Science.gov

Sample records for mediante plaqueado laser

  1. Lasers.

    ERIC Educational Resources Information Center

    Schewe, Phillip F.

    1981-01-01

    Examines the nature of laser light. Topics include: (1) production and characteristics of laser light; (2) nine types of lasers; (3) five laser techniques including holography; (4) laser spectroscopy; and (5) laser fusion and other applications. (SK)

  2. Lasers.

    ERIC Educational Resources Information Center

    Schewe, Phillip F.

    1981-01-01

    Examines the nature of laser light. Topics include: (1) production and characteristics of laser light; (2) nine types of lasers; (3) five laser techniques including holography; (4) laser spectroscopy; and (5) laser fusion and other applications. (SK)

  3. [Lasers].

    PubMed

    Passeron, T

    2012-11-01

    Lasers are a very effective approach for treating many hyperpigmented lesions. They are the gold standard treatment for actinic lentigos and dermal hypermelanocytosis, such as Ota nevus. Becker nevus, hyperpigmented mosaicisms, and lentigines can also be successfully treated with lasers, but they could be less effective and relapses can be observed. However, lasers cannot be proposed for all types of hyperpigmentation. Thus, freckles and café-au-lait macules should not be treated as the relapses are nearly constant. Due to its complex pathophysiology, melasma has a special place in hyperpigmented dermatoses. Q-switched lasers (using standard parameters or low fluency) should not be used because of consistent relapses and the high risk of post-inflammatory hyperpigmentation. Paradoxically, targeting the vascular component of the melasma lesion with lasers could have a beneficial effect. However, these results have yet to be confirmed. In all cases, a precise diagnosis of the type of hyperpigmentation is mandatory before any laser treatment, and the limits and the potential side effects of the treatment must be clearly explained to patients.

  4. Lasers.

    PubMed

    Passeron, T

    2012-12-01

    Lasers are a very effective approach for treating many hyperpigmented lesions. They are the gold standard treatment for actinic lentigos and dermal hypermelanocytosis, such as Ota nevus. Becker nevus, hyperpigmented mosaicisms, and lentigines can also be successfully treated with lasers, but they could be less effective and relapses can be observed. However, lasers cannot be proposed for all types of hyperpigmentation. Thus, freckles and café-au-lait macules should not be treated as the relapses are nearly constant. Due to its complex pathophysiology, melasma has a special place in hyperpigmented dermatoses. Q-switched lasers (using standard parameters or low fluency) should not be used because of consistent relapses and the high risk of post-inflammatory hyperpigmentation. Paradoxically, targeting the vascular component of the melasma lesion with lasers could have a beneficial effect. However, these results have yet to be confirmed. In all cases, a precise diagnosis of the type of hyperpigmentation is mandatory before any laser treatment, and the limits and the potential side effects of the treatment must be clearly explained to patients.

  5. Microchip Lasers

    DTIC Science & Technology

    2016-10-31

    physics that underlies their performance, typical operating parameters for the devices, and several of their applications . Keywords Composite-cavity...laser, Diode -pumped laser, Laser, Microchip laser, Miniature laser, Monolithic laser, Passively Q-switched laser, Q-switched laser, Saturable...cavity mirrors are deposited directly on the gain medium and the laser is pumped with a diode laser, either directly, as shown in Fig. 1, or via an

  6. Laser Technology.

    ERIC Educational Resources Information Center

    Gauger, Robert

    1993-01-01

    Describes lasers and indicates that learning about laser technology and creating laser technology activities are among the teacher enhancement processes needed to strengthen technology education. (JOW)

  7. Laser Technology.

    ERIC Educational Resources Information Center

    Gauger, Robert

    1993-01-01

    Describes lasers and indicates that learning about laser technology and creating laser technology activities are among the teacher enhancement processes needed to strengthen technology education. (JOW)

  8. Laser apparatus

    NASA Technical Reports Server (NTRS)

    Koepf, G. A. (Inventor)

    1979-01-01

    A laser apparatus having a pump laser device for producing pump laser energy upon being excited is disclosed. The pump laser device has a resonating cavity for oscillating and amplifying the pump laser energy. A source laser device is used for producing source laser energy upon being excited by the pump laser energy. The source laser device has a resonating cavity for oscillating and amplifying the source laser energy. The source laser's resonating cavity is coupled within a portion of the pump laser's resonating cavity.

  9. Laser principles.

    PubMed

    Bogdan Allemann, Inja; Kaufman, Joely

    2011-01-01

    Since the construction of the first laser in the 1960s, the role that lasers play in various medical specialities, including dermatology, has steadily increased. However, within the last 2 decades, the technological advances and the use of lasers in the field of dermatology have virtually exploded. Many treatments have only become possible with the use of lasers. Especially in aesthetic medicine, lasers are an essential tool in the treatment armamentarium. Due to better research and understanding of the physics of light and skin, there is now a wide and increasing array of different lasers and devices to choose from. The proper laser selection for each indication and treatment requires a profound understanding of laser physics and the basic laser principles. Understanding these principles will allow the laser operator to obtain better results and help avoid complications. This chapter will give an in-depth overview of the physical principles relevant in cutaneous laser surgery. Copyright © 2011 S. Karger AG, Basel.

  10. Laser clock

    SciTech Connect

    Facklam, R.L.

    1983-05-26

    A laser clock includes a linear laser in one embodiment of the clock and a ring laser gyro in the other embodiment. The linear laser is frequency stabilized and utilizes a single active medium in the form of a low pressure gas, such as He-Ne, with a Doppler broadened gain curve. The ring laser gyro is a four frequency laser with a Faraday rotor. Detector and electronic circuitry associated with the laser of each embodiment detects a beat frequency and convert it to a clock signal.

  11. Blue Laser.

    DTIC Science & Technology

    1985-12-01

    HOLLOW CATHODE LASER FABRICATION 13 4. EXPERIENCE WITH THE BLUE LASER 18 4.1 Operational and Processing Experience 18 4.2 Performance Testing 20 5...34 -. - . •. SECTION 3 BLUE HOLLOW CATHODE LASER FABRICATION This section presents an overview of the steps taken in creating a HCL. There is...to the laser assembly. These steps can actually be considered as the final steps in laser fabrication because some of them involve adding various

  12. Laser Analyzer

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Dopant level analysis is important to the laser system designer because it allows him to model the laser's performance. It also allows the end user to determine what went wrong when a laser fails to perform as expected. Under a Small Business Innovation Research (SBIR) contract, Scientific Materials Corporation has developed a process for producing uniform laser rods in which the amount of water trapped in the crystal during growth is reduced. This research led to the formation of a subsidiary company, Montana Analytical Services, which conducts analysis of laser rods for dopant ion concentrations. This is a significant advance in laser technology.

  13. Lasers of All Sizes

    NASA Astrophysics Data System (ADS)

    Balcou, Philippe; Forget, Sébastien Robert-Philip, Isabelle

    2015-10-01

    * Introduction * The Laser in All Its Forms * Gas lasers * Dye lasers * Solid-state lasers * Lasers for Every Taste * The rise of lasers * Lasers of all sizes * The colors of the rainbow... and beyond * Shorter and shorter lasers * Increasingly powerful lasers * Lasers: A Universal Tool? * Cutting, welding, and cleaning * Communicating * Treating illnesses * Measuring * Supplying energy? * Entertaining * Understanding * Conclusion

  14. Laser microphone

    DOEpatents

    Veligdan, James T.

    2000-11-14

    A microphone for detecting sound pressure waves includes a laser resonator having a laser gain material aligned coaxially between a pair of first and second mirrors for producing a laser beam. A reference cell is disposed between the laser material and one of the mirrors for transmitting a reference portion of the laser beam between the mirrors. A sensing cell is disposed between the laser material and one of the mirrors, and is laterally displaced from the reference cell for transmitting a signal portion of the laser beam, with the sensing cell being open for receiving the sound waves. A photodetector is disposed in optical communication with the first mirror for receiving the laser beam, and produces an acoustic signal therefrom for the sound waves.

  15. Laser sampling

    NASA Astrophysics Data System (ADS)

    Gorbatenko, A. A.; Revina, E. I.

    2015-10-01

    The review is devoted to the major advances in laser sampling. The advantages and drawbacks of the technique are considered. Specific features of combinations of laser sampling with various instrumental analytical methods, primarily inductively coupled plasma mass spectrometry, are discussed. Examples of practical implementation of hybrid methods involving laser sampling as well as corresponding analytical characteristics are presented. The bibliography includes 78 references.

  16. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2004-01-13

    Sequenced pulses of light from an excitation laser with at least two resonator cavities with separate output couplers are directed through a light modulator and a first polarzing analyzer. A portion of the light not rejected by the first polarizing analyzer is transported through a first optical fiber into a first ignitor laser rod in an ignitor laser. Another portion of the light is rejected by the first polarizing analyzer and directed through a halfwave plate into a second polarization analyzer. A first portion of the output of the second polarization analyzer passes through the second polarization analyzer to a second, oscillator, laser rod in the ignitor laser. A second portion of the output of the second polarization analyzer is redirected by the second polarization analyzer to a second optical fiber which delays the beam before the beam is combined with output of the first ignitor laser rod. Output of the second laser rod in the ignitor laser is directed into the first ignitor laser rod which was energized by light passing through the first polarizing analyzer. Combined output of the first ignitor laser rod and output of the second optical fiber is focused into a combustible fuel where the first short duration, high peak power pulse from the ignitor laser ignites the fuel and the second long duration, low peak power pulse directly from the excitation laser sustains the combustion.

  17. CW laser pumped emerald laser

    SciTech Connect

    Shand, M.L.; Lai, S.T.

    1984-02-01

    A CW laser-pumped emerald laser is reported. A 34 percent output power slope efficiency is observed with longitudinal pumping by a krypton laser in a nearly concentric cavity. The laser has been tuned from 728.8 to 809.0 nm. Losses in emerald are larger than those of alexandrite determined in a similar cavity. The present data also indicate that the excited state absorption minimum is shifted from that of alexandrite. 13 references.

  18. Cutaneous lasers.

    PubMed

    Fedok, Fred G; Garritano, Frank; Portela, Antonio

    2013-02-01

    There has been a remarkable development and evolution of laser technology, leading to adaptation of lasers for medical use and the treatment of skin problems and disorders. Many treatments that required incisional surgery and other invasive methods are now preferentially treated with a laser. Although laser advances have resulted in the availability of some amazing tools, they require the clinical skill and judgment of the clinician for their optimal use. This article provides a clinically oriented overview of many of the lasers valuable in facial plastic surgery. Basic science, clinical adaptations, and patient management topics are covered. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Laser device

    DOEpatents

    Scott, Jill R.; Tremblay, Paul L.

    2004-11-23

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  20. Laser device

    DOEpatents

    Scott, Jill R.; Tremblay, Paul L.

    2007-07-10

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  1. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2003-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In a third embodiment, alternating short and long pulses of light from the excitation light source are directed into the ignitor laser. Each of the embodiments of the invention can be multiplexed so as to provide laser light energy sequentially to more than one ignitor laser.

  2. Laser Systems

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Tunable diode lasers are employed as radiation sources in high resolution infrared spectroscopy to determine spectral characteristics of gaseous compounds. With other laser systems, they are produced by Spectra-Physics, and used to monitor chemical processes, monitor production of quantity halogen lamps, etc. The Laser Analytics Division of Spectra-Physics credits the system's reliability to a program funded by Langley in the 1970s. Company no longer U.S.-owned. 5/22/97

  3. Laser apparatus

    DOEpatents

    Lewis, Owen; Stogran, Edmund M.

    1980-01-01

    Laser apparatus is described wherein an active laser element, such as the disc of a face-pumped laser, is mounted in a housing such that the weight of the element is supported by glass spheres which fill a chamber defined in the housing between the walls of the housing and the edges of the laser element. The uniform support provided by the spheres enable the chamber and the pump side of the laser element to be sealed without affecting the alignment or other optical properties of the laser element. Cooling fluid may be circulated through the sealed region by way of the interstices between the spheres. The spheres, and if desired also the cooling fluid may contain material which absorbs radiation at the wavelength of parasitic emissions from the laser element. These parasitic emissions enter the spheres through the interface along the edge surface of the laser element and it is desirable that the index of refraction of the spheres and cooling fluid be near the index of refraction of the laser element. Thus support, cooling, and parasitic suppression functions are all accomplished through the use of the arrangement.

  4. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2002-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source capable of producing alternating beams of light having different wavelengths is used in tandem with one or more ignitor lasers to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using the single remote excitation light source for pumping one or more small lasers located proximate to one or more fuel combustion zones with alternating wavelengths of light.

  5. Biocavity Lasers

    SciTech Connect

    Gourley, P.L.; Gourley, M.F.

    2000-10-05

    Laser technology has advanced dramatically and is an integral part of today's healthcare delivery system. Lasers are used in the laboratory analysis of human blood samples and serve as surgical tools that kill, burn or cut tissue. Recent semiconductor microtechnology has reduced the size o f a laser to the size of a biological cell or even a virus particle. By integrating these ultra small lasers with biological systems, it is possible to create micro-electrical mechanical systems that may revolutionize health care delivery.

  6. Laser Physics and Laser Techniques.

    DTIC Science & Technology

    1980-02-01

    is probably better than will ever be needed. Publications that have appeared, or are in the final stages of preparation, covering the FHT algorithm...and the understanding of the energy storage and laser trigger requirements make pursuit of a two photon laser a much more probable success now than...of energy migration for the amlec- 1) In the haigh comipressibility eginic produced by the laser tilar excited states, obtained by studying the decay

  7. Multimegajoule laser design. [Glass lasers

    SciTech Connect

    Manes, K.R.; Ozarski, R.G.; Hagen, W.F.; Holzrichtr, J.F.

    1985-08-01

    New technologies make multimegajoule glass lasers economically feasible. We have devised new laser architectures using harmonic switchout, target-plane holographic injection, phase conjugation, continuous apodization, and higher amplifier efficiencies. Our plan for building a multimegajoule laser for a recurring cost under $300 million relies on the following manufacturing economies of scale: high-volume glass production, rapid harmonic-crystal growth, capacitor sizing and packing to increase energy capacity, and part standardization.

  8. Heterodyne laser spectroscopy system

    DOEpatents

    Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas

    1989-01-01

    A heterodyne laser spectroscopy system utilizes laser heterodyne techniques for purposes of laser isotope separation spectroscopy, vapor diagnostics, processing of precise laser frequency offsets from a reference frequency and the like, and provides spectral analysis of a laser beam.

  9. Heterodyne laser spectroscopy system

    DOEpatents

    Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas

    1990-01-01

    A heterodyne laser spectroscopy system utilizes laser heterodyne techniques for purposes of laser isotope separation spectroscopy, vapor diagnostics, processing of precise laser frequency offsets from a reference frequency, and provides spectral analysis of a laser beam.

  10. Co Laser.

    DTIC Science & Technology

    1976-01-01

    newsletter setvice covering the moj-t recent research findings in 25 areas of industrial, technological , and sociological interest— invaluable information...service will be backdated to furnish you microfiche of reports issued earlier. Because of contractual arrangements with several Special Technology ...pressure electrical CO laser and, thereby, to develop the technology for high pres- sure, scalable, electric CO lasers exhibiting properties of

  11. Laser device

    DOEpatents

    Scott, Jill R.; Tremblay, Paul L.

    2008-08-19

    A laser device includes a virtual source configured to aim laser energy that originates from a true source. The virtual source has a vertical rotational axis during vertical motion of the virtual source and the vertical axis passes through an exit point from which the laser energy emanates independent of virtual source position. The emanating laser energy is collinear with an orientation line. The laser device includes a virtual source manipulation mechanism that positions the virtual source. The manipulation mechanism has a center of lateral pivot approximately coincident with a lateral index and a center of vertical pivot approximately coincident with a vertical index. The vertical index and lateral index intersect at an index origin. The virtual source and manipulation mechanism auto align the orientation line through the index origin during virtual source motion.

  12. High throughput laser processing

    SciTech Connect

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John

    2016-12-27

    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  13. Laser goniometer

    DOEpatents

    Fairer, George M.; Boernge, James M.; Harris, David W.; Campbell, DeWayne A.; Tuttle, Gene E.; McKeown, Mark H.; Beason, Steven C.

    1993-01-01

    The laser goniometer is an apparatus which permits an operator to sight along a geologic feature and orient a collimated lamer beam to match the attitude of the feature directly. The horizontal orientation (strike) and the angle from horizontal (dip), are detected by rotary incremental encoders attached to the laser goniometer which provide a digital readout of the azimuth and tilt of the collimated laser beam. A microprocessor then translates the square wave signal encoder outputs into an ASCII signal for use by data recording equipment.

  14. Laser propulsion

    NASA Technical Reports Server (NTRS)

    Rom, F. E.; Putre, H. A.

    1972-01-01

    The use of an earth-based high-power laser beam to provide energy for earth-launched rocket vehicle is investigated. The laser beam energy is absorbed in an opaque propellant gas and is converted to high-specific-impulse thrust by expanding the heated propellant to space by means of a nozzle. This laser propulsion scheme can produce specific impulses of several thousand seconds. Payload to gross-weight fractions about an order of magnitude higher than those for conventional chemical earth-launched vehicles appear possible. There is a potential for a significant reduction in cost per payload mass in earth orbit.

  15. Explosive laser

    DOEpatents

    Robinson, C.P.; Jensen, R.J.; Davis, W.C.; Sullivan, J.A.

    1975-09-01

    This patent relates to a laser system wherein reaction products from the detonation of a condensed explosive expand to form a gaseous medium with low translational temperature but high vibration population. Thermal pumping of the upper laser level and de-excitation of the lower laser level occur during the expansion, resulting in a population inversion. The expansion may be free or through a nozzle as in a gas-dynamic configuration. In one preferred embodiment, the explosive is such that its reaction products are CO$sub 2$ and other species that are beneficial or at least benign to CO$sub 2$ lasing. (auth)

  16. Laser fusion

    SciTech Connect

    Smit, W.A.; Boskma, P.

    1980-12-01

    Unrestricted laser fusion offers nations an opportunity to circumvent arms control agreements and develop thermonuclear weapons. Early laser weapons research sought a clean radiation-free bomb to replace the fission bomb, but this was deceptive because a fission bomb was needed to trigger the fusion reaction and additional radioactivity was induced by generating fast neutrons. As laser-implosion experiments focused on weapons physics, simulating weapons effects, and applications for new weapons, the military interest shifted from developing a laser-ignited hydrogen bomb to more sophisticated weapons and civilian applications for power generation. Civilian and military research now overlap, making it possible for several countries to continue weapons activities and permitting proliferation of nuclear weapons. These countries are reluctant to include inertial confinement fusion research in the Non-Proliferation Treaty. 16 references. (DCK)

  17. Shooting Lasers

    NASA Image and Video Library

    2012-11-02

    This picture shows a lab demonstration of the measurement chamber inside the Tunable Laser Spectrometer, an instrument that is part of the Sample Analysis at Mars investigation on NASA Curiosity rover.

  18. [Laser myringotomy].

    PubMed

    Hassmann-Poznańska, Elzbieta; Skotnicka, Bozena

    2002-01-01

    The aim of the study was assessment of the qualities of laser-assisted myringotomy (LAM) as a treatment for acute and secretory otitis media. Laser-assisted myringotomy was performed on 65 children (113 ears) mean age 6.2 years diagnosed with secretory otitis media (80%), recurrent secretory otitis media (11%) and acute otitis media (9%). Myringotomy was performed under general anesthesia using the OtoLAM device (ESC/Sharplan, Israel). In 64 ears pressure equalisation tubes were inserted after fenestration of the tympanic membrane with laser. Adenoidectomy alone or with tonsillectomy was performed at the same time in 51 cases. Laser tympanostomies remained patent for 7-32 days. All tympanostomies healed with no noticeable scarring. LAM appears to be a safe, and easy to performed, alternative technique in the treatment of otitis media.

  19. Laser barometer

    SciTech Connect

    Abercrombie, K.R.; Shiels, D.; Rash, T.

    1998-04-01

    This paper describes an invention of a pressure measuring instrument which uses laser radiation to sense the pressure in an enclosed environment by means of measuring the change in refractive index of a gas - which is pressure dependent.

  20. Laser Cutting

    DTIC Science & Technology

    1988-06-01

    lasers that are optically modified to produce high beam quality at reduced power levels for precision drilling and trepanning. * Nd:YAG lasers with...a smooth, dross-free cut face while the marking consists of a series of precisely placed shallow pits where surface finish and dross are not usually...neodymium:yttrium-aluminum-garnet (Nd:YAG) pulsed cutting data because the technique is considered vital in meeting the detailed precision cutting

  1. Laser Technology

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Amoco Laser Company, a subsidiary of Amoco Corporation, has developed microlasers for the commercial market based on a JPL concept for optical communications over interplanetary distances. Lasers emit narrow, intense beams of light or other radiation. The beams transmit communication signals, drill, cut or melt materials or remove diseased body tissue. The microlasers cover a broad portion of the spectrum, and performance is improved significantly. Current applications include medical instrumentation, color separation equipment, telecommunications, etc.

  2. Laser Physics and Laser Spectroscopy.

    DTIC Science & Technology

    1983-06-01

    Mass Spectroscopy X -ray spectroscopy Single Crystal Fibers X -ray lithography Vacuum Ultraviolet Laser Sow-ce X -ray microscopy as. AISYRACT (Cenue an...UNCLASSIFIED SCUNITYV CLASSIFICATION OF THIS PAGUZ(lM DWO &aeA") 20. (continued) studied and compared the laser produced plasma X -ray source to other X -ray...sourc s such as synchrotron and rotating anodes. It is clear that the laser plasma X -ra source has an important role to play in soft X -ray

  3. Laser optomechanics

    NASA Astrophysics Data System (ADS)

    Yang, Weijian; Adair Gerke, Stephen; Wei Ng, Kar; Rao, Yi; Chase, Christopher; Chang-Hasnain, Connie J.

    2015-09-01

    Cavity optomechanics explores the interaction between optical field and mechanical motion. So far, this interaction has relied on the detuning between a passive optical resonator and an external pump laser. Here, we report a new scheme with mutual coupling between a mechanical oscillator supporting the mirror of a laser and the optical field generated by the laser itself. The optically active cavity greatly enhances the light-matter energy transfer. In this work, we use an electrically-pumped vertical-cavity surface-emitting laser (VCSEL) with an ultra-light-weight (130 pg) high-contrast-grating (HCG) mirror, whose reflectivity spectrum is designed to facilitate strong optomechanical coupling, to demonstrate optomechanically-induced regenerative oscillation of the laser optomechanical cavity. We observe >550 nm self-oscillation amplitude of the micromechanical oscillator, two to three orders of magnitude larger than typical, and correspondingly a 23 nm laser wavelength sweep. In addition to its immediate applications as a high-speed wavelength-swept source, this scheme also offers a new approach for integrated on-chip sensors.

  4. Laser optomechanics

    PubMed Central

    Yang, Weijian; Adair Gerke, Stephen; Wei Ng, Kar; Rao, Yi; Chase, Christopher; Chang-Hasnain, Connie J.

    2015-01-01

    Cavity optomechanics explores the interaction between optical field and mechanical motion. So far, this interaction has relied on the detuning between a passive optical resonator and an external pump laser. Here, we report a new scheme with mutual coupling between a mechanical oscillator supporting the mirror of a laser and the optical field generated by the laser itself. The optically active cavity greatly enhances the light-matter energy transfer. In this work, we use an electrically-pumped vertical-cavity surface-emitting laser (VCSEL) with an ultra-light-weight (130 pg) high-contrast-grating (HCG) mirror, whose reflectivity spectrum is designed to facilitate strong optomechanical coupling, to demonstrate optomechanically-induced regenerative oscillation of the laser optomechanical cavity. We observe >550 nm self-oscillation amplitude of the micromechanical oscillator, two to three orders of magnitude larger than typical, and correspondingly a 23 nm laser wavelength sweep. In addition to its immediate applications as a high-speed wavelength-swept source, this scheme also offers a new approach for integrated on-chip sensors. PMID:26333804

  5. Laser Angioplasty

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The principal method of dealing with coronary artery blockage is bypass surgery. A non-surgical alternative available to some patients is balloon angioplasty. For several years, medical researchers have been exploring another alternative that would help a wider circle of patients than the balloon treatment and entail less risk than bypass surgery. A research group is on the verge of an exciting development: laser angioplasty with a 'cool' type of laser, called an excimer laser, that does not damage blood vessel walls and offers non-surgical cleansing of clogged arteries with extraordinary precision. The system is the Dymer 200+ Excimer Laser Angioplasty System, developed by Advanced Intraventional Systems. Used in human clinical tests since 1987, the system is the first fully integrated 'cool' laser capable of generating the requisite laser energy and delivering the energy to target arteries. Thirteen research hospitals in the U.S. have purchased Dymer 200+ systems and used them in clinical trials in 121 peripheral and 555 coronary artery cases. The success rate in opening blocked coronary arteries is 85 percent, with fewer complications than in balloon angioplasty. Food and Drug Administration approval for the system is hoped for in the latter part of 1990. * Advanced Intraventional Systems became Spectranetics in 1994 and discontinued the product.

  6. Laser Physics and Laser Spectroscopy.

    DTIC Science & Technology

    1986-03-01

    effect which limits the power throughout of a device; terbium qallium garnet (TGG), a Faraday isolator material; potassium niobate (KNbO 31 a nonlinear...extending the range of materials grown in fiber form. Two materials to be emphasized are terbium gallium garnet for optical isolators and potassium niobate...for doubling gallium arsenide diode lasers. References 1. R.H. Stolen, "Fiber Raman Lasers", Fiber and Integrated Optics, 3 (1980). 2. E. Ipoen and

  7. Laser beam monitoring system

    DOEpatents

    Weil, Bradley S.; Wetherington, Jr., Grady R.

    1985-01-01

    Laser beam monitoring systems include laser-transparent plates set at an angle to the laser beam passing therethrough and light sensor for detecting light reflected from an object on which the laser beam impinges.

  8. Laser Physics and Laser-Tissue Interaction

    PubMed Central

    Welch, A. J.; Torres, Jorge H.; Cheong, Wai-Fung

    1989-01-01

    Within the last few years, lasers have gained increasing use in the management of cardiovascular disease, and laser angioplasty has become a widely performed procedure. For this reason, a basic knowledge of lasers and their applications is essential to vascular surgeons, cardiologists, and interventional radiologists. To elucidate some fundamental concepts regarding laser physics, we describe how laser light is generated and review the properties that make lasers useful in medicine. We also discuss beam profile and spotsize, as well as dosimetric specifications for laser angioplasty. After considering laser-tissue interaction and light propagation in tissue, we explain how the aforementioned concepts apply to direct laser angioplasty and laser-balloon angioplasty. An understanding of these issues should prove useful not only in performing laser angioplasty but in comparing the reported results of various laser applications. (Texas Heart Institute Journal 1989;16:141-9) PMID:15227198

  9. Laser construction

    SciTech Connect

    Martin, D.W.; Osterhage, R.J.; Summa, K.M.

    1989-02-14

    A laser device is described comprising an elongated laser medium of crystal material having a cylindrical shape modified to have a flat face formed on one side thereof, a highly heat conducting mounting member having a flat surface on a portion thereof, the medium being mounted on the mounting member with the flat face of the medium in face-to-face relation with the flat surface on the mounting member, a heat sink member having a surface for attaching the mounting member to, a pump source including an array of laser diodes each having opposite ends and positioned in side-by-side single file relation, a second highly heat conducting mounting member having a surface on which the array of laser diodes is positioned, the second mounting member being mounted on the heat sink member wherein the array of laser diodes are in substantial alignment with the axis of the medium along the side thereof opposite from the flat face of the medium.

  10. Laser acceleration

    NASA Astrophysics Data System (ADS)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  11. Tunable solid state lasers

    SciTech Connect

    Hammerling, R.; Budgor, A.B.; Pinto, A.

    1985-01-01

    This book presents the papers given at a conference on solid state lasers. Topics considered at the conference included transition-metal-doped lasers, line-narrowed alexandrite lasers, NASA specification, meteorological lidars, laser materials spectroscopy, laser pumped single pass gain, vibronic laser materials growth, crystal growth methods, vibronic laser theory, cross-fertilization through interdisciplinary fields, and laser action of color centers in diamonds.

  12. Header For Laser Diode

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A. R.; Spadin, Paul L.

    1990-01-01

    Header designed to contain laser diode. Output combined incoherently with outputs of other laser diodes in grating laser-beam combiner in optical communication system. Provides electrical connections to laser diode, cooling to thermally stabilize laser operation, and optomechanical adjustments that steer and focus laser beam. Range of adjustments provides for correction of worst-case decentering and defocusing of laser beam encountered with laser diodes. Mechanical configuration made simple to promote stability and keep cost low.

  13. Laser cosmology

    NASA Astrophysics Data System (ADS)

    Chen, P.

    2014-05-01

    Recent years have witnessed tremendous progress in our understanding of the cosmos, which in turn points to even deeper questions to be further addressed. Concurrently the laser technology has undergone dramatic revolutions, providing exciting opportunity for science applications. History has shown that the symbiosis between direct observations and laboratory investigation is instrumental in the progress of astrophysics. We believe that this remains true in cosmology. Current frontier phenomena related to particle astrophysics and cosmology typically involve one or more of the following conditions: (1) extremely high energy events;(2) very high density, high temperature processes; (3) super strong field environments. Laboratory experiments using high intensity lasers can calibrate astrophysical observations, investigate underlying dynamics of astrophysical phenomena, and probe fundamental physics in extreme limits. In this article we give an overview of the exciting prospect of laser cosmology. In particular, we showcase its unique capability of investigating frontier cosmology issues such as cosmic accelerator and quantum gravity.

  14. Excimer lasers

    NASA Technical Reports Server (NTRS)

    Palmer, A. J.; Hess, L. D.; Stephens, R. R.

    1976-01-01

    A theoretical and experimental investigation into the possibility of achieving CW discharge pumped excimer laser oscillation is reported. Detailed theoretical modeling of capillary discharge pumping of the XeF and KXe and K2 excimer systems was carried out which predicted the required discharge parameters for reaching laser threshold on these systems. Capillary discharge pumping of the XeF excimer system was investigated experimentally. The experiments revealed a lower excimer level population density than predicted theoretically by about an order of magnitude. The experiments also revealed a fluorine consumption problem in the discharge in agreement with theory.

  15. Laser barometer

    DOEpatents

    Abercrombie, Kevin R.; Shiels, David; Rash, Tim

    2001-02-06

    A pressure measuring instrument that utilizes the change of the refractive index of a gas as a function of pressure and the coherent nature of a laser light to determine the barometric pressure within an environment. As the gas pressure in a closed environment varies, the index of refraction of the gas changes. The amount of change is a function of the gas pressure. By illuminating the gas with a laser light source, causing the wavelength of the light to change, pressure can be quantified by measuring the shift in fringes (alternating light and dark bands produced when coherent light is mixed) in an interferometer.

  16. Graviton laser

    NASA Astrophysics Data System (ADS)

    Landry, A.; Paranjape, M. B.

    2016-08-01

    We consider the possibility of creating a graviton laser. The lasing medium would be a system of contained, ultra cold neutrons. Ultra cold neutrons are a quantum mechanical system that interacts with gravitational fields and with the phonons of the container walls. It is possible to create a population inversion by pumping the system using the phonons. We compute the rate of spontaneous emission of gravitons and the rate of the subsequent stimulated emission of gravitons. The gain obtainable is directly proportional to the density of the lasing medium and the fraction of the population inversion. The applications of a graviton laser would be interesting.

  17. Laser Resonator

    NASA Technical Reports Server (NTRS)

    Harper, L. L. (Inventor)

    1983-01-01

    An optical resonator cavity configuration has a unitary mirror with oppositely directed convex and concave reflective surfaces disposed into one fold and concertedly reversing both ends of a beam propagating from a laser rod disposed between two total internal reflection prisms. The optical components are rigidly positioned with perpendicularly crossed virtual rooflines by a compact optical bed. The rooflines of the internal reflection prisms, are arranged perpendicularly to the axis of the laser beam and to the optical axes of the optical resonator components.

  18. Laser barometer

    DOEpatents

    Abercrombie, Kevin R.; Shiels, David; Rash, Tim

    2001-02-06

    A pressure measuring instrument that utilizes the change of the refractive index of a gas as a function of pressure and the coherent nature of a laser light to determine the barometric pressure within an environment. As the gas pressure in a closed environment varies, the index of refraction of the gas changes. The amount of change is a function of the gas pressure. By illuminating the gas with a laser light source, causing the wavelength of the light to change, pressure can be quantified by measuring the shift in fringes (alternating light and dark bands produced when coherent light is mixed) in an interferometer.

  19. Dye laser principles, with applications

    SciTech Connect

    Duarte, F.J. . Dept. of Physics); Hillman, L.W. . Dept. of Physics)

    1990-01-01

    This book contains papers which explain dye laser principles. Topics covered include: laser dynamics, femtosecond dye lasers, CW dye lasers, technology of pulsed dye lases, photochemistry of laser dyes, and laser applications.

  20. Laser Accelerator

    DTIC Science & Technology

    2014-09-01

    stretched pulse with a low enough peak power to safely pass through the main laser gain medium usually Nd:glass or Ti:sapphire (3). The amplified pulse ...2.1 Chirped Gaussian Pulse . . . . . . . . . . . . . . . . . . . . . . 11 Figure 2.2 Diagram Illustrating Chirped Pulse Amplification...High Magnetic Field Laboratory . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 2.7 Cutaway Diagram of a Pulsed Magnet System at the

  1. Laser altimeter

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development of a laser altimeter for use in the Apollo Lunar Orbital Experiments mission is discussed. The altimeter provides precise measurement of an Apollo vehicle above the lunar surface from an orbit of 40 to 80 nautical miles. The technical characteristics of the altimeter are described. Management of the altimeter development program is analyzed.

  2. [Vascular lasers].

    PubMed

    Michaud, T

    2009-10-01

    After reviewing the main technical features of the lasers and flashlamps currently available, the indications for these devices are detailed, mainly port wine stains, facial telangiectasia, hemangiomas, and lower-limb varicosities. Respecting the principles of treatment (briefly reviewed herein), contributes to preventing complications, which are consequently becoming rare.

  3. Excimer lasers

    NASA Technical Reports Server (NTRS)

    Palmer, A. J.; Hess, L. D.; Stephens, R. R.; Pepper, D. M.

    1977-01-01

    The results of a two-year investigation into the possibility of developing continuous wave excimer lasers are reported. The program included the evaluation and selection of candidate molecular systems and discharge pumping techniques. The K Ar/K2 excimer dimer molecules and the xenon fluoride excimer molecule were selected for study; each used a transverse and capillary discharges pumping technique. Experimental and theoretical studies of each of the two discharge techniques applied to each of the two molecular systems are reported. Discharge stability and fluorine consumption were found to be the principle impediments to extending the XeF excimer laser into the continuous wave regime. Potassium vapor handling problems were the principal difficulty in achieving laser action on the K Ar/K2 system. Of the four molecular systems and pumping techniques explored, the capillary discharge pumped K Ar/K2 system appears to be the most likely candidate for demonstrating continuous wave excimer laser action primarily because of its predicted lower pumping threshold and a demonstrated discharge stability advantage.

  4. Laser Balancing

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Mechanical Technology, Incorporated developed a fully automatic laser machining process that allows more precise balancing removes metal faster, eliminates excess metal removal and other operator induced inaccuracies, and provides significant reduction in balancing time. Manufacturing costs are reduced as a result.

  5. Laser Balancing

    NASA Astrophysics Data System (ADS)

    1981-01-01

    Mechanical Technology, Incorporated developed a fully automatic laser machining process that allows more precise balancing removes metal faster, eliminates excess metal removal and other operator induced inaccuracies, and provides significant reduction in balancing time. Manufacturing costs are reduced as a result.

  6. Nanowire Lasers

    NASA Astrophysics Data System (ADS)

    Couteau, C.; Larrue, A.; Wilhelm, C.; Soci, C.

    2015-05-01

    We review principles and trends in the use of semiconductor nanowires as gain media for stimulated emission and lasing. Semiconductor nanowires have recently been widely studied for use in integrated optoelectronic devices, such as light-emitting diodes (LEDs), solar cells, and transistors. Intensive research has also been conducted in the use of nanowires for subwavelength laser systems that take advantage of their quasione- dimensional (1D) nature, flexibility in material choice and combination, and intrinsic optoelectronic properties. First, we provide an overview on using quasi-1D nanowire systems to realize subwavelength lasers with efficient, directional, and low-threshold emission. We then describe the state of the art for nanowire lasers in terms of materials, geometry, andwavelength tunability.Next,we present the basics of lasing in semiconductor nanowires, define the key parameters for stimulated emission, and introduce the properties of nanowires. We then review advanced nanowire laser designs from the literature. Finally, we present interesting perspectives for low-threshold nanoscale light sources and optical interconnects. We intend to illustrate the potential of nanolasers inmany applications, such as nanophotonic devices that integrate electronics and photonics for next-generation optoelectronic devices. For instance, these building blocks for nanoscale photonics can be used for data storage and biomedical applications when coupled to on-chip characterization tools. These nanoscale monochromatic laser light sources promise breakthroughs in nanophotonics, as they can operate at room temperature, can potentially be electrically driven, and can yield a better understanding of intrinsic nanomaterial properties and surface-state effects in lowdimensional semiconductor systems.

  7. Laser diode pumped solid state laser

    SciTech Connect

    Baer, T.M.; Keirstead, M.S.

    1987-04-07

    This patent describes a high-efficiency, laser diode pumped array, frequency doubled, compact solid state laser, comprising: a rare earth doped birefringent solid laser rod selected from the group consisting of Nd:YLF, Nd:YALO having a front end and a back end, the rod producing a polarized output beam; a housing with means holding the laser rod in fixed position in the housing with its front end forward; a laser array having a predetermined wavelength pumping the laser rod, having a output frequency sufficiently matched to the laser rod to pump the laser rod, secured in the housing behind and in optical alignment with the rod; laser cavity means defining a laser cavity mounted in the housing with the laser rod positioned within the cavity, the laser cavity means further including within the cavity an output coupler means; a frequency doubler, positioned to receive a suitably polarized output beam from the laser rod and to halve its wavelength and double its frequency; a polarization means for polarizing the output beam of the laser rod and substantially maintaining a polarization which optimizes frequency doubling at the frequency doubler and means for matching a focused image of the laser diode with a lasing volume of the laser cavity.

  8. New laser source technology.

    PubMed

    Christensen, C P

    1984-04-13

    Over the past 5 to 8 years several new laser sources have been developed as a result of R & D efforts stimulated by a growing number of laser applications. Four families of new devices-semiconductor diod laser arrays, free electron lasers, rare gas halide excimer sources, and several new tunable solid-state lasers-show particular promise.

  9. Infrared Lasers in Chemistry.

    ERIC Educational Resources Information Center

    John, Phillip

    1982-01-01

    Selected infrared laser chemistry topics are discussed including carbon dioxide lasers, infrared quanta and molecules, laser-induced chemistry, structural isomerization (laser purification, sensitized reactions, and dielectric breakdown), and fundamental principles of laser isotope separation, focusing on uranium isotope separation. (JN)

  10. Making a Laser Level

    ERIC Educational Resources Information Center

    Hawkins, Harry

    2004-01-01

    This article describes how to construct a laser level. This laser level can be made using a typical 4' (or shorter) bubble level and a small laser point. The laser unit is detachable, so the bubble level can also be used in the conventional way. However, the laser level works better than a simple bubble level. Making this inexpensive device is an…

  11. Infrared Lasers in Chemistry.

    ERIC Educational Resources Information Center

    John, Phillip

    1982-01-01

    Selected infrared laser chemistry topics are discussed including carbon dioxide lasers, infrared quanta and molecules, laser-induced chemistry, structural isomerization (laser purification, sensitized reactions, and dielectric breakdown), and fundamental principles of laser isotope separation, focusing on uranium isotope separation. (JN)

  12. Making a Laser Level

    ERIC Educational Resources Information Center

    Hawkins, Harry

    2004-01-01

    This article describes how to construct a laser level. This laser level can be made using a typical 4' (or shorter) bubble level and a small laser point. The laser unit is detachable, so the bubble level can also be used in the conventional way. However, the laser level works better than a simple bubble level. Making this inexpensive device is an…

  13. Laser Photochemistry.

    DTIC Science & Technology

    1981-07-01

    reaction due to decreased adsorption of the species on the catalytic surface. For example, i. . . 41 in the catalytic decomposition of formic acid ...over platinum (Ulmstead and Lin, 1978), the preexcitation of the gaseous formic acid molecules (by a 10 W/cm2 CW CO2 laser) resulted in a 50% increase...attention is given to selective and thermal excitation and the role of multiphonon couplings, heterogeneous catalysis , and chemical vapor deposition and

  14. Project LASER

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA formally launched Project LASER (Learning About Science, Engineering and Research) in March 1990, a program designed to help teachers improve science and mathematics education and to provide 'hands on' experiences. It featured the first LASER Mobile Teacher Resource Center (MTRC), is designed to reach educators all over the nation. NASA hopes to operate several MTRCs with funds provided by private industry. The mobile unit is a 22-ton tractor-trailer stocked with NASA educational publications and outfitted with six work stations. Each work station, which can accommodate two teachers at a time, has a computer providing access to NASA Spacelink. Each also has video recorders and photocopy/photographic equipment for the teacher's use. MTRC is only one of the five major elements within LASER. The others are: a Space Technology Course, to promote integration of space science studies with traditional courses; the Volunteer Databank, in which NASA employees are encouraged to volunteer as tutors, instructors, etc; Mobile Discovery Laboratories that will carry simple laboratory equipment and computers to provide hands-on activities for students and demonstrations of classroom activities for teachers; and the Public Library Science Program which will present library based science and math programs.

  15. Laser nitriding and laser carburizing of surfaces

    NASA Astrophysics Data System (ADS)

    Schaaf, Peter

    2003-11-01

    Laser irradiation of surfaces with short pulses in reactive atmospheres (nitrogen, methane) can lead to very effective nitrification and carburization via complicated laser-surface-gas-plasma-interactions. This laser nitriding and laser carburizing and their basic underlying phenomena will be presented and partly explained by results of example materials (iron, titanium, aluminum, silicon) where nitride and carbide coatings can be formed by fast and easily by Excimer Laser, Nd:YAG laser, Free Electron Laser and also by femtosecond Ti:sapphire laser. This implies laser pulse durations from the nanosecond to the femtosecond regime and wavelengths from ultra-violet to infrared. The resulting surfaces, thin films, coatings and their properties are investigated by combining Mossbauer Spectroscopy, x-ray diffraction, x-ray absorption spectroscopy, Nanoindentation, Resonant Nuclear Reaction Analysis, and Rutherford Backscattering Spectroscopy.

  16. Lasers in Medicine.

    ERIC Educational Resources Information Center

    Hill, P. D.

    1989-01-01

    Described are the characteristics of the laser and its effects on the body. Discussed are examples of laser treatments, including angioplasty, ophthalmology, and dermatology. A discussion of lasers of clinical interest and their applications is presented. (YP)

  17. Laser-Driven Fusion.

    ERIC Educational Resources Information Center

    Gibson, A. F.

    1980-01-01

    Discusses the present status and future prospects of laser-driven fusion. Current research (which is classified under three main headings: laser-matter interaction processes, compression, and laser development) is also presented. (HM)

  18. Diode Laser Arrays

    NASA Astrophysics Data System (ADS)

    Botez, Dan; Scifres, Don R.

    2005-11-01

    Contributors; 1. Monolithic phase-locked semiconductor laser arrays D. Botez; 2. High power coherent, semiconductor laser master oscillator power amplifiers and amplifier arrays D. F. Welch and D. G. Mehuys; 3. Microoptical components applied to incoherent and coherent laser arrays J. R. Leger; 4. Modeling of diode laser arrays G. R. Hadley; 5. Dynamics of coherent semiconductor laser arrays H. G. Winfuland and R. K. Defreez; 6. High average power semiconductor laser arrays and laser array packaging with an emphasis for pumping solid state lasers R. Solarz; 7. High power diode laser arrays and their reliability D. R. Scifres and H. H. Kung; 8. Strained layer quantum well heterostructure laser arrays J. J. Coleman; 9. Vertical cavity surface emitting laser arrays C. J. Chang-Hasnain; 10. Individually addressed arrays of diode lasers D. Carlin.

  19. Hypersonic gasdynamic laser system

    SciTech Connect

    Foreman, K.M.; Maciulaitis, A.

    1990-05-22

    This patent describes a visible, or near to mid infra-red, hypersonic gas dynamic laser system. It comprises: a hypersonic vehicle for carrying the hypersonic gas dynamic laser system, and also providing high energy ram air for thermodynamic excitation and supply of the laser gas; a laser cavity defined within the hypersonic vehicle and having a laser cavity inlet for the laser cavity formed by an opening in the hypersonic vehicle, such that ram air directed through the laser cavity opening supports gas dynamic lasing operations at wavelengths less than 10.6{mu} meters in the laser cavity; and an optical train for collecting the laser radiation from the laser cavity and directing it as a substantially collimated laser beam to an output aperture defined by an opening in the hypersonic vehicle to allow the laser beam to be directed against a target.

  20. Lasers in Medicine.

    ERIC Educational Resources Information Center

    Hill, P. D.

    1989-01-01

    Described are the characteristics of the laser and its effects on the body. Discussed are examples of laser treatments, including angioplasty, ophthalmology, and dermatology. A discussion of lasers of clinical interest and their applications is presented. (YP)

  1. Laser-Driven Fusion.

    ERIC Educational Resources Information Center

    Gibson, A. F.

    1980-01-01

    Discusses the present status and future prospects of laser-driven fusion. Current research (which is classified under three main headings: laser-matter interaction processes, compression, and laser development) is also presented. (HM)

  2. Laser therapy (image)

    MedlinePlus

    A laser is used for many medical purposes. Because the laser beam is so small and precise, it enables ... without injuring surrounding tissue. Some uses of the laser are retinal surgery, excision of lesions, and cauterization ...

  3. Laser Weapons for Naval Applications

    DTIC Science & Technology

    2012-03-27

    IPG fiber lasers , 10 kW/ fiber 7 • Output wavelength is tunable (can operate in atmospheric window) Free Electron Lasers ...Multiple kilowatts over multiple kilometers • Laser power converters can be highly efficient, > 60 % • Fiber lasers are highly compact and... lasers - Free electron lasers • Background • Laser candidates • Additional capabilities - Power beaming 3 Laser Lethality -

  4. Laser accidents: Being Prepared

    SciTech Connect

    Barat, K

    2003-01-24

    The goal of the Laser Safety Officer and any laser safety program is to prevent a laser accident from occurring, in particular an injury to a person's eyes. Most laser safety courses talk about laser accidents, causes, and types of injury. The purpose of this presentation is to present a plan for safety offices and users to follow in case of accident or injury from laser radiation.

  5. Laser satellite power systems

    SciTech Connect

    Walbridge, E.W.

    1980-01-01

    A laser satellite power system (SPS) converts solar power captured by earth-orbiting satellites into electrical power on the earth's surface, the satellite-to-ground transmission of power being effected by laser beam. The laser SPS may be an alternative to the microwave SPS. Microwaves easily penetrate clouds while laser radiation does not. Although there is this major disadvantage to a laser SPS, that system has four important advantages over the microwave alternative: (1) land requirements are much less, (2) radiation levels are low outside the laser ground stations, (3) laser beam sidelobes are not expected to interfere with electromagnetic systems, and (4) the laser system lends itself to small-scale demonstration. After describing lasers and how they work, the report discusses the five lasers that are candidates for application in a laser SPS: electric discharge lasers, direct and indirect solar pumped lasers, free electron lasers, and closed-cycle chemical lasers. The Lockheed laser SPS is examined in some detail. To determine whether a laser SPS will be worthy of future deployment, its capabilities need to be better understood and its attractiveness relative to other electric power options better assessed. First priority should be given to potential program stoppers, e.g., beam attenuation by clouds. If investigation shows these potential program stoppers to be resolvable, further research should investigate lasers that are particularly promising for SPS application.

  6. New laser protective eyewear

    NASA Astrophysics Data System (ADS)

    McLear, Mark

    1996-04-01

    Laser technology has significantly impacted our everyday life. Lasers are now used to correct your vision, clear your arteries, and are used in the manufacturing of such diverse products as automobiles, cigarettes, and computers. Lasers are no longer a research tool looking for an application. They are now an integral part of manufacturing. In the case of Class IV lasers, this explosion in laser applications has exposed thousands of individuals to potential safety hazards including eye damage. Specific protective eyewear designed to attenuate the energy of the laser beam below the maximum permissible exposure is required for Class 3B and Class IV lasers according to laser safety standards.

  7. [Laser physics].

    PubMed

    Banús Gassol, J M

    2008-11-01

    The commission of this article plunged me into doubt. First I should confess that I don't find excuse to escape this part if somebody wants to minimally deepen in the knowledge of the biological effects of this energy source. Secondly, when we talk about results, we use terms made and defined by Physics. Often we have polemics about results, and what really happens is that we don't reach agreements because we refer to different terms to explain the same observation; in conclusion we cannot understand each other because we do not know the adequate terms; for example, hypoxemia as oxygen deficit, which is true in an anemic patient as well as in a low oxygen saturation rate. In consequence, a good review of these concepts seems necessary to me. The third reason is the confusion that exists in our environment, I think sometimes of interest, about properties and effects of different types of laser. Only a minimal knowledge of physics will help us to state the scientific basis for understanding. The problems, nevertheless, accumulate due to the fact that the universe to which this article is directed is formed by urologists. What Physics education should we suppose they have? Superficial? Medium? Is it a collective with a uniform knowledge, being it whatever it is? The implication is clear. The article depth will depend on the answers to these questions. Nevertheless, the aim of the authors is to give a base enough to know what the laser is and how it acts. For that, the answer I gave to my questions is that the reader should understand the article and have enough base for, at least, reading critically the articles about laser published in urological journals.

  8. Laser Stabilization

    SciTech Connect

    Hall, John L.; Taubman, Matthew S.; Ye, Jun

    2010-01-01

    This book chapter covers the basics of the field of stabilizing lasers to optical frequency references such as optical cavities and molecular transitions via the application of servo control systems. These discussions are given with reference to the real-life frequency metrology experienced in Hall-Labs (now Ye-Labs), JILA, University of Colorado. The subjects covered include: the basics of control system stability, a discussion of both the theoretical and experimental limitations, an outline of optical cavity susceptibility to environmental noise, and a brief introduction to the use and limitations of molecular transitions as frequency references.

  9. Laser biophotonics

    NASA Astrophysics Data System (ADS)

    Bashkatov, A. N.; Genina, E. A.; Priezzhev, A. V.; Tuchin, V. V.

    2016-06-01

    This issue of Quantum Electronics presents the papers that reflect the state-of-the-art of laser technologies used in biomedical studies and medical practice. Among the new technologies, one can note the methods of correlation and Doppler spectroscopy, as well as THz spectroscopy, in which biologically significant molecules are characterised by specific resonances. The latter topic is considered in the paper by Nazarov et al., where the dielectric function of aqueous solutions of glucose and albumin is studied using pulsed THz spectroscopy.

  10. Laser Diode Pumped Solid State Lasers

    DTIC Science & Technology

    1987-01-01

    structures, monolithic phased arrays, multiple stripe lasers which were made possible by improved manufacturing technologies su LPE and particular...mass production of single laser diodes in Japan, went a development in the U.S. which is aimed at the fabrication of powerful monolithic arrays. The...Significant progress has been made recently in developing the monolithic , linear laser diode array. Output power, slope efficiency, laser threshold and

  11. Femtosecond laser in laser in situ keratomileusis

    PubMed Central

    Salomão, Marcella Q.; Wilson, Steven E.

    2014-01-01

    Flap creation is a critical step in laser in situ keratomileusis (LASIK). Efforts to improve the safety and predictability of the lamellar incision have fostered the development of femtosecond lasers. Several advantages of the femtosecond laser over mechanical microkeratomes have been reported in LASIK surgery. In this article, we review common considerations in management and complications of this step in femtosecond laser–LASIK and concentrate primarily on the IntraLase laser because most published studies relate to this instrument. PMID:20494777

  12. Laser Propulsion - Quo Vadis

    SciTech Connect

    Bohn, Willy L.

    2008-04-28

    First, an introductory overview of the different types of laser propulsion techniques will be given and illustrated by some historical examples. Second, laser devices available for basic experiments will be reviewed ranging from low power lasers sources to inertial confinement laser facilities. Subsequently, a status of work will show the impasse in which the laser propulsion community is currently engaged. Revisiting the basic relations leads to new avenues in ablative and direct laser propulsion for ground based and space based applications. Hereby, special attention will be devoted to the impact of emerging ultra-short pulse lasers on the coupling coefficient and specific impulse. In particular, laser sources and laser propulsion techniques will be tested in microgravity environment. A novel approach to debris removal will be discussed with respect to the Satellite Laser Ranging (SRL) facilities. Finally, some non technical issues will be raised aimed at the future prospects of laser propulsion in the international community.

  13. The Geoscience Laser Altimeter System Laser Transmitter

    NASA Technical Reports Server (NTRS)

    Afzal, R. S.; Dallas, J. L.; Yu, A. W.; Mamakos, W. A.; Lukemire, A.; Schroeder, B.; Malak, A.

    2000-01-01

    The Geoscience Laser Altimeter System (GLAS), scheduled to launch in 2001, is a laser altimeter and lidar for tile Earth Observing System's (EOS) ICESat mission. The laser transmitter requirements, design and qualification test results for this space- based remote sensing instrument are presented.

  14. Studies on lasers and laser devices

    NASA Technical Reports Server (NTRS)

    Harris, S. E.; Siegman, A. E.; Young, J. F.

    1983-01-01

    The goal of this grant was to study lasers, laser devices, and uses of lasers for investigating physical phenomena are studied. The active projects included the development of a tunable, narrowband XUV light source and its application to the spectroscopy of core excited atomic states, and the development of a technique for picosecond time resolution spectroscopy of fast photophysical processes.

  15. Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    Katori, H.; Yoneda, H.; Nakagawa, K.; Shimizu, F.

    2010-02-01

    .] -- Ultracold Ytterbium atoms in optical lattices / S. Sugawa ... [et al.] -- Ultracold polar molecules in the rovibrational ground state / J. Deiglmayr ... [et al.] -- Polar molecules near quantum degeneracy / J. Ye and D. S. Jin -- Production of a quantum gas of rovibronic ground-state molecules in an optical lattice / J. G. Danzl ... [et al.] -- Recent progress in x-ray nonlinear optics / K. Tamasaku, K. Sawada, and T. Ishikawa -- Gas in scattering media absorption spectroscopy - laser spectroscopy in unconventional environments / S. Svanberg -- Laser spectroscopy on relativistic ion beams / S. Reinhardt ... [et al.] -- Single frequency microcavity lasers and applications / L. Xu ... [et al.].

  16. Lasers and laser-tissue interaction.

    PubMed

    Peavy, George M

    2002-05-01

    Light produced by a laser differs from incandescent light in that it is monochromatic, coherent, and intense; and it is these properties that allow lasers to be used as such unique tools in biomedical research and patient care. The effect of a laser beam on tissue is dependent on the optical and mechanical properties of the tissue, and the wavelength, power parameters, and time domains of the laser exposure. Understanding these principles is not only important for the selection of an appropriate laser system for a specific application, but also is essential for that application to be successful.

  17. Laser Wire Stripper

    NASA Technical Reports Server (NTRS)

    1983-01-01

    NASA-developed space shuttle technology is used in a laser wire stripper designed by Raytheon Company. Laser beams cut through insulation on a wire without damaging conductive metal, because laser radiation that melts plastic insulation is reflected by the metal. The laser process is fast, clean, precise and repeatable. It eliminates quality control problems and the expense of rejected wiring.

  18. Narrow gap laser welding

    DOEpatents

    Milewski, John O.; Sklar, Edward

    1998-01-01

    A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables.

  19. Obstacles to Laser Safety

    SciTech Connect

    Barat, K

    2005-04-25

    The growth of laser development & technology has been remarkable. Unfortunately, a number of traps or obstacles to laser safety have also developed with that growth. The goal of this article is to highlight those traps, in the hope that an aware laser user will avoid them. These traps have been the cause or contributing factor of many a preventable laser accident.

  20. Longitudinal discharge laser baffles

    DOEpatents

    Warner, B.E.; Ault, E.R.

    1994-06-07

    The IR baffles placed between the window and the electrode of a longitudinal discharge laser improve laser performance by intercepting off-axis IR radiation from the laser and in doing so reduce window heating and subsequent optical distortion of the laser beam. 1 fig.

  1. Reverse laser drilling

    NASA Technical Reports Server (NTRS)

    Anthony, Thomas R. (Inventor)

    1984-01-01

    This invention provides a method for laser drilling small diameter, closely-spaced, and accurately located holes in a body of material which is transparent or substantially transparent to the laser radiation employed whereby the holes are drilled through the thickness of the body from the surface opposite to that on which the laser beam impinges to the surface of laser beam impingement.

  2. Lasers in cosmetic dentistry.

    PubMed

    Pang, Peter

    2008-01-01

    Lasers have become a necessary instrument in the esthetic restorative armamentarium. This article presents smile design guidelines for soft tissue lasers, as well as an overview of hard tissue procedures that may be performed using all-tissue lasers. The goal is to help dentists determine the appropriate laser for a given clinical situations.

  3. Narrow gap laser welding

    DOEpatents

    Milewski, J.O.; Sklar, E.

    1998-06-02

    A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables. 34 figs.

  4. X-ray lasers

    SciTech Connect

    Elton, R.C.

    1990-01-01

    This paper provides a source that surveys the fundamentals of x-ray lasers and summarizes recent advances. The author emphasizes x-ray lasers created using high temperature plasmas as the medium. Specific topics discussed included electron-collisional excitation pumping, plasma laser pumping, and gamma-ray lasers. Numerous literature references provided.

  5. Laser photobiology and photomedicine

    SciTech Connect

    Martellucci, S.; Chester, A.N.

    1985-01-01

    This book presents information on the following topics: the physical and biological basis of photobiology and photomedicine; the biological effects and applications of laser technology; photochemotherapy; photobiology and dermatology; surgical and ophthalmological applications of lasers; laser safety; and diagnostics and technological aspects of recent laser developments.

  6. Short wavelength laser

    DOEpatents

    Hagelstein, P.L.

    1984-06-25

    A short wavelength laser is provided that is driven by conventional-laser pulses. A multiplicity of panels, mounted on substrates, are supported in two separated and alternately staggered facing and parallel arrays disposed along an approximately linear path. When the panels are illuminated by the conventional-laser pulses, single pass EUV or soft x-ray laser pulses are produced.

  7. Laser therapy for cancer

    MedlinePlus

    ... of organs inside the body. They can treat basal cell skin cancer and cancers of the cervix, vagina, and vulva. Argon lasers. These lasers can treat skin cancer and are also used with light-sensitive drugs in a treatment called photodynamic therapy . Nd:Yag lasers. These lasers ...

  8. Longitudinal discharge laser baffles

    DOEpatents

    Warner, Bruce E.; Ault, Earl R.

    1994-01-01

    The IR baffles placed between the window and the electrode of a longitudinal discharge laser improve laser performance by intercepting off-axis IR radiation from the laser and in doing so reduce window heating and subsequent optical distortion of the laser beam.

  9. Solar driven lasers for power satellite applications

    NASA Technical Reports Server (NTRS)

    Taussio, R.; Cassady, P.; Klosterman, E.

    1980-01-01

    The technological feasibility of using multimagawatt lasers for space power transmission is discussed. Candidate lasers include electric discharge lasers, direct optically pumped lasers, and free electron lasers.

  10. New laser materials for laser diode pumping

    NASA Technical Reports Server (NTRS)

    Jenssen, H. P.

    1990-01-01

    The potential advantages of laser diode pumped solid state lasers are many with high overall efficiency being the most important. In order to realize these advantages, the solid state laser material needs to be optimized for diode laser pumping and for the particular application. In the case of the Nd laser, materials with a longer upper level radiative lifetime are desirable. This is because the laser diode is fundamentally a cw source, and to obtain high energy storage, a long integration time is necessary. Fluoride crystals are investigated as host materials for the Nd laser and also for IR laser transitions in other rare earths, such as the 2 micron Ho laser and the 3 micron Er laser. The approach is to investigate both known crystals, such as BaY2F8, as well as new crystals such as NaYF8. Emphasis is on the growth and spectroscopy of BaY2F8. These two efforts are parallel efforts. The growth effort is aimed at establishing conditions for obtaining large, high quality boules for laser samples. This requires numerous experimental growth runs; however, from these runs, samples suitable for spectroscopy become available.

  11. Agile beam laser

    SciTech Connect

    Valley, G. C.

    1985-01-08

    A laser system for providing a rapidly steerable laser output beam. The laser system includes a phase conjugate reflector, laser gain medium and its associated pump source, an output coupling device, and an optical element which selectably controls the transverse lasing mode of the laser system. The components are arranged to form a laser oscillator between the phase conjugate reflector and the optical device, and is operated in such a manner that each selected transverse mode of laser operation generates an output beam from the system which has a different wavefront tilt. Accordingly, the output beam is steerable and is dependent upon the selected transverse mode which is currently lasing in the oscillator.

  12. Laser extensometer

    NASA Technical Reports Server (NTRS)

    Stocker, P. J.; Marcus, H. L. (Inventor)

    1977-01-01

    A drift compensated and intensity averaged extensometer for measuring the diameter or other properties of a substantially cylindrical sample based upon the shadow of the sample is described. A beam of laser light is shaped to provide a beam with a uniform intensity along an axis normal to the sample. After passing the sample, the portion of the beam not striking said sample is divided by a beam splitter into a reference signal and a measurement signal. Both of these beams are then chopped by a light chopper to fall upon two photodiode detectors. The resulting ac currents are rectified and then divided into one another, with the final output being proportional to the size of the sample shadow.

  13. Lasers in flow cytometry.

    PubMed

    Telford, William G

    2011-01-01

    Laser technology has advanced tremendously since the first gas lasers were incorporated into early flow cytometers. Gas lasers have been largely replaced by solid-state laser technology, making virtually any desirable visible light wavelength available for flow cytometry. Multiwavelength, white light, and wavelength tunable lasers are poised to enhance our analytical capabilities even further. In this chapter, I summarize the role that lasers play in cytometry, and the practical characteristics that make a laser appropriate for flow cytometry. I then review the latest single wavelength lasers available for flow cytometry, and how they can be used to excite the ever-expanding array of available fluorochromes. Finally, I review the contribution and potential of the latest tunable laser technology to flow cytometry, and show several examples of these novel sources integrated into production instruments. Technical details and critical parameters for successful application of these lasers for biomedical analysis are covered in depth.

  14. Tunable lasers- an overview

    SciTech Connect

    Guenther, B.D.; Buser, R.G.

    1982-08-01

    This overview of tunable lasers describes their applicability to spectroscopy in the ultraviolet and middle infrared ranges; to rapid on-line diagnostics by ultrashort cavity lasers; to exploration, by the free electron laser, for its wide tuning in the far infrared to submillimeter region; to remote detection, in areas such as portable pollution monitors, on-line chemical analyzers, auto exhaust analyzers, and production line controls; to photochemistry; and to other potential areas in diagnostics, communications, and medical and biological sciences. The following lasers are characterized by their tunability: solid state lasers, primarily alexandrite, with a tuning range of ca 1000 Angstroms; color center lasers; semiconductor lasers; dye lasers; gas lasers, where high-pressure CO/sub 2/ discharges are the best known example for a wide tunability range, and research is continuing in systems such as the alkali dimers; and, at wavelengths beyond 10 micrometers, the possibilities beyond Cerenkov and free electron lasers.

  15. What is a Laser?

    NASA Astrophysics Data System (ADS)

    Julien, Lucile; Schwob, Catherine

    2015-10-01

    The first laser was built more than 50 years ago, inMay 1960: it was a pulsed ruby laser. It was a simple laboratory curiosity and nobody knew what its usefulness could be. Other devices were rapidly demonstrated, and the variety and number of lasers in the world increased at a huge rate. Currently, the annual laser world market is worth about 6 billion dollars. Thanks to the remarkable properties of laser light, laser applications increase steadily in the domains of industry, building, medicine, telecommunications, etc. One can find many lasers in research laboratories, and they are used more and more in our everyday life and almost everybody has already seen a laser beam. The goal of the first chapter of this book is to explain simply what a laser is, how it is built and how it operates. Firstly, let us point out the outstanding properties of the laser light.

  16. Reflected laser radiation - relevance for laser safety?

    NASA Astrophysics Data System (ADS)

    Zaeh, M. F.; Braunreuther, S.; Daub, R.; Stadler, T.

    Safety is compulsory in today's production lines. Those lines often use laser material processing applications. The highest risk for the operator or a bystander of a laser application is the exposure to the direct beam. With the present laser beam intensities, an accident at least causes sudden blindness or severe burns. Even if the process works correctly, which means the beam is always oriented towards the workpiece, the scattered and reflected parts of the laser beam still can be powerful enough to cause serious harm. The state-of-the-art safety measures are passive laser safety cabins around the application. Because of the high intensities and the low beam divergence of the highly brilliant laser beam sources, they cannot guarantee a safe use of these laser applications. An option is to use active laser safety barriers that react to an impinging laser beam on its surface. A new approach to guarantee laser safety is to monitor the system and watch for incidents, to ensure that the laser spot never reaches the safety barrier. Assuming that accidents with the direct laser beam cannot occur, the passive safety measures still have to withstand the reflected laser radiation. In this paper a theoretical model is presented with which the energy distribution in a hemisphere above a deep-welding-process can be calculated. The model was calibrated and validated with intensity measurements during a welding process. The results of the measurement can be used to develop a process-tailored safety cabin. Because of the increased mobility such a system increases the flexibility of the production cell. Furthermore, the costs for laser-safety may be decreased significantly.

  17. LASER-tissue interactions.

    PubMed

    Carroll, Lisa; Humphreys, Tatyana R

    2006-01-01

    As new laser devices continue to emerge, it becomes increasingly important for the clinical dermatologist to understand the basic principles behind their operation. A fundamental understanding of how lasers interact with tissue will enable the physician to choose the most appropriate laser for a given clinical situation. Although the physical laws guiding laser design are vastly complex, the fundamental principles of laser-tissue interaction can be summarized as they are applicable to the clinician.

  18. Mercury Bromide Laser Research.

    DTIC Science & Technology

    1981-05-04

    Discharge", Optics Lett., 2(3), (March 1978). 7. R. Burnham, "Discharge Pumped Mercuric Halide Dissociation Lasers", Appl. Phys. Lett., 33: 15 (July 1978...laser and fluorescence signals. Neutral density filters served to prevent saturation of the detector during the laser measurements. F. Laser Output as a...REFERENCES . E. J. Schimitschek and J. E. Celto, " Mercuric Bromide Dissociation Laser in an Electric Discharge," Optics Lett. 2(3), March 1978. This

  19. Surgical lasers in dermatology

    NASA Astrophysics Data System (ADS)

    Szymanczyk, Jacek; Nowakowski, Wlodzimierz; Golebiowska, Aleksandra; Michalska, I.; Mindak, Marek K.

    1997-10-01

    Almost every laser for medical applications was first tried in dermatology. The efficiency of YAG, CO2, and Argon lasers on this area and their potential advantages over conventional methods were mostly evaluated by cosmetic effect of laser therapy. The indications for different laser treatment in such dermatological cases as: angiomas, telangiectasias, pigmented lesions, nevus flammeus congenitus, deep cavernous angiomas, skin neoplasms and condylomata acuminata are discussed in this paper and the results of the laser therapy are also presented.

  20. Intracavity Raman lasers

    SciTech Connect

    Band, Y.B.; Ackerhalt, J.R.; Krasinski, J.S.; Heller, D.F.

    1989-02-01

    Experimental and theoretical studies of intracavity Raman lasers are presented. Advantages of intracavity Raman lasers, particularly for low-emission cross section and broadly tunable vibronic gain media, are described. Experimental studies of a hydrogen gas Raman laser pumped inside the cavity of an alexandrite laser are presented. A theoretical model of the dynamics of a unidirectional intracavity Raman ring laser is developed and solved analytically. This model is adapted to simulate experiments.

  1. Lasers used in dermatology.

    PubMed

    Lim, J T; Goh, C L

    1994-01-01

    This review introduces the various lasers available for the treatment of dermatological conditions. The applications of various lasers used in dermatology, including the carbon dioxide, argon, Q-switch Nd:YAG, ruby, dye and metal vapour lasers are discussed. We present our experience with the use of the carbon dioxide laser, flashlamp pulse-dye laser and Q-switch Nd:YAG laser in the National Skin Centre, Singapore. Our experience indicated that the lasers if used selectively are useful tools in the management of numerous skin disorders. The carbon dioxide laser is a versatile tool, useful for vaporizing or destroying skin lesions. The treatment of vascular or pigmented (melanin) lesions requires lasers that emit wavelengths corresponding to the absorption spectrum of haemoglobin or melanin respectively. Choosing the right laser gives optimal cosmetic result whereas the wrong lasers can lead to a less satisfactory result and even severe scarring. It is important to note that there is no single laser system that is versatile enough to be used to treat all skin disorders. To provide full coverage in the treatment of skin disorders, a laser centre has to be equipped with many different laser systems. This makes using lasers in the treatment of skin disorders very expensive.

  2. Laser communication system

    SciTech Connect

    Fredriksen, H.A.; Walter, R.K.; Mentzer, R.B.

    1987-04-28

    A laser communication system is described for transmission across an atmospheric link between a radio frequency source and a load comprising: a primary transmitter including a primary laser, a primary laser modulator connected to the primary laser and to a signal source, and a laser intensity control means connected to the laser for varying the primary laser intensity; a primary receiver located in the path of a beam from the primary laser; a haze comparator circuit connected to a primary photodetector means and comparing the electrical signal from the primary photodetector means to a standard signal to produce an output signal which indicates the sense and degree of difference between the two; a secondary laser located at the primary receiver location; secondary laser modulator circuit; a secondary laser control circuit; a secondary photodetector; a first control means connected to the secondary photodetector and the primary laser intensity control means; and an interconnection between the output of the haze comparator circuit and the secondary laser intensity control circuit so that the intensity of the output of the secondary laser is varied by the haze comparator in the same manner as is the intensity of the output of the primary laser.

  3. Ceramic Laser Materials

    PubMed Central

    Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar

    2012-01-01

    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044

  4. Quantum well lasers

    SciTech Connect

    Zory, P.S. Jr.

    1993-01-01

    The semiconductor quantum well (QW) laser structure is rapidly becoming the preferred design in many applications because of its low threshold, design flexibility, and high reliability. The book begins with a brief, interesting foreword by C.H. Henry on the history of the QW laser concept and its early development. Following this introduction is a 79-page chapter by S.W. Corzine et al. on optical gain in III-V bulk and QW lasers. The next chapter on intraband relaxation and line broadening effects by M. Asada is an excellent expanded review of a topic introduced by Corzine. The remaining chapters describe multiple QW lasers, low-threshold QW laser, special aspects of AlGaAs and (short-wavelength) InGaAsP lasers, valence-band engineering, strained-layer QW lasers, AlGaInP QW lasers, and quantum wire lasers. These chapters are well written by recognized experts in the field.

  5. Nanocrystal waveguide (NOW) laser

    DOEpatents

    Simpson, John T.; Simpson, Marcus L.; Withrow, Stephen P.; White, Clark W.; Jaiswal, Supriya L.

    2005-02-08

    A solid state laser includes an optical waveguide and a laser cavity including at least one subwavelength mirror disposed in or on the optical waveguide. A plurality of photoluminescent nanocrystals are disposed in the laser cavity. The reflective subwavelength mirror can be a pair of subwavelength resonant gratings (SWG), a pair of photonic crystal structures (PC), or a distributed feedback structure. In the case of a pair of mirrors, a PC which is substantially transmissive at an operating wavelength of the laser can be disposed in the laser cavity between the subwavelength mirrors to improve the mode structure, coherence and overall efficiency of the laser. A method for forming a solid state laser includes the steps of providing an optical waveguide, creating a laser cavity in the optical waveguide by disposing at least one subwavelength mirror on or in the waveguide, and positioning a plurality of photoluminescent nanocrystals in the laser cavity.

  6. Infrared laser system

    DOEpatents

    Cantrell, Cyrus D.; Carbone, Robert J.; Cooper, Ralph

    1982-01-01

    An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

  7. Infrared laser system

    DOEpatents

    Cantrell, Cyrus D.; Carbone, Robert J.; Cooper, Ralph S.

    1977-01-01

    An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

  8. Laser Surveying

    NASA Technical Reports Server (NTRS)

    1978-01-01

    NASA technology has produced a laser-aided system for surveying land boundaries in difficult terrain. It does the job more accurately than conventional methods, takes only one-third the time normally required, and is considerably less expensive. In surveying to mark property boundaries, the objective is to establish an accurate heading between two "corner" points. This is conventionally accomplished by erecting a "range pole" at one point and sighting it from the other point through an instrument called a theodolite. But how do you take a heading between two points which are not visible to each other, for instance, when tall trees, hills or other obstacles obstruct the line of sight? That was the problem confronting the U.S. Department of Agriculture's Forest Service. The Forest Service manages 187 million acres of land in 44 states and Puerto Rico. Unfortunately, National Forest System lands are not contiguous but intermingled in complex patterns with privately-owned land. In recent years much of the private land has been undergoing development for purposes ranging from timber harvesting to vacation resorts. There is a need for precise boundary definition so that both private owners and the Forest Service can manage their properties with confidence that they are not trespassing on the other's land.

  9. Alexandrite laser pumped by semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Scheps, Richard; Gately, Bernard M.; Myers, Joseph F.; Krasinski, Jerzy S.; Heller, Donald F.

    1990-06-01

    We report the first operation of a direct diode-pumped tunable chromium-doped solid-state laser. A small alexandrite (Cr:BeAl2O4) crystal was longitudinally pumped by two visible laser diodes. The threshold pump power was 12 mW using the R1 line at 680.4 nm for the pump transition, and the slope efficiency was 25%. The measured laser output bandwidth was 2.1 nm.

  10. Dye laser chain for laser isotope separation

    NASA Astrophysics Data System (ADS)

    Doizi, Denis; Jaraudias, Jean; Pochon, E.; Salvetat, G.

    1993-05-01

    Uranium enrichment by laser isotope separation uses a three step operation which requires four visible wavelengths to boost an individual U235 isotope from a low lying atomic energy level to an autoionizing state. The visible wavelengths are delivered by dye lasers pumped by copper vapor lasers (CVL). In this particular talk, a single dye chain consisting of a master oscillator and amplifier stages will be described and some of its performance given.

  11. Alexandrite laser pumped by semiconductor lasers

    SciTech Connect

    Scheps, R.; Gately, B.M.; Myers, J.F. ); Krasinski, J.S. ); Heller, D.F. )

    1990-06-04

    We report the first operation of a direct diode-pumped tunable chromium-doped solid-state laser. A small alexandrite (Cr:BeAl{sub 2}O{sub 4}) crystal was longitudinally pumped by two visible laser diodes. The threshold pump power was 12 mW using the {ital R}{sub 1} line at 680.4 nm for the pump transition, and the slope efficiency was 25%. The measured laser output bandwidth was 2.1 nm.

  12. Lasers in periodontics.

    PubMed

    Elavarasu, Sugumari; Naveen, Devisree; Thangavelu, Arthiie

    2012-08-01

    Laser is one of the most captivating technologies in dental practice since Theodore Maiman in 1960 invented the ruby laser. Lasers in dentistry have revolutionized several areas of treatment in the last three and a half decades of the 20(th) century. Introduced as an alternative to mechanical cutting device, laser has now become an instrument of choice in many dental applications. Evidence suggests its use in initial periodontal therapy, surgery, and more recently, its utility in salvaging implant opens up a wide range of applications. More research with better designs are a necessity before lasers can become a part of dental armamentarium. This paper gives an insight to laser in periodontics.

  13. Lasers in aviation

    NASA Astrophysics Data System (ADS)

    Goncharov, I. N.; Dezhin, V. N.; Kutakhov, V. P.; Petukhov, A. V.; Sidorin, V. M.; Sukhar, I. M.

    The way in which lasers are being incorporated into the military aircraft of the United States and the countries of Western Europe is discussed. Descriptions are given of laser weapons-guiding systems (including ranger finders and systems for target illumination), laser systems for navigation and flight-safety assurance (gyroscopes, velocity gauges, altimeters, systems providing meteorological data, proximity warning systems), and laser systems for air reconnaissance, communications, and control. Attention is also given to the Glissada laser guide path system, developed in the USSR. The physics of the systems is emphasized in the description and the principles underlying the operation of a laser are discussed in the introduction.

  14. Maser and laser engineering

    SciTech Connect

    Ishii, T.K.

    1980-01-01

    This book is intended to be a textbook for an upper division one-semester electrical engineering course. Students are expected to have had some undegraduate course work in modern physics and in electromagnetic field theory. General aspects regarding devices based on quantum electronics are considered along with gas masers, solid masers, gas lasers, solid lasers, semiconductor lasers, liquid lasers, modulation techniques for lasers, and opto-electrical demodulators and energy convertors. Attention is given to quantum electric harmonic generators, Raman lasers, optical parametric interactions, holograms, optical terms, crystallographic terms, band theory, Schroedinger formulation and Dirac formation, and the quantum number of electrons in a hydrogen atom.

  15. Tunable chromium lasers

    SciTech Connect

    Chase, L.L.; Payne, S.A.

    1989-01-01

    During the decade that has passed since the discovery of the alexandrite laser, many other tunable vibronic sideband lasers based on Cr/sup 3 +/ have been developed. These lasers span the wavelength range from 700 nm to at least 1235 nm. Experimental and theoretical research has provided an understanding of the important factors that influence the performance of these Cr/sup 3 +/ lasers and other solid state vibronic lasers. The intrinsic performance levels of some of the most promising Cr/sup 3 +/ lasers are evaluated from extrapolated slope efficiency measurements. 7 refs., 4 figs., 2 tabs.

  16. Laser Safety Device

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A major focus of work done at Air Products and Chemicals' Laser Application Laboratory is on use of ultraviolet radiation using high energy excimer lasers. Because light within the wavelength of excimer lasers is invisible, it can cause serious damage to eyes and tissue. To contain the laser beam, Air Products Incorporated a Jet Propulsion Laboratory invention described in a technical support package into its beam stops. The technology interrupts the laser pathway and allows workers to remain in the target area without shutting off the laser.

  17. Laser peening of metals- enabling laser technology

    SciTech Connect

    Dane, C.B.; Hackel, L.A.; Daly, J.; Harrisson, J.

    1997-11-13

    Laser peening, a surface treatment for metals, employs laser induced shocks to create deep and intense residual stresses in critical components. In many applications this technology is proving to be superior to conventional treatments such as shot peening. The laser peening process has generated sufficiently impressive results to move it from a laboratory demonstration phase into a significant industrial process. However until now this evolution has been slowed because a laser system meeting the average power requirements for a high throughput process has been lacking.

  18. Laser amplifier and method

    DOEpatents

    Backus, S.; Kapteyn, H.C.; Murnane, M.M.

    1997-07-01

    Laser amplifiers and methods for amplifying a laser beam are disclosed. A representative embodiment of the amplifier comprises first and second curved mirrors, a gain medium, a third mirror, and a mask. The gain medium is situated between the first and second curved mirrors at the focal point of each curved mirror. The first curved mirror directs and focuses a laser beam to pass through the gain medium to the second curved mirror which reflects and recollimates the laser beam. The gain medium amplifies and shapes the laser beam as the laser beam passes therethrough. The third mirror reflects the laser beam, reflected from the second curved mirror, so that the laser beam bypasses the gain medium and return to the first curved mirror, thereby completing a cycle of a ring traversed by the laser beam. The mask defines at least one beam-clipping aperture through which the laser beam passes during a cycle. The gain medium is pumped, preferably using a suitable pumping laser. The laser amplifier can be used to increase the energy of continuous-wave or, especially, pulsed laser beams including pulses of femtosecond duration and relatively high pulse rate. 7 figs.

  19. Laser amplifier and method

    DOEpatents

    Backus, Sterling; Kapteyn, Henry C.; Murnane, Margaret M.

    1997-01-01

    Laser amplifiers and methods for amplifying a laser beam are disclosed. A representative embodiment of the amplifier comprises first and second curved mirrors, a gain medium, a third mirror, and a mask. The gain medium is situated between the first and second curved mirrors at the focal point of each curved mirror. The first curved mirror directs and focuses a laser beam to pass through the gain medium to the second curved mirror which reflects and recollimates the laser beam. The gain medium amplifies and shapes the laser beam as the laser beam passes therethough. The third mirror reflects the laser beam, reflected from the second curved mirror, so that the laser beam bypasses the gain medium and return to the first curved mirror, thereby completing a cycle of a ring traversed by the laser beam. The mask defines at least one beam-clipping aperture through which the laser beam passes during a cycle. The gain medium is pumped, preferably using a suitable pumping laser. The laser amplifier can be used to increase the energy of continuous-wave or, especially, pulsed laser beams including pulses of femtosecond duration and relatively high pulse rate.

  20. Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hollberg, Leo; Bergquist, James Charles; Kasevich, Mark A.

    2008-04-01

    Degenerate gases. Probing vortex pair sizes in the Berezinskii-Kosterlitz-Thouless regime on a two-dimensional lattice of Bose-Einstein condensates / V. Schweikhard ... [et al.]. Interacting Bose-Einstein condensates in random potentials / P. Bouyer ... [et al.]. Towards quantum magnetism with ultracold atoms in optical lattices / I. Bloch -- Precision measurement and fundamental physics. T-violation and the search for a permanent electric dipole moment of the mercury atom / E. N. Fortson -- Quantum information and control I. Quantum information processing and ramsey spectroscopy with trapped ions / C. F. Roos ... [et al.]. Quantum non-demolition counting of photons in a cavity / S. Haroche ... [et al.] -- Ultra-fast control and spectroscopy. Frequency-Comb- assisted mid-infrared spectroscopy / P. de Natale ... [et al.] -- Precision measurement and applications. Precision gravity tests by atom interferometry / G. M. Tino ... [et al.] -- Novel spectroscopic applications. On a variation of the proton-electron mass ratio / W. Ubachs ... [et al.] -- Quantum information and control II. Quantum interface between light and atomic ensembles / H. Krauter ... [et al.] -- Degenerate Fermi gases. An atomic Fermi gas near a P-wave Feshbach resonance / D. S. Jin, J. P. Gaebler and J. T. Stewart. Bragg scattering of correlated atoms from a degenerate Fermi gas / R. J. Ballagh, K. J. Challis and C. W. Gardiner -- Spectroscopy and control of atoms and molecules. Stark and Zeeman deceleration of neutral atoms and molecules / S. D. Hogan ... [et al.]. Generation of coherent, broadband and tunable soft x-ray continuum at the leading edge of the driver laser pulse / A. Jullien ... [et al.]. Controlling neural atoms and photons with optical conveyor belts and ultrathin optical fibers / D. Meschede. W. Alt and A. Rauschenbeutel -- Spectroscopy on the small scale. Wide-field cars-microscopy / C. Heinrich ... [et al.]. Atom nano-optics and nano-lithography / V. I. Balykin ... [et al

  1. Phased laser array for generating a powerful laser beam

    DOEpatents

    Holzrichter, John F.; Ruggiero, Anthony J.

    2004-02-17

    A first injection laser signal and a first part of a reference laser beam are injected into a first laser element. At least one additional injection laser signal and at least one additional part of a reference laser beam are injected into at least one additional laser element. The first part of a reference laser beam and the at least one additional part of a reference laser beam are amplified and phase conjugated producing a first amplified output laser beam emanating from the first laser element and an additional amplified output laser beam emanating from the at least one additional laser element. The first amplified output laser beam and the additional amplified output laser beam are combined into a powerful laser beam.

  2. Laser surgery - skin

    MedlinePlus

    Surgery using a laser ... used is directly related to the type of surgery being performed and the color of the tissue ... Laser surgery can be used to: Close small blood vessels to reduce blood loss Remove warts , moles , sunspots, and ...

  3. Laser Radar Animation

    NASA Image and Video Library

    Laser and radar instruments aboard NASA aircraft provide measurements of the snow and ice surface and down to the bedrock under the ice. Lasers, with a shorter wavelength, measure the surface eleva...

  4. Laser particle sorter

    DOEpatents

    Martin, J.C.; Buican, T.N.

    1987-11-30

    Method and apparatus are provided for sorting particles, such as biological particles. A first laser is used to define an optical path having an intensity gradient which is effective to propel the particles along the path but which is sufficiently weak that the particles are not trapped in an axial direction. A probe laser beam is provided for interrogating the particles to identify predetermined phenotypical characteristics of the particles. A second laser beam is provided to intersect the driving first laser beam, wherein the second laser beam is activated by an output signal indicative of a predetermined characteristic. The second laser beam is switchable between a first intensity and a second intensity, where the first intensity is effective to displace selected particles from the driving laser beam and the second intensity is effective to propel selected particles along the deflection laser beam. The selected particles may then be propelled by the deflection beam to a location effective for further analysis. 2 figs.

  5. Laser safety in dentistry.

    PubMed

    Sweeney, Caroline

    2008-01-01

    Although many regulations and standards relating to laser safety are in effect, there continue to be an average of 35 laser injuries per year. Laser safety professionals believe that this number under-represents the actual number of injuries and that many more accidents per year occur that are not documented with federal agencies. A review of these accidents has determined that failing to wear available eye protection is one of the most frequent contributing factors to laser injuries. As the purchase and use of lasers in dentistry continues to grow, so must concern for laser safety. This article provides basic information to advance the safe use of lasers in dentistry and to help establish laser safety protocols for the dental office.

  6. Laser hair removal.

    PubMed

    Wanner, Molly

    2005-01-01

    Since 1996, there have been numerous advances in hair laser removal that utilize melanin as a chromophore. All of the devices on the market may be used in patients with light skin (phototypes I-III) and yield hair reduction near 75%. The ruby (694 nm) laser, alexandrite (755 nm) laser, and diode (810 nm) laser, as well as intense pulsed light are commonly used devices for hair laser removal. The long-pulsed Nd:YAG (1064 nm) laser represents the safest device for hair removal in dark-skinned patients because of its long wavelength, although the diode laser, alexandrite laser, and intense pulse light may be used. For treatment of light hair, combination radiofrequency and optical devices as well as photodynamic therapy are under investigation.

  7. Direct nuclear pumped laser

    DOEpatents

    Miley, George H.; Wells, William E.; DeYoung, Russell J.

    1978-01-01

    There is provided a direct nuclear pumped gas laser in which the lasing mechanism is collisional radiated recombination of ions. The gas laser active medium is a mixture of the gases, with one example being neon and nitrogen.

  8. High power laser dump

    NASA Astrophysics Data System (ADS)

    Hsu, M. S.; Hsu, J. P.

    1985-08-01

    A high power laser dump has defined laser beam introduction angles to the internal surface of a cylinder to maximize energy dispersion and absorption and, has two zones formed of distinctive reflective and absorbing materials.

  9. Lasers In Medicine

    NASA Astrophysics Data System (ADS)

    Bernardo, L. M.

    1989-01-01

    Fifty people around have participated in the workshop "Lasers in Medicine": most of them participants on the previous days on the conference "Laser Technologies in Industry", also some invited physicians and others interested in the topic from various University Departments.

  10. LASIK - Laser Eye Surgery

    MedlinePlus

    ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Academy Publications EyeNet Ophthalmology ... Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide Find an Ophthalmologist Advanced ...

  11. Lasers in neurosurgery.

    PubMed

    Krishnamurthy, S; Powers, S K

    1994-01-01

    Lasers have been used in neurosurgery for the past 25 years, undergoing modifications to suit the specific needs of this medical discipline. The present report reviews the current use of lasers in neurosurgical practice and examines the pros and cons of lasers in specific neurosurgical applications. In spite of their advantages, laser use is still not widespread in neurosurgery. One reason is the continued lack of complete control over real-time laser interactions with neural tissue. A greater acceptance and use of lasers by neurosurgeons will depend upon automated control over defined specific parameters for laser applications based upon the type of tissue, the desired effect on tissue, and application to the clinical situation without loss of precision and a lot of expense. This will require the integration of newer lasers, computers, robotics, stereotaxy, and concepts of minimally invasive surgery into the routine management of neurosurgical problems.

  12. Laser device and method

    SciTech Connect

    Myers, J. D.

    1985-06-25

    A simplified, relatively inexpensive laser device, wherein the laser elements are fixed in a body exoskeleton of electrical insulating material having a low coefficient of thermal expansion. The preferred embodiment includes a shotgun type laser filter having parallel bores which receive the laser flashlamp and laser rod in fixed relation in a body chamber. The reflector surrounds the laser filter and retains the filter within the body chamber. In the preferred method of this invention, several controlled lasing pulses are generated with each illumination pulse of the flashlamp, substantially increasing the efficiency of the laser device. The number of pulses is generally controlled by increasing the voltage to the flashlamp. The rapid multiple lasing pulses generate an elongated plasma in a fluid medium, such as the vitreous fluid body of an eye which makes the laser device extemely efficient for treating glaucoma and other medical treatments.

  13. Modern retinal laser therapy

    PubMed Central

    Kozak, Igor; Luttrull, Jeffrey K.

    2014-01-01

    Medicinal lasers are a standard source of light to produce retinal tissue photocoagulation to treat retinovascular disease. The Diabetic Retinopathy Study and the Early Treatment Diabetic Retinopathy Study were large randomized clinical trials that have shown beneficial effect of retinal laser photocoagulation in diabetic retinopathy and have dictated the standard of care for decades. However, current treatment protocols undergo modifications. Types of lasers used in treatment of retinal diseases include argon, diode, dye and multicolor lasers, micropulse lasers and lasers for photodynamic therapy. Delivery systems include contact lens slit-lamp laser delivery, indirect ophthalmocope based laser photocoagulation and camera based navigated retinal photocoagulation with retinal eye-tracking. Selective targeted photocoagulation could be a future alternative to panretinal photocoagulation. PMID:25892934

  14. Laser spectroscopy 9

    SciTech Connect

    Feld, M.S. . Dept. of Physics); Thomas, J.E. . Dept. of Physics); Mooradian, A. . Lincoln Lab.)

    1989-01-01

    This book covers subjects under the following headings: New cooling mechanisms; Laser spectroscopy; Cavity Qed; Noise and coherence; Quantum size effects; Surface spectroscopy; Laser light sources; Trapped ion spectroscopy; and Fundamental measurements.

  15. Slender tip laser scalpel

    DOEpatents

    Veligdan, James T.

    2004-01-06

    A laser scalpel includes a ribbon optical waveguide extending therethrough and terminating at a slender optical cutting tip. A laser beam is emitted along the height of the cutting tip for cutting tissue therealong.

  16. Laser programs highlights 1993

    SciTech Connect

    1995-06-01

    Over the last two decades, the scope of our laser research has grown immensely. The small, low-power laser systems of our early days have given way to laser systems of record-breaking size and power. Now we are focusing our activities within the target physics and laser science programs to support the ignition and gain goals of the proposed glass-laser National Ignition Facility. In our laser isotope separation work, we completed the most important set of experiments in the history of the AVLIS Program in 1993, which culminated in a spectacularly successful run that met or exceeded all our objectives. We are also developing lasers and laser-related technologies for a variety of energy, commercial, and defense uses. On the horizon are transfers of important technologies for waste treatment, x-ray lithography, communications and security, optical imaging, and remote sensing, among others.

  17. MESSENGER Laser Altimeter

    NASA Image and Video Library

    MESSENGER's Mercury Laser Altimeter sends out laser pulses that hit the ground and return to the instrument. The amount of light that returns for each pulse gives the reflectance at that point on t...

  18. Lasers in Cancer Treatment

    MedlinePlus

    ... in a narrow beam and creates a very high-intensity light. This powerful beam of light may be ... it used in cancer treatment? Laser therapy uses high-intensity light to treat cancer and other illnesses. Lasers ...

  19. Laser particle sorter

    DOEpatents

    Martin, John C.; Buican, Tudor N.

    1989-01-01

    Method and apparatus for sorting particles, such as biological particles. A first laser defines an optical path having an intensity gradient which is effective to propel the particles along the path but which is sufficiently weak that the particles are not trapped in an axial direction. A probe laser beam interrogates the particles to identify predetermined phenotypical characteristics of the particles. A second laser beam intersects the driving first laser beam, wherein the second laser beam is activated by an output signal indicative of a predetermined characteristic. The second laser beam is switchable between a first intensity and a second intensity, where the first intensity is effective to displace selected particles from the driving laser beam and the second intensity is effective to propel selected particles along the deflection laser beam. The selected particles may then be propelled by the deflection beam to a location effective for further analysis.

  20. TELEC laser experiment

    NASA Technical Reports Server (NTRS)

    Britt, E. J.

    1977-01-01

    An experimental thermoelectronic laser energy converter (TELEC) was constructed and tested with a 40 kW combustion laser operating at a wave length of 10.6 microns. The objective of the test was to demonstrate the feasibility of the TELEC concept for converting a laser beam into electric power. The TELEC System is intended as the receiver for a laser power transmission system in space.

  1. CO2 laser modeling

    NASA Technical Reports Server (NTRS)

    Johnson, Barry

    1992-01-01

    The topics covered include the following: (1) CO2 laser kinetics modeling; (2) gas lifetimes in pulsed CO2 lasers; (3) frequency chirp and laser pulse spectral analysis; (4) LAWS A' Design Study; and (5) discharge circuit components for LAWS. The appendices include LAWS Memos, computer modeling of pulsed CO2 lasers for lidar applications, discharge circuit considerations for pulsed CO2 lidars, and presentation made at the Code RC Review.

  2. Tunable semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    Tunable semiconductor lasers are disclosed requiring minimized coupling regions. Multiple laser embodiments employ ring resonators or ring resonator pairs using only a single coupling region with the gain medium are detailed. Tuning can be performed by changing the phase of the coupling coefficient between the gain medium and a ring resonator of the laser. Another embodiment provides a tunable laser including two Mach-Zehnder interferometers in series and a reflector coupled to a gain medium.

  3. Laser Gyro Theory Extension.

    DTIC Science & Technology

    1980-12-01

    111. ൔ+2ŕ GYRO. .. ......................... 2 IV. APPLICATION OF LASER ROTATIONAL SENSORS TO PROBLEMS IN GENERAL AND SPECIAL RELATIVITY ...model. 3 IV. APPLICATION OF LASER ROTATIONAL SENSORS TO PROBLEMS IN GENERAL AND SPECIAL RELATIVITY In our on-going study involving the application of ring...34The Laser Gyro," in Laser Applications , M. Ross, Ed. (Academic, New York, 1971), pp. 131-200. 4. G. Yntema, D. Grant, Jr. and R. Warner, U. S

  4. Short wavelength laser

    DOEpatents

    Hagelstein, Peter L.

    1986-01-01

    A short wavelength laser (28) is provided that is driven by conventional-laser pulses (30, 31). A multiplicity of panels (32), mounted on substrates (34), are supported in two separated and alternately staggered facing and parallel arrays disposed along an approximately linear path (42). When the panels (32) are illuminated by the conventional-laser pulses (30, 31), single pass EUV or soft x-ray laser pulses (44, 46) are produced.

  5. Alkali-vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Komashko, A.; Krupke, W. F.

    2010-02-01

    We report on the results from several of our alkali laser systems. We show highly efficient performance from an alexandrite-pumped rubidium laser. Using a laser diode stack as a pump source, we demonstrate up to 145 W of average power from a CW system. We present a design for a transversely pumped demonstration system that will show all of the required laser physics for a high power system.

  6. Laser shaping of cartilage

    NASA Astrophysics Data System (ADS)

    Sobol, Emil N.; Bagratashvili, Victor N.; Omelchenko, Alexander I.; Sviridov, Alexander P.; Helidonis, Emmanuel S.; Kavvalos, George; Christodoulou, P. N.; Naoumidi, I.; Velegrakis, G.; Ovchinnikov, Yuriy M.; Shechter, A.

    1994-09-01

    The carbon dioxide laser has been used for the first time to change the cartilage's shape. After the laser irradiation the cartilage has the tendency to retain its new form. Different types of laser modified cartilage structures were studied. The inferred physical mechanism for cartilage shaping using the stresses relaxation process is presented. The clinical significance of the results for corrective laser surgery is discussed.

  7. Carbon dioxide slab laser

    SciTech Connect

    Tulip, J.

    1988-01-12

    A gas slab laser is described comprising: first and second elongated electrodes each including a planar light reflecting surface disposed so as to form a light guide only in a plane perpendicular to the planar surface and to define a gas discharge gap therebetween; a laser gas disposed in the gap; and means for applying a radio frequency current between the first and second electrodes to establish a laser-exciting discharge in the laser gas.

  8. Laser cutting system

    SciTech Connect

    Dougherty, Thomas J

    2015-03-03

    A workpiece cutting apparatus includes a laser source, a first suction system, and a first finger configured to guide a workpiece as it moves past the laser source. The first finger includes a first end provided adjacent a point where a laser from the laser source cuts the workpiece, and the first end of the first finger includes an aperture in fluid communication with the first suction system.

  9. Laser Assisted Microsurgical Anastomosis.

    DTIC Science & Technology

    1983-09-22

    Miami School of Medicine This Paper describes new experimental microsurgical procedures that * utilize laser infrared energy emitted at 10.6 um to...dioxide laser microsurgical technique takes advantage of the very high absorption of laser energy (at 10.6 um) by water in soft tissue to effect successful...describes a new surgical technique that utilizes laser heat energy to repair transected rat sciatic nerves, and nerve grafts. The energy emitted at

  10. Optically biased laser gyro

    SciTech Connect

    Anderson, D.Z.; Chow, W.W.; Scully, M.O.; Sanders, V.E.

    1980-10-01

    We describe a four-mode ring laser that exhibits none of the mode-locking characteristics that plague laser gyros. This laser is characterized by a bias that changes sign with a change in the direction of rotation and prevents the counterpropagating modes from locking. A theoretical analysis explaining the experimental results is outlined.

  11. Polarization feedback laser stabilization

    DOEpatents

    Esherick, Peter; Owyoung, Adelbert

    1988-01-01

    A system for locking two Nd:YAG laser oscillators includes an optical path for feeding the output of one laser into the other with different polarizations. Elliptical polarization is incorporated into the optical path so that the change in polarization that occurs when the frequencies coincide may be detected to provide a feedback signal to control one laser relative to the other.

  12. Zeeman laser gyroscopes

    SciTech Connect

    Azarova, V V; Golyaev, Yu D; Saveliev, I I

    2015-02-28

    The history of invention and development of Zeeman laser gyroscopes, specific features of their optical scheme and operation principle are described. The construction and element base of modern laser angular velocity sensors with Zeeman-based frequency biasing are considered. The problems and prospects of their development are discussed. (laser gyroscopes)

  13. Laser power transmission

    NASA Technical Reports Server (NTRS)

    Conway, Edmund J.

    1992-01-01

    An overview of previous studies related to laser power transmission is presented. Particular attention is given to the use of solar pumped lasers for space power applications. Three general laser mechanisms are addressed: photodissociation lasing driven by sunlight, photoexcitation lasing driven directly by sunlight, and photoexcitation lasing driven by thermal radiation.

  14. Lasers for nonlinear microscopy.

    PubMed

    Wise, Frank

    2013-03-01

    Various versions of nonlinear microscopy are revolutionizing the life sciences, almost all of which are made possible because of the development of ultrafast lasers. In this article, the main properties and technical features of short-pulse lasers used in nonlinear microscopy are summarized. Recent research results on fiber lasers that will impact future instruments are also discussed.

  15. Laser bottom hole assembly

    DOEpatents

    Underwood, Lance D; Norton, Ryan J; McKay, Ryan P; Mesnard, David R; Fraze, Jason D; Zediker, Mark S; Faircloth, Brian O

    2014-01-14

    There is provided for laser bottom hole assembly for providing a high power laser beam having greater than 5 kW of power for a laser mechanical drilling process to advance a borehole. This assembly utilizes a reverse Moineau motor type power section and provides a self-regulating system that addresses fluid flows relating to motive force, cooling and removal of cuttings.

  16. X-ray lasers

    SciTech Connect

    Elton, R.C.

    1990-01-01

    This book is both an introduction to x-ray lasers and a how-to-guide for specialists. It provides comprehensive overview and describes useful examples of analysis and experiments as background and guidance for researchers undertaking new laser designs. The book collects the knowledge and experience gained in two decades of x-ray laser development.

  17. Laser Fundamentals and Experiments.

    ERIC Educational Resources Information Center

    Van Pelt, W. F.; And Others

    As a result of work performed at the Southwestern Radiological Health Laboratory with respect to lasers, this manual was prepared in response to the increasing use of lasers in high schools and colleges. It is directed primarily toward the high school instructor who may use the text for a short course in laser fundamentals. The definition of the…

  18. Infrared diode laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Civiš, S.; Cihelka, J.; Matulková, I.

    2010-12-01

    Three types of lasers (double-heterostructure 66 K InAsSb/InAsSbP laser diode, room temperature, multi quantum wells with distributed feedback (MQW with DFB) (GaInAsSb/AlGaAsSb based) diode laser and vertical cavity surface emitting lasers (VCSELs) (GaSb based) have been characterized using Fourier transform emission spectroscopy and compared. The photoacoustic technique was employed to determine the detection limit of formaldehyde (less than 1 ppmV) for the strongest absorption line of the v3 + v5 band in the emission region of the GaInAsSb/AlGaAsSb diode laser. The detection limit (less than 10 ppbV) of formaldehyde was achieved in the 2820 cm-1 spectral range in case of InAsSb/InAsSbP laser (fundamental bands of v1, v5). Laser sensitive detection (laser absorption together with high resolution Fourier transform infrared technique including direct laser linewidth measurement, infrared photoacoustic detection of neutral molecules (methane, form-aldehyde) is discussed. Additionally, very sensitive laser absorption techniques of such velocity modulation are discussed for case of laser application in laboratory research of molecular ions. Such sensitive techniques (originally developed for lasers) contributed very much in identifying laboratory microwave spectra of a series of anions (C6H-, C4H-, C2H-, CN-) and their discovery in the interstellar space (C6H-, C4H-).

  19. Laser Detection of Pollution.

    ERIC Educational Resources Information Center

    Patel, C. K. N.

    1978-01-01

    Discusses the use of laser spectroscopy in determining the presence of specific gaseous constituents. Three of currently used modes for laser detection of pollution are reviewed; (1) long-path measurements; (2) laser raman (differential absorption) measurements; and (3) optoacoustic detection. (HM)

  20. Velocimetry with diode lasers

    NASA Astrophysics Data System (ADS)

    de Mul, F. F. M.; Jentink, H. W.; Koelink, M.; Greve, J.; Aarnoudse, J. G.

    The history of the application of diode lasers in velocimetry is reviewed. Some problems arising when using those lasers, e.g., mode hopping and wavelength shifts caused by temperature effects, are discussed, together with coherence effects encountered with diode lasers. The application in dual-beam velocimetry, in direct-contact velocimetry and in velocimetry using self-mixing will be discussed.

  1. LaserFest Celebration

    SciTech Connect

    Dr. Alan Chodos; Elizabeth A. Rogan

    2011-08-25

    LaserFest was the yearlong celebration, during 2010, of the 50th anniversary of the demonstration of the first working laser. The goals of LaserFest were: to highlight the impact of the laser in its manifold commercial, industrial and medical applications, and as a tool for ongoing scientific research; to use the laser as one example that illustrates, more generally, the route from scientific innovation to technological application; to use the laser as a vehicle for outreach, to stimulate interest among students and the public in aspects of physical science; to recognize and honor the pioneers who developed the laser and its many applications; to increase awareness among policymakers of the importance of R&D funding as evidenced by such technology as lasers. One way in which LaserFest sought to meet its goals was to encourage relevant activities at a local level all across the country -- and also abroad -- that would be identified with the larger purposes of the celebration and would carry the LaserFest name. Organizers were encouraged to record and advertise these events through a continually updated web-based calendar. Four projects were explicitly detailed in the proposals: 1) LaserFest on the Road; 2) Videos; 3) Educational material; and 4) Laser Days.

  2. Argon laser for otosclerosis

    NASA Astrophysics Data System (ADS)

    Michalski, Wojciech; Pospiech, Lucyna; Jankowska-Kuc, Malgorzata

    1995-03-01

    Up to now, among different kinds of lasers an argon laser is mostly used for otosclerosis. Exposure conditions at use of the laser beam are still not well defined. In order to achieve the optimum conditions a series of experiments has been made. Obtained results are presented in this paper.

  3. Laser Detection of Pollution.

    ERIC Educational Resources Information Center

    Patel, C. K. N.

    1978-01-01

    Discusses the use of laser spectroscopy in determining the presence of specific gaseous constituents. Three of currently used modes for laser detection of pollution are reviewed; (1) long-path measurements; (2) laser raman (differential absorption) measurements; and (3) optoacoustic detection. (HM)

  4. Solar pumped laser

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F.; Weaver, W. R. (Inventor)

    1984-01-01

    A solar pumped laser is described in which the lasant is a gas that will photodissociate and lase when subjected to sunrays. Sunrays are collected and directed onto the gas lasant to cause it to lase. Applications to laser propulsion and laser power transmission are discussed.

  5. Laser Programs Highlights 1998

    SciTech Connect

    Lowdermilk, H.; Cassady, C.

    1999-12-01

    This report covers the following topics: Commentary; Laser Programs; Inertial Confinement Fusion/National Ignition Facility (ICF/NIF); Atomic Vapor Laser Isotope Separation (AVLIS); Laser Science and Technology (LS&T); Information Science and Technology Program (IS&T); Strategic Materials Applications Program (SMAP); Medical Technology Program (MTP) and Awards.

  6. Excimer Lasers In Medicine

    NASA Astrophysics Data System (ADS)

    Tittel, Frank K.; Saidi, Iyad S.; Pettit, George H.; Wisoff, P. J.; Sauerbrey, Roland A.

    1989-06-01

    Excimer lasers emit light energy, short optical pulses at ultraviolet wavelengths, that results in a unique laser tissue interaction. This has led to an increasing number of studies into medical applications of these lasers in fields such as ophthalmology, urology, cardiology and neurology.

  7. Laser material processing system

    DOEpatents

    Dantus, Marcos

    2015-04-28

    A laser material processing system and method are provided. A further aspect of the present invention employs a laser for micromachining. In another aspect of the present invention, the system uses a hollow waveguide. In another aspect of the present invention, a laser beam pulse is given broad bandwidth for workpiece modification.

  8. Diode laser and endoscopic laser surgery.

    PubMed

    Sullins, Kenneth E

    2002-05-01

    Two functionally important differences exist between the diode laser and the carbon dioxide (CO2) laser (used more commonly in small animal surgery). Diode laser energy is delivered through a quartz fiber instead of being reflected through an articulated arm or waveguide. Quartz fibers are generally more flexible and resilient than waveguides and can be inserted through an endoscope for minimally invasive procedures. Laser-tissue interaction is the other significant difference. The CO2 laser is completely absorbed by water, which limits the effect to visible tissue. The diode wavelength is minimally absorbed by water and may affect tissue as deep as 10 mm below the surface in the free-beam mode. With proper respect for the tissue effect, these differences can be used to the advantage of the patient.

  9. Stabilized Zeeman split laser

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The development of a stablized Zeeman split laser for use in a polarization profilometer is discussed. A Hewlett-Packard laser was modified to stabilize the Zeeman split beat frequency thereby increasing the phase measurement accuracy from the Hewlett-Packard 3 degrees to an accuracy of .01 degrees. The addition of a two layered inductive winding converts the laser to a current controlled oscillator whose frequency is linearly related to coil current. This linear relationship between coil current and laser frequency permits phase locking the laser frequency to a stable crystal controlled reference frequency. The stability of the system is examined and the equipment operation procedures are outlined.

  10. Laser Diode Ignition (LDI)

    NASA Technical Reports Server (NTRS)

    Kass, William J.; Andrews, Larry A.; Boney, Craig M.; Chow, Weng W.; Clements, James W.; Merson, John A.; Salas, F. Jim; Williams, Randy J.; Hinkle, Lane R.

    1994-01-01

    This paper reviews the status of the Laser Diode Ignition (LDI) program at Sandia National Labs. One watt laser diodes have been characterized for use with a single explosive actuator. Extensive measurements of the effect of electrostatic discharge (ESD) pulses on the laser diode optical output have been made. Characterization of optical fiber and connectors over temperature has been done. Multiple laser diodes have been packaged to ignite multiple explosive devices and an eight element laser diode array has been recently tested by igniting eight explosive devices at predetermined 100 ms intervals.

  11. Chalcogenide glass microsphere laser.

    PubMed

    Elliott, Gregor R; Murugan, G Senthil; Wilkinson, James S; Zervas, Michalis N; Hewak, Daniel W

    2010-12-06

    Laser action has been demonstrated in chalcogenide glass microsphere. A sub millimeter neodymium-doped gallium lanthanum sulphide glass sphere was pumped at 808 nm with a laser diode and single and multimode laser action demonstrated at wavelengths between 1075 and 1086 nm. The gallium lanthanum sulphide family of glass offer higher thermal stability compared to other chalcogenide glasses, and this, along with an optimized Q-factor for the microcavity allowed laser action to be achieved. When varying the pump power, changes in the output spectrum suggest nonlinear and/or thermal effects have a strong effect on laser action.

  12. Laser Diode Ignition (LDI)

    NASA Technical Reports Server (NTRS)

    Kass, William J.; Andrews, Larry A.; Boney, Craig M.; Chow, Weng W.; Clements, James W.; Merson, John A.; Salas, F. Jim; Williams, Randy J.; Hinkle, Lane R.

    1994-01-01

    This paper reviews the status of the Laser Diode Ignition (LDI) program at Sandia National Labs. One watt laser diodes have been characterized for use with a single explosive actuator. Extensive measurements of the effect of electrostatic discharge (ESD) pulses on the laser diode optical output have been made. Characterization of optical fiber and connectors over temperature has been done. Multiple laser diodes have been packaged to ignite multiple explosive devices and an eight element laser diode array has been recently tested by igniting eight explosive devices at predetermined 100 ms intervals.

  13. X-ray laser

    DOEpatents

    Nilsen, Joseph

    1991-01-01

    An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

  14. Dual Wavelength Lasers

    NASA Technical Reports Server (NTRS)

    Walsh, Brian M.

    2010-01-01

    Dual wavelength lasers are discussed, covering fundamental aspects on the spectroscopy and laser dynamics of these systems. Results on Tm:Ho:Er:YAG dual wavelength laser action (Ho at 2.1 m and Er at 2.9 m) as well as Nd:YAG (1.06 and 1.3 m) are presented as examples of such dual wavelength systems. Dual wavelength lasers are not common, but there are criteria that govern their behavior. Based on experimental studies demonstrating simultaneous dual wavelength lasing, some general conclusions regarding the successful operation of multi-wavelength lasers can be made.

  15. Laser assisted deposition

    NASA Technical Reports Server (NTRS)

    Dutta, S.

    1983-01-01

    Applications of laser-based processing techniques to solar cell metallization are discussed. Laser-assisted thermal or photolytic maskless deposition from organometallic vapors or solutions may provide a viable alternative to photovoltaic metallization systems currently in use. High power, defocused excimer lasers may be used in conjunction with masks as an alternative to direct laser writing to provide higher throughput. Repeated pulsing with excimer lasers may eliminate the need for secondary plating techniques for metal film buildup. A comparison between the thermal and photochemical deposition processes is made.

  16. Lasers in otorhinolaryngology

    NASA Astrophysics Data System (ADS)

    Pais Clemente, Manuel P.

    1992-03-01

    Lasers are now commonly accepted and widely used surgical instruments in otorhinolaryngology. There have been a great number of technological advances with lasers that have contributed to the expansion of this new surgical modality with an increased number of medical applications. Surgical strategies have also changed and are more favorable toward conservative surgery in which less tissues is removed than with more radical resections. This combination of improving technology and medical attitudes has changed the field of otorhinolaryngology, and resulted in an expanding use of laser surgery. Since 1973 we have been using the carbon dioxide laser in the treatment of diseases of the upper aero digestive systems, learning this new surgical technique from the pioneer work of Strong, Jako, and Vaughan. It is our conviction that a laser surgeon must have a thorough knowledge of laser biophysics, instrumentation, safety protocols, and surgical indications, and have the technical skills to perform laser surgery. Laser technology continues to improve at an increased speed, and it is imperative to update knowledge of current and potential applications of lasers in our specialty. It is the purpose of this article to present our clinical experience of 18 years with the use of lasers in surgery of ORL, emphasizing the carbon dioxide laser.

  17. Micromachining with copper lasers

    NASA Astrophysics Data System (ADS)

    Knowles, Martyn R. H.; Bell, Andy; Foster-Turner, Gideon; Rutterford, Graham; Chudzicki, J.; Kearsley, Andrew J.

    1997-04-01

    In recent years the copper laser has undergone extensive development and has emerged as a leading and unique laser for micromachining. The copper laser is a high average power (10 - 250 W), high pulse repetition rate (2 - 32 kHz), visible laser (511 nm and 578 nm) that produces high peak power (typically 200 kW), short pulses (30 ns) and very good beam quality (diffraction limited). This unique set of laser parameters results in exceptional micro-machining in a wide variety of materials. Typical examples of the capabilities of the copper laser include the drilling of small holes (10 - 200 micrometer diameter) in materials as diverse as steel, ceramic, diamond and polyimide with micron precision and low taper (less than 1 degree) cutting and profiling of diamond. Application of the copper laser covers the electronic, aerospace, automotive, nuclear, medical and precision engineering industries.

  18. Raman fiber lasers

    NASA Astrophysics Data System (ADS)

    Supradeepa, V. R.; Feng, Yan; Nicholson, Jeffrey W.

    2017-02-01

    High-power fiber lasers have seen tremendous development in the last decade, with output powers exceeding multiple kilowatts from a single fiber. Ytterbium has been at the forefront as the primary rare-earth-doped gain medium owing to its inherent material advantages. However, for this reason, the lasers are largely confined to the narrow emission wavelength region of ytterbium. Power scaling at other wavelength regions has lagged significantly, and a large number of applications rely upon the diversity of emission wavelengths. Currently, Raman fiber lasers are the only known wavelength agile, scalable, high-power fiber laser technology that can span the wavelength spectrum. In this review, we address the technology of Raman fiber lasers, specifically focused on the most recent developments. We will also discuss several applications of Raman fiber lasers in laser pumping, frequency conversion, optical communications and biology.

  19. Adiabatic Soliton Laser

    NASA Astrophysics Data System (ADS)

    Bednyakova, Anastasia; Turitsyn, Sergei K.

    2015-03-01

    The key to generating stable optical pulses is mastery of nonlinear light dynamics in laser resonators. Modern techniques to control the buildup of laser pulses are based on nonlinear science and include classical solitons, dissipative solitons, parabolic pulses (similaritons) and various modifications and blending of these methods. Fiber lasers offer remarkable opportunities to apply one-dimensional nonlinear science models for the design and optimization of very practical laser systems. Here, we propose a new concept of a laser based on the adiabatic amplification of a soliton pulse in the cavity—the adiabatic soliton laser. The adiabatic change of the soliton parameters during evolution in the resonator relaxes the restriction on the pulse energy inherent in traditional soliton lasers. Theoretical analysis is confirmed by extensive numerical modeling.

  20. Space qualified laser sources

    NASA Astrophysics Data System (ADS)

    Heine, Frank; Schwander, Thomas; Lange, Robert; Smutny, Berry

    2006-04-01

    Tesat-Spacecom has developed a series of fiber coupled single frequency lasers for space applications ranging from onboard metrology for space borne FTIR spectrometers to step tunable seed lasers for LIDAR applications. The cw-seed laser developed for the ESA AEOLUS Mission shows a 3* 10 -11 Allen variance from 1 sec time intervals up to 1000 sec. Q-switched lasers with stable beam pointing under space environments are another field of development. One important aspect of a space borne laser system is a reliable fiber coupled laser diode pump source around 808nm. A dedicated development concerning chip design and packaging yielded in a 5*10 6h MTTF (mean time to failure) for the broad area emitters. Qualification and performance test results for the different laser assemblies will be presented and their application in the different space programs.

  1. Lasers in orthodontics

    PubMed Central

    Nalcaci, Ruhi; Cokakoglu, Serpil

    2013-01-01

    Many types of dental lasers are currently available that can be efficiently used for soft and hard tissue applications in the field of orthodontics. For achieving the desired effects in the target tissue, knowledge of laser characteristics such as power, wavelength and timing, is necessary. Laser therapy is advantageous because it often avoids bleeding, can be pain free, is non-invasive and is relatively quick. The high cost is its primary disadvantage. It is very important to take the necessary precautions to prevent possible tissue damage when using laser dental systems. Here, we reviewed the main types and characteristics of laser systems used in dental practice and discuss the applications of lasers in orthodontics, harmful effects and laser system safety. PMID:24966719

  2. Laser Applications in Orthodontics

    PubMed Central

    Heidari, Somayeh; Torkan, Sepideh

    2013-01-01

    A laser is a collimated single wavelength of light which delivers a concentrated source of energy. Soon after different types of lasers were invented, investigators began to examine the effects of different wavelengths of laser energy on oral tissues, routine dental procedures and experimental applications. Orthodontists, along with other specialist in different fields of dentistry, can now benefit from several different advantages that lasers provide during the treatment process, from the beginning of the treatment, when separators are placed, to the time of resin residues removal from the tooth surface at the end of orthodontic treatment. This article outlines some of the most common usages of laser beam in orthodontics and also provides a comparison between laser and other conventional method that were the standard of care prior to the advent of laser in this field. PMID:25606324

  3. Laser aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.; Sun, K.

    1978-01-01

    The concept of using a high energy continuous wave laser beam from a power satellite in geosynchronous orbit to power a commercial air transport during cruise, i.e., a laser-powered airplane, is examined. These studies indicate that a laser powered airplane is a nearly fuelless and pollution-free flight transportation system which is cost competitive with the fuel conservative air transport of the future. This laser flight system involves the integration of a conventional aircraft with a laser power satellite and a set of laser driven turbofans, all of which can be fabricated with existing or projected technology. The dominant cost of the laser-powered flight transportation system is the cost of the power satellite.

  4. Lasers in dentistry

    NASA Astrophysics Data System (ADS)

    Keller, Ulrich

    1991-11-01

    The infrared-laser systems like the Er:YAG, the cw CO2, the Nd:YAG, and the UV- excimer lasers are being investigated for preparing tooth-hard substances. The infrared lasers cause thermal damage to the enamel, the dentin, and the pulp with the exception of the Er:YAG laser. No thermal damage occurs using the Er:YAG laser under practical conditions because of the special thermomechanical ablation process. The ablation rates of the UV- excimer lasers are to low for practical use. Enhancing the ablation efficiency by high- repetition rates causes thermal side effects to occur. Therefore, only the Er:YAG laser has the potential to partially replace the mechanical drill.

  5. Laser Synchrotron Source (LSS)

    NASA Astrophysics Data System (ADS)

    Sprangle, Philip; Ting, Antonio; Esarey, Eric; Fisher, Amon; Mourou, Gerald

    1993-02-01

    The Laser Synchrotron Source (LSS) utilizes a high peak power or high average power laser to generate within a vacuum chamber a laser beam travelling in one direction to interact with an electron beam traveling in an opposite direction in order to generate high-power x-rays. A ring resonator formed by a plurality of mirrors directs the laser beam in a closed loop to impact with the electron beam to produce x-rays. Concave mirrors in the ring resonator focus the laser beam upon the point where the laser beam interacts with the electron beam to intensify the laser energy at that point. When a Radio Frequency Linear Accelerator (RF linac) is used to produce the electron beam, x-rays having a short pulse length are generated. When a betatron is used as an electron source, x-rays having a long pulse length are generated.

  6. Lasers in periodontology.

    PubMed

    Mavrogiannis, M; Thomason, J M; Seymour, R A

    2004-11-01

    Since the development of the ruby laser by Maiman in 1960, lasers have been widely employed in medicine for a number of years. The purpose of this paper is to summarize potential applications for lasers in dentistry, with special regard to periodontology. This article briefly describes clinical applications of lasers and laser safety. Particularly, the use of a diode laser seems to be promising, especially in already compromised transplant patients, who need to be treated with a technique where the operative and post-operative blood loss, post-operative discomfort and the recurrence of drug-induced gingival overgrowth need to be kept to a minimum or eliminated. Therefore, the use of lasers in periodontology may lead to an alteration in present clinical practice and help to establish the best management strategy because, by maintaining periodontal health, the life quality of patients can be improved.

  7. Laser physics and physiology.

    PubMed

    Pierce, L A

    1997-01-01

    Laser light begins when an excited and unstable electron moves from its unstable state back to a more stable state producing energy in the form of a photon. Laser light is coherent which means that the light waves move in phase together in space and time. Laser light is monochromatic which means it is comprised of only one color or wavelength. Laser light is also collimated which means it is perfectly parallel and travels in a single direction with very little divergence. Medical lasers fall in the infrared and visible as well as ultraviolet portion of the electromagnetic spectrum and are available at different wavelengths. The wavelength of each laser partially determines the effect it will have on tissue. A specific wavelength or color can be used to selectively target a specific tissue such as hemoglobin, water, or melanin. Heat is produced by the laser, destroying the targeted tissues.

  8. Lasers in oral surgery

    NASA Astrophysics Data System (ADS)

    Keller, Ulrich; Hibst, Raimund

    1994-12-01

    The indications of lasers in oral surgery are defined by the laser-tissue interaction types. These are mainly thermal effects depending especially on the absorption of laser light in varying biological tissues. In histological sections different laser effects are demonstrated on oral mucosa, bone and cartilage, which have a great influence on wound healing and subsequently on clinical indications of the different wavelengths. On the one hand the good coagulation effect of the Nd:YAG laser is wanted for hemostasis in soft tissue surgery. On the other hand, for the treatment of precancerous dysplasias or neoplasias an effective cutting with a coagulation effect like using the CO2 laser is necessary. However, the excision of benign mucosal lesions as well as performing osteotomies or shaping of cartilage should be undertaken with the Er:YAG laser without greater coagulation and consequently without any delay of wound healing.

  9. Nanofabrication with pulsed lasers.

    PubMed

    Kabashin, Av; Delaporte, Ph; Pereira, A; Grojo, D; Torres, R; Sarnet, Th; Sentis, M

    2010-02-24

    An overview of pulsed laser-assisted methods for nanofabrication, which are currently developed in our Institute (LP3), is presented. The methods compass a variety of possibilities for material nanostructuring offered by laser-matter interactions and imply either the nanostructuring of the laser-illuminated surface itself, as in cases of direct laser ablation or laser plasma-assisted treatment of semiconductors to form light-absorbing and light-emitting nano-architectures, as well as periodic nanoarrays, or laser-assisted production of nanoclusters and their controlled growth in gaseous or liquid medium to form nanostructured films or colloidal nanoparticles. Nanomaterials synthesized by laser-assisted methods have a variety of unique properties, not reproducible by any other route, and are of importance for photovoltaics, optoelectronics, biological sensing, imaging and therapeutics.

  10. Semiconductor nanowire lasers

    NASA Astrophysics Data System (ADS)

    Eaton, Samuel W.; Fu, Anthony; Wong, Andrew B.; Ning, Cun-Zheng; Yang, Peidong

    2016-06-01

    The discovery and continued development of the laser has revolutionized both science and industry. The advent of miniaturized, semiconductor lasers has made this technology an integral part of everyday life. Exciting research continues with a new focus on nanowire lasers because of their great potential in the field of optoelectronics. In this Review, we explore the latest advancements in the development of nanowire lasers and offer our perspective on future improvements and trends. We discuss fundamental material considerations and the latest, most effective materials for nanowire lasers. A discussion of novel cavity designs and amplification methods is followed by some of the latest work on surface plasmon polariton nanowire lasers. Finally, exciting new reports of electrically pumped nanowire lasers with the potential for integrated optoelectronic applications are described.

  11. Laser safety in dentistry

    NASA Astrophysics Data System (ADS)

    Wigdor, Harvey A.

    1997-05-01

    One of the major causes of anxiety in the dental clinic is the dental handpiece. Because dentists wish to provide a method which can replace the drill there has often been a premature use of the laser in dentistry. Various lasers have been introduced into the clinic before research has shown the laser used is of clinical benefit. Any new treatment method must not compromise the health of the patient being treated. Thus a method of evaluating the clinical abilities of dentists and their understanding the limitations of the laser used must be developed. Dentist must be trained in the basic interaction of the laser on oral tissues. The training has to concentrate on the variation of the laser wavelength absorption in the different tissues of the oral cavity. Because of the differences in the optical properties of these tissues great care must be exercised by practitioners using lasers on patients.

  12. ORION laser target diagnostics.

    PubMed

    Bentley, C D; Edwards, R D; Andrew, J E; James, S F; Gardner, M D; Comley, A J; Vaughan, K; Horsfield, C J; Rubery, M S; Rothman, S D; Daykin, S; Masoero, S J; Palmer, J B; Meadowcroft, A L; Williams, B M; Gumbrell, E T; Fyrth, J D; Brown, C R D; Hill, M P; Oades, K; Wright, M J; Hood, B A; Kemshall, P

    2012-10-01

    The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics.

  13. Laser surgery: using the carbon dioxide laser.

    PubMed Central

    Wright, V. C.

    1982-01-01

    In 1917 Einstein theorized tha through an atomic process a unique kind of electromagnetic radiation could be produced by stimulated emission. When such radiation is in the optical or infrared spectrum it is termed laser (light amplification by stimulated emission of radiation) light. A laser, a high-intensity light source, emits a nearly parallel electromagnetic beam of energy at a given wavelength that can be captured by a lens and concentrated in the focal spot. The wavelength determines how the laser will be used. The carbon dioxide laser is now successfully employed for some surgical procedures in gynecology, otorhinolaryngology, neurosurgery, and plastic and general surgery. The CO2 laser beam is directed through the viewing system of an operating microscope or through a hand-held laser component. Its basic action in tissue is thermal vaporization; it causes minimal damage to adjacent tissues. Surgeons require special training in the basic methods and techniques of laser surgery, as well as in the safety standards that must be observed. Images FIG. 5 PMID:7074503

  14. Lasers in space

    NASA Astrophysics Data System (ADS)

    Michaelis, M. M.; Forbes, A.; Bingham, R.; Kellett, B. J.; Mathye, A.

    2008-05-01

    A variety of laser applications in space, past, present, future and far future are reviewed together with the contributions of some of the scientists and engineers involved, especially those that happen to have South African connections. Historically, two of the earliest laser applications in space, were atmospheric LIDAR and lunar ranging. These applications involved atmospheric physicists, several astronauts and many of the staff recruited into the Soviet and North American lunar exploration programmes. There is a strong interest in South Africa in both LIDAR and lunar ranging. Shortly after the birth of the laser (and even just prior) theoretical work on photonic propulsion and space propulsion by laser ablation was initiated by Georgii Marx, Arthur Kantrowitz and Eugen Saenger. Present or near future experimental programs are developing in the following fields: laser ablation propulsion, possibly coupled with rail gun or gas gun propulsion; interplanetary laser transmission; laser altimetry; gravity wave detection by space based Michelson interferometry; the de-orbiting of space debris by high power lasers; atom laser interferometry in space. Far future applications of laser-photonic space-propulsion were also pioneered by Carl Sagan and Robert Forward. They envisaged means of putting Saenger's ideas into practice. Forward also invented a laser based method for manufacturing solid antimatter or SANTIM, well before the ongoing experiments at CERN with anti-hydrogen production and laser-trapping. SANTIM would be an ideal propellant for interstellar missions if it could be manufactured in sufficient quantities. It would be equally useful as a power source for the transmission of information over light year distances. We briefly mention military lasers. Last but not least, we address naturally occurring lasers in space and pose the question: "did the Big Bang lase?"

  15. Laser system using ultra-short laser pulses

    DOEpatents

    Dantus, Marcos; Lozovoy, Vadim V.; Comstock, Matthew

    2009-10-27

    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  16. Photobiomodulation in laser surgery

    NASA Astrophysics Data System (ADS)

    Liu, Timon Cheng-Yi; Rong, Dong-Liang; Huang, Jin; Deng, Xiao-Yuan; Liu, Song-Hao

    2006-01-01

    Laser surgery provides good exposure with clear operating fields and satisfactory preliminary functional results. In contrast to conventional excision, it was found that matrix metalloproteinases and the tissue inhibitors of metalloproteinases -1 mRNA expression is higher, myofibroblasts appeared and disappeared slower in laser excision wounds. It has been suggested that the better anatomical and functional results achieved following laser cordectomy may be explained by the fact that such procedures result in better, more rapid healing processes to recover vocal cord for early glottic tumors and better. In this paper, the role of photobiomodulation in laser surgery will be discussed by the cultured monolayer normal human skin fibroblast model of the photobiomodulation of marginal irradiation of high intensity laser beam, the photobiomodulation related to the irradiated tissue, the biological information model of photobiomodulation and the animal models of laser surgery. Although high intensity laser beam is so intense that it destroys the irradiated cells or tissue, its marginal irradiation intensity is so low that there is photobiomodulation on non-damage cells to modulate the regeneration of partly damaged tissue so that the surgery of laser of different parameters results in different post-surgical recovery. It was concluded that photobiomodulation might play an important role in the long-term effects of laser surgery, which might be used to design laser surgery.

  17. Frequency comb swept lasers.

    PubMed

    Tsai, Tsung-Han; Zhou, Chao; Adler, Desmond C; Fujimoto, James G

    2009-11-09

    We demonstrate a frequency comb (FC) swept laser and a frequency comb Fourier domain mode locked (FC-FDML) laser for applications in optical coherence tomography (OCT). The fiber-based FC swept lasers operate at a sweep rate of 1kHz and 120kHz, respectively over a 135nm tuning range centered at 1310nm with average output powers of 50mW. A 25GHz free spectral range frequency comb filter in the swept lasers causes the lasers to generate a series of well defined frequency steps. The narrow bandwidth (0.015nm) of the frequency comb filter enables a approximately -1.2dB sensitivity roll off over approximately 3mm range, compared to conventional swept source and FDML lasers which have -10dB and -5dB roll offs, respectively. Measurements at very long ranges are possible with minimal sensitivity loss, however reflections from outside the principal measurement range of 0-3mm appear aliased back into the principal range. In addition, the frequency comb output from the lasers are equally spaced in frequency (linear in k-space). The filtered laser output can be used to self-clock the OCT interference signal sampling, enabling direct fast Fourier transformation of the fringe signals, without the need for fringe recalibration procedures. The design and operation principles of FC swept lasers are discussed and designs for short cavity lasers for OCT and interferometric measurement applications are proposed.

  18. Laser treatment in gynecology

    NASA Astrophysics Data System (ADS)

    de Riese, Cornelia

    2004-07-01

    This presentation is designed as a brief overview of laser use in gynecology, for non-medical researchers involved in development of new laser techniques. The literature of the past decade is reviewed. Differences in penetration, absorption, and suitable delivery media for the beams dictate clinical application. The use of CO2 laser in the treatment of uterine cervical intraepithelial lesions is well established and indications as well as techniques have not changed over 30 years. The Cochrane Systematic Review from 2000 suggests no obviously superior technique. CO2 laser ablation of the vagina is also established as a safe treatment modality for VAIN. CO2 laser permits treatment of lesions with excellent cosmetic and functional results. The treatment of heavy menstrual bleeding by destruction of the endometrial lining using various techniques has been the subject of a 2002 Cochran Database Review. Among the compared treatment modalities are newer and modified laser techniques. Conclusion by reviewers is that outcomes and complication profiles of newer techniques compare favorably with the gold standard of endometrial resection. The ELITT diode laser system is one of the new successful additions. CO2 laser is also the dominant laser type used with laparoscopy for ablation of endometriotic implants. Myoma coagulation or myolysis with Nd:Yag laser through the laparoscope or hysteroscope is a conservative treatment option. Even MRI guided percutaneous approaches have been described. No long-term data are available.

  19. Frequency comb swept lasers

    PubMed Central

    Tsai, Tsung-Han; Zhou, Chao; Adler, Desmond C.; Fujimoto, James G.

    2010-01-01

    We demonstrate a frequency comb (FC) swept laser and a frequency comb Fourier domain mode locked (FC-FDML) laser for applications in optical coherence tomography (OCT). The fiber-based FC swept lasers operate at a sweep rate of 1kHz and 120kHz, respectively over a 135nm tuning range centered at 1310nm with average output powers of 50mW. A 25GHz free spectral range frequency comb filter in the swept lasers causes the lasers to generate a series of well defined frequency steps. The narrow bandwidth (0.015nm) of the frequency comb filter enables a ~−1.2dB sensitivity roll off over ~3mm range, compared to conventional swept source and FDML lasers which have −10dB and −5dB roll offs, respectively. Measurements at very long ranges are possible with minimal sensitivity loss, however reflections from outside the principal measurement range of 0–3mm appear aliased back into the principal range. In addition, the frequency comb output from the lasers are equally spaced in frequency (linear in k-space). The filtered laser output can be used to self-clock the OCT interference signal sampling, enabling direct fast Fourier transformation of the fringe signals, without the need for fringe recalibration procedures. The design and operation principles of FC swept lasers are discussed and designs for short cavity lasers for OCT and interferometric measurement applications are proposed. PMID:19997365

  20. Lasers in medicine

    NASA Astrophysics Data System (ADS)

    Peng, Qian; Juzeniene, Asta; Chen, Jiyao; Svaasand, Lars O.; Warloe, Trond; Giercksky, Karl-Erik; Moan, Johan

    2008-05-01

    It is hard to imagine that a narrow, one-way, coherent, moving, amplified beam of light fired by excited atoms is powerful enough to slice through steel. In 1917, Albert Einstein speculated that under certain conditions atoms could absorb light and be stimulated to shed their borrowed energy. Charles Townes coined the term laser (light amplification by stimulated emission of radiation) in 1951. Theodore Maiman investigated the glare of a flash lamp in a rod of synthetic ruby, creating the first human-made laser in 1960. The laser involves exciting atoms and passing them through a medium such as crystal, gas or liquid. As the cascade of photon energy sweeps through the medium, bouncing off mirrors, it is reflected back and forth, and gains energy to produce a high wattage beam of light. Although lasers are today used by a large variety of professions, one of the most meaningful applications of laser technology has been through its use in medicine. Being faster and less invasive with a high precision, lasers have penetrated into most medical disciplines during the last half century including dermatology, ophthalmology, dentistry, otolaryngology, gastroenterology, urology, gynaecology, cardiology, neurosurgery and orthopaedics. In many ways the laser has revolutionized the diagnosis and treatment of a disease. As a surgical tool the laser is capable of three basic functions. When focused on a point it can cauterize deeply as it cuts, reducing the surgical trauma caused by a knife. It can vaporize the surface of a tissue. Or, through optical fibres, it can permit a doctor to see inside the body. Lasers have also become an indispensable tool in biological applications from high-resolution microscopy to subcellular nanosurgery. Indeed, medical lasers are a prime example of how the movement of an idea can truly change the medical world. This review will survey various applications of lasers in medicine including four major categories: types of lasers, laser

  1. Bibliography of Soviet Laser Developments, Number 88, March - April 1987.

    DTIC Science & Technology

    1988-03-03

    Effects ; Laser Communications,’ Laser Beam Propagation; Adaptive Optics,’ Laser Computer Technology; Holography,; Laser Chemical Effects ; Laser...Parameters, Laser Measuremen Applications; Laser4Excited Optical Effects , Laser Spectroscopy, Laser Be :Target Interaction; Laser Plasma , 20. ABSTRACT This...theoretical aspects of advanced lasers; and general laser theory. Laser applications are listed under biological effects ; communications systems; beam

  2. Laser Safety Inspection Criteria

    SciTech Connect

    Barat, K

    2005-02-11

    A responsibility of the Laser Safety Officer (LSO) is to perform laser safety audits. The American National Standard Z136.1 Safe use of Lasers references this requirement in several sections: (1) Section 1.3.2 LSO Specific Responsibilities states under Hazard Evaluation, ''The LSO shall be responsible for hazards evaluation of laser work areas''; (2) Section 1.3.2.8, Safety Features Audits, ''The LSO shall ensure that the safety features of the laser installation facilities and laser equipment are audited periodically to assure proper operation''; and (3) Appendix D, under Survey and Inspections, it states, ''the LSO will survey by inspection, as considered necessary, all areas where laser equipment is used''. Therefore, for facilities using Class 3B and or Class 4 lasers, audits for laser safety compliance are expected to be conducted. The composition, frequency and rigueur of that inspection/audit rests in the hands of the LSO. A common practice for institutions is to develop laser audit checklists or survey forms. In many institutions, a sole Laser Safety Officer (LSO) or a number of Deputy LSO's perform these audits. For that matter, there are institutions that request users to perform a self-assessment audit. Many items on the common audit list and the associated findings are subjective because they are based on the experience and interest of the LSO or auditor in particular items on the checklist. Beam block usage is an example; to one set of eyes a particular arrangement might be completely adequate, while to another the installation may be inadequate. In order to provide more consistency, the National Ignition Facility Directorate at Lawrence Livermore National Laboratory (NIF-LLNL) has established criteria for a number of items found on the typical laser safety audit form. These criteria are distributed to laser users, and they serve two broad purposes: first, it gives the user an expectation of what will be reviewed by an auditor, and second, it is an

  3. Nanofabrication with Pulsed Lasers

    PubMed Central

    2010-01-01

    An overview of pulsed laser-assisted methods for nanofabrication, which are currently developed in our Institute (LP3), is presented. The methods compass a variety of possibilities for material nanostructuring offered by laser–matter interactions and imply either the nanostructuring of the laser-illuminated surface itself, as in cases of direct laser ablation or laser plasma-assisted treatment of semiconductors to form light-absorbing and light-emitting nano-architectures, as well as periodic nanoarrays, or laser-assisted production of nanoclusters and their controlled growth in gaseous or liquid medium to form nanostructured films or colloidal nanoparticles. Nanomaterials synthesized by laser-assisted methods have a variety of unique properties, not reproducible by any other route, and are of importance for photovoltaics, optoelectronics, biological sensing, imaging and therapeutics. PMID:20672069

  4. Photonic Crystal Microchip Laser.

    PubMed

    Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis

    2016-09-29

    The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M(2) reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the "photonic crystal microchip laser", a very compact and efficient light source emitting high spatial quality high brightness radiation.

  5. Photonic crystal microchip laser

    NASA Astrophysics Data System (ADS)

    Gailevicius, D.; Koliadenko, V.; Purlys, V.; Peckus, M.; Taranenko, V.; Staliunas, K.

    2017-02-01

    The microchip lasers, being sources of coherent light, suffer from one serious drawback: low spatial quality of the beam, strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here we propose that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. We experimentally show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by factor of 2, and thus increase the brightness of radiation by a factor of 4. This comprises a new kind of laser, the "photonic crystal microchip laser", a very compact and efficient light source emitting high spatial high brightness radiation.

  6. Synthetic laser medium

    DOEpatents

    Stokowski, S.E.

    1987-10-20

    A laser medium is particularly useful in high average power solid state lasers. The laser medium includes a chromium dopant and preferably neodymium ions as codopant, and is primarily a gadolinium scandium gallium garnet, or an analog thereof. Divalent cations inhibit spiral morphology as large boules from which the laser medium is derived are grown, and a source of ions convertible between a trivalent state and a tetravalent state at a low ionization energy are in the laser medium to reduce an absorption coefficient at about one micron wavelength otherwise caused by the divalent cations. These divalent cations and convertible ions are dispersed in the laser medium. Preferred convertible ions are provided from titanium or cerium sources.

  7. Synthetic laser medium

    DOEpatents

    Stokowski, Stanley E.

    1989-01-01

    A laser medium is particularly useful in high average power solid state lasers. The laser medium includes a chormium dopant and preferably neodymium ions as codopant, and is primarily a gadolinium scandium gallium garnet, or an analog thereof. Divalent cations inhibit spiral morphology as large boules from which the laser medium is derived are grown, and a source of ions convertible between a trivalent state and a tetravalent state at a low ionization energy are in the laser medium to reduce an absorption coefficient at about one micron wavelength otherwise caused by the divalent cations. These divalent cations and convertible ions are dispersed in the laser medium. Preferred convertible ions are provided from titanium or cerium sources.

  8. Lasers in periodontics

    PubMed Central

    Elavarasu, Sugumari; Naveen, Devisree; Thangavelu, Arthiie

    2012-01-01

    Laser is one of the most captivating technologies in dental practice since Theodore Maiman in 1960 invented the ruby laser. Lasers in dentistry have revolutionized several areas of treatment in the last three and a half decades of the 20th century. Introduced as an alternative to mechanical cutting device, laser has now become an instrument of choice in many dental applications. Evidence suggests its use in initial periodontal therapy, surgery, and more recently, its utility in salvaging implant opens up a wide range of applications. More research with better designs are a necessity before lasers can become a part of dental armamentarium. This paper gives an insight to laser in periodontics. PMID:23066266

  9. Laser plasmadynamic energy conversion

    NASA Technical Reports Server (NTRS)

    Shimada, K.

    1976-01-01

    The generation of electrons ions by interacting an intense laser beam with cesium vapor is considered. Theoretical calculation shows that the conversion efficiency is as high as 40 percent if the entire photon energy is utilized in ionizing the cesium vapor that is generated initially by the incoming laser beam. An output voltage is expected to be generated across two electrodes, one of which is the liquid cesium, by keeping the other electrode at a different work function. Evaluation of the laser plasmadynamic (LPD) converter was performed using pulsed ruby and Nd-glass lasers. Although the results obtained to date indicate an efficiency smaller than that of theoretical predictions, an unoptimized LPD converter did demonstrate the capability of converting laser energy at large power levels. The limitations in the performance may by due to converter geometry, the types of lasers used, and other limitations inherent to the cesium plasma.

  10. Pulsed excimer laser processing

    NASA Astrophysics Data System (ADS)

    Wong, D.

    1985-06-01

    The status of pulsed excimer laser processing of PV cells is presented. The cost effective feasibility of fabricating high efficiency solar cells on Czochralski wafers using a pulsed excimer laser for junction formation, surface passivation, and front metallization. Laser annealing results were promising with the best AR coated cell having an efficiency of 16.1%. Better results would be expected with larger laser spot size because there was some degradation in open circuit voltage caused by laser spot overlap and edge effects. Surface heating and photolytic decomposition by the laser was used to deposit tungsten from the reaction of tungsten hexafluoride and hydrogen. The line widths were 5 to 10 mils, and the depositions passed the tape adhesion test. Thinner lines are practical using an optimized optical system.

  11. Pulsed excimer laser processing

    NASA Technical Reports Server (NTRS)

    Wong, D.

    1985-01-01

    The status of pulsed excimer laser processing of PV cells is presented. The cost effective feasibility of fabricating high efficiency solar cells on Czochralski wafers using a pulsed excimer laser for junction formation, surface passivation, and front metallization. Laser annealing results were promising with the best AR coated cell having an efficiency of 16.1%. Better results would be expected with larger laser spot size because there was some degradation in open circuit voltage caused by laser spot overlap and edge effects. Surface heating and photolytic decomposition by the laser was used to deposit tungsten from the reaction of tungsten hexafluoride and hydrogen. The line widths were 5 to 10 mils, and the depositions passed the tape adhesion test. Thinner lines are practical using an optimized optical system.

  12. Laser materials production

    NASA Astrophysics Data System (ADS)

    Gianinoni, I.; Musci, M.

    1985-09-01

    The characteristics and the perspectives of the new photochemical laser techniques for materials production will be briefly analysed and some recent experimental results both on large area deposition of thin films and on synthesis of powders will be reported. As an example of an IR laser process, the cw CO 2 laser-induced deposition of hydrogenated amorphous silicon will be described in some detail. The results of some UV experiments for semiconductor, metal and insulating film depositions will also be discussed. The features of the process for laser-driven synthesis of powders and the characteristics of the produced particles will be evidenced, and some of their technological applications will be outlined. The requirements of the laser sources suitable for this kind of applications are in general the same as in gas-phase laser chemistry, however it will be pointed out how some parameters are more significant for this specific use.

  13. Laser rocket system analysis

    NASA Technical Reports Server (NTRS)

    Jones, W. S.; Forsyth, J. B.; Skratt, J. P.

    1979-01-01

    The laser rocket systems investigated in this study were for orbital transportation using space-based, ground-based and airborne laser transmitters. The propulsion unit of these systems utilizes a continuous wave (CW) laser beam focused into a thrust chamber which initiates a plasma in the hydrogen propellant, thus heating the propellant and providing thrust through a suitably designed nozzle and expansion skirt. The specific impulse is limited only by the ability to adequately cool the thruster and the amount of laser energy entering the engine. The results of the study showed that, with advanced technology, laser rocket systems with either a space- or ground-based laser transmitter could reduce the national budget allocated to space transportation by 10 to 345 billion dollars over a 10-year life cycle when compared to advanced chemical propulsion systems (LO2-LH2) of equal capability. The variation in savings depends upon the projected mission model.

  14. Holosteric Nd : YAG lasers

    NASA Astrophysics Data System (ADS)

    Norrie, Callum

    A miniature Nd:YAG laser that was transversely pumped by a quasi-cw laser-diode array has been designed and constructed. This laser was injection seeded by a continuous wave single-frequency Nd:YAG laser that was also pumped by a laser- diode array. This was the first reported holosteric, or all-solid-state, laser that was capable of generating single frequency pulses in a high quality single transverse mode beam which it achieved at peak powers up to 7 kW. Two different types of laser-diode array were used in this work, and both have been characterised with respect to their use as pump sources for solid-state lasers. A fibre-coupled type SDL-2430-H2 laser-diode array, which emitted 100 mW from the end of a 100 mum core diameter fibre at the Nd:YAG absorption wavelength of 809 nm, was used to longitudinally pump a continuous wave Nd:YAG laser. Spatial hole-burning encouraged this laser to operate on several longitudinal modes, with an output power of up to 31 mW. With the addition of an etalon and a Brewster angled plate to the cavity of this laser, single longiuidinal mode operation was achieved at an output power level of 10 mW. The frequency from this laser was stabilised against thermal drift by phase sensitive locking to the resonance of an external reference cavity. The pump source for the transversely pumped Nd:YAG laser was an SDL-922-J quasi-cw laser-diode bar, which emitted from its 1 cm wide aperture pulses of 200 mus duration with energies up to 5 mJ at reperition rates between 10 - 100 pps. The characteristics of this laser-bar that were measured include a frequency chirp of 5 nm through the pulse, which was found to have a significant effect on the pumping of the Nd:YAG medium. An analysis of the pump-rate distribution throughout the Nd:YAG laser-rod was undertaken with reference to the transverse mode structure of this laser. This was used as the basis of a full rate-equation-based model of the transversely pumped laser. Fundamental transverse mode

  15. Micro-laser

    DOEpatents

    Hutchinson, Donald P.; Richards, Roger K.

    2003-07-22

    A micro-laser is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide and at least one amplifying medium in the waveguide. PBG features are positioned between the first and second subwavelength resonant gratings and allow introduction of amplifying mediums into the highly resonant guided micro-laser microcavity. The micro-laser may be positioned on a die of a bulk substrate material with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a micro-laser is disclosed. A method for tuning the micro-laser is also disclosed. The micro-laser may be used as an optical regenerator, or a light source for data transfer or for optical computing.

  16. Laser/tissue interaction.

    PubMed

    Dederich, D N

    1991-01-01

    When laser light impinges on tissue, it can reflect, scatter, be absorbed, or transmit to the surrounding tissue. Absorption controls to a great degree the extent to which reflection, scattering and transmission occur, and wavelength is the primary determinant of absorption. The CO2 laser is consistently absorbed by most materials and tissues and the Nd-YAG laser wavelength is preferentially absorbed in pigmented tissues. The factors which determine the initial tissue effect include the laser wavelength, laser power, laser waveform, tissue optical properties, and tissue thermal properties. There are almost an infinite number of combinations of these factors possible, many of which would result in unacceptable damage to the tissues. This underscores the need to thoroughly test any particular combination of these factors on the conceptual, in-vitro, and in-vivo level before a treatment is offered.

  17. Laser radar in robotics

    SciTech Connect

    Carmer, D.C.; Peterson, L.M.

    1996-02-01

    In this paper the authors describe the basic operating principles of laser radar sensors and the typical algorithms used to process laser radar imagery for robotic applications. The authors review 12 laser radar sensors to illustrate the variety of systems that have been applied to robotic applications wherein information extracted from the laser radar data is used to automatically control a mechanism or process. Next, they describe selected robotic applications in seven areas: autonomous vehicle navigation, walking machine foot placement, automated service vehicles, manufacturing and inspection, automotive, military, and agriculture. They conclude with a discussion of the status of laser radar technology and suggest trends seen in the application of laser radar sensors to robotics. Many new applications are expected as the maturity level progresses and system costs are reduced.

  18. Lasers and Optics

    DTIC Science & Technology

    2013-03-05

    Develop in-house Quantum Cascade Laser technology at 4-5µm wavelength range – Generate high power from broad-area QCL devices – Explore novel novel...schemes to produce high brightness – Advance beam-combining strategies in QCLs – Transition high brightness QCL technology to AF and DoD users...DISTRIBUTION A: Approved for public release; distribution is unlimited. 22 • Quantum Cascade Laser ( QCL ) technology can produce compact laser sources

  19. Portable Laser Laboratory

    SciTech Connect

    Weir, J.T.

    1994-07-01

    A Portable Laser Laboratory (PLL) is being designed and built for the CALIOPE Program tests which will begin in October of 1994. The PLL is designed to give maximum flexibility for evolving laser experiments and can be readily moved by loading it onto a standard truck trailer. The internal configuration for the October experiments will support a two line DIAL system running in the mid-IR. Brief descriptions of the laser and detection systems are included.

  20. Laser In Veterinary Medicine

    NASA Astrophysics Data System (ADS)

    Newman, Carlton; Jaggar, David H.

    1982-12-01

    Lasers have been used for some time now on animals for experimental purposes prior to their use in human medical and surgical fields. However the use of lasers in veterinary medicine and surgery per se is a recent development. We describe the application of high and low intensity laser technology in a general overview of the current uses, some limitations to its use and future needs for future inquiry and development.

  1. Polarization feedback laser stabilization

    DOEpatents

    Esherick, P.; Owyoung, A.

    1987-09-28

    A system for locking two Nd:YAG laser oscillators includes an optical path for feeding the output of one laser into the other with different polarizations. Elliptical polarization is incorporated into the optical path so that the change in polarization that occurs when the frequencies coincide may be detected to provide a feedback signal to control one laser relative to the other. 4 figs.

  2. Precision laser aiming system

    DOEpatents

    Ahrens, Brandon R.; Todd, Steven N.

    2009-04-28

    A precision laser aiming system comprises a disrupter tool, a reflector, and a laser fixture. The disrupter tool, the reflector and the laser fixture are configurable for iterative alignment and aiming toward an explosive device threat. The invention enables a disrupter to be quickly and accurately set up, aligned, and aimed in order to render safe or to disrupt a target from a standoff position.

  3. Ultraviolet Polariton Laser

    DTIC Science & Technology

    2015-09-17

    Ultraviolet Polariton Laser Significant progress was achieved in the epitaxy of deep UV AlN/ AlGaN Bragg mirrors and microcavity structures paving...the way to the successful fabrication of vertical cavity emitting laser structures and polariton lasers. For the first time DBRs providing sufficient...high reflectivity for polariton emission were demonstrated. Thanks to a developed strain balanced Al0.85Ga0.15N template, the critical thickness

  4. Laser cutting plastic materials

    SciTech Connect

    Van Cleave, R.A.

    1980-08-01

    A 1000-watt CO/sub 2/ laser has been demonstrated as a reliable production machine tool for cutting of plastics, high strength reinforced composites, and other nonmetals. More than 40 different plastics have been laser cut, and the results are tabulated. Applications for laser cutting described include fiberglass-reinforced laminates, Kevlar/epoxy composites, fiberglass-reinforced phenolics, nylon/epoxy laminates, ceramics, and disposable tooling made from acrylic.

  5. Pumped up Lasers

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Cutting Edge Optronics released the first of potentially three products to result from an SBIR contract with Goddard Space Flight Center. The first commercial result is the WhisperMiniSlab, a diode pump for high performance laser systems. The slab uses a zig-zag path through the laser crystal which eliminates the need for thermal lensing. The result is smaller lasers with better beam quality for use in medical and industrial applications.

  6. Dental laser technology.

    PubMed

    Fasbinder, Dennis J

    2008-10-01

    Dental technology is rapidly affecting the treatment options available to patients. Dental lasers are an innovative technology for both hard- and soft-tissue treatment applications. The ability to recontour soft tissues efficiently and predictably with immediate hemostatsis and minimal postoperative sequelae is of value to both the dentist and the patient. This article reviews the principles of dental lasers, criteria to consider when selecting a dental laser, and some of their clinical applications.

  7. Excimer laser chemical problems

    SciTech Connect

    Tennant, R.; Peterson, N.

    1982-01-01

    Techniques need to be developed to maintain XeF and XeCl laser performance over long periods of time without degradation resulting from chemical processes occurring within the laser. The dominant chemical issues include optical damage, corrosions of laser materials, gas contamination, and control of halogen concentration. Each of these issues are discussed and summarized. The methods of minimizing or controlling the chemical processes involved are presented.

  8. Rare earth lasers

    SciTech Connect

    Weber, M.J.

    1985-01-01

    In this brief survey, some of the key spectroscopic properties of rare earths are reviewed that account for their versatility, examine recent research trends and developments, and comment upon future projects for rare earth lasers. For gaseous and liquid lasers, other elements and molecules have thus far demonstrated lasing properties more attractive than those available using rare earths. Therefore, remarks shall be limited to solid state lasers.

  9. Laser Cooling of Solids

    DTIC Science & Technology

    2009-01-01

    journal.org) Schematic of an optical refrigeration system. Pump light is efficiently generated by a semicon- ductor diode laser. The laser light en- ters...efficiency of light emitting diodes (LEDs). Various methods have been devised to remedy this prob- lem for LEDs but not all are applicable to laser...cooling: light quanta in the red tail of the absorption spectrum are absorbed from a monochro- matic source followed by spontaneous emission of more

  10. Thallium Mercury Laser Development

    DTIC Science & Technology

    1981-01-01

    THALLIUM MERCURY LASER DEVELOPMENT C. S. Liu and D. W. Feldman FINAL REPORT (PHASE III) (Period between Feb. 1, 1980 and Jan. 31, 1981) 0 Contract No...Pittsburgh, Pennsylvania 15235 Approved for public release;IDistribution Unlimited 1/i;THALLIUM MERCURY LASER DEVELOPMENT * , , IS C. S./Liu tRD. W /eldman...9 ’ t4 THALLIUM MERCURY LASER DEVELOPMENT C. S. Liu and D. W. Feldman Westinghouse R&D Center Pittsburgh, Pennsylvania 15235 1

  11. Portable laser laboratory

    NASA Astrophysics Data System (ADS)

    Weir, J. T.

    1994-07-01

    A Portable Laser Laboratory (PLL) is being designed and built for the CALIOPE Program tests which will begin in October of 1994. The PLL is designed to give maximum flexibility for evolving laser experiments and can be readily moved by loading it onto a standard truck trailer. The internal configuration for the October experiments will support a two line DIAL system running in the mid-IR. Brief descriptions of the laser and detection systems are included.

  12. Etalon laser diode

    SciTech Connect

    Allen, L.B.; Koenig, H.G.; Rice, R.R.

    1981-08-18

    A laser diode is disclosed that is suitable for integrated and fiber optic applications requiring single transverse and single longitudinal mode operation. The single transverse mode is provided by making a gallium arsenide double heterostructural laser diode with a narrow stripe width and a relatively long length. The single longitudinal mode operation is provided by cracking the diode transverse to the stripe at one or more locations to form internal etalons in the laser cavity.

  13. Laser aircraft. [using kerosene

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.; Sun, K.; Jones, W. S.

    1979-01-01

    The concept of a laser-powered aircraft is discussed. Laser flight would be completely compatible with existing airports and air-traffic control, with the airplane using kerosene only power, up to a cruising altitude of 9 km where the laser satellite would lock on and beam laser energy to it. Two major components make up the laser turbofan, a heat exchanger for converting laser radiation into thermal energy, and conventional turbomachinery. The laser power satellite would put out 42 Mw using a solar-powered thermal engine to generate electrical power for the closed-cycle supersonic electric discharge CO laser, whose radiators, heat exchangers, supersonic diffuser, and ducting will amount to 85% of the total subsystem mass. Relay satellites will be used to intercept the beam from the laser satellite, correct outgoing beam aberrations, and direct the beam to the next target. A 300-airplane fleet with transcontinental range is projected to save enough kerosene to equal the energy content of the entire system, including power and relay satellites, in one year.

  14. The Texas Petawatt Laser

    NASA Astrophysics Data System (ADS)

    Martinez, Mikael; Gaul, Erhard; Ditmire, Todd; Douglas, Skyler; Gorski, Dan; Henderson, Watson; Blakeney, Joel; Hammond, Doug; Gerity, Michael; Caird, John; Erlandson, Al; Iovanovic, Igor; Ebbers, Chris; Molander, Bill

    2005-12-01

    We report on the design and construction of the Texas Petawatt Laser. This research facility will consist of two, synchronized laser systems that will be used for a wide variety of high intensity laser and high energy density science experiments. The first laser is a novel, high energy (200 J), short pulse (150 fs) petawatt-class laser that is based on hybrid, broadband optical parametric chirped pulse amplification (OPCPA) and mixed silicate and phosphate Nd:glass amplification. The second laser will provide 500 J at 527 nm (>1 kJ @1053 nm) with pulse widths selectable from 2-20 ns. Design and construction began in early 2003 and is scheduled to complete in 2007. In this report we will briefly discuss some of the important applications of this system, present the design of the laser and review some of the technology used to achieve pulse durations approaching 100 fs. Currently, the facility has been renovated for laser construction. The oscillator and stretcher are operational with the first stage of gain measured at 2×106. Output energies of 500μJ have been achieved with good near field image quality. Delivery has been taken for Nova components that will compose the main amplifier chain of the laser system.

  15. Fusion reactor pumped laser

    DOEpatents

    Jassby, Daniel L.

    1988-01-01

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.

  16. Balloon borne laser transceiver

    NASA Technical Reports Server (NTRS)

    Wischnia, H. F.

    1974-01-01

    A balloon borne laser transceiver (BBLT) which was carried to an altitude of 80,000 feet, was used to measure the turbulence effect of the atmosphere in daylight on laser beams going both up and down through the intervening atmosphere. The principles of operation of the BBLT are discussed. The instrument must acquire an up-going argon laser beam, lock onto it, and transmit back to the ground observatory a helium-neon laser beam. Questions of system operation for the down-going and the up-going beam are considered along with a servo system analysis.

  17. Laser treatment of tattoos.

    PubMed

    Kilmer, S L

    1997-07-01

    All three Q-switched laser systems can effectively remove most tattoos with minimal scarring or other adverse sequelae. Despite advances in laser technology, all tattoos cannot be completely eliminated, and several wavelengths remain necessary to optimally treat multicolored tattoos. The major advantage of Q-switched laser irradiation to effect tattoo removal is the low risk of scarring associated with treatment. Limitations include the need for multiple treatment sessions, minimal to incomplete responses in some cases, and the possibility of pigmentary and textural changes. Research continues in an effort to perfect laser removal of tattoos.

  18. Deep space laser communications

    NASA Astrophysics Data System (ADS)

    Biswas, Abhijit; Kovalik, Joseph M.; Srinivasan, Meera; Shaw, Matthew; Piazzolla, Sabino; Wright, Malcolm W.; Farr, William H.

    2016-03-01

    A number of laser communication link demonstrations from near Earth distances extending out to lunar ranges have been remarkably successful, demonstrating the augmented channel capacity that is accessible with the use of lasers for communications. The next hurdle on the path to extending laser communication and its benefits throughout the solar system and beyond is to demonstrate deep-space laser communication links. In this paper, concepts and technology development being advanced at the Jet Propulsion Laboratory (JPL) in order to enable deep-space link demonstrations to ranges of approximately 3 AU in the next decade, will be discussed.

  19. Pulsed Laser Propulsion.

    DTIC Science & Technology

    1978-10-01

    afforded by a pulsed laser propulsion system over a CW laser propulsion system are 1) simplicity in engine design as a result of permitting the laser...to engineering and weight considerations. The lower boundary of the corridor is set by propellant feed considerations. To the right of this boundary...example, a OOJ -5 per pulse laser operating at 7 x 10 sec between pulses (14, 285 pps) is capable of powering a 30 lb (135 Nt)thrust rocket engine that has

  20. Diode Pumped Fiber Laser

    DTIC Science & Technology

    1983-07-01

    d AFWU.-TR-83-niO 00 H CO CO iH <^ DIODE PUMPED FIBER LASER Edward L. Glnzton Laboratory Stanford University Stanford, California 94305...RECIPIf NT’S CATALOG NUMBER 4. TITLE Cand Sub(i(/e; DIODE PUMPED FIBER LASER 5 TYPE OF REPORT & PERIOD COVERED Interim Report...external optical cavity made of two miniature flat mirrors, and end- pumped either at 514.5 nm (argon-ion laser ) or near 818 nm ( laser diode ). Coherent

  1. Optofluidic random laser

    NASA Astrophysics Data System (ADS)

    Shivakiran Bhaktha, B. N.; Bachelard, Nicolas; Noblin, Xavier; Sebbah, Patrick

    2012-10-01

    Random lasing is reported in a dye-circulated structured polymeric microfluidic channel. The role of disorder, which results from limited accuracy of photolithographic process, is demonstrated by the variation of the emission spectrum with local-pump position and by the extreme sensitivity to a local perturbation of the structure. Thresholds comparable to those of conventional microfluidic lasers are achieved, without the hurdle of state-of-the-art cavity fabrication. Potential applications of optofluidic random lasers for on-chip sensors are discussed. Introduction of random lasers in the field of optofluidics is a promising alternative to on-chip laser integration with light and fluidic functionalities.

  2. Trends in laser micromachining

    NASA Astrophysics Data System (ADS)

    Gaebler, Frank; van Nunen, Joris; Held, Andrew

    2016-03-01

    Laser Micromachining is well established in industry. Depending on the application lasers with pulse length from μseconds to femtoseconds and wavelengths from 1064nm and its harmonics up to 5μm or 10.6μm are used. Ultrafast laser machining using pulses with pico or femtosecond duration pulses is gaining traction, as it offers very precise processing of materials with low thermal impact. Large-scale industrial ultrafast laser applications show that the market can be divided into various sub segments. One set of applications demand low power around 10W, compact footprint and are extremely sensitive to the laser price whilst still demanding 10ps or shorter laser pulses. A second set of applications are very power hungry and only become economically feasible for large scale deployments at power levels in the 100+W class. There is also a growing demand for applications requiring fs-laser pulses. In our presentation we would like to describe these sub segments by using selected applications from the automotive and electronics industry e.g. drilling of gas/diesel injection nozzles, dicing of LED substrates. We close the presentation with an outlook to micromachining applications e.g. glass cutting and foil processing with unique new CO lasers emitting 5μm laser wavelength.

  3. SYMMETRICAL LASER CRYSTALS.

    DTIC Science & Technology

    CRYSTAL GROWTH , SYMMETRY(CRYSTALLOGRAPHY), LASERS, SYNTHESIS, FERROELECTRIC CRYSTALS , FLUORESCENCE, IMPURITIES, BARIUM COMPOUNDS, ZIRCONATES...STRONTIUM COMPOUNDS, TITANATES, STANNATES, SAMARIUM, MANGANESE, REFRACTORY MATERIALS, OXIDES, SINGLE CRYSTALS .

  4. Laser Surface Treatment

    NASA Astrophysics Data System (ADS)

    Gnanamuthu, D. S.

    1980-10-01

    Experimental procedures and current state-of-the-art are presented for laser surface treating methods such as alloying, cladding, grain refining, and transformation hardening using a cw CO2 laser. Microstructural and x-ray analyses of the treated surfaces indicate that a laser beam can locally enhance surface properties. Laser alloying offers the possibility to selectively modify a low cost workpiece surface so that it has the desired high quality surface properties characteristic of high performance alloys. Laser cladding offers feasibility to apply high melting cladding alloys on low melting workpieces, to reduce the amount of dilution of cladding alloy with the workpieces, and the potential to apply dense ceramic claddings to metallic workpieces. Laser grain refining offers potential to either minimize or eliminate surface defects such as inclusions, intermetallic compounds, and pores, and to provide a refined grain structure. Laser transformation hardening provides the treated workpieces with a hard martensitic surface that has compressive stresses for enhanced fatigue life; in addition, reduction in wear rate of treated surfaces is achieved. This experimental study indicates that the use of lasers for surface treatment has several limitations. Further studies will provide better understanding for maximum utilization of laser surface treating processes.

  5. Gigashot Optical Laser Demonstrator

    SciTech Connect

    Deri, R. J.

    2015-10-13

    The Gigashot Optical Laser Demonstrator (GOLD) project has demonstrated a novel optical amplifier for high energy pulsed lasers operating at high repetition rates. The amplifier stores enough pump energy to support >10 J of laser output, and employs conduction cooling for thermal management to avoid the need for expensive and bulky high-pressure helium subsystems. A prototype amplifier was fabricated, pumped with diode light at 885 nm, and characterized. Experimental results show that the amplifier provides sufficient small-signal gain and sufficiently low wavefront and birefringence impairments to prove useful in laser systems, at repetition rates up to 60 Hz.

  6. A quantum laser pointer.

    PubMed

    Treps, Nicolas; Grosse, Nicolai; Bowen, Warwick P; Fabre, Claude; Bachor, Hans-A; Lam, Ping Koy

    2003-08-15

    The measurement sensitivity of the pointing direction of a laser beam is ultimately limited by the quantum nature of light. To reduce this limit, we have experimentally produced a quantum laser pointer, a beam of light whose direction is measured with a precision greater than that possible for a usual laser beam. The laser pointer is generated by combining three different beams in three orthogonal transverse modes, two of them in a squeezed-vacuum state and one in an intense coherent field. The result provides a demonstration of multichannel spatial squeezing, along with its application to the improvement of beam positioning sensitivity and, more generally, to imaging.

  7. Laser welding in space

    NASA Technical Reports Server (NTRS)

    Kaukler, W. F.; Workman, G. L.

    1991-01-01

    Autogenous welds in 304 stainless steel were performed by Nd-YAG laser heating in a simulated space environment. Simulation consists of welding on the NASA KC-135 aircraft to produce the microgravity and by containing the specimen in a vacuum chamber. Experimental results show that the microgravity welds are stronger, harder in the fusion zone, have deeper penetration and have a rougher surface rippling of the weld pool than one-g welds. To perform laser welding in space, a solar-pumped laser concept that significantly increases the laser conversion efficiency and makes welding viable despite the limited power availability of spacecraft is proposed.

  8. Laser eye protection

    NASA Astrophysics Data System (ADS)

    Allen, Ralph G.; Labo, Jack A.; Mayo, Michael W.

    1990-07-01

    Laser applications have proliferated in recent years and as to be expected their presence is no longer confined to the laboratory or places where access to their radiation can be easily controlled. One obvious application where this is so is in military operations where various devices such as laser range finders target designators and secure communications equipment elevate the risk of exposure specifically eye exposure to unacceptable levels. Although the need for eye protection in the laboratory and other controlled areas has been appreciated since the invention of the laser the use of lasers in circumstances where safety or the risk of temporary loss of vision which can not always be ensured by administrative procedures has made adequate eye protection essential. It is the critical nature of many military operations that has driven the search for eye protection against both nuclear and laser radiation. At the same time the requirement to maintain useful vision during irradiation as well as advances in laser technology have complicated the problem enormously. Pertinent aspects of the problem such as laser characteristics- -pulse width repetition rate laser wavelength tunability or agility as well as laser power or energy have been placed in perspective. In addition possible effects on vision for various exposures have been estimated as have the characteristics required of eye protective devices. Various classes of devices are discussed and advantages and disadvantages noted. 1.

  9. Liquid-crystal lasers

    NASA Astrophysics Data System (ADS)

    Coles, Harry; Morris, Stephen

    2010-10-01

    Liquid-crystal lasers are a burgeoning area in the field of soft-matter photonics that may herald a new era of ultrathin, highly versatile laser sources. Such lasers encompass a multitude of remarkable features, including wideband tunability, large coherence area and, in some cases, multidirectional emission. They have the potential to combine large output powers with miniature cavity dimensions - two properties that have traditionally been incompatible. Their potential applications are diverse, ranging from miniature medical diagnostic tools to large-area holographic laser displays. Here we discuss the scientific origins of this technology and give a brief synopsis of the cutting-edge research currently being carried out worldwide.

  10. Spaceborne laser radar.

    NASA Technical Reports Server (NTRS)

    Flom, T.

    1972-01-01

    Development of laser systems to acquire and track targets in applications such as the rendezvous and docking of two spacecraft. A scan technique is described whereby a narrow laser beam is simultaneously scanned with an equally narrow receiver field-of-view without the aid of mechanical gimbals. Equations are developed in order to examine the maximum acquisition and tracking rates, and the maximum target range for a scanning laser radar system. A recently built prototype of a small, lightweight, low-power-consuming scanning laser radar is described.

  11. Lasers for Frontier Spectroscopy

    NASA Astrophysics Data System (ADS)

    Baldacchini, Giuseppe

    The first laser has been invented in 1960 by using the red light from a ruby crystal, and since then the laser field exploded almost exponentially, and thousands of different materials, in the state of solids, liquids, vapors, gases, plasmas, and elementary particles have lased up to now from less than I Å to more than 1 mm. Many of them have been used with outstanding results both in basic science, and in industrial and commercial applications, by changing for ever the same lifestyle of humankind. As far as spectroscopy is concerned, the laser light has started an unprecedented revolution because of its unique properties as monochromaticity, coherence, power, brightness and short-pulse regime, unrivaled by any other natural and artificial light source. Spectroscopy applications increased qualitatively and quantitatively with the laser sources themselves, and they are still proceeding in parallel with the moving of the laser field towards new territories. Apart the opening up of new regions of the electromagnetic spectrum, like the terahertz gap, and the outstanding increase of the output power which is giving rise to completely new spectroscopic effects, the improvement of laser sources and auxiliary equipment is producing a growth of traditional laser spectroscopy with superior resolution and sensitivity. Moreover, spectroscopic techniques and laser light contributed to the development of new chemical and physical processes which have been used to fabricate photonic materials with new spectroscopic properties enriching the laser field itself, in a virtuous cycle spectroscopy→aser→material and back to spectroscopy with no end in sight.

  12. Dental lasers and science.

    PubMed

    Zakariasen, K L; Dederich, D N

    1991-07-01

    We have attempted to accomplish two purposes in this article. First, we have presented the case that extensive scientific investigation must form the base of our profession, that it must be an ongoing, continuous process and that laser dentistry must be developed through extensive scientific inquiry--as all of our treatment modalities should be. Second, we have presented many examples of the science involved in the development of laser dentistry. Lasers do have far-reaching potential for application to dentistry. We, as a profession, must insist that such laser development is done properly, not foisted upon us based on anecdotal reports and incomplete research.

  13. Laser adaptive holographic hydrophone

    SciTech Connect

    Romashko, R V; Kulchin, Yu N; Bezruk, M N; Ermolaev, S A

    2016-03-31

    A new type of a laser hydrophone based on dynamic holograms, formed in a photorefractive crystal, is proposed and studied. It is shown that the use of dynamic holograms makes it unnecessary to use complex optical schemes and systems for electronic stabilisation of the interferometer operating point. This essentially simplifies the scheme of the laser hydrophone preserving its high sensitivity, which offers the possibility to use it under a strong variation of the environment parameters. The laser adaptive holographic hydrophone implemented at present possesses the sensitivity at a level of 3.3 mV Pa{sup -1} in the frequency range from 1 to 30 kHz. (laser hydrophones)

  14. Shuttle Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Bufton, Jack L.; Harding, David J.; Garvin, James B.

    1999-01-01

    The Shuttle Laser Altimeter (SLA) is a Hitchhiker experiment that has flown twice; first on STS-72 in January 1996 and then on STS-85 in August 1997. Both missions produced successful laser altimetry and surface lidar data products from approximately 80 hours per mission of SLA data operations. A total of four Shuttle missions are planned for the SLA series. This paper documents SLA mission results and explains SLA pathfinder accomplishments at the mid-point in this series of Hitchhiker missions. The overall objective of the SLA mission series is the transition of the Goddard Space Flight Center airborne laser altimeter and lidar technology to low Earth orbit as a pathfinder for NASA operational space-based laser remote sensing devices. Future laser altimeter sensors will utilize systems and approaches being tested with SLA, including the Multi-Beam Laser Altimeter (MBLA) and the Geoscience Laser Altimeter System (GLAS). MBLA is the land and vegetation laser sensor for the NASA Earth System Sciences Pathfinder Vegetation Canopy Lidar (VCL) Mission, and GLAS is the Earth Observing System facility instrument on the Ice, Cloud, and Land Elevation Satellite (ICESat). The Mars Orbiting Laser Altimeter, now well into a multi-year mapping mission at the red planet, is also directly benefiting from SLA data analysis methods, just as SLA benefited from MOLA spare parts and instrument technology experience [5] during SLA construction in the early 1990s.

  15. Laser applications in phlebology

    NASA Astrophysics Data System (ADS)

    Longo, Leonardo; Mancini, S.; Postiglione, Marco; Postiglione, M. G.

    2001-06-01

    PURPOSE: review of laser used in phlebology METHOD: critical analysis of scientific data taken from the literature and based on 25 years personal experience. RESULTS: we have three groups of laser applications in phlebology: for the diagnosis, as physical therapy and as surgical therapy. DISCUSSION AND CONCLUSION: the laser-doppler studies the microcirculations, the no-surgical therapy shown positive results in the treatment of venous ulcers and for the wound healing. It could be indicate also as antiphlogistic and anti-edema therapy, in superficial thrombophlebitis. The surgical laser is useful for the surgical cleaning of ulcers, for haemorroids, angiomas and telangiectases.

  16. Lighting with laser diodes

    NASA Astrophysics Data System (ADS)

    Basu, Chandrajit; Meinhardt-Wollweber, Merve; Roth, Bernhard

    2013-08-01

    Contemporary white light-emitting diodes (LEDs) are much more efficient than compact fluorescent lamps and hence are rapidly capturing the market for general illumination. LEDs are also replacing halogen lamps or even newer xenon based lamps in automotive headlamps. Because laser diodes are inherently much brighter and often more efficient than corresponding LEDs, there is great research interest in developing laser diode based illumination systems. Operating at higher current densities and with smaller form factors, laser diodes may outperform LEDs in the future. This article reviews the possibilities and challenges in the integration of visible laser diodes in future illumination systems.

  17. Lasers and avionic integration

    NASA Astrophysics Data System (ADS)

    Willams, J. S.

    1983-07-01

    Interrogative applications of laser technology are considered, taking into account the extent to which a centralized source of information can be used to service a number of functions which need to be performed in an airframe, and, in addition, also the potential of the laser as probing device. Aspects of laser technology and air vehicle communications are discussed along with laser based techniques for processing and storage of information. Attention is given to data transmission within the aircraft, communications external to the air vehicle, Fourier optics, holographic methods, real-time processing, Bragg cells and spectrum analysis, optical bistable devices, and optical data storage.

  18. [Types of medical lasers].

    PubMed

    Takac, S; Stojanović, S; Muhi, B

    1998-01-01

    The knowledge about different types of lasers and their potential use in medicine is presented. A very rapid development of laser technology in the world imposes a need for up-to-date information about the characteristics of different laser instruments. Without this kind of information it would be difficult to keep in touch with the latest developments in the world's technology. Different types of lasers have different indication range in the medical practice. An inquiry into the fundamental principles of lasers physics is an important prerequisite for successful application of this technology in medicine. Laser as a surgical knife has shown certain advantages over scalpel, electrocautery and cryosurgery, as the laser surgery is a noncontact method, bloodless, precise, with better visualization, minimal postoperative edema, painless healing, without complications. Although laser cannot entirely replace conventional surgical instruments, it is still the instrument of choice for treatment of numerous pathological conditions. The carbon dioxide laser is a highly precise, bloodless light scalpel used for incising and excising tissues and sealing small blood vessels. The infrared beam at 10,600 nm wavelength is absorbed by water and tissue destruction is due to the instantaneous vaporization at relatively low temperature of 100 degrees C. The beam seals blood vessels of up to 0.5 mm in diameter and if the beam is defocused, larger vessels may be controlled. The beam also seals lymphatics, possibly reducing the spread of tumour cells by this route, and seals nerve endings: there is no incidence of neuroma formation. Carbon dioxide laser has shown a great efficiency in otorhinolaryngology, in maxillo-facial surgery and plastic surgery, in urology and gynecology. Provides true "no touch" surgery, and is used increasingly in neurosurgery for the precise atraumatic removal of tissue and for creation of precise lesions for the control of pain. The carbon dioxide laser beam

  19. Millisecond laser machining of transparent materials assisted by nanosecond laser.

    PubMed

    Pan, Yunxiang; Zhang, Hongchao; Chen, Jun; Han, Bing; Shen, Zhonghua; Lu, Jian; Ni, Xiaowu

    2015-01-26

    A new form of double pulse composed of a nanosecond laser and a millisecond laser is proposed for laser machining transparent materials. To evaluate its advantages and disadvantages, experimental investigations are carried out and the corresponding results are compared with those of single millisecond laser. The mechanism is discussed from two aspects: material defects and effects of modifications induced by nanosecond laser on thermal stress field during millisecond laser irradiation. It is shown that the modifications of the sample generated by nanosecond laser improves the processing efficiency of subsequent millisecond laser, while limits the eventual size of modified region.

  20. Laser processing with specially designed laser beam

    NASA Astrophysics Data System (ADS)

    Asratyan, A. A.; Bulychev, N. A.; Feofanov, I. N.; Kazaryan, M. A.; Krasovskii, V. I.; Lyabin, N. A.; Pogosyan, L. A.; Sachkov, V. I.; Zakharyan, R. A.

    2016-04-01

    The possibility of using laser systems to form beams with special spatial configurations has been studied. The laser systems applied had a self-conjugate cavity based on the elements of copper vapor lasers (LT-5Cu, LT-10Cu, LT-30Cu) with an average power of 5, 10, or 30 W. The active elements were pumped by current pulses of duration 80-100 ns. The duration of laser generation pulses was up to 25 ns. The generator unit included an unstable cavity, where one reflector was a special mirror with a reflecting coating. Various original optical schemes used were capable of exploring spatial configurations and energy characteristics of output laser beams in their interaction with micro- and nanoparticles fabricated from various materials. In these experiments, the beam dimensions of the obtained zones varied from 0.3 to 5 µm, which is comparable with the minimum permissible dimensions determined by the optical elements applied. This method is useful in transforming a large amount of information at the laser pulse repetition rate of 10-30 kHz. It was possible to realize the high-precision micromachining and microfabrication of microscale details by direct writing, cutting and drilling (with the cutting width and through-hole diameters ranging from 3 to 100 µm) and produce microscale, deep, intricate and narrow grooves on substrate surfaces of metals and nonmetal materials. This system is used for producing high-quality microscale details without moving the object under treatment. It can also be used for microcutting and microdrilling in a variety of metals such as molybdenum, copper and stainless steel, with a thickness of up to 300 µm, and in nonmetals such as silicon, sapphire and diamond with a thickness ranging from 10 µm to 1 mm with different thermal parameters and specially designed laser beam.

  1. Laser Program annual report 1987

    SciTech Connect

    O'Neal, E.M.; Murphy, P.W.; Canada, J.A.; Kirvel, R.D.; Peck, T.; Price, M.E.; Prono, J.K.; Reid, S.G.; Wallerstein, L.; Wright, T.W.

    1989-07-01

    This report discusses the following topics: target design and experiments; target materials development; laboratory x-ray lasers; laser science and technology; high-average-power solid state lasers; and ICF applications studies.

  2. Laser peening with fiber optic delivery

    DOEpatents

    Friedman, Herbert W.; Ault, Earl R.; Scheibner, Karl F.

    2004-11-16

    A system for processing a workpiece using a laser. The laser produces at least one laser pulse. A laser processing unit is used to process the workpiece using the at least one laser pulse. A fiber optic cable is used for transmitting the at least one laser pulse from the laser to the laser processing unit.

  3. Compact Ho:YLF Laser

    NASA Technical Reports Server (NTRS)

    Hemmati, H.

    1988-01-01

    Longitudinal pumping by laser diodes increases efficiency. Improved holmium:yttrium lithium fluoride laser radiates as much as 56 mW of power at wavelength of 2.1 micrometer. New Ho:YLF laser more compact and efficient than older, more powerful devices of this type. Compact, efficient Ho:YLF laser based on recent successes in use of diode lasers to pump other types of solid-state lasers.

  4. Laser surgery of the skin.

    PubMed

    Goldberg, D J

    1989-11-01

    The carbon dioxide laser, the argon laser and the pulse-dye laser are used to remove a variety of skin lesions. Advantages of laser surgery include a relatively bloodless operating field and minimal postoperative discomfort and swelling. Warts, tattoos, actinic cheilitis, skin cancer, xanthelasma, ingrown toenails, keloids and port-wine stains are among the lesions that can be removed with laser surgery. The tunable pulse-dye laser is particularly useful in the treatment of vascular lesions.

  5. High power solid state lasers

    SciTech Connect

    Weber, H.

    1988-01-01

    These proceedings discuss the following subjects: trends in materials processing with laser radiation; slabs and high power systems; glasses and new crystals; solid state lasers at HOYA Corp.; lamps, resonators and transmission; glasses as active materials for high average power solid state lasers; flashlamp pumped GGG-crystals; alexandrite lasers; designing telescope resonators; mode operation of neodymium: YAG lasers; intracavity frequency doubling with KTP crystal and thermal effects in cylinder lasers.

  6. Soft tissue application of lasers.

    PubMed

    Holt, Timothy L; Mann, Fred A

    2002-05-01

    Despite increasing numbers of veterinarians incorporating lasers into their clinical practices, little information has been published about laser clinical applications in soft tissue surgery. This article reviews soft tissue interaction, describes laser equipment and accessories commonly marketed to veterinarians, and discusses clinical applications of the carbon dioxide laser in a systems-based approach. A table of recommended laser tips and settings based on the authors' experiences using a carbon dioxide laser (AccuVet Novapulse LX-20SP, Bothell, WA) is provided.

  7. Robot-laser system

    SciTech Connect

    Akeel, H.A.

    1987-03-17

    A robot-laser system is described for providing a laser beam at a desired location, the system comprising: a laser beam source for generating a laser beam; a robot having at least three degrees of freedom and including a base and a robot arm supported on the base, the robot arm having first and second elongated arm parts, the second arm part projecting from the first arm part. The robot arm has a wrist mechanism located at the distal end of the second arm part, the arm parts and the wrist mechanism being hollow and fluidly interconnected to define a laser beam path therewithin extending through the first arm part, along the entire projecting length of the second arm part and through the wrist mechanism. The arm parts and wrist mechanism are adapted to direct the laser beam therewithin; and at least one mirror for reflecting the laser beam, a single mirror being mounted to and supported by the arm therewithin at a position of fluid interconnection between the arm parts to move therewith and reflect the laser beam. A first one of the degrees of freedom comprises a linear movement of the first arm part along an axis coincident with the laser beam path. A second one of the degrees of freedom comprises a linear movement of the second arm part along a second axis coincident with the laser beam path through the second arm part and a third one of the degrees of freedom comprises a rotary movement of one of the arm parts about the laser beam path.

  8. High-power pulsed lasers

    SciTech Connect

    Holzrichter, J.F.

    1980-04-02

    The ideas that led to the successful construction and operation of large multibeam fusion lasers at the Lawrence Livermore Laboratory are reviewed. These lasers are based on the use of Nd:glass laser materials. However, most of the concepts are applicable to any laser being designed for fusion experimentation. This report is a summary of lectures given by the author at the 20th Scottish University Summer School in Physics, on Laser Plasma Interaction. This report includes basic concepts of the laser plasma system, a discussion of lasers that are useful for short-pulse, high-power operation, laser design constraints, optical diagnostics, and system organization.

  9. Lasers '83. Proceedings of the international conference

    SciTech Connect

    Powell, R.C.

    1985-01-01

    Among the topics discussed are the development history of the semiconductor diode laser, laser material processing, nonlinear spectroscopy, recent advancements in diode lasers, laser-driven particle accelerators, laser applications in the atmospheric sciences, laser-assisted collisions, novel (garnet and alexandrite) solid state laser materials, IR molecular lasers, devices and components for fiber-optic communications, free-electron lasers and masers, and picosecond optical phenomena. Also covered are laser-stimulated materials surface processes, color center laser developments, blue-green and metal vapor lasers, laser chemistry, nonlinear effects, high energy lasers, excimer lasers, laser trapping of ions, optical cavities and propagation, laser isotope separation, laser trapping of atoms, laser applications in biochemistry, tunable coherent short wavelength radiation, laser spectroscopy, picosecond studies of condensed phase molecular systems, and combustion and plasma diagnostics.

  10. Liquid heat capacity lasers

    DOEpatents

    Comaskey, Brian J.; Scheibner, Karl F.; Ault, Earl R.

    2007-05-01

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  11. Laser biostimulation in pediatrics

    NASA Astrophysics Data System (ADS)

    Utz, Irina A.; Lagutina, L. E.; Tuchin, Valery V.

    1995-01-01

    In the present paper the method and apparatus for percutaneous laser irradiation of blood (PLIB) in vessels (veins) are described. Results of clinical investigations of biostimulating effects under PLIB by red laser light (633 nm) in Cubiti and Saphena Magna veins are presented.

  12. Laser hair removal pearls.

    PubMed

    Tierney, Emily P; Goldberg, David J

    2008-03-01

    A number of lasers and light devices are now available for the treatment of unwanted hair. The goal of laser hair removal is to damage stem cells in the bulge of the follicle through the targeting of melanin, the endogenous chromophore for laser and light devices utilized to remove hair. The competing chromophores in the skin and hair, oxyhemoglobin and water, have a decreased absorption between 690 nm and 1000 nm, thus making this an ideal range for laser and light sources. Pearls of laser hair removal are presented in this review, focusing on four areas of recent development: 1 treatment of blond, white and gray hair; 2 paradoxical hypertrichosis; 3 laser hair removal in children; and 4 comparison of lasers and IPL. Laser and light-based technologies to remove hair represents one of the most exciting areas where discoveries by dermatologists have led to novel treatment approaches. It is likely that in the next decade, continued advancements in this field will bring us closer to the development of a more permanent and painless form of hair removal.

  13. Tunable dysprosium laser.

    PubMed

    Majewski, Matthew R; Jackson, Stuart D

    2016-10-01

    We report the demonstration of a tunable dysprosium laser. The experiment employed in-band pumping of a Dy3+-doped fluoride fiber and a simple resonator design involving a ruled diffraction grating. The laser produced tuning between 2.95 and 3.35 μm, limited by the availability of optics.

  14. Laser Programs Highlight 1995

    SciTech Connect

    Jacobs, R.R.

    1997-01-31

    Our contributions to laser science and technology and corresponding applications range from concept to design of the National Ignition Facility, transfer of Atomic Vapor Laser Isotope Separation technology to the private sector, and from new initiatives in industry and defense to micro-optics for improving human vision.

  15. Solid state laser

    NASA Technical Reports Server (NTRS)

    Rines, Glen A. (Inventor); Moulton, Peter F. (Inventor); Harrison, James (Inventor)

    1993-01-01

    A wavelength-tunable, injection-seeded, dispersion-compensated, dispersively-pumped solid state laser includes a lasing medium; a highly reflective mirror; an output coupler; at least one isosceles Brewster prism oriented to the minimum deviation angle between the medium and the mirror for directing light of different wavelengths along different paths; means for varying the angle of the highly reflective mirror relative to the light from at least one Brewster angle for selecting a predetermined laser operating wavelength; a dispersion compensation apparatus associated with the lasing medium; a laser injection seeding port disposed between the dispersion compensation apparatus and one of the mirror and coupler and including a reflective surface at an acute non-Brewster angle to the laser beam for introducing a seed input; a dispersion compensation apparatus associated with the laser medium including opposite chirality optical elements; the lasing medium including a pump surface disposed at an acute angle to the laser beam to define a discrete path for the pumping laser beam separate from the pumped laser beam.

  16. Learning about Lasers

    ERIC Educational Resources Information Center

    Roberts, Larry

    2011-01-01

    The word laser is an acronym. It stands for Light Amplification by Stimulated Emission of Radiation. Lasers, invented in 1958, are used to cut and fuse materials, accurately survey long distances, communicate across fiber-optic phone lines, produce 3D pictures, make special effects, help navigation, and read bar codes for cash registers. A laser…

  17. Learning about Lasers

    ERIC Educational Resources Information Center

    Roberts, Larry

    2011-01-01

    The word laser is an acronym. It stands for Light Amplification by Stimulated Emission of Radiation. Lasers, invented in 1958, are used to cut and fuse materials, accurately survey long distances, communicate across fiber-optic phone lines, produce 3D pictures, make special effects, help navigation, and read bar codes for cash registers. A laser…

  18. Fine welding with lasers.

    PubMed

    MacLellan, D

    2008-01-01

    The need for micro joining metallic alloys for surgical instruments, implants and advanced medical devices is driving a rapid increase in the implementation of laser welding technology in research, development and volume production. This article discusses the advantages of this welding method and the types of lasers used in the process.

  19. Laser applications in surgery.

    PubMed

    Azadgoli, Beina; Baker, Regina Y

    2016-12-01

    In modern medicine, lasers are increasingly utilized for treatment of a variety of pathologies as interest in less invasive treatment modalities intensifies. The physics behind lasers allows the same basic principles to be applied to a multitude of tissue types using slight modifications of the system. Multiple laser systems have been studied within each field of medicine. The term "laser" was combined with "surgery," "ablation," "lithotripsy," "cancer treatment," "tumor ablation," "dermatology," "skin rejuvenation," "lipolysis," "cardiology," "atrial fibrillation (AF)," and "epilepsy" during separate searches in the PubMed database. Original articles that studied the application of laser energy for these conditions were reviewed and included. A review of laser therapy is presented. Laser energy can be safely and effectively used for lithotripsy, for the treatment of various types of cancer, for a multitude of cosmetic and reconstructive procedures, and for the ablation of abnormal conductive pathways. For each of these conditions, management with lasers is comparable to, and potentially superior to, management with more traditional methods.

  20. Coaxial short pulsed laser

    DOEpatents

    Nelson, M.A.; Davies, T.J.

    1975-08-01

    This invention relates to a laser system of rugged design suitable for use in a field environment. The laser itself is of coaxial design with a solid potting material filling the space between components. A reservoir is employed to provide a gas lasing medium between an electrode pair, each of which is connected to one of the coaxial conductors. (auth)

  1. New laser tracheal tube

    NASA Astrophysics Data System (ADS)

    Ungemach, Josef; Foth, Hans-Jochen; Hoermann, Karl; Preponis, E.

    1996-09-01

    The complication of a laser induced tube fire during surgery was first published in 1979. The protection of tracheal tubes against ignition is necessary to enable a safe laser surgery of the upper airway. in an experimental study a new compound tube was tested: this tube had a higher laser resistance than a pure metal tube. The damage threshold of this tube was tested against the emission of various lasers as CO2. The metal tube was damaged within seconds at CO2 laser power densities of 103 W/cm2 whereas the damage threshold of the compound tube was 3.106 W/cm2. We compared the compound laser tube to the so far used metal tube in a prospective clinical trial in our department of ENT in patients undergoing CO2-laser surgery of the upper airway. 66 patients were included into the study: 33 received the compound tube, 33 the metal tube. During endotracheal intubation the handling of the compound tube was better. During laser surgery high airway pressures occured more often with the metal tube. Whereas kinking was the problem of the compound tubes. Destruction of cuffs occured in both groups but did not cause any complications. No tube or cuff fire was noticed.

  2. Infrared laser bone ablation

    SciTech Connect

    Nuss, R.C.; Fabian, R.L.; Sarkar, R.; Puliafito, C.A.

    1988-01-01

    The bone ablation characteristics of five infrared lasers, including three pulsed lasers (Nd:YAG, lambda = 1064 micron; Hol:YSGG, lambda = 2.10 micron; and Erb:YAG, lambda = 2.94 micron) and two continuous-wave lasers (Nd:YAG, lambda = 1.064 micron; and CO/sub 2/, lambda = 10.6 micron), were studied. All laser ablations were performed in vitro, using moist, freshly dissected calvarium of guinea pig skulls. Quantitative etch rates of the three pulsed lasers were calculated. Light microscopy of histologic sections of ablated bone revealed a zone of tissue damage of 10 to 15 micron adjacent to the lesion edge in the case of the pulsed Nd:YAG and the Erb:YAG lasers, from 20 to 90 micron zone of tissue damage for bone ablated by the Hol:YSGG laser, and 60 to 135 micron zone of tissue damage in the case of the two continuous-wave lasers. Possible mechanisms of bone ablation and tissue damage are discussed.

  3. Laser beam generating apparatus

    DOEpatents

    Warner, B.E.; Duncan, D.B.

    1994-02-15

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus is described. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 7 figures.

  4. Lasers for Training Devices.

    ERIC Educational Resources Information Center

    Fuller, C. A.

    A breadboard model of a laser display system is described in detail and its operating procedure is outlined. The system consists of: a Model 52 argon krypton ion laser and power supply; an optical breadboard comprising a pocket cell light modulator, a galvonmeter beam deflector for vertical scanning, a unique multiple reflection beam steerer for…

  5. Longitudinal discharge laser electrodes

    DOEpatents

    Warner, B.E.; Miller, J.L.; Ault, E.R.

    1994-08-23

    The improved longitudinal discharge laser electrode with IR baffle includes an electrode made up of washers spaced along the laser axis in order to form inter-washer spaces for hollow cathode discharge to take place and for IR radiation to be trapped. Additional IR baffles can be placed between the electrode ann the window. 2 figs.

  6. Free-Electron Lasers.

    ERIC Educational Resources Information Center

    Brau, Charles A.

    1988-01-01

    Describes the use of free-electron lasers as a source of coherent radiation over a broad range of wavelengths from the far-infrared to the far-ultraviolet regions of the spectrum. Discusses some applications of these lasers, including medicine and strategic defense. (TW)

  7. Lasers for Training Devices.

    ERIC Educational Resources Information Center

    Fuller, C. A.

    A breadboard model of a laser display system is described in detail and its operating procedure is outlined. The system consists of: a Model 52 argon krypton ion laser and power supply; an optical breadboard comprising a pocket cell light modulator, a galvonmeter beam deflector for vertical scanning, a unique multiple reflection beam steerer for…

  8. Dielectric laser accelerators

    NASA Astrophysics Data System (ADS)

    England, R. Joel; Noble, Robert J.; Bane, Karl; Dowell, David H.; Ng, Cho-Kuen; Spencer, James E.; Tantawi, Sami; Wu, Ziran; Byer, Robert L.; Peralta, Edgar; Soong, Ken; Chang, Chia-Ming; Montazeri, Behnam; Wolf, Stephen J.; Cowan, Benjamin; Dawson, Jay; Gai, Wei; Hommelhoff, Peter; Huang, Yen-Chieh; Jing, Chunguang; McGuinness, Christopher; Palmer, Robert B.; Naranjo, Brian; Rosenzweig, James; Travish, Gil; Mizrahi, Amit; Schachter, Levi; Sears, Christopher; Werner, Gregory R.; Yoder, Rodney B.

    2014-10-01

    The use of infrared lasers to power optical-scale lithographically fabricated particle accelerators is a developing area of research that has garnered increasing interest in recent years. The physics and technology of this approach is reviewed, which is referred to as dielectric laser acceleration (DLA). In the DLA scheme operating at typical laser pulse lengths of 0.1 to 1 ps, the laser damage fluences for robust dielectric materials correspond to peak surface electric fields in the GV /m regime. The corresponding accelerating field enhancement represents a potential reduction in active length of the accelerator between 1 and 2 orders of magnitude. Power sources for DLA-based accelerators (lasers) are less costly than microwave sources (klystrons) for equivalent average power levels due to wider availability and private sector investment. Because of the high laser-to-particle coupling efficiency, required pulse energies are consistent with tabletop microJoule class lasers. Combined with the very high (MHz) repetition rates these lasers can provide, the DLA approach appears promising for a variety of applications, including future high-energy physics colliders, compact light sources, and portable medical scanners and radiative therapy machines.

  9. Laser energy conversion

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1989-01-01

    The conversion of laser energy to other, more useful, forms is an important element of any space power transmission system employing lasers. In general the user, at the receiving sight, will require the energy in a form other than laser radiation. In particular, conversion to rocket power and electricity are considered to be two major areas where one must consider various conversion techniques. Three systems (photovoltaic cells, MHD generators, and gas turbines) have been identified as the laser-to-electricity conversion systems that appear to meet most of the criteria for a space-based system. The laser thruster also shows considerable promise as a space propulsion system. At this time one cannot predict which of the three laser-to-electric converters will be best suited to particular mission needs. All three systems have some particular advantages, as well as disadvantages. It would be prudent to continue research on all three systems, as well as the laser rocket thruster. Research on novel energy conversion systems, such as the optical rectenna and the reverse free-electron laser, should continue due to their potential for high payoff.

  10. Focusing laser scanner

    NASA Technical Reports Server (NTRS)

    Callen, W. R.; Weaver, J. E.

    1979-01-01

    Economical laser scanner assembled from commercially available components, modulates and scans focused laser beam over area up to 5.1 by 5.1 cm. Scanner gives resolution comparable to that of conventional television. Device is highly applicable to area of analog and digital storage and retrieval.

  11. Tunable Infrared Semiconductor Lasers

    DTIC Science & Technology

    2013-12-20

    is a thulium fiber laser that has output of 20Watts at 1.908 µm with a collimated output beam diameter of about 5 mm. With a cylindrical lens, a...the device onto a copper heat sink and then to the cold finger of liquid nitrogen Dewar. In characterization, a thulium fiber laser at 1.908 nm

  12. Liquid heat capacity lasers

    DOEpatents

    Comaskey, Brian J.; Scheibner, Karl F.; Ault, Earl R.

    2007-05-01

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  13. Distributed ultrafast fibre laser

    PubMed Central

    Liu, Xueming; Cui, Yudong; Han, Dongdong; Yao, Xiankun; Sun, Zhipei

    2015-01-01

    A traditional ultrafast fibre laser has a constant cavity length that is independent of the pulse wavelength. The investigation of distributed ultrafast (DUF) lasers is conceptually and technically challenging and of great interest because the laser cavity length and fundamental cavity frequency are changeable based on the wavelength. Here, we propose and demonstrate a DUF fibre laser based on a linearly chirped fibre Bragg grating, where the total cavity length is linearly changeable as a function of the pulse wavelength. The spectral sidebands in DUF lasers are enhanced greatly, including the continuous-wave (CW) and pulse components. We observe that all sidebands of the pulse experience the same round-trip time although they have different round-trip distances and refractive indices. The pulse-shaping of the DUF laser is dominated by the dissipative processes in addition to the phase modulations, which makes our ultrafast laser simple and stable. This laser provides a simple, stable, low-cost, ultrafast-pulsed source with controllable and changeable cavity frequency. PMID:25765454

  14. Free-Electron Lasers.

    ERIC Educational Resources Information Center

    Brau, Charles A.

    1988-01-01

    Describes the use of free-electron lasers as a source of coherent radiation over a broad range of wavelengths from the far-infrared to the far-ultraviolet regions of the spectrum. Discusses some applications of these lasers, including medicine and strategic defense. (TW)

  15. Dye laser amplifier

    DOEpatents

    Moses, E.I.

    1992-12-01

    An improved dye laser amplifier is disclosed. The efficiency of the dye laser amplifier is increased significantly by increasing the power of a dye beam as it passes from an input window to an output window within the dye chamber, while maintaining the intensity of the dye beam constant. 3 figs.

  16. Laser beam generating apparatus

    DOEpatents

    Warner, Bruce E.; Duncan, David B.

    1994-01-01

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect).

  17. Laser beam generating apparatus

    DOEpatents

    Warner, Bruce E.; Duncan, David B.

    1993-01-01

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect).

  18. Surface treatments by laser

    NASA Astrophysics Data System (ADS)

    Thomann, A. L.; Benzerga, R.; Basillais, Armelle; Georges, Cecile; Fariaut, Francois; Semmar, Nadjib; Boulmer-Leborgne, Chantal

    2003-07-01

    Laser treatments of various metals are studying depending on the laser wavelength, pulse time duration and shape, and fluence (laser/metal interaction regime). Low fluence excimer UV laser melting process of gold layer is shown to improve the corrosion resistance of multilayer (Au/Ni/Cu alloy) electrical contacts. For this application the homogenity of the laser beam as well as the initial Cu substrate roughness are found to be limiting parameters of the process. Carburization of Al alloy, performed in C3H6 atmosphere with a KrF laser induces the incorporation of carbon atoms over about 4 μm depth. The crystalline Al4C3 synthesized at the surface leads to a strengthening of the light Al alloy, which is of great interest for application in car industry. The study shows that diffusion of C atom in the target is possible because of a plasma presence on the surface which supports the molten bath life time and induces dissociation of the ambient gas. In the last example of laser metal surface treatment presented in that paper, a commonly used steel is treated in air with different lasers at a fluence above the plasma formation threshold. It is seen that the machining oils covering the surface before the treatment can be efficiently removed and that new compounds (nitride, carbide and oxides) are formed at the surface.

  19. Liquid laser cavities

    NASA Technical Reports Server (NTRS)

    Bjorklund, S.; Filipescu, N.; Kellermeyer, G. L.; Mc Avoy, N.

    1969-01-01

    Liquid laser cavities have plenum chambers at the ends of the capillary cell which are terminated in transparent optical flats. By use of these cavities, several new europium chelates and a terbium chelate can provide laser action in solution at room temperature.

  20. Athermal laser design.

    PubMed

    Bovington, Jock; Srinivasan, Sudharsanan; Bowers, John E

    2014-08-11

    This paper discusses circuit based and waveguide based athermalization schemes and provides some design examples of athermalized lasers utilizing fully integrated athermal components as an alternative to power hungry thermo-electric controllers (TECs), off-chip wavelength lockers or monitors with lookup tables for tunable lasers. This class of solutions is important for uncooled transmitters on silicon.

  1. Green pumped Alexandrite lasers

    NASA Astrophysics Data System (ADS)

    Kuper, Jerry W.; Brown, David C.

    2005-04-01

    Initial experiments with pulsed and CW pumping an alexandrite laser rod at 532 nm are presented. This pumping architecture holds promise for the production of scalable diode-pumped, tunable alexandrite laser systems operating in the near infrared (750 nm), and the ultraviolet (375 and 250 nm) spectral regions.

  2. Silicon Stokes terahertz laser

    SciTech Connect

    Pavlov, S. G.; Huebers, H.-W.; Hovenier, J. N.; Klaassen, T. O.; Carder, D. A.; Phillips, P. J.; Redlich, B.; Riemann, H.; Zhukavin, R. Kh.; Shastin, V. N.

    2007-04-10

    A Raman-type silicon laser at terahertz frequencies has been realized. Stokes-shifted stimulated emission has been observed from silicon crystals doped by antimony donors when optically excited by an infrared free electron laser. The Raman lasing was obtained due to resonant scattering on electronic states of a donor atom.

  3. Er: YLF Laser Development

    DTIC Science & Technology

    1975-12-01

    KEY WORDS (Cont’d.) IR Lasers IR Illuminator Flouride Laser Material (1 cy). Maxwell, AFB, D.C. 20330 20. ABSTRACT (Cont’d.) 3 + Large...rare earth oxides and their conversion to anhydrous flourides has been carried out. , . >■! an a,.in ■ . m vk4,U,.L~^J^-4L-iJI^ ^»1 IPU!. ..^^.LIJ

  4. CO2 laser resurfacing.

    PubMed

    Fitzpatrick, R E

    2001-07-01

    The CO2 Laser offers a variety of unique features in resurfacing facial photodamage and acne scarring. These include hemostasis, efficient removal of the epidermis in a single pass, thermally induced tissue tightening, and safe, predictable tissue interaction. Knowledge of these mechanisms will result in the capability of using the CO2 laser effectively and safely whether the goal is superficial or deep treatment.

  5. Laser energy conversion

    NASA Astrophysics Data System (ADS)

    Jalufka, N. W.

    1989-07-01

    The conversion of laser energy to other, more useful, forms is an important element of any space power transmission system employing lasers. In general the user, at the receiving sight, will require the energy in a form other than laser radiation. In particular, conversion to rocket power and electricity are considered to be two major areas where one must consider various conversion techniques. Three systems (photovoltaic cells, MHD generators, and gas turbines) have been identified as the laser-to-electricity conversion systems that appear to meet most of the criteria for a space-based system. The laser thruster also shows considerable promise as a space propulsion system. At this time one cannot predict which of the three laser-to-electric converters will be best suited to particular mission needs. All three systems have some particular advantages, as well as disadvantages. It would be prudent to continue research on all three systems, as well as the laser rocket thruster. Research on novel energy conversion systems, such as the optical rectenna and the reverse free-electron laser, should continue due to their potential for high payoff.

  6. Lasers, A Bibliography.

    DTIC Science & Technology

    1979-09-02

    TA1675 Muncheryan , Hrand 14. Laser Fundamentals and Applications, 1486 Indianapolis , IN: H.W. Sams , c1975 . 2...Francisco , CA: the cmd , 1970. • TK787 1.3 Van Pelt , W.F . , et al . Laser Fundamentals and Experiments . US Washington , DC: U.S. Bur of Radiological

  7. Laser Ranging Simulation Program

    NASA Technical Reports Server (NTRS)

    Piazolla, Sabino; Hemmati, Hamid; Tratt, David

    2003-01-01

    Laser Ranging Simulation Program (LRSP) is a computer program that predicts selected aspects of the performances of a laser altimeter or other laser ranging or remote-sensing systems and is especially applicable to a laser-based system used to map terrain from a distance of several kilometers. Designed to run in a more recent version (5 or higher) of the MATLAB programming language, LRSP exploits the numerical and graphical capabilities of MATLAB. LRSP generates a graphical user interface that includes a pop-up menu that prompts the user for the input of data that determine the performance of a laser ranging system. Examples of input data include duration and energy of the laser pulse, the laser wavelength, the width of the laser beam, and several parameters that characterize the transmitting and receiving optics, the receiving electronic circuitry, and the optical properties of the atmosphere and the terrain. When the input data have been entered, LRSP computes the signal-to-noise ratio as a function of range, signal and noise currents, and ranging and pointing errors.

  8. Sunlight-Pumped Laser

    NASA Technical Reports Server (NTRS)

    Weaver, W. R. J.; Lee, J. H.

    1982-01-01

    Organic iodide gas is stimulated by portion of Sun's spectrum to emit laser light. Chopper forms pulses from beam of Xenon-Arc light. Chopper is only necessary to avoid buildup of laser-quenching species in sealed tube of present experiment. Perfluoropropyliodide lasing medium functions at temperatures of about 670 K, a fact that reduces cooling requirements in space.

  9. Laser beam generating apparatus

    DOEpatents

    Warner, B.E.; Duncan, D.B.

    1993-12-28

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 11 figures.

  10. Explosively pumped laser light

    DOEpatents

    Piltch, Martin S.; Michelotti, Roy A.

    1991-01-01

    A single shot laser pumped by detonation of an explosive in a shell casing. The shock wave from detonation of the explosive causes a rare gas to luminesce. The high intensity light from the gas enters a lasing medium, which thereafter outputs a pulse of laser light to disable optical sensors and personnel.

  11. Lasers in periodontal therapy.

    PubMed

    Passanezi, Euloir; Damante, Carla Andreotti; de Rezende, Maria L Rubo; Greghi, Sebastião L Aguiar

    2015-02-01

    About 50 years ago, lasers started to be used in periodontal treatment following evidence that wounds produced in animals healed more quickly after being irradiated with low-intensity lasers. Increased production of growth factors, stimulated mainly by red and infrared lasers, may participate in this process by influencing the behavior of various types of cells. High-intensity lasers have been used as an alternative to nonsurgical periodontal therapy in root biomodification and to reduce dentin hypersensivity; low-intensity lasers are frequently employed to improve tissue repair in regenerative procedures and in antimicrobial photodynamic therapy. Despite the abundance of promising data on the advantages of their use, there is still controversy regarding the real benefits of lasers and antimicrobial photodynamic therapy in periodontal and peri-implant treatment. A huge variation in the parameters of laser application among studies makes comparisons very difficult. An overview of the current concepts and findings on lasers in periodontal therapy is presented with emphasis on data collected from Latin-American researchers.

  12. Longitudinal discharge laser electrodes

    DOEpatents

    Warner, Bruce E.; Miller, John L.; Ault, Earl R.

    1994-01-01

    The improved longitudinal discharge laser electrode with IR baffle includes an electrode made up of washers spaced along the laser axis in order to form inter-washer spaces for hollow cathode discharge to take place and for IR radiation to be trapped. Additional IR baffles can be placed between the electrode ann the window.

  13. Survey of laser injury

    NASA Astrophysics Data System (ADS)

    Johnson, Thomas E.; Dunn, J. C., II; Roach, William P.

    2002-06-01

    Laser use is pervasive and steadily expanding both in the private sector and the Department of Defense (DoD). For more than 20 years, Rockwell Laser Industries, the U.S. Army, and the Food and Drug Administration's Center for Devices and Radiological Health have separately collected data on injuries occurring during, or resultant from, the use of lasers. However, data from these sources is incomplete and has not recently undergone a thorough compiling, statistical analysis, review and summarization. It is our belief that in order to evaluate current related medical surveillance, safety and training procedures, this data needs such an examination. Persons maintaining these databases were contacted and any available data on laser injury was collected. The data was analyzed and examined for pertinent similarities and differences among a wide range of parameters. We summarize these findings in this paper and also comment on the injuries, current safety measures and injury reporting protocols associated with laser use.

  14. Laser Cleaning of Gildings

    NASA Astrophysics Data System (ADS)

    Panzner, M.; Wiedemann, G.; Meier, M.; Conrad, W.; Kempe, A.; Hutsch, T.

    Results of laser cleaning experiments on different gilding types like leaf gilding and fire gilding are presented in this contribution by means of three tested art objects. The reflectivity of gold is advantageously high for the typical laser cleaning wavelength of 1,064 nm. Additionally, to avoid damage like gold loss, the transfer of the absorbed laser pulse energy into the art object by thermal conduction is considered. Fire gilded surfaces are most easily cleaned because of the good heat transfer conditions which imply a high threshold intensity with respect to damage. This is different for leaf gilded surfaces but suitable laser cleaning parameters have also been found for this case. The results of laser cleaning experiments are presented by photography, microscopy, SEM and EDX analysis.

  15. Catalac free electron laser

    DOEpatents

    Brau, C.A.; Swenson, D.A.; Boyd, T.J. Jr.

    1979-12-12

    A catalac free electron laser using a rf linac (catalac) which acts as a catalyst to accelerate an electron beam in an initial pass through the catalac and decelerate the electron beam during a second pass through the catalac is described. During the second pass through the catalac, energy is extracted from the electron beam and transformed to energy of the accelerating fields of the catalac to increase efficiency of the device. Various embodiments disclose the use of post linacs to add electron beam energy extracted by the wiggler and the use of supplementary catalacs to extract energy at various energy peaks produced by the free electron laser wiggler to further enhance efficiency of the catalac free electron laser. The catalac free electron laser can be used in conjunction with a simple resonator, a ring resonator, or as an amplifier in conjunction with a master oscillator laser.

  16. Catalac free electron laser

    DOEpatents

    Brau, Charles A.; Swenson, Donald A.; Boyd, Jr., Thomas J.

    1982-01-01

    A catalac free electron laser using a rf linac (catalac) which acts as a catalyst to accelerate an electron beam in an initial pass through the catalac and decelerate the electron beam during a second pass through the catalac. During the second pass through the catalac, energy is extracted from the electron beam and transformed to energy of the accelerating fields of the catalac to increase efficiency of the device. Various embodiments disclose the use of post linacs to add electron beam energy extracted by the wiggler and the use of supplementary catalacs to extract energy at various energy peaks produced by the free electron laser wiggler to further enhance efficiency of the catalac free electron laser. The catalac free electron laser can be used in conjunction with a simple resonator, a ring resonator or as an amplifier in conjunction with a master oscillator laser.

  17. Auricular Acupuncture with Laser

    PubMed Central

    Bahr, Frank

    2013-01-01

    Auricular acupuncture is a method which has been successfully used in various fields of medicine especially in the treatment of pain relief. The introduction of lasers especially low-level lasers into medicine brought besides the already existing stimulation with needles and electricity an additional technique to auricular acupuncture. This literature research looks at the historical background, the development and the anatomical and neurological aspects of auricular acupuncture in general and auricular laser acupuncture in detail. Preliminary scientific findings on auricular acupuncture with laser have been described in detail and discussed critically in this review article. The results of the studies have shown evidence of the effect of auricular laser acupuncture. However, a comparison of these studies was impossible due to their different study designs. The most important technical as well as study parameters were described in detail in order to give more sufficient evidence and to improve the quality of future studies. PMID:23935695

  18. Pulsed IR inductive lasers

    NASA Astrophysics Data System (ADS)

    Razhev, A. M.; Churkin, D. S.; Kargapol'tsev, E. S.

    2014-07-01

    Pulsed inductive discharge is a new alternative method of pumping active gas laser media. The work presents results of experimental investigations of near, mid, and far IR inductive gas lasers (H2, HF, and CO2) operating at different transitions of atoms and molecules with different mechanisms of formation of inversion population. The excitation systems of a pulsed inductive cylindrical discharge (pulsed inductively coupled plasma) and pulsed RF inductive discharge in the gases are developed. Various gas mixtures including H2, N2, He, Ne, F2, NF3, and SF6 are used. Characteristics of near IR H2 laser radiation are investigated. Maximal pulse peak power of 7 kW is achieved. The possibility of using a pulsed inductive discharge as a new method of pumping HF laser active medium is demonstrated. The pulsed RF inductive CO2 laser is created and a total efficiency of 17% is achieved.

  19. Regenerative similariton laser

    NASA Astrophysics Data System (ADS)

    North, Thibault; Brès, Camille-Sophie

    2016-05-01

    Self-pulsating lasers based on cascaded reshaping and reamplification (2R) are capable of initiating ultrashort pulses despite the accumulation of large amounts of nonlinearities in all-fiber resonators. The spectral properties of pulses in self-similar propagation are compatible with cascaded 2R regeneration by offset filtering, making parabolic pulses suitable for the design of a laser of this recently introduced class. A new type of regenerative laser giving birth to similaritons is numerically investigated and shows that this laser is the analog of regenerative sources based solely on self-phase modulation and offset filtering. The regenerative similariton laser does not suffer from instabilities due to excessive nonlinearities and enables ultrashort pulse generation in a simple cavity configuration.

  20. Excimer laser refractive surgery.

    PubMed Central

    Manche, E E; Carr, J D; Haw, W W; Hersh, P S

    1998-01-01

    Excimer laser photorefractive keratectomy and excimer laser in situ keratomileusis are relatively new treatment modalities that can be used to correct refractive errors of the eye. They are most commonly used to correct myopia (nearsightedness) but can also be used to correct hyperopia (farsightedness) and astigmatism. The excimer laser alters the refractive state of the eye by removing tissue from the anterior cornea through a process known as photoablative decomposition. This process uses ultraviolet energy from the excimer laser to disrupt chemical bonds in the cornea without causing any thermal damage to surrounding tissue. The modified anterior corneal surface enables light to be focused on the retina, thereby reducing or eliminating the dependence on glasses and contact lenses. We discuss in detail all aspects of excimer laser refractive surgery--techniques, indications and contraindications, clinical outcomes, and complications. PMID:9682628

  1. Photonic Crystal Microchip Laser

    NASA Astrophysics Data System (ADS)

    Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis

    2016-09-01

    The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the “photonic crystal microchip laser”, a very compact and efficient light source emitting high spatial quality high brightness radiation.

  2. Photonic Crystal Microchip Laser

    PubMed Central

    Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis

    2016-01-01

    The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the “photonic crystal microchip laser”, a very compact and efficient light source emitting high spatial quality high brightness radiation. PMID:27683066

  3. Ceramic laser materials

    NASA Astrophysics Data System (ADS)

    Ikesue, Akio; Aung, Yan Lin

    2008-12-01

    The word 'ceramics' is derived from the Greek keramos, meaning pottery and porcelain. The opaque and translucent cement and clay often used in tableware are not appropriate for optical applications because of the high content of optical scattering sources, that is, defects. Recently, scientists have shown that by eliminating the defects, a new, refined ceramic material - polycrystalline ceramic - can be produced. This advanced ceramic material offers practical laser generation and is anticipated to be a highly attractive alternative to conventional glass and single-crystal laser technologies in the future. Here we review the history of the development of ceramic lasers, the principle of laser generation based on this material, some typical results achieved with ceramic lasers so far, and discuss the potential future outlook for the field.

  4. Advances in chemical lasers

    NASA Astrophysics Data System (ADS)

    Miller, Joseph, Dr.

    1987-09-01

    High-power chemical lasers thrive in an array of special environments and present many fascinating associated subjects ripe for developmental research. Included are processes to produce the source reactants; supersonic mixing and reacting flow fields; the production and dissipation of multiple vibrational-rotational molecular states; optical gain extraction in complex geometries; media inhomogeneity effects, and waste energy and reaction products removal. Some configurations require wavelength selectivity, special optical components, and coherent cavity or beam combining. In recent years, progress has been made in these areas on behalf of continuous-wave and repetitively pulsed hydrogen fluoride and deuterium fluoride lasers, subsonic and supersonic oxygen-iodine lasers, and potential shorter wavelength chemical lasers based on chemically excited higher electronic states. This paper presents a brief review of the technical approach of some of the technology areas, and the status in achieving practical, integrated high-power chemical lasers.

  5. NASA Space Laser Technology

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    2015-01-01

    Over the next two decades, the number of space based laser missions for mapping, spectroscopy, remote sensing and other scientific investigations will increase several fold. The demand for high wall-plug efficiency, low noise, narrow linewidth laser systems to meet different systems requirements that can reliably operate over the life of a mission will be high. The general trends will be for spatial quality very close to the diffraction limit, improved spectral performance, increased wall-plug efficiency and multi-beam processing. Improved spectral performance will include narrower spectral width (very near the transform limit), increased wavelength stability and or tuning (depending on application) and lasers reaching a wider range of wavelengths stretching into the mid-infrared and the near ultraviolet. We are actively developing high efficiency laser transmitter and high-sensitivity laser receiver systems that are suitable for spaceborne applications.

  6. Laser driven radiography

    SciTech Connect

    Perry, M.D.; Sefcik, J.; Cowan, T.

    1997-12-20

    Intense laser (> 1021 W/cm{sup 3}) driven hard x-ray sources offer a new alternative to conventional electron accelerator Bremsstrahlung sources. These laser driven sources offer considerable simplicity in design and potential cost advantage for multiple axis views. High spatial and temporal resolution is achievable as a result of the very small source size (<100 um) and short-duration of the laser pulse. We have begun a series of experiments with the Petawatt laser at LLNL to determine the photon flux achievable with these sources and assess their potential for Stewardship applications. Additionally, we are developing a conceptual design and cost estimate of a multi-pulse, multi-axis (up to five) radiographic facility utilizing the Contained Firing Facility at site 300 and existing laser hardware.

  7. Laser controlled flame stabilization

    DOEpatents

    Early, James W.; Thomas, Matthew E.

    2001-01-01

    A method and apparatus is provided for initiating and stabilizing fuel combustion in applications such as gas turbine electrical power generating engines and jet turbine engines where it is desired to burn lean fuel/air mixtures which produce lower amounts of NO.sub.x. A laser induced spark is propagated at a distance from the fuel nozzle with the laser ignitor being remotely located from the high temperature environment of the combustion chamber. A laser initiating spark generated by focusing high peak power laser light to a sufficiently tight laser spot within the fuel to cause the ionization of air and fuel into a plasma is unobtrusive to the flow dynamics of the combustion chamber of a fuel injector, thereby facilitating whatever advantage can be taken of flow dynamics in the design of the fuel injector.

  8. Broadband laser protection system

    NASA Astrophysics Data System (ADS)

    Rajic, Slobodan; Chen, C. H. W.

    1994-07-01

    Recent developments in military systems aimed at protecting sensors and human eyes from battlefield laser threats can be applied to more traditional ultraviolet laser hazards. The technique involves utilizing a reflective optical system containing a sacrificial component that can act quickly enough to defeat ultra-short pulse length lasers. However, below a certain damage threshold the system level transmission can be as high as 90%. Laboratory safety equipment can be one of the beneficiaries of this technology since traditional filter based equipment can significantly reduce the visible spectrum. In addition, since this technology relies on energy rather than wavelength for attenuation, a single piece of safety equipment can be used with either frequency agile lasers or entirely different laser systems. The factor that makes this approach financially and technically feasible is the self-aligning reflective optical system technology employing single point diamond turning fabrication methods.

  9. Laser hair removal.

    PubMed

    Ibrahimi, Omar A; Avram, Mathew M; Hanke, C William; Kilmer, Suzanne L; Anderson, R Rox

    2011-01-01

    The extended theory of selective photothermolysis enables the laser surgeon to target and destroy hair follicles, thereby leading to hair removal. Today, laser hair removal (LHR) is the most commonly requested cosmetic procedure in the world and is routinely performed by dermatologists, other physicians, and non-physician personnel with variable efficacy. The ideal candidate for LHR is fair skinned with dark terminal hair; however, LHR can today be successfully performed in all skin types. Knowledge of hair follicle anatomy and physiology, proper patient selection and preoperative preparation, principles of laser safety, familiarity with the various laser/light devices, and a thorough understanding of laser-tissue interactions are vital to optimizing treatment efficacy while minimizing complications and side effects.

  10. Super-Compact Laser

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Microcosm, Inc. produced the portable Farfield-2 laser for field applications that require high power pulsed illumination. The compact design was conceived through research at Goddard Space Flight Center on laser instruments for space missions to carry out geoscience studies of Earth. An exclusive license to the key NASA patent for the compact laser design was assigned to Microcosm. The FarField-2 is ideal for field applications, has low power consumption, does not need water cooling or gas supplies, and produces nearly ideal beam quality. The properties of the laser also make it effective over long distances, which is one reason why NASA developed the technology for laser altimeters that can be toted aboard spacecraft. Applications for the FarField-2 include medicine, biology, and materials science and processing, as well as diamond marking, semiconductor line-cutting, chromosome surgery, and fluorescence microscopy.

  11. Laser dividing apparatus

    DOEpatents

    English, Jr., R. Edward; Johnson, Steve A.

    1995-01-01

    A laser beam dividing apparatus (10) having a first beam splitter (14) with an aperture (16) therein positioned in the path of a laser beam (12) such that a portion of the laser beam (12) passes through the aperture (16) onto a second beam splitter (20) and a portion of the laser beam (12) impinges upon the first beam splitter (14). Both the first beam splitter (14) and the second beam splitter (20) are, optionally, made from a dichroic material such that a green component (24) of the laser beam (12) is reflected therefrom and a yellow component (26) is refracted therethrough. The first beam splitter (14) and the second beam splitter (20) further each have a plurality of facets (22) such that the components (24, 26) are reflected and refracted in a number equaling the number of facets (22).

  12. Solid State Laser

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Titan-CW Ti:sapphire (titanium-doped sapphire) tunable laser is an innovation in solid-state laser technology jointly developed by the Research and Solid State Laser Divisions of Schwartz Electro-optics, Inc. (SEO). SEO is producing the laser for the commercial market, an outgrowth of a program sponsored by Langley Research Center to develop Ti:sapphire technology for space use. SEO's Titan-CW series of Ti:sapphire tunable lasers have applicability in analytical equipment designed for qualitative analysis of carbohydrates and proteins, structural analysis of water, starch/sugar analyses, and measurements of salt in meat. Further applications are expected in semiconductor manufacture, in medicine for diagnosis and therapy, and in biochemistry.

  13. Laser-heated thruster

    NASA Technical Reports Server (NTRS)

    Kemp, N. H.; Krech, R. H.

    1980-01-01

    The development of computer codes for the thrust chamber of a rocket of which the propellant gas is heated by a CW laser beam was investigated. The following results are presented: (1) simplified models of laser heated thrusters for approximate parametric studies and performance mapping; (3) computer programs for thrust chamber design; and (3) shock tube experiment to measure absorption coefficients. Two thrust chamber design programs are outlined: (1) for seeded hydrogen, with both low temperature and high temperature seeds, which absorbs the laser radiation continuously, starting at the inlet gas temperature; and (2) for hydrogen seeded with cesium, in which a laser supported combustion wave stands near the gas inlet, and heats the gas up to a temperature at which the gas can absorb the laser energy.

  14. Silicon Nanocrystal Laser

    SciTech Connect

    Yu, J

    2005-03-09

    The purpose of this feasibility study project was to attempt to demonstrate the silicon-nanocrystal-based laser. Such a silicon laser (made using conventional silicon-manufacturing technologies) would provide the crucial missing link that would enable a completely-silicon-based photonic system. We prepared thin layers of silicon nanocrystal material by ion-implanting Si in fused silica substrates, followed by a high temperature anneal process. These Si nanocrystals produced intense photoluminescence when optically pumped with ultraviolet light. Laser structures based on Fabry-Perot cavity and distributed feedback (DFB) designs were fabricated using the Si nanocrystals as the ''lasing'' medium. We optically pumped the samples with CW lasers at 413nm wavelength to quickly assess the feasibility of making lasers out of the Nanocrystal Si material and to verify the gain coefficients reported by other research groups.

  15. Ultrafast laser IR countermeasures

    NASA Astrophysics Data System (ADS)

    Rafailov, Michael K.

    2009-05-01

    Directional Infrared Countermeasures (DIRCM) is an effective technique to defeat heat-seeking missiles. The major problem of existing DIRCM is that it may work like a beacon for threats that are not susceptible to the jamming code implemented: attracting a missile instead of re-directing it away from the aircraft. Ultra-fast laser pulse technology is discussed as an alternative to a conventional laser DIRCM. An ultra-fast laser is capable of providing a different type of countermeasure which is compatible with existing laser based DIRCM pointing systems as it requires much less peak power than damage inducing systems. A foundation of ultra-fast technology is its unique ability to alter the intrinsic characteristics of the semiconductor. In this paper, we will only consider the effects of a mild lattice disturbance caused by relatively low energy ultra-fast (femto-second) and, to some extent, fast (pico-second) laser pulses.

  16. Free electron laser designs for laser amplification

    DOEpatents

    Prosnitz, Donald; Szoke, Abraham

    1985-01-01

    Method for laser beam amplification by means of free electron laser techniques. With wiggler magnetic field strength B.sub.w and wavelength .lambda..sub.w =2.pi./k.sub.w regarded as variable parameters, the method(s) impose conditions such as substantial constancy of B.sub.w /k.sub.w or k.sub.w or B.sub.w and k.sub.w (alternating), coupled with a choice of either constant resonant phase angle or programmed phase space "bucket" area.

  17. Laser conservation paleontology

    NASA Astrophysics Data System (ADS)

    Asmus, John F.

    2001-10-01

    Just as lasers have found countless applications in science, industry, medicine, and entertainment, an array of real and potential uses for lasers in art-conservation analytes and practice have been investigated over the past thirty years. These include holographic recording, holographic recording, holographic nondestructive testing, laser-induced ultrasonic imaging, laser-scattering surface characterization, atomic and molecular analyses, photoacoustic spectroscopy, surface modification, as well as surface divestment and cleaning. The initial endeavors in exploring and assessing the utility of these tools for art conservation are recounted for investigations involving ruby, glass, ion, YAG, carbon dioxide, dye, and excimer lasers as well as high-intensity nonlaser light generators such as xenon flashlamps and argon pinchlamps. Initially, laser divestment/cleaning was, by general consensus, the least plausible laser application in art conservation. In the past ten years it has emerged to dominate all the other applications noted above. Today, at least a dozen firms supply user-friendly laser systems optimized for a range of art-conservation divestment applications. The first-generation laser-cleaning tools are essentially a laser, a beam-delivery device, and a debris- collection accessory. Advanced developmental work has turned in large measure to ancillary subsystems for more sophisticated process control. Of particular importance are acoustic, optical, spectral, EMP, and electronic-vision process control. Beam direction may be via manual, translational-scanner, or robotic beam positioning implemented by means of fiber optics, minors, or prisms and computer control. Substrate thermal alteration and debris redeposition may be minimized or avoided through the incorporation of a gas jet, fluid or fluid jet, or dry-ice blast.

  18. Laser Safety Inspection Criteria

    SciTech Connect

    Barat, K

    2005-06-13

    A responsibility of the Laser Safety Officer (LSO) is to perform laser audits. The American National Standard Z136.1 Safe Use of Lasers references this requirement through several sections. One such reference is Section 1.3.2.8, Safety Features Audits, ''The LSO shall ensure that the safety features of the laser installation facilities and laser equipment are audited periodically to assure proper operation''. The composition, frequency and rigor of that inspection/audit rests in the hands of the LSO. A common practice for institutions is to develop laser audit checklists or survey forms It is common for audit findings from one inspector or inspection to the next to vary even when reviewing the same material. How often has one heard a comment, ''well this area has been inspected several times over the years and no one ever said this or that was a problem before''. A great number of audit items, and therefore findings, are subjective because they are based on the experience and interest of the auditor to particular items on the checklist. Beam block usage, to one set of eyes might be completely adequate, while to another, inadequate. In order to provide consistency, the Laser Safety Office of the National Ignition Facility Directorate has established criteria for a number of items found on the typical laser safety audit form. The criteria are distributed to laser users. It serves two broad purposes; first, it gives the user an expectation of what will be reviewed by an auditor. Second, it is an opportunity to explain audit items to the laser user and thus the reasons for some of these items, such as labelling of beam blocks.

  19. Laser autodyne angioscopy

    NASA Astrophysics Data System (ADS)

    Gordov, Eugeni P.; Makogon, Michail M.; Pekarskii, Vikentii V.; Shipulin, Vladimir M.

    1994-07-01

    A novel approach to imagination of inner surface of arteria during performing laser and balloon angioplasty is suggested. To this end the laser light was transmitted via fiber to the zone of interest and radiation diffused by the walls of the vessel was adopted by receiver. Known technique to determine of contours of an object by measuring the time of the laser pulse propagation is unusable due to the small geometrical scales. Using the CW laser and feeding a portion of the backscattered signal power into the laser cavity (this kind of device was referred to as laser autodyne coherent receiver), the authors have been able to measure the object contour with spatial resolution of up to 2 microns. Such resolution and high sensitivity inherent to this technique should allows one to detect early in the development of the atherosclerosis. To obtain the 3D image of the vessel inside surface we offer two methods. In the first case the vessel side is scanned by moving the end of light quid. In the second one multimode laser is used and the image is drawing by scanning the transverse modes of this laser. The vessel side and atherosclerotic plaques have the different reflectivity spectrum and this fact can be used to increase the image contrast. The correct selection of the laser wavelength makes possible to work into the vessel with circulation of the blood. The calculation of laser autodyne intrascope performance and tentative experimental results are presented in this report. The advantages of this method for the angiography are in speed and adequately of control during performing angioplasty.

  20. Laser diode array pumped continuous wave Rubidium vapor laser.

    PubMed

    Zhdanov, B V; Stooke, A; Boyadjian, G; Voci, A; Knize, R J

    2008-01-21

    We have demonstrated continuous wave operation of a laser diode array pumped Rb laser with an output power of 8 Watts. A slope efficiency of 60% and a total optical efficiency of 45% were obtained with a pump power of 18 Watts. This laser can be scaled to higher powers by using multiple laser diode arrays or stacks of arrays.

  1. Rubidium vapor laser pumped by two laser diode arrays.

    PubMed

    Zhdanov, Boris V; Stooke, Adam; Boyadjian, Gregory; Voci, Adam; Knize, R J

    2008-03-01

    Scaling of alkali lasers to higher powers requires using multiple diode lasers for pumping. The first (to our knowledge) results of a cw rubidium laser pumped by two laser diode arrays are presented. A slope efficiency of 53%, total optical efficiency of 46%, and output power of 17 W have been demonstrated.

  2. Comparative shock wave analysis during corneal ablation with an excimer laser, picosecond laser, and femtosecond laser

    NASA Astrophysics Data System (ADS)

    Krueger, Ronald R.; Juhasz, Tibor

    1995-05-01

    With the event of topographic steep central islands following excimer laser surgery and the potential damage to the corneal endothelium, shock waves are playing an increasingly important role in laser refractive surgery. With this in mind, we performed a comparative shock wave analysis in corneal tissue using an excimer laser, picosecond laser, and femtosecond laser. We used a Lambda Physik excimer laser at 308 nm wavelength, a Nd:YLF picosecond laser at 1053 nm wavelength and a synchronously pumped linear cavity femtosecond laser at 630 nm wavelength. The pulse widths of the corresponding lasers were 8 ns, 18 ps, 150 fs, respectively. The energy density of irradiation was 2.5 to 8 times the threshold level being 2 J/cm2 (excimer laser), 86 J/cm2 (picosecond laser) and 10.3 J/cm2 (femtosecond laser). Shock wave dynamics were analyzed using time-resolved photography on a nanosecond time scale using the picosecond laser in corneal tissue, water and air. Shock wave dynamics using the femtosecond laser were studied in water only while the excimer laser induced shock wave during corneal ablation was studied in air only. We found the dynamics of shock waves to be similar in water and corneal tissue indicating that water is a good model to investigate shock wave effects in the cornea. The magnitude of the shock wave velocity and pressure decays over time to that of a sound wave. The distance over which it decays is 3 mm in air with the excimer laser and 600 - 700 micrometers in air with the picosecond laser. In water, the picosecond laser shock wave decays over a distance of 150 micrometers compared to the femtosecond laser shock wave which decays over a distance of 30 micrometers . Overall the excimer laser shock wave propagates 5 times further than that of the picosecond laser and the picosecond laser shock wave propagates 5 times further than that of the femtosecond laser. In this preliminary comparison, the time and distance for shock wave decay appears to be directly

  3. Consistency analysis on laser signal in laser guided weapon simulation

    NASA Astrophysics Data System (ADS)

    Yin, Ruiguang; Zhang, Wenpan; Guo, Hao; Gan, Lin

    2015-10-01

    The hardware-in-the-loop simulation is widely used in laser semi-active guidance weapon experiments, the authenticity of the laser guidance signal is the key problem of reliability. In order to evaluate the consistency of the laser guidance signal, this paper analyzes the angle of sight, laser energy density, laser spot size, atmospheric back scattering, sun radiation and SNR by comparing the different working state between actual condition and hardware-in-the-loop simulation. Based on measured data, mathematical simulation and optical simulation result, laser guidance signal effects on laser seeker are determined. By using Monte Carlo method, the laser guided weapon trajectory and impact point distribution are obtained, the influence of the systematic error are analyzed. In conclusion it is pointed out that the difference between simulation system and actual system has little influence in normal guidance, has great effect on laser jamming. The research is helpful to design and evaluation of laser guided weapon simulation.

  4. Task five report: Laser communications for data acquisition networks. [characteristics of lasers and laser systems for optical communication applications

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Laser communication technology and laser communication performance are reviewed. The subjects discussed are: (1) characteristics of laser communication systems, (2) laser technology problems, (3) means of overcoming laser technology problems, and (4) potential schedule for including laser communications into data acquisition networks. Various types of laser communication systems are described and their capabilities are defined.

  5. Frequency stabilization of diode-laser-pumped solid state lasers

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1988-01-01

    The goal of the NASA Sunlite program is to fly two diode-laser-pumped solid-state lasers on the space shuttle and while doing so to perform a measurement of their frequency stability and temporal coherence. These measurements will be made by combining the outputs of the two lasers on an optical radiation detector and spectrally analyzing the beat note. Diode-laser-pumped solid-state lasers have several characteristics that will make them useful in space borne experiments. First, this laser has high electrical efficiency. Second, it is of a technology that enables scaling to higher powers in the future. Third, the laser can be made extremely reliable, which is crucial for many space based applications. Fourth, they are frequency and amplitude stable and have high temporal coherence. Diode-laser-pumped solid-state lasers are inherently efficient. Recent results have shown 59 percent slope efficiency for a diode-laser-pumped solid-state laser. As for reliability, the laser proposed should be capable of continuous operation. This is possible because the diode lasers can be remote from the solid state gain medium by coupling through optical fibers. Diode lasers are constructed with optical detectors for monitoring their output power built into their mounting case. A computer can actively monitor the output of each diode laser. If it sees any variation in the output power that might indicate a problem, the computer can turn off that diode laser and turn on a backup diode laser. As for stability requirements, it is now generally believed that any laser can be stabilized if the laser has a frequency actuator capable of tuning the laser frequency as far as it is likely to drift in a measurement time.

  6. History of lasers.

    PubMed

    Gross, Andreas J; Herrmann, Thomas R W

    2007-06-01

    The developments of laser technology from the cradle of modern physics in 1900 by Planck to its latest medical boundaries is an exciting example of how basic physics finds its way into clinical practice. This article merits the protagonists and their contribution to the steps in this development. The competition between the different research groups finally led to the award of the Nobel Prize to Townes, Basov and Prokhorov in 1964 for the scientific basis on quantum electronics, which led to the construction of oscillators and amplifiers based on the laser-maser principle. Forty-three years after Einstein's first theories Maiman introduced the first ruby laser for commercial use. This marked the key step for the laser application and pioneered fruitful cooperations between basic and clinical science. The pioneers of lasers in clinical urology were Parsons in 1966 with studies in canine bladders and Mulvany 1968 with experiments in calculi fragmentation. The central technological component for the triumphal procession of lasers in urology is the endoscope. Therefore lasers are currently widely used, being the tool of choice in some areas, such as endoscopical lithotriptic stone treatment or endoluminal organ-preserving tumor ablation. Furthermore they show promising treatment alternatives for the treatment of benign prostate hyperplasia.

  7. A borane laser

    NASA Astrophysics Data System (ADS)

    Cerdán, Luis; Braborec, Jakub; Garcia-Moreno, Inmaculada; Costela, Angel; Londesborough, Michael G. S.

    2015-01-01

    Emission from electronically excited species forms the basis for an important class of light sources—lasers. So far, commercially available solution-processed blue-emitting laser materials are based on organic compounds or semiconductor nanocrystals that have significant limitations: either low solubility, low chemical- and/or photo-stability and/or uncompetitive prices. Here we report a novel and competitive alternative to these existing laser materials that is based on boron hydrides, inorganic cluster compounds with a rich and diverse chemistry. We demonstrate that solutions of the borane anti-B18H22 show, under pulsed excitation, blue laser emission at 406 nm with an efficiency (ratio of output/input energies) of 9.5%, and a photostability superior to many of the commercially available state-of-the-art blue laser dyes. This demonstration opens the doors for the development of a whole new class of laser materials based on a previously untapped resource for laser technology—the boranes.

  8. Treatment of laser complications.

    PubMed

    Alster, Tina S; Khoury, Randa R

    2009-12-01

    Modern lasers and light-based sources that were developed based on the theory of selective photothermolysis are capable of destroying specific tissue targets while minimizing the risk of scarring and pigmentary changes. This is accomplished through the use of a wavelength and pulse duration that is best absorbed by a specific chromophore such as melanin or hemoglobin. However, not all lasers and light sources adhere to this principle. Continuous wave (CW) lasers are least selective and may produce unwanted tissue damage and scarring through heat conduction to normal skin. Quasi-CW lasers limit excessive thermal destruction by delivery of a series of brief laser pulses but still pose a higher risk of nonspecific tissue damage and thermal injury. The pulsed and Q-switched (QS) systems adhere most closely to the principles of selective photothermolysis and result in the highest degree of selective destruction with the lowest risk of scarring from excessive thermal diffusion. Certainly, any laser system potentially can result in scarring and tissue damage when used incorrectly; therefore, adequate operator education and skill are essential. Side effects and complications that occur as a consequence of laser treatment can be significantly reduced if diagnosed and treated in an expeditious manner. Thieme Medical Publishers.

  9. Lasers in digestive endoscopy

    NASA Astrophysics Data System (ADS)

    Brunetaud, Jean Marc; Maunoury, Vincent; Cochelard, Dominique

    1997-01-01

    Lasers were introduced in digestive endoscopy to stop active gastroduodenal hemorrhages. Their use spread progressively to the treatment of chronic hemorrhages from vascular malformations and sessile tumors. Laser face competition from other endoscopic techniques such as electrocoagulation, injection techniques, dilation, stents, and brachytherapy. Many series have reported the efficacy of lasers in digestive endoscopy used for their thermal or photochemical effects. However, they were gradually abandoned for the treatment of hemorrhages because of competition from nonlaser techniques. Lasers are still used for ablation of sessile tumors, but their true impact is difficult to evaluate. Modern methods of technology assessment did not allow gastroenterologists to clearly define the place of lasers among surgery, radio-chemotherapy, and other endoscopic techniques, and data on the daily use of lasers are not available. Therefore, the conclusion can only be subjective. The best current application of thermal lasers appears to be in the treatment of rectosigmoid villous adenomas in elderly patients. Small superficial rectal cancers may also become a good subject due to the impact of endoscopic ultrasonography. Early lesions with multifocal or diffuse disease such as early esophageal cancers could be the most promising subject of application for photodynamic therapy in the future.

  10. Transmyocardial laser revascularization.

    PubMed

    Bernheim, M W

    2001-06-01

    In transmyocardial laser revascularization, a small left thoracotomy incision is made at the fifth rib. The surgeon dissects until adequate exposure of the heart is made, and the laser can be used. The areas to be lasered are identified, and treatment begins. As each laser beam penetrates the myocardium, a flash of bubbles can be seen on echocardiogram exiting the left ventricular outflow tract, which confirms adequate channeling. After revascularization, the mitral valve is inspected for any damage to papillary muscle or leaflets. This case report focuses on a new laser procedure that creates channels in the heart that promote angiogenesis and reestablish blood flow. A 47-year-old man presented for this surgery after having previous coronary artery bypass surgery. He had worsening angina and was not recommended for repeat bypass surgery because of his diffuse disease. Transmyocardial laser revascularization was offered as an alternative to medical therapy. Complications reported include dysrhythmia, bleeding, congestive heart failure, mitral valve damage, low cardiac output syndrome, and death. Many patients note substantial anginal relief after a few weeks. Transmyocardial laser revascularization gives an alternative to those with intractable angina and generally offers an improvement in quality of life.

  11. Laser Propulsion Standardization Issues

    SciTech Connect

    Scharring, Stefan; Eckel, Hans-Albert; Roeser, Hans-Peter; Sinko, John E.; Sasoh, Akihiro

    2010-10-08

    It is a relevant issue in the research on laser propulsion that experimental results are treated seriously and that meaningful scientific comparison is possible between groups using different equipment and measurement techniques. However, critical aspects of experimental measurements are sparsely addressed in the literature. In addition, few studies so far have the benefit of independent confirmation by other laser propulsion groups. In this paper, we recommend several approaches towards standardization of published laser propulsion experiments. Such standards are particularly important for the measurement of laser ablation pulse energy, laser spot area, imparted impulse or thrust, and mass removal during ablation. Related examples are presented from experiences of an actual scientific cooperation between NU and DLR. On the basis of a given standardization, researchers may better understand and contribute their findings more clearly in the future, and compare those findings confidently with those already published in the laser propulsion literature. Relevant ISO standards are analyzed, and revised formats are recommended for application to laser propulsion studies.

  12. Laser Ion Acceleration Control

    NASA Astrophysics Data System (ADS)

    Kawata, Shigeo; Nagashima, T.; Izumiyama, T.; Sato, D.; Takano, M.; Barada, D.; Ma, Y. Y.; Gu, Y. J.; Kong, Q.; Wang, P. X.; Wang, W. M.

    2013-10-01

    An intense femtosecond pulsed laser is employed to accelerate ions. The issues in the laser ion accelerator include the energy efficiency from the laser to the ions, the ion beam collimation, the ion energy spectrum control, the ion beam bunching, the ion particle energy control, etc. In the study particle computer simulations were performed to solve the issues, and each component was designed to control the ion beam quality. When an intense laser illuminates a target, electrons in the target are accelerated and leave from the target; temporarily a strong electric field is formed between the high-energy electrons and the target ions, and the target ions are accelerated. The energy efficiency from the laser to ions was improved by using a solid target with a fine sub-wavelength structure or by a near critical density gas plasma. The ion beam collimation was realized by holes behind the solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching were successfully realized by a multi-stage laser-target interaction. The present study proposed a novel concept for a future compact laser ion accelerator, based on each component study required to control the ion beam quality and parameters. Partly supported by JSPS, MEXT, CORE, Japan/US Cooperation program, ASHULA and ILE/Osaka University.

  13. Laser scar revision.

    PubMed

    Lupton, Jason R; Alster, Tina S

    2002-01-01

    A variety of lasers can be used to treat scars and striae effectively. It is of paramount importance that the type of scar be properly classified on initial examination so that the most appropriate method of treatment can be chosen. Classification also allows the laser surgeon to discuss with the patient the anticipated response to treatment. The 585-nm pulsed dye laser (PDL) is the most appropriate system for treating hypertrophic scars, keloids, erythematous scars, and striae. The PDL carries a low risk of side effects and complications when operated at appropriate treatment parameters and time intervals. Atrophic scars are best treated with ablative CO2 and Er:YAG lasers; however, proliferative keloids and hypertrophic scars should not be vaporized because of the high risk of scar recurrence or progression. The appropriate choice and use of lasers can significantly improve most scars. As research in laser-skin interaction continues, further refinements in laser technology coupled with the addition of alternate treatment procedures will allow improved clinical efficacy and predictability.

  14. Fractional laser skin resurfacing.

    PubMed

    Alexiades-Armenakas, Macrene R; Dover, Jeffrey S; Arndt, Kenneth A

    2012-11-01

    Laser skin resurfacing (LSR) has evolved over the past 2 decades from traditional ablative to fractional nonablative and fractional ablative resurfacing. Traditional ablative LSR was highly effective in reducing rhytides, photoaging, and acne scarring but was associated with significant side effects and complications. In contrast, nonablative LSR was very safe but failed to deliver consistent clinical improvement. Fractional LSR has achieved the middle ground; it combined the efficacy of traditional LSR with the safety of nonablative modalities. The first fractional laser was a nonablative erbium-doped yttrium aluminum garnet (Er:YAG) laser that produced microscopic columns of thermal injury in the epidermis and upper dermis. Heralding an entirely new concept of laser energy delivery, it delivered the laser beam in microarrays. It resulted in microscopic columns of treated tissue and intervening areas of untreated skin, which yielded rapid reepithelialization. Fractional delivery was quickly applied to ablative wavelengths such as carbon dioxide, Er:YAG, and yttrium scandium gallium garnet (2,790 nm), providing more significant clinical outcomes. Adjustable laser parameters, including power, pitch, dwell time, and spot density, allowed for precise determination of percent surface area, affected penetration depth, and clinical recovery time and efficacy. Fractional LSR has been a significant advance to the laser field, striking the balance between safety and efficacy.

  15. Laser applications in surgery

    PubMed Central

    Azadgoli, Beina

    2016-01-01

    In modern medicine, lasers are increasingly utilized for treatment of a variety of pathologies as interest in less invasive treatment modalities intensifies. The physics behind lasers allows the same basic principles to be applied to a multitude of tissue types using slight modifications of the system. Multiple laser systems have been studied within each field of medicine. The term “laser” was combined with “surgery,” “ablation,” “lithotripsy,” “cancer treatment,” “tumor ablation,” “dermatology,” “skin rejuvenation,” “lipolysis,” “cardiology,” “atrial fibrillation (AF),” and “epilepsy” during separate searches in the PubMed database. Original articles that studied the application of laser energy for these conditions were reviewed and included. A review of laser therapy is presented. Laser energy can be safely and effectively used for lithotripsy, for the treatment of various types of cancer, for a multitude of cosmetic and reconstructive procedures, and for the ablation of abnormal conductive pathways. For each of these conditions, management with lasers is comparable to, and potentially superior to, management with more traditional methods. PMID:28090508

  16. Laser Plasma Material Interactions

    SciTech Connect

    Schaaf, Peter; Carpene, Ettore

    2004-12-01

    Surface treatment by means of pulsed laser beams in reactive atmospheres is an attractive technique to enhance the surface features, such as corrosion and wear resistance or the hardness. Many carbides and nitrides play an important role for technological applications, requiring the mentioned property improvements. Here we present a new promising fast, flexible and clean technique for a direct laser synthesis of carbide and nitride surface films by short pulsed laser irradiation in reactive atmospheres (e.g. methane, nitrogen). The corresponding material is treated by short intense laser pulses involving plasma formation just above the irradiated surface. Gas-Plasma-Surface reactions lead to a fast incorporation of the gas species into the material and subsequently the desired coating formation if the treatment parameters are chosen properly. A number of laser types have been used for that (Excimer Laser, Nd:YAG, Ti:sapphire, Free Electron Laser) and a number of different nitride and carbide films have been successfully produced. The mechanisms and some examples will be presented for Fe treated in nitrogen and Si irradiated in methane.

  17. Dye laser traveling wave amplifier

    NASA Technical Reports Server (NTRS)

    Davidson, F.

    1983-01-01

    A flash lamp pumped dye laser suitable for use as an amplifier stage was developed. The desired output laser pulses are of nanosecond duration, tunable in center frequency, and of good optical quality. Its usefulness as a laser oscillator is emphasized, because it constitutes a compact, relatively efficient source of tunable dye laser light.

  18. 1982 laser program annual report

    SciTech Connect

    Hendricks, C.D.; Grow, G.R.

    1983-08-01

    This annual report covers the following eight sections: (1) laser program review, (2) laser systems and operation, (3) target design, (4) target fabrication, (5) fusion experiments program, (6) Zeus laser project, (7) laser research and development, and (8) energy applications. (MOW)

  19. Lasers in ophthalmic clinical applications

    NASA Astrophysics Data System (ADS)

    Carstocea, Benone; Banacu, I.; Stanciu, D.; Filip, M.; Pascu, Mihail L.; Pascu, A.; Dutu, Doru C.; Dabu, Razvan V.; Ionescu, T.

    1989-05-01

    A technical report regarding three types of medical equipments with lasers of particular interest for ophthalmology is introduced, namely: tunable dye laser photocoagulator, CO2 laser scalpel and Nd:YAG surgical instrument. Clinical results obtained using the above mentioned devices and Ar+ laser photocoagulator are reported, including concluding remarks about the application fields specific for each equipment.

  20. Monolithic blue upconversion fiber laser

    NASA Astrophysics Data System (ADS)

    Gaebler, Volker; Eichler, Hans J.

    2002-06-01

    We report a monolithic low threshold 482nm Tm:ZBLAN upconversion fiber laser. The laser cavity consists of a directly coated single-mode fluoride fiber. The vapor deposit coatings significantly reduce the coupling losses and are suitable to be pumped by laser diodes. The laser operation and threshold characteristics have been investigated. The output stability and beam quality was tested.

  1. Analog Simulation of a Laser.

    ERIC Educational Resources Information Center

    Kessler, Gary

    1982-01-01

    Presents an analog simulation of laser properties (finding time evolution of the intensity of a ruby laser pulse) which serves as the basis of a three-four hour laboratory experiment. Includes programs for solution to rate equations of a three-level laser and production of a giant pulse in a ruby laser. (Author/SK)

  2. Analog Simulation of a Laser.

    ERIC Educational Resources Information Center

    Kessler, Gary

    1982-01-01

    Presents an analog simulation of laser properties (finding time evolution of the intensity of a ruby laser pulse) which serves as the basis of a three-four hour laboratory experiment. Includes programs for solution to rate equations of a three-level laser and production of a giant pulse in a ruby laser. (Author/SK)

  3. Piezoelectric measurement of laser power

    DOEpatents

    Deason, Vance A.; Johnson, John A.; Telschow, Kenneth L.

    1991-01-01

    A method for measuring the energy of individual laser pulses or a series of laser pulses by reading the output of a piezoelectric (PZ) transducer which has received a known fraction of the total laser pulse beam. An apparatus is disclosed that reduces the incident energy on the PZ transducer by means of a beam splitter placed in the beam of the laser pulses.

  4. Ultra-fast laser system

    DOEpatents

    Dantus, Marcos; Lozovoy, Vadim V

    2014-01-21

    A laser system is provided which selectively excites Raman active vibrations in molecules. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and remote sensing.

  5. Color Laser Microscope

    NASA Astrophysics Data System (ADS)

    Awamura, D.; Ode, T.; Yonezawa, M.

    1987-04-01

    A color laser microscope utilizing a new color laser imaging system has been developed for the visual inspection of semiconductors. The light source, produced by three lasers (Red; He-Ne, Green; Ar, Blue; He-Cd), is deflected horizontally by an AOD (Acoustic Optical Deflector) and vertically by a vibration mirror. The laser beam is focused in a small spot which is scanned over the sample at high speed. The light reflected back from the sample is reformed to contain linear information by returning to the original vibration mirror. The linear light is guided to the CCD image sensor where it is converted into a video signal. Individual CCD image sensors are used for each of the three R, G, or B color image signals. The confocal optical system with its laser light source yields a color TV monitor image with no flaring and a much sharper resolution than that of the conventional optical microscope. The AOD makes possible a high speed laser scan and a NTSC or PAL TV video signal is produced in real time without any video memory. Since the light source is composed of R, G, and B laser beams, color separation superior to that of white light illumination is achieved. Because of the photometric linearity of the image detector, the R, G, and B outputs of the system are most suitably used for hue analysis. The CCD linear image sensors in the optical system produce no geometrical distortion, and good color registration is available principally. The output signal can be used for high accuracy line width measuring. The many features of the color laser microscope make it ideally suited for the visual inspection of semiconductor processing. A number of these systems have already been installed in such a capacity. The Color Laser Microscope can also be a very useful tool for the fields of material engineering and biotechnology.

  6. [Ablative and fractional lasers].

    PubMed

    Beylot, C; Grognard, C; Michaud, T

    2009-10-01

    The use of pulsed or scanning Carbon Dioxide, and pulsed Erbium-YAG lasers allows the programmable and reproducible photocoagulation of thin layers of the epidermis and superficial dermis. Thermal damage depends on the type of laser and is greater with CO(2) lasers. The degree of neocollagenesis is proportional to the thermal damage and is better with CO(2) lasers. Their main indication is the correction of photoaged facial skin but they can also be used for corrective dermatology, e.g. for scars and genodermatosis. Results are highly satisfactory but the technique is invasive and the patient experiences a social hindrance of around two weeks. Fractionated techniques treat 25% of the defective skin area at each session in noncontiguous microzones; four sessions are therefore necessary to treat the entire cutaneous surface. The treatment is given under topical anesthesia and is much less invasive, particularly with nonablative fractional laser treatment in which photothermolysis does not penetrate below the epidermis and/or the effects are slight, with no or very little social isolation. However, the results are much less satisfactory than the results of ablative laser and there is no firming effect. Other zones than the face can be treated. With the fractional CO(2) and Erbium ablative lasers, which have multiplied over the past 2 years, the much wider impacts cause perforation of the epidermis and there is a zone of ablation by laser photovaporization, with a zone of thermal damage below. The results are better in correcting photoaging of the face, without, however, achieving the efficacy of ablative lasers, which remain the reference technique. However, the effects are not insignificant, requiring at least 5 days of social isolation.

  7. Laser treatment for skin disease

    NASA Astrophysics Data System (ADS)

    Bloznelyte-Plesniene, Laima; Cepulis, Vytautas; Ponomarev, Igor V.

    1996-12-01

    The correct selection of patients is the most difficult part of the laser treatment. Since 1985 the total number of patients treated by us using different laser systems was 1544. High power lasers: Nd:YAG and CO2 lasers were used by us for surgical treatment. Low power lasers: Helium-Neon, Copper vapor, gold vapor and dye lasers were applied by us to PDT or to treatment of port wine hemangiomas. this paper reports our efforts in selecting the patients with different skin lesions for the treatment with different laser systems.

  8. Eyesafe laser cloud mapper

    NASA Astrophysics Data System (ADS)

    Woodall, Milton A., II; Minch, J. R.; Nunez, J.; Keeter, Howard S.; Johnson, Anthony M.

    1990-07-01

    The performance of eyesafe erbium:glass lasers operating at a wavelength of 1. 54 urn has been tested under various natural and manmade obscurants. To obtain the maximum amount of information two distinct system configurations were employed. The first a laser cloud mapper was designed to provide a direct depth profile of smoke density and reflectivity as well as target position. The second configuration was a production military laser rangefinder. It is representative of systems currently incorporated in tactical armored vehicles and was used to provide a direct indication of target range. 1.

  9. Optimising Laser Tattoo Removal

    PubMed Central

    Sardana, Kabir; Ranjan, Rashmi; Ghunawat, Sneha

    2015-01-01

    Lasers are the standard modality for tattoo removal. Though there are various factors that determine the results, we have divided them into three logical headings, laser dependant factors such as type of laser and beam modifications, tattoo dependent factors like size and depth, colour of pigment and lastly host dependent factors, which includes primarily the presence of a robust immune response. Modifications in the existing techniques may help in better clinical outcome with minimal risk of complications. This article provides an insight into some of these techniques along with a detailed account of the factors involved in tattoo removal. PMID:25949018

  10. Multiaxis laser eigenstates

    SciTech Connect

    Brunel, M.; Le Floch, A.; Bretenaker, F.

    1996-05-01

    We derive a theoretical model based on a generalized Jones matrix formalism to calculate the eigenstates of lasers with {ital N} propagation axes. Spatial separation of the beams is realized inside the cavity by a collection of double-refraction crystals. This method allows one to adapt the mode volume to the geometry of the active medium. {ital N}-forked eigenstates are isolated, and the possibility of scaling up the TEM{sub 00} output power of a monomode laser is shown. All these features are tested experimentally in two-, four-, and eight-axis lasers and show good agreement with the theoretical predictions. {copyright} {ital 1996 Optical Society of America.}

  11. Fiber optic laser rod

    DOEpatents

    Erickson, G.F.

    1988-04-13

    A laser rod is formed from a plurality of optical fibers, each forming an individual laser. Synchronization of the individual fiber lasers is obtained by evanescent wave coupling between adjacent optical fiber cores. The fiber cores are dye-doped and spaced at a distance appropriate for evanescent wave coupling at the wavelength of the selected dye. An interstitial material having an index of refraction lower than that of the fiber core provides the optical isolation for effective lasing action while maintaining the cores at the appropriate coupling distance. 2 figs.

  12. Optimising laser tattoo removal.

    PubMed

    Sardana, Kabir; Ranjan, Rashmi; Ghunawat, Sneha

    2015-01-01

    Lasers are the standard modality for tattoo removal. Though there are various factors that determine the results, we have divided them into three logical headings, laser dependant factors such as type of laser and beam modifications, tattoo dependent factors like size and depth, colour of pigment and lastly host dependent factors, which includes primarily the presence of a robust immune response. Modifications in the existing techniques may help in better clinical outcome with minimal risk of complications. This article provides an insight into some of these techniques along with a detailed account of the factors involved in tattoo removal.

  13. Slow Light Semiconductor Laser

    DTIC Science & Technology

    2015-02-02

    we demonstrate a semiconductor laser with a spectral linewidth of 18 kHz in the telecom band around 1:55um. The views, opinions and/or findings...we demonstrate a semiconductor laser with a spectral linewidth of 18 kHz in the telecom band around 1:55um. Further, the large intracavity field...hybrid Si/III- V platforms Abstract The semiconductor laser is the principal light source powering the world-wide optical fiber network . Ever

  14. Supersonic laser propulsion.

    PubMed

    Rezunkov, Yurii; Schmidt, Alexander

    2014-11-01

    To produce supersonic laser propulsion, a new technique based on the interaction of a laser-ablated jet with supersonic gas flow in a nozzle is proposed. It is shown that such parameters of the jet, such as gas-plasma pressure and temperature in the ablation region as well as the mass consumption rate of the ablated solid propellant, are characteristic in this respect. The results of numerical simulations of the supersonic laser propulsion are presented for two types of nozzle configuration. The feasibility to achieve the momentum coupling coefficient of C(m)∼10(-3) N/W is shown.

  15. Ultrasmall Microfabricated Laser Cavities

    DTIC Science & Technology

    2013-10-23

    Design of a surface-emitting, subwavelength metal- clad disk laser in the visible spectrum, Optics Express, (08 2010): 0. doi: 10.1364/OE.18.019581 12/08...3.1 Metal- clad disk laser Metal-optic and plasmonic cavities have in recent years been of particular interest. It is well known that metals...metal- clad disk laser cavities that have a room temperature Q-factor of 200 to 300 at the visible red wavelength of λ ~ 670 nm. Non-degenerate

  16. Photodynamic therapy laser system

    NASA Astrophysics Data System (ADS)

    Shu, Xiaoqin; Lin, Qing; Wang, Feng; Shu, Chao; Wang, Jianhua

    2009-08-01

    Photodynamic therapy (PDT) treatment is a new treatment for tumour and Dermatology. With the successful development of the second-generation photosensitizer and the significant manifestations in clinics, PDT has shown a more extensive application potentials. To activate the photosensitizer, in this paper, we present a GaAs-based diode laser system with a wavelength of 635 nm. In this system, to prolong the working life-time of the diode lasers, we use specific feedback algorithm to control the current and the temperature of the diode laser with high precision. The clinic results show an excellent effect in the treatment of Condyloma combined with 5-ALA.

  17. Diatomic gasdynamic lasers.

    NASA Technical Reports Server (NTRS)

    Mckenzie, R. L.

    1972-01-01

    Predictions from a numerical model of the vibrational relaxation of anharmonic diatomic oscillators in supersonic expansions are used to show the extent to which the small anharmonicity of gases like CO can cause significant overpopulations of upper vibrational states. When mixtures of CO and N2 are considered, radiative gain on many of the vibration-rotation transitions of CO is predicted. Experiments are described that qualitatively verify the predictions by demonstrating laser oscillation in CO-N2 expansions. The resulting CO-N2 gasdynamic laser displays performance characteristics that equal or exceed those of similar CO2 lasers.

  18. Diatomic gasdynamic lasers

    NASA Technical Reports Server (NTRS)

    Mckenzie, R. L.

    1971-01-01

    Predictions from a numerical model of the vibrational relaxation of anharmonic diatomic oscillators in supersonic expansions are used to show the extent to which the small anharmonicity of gases like CO can cause significant overpopulations of upper vibrational states. When mixtures of CO and N2 are considered, radiative gain on many of the vibration-rotation transitions of CO is predicted. Experiments are described that qualitatively verify the predictions by demonstrating laser oscillation in CO-N2 expansions. The resulting CO-N2 gasdynamic laser displays performance characteristics that equal or exceed those of similar CO2 lasers.

  19. Tunable random fiber laser

    SciTech Connect

    Babin, S. A.; Podivilov, E. V.; El-Taher, A. E.; Harper, P.; Turitsyn, S. K.

    2011-08-15

    An optical fiber is treated as a natural one-dimensional random system where lasing is possible due to a combination of Rayleigh scattering by refractive index inhomogeneities and distributed amplification through the Raman effect. We present such a random fiber laser that is tunable over a broad wavelength range with uniquely flat output power and high efficiency, which outperforms traditional lasers of the same category. Outstanding characteristics defined by deep underlying physics and the simplicity of the scheme make the demonstrated laser a very attractive light source both for fundamental science and practical applications.

  20. Ring laser gyroscope anode

    SciTech Connect

    Ljung, B.H.

    1981-03-17

    An anode for a ring laser gyroscope which provides improved current stability in the glow discharge path is disclosed. The anode of this invention permits operation at lower currents thereby allowing a reduction of heat dissipation in the ring laser gyroscope. The anode of one embodiment of this invention is characterized by a thumbtack appearance with a spherical end where the normal sharp end of the thumbtack would be located. The stem of the anode extends from the outside of the gyroscope structure to the interior of the structure such that the spherical end is substantially adjacent to the laser beam.

  1. Simulations of laser undulators

    NASA Astrophysics Data System (ADS)

    Milton, S. V.; Biedron, S. B.; Einstein, J. E.

    2016-09-01

    We perform a series of single-pass, one-D free-electron laser simulations based on an electron beam from a standard linear accelerator coupled with a so-called laser undulator, a specialized device that is more compact than a standard undulator based on magnetic materials. The longitudinal field profiles of such lasers undulators are intriguing as one must and can tailor the profile for the needs of creating the virtual undulator. We present and discuss several results of recent simulations and our future steps.

  2. Lasers In Dental Diagnosis

    NASA Astrophysics Data System (ADS)

    Everse, K. E.; Sinor, T. W.; Menzel, E. R.

    1987-01-01

    We have investigated the potential of lasers for real time in situ dental diagnosis via transillumination of teeth and gums and via fluorescence. Not surprisingly, absorption and/or scattering of light by teeth was found to be insensitive to light color. However, monochromatic transillumination revealed detail better than white light. Transillumination of gums was best performed with orange-red light because of tissue absorption. Illumination of oral structures by 488 nm Ar-laser light was effective in revealing diagnosis detail by fluorescence. Incipient caries and fine tooth fracture lines that are generally not revealed by radiography were observable by laser.

  3. A laser retinoscope.

    PubMed

    Larson, W L; Beaulne, C

    1979-04-01

    A retinoscope that uses a He-Ne laser as its light source has been designed. By this means it is possible to improve the performance of the conventional retinoscope. In particular the contrast of the fundus reflex has been enhanced and the retinoscope can be used at a greater working distance than usual. By using a polarized laser the specular reflections from the eye are completely suppressed. The retinoscope lends itself to refractions under normal room illumination. Patients find the light from the laser retinoscope less bothersome than that of the usual tungsten filament lamp. Advantages and disadvantages of the unit are discussed.

  4. Thallium Mercury Laser Development.

    DTIC Science & Technology

    1980-04-17

    AD-A9 840 WESTINGHOUSE RESEARCH AND DEVELOPMENT CENTER PITTSBU--ETC F/A 20/5 THALLIUM MERCURY LASER DEVELOPMENT .(U) APR 80 C S LIU, D W FELDMAN, J L...PACK NO001I78-C-0131 lIlrt A nEQE-WOTFX-R NL THALLIUM MERCURY LASER DEVELOPMENT C. S. Liu, D. W. Feldman and J. L. Pack FINAL REPORT (PHASE II...PERIOD COVERED Thallium Mercury Laser Development -T- Final Report (Phase II) Feb. 1, 1979 to Jan. 31, 1980 77a. w-atF. -REPORT NUMBER _,___C2-OTEX

  5. Submarine laser communications

    NASA Astrophysics Data System (ADS)

    McConathy, D. R.

    The Department of the Navy and the Defense Advanced Research Projects Agency (DARPA) are sponsoring a joint study to investigate the use of blue-green laser technology to comunicate with submarines at operating depths. Two approaches are under investigation - one in which the laser itself is space-based, and the other in which the laser is ground-based with its beam redirected to the earth's surface by an orbiting mirror. This paper discusses these two approaches, and presents a brief history of activities which led to the current studies.

  6. Pulsed laser beam intensity monitor

    SciTech Connect

    Cason, C.M.; Jones, R.W.

    1982-07-13

    A pulsed laser beam intensity monitor measures the peak power within a selectable cross section of a test laser beam and measures integrated energy of the beam during the pulse period of a test laser. A continuous wave laser and a pulsed ruby laser are coaxially arranged for simultaneously transmitting optical output energy through a crystal flat during the time a test laser pulse is transmitted through the flat. Due to stress birefringence in the crystal, the ruby laser pulse transmitted through the flat is recorded and analyzed to provide peak power information about the test laser output pulse, and the continuous wave laser output reflected from the crystal flat provides a measurement of energy during the test laser pulse.

  7. Color speckle in laser displays

    NASA Astrophysics Data System (ADS)

    Kuroda, Kazuo

    2015-07-01

    At the beginning of this century, lighting technology has been shifted from discharge lamps, fluorescent lamps and electric bulbs to solid-state lighting. Current solid-state lighting is based on the light emitting diodes (LED) technology, but the laser lighting technology is developing rapidly, such as, laser cinema projectors, laser TVs, laser head-up displays, laser head mounted displays, and laser headlamps for motor vehicles. One of the main issues of laser displays is the reduction of speckle noise1). For the monochromatic laser light, speckle is random interference pattern on the image plane (retina for human observer). For laser displays, RGB (red-green-blue) lasers form speckle patterns independently, which results in random distribution of chromaticity, called color speckle2).

  8. Wound healing after laser surgery.

    PubMed

    Hendrick, D A; Meyers, A

    1995-10-01

    Compared with scalpel wounds, CO2 laser wounds show delays in inflammation, collagen production, reepithelialization, and tensile strength in the early stages of healing. Some of these delays are similar to those seen with electrocautery and burn wounds. Later stages compensate for these early deficiencies, because scalpel and laser wounds become more similar in epithelialization and wound strength over time. Healed CO2 laser wounds tend to have less scar contraction than scalpel wounds. Débridement of initial laser wound char, tissue cooling techniques during lasering, and pulsed modes of laser delivery all seem to result in more rapid, favorable healing. Similar wound healing trends have been seen with the CO2 laser in bone, with other lasers, and with laser vascular and neural anastomosis. Biostimulation with low-level laser energy is a complex subject of ongoing investigations.

  9. Laser treatments of active acne.

    PubMed

    Wiznia, Lauren E; Stevenson, Mary L; Nagler, Arielle R

    2017-08-04

    The utility of laser therapy is increasingly being recognized in the treatment of active acne vulgaris. We aimed to perform a narrative review of the medical literature on the use of laser therapy for the treatment of active acne vulgaris. We performed a PubMed literature search on September 1, 2016 using the search terms "active acne," "acne," "laser therapy," and "laser surgery." Case reports, case series, cohort, and controlled trials were included. Studies of lasers in the treatment of acne, including erbium glass, Nd:YAG, pulse dye laser (PDL), potassium titanyl phosphate (KTP) laser, and laser-based photodynamic therapy, have been published. While treatment of active acne with lasers has been successful, many studies are limited by small patient number and lack of control populations and comparison to standard therapies for active acne. Laser therapies are increasingly becoming part of or an adjunct to the medical treatment of active acne and are a useful treatment modality.

  10. Laser applications in neurosurgery

    NASA Astrophysics Data System (ADS)

    Cerullo, Leonard J.

    1985-09-01

    The "false start" of the laser in neurosurgery should not be misconstrued as a denial of the inherent advantages of precision and gentleness in dealing with neural tissue. Rather, early investigators were frustrated by unrealistic expectations, cumbersome equipment, and a general ignorance of microtechnique. By the early 70s, microneurosurgery was well established, surgical laser equipment for free hand and microlinked application had been developed, and a more realistic view of the limitations of the laser had been established. Consequently, the late 70s really heralded the renaissance of the laser in neurosurgery. Since then, there has been an overwhelming acceptance of the tool in a variety of clinical situations, broadly categorized in five groups. 1)|Perhaps the most generally accepted area is in the removal of extra-axial tumors of the brain and spinal cord. These tumors, benign by histology but treacherous by location, do not present until a significant amount of neurological compensation has already occurred. The application of additional trauma to the neural tissue, whether by further tumor growth or surgical manipulation, frequently results in irreversible damage. Here, the ability of the laser to vaporize tissue, in a fairly hemostatic fashion, without mechanical or thermal damage to sensitive surrounding tissues, is essential. 2)|The ability to incise delicate neural tissue with minimal spread of thermal destruction to adjacent functioning tissue makes the laser the ideal instrument when tumors deep under the surface are encountered in the brain or spinal cord. Thus, the second group of applications is in the transgression of normal neural structures to arrive at deeper pathological tissue. 3)|The third area of benefit for the laser in neurosurgery has been in the performance of neuroablative procedures, calling for deliberate destruction of functioning neural tissue in a controlled fashion. Again, the precision and shape confinement of the destructive

  11. Laser Hazards Bibliography - November 1980.

    DTIC Science & Technology

    1980-11-01

    eye, the skin, laser safety, laser propagation in the atmosphere, and laser measurements . DD) FOR" 143 ,ornOM orF..ov.,so ,- /_ onwL D M 73...128 VI. Atmospheric Attenuation of Laser Beams .................. 151 VI I. Measurements ...Martins Press (1967). 32. Feigen, L., et al., A method for detecting and measuring frequency of surface vibrations using a helium-neon laser, Rev Sci Instr

  12. Combustion diagnostics by laser spectrometry

    NASA Astrophysics Data System (ADS)

    Kitagawa, Kuniyuki; Morita, Shigeaki; Kodama, Kenji; Matsumoto, Kozo

    2009-03-01

    We have developed three different types of visualization methods for energy conversion systems by means of laser spectrometry. (1) Laser-induced fluorescence (LIF) spectroscopy and (2) laser ionization mass spectrometry (LIMS) have been applied to visualization of chemical species in combustion fields of flames. (3) Near-infrared laser absorption spectroscopy has been used for visualization of water in a polymer electrolyte fuel cell (PEFC). Complex physicochemical processes in the energy conversion systems have been revealed by laser spectrometry.

  13. Laser Guide Star Operational Issues

    NASA Astrophysics Data System (ADS)

    Max, C. E.

    Introduction Operational Implications for the Laser System Rayleigh Scattering Focus Changes Variations in Sodium Column Density Requirement to Nod the Telescope for Infra-Red Observing Calibration of the Adaptive Optics System for Sodium Laser Guide - Star Operation Types of Internal Calibration Sources Static Calibration Auxiliary Wavefront Sensors Dynamic Calibration (Real-Time Point-Spread-Function Measurements) Safety Considerations Regarding Laser Guide Star Systems Laser Eye Safety Fire Safety Aircraft Avoidance Spacecraft Damage Avoidance Laser Coordination on Multi-Telescope Summits Conclusions

  14. Laser cutting nozzle

    DOEpatents

    Ramos, Terry J.

    1984-01-01

    A laser cutting nozzle for use with a laser cutting apparatus directing a focused beam to a spot on a work piece. The nozzle has a cylindrical body with a conical tip which together have a conically shaped hollow interior with the apex at a small aperture through the tip. The conical hollow interior is shaped to match the profile of the laser beam, at full beamwidth, which passes through the nozzle to the work piece. A plurality of gas inlet holes extend through the body to the hollow interior and are oriented to produce a swirling flow of gas coaxially through the nozzle and out the aperture, aligned with the laser beam, to the work piece. BACKGROUND OF THE INVENTION

  15. Laser cutting nozzle

    DOEpatents

    Ramos, T.J.

    1982-09-30

    A laser cutting nozzle for use with a laser cutting apparatus directing a focused beam to a spot on a work piece. The nozzle has a cylindrical body with a conical tip which together have a conically shaped hollow interior with the apex at a small aperture through the tip. The conical hollow interior is shaped to match the profile of the laser beam, at full beamwidth, which passes through the nozzle to the work piece. A plurality of gas inlet holes extend through the body to the hollow interior and are oriented to produce a swirling flow of gas coaxially through the nozzle and out the aperture, aligned with the laser beam, to the work piece.

  16. Laser-induced bioluminescence

    SciTech Connect

    Hickman, G.D.; Lynch, R.V. III

    1981-01-01

    A project has been initiated to determine the feasibility of developing a complete airborne remote sensing system for rapidly mapping high concentration patches of bioluminescent organisms in the world's oceans. Conceptually, this system would be composed of a laser illuminator to induce bioluminescence and a low light level image intensifier for detection of light. Initial laboratory measurements consisted of using a 2-J flash lamp pulsed optical dye laser to excite bioluminescence in the marine dinoflagellate Pyrocustis lunula at ambient temperature using Rhodamine 6G as the lasing dye (585 nm) and a laser pulse width of 1 microsec. After a latency period of 15-20 msec, the bioluminescence maximum occurred in the blue (480 nm is the wavelength maximum for most dinoflagellate bioluminescence) with the peaking occurring approximately 65 msec after the laser pulse. Planned experiments will investigate the effect of different excitation wavelengths and energies at various temperatures and salinities of the cultures.

  17. Paint removal using lasers

    NASA Astrophysics Data System (ADS)

    Liu, Katherine; Garmire, Elsa

    1995-07-01

    Experiments to investigate the potential for practical laser graffiti-removal systems are reported. A universal engineering curve for the time needed for removal of paint from nonconductive substrates that was valid over a range of 107 in intensity was measured with a variety of lasers. Comparable times were measured for conductive substrates, when pulses shorter than the thermal conduction times were used. Analysis suggests that Q-switched Nd:YAG lasers may be the most efficient means for removing graffiti and other unwanted paint. An 1-m2 area of paint 14 mu m thick can be removed in approximately 10 min with a 50-Hz laser system of 15-W average power.

  18. Laser dye technology

    SciTech Connect

    Hammond, P R

    1999-09-01

    The author has worked with laser dyes for a number of years. A first interest was in the Navy blue-green program where a flashlamp pumped dye laser was used as an underwater communication and detection device. It made use of the optical window of sea-water--blue for deep ocean, green for coastal water. A major activity however has been with the Atomic Vapor Laser Isotope Separation Program (AVLIS) at the Lawrence Livermore National Laboratory. The aim here has been enriching isotopes for the nuclear fuel cycle. The tunability of the dye laser is utilized to selectively excite one isotope in uranium vapor, and this isotope is collected electrostatically as shown in Figure 1. The interests in the AVLIS program have been in the near ultra-violet, violet, red and deep-red.

  19. Beamlet laser diagnostics

    SciTech Connect

    Burkhart, S.C.; Behrendt, W.C.; Smith, I.

    1996-06-01

    Beamlet is instrumented extensively to monitor the performance of the overall laser system and many of its subsystems. Beam diagnostics, installed in key locations, are used to fully characterize the beam during its propagation through the multipass cavity and the laser`s output section. This article describes the diagnostics stations located on Beamlet and discusses the design, calibration, and performance of the Beamlet calorimeters. The authors used Nova`s diagnostics packages to develop the Beamlet design to determine beam energy, spatial profile, temporal profile, and other beam parameters. Technologic improvements within the last several years in controls, charge-coupled device (CCD) cameras, and fast oscilloscopes have allowed the authors to obtain more accurate measurements on the Beamlet laser system. They briefly cover some of these techniques, including a description of their LabVIEW based data acquisition system.

  20. Laser therapy for periodontitis

    NASA Astrophysics Data System (ADS)

    Efanov, O. I.

    2001-04-01

    An investigation was made of applying pulsed (lambda) equals 0.89 micrometers laser radiation in the treatment for early diagnosed periodontitis. The investigation was made on 65 patients (47 patients constituted the experimental group and 18 patients constituted a control group) affected by periodontitis. Clinical and functional tests revealed that laser therapy produced a string effect on the course of the illness. It reduced bleeding, inflammation, and pruritus. However, it did not produce an affect on electroexcitation. Biomicroscopic examinations and periodontium rheography revealed that the gingival blood flow became normal after the course of laser therapy. The capillary permeability and venous congestion decreased, which was confirmed by the increased time of vacuum tests, raised gingival temperature, reduced tissue clearance, and increased oxygen tension. Apart from that, laser therapy subsided fibrinolysis, proteolytic tissue activity, and decreased the exudative inflammation of periodontium.

  1. Fusion reactor pumped laser

    DOEpatents

    Jassby, D.L.

    1987-09-04

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam. 10 figs.

  2. Pulsed inductive HF laser

    NASA Astrophysics Data System (ADS)

    Razhev, A. M.; Churkin, D. S.; Kargapol'tsev, E. S.; Demchuk, S. V.

    2016-03-01

    We report the results of experimentally investigated dependences of temporal, spectral and spatial characteristics of an inductive HF-laser generation on the pump conditions. Gas mixtures H2 - F2(NF3 or SF66) and He(Ne) - H2 - F2(NF3 or SF6) were used as active media. The FWHM pulse duration reached 0.42 μs. This value corresponded to a pulsed power of 45 kW. For the first time, the emission spectrum of an inductive HF laser was investigated, which consisted of seven groups of bands with centres around the wavelengths of 2732, 2736, 2739, 2835, 2837, 2893 and 2913 nm. The cross section profile of the laser beam was a ring with a diameter of about 20 mm and width of about 5 mm. Parameters of laser operation in the repetitively pulsed regime were sufficiently stable. The amplitude instability of light pulses was no greater than 5% - 6%.

  3. Laser power transmission.

    NASA Technical Reports Server (NTRS)

    Ahlstrom, H. G.; Christiansen, W. H.; Hertzberg, A.

    1971-01-01

    Description of studies which have led to the design of a conceptual device in which the limitation of transforming heat into coherent radiation can be examined. By exploring the basic thermodynamic relationships controlling the operation of this device, it is concluded that a closed-cycle gasdynamic laser is possible in which all of the shaft energy supplied can be turned into laser radiation. Hence, it is possible in principle to convert heat into coherent radiation with approximately the same efficiency with which heat may be converted into electricity. By modifying the closed-cycle-gasdynamic-laser system, this system can be operated in reverse and the incoming radiation may be used to pump the gas in the loop so that shaft power can be extracted. By carefully controlling the temperature distribution in this machine, laser energy can be converted into useful shaft energy with an efficiency approaching 1 .

  4. Erbium lasers in dentistry.

    PubMed

    van As, Glenn

    2004-10-01

    Erbium hard tissue lasers have the capability to prepare enamel, dentin, caries, cementum, and bone in addition to cutting soft tissue. The ability of hard tissue lasers to reduce or eliminate vibrations, the audible whine of drills, microfractures, and some of the discomfort that many patients fear and commonly associate with high-speed handpieces is impressive. In addition, these lasers can be used with a reduced amount of local anesthetic for many procedures. Today, these instruments have evolved from their initial use for all classes of cavity preparations to their ability for removing soft tissue, their usefulness in the disinfection of bacteria within endodontic canals, and most recently, as an alternative to the high speed handpiece for the removal of bone in oral and maxillofacial surgery. In addition, recent research has centered on the value of the erbium family of laser wavelengths in periodontics, including the removal of calculus.

  5. Paint removal using lasers.

    PubMed

    Liu, K; Garmire, E

    1995-07-20

    Experiments to investigate the potential for practical laser graffiti-removal systems are reported. A universal engineering curve for the time needed for removal of paint from nonconductive substrates that was valid over a range of 10(7) in intensity was measured with a variety of lasers. Comparable times were measured for conductive substrates, when pulses shorter than the thermal conduction times were used. Analysis suggests that Q-switched Nd:YAG lasers may be the most efficient means for removing graffiti and other unwanted paint. An 1-m(2) area of paint 14 µm thick can be removed in approximately 10 min with a 50-Hz laser system of 15-W average power.

  6. Making Laser Beams Visible.

    ERIC Educational Resources Information Center

    Knotts, Michael

    1993-01-01

    Describes an inexpensive fog machine that is useful for photography and laser demonstrations. The apparatus uses liquid nitrogen to chill steam to make a fine mist safe for precision optics. The device can be made for around $50. (MVL)

  7. Laser-heated thruster

    NASA Technical Reports Server (NTRS)

    Kemp, N. H.; Lewis, P. F.

    1980-01-01

    The development of a computer program for the design of the thrust chamber for a CW laser heated thruster was examined. Hydrodgen was employed as the propellant gas and high temperature absorber. The laser absorption coefficient of the mixture/laser radiation combination is given in temperature and species densities. Radiative and absorptive properties are given to determine radiation from such gas mixtures. A computer code for calculating the axisymmetric channel flow of a gas mixture in chemical equilibrium, and laser energy absorption and convective and radiative heating is described. It is concluded that: (1) small amounts of cesium seed substantially increase the absorption coefficient of hydrogen; (2) cesium is a strong radiator and contributes greatly to radiation of cesium seeded hydrogen; (3) water vapor is a poor absorber; and (4) for 5.3mcm radiation, both H2O/CO and NO/CO seeded hydrogen mixtures are good absorbers.

  8. Lasers in aesthetic dentistry.

    PubMed

    Adams, Timothy C; Pang, Peter K

    2004-10-01

    This article focuses on lasers and aesthetic dentistry and their unique parallel in history from their early development to their present day usage and application. The demand for aesthetic dentistry has had a major impact not only on treatment planning but also on the choice of materials, techniques, and equipment. It is this demand that has married the use of lasers with aesthetic dentistry. A short literature review on the five basic laser types precedes the basic premise of smile design and its critical importance in attaining the desirable aesthetic end result. A short review on biologic width and biologic zone reinforces their importance when manipulating gingival tissue. Four case reports highlight the use of diode, erbium, and carbon dioxide lasers. The end results show the power of proper treatment planning and the use of a smile design guide when using these instruments and confirm a conservative, aesthetic treatment without compromising the health and function of the patients.

  9. Making Laser Beams Visible.

    ERIC Educational Resources Information Center

    Knotts, Michael

    1993-01-01

    Describes an inexpensive fog machine that is useful for photography and laser demonstrations. The apparatus uses liquid nitrogen to chill steam to make a fine mist safe for precision optics. The device can be made for around $50. (MVL)

  10. Laser implosion fusion

    SciTech Connect

    Yamanaka, C.

    1983-12-01

    The Institute of Laser Engineering at Osaka University outlines key issues of research, which are: the development of high-power drivers, pertinent pellet design for implosion by a large-scale computer code, pellet fabrication and handling, and diagnostic of the implosion process, with high resolution in space and time. Experimental facilities such as the GEKKO series and the CO/sub 2/-laser LEKKO series are discussed. A table and illustrations show energy drivers, the GEKKO XII optical arrangement, and the glass laser system of GEKKO XII. Fundamental processes in laser-plasma coupling, scaling of implosion presure, and implosion of the pellet and Cannonball target are described and accompanied by illustrations and photographs. The KONGOH project and activities at the Electrochemical Laboratory present research and progress on target experiments.

  11. Petawatt laser absorption bounded

    PubMed Central

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-01-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials. PMID:24938656

  12. Contaminant Monitor Laser

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Under a Small Business Innovation Research contract from Langley Research Center, OPOTEK, Inc. developed a laser transmitter for remote sensing of water vapor in the upper atmosphere. As a leader in developing and using Differential Absorption Lidar, a remote sensing technique to monitor ozone and water vapor in the atmosphere, NASA was interested in upgrading the capabilities of its airborn laser systems. The laser transmitter developed for NASA was used for measuring water vapor in the infrared region. By broadening this concept to other wavelengths, OPOTEK believes a range of industrial applications can be met. In addition, the tunable laser system can be used by the Drug Enforcement Administration to discern the by-products from illegal drug manufacturing. A host of other government, university, and industrial laboratory uses for the technology are also being examined as follow-up by the company.

  13. Excimer Laser Etching

    SciTech Connect

    Boatner, Lynn A; Longmire, Hu Foster; Rouleau, Christopher M; Gray, Allison S

    2008-04-01

    Excimer laser radiation at a wavelength of = 248 nm represents a new etching method for the preparation of metallographic specimens. The method is shown to be particularly effective for enhancing the contrast between different phases in a multiphase metallographic specimen.

  14. X-Ray Lasers

    ERIC Educational Resources Information Center

    Chapline, George; Wood, Lowell

    1975-01-01

    Outlines the prospects of generating coherent x rays using high-power lasers and indentifies problem areas in their development. Indicates possible applications for coherent x rays in the fields of chemistry, biology, and crystallography. (GS)

  15. Laser energy conversion

    NASA Technical Reports Server (NTRS)

    Billman, K. W.

    1975-01-01

    Laser radiation could possibly provide a feasible approach for the transmission of energy between stations and vehicles in space and on earth. The transmitted energy could be used for the operational requirements of the receiving space station, lunar base, or spacecraft. In addition, laser energy could also be employed to provide power for the propulsion of vehicles in space. The present status of development regarding the various technological areas involved in an implementation of these objectives is examined, taking into account the possibility of further advances needed to satisfy the technical requirements. Attention is given to laser-induced chemistry for converting the radiation energy into chemical energy. Other subjects considered are related to photovoltaics, optical diodes, thermo-electronics, laser rockets, and photon engines.

  16. Laser and Surgery

    NASA Astrophysics Data System (ADS)

    Casaccia, Mario; Campisi, C.; Pasero, E.; Ieracitano, V. M.; Berardi, L.; Padula, P.; Cordaro, S.; Boccardo, F.

    1990-09-01

    Surgeon's hand, guiding a light ray, Laser, instead of holding a common lancet, for dissecting delicately tissues with simultaneous haemostasis on small vessels, represents one of the most interesting expressions of modern technology applied to surgery. The use of Laser in surgery dates back to 25 years ago. Its medical applications, however, are a little more recent. The word Laser comes from "Light Amplification by Stimulated Emission of Radiation". It " is known that any material, which has been stimulated, emits energy of excitation through the so called spontaneous Energy. This means irradiation of "quanta" of electro-magnetic energy untidily in space and time (so called "incoherent Emission"). A Laser source, conversely, emits "coherent" electro-magnetic radiations (so called "stimulated Emission") , whose characteristics consist in: monochromaticity,directional ity, coherence and brilliance.

  17. Laser Lightcraft Vehicle Design

    NASA Technical Reports Server (NTRS)

    Buch, Kevin

    1999-01-01

    Current space deployment vehicle research is investigating ways to lower the cost to place payloads into orbit. Beamed energy propulsion is one of the areas that are being studied. The Laser lightcraft concept, which uses a ground based laser as part of its propulsion system, falls into this category. This concept has been developed by previous Strategic Defense Initiative Office (SDIO) research. In this concept, the laser energy is reflected off of a mirror on the craft and is focused inside the cowl to created optical breakdown of the propellant. There are several concerns about the design that must be further studied. These include: 1) Thermodynamic analysis of the cryogenic fuel storage and feed systems, 2) Analysis of the regenerative cooling system for the primary optic, and 3) Analysis of focal blurring of the laser due to off-axis flight.

  18. 3D Laser System

    NASA Image and Video Library

    2015-09-16

    NASA Glenn's Icing Research Tunnel 3D Laser System used for digitizing ice shapes created in the wind tunnel. The ice shapes are later utilized for characterization, analysis, and software development.

  19. The Townes Laser Institute

    NASA Astrophysics Data System (ADS)

    Richardson, Martin

    2009-06-01

    The State of Florida has recently established a new center of excellence in advanced core laser technologies, associated with the College of Optics & Photonics. This center, dedicated in 2007 in tribute to the pioneering work of Charles Townes, whose insight lead to the development of the maser and the laser, will invest in next generation laser technologies for applications to medicine, advanced manufacturing and defense. It joins the cluster of photonics-related centers at UCF, adding a focused national center for the education and training of scientists and engineers in laser technology. This paper describes the mission and objectives of the Townes Institute, the educational and training programs it is creating, its current investments and opportunities, and the future institutional and industrial partnerships and global reach it hopes to create.

  20. Laser A Krypton Et Laser Monochromatique Vert En Ophtalmologie

    NASA Astrophysics Data System (ADS)

    Coscas, G.; Soubrane, G.; Koenig, F.

    1984-03-01

    Si 1' utilisation du laser a argon en ophtalmologie remonte a 1968, depuis quelques annees, nous disposons de laser monochromatiques : le laser a krypton rouge et le laser a argon vert. Des etudes en microscopie optique et electronique ont ete ef fectuees sur des singes. Le maximum d'alterations se situe au niveau de la choroide avec le laser a krypton et au niveau de 1' epithelium pigmentaire avec le laser vert a argon. Ces etudes nous ont permis de preciser les indications des laser monochromatiques. Ainsi, en clinique, les neovaisseaux sous retiniens constituent une de leurs indications essentielles en particulier dans la region du pigment luteal. Par ailleurs, le laser a krypton a une bonne transmission a travers des milieux oculaires troubles, et it nest pas absorbe par le sang. Le laser a argon vert au contraire, permet la destruction d'a-nomalies microvasculaires retiniennes.

  1. Laser Industry Looks At Laser Medicine And Surgery

    NASA Astrophysics Data System (ADS)

    Brunner, Thomas M.

    1982-12-01

    Lasers have come a long way since the old joke that a laser was a solution searching for a problem. Today lasers pervade all aspects of our lives. There are laser light shows at discos, lasers used medically to preserve vision, lasers used to separate cells to detect potential birth defects, lasers used to weld floor-pans for automobiles and laser drilled cigarette filters. There are military applications from laser guided bombs to proposed earth-based lasers with synchronous mirrors on satellites that bring destruction at the speed of light anywhere in the world. Most of us see only the very surface of these diverse applications. Today I will quickly review what a laser is and how its unique properties make it applicable in the field of medicine. I will then show you some of the many different ways in which lasers are presently used, describe to you the major markets and companies presently engaged in the manufacture of medical lasers, and, importantly, share with you some thoughts about the future of lasers in medicine.

  2. Ceramic Laser Materials

    SciTech Connect

    Soules, T F; Clapsaddle, B J; Landingham, R L; Schaffers, K I

    2005-02-15

    Transparent ceramic materials have several major advantages over single crystals in laser applications, not the least of which is the ability to make large aperture parts in a robust manufacturing process. After more than a decade of working on making transparent YAG:Nd, Japanese workers have recently succeeded in demonstrating samples that performed as laser gain media as well as their single crystal counterparts. Since then several laser materials have been made and evaluated. For these reasons, developing ceramic laser materials is the most exciting and futuristic materials topic in today's major solid-state laser conferences. We have established a good working relationship with Konoshima Ltd., the Japanese producer of the best ceramic laser materials, and have procured and evaluated slabs designed by us for use in our high-powered SSHCL. Our measurements indicate that these materials will work in the SSHCL, and we have nearly completed retrofitting the SSHCL with four of the largest transparent ceramic YAG:Nd slabs in existence. We have also begun our own effort to make this material and have produced samples with various degrees of transparency/translucency. We are in the process of carrying out an extensive design-of-experiments to establish the significant process variables for making transparent YAG. Finally because transparent ceramics afford much greater flexibility in the design of lasers, we have been exploring the potential for much larger apertures, new materials, for example for the Mercury laser, other designs for SSHL, such as, edge pumping designs, slabs with built in ASE suppression, etc. This work has just beginning.

  3. Laser Reliability Prediction

    DTIC Science & Technology

    1975-08-01

    data, and formulating quantitative reliability prediction models based on the data. In this way, models have been constructed for the six laser...C-0091 The purpose of the contract was to formulate models for predicting the failure rates of coherent light emitting devices such as lasers and...with high quality lens tissue usinp, moisture from breath (If necessary). 3. Flush with distilled water and a mild laboratory detergent (if necessary

  4. Competition Effects in Lasers.

    DTIC Science & Technology

    1980-11-01

    Laser", L. Mandel, in Optica Hoy Y Manana-ICO-ll, eds. J. Bescos, A. Hidalgo, L. Plaza and J. Santamaria ( Sociedad Espanola de Optica, Madrid, 1979) pp...previously derived equations for two-mode lasers. 24. " Inversion Problem in Photon Counting with Dead Time", L. Mandel, J. Opt. Soc. Am. 70, 873-874 (1980...temporal variation of atomiz inversion on the fluctuation proper- ties have been investigated in the coherent state diagonal representation of the

  5. Transmyocardial laser revascularization

    NASA Astrophysics Data System (ADS)

    Aretz, H. Thomas

    1996-09-01

    Transmyocardial laser revascularization (TMR) for the treatment of medically unresponsive angina pectoris has been shown to be clinically effective. The mechanism of its action, however, is not quite understood. Over the last five years my collaborators and I have conducted a variety of in vivo and in vitro studies using different animal models, lasers and experimental protocols. The results seem to indicate that the mechanism of action of TMR is related to neovascularization rather than chronically patent channels, as originally proposed.

  6. Laser angle sensor

    NASA Technical Reports Server (NTRS)

    Pond, C. R.; Texeira, P. D.

    1985-01-01

    A laser angle measurement system was designed and fabricated for NASA Langley Research Center. The instrument is a fringe counting interferometer that monitors the pitch attitude of a model in a wind tunnel. A laser source and detector are mounted above the model. Interference fringes are generated by a small passive element on the model. The fringe count is accumulated and displayed by a processor in the wind tunnel control room. This report includes optical and electrical schematics, system maintenance and operation procedures.

  7. Laser gingivectomy for pediatrics.

    PubMed

    Kelman, Michelle M; Poiman, David J; Jacobson, Barry L

    2010-01-01

    Traditional gingivectomy procedures have been a challenge for pediatric dentists who confront issues of patient cooperation and discomfort. Treatment of pediatric patients must involve minimal operative and postoperative discomfort. Laser soft-tissue surgery has been shown to be well accepted by children. For the pediatric patient, the greatest advantage of the laser is the lack of local anesthesia injection and the associated pre- and postoperative discomfort. The following case report describes a gingivectomy procedure performed on a 14-year-old female.

  8. Laser cooling of solids

    SciTech Connect

    Epstein, Richard I; Sheik-bahae, Mansoor

    2008-01-01

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  9. Variable laser attenuator

    DOEpatents

    Foltyn, Stephen R.

    1988-01-01

    The disclosure relates to low loss, high power variable attenuators comprng one or more transmissive and/or reflective multilayer dielectric filters. The attenuator is particularly suitable to use with unpolarized lasers such as excimer lasers. Beam attenuation is a function of beam polarization and the angle of incidence between the beam and the filter and is controlled by adjusting the angle of incidence the beam makes to the filter or filters. Filters are selected in accordance with beam wavelength.

  10. Cylindrical laser resonator

    DOEpatents

    Casperson, Lee W.

    1976-02-24

    The properties of an improved class of lasers is presented. In one configuration of these lasers the radiation propagates radially within the amplifying medium, resulting in high fields and symmetric illumination at the resonator axis. Thus there is a strong focusing of energy at the axis of the resonator. In a second configuration the radiation propagates back and forth in a tubular region of space.

  11. Variable laser attenuator

    DOEpatents

    Foltyn, S.R.

    1987-05-29

    The disclosure relates to low loss, high power variable attenuators comprising one or more transmissive and/or reflective multilayer dielectric filters. The attenuator is particularly suitable to use with unpolarized lasers such as excimer lasers. Beam attenuation is a function of beam polarization and the angle of incidence between the beam and the filter and is controlled by adjusting the angle of incidence the beam makes to the filter or filters. Filters are selected in accordance with beam wavelength. 9 figs.

  12. Laser Metalworking Technology Transfer.

    DTIC Science & Technology

    1986-01-01

    development work relating to the laser hardfacing of aircraft S-"carrier catapult rails have been performed, and preliminary techniques and...processing data established for different combin- ations of hardfacing alloys/substrate materials. All the laser processing performed in this program was...such cladding. Speci- fically, it was desired to develop methods for cladding the rail material with hardfacing alloys having approximately the same

  13. Laser space propulsion overview

    NASA Astrophysics Data System (ADS)

    Phipps, Claude; Luke, James; Helgeson, Wesley

    2007-03-01

    In this paper, we review the history of laser space propulsion from its earliest theoretical conceptions to modern practical applicatons. Applications begin with the "Lightcraft" flights of Myrabo and include practical thrusters for satellites now completing development as well as proposals for space debris removal and direct launch of payloads into orbit. We consider laser space propulsion in the most general sense, in which laser radiation is used to propel a vehicle in space. In this sense, the topic includes early proposals for pure photon propulsion, laser ablation propulsion, as well as propulsion using lasers to detonate a gas, expel a liquid, heat and expel a gas, or even to propagate power to a remote conventional electric thruster. We also discuss the most recent advances in LSP. For the first time, it is possible to consider space propulsion engines which exhibit thrust of one to several newtons while simultaneously delivering 3,000 seconds, or greater, specific impulse. No other engine concept can do both in a compact format. These willl use onboard, rather than remote, lasers. We will review the concept of chemically augmented electric propulsion, which can provide overall thrust efficiency greater than unity while maintaining very low mass to power ratio, high mean time to failure and broad operating range. The main advantage of LSP is exhaust velocity which can be instantaneously varied from 2km/s to 30km/s, simply by varying laser pulsewidth and focal spot size on target. The laser element will probably be a diode-pumped, fiber master-oscillator-power-amplifier (MOPA) system. Liquid fuels are necessary for volumetric efficiency and reliable performance at the multi-kW optical power levels required for multi-N thrust.

  14. Femtosecond laser materials processing

    SciTech Connect

    Stuart, B. C., LLNL

    1998-06-02

    Femtosecond lasers enable materials processing of most any material with extremely high precision and negligible shock or thermal loading to the surrounding area Applications ranging from drilling teeth to cutting explosives to making high-aspect ratio cuts in metals with no heat-affected zone are made possible by this technology For material removal at reasonable rates, we developed a fully computer-controlled 15-Watt average power, 100-fs laser machining system.

  15. Laser Processed Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Hansen, Scott

    2017-01-01

    The Laser Processed Heat Exchanger project will investigate the use of laser processed surfaces to reduce mass and volume in liquid/liquid heat exchangers as well as the replacement of the harmful and problematic coatings of the Condensing Heat Exchangers (CHX). For this project, two scale unit test articles will be designed, manufactured, and tested. These two units are a high efficiency liquid/liquid HX and a high reliability CHX.

  16. Laser Initiated Actuator study

    SciTech Connect

    Watson, B.

    1991-06-27

    The program task was to design and study a laser initiated actuator. The design of the actuator is described, it being comprised of the fiber and body subassemblies. The energy source for all experiments was a Spectra Diode 2200-H2 laser diode. The diode is directly coupled to a 100 micron core, 0.3 numerical aperture fiber optic terminated with an SMA connector. The successful testing results are described and recommendations are made.

  17. Insulator for laser housing

    DOEpatents

    Duncan, David B.

    1992-01-01

    The present invention provides a heat-resistant electrical insulator adapted for joining laser housing portions, which insulator comprises: an annulus; a channel in the annulus traversing the circumference and length of the housing; at least two ports, each communicating with the channel and an outer surface of the housing; and an attachment for securely attaching each end of the annulus to a laser housing member.

  18. Semiconductor microcavity lasers

    SciTech Connect

    Gourley, P.L.; Wendt, J.R.; Vawter, G.A.; Warren, M.E.; Brennan, T.M.; Hammons, B.E.

    1994-02-01

    New kinds of semiconductor microcavity lasers are being created by modern semiconductor technologies like molecular beam epitaxy and electron beam lithography. These new microcavities exploit 3-dimensional architectures possible with epitaxial layering and surface patterning. The physical properties of these microcavities are intimately related to the geometry imposed on the semiconductor materials. Among these microcavities are surface-emitting structures which have many useful properties for commercial purposes. This paper reviews the basic physics of these microstructured lasers.

  19. Insulator for laser housing

    DOEpatents

    Duncan, D.B.

    1992-12-29

    The present invention provides a heat-resistant electrical insulator adapted for joining laser housing portions, which insulator comprises: an annulus; a channel in the annulus traversing the circumference and length of the housing; at least two ports, each communicating with the channel and an outer surface of the housing; and an attachment for securely attaching each end of the annulus to a laser housing member. 3 figs.

  20. Laser ophthalmological trainer

    NASA Astrophysics Data System (ADS)

    Sovva, Anatoly I.; Strinadko, Miroslav T.; Strinadko, Marina M.

    1997-12-01

    The laser ophthalmological trainer is offered. It provides stimulation of an optic analyzer by means of the simultaneous influence of different sensor zones optic auditory by the modulated laser radiation and the sound signal of the proper frequency. The trainer includes the assembly providing individual control of the permissible dose of radiation and can be used for treatment of partial atrophy of optic nerve, dystrophy of cornea, cornea syndrome after refraction surgery, inflammatory diseases of cornea, and conjunctivitis.

  1. CANALOPLASTY AFTER LASER TRABECULOPLASTY.

    PubMed

    Caileanu, Gabriela Denisa

    2015-01-01

    The paper presents a case of a pseudoexfoliative glaucoma previously treated with argon laser trabeculoplasty in a tertiary center, who was scheduled for canaloplasty in the Ophthalmology Department of the County Hospital Piatra Neamt, Romania. Although the status post laser trabeculoplasty is not among the best indications for canaloplasty, the article confirms the fact that this procedure can also be successfully performed in these cases.

  2. Femtosecond laser materials processing

    SciTech Connect

    Stuart, B

    1998-08-05

    Femtosecond lasers enable materials processing of most any material with extremely high precision and negligible shock or thermal loading to the surrounding area. Applications ranging from drilling teeth to cutting explosives to precision cuts in composites are possible by using this technology. For material removal at reasonable rates, we have developed a fully computer-controlled 15-Watt average power, 100-fs laser machining system.

  3. Pulsed gas laser

    DOEpatents

    Anderson, Louis W.; Fitzsimmons, William A.

    1978-01-01

    A pulsed gas laser is constituted by Blumlein circuits wherein space metal plates function both as capacitors and transmission lines coupling high frequency oscillations to a gas filled laser tube. The tube itself is formed by spaced metal side walls which function as connections to the electrodes to provide for a high frequency, high voltage discharge in the tube to cause the gas to lase. Also shown is a spark gap switch having structural features permitting a long life.

  4. Laser range profile of cones

    NASA Astrophysics Data System (ADS)

    Zhou, Wenzhen; Gong, Yanjun; Wang, Mingjun; Gong, Lei

    2016-10-01

    technology. Laser one-dimensional range profile can reflect the characteristics of the target shape and surface material. These techniques were motivated by applications of laser radar to target discrimination in ballistic missile defense. The radar equation of pulse laser about cone is given in this paper. This paper demonstrates the analytical model of laser one-dimensional range profile of cone based on the radar equation of the pulse laser. Simulations results of laser one-dimensional range profiles of some cones are given. Laser one-dimensional range profiles of cone, whose surface material with diffuse lambertian reflectance, is given in this paper. Laser one-dimensional range profiles of cone, whose surface mater with diffuse materials whose retroreflectance can be modeled closely with an exponential term that decays with increasing incidence angles, is given in this paper. Laser one-dimensional range profiles of different pulse width of cone is given in this paper. The influences of surface material, pulse width, attitude on the one-dimensional range are analyzed. The laser two-dimensional range profile is two-dimensional scattering imaging of pulse laser of target. The two-dimensional range profile of roughness target can provide range resolved information. An analytical model of two-dimensional laser range profile of cone is proposed. The simulations of two-dimensional laser range profiles of some cones are given. Laser two-dimensional range profiles of cone, whose surface mater with diffuse lambertian reflectance, is given in this paper. Laser two-dimensional range profiles of cone, whose surface mater with diffuse materials whose retroreflectance can be modeled closely with an exponential term that decays with increasing incidence angles, is given in this paper. The influence of pulse width, surface material on laser two-dimensional range profile is analyzed. Laser one-dimensional range profile and laser two-dimensional range profile are called as laser

  5. Laser double Doppler flowmeter

    NASA Astrophysics Data System (ADS)

    Poffo, L.; Goujon, J.-M.; Le Page, R.; Lemaitre, J.; Guendouz, M.; Lorrain, N.; Bosc, D.

    2014-05-01

    The Laser Doppler flowmetry (LDF) is a non-invasive method for estimating the tissular blood flow and speed at a microscopic scale (microcirculation). It is used for medical research as well as for the diagnosis of diseases related to circulatory system tissues and organs including the issues of microvascular flow (perfusion). It is based on the Doppler effect, created by the interaction between the laser light and tissues. LDF measures the mean blood flow in a volume formed by the single laser beam, that penetrate into the skin. The size of this measurement volume is crucial and depends on skin absorption, and is not directly reachable. Therefore, current developments of the LDF are focused on the use of always more complex and sophisticated signal processing methods. On the other hand, laser Double Doppler Flowmeter (FL2D) proposes to use two laser beams to generate the measurement volume. This volume would be perfectly stable and localized at the intersection of the two laser beams. With FL2D we will be able to determine the absolute blood flow of a specific artery. One aimed application would be to help clinical physicians in health care units.

  6. Lasers in cardiovascular medicine.

    PubMed

    Lewis, S J

    1989-06-01

    The role of lasers in cardiovascular medicine and surgery is a rapidly evolving and uncertain field. Many alternative percutaneous techniques and technologies for removal of atherosclerotic plaque are under development. However, according to many clinicians, atherectomy devices that bore through occlusions with high speed burrs, shave them away with miniature knives, or micropulverize them with ultrasonic waves will be complements not substitutes to both lasers and balloons. Thus, it is unlikely that a cost-effective substitute for the laser is likely to come from developments in mechanical ablation systems. It is important to keep in mind that peripheral laser angioplasty is still considered of benefit to a small percentage of all candidates for peripheral percutaneous transluminal angioplasty, and that coronary laser angioplasty is strictly investigational. Although more devices may be approved in the next year, only two are available on the open market at publication, and both are approved only for peripheral angioplasty. With the rapid growth in the number of laser manufacturers entering the market, there are ample opportunities for large hospitals with active cardiology and cardiovascular surgery programs to become trial sites. However, the smaller hospital set on entering the market may want to consider only well-established, FDA approved technologies that are reasonably priced.

  7. Patterned laser trabeculoplasty.

    PubMed

    Turati, Mauricio; Gil-Carrasco, Felix; Morales, Adolfo; Quiroz-Mercado, Hugo; Andersen, Dan; Marcellino, George; Schuele, Georg; Palanker, Daniel

    2010-01-01

    A novel computer-guided laser treatment for open-angle glaucoma, called patterned laser trabeculoplasty, and its preliminary clinical evaluation is described. Forty-seven eyes of 25 patients with open-angle glaucoma received 532-nm laser treatment with 100-μm spots. Power was titrated for trabecular meshwork blanching at 10 ms and sub-visible treatment was applied with 5-ms pulses. The arc patterns of 66 spots rotated automatically after each laser application so that the new pattern was applied at an untreated position. Approximately 1,100 laser spots were placed per eye in 16 steps, covering 360° of trabecular meshwork. The intraocular pressure decreased from the pretreatment level of 21.9 ± 4.1 to 16.0 ± 2.3 mm Hg at 1 month (n = 41) and remained stable around 15.5 ± 2.7 mm Hg during 6 months of follow-up (n = 30). Patterned laser trabeculoplasty provides rapid, precise, and minimally traumatic (sub-visible) computer-guided treatment with exact abutment of the patterns, exhibiting a 24% reduction in intraocular pressure during 6 months of follow-up (P < .01). Copyright 2010, SLACK Incorporated.

  8. Underwater laser detection system

    NASA Astrophysics Data System (ADS)

    Gomaa, Walid; El-Sherif, Ashraf F.; El-Sharkawy, Yasser H.

    2015-02-01

    The conventional method used to detect an underwater target is by sending and receiving some form of acoustic energy. But the acoustic systems have limitations in the range resolution and accuracy; while, the potential benefits of a laserbased underwater target detection include high directionality, high response, and high range accuracy. Lasers operating in the blue-green region of the light spectrum(420 : 570nm)have a several applications in the area of detection and ranging of submersible targets due to minimum attenuation through water ( less than 0.1 m-1) and maximum laser reflection from estimated target (like mines or submarines) to provide a long range of detection. In this paper laser attenuation in water was measured experimentally by new simple method by using high resolution spectrometer. The laser echoes from different targets (metal, plastic, wood, and rubber) were detected using high resolution CCD camera; the position of detection camera was optimized to provide a high reflection laser from target and low backscattering noise from the water medium, digital image processing techniques were applied to detect and discriminate the echoes from the metal target and subtract the echoes from other objects. Extraction the image of target from the scattering noise is done by background subtraction and edge detection techniques. As a conclusion, we present a high response laser imaging system to detect and discriminate small size, like-mine underwater targets.

  9. Laser assisted forming techniques

    NASA Astrophysics Data System (ADS)

    Kratky, Alexander

    2007-05-01

    During forming processes high deformations rates can lead to cracks and rupture very easily. Especially brittle materials like titanium or magnesium make difficulties in forming. Due to the dependence of the yield strength on temperature, forming at elevated temperatures eases processing of such materials. Since forming takes place only at localized areas of the work piece selective heating is suffcient and advantageous in most cases. Selective Laser heating offers a possibility to heat only the areas of the work piece where strongest deformations are required. For this purpose several laser sources have been tested like CO II, Diode and Nd:YAG Lasers and their advantages and disadvantages in localized heating of the work pieces will be discussed. The work presented here summarizes research activities at the Institute for Forming and High Power Laser Technology, Vienna University of Technology, on laser assisted deep drawing, laser assisted bending, wire drawing and so on during the last decade. Recent developments like roll profiling, incremental forming processes and hydro forming are discussed briefly.

  10. Wurtzite spin lasers

    NASA Astrophysics Data System (ADS)

    Faria Junior, Paulo E.; Xu, Gaofeng; Chen, Yang-Fang; Sipahi, Guilherme M.; Žutić, Igor

    2017-03-01

    Semiconductor lasers are strongly altered by adding spin-polarized carriers. Such spin lasers could overcome many limitations of their conventional (spin-unpolarized) counterparts. While the vast majority of experiments in spin lasers employed zinc-blende semiconductors, the room-temperature electrical manipulation was first demonstrated in wurtzite GaN-based lasers. However, the underlying theoretical description of wurtzite spin lasers is still missing. To address this situation, focusing on (In,Ga)N-based wurtzite quantum wells, we develop a theoretical framework in which the calculated microscopic spin-dependent gain is combined with a simple rate equation model. A small spin-orbit coupling in these wurtzites supports simultaneous spin polarizations of electrons and holes, providing unexplored opportunities to control spin lasers. For example, the gain asymmetry, as one of the key figures of merit related to spin amplification, can change the sign by simply increasing the carrier density. The lasing threshold reduction has a nonmonotonic dependence on electron-spin polarization, even for a nonvanishing hole spin polarization.

  11. Laser Scar Management Technique

    PubMed Central

    Ohshiro, Toshio; Sasaki, Katsumi

    2013-01-01

    Background and Aims: Scars are common and cause functional problems and psychological morbidity. Recent advances in optical technologies have produced various laser systems capable of revising the appearance of scars from various etiologies to optimize their appearance. Methods: Laser treatment can commence as early as the time of the initial injury and as late as several years after the injury. Several optical technologies are currently available and combined laser/light treatments are required for treatment of scars. Since 2006, we have set up a scar management department in our clinic and more than 2000 patients have been treated by our combined laser irradiation techniques. Herein, we review several available light technologies for treatment of surgical, traumatic, and inflammatory scars, and discuss our combined laser treatment of scars, based upon our clinical experience. Results and Conclusions: Because scars have a variety of potential aetiologies and take a number of forms, no single approach can consistenty provide good scar treatment and management. The combination of laser and devices is essential, the choice of wavelength and approach being dictated by each patient as an individual. PMID:24511202

  12. Operation of Ho:YAG ultrafast laser inscribed waveguide lasers.

    PubMed

    McDaniel, Sean; Thorburn, Fiona; Lancaster, Adam; Stites, Ronald; Cook, Gary; Kar, Ajoy

    2017-04-20

    We report fabrication and operation of multi-watt level waveguide lasers utilizing holmium-doped yttrium aluminum garnet (Ho:YAG). The waveguides were fabricated using ultrafast laser inscription, which relies on a chirped pulse ytterbium fiber laser to create depressed cladding structures inside the material. A variety of waveguides were created inside the Ho:YAG samples. We demonstrate output powers of ∼2  W from both a single-mode 50 μm waveguide laser and a multimode 80 μm waveguide laser. In addition, laser action from a co-doped Yb:Ho:YAG sample under in-band pumping conditions was demonstrated.

  13. Mid-infrared solid-state lasers and laser materials

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.; Byvik, Charles E.

    1988-01-01

    An account is given of NASA-Langley's objectives for the development of advanced lasers and laser materials systems applicable to remote sensing in the mid-IR range. Prominent among current concerns are fiber-optic spectroscopy, eye-safe solid-state lasers for both Doppler sensing and mid-IR wavelength-generation laser pumping, and nonlinear optics generating tunable mid-IR radiation. Ho:YAG lasers are noted to exhibit intrinsic advantages for the desired applications, and are pumpable by GaAlAs laser diodes with a quantum efficiency approaching 2.

  14. Laser Transmitter Aims At Laser Beacon

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Lesh, James R.

    1993-01-01

    Transmitter part of developmental optical communication system. Compact, lightweight, partially-self-aiming laser transmitter built to verify some capabilities of developmental free-space optical communication system. Design capable of providing 0.5 Mbps data return over range equal to Moon-Earth distance. Breadboard of transmitting terminal constructed and tested in laboratory. Prototype transmitter includes receiving circuitry that keeps it aimed at beacon, once brought into initial alignment within about 1.7 degrees of line of sight to beacon.

  15. Laser Development for Laser Fusion Applications

    DTIC Science & Technology

    1978-09-01

    the Z-80 microprocessor to process the fringe pattern, incorporating items 2 and 3 above. Currently, the Reticon data can be read and processed...COLLIMATING TELESCOPE RETICON PHOTODIODE ARRAY ADC ^PROCESSOR SUBSYSTEM FIZEAU COMPENSATING WEDGE PLATE TO WAVELENGTH CONTROLLER Fig. 59...incidence was ~4 degrees, with the Reticon array 30 cm from the wedge. The light source was a single wavelength, from a cw HeNe laser, so no

  16. Laser Transmitter Aims At Laser Beacon

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Lesh, James R.

    1993-01-01

    Transmitter part of developmental optical communication system. Compact, lightweight, partially-self-aiming laser transmitter built to verify some capabilities of developmental free-space optical communication system. Design capable of providing 0.5 Mbps data return over range equal to Moon-Earth distance. Breadboard of transmitting terminal constructed and tested in laboratory. Prototype transmitter includes receiving circuitry that keeps it aimed at beacon, once brought into initial alignment within about 1.7 degrees of line of sight to beacon.

  17. Lasers '92; Proceedings of the International Conference on Lasers and Applications, 15th, Houston, TX, Dec. 7-10, 1992

    NASA Technical Reports Server (NTRS)

    Wang, Charles P. (Editor)

    1993-01-01

    Papers from the conference are presented, and the topics covered include the following: x-ray lasers, excimer lasers, chemical lasers, high power lasers, blue-green lasers, dye lasers, solid state lasers, semiconductor lasers, gas and discharge lasers, carbon dioxide lasers, ultrafast phenomena, nonlinear optics, quantum optics, dynamic gratings and wave mixing, laser radar, lasers in medicine, optical filters and laser communication, optical techniques and instruments, laser material interaction, and industrial and manufacturing applications.

  18. Lasers '92; Proceedings of the International Conference on Lasers and Applications, 15th, Houston, TX, Dec. 7-10, 1992

    NASA Technical Reports Server (NTRS)

    Wang, Charles P. (Editor)

    1993-01-01

    Papers from the conference are presented, and the topics covered include the following: x-ray lasers, excimer lasers, chemical lasers, high power lasers, blue-green lasers, dye lasers, solid state lasers, semiconductor lasers, gas and discharge lasers, carbon dioxide lasers, ultrafast phenomena, nonlinear optics, quantum optics, dynamic gratings and wave mixing, laser radar, lasers in medicine, optical filters and laser communication, optical techniques and instruments, laser material interaction, and industrial and manufacturing applications.

  19. Laser Ablation for Medical Applications

    NASA Astrophysics Data System (ADS)

    Hayashi, Ken-Ichi

    Medical applications of laser are measurement, laser surgery, in-situ monitoring, and processing of medical devices. In this paper, author briefly reviews the trends of medical applications, describes some new applications, and then discuss about the future trends and problems of medical applications. At present, the domestic market of laser equipment for medical applications is nearly 1/10 of that for industrial applications, which has registered significant growth continuously. Laser surgery as a minimum invasive surgery under arthroscope is expected to decrease the pain of patients. Precise processing such as cutting and welding is suitable for manufacturing medical devices. Pulsed laser deposition has been successfully applied to the thin film coating. The corneal refractive surgery by ArF excimer laser has been widely accepted for its highly safe operation. Laser ablation for retinal implant in the visual prosthesis is one of the promising applications of laser ablation in medicine. New applications with femtosecond laser are expected in the near future.

  20. Information and Communication Using Lasers

    NASA Astrophysics Data System (ADS)

    Alouini, Mehdi; Bretenaker, Fabien

    2015-10-01

    The applications of lasers in industry are numerous. It is of course beyond the scope of this book to give an overview of these applications. Rather than trying and failing in doing so, we have chosen in this chapter to illustrate the unique properties of lasers in four different fields. The two first applications described in this chapter, namely optical telecommunications (Section 3.1) and optical information storage (Section 3.2), highlight the contribution of the spatial coherence of the laser. The third one, namely the ring laser gyroscope (Section 3.3), illustrates the amazing spectral purity that can be provided by laser light. Finally, the fourth one, known under the generic acronym LIDAR (Section 3.4), can use different laser properties, depending on its implementation. It can be based on the laser spatial coherence, the laser temporal coherence, and/or on the laser ability to emit powerful short pulses.

  1. Lasers for median lobe hyperplasia.

    PubMed

    Muschter, R; Gilling, A P

    2001-08-01

    Laser treatment encompases a variety of techniques using different laser wavelengths, application systems, and surgical techniques to achieve contrasting tissue effects such as incision, resection, vaporization, or coagulation. Many studies have proven the clinical efficacy of the various laser techniques for the treatment of benign prostatiuc hyperplasia, including randomized studies versus transurethral prostatectomy (TURP). Recently, long-term follow-up of up to 5 years has demonstrated the durability of the results, although in some of the studies, retreatment rates were higher than after TURP. Median lobes were never seen as a contraindication for treatment in the laser based procedures. Technically, laser treatment techniques such as side-firing transurethral coagulation, contact- and free-beam laser vaporization, interstitial laser coagulation, and the holmium laser-based resection and enucleation are fully suitable for treatment of median lobes. Surprisingly, no studies focussing specifically on laser treatment of median lobes have been published.

  2. High precision laser photometer for laser optics

    NASA Astrophysics Data System (ADS)

    Zhao, Yuan'an; Hu, Guohang; Cao, Zhen; Liu, Shijie; Zhu, Meiping; Shao, Jianda

    2017-06-01

    Development of laser systems requires optical components with high performance, and a high-precision double-beam laser photometer was designed and established to measure the optical performance at 1064nm. Double beam design and lock-in technique was applied to decrease the impact of light energy instability and electric noise. Pairs of samples were placed symmetrically to eliminate beam displacement, and laser scattering imaging technique was applied to determine the influence of surface defect on the optical performance. Based on the above techniques, transmittance and reflection of pairs of optics were obtained, and the measurement precision was improved to 0.06%. Different types of optical loss, such as total loss, volume loss, residual reflection and surface scattering loss, were obtained from the transmittance and reflection measurement of samples with different thickness. Comparison of optical performance of the test points with and without surface defects, the influence of surface defects on optical performance was determined. The optical performance of Nd-glass at 1064nm were measured as an example. Different types of optical loss and the influence of surface defects on the optical loss was determined.

  3. Lasers in endodontics: an overview

    NASA Astrophysics Data System (ADS)

    Frentzen, Matthias; Braun, Andreas; Koort, Hans J.

    2002-06-01

    The interest in endodontic use of dental laser systems is increasing. Developing laser technology and a better understanding of laser effects widened the spectrum of possible endodontic indications. Various laser systems including excimer-, argon+-, diode-, Nd:YAG-, Er:YAG- and CO2-lasers are used in pulp diagnosis, treatment of hypersensitivity, pulp capping, sterilization of root canals, root canal shaping and obturation or apicoectomy. With the development of new delivery systems - thin and flexible fibers - for many different wavelengths laser applications in endodontics may increase. Since laser devices are still relatively costly, access to them is limited. Most of the clinical applications are laser assisted procedures such as the removing of pulp remnants and debris or disinfection of infected root canals. The essential question is whether a laser can provide improved treatment over conventional care. To perform laser therapy in endodontics today different laser types with adopted wavelengths and pulse widths are needed, each specific to a particular application. Looking into the future we will need endodontic laser equipment providing optimal laser parameters for different treatment modalities. Nevertheless, the quantity of research reports from the last decade promises a genuine future for lasers in endodontics.

  4. Staged Laser driven Electron Acceleration

    NASA Astrophysics Data System (ADS)

    Sokollik, Thomas; Shiraishi, Satomi; Gonsalves, Anthony; Nakamura, Kei; van Tilborg, Jeroen; Shaw, Brian; Esarey, Eric; Schroeder, Carl; Benedetti, Carlo; Toth, Csaba; Leemans, Wim

    2012-10-01

    Laser plasma accelerators have made tremendous progress over the last decade. Currently electron energies around 1 GeV [W. Leemans et al., Nature Physics 2, 696 (2006)] and above can be achieved. In the acceleration process, laser energy is transferred, via generation of a plasma wakefield by the laser pulse, to the electrons. The acceleration of electrons stops, when the laser energy is depleted. To increase the electron energy in current LPA schemes, laser systems with more pulse energy are needed, thus current laser plasma accelerators are limited by laser technology. Today, several projects are using or planning to use PW class laser systems to achieve electron energies up to 10 GeV [W. P. Leemans et al., AAC proceedings (2012)]. These laser systems represent the latest development in laser technology and are able to deliver the highest achievable laser intensities today. To overcome the electron energy limitation a staged acceleration concept is necessary. In this scheme multiple acceleration stages are placed in series, each driven by a separate laser pulse. Now the final electron energy is limited by the number of stages only. In a concept study a 1TeV electron-positron collider based on staged acceleration was envisioned in reference [W. P. Leemans and E. Esarey, Physics Today, 62, 44 (2009)]. We will present the latest results on a staged laser plasma experiment in which two stages and two laser pulses are used.

  5. Blue-green upconversion laser

    DOEpatents

    Nguyen, D.C.; Faulkner, G.E.

    1990-08-14

    A blue-green laser (450--550 nm) uses a host crystal doped with Tm[sup 3+]. The Tm[sup 3+] is excited through upconversion by a red pumping laser and an IR pumping laser to a state which transitions to a relatively lower energy level through emissions in the blue-green band, e.g., 450.20 nm at 75 K. The exciting laser may be tunable dye lasers or may be solid-state semiconductor laser, e.g., GaAlAs and InGaAlP. 3 figs.

  6. Blue-green upconversion laser

    SciTech Connect

    Nguyen, Dinh C.; Faulkner, George E.

    1990-01-01

    A blue-green laser (450-550 nm) uses a host crystal doped with Tm.sup.3+. The Tm.sup.+ is excited through upconversion by a red pumping laser and an IR pumping laser to a state which transitions to a relatively lower energy level through emissions in the blue-green band, e.g., 450.20 nm at 75 K. The exciting laser may be tunable dye lasers or may be solid-state semiconductor laser, e.g., GaAlAs and InGaAlP.

  7. High power ultrashort pulse lasers

    SciTech Connect

    Perry, M.D.

    1994-10-07

    Small scale terawatt and soon even petawatt (1000 terawatt) class laser systems are made possible by application of the chirped-pulse amplification technique to solid-state lasers combined with the availability of broad bandwidth materials. These lasers make possible a new class of high gradient accelerators based on the large electric fields associated with intense laser-plasma interactions or from the intense laser field directly. Here, we concentrate on the laser technology to produce these intense pulses. Application of the smallest of these systems to the production of high brightness electron sources is also introduced.

  8. Laser Propagation in Uranium Hexafluoride

    NASA Astrophysics Data System (ADS)

    Chu, Danny

    1990-01-01

    Several researchers have simulated the laser pulse propagation through simple N-level systems; but, for UF _6 models, large CPU time and memory is required. In an attempt to efficiently yet accurately characterize laser pulse propagation through a UF _6 molecule, a model of UF_6 is created and analyzed by adiabatic excitation. A minimax numerical method is developed to solve the time -dependent Schrodinger equation and then applied to the study of laser excitation of UF_6 using various Gaussian pulses. The process of laser isotope separation is also discussed. The results from the laser excitation of UF_6 are used to simulate laser propagation through ^{235} UF_6.

  9. Injection-controlled laser resonator

    DOEpatents

    Chang, J.J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality. 5 figs.

  10. Laser fusion pulse shape controller

    DOEpatents

    Siebert, Larry D.

    1977-01-01

    An apparatus for controlling the pulse shape, i.e., the pulse duration and intensity pattern, of a pulsed laser system, and which is particularly well adapted for controlling the pellet ignition pulse in a laser-driven fusion reaction system. The apparatus comprises a laser generator for providing an optical control pulse of the shape desired, a pulsed laser triggered by the control pulse, and a plurality of optical Kerr-effect gates serially disposed at the output of the pulsed laser and selectively triggered by the control pulse to pass only a portion of the pulsed laser output generally corresponding in shape to the control pulse.

  11. Injection-controlled laser resonator

    DOEpatents

    Chang, Jim J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality.

  12. Surgical Lasers In Gynecology

    NASA Astrophysics Data System (ADS)

    Schellhas, Helmut F.; Barnes, Alfonso E.

    1982-12-01

    Multipurpose surgical CO2 lasers marketed in the USA have been developed to be applicable to a variety of surgical procedures in many surgical fields. They are all suited for endoscopic surgical procedures and can be fitted to all standard surgical microscopes. They all can adjust the focal length of the laser beam to the different standard focal lengths of the surgical microscope which for instance in laryngoscopy is 400 mm and in colposcopy 300 mm. One laser instrument can even change the spot size in a given focal distance which is very advantageous for some microsurgical procedures (Merrimack Laboratories 820). All multipurpose surgical CO2 laser systems provide a multi-articulated surgical arm for free-hand surgery. The surgical arms are cumbersome to use but they are adapted to the surgeons needs with ingenuity. The practicality of the multi-articulated surgical arms depends mostly on the distance of the handpiece from the surgical console which now is also overbridged by the laser tube in most surgical laser system. The spot size of the beam is variable in most handpieces by interchangeable lenses which modify the focal distance of the beam and the power density. Another common feature in all systems is a coaxial He-Ne pilot light which provides a red spot which unfortunately becomes invisible in a bleeding surgical field. Most surgical laser systems have a spacial mode of TEM 00 which is essential for incisional surgery. The continuous mode of beam delivery is used for incisional surgery and also for most endoscopic procedures.

  13. Variable emissivity laser thermal control system

    DOEpatents

    Milner, Joseph R.

    1994-01-01

    A laser thermal control system for a metal vapor laser maintains the wall mperature of the laser at a desired level by changing the effective emissivity of the water cooling jacket. This capability increases the overall efficiency of the laser.

  14. Spectral and Radiometric Calibration Using Tunable Lasers

    NASA Technical Reports Server (NTRS)

    McCorkel, Joel (Inventor)

    2017-01-01

    A tunable laser system includes a tunable laser, an adjustable laser cavity for producing one or more modes of laser light emitted from the tunable laser, a first optical parametric oscillator positioned in a light path of the adjustable laser cavity, and a controller operable to simultaneously control parameters of at least the tunable laser, the first optical parametric oscillator, and the adjustable laser cavity to produce a range of wavelengths emitted from the tunable laser system. A method of operating a tunable laser system includes using a controller to simultaneously control parameters of a tunable laser, an adjustable laser cavity for producing one or more modes of laser light emitted from the tunable laser, and a first optical parametric oscillator positioned in a light path of the adjustable laser cavity, to produce a range of wavelengths emitted from the tunable laser system.

  15. Theoretical studies of solar-pumped lasers

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1983-01-01

    Possible types of lasers were surveyed for solar power conversion. The types considered were (1) liquid dye lasers, (2) vapor dye lasers, and (3) nondissociative molecular lasers. These are discussed.

  16. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Rob; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This slide presentation reviews the power frequencies for the doubled fiber laser. It includes information on the 780 nm laser, second harmonic generation in one crystal, cascading crystals, the tenability of laser systems, laser cooling, and directions for future work.

  17. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Rob; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This slide presentation reviews the power frequencies for the doubled fiber laser. It includes information on the 780 nm laser, second harmonic generation in one crystal, cascading crystals, the tenability of laser systems, laser cooling, and directions for future work.

  18. The Lunar Orbiter Laser Altimeter (LOLA) Laser Transmitter

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Novo-Gradac, Anne Marie; Shaw, George B.; Unger, Glenn; Lukemire, Alan

    2008-01-01

    We present the final configuration of the space flight laser transmitter as delivered to the LOLA instrument. The laser consists of two oscillators with co-aligned outputs on a single bench, each capable of providing one billion plus shots.

  19. Laser scattering measurement for laser removal of graffiti

    NASA Astrophysics Data System (ADS)

    Tearasongsawat, Watcharawee; Kittiboonanan, Phumipat; Luengviriya, Chaiya; Ratanavis, Amarin

    2015-07-01

    In this contribution, a technical development of the laser scattering measurement for laser removal of graffiti is reported. This study concentrates on the removal of graffiti from metal surfaces. Four colored graffiti paints were applied to stainless steel samples. Cleaning efficiency was evaluated by the laser scattering system. In this study, an angular laser removal of graffiti was attempted to examine the removal process under practical conditions. A Q-switched Nd:YAG laser operating at 1.06 microns with the repetition rate of 1 Hz was used to remove graffiti from stainless steel samples. The laser fluence was investigated from 0.1 J/cm2 to 7 J/cm2. The laser parameters to achieve the removal effectiveness were determined by using the laser scattering system. This study strongly leads to further development of the potential online surface inspection for the removal of graffiti.

  20. Evaluation of impacts of laser parameters on laser cell efficiencies

    NASA Astrophysics Data System (ADS)

    Zhang, Yichen; Zhao, Changming; Yang, Suhui; Wang, Yunshi; Zhu, Qihai; Ke, Jieyao; Xu, Peng; Guan, Zhe; Zhang, Haiyang

    2015-08-01

    Wireless laser power supply to long-distance devices is drawing more and more interest in recent years. As power receivers, laser cells are adhered on these devices. Relatively high laser cell efficiency could be obtained under a monochromatic illumination. In order to study the most efficient laser illumination conditions to the laser cell, the efficiencies of circular and rectangular cells illuminated by laser with fundamental mode are compared. The simulations show that the cell efficiency increases slowly with the increase of the laser power, and decreases with the increase of the spot size. When the rectangular cell and the circular cell have the same area, and the diameter of the circular cell and that of the laser spot are equal, the efficiency of the circular cell is higher than the rectangular cell.