactivity. The PFC is very sensitive to its neurochemical environment, and either too little (drowsiness) or too much (stress) catecholamine release in PFC weakens cognitive control of behavior and attention. Recent electrophysiological studies in animals suggest that norepinephrine enhances “signals” through postsynaptic α2A adrenoceptors in PFC, while dopamine decreases “noise” through modest levels of D1 receptor stimulation. α2A-Adrenoceptor stimulation strengthens the functional connectivity of PFC networks, while blockade of α2 receptors in the monkey PFC recreates the symptoms of ADHD, resulting in impaired working memory, increased impulsivity, and locomotor hyperactivity. Genetic alterations in catecholamine pathways may contribute to dysregulation of PFC circuits in this disorder. Medications may have many of their therapeutic effects by optimizing stimulation of α2A adrenoceptors and D1 receptors in the PFC, thus strengthening PFC regulation of behavior and attention. PMID:18591484

  5. Biochemical mechanisms of signaling: perspectives in plants under arsenic stress.

    PubMed

    Islam, Ejazul; Khan, Muhammad Tahir; Irem, Samra

    2015-04-01

    Plants are the ultimate food source for humans, either directly or indirectly. Being sessile in nature, they are exposed to various biotic and abiotic stresses because of changing climate that adversely effects their growth and development. Contamination of heavy metals is one of the major abiotic stresses because of anthropogenic as well as natural factors which lead to increased toxicity and accumulation in plants. Arsenic is a naturally occurring metalloid toxin present in the earth crust. Due to its presence in terrestrial and aquatic environments, it effects the growth of plants. Plants can tolerate arsenic using several mechanisms like phytochelation, vacuole sequestration and activation of antioxidant defense systems. Several signaling mechanisms have evolved in plants that involve the use of proteins, calcium ions, hormones, reactive oxygen species and nitric oxide as signaling molecules to cope with arsenic toxicity. These mechanisms facilitate plants to survive under metal stress by activating their defense systems. The pathways by which these stress signals are perceived and responded is an unexplored area of research and there are lots of gaps still to be filled. A good understanding of these signaling pathways can help in raising the plants which can perform better in arsenic contaminated soil and water. In order to increase the survival of plants in contaminated areas there is a strong need to identify suitable gene targets that can be modified according to needs of the stakeholders using various biotechnological techniques. This review focuses on the signaling mechanisms of plants grown under arsenic stress and will give an insight of the different sensory systems in plants. Furthermore, it provides the knowledge about several pathways that can be exploited to develop plant cultivars which are resistant to arsenic stress or can reduce its uptake to minimize the risk of arsenic toxicity through food chain thus ensuring food security.

  6. Mechanisms underlying allergy vaccination with recombinant hypoallergenic allergen derivatives

    PubMed Central

    Linhart, Birgit; Valenta, Rudolf

    2015-01-01

    Hundred years ago therapeutic vaccination with allergen-containing extracts has been introduced as a clinically effective, disease-modifying, allergen-specific and long-lasting form of therapy for allergy, a hypersensitivity disease affecting more than 25% of the population. Today, the structures of most of the disease-causing allergens have been elucidated and recombinant hypoallergenic allergen derivatives with reduced allergenic activity have been engineered to reduce side effects during allergen-specific immunotherapy (SIT). These recombinant hypoallergens have been characterized in vitro, in experimental animal models and in clinical trials in allergic patients. This review provides a summary of the molecular, immunological and preclinical evaluation criteria applied for this new generation of allergy vaccines. Furthermore, we summarize the mechanisms underlying SIT with recombinant hypoallergens which are thought to be responsible for their therapeutic effect. PMID:22100888

  7. Pharmacological evidence for common mechanisms underlying the effects of neurotensin and neuroleptics on in vivo dopamine efflux in the rat nucleus accumbens.

    PubMed

    Blaha, C D; Phillips, A G

    1992-08-01

    The effects of the neuropeptide neurotensin and the typical neuroleptic haloperidol on dopamine efflux were compared in the posteromedial nucleus accumbens of the chloral hydrate-anesthetized rat using in vivo chronoamperometry. Both neurotensin and haloperidol administration elicited an immediate increase in dopamine efflux in the nucleus accumbens. Gamma-hydroxybutyric acid lactone, an agent known to block impulse flow in dopamine neurons, either prevented when given before neurotensin or reversed neurotensin-induced increases in accumbens dopamine efflux. Haloperidol-induced increases in accumbens dopamine efflux were similarly affected by gamma-hydroxybutyric acid lactone. The dopamine receptor agonist apomorphine reversed neurotensin- and haloperidol-induced increases in dopamine efflux. Amphetamine, administered during the peak dopamine stimulatory effects induced by neurotensin or haloperidol, resulted in increases above baseline which were significantly greater than the effects of amphetamine alone. These combined drug treatment effects on baseline dopamine efflux were additive, indicating that the effects of amphetamine were not potentiated by neurotensin or haloperidol pretreatments. These in vivo results suggest that neurotensin and haloperidol may augment dopamine efflux in the nucleus accumbens via common mechanisms of action which may involve activation of mesotelencephalic dopamine neuronal firing. The inability of neurotensin to block amphetamine-induced efflux in the nucleus accumbens further suggests that neurotensin blockade of amphetamine-elicited locomotor activity is mediated by an action of neurotensin postsynaptic to dopamine nerve terminals in the nucleus accumbens.

  8. The mechanisms underlying the beneficial effects of exercise on bone remodeling: Roles of bone-derived cytokines and microRNAs.

    PubMed

    Qi, Zhengtang; Liu, Weina; Lu, Jianqiang

    2016-11-01

    Bone remodeling is highly dynamic and complex in response to mechanical loading, such as exercise. In this review, we concluded that a number of individual factors are disturbing the clinical effects of exercise on bone remodeling. We updated the progress made on the differentiation of osteoblasts and osteoclasts in response to mechanical loading, hoping to provide a theoretical basis to improve bone metabolism with exercise. Increasing evidences indicate that bone is not only a structural scaffold but also an endocrine organ, which secretes osteocalcin and FGF23. Both of them have been known as a circulating hormone to promote insulin sensitivity and reduce body fat mass. The effects of exercise on these bone-derived cytokines provide a better understanding of how exercise-induced "osteokine" affects the whole-body homeostasis. Additionally, we discussed recent studies highlighting the post-transcriptional regulation of microRNAs in bone remodeling. We focus on the involvement of the microRNAs in osteoblastogenesis and osteoclastogenesis, and suggest that microRNAs may be critical for exercise-induced bone remodeling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Continuous damage parameter calculation under thermo-mechanical random loading.

    PubMed

    Nagode, Marko

    2014-01-01

    The paper presents a method on how the mean stress effect on fatigue damage can be taken into account under an arbitrary low cycle thermo-mechanical loading. From known stress, elastoplastic strain and temperature histories the cycle amplitudes and cycle mean values are extracted and the damage parameter is computed. In contrast to the existing methods the proposed method enables continuous damage parameter computation without the need of waiting for the cycles to close. The limitations of the standardized damage parameters are thus surpassed. The damage parameters derived initially for closed and isothermal cycles assuming that the elastoplastic stress-strain response follows the Masing and memory rules can now be used to take the mean stress effect into account under an arbitrary low cycle thermo-mechanical loading. The method includes:•stress and elastoplastic strain history transformation into the corresponding amplitude and mean values;•stress and elastoplastic strain amplitude and mean value transformation into the damage parameter amplitude history;•damage parameter amplitude history transformation into the damage parameter history.

  10. Continuous damage parameter calculation under thermo-mechanical random loading

    PubMed Central

    Nagode, Marko

    2014-01-01

    The paper presents a method on how the mean stress effect on fatigue damage can be taken into account under an arbitrary low cycle thermo-mechanical loading. From known stress, elastoplastic strain and temperature histories the cycle amplitudes and cycle mean values are extracted and the damage parameter is computed. In contrast to the existing methods the proposed method enables continuous damage parameter computation without the need of waiting for the cycles to close. The limitations of the standardized damage parameters are thus surpassed. The damage parameters derived initially for closed and isothermal cycles assuming that the elastoplastic stress–strain response follows the Masing and memory rules can now be used to take the mean stress effect into account under an arbitrary low cycle thermo-mechanical loading. The method includes:•stress and elastoplastic strain history transformation into the corresponding amplitude and mean values;•stress and elastoplastic strain amplitude and mean value transformation into the damage parameter amplitude history;•damage parameter amplitude history transformation into the damage parameter history. PMID:26150939

  11. Research on the Influence of Size Effect for the mechanical Performance of GFRP tube concrete steel tube composite column under axial compression

    NASA Astrophysics Data System (ADS)

    Li, Wen; Wang, Tong; Na, Yu

    2017-08-01

    FRP tube-concrete-steel tube composite column (DSTC) was a new type of composite structures. The column consists of FRP outer tube and steel tube and concrete. Concrete was filled between FRP outer tube and steel tube. This column has the character of light and high strength and corrosion resistance. In this paper, properties of DSTC axial compression were studied in depth. The properties were studied by two groups DSTC short columns under axial compression performance experiment. The different size of DSTC short columns was importantly considered. According to results of the experiment, we can conclude that with the size of the column increases the ability of it to resist deformation drops. On the other hand, the size effect influences on properties of different concrete strength DSTC was different. The influence of size effect on high concrete strength was less than that of low concrete.

  12. Mechanisms underlying the endothelium-dependent vasodilatory effect of an aqueous extract of Elaeis Guineensis Jacq. (Arecaceae) in porcine coronary artery rings.

    PubMed

    Ndiaye, Mamadou; Anselm, Eric; Séne, Madièye; Diatta, Williams; Dièye, Amadou Moctar; Faye, Babacar; Schini-Kerth, Valérie B

    2009-12-30

    This study was undertaken to investigate the vasodilatory effect of an aqueous extract of Elaeis guineensis Jacq (EGE) in the porcine coronary artery and elicit its possible mechanism(s) of action. Vascular effects of crude extract of dried and powdered leaves of Elaeis guineensis were evaluated on isolated coronary arteries on organ chambers. Determination of eNOS expression and the phosphorylation level of eNOS were determined by Western blot analysis. In the presence of indomethacin, EGE caused pronounced relaxations in endothelium-intact but not in endothelium-denuded coronary artery rings. Relaxations to EGE were significantly reduced by N(ω)-nitro-L-arginine (L-NA, a competitive inhibitor of NO synthase), slightly but not significantly by charybdotoxin plus apamin (two potent inhibitors of EDHF-mediated responses) and abolished by the combination of L-NA and charybdotoxin plus apamin. Relaxations to EGE were abolished by the membrane permeant, SOD mimetic, MnTMPyP, and significantly reduced by wortmannin, an inhibitor of PI3-kinase. Exposure of endothelial cells to EGE increased the phosphorylation level of eNOS at Ser1177 in a time and concentration-dependent manner. MnTMPyP abolished the EGE-induced phosphorylation of eNOS.In conclusion, the obtained data indicate that EGE induces pronounced endothelium-dependent relaxations of the porcine coronary artery, which involve predominantly NO. The stimulatory effect of EGE on eNOS involves the redox-sensitive phosphorylation of eNOS at Ser1177 most likely via the PI3-kinase pathway.

  13. Piezoelectric compliant mechanism energy harvesters under large base excitations

    NASA Astrophysics Data System (ADS)

    Ma, Xiaokun; Trolier-McKinstry, Susan; Rahn, Christopher D.

    2016-09-01

    A piezoelectric compliant mechanism (PCM) energy harvester is designed, modeled, and analyzed that consists of a polyvinylidene diflouoride, PVDF unimorph clamped at its base and attached to a compliant mechanism at its tip. The compliant hinge stiffness is carefully tuned to approach a low frequency first mode with an efficient (nearly quadratic) shape that provides a uniform strain distribution. A nonlinear model of the PCM energy harvester under large base excitation is derived to determine the maximum power that can be generated by the device. Experiments with a fabricated PCM energy harvester prototype show that the compliant mechanism introduces a stiffening effect and a much wider bandwidth than a benchmark proof mass cantilever design. The PCM bridge structure self-limits the displacement and maximum strain at large excitations compared with the proof mass cantilever, improving the device robustness. The PCM outperforms the cantilever in both average power and power-strain sensitivity at high accelerations due to the PCM axial stretching effect and its more uniform strain distribution.

  14. Klokwerk + study protocol: An observational study to the effects of night-shift work on body weight and infection susceptibility and the mechanisms underlying these health effects.

    PubMed

    Loef, Bette; van Baarle, Debbie; van der Beek, Allard J; van Kerkhof, Linda W; van de Langenberg, Daniëlla; Proper, Karin I

    2016-08-02

    Night-shift work may cause severe disturbances in the worker's circadian rhythm, which has been associated with the onset of health problems and diseases. As a substantial part of the workforce is exposed to night-shift work, harmful aspects of night-shift work should not be overlooked. The aim of the Klokwerk + study is to study the effects of night-shift work on body weight and infection susceptibility and the mechanisms underlying these health effects. First, we will study the relation between night-shift work exposure and body weight and between night-shift work exposure and infection susceptibility. Second, we will examine the mechanisms linking night-shift work exposure to body weight and infection susceptibility, with a specific focus on sleep, physical activity, diet, light exposure, vitamin D level, and immunological factors. Lastly, we will focus on the identification of biomarkers for chronic circadian disturbance associated with night-shift work. The design of this study is a prospective observational cohort study consisting of 1,960 health care workers aged 18-65 years. The study population will consist of a group of night-shift workers and an equally sized group of non-night-shift workers. During the study, there will be two measurement periods. As one of the main outcomes of this study is infection susceptibility, the measurement periods will take place at approximately the first (September/October) (T0) and the last month (April/May) (T1, after 6 months) of the flu season. The measurements will consist of questionnaires, anthropometric measurements, a smartphone application to determine infection susceptibility, food diaries, actigraphy, light sensors, and blood sample analyses. The Klokwerk + study will contribute to the current need for high-quality data on the health effects of night-shift work and its underlying behavioral and physiological mechanisms. The findings can be the starting point for the development of interventions that

  15. Enhanced biocontrol activity of Rhodotorula mucilaginosa cultured in media containing chitosan against postharvest diseases in strawberries: possible mechanisms underlying the effect.

    PubMed

    Zhang, Hongyin; Ge, Lingling; Chen, Keping; Zhao, Lina; Zhang, Xiaoyun

    2014-05-07

    The effect of Rhodotorula mucilaginosa cultured in media containing chitosan on its antogonistic activity against postharvest diseases of strawberries and the possible mechanisms involved are discussed. Two-dimensional gel electrophoresis were applied in the analysis of the proteins of R. mucilaginosa in response to chitosan. Compared with the application of R. mucilaginosa alone, the biocontrol efficacy of the yeast combined with 0.5% chitosan was enhanced greatly, with significant increase in chitinase activity of antagonistic yeast, polyphenoloxidase, peroxidase, phenylalanine ammonia lyase, chitinase and β-1,3-glucanase activity, and with an inhibition of lipid peroxidation of strawberries. The population of R. mucilaginosa harvested from NYDB amended with chitosan at 0.5% increased rapidly in strawberry wounds compared with those harvested from NYDB without chitosan. In the cellular proteome, several differentially expressed proteins were identified, most of which were related to basic metabolism.

  16. A study of the mechanisms underlying the anti-inflammatory effect of ellagic acid in carrageenan-induced paw edema in rats

    PubMed Central

    Mansouri, Mohammad Taghi; Hemmati, Ali Asghar; Naghizadeh, Bahareh; Mard, Seyyed Ali; Rezaie, Anahita; Ghorbanzadeh, Behnam

    2015-01-01

    Objectives: Ellagic acid (EA) has shown antinociceptive and anti-inflammatory effects. Inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2) enzymes and also cytokines play a key role in many inflammatory conditions. This study was aimed to investigate the mechanisms involved in the anti-inflammatory effect of EA. Materials and Methods: Carrageenan-induced mouse paw edema model was used for induction of inflammation. Results: The results showed that intraplantar injection of carrageenan led to time-dependent development of peripheral inflammation, which resulted in a significant increase in the levels of tumor necrosis factor α (TNF-α) and interleukin 1 (IL-1) β, nitric oxide (NO) and prostaglandin E2 (PGE2) and also iNOS and COX-2 protein expression in inflamed paw. However, systemic administration of EA (1–30 mg/kg, intraperitoneal [i.p.]) could reduce edema in a dose-dependent fashion in inflamed rat paws with ED50 value 8.41 (5.26–14.76) mg/kg. It decreased the serum concentration of NO, PGE2, aspartate aminotransferase and alanine aminotransferase, and suppress the protein expression of iNOS, COX-2 enzymes, and attenuated the formation of PGE2, TNF-α and IL-1 β in inflamed paw tissue. We also demonstrated that EA significantly decreased the malondialdehyde (MDA) level in liver at 5 h after carrageenan injection. Moreover, histopathological studies indicated that EA significantly diminished migration of polymorphonuclear leukocytes into site of inflammation, as did indomethacin. Conclusions: Collectively, the anti-inflammatory mechanisms of EA might be related to the decrease in the level of MDA, iNOS, and COX-2 in the edema paw via the suppression of pro-inflammatory cytokines (TNFα, IL1 β), NO and PGE2 overproduction. PMID:26069367

  17. Phase state of a Bi-43 wt % Sn superplastic alloy and its changes under the effect of external mechanical stresses and aging

    NASA Astrophysics Data System (ADS)

    Korshak, V. F.; Chushkina, R. A.; Shapovalov, Yu. A.; Mateichenko, P. V.

    2011-07-01

    Samples of a Bi-43 wt % Sn superplastic alloy have been studied by X-ray diffraction in the ascast state, after compression of as-cast samples to ˜70% on a hydraulic press, after aging in the as-cast and preliminarily compressed state, and using samples deformed under superplastic conditions. The X-ray diffraction studies have been carried out using a DRON-2.0 diffractometer in Cu Kα radiation. The samples aged and deformed under superplasticity conditions have been studied using electron-microprobe analysis in a JSM-820 scanning electron microscope equipped with a LINK AN/85S EDX system. It has been found that the initial structural-phase state of the alloy was amorphous-crystalline. Causes that lead to a change in this state upon deformation and aging are discussed. A conclusion is made that the superplasticity effect manifests itself against the background of processes that are stipulated by the tendency of the initially metastable alloy to phase equilibrium similarly to what is observed in the Sn-38 wt % Pb eutectic alloy studied earlier.

  18. [Mechanisms of changes of microcirculation in rats under acute methemoglobinemia].

    PubMed

    Rozova, K V; Sydoriak, N H

    2014-01-01

    It was investigated the features of microcirculation and mechanisms it's conditioned, under acute administration of sodium nitrite in 5 mg of dry substance per 100 g of body weight. It was shown that acute administration of sodium nitrite leads to the development of methemoglobinemia, arterial and venous hypoxemia, and severe tissue hypoxia. Increase in the diffusion path O2 at methemoglobinemia is caused due to significant hyperhydratation of lung air-blood barrier and its individual layers, and is accompanied by a decrease in both components of the diffusion capacity of the lungs for oxygen: its membrane and blood components. It was revealed that the administration of sodium nitrite has a double effect, leading to inactivation of hemoglobin, as well as to microcirculatory disturbances associated primarily with changes in the regulation of vascular tone. In this initial perfusion per unit volume of tissue per time unit intrinsic for the organism defines a set of mechanisms which are responsible for changes in tissue blood flow under methemoglobinemia.

  19. Molecular Mechanisms Regulating Muscle Fiber Composition Under Microgravity

    NASA Technical Reports Server (NTRS)

    Rosenthal, Nadia A.

    1999-01-01

    The overall goal of this project is to reveal the molecular mechanisms underlying the selective and debilitating atrophy of specific skeletal muscle fiber types that accompanies sustained conditions of microgravity. Since little is currently known about the regulation of fiber-specific gene expression programs in mammalian muscle, elucidation of the basic mechanisms of fiber diversification is a necessary prerequisite to the generation of therapeutic strategies for attenuation of muscle atrophy on earth or in space. Vertebrate skeletal muscle development involves the fusion of undifferentiated mononucleated myoblasts to form multinucleated myofibers, with a concomitant activation of muscle-specific genes encoding proteins that form the force-generating contractile apparatus. The regulatory circuitry controlling skeletal muscle gene expression has been well studied in a number of vertebrate animal systems. The goal of this project has been to achieve a similar level of understanding of the mechanisms underlying the further specification of muscles into different fiber types, and the role played by innervation and physical activity in the maintenance and adaptation of different fiber phenotypes into adulthood. Our recent research on the genetic basis of fiber specificity has focused on the emergence of mature fiber types and have implicated a group of transcriptional regulatory proteins, known as E proteins, in the control of fiber specificity. The restriction of E proteins to selected muscle fiber types is an attractive hypothetical mechanism for the generation of muscle fiber-specific patterns of gene expression. To date our results support a model wherein different E proteins are selectively expressed in muscle cells to determine fiber-restricted gene expression. These studies are a first step to define the molecular mechanisms responsible for the shifts in fiber type under conditions of microgravity, and to determine the potential importance of E proteins as

  20. Antibacterial effect and mechanism of high-intensity 405 ± 5 nm light emitting diode on Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus under refrigerated condition.

    PubMed

    Kim, Min-Jeong; Mikš-Krajnik, Marta; Kumar, Amit; Ghate, Vinayak; Yuk, Hyun-Gyun

    2015-12-01

    This study investigated the antibacterial effect of 405 ± 5 nm light emitting diode (LED) on Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus, and examined its antibacterial mechanism by determining the bacterial membrane and DNA damages. A 405 ± 5 nm LED illuminated the Gram-positive pathogens until 486 J/cm(2) at 4 °C. Weibull model was used to calculate reliable life (tR) to compare bacterial sensitivities to LED illumination. The membrane damage was determined by NaCl and LIVE/DEAD® assay, while comet assay and DNA ladder analysis were conducted to determine DNA degradation. The illumination resulted in 1.9, 2.1, and 1.0 log reductions for B. cereus, L. monocytogenes, and S. aureus at 486 J/cm(2), respectively. The comparison of tR values revealed that L. monocytogenes was identified as the most susceptible strain to LED illumination. The percentage of the bacterial sensitivity to NaCl remarkably increased in LED-illuminated cells compared to non-illuminated cells. Moreover, loss of membrane integrity was confirmed for LED-illuminated cells by LIVE/DEAD® assay, whereas no DNA breakage was indicated by comet assay and DNA ladder analysis. Thus, these findings suggest that the antibacterial effect of 405 ± 5 nm LED illumination on these pathogens might be due to physical damage to bacterial membrane rather than DNA degradation.

  1. The Pathophysiological Mechanism Underlying Brugada Syndrome. Depolarization versus Repolarization

    PubMed Central

    Wilde, Arthur A.M.; Postema, Pieter G.; Di Diego, José M.; Viskin, Sami; Morita, Hiroshi; Fish, Jeffrey M.; Antzelevitch, Charles

    2010-01-01

    This Point/Counterpoint presents a scholarly debate of the mechanisms underlying the electrocardiographic and arrhythmic manifestations of Brugada syndrome (BrS), exploring in detail the available evidence in support of the repolarization vs. depolarization hypothesis. PMID:20659475

  2. Mechanisms underlying 18F-fluorodeoxyglucose accumulation in colorectal cancer

    PubMed Central

    Kawada, Kenji; Iwamoto, Masayoshi; Sakai, Yoshiharu

    2016-01-01

    Positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) is a diagnostic tool to evaluate metabolic activity by measuring accumulation of FDG, an analogue of glucose, and has been widely used for detecting small tumors, monitoring treatment response and predicting patients’ prognosis in a variety of cancers. However, the molecular mechanism of FDG accumulation into tumors remains to be investigated. It is well-known that most cancers are metabolically active with elevated glucose metabolism, a phenomenon known as the Warburg effect. The underlying mechanisms for elevated glucose metabolism in cancer tissues are complex. Recent reports have indicated the potential of FDG-PET/CT scans in predicting mutational status (e.g., KRAS gene mutation) of colorectal cancer (CRC), which suggests that FDG-PET/CT scans may play a key role in determining therapeutic strategies by non-invasively predicting treatment response to anti-epidermal growth factor receptor (EGFR) therapy. In this review, we summarize the current findings investigating the molecular mechanism of 18F-FDG accumulation in CRC. PMID:27928469

  3. Assessment of 17{alpha}-ethinylestradiol effects and underlying mechanisms in a continuous, multigeneration exposure of the Chinese rare minnow (Gobiocypris rarus)

    SciTech Connect

    Zha Jinmiao; Sun Liwei; Zhou Yiqi; Spear, Philip A.; Ma, Mei; Wang Zijian

    2008-02-01

    17{alpha}-Ethinylestradiol (EE{sub 2}) is a synthetic estrogen used primarily in birth control pills and in hormone replacement therapy. Owing to its occurrence in surface waters at concentrations frequently greater than 1 ng/l and its projected future use, EE{sub 2} is expected to pose a significant risk to aquatic organisms. This study was conducted to obtain long-term exposure data necessary for the establishment of water quality criteria and to investigate mechanisms associated with toxic effects. In a multigeneration experiment, Chinese rare minnows (Gobiocypris rarus) were constantly exposed to environmentally relevant concentrations of the synthetic estrogen EE{sub 2}. Mortality, deformities, reproductive parameters, plasma vitellogenin and histopathology were assessed. The results showed that, in the F{sub 0} generation, all endpoints were significantly affected at concentrations higher than 0.2 ng/l EE{sub 2}. No F{sub 1} phenotypic males developed to maturity at 0.2 ng/l and, when adult females of this exposure group were crossed with unexposed males, no F{sub 2} fertile eggs were produced. Kidney histopathology and ultrastructure suggest anomalies possibly associated with increased vitellogenin accumulation. We concluded that the reproduction of the F{sub 1} minnows was completely inhibited at the lowest concentration tested, 0.2 ng/l EE{sub 2}, a concentration frequently detected in surface waters. Growth effects may be related to increased energy requirements including the energy used in VTG synthesis. Reproductive effects are presumably associated with male feminization and the occurrence of testis-ova in males; however, ovarian degeneration observed in females may also have contributed to reproductive failure.

  4. Cellular mechanisms underlying the effect of a single exposure to neonatal handling on neurotrophin-3 in the brain of 1-day-old rats.

    PubMed

    Garoflos, E; Stamatakis, A; Pondiki, S; Apostolou, A; Philippidis, H; Stylianopoulou, F

    2007-08-24

    Neurotrophin-3 (NT-3) has an important role in brain development and is thus a good candidate molecule to be involved in the cellular mechanisms mediating the effects of early experiences on the brain. In the present work we employed the model of neonatal handling, which is known to affect the ability of the adult organism to respond to stressful stimuli, and determined its effects on NT-3 levels in the rat hippocampus and cortex 2, 4 and 8 h after handling on postnatal day 1. We also recorded maternal behavior during the 8 h following handling. At both the 4 and 8 h time-points there was an increase in NT-3 positive cells in field 1 of Ammon's horn (CA1 area of the hippocampus) and parietal cortex of the handled animals. In the parietal cortex NT-3 levels increased with time following handling: at 8 h there were more NT-3 positive cells than at 4 h. During the 4 h following the end of handling, handled pups were subject to more maternal licking, indicating that the more intense maternal care could underlie the handling-induced increase in NT-3. In the hippocampus, the handling induced increase in NT-3 was cancelled by inhibition of N-methyl-D-aspartate (NMDA), AMPA/kainate, or GABA-A receptors, as well as L-type voltage-gated Ca(2+) channels. It thus appears that neonatal handling activates these neurotransmitter receptors and channels, leading to increased intracellular Ca(2+) and increased NT-3 expression. NT-3 can then activate downstream effectors and exert its morphogenetic actions and thus imprint the effects of handling on the brain.

  5. The Challenge of Characterizing Operations in the Mechanisms Underlying Behavior

    ERIC Educational Resources Information Center

    Bechtel, William

    2005-01-01

    Neuroscience and cognitive science seek to explain behavioral regularities in terms of underlying mechanisms. An important element of a mechanistic explanation is a characterization of the operations of the parts of the mechanism. The challenge in characterizing such operations is illustrated by an example from the history of physiological…

  6. Energetic Mechanism of Cytochrome c-Cytochrome c Oxidase Electron Transfer Complex Formation under Turnover Conditions Revealed by Mutational Effects and Docking Simulation.

    PubMed

    Sato, Wataru; Hitaoka, Seiji; Inoue, Kaoru; Imai, Mizue; Saio, Tomohide; Uchida, Takeshi; Shinzawa-Itoh, Kyoko; Yoshikawa, Shinya; Yoshizawa, Kazunari; Ishimori, Koichiro

    2016-07-15

    Based on the mutational effects on the steady-state kinetics of the electron transfer reaction and our NMR analysis of the interaction site (Sakamoto, K., Kamiya, M., Imai, M., Shinzawa-Itoh, K., Uchida, T., Kawano, K., Yoshikawa, S., and Ishimori, K. (2011) Proc. Natl. Acad. Sci. U.S.A. 108, 12271-12276), we determined the structure of the electron transfer complex between cytochrome c (Cyt c) and cytochrome c oxidase (CcO) under turnover conditions and energetically characterized the interactions essential for complex formation. The complex structures predicted by the protein docking simulation were computationally selected and validated by the experimental kinetic data for mutant Cyt c in the electron transfer reaction to CcO. The interaction analysis using the selected Cyt c-CcO complex structure revealed the electrostatic and hydrophobic contributions of each amino acid residue to the free energy required for complex formation. Several charged residues showed large unfavorable (desolvation) electrostatic interactions that were almost cancelled out by large favorable (Columbic) electrostatic interactions but resulted in the destabilization of the complex. The residual destabilizing free energy is compensated by the van der Waals interactions mediated by hydrophobic amino acid residues to give the stabilized complex. Thus, hydrophobic interactions are the primary factors that promote complex formation between Cyt c and CcO under turnover conditions, whereas the change in the electrostatic destabilization free energy provides the variance of the binding free energy in the mutants. The distribution of favorable and unfavorable electrostatic interactions in the interaction site determines the orientation of the binding of Cyt c on CcO.

  7. Investigating the mechanism(s) underlying switching between states in bipolar disorder

    PubMed Central

    Young, Jared W.; Dulcis, Davide

    2015-01-01

    Bipolar Disorder (BD) is a unique disorder that transcends domains of function since the same patient can exhibit depression or mania, states with polar opposite mood symptoms. During depression, people feel helplessness, reduced energy, and risk aversion, while with mania behaviors include grandiosity, increased energy, less sleep, and risk preference. The neural mechanism(s) underlying each state are gaining clarity, with catecholaminergic disruption seen during mania, and cholinergic dysfunction during depression. The fact that the same patient cycles/switches between these states is the defining characteristic of BD however. Of greater importance therefore, is the mechanism(s) underlying cycling from one state - and its associated neural changes - to another, considered the ‘holy grail’ of BD research. Herein, we review studies investigating triggers that induce switching to these states. By identifying such triggers, researchers can study neural mechanisms underlying each state and importantly how such mechanistic changes can occur in the same subject. Current animal models of this switch are also discussed, from submissive- and dominant-behaviors to kindling effects. Focus however, is placed on how seasonal changes can induce manic and depressive states in BD sufferers. Importantly, changing photoperiod lengths can induce local switches in neurotransmitter expression in normal animals, from increased catecholaminergic expression during periods of high activity, to increased somatostatin and corticotrophin releasing factor during periods of low activity. Identifying susceptibilities to this switch would enable the development of targeted animal models. From animal models, targeted treatments could be developed and tested that would minimize the likelihood of switching. PMID:25814263

  8. Cell Mechanisms of Bone Tissue Loss Under Space Flight Conditions

    NASA Astrophysics Data System (ADS)

    Rodionova, Natalia

    Investigations on the space biosatellites has shown that the bone skeleton is one of the most im-portant targets of the effect space flight factors on the organism. Bone tissue cells were studied by electron microscopy in biosamples of rats' long bones flown on the board american station "SLS-2" and in experiments with modelling of microgravity ("tail suspension" method) with using autoradiography. The analysis of data permits to suppose that the processes of remod-eling in bone tissue at microgravity include the following succession of cell-to-cell interactions. Osteocytes as mechanosensory cells are first who respond to a changing "mechanical field". The next stage is intensification of osteolytic processes in osteocytes, leading to a volume en-largement of the osteocytic lacunae and removal of the "excess bone". Then mechanical signals have been transmitted through a system of canals and processes of the osteocytic syncitium to certain superficial bone zones and are perceived by osteoblasts and bone-lining cells (superficial osteocytes), as well as by the bone-marrow stromal cells. The sensitivity of stromal cells, pre-osteoblasts and osteoblasts, under microgravity was shown in a number of works. As a response to microgravity, the system of stromal cells -preosteoblasts -osteoblasts displays retardation of proliferation, differentiation and specific functions of osteogenetic cells. This is supported by the 3H-thymidine studies of the dynamics of differentiation of osteogenetic cells in remodeling zones. But unloading is not adequate and in part of the osteocytes are apoptotic changes as shown by our electron microscopic investigations. An osteocytic apoptosis can play the role in attraction the osteoclasts and in regulation of bone remodeling. The apoptotic bodies with a liquid flow through a system of canals are transferred to the bone surface, where they fulfil the role of haemoattractants for monocytes come here and form osteoclasts. The osteoclasts destroy

  9. The effects of calcipotriol on the dendritic morphology of human melanocytes under oxidative stress and a possible mechanism: is it a mitochondrial protector?

    PubMed

    Gong, Qingli; Li, Xue; Sun, Jie; Ding, Gaozhong; Zhou, Meihua; Zhao, Wene; Lu, Yan

    2015-02-01

    Vitiligo is an acquired pigmentary disorder of unknown etiology that is clinically characterized by the development of white macules in the skin related to the selective loss of melanocytes in those areas. Evidence shows that mitochondria might be a unifying target of reactive oxygen species (ROS) generation, cytokine production, catecholamine release and/or alteration of Ca(2+) metabolism that leads to melanocyte loss. To assess the protective effect of calcipotriol on mitochondria of human melanocytes by investigating their dendritic morphology under oxidative stress. Human melanocytes were treated with 0.05% H2O2 as well as various concentrations of calcipotriol, after which the retraction velocity of melanocyte dendrites was assessed. Detection of malondialdehyde (MDA) and superoxide dismutase (SOD) was performed as were the mitochondrial membrane potential (MMP) and intracellular calcium concentration ([Ca(2+)]i). Ultrastructural changes of mitochondria in melanocytes were observed by transmission electron microscopy. In addition, the expression of Beclin1, microtubule-associated protein 1 light chain 3 (LC3), dynamin related protein 1 (Drp1), mitofusin 1 (Mfn1) and mitofusin 2 (Mfn2), which are related to autophagy and mitochondrial dynamics, were analyzed by Western blot. Calcipotriol reduced the retraction velocity of melanocyte dendrites. In addition, calcipotriol, from 20nM to 80nM, decreased the level of MDA, increased the activity of SOD, suppressed the reduction of MMP and recovered Ca(2+) homeostasis by reducing [Ca(2+)]i in a concentration-dependent manner. Observation by transmission electron microscopy suggested that calcipotriol might reduce the injury of mitochondria in melanocytes under oxidative stress. Furthermore, the expression of Beclin1, LC3-II/LC3-I, Mfn2 and Drp1 was higher in the calcipotriol-treated melanocytes than in the control or H2O2-treated melanocytes. The level of Mfn1 was almost unchanged, but was higher at a concentration of

  10. Antiobesity Effects of Unripe Rubus coreanus Miquel and Its Constituents: An In Vitro and In Vivo Characterization of the Underlying Mechanism

    PubMed Central

    Oh, Dool-Ri; Kim, Yujin; Choi, Eun-jin; Hunmi-Lee; Jung, Myung-A; Bae, Donghyuck; Jo, Ara; Kim, Young Ran; Kim, Sunoh

    2016-01-01

    Background. The objective of the present study was to perform a bioguided fractionation of unripe Rubus coreanus Miquel (uRC) and evaluate the lipid accumulation system involvement in its antiobesity activity as well as study the uRC mechanism of action. Results. After the fractionation, the BuOH fraction of uRC (uRCB) was the most active fraction, suppressing the differentiation of 3T3-L1 adipocytes in a dose-dependent manner. Moreover, after an oral administration for 8 weeks in HFD-induced obese mice, uRCB (10 and 50 mg/kg/day) produced a significant decrease in body weight, food efficiency ratio, adipose tissue weight and LDL-cholesterol, serum glucose, TC, and TG levels. Similarly, uRCB significantly suppressed the elevated mRNA levels of PPARγ in the adipose tissue in vivo. Next, we investigated the antiobesity effects of ellagic acid, erycibelline, 5-hydroxy-2-pyridinemethanol, m-hydroxyphenylglycine, and 4-hydroxycoumarin isolated from uRCB. Without affecting cell viability, five bioactive compounds decreased the lipid accumulation in the 3T3-L1 cells and the mRNA expression levels of key adipogenic genes such as PPARγ, C/EBPα, SREBP-1c, ACC, and FAS. Conclusion. These results suggest that uRC and its five bioactive compounds may be a useful therapeutic agent for body weight control by downregulating adipogenesis and lipogenesis. PMID:26904142

  11. The effects of dickkopf 1 on gene expression and Wnt signaling by melanocytes: mechanisms underlying its suppression of melanocyte function and proliferation.

    PubMed

    Yamaguchi, Yuji; Passeron, Thierry; Watabe, Hidenori; Yasumoto, Ken-ichi; Rouzaud, Francois; Hoashi, Toshihiko; Hearing, Vincent J

    2007-05-01

    Dickkopf 1 (DKK1), which is expressed at high mRNA levels by fibroblasts in the dermis of human skin on the palms and soles, inhibits the function and proliferation of melanocytes in the epidermis of those areas via the suppression of beta-catenin and microphthalmia-associated transcription factor (MITF). In this study, we investigated the protein expression levels of DKK1 between palmoplantar and non-palmoplantar areas and the effects of DKK1 on melanocyte gene expression profiles and on Wnt signaling pathways using DNA microarray technology, reverse transcriptase-PCR, Western blot, 3-dimensional reconstructed skin, immunocytochemistry, and immunohistochemistry. DKK1-responsive genes included those encoding proteins involved in the regulation of melanocyte development, growth, differentiation, and apoptosis (including Kremen 1, G-coupled receptor 51, lipoprotein receptor-related protein 6, low-density lipoprotein receptor, tumor necrosis factor receptor super-family 10, growth arrest and DNA-damage-inducible gene 45beta, and MITF). Of special interest was the rapid decrease in expression of MITF in melanocytes treated with DKK1, which is concurrent with the decreased activities of beta-catenin and of glucose-synthase kinase 3beta via phosphorylation at Ser9 and with the upregulated expression of protein kinase C alpha. These results further clarify the mechanism by which DKK1 suppresses melanocyte density and differentiation, and help explain why DKK1-rich palmoplantar epidermis is paler than non-palmoplantar epidermis via mesenchymal-epithelial interactions.

  12. Nonlinear mechanical response of supercooled melts under applied forces

    NASA Astrophysics Data System (ADS)

    Cárdenas, Heliana; Frahsa, Fabian; Fritschi, Sebastian; Nicolas, Alexandre; Papenkort, Simon; Voigtmann, Thomas; Fuchs, Matthias

    2017-08-01

    We review recent progress on a microscopic theoretical approach to describe the nonlinear response of glass-forming colloidal dispersions under strong external forcing leading to homogeneous and inhomogeneous flow. Using mode-coupling theory (MCT), constitutive equations for the rheology of viscoelastic shear-thinning fluids are obtained. These are, in suitably simplified form, employed in continuum fluid dynamics, solved by a hybrid-Lattice Boltzmann (LB) algorithm that was developed to deal with long-lasting memory effects. The combined microscopic theoretical and mesoscopic numerical approach captures a number of phenomena far from equilibrium, including the yielding of metastable states, process-dependent mechanical properties, and inhomogeneous pressure-driven channel flow.

  13. The Intricate Interplay between Mechanisms Underlying Aging and Cancer

    PubMed Central

    Piano, Amanda; Titorenko, Vladimir I.

    2015-01-01

    Age is the major risk factor in the incidence of cancer, a hyperplastic disease associated with aging. Here, we discuss the complex interplay between mechanisms underlying aging and cancer as a reciprocal relationship. This relationship progresses with organismal age, follows the history of cell proliferation and senescence, is driven by common or antagonistic causes underlying aging and cancer in an age-dependent fashion, and is maintained via age-related convergent and divergent mechanisms. We summarize our knowledge of these mechanisms, outline the most important unanswered questions and suggest directions for future research. PMID:25657853

  14. Effects of eye movement desensitization and reprocessing (EMDR) on non-specific chronic back pain: a randomized controlled trial with additional exploration of the underlying mechanisms

    PubMed Central

    2013-01-01

    Background Non-specific chronic back pain (CBP) is often accompanied by psychological trauma, but treatment for this associated condition is often insufficient. Nevertheless, despite the common co-occurrence of pain and psychological trauma, a specific trauma-focused approach for treating CBP has been neglected to date. Accordingly, eye movement desensitization and reprocessing (EMDR), originally developed as a treatment approach for posttraumatic stress disorders, is a promising approach for treating CBP in patients who have experienced psychological trauma. Thus, the aim of this study is to determine whether a standardized, short-term EMDR intervention added to treatment as usual (TAU) reduces pain intensity in CBP patients with psychological trauma vs. TAU alone. Methods/design The study will recruit 40 non-specific CBP patients who have experienced psychological trauma. After a baseline assessment, the patients will be randomized to either an intervention group (n = 20) or a control group (n = 20). Individuals in the EMDR group will receive ten 90-minute sessions of EMDR fortnightly in addition to TAU. The control group will receive TAU alone. The post-treatment assessments will take place two weeks after the last EMDR session and six months later. The primary outcome will be the change in the intensity of CBP within the last four weeks (numeric rating scale 0–10) from the pre-treatment assessment to the post-treatment assessment two weeks after the completion of treatment. In addition, the patients will undergo a thorough assessment of the change in the experience of pain, disability, trauma-associated distress, mental co-morbidities, resilience, and quality of life to explore distinct treatment effects. To explore the mechanisms of action that are involved, changes in pain perception and pain processing (quantitative sensory testing, conditioned pain modulation) will also be assessed. The statistical analysis of the primary outcome will be performed

  15. The mechanism and effect of defects in the B1 B2 phase transition of KCl under high pressure: molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Kinoshita, Takahiro; Mashimo, Tsutomu; Kawamura, Katsuyuki

    2005-02-01

    Molecular dynamics (MD) simulations of the pressure-induced phase transition of potassium chloride (KCl) were performed with 2744 and 9000 atoms to study crystalline states, the process and the effects of defects under high hydrostatic pressure. In this study, we adopted the Born-Mayer-Huggins-type potential function to describe the interatomic interaction. The potential parameters used in this study were empirically optimized on the basis of Hugoniot equation of state data. The simulation results for perfect crystals (1372 K+ and 1372 Cl-) showed that the B1-B2 phase transition occurred with large hysteresis, and the thermodynamic transition pressure was calculated to be 3.5 GPa. The simulation results indicated that the phase transition proceeded through displacements of atomic lines parallel to the \\langle 100\\rangle axis direction of the B1-type structure, and that these lines corresponded to the atomic lines parallel to the \\langle 111\\rangle axis direction of the B2-type structure after the phase transition. In the case of the larger cells containing 9000 atoms with weak or strong van der Waals interactions, some clusters or dislocations, respectively, were generated in the resultant B2 phase. As regards dislocations, the phase transitions started around dislocations and the phase transition pressure decreased.

  16. [Mechanism of cardiac atrophy under weightlessness/simulated weightlessness].

    PubMed

    Zhong, Guo-Hui; Ling, Shu-Kuan; Li, Ying-Xian

    2016-04-25

    Cardiac remodeling is the heart's response to external or internal stimuli. Weightlessness/simulated weightlessness leads to cardiac atrophy and heart function declining. Understanding the mechanism of cardiac atrophy under weightlessness is important to help astronaut recover from unloading-induced cardiovascular changes after spaceflight. Unloading-induced changes of hemodynamics, metabolic demands and neurohumoral regulation contribute to cardiac atrophy and function declining. During this process, Ca(2+)-related signaling, NF-κB signaling, ERK signaling, ubiquitin-proteasome pathway and autophagy are involved in weightlessness-induced cardiac atrophy. This article reviews the underlying mechanism of cardiac atrophy under weightlessness/simulated weightlessness.

  17. Unsuspected pyocyanin effect in yeast under anaerobiosis.

    PubMed

    Barakat, Rana; Goubet, Isabelle; Manon, Stephen; Berges, Thierry; Rosenfeld, Eric

    2014-02-01

    The blue-green phenazine, Pyocyanin (PYO), is a well-known virulence factor produced by Pseudomonas aeruginosa, notably during cystic fibrosis lung infections. It is toxic to both eukaryotic and bacterial cells and several mechanisms, including the induction of oxidative stress, have been postulated. However, the mechanism of PYO toxicity under the physiological conditions of oxygen limitation that are encountered by P. aeruginosa and by target organisms in vivo remains unclear. In this study, wild-type and mutant strains of the yeast Saccharomyces cerevisiae were used as an effective eukaryotic model to determine the toxicity of PYO (100-500 μmol/L) under key growth conditions. Under respiro-fermentative conditions (with glucose as substrate), WT strains and certain H2 O2 -hypersensitive strains showed a low-toxic response to PYO. Under respiratory conditions (with glycerol as substrate) all the strains tested were significantly more sensitive to PYO. Four antioxidants were tested but only N-acetylcysteine was capable of partially counteracting PYO toxicity. PYO did not appear to affect short-term respiratory O2 uptake, but it did seem to interfere with cyanide-poisoned mitochondria through a complex III-dependent mechanism. Therefore, a combination of oxidative stress and respiration disturbance could partly explain aerobic PYO toxicity. Surprisingly, the toxic effects of PYO were more significant under anaerobic conditions. More pronounced effects were observed in several strains including a 'petite' strain lacking mitochondrial DNA, strains with increased or decreased levels of ABC transporters, and strains deficient in DNA damage repair. Therefore, even though PYO is toxic for actively respiring cells, O2 may indirectly protect the cells from the higher anaerobic-linked toxicity of PYO. The increased sensitivity to PYO under anaerobic conditions is not unique to S. cerevisiae and was also observed in another yeast, Candida albicans.

  18. Microcracking in composite laminates under thermal and mechanical loading. Thesis

    NASA Technical Reports Server (NTRS)

    Maddocks, Jason R.

    1995-01-01

    Composites used in space structures are exposed to both extremes in temperature and applied mechanical loads. Cracks in the matrix form, changing the laminate thermoelastic properties. The goal of the present investigation is to develop a predictive methodology to quantify microcracking in general composite laminates under both thermal and mechanical loading. This objective is successfully met through a combination of analytical modeling and experimental investigation. In the analysis, the stress and displacement distributions in the vicinity of a crack are determined using a shear lag model. These are incorporated into an energy based cracking criterion to determine the favorability of crack formation. A progressive damage algorithm allows the inclusion of material softening effects and temperature-dependent material properties. The analysis is implemented by a computer code which gives predicted crack density and degraded laminate properties as functions of any thermomechanical load history. Extensive experimentation provides verification of the analysis. AS4/3501-6 graphite/epoxy laminates are manufactured with three different layups to investigate ply thickness and orientation effects. Thermal specimens are cooled to progressively lower temperatures down to -184 C. After conditioning the specimens to each temperature, cracks are counted on their edges using optical microscopy and in their interiors by sanding to incremental depths. Tensile coupons are loaded monotonically to progressively higher loads until failure. Cracks are counted on the coupon edges after each loading. A data fit to all available results provides input parameters for the analysis and shows them to be material properties, independent of geometry and loading. Correlation between experiment and analysis is generally very good under both thermal and mechanical loading, showing the methodology to be a powerful, unified tool. Delayed crack initiation observed in a few cases is attributed to a

  19. Effects of dividing the transverse carpal ligament on the mechanical behavior of the carpal bones under axial compressive load: a finite element study.

    PubMed

    Guo, Xin; Fan, Yubo; Li, Zong-Ming

    2009-03-01

    Transecting the transverse carpal ligament (TCL) is a routine procedure to surgically treat carpal tunnel syndrome; yet, its mechanical consequences on carpal bones are unclear. In this study, our intent was to perform a computational analysis of carpal biomechanics resulting from TCL release. A three-dimensional finite element model of the wrist was constructed, which included all the carpal bones, the distal ulna and radius, the proximal metacarpals and the interosseous ligaments. Cartilage layers of each bone were modeled manually according to anatomic visualization software. The TCL was also modeled in three dimensions and added to the bone model. A 100-Newton axial load was applied to the upper section of the second and third metacarpals. The effects of dividing the TCL on the displacements of the carpal bones and the contact stress distribution in the midcarpal joints were studied using a finite element analysis method. When the TCL was divided, the axial compressive load resulted in the carpal bones deviating more radially. More specifically, the carpal bones on the radial side of the capitate and lunate (i.e. the trapezium, trapezoid, and scaphoid) moved further toward the radius, and the carpal bones on the ulnar side of the capitate and lunate (i.e. hamate, triquetrum, and pisiform) moved further toward the metacarpals. The contact stresses and contact locations in the midcarpal joints changed as a result of dividing the TCL. The changes in displacements of carpal bones and the contact stress distributions in the midcarpal joints due to TCL release may be implicated for some of the postoperative complications associated with carpal tunnel release.

  20. Investigation of the mechanisms underlying the differential effects of the K262R mutation of P450 2B6 on catalytic activity

    PubMed Central

    Bumpus, Namandjé N.; Hollenberg, Paul F.

    2008-01-01

    Human P450 2B6 is a polymorphic enzyme involved in the oxidative metabolism of a number of clinically relevant substrates. The lysine 262 to arginine mutant of P450 2B6 (P450 2B6.4) has been shown to have differential effects on P450 2B6 catalytic activity. We previously reported that the mutant enzyme was not able to metabolize 17-α-ethynylestradiol (17EE) or become inactivated by 17EE or efavirenz, which are inactivators of the wild-type enzyme. Studies were performed to elucidate the mechanism by which this mutation affects P450 2B6 catalytic activity. Studies using phenyldiazene to investigate differences between the active site topologies of the wild-type and mutant enzymes revealed only minor differences. Similarly, Ks values for the binding of both benzphetamine and efavirenz were comparable between the two enzymes. Using the alternate oxidant tert-butyl hydroperoxide, the mutant enzyme was inactivated by both 17EE and efavirenz. The stoichiometry of 17EE and efavirenz metabolism by P450s 2B6 and 2B6.4 revealed the mutant enzyme was more uncoupled, producing hydrogen peroxide as the primary product. Interestingly, the addition of cytochrome b5 improved the coupling of the mutant, resulting in increased catalytic activity. In the presence of cytochrome b5 the variant readily metabolized 17EE and was inactivated by both 17EE and efavirenz. It is therefore proposed that the oxyferrous or iron-peroxo intermediate formed by the mutant enzyme in the presence of 17EE and efavirenz may be less stable than the same intermediates formed by the wild-type enzyme. PMID:18621926

  1. Continuing to illuminate the mechanisms underlying UV-mediated melanomagenesis.

    PubMed

    Dellinger, Ryan W; Liu-Smith, Feng; Meyskens, Frank L

    2014-09-05

    The incidence of melanoma is one of the fastest growing of all tumor types in the United States and the number of cases worldwide has doubled in the past 30 years. Melanoma, which arises from melanocytes, is an extremely aggressive tumor that invades the vascular and lymphatic systems to establish tumors elsewhere in the body. Melanoma is a particularly resilient cancer and systemic therapy approaches have achieved minimal success against metastatic melanoma resulting in only a few FDA-approved treatments with limited benefit. Leading treatments offer minimal efficacy with response rates generally under 15% in the long term with no clear effect on melanoma-related mortality. Even the recent success of the specific BRAF mutant inhibitor vemurafenib has been tempered somewhat since acquired resistance is rapidly observed. Thus, understanding the mechanism(s) of melanoma carcinogenesis is paramount to combating this deadly disease. Not only for the treatment of melanoma but, ultimately, for prevention. In this report, we will summarize our work to date regarding the characterization of ultraviolet radiation (UVR)-mediated melanomagenesis and highlight several promising avenues of ongoing research.

  2. Neurodevelopmental Disorders and Environmental Toxicants: Epigenetics as an Underlying Mechanism.

    PubMed

    Tran, Nguyen Quoc Vuong; Miyake, Kunio

    2017-01-01

    The increasing prevalence of neurodevelopmental disorders, especially autism spectrum disorders (ASD) and attention deficit hyperactivity disorder (ADHD), calls for more research into the identification of etiologic and risk factors. The Developmental Origin of Health and Disease (DOHaD) hypothesizes that the environment during fetal and childhood development affects the risk for many chronic diseases in later stages of life, including neurodevelopmental disorders. Epigenetics, a term describing mechanisms that cause changes in the chromosome state without affecting DNA sequences, is suggested to be the underlying mechanism, according to the DOHaD hypothesis. Moreover, many neurodevelopmental disorders are also related to epigenetic abnormalities. Experimental and epidemiological studies suggest that exposure to prenatal environmental toxicants is associated with neurodevelopmental disorders. In addition, there is also evidence that environmental toxicants can result in epigenetic alterations, notably DNA methylation. In this review, we first focus on the relationship between neurodevelopmental disorders and environmental toxicants, in particular maternal smoking, plastic-derived chemicals (bisphenol A and phthalates), persistent organic pollutants, and heavy metals. We then review studies showing the epigenetic effects of those environmental factors in humans that may affect normal neurodevelopment.

  3. Neurodevelopmental Disorders and Environmental Toxicants: Epigenetics as an Underlying Mechanism

    PubMed Central

    2017-01-01

    The increasing prevalence of neurodevelopmental disorders, especially autism spectrum disorders (ASD) and attention deficit hyperactivity disorder (ADHD), calls for more research into the identification of etiologic and risk factors. The Developmental Origin of Health and Disease (DOHaD) hypothesizes that the environment during fetal and childhood development affects the risk for many chronic diseases in later stages of life, including neurodevelopmental disorders. Epigenetics, a term describing mechanisms that cause changes in the chromosome state without affecting DNA sequences, is suggested to be the underlying mechanism, according to the DOHaD hypothesis. Moreover, many neurodevelopmental disorders are also related to epigenetic abnormalities. Experimental and epidemiological studies suggest that exposure to prenatal environmental toxicants is associated with neurodevelopmental disorders. In addition, there is also evidence that environmental toxicants can result in epigenetic alterations, notably DNA methylation. In this review, we first focus on the relationship between neurodevelopmental disorders and environmental toxicants, in particular maternal smoking, plastic-derived chemicals (bisphenol A and phthalates), persistent organic pollutants, and heavy metals. We then review studies showing the epigenetic effects of those environmental factors in humans that may affect normal neurodevelopment. PMID:28567415

  4. Video analysis of concussion injury mechanism in under-18 rugby

    PubMed Central

    Hendricks, Sharief; O'Connor, Sam; Lambert, Michael; Brown, James C; Burger, Nicholas; Mc Fie, Sarah; Readhead, Clint; Viljoen, Wayne

    2016-01-01

    Background Understanding the mechanism of injury is necessary for the development of effective injury prevention strategies. Video analysis of injuries provides valuable information on the playing situation and athlete-movement patterns, which can be used to formulate these strategies. Therefore, we conducted a video analysis of the mechanism of concussion injury in junior-level rugby union and compared it with a representative and matched non-injury sample. Methods Injury reports for 18 concussion events were collected from the 2011 to 2013 under-18 Craven Week tournaments. Also, video footage was recorded for all 3 years. On the basis of the injury events, a representative ‘control’ sample of matched non-injury events in the same players was identified. The video footage, which had been recorded at each tournament, was then retrospectively analysed and coded. 10 injury events (5 tackle, 4 ruck, 1 aerial collision) and 83 non-injury events were analysed. Results All concussions were a result of contact with an opponent and 60% of players were unaware of the impending contact. For the measurement of head position on contact, 43% had a ‘down’ position, 29% the ‘up and forward’ and 29% the ‘away’ position (n=7). The speed of the injured tackler was observed as ‘slow’ in 60% of injurious tackles (n=5). In 3 of the 4 rucks in which injury occurred (75%), the concussed player was acting defensively either in the capacity of ‘support’ (n=2) or as the ‘jackal’ (n=1). Conclusions Training interventions aimed at improving peripheral vision, strengthening of the cervical muscles, targeted conditioning programmes to reduce the effects of fatigue, and emphasising safe and effective playing techniques have the potential to reduce the risk of sustaining a concussion injury. PMID:27900149

  5. The behavior of the planetary rings under the Kozai Mechanism

    NASA Astrophysics Data System (ADS)

    Sucerquia, M. A.; Ramírez, C. V.; Zuluaga, J. I.

    2017-07-01

    Rings are one of the main feature of almost all giant planets in the Solar System. Even though thousands of exoplanets have been discovered to date, no evidence of exoplanetary rings have been found despite the effort made in the development and enhancing of techniques and methods for direct or indirect detection. In the transit of a ringed planet, the dynamic of the ring itself could play a meaningful role due to the so called Kozai Mechanism (KM) acting on each particle of it. When some specific initial conditions of the ring are fulfilled (as a ring inclination greater than ˜ 39°), KM generates short periodic changes in the inclination and eccentricity of each particle, leading to a meaningful characteristic collective behavior of the ring: it changes its width, inclination and optical depth. These changes induce periodic variations on the eclipsed area of the parent star, generating slight changes in the observed transit signal. Under this mechanism, light curves depths and shapes oscillate according to the fluctuations of the ring. To show this effect we have performed numerical simulations of the dynamic of a system of particles to asses the ring inclination and width variations over time. We have calculated the expected variations in the transit depth and finally, we have estimated the effect on the light curve of a hypothetical ringed exoplanet affected by the KM. The detection of this effect could be used as an alternative method to detect/confirm exoplanetary rings, and also it could be considered as a way to explain anomalous light curves patterns of exoplanets, as the case of KIC 8462852 star.

  6. Regulatory mechanisms underlying the differential growth of dendrites and axons.

    PubMed

    Wang, Xin; Sterne, Gabriella R; Ye, Bing

    2014-08-01

    A typical neuron is comprised of an information input compartment, or the dendrites, and an output compartment, known as the axon. These two compartments are the structural basis for functional neural circuits. However, little is known about how dendritic and axonal growth are differentially regulated. Recent studies have uncovered two distinct types of regulatory mechanisms that differentiate dendritic and axonal growth: dedicated mechanisms and bimodal mechanisms. Dedicated mechanisms regulate either dendritespecific or axon-specific growth; in contrast, bimodal mechanisms direct dendritic and axonal development in opposite manners. Here, we review the dedicated and bimodal regulators identified by recent Drosophila and mammalian studies. The knowledge of these underlying molecular mechanisms not only expands our understanding about how neural circuits are wired, but also provides insights that will aid in the rational design of therapies for neurological diseases.

  7. Mechanisms underlying the antihypertensive properties of Urtica dioica.

    PubMed

    Qayyum, Rahila; Qamar, Hafiz Misbah-Ud-Din; Khan, Shamim; Salma, Umme; Khan, Taous; Shah, Abdul Jabbar

    2016-09-01

    Urtica dioica has traditionally been used in the management of cardiovascular disorders especially hypertension. The aim of this study was to explore pharmacological base of its use in hypertension. Crude methanolic extract of U. dioica (Ud.Cr) and its fractions (Ud.EtAc, Ud.nHex, Ud.Chl and Ud.Aq) were tested in vivo on normotensive and hypertensive rats under anesthesia for blood pressure lowering effect. In-vitro experiments on rat and rabbit aortae were employed to probe the vasorelaxation mechanism(s). The responses were measured using pressure and force transducers connected to PowerLab Data Acquisition System. Ud.Cr and fractions were found more effective antihypertensive in hypertensive rats than normotensive with remarkable potency exhibited by the ethyl acetate fraction. The effect was same in the presence of atropine. In isolated rat aortic rings, Ud.Cr and all its fractions exhibited L-NAME sensitive endothelium-dependent vasodilator effect and also inhibit K(+) (80 mM)-induced pre-contractions. In isolated rabbit thoracic aortic rings Ud.Cr and its fractions induced relaxation with more potency against K(+) (80 mM) than phenylephrine (1 µM) like verapamil, showing Ud.EtAc fraction the most potent one. Pre-incubation of aortic rings with Ud.Cr and its fractions exhibited Ca(2+) channel blocking activity comparable with verapamil by shifting Ca(2+) concentration response curves to the right. Ud.Cr and its fractions also ablated the intracellular Ca(2+) release by suppressing PE peak formation in Ca(2+) free medium. When tested on basal tension, the crude extract and all fractions were devoid of any vasoconstrictor effect. These data indicate that crude methanolic extract and its fractions possess antihypertensive effect. Identification of NO-mediated vasorelaxation and calcium channel blocking effects explain the antihypertensive potential of U. dioica and provide a potential pharmacological base to its medicinal use in the management of hypertension.

  8. Different neurophysiological mechanisms underlying word and rule extraction from speech.

    PubMed

    De Diego Balaguer, Ruth; Toro, Juan Manuel; Rodriguez-Fornells, Antoni; Bachoud-Lévi, Anne-Catherine

    2007-11-14

    The initial process of identifying words from spoken language and the detection of more subtle regularities underlying their structure are mandatory processes for language acquisition. Little is known about the cognitive mechanisms that allow us to extract these two types of information and their specific time-course of acquisition following initial contact with a new language. We report time-related electrophysiological changes that occurred while participants learned an artificial language. These changes strongly correlated with the discovery of the structural rules embedded in the words. These changes were clearly different from those related to word learning and occurred during the first minutes of exposition. There is a functional distinction in the nature of the electrophysiological signals during acquisition: an increase in negativity (N400) in the central electrodes is related to word-learning and development of a frontal positivity (P2) is related to rule-learning. In addition, the results of an online implicit and a post-learning test indicate that, once the rules of the language have been acquired, new words following the rule are processed as words of the language. By contrast, new words violating the rule induce syntax-related electrophysiological responses when inserted online in the stream (an early frontal negativity followed by a late posterior positivity) and clear lexical effects when presented in isolation (N400 modulation). The present study provides direct evidence suggesting that the mechanisms to extract words and structural dependencies from continuous speech are functionally segregated. When these mechanisms are engaged, the electrophysiological marker associated with rule-learning appears very quickly, during the earliest phases of exposition to a new language.

  9. Mechanisms of mutant PDE6 proteins underlying retinal diseases.

    PubMed

    Gopalakrishna, Kota N; Boyd, Kimberly; Artemyev, Nikolai O

    2017-09-01

    Mutations in PDE6 genes encoding the effector enzymes in rods and cones underlie severe retinal diseases including retinitis pigmentosa (RP), autosomal dominant congenital stationary night blindness (adCSNB), and achromatopsia (ACHM). Here we examined a spectrum of pathogenic missense mutations in PDE6 using the system based on co-expression of cone PDE6C with its specialized chaperone AIPL1 and the regulatory Pγ subunit as a potent co-chaperone. We uncovered two mechanisms of PDE6C mutations underlying ACHM: (a) folding defects leading to expression of catalytically inactive proteins and (b) markedly diminished ability of Pγ to co-chaperone mutant PDE6C proteins thereby dramatically reducing the levels of functional enzyme. The mechanism of the Rambusch adCSNB associated with the H258N substitution in PDE6B was probed through the analysis of the model mutant PDE6C-H262N. We identified two interrelated deficits of PDE6C-H262N: disruption of the inhibitory interaction of Pγ with mutant PDE6C that markedly reduced the ability of Pγ to augment the enzyme folding. Thus, we conclude that the Rambusch adCSNB is triggered by low levels of the constitutively active PDE6. Finally, we examined PDE6C-L858V, which models PDE6B-L854V, an RP-linked mutation that alters the protein isoprenyl modification. This analysis suggests that the type of prenyl modifications does not impact the folding of PDE6, but it modulates the enzyme affinity for its trafficking partner PDE6D. Hence, the pathogenicity of PDE6B-L854V likely arises from its trafficking deficiency. Taken together, our results demonstrate the effectiveness of the PDE6C expression system to evaluate pathogenicity and elucidate the mechanisms of PDE6 mutations in retinal diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Molecular Mechanisms Regulating Muscle Fiber Composition Under Microgravity

    NASA Technical Reports Server (NTRS)

    Rosenthal, Nadia A.

    1999-01-01

    The overall goal of this project is to reveal the molecular mechanisms underlying the selective and debilitating atrophy of specific skeletal muscle fiber types that accompanies sustained conditions of microgravity. Since little is currently known about the regulation of fiber-specific gene expression programs in mammalian muscle, elucidation of the basic mechanisms of fiber diversification is a necessary prerequisite to the generation of therapeutic strategies for attenuation of muscle atrophy on earth or in space. Vertebrate skeletal muscle development involves the fusion of undifferentiated mononucleated myoblasts to form multinucleated myofibers, with a concomitant activation of muscle-specific genes encoding proteins that form the force-generating contractile apparatus. The regulatory circuitry controlling skeletal muscle gene expression has been well studied in a number of vertebrate animal systems. The goal of this project has been to achieve a similar level of understanding of the mechanisms underlying the further specification of muscles into different fiber types, and the role played by innervation and physical activity in the maintenance and adaptation of different fiber phenotypes into adulthood. Our recent research on the genetic basis of fiber specificity has focused on the emergence of mature fiber types and have implicated a group of transcriptional regulatory proteins, known as E proteins, in the control of fiber specificity. The restriction of E proteins to selected muscle fiber types is an attractive hypothetical mechanism for the generation of muscle fiber-specific patterns of gene expression. To date our results support a model wherein different E proteins are selectively expressed in muscle cells to determine fiber-restricted gene expression. These studies are a first step to define the molecular mechanisms responsible for the shifts in fiber type under conditions of microgravity, and to determine the potential importance of E proteins as

  11. Mechanical degradation of fuel cell membranes under fatigue fracture tests

    NASA Astrophysics Data System (ADS)

    Khorasany, Ramin M. H.; Sadeghi Alavijeh, Alireza; Kjeang, Erik; Wang, G. G.; Rajapakse, R. K. N. D.

    2015-01-01

    The effects of cyclic stresses on the fatigue and mechanical stability of perfluorosulfonic acid (PFSA) membranes are experimentally investigated under standard fuel cell conditions. The experiments are conducted ex-situ by subjecting membrane specimens to cyclic uniaxial tension at controlled temperature and relative humidity. The fatigue lifetime is measured in terms of the number of cycles until ultimate fracture. The results indicate that the membrane fatigue lifetime is a strong function of the applied stress, temperature, and relative humidity. The fatigue life increases exponentially with reduced stresses in all cases. The effect of temperature is found to be more significant than that of humidity, with reduced fatigue life at high temperatures. The maximum membrane strain at fracture is determined to decrease exponentially with increasing membrane lifetime. At a given fatigue life, a membrane exposed to fuel cell conditions is shown to accommodate more plastic strain before fracture than one exposed to room conditions. Overall, the proposed ex-situ membrane fatigue experiment can be utilized to benchmark the fatigue lifetime of new materials in a fraction of the time and cost associated with conventional in-situ accelerated stress testing methods.

  12. Mechanical analysis of PA66 under combined shear-compression

    NASA Astrophysics Data System (ADS)

    Duan, Qian; Jin, Tao; Chen, Shengjia; Shu, Xuefeng

    2017-05-01

    The large-strain mechanical behavior of PA66 was investigated using shear-compression specimens (SCS) with two opposite slots machined at different angles (15°, 30°, 45°, and 50°). Results show that strain rate and slot angle affect the equivalent stress in different levels. Slot angle sensitivity affects both flow stress and hardening characteristics, and strain rate influences elastic deformation. Increasing the strain rate gradually increases the equivalent stress. SCS with a slot angle of 30° exhibits the largest equivalent stress and the greatest effect of strain rate. The stress-strain curve differs between cylindrical specimens and SCS under quasi-static conditions. The yield stress obtained by the cylindrical specimens is higher than that of SCS. A constitutive model is modified based on the Drucker-Prager criterion to describe the effect of hydrostatic pressure and strain rate on the equivalent yield stress of polymer materials. The theoretical formula predictions are consistent with experimental results, thereby confirming the feasibility of this constitutive relationship.

  13. [Underlying Mechanisms and Management of Refractory Gastroesophageal Reflux Disease].

    PubMed

    Lee, Kwang Jae

    2015-08-01

    The prevalence of gastroesophageal reflux disease (GERD) in South Korea has increased over the past 10 years. Patients with erosive reflux disease (ERD) shows better response to proton pump inhibitors (PPIs) than those with non-erosive reflux disease (NERD). NERD is a heterogeneous condition, showing pathological gastroesophageal reflux or esophageal hypersensitivity to reflux contents. NERD patients with pathological gastroesophageal reflux or hypersensitivity to acid may respond to PPIs. However, many patients with esophageal hypersensitivity to nonacid or functional heartburn do not respond to PPIs. Therefore, careful history and investigations are required when managing patients with refractory GERD who show poor response to conventional dose PPIs. Combined pH-impedance studies and a PPI diagnostic trial are recommended to reveal underlying mechanisms of refractory symptoms. For those with ongoing reflux-related symptoms, split dose administration, change to long-acting PPIs or PPIs less influenced by CYP2C19 genotypes, increasing dose of PPIs, and the addition of alginate preparations, prokinetics, selective serotonin reuptake inhibitors, or tricyclic antidepressants can be considered. Pain modulators, selective serotonin reuptake inhibitors, or tricyclic antidepressants are more likely to be effective for those with reflux-unrelated symptoms. Surgery or endoscopic per oral fundoplication may be effective in selected patients.

  14. Molecular mechanisms underlying the fetal programming of adult disease.

    PubMed

    Vo, Thin; Hardy, Daniel B

    2012-08-01

    Adverse events in utero can be critical in determining quality of life and overall health. It is estimated that up to 50 % of metabolic syndrome diseases can be linked to an adverse fetal environment. However, the mechanisms linking impaired fetal development to these adult diseases remain elusive. This review uncovers some of the molecular mechanisms underlying how normal physiology may be impaired in fetal and postnatal life due to maternal insults in pregnancy. By understanding the mechanisms, which include epigenetic, transcriptional, endoplasmic reticulum (ER) stress, and reactive oxygen species (ROS), we also highlight how intervention in fetal and neonatal life may be able to prevent these diseases long-term.

  15. Gaussian effective potential: Quantum mechanics

    NASA Astrophysics Data System (ADS)

    Stevenson, P. M.

    1984-10-01

    We advertise the virtues of the Gaussian effective potential (GEP) as a guide to the behavior of quantum field theories. Much superior to the usual one-loop effective potential, the GEP is a natural extension of intuitive notions familiar from quantum mechanics. A variety of quantum-mechanical examples are studied here, with an eye to field-theoretic analogies. Quantum restoration of symmetry, dynamical mass generation, and "quantum-mechanical resuscitation" are among the phenomena discussed. We suggest how the GEP could become the basis of a systematic approximation procedure. A companion paper will deal with scalar field theory.

  16. Emotional responses to music: the need to consider underlying mechanisms.

    PubMed

    Juslin, Patrik N; Västfjäll, Daniel

    2008-10-01

    Research indicates that people value music primarily because of the emotions it evokes. Yet, the notion of musical emotions remains controversial, and researchers have so far been unable to offer a satisfactory account of such emotions. We argue that the study of musical emotions has suffered from a neglect of underlying mechanisms. Specifically, researchers have studied musical emotions without regard to how they were evoked, or have assumed that the emotions must be based on the "default" mechanism for emotion induction, a cognitive appraisal. Here, we present a novel theoretical framework featuring six additional mechanisms through which music listening may induce emotions: (1) brain stem reflexes, (2) evaluative conditioning, (3) emotional contagion, (4) visual imagery, (5) episodic memory, and (6) musical expectancy. We propose that these mechanisms differ regarding such characteristics as their information focus, ontogenetic development, key brain regions, cultural impact, induction speed, degree of volitional influence, modularity, and dependence on musical structure. By synthesizing theory and findings from different domains, we are able to provide the first set of hypotheses that can help researchers to distinguish among the mechanisms. We show that failure to control for the underlying mechanism may lead to inconsistent or non-interpretable findings. Thus, we argue that the new framework may guide future research and help to resolve previous disagreements in the field. We conclude that music evokes emotions through mechanisms that are not unique to music, and that the study of musical emotions could benefit the emotion field as a whole by providing novel paradigms for emotion induction.

  17. Cell-Nonautonomous Mechanisms Underlying Cellular and Organismal Aging.

    PubMed

    Medkour, Younes; Svistkova, Veronika; Titorenko, Vladimir I

    2016-01-01

    Cell-autonomous mechanisms underlying cellular and organismal aging in evolutionarily distant eukaryotes have been established; these mechanisms regulate longevity-defining processes within a single eukaryotic cell. Recent findings have provided valuable insight into cell-nonautonomous mechanisms modulating cellular and organismal aging in eukaryotes across phyla; these mechanisms involve a transmission of various longevity factors between different cells, tissues, and organisms. Herein, we review such cell-nonautonomous mechanisms of aging in eukaryotes. We discuss the following: (1) how low molecular weight transmissible longevity factors modulate aging and define longevity of cells in yeast populations cultured in liquid media or on solid surfaces, (2) how communications between proteostasis stress networks operating in neurons and nonneuronal somatic tissues define longevity of the nematode Caenorhabditis elegans by modulating the rates of aging in different tissues, and (3) how different bacterial species colonizing the gut lumen of C. elegans define nematode longevity by modulating the rate of organismal aging.

  18. Neural Circuitry and Plasticity Mechanisms Underlying Delay Eyeblink Conditioning

    ERIC Educational Resources Information Center

    Freeman, John H.; Steinmetz, Adam B.

    2011-01-01

    Pavlovian eyeblink conditioning has been used extensively as a model system for examining the neural mechanisms underlying associative learning. Delay eyeblink conditioning depends on the intermediate cerebellum ipsilateral to the conditioned eye. Evidence favors a two-site plasticity model within the cerebellum with long-term depression of…

  19. Neural Circuitry and Plasticity Mechanisms Underlying Delay Eyeblink Conditioning

    ERIC Educational Resources Information Center

    Freeman, John H.; Steinmetz, Adam B.

    2011-01-01

    Pavlovian eyeblink conditioning has been used extensively as a model system for examining the neural mechanisms underlying associative learning. Delay eyeblink conditioning depends on the intermediate cerebellum ipsilateral to the conditioned eye. Evidence favors a two-site plasticity model within the cerebellum with long-term depression of…

  20. Mechanical Isolation of Highly Stable Antimonene under Ambient Conditions.

    PubMed

    Ares, Pablo; Aguilar-Galindo, Fernando; Rodríguez-San-Miguel, David; Aldave, Diego A; Díaz-Tendero, Sergio; Alcamí, Manuel; Martín, Fernando; Gómez-Herrero, Julio; Zamora, Félix

    2016-08-01

    Antimonene fabricated by mechanical exfoliation is highly stable under atmospheric conditions over periods of months and even when immersed in water. Density functional theory confirms the experiments and predicts an electronic gap of ≈1 eV. These results highlight the use of antimonene for optoelectronics applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Depressive effects on the central nervous system and underlying mechanism of the enzymatic extract and its phlorotannin-rich fraction from Ecklonia cava edible brown seaweed.

    PubMed

    Cho, Suengmok; Han, Daeseok; Kim, Seon-Bong; Yoon, Minseok; Yang, Hyejin; Jin, Young-Ho; Jo, Jinho; Yong, Hyeim; Lee, Sang-Hoon; Jeon, You-Jin; Shimizu, Makoto

    2012-01-01

    Marine plants have been reported to possess various pharmacological properties; however, there have been few reports on their neuropharmacological effects. Terrestrial plants have depressive effects on the central nervous system (CNS) because of their polyphenols which make them effective as anticonvulsants and sleep inducers. We investigated in this study the depressive effects of the polyphenol-rich brown seaweed, Ecklonia cava (EC), on CNS. An EC enzymatic extract (ECEE) showed significant anticonvulsive (>500 mg/kg) and sleep-inducing (>500 mg/kg) effects on the respective mice seizure induced by picrotoxin and on the mice sleep induced by pentobarbital. The phlorotannin-rich fraction (PTRF) from ECEE significantly potentiated the pentobarbital-induced sleep at >50 mg/kg. PTRF had binding activity to the gamma aminobutyric acid type A (GABA(A))-benzodiazepine (BZD) receptors. The sleep-inducing effects of diazepam (DZP, a well-known GABA(A)-BZD agonist), ECEE, and PTRF were completely blocked by flumazenil, a well-known antagonist of GABA(A)-BZD receptors. These results imply that ECEE produced depressive effects on CNS by positive allosteric modulation of its phlorotannins on GABA(A)-BZD receptors like DZP. Our study proposes EC as a candidate for the effective treatment of neuropsychiatric disorders such as anxiety and insomnia.

  2. Damage mechanisms in PBT-GF30 under thermo-mechanical cyclic loading

    SciTech Connect

    Schaaf, A. De Monte, M. Hoffmann, C.; Vormwald, M.; Quaresimin, M.

    2014-05-15

    The scope of this paper is the investigation of damage mechanisms at microscopic scale on a short glass fiber reinforced polybutylene terephthalate (PBT-GF30) under thermo-mechanical cyclic loading. In addition the principal mechanisms are verified through micro mechanical FE models. In order to investigate the fatigue behavior of the material both isothermal strain controlled fatigue (ISCF) tests at three different temperatures and thermo-mechanical fatigue (TMF) tests were conducted on plain and notched specimens, manufactured by injection molding. The goal of the work is to determine the damage mechanisms occurring under TMF conditions and to compare them with the mechanisms occurring under ISCF. For this reason fracture surfaces of TMF and ISCF samples loaded at different temperature levels were analyzed using scanning electron microscopy. Furthermore, specimens that failed under TMF were examined on microsections revealing insight into both crack initiation and crack propagation. The findings of this investigation give valuable information about the main damage mechanisms of PBT-GF30 under TMF loading and serve as basis for the development of a TMF life estimation methodology.

  3. Airtight metallic sealing at room temperature under small mechanical pressure

    NASA Astrophysics Data System (ADS)

    Stagon, Stephen P.; Huang, Hanchen

    2013-10-01

    Metallic seals can be resistant to air leakage, resistant to degradation under heat, and capable of carrying mechanical loads. Various technologies - such as organic solar cells and organic light emitting diodes - need, at least benefit from, such metallic seals. However, these technologies involve polymeric materials and can tolerate neither the high-temperature nor the high-pressure processes of conventional metallic sealing. Recent progress in nanorod growth opens the door to metallic sealing for these technologies. Here, we report a process of metallic sealing using small well-separated Ag nanorods; the process is at room temperature, under a small mechanical pressure of 9.0 MPa, and also in ambient. The metallic seals have an air leak rate of 1.1 × 10-3 cm3atm/m2/day, and a mechanical shear strength higher than 8.9 MPa. This leak rate meets the requirements of organic solar cells and organic light emitting diodes.

  4. Mechanism of biological effects observed in honey bees (Apis mellifera, L. ) hived under extra-high-voltage transmission lines: implications derived from bee exposure to simulated intense electric fields and shocks

    SciTech Connect

    Bindokas, V.P.; Gauger, J.R.; Greenberg, B.

    1988-01-01

    This work explores mechanisms for disturbance of honey bee colonies under a 765 kV, 60-Hz transmission line (electric (E) field = 7 kV/m) observed in previous studies. Proposed mechanisms fell into two categories: direct bee perception of enhanced in-hive E fields and perception of shock from induced currents. The adverse biological effects could be reproduced in simulations where only the worker bees were exposed to shock or to E field in elongated hive entranceways (= tunnels). We now report the results of full-scale experiments using the tunnel exposure scheme, which assesses the contribution of shock and intense E field to colony disturbance. Exposure of worker bees (1400 h) to 60-Hz E fields including 100 kV/m under moisture-free conditions within a nonconductive tunnel causes no deleterious affect on colony behavior. Exposure of bees in conductive (e.g., wet) tunnels produces bee disturbance, increased mortality, abnormal propolization, and possible impairment of colony growth. We propose that this substrate dependence of bee disturbance is the result of perception of shock from coupled body currents and enhanced current densities postulated to exist in the legs and thorax of bees on conductors. Similarly, disturbance occurs when bees are exposed to step-potential-induced currents. At 275-350 nA single bees are disturbed; at 600 nA bees begin abnormal propolization behavior; and stinging occurs at 900 nA. We conclude that biological effects seen in bee colonies under a transmission line are primarily the result of electric shock from induced hive currents. This evaluation is based on the limited effects of E-field exposure in tunnels, the observed disturbance thresholds caused by shocks in tunnels, and the ability of hives exposed under a transmission line to source currents 100-1,000 times the shock thresholds.

  5. Circadian Mechanisms Underlying Reward-Related Neurophysiology and Synaptic Plasticity

    PubMed Central

    Parekh, Puja K.; McClung, Colleen A.

    2016-01-01

    Evidence from clinical and preclinical research provides an undeniable link between disruptions in the circadian clock and the development of psychiatric diseases, including mood and substance abuse disorders. The molecular clock, which controls daily patterns of physiological and behavioral activity in living organisms, when desynchronized, may exacerbate or precipitate symptoms of psychiatric illness. One of the outstanding questions remaining in this field is that of cause and effect in the relationship between circadian rhythm disruption and psychiatric disease. Focus has recently turned to uncovering the role of circadian proteins beyond the maintenance of homeostatic systems and outside of the suprachiasmatic nucleus (SCN), the master pacemaker region of the brain. In this regard, several groups, including our own, have sought to understand how circadian proteins regulate mechanisms of synaptic plasticity and neurotransmitter signaling in mesocorticolimbic brain regions, which are known to be critically involved in reward processing and mood. This regulation can come in the form of direct transcriptional control of genes central to mood and reward, including those associated with dopaminergic activity in the midbrain. It can also be seen at the circuit level through indirect connections of mesocorticolimbic regions with the SCN. Circadian misalignment paradigms as well as genetic models of circadian disruption have helped to elucidate some of the complex interactions between these systems and neural activity influencing behavior. In this review, we explore findings that link circadian protein function with synaptic adaptations underlying plasticity as it may contribute to the development of mood disorders and addiction. In light of recent advances in technology and sophisticated methods for molecular and circuit-level interrogation, we propose future directions aimed at teasing apart mechanisms through which the circadian system modulates mood and reward

  6. Underlying Mechanisms of Tinnitus: Review and Clinical Implications

    PubMed Central

    Henry, James A.; Roberts, Larry E.; Caspary, Donald M.; Theodoroff, Sarah M.; Salvi, Richard J.

    2016-01-01

    Background The study of tinnitus mechanisms has increased tenfold in the last decade. The common denominator for all of these studies is the goal of elucidating the underlying neural mechanisms of tinnitus with the ultimate purpose of finding a cure. While these basic science findings may not be immediately applicable to the clinician who works directly with patients to assist them in managing their reactions to tinnitus, a clear understanding of these findings is needed to develop the most effective procedures for alleviating tinnitus. Purpose The goal of this review is to provide audiologists and other health-care professionals with a basic understanding of the neurophysiological changes in the auditory system likely to be responsible for tinnitus. Results It is increasingly clear that tinnitus is a pathology involving neuroplastic changes in central auditory structures that take place when the brain is deprived of its normal input by pathology in the cochlea. Cochlear pathology is not always expressed in the audiogram but may be detected by more sensitive measures. Neural changes can occur at the level of synapses between inner hair cells and the auditory nerve and within multiple levels of the central auditory pathway. Long-term maintenance of tinnitus is likely a function of a complex network of structures involving central auditory and nonauditory systems. Conclusions Patients often have expectations that a treatment exists to cure their tinnitus. They should be made aware that research is increasing to discover such a cure and that their reactions to tinnitus can be mitigated through the use of evidence-based behavioral interventions. PMID:24622858

  7. Mechanisms and pharmacogenetic signals underlying thiazide diuretics blood pressure response

    PubMed Central

    Shahin, Mohamed H; Johnson, Julie A

    2016-01-01

    Thiazide (TZD) diuretics are among the most commonly prescribed antihypertensives globally; however their chronic blood pressure (BP) lowering mechanism remains unclear. Herein we discuss the current evidence regarding specific mechanisms regulating the antihypertensive effects of TZDs, suggesting that TZDs act via multiple complex and interacting mechanisms, including natriuresis with short term use and direct vasodilatory effects chronically. Additionally, we review pharmacogenomics signals that have been associated with TZDs BP-response in several cohorts (i.e. NEDD4L, PRKCA, EDNRA-GNAS, and YEATS4) and discuss how these genes might be related to TZD BP-response mechanism. Understanding the association between these genes and TZD BP mechanism might facilitate the development of new drugs and therapeutic approaches based on a deeper understanding of the determinants of BP-response. PMID:26874237

  8. Mechanisms and pharmacogenetic signals underlying thiazide diuretics blood pressure response.

    PubMed

    Shahin, Mohamed H; Johnson, Julie A

    2016-04-01

    Thiazide (TZD) diuretics are among the most commonly prescribed antihypertensives globally; however their chronic blood pressure (BP) lowering mechanism remains unclear. Herein we discuss the current evidence regarding specific mechanisms regulating the antihypertensive effects of TZDs, suggesting that TZDs act via multiple complex and interacting mechanisms, including natriuresis with short term use and direct vasodilatory effects chronically. Additionally, we review pharmacogenomics signals that have been associated with TZDs BP-response in several cohorts (i.e. NEDD4L, PRKCA, EDNRA-GNAS, and YEATS4) and discuss how these genes might be related to TZD BP-response mechanism. Understanding the association between these genes and TZD BP mechanism might facilitate the development of new drugs and therapeutic approaches based on a deeper understanding of the determinants of BP-response. Copyright © 2016. Published by Elsevier Ltd.

  9. Mechanisms Underlying the Link between Cannabis Use and Prospective Memory

    PubMed Central

    Cuttler, Carrie; McLaughlin, Ryan J.; Graf, Peter

    2012-01-01

    While the effects of cannabis use on retrospective memory have been extensively examined, only a limited number of studies have focused on the links between cannabis use and prospective memory. We conducted two studies to examine the links between cannabis use and both time-based and event-based prospective memory as well as potential mechanisms underlying these links. For the first study, 805 students completed an online survey designed to assess cannabis consumption, problems with cannabis use indicative of a disorder, and frequency of experiencing prospective memory failures. The results showed small to moderate sized correlations between cannabis consumption, problems with cannabis use, and prospective memory. However, a series of mediation analyses revealed that correlations between problems with cannabis use and prospective memory were driven by self-reported problems with retrospective memory. For the second study, 48 non-users (who had never used cannabis), 48 experimenters (who had used cannabis five or fewer times in their lives), and 48 chronic users (who had used cannabis at least three times a week for one year) were administered three objective prospective memory tests and three self-report measures of prospective memory. The results revealed no objective deficits in prospective memory associated with chronic cannabis use. In contrast, chronic cannabis users reported experiencing more internally-cued prospective memory failures. Subsequent analyses revealed that this effect was driven by self-reported problems with retrospective memory as well as by use of alcohol and other drugs. Although our samples were not fully characterized with respect to variables such as neurological disorders and family history of substance use disorders, leaving open the possibility that these variables may play a role in the detected relationships, the present findings indicate that cannabis use has a modest effect on self-reported problems with prospective memory, with a

  10. Investigation of Nucleate Boiling Mechanisms Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Dhir, V. K.; Qiu, D. M.; Ramanujapu, N.; Hasan, M. M.

    1999-01-01

    The present work is aimed at the experimental studies and numerical modeling of the bubble growth mechanisms of a single bubble attached to a heating surface and of a bubble sliding along an inclined heated plate. Single artificial cavity of 10 microns in diameter was made on the polished Silicon wafer which was electrically heated at the back side in order to control the surface nucleation superheat. Experiments with a sliding bubble were conducted at different inclination angles of the downward facing heated surface for the purpose of studying the effect of magnitude of components of gravity acting parallel to and normal to the heat transfer surface. Information on the bubble shape and size, the bubble induced liquid velocities as well as the surface temperature were obtained using the high speed imaging and hydrogen bubble techniques. Analytical/numerical models were developed to describe the heat transfer through the micro-macro layer underneath and around a bubble formed at a nucleation site. In the micro layer model the capillary and disjoining pressures were included. Evolution of the bubble-liquid interface along with induced liquid motion was modeled. As a follow-up to the studies at normal gravity, experiments are being conducted in the KC-135 aircraft to understand the bubble growth/detachment under low gravity conditions. Experiments have been defined to be performed under long duration of microgravity conditions in the space shuttle. The experiment in the space shuttle will provide bubble growth and detachment data at microgravity and will lead to validation of the nucleate boiling heat transfer model developed from the preceding studies conducted at normal and low gravity (KC-135) conditions.

  11. Investigation of Mechanisms Associated with Nucleate Boiling Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Dhir, Vijay K.

    1996-01-01

    The focus of the present work is to experimentally study and to analytically/numerically model the mechanisms of growth of bubbles attached to, and sliding along, a heated surface. To control the location of the active cavities, the number, the spacing, and the nucleation superheat, artificial cavities will be formed on silicon wafers. In order to study the effect of magnitude of components of gravitational acceleration acting parallel to, and normal to the surface, experiments will be conducted on surfaces inclined at different angles including a downward facing surface. Information on the temperature field around bubbles, bubble shape and size, and bubble induced liquid velocities will be obtained through the use of holography, video/high speed photography and hydrogen bubble techniques, respectively. Analytical/numerical models will be developed to describe the heat transfer including that through the micro-macro layer underneath and around a bubble. In the micro layer model capillary and disjoining pressures will be included. Evolution of the interface along with induced liquid motion will be modelled. Subsequent to the world at normal gravity, experiments will be conducted in the KC-135 or the Lear jet especially to learn about bubble growth/detachment under low gravity conditions. Finally, an experiment will be defined to be conducted under long duration of microgravity conditions in the space shuttle. The experiment in the space shuttle will provide microgravity data on bubble growth and detachment and will lead to a validation of the nucleate boiling heat transfer model developed from the preceding studies performed at normal and low gravity (KC-135 or Lear jet) conditions.

  12. CFRP Mechanical Anchorage for Externally Strengthened RC Beams under Flexure

    NASA Astrophysics Data System (ADS)

    Ali, Alnadher; Abdalla, Jamal; Hawileh, Rami; Galal, Khaled

    De-bonding of carbon fiber reinforced polymers (CFRP) sheets and plates from the concrete substrate is one of the major reasons behind premature failures of beams that are externally strengthened with such CFRP materials. To delay or prevent de-bonding and therefore enhancing the load carrying capacity of strengthened beams, several anchorage systems were developed and used. This paper investigates the use of CFRP mechanical anchorage of CFRP sheets and plates used to externally strengthen reinforced concrete beams under flexure. The pin-and-fan shape CFRP anchor, which is custom-made from typical rolled fiber sheets and bundles of loose fiber is used. Several reinforced concrete beams were casted and tested in standard four-point bending scheme to study the effectiveness of this anchorage system. The beams were externally strengthened in flexure with bonded CFRP sheets and plates and then fastened to the soffit of the beams' using various patterns of CFRP anchors. It is observed that the CFRP plates begins to separate from the beams as soon as de-bonding occurs in specimens without CFRP anchors, while in beams with CFRP anchors de-bonding was delayed leading to increase in the load carrying capacity over the un-anchored strengthened beams.

  13. Spread of Epidemic on Complex Networks Under Voluntary Vaccination Mechanism

    NASA Astrophysics Data System (ADS)

    Xue, Shengjun; Ruan, Feng; Yin, Chuanyang; Zhang, Haifeng; Wang, Binghong

    Under the assumption that the decision of vaccination is a voluntary behavior, in this paper, we use two forms of risk functions to characterize how susceptible individuals estimate the perceived risk of infection. One is uniform case, where each susceptible individual estimates the perceived risk of infection only based on the density of infection at each time step, so the risk function is only a function of the density of infection; another is preferential case, where each susceptible individual estimates the perceived risk of infection not only based on the density of infection but only related to its own activities/immediate neighbors (in network terminology, the activity or the number of immediate neighbors is the degree of node), so the risk function is a function of the density of infection and the degree of individuals. By investigating two different ways of estimating the risk of infection for susceptible individuals on complex network, we find that, for the preferential case, the spread of epidemic can be effectively controlled; yet, for the uniform case, voluntary vaccination mechanism is almost invalid in controlling the spread of epidemic on networks. Furthermore, given the temporality of some vaccines, the waves of epidemic for two cases are also different. Therefore, our work insight that the way of estimating the perceived risk of infection determines the decision on vaccination options, and then determines the success or failure of control strategy.

  14. Global mechanical behavior of Sutong Bridge under static loads

    NASA Astrophysics Data System (ADS)

    Li, Y. B.; Zhang, Q. W.

    2010-04-01

    The global mechanical behaviors of Sutong Bridge, China, the longest cable-stayed bridge in the world, are presented by using measurements from field static load tests compared with numerical analysis in this paper. A total of 37 loading cases with 64 test trucks, each being 300kN in weight, were conducted on 10 key sections to investigate the bridge behavior. The level of loading is about 50-88% of the code-specified serviceability load. A three-dimensional finite-element model is developed and calibrated to match the experiment data. The results show that, under the load test conditions, the incremental deflections, stresses as well as cable force of the structure are linearly proportional to the incremental loads. Moreover, the transverse shear lag effects of the steel box girder are significant and the longitudinal stress distributions in the slabs and diaphragms of the box girder are non-uniform. A good agreement is achieved between the experimental tests and the numerical simulations based on the nonlinear theories of long span bridges.

  15. Contact mechanics of the human finger pad under compressive loads.

    PubMed

    Dzidek, Brygida M; Adams, Michael J; Andrews, James W; Zhang, Zhibing; Johnson, Simon A

    2017-02-01

    The coefficient of friction of most solid objects is independent of the applied normal force because of surface roughness. This behaviour is observed for a finger pad except at long contact times (greater than 10 s) against smooth impermeable surfaces such as glass when the coefficient increases with decreasing normal force by about a factor of five for the load range investigated here. This is clearly an advantage for some precision manipulation and grip tasks. Such normal force dependence is characteristic of smooth curved elastic bodies. It has been argued that the occlusion of moisture in the form of sweat plasticises the surface topographical features and their increased compliance allows flattening under an applied normal force, so that the surfaces of the fingerprint ridges are effectively smooth. While the normal force dependence of the friction is consistent with the theory of elastic frictional contacts, the gross deformation behaviour is not and, for commonly reported values of the Young's modulus of stratum corneum, the deformation of the ridges should be negligible compared with the gross deformation of the finger pad even when fully occluded. This paper describes the development of a contact mechanics model that resolves these inconsistencies and is validated against experimental data.

  16. Dissociable mechanisms underlying individual differences in visual working memory capacity.

    PubMed

    Gulbinaite, Rasa; Johnson, Addie; de Jong, Ritske; Morey, Candice C; van Rijn, Hedderik

    2014-10-01

    Individuals scoring relatively high on measures of working memory tend to be more proficient at controlling attention to minimize the effect of distracting information. It is currently unknown whether such superior attention control abilities are mediated by stronger suppression of irrelevant information, enhancement of relevant information, or both. Here we used steady-state visual evoked potentials (SSVEPs) with the Eriksen flanker task to track simultaneously the attention to relevant and irrelevant information by tagging target and distractors with different frequencies. This design allowed us to dissociate attentional biasing of perceptual processing (via SSVEPs) and stimulus processing in the frontal cognitive control network (via time-frequency analyses of EEG data). We show that while preparing for the upcoming stimulus, high- and low-WMC individuals use different strategies: High-WMC individuals show attentional suppression of the irrelevant stimuli, whereas low-WMC individuals demonstrate attentional enhancement of the relevant stimuli. Moreover, behavioral performance was predicted by trial-to-trial fluctuations in strength of distractor-suppression for high-WMC participants. We found no evidence for WMC-related differences in cognitive control network functioning, as measured by midfrontal theta-band power. Taken together, these findings suggest that early suppression of irrelevant information is a key underlying neural mechanism by which superior attention control abilities are implemented.

  17. Remote cardiac ischemic conditioning: underlying mechanisms and clinical applications.

    PubMed

    Gaspar, António; Leite-Moreira, Adelino F

    2012-01-01

    Despite a significant improvement in the care of acute coronary disease, mortality and morbidity remain important. One explanation for this lies in the fact that the very coronary reperfusion may paradoxically result in additional myocardial injury, through the so-called ischemia-reperfusion injury, partially mitigating the beneficial effects of myocardial reperfusion. Over the past two decades, numerous pharmacological interventions (such as the use of antioxidants, anti-inflammatory, magnesium, glucose/insulin/potassium, rapid normalization of pH) were studied in order to prevent ischemia-reperfusion injury. Despite the promising results obtained in animal experiments, attempts to transpose these results to humans, and consequently to clinical practice, have been disappointing. On the other hand, cardiac ischemic conditioning is an intervention that has produced positive results. Ischemic conditioning refers to the protection induced by short periods of ischemia followed by reperfusion, prior to a major ischemic event. Ischemic stimulus can be applied before (pre-conditioning), during (per-conditioning) or after (post-conditioning) the major ischemic event. An important finding regarding cardiac ischemic conditioning, was that protection could be induced remotely, introducing the concept of remote ischemic conditioning. In this paper, we proposed to review the mechanisms underlying remote ischemic cardiac conditioning and the possible clinical applications, considering more specifically pre and per-conditioning.

  18. Nonlocal, refined plate, and surface effects theories used to analyze free vibration of magnetoelectroelastic nanoplates under thermo-mechanical and shear loadings

    NASA Astrophysics Data System (ADS)

    Karimi, Morteza; Shahidi, Ali Reza

    2017-05-01

    The theories of nonlocal, refined plate, and surface effects are used in this study to investigate the free vibration of magnetoelectroelastic (MEE) nanoplates resting on elastic foundations. For this purpose, the MEE nanoplate is subjected not only to external magnetic and electric potentials but also to thermal and shear in-plane loads. The refined plate theory is used and the Maxwell equations and magnetoelectric boundary conditions employed to determine the variations in the electric and magnetic potentials along the direction of the nanoplate thickness. This is followed by deriving the governing equations based on the Hamilton's principle, which are then solved via the generalized differential quadrature method. In a later stage of the study, the effects of electric and magnetic potentials, nonlocal parameter, thermal and shear in-plane loading, Winkler and shear moduli, different boundary conditions, and aspect ratio are explored in a parametric study on the surface effects of vibration characteristics of MEE nanoplates. It is found that the effect of surface parameters enhanced with increases in nonlocal parameter, electric potential, in-plane shear load, and temperature change. However, this effect is observed to decrease when the magnetic potential, dimensionless Winkler and shear moduli, and nanoplate thickness are augmented.

  19. [Study on main pharmacodynamics and underlying mechanisms of 999 Ganmaoling].

    PubMed

    Xu, Qi-Hua; He, Rong; Peng, Bo; Ye, Zu-Guang; Li, Jian-Rong; Zhang, Yue-Fei; Dai, Zhi

    2016-04-01

    To observe synergistic effects of 999 Ganmaoling (GML) and its Chinese/Western materia medica (CMM and WMM) on pharmacodynamic action and to study underlying mechanisms, their anti-inflammatory, antipyretic effects were compared by assaying the increased capillary permeability induced by glacial acetic acid in mice, ear swelling induced by Xylene in mice, non-specific pleurisy induced by carrageenan in rats, and yeast induced fever in rats. Crystal violet (CV) and microbial activity (XTT) assay were used to evaluate the inhibition of GML and its CMM and WMM on KPN biofilm formation, and scanning electron microscopy (SEM) was applied for observing KPN biofilm morphology changes. The results showed that compared with control group, GML could reduce exudation amount of Evans-Blue and the degree of Ear swelling significantly, and CMM and WMM have no significant effects. The concentration of TNF-α and IL-1β of rat pleural effusion in GML, CMM and WMM group decreased significantly. The concentration of TNF-α, IL-1β and IL-8 in GML group, TNF-α, IL-8 in WMM group and IL-8 in CMM in rats serum decreased significantly. The body temperature in rats decreased significantly in GML and WMM group after 4-8 h of administration. CMM group showed no significant difference in rat body temperature compare with control. Compared with control group, GML (55-13.75 g•L⁻¹) could inhibit KPN biofilm formation and reduce number of viable cells in the KPN biofilm. CMM (45-22.5 g•L⁻¹) and WMM (10 g•L⁻¹) could also inhibit KPN biofilm formation and reduce number of viable cells (P<0.01). Result of SEM also showed that GML (55 g•L⁻¹) and its CMM (45 g•L⁻¹) and WMM (10 g•L⁻¹) could interfere the bacterial arrangement of KPN biofilm and extracellular matrix. GML and its CMM & WMM could inhibit the formation of KPN biofilm, CMM & WMM in GML showed synergism and complementation in inhibit KPN biofilm. Results showed that GML had obvious anti-inflammatory and

  20. [Neuronal mechanisms underlying pain-induced negative emotions].

    PubMed

    Minami, Masabumi

    2012-11-01

    Pain consists of sensory-discriminative and negative emotional components. Although the neuronal basis of the sensory component of pain has been studied extensively, the neuronal mechanisms underlying the negative emotional component are not well understood. Recently, behavioral studies using a conditioned place paradigm have successfully elucidated the neuronal circuits and mechanisms underlying the negative emotional component of pain. Excitotoxic lesions of the anterior cingulate cortex (ACC), central amygdaloid nucleus, basolateral amygdaloid nucleus (BLA), or bed nucleus of the stria terminalis (BNST) suppress intraplantar formalin-induced aversive responses. Glutamatergic transmission within the ACC and BLA via N-methyl-D-asparate (NMDA) receptors has been shown to play a critical role in these aversive responses. In the BNST, especially its ventral part, noradrenergic transmission via β-adrenergic receptors has been shown to be important for pain-induced aversion. Because persistent pain is frequently associated with psychological and emotional dysfunctions, studies on the neuronal circuits and molecular mechanisms involved in the negative emotional component of pain may have considerable clinical importance in the treatment of chronic pain. Here, I have reviewed behavioral studies investigating the neuronal mechanisms underlying the negative emotional component of pain and have introduced our data showing the pivotal role of amygdala and BNST in pain-induced aversion.

  1. Insights into the mechanisms underlying colonic motor patterns

    PubMed Central

    Dinning, Phil G.; Brookes, Simon J.; Costa, Marcello

    2016-01-01

    Abstract In recent years there have been significant technical and methodological advances in our ability to record the movements of the gastrointestinal tract. This has led to significant changes in our understanding of the different types of motor patterns that exist in the gastrointestinal tract (particularly the large intestine) and in our understanding of the mechanisms underlying their generation. Compared with other tubular smooth muscle organs, a rich variety of motor patterns occurs in the large intestine. This reflects a relatively autonomous nervous system in the gut wall, which has its own unique population of sensory neurons. Although the enteric nervous system can function independently of central neural inputs, under physiological conditions bowel motility is influenced by the CNS: if spinal pathways are disrupted, deficits in motility occur. The combination of high resolution manometry and video imaging has improved our knowledge of the range of motor patterns and provided some insight into the neural and mechanical factors underlying propulsion of contents. The neural circuits responsible for the generation of peristalsis and colonic migrating motor complexes have now been identified to lie within the myenteric plexus and do not require inputs from the mucosa or submucosal ganglia for their generation, but can be modified by their activity. This review will discuss the recent advances in our understanding of the different patterns of propagating motor activity in the large intestine of mammals and how latest technologies have led to major changes in our understanding of the mechanisms underlying their generation. PMID:26990133

  2. Whole animal measurements of shear and adhesive forces in adult tree frogs: insights into underlying mechanisms of adhesion obtained from studying the effects of size and scale.

    PubMed

    Barnes, W Jon P; Oines, Christine; Smith, Joanna M

    2006-11-01

    This allometric study of adhesion in 15 Trinidadian tree frog species investigates how relationships between length, area and mass limit the ability of adult frog species of different sizes to adhere to inclined and overhanging surfaces. Our experiments show that hylid frogs possess an area-based wet adhesive system in which larger species are lighter than expected from isometry and adhere better than expected from their toe pad area. However, in spite of these adaptations, larger species adhere less well than smaller species. In addition to these adhesive forces, tree frogs also generate significant shear forces that scale with mass, suggesting that they are frictional forces. Toe pads detach by peeling and frogs have strategies to prevent peeling from taking place while they are adhering to surfaces, including orienting themselves head-up on slopes. The scaling of tree frog adhesion is also used to distinguish between different models for adhesion, including classic formulae for capillarity and Stefan adhesion. These classic equations grossly overestimate the adhesive forces that tree frogs produce. More promising are peeling models, designed to predict the pull-off forces of adhesive tape. However, more work is required before we can qualitatively and quantitatively describe the adhesive mechanism of tree frogs.

  3. Mycolactone-mediated neurite degeneration and functional effects in cultured human and rat DRG neurons: Mechanisms underlying hypoalgesia in Buruli ulcer.

    PubMed

    Anand, U; Sinisi, M; Fox, M; MacQuillan, A; Quick, T; Korchev, Y; Bountra, C; McCarthy, T; Anand, P

    2016-01-01

    Mycolactone is a polyketide toxin secreted by the mycobacterium Mycobacterium ulcerans, responsible for the extensive hypoalgesic skin lesions characteristic of patients with Buruli ulcer. A recent pre-clinical study proposed that mycolactone may produce analgesia via activation of the angiotensin II type 2 receptor (AT2R). In contrast, AT2R antagonist EMA401 has shown analgesic efficacy in animal models and clinical trials for neuropathic pain. We therefore investigated the morphological and functional effects of mycolactone in cultured human and rat dorsal root ganglia (DRG) neurons and the role of AT2R using EMA401. Primary sensory neurons were prepared from avulsed cervical human DRG and rat DRG; 24 h after plating, neurons were incubated for 24 to 96 h with synthetic mycolactone A/B, followed by immunostaining with antibodies to PGP9.5, Gap43, β tubulin, or Mitotracker dye staining. Acute functional effects were examined by measuring capsaicin responses with calcium imaging in DRG neuronal cultures treated with mycolactone. Morphological effects: Mycolactone-treated cultures showed dramatically reduced numbers of surviving neurons and non-neuronal cells, reduced Gap43 and β tubulin expression, degenerating neurites and reduced cell body diameter, compared with controls. Dose-related reduction of neurite length was observed in mycolactone-treated cultures. Mitochondria were distributed throughout the length of neurites and soma of control neurons, but clustered in the neurites and soma of mycolactone-treated neurons. Functional effects: Mycolactone-treated human and rat DRG neurons showed dose-related inhibition of capsaicin responses, which were reversed by calcineurin inhibitor cyclosporine and phosphodiesterase inhibitor 3-isobutyl-1-Methylxanthine, indicating involvement of cAMP/ATP reduction. The morphological and functional effects of mycolactone were not altered by Angiotensin II or AT2R antagonist EMA401. Mycolactone induces toxic effects in DRG

  4. Immunomodulatory effects of nicotine on interleukin 1β activated human astrocytes and the role of cyclooxygenase 2 in the underlying mechanism.

    PubMed

    Revathikumar, Priya; Bergqvist, Filip; Gopalakrishnan, Srividya; Korotkova, Marina; Jakobsson, Per-Johan; Lampa, Jon; Le Maître, Erwan

    2016-09-29

    The cholinergic anti-inflammatory pathway (CAP) primarily functions through acetylcholine (ACh)-alpha7 nicotinic acetylcholine receptor (α7nAChR) interaction on macrophages to control peripheral inflammation. Interestingly, ACh can also bind α7nAChRs on microglia resulting in neuroprotective effects. However, ACh effects on astrocytes remain elusive. Here, we investigated the effects of nicotine, an ACh receptor agonist, on the cytokine and cholinesterase production of immunocompetent human astrocytes stimulated with interleukin 1β (IL-1β) in vitro. In addition, the potential involvement of prostaglandins as mediators of nicotine was studied using cyclooxygenase 2 (COX-2) inhibition. Cultured human fetal astrocytes were stimulated with human recombinant IL-1β and treated simultaneously with nicotine at different concentrations (1, 10, and 100 μM). Cell supernatants were collected for cytokine and cholinesterase profiling using ELISA and MesoScale multiplex assay. α7nAChR expression on activated human astrocytes was studied using immunofluorescence. For the COX-2 inhibition studies, enzyme activity was inhibited using NS-398. One-way ANOVA was used to perform statistical analyses. Nicotine treatment dose dependently limits the production of critical proinflammatory cytokines such as IL-6 (60.5 ± 3.3, %inhibition), IL-1β (42.4 ± 1.7, %inhibition), and TNF-α (68.9 ± 7.7, %inhibition) by activated human astrocytes. Interestingly, it also inhibits IL-8 chemokine (31.4 ± 8.5, %inhibition), IL-13 (34.243 ± 4.9, %inhibition), and butyrylcholinesterase (20.8 ± 2.8, %inhibition) production at 100 μM. Expression of α7nAChR was detected on the activated human astrocytes. Importantly, nicotine's inhibitory effect on IL-6 production was reversed with the specific COX-2 inhibitor NS-398. Activation of the cholinergic system through α7nAChR agonists has been known to suppress inflammation both in the CNS and periphery. In the CNS

  5. Protective effects of friedelin isolated from Azima tetracantha Lam. against ethanol-induced gastric ulcer in rats and possible underlying mechanisms.

    PubMed

    Antonisamy, Paulrayer; Duraipandiyan, Veeramuthu; Aravinthan, Adithan; Al-Dhabi, Naif Abdullah; Ignacimuthu, Savarimuthu; Choi, Ki Choon; Kim, Jong-Hoon

    2015-03-05

    The current study was aimed to investigate the gastroprotective effects of friedelin isolated from the hexane extract of leaves of Azima tetracantha. Ethanol-induced gastric ulcer model was used to investigate the gastroprotective effects of friedelin. Antioxidant enzymes, lipid peroxidation, nitric oxide, gastric vascular permeability, pro and anti-inflammatory cytokines and apoptosis level have been investigated. Ethanol caused severe gastric damage and friedelin pretreatment protected against its deleterious role. Antioxidant enzyme activities, anti-inflammatory cytokines, prostaglandin E2 (PGE2), constitutive nitric oxide synthase (cNOS) and mucus weight have been increased significantly. However, the vascular permeability, pro-inflammatory cytokines, inducible nitric oxide synthase (iNOS), caspase-3 and apoptosis level have significantly been decreased after friedelin ingestion. The present study has clearly demonstrated the anti-ulcer potential of friedelin, these findings suggested that friedelin could be a new useful natural gastroprotective tool against gastric ulcer. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. A systems biology-based approach to uncovering the molecular mechanisms underlying the effects of dragon's blood tablet in colitis, involving the integration of chemical analysis, ADME prediction, and network pharmacology.

    PubMed

    Xu, Haiyu; Zhang, Yanqiong; Lei, Yun; Gao, Xiumei; Zhai, Huaqiang; Lin, Na; Tang, Shihuan; Liang, Rixin; Ma, Yan; Li, Defeng; Zhang, Yi; Zhu, Guangrong; Yang, Hongjun; Huang, Luqi

    2014-01-01

    Traditional Chinese medicine (TCM) is one of the oldest East Asian medical systems. The present study adopted a systems biology-based approach to provide new insights relating to the active constituents and molecular mechanisms underlying the effects of dragon's blood (DB) tablets for the treatment of colitis. This study integrated chemical analysis, prediction of absorption, distribution, metabolism, and excretion (ADME), and network pharmacology. Firstly, a rapid, reliable, and accurate ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry method was employed to identify 48 components of DB tablets. In silico prediction of the passive absorption of these compounds, based on Caco-2 cell permeability, and their P450 metabolism enabled the identification of 22 potentially absorbed components and 8 metabolites. Finally, networks were constructed to analyze interactions between these DB components/metabolites absorbed and their putative targets, and between the putative DB targets and known therapeutic targets for colitis. This study provided a great opportunity to deepen the understanding of the complex pharmacological mechanisms underlying the effects of DB in colitis treatment.

  7. A Systems Biology-Based Approach to Uncovering the Molecular Mechanisms Underlying the Effects of Dragon's Blood Tablet in Colitis, Involving the Integration of Chemical Analysis, ADME Prediction, and Network Pharmacology

    PubMed Central

    Gao, Xiumei; Zhai, Huaqiang; Lin, Na; Tang, Shihuan; Liang, Rixin; Ma, Yan; Li, Defeng; Zhang, Yi; Zhu, Guangrong; Yang, Hongjun; Huang, Luqi

    2014-01-01

    Traditional Chinese medicine (TCM) is one of the oldest East Asian medical systems. The present study adopted a systems biology-based approach to provide new insights relating to the active constituents and molecular mechanisms underlying the effects of dragon's blood (DB) tablets for the treatment of colitis. This study integrated chemical analysis, prediction of absorption, distribution, metabolism, and excretion (ADME), and network pharmacology. Firstly, a rapid, reliable, and accurate ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry method was employed to identify 48 components of DB tablets. In silico prediction of the passive absorption of these compounds, based on Caco-2 cell permeability, and their P450 metabolism enabled the identification of 22 potentially absorbed components and 8 metabolites. Finally, networks were constructed to analyze interactions between these DB components/metabolites absorbed and their putative targets, and between the putative DB targets and known therapeutic targets for colitis. This study provided a great opportunity to deepen the understanding of the complex pharmacological mechanisms underlying the effects of DB in colitis treatment. PMID:25068885

  8. Application of fracture mechanics to graphite under complex stress conditions

    NASA Technical Reports Server (NTRS)

    Yahr, G. T.; Valachovic, R. S.

    1974-01-01

    The purpose of this study was to examine the applicability of linear-elastic fracture mechanics to graphite under multiaxial stress conditions. The specimens were thick-walled graphite cylinders with flat heads which were internally pressurized. Two series of specimens were used. The first series had complete circumferential notches machined diagonally into the head-cylinder juncture region, while the second series was unnotched. The methods of linear-elastic fracture mechanics and a finite-element analysis were used to predict pressures to cause fracture for both notched and unnotched specimens.

  9. Experimental Analysis of the Mechanism of Hearing under Water.

    PubMed

    Chordekar, Shai; Kishon-Rabin, Liat; Kriksunov, Leonid; Adelman, Cahtia; Sohmer, Haim

    2015-01-01

    The mechanism of human hearing under water is debated. Some suggest it is by air conduction (AC), others by bone conduction (BC), and others by a combination of AC and BC. A clinical bone vibrator applied to soft tissue sites on the head, neck, and thorax also elicits hearing by a mechanism called soft tissue conduction (STC) or nonosseous BC. The present study was designed to test whether underwater hearing at low intensities is by AC or by osseous BC based on bone vibrations or by nonosseous BC (STC). Thresholds of normal hearing participants to bone vibrator stimulation with their forehead in air were recorded and again when forehead and bone vibrator were under water. A vibrometer detected vibrations of a dry human skull in all similar conditions (in air and under water) but not when water was the intermediary between the sound source and the skull forehead. Therefore, the intensities required to induce vibrations of the dry skull in water were significantly higher than the underwater hearing thresholds of the participants, under conditions when hearing by AC and osseous BC is not likely. The results support the hypothesis that hearing under water at low sound intensities may be attributed to nonosseous BC (STC).

  10. Experimental Analysis of the Mechanism of Hearing under Water

    PubMed Central

    Chordekar, Shai; Kishon-Rabin, Liat; Kriksunov, Leonid; Adelman, Cahtia; Sohmer, Haim

    2015-01-01

    The mechanism of human hearing under water is debated. Some suggest it is by air conduction (AC), others by bone conduction (BC), and others by a combination of AC and BC. A clinical bone vibrator applied to soft tissue sites on the head, neck, and thorax also elicits hearing by a mechanism called soft tissue conduction (STC) or nonosseous BC. The present study was designed to test whether underwater hearing at low intensities is by AC or by osseous BC based on bone vibrations or by nonosseous BC (STC). Thresholds of normal hearing participants to bone vibrator stimulation with their forehead in air were recorded and again when forehead and bone vibrator were under water. A vibrometer detected vibrations of a dry human skull in all similar conditions (in air and under water) but not when water was the intermediary between the sound source and the skull forehead. Therefore, the intensities required to induce vibrations of the dry skull in water were significantly higher than the underwater hearing thresholds of the participants, under conditions when hearing by AC and osseous BC is not likely. The results support the hypothesis that hearing under water at low sound intensities may be attributed to nonosseous BC (STC). PMID:26770975

  11. Mechanism of photochromic effect in Pb(Zr,Ti)O{sub 3} and (Pb,La)(Zr,Ti)O{sub 3} ceramics under violet/infrared light illumination

    SciTech Connect

    Xu, Caixia; Xu, Long; Zhao, Hua; Zhang, Jingwen

    2015-01-14

    Obvious photochromic effects were observed in Pb(Zr,Ti)O{sub 3} and (Pb,La)(Zr,Ti)O{sub 3} (PLZT) ceramics, along with exponential responses to illumination power in both darkening and bleaching processes. An interesting anomalous dispersion in the transparent PLZT was observed and discussed. A tentative physical picture based on photoinduced electron stimulated processes and on structural change was proposed to explain all the interesting observations. Rate equations were established and solved in verifying the validity of the proposed model. This work may serve as guidance in designing tunable achromatic lenses, UV and IR light detectors and sensors.

  12. Mechanisms underlying the toxic effects of antimony species in human embryonic kidney cells (HEK-293) and their comparison with arsenic species.

    PubMed

    Verdugo, Marcelo; Ogra, Yasumitsu; Quiroz, Waldo

    2016-01-01

    Antimony cytotoxicity was assessed in human embryonic kidney cells (HEK-293). Uptake, mitochondrial respiratory activity, ROS generation and diffusional kinetics were measured using fluorescence recovery after photobleaching (FRAP). Furthermore, the toxic effect induced by Sb was compared with As toxicity in regard to ROS generation and diffusional kinetics, which provides information on the protein aggregation process. Our results show a favored uptake of Sb(III) and a more severe effect, decreasing the mitochondrial activity more than in the presence of Sb(V). In comparison with As, the Sb species did not generate a significant increase in ROS generation, which was observed with As(III) and As(V). FRAP analysis yielded important information on the diffusion and binding dynamics of live cells in presence of these metalloids. The mobile fraction showed a strong decrease with the As species and Sb(III). The diffusion rate and the koff-rate were significantly decreased for the As and Sb species but were more strong in the presence of As(III).

  13. Cellular mechanisms underlying eosinophilic and neutrophilic airway inflammation in asthma.

    PubMed

    Pelaia, Girolamo; Vatrella, Alessandro; Busceti, Maria Teresa; Gallelli, Luca; Calabrese, Cecilia; Terracciano, Rosa; Maselli, Rosario

    2015-01-01

    Asthma is a phenotypically heterogeneous chronic disease of the airways, characterized by either predominant eosinophilic or neutrophilic, or even mixed eosinophilic/neutrophilic inflammatory patterns. Eosinophilic inflammation can be associated with the whole spectrum of asthma severity, ranging from mild-to-moderate to severe uncontrolled disease, whereas neutrophilic inflammation occurs mostly in more severe asthma. Eosinophilic asthma includes either allergic or nonallergic phenotypes underlying immune responses mediated by T helper (Th)2 cell-derived cytokines, whilst neutrophilic asthma is mostly dependent on Th17 cell-induced mechanisms. These immune-inflammatory profiles develop as a consequence of a functional impairment of T regulatory (Treg) lymphocytes, which promotes the activation of dendritic cells directing the differentiation of distinct Th cell subsets. The recent advances in the knowledge of the cellular and molecular mechanisms underlying asthmatic inflammation are contributing to the identification of novel therapeutic targets, potentially suitable for the implementation of future improvements in antiasthma pharmacologic treatments.

  14. The mismatch negativity: A review of underlying mechanisms

    PubMed Central

    Garrido, Marta I.; Kilner, James M.; Stephan, Klaas E.; Friston, Karl J.

    2009-01-01

    The mismatch negativity (MMN) is a brain response to violations of a rule, established by a sequence of sensory stimuli (typically in the auditory domain) [Näätänen R. Attention and brain function. Hillsdale, NJ: Lawrence Erlbaum; 1992]. The MMN reflects the brain’s ability to perform automatic comparisons between consecutive stimuli and provides an electrophysiological index of sensory learning and perceptual accuracy. Although the MMN has been studied extensively, the neurophysiological mechanisms underlying the MMN are not well understood. Several hypotheses have been put forward to explain the generation of the MMN; amongst these accounts, the “adaptation hypothesis” and the “model adjustment hypothesis” have received the most attention. This paper presents a review of studies that focus on neuronal mechanisms underlying the MMN generation, discusses the two major explanatory hypotheses, and proposes predictive coding as a general framework that attempts to unify both. PMID:19181570

  15. Biaxial mechanical properties of human ureter under tension.

    PubMed

    Rassoli, Aisa; Shafigh, Mohammad; Seddighi, Amirsaeed; Seddighi, Afsoun; Daneshparvar, Hamidreza; Fatouraee, Nasser

    2014-07-08

    The Mechanical properties of the ureteral wall may be altered by certain diseases such as megaureter. Ureter compliance and wall tension alterations can occur, leading to some abnormalities such as reflex mechanisms. Familiarizing with the mechanical properties of the ureter can help us advance in the understanding of urinary tract diseases. A constitutive model that can predict the mechanical response of ureteral tissue under complex mechanical loading is required. Parameters characterizing the mechanical behaviour of the material were estimated from planar biaxial test data, where human ureter specimens were simultaneously loaded along the longitudinal and circumferential directions. The biaxial stress-stretch curve was plotted and fitted to a hyperelastic four-parameter Fung type model and five-parameter Mooney-Rivlin model. The average strength in the longitudinal direction was 3.48 ± 0.47 MPa and 2.31 ± 0.46 MPa (P <.05) for the circumferential direction.In the Fung model the value of parameter a2 (0.699 ± 0.17) was higher than a1 (0.279 ± 0.07), which may be due to the collagen fiber orientation's preference along the longitudinal axis. According to this study, it seems that ureter tissue is stiffer in the longitudinal than in the circumferential direction and maybe the collagen fiber are along the axial axes. Also the specimens showed some degree of anisotropy.

  16. Turing mechanism underlying a branching model for lung morphogenesis

    PubMed Central

    Sun, Mingzhu

    2017-01-01

    The mammalian lung develops through branching morphogenesis. Two primary forms of branching, which occur in order, in the lung have been identified: tip bifurcation and side branching. However, the mechanisms of lung branching morphogenesis remain to be explored. In our previous study, a biological mechanism was presented for lung branching pattern formation through a branching model. Here, we provide a mathematical mechanism underlying the branching patterns. By decoupling the branching model, we demonstrated the existence of Turing instability. We performed Turing instability analysis to reveal the mathematical mechanism of the branching patterns. Our simulation results show that the Turing patterns underlying the branching patterns are spot patterns that exhibit high local morphogen concentration. The high local morphogen concentration induces the growth of branching. Furthermore, we found that the sparse spot patterns underlie the tip bifurcation patterns, while the dense spot patterns underlies the side branching patterns. The dispersion relation analysis shows that the Turing wavelength affects the branching structure. As the wavelength decreases, the spot patterns change from sparse to dense, the rate of tip bifurcation decreases and side branching eventually occurs instead. In the process of transformation, there may exists hybrid branching that mixes tip bifurcation and side branching. Since experimental studies have reported that branching mode switching from side branching to tip bifurcation in the lung is under genetic control, our simulation results suggest that genes control the switch of the branching mode by regulating the Turing wavelength. Our results provide a novel insight into and understanding of the formation of branching patterns in the lung and other biological systems. PMID:28376090

  17. The anti-hypertensive effect of Danshen (Salvia miltiorrhiza) and Gegen (Pueraria lobata) formula in rats and its underlying mechanisms of vasorelaxation.

    PubMed

    Ng, C F; Koon, C M; Cheung, D W S; Lam, M Y; Leung, P C; Lau, C B S; Fung, K P

    2011-10-11

    Radix Salviae miltiorrhizae (Danshen) and Radix Puerariae lobatae (Gegen) have long been used in traditional Chinese Medicine and serve as the principal herbs in treating cardiovascular disease. In the present study, an aqueous extract comprising Danshen and Gegen in the ratio of 7:3 (DG) was investigated for its anti-hypertension in vivo and vasodilative activities ex vivo. The anti-hypertensive effect of DG extract was investigated in spontaneously hypertensive rat (SHR) by measuring systolic blood pressure (SBP). Oral administration of DG extract was started at age of 6 weeks and 14 weeks for the preventive and therapeutic studies, respectively. Blood pressure was measured by tail-cuff method biweekly for 12 weeks. The ex vivo vasodilative activities of DG extract, its dependency on endothelium and the involvement of nitric oxide, prostacyclin and potassium channels were investigated using isolated rat aorta ring in organ bath. For in vivo study, systolic blood pressure was significantly reduced in DG extract-treated groups (90.2 and 300 mg/kg) as compared with the SHR control in both preventive and therapeutic studies. However, DG extract was unable to suppress or delay the onset of hypertension in the preventive study. For ex vivo study, the results showed that DG extract induced a concentration-dependent relaxation in aorta and persisted response was observed with the removal of endothelium. Besides, pretreatment with a non-selective potassium channel inhibitor tetraethylammonium (TEA) also significantly inhibited DG extract-induced vasodilation. Further investigations on specific potassium channel blockers revealed that ATP-sensitive potassium (K(ATP)) channel inhibitor glibenclamide, inward rectifier potassium (Kir) inhibitor barium chloride and voltage-dependent potassium (K(v)) channel inhibitor 4-aminopyridine, but not BK(Ca) channel inhibitor iberiotoxin, exerted significant inhibition on DG extract-induced vasodilation. The results of in vivo SHR

  18. An NMDA Receptor-Dependent Mechanism Underlies Inhibitory Synapse Development.

    PubMed

    Gu, Xinglong; Zhou, Liang; Lu, Wei

    2016-01-26

    In the mammalian brain, GABAergic synaptic transmission provides inhibitory balance to glutamatergic excitatory drive and controls neuronal output. The molecular mechanisms underlying the development of GABAergic synapses remain largely unclear. Here, we report that NMDA-type ionotropic glutamate receptors (NMDARs) in individual immature neurons are the upstream signaling molecules essential for GABAergic synapse development, which requires signaling via Calmodulin binding motif in the C0 domain of the NMDAR GluN1 subunit. Interestingly, in neurons lacking NMDARs, whereas GABAergic synaptic transmission is strongly reduced, the tonic inhibition mediated by extrasynaptic GABAA receptors is increased, suggesting a compensatory mechanism for the lack of synaptic inhibition. These results demonstrate a crucial role for NMDARs in specifying the development of inhibitory synapses, and suggest an important mechanism for controlling the establishment of the balance between synaptic excitation and inhibition in the developing brain.

  19. Analysis of Internal Crack Healing Mechanism under Rolling Deformation

    PubMed Central

    Gao, Haitao; Ai, Zhengrong; Yu, Hailiang; Wu, Hongyan; Liu, Xianghua

    2014-01-01

    A new experimental method, called the ‘hole filling method’, is proposed to simulate the healing of internal cracks in rolled workpieces. Based on the experimental results, the evolution in the microstructure, in terms of diffusion, nucleation and recrystallisation were used to analyze the crack healing mechanism. We also validated the phenomenon of segmented healing. Internal crack healing involves plastic deformation, heat transfer and an increase in the free energy introduced by the cracks. It is proposed that internal cracks heal better under high plastic deformation followed by slow cooling after rolling. Crack healing is controlled by diffusion of atoms from the matrix to the crack surface, and also by the nucleation and growth of ferrite grain on the crack surface. The diffusion mechanism is used to explain the source of material needed for crack healing. The recrystallisation mechanism is used to explain grain nucleation and growth, accompanied by atomic migration to the crack surface. PMID:25003518

  20. Induction of maturation and activation of human dendritic cells: A mechanism underlying the beneficial effect of Viscum album as complimentary therapy in cancer

    PubMed Central

    Elluru, Sri Ramulu; van Huyen, Jean-Paul Duong; Delignat, Sandrine; Kazatchkine, Michel D; Friboulet, Alain; Kaveri, Srini V; Bayry, Jagadeesh

    2008-01-01

    Background Viscum album (VA) preparations have been used as a complimentary therapy in cancer. In addition to their cytotoxic properties, they have also been shown to have immunostimulatory properties. In the present study, we examine the hypothesis that the VA preparations induce activation of human DC that facilitates effective tumor regression. Methods Four day old monocyte-derived immature DCs were treated with VA Qu Spez at 5, 10 and 15 μg/ml for 48 hrs. The expression of surface molecules was analyzed by flow cytometry. The ability of Qu Spez-educated DC to stimulate T cells was analyzed by allogeneic mixed lymphocyte reaction and activation of Melan-A/MART-1-specific M77-80 CD8+T cells. Cytokines in cell free culture supernatant was analyzed by cytokine bead array assay. Results VA Qu Spez stimulated DCs presented with increased expression of antigen presenting molecule HLA-DR and of co-stimulatory molecules CD40, CD80 and CD86. The VA Qu Spez also induced the secretion of inflammatory cytokines IL-6 and IL-8. Further, Qu Spez-educated DC stimulated CD4+T cells in a allogeneic mixed lymphocyte reaction and activated melanoma antigen Melan-A/MART-1-specific M77-80 CD8+T cells as evidenced by increased secretion of TNF-α and IFNγ. Conclusion The VA preparations stimulate the maturation and activation of human DCs, which may facilitate anti-tumoral immune responses. These results should assist in understanding the immunostimulatory properties of VA preparations and improving the therapeutic strategies. PMID:18533025

  1. Unraveling the Molecular Mechanisms Underlying the Nasopharyngeal Bacterial Community Structure

    PubMed Central

    de Steenhuijsen Piters, Wouter A. A.

    2016-01-01

    ABSTRACT The upper respiratory tract is colonized by a diverse array of commensal bacteria that harbor potential pathogens, such as Streptococcus pneumoniae. As long as the local microbial ecosystem—also called “microbiome”—is in balance, these potentially pathogenic bacterial residents cause no harm to the host. However, similar to macrobiological ecosystems, when the bacterial community structure gets perturbed, potential pathogens can overtake the niche and cause mild to severe infections. Recent studies using next-generation sequencing show that S. pneumoniae, as well as other potential pathogens, might be kept at bay by certain commensal bacteria, including Corynebacterium and Dolosigranulum spp. Bomar and colleagues are the first to explore a specific biological mechanism contributing to the antagonistic interaction between Corynebacterium accolens and S. pneumoniae in vitro [L. Bomar, S. D. Brugger, B. H. Yost, S. S. Davies, K. P. Lemon, mBio 7(1):e01725-15, 2016, doi:10.1128/mBio.01725-15]. The authors comprehensively show that C. accolens is capable of hydrolyzing host triacylglycerols into free fatty acids, which display antipneumococcal properties, suggesting that these bacteria might contribute to the containment of pneumococcus. This work exemplifies how molecular epidemiological findings can lay the foundation for mechanistic studies to elucidate the host-microbe and microbial interspecies interactions underlying the bacterial community structure. Next, translation of these results to an in vivo setting seems necessary to unveil the magnitude and importance of the observed effect in its natural, polymicrobial setting. PMID:26838716

  2. Sex differences in the mechanisms underlying long QT syndrome.

    PubMed

    Salama, Guy; Bett, Glenna C L

    2014-09-01

    Sexual dimorphism is a well-established phenomenon, but its degree varies tremendously among species. Since the early days of Einthoven's development of the three-lead galvanometer ECG, we have known there are marked differences in QT intervals of men and women. It required over a century to appreciate the profound implications of sex-based electrophysiological differences in QT interval on the panoply of sex differences with respect to arrhythmia risk, drug sensitivity, and treatment modalities. Little is known about the fundamental mechanism responsible for sex differences in electrical substrate of the human heart, in large part due to the lack of tissue availability. Animal models are an important research tool, but species differences in the sexual dimorphism of the QT interval, the ionic currents underlying the cardiac repolarization, and effects of sex steroids make it difficult to interpolate animal to human sex differences. In addition, in some species, different strains of the same animal model yield conflicting data. Each model has its strengths, such as ease of genetic manipulation in mice or size in dogs. However, many animals do not reproduce the sexual dimorphism of QT seen in humans. To match sex linked prolongation of QT interval and arrhythmogenic phenotype, the current data suggest that the rabbit may be best suited to provide insight into sex differences in humans. In the future, emerging technologies such as induced pluripotent stem cell derived cardiac myocyte systems may offer the opportunity to study sex differences in a controlled hormonal situation in the context of a sex specific human model system. Copyright © 2014 the American Physiological Society.

  3. Mechanisms underlying obesity resistance associated with high spontaneous physical activity

    PubMed Central

    Teske, Jennifer A.; Billington, Charles J.; Kotz, Catherine M.

    2013-01-01

    Obesity resistance due to elevated orexin signaling is accompanied by high levels of spontaneous physical activity (SPA). The behavioral and neural mechanisms underlying this observation have not been fully worked out. We determined the contribution of hypothalamic orexin receptors (OXR) to SPA stimulated by orexin A (OXA), whether OXA-stimulated SPA was secondary to arousal and whether voluntary wheel running led to compensations in 24-h SPA. We further tested whether orexin action on dopamine one receptors (DA1R) in the substantia nigra (SN) plays an important role in generation of SPA. To test this, SPA response was determined in lean and obese rats with cannulae targeted towards the rostral lateral hypothalamus (rLH) or SN. Sleep/wake states were also measured in rats with rLH cannula and EEG/EMG radiotelemetry transmitters. SPA in lean rats was more sensitive to antagonism of the orexin 1 receptor (OX1R) and in the early response to the orexin 2 agonist. OXA increased arousal equally in lean and obese rodents, which is discordant from the greater SPA response in lean rats. Obesity resistant rats ran more and wheel running was directly related to 24-h SPA levels. The OX1R antagonist, SB-334867-A, and the DA1R antagonist, SCH3390, in SN more effectively reduced SPA stimulated by OXA in OR rats. These data suggest OXA-stimulated SPA is not secondary to enhanced arousal, propensity for SPA parallels inclination to run and that orexin action on dopaminergic neurons in SN may participate in mediation of SPA and running wheel activity. PMID:24161277

  4. Research of mechanics of the compact bone microvolume and porous ceramics under uniaxial compression

    SciTech Connect

    Kolmakova, T. V. Buyakova, S. P. Kul’kov, S. N.

    2015-11-17

    The research results of the mechanics are presented and the effective mechanical characteristics under uniaxial compression of the simulative microvolume of the compact bone are defined subject to the direction of the collagen-mineral fibers, porosity and mineral content. The experimental studies of the mechanics are performed and the effective mechanical characteristics of the produced porous zirconium oxide ceramics are defined. The recommendations are developed on the selection of the ceramic samples designed to replace the fragment of the compact bone of a definite structure and mineral content.

  5. Researches of mechanical behaviour of the bone micro volumes and porous ceramics under uniaxial compression

    NASA Astrophysics Data System (ADS)

    Kolmakova, T. V.; Buyakova, S. P.; Kulkov, S. N.

    2017-02-01

    The research results of the mechanics are presented and the effective mechanical characteristics under uniaxial compression of the simulative micro volume of the compact bone are defined subject to the direction of the collagen-mineral fibers, porosity and mineral content. The experimental and computer studies of the mechanics are performed and the effective mechanical characteristics of the porous zirconium oxide ceramics are defined. The recommendations are developed on the selection of the ceramic samples designed to replace the fragment of the compact bone of a definite structure and mineral content.

  6. Numerical investigation of pulmonary drug delivery under mechanical ventilation conditions

    NASA Astrophysics Data System (ADS)

    Banerjee, Arindam; van Rhein, Timothy

    2012-11-01

    The effects of mechanical ventilation waveform on fluid flow and particle deposition were studied in a computer model of the human airways. The frequency with which aerosolized drugs are delivered to mechanically ventilated patients demonstrates the importance of understanding the effects of ventilation parameters. This study focuses specifically on the effects of mechanical ventilation waveforms using a computer model of the airways of patient undergoing mechanical ventilation treatment from the endotracheal tube to generation G7. Waveforms were modeled as those commonly used by commercial mechanical ventilators. Turbulence was modeled with LES. User defined particle force models were used to model the drag force with the Cunningham correction factor, the Saffman lift force, and Brownian motion force. The endotracheal tube (ETT) was found to be an important geometric feature, causing a fluid jet towards the right main bronchus, increased turbulence, and a recirculation zone in the right main bronchus. In addition to the enhanced deposition seen at the carinas of the airway bifurcations, enhanced deposition was also seen in the right main bronchus due to impaction and turbulent dispersion resulting from the fluid structures created by the ETT. Authors acknowledge financial support through University of Missouri Research Board Award.

  7. Deformation mechanisms of idealised cermets under multi-axial loading

    NASA Astrophysics Data System (ADS)

    Bele, E.; Goel, A.; Pickering, E. G.; Borstnar, G.; Katsamenis, O. L.; Pierron, F.; Danas, K.; Deshpande, V. S.

    2017-05-01

    The response of idealised cermets comprising approximately 60% by volume steel spheres in a Sn/Pb solder matrix is investigated under a range of axisymmetric compressive stress states. Digital volume correlation (DVC) anal`ysis of X-ray micro-computed tomography scans (μ-CT), and the measured macroscopic stress-strain curves of the specimens revealed two deformation mechanisms. At low triaxialities the deformation is granular in nature, with dilation occurring within shear bands. Under higher imposed hydrostatic pressures, the deformation mechanism transitions to a more homogeneous incompressible mode. However, DVC analyses revealed that under all triaxialities there are regions with local dilatory and compaction responses, with the magnitude of dilation and the number of zones wherein dilation occurs decreasing with increasing triaxiality. Two numerical models are presented in order to clarify these mechanisms: (i) a periodic unit cell model comprising nearly rigid spherical particles in a porous metal matrix and (ii) a discrete element model comprising a large random aggregate of spheres connected by non-linear normal and tangential ;springs;. The periodic unit cell model captured the measured stress-strain response with reasonable accuracy but under-predicted the observed dilation at the lower triaxialities, because the kinematic constraints imposed by the skeleton of rigid particles were not accurately accounted for in this model. By contrast, the discrete element model captured the kinematics and predicted both the overall levels of dilation and the simultaneous presence of both local compaction and dilatory regions with the specimens. However, the levels of dilation in this model are dependent on the assumed contact law between the spheres. Moreover, since the matrix is not explicitly included in the analysis, this model cannot be used to predict the stress-strain responses. These analyses have revealed that the complete constitutive response of cermets

  8. Deciphering the mechanism underlying late-onset Alzheimer disease.

    PubMed

    Krstic, Dimitrije; Knuesel, Irene

    2013-01-01

    Despite tremendous investments in understanding the complex molecular mechanisms underlying Alzheimer disease (AD), recent clinical trials have failed to show efficacy. A potential problem underlying these failures is the assumption that the molecular mechanism mediating the genetically determined form of the disease is identical to the one resulting in late-onset AD. Here, we integrate experimental evidence outside the 'spotlight' of the genetic drivers of amyloid-β (Aβ) generation published during the past two decades, and present a mechanistic explanation for the pathophysiological changes that characterize late-onset AD. We propose that chronic inflammatory conditions cause dysregulation of mechanisms to clear misfolded or damaged neuronal proteins that accumulate with age, and concomitantly lead to tau-associated impairments of axonal integrity and transport. Such changes have several neuropathological consequences: focal accumulation of mitochondria, resulting in metabolic impairments; induction of axonal swelling and leakage, followed by destabilization of synaptic contacts; deposition of amyloid precursor protein in swollen neurites, and generation of aggregation-prone peptides; further tau hyperphosphorylation, ultimately resulting in neurofibrillary tangle formation and neuronal death. The proposed sequence of events provides a link between Aβ and tau-related neuropathology, and underscores the concept that degenerating neurites represent a cause rather than a consequence of Aβ accumulation in late-onset AD.

  9. Neural circuitry and plasticity mechanisms underlying delay eyeblink conditioning

    PubMed Central

    Freeman, John H.; Steinmetz, Adam B.

    2011-01-01

    Pavlovian eyeblink conditioning has been used extensively as a model system for examining the neural mechanisms underlying associative learning. Delay eyeblink conditioning depends on the intermediate cerebellum ipsilateral to the conditioned eye. Evidence favors a two-site plasticity model within the cerebellum with long-term depression of parallel fiber synapses on Purkinje cells and long-term potentiation of mossy fiber synapses on neurons in the anterior interpositus nucleus. Conditioned stimulus and unconditioned stimulus inputs arise from the pontine nuclei and inferior olive, respectively, converging in the cerebellar cortex and deep nuclei. Projections from subcortical sensory nuclei to the pontine nuclei that are necessary for eyeblink conditioning are beginning to be identified, and recent studies indicate that there are dynamic interactions between sensory thalamic nuclei and the cerebellum during eyeblink conditioning. Cerebellar output is projected to the magnocellular red nucleus and then to the motor nuclei that generate the blink response(s). Tremendous progress has been made toward determining the neural mechanisms of delay eyeblink conditioning but there are still significant gaps in our understanding of the necessary neural circuitry and plasticity mechanisms underlying cerebellar learning. PMID:21969489

  10. Peptide formation mechanism on montmorillonite under thermal conditions.

    PubMed

    Fuchida, Shigeshi; Masuda, Harue; Shinoda, Keiji

    2014-02-01

    The oligomerization of amino acids is an essential process in the chemical evolution of proteins, which are precursors to life on Earth. Although some researchers have observed peptide formation on clay mineral surfaces, the mechanism of peptide bond formation on the clay mineral surface has not been clarified. In this study, the thermal behavior of glycine (Gly) adsorbed on montmorillonite was observed during heating experiments conducted at 150 °C for 336 h under dry, wet, and dry-wet conditions to clarify the mechanism. Approximately 13.9 % of the Gly monomers became peptides on montmorillonite under dry conditions, with diketopiperazine (cyclic dimer) being the main product. On the other hand, peptides were not synthesized in the absence of montmorillonite. Results of IR analysis showed that the Gly monomer was mainly adsorbed via hydrogen bonding between the positively charged amino groups and negatively charged surface sites (i.e., Lewis base sites) on the montmorillonite surface, indicating that the Lewis base site acts as a catalyst for peptide formation. In contrast, peptides were not detected on montmorillonite heated under wet conditions, since excess water shifted the equilibrium towards hydrolysis of the peptides. The presence of water is likely to control thermodynamic peptide production, and clay minerals, especially those with electrophilic defect sites, seem to act as a kinetic catalyst for the peptide formation reaction.

  11. Peptide Formation Mechanism on Montmorillonite Under Thermal Conditions

    NASA Astrophysics Data System (ADS)

    Fuchida, Shigeshi; Masuda, Harue; Shinoda, Keiji

    2014-02-01

    The oligomerization of amino acids is an essential process in the chemical evolution of proteins, which are precursors to life on Earth. Although some researchers have observed peptide formation on clay mineral surfaces, the mechanism of peptide bond formation on the clay mineral surface has not been clarified. In this study, the thermal behavior of glycine (Gly) adsorbed on montmorillonite was observed during heating experiments conducted at 150 °C for 336 h under dry, wet, and dry-wet conditions to clarify the mechanism. Approximately 13.9 % of the Gly monomers became peptides on montmorillonite under dry conditions, with diketopiperazine (cyclic dimer) being the main product. On the other hand, peptides were not synthesized in the absence of montmorillonite. Results of IR analysis showed that the Gly monomer was mainly adsorbed via hydrogen bonding between the positively charged amino groups and negatively charged surface sites (i.e., Lewis base sites) on the montmorillonite surface, indicating that the Lewis base site acts as a catalyst for peptide formation. In contrast, peptides were not detected on montmorillonite heated under wet conditions, since excess water shifted the equilibrium towards hydrolysis of the peptides. The presence of water is likely to control thermodynamic peptide production, and clay minerals, especially those with electrophilic defect sites, seem to act as a kinetic catalyst for the peptide formation reaction.

  12. The mechanisms of cachexia underlying muscle dysfunction in COPD.

    PubMed

    Remels, A H V; Gosker, H R; Langen, R C J; Schols, A M W J

    2013-05-01

    Pulmonary cachexia is a prevalent, debilitating, and well-recognized feature of COPD associated with increased mortality and loss of peripheral and respiratory muscle function. The exact cause and underlying mechanisms of cachexia in COPD are still poorly understood. Increasing evidence, however, shows that pathological changes in intracellular mechanisms of muscle mass maintenance (i.e., protein turnover and myonuclear turnover) are likely involved. Potential factors triggering alterations in these mechanisms in COPD include oxidative stress, myostatin, and inflammation. In addition to muscle wasting, peripheral muscle in COPD is characterized by a fiber-type shift toward a more type II, glycolytic phenotype and an impaired oxidative capacity (collectively referred to as an impaired oxidative phenotype). Atrophied diaphragm muscle in COPD, however, displays an enhanced oxidative phenotype. Interestingly, intrinsic abnormalities in (lower limb) peripheral muscle seem more pronounced in either cachectic patients or weight loss-susceptible emphysema patients, suggesting that muscle wasting and intrinsic changes in peripheral muscle's oxidative phenotype are somehow intertwined. In this manuscript, we will review alterations in mechanisms of muscle mass maintenance in COPD and discuss the involvement of oxidative stress, inflammation, and myostatin as potential triggers of cachexia. Moreover, we postulate that an impaired muscle oxidative phenotype in COPD can accelerate the process of cachexia, as it renders muscle in COPD less energy efficient, thereby contributing to an energy deficit and weight loss when not dietary compensated. Furthermore, loss of peripheral muscle oxidative phenotype may increase the muscle's susceptibility to inflammation- and oxidative stress-induced muscle damage and wasting.

  13. Failure Mechanisms of Brittle Rocks under Uniaxial Compression

    NASA Astrophysics Data System (ADS)

    Liu, Taoying; Cao, Ping

    2017-09-01

    The behaviour of a rock mass is determined not only by the properties of the rock matrix, but mostly by the presence and properties of discontinuities or fractures within the mass. The compression test on rock-like specimens with two prefabricated transfixion fissures, made by pulling out the embedded metal inserts in the pre-cured period was carried out on the servo control uniaxial loading tester. The influence of the geometry of pre-existing cracks on the cracking processes was analysed with reference to the experimental observation of crack initiation and propagation from pre-existing flaws. Based on the rock fracture mechanics and the stress-strain curves, the evolution failure mechanism of the fissure body was also analyzed on the basis of exploring the law of the compression-shear crack initiation, wing crack growth and rock bridge connection. Meanwhile, damage fracture mechanical models of a compression-shear rock mass are established when the rock bridge axial transfixion failure, tension-shear combined failure, or wing crack shear connection failure occurs on the specimen under axial compression. This research was of significance in studying the failure mechanism of fractured rock mass.

  14. Mechanisms underlying astringency: introduction to an oral tribology approach

    NASA Astrophysics Data System (ADS)

    Upadhyay, Rutuja; Brossard, Natalia; Chen, Jianshe

    2016-03-01

    Astringency is one of the predominant factors in the sensory experience of many foods and beverages ranging from wine to nuts. The scientific community is discussing mechanisms that explain this complex phenomenon, since there are no conclusive results which correlate well with sensory astringency. Therefore, the mechanisms and perceptual characteristics of astringency warrant further discussion and investigation. This paper gives a brief introduction of the fundamentals of oral tribology forming a basis of the astringency mechanism. It discusses the current state of the literature on mechanisms underlying astringency describing the existing astringency models. The review discusses the crucial role of saliva and its physiology which contributes significantly in astringency perception in the mouth. It also provides an overview of research concerned with the physiological and psychophysical factors that mediate the perception of this sensation, establishing the ground for future research. Thus, the overall aim of the review is to establish the critical roles of oral friction (thin-film lubrication) in the sensation of astringency and possibly of some other specific sensory features.

  15. The mechanism underlying fast germination of tomato cultivar LA2711.

    PubMed

    Yang, Rongchao; Chu, Zhuannan; Zhang, Haijun; Li, Ying; Wang, Jinfang; Li, Dianbo; Weeda, Sarah; Ren, Shuxin; Ouyang, Bo; Guo, Yang-Dong

    2015-09-01

    Seed germination is important for early plant morphogenesis as well as abiotic stress tolerance, and is mainly controlled by the phytohormones abscisic acid (ABA) and gibberellic acid (GA). Our previous studies identified a salt-tolerant tomato cultivar, LA2711, which is also a fast-germinating genotype, compared to its salt-sensitive counterpart, ZS-5. In an effort to further clarify the mechanism underlying this phenomenon, we compared the dynamic levels of ABA and GA4, the transcript abundance of genes involved in their biosynthesis and catabolism as well as signal transduction between the two cultivars. In addition, we tested seed germination sensitivity to ABA and GAs. Our results revealed that insensitivity of seed germination to exogenous ABA and low ABA content in seeds are the physiological mechanisms conferring faster germination rates of LA2711 seeds. SlCYP707A2, which encodes an ABA catabolic enzyme, may play a decisive role in the fast germination rate of LA2711, as it showed a significantly higher level of expression in LA2711 than ZS-5 at most time points tested during germination. The current results will enable us to gain insight into the mechanism(s) regarding seed germination of tomato and the role of fast germination in stress tolerance.

  16. Domino Effect: mechanic factors role.

    PubMed

    Nardi, Alfredo; Tarantino, Umberto; Ventura, Lorenzo; Armotti, Pierantonio; Resmini, Giuseppina; Cozzi, Luisella; Tonini, Greta; Ramazzina, Emilio; Rossini, Maurizio

    2011-05-01

    The rapid onset of the Domino Effect following the first Vertebral Compression Fracture is a direct consequence of the mechanical variations that affect the spine when physiological curves are modified. The degree of kyphosis influences the intensity of the Flexor Moment; this is greater on vertebrae D7, D8 and on vertebrae D12, L1 when the spine flexes. Fractures of D7, D8, D12 and L1 are, by far, the most frequent and also the main cause of the mechanical alterations that can trigger the Domino Effect. For these considerations vertebrae D7, D8, D12 and L1 have to be taken in consideration as "critical". In the case of critical clinical vertebral fractures it is useful to provide an indication for minimally invasive surgical reduction or intrasomatic stabilization. When occurs a fracture of a "critical vertebra", prompt restoration of the heights leads to a reduction in the Kyphosis Index and therefore in the Flexor Moment, not only of the fractured vertebra but also, in turn, of all the other metameres which, even if morphologically still intact, are structurally fragile; so, through the restoration of the mechanical vertebral proprieties, we can reduce the risk of the Domino Effect. At the same time the prompt implementation of osteoinductive therapy is indispensable in order to achieve rapid and intense reconstruction of the trabecular bone, the strength of which increases significantly in a short period of time. Clinical studies are necessary to confirm the reduction of the domino effect following a fragility fracture of "critical vertebrae" with the restoration of the mechanical properties together with anabolic therapy.

  17. Principles of cellular-molecular mechanisms underlying neuron functions.

    PubMed

    Ratushnyak, Alexander S; Zapara, Tatiana A

    2009-12-01

    In the present work, it was experimentally shown that a neuron in vitro was capable of responding in a manner similar to habituation, Pavlov's reflex and avoidance of the reinforcements. The locality of plastic property modifications and molecular morphology, as well as the connection between functional activity and cytoskeleton have been revealed. A hypothesis is formulated that the neuron is a molecular system which may exercise the control, forecast, recognition, and classification. The basic principles of the molecular mechanisms of the responses underlying integrative activity, learning and memory at the neuronal level are discussed.

  18. [Underlying mechanisms of the heavy metal tolerance of mycorrhizal fungi].

    PubMed

    Chen, Bao-Dong; Sun, Yu-Qing; Zhang, Xin; Wu, Song-Lin

    2015-03-01

    Mycorrhizal fungi are ubiquitous in natural ecosystems and can form symbiotic associations with the majority of terrestrial plants. They can be detected even in heavy metal-contaminated soils, while some fungal strains show strong heavy metal tolerance and could potentially be used in bioremediation of contaminated soils. We reviewed current research progresses in the underlying mechanisms of heavy metal tolerance of mycorrhizal fungi, with focuses on habitat selection, physiological adaptation and functional genes. Future research perspectives were proposed to promote the basic research and development of mycorrhizal technology for remediation of heavy metal-contaminated soils.

  19. Physical mechanisms underlying the strain-rate-dependent mechanical behavior of kangaroo shoulder cartilage

    NASA Astrophysics Data System (ADS)

    Thibbotuwawa, Namal; Oloyede, Adekunle; Li, Tong; Singh, Sanjleena; Senadeera, Wijitha; Gu, YuanTong

    2015-09-01

    Due to anatomical and biomechanical similarities to human shoulder, kangaroo was chosen as a model to study shoulder cartilage. Comprehensive enzymatic degradation and indentation tests were applied on kangaroo shoulder cartilage to study mechanisms underlying its strain-rate-dependent mechanical behavior. We report that superficial collagen plays a more significant role than proteoglycans in facilitating strain-rate-dependent behavior of the kangaroo shoulder cartilage. By comparing the mechanical properties of degraded and normal cartilages, it was noted that proteoglycan and collagen degradation significantly compromised strain-rate-dependent mechanical behavior of the cartilage. Superficial collagen contributed equally to the tissue behavior at all strain-rates. This is different to the studies reported on knee cartilage and confirms the importance of superficial collagen on shoulder cartilage mechanical behavior. A porohyperelastic numerical model also indicated that collagen disruption would lead to faster damage of the shoulder cartilage than when proteoglycans are depleted.

  20. Common mechanism underlies repeated evolution of extreme pollution tolerance

    PubMed Central

    Whitehead, Andrew; Pilcher, Whitney; Champlin, Denise; Nacci, Diane

    2012-01-01

    Human alterations to the environment can exert strong evolutionary pressures, yet contemporary adaptation to human-mediated stressors is rarely documented in wildlife populations. A common-garden experimental design was coupled with comparative transcriptomics to discover evolved mechanisms enabling three populations of killifish resident in urban estuaries to survive normally lethal pollution exposure during development, and to test whether mechanisms are unique or common across populations. We show that killifish populations from these polluted sites have independently converged on a common adaptive mechanism, despite variation in contaminant profiles among sites. These populations are united by a similarly profound desensitization of aryl-hydrocarbon receptor-mediated transcriptional activation, which is associated with extreme tolerance to the lethal effects of toxic dioxin-like pollutants. The rapid, repeated, heritable and convergent nature of evolved tolerance suggests that ancestral killifish populations harboured genotypes that enabled adaptation to twentieth-century industrial pollutants. PMID:21733895

  1. Cognitive interventions for addiction medicine: Understanding the underlying neurobiological mechanisms.

    PubMed

    Zilverstand, Anna; Parvaz, Muhammad A; Moeller, Scott J; Goldstein, Rita Z

    2016-01-01

    Neuroimaging provides a tool for investigating the neurobiological mechanisms of cognitive interventions in addiction. The aim of this review was to describe the brain circuits that are recruited during cognitive interventions, examining differences between various treatment modalities while highlighting core mechanisms, in drug addicted individuals. Based on a systematic Medline search we reviewed neuroimaging studies on cognitive behavioral therapy, cognitive inhibition of craving, motivational interventions, emotion regulation, mindfulness, and neurofeedback training in addiction. Across intervention modalities, common results included the normalization of aberrant activity in the brain's reward circuitry, and the recruitment and strengthening of the brain's inhibitory control network. Results suggest that different cognitive interventions act, at least partly, through recruitment of a common inhibitory control network as a core mechanism. This implies potential transfer effects between training modalities. Overall, results confirm that chronically hypoactive prefrontal regions implicated in cognitive control in addiction can be normalized through cognitive means.

  2. Common mechanism underlies repeated evolution of extreme pollution tolerance.

    PubMed

    Whitehead, Andrew; Pilcher, Whitney; Champlin, Denise; Nacci, Diane

    2012-02-07

    Human alterations to the environment can exert strong evolutionary pressures, yet contemporary adaptation to human-mediated stressors is rarely documented in wildlife populations. A common-garden experimental design was coupled with comparative transcriptomics to discover evolved mechanisms enabling three populations of killifish resident in urban estuaries to survive normally lethal pollution exposure during development, and to test whether mechanisms are unique or common across populations. We show that killifish populations from these polluted sites have independently converged on a common adaptive