Sample records for mediate feedback control

  1. Multiple electrokinetic actuators for feedback control of colloidal crystal size.

    PubMed

    Juárez, Jaime J; Mathai, Pramod P; Liddle, J Alexander; Bevan, Michael A

    2012-10-21

    We report a feedback control method to precisely target the number of colloidal particles in quasi-2D ensembles and their subsequent assembly into crystals in a quadrupole electrode. Our approach relies on tracking the number of particles within a quadrupole electrode, which is used in a real-time feedback control algorithm to dynamically actuate competing electrokinetic transport mechanisms. Particles are removed from the quadrupole using DC-field mediated electrophoretic-electroosmotic transport, while high-frequency AC-field mediated dielectrophoretic transport is used to concentrate and assemble colloidal crystals. Our results show successful control of the size of crystals containing 20 to 250 colloidal particles with less than 10% error. Assembled crystals are characterized by their radius of gyration, crystallinity, and number of edge particles, and demonstrate the expected size-dependent properties. Our findings demonstrate successful ensemble feedback control of the assembly of different sized colloidal crystals using multiple actuators, which has broad implications for control over nano- and micro- scale assembly processes involving colloidal components.

  2. Coordination of the Arc Regulatory System and Pheromone-Mediated Positive Feedback in Controlling the Vibrio fischeri lux Operon

    PubMed Central

    Septer, Alecia N.; Stabb, Eric V.

    2012-01-01

    Bacterial pheromone signaling is often governed both by environmentally responsive regulators and by positive feedback. This regulatory combination has the potential to coordinate a group response among distinct subpopulations that perceive key environmental stimuli differently. We have explored the interplay between an environmentally responsive regulator and pheromone-mediated positive feedback in intercellular signaling by Vibrio fischeri ES114, a bioluminescent bacterium that colonizes the squid Euprymna scolopes. Bioluminescence in ES114 is controlled in part by N-(3-oxohexanoyl)-L-homoserine lactone (3OC6), a pheromone produced by LuxI that together with LuxR activates transcription of the luxICDABEG operon, initiating a positive feedback loop and inducing luminescence. The lux operon is also regulated by environmentally responsive regulators, including the redox-responsive ArcA/ArcB system, which directly represses lux in culture. Here we show that inactivating arcA leads to increased 3OC6 accumulation to initiate positive feedback. In the absence of positive feedback, arcA-mediated control of luminescence was only ∼2-fold, but luxI-dependent positive feedback contributed more than 100 fold to the net induction of luminescence in the arcA mutant. Consistent with this overriding importance of positive feedback, 3OC6 produced by the arcA mutant induced luminescence in nearby wild-type cells, overcoming their ArcA repression of lux. Similarly, we found that artificially inducing ArcA could effectively repress luminescence before, but not after, positive feedback was initiated. Finally, we show that 3OC6 produced by a subpopulation of symbiotic cells can induce luminescence in other cells co-colonizing the host. Our results suggest that even transient loss of ArcA-mediated regulation in a sub-population of cells can induce luminescence in a wider community. Moreover, they indicate that 3OC6 can communicate information about both cell density and the state of ArcA/ArcB. PMID:23152924

  3. The motivating role of positive feedback in sport and physical education: evidence for a motivational model.

    PubMed

    Mouratidis, Athanasios; Vansteenkiste, Maarten; Lens, Willy; Sideridis, Georgios

    2008-04-01

    Based on self-determination theory (Deci & Ryan, 2000), an experimental study with middle school students participating in a physical education task and a correlational study with highly talented sport students investigated the motivating role of positive competence feedback on participants' well-being, performance, and intention to participate. In Study 1, structural equation modeling favored the hypothesized motivational model, in which, after controlling for pretask perceived competence and competence valuation, feedback positively predicted competence satisfaction, which in turn predicted higher levels of vitality and greater intentions to participate, through the mediation of autonomous motivation. No effects on performance were found. Study 2 further showed that autonomous motivation mediated the relation between competence satisfaction and well-being, whereas a motivation mediated the negative relation between competence satisfaction and ill-being and rated performance. The discussion focuses on the motivational role of competence feedback in sports and physical education settings.

  4. Learning climate and feedback as predictors of dental students' self-determined motivation: The mediating role of basic psychological needs satisfaction.

    PubMed

    Orsini, C; Binnie, V; Wilson, S; Villegas, M J

    2018-05-01

    The aim of this study was to test the mediating role of the satisfaction of dental students' basic psychological needs of autonomy, competence and relatedness on the association between learning climate, feedback and student motivation. The latter was based on the self-determination theory's concepts of differentiation of autonomous motivation, controlled motivation and amotivation. A cross-sectional correlational study was conducted where 924 students completed self-reported questionnaires measuring motivation, perception of the learning climate, feedback and basic psychological needs satisfaction. Descriptive statistics, Cronbach's alpha scores and bivariate correlations were computed. Mediation of basic needs on each predictor-outcome association was tested based on a series of regression analyses. Finally, all variables were integrated into one structural equation model, controlling for the effects of age, gender and year of study. Cronbach's alpha scores were acceptable (.655 to .905). Correlation analyses showed positive and significant associations between both an autonomy-supportive learning climate and the quantity and quality of feedback received, and students' autonomous motivation, which decreased and became negative when correlated with controlled motivation and amotivation, respectively. Regression analyses revealed that these associations were indirect and mediated by how these predictors satisfied students' basic psychological needs. These results were corroborated by the structural equation analysis, in which data fit the model well and regression paths were in the expected direction. An autonomy-supportive learning climate and the quantity and quality of feedback were positive predictors of students' autonomous motivation and negative predictors of amotivation. However, this was an indirect association mediated by the satisfaction of students' basic psychological needs. Consequently, supporting students' needs of autonomy, competence and relatedness might lead to optimal types of motivation, which has an important influence on dental education. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Neural mechanisms underlying auditory feedback control of speech

    PubMed Central

    Reilly, Kevin J.; Guenther, Frank H.

    2013-01-01

    The neural substrates underlying auditory feedback control of speech were investigated using a combination of functional magnetic resonance imaging (fMRI) and computational modeling. Neural responses were measured while subjects spoke monosyllabic words under two conditions: (i) normal auditory feedback of their speech, and (ii) auditory feedback in which the first formant frequency of their speech was unexpectedly shifted in real time. Acoustic measurements showed compensation to the shift within approximately 135 ms of onset. Neuroimaging revealed increased activity in bilateral superior temporal cortex during shifted feedback, indicative of neurons coding mismatches between expected and actual auditory signals, as well as right prefrontal and Rolandic cortical activity. Structural equation modeling revealed increased influence of bilateral auditory cortical areas on right frontal areas during shifted speech, indicating that projections from auditory error cells in posterior superior temporal cortex to motor correction cells in right frontal cortex mediate auditory feedback control of speech. PMID:18035557

  6. The human factors of workstation telepresence

    NASA Technical Reports Server (NTRS)

    Smith, Thomas J.; Smith, Karl U.

    1990-01-01

    The term workstation telepresence has been introduced to describe human-telerobot compliance, which enables the human operator to effectively project his/her body image and behavioral skills to control of the telerobot itself. Major human-factors considerations for establishing high fidelity workstation telepresence during human-telerobot operation are discussed. Telerobot workstation telepresence is defined by the proficiency and skill with which the operator is able to control sensory feedback from direct interaction with the workstation itself, and from workstation-mediated interaction with the telerobot. Numerous conditions influencing such control have been identified. This raises the question as to what specific factors most critically influence the realization of high fidelity workstation telepresence. The thesis advanced here is that perturbations in sensory feedback represent a major source of variability in human performance during interactive telerobot operation. Perturbed sensory feedback research over the past three decades has established that spatial transformations or temporal delays in sensory feedback engender substantial decrements in interactive task performance, which training does not completely overcome. A recently developed social cybernetic model of human-computer interaction can be used to guide this approach, based on computer-mediated tracking and control of sensory feedback. How the social cybernetic model can be employed for evaluating the various modes, patterns, and integrations of interpersonal, team, and human-computer interactions which play a central role is workstation telepresence are discussed.

  7. Quantum theory of multiple-input-multiple-output Markovian feedback with diffusive measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chia, A.; Wiseman, H. M.

    2011-07-15

    Feedback control engineers have been interested in multiple-input-multiple-output (MIMO) extensions of single-input-single-output (SISO) results of various kinds due to its rich mathematical structure and practical applications. An outstanding problem in quantum feedback control is the extension of the SISO theory of Markovian feedback by Wiseman and Milburn [Phys. Rev. Lett. 70, 548 (1993)] to multiple inputs and multiple outputs. Here we generalize the SISO homodyne-mediated feedback theory to allow for multiple inputs, multiple outputs, and arbitrary diffusive quantum measurements. We thus obtain a MIMO framework which resembles the SISO theory and whose additional mathematical structure is highlighted by the extensivemore » use of vector-operator algebra.« less

  8. Follower-Centered Perspective on Feedback: Effects of Feedback Seeking on Identification and Feedback Environment.

    PubMed

    Gong, Zhenxing; Li, Miaomiao; Qi, Yaoyuan; Zhang, Na

    2017-01-01

    In the formation mechanism of the feedback environment, the existing research pays attention to external feedback sources and regards individuals as objects passively accepting feedback. Thus, the external source fails to realize the individuals' need for feedback, and the feedback environment cannot provide them with useful information, leading to a feedback vacuum. The aim of this study is to examine the effect of feedback-seeking by different strategies on the supervisor-feedback environment through supervisor identification. The article consists of an empirical study with a sample of 264 employees in China; here, participants complete a series of questionnaires in three waves. After controlling for the effects of demography, the results indicate that supervisor identification partially mediates the relationship between feedback-seeking (including feedback monitoring and feedback inquiry) and the supervisor-feedback environment. Implications are also discussed.

  9. Follower-Centered Perspective on Feedback: Effects of Feedback Seeking on Identification and Feedback Environment

    PubMed Central

    Gong, Zhenxing; Li, Miaomiao; Qi, Yaoyuan; Zhang, Na

    2017-01-01

    In the formation mechanism of the feedback environment, the existing research pays attention to external feedback sources and regards individuals as objects passively accepting feedback. Thus, the external source fails to realize the individuals’ need for feedback, and the feedback environment cannot provide them with useful information, leading to a feedback vacuum. The aim of this study is to examine the effect of feedback-seeking by different strategies on the supervisor-feedback environment through supervisor identification. The article consists of an empirical study with a sample of 264 employees in China; here, participants complete a series of questionnaires in three waves. After controlling for the effects of demography, the results indicate that supervisor identification partially mediates the relationship between feedback-seeking (including feedback monitoring and feedback inquiry) and the supervisor-feedback environment. Implications are also discussed. PMID:28919872

  10. Perceived Insider Status and Feedback Reactions: A Dual Path of Feedback Motivation Attribution.

    PubMed

    Chen, Xiao; Liao, JianQiao; Wu, Weijiong; Zhang, Wei

    2017-01-01

    Many studies have evaluated how the characteristics of feedback receiver, feedback deliverer and feedback information influence psychological feedback reactions of the feedback receiver while largely neglecting that feedback intervention is a kind of social interaction process. To address this issue, this study proposes that employees' perceived insider status (PIS), as a kind of employee-organization relationship, could also influence employees' reactions to supervisory feedback. In particular, this study investigates the influence of PIS focusing on affective and cognitive feedback reactions, namely feedback satisfaction and feedback utility. Surveys were conducted in a machinery manufacturing company in the Guangdong province of China. Samples were collected from 192 employees. Data analysis demonstrated that PIS and feedback utility possessed a U-shaped relationship, whereas PIS and feedback satisfaction exhibited positively linear relationships. The analysis identified two kinds of mediating mechanisms related to feedback satisfaction and feedback utility. Internal feedback motivation attribution partially mediated the relationship between PIS and feedback satisfaction but failed to do the same with respect to the relationship between PIS and feedback utility. In contrast, external feedback motivation attribution partially mediated the relationship between PIS and feedback utility while failing to mediate the relationship between PIS and feedback satisfaction. Theoretical contributions and practical implications of the findings are discussed at the end of the paper.

  11. Perceived Insider Status and Feedback Reactions: A Dual Path of Feedback Motivation Attribution

    PubMed Central

    Chen, Xiao; Liao, JianQiao; Wu, Weijiong; Zhang, Wei

    2017-01-01

    Many studies have evaluated how the characteristics of feedback receiver, feedback deliverer and feedback information influence psychological feedback reactions of the feedback receiver while largely neglecting that feedback intervention is a kind of social interaction process. To address this issue, this study proposes that employees’ perceived insider status (PIS), as a kind of employee-organization relationship, could also influence employees’ reactions to supervisory feedback. In particular, this study investigates the influence of PIS focusing on affective and cognitive feedback reactions, namely feedback satisfaction and feedback utility. Surveys were conducted in a machinery manufacturing company in the Guangdong province of China. Samples were collected from 192 employees. Data analysis demonstrated that PIS and feedback utility possessed a U-shaped relationship, whereas PIS and feedback satisfaction exhibited positively linear relationships. The analysis identified two kinds of mediating mechanisms related to feedback satisfaction and feedback utility. Internal feedback motivation attribution partially mediated the relationship between PIS and feedback satisfaction but failed to do the same with respect to the relationship between PIS and feedback utility. In contrast, external feedback motivation attribution partially mediated the relationship between PIS and feedback utility while failing to mediate the relationship between PIS and feedback satisfaction. Theoretical contributions and practical implications of the findings are discussed at the end of the paper. PMID:28507527

  12. Division of labor by dual feedback regulators controls JAK2/STAT5 signaling over broad ligand range.

    PubMed

    Bachmann, Julie; Raue, Andreas; Schilling, Marcel; Böhm, Martin E; Kreutz, Clemens; Kaschek, Daniel; Busch, Hauke; Gretz, Norbert; Lehmann, Wolf D; Timmer, Jens; Klingmüller, Ursula

    2011-07-19

    Cellular signal transduction is governed by multiple feedback mechanisms to elicit robust cellular decisions. The specific contributions of individual feedback regulators, however, remain unclear. Based on extensive time-resolved data sets in primary erythroid progenitor cells, we established a dynamic pathway model to dissect the roles of the two transcriptional negative feedback regulators of the suppressor of cytokine signaling (SOCS) family, CIS and SOCS3, in JAK2/STAT5 signaling. Facilitated by the model, we calculated the STAT5 response for experimentally unobservable Epo concentrations and provide a quantitative link between cell survival and the integrated response of STAT5 in the nucleus. Model predictions show that the two feedbacks CIS and SOCS3 are most effective at different ligand concentration ranges due to their distinct inhibitory mechanisms. This divided function of dual feedback regulation enables control of STAT5 responses for Epo concentrations that can vary 1000-fold in vivo. Our modeling approach reveals dose-dependent feedback control as key property to regulate STAT5-mediated survival decisions over a broad range of ligand concentrations.

  13. A Positive Autoregulatory BDNF Feedback Loop via C/EBPβ Mediates Hippocampal Memory Consolidation

    PubMed Central

    Bambah-Mukku, Dhananjay; Travaglia, Alessio; Chen, Dillon Y.; Pollonini, Gabriella

    2014-01-01

    Little is known about the temporal progression and regulation of the mechanisms underlying memory consolidation. Brain-derived-neurotrophic-factor (BDNF) has been shown to mediate the maintenance of memory consolidation, but the mechanisms of this regulation remain unclear. Using inhibitory avoidance (IA) in rats, here we show that a hippocampal BDNF-positive autoregulatory feedback loop via CCAAT-enhancer binding protein β (C/EBPβ) is necessary to mediate memory consolidation. At training, a very rapid, learning-induced requirement of BDNF accompanied by rapid de novo translation controls the induction of a persistent activation of cAMP-response element binding-protein (CREB) and C/EBPβ expression. The latter, in turn, controls an increase in expression of bdnf exon IV transcripts and BDNF protein, both of which are necessary and, together with the initial BDNF requirement, mediate memory consolidation. The autoregulatory loop terminates by 48 h after training with decreased C/EBPβ and pCREB and increased methyl-CpG binding protein-2, histone-deacetylase-2, and switch-independent-3a binding at the bdnf exon IV promoter. PMID:25209292

  14. Effects of mediated social touch on affective experiences and trust.

    PubMed

    Erk, Stefanie M; Toet, Alexander; Van Erp, Jan B F

    2015-01-01

    This study investigated whether communication via mediated hand pressure during a remotely shared experience (watching an amusing video) can (1) enhance recovery from sadness, (2) enhance the affective quality of the experience, and (3) increase trust towards the communication partner. Thereto participants first watched a sad movie clip to elicit sadness, followed by a funny one to stimulate recovery from sadness. While watching the funny clip they signaled a hypothetical fellow participant every time they felt amused. In the experimental condition the participants responded by pressing a hand-held two-way mediated touch device (a Frebble), which also provided haptic feedback via simulated hand squeezes. In the control condition they responded by pressing a button and they received abstract visual feedback. Objective (heart rate, galvanic skin conductance, number and duration of joystick or Frebble presses) and subjective (questionnaires) data were collected to assess the emotional reactions of the participants. The subjective measurements confirmed that the sad movie successfully induced sadness while the funny movie indeed evoked more positive feelings. Although their ranking agreed with the subjective measurements, the physiological measurements confirmed this conclusion only for the funny movie. The results show that recovery from movie induced sadness, the affective experience of the amusing movie, and trust towards the communication partner did not differ between both experimental conditions. Hence, feedback via mediated hand touching did not enhance either of these factors compared to visual feedback. Further analysis of the data showed that participants scoring low on Extraversion (i.e., persons that are more introvert) or low on Touch Receptivity (i.e., persons who do not like to be touched by others) felt better understood by their communication partner when receiving mediated touch feedback instead of visual feedback, while the opposite was found for participants scoring high on these factors. The implications of these results for further research are discussed, and some suggestions for follow-up experiments are presented.

  15. Effects of mediated social touch on affective experiences and trust

    PubMed Central

    Erk, Stefanie M.; Van Erp, Jan B.F.

    2015-01-01

    This study investigated whether communication via mediated hand pressure during a remotely shared experience (watching an amusing video) can (1) enhance recovery from sadness, (2) enhance the affective quality of the experience, and (3) increase trust towards the communication partner. Thereto participants first watched a sad movie clip to elicit sadness, followed by a funny one to stimulate recovery from sadness. While watching the funny clip they signaled a hypothetical fellow participant every time they felt amused. In the experimental condition the participants responded by pressing a hand-held two-way mediated touch device (a Frebble), which also provided haptic feedback via simulated hand squeezes. In the control condition they responded by pressing a button and they received abstract visual feedback. Objective (heart rate, galvanic skin conductance, number and duration of joystick or Frebble presses) and subjective (questionnaires) data were collected to assess the emotional reactions of the participants. The subjective measurements confirmed that the sad movie successfully induced sadness while the funny movie indeed evoked more positive feelings. Although their ranking agreed with the subjective measurements, the physiological measurements confirmed this conclusion only for the funny movie. The results show that recovery from movie induced sadness, the affective experience of the amusing movie, and trust towards the communication partner did not differ between both experimental conditions. Hence, feedback via mediated hand touching did not enhance either of these factors compared to visual feedback. Further analysis of the data showed that participants scoring low on Extraversion (i.e., persons that are more introvert) or low on Touch Receptivity (i.e., persons who do not like to be touched by others) felt better understood by their communication partner when receiving mediated touch feedback instead of visual feedback, while the opposite was found for participants scoring high on these factors. The implications of these results for further research are discussed, and some suggestions for follow-up experiments are presented. PMID:26557429

  16. Visual Feedback Dominates the Sense of Agency for Brain-Machine Actions

    PubMed Central

    Evans, Nathan; Gale, Steven; Schurger, Aaron; Blanke, Olaf

    2015-01-01

    Recent advances in neuroscience and engineering have led to the development of technologies that permit the control of external devices through real-time decoding of brain activity (brain-machine interfaces; BMI). Though the feeling of controlling bodily movements (sense of agency; SOA) has been well studied and a number of well-defined sensorimotor and cognitive mechanisms have been put forth, very little is known about the SOA for BMI-actions. Using an on-line BMI, and verifying that our subjects achieved a reasonable level of control, we sought to describe the SOA for BMI-mediated actions. Our results demonstrate that discrepancies between decoded neural activity and its resultant real-time sensory feedback are associated with a decrease in the SOA, similar to SOA mechanisms proposed for bodily actions. However, if the feedback discrepancy serves to correct a poorly controlled BMI-action, then the SOA can be high and can increase with increasing discrepancy, demonstrating the dominance of visual feedback on the SOA. Taken together, our results suggest that bodily and BMI-actions rely on common mechanisms of sensorimotor integration for agency judgments, but that visual feedback dominates the SOA in the absence of overt bodily movements or proprioceptive feedback, however erroneous the visual feedback may be. PMID:26066840

  17. Implementing Nonlinear Feedback Controllers Using DNA Strand Displacement Reactions.

    PubMed

    Sawlekar, Rucha; Montefusco, Francesco; Kulkarni, Vishwesh V; Bates, Declan G

    2016-07-01

    We show how an important class of nonlinear feedback controllers can be designed using idealized abstract chemical reactions and implemented via DNA strand displacement (DSD) reactions. Exploiting chemical reaction networks (CRNs) as a programming language for the design of complex circuits and networks, we show how a set of unimolecular and bimolecular reactions can be used to realize input-output dynamics that produce a nonlinear quasi sliding mode (QSM) feedback controller. The kinetics of the required chemical reactions can then be implemented as enzyme-free, enthalpy/entropy driven DNA reactions using a toehold mediated strand displacement mechanism via Watson-Crick base pairing and branch migration. We demonstrate that the closed loop response of the nonlinear QSM controller outperforms a traditional linear controller by facilitating much faster tracking response dynamics without introducing overshoots in the transient response. The resulting controller is highly modular and is less affected by retroactivity effects than standard linear designs.

  18. Effects of 3D virtual haptics force feedback on brand personality perception: the mediating role of physical presence in advergames.

    PubMed

    Jin, Seung-A Annie

    2010-06-01

    This study gauged the effects of force feedback in the Novint Falcon haptics system on the sensory and cognitive dimensions of a virtual test-driving experience. First, in order to explore the effects of tactile stimuli with force feedback on users' sensory experience, feelings of physical presence (the extent to which virtual physical objects are experienced as actual physical objects) were measured after participants used the haptics interface. Second, to evaluate the effects of force feedback on the cognitive dimension of consumers' virtual experience, this study investigated brand personality perception. The experiment utilized the Novint Falcon haptics controller to induce immersive virtual test-driving through tactile stimuli. The author designed a two-group (haptics stimuli with force feedback versus no force feedback) comparison experiment (N = 238) by manipulating the level of force feedback. Users in the force feedback condition were exposed to tactile stimuli involving various force feedback effects (e.g., terrain effects, acceleration, and lateral forces) while test-driving a rally car. In contrast, users in the control condition test-drove the rally car using the Novint Falcon but were not given any force feedback. Results of ANOVAs indicated that (a) users exposed to force feedback felt stronger physical presence than those in the no force feedback condition, and (b) users exposed to haptics stimuli with force feedback perceived the brand personality of the car to be more rugged than those in the control condition. Managerial implications of the study for product trial in the business world are discussed.

  19. Systematic comparison of the response properties of protein and RNA mediated gene regulatory motifs.

    PubMed

    Iyengar, Bharat Ravi; Pillai, Beena; Venkatesh, K V; Gadgil, Chetan J

    2017-05-30

    We present a framework enabling the dissection of the effects of motif structure (feedback or feedforward), the nature of the controller (RNA or protein), and the regulation mode (transcriptional, post-transcriptional or translational) on the response to a step change in the input. We have used a common model framework for gene expression where both motif structures have an activating input and repressing regulator, with the same set of parameters, to enable a comparison of the responses. We studied the global sensitivity of the system properties, such as steady-state gain, overshoot, peak time, and peak duration, to parameters. We find that, in all motifs, overshoot correlated negatively whereas peak duration varied concavely with peak time. Differences in the other system properties were found to be mainly dependent on the nature of the controller rather than the motif structure. Protein mediated motifs showed a higher degree of adaptation i.e. a tendency to return to baseline levels; in particular, feedforward motifs exhibited perfect adaptation. RNA mediated motifs had a mild regulatory effect; they also exhibited a lower peaking tendency and mean overshoot. Protein mediated feedforward motifs showed higher overshoot and lower peak time compared to the corresponding feedback motifs.

  20. A PI3-kinase-mediated negative feedback regulates neuronal excitability.

    PubMed

    Howlett, Eric; Lin, Curtis Chun-Jen; Lavery, William; Stern, Michael

    2008-11-01

    Use-dependent downregulation of neuronal activity (negative feedback) can act as a homeostatic mechanism to maintain neuronal activity at a particular specified value. Disruption of this negative feedback might lead to neurological pathologies, such as epilepsy, but the precise mechanisms by which this feedback can occur remain incompletely understood. At one glutamatergic synapse, the Drosophila neuromuscular junction, a mutation in the group II metabotropic glutamate receptor gene (DmGluRA) increased motor neuron excitability by disrupting an autocrine, glutamate-mediated negative feedback. We show that DmGluRA mutations increase neuronal excitability by preventing PI3 kinase (PI3K) activation and consequently hyperactivating the transcription factor Foxo. Furthermore, glutamate application increases levels of phospho-Akt, a product of PI3K signaling, within motor nerve terminals in a DmGluRA-dependent manner. Finally, we show that PI3K increases both axon diameter and synapse number via the Tor/S6 kinase pathway, but not Foxo. In humans, PI3K and group II mGluRs are implicated in epilepsy, neurofibromatosis, autism, schizophrenia, and other neurological disorders; however, neither the link between group II mGluRs and PI3K, nor the role of PI3K-dependent regulation of Foxo in the control of neuronal excitability, had been previously reported. Our work suggests that some of the deficits in these neurological disorders might result from disruption of glutamate-mediated homeostasis of neuronal excitability.

  1. Neural Correlates of the Lombard Effect in Primate Auditory Cortex

    PubMed Central

    Eliades, Steven J.

    2012-01-01

    Speaking is a sensory-motor process that involves constant self-monitoring to ensure accurate vocal production. Self-monitoring of vocal feedback allows rapid adjustment to correct perceived differences between intended and produced vocalizations. One important behavior in vocal feedback control is a compensatory increase in vocal intensity in response to noise masking during vocal production, commonly referred to as the Lombard effect. This behavior requires mechanisms for continuously monitoring auditory feedback during speaking. However, the underlying neural mechanisms are poorly understood. Here we show that when marmoset monkeys vocalize in the presence of masking noise that disrupts vocal feedback, the compensatory increase in vocal intensity is accompanied by a shift in auditory cortex activity toward neural response patterns seen during vocalizations under normal feedback condition. Furthermore, we show that neural activity in auditory cortex during a vocalization phrase predicts vocal intensity compensation in subsequent phrases. These observations demonstrate that the auditory cortex participates in self-monitoring during the Lombard effect, and may play a role in the compensation of noise masking during feedback-mediated vocal control. PMID:22855821

  2. Computer-Mediated Corrective Feedback and the Development of L2 Grammar

    ERIC Educational Resources Information Center

    Sauro, Shannon

    2009-01-01

    This paper reports on a study that investigated the impact of two types of computer-mediated corrective feedback on the development of adult learners' L2 knowledge: (1) corrective feedback that reformulates the error in the form of recasts, and (2) corrective feedback that supplies the learner with metalinguistic information about the nature of…

  3. No Such Thing as Failure, Only Feedback: Designing Innovative Opportunities for E-Assessment and Technology-Mediated Feedback

    ERIC Educational Resources Information Center

    Miller, Charles; Doering, Aaron; Scharber, Cassandra

    2010-01-01

    In this paper we challenge designers, researchers, teachers, students, and parents to re-assess and re-envision the value of technology-mediated feedback and e-assessment by examining the innovative roles feedback and assessment played in the design of three contemporary web-based learning environments. These environments include 1) an…

  4. Warning: This keyboard will deconstruct--the role of the keyboard in skilled typewriting.

    PubMed

    Crump, Matthew J C; Logan, Gordon D

    2010-06-01

    Skilled actions are commonly assumed to be controlled by precise internal schemas or cognitive maps. We challenge these ideas in the context of skilled typing, where prominent theories assume that typing is controlled by a well-learned cognitive map that plans finger movements without feedback. In two experiments, we demonstrate that online physical interaction with the keyboard critically mediates typing skill. Typists performed single-word and paragraph typing tasks on a regular keyboard, a laser-projection keyboard, and two deconstructed keyboards, made by removing successive layers of a regular keyboard. Averaged over the laser and deconstructed keyboards, response times for the first keystroke increased by 37%, the interval between keystrokes increased by 120%, and error rate increased by 177%, relative to those of the regular keyboard. A schema view predicts no influence of external motor feedback, because actions could be planned internally with high precision. We argue that the expert knowledge mediating action control emerges during online interaction with the physical environment.

  5. Ethical Leadership, Leader-Member Exchange and Feedback Seeking: A Double-Moderated Mediation Model of Emotional Intelligence and Work-Unit Structure.

    PubMed

    Qian, Jing; Wang, Bin; Han, Zhuo; Song, Baihe

    2017-01-01

    This research elucidates the role of ethical leadership in employee feedback seeking by examining how and when ethical leadership may exert a positive influence on feedback seeking. Using matched reports from 64 supervisors and 265 of their immediate employees from a hotel group located in a major city in China, we proposed and tested a moderated mediation model that examines leader-member exchange (LMX) as the mediator and emotional intelligence as well as work-unit structure as double moderators in the relationships between ethical leadership and followers' feedback-seeking behavior from supervisors and coworkers. Our findings indicated that (1) LMX mediated the positive relationship between ethical leadership and feedback seeking from both ethical leaders and coworkers, and (2) emotional intelligence and work-unit structure served as joint moderators on the mediated positive relationship in such a way that the relationship was strongest when the emotional intelligence was high and work-unit structure was more of an organic structure rather than a mechanistic structure.

  6. The Relation of College Student Self-Efficacy toward Writing and Writing Self-Regulation Aptitude: Writing Feedback Perceptions as a Mediating Variable

    ERIC Educational Resources Information Center

    Ekholm, Eric; Zumbrunn, Sharon; Conklin, Sarah

    2015-01-01

    Despite the powerful effect feedback often has on student writing success more research is needed on how students emotionally react to the feedback they receive. This study tested the predictive and mediational roles of college student writing self-efficacy beliefs and feedback perceptions on writing self-regulation aptitude. Results suggested…

  7. Impact of the Supervisor Feedback Environment on Creative Performance: A Moderated Mediation Model.

    PubMed

    Zhang, Jian; Gong, Zhenxing; Zhang, Shuangyu; Zhao, Yujia

    2017-01-01

    Studies on the relationship between feedback and creative performance have only focused on the feedback-self and have underestimated the value of the feedback environment. Building on Self Determined Theory, the purpose of this article is to examine the relationship among feedback environment, creative personality, goal self-concordance and creative performance. Hierarchical regression analysis of a sample of 162 supervisor-employee dyads from nine industry firms. The results indicate that supervisor feedback environment is positively related to creative performance, the relationship between the supervisor feedback environment and creative performance is mediated by goal self-concordance perfectly and moderated by creative personality significantly. The mediation effort of goal self-concordance is significantly influenced by creative personality. The implication of improving employees' creative performance is further discussed. The present study advances several perspectives of previous studies, echoes recent suggestions that organizations interested in stimulating employee creativity might profitably focus on developing work contexts that support it.

  8. The magnitude and colour of noise in genetic negative feedback systems.

    PubMed

    Voliotis, Margaritis; Bowsher, Clive G

    2012-08-01

    The comparative ability of transcriptional and small RNA-mediated negative feedback to control fluctuations or 'noise' in gene expression remains unexplored. Both autoregulatory mechanisms usually suppress the average (mean) of the protein level and its variability across cells. The variance of the number of proteins per molecule of mean expression is also typically reduced compared with the unregulated system, but is almost never below the value of one. This relative variance often substantially exceeds a recently obtained, theoretical lower limit for biochemical feedback systems. Adding the transcriptional or small RNA-mediated control has different effects. Transcriptional autorepression robustly reduces both the relative variance and persistence (lifetime) of fluctuations. Both benefits combine to reduce noise in downstream gene expression. Autorepression via small RNA can achieve more extreme noise reduction and typically has less effect on the mean expression level. However, it is often more costly to implement and is more sensitive to rate parameters. Theoretical lower limits on the relative variance are known to decrease slowly as a measure of the cost per molecule of mean expression increases. However, the proportional increase in cost to achieve substantial noise suppression can be different away from the optimal frontier-for transcriptional autorepression, it is frequently negligible.

  9. A Framework for Engineering Stress Resilient Plants Using Genetic Feedback Control and Regulatory Network Rewiring.

    PubMed

    Foo, Mathias; Gherman, Iulia; Zhang, Peijun; Bates, Declan G; Denby, Katherine J

    2018-05-23

    Crop disease leads to significant waste worldwide, both pre- and postharvest, with subsequent economic and sustainability consequences. Disease outcome is determined both by the plants' response to the pathogen and by the ability of the pathogen to suppress defense responses and manipulate the plant to enhance colonization. The defense response of a plant is characterized by significant transcriptional reprogramming mediated by underlying gene regulatory networks, and components of these networks are often targeted by attacking pathogens. Here, using gene expression data from Botrytis cinerea-infected Arabidopsis plants, we develop a systematic approach for mitigating the effects of pathogen-induced network perturbations, using the tools of synthetic biology. We employ network inference and system identification techniques to build an accurate model of an Arabidopsis defense subnetwork that contains key genes determining susceptibility of the plant to the pathogen attack. Once validated against time-series data, we use this model to design and test perturbation mitigation strategies based on the use of genetic feedback control. We show how a synthetic feedback controller can be designed to attenuate the effect of external perturbations on the transcription factor CHE in our subnetwork. We investigate and compare two approaches for implementing such a controller biologically-direct implementation of the genetic feedback controller, and rewiring the regulatory regions of multiple genes-to achieve the network motif required to implement the controller. Our results highlight the potential of combining feedback control theory with synthetic biology for engineering plants with enhanced resilience to environmental stress.

  10. How you provide corrective feedback makes a difference: the motivating role of communicating in an autonomy-supporting way.

    PubMed

    Mouratidis, Athanasios; Lens, Willy; Vansteenkiste, Maarten

    2010-10-01

    We relied on self-determination theory (SDT; Deci & Ryan, 2000) to investigate to what extent autonomy-supporting corrective feedback (i.e., feedback that coaches communicate to their athletes after poor performance or mistakes) is associated with athletes' optimal motivation and well-being. To test this hypothesis, we conducted a cross-sectional study with 337 (67.1% males) Greek adolescent athletes (age M = 15.59, SD = 2.37) from various sports. Aligned with SDT, we found through path analysis that an autonomy-supporting versus controlling communication style was positively related to future intentions to persist and well-being and negatively related to ill-being. These relations were partially mediated by the perceived legitimacy of the corrective feedback (i.e., the degree of acceptance of corrective feedback), and, in turn, by intrinsic motivation, identified regulation, and external regulation for doing sports. Results indicate that autonomy-supporting feedback can be still motivating even in cases in which such feedback conveys messages of still too low competence.

  11. Feedback regulation via AMPK and HIF-1 mediates ROS-dependent longevity in Caenorhabditis elegans

    PubMed Central

    Hwang, Ara B.; Ryu, Eun-A; Artan, Murat; Chang, Hsin-Wen; Kabir, Mohammad Humayun; Nam, Hyun-Jun; Lee, Dongyeop; Yang, Jae-Seong; Kim, Sanguk; Mair, William B.; Lee, Cheolju; Lee, Siu Sylvia; Lee, Seung-Jae

    2014-01-01

    Mild inhibition of mitochondrial respiration extends the lifespan of many species. In Caenorhabditis elegans, reactive oxygen species (ROS) promote longevity by activating hypoxia-inducible factor 1 (HIF-1) in response to reduced mitochondrial respiration. However, the physiological role and mechanism of ROS-induced longevity are poorly understood. Here, we show that a modest increase in ROS increases the immunity and lifespan of C. elegans through feedback regulation by HIF-1 and AMP-activated protein kinase (AMPK). We found that activation of AMPK as well as HIF-1 mediates the longevity response to ROS. We further showed that AMPK reduces internal levels of ROS, whereas HIF-1 amplifies the levels of internal ROS under conditions that increase ROS. Moreover, mitochondrial ROS increase resistance to various pathogenic bacteria, suggesting a possible association between immunity and long lifespan. Thus, AMPK and HIF-1 may control immunity and longevity tightly by acting as feedback regulators of ROS. PMID:25288734

  12. Positive force feedback in human walking

    PubMed Central

    Grey, Michael J; Nielsen, Jens Bo; Mazzaro, Nazarena; Sinkjær, Thomas

    2007-01-01

    The objective of this study was to determine if load receptors contribute to the afferent-mediated enhancement of ankle extensor muscle activity during the late stance phase of the step cycle. Plantar flexion perturbations were presented in late stance while able-bodied human subjects walked on a treadmill that was declined by 4%, inclined by 4% or held level. The plantar flexion perturbation produced a transient, but marked, presumably spinally mediated decrease in soleus EMG that varied directly with the treadmill inclination. Similarly, the magnitude of the control step soleus EMG and Achilles' tendon force also varied directly with the treadmill inclination. In contrast, the ankle angular displacement and velocity were inversely related to the treadmill inclination. These results suggest that Golgi tendon organ feedback, via the group Ib pathway, is reduced when the muscle–tendon complex is unloaded by a rapid plantar flexion perturbation in late stance phase. The changes in the unload response with treadmill inclination suggest that the late stance phase soleus activity may be enhanced by force feedback. PMID:17331984

  13. Ethical Leadership, Leader-Member Exchange and Feedback Seeking: A Double-Moderated Mediation Model of Emotional Intelligence and Work-Unit Structure

    PubMed Central

    Qian, Jing; Wang, Bin; Han, Zhuo; Song, Baihe

    2017-01-01

    This research elucidates the role of ethical leadership in employee feedback seeking by examining how and when ethical leadership may exert a positive influence on feedback seeking. Using matched reports from 64 supervisors and 265 of their immediate employees from a hotel group located in a major city in China, we proposed and tested a moderated mediation model that examines leader-member exchange (LMX) as the mediator and emotional intelligence as well as work-unit structure as double moderators in the relationships between ethical leadership and followers’ feedback-seeking behavior from supervisors and coworkers. Our findings indicated that (1) LMX mediated the positive relationship between ethical leadership and feedback seeking from both ethical leaders and coworkers, and (2) emotional intelligence and work-unit structure served as joint moderators on the mediated positive relationship in such a way that the relationship was strongest when the emotional intelligence was high and work-unit structure was more of an organic structure rather than a mechanistic structure. PMID:28744251

  14. The Provision of Feedback Types to EFL Learners in Synchronous Voice Computer Mediated Communication

    ERIC Educational Resources Information Center

    Ko, Chao-Jung

    2015-01-01

    This study examined the relationship between Synchronous Voice Computer Mediated Communication (SVCMC) interaction and the use of feedback types, especially pronunciation feedback types, in distance tutoring contexts. The participants, divided into two groups (explicit and recast), were twelve beginning/low-intermediate level English as a Foreign…

  15. Internet-Mediated Corrective Feedback for Digital Natives

    ERIC Educational Resources Information Center

    Saadat, Mahboobeh; Mehrpour, Saeed; Khajavi, Yaser

    2016-01-01

    In this article, the authors examine different ways of using the Internet to receive feedback, and discuss advantages of language learners' use of the Internet to improve their own writing. In effect, the article elaborates on how Internet-mediated corrective feedback (IMCF) can be used as an efficient tool by language learners to become competent…

  16. Toward a Better Understanding of Student Perceptions of Writing Feedback: A Mixed Methods Study

    ERIC Educational Resources Information Center

    Zumbrunn, Sharon; Marrs, Sarah; Mewborn, Caitlin

    2016-01-01

    This explanatory sequential mixed methods study investigated the writing feedback perceptions of middle and high school students (N = 598). The predictive and mediational roles of writing self-efficacy and perceptions of writing feedback on student writing self-regulation aptitude were examined using mediation regression analysis. To augment the…

  17. Muscle spindle feedback directs locomotor recovery and circuit reorganization after spinal cord injury.

    PubMed

    Takeoka, Aya; Vollenweider, Isabel; Courtine, Grégoire; Arber, Silvia

    2014-12-18

    Spinal cord injuries alter motor function by disconnecting neural circuits above and below the lesion, rendering sensory inputs a primary source of direct external drive to neuronal networks caudal to the injury. Here, we studied mice lacking functional muscle spindle feedback to determine the role of this sensory channel in gait control and locomotor recovery after spinal cord injury. High-resolution kinematic analysis of intact mutant mice revealed proficient execution in basic locomotor tasks but poor performance in a precision task. After injury, wild-type mice spontaneously recovered basic locomotor function, whereas mice with deficient muscle spindle feedback failed to regain control over the hindlimb on the lesioned side. Virus-mediated tracing demonstrated that mutant mice exhibit defective rearrangements of descending circuits projecting to deprived spinal segments during recovery. Our findings reveal an essential role for muscle spindle feedback in directing basic locomotor recovery and facilitating circuit reorganization after spinal cord injury. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Impact of the Supervisor Feedback Environment on Creative Performance: A Moderated Mediation Model

    PubMed Central

    Zhang, Jian; Gong, Zhenxing; Zhang, Shuangyu; Zhao, Yujia

    2017-01-01

    Studies on the relationship between feedback and creative performance have only focused on the feedback-self and have underestimated the value of the feedback environment. Building on Self Determined Theory, the purpose of this article is to examine the relationship among feedback environment, creative personality, goal self-concordance and creative performance. Hierarchical regression analysis of a sample of 162 supervisor–employee dyads from nine industry firms. The results indicate that supervisor feedback environment is positively related to creative performance, the relationship between the supervisor feedback environment and creative performance is mediated by goal self-concordance perfectly and moderated by creative personality significantly. The mediation effort of goal self-concordance is significantly influenced by creative personality. The implication of improving employees’ creative performance is further discussed. The present study advances several perspectives of previous studies, echoes recent suggestions that organizations interested in stimulating employee creativity might profitably focus on developing work contexts that support it. PMID:28275362

  19. Enhancing the NS-2 Network Simulator for Near Real-Time Control Feedback and Distributed Simulation

    DTIC Science & Technology

    2009-03-21

    Communication Mediator, see mediator Constant Bit Rate, see cbr Emulation, 8 Georgia Tech Network Simulator, see GT- NetS Globlal Mobile Information ...PAGE Form ApprovedOMB No. 0704–0188 The public reporting burden for this collection of information is estimated to average 1 hour per response...for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188

  20. A negative feedback control of transforming growth factor-beta signaling by glycogen synthase kinase 3-mediated Smad3 linker phosphorylation at Ser-204.

    PubMed

    Millet, Caroline; Yamashita, Motozo; Heller, Mary; Yu, Li-Rong; Veenstra, Timothy D; Zhang, Ying E

    2009-07-24

    Through the action of its membrane-bound type I receptor, transforming growth factor-beta (TGF-beta) elicits a wide range of cellular responses that regulate cell proliferation, differentiation, and apo ptosis. Many of these signaling responses are mediated by Smad proteins. As such, controlling Smad activity is crucial for proper signaling by TGF-beta and its related factors. Here, we show that TGF-beta induces phosphorylation at three sites in the Smad3 linker region in addition to the two C-terminal residues, and glycogen synthase kinase 3 is responsible for phosphorylation at one of these sites, namely Ser-204. Alanine substitution at Ser-204 and/or the neighboring Ser-208, the priming site for glycogen synthase kinase 3 in vivo activity, strengthened the affinity of Smad3 to CREB-binding protein, suggesting that linker phosphorylation may be part of a negative feedback loop that modulates Smad3 transcriptional activity. Thus, our findings reveal a novel aspect of the Smad3 signaling mechanism that controls the final amplitude of cellular responses to TGF-beta.

  1. Using Track Changes and Word Processor to Provide Corrective Feedback to Learners in Writing

    ERIC Educational Resources Information Center

    AbuSeileek, A. F.

    2013-01-01

    This study investigated the effect of computer-mediated corrective feedback types in an English as a foreign language (EFL) intact class over time. The participants were 64 English majors who were assigned randomly into three treatment conditions that gave and received computer-mediated corrective feedback while writing (track changes, word…

  2. The Effects of Computer-Mediated Synchronous and Asynchronous Direct Corrective Feedback on Writing: A Case Study

    ERIC Educational Resources Information Center

    Shintani, Natsuko

    2016-01-01

    This case study investigated the characteristics of computer-mediated synchronous corrective feedback (SCF, provided while students wrote) and asynchronous corrective feedback (ACF, provided after students had finished writing) in an EFL writing task. The task, designed to elicit the use of the hypothetical conditional, was completed by two…

  3. Osseoperception: An Implant Mediated Sensory Motor Control- A Review

    PubMed Central

    Karani, Jyoti T.; Khanna, Anshul; Badwaik, Praveen; Pai, Ashutosh

    2015-01-01

    Osseointegration of dental implants has been researched extensively, covering various aspects such as bone apposition, biomechanics and microbiology etc however, physiologic integration of implants and the associated prosthesis in the body has received very little attention. This integration is due to the development of a special sensory ability, which is able to restore peripheral sensory feedback mechanism. The underlying mechanism of this so-called ‘osseoperception’ phenomenon remains a matter of debate. The following article reveals the histological, neurophysiologic and psychophysical aspects of osseoperception. A comprehensive research to provide scientific evidence of osseoperception was carried out using various online resources such as Pubmed, Google scholar etc to retrieve studies published between 1985 to 2014 using the following keywords: “osseoperception”, “mechanoreceptors”, “tactile sensibility”. Published data suggests that a peripheral feedback pathway can be restored with osseointegrated implants. This implant-mediated sensory-motor control may have important clinical implications in the normal functioning of the implant supported prosthesis. PMID:26501033

  4. What the Logs Can Tell You: Mediation to Implement Feedback in Training

    NASA Technical Reports Server (NTRS)

    Maluf, David; Wiederhold, Gio; Abou-Khalil, Ali; Norvig, Peter (Technical Monitor)

    2000-01-01

    The problem addressed by Mediation to Implement Feedback in Training (MIFT) is to customize the feedback from training exercizes by exploiting knowledge about the training scenario, training objectives, and specific student/teacher needs. We achieve this by inserting an intelligent mediation layer into the information flow from observations collected during training exercises to the display and user interface. Knowledge about training objectives, scenarios, and tasks is maintained in the mediating layer. A designer constraint is that domain experts must be able to extend mediators by adding domain-specific knowledge that supports additional aggregations, abstractions, and views of the results of training exercises. The MIFT mediation concept is intended to be integrated with existing military training exercise management tools and reduce the cost of developing and maintaining separate feedback and evaluation tools for every training simulator and every set of customer needs. The MIFT Architecture is designed as a set of independently reusable components which interact with each other through standardized formalisms such as the Knowledge Interchange Format (KIF) and Knowledge Query and Manipulation Language (KQML).

  5. The magnitude and colour of noise in genetic negative feedback systems

    PubMed Central

    Voliotis, Margaritis; Bowsher, Clive G.

    2012-01-01

    The comparative ability of transcriptional and small RNA-mediated negative feedback to control fluctuations or ‘noise’ in gene expression remains unexplored. Both autoregulatory mechanisms usually suppress the average (mean) of the protein level and its variability across cells. The variance of the number of proteins per molecule of mean expression is also typically reduced compared with the unregulated system, but is almost never below the value of one. This relative variance often substantially exceeds a recently obtained, theoretical lower limit for biochemical feedback systems. Adding the transcriptional or small RNA-mediated control has different effects. Transcriptional autorepression robustly reduces both the relative variance and persistence (lifetime) of fluctuations. Both benefits combine to reduce noise in downstream gene expression. Autorepression via small RNA can achieve more extreme noise reduction and typically has less effect on the mean expression level. However, it is often more costly to implement and is more sensitive to rate parameters. Theoretical lower limits on the relative variance are known to decrease slowly as a measure of the cost per molecule of mean expression increases. However, the proportional increase in cost to achieve substantial noise suppression can be different away from the optimal frontier—for transcriptional autorepression, it is frequently negligible. PMID:22581772

  6. Feedback and the rationing of time and effort among competing tasks.

    PubMed

    Northcraft, Gregory B; Schmidt, Aaron M; Ashford, Susan J

    2011-09-01

    The study described here tested a model of how characteristics of the feedback environment influence the allocation of resources (time and effort) among competing tasks. Results demonstrated that performers invest more resources on tasks for which higher quality (more timely and more specific) feedback is available; this effect was partially mediated by task salience and task expectancies. Feedback timing and feedback specificity demonstrated both main and interaction effects on resource allocations. Results also demonstrated that performers do better on tasks for which higher quality feedback is available; this effect was mediated by resources allocated to tasks. The practical and theoretical implications of the role of the feedback environment in managing performance are discussed. PsycINFO Database Record (c) 2011 APA, all rights reserved

  7. A PP2A-mediated feedback mechanism controls Ca2+-dependent NO synthesis under physiological oxygen.

    PubMed

    Keeley, Thomas P; Siow, Richard C M; Jacob, Ron; Mann, Giovanni E

    2017-12-01

    Intracellular O 2 is a key regulator of NO signaling, yet most in vitro studies are conducted in atmospheric O 2 levels, hyperoxic with respect to the physiologic milieu. We investigated NO signaling in endothelial cells cultured in physiologic (5%) O 2 and stimulated with histamine or shear stress. Culture of cells in 5% O 2 (>5 d) decreased histamine- but not shear stress-stimulated endothelial (e)NOS activity. Unlike cells adapted to a hypoxic environment (1% O 2 ), those cultured in 5% O 2 still mobilized sufficient Ca 2+ to activate AMPK. Enhanced expression and membrane targeting of PP2A-C was observed in 5% O 2 , resulting in greater interaction with eNOS in response to histamine. Moreover, increased dephosphorylation of eNOS in 5% O 2 was Ca 2+ -sensitive and reversed by okadaic acid or PP2A-C siRNA. The present findings establish that Ca 2+ mobilization stimulates both NO synthesis and PP2A-mediated eNOS dephosphorylation, thus constituting a novel negative feedback mechanism regulating eNOS activity not present in response to shear stress. This, coupled with enhanced NO bioavailability, underpins differences in NO signaling induced by inflammatory and physiologic stimuli that are apparent only in physiologic O 2 levels. Furthermore, an explicit delineation between physiologic normoxia and genuine hypoxia is defined here, with implications for our understanding of pathophysiological hypoxia.-Keeley, T. P., Siow, R. C. M., Jacob, R., Mann, G. E. A PP2A-mediated feedback mechanism controls Ca 2+ -dependent NO synthesis under physiological oxygen. © The Author(s).

  8. Self-regulation of the anterior insula: Reinforcement learning using real-time fMRI neurofeedback.

    PubMed

    Lawrence, Emma J; Su, Li; Barker, Gareth J; Medford, Nick; Dalton, Jeffrey; Williams, Steve C R; Birbaumer, Niels; Veit, Ralf; Ranganatha, Sitaram; Bodurka, Jerzy; Brammer, Michael; Giampietro, Vincent; David, Anthony S

    2014-03-01

    The anterior insula (AI) plays a key role in affective processing, and insular dysfunction has been noted in several clinical conditions. Real-time functional MRI neurofeedback (rtfMRI-NF) provides a means of helping people learn to self-regulate activation in this brain region. Using the Blood Oxygenated Level Dependant (BOLD) signal from the right AI (RAI) as neurofeedback, we trained participants to increase RAI activation. In contrast, another group of participants was shown 'control' feedback from another brain area. Pre- and post-training affective probes were shown, with subjective ratings and skin conductance response (SCR) measured. We also investigated a reward-related reinforcement learning model of rtfMRI-NF. In contrast to the controls, we hypothesised a positive linear increase in RAI activation in participants shown feedback from this region, alongside increases in valence ratings and SCR to affective probes. Hypothesis-driven analyses showed a significant interaction between the RAI/control neurofeedback groups and the effect of self-regulation. Whole-brain analyses revealed a significant linear increase in RAI activation across four training runs in the group who received feedback from RAI. Increased activation was also observed in the caudate body and thalamus, likely representing feedback-related learning. No positive linear trend was observed in the RAI in the group receiving control feedback, suggesting that these data are not a general effect of cognitive strategy or control feedback. The control group did, however, show diffuse activation across the putamen, caudate and posterior insula which may indicate the representation of false feedback. No significant training-related behavioural differences were observed for valence ratings, or SCR. In addition, correlational analyses based on a reinforcement learning model showed that the dorsal anterior cingulate cortex underpinned learning in both groups. In summary, these data demonstrate that it is possible to regulate the RAI using rtfMRI-NF within one scanning session, and that such reward-related learning is mediated by the dorsal anterior cingulate. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Kinematic and neurophysiological consequences of an assisted-force-feedback brain-machine interface training: a case study.

    PubMed

    Silvoni, Stefano; Cavinato, Marianna; Volpato, Chiara; Cisotto, Giulia; Genna, Clara; Agostini, Michela; Turolla, Andrea; Ramos-Murguialday, Ander; Piccione, Francesco

    2013-01-01

    In a proof-of-principle prototypical demonstration we describe a new type of brain-machine interface (BMI) paradigm for upper limb motor-training. The proposed technique allows a fast contingent and proportionally modulated stimulation of afferent proprioceptive and motor output neural pathways using operant learning. Continuous and immediate assisted-feedback of force proportional to rolandic rhythm oscillations during actual movements was employed and illustrated with a single case experiment. One hemiplegic patient was trained for 2 weeks coupling somatosensory brain oscillations with force-field control during a robot-mediated center-out motor-task whose execution approaches movements of everyday life. The robot facilitated actual movements adding a modulated force directed to the target, thus providing a non-delayed proprioceptive feedback. Neuro-electric, kinematic, and motor-behavioral measures were recorded in pre- and post-assessments without force assistance. Patient's healthy arm was used as control since neither a placebo control was possible nor other control conditions. We observed a generalized and significant kinematic improvement in the affected arm and a spatial accuracy improvement in both arms, together with an increase and focalization of the somatosensory rhythm changes used to provide assisted-force-feedback. The interpretation of the neurophysiological and kinematic evidences reported here is strictly related to the repetition of the motor-task and the presence of the assisted-force-feedback. Results are described as systematic observations only, without firm conclusions about the effectiveness of the methodology. In this prototypical view, the design of appropriate control conditions is discussed. This study presents a novel operant-learning-based BMI-application for motor-training coupling brain oscillations and force feedback during an actual movement.

  10. The bantam microRNA acts through Numb to exert cell growth control and feedback regulation of Notch in tumor-forming stem cells in the Drosophila brain.

    PubMed

    Wu, Yen-Chi; Lee, Kyu-Sun; Song, Yan; Gehrke, Stephan; Lu, Bingwei

    2017-05-01

    Notch (N) signaling is central to the self-renewal of neural stem cells (NSCs) and other tissue stem cells. Its deregulation compromises tissue homeostasis and contributes to tumorigenesis and other diseases. How N regulates stem cell behavior in health and disease is not well understood. Here we show that N regulates bantam (ban) microRNA to impact cell growth, a process key to NSC maintenance and particularly relied upon by tumor-forming cancer stem cells. Notch signaling directly regulates ban expression at the transcriptional level, and ban in turn feedback regulates N activity through negative regulation of the Notch inhibitor Numb. This feedback regulatory mechanism helps maintain the robustness of N signaling activity and NSC fate. Moreover, we show that a Numb-Myc axis mediates the effects of ban on nucleolar and cellular growth independently or downstream of N. Our results highlight intricate transcriptional as well as translational control mechanisms and feedback regulation in the N signaling network, with important implications for NSC biology and cancer biology.

  11. The Nature of Feedback: How Different Types of Peer Feedback Affect Writing Performance

    ERIC Educational Resources Information Center

    Nelson, Melissa M.; Schunn, Christian D.

    2009-01-01

    Although providing feedback is commonly practiced in education, there is no general agreement regarding what type of feedback is most helpful and why it is helpful. This study examined the relationship between various types of feedback, potential internal mediators, and the likelihood of implementing feedback. Five main predictions were developed…

  12. False feedback and beliefs influence name recall in younger and older adults.

    PubMed

    Strickland-Hughes, Carla M; West, Robin Lea; Smith, Kimberly A; Ebner, Natalie C

    2017-09-01

    Feedback is an important self-regulatory process that affects task effort and subsequent performance. Benefits of positive feedback for list recall have been explored in research on goals and feedback, but the effect of negative feedback on memory has rarely been studied. The current research extends knowledge of memory and feedback effects by investigating face-name association memory and by examining the potential mediation of feedback effects, in younger and older adults, through self-evaluative beliefs. Beliefs were assessed before and after name recognition and name recall testing. Repeated presentation of false positive feedback was compared to false negative feedback and a no feedback condition. Results showed that memory self-efficacy declined over time for participants in the negative and no feedback conditions but was sustained for those receiving positive feedback. Furthermore, participants who received negative feedback felt older after testing than before testing. For name recall, the positive feedback group outperformed the negative feedback and no feedback groups combined, with no age interactions. The observed feedback-related effects on memory were fully mediated by changes in memory self-efficacy. These findings advance our understanding of how beliefs are related to feedback in memory and inform future studies examining the importance of self-regulation in memory.

  13. A mathematical analysis of rebound in a target-mediated drug disposition model: II. With feedback.

    PubMed

    Aston, Philip J; Derks, Gianne; Agoram, Balaji M; van der Graaf, Piet H

    2017-07-01

    We consider the possibility of free receptor (antigen/cytokine) levels rebounding to higher than the baseline level after the application of an antibody drug using a target-mediated drug disposition model. It is assumed that the receptor synthesis rate experiences homeostatic feedback from the receptor levels. It is shown for a very fast feedback response, that the occurrence of rebound is determined by the ratio of the elimination rates, in a very similar way as for no feedback. However, for a slow feedback response, there will always be rebound. This result is illustrated with an example involving the drug efalizumab for patients with psoriasis. It is shown that slow feedback can be a plausible explanation for the observed rebound in this example.

  14. The signaling symphony: T cell receptor tunes cytokine-mediated T cell differentiation

    PubMed Central

    Huang, Weishan; August, Avery

    2015-01-01

    T cell development, differentiation, and maintenance are orchestrated by 2 key signaling axes: the antigen-specific TCR and cytokine-mediated signals. The TCR signals the recognition of self- and foreign antigens to control T cell homeostasis for immune tolerance and immunity, which is regulated by a variety of cytokines to determine T cell subset homeostasis and differentiation. TCR signaling can synergize with or antagonize cytokine-mediated signaling to fine tune T cell fate; however, the latter is less investigated. Murine models with attenuated TCR signaling strength have revealed that TCR signaling can function as regulatory feedback machinery for T cell homeostasis and differentiation in differential cytokine milieus, such as IL-2-mediated Treg development; IL-7-mediated, naïve CD8+ T cell homeostasis; and IL-4-induced innate memory CD8+ T cell development. In this review, we discuss the symphonic cross-talk between TCR and cytokine-mediated responses that differentially control T cell behavior, with a focus on the negative tuning by TCR activation on the cytokine effects. PMID:25525115

  15. Efficacy of Personalized Normative Feedback as a Brief Intervention for College Student Gambling: A Randomized Controlled Trial

    PubMed Central

    Neighbors, Clayton; Rodriguez, Lindsey M.; Rinker, Dipali V.; Agana, Maigen; Gonzales, Rubi G.; Tackett, Jennifer L.; Foster, Dawn W.

    2016-01-01

    Objective Social influences on gambling among adolescents and adults have been well documented and may be particularly evident among college students, who have higher rates of problem and pathological gambling relative to the general population. Personalized normative feedback (PNF) is a brief intervention designed to correct misperceptions regarding the prevalence of problematic behavior by showing individuals engaging in such behaviors that their own behavior is atypical with respect to actual norms. The current randomized controlled trial evaluated a computer-delivered PNF intervention for problem gambling college students. Method Following a baseline assessment, 252 college student gamblers scoring 2+ on the South Oaks Gambling Screen (SOGS) were randomly assigned to receive PNF or attention-control feedback. Follow-up assessments were completed 3 and 6 months postintervention. Results Results indicated significant intervention effects in reducing perceived norms for quantities lost and won, and in reducing actual quantity lost and gambling problems at the 3-month follow-up. All intervention effects except reduced gambling problems remained at the 6-month follow-up. Mediation results indicated that changes in perceived norms at 3 months mediated the intervention effects. Further, the intervention effects were moderated by self-identification with other student gamblers, suggesting that PNF worked better at reducing gambling for those who more strongly identified with other student gamblers. Conclusions Results support the use of PNF as a stand-alone brief intervention for at-risk gambling students. Extending this approach more broadly may provide an accessible, empirically supported gambling prevention option for universities and related institutions. PMID:26009785

  16. Efficacy of personalized normative feedback as a brief intervention for college student gambling: a randomized controlled trial.

    PubMed

    Neighbors, Clayton; Rodriguez, Lindsey M; Rinker, Dipali V; Gonzales, Rubi G; Agana, Maigen; Tackett, Jennifer L; Foster, Dawn W

    2015-06-01

    Social influences on gambling among adolescents and adults have been well documented and may be particularly evident among college students, who have higher rates of problem and pathological gambling relative to the general population. Personalized normative feedback (PNF) is a brief intervention designed to correct misperceptions regarding the prevalence of problematic behavior by showing individuals engaging in such behaviors that their own behavior is atypical with respect to actual norms. The current randomized controlled trial evaluated a computer-delivered PNF intervention for problem gambling college students. Following a baseline assessment, 252 college student gamblers scoring 2+ on the South Oaks Gambling Screen (SOGS) were randomly assigned to receive PNF or attention-control feedback. Follow-up assessments were completed 3 and 6 months postintervention. Results indicated significant intervention effects in reducing perceived norms for quantities lost and won, and in reducing actual quantity lost and gambling problems at the 3-month follow-up. All intervention effects except reduced gambling problems remained at the 6-month follow-up. Mediation results indicated that changes in perceived norms at 3 months mediated the intervention effects. Further, the intervention effects were moderated by self-identification with other student gamblers, suggesting that PNF worked better at reducing gambling for those who more strongly identified with other student gamblers. Results support the use of PNF as a stand-alone brief intervention for at-risk gambling students. Extending this approach more broadly may provide an accessible, empirically supported gambling prevention option for universities and related institutions. (c) 2015 APA, all rights reserved).

  17. Probabilistic classification learning with corrective feedback is associated with in vivo striatal dopamine release in the ventral striatum, while learning without feedback is not

    PubMed Central

    Wilkinson, Leonora; Tai, Yen Foung; Lin, Chia Shu; Lagnado, David Albert; Brooks, David James; Piccini, Paola; Jahanshahi, Marjan

    2014-01-01

    The basal ganglia (BG) mediate certain types of procedural learning, such as probabilistic classification learning on the ‘weather prediction task’ (WPT). Patients with Parkinson's disease (PD), who have BG dysfunction, are impaired at WPT-learning, but it remains unclear what component of the WPT is important for learning to occur. We tested the hypothesis that learning through processing of corrective feedback is the essential component and is associated with release of striatal dopamine. We employed two WPT paradigms, either involving learning via processing of corrective feedback (FB) or in a paired associate manner (PA). To test the prediction that learning on the FB but not PA paradigm would be associated with dopamine release in the striatum, we used serial 11C-raclopride (RAC) positron emission tomography (PET), to investigate striatal dopamine release during FB and PA WPT-learning in healthy individuals. Two groups, FB, (n = 7) and PA (n = 8), underwent RAC PET twice, once while performing the WPT and once during a control task. Based on a region-of-interest approach, striatal RAC-binding potentials reduced by 13–17% in the right ventral striatum when performing the FB compared to control task, indicating release of synaptic dopamine. In contrast, right ventral striatal RAC binding non-significantly increased by 9% during the PA task. While differences between the FB and PA versions of the WPT in effort and decision-making is also relevant, we conclude striatal dopamine is released during FB-based WPT-learning, implicating the striatum and its dopamine connections in mediating learning with FB. PMID:24777947

  18. Term Relevance Feedback and Mediated Database Searching: Implications for Information Retrieval Practice and Systems Design.

    ERIC Educational Resources Information Center

    Spink, Amanda

    1995-01-01

    This study uses the human approach to examine the sources and effectiveness of search terms selected during 40 mediated interactive database searches and focuses on determining the retrieval effectiveness of search terms identified by users and intermediaries from retrieved items during term relevance feedback. (Author/JKP)

  19. Using "Signals" for Appropriate Feedback: Perceptions and Practices

    ERIC Educational Resources Information Center

    Tanes, Zeynep; Arnold, Kimberly E.; King, Abigail Selzer; Remnet, Mary Ann

    2011-01-01

    Feedback is a crucial form of information for learners. With the availability of new educational technologies, the manner in which feedback is delivered has changed tremendously. Existing research on the learning outcomes of the content and nature of computer mediated feedback is limited and contradictory. "Signals" is an educational data-mining…

  20. Feedback Synthesizes Neural Codes for Motion.

    PubMed

    Clarke, Stephen E; Maler, Leonard

    2017-05-08

    In senses as diverse as vision, hearing, touch, and the electrosense, sensory neurons receive bottom-up input from the environment, as well as top-down input from feedback loops involving higher brain regions [1-4]. Through connectivity with local inhibitory interneurons, these feedback loops can exert both positive and negative control over fundamental aspects of neural coding, including bursting [5, 6] and synchronous population activity [7, 8]. Here we show that a prominent midbrain feedback loop synthesizes a neural code for motion reversal in the hindbrain electrosensory ON- and OFF-type pyramidal cells. This top-down mechanism generates an accurate bidirectional encoding of object position, despite the inability of the electrosensory afferents to generate a consistent bottom-up representation [9, 10]. The net positive activity of this midbrain feedback is additionally regulated through a hindbrain feedback loop, which reduces stimulus-induced bursting and also dampens the ON and OFF cell responses to interfering sensory input [11]. We demonstrate that synthesis of motion representations and cancellation of distracting signals are mediated simultaneously by feedback, satisfying an accepted definition of spatial attention [12]. The balance of excitatory and inhibitory feedback establishes a "focal" distance for optimized neural coding, whose connection to a classic motion-tracking behavior provides new insight into the computational roles of feedback and active dendrites in spatial localization [13, 14]. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effects of Dopamine Medication on Sequence Learning with Stochastic Feedback in Parkinson's Disease

    PubMed Central

    Seo, Moonsang; Beigi, Mazda; Jahanshahi, Marjan; Averbeck, Bruno B.

    2010-01-01

    A growing body of evidence suggests that the midbrain dopamine system plays a key role in reinforcement learning and disruption of the midbrain dopamine system in Parkinson's disease (PD) may lead to deficits on tasks that require learning from feedback. We examined how changes in dopamine levels (“ON” and “OFF” their dopamine medication) affect sequence learning from stochastic positive and negative feedback using Bayesian reinforcement learning models. We found deficits in sequence learning in patients with PD when they were “ON” and “OFF” medication relative to healthy controls, but smaller differences between patients “OFF” and “ON”. The deficits were mainly due to decreased learning from positive feedback, although across all participant groups learning was more strongly associated with positive than negative feedback in our task. The learning in our task is likely mediated by the relatively depleted dorsal striatum and not the relatively intact ventral striatum. Therefore, the changes we see in our task may be due to a strong loss of phasic dopamine signals in the dorsal striatum in PD. PMID:20740077

  2. Pathway Model of the Kinetics of the TGFbeta Antagonist Smad7 and Cross-Talk with the ATM and WNT Pathways

    NASA Technical Reports Server (NTRS)

    Carra, Claudio; Wang, Minli; Huff, Janice L.; Hada, Megumi; ONeill, Peter; Cucinotta, Francis A.

    2010-01-01

    Signal transduction controls cellular and tissue responses to radiation. Transforming growth factor beta (TGFbeta) is an important regulator of cell growth and differentiation and tissue homeostasis, and is often dis-regulated in tumor formation. Mathematical models of signal transduction pathways can be used to elucidate how signal transduction varies with radiation quality, and dose and dose-rate. Furthermore, modeling of tissue specific responses can be considered through mechanistic based modeling. We developed a mathematical model of the negative feedback regulation by Smad7 in TGFbeta-Smad signaling and are exploring possible connections to the WNT/beta -catenin, and ATM/ATF2 signaling pathways. A pathway model of TGFbeta-Smad signaling that includes Smad7 kinetics based on data in the scientific literature is described. Kinetic terms included are TGFbeta/Smad transcriptional regulation of Smad7 through the Smad3-Smad4 complex, Smad7-Smurf1 translocation from nucleus to cytoplasm, and Smad7 negative feedback regulation of the TGFO receptor through direct binding to the TGFO receptor complex. The negative feedback controls operating in this pathway suggests non-linear responses in signal transduction, which are described mathematically. We then explored possibilities for cross-talk mediated by Smad7 between DNA damage responses mediated by ATM, and with the WNT pathway and consider the design of experiments to test model driven hypothesis. Numerical comparisons of the mathematical model to experiments and representative predictions are described.

  3. Servant Leadership and Follower Outcomes: Mediating Effects of Organizational Identification and Psychological Safety.

    PubMed

    Chughtai, Aamir Ali

    2016-10-02

    This study investigated the mediating role of organizational identification and psychological safety in the relationship between servant leadership and two employee outcomes: employee voice and negative feedback seeking behavior. The sample for this study comprised of 174 full-time employees drawn from a large food company based in Pakistan. Results showed that organizational identification and psychological safety partially mediated the effects of servant leadership on voice and negative feedback seeking behavior. The theoretical and practical implications of this research are discussed.

  4. Mechanosensory neurons control the timing of spinal microcircuit selection during locomotion

    PubMed Central

    Knafo, Steven; Fidelin, Kevin; Prendergast, Andrew; Tseng, Po-En Brian; Parrin, Alexandre; Dickey, Charles; Böhm, Urs Lucas; Figueiredo, Sophie Nunes; Thouvenin, Olivier; Pascal-Moussellard, Hugues; Wyart, Claire

    2017-01-01

    Despite numerous physiological studies about reflexes in the spinal cord, the contribution of mechanosensory feedback to active locomotion and the nature of underlying spinal circuits remains elusive. Here we investigate how mechanosensory feedback shapes active locomotion in a genetic model organism exhibiting simple locomotion—the zebrafish larva. We show that mechanosensory feedback enhances the recruitment of motor pools during active locomotion. Furthermore, we demonstrate that inputs from mechanosensory neurons increase locomotor speed by prolonging fast swimming at the expense of slow swimming during stereotyped acoustic escape responses. This effect could be mediated by distinct mechanosensory neurons. In the spinal cord, we show that connections compatible with monosynaptic inputs from mechanosensory Rohon-Beard neurons onto ipsilateral V2a interneurons selectively recruited at high speed can contribute to the observed enhancement of speed. Altogether, our study reveals the basic principles and a circuit diagram enabling speed modulation by mechanosensory feedback in the vertebrate spinal cord. DOI: http://dx.doi.org/10.7554/eLife.25260.001 PMID:28623664

  5. Unexpected Acceptance? Patients with Social Anxiety Disorder Manifest their Social Expectancy in ERPs During Social Feedback Processing.

    PubMed

    Cao, Jianqin; Gu, Ruolei; Bi, Xuejing; Zhu, Xiangru; Wu, Haiyan

    2015-01-01

    Previous studies on social anxiety have demonstrated negative-expectancy bias in social contexts. In this study, we used a paradigm that employed self-relevant positive or negative social feedback, in order to test whether this negative expectancy manifests in event-related potentials (ERPs) during social evaluation among socially anxious individuals. Behavioral data revealed that individuals with social anxiety disorder (SAD) showed more negative expectancy of peer acceptance both in the experiment and in daily life than did the healthy control participants. Regarding ERP results, we found a overally larger P2 for positive social feedback and also a group main effect, such that the P2 was smaller in SAD group. SAD participants demonstrated a larger feedback-related negativity (FRN) to positive feedback than to negative feedback. In addition, SAD participants showed a more positive ΔFRN (ΔFRN = negative - positive). Furthermore, acceptance expectancy in daily life correlated negatively with ΔFRN amplitude, while the Interaction Anxiousness Scale (IAS) score correlated positively with the ΔFRN amplitude. Finally, the acceptance expectancy in daily life fully mediated the relationship between the IAS and ΔFRN. These results indicated that both groups could differentiate between positive and negative social feedback in the early stage of social feedback processing (reflected on the P2). However, the SAD group exhibited a larger FRN to positive social feedback than to negative social feedback, demonstrating their dysfunction in the late stage of social feedback processing. In our opinion, such dysfunction is due to their greater negative social feedback expectancy.

  6. Unexpected Acceptance? Patients with Social Anxiety Disorder Manifest their Social Expectancy in ERPs During Social Feedback Processing

    PubMed Central

    Cao, Jianqin; Gu, Ruolei; Bi, Xuejing; Zhu, Xiangru; Wu, Haiyan

    2015-01-01

    Previous studies on social anxiety have demonstrated negative-expectancy bias in social contexts. In this study, we used a paradigm that employed self-relevant positive or negative social feedback, in order to test whether this negative expectancy manifests in event-related potentials (ERPs) during social evaluation among socially anxious individuals. Behavioral data revealed that individuals with social anxiety disorder (SAD) showed more negative expectancy of peer acceptance both in the experiment and in daily life than did the healthy control participants. Regarding ERP results, we found a overally larger P2 for positive social feedback and also a group main effect, such that the P2 was smaller in SAD group. SAD participants demonstrated a larger feedback-related negativity (FRN) to positive feedback than to negative feedback. In addition, SAD participants showed a more positive ΔFRN (ΔFRN = negative – positive). Furthermore, acceptance expectancy in daily life correlated negatively with ΔFRN amplitude, while the Interaction Anxiousness Scale (IAS) score correlated positively with the ΔFRN amplitude. Finally, the acceptance expectancy in daily life fully mediated the relationship between the IAS and ΔFRN. These results indicated that both groups could differentiate between positive and negative social feedback in the early stage of social feedback processing (reflected on the P2). However, the SAD group exhibited a larger FRN to positive social feedback than to negative social feedback, demonstrating their dysfunction in the late stage of social feedback processing. In our opinion, such dysfunction is due to their greater negative social feedback expectancy. PMID:26635659

  7. Feedback activation of STAT3 mediates trastuzumab resistance via upregulation of MUC1 and MUC4 expression

    PubMed Central

    Li, Wei; Fan, Kexing; Qian, Weizhu; Hou, Sheng; Wang, Hao; Dai, Jianxin; Wei, Huafeng; Guo, Yajun

    2014-01-01

    Although HER2-targeting antibody trastuzumab confers a substantial benefit for patients with HER2-overexpressing breast and gastric cancer, overcoming trastuzumab resistance remains a large unmet need. In this study, we revealed a STAT3-centered positive feedback loop that mediates the resistance of trastuzumab. Mechanistically, chronic exposure of trastuzumab causes the upregulation of fibronection (FN), EGF and IL-6 in parental trastuzumab-sensitive breast and gastric cells and convergently leads to STAT3 hyperactivation. Activated STAT3 enhances the expression of FN, EGF and IL-6, thus constituting a positive feedback loop which amplifies and maintains the STAT3 signal; furthermore, hyperactivated STAT3 signal promotes the expression of MUC1 and MUC4, consequently mediating trastuzumab resistance via maintenance of persistent HER2 activation and masking of trastuzumab binding to HER2 respectively. Genetic or pharmacological inhibition of STAT3 disrupted STAT3-dependent positive feedback loop and recovered the trastuzumab sensitivity partially due to increased apoptosis induction. Combined trastuzumab with STAT3 inhibition synergistically suppressed the growth of the trastuzumab-resistant tumor xenografts in vivo. Taken together, our results suggest that feedback activation of STAT3 constitutes a key node mediating trastuzumab resistance. Combinatorial targeting on both HER2 and STAT3 may enhance the efficacy of trastuzumab or other HER2-targeting agents in HER2-positive breast and gastric cancer. PMID:25327561

  8. Feedback activation of STAT3 mediates trastuzumab resistance via upregulation of MUC1 and MUC4 expression.

    PubMed

    Li, Guangchao; Zhao, Likun; Li, Wei; Fan, Kexing; Qian, Weizhu; Hou, Sheng; Wang, Hao; Dai, Jianxin; Wei, Huafeng; Guo, Yajun

    2014-09-30

    Although HER2-targeting antibody trastuzumab confers a substantial benefit for patients with HER2-overexpressing breast and gastric cancer, overcoming trastuzumab resistance remains a large unmet need. In this study, we revealed a STAT3-centered positive feedback loop that mediates the resistance of trastuzumab. Mechanistically, chronic exposure of trastuzumab causes the upregulation of fibronection (FN), EGF and IL-6 in parental trastuzumab-sensitive breast and gastric cells and convergently leads to STAT3 hyperactivation. Activated STAT3 enhances the expression of FN, EGF and IL-6, thus constituting a positive feedback loop which amplifies and maintains the STAT3 signal; furthermore, hyperactivated STAT3 signal promotes the expression of MUC1 and MUC4, consequently mediating trastuzumab resistance via maintenance of persistent HER2 activation and masking of trastuzumab binding to HER2 respectively. Genetic or pharmacological inhibition of STAT3 disrupted STAT3-dependent positive feedback loop and recovered the trastuzumab sensitivity partially due to increased apoptosis induction. Combined trastuzumab with STAT3 inhibition synergistically suppressed the growth of the trastuzumab-resistant tumor xenografts in vivo. Taken together, our results suggest that feedback activation of STAT3 constitutes a key node mediating trastuzumab resistance. Combinatorial targeting on both HER2 and STAT3 may enhance the efficacy of trastuzumab or other HER2-targeting agents in HER2-positive breast and gastric cancer.

  9. SCFTIR1/AFB-auxin signalling regulates PIN vacuolar trafficking and auxin fluxes during root gravitropism

    PubMed Central

    Baster, Paweł; Robert, Stéphanie; Kleine-Vehn, Jürgen; Vanneste, Steffen; Kania, Urszula; Grunewald, Wim; De Rybel, Bert; Beeckman, Tom; Friml, Jiří

    2013-01-01

    The distribution of the phytohormone auxin regulates many aspects of plant development including growth response to gravity. Gravitropic root curvature involves coordinated and asymmetric cell elongation between the lower and upper side of the root, mediated by differential cellular auxin levels. The asymmetry in the auxin distribution is established and maintained by a spatio-temporal regulation of the PIN-FORMED (PIN) auxin transporter activity. We provide novel insights into the complex regulation of PIN abundance and activity during root gravitropism. We show that PIN2 turnover is differentially regulated on the upper and lower side of gravistimulated roots by distinct but partially overlapping auxin feedback mechanisms. In addition to regulating transcription and clathrin-mediated internalization, auxin also controls PIN abundance at the plasma membrane by promoting their vacuolar targeting and degradation. This effect of elevated auxin levels requires the activity of SKP-Cullin-F-boxTIR1/AFB (SCFTIR1/AFB)-dependent pathway. Importantly, also suboptimal auxin levels mediate PIN degradation utilizing the same signalling pathway. These feedback mechanisms are functionally important during gravitropic response and ensure fine-tuning of auxin fluxes for maintaining as well as terminating asymmetric growth. PMID:23211744

  10. Unpacking personalized feedback: an exploratory study of the impact of its components and the reactions it elicits among problem drinking men who have sex with men.

    PubMed

    Kuerbis, Alexis Noel; Schaumberg, Katherine; Davis, Christine M; Hail, Lisa; Morgenstern, Jon

    2014-03-01

    Personalized feedback (PF) has demonstrated effectiveness in reducing drinking. Few studies have examined its effectiveness with adult problem drinkers or its potential mediators or moderators, including developing discrepancy. This study aimed to identify potential mediators and moderators of PF provided to adult problem drinking men who have sex with men (PDMSM). An exploratory analysis of PF provided to PDMSM in the context of modified behavioral self-control therapy (N = 90). The association of individual items of PF, severity of PF, and independently rated, in-session participant reactions to PF with drinking outcomes (mean drinks per drinking day, MDDD) were examined using correlations and logistic and linear regression. Significant pre-post differences in MDDD emerged. Other drug risk, family risk, and having an abnormal liver enzyme test result were significantly associated with proxies for developed discrepancy in expected directions; however, no PF item or reaction to PF predicted drinking outcomes. Severity of PF was not associated with participant reactions or drinking outcome. PF may be an effective intervention for PDMSM. Further research is needed to identify potential mediators and moderators of PF among adults.

  11. SCF(TIR1/AFB)-auxin signalling regulates PIN vacuolar trafficking and auxin fluxes during root gravitropism.

    PubMed

    Baster, Paweł; Robert, Stéphanie; Kleine-Vehn, Jürgen; Vanneste, Steffen; Kania, Urszula; Grunewald, Wim; De Rybel, Bert; Beeckman, Tom; Friml, Jiří

    2013-01-23

    The distribution of the phytohormone auxin regulates many aspects of plant development including growth response to gravity. Gravitropic root curvature involves coordinated and asymmetric cell elongation between the lower and upper side of the root, mediated by differential cellular auxin levels. The asymmetry in the auxin distribution is established and maintained by a spatio-temporal regulation of the PIN-FORMED (PIN) auxin transporter activity. We provide novel insights into the complex regulation of PIN abundance and activity during root gravitropism. We show that PIN2 turnover is differentially regulated on the upper and lower side of gravistimulated roots by distinct but partially overlapping auxin feedback mechanisms. In addition to regulating transcription and clathrin-mediated internalization, auxin also controls PIN abundance at the plasma membrane by promoting their vacuolar targeting and degradation. This effect of elevated auxin levels requires the activity of SKP-Cullin-F-box(TIR1/AFB) (SCF(TIR1/AFB))-dependent pathway. Importantly, also suboptimal auxin levels mediate PIN degradation utilizing the same signalling pathway. These feedback mechanisms are functionally important during gravitropic response and ensure fine-tuning of auxin fluxes for maintaining as well as terminating asymmetric growth.

  12. Accelerated Episodic LH Release Accompanies Blunted Progesterone Regulation in PCOS-like Female Rhesus Monkeys (Macaca mulatta) Exposed to Testosterone During Early-to-Mid Gestation.

    PubMed

    Abbott, David H; Vepraskas, Sarah H; Horton, Teresa H; Terasawa, Ei; Levine, Jon E

    2018-06-15

    Ovarian theca cell hyperandrogenism in women with PCOS is compounded by androgen receptor-mediated impairment of estradiol and progesterone negative feedback regulation of episodic LH release. The resultant LH hypersecretion, likely the product of accelerated episodic release of GnRH from the median eminence of the hypothalamus, hyperstimulates ovarian theca cell steroidogenesis, enabling testosterone (T) and androstenedione excess. Prenatally androgenized female monkeys (PA) exposed to fetal male levels of T during early-to-mid gestation, when adult, demonstrate PCOS-like traits, including high T and LH levels. This study tests the hypothesis that progesterone resistance-associated acceleration in episodic LH release contributes to PA monkey LH excess. 4 PA and 3 regularly cycling, healthy control adult female rhesus monkeys of comparable age and body mass index underwent (1) a 10 h, frequent intravenous sampling assessment for LH episodic release, immediately followed by (2) IV infusion of exogenous GnRH to quantify continuing pituitary LH responsiveness, and subsequently (3) an SC injection of a progesterone receptor antagonist, mifepristone, to examine LH responses to blockade of progesterone-mediated action. Compared to controls, the relatively hyperandrogenic PA females exhibited ~100% increase (p = 0.037) in LH pulse frequency, positive correlation of LH pulse amplitude (p = 0.017) with androstenedione, ~100% greater increase (p = 0.034) in acute (0--10 min) LH responses to exogenous GnRH, and an absence (p = 0.008) of modest LH elevation following acute progesterone receptor blockade suggestive of diminished progesterone negative feedback. Such dysregulation of LH release in PCOS-like monkeys implicates impaired feedback control of episodic release of hypothalamic GnRH reminiscent of PCOS neuroendocrinopathy. 2018 S. Karger AG, Basel.

  13. Computer-Mediated Input, Output and Feedback in the Development of L2 Word Recognition from Speech

    ERIC Educational Resources Information Center

    Matthews, Joshua; Cheng, Junyu; O'Toole, John Mitchell

    2015-01-01

    This paper reports on the impact of computer-mediated input, output and feedback on the development of second language (L2) word recognition from speech (WRS). A quasi-experimental pre-test/treatment/post-test research design was used involving three intact tertiary level English as a Second Language (ESL) classes. Classes were either assigned to…

  14. Myosin-II controls cellular branching morphogenesis and migration in 3D by minimizing cell surface curvature

    PubMed Central

    Elliott, Hunter; Fischer, Robert A.; Myers, Kenneth A.; Desai, Ravi A.; Gao, Lin; Chen, Christopher S.; Adelstein, Robert; Waterman, Clare M.; Danuser, Gaudenz

    2014-01-01

    In many cases cell function is intimately linked to cell shape control. We utilized endothelial cell branching morphogenesis as a model to understand the role of myosin-II in shape control of invasive cells migrating in 3D collagen gels. We applied principles of differential geometry and mathematical morphology to 3D image sets to parameterize cell branch structure and local cell surface curvature. We find that Rho/ROCK-stimulated myosin-II contractility minimizes cell-scale branching by recognizing and minimizing local cell surface curvature. Utilizing micro-fabrication to constrain cell shape identifies a positive feedback mechanism in which low curvature stabilizes myosin-II cortical association, where it acts to maintain minimal curvature. The feedback between myosin-II regulation by and control of curvature drives cycles of localized cortical myosin-II assembly and disassembly. These cycles in turn mediate alternating phases of directionally biased branch initiation and retraction to guide 3D cell migration. PMID:25621949

  15. Neuronal adenosine release, and not astrocytic ATP release, mediates feedback inhibition of excitatory activity

    PubMed Central

    Lovatt, Ditte; Xu, Qiwu; Liu, Wei; Takano, Takahiro; Smith, Nathan A.; Schnermann, Jurgen; Tieu, Kim; Nedergaard, Maiken

    2012-01-01

    Adenosine is a potent anticonvulsant acting on excitatory synapses through A1 receptors. Cellular release of ATP, and its subsequent extracellular enzymatic degradation to adenosine, could provide a powerful mechanism for astrocytes to control the activity of neural networks during high-intensity activity. Despite adenosine's importance, the cellular source of adenosine remains unclear. We report here that multiple enzymes degrade extracellular ATP in brain tissue, whereas only Nt5e degrades AMP to adenosine. However, endogenous A1 receptor activation during cortical seizures in vivo or heterosynaptic depression in situ is independent of Nt5e activity, and activation of astrocytic ATP release via Ca2+ photolysis does not trigger synaptic depression. In contrast, selective activation of postsynaptic CA1 neurons leads to release of adenosine and synaptic depression. This study shows that adenosine-mediated synaptic depression is not a consequence of astrocytic ATP release, but is instead an autonomic feedback mechanism that suppresses excitatory transmission during prolonged activity. PMID:22421436

  16. Expectancy bias mediates the link between social anxiety and memory bias for social evaluation

    PubMed Central

    Caouette, Justin D.; Ruiz, Sarah K.; Lee, Clinton C.; Anbari, Zainab; Schriber, Roberta A.; Guyer, Amanda E.

    2014-01-01

    Social anxiety (SA) involves a multitude of cognitive symptoms related to fear of evaluation, including expectancy and memory biases. We examined whether memory biases are influenced by expectancy biases for social feedback in SA. We hypothesized that, faced with a socially evaluative event, people with higher SA would show a negative expectancy bias for future feedback. Furthermore, we predicted that memory bias for feedback in SA would be mediated by expectancy bias. Ninety-four undergraduate students (55 women, mean age = 19.76 years) underwent a two-visit task that measured expectations about (Visit 1) and memory of (Visit 2) feedback from unknown peers. Results showed that higher levels of SA were associated with negative expectancy bias. An indirect relationship was found between SA and memory bias that was mediated by expectancy bias. The results suggest that expectancy biases are in the causal path from SA to negative memory biases for social evaluation. PMID:25252925

  17. An exploratory pilot study of mechanisms of action within normative feedback for adult drinkers.

    PubMed

    Kuerbis, Alexis; Muench, Frederick J; Lee, Rufina; Pena, Juan; Hail, Lisa

    2016-01-01

    Background. Normative feedback (NF), or receiving information about one's drinking compared to peer drinking norms, is one of the most widely used brief interventions for prevention and intervention for hazardous alcohol use. NF has demonstrated predominantly small but significant effect sizes for intention to change and other drinking related outcomes. Identifying mechanisms of action may improve the effectiveness of NF; however, few studies have examined NF's mechanisms of action, particularly among adults. Objective. This study is an exploratory analysis of two theorized mechanisms of NF: discrepancy (specifically personal dissonance-the affective response to feedback) and belief in the accuracy of feedback. Method. Using Amazon's Mechanical Turk, 87 men (n = 56) and women (n = 31) completed an online survey during which they were asked about their perceptions about their drinking and actual drinking behaviors. Then participants were provided tailored NF and evaluated for their reactions. Severity of discrepancy was measured by the difference between one's estimated percentile ranking of drinking compared to peers and actual percentile ranking. Surprise and worry reported due to the discrepancy were proxies for personal dissonance. Participants were also asked if they believed the feedback and if they had any plans to change their drinking. Mediation analyses were implemented, exploring whether surprise, worry, or belief in the accuracy of feedback mediated severity of discrepancy's impact on plan for change. Results. Among this sample of adult drinkers, severity of discrepancy did not predict plan for change, and personal dissonance did not mediate severity of discrepancy. Severity of discrepancy was mediated by belief in the accuracy of feedback. In addition, viewing one's drinking as a problem prior to feedback and post-NF worry both predicted plan for change independently. Conclusions. Results revealed that NF may not work to create personal dissonance through discrepancy, but belief in the accuracy of feedback may be important. It appears the more one believes the feedback, the more one makes a plan for change, suggesting practitioners should be mindful of how information within feedback is presented. Findings also indicate NF may work by validating a preexisting perception that drinking is a problem instead of creating concern related to discrepancy where none existed. Limitations regarding generalizability are discussed.

  18. ENHANCED 5-HT1A RECEPTOR-DEPENDENT FEEDBACK CONTROL OVER DORSAL RAPHE SEROTONIN NEURONS IN THE SERT KNOCKOUT MOUSE

    PubMed Central

    Soiza-Reilly, Mariano; Goodfellow, Nathalie M.; Lambe, Evelyn K.; Commons, Kathryn G.

    2014-01-01

    5-HT1A receptors are widely expressed in the brain and play a critical role in feedback inhibition of serotonin (5-HT) neurons through multiple mechanisms. Yet, it remains poorly understood how these feedback mechanisms, particularly those involving long-range projections, adapt in mood disorders. Here, we examined several aspects of 5-HT1A receptor function in the 5-HT transporter knockout mouse (SERT-KO), a model of vulnerability to stress and mood disorders. We found that in comparison to wild-type (WT) mice, SERT-KO mice had more passive coping in response to acute swim stress and this was accompanied by hypo-activation of medial prefrontal cortex (mPFC) Fos expression. Both of these effects were reversed by systemically blocking 5-HT1A receptors. Ex-vivo electrophysiological experiments showed that 5-HT exerted greater 5-HT1A-mediated inhibitory effects in the mPFC of SERT-KO mice compared to WT. Since 5-HT1A receptors in the mPFC provide a key feedback regulation of the dorsal raphe nucleus (DRN), we used a disinhibition strategy to examined endogenous feedback control of 5-HT neurons. Blocking 5-HT1A receptors disinhibited several fold more 5-HT neurons in the DRN of SERT-KO than in WT mice, revealing the presence of enhanced feedback inhibition of 5-HT neurons in the SERT-KO. Taken together our results indicate that increased stress sensitivity in the SERT-KO is associated with the enhanced capacity of 5-HT1A receptors to inhibit neurons in the mPFC as well as to exert feedback inhibition of DRN 5-HT neurons. PMID:25261781

  19. Silicon photonic dynamic optical channel leveler with external feedback loop.

    PubMed

    Doylend, J K; Jessop, P E; Knights, A P

    2010-06-21

    We demonstrate a dynamic optical channel leveler composed of a variable optical attenuator (VOA) integrated monolithically with a defect-mediated photodiode in a silicon photonic waveguide device. An external feedback loop mimics an analog circuit such that the photodiode directly controls the VOA to provide blind channel leveling within +/-1 dB across a 7-10 dB dynamic range for wavelengths from 1530 nm to 1570 nm. The device consumes approximately 50 mW electrical power and occupies a 6 mm x 0.1 mm footprint per channel. Dynamic leveling is accomplished without tapping optical power from the output path to the photodiode and thus the loss penalty is minimized.

  20. MEK-Dependent Negative Feedback Underlies BCR-ABL-Mediated Oncogene Addiction

    PubMed Central

    Asmussen, Jennifer; Lasater, Elisabeth A.; Tajon, Cheryl; Oses-Prieto, Juan; Jun, Young-wook; Taylor, Barry S.; Burlingame, Alma; Craik, Charles S.; Shah, Neil P.

    2014-01-01

    The clinical experience with BCR-ABL tyrosine kinase inhibitors (TKIs) for the treatment of chronic myeloid leukemia (CML) provides compelling evidence for oncogene addiction. Yet, the molecular basis of oncogene addiction remains elusive. Through unbiased quantitative phosphoproteomic analyses of CML cells transiently exposed to BCR-ABL TKI, we identified persistent downregulation of growth factor receptor (GF-R) signaling pathways. We then established and validated a tissue-relevant isogenic model of BCR-ABL-mediated addiction, and found evidence for myeloid GF-R signaling pathway rewiring that profoundly and persistently dampens physiologic pathway activation. We demonstrate that eventual restoration of ligand-mediated GF-R pathway activation is insufficient to fully rescue cells from a competing apoptotic fate. In contrast to previous work with BRAFV600E in melanoma cells, feedback inhibition following BCR-ABL TKI treatment is markedly prolonged, extending beyond the time required to initiate apoptosis. Mechanistically, BCR-ABL-mediated oncogene addiction is facilitated by persistent high levels of MEK-dependent negative feedback. PMID:24362263

  1. Effects of Stratospheric Ozone Depletion, Solar UV Radiation, and Climate Change on Biogeochemical Cycling: Interactions and Feedbacks

    EPA Science Inventory

    Climate change modulates the effects of solar UV radiation on biogeochemical cycles in terrestrial and aquatic ecosystems, particularly for carbon cycling, resulting in UV-mediated positive or negative feedbacks on climate. Possible positive feedbacks discussed in this assessment...

  2. Phase I to II cross-induction of xenobiotic metabolizing enzymes: a feedforward control mechanism for potential hormetic responses.

    PubMed

    Zhang, Qiang; Pi, Jingbo; Woods, Courtney G; Andersen, Melvin E

    2009-06-15

    Hormetic responses to xenobiotic exposure likely occur as a result of overcompensation by the homeostatic control systems operating in biological organisms. However, the mechanisms underlying overcompensation that leads to hormesis are still unclear. A well-known homeostatic circuit in the cell is the gene induction network comprising phase I, II and III metabolizing enzymes, which are responsible for xenobiotic detoxification, and in many cases, bioactivation. By formulating a differential equation-based computational model, we investigated in this study whether hormesis can arise from the operation of this gene/enzyme network. The model consists of two feedback and one feedforward controls. With the phase I negative feedback control, xenobiotic X activates nuclear receptors to induce cytochrome P450 enzyme, which bioactivates X into a reactive metabolite X'. With the phase II negative feedback control, X' activates transcription factor Nrf2 to induce phase II enzymes such as glutathione S-transferase and glutamate cysteine ligase, etc., which participate in a set of reactions that lead to the metabolism of X' into a less toxic conjugate X''. The feedforward control involves phase I to II cross-induction, in which the parent chemical X can also induce phase II enzymes directly through the nuclear receptor and indirectly through transcriptionally upregulating Nrf2. As a result of the active feedforward control, a steady-state hormetic relationship readily arises between the concentrations of the reactive metabolite X' and the extracellular parent chemical X to which the cell is exposed. The shape of dose-response evolves over time from initially monotonically increasing to J-shaped at the final steady state-a temporal sequence consistent with adaptation-mediated hormesis. The magnitude of the hormetic response is enhanced by increases in the feedforward gain, but attenuated by increases in the bioactivation or phase II feedback loop gains. Our study suggests a possibly common mechanism for the hormetic responses observed with many mutagens/carcinogens whose activities require bioactivation by phase I enzymes. Feedforward control, often operating in combination with negative feedback regulation in a homeostatic system, may be a general control theme responsible for steady-state hormesis.

  3. Disrupting vagal feedback affects birdsong motor control.

    PubMed

    Méndez, Jorge M; Dall'asén, Analía G; Goller, Franz

    2010-12-15

    Coordination of different motor systems for sound production involves the use of feedback mechanisms. Song production in oscines is a well-established animal model for studying learned vocal behavior. Whereas the online use of auditory feedback has been studied in the songbird model, very little is known about the role of other feedback mechanisms. Auditory feedback is required for the maintenance of stereotyped adult song. In addition, the use of somatosensory feedback to maintain pressure during song has been demonstrated with experimentally induced fluctuations in air sac pressure. Feedback information mediating this response is thought to be routed to the central nervous system via afferent fibers of the vagus nerve. Here, we tested the effects of unilateral vagotomy on the peripheral motor patterns of song production and the acoustic features. Unilateral vagotomy caused a variety of disruptions and alterations to the respiratory pattern of song, some of which affected the acoustic structure of vocalizations. These changes were most pronounced a few days after nerve resection and varied between individuals. In the most extreme cases, the motor gestures of respiration were so severely disrupted that individual song syllables or the song motif were atypically terminated. Acoustic changes also suggest altered use of the two sound generators and upper vocal tract filtering, indicating that the disruption of vagal feedback caused changes to the motor program of all motor systems involved in song production and modification. This evidence for the use of vagal feedback by the song system with disruption of song during the first days after nerve cut provides a contrast to the longer-term effects of auditory feedback disruption. It suggests a significant role for somatosensory feedback that differs from that of auditory feedback.

  4. Disrupting vagal feedback affects birdsong motor control

    PubMed Central

    Méndez, Jorge M.; Dall'Asén, Analía G.; Goller, Franz

    2010-01-01

    Coordination of different motor systems for sound production involves the use of feedback mechanisms. Song production in oscines is a well-established animal model for studying learned vocal behavior. Whereas the online use of auditory feedback has been studied in the songbird model, very little is known about the role of other feedback mechanisms. Auditory feedback is required for the maintenance of stereotyped adult song. In addition, the use of somatosensory feedback to maintain pressure during song has been demonstrated with experimentally induced fluctuations in air sac pressure. Feedback information mediating this response is thought to be routed to the central nervous system via afferent fibers of the vagus nerve. Here, we tested the effects of unilateral vagotomy on the peripheral motor patterns of song production and the acoustic features. Unilateral vagotomy caused a variety of disruptions and alterations to the respiratory pattern of song, some of which affected the acoustic structure of vocalizations. These changes were most pronounced a few days after nerve resection and varied between individuals. In the most extreme cases, the motor gestures of respiration were so severely disrupted that individual song syllables or the song motif were atypically terminated. Acoustic changes also suggest altered use of the two sound generators and upper vocal tract filtering, indicating that the disruption of vagal feedback caused changes to the motor program of all motor systems involved in song production and modification. This evidence for the use of vagal feedback by the song system with disruption of song during the first days after nerve cut provides a contrast to the longer-term effects of auditory feedback disruption. It suggests a significant role for somatosensory feedback that differs from that of auditory feedback. PMID:21113000

  5. Self-Perceived Competence as a Mediator between Maternal Feedback and Depressive Symptoms in Adolescents

    ERIC Educational Resources Information Center

    Jacquez, Farrah; Cole, David A.; Searle, Barbara

    2004-01-01

    Self-report, other-report, clinical interview, and behavioral observations of evaluative maternal feedback (e.g., positive feedback, criticism), adolescent depressive symptoms, and self-perceived competence were obtained from 72 adolescents and their mothers. Most path analyses supported the hypothesis that adolescent self-perceived competence…

  6. Leaders’ Expressed Humility and Followers’ Feedback Seeking: The Mediating Effects of Perceived Image Cost and Moderating Effects of Power Distance Orientation

    PubMed Central

    Qian, Jing; Li, Xiaoyan; Song, Baihe; Wang, Bin; Wang, Menghan; Chang, Shumeng; Xiong, Yujiao

    2018-01-01

    We developed and tested a model to identify the role of leaders’ expressed humility on employees’ feedback-seeking processes. The data used in our study was from a sample of 248 employees and 57 of their immediate supervisors. The results revealed that: (1) leader’s expressed humility positively related to employees’ feedback seeking mediated by employees’ perceived image cost; and (2) power distance orientation moderated the relationship between leader’s expressed humility and employees’ perceived image costs, such that the relationship was stronger when the power distance orientation was lower rather than higher. The results offer new insight into potential managerial practices that aim at stimulating feedback seeking. We conclude with a discussion for future research. PMID:29720956

  7. Optimizing personalized normative feedback: the use of gender-specific referents.

    PubMed

    Lewis, Melissa A; Neighbors, Clayton

    2007-03-01

    Many brief interventions include personalized normative feedback (PNF) using gender-specific or gender-neutral referents. Several theories suggest that information pertaining to more socially proximal referents should have greater influence on one's behavior compared with more socially distal referents. The current research evaluated whether gender specificity of the normative referent employed in PNF related to intervention efficacy. Following baseline assessment, 185 college students (45.2% women) were randomly assigned to one of three intervention conditions: gender-specific feedback, gender-neutral feedback, or assessment-only control. Immediately after completing measures of perceived norms, alcohol consumption, and gender identity, participants in the gender-neutral and gender-specific intervention conditions were provided with computerized information detailing their own drinking behavior, their perceptions of student drinking, and actual student drinking. After a 1-month follow-up, the results indicated that normative feedback was effective in changing perceived norms and reducing alcohol consumption for both intervention groups for women and men. The results provide support, however, for changes in perceived gender-specific norms as a mediator of the effects of normative feedback on reduced drinking behavior for women only. Additionally, gender-specific feedback was found to be more effective for women higher in gender identity, relative to the gender-neutral feedback. A post-assessment follow-up telephone survey administered to assess potential demand characteristics corroborated the intervention effects. Results extend previous research documenting efficacy of computer delivered PNF. Gender specificity and gender identity appear to be important elements to consider for PNF intervention efficacy for women.

  8. Effects of reward and punishment on learning from errors in smokers.

    PubMed

    Duehlmeyer, Leonie; Levis, Bianca; Hester, Robert

    2018-04-30

    Punishing errors facilitates adaptation in healthy individuals, while aberrant reward and punishment sensitivity in drug-dependent individuals may change this impact. Many societies have institutions that use the concept of punishing drug use behavior, making it important to understand how drug dependency mediates the effects of negative feedback for influencing adaptive behavior. Using an associative learning task, we investigated differences in error correction rates of dependent smokers, compared with controls. Two versions of the task were administered to different participant samples: One assessed the effect of varying monetary contingencies to task performance, the other, the presence of reward as compared to avoidance of punishment for correct performance. While smokers recalled associations that were rewarded with a higher value 11% more often than lower rewarded locations, they did not correct higher punished locations more often. Controls exhibited the opposite pattern. The three-way interaction between magnitude, feedback type and group was significant, F(1,48) = 5.288, p =0.026, ɳ 2 p =0.099. Neither participant group corrected locations offering reward more often than those offering avoidances of punishment. The interaction between group and feedback condition was not significant, F(1,58) = 0.0, p =0.99, ɳ 2 p =0.001. The present results suggest that smokers have poorer learning from errors when receiving negative feedback. Moreover, larger rewards reinforce smokers' behavior stronger than smaller rewards, whereas controls made no distinction. These findings support the hypothesis that dependent smokers may respond to positively framed and rewarded anti-smoking programs when compared to those relying on negative feedback or punishment. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Fire feedbacks facilitate invasion of pine savannas by Brazilian pepper (Schinus terebinthifolius).

    PubMed

    Stevens, Jens T; Beckage, Brian

    2009-10-01

    * Fire disturbance can mediate the invasion of ecological communities by nonnative species. Nonnative plants that modify existing fire regimes may initiate a positive feedback that can facilitate their continued invasion. Fire-sensitive plants may successfully invade pyrogenic landscapes if they can inhibit fire in the landscape. * Here, we investigated whether the invasive shrub Brazilian pepper (Schinus terebinthifolius) can initiate a fire-suppression feedback in a fire-dependent pine savanna ecosystem in the southeastern USA. * We found that prescribed burns caused significant (30-45%) mortality of Brazilian pepper at low densities and that savannas with more frequent fires contained less Brazilian pepper. However, high densities of Brazilian pepper reduced fire temperature by up to 200 degrees C, and experienced as much as 80% lower mortality. * A cellular automaton model was used to demonstrate that frequent fire may control low-density populations, but that Brazilian pepper may reach a sufficient density during fire-free periods to initiate a positive feedback that reduces the frequency of fire and converts the savanna to an invasive-dominated forest.

  10. 20-Hydroxyecdysone (20E) Primary Response Gene E75 Isoforms Mediate Steroidogenesis Autoregulation and Regulate Developmental Timing in Bombyx*

    PubMed Central

    Li, Kang; Tian, Ling; Guo, Zhongjian; Guo, Sanyou; Zhang, Jianzhen; Gu, Shi-Hong; Palli, Subba R.; Cao, Yang; Li, Sheng

    2016-01-01

    The temporal control mechanisms that precisely control animal development remain largely elusive. The timing of major developmental transitions in insects, including molting and metamorphosis, is coordinated by the steroid hormone 20-hydroxyecdysone (20E). 20E involves feedback loops to maintain pulses of ecdysteroid biosynthesis leading to its upsurge, whereas the underpinning molecular mechanisms are not well understood. Using the silkworm Bombyx mori as a model, we demonstrated that E75, the 20E primary response gene, mediates a regulatory loop between ecdysteroid biosynthesis and 20E signaling. E75 isoforms A and C directly bind to retinoic acid receptor-related response elements in Halloween gene promoter regions to induce gene expression thus promoting ecdysteroid biosynthesis and developmental transition, whereas isoform B antagonizes the transcriptional activity of isoform A/C through physical interaction. As the expression of E75 isoforms is differentially induced by 20E, the E75-mediated regulatory loop represents a fine autoregulation of steroidogenesis, which contributes to the precise control of developmental timing. PMID:27365399

  11. Body image mediates negative family climate and deteriorating glycemic control for single adolescents with type 1 diabetes.

    PubMed

    Hartl, Amy C; Seiffge-Krenke, Inge; Laursen, Brett

    2015-12-01

    Glycemic control declines during adolescence, as youth with diabetes struggle with pubertal changes and a changing social world. The present study tests whether body image mediates longitudinal links between family climate and changes in adolescent glycemic control. Mediation was hypothesized for nondating adolescents but not for dating adolescents, because the former are thought to remain more family oriented than the latter. Participants were German adolescents with Type 1 diabetes (51 girls, 58 boys; M = 15.84 years, SD = 1.44). Participants reported body image and family climate. Physicians assayed blood HbA1c levels (M = 8.22%, SD = 1.80%) to measure glycemic control. For nondating adolescents, body image mediated associations between family climate and longitudinal changes in glycemic control. Poorer family climate was associated with poorer body image, which predicted deteriorating glycemic control. For dating adolescents, family climate was unassociated with changes in glycemic control. Nondating adolescents may look to parents for feedback on body image, which affects how they manage the challenges of diabetes. Parents and practitioners alike should be alert to the fact that family climate continues to be an important determinant of adolescent adjustment, particularly for those who have not moved into romantic relationships. We know that body image matters to adolescents, but for some youth, body image may be the difference between health and serious physical problems. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  12. The Mediating Role of Affective Commitment in the Relation of the Feedback Environment to Work Outcomes

    ERIC Educational Resources Information Center

    Norris-Watts, Christina; Levy, Paul E.

    2004-01-01

    The Feedback Environment, as opposed to the formal performance appraisal process, is comprised of the daily interactions between members of an organization (Steelman, Levy, & Snell, in press). Relations between the feedback environment and work outcome variables such as Organizational Citizenship Behavior (OCB) were examined through the mediating…

  13. The Impact of Teacher Feedback on Student Self-Talk and Self-Concept in Reading and Mathematics.

    ERIC Educational Resources Information Center

    Burnett, Paul C.

    2003-01-01

    Investigated the relationships between teacher feedback and students' self-talk and self-concepts in mathematics and reading. Data collected from students in six rural Australian elementary schools indicated that self-talk (positive and negative) mediated between subject-specific teacher feedback (ability, effort, and negative) and academic…

  14. Self-verification and bulimic symptoms: do bulimic women play a role in perpetuating their own dissatisfaction and symptoms?

    PubMed

    Joiner, T E

    1999-09-01

    It is suggested that self-verification theory may provide insight as to why bulimic symptoms often persist for years, sometimes even despite intervention. In an effort to meet basic needs for self-confirmation, bulimic women may invite the very responses they fear (e.g., negative feedback about appearance), and thus propagate their symptoms. It was thus predicted that interest in negative feedback would be correlated with body dissatisfaction and bulimic symptoms, and that interest in negative feedback would serve as a risk factor for development of later symptoms, via the mediating effects of increased body dissatisfaction. Seventy-nine undergraduate women completed self-report assessments of interest in negative feedback, bulimic symptoms, and body dissatisfaction. Results supported the prediction that, despite serious concerns about body appearance, bulimic women were interested in the very feedback that would aggravate these concerns. Moreover, interest in negative feedback appeared to serve as a risk factor for development of later symptoms, via the mediating effects of increased body dissatisfaction. The clinical implications of these findings are discussed.

  15. A Feedback Loop between Dynamin and Actin Recruitment during Clathrin-Mediated Endocytosis

    PubMed Central

    Taylor, Marcus J.; Lampe, Marko; Merrifield, Christien J.

    2012-01-01

    Clathrin-mediated endocytosis proceeds by a sequential series of reactions catalyzed by discrete sets of protein machinery. The final reaction in clathrin-mediated endocytosis is membrane scission, which is mediated by the large guanosine triophosphate hydrolase (GTPase) dynamin and which may involve the actin-dependent recruitment of N-terminal containing BIN/Amphiphysin/RVS domain containing (N-BAR) proteins. Optical microscopy has revealed a detailed picture of when and where particular protein types are recruited in the ∼20–30 s preceding scission. Nevertheless, the regulatory mechanisms and functions that underpin protein recruitment are not well understood. Here we used an optical assay to investigate the coordination and interdependencies between the recruitment of dynamin, the actin cytoskeleton, and N-BAR proteins to individual clathrin-mediated endocytic scission events. These measurements revealed that a feedback loop exists between dynamin and actin at sites of membrane scission. The kinetics of dynamin, actin, and N-BAR protein recruitment were modulated by dynamin GTPase activity. Conversely, acute ablation of actin dynamics using latrunculin-B led to a ∼50% decrease in the incidence of scission, an ∼50% decrease in the amplitude of dynamin recruitment, and abolished actin and N-BAR recruitment to scission events. Collectively these data suggest that dynamin, actin, and N-BAR proteins work cooperatively to efficiently catalyze membrane scission. Dynamin controls its own recruitment to scission events by modulating the kinetics of actin and N-BAR recruitment to sites of scission. Conversely actin serves as a dynamic scaffold that concentrates dynamin and N-BAR proteins at sites of scission. PMID:22505844

  16. Molecular genetic analysis of circadian timekeeping in Drosophila

    PubMed Central

    Hardin, Paul E.

    2014-01-01

    A genetic screen for mutants that alter circadian rhythms in Drosophila identified the first clock gene - the period (per) gene. The per gene is a central player within a transcriptional feedback loop that represents the core mechanism for keeping circadian time in Drosophila and other animals. The per feedback loop, or core loop, is interlocked with the Clock (Clk) feedback loop, but whether the Clk feedback loop contributes to circadian timekeeping is not known. A series of distinct molecular events are thought to control transcriptional feedback in the core loop. The time it takes to complete these events should take much less than 24h, thus delays must be imposed at different steps within the core loop. As new clock genes are identified, the molecular mechanisms responsible for these delays have been revealed in ever-increasing detail, and provide an in depth accounting of how transcriptional feedback loops keep circadian time. The phase of these feedback loops shift to maintain synchrony with environmental cycles, the most reliable of which is light. Although a great deal is known about cell-autonomous mechanisms of light-induced phase shifting by CRYPTOCHROME (CRY), much less is known about non-cell autonomous mechanisms. CRY mediates phase shifts through an uncharacterized mechanism in certain brain oscillator neurons, and carries out a dual role as a photoreceptor and transcription factor in other tissues. Here I will review how transcriptional feedback loops function to keep time in Drosophila, how they impose delays to maintain a 24h cycle, and how they maintain synchrony with environmental light:dark cycles. The transcriptional feedback loops that keep time in Drosophila are well conserved in other animals, thus what we learn about these loops in Drosophila should continue to provide insight into the operation of analogous transcriptional feedback loops in other animals. PMID:21924977

  17. Canopy1, a positive feedback regulator of FGF signaling, controls progenitor cell clustering during Kupffer's vesicle organogenesis

    PubMed Central

    Matsui, Takaaki; Thitamadee, Siripong; Murata, Tomoko; Kakinuma, Hisaya; Nabetani, Takuji; Hirabayashi, Yoshio; Hirate, Yoshikazu; Okamoto, Hitoshi; Bessho, Yasumasa

    2011-01-01

    The assembly of progenitor cells is a crucial step for organ formation during vertebrate development. Kupffer's vesicle (KV), a key organ required for the left–right asymmetric body plan in zebrafish, is generated from a cluster of ∼20 dorsal forerunner cells (DFCs). Although several genes are known to be involved in KV formation, how DFC clustering is regulated and how cluster formation then contributes to KV formation remain unclear. Here we show that positive feedback regulation of FGF signaling by Canopy1 (Cnpy1) controls DFC clustering. Cnpy1 positively regulates FGF signals within DFCs, which in turn promote Cadherin1-mediated cell adhesion between adjacent DFCs to sustain cell cluster formation. When this FGF positive feedback loop is disrupted, the DFC cluster fails to form, eventually leading to KV malformation and defects in the establishment of laterality. Our results therefore uncover both a previously unidentified role of FGF signaling during vertebrate organogenesis and a regulatory mechanism underlying cell cluster formation, which is an indispensable step for formation of a functional KV and establishment of the left–right asymmetric body plan. PMID:21628557

  18. Examination of a perceived cost model of employees' negative feedback-seeking behavior.

    PubMed

    Lu, Kuo-Ming; Pan, Su-Ying; Cheng, Jen-Wei

    2011-01-01

    The present study extends the feedback-seeking behavior literature by investigating how supervisor-related antecedents (i.e., supervisors' expert power, reflected appraisals of supervisors, and supervisors' emotional intelligence) influence subordinates' negative feedback-seeking behavior (NFSB) through different cost/value perceptions (i.e., expectancy value, self-presentation cost, and ego cost). Using data collected from 216 supervisor-subordinate dyads from various industries in Taiwan, we employ structural equation modeling analysis to test our hypotheses. The results show that expectancy value mediates the relationship between supervisor expert power and subordinates' NFSB. Moreover, self-presentation cost mediates the relationship between reflected appraisals of supervisors' and subordinates' NFSB. Theoretical and practical implications of this study are also discussed.

  19. A reverse pathway? Actual and perceived skill proficiency and physical activity.

    PubMed

    Barnett, Lisa M; Morgan, Philip J; Van Beurden, Eric; Ball, Kylie; Lubans, David R

    2011-05-01

    Motor skills are considered a prerequisite to physical activity, yet the relationship may be reciprocal and perceived sports competence might mediate associations. In 2006/2007, 215 adolescents completed motor skill proficiency (Get Skilled Get Active), perceived sport competence (Physical Self-Perception Profile) and physical activity assessments (Adolescent Physical Activity Recall Questionnaire) as part of the Physical Activity and Skills Study. Using AMOS (Version 7.0), reciprocal relationships were examined between motor skill (object control and locomotor) and moderate to vigorous physical activity (MVPA). Both models were then run in different versions to understand the role of perceived sports competence as a potential mediator. Mean age was 16.4 yr (SD=0.6), 51.6% (111/215) were females. A reciprocal relationship between object control and MVPA and a one-way relationship from MVPA to locomotor skill was found. When perceived sports competence was examined as a mediator, the best-fitting model versions explained 16% (R=0.16) MVPA variation, and 30% object control (R=0.30), and 12% locomotor skill variation (R=0.12) (reverse relationship). Perceived sports competence partially mediates the relationship between object control proficiency and physical activity for both directions and fully mediates the relationship between physical activity and locomotor skill; but only when locomotor skill is the outcome. If the relationship between object control skill and physical activity is viewed as a "positive feedback loop," skill development and increasing physical activity should simultaneously be targeted in physical activity interventions. Increasing perceived sport competence should also be an intervention focus. © 2011 by the American College of Sports Medicine

  20. WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity

    PubMed Central

    Vasileva, Mina; Sauer, Michael

    2018-01-01

    Auxin is unique among plant hormones due to its directional transport that is mediated by the polarly distributed PIN auxin transporters at the plasma membrane. The canalization hypothesis proposes that the auxin feedback on its polar flow is a crucial, plant-specific mechanism mediating multiple self-organizing developmental processes. Here, we used the auxin effect on the PIN polar localization in Arabidopsis thaliana roots as a proxy for the auxin feedback on the PIN polarity during canalization. We performed microarray experiments to find regulators of this process that act downstream of auxin. We identified genes that were transcriptionally regulated by auxin in an AXR3/IAA17- and ARF7/ARF19-dependent manner. Besides the known components of the PIN polarity, such as PID and PIP5K kinases, a number of potential new regulators were detected, among which the WRKY23 transcription factor, which was characterized in more detail. Gain- and loss-of-function mutants confirmed a role for WRKY23 in mediating the auxin effect on the PIN polarity. Accordingly, processes requiring auxin-mediated PIN polarity rearrangements, such as vascular tissue development during leaf venation, showed a higher WRKY23 expression and required the WRKY23 activity. Our results provide initial insights into the auxin transcriptional network acting upstream of PIN polarization and, potentially, canalization-mediated plant development. PMID:29377885

  1. Optimizing Personalized Normative Feedback: The Use of Gender-Specific Referents*

    PubMed Central

    LEWIS, MELISSA A.; NEIGHBORS, CLAYTON

    2008-01-01

    Objective Many brief interventions include personalized normative feedback (PNF) using gender-specific or gender-neutral referents. Several theories suggest that information pertaining to more socially proximal referents should have greater influence on one’s behavior compared with more socially distal referents. The current research evaluated whether gender specificity of the normative referent employed in PNF related to intervention efficacy. Method Following baseline assessment, 185 college students (45.2% women) were randomly assigned to one of three intervention conditions: gender-specific feedback, gender-neutral feedback, or assessment-only control. Immediately after completing measures of perceived norms, alcohol consumption, and gender identity, participants in the gender-neutral and gender-specific intervention conditions were provided with computerized information detailing their own drinking behavior, their perceptions of student drinking, and actual student drinking. Results After a 1-month follow-up, the results indicated that normative feedback was effective in changing perceived norms and reducing alcohol consumption for both intervention groups for women and men. The results provide support, however, for changes in perceived gender-specific norms as a mediator of the effects of normative feedback on reduced drinking behavior for women only. Additionally, gender-specific feedback was found to be more effective for women higher in gender identity, relative to the gender-neutral feedback. A post-assessment follow-up telephone survey administered to assess potential demand characteristics corroborated the intervention effects. Conclusions Results extend previous research documenting efficacy of computer delivered PNF. Gender specificity and gender identity appear to be important elements to consider for PNF intervention efficacy for women. PMID:17286341

  2. A bilateral cortical network responds to pitch perturbations in speech feedback

    PubMed Central

    Kort, Naomi S.; Nagarajan, Srikantan S.; Houde, John F.

    2014-01-01

    Auditory feedback is used to monitor and correct for errors in speech production, and one of the clearest demonstrations of this is the pitch perturbation reflex. During ongoing phonation, speakers respond rapidly to shifts of the pitch of their auditory feedback, altering their pitch production to oppose the direction of the applied pitch shift. In this study, we examine the timing of activity within a network of brain regions thought to be involved in mediating this behavior. To isolate auditory feedback processing relevant for motor control of speech, we used magnetoencephalography (MEG) to compare neural responses to speech onset and to transient (400ms) pitch feedback perturbations during speaking with responses to identical acoustic stimuli during passive listening. We found overlapping, but distinct bilateral cortical networks involved in monitoring speech onset and feedback alterations in ongoing speech. Responses to speech onset during speaking were suppressed in bilateral auditory and left ventral supramarginal gyrus/posterior superior temporal sulcus (vSMG/pSTS). In contrast, during pitch perturbations, activity was enhanced in bilateral vSMG/pSTS, bilateral premotor cortex, right primary auditory cortex, and left higher order auditory cortex. We also found speaking-induced delays in responses to both unaltered and altered speech in bilateral primary and secondary auditory regions, the left vSMG/pSTS and right premotor cortex. The network dynamics reveal the cortical processing involved in both detecting the speech error and updating the motor plan to create the new pitch output. These results implicate vSMG/pSTS as critical in both monitoring auditory feedback and initiating rapid compensation to feedback errors. PMID:24076223

  3. Negative feedback regulation of ABA biosynthesis in peanut (Arachis hypogaea): a transcription factor complex inhibits AhNCED1 expression during water stress

    PubMed Central

    Liu, Shuai; Li, Meijuan; Su, Liangchen; Ge, Kui; Li, Limei; Li, Xiaoyun; Liu, Xu; Li, Ling

    2016-01-01

    Abscisic acid (ABA), a key plant stress-signaling hormone, is produced in response to drought and counteracts the effects of this stress. The accumulation of ABA is controlled by the enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). In Arabidopsis, NCED3 is regulated by a positive feedback mechanism by ABA. In this study in peanut (Arachis hypogaea), we demonstrate that ABA biosynthesis is also controlled by negative feedback regulation, mediated by the inhibitory effect on AhNCED1 transcription of a protein complex between transcription factors AhNAC2 and AhAREB1. AhNCED1 was significantly down-regulated after PEG treatment for 10 h, at which time ABA content reached a peak. A ChIP-qPCR assay confirmed AhAREB1 and AhNAC2 binding to the AhNCED1 promoter in response to ABA. Moreover, the interaction between AhAREB1 and AhNAC2, and a transient expression assay showed that the protein complex could negatively regulate the expression of AhNCED1. The results also demonstrated that AhAREB1 was the key factor in AhNCED1 feedback regulation, while AhNAC2 played a subsidiary role. ABA reduced the rate of AhAREB1 degradation and enhanced both the synthesis and degradation rate of the AhNAC2 protein. In summary, the AhAREB1/AhNAC2 protein complex functions as a negative feedback regulator of drought-induced ABA biosynthesis in peanut. PMID:27892506

  4. Flying Drosophila stabilize their vision-based velocity controller by sensing wind with their antennae

    PubMed Central

    Fuller, Sawyer Buckminster; Straw, Andrew D.; Peek, Martin Y.; Murray, Richard M.; Dickinson, Michael H.

    2014-01-01

    Flies and other insects use vision to regulate their groundspeed in flight, enabling them to fly in varying wind conditions. Compared with mechanosensory modalities, however, vision requires a long processing delay (~100 ms) that might introduce instability if operated at high gain. Flies also sense air motion with their antennae, but how this is used in flight control is unknown. We manipulated the antennal function of fruit flies by ablating their aristae, forcing them to rely on vision alone to regulate groundspeed. Arista-ablated flies in flight exhibited significantly greater groundspeed variability than intact flies. We then subjected them to a series of controlled impulsive wind gusts delivered by an air piston and experimentally manipulated antennae and visual feedback. The results show that an antenna-mediated response alters wing motion to cause flies to accelerate in the same direction as the gust. This response opposes flying into a headwind, but flies regularly fly upwind. To resolve this discrepancy, we obtained a dynamic model of the fly’s velocity regulator by fitting parameters of candidate models to our experimental data. The model suggests that the groundspeed variability of arista-ablated flies is the result of unstable feedback oscillations caused by the delay and high gain of visual feedback. The antenna response drives active damping with a shorter delay (~20 ms) to stabilize this regulator, in exchange for increasing the effect of rapid wind disturbances. This provides insight into flies’ multimodal sensory feedback architecture and constitutes a previously unknown role for the antennae. PMID:24639532

  5. How to Apply Feedback to Improve Subjective Wellbeing of Government Servants Engaged in Environmental Protection in China?

    PubMed

    Gong, Zhenxing; Wang, Xinmeng; Zhang, Na; Li, Miaomiao

    2018-01-01

    In order to improve subjective wellbeing of government servants engaged in environmental protection who work in high power distance in China, it is important to understand the impact mechanism of feedback. This study aims to analyze how feedback environment influences subjective wellbeing through basic psychological needs satisfaction and analyzing the moderating role of power distance. The study was designed as a cross-sectional study of 492 government servants engaged in environment protection in Shandong, China. Government servants who agreed to participate answered self-report questionnaires concerning demographic conditions, supervisor feedback environment, basic psychological need satisfaction, and power distance as well as subjective wellbeing. Employees in higher levels of supervisor feedback environment were more likely to experience subjective wellbeing. Full mediating effects were found for basic psychological needs satisfaction. Specifically, supervisor feedback environment firstly led to increased basic psychological needs satisfaction, which in turn resulted in increased subjective wellbeing. Additional analysis showed that the mediating effect of basic psychological needs satisfaction was stronger for employees who work in high power distance than in low power distance. The results from the study indicate that supervisor feedback environment plays a vital role in improving subjective wellbeing of government servants engaged in environmental protection through basic psychological needs satisfaction, especially in high power distance.

  6. Training Effects on Teachers' Feedback Practice: The Mediating Function of Feedback Knowledge and the Moderating Role of Self-Efficacy

    ERIC Educational Resources Information Center

    Schütze, Birgit; Rakoczy, Katrin; Klieme, Eckhard; Besser, Michael; Leiss, Dominik

    2017-01-01

    Formative assessment has been identified as a promising intervention to support students' learning. How to successfully implement this means of assessment, however, is still an open issue. This study contributes to the implementation of formative assessment by analyzing the impact of a training measure on teachers' formative feedback practice,…

  7. Relationships among supervisor feedback environment, work-related stressors, and employee deviance.

    PubMed

    Peng, Jei-Chen; Tseng, Mei-Man; Lee, Yin-Ling

    2011-03-01

    Previous research has demonstrated that the employee deviance imposes enormous costs on organizational performance and productivity. Similar research supports the positive effect of favorable supervisor feedback on employee job performance. In light of such, it is important to understand the interaction between supervisor feedback environment and employee deviant behavior to streamline organization operations. The purposes of this study were to explore how the supervisor feedback environment influences employee deviance and to examine the mediating role played by work-related stressors. Data were collected from 276 subordinate-supervisor dyads at a regional hospital in Yilan. Structural equation modeling analyses were conducted to test hypotheses. Structural equation modeling analysis results show that supervisor feedback environment negatively related to interpersonal and organizational deviance. Moreover, work-related stressors were found to partially mediate the relationship between supervisor feedback environment and employee deviance. Study findings suggest that when employees (nurses in this case) perceive an appropriate supervisor-provided feedback environment, their deviance is suppressed because of the related reduction in work-related stressors. Thus, to decrease deviant behavior, organizations may foster supervisor integration of disseminated knowledge such as (a) how to improve employees' actual performance, (b) how to effectively clarify expected performance, and (c) how to improve continuous performance feedback. If supervisors absorb this integrated feedback knowledge, they should be in a better position to enhance their own daily interactions with nurses and reduce nurses' work-related stress and, consequently, decrease deviant behavior.

  8. Unravelling salutogenic mechanisms in the workplace: the role of learning.

    PubMed

    Pijpker, Roald; Vaandrager, Lenneke; Bakker, Evert Jan; Koelen, Maria

    To explore the moderating and mediating role(s) of learning within the relationship between sense of coherence (SOC) and generalized resistance resources. Cross-sectional study (N=481), using a self-administered questionnaire, of employees working in the healthcare sector in the Netherlands in 2017. Four residential healthcare settings and one healthcare-related Facebook group were involved. Multiple linear regression models were used to test for moderating and mediating effects of learning. Social relations, task significance, and job control significantly explained variance in SOC. Conceptual, social, and instrumental learning, combined, moderated the relationship between SOC and task significance. Instrumental learning moderated the relationship between job control and SOC. Social learning also mediated this relationship. Conceptual learning did not show any moderating or mediating effect. The relationship between SOC and the three GRRs seems to be strengthened or explained-to a certain extent-by instrumental and social learning. Healthcare organizations are recommended to promote learning through formal activities as well as through cooperation, feedback, sharing experiences, and job challenges. This requires employee participation and a multilevel interdisciplinary approach. Copyright © 2018 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Feedback repression is required for mammalian circadian clock function.

    PubMed

    Sato, Trey K; Yamada, Rikuhiro G; Ukai, Hideki; Baggs, Julie E; Miraglia, Loren J; Kobayashi, Tetsuya J; Welsh, David K; Kay, Steve A; Ueda, Hiroki R; Hogenesch, John B

    2006-03-01

    Direct evidence for the requirement of transcriptional feedback repression in circadian clock function has been elusive. Here, we developed a molecular genetic screen in mammalian cells to identify mutants of the circadian transcriptional activators CLOCK and BMAL1, which were uncoupled from CRYPTOCHROME (CRY)-mediated transcriptional repression. Notably, mutations in the PER-ARNT-SIM domain of CLOCK and the C terminus of BMAL1 resulted in synergistic insensitivity through reduced physical interactions with CRY. Coexpression of these mutant proteins in cultured fibroblasts caused arrhythmic phenotypes in population and single-cell assays. These data demonstrate that CRY-mediated repression of the CLOCK/BMAL1 complex activity is required for maintenance of circadian rhythmicity and provide formal proof that transcriptional feedback is required for mammalian clock function.

  10. Neurocognitive therapeutics: from concept to application in the treatment of negative attention bias.

    PubMed

    Schnyer, David M; Beevers, Christopher G; deBettencourt, Megan T; Sherman, Stephanie M; Cohen, Jonathan D; Norman, Kenneth A; Turk-Browne, Nicholas B

    2015-01-01

    There is growing interest in the use of neuroimaging for the direct treatment of mental illness. Here, we present a new framework for such treatment, neurocognitive therapeutics. What distinguishes neurocognitive therapeutics from prior approaches is the use of precise brain-decoding techniques within a real-time feedback system, in order to adapt treatment online and tailor feedback to individuals' needs. We report an initial feasibility study that uses this framework to alter negative attention bias in a small number of patients experiencing significant mood symptoms. The results are consistent with the promise of neurocognitive therapeutics to improve mood symptoms and alter brain networks mediating attentional control. Future work should focus on optimizing the approach, validating its effectiveness, and expanding the scope of targeted disorders.

  11. A theory of how active behavior stabilises neural activity: Neural gain modulation by closed-loop environmental feedback

    PubMed Central

    2018-01-01

    During active behaviours like running, swimming, whisking or sniffing, motor actions shape sensory input and sensory percepts guide future motor commands. Ongoing cycles of sensory and motor processing constitute a closed-loop feedback system which is central to motor control and, it has been argued, for perceptual processes. This closed-loop feedback is mediated by brainwide neural circuits but how the presence of feedback signals impacts on the dynamics and function of neurons is not well understood. Here we present a simple theory suggesting that closed-loop feedback between the brain/body/environment can modulate neural gain and, consequently, change endogenous neural fluctuations and responses to sensory input. We support this theory with modeling and data analysis in two vertebrate systems. First, in a model of rodent whisking we show that negative feedback mediated by whisking vibrissa can suppress coherent neural fluctuations and neural responses to sensory input in the barrel cortex. We argue this suppression provides an appealing account of a brain state transition (a marked change in global brain activity) coincident with the onset of whisking in rodents. Moreover, this mechanism suggests a novel signal detection mechanism that selectively accentuates active, rather than passive, whisker touch signals. This mechanism is consistent with a predictive coding strategy that is sensitive to the consequences of motor actions rather than the difference between the predicted and actual sensory input. We further support the theory by re-analysing previously published two-photon data recorded in zebrafish larvae performing closed-loop optomotor behaviour in a virtual swim simulator. We show, as predicted by this theory, that the degree to which each cell contributes in linking sensory and motor signals well explains how much its neural fluctuations are suppressed by closed-loop optomotor behaviour. More generally we argue that our results demonstrate the dependence of neural fluctuations, across the brain, on closed-loop brain/body/environment interactions strongly supporting the idea that brain function cannot be fully understood through open-loop approaches alone. PMID:29342146

  12. A theory of how active behavior stabilises neural activity: Neural gain modulation by closed-loop environmental feedback.

    PubMed

    Buckley, Christopher L; Toyoizumi, Taro

    2018-01-01

    During active behaviours like running, swimming, whisking or sniffing, motor actions shape sensory input and sensory percepts guide future motor commands. Ongoing cycles of sensory and motor processing constitute a closed-loop feedback system which is central to motor control and, it has been argued, for perceptual processes. This closed-loop feedback is mediated by brainwide neural circuits but how the presence of feedback signals impacts on the dynamics and function of neurons is not well understood. Here we present a simple theory suggesting that closed-loop feedback between the brain/body/environment can modulate neural gain and, consequently, change endogenous neural fluctuations and responses to sensory input. We support this theory with modeling and data analysis in two vertebrate systems. First, in a model of rodent whisking we show that negative feedback mediated by whisking vibrissa can suppress coherent neural fluctuations and neural responses to sensory input in the barrel cortex. We argue this suppression provides an appealing account of a brain state transition (a marked change in global brain activity) coincident with the onset of whisking in rodents. Moreover, this mechanism suggests a novel signal detection mechanism that selectively accentuates active, rather than passive, whisker touch signals. This mechanism is consistent with a predictive coding strategy that is sensitive to the consequences of motor actions rather than the difference between the predicted and actual sensory input. We further support the theory by re-analysing previously published two-photon data recorded in zebrafish larvae performing closed-loop optomotor behaviour in a virtual swim simulator. We show, as predicted by this theory, that the degree to which each cell contributes in linking sensory and motor signals well explains how much its neural fluctuations are suppressed by closed-loop optomotor behaviour. More generally we argue that our results demonstrate the dependence of neural fluctuations, across the brain, on closed-loop brain/body/environment interactions strongly supporting the idea that brain function cannot be fully understood through open-loop approaches alone.

  13. Can performance on summative evaluation of wax-added dental anatomy projects be better predicted from the combination of supervised and unsupervised practice than from supervised practice alone?

    PubMed

    Radjaeipour, G; Chambers, D W; Geissberger, M

    2016-11-01

    The study explored the effects of adding student-directed projects in pre-clinical dental anatomy laboratory on improving the predictability of students' eventual performance on summative evaluation exercises, given the presence of intervening faculty-controlled, in-class practice. All students from four consecutive classes (n = 555) completed wax-added home projects (HP), spending as much or as little time as desired and receiving no faculty feedback; followed by similar laboratory projects (LP) with time limits and feedback; and then summative practical projects (PP) in a timed format but without faculty feedback. Path analysis was used to assess if the student-directed HP had any effect over and above the laboratory projects. Average scores were HP = 0.785 (SD = 0.089); LP = 0.736 (SD = 0.092); and PP = 0.743 (SD = 0.108). Path analysis was applied to show the effects of including a student-controlled home practice exercise on summative exercise performance. HP contributed 57% direct effect and 37% mediated effect through the LP condition. Student-directed home practice provided a measureable improvement in ability to predict eventual performance in summative test cases over and above the predictive contribution of intervening faculty-controlled practice conditions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Target Uncertainty Mediates Sensorimotor Error Correction

    PubMed Central

    Vijayakumar, Sethu; Wolpert, Daniel M.

    2017-01-01

    Human movements are prone to errors that arise from inaccuracies in both our perceptual processing and execution of motor commands. We can reduce such errors by both improving our estimates of the state of the world and through online error correction of the ongoing action. Two prominent frameworks that explain how humans solve these problems are Bayesian estimation and stochastic optimal feedback control. Here we examine the interaction between estimation and control by asking if uncertainty in estimates affects how subjects correct for errors that may arise during the movement. Unbeknownst to participants, we randomly shifted the visual feedback of their finger position as they reached to indicate the center of mass of an object. Even though participants were given ample time to compensate for this perturbation, they only fully corrected for the induced error on trials with low uncertainty about center of mass, with correction only partial in trials involving more uncertainty. The analysis of subjects’ scores revealed that participants corrected for errors just enough to avoid significant decrease in their overall scores, in agreement with the minimal intervention principle of optimal feedback control. We explain this behavior with a term in the loss function that accounts for the additional effort of adjusting one’s response. By suggesting that subjects’ decision uncertainty, as reflected in their posterior distribution, is a major factor in determining how their sensorimotor system responds to error, our findings support theoretical models in which the decision making and control processes are fully integrated. PMID:28129323

  15. Target Uncertainty Mediates Sensorimotor Error Correction.

    PubMed

    Acerbi, Luigi; Vijayakumar, Sethu; Wolpert, Daniel M

    2017-01-01

    Human movements are prone to errors that arise from inaccuracies in both our perceptual processing and execution of motor commands. We can reduce such errors by both improving our estimates of the state of the world and through online error correction of the ongoing action. Two prominent frameworks that explain how humans solve these problems are Bayesian estimation and stochastic optimal feedback control. Here we examine the interaction between estimation and control by asking if uncertainty in estimates affects how subjects correct for errors that may arise during the movement. Unbeknownst to participants, we randomly shifted the visual feedback of their finger position as they reached to indicate the center of mass of an object. Even though participants were given ample time to compensate for this perturbation, they only fully corrected for the induced error on trials with low uncertainty about center of mass, with correction only partial in trials involving more uncertainty. The analysis of subjects' scores revealed that participants corrected for errors just enough to avoid significant decrease in their overall scores, in agreement with the minimal intervention principle of optimal feedback control. We explain this behavior with a term in the loss function that accounts for the additional effort of adjusting one's response. By suggesting that subjects' decision uncertainty, as reflected in their posterior distribution, is a major factor in determining how their sensorimotor system responds to error, our findings support theoretical models in which the decision making and control processes are fully integrated.

  16. Sensory feedback from the urethra evokes state-dependent lower urinary tract reflexes in rat.

    PubMed

    Danziger, Zachary C; Grill, Warren M

    2017-08-15

    The lower urinary tract is regulated by reflexes responsible for maintaining continence and producing efficient voiding. It is unclear how sensory information from the bladder and urethra engages differential, state-dependent reflexes to either maintain continence or promote voiding. Using a new in vivo experimental approach, we quantified how sensory information from the bladder and urethra are integrated to switch reflex responses to urethral sensory feedback from maintaining continence to producing voiding. The results demonstrate how sensory information regulates state-dependent reflexes in the lower urinary tract and contribute to our understanding of the pathophysiology of urinary retention and incontinence where sensory feedback may engage these reflexes inappropriately. Lower urinary tract reflexes are mediated by peripheral afferents from the bladder (primarily in the pelvic nerve) and the urethra (in the pudendal and pelvic nerves) to maintain continence or initiate micturition. If fluid enters the urethra at low bladder volumes, reflexes relax the bladder and evoke external urethral sphincter (EUS) contraction (guarding reflex) to maintain continence. Conversely, urethral flow at high bladder volumes, excites the bladder (micturition reflex) and relaxes the EUS (augmenting reflex). We conducted measurements in a urethane-anaesthetized in vivo rat preparation to characterize systematically the reflexes evoked by fluid flow through the urethra. We used a novel preparation to manipulate sensory feedback from the bladder and urethra independently by controlling bladder volume and urethral flow. We found a distinct bladder volume threshold (74% of bladder capacity) above which flow-evoked bladder contractions were 252% larger and evoked phasic EUS activation 2.6 times as often as responses below threshold, clearly demonstrating a discrete transition between continence (guarding) and micturition (augmenting) reflexes. Below this threshold urethral flow evoked tonic EUS activity, indicative of the guarding reflex, that was proportional to the urethral flow rate. These results demonstrate the complementary roles of sensory feedback from the bladder and urethra in regulating reflexes in the lower urinary tract that depend on the state of the bladder. Understanding the neural control of functional reflexes and how they are mediated by sensory information in the bladder and urethra will open new opportunities, especially in neuromodulation, to treat pathologies of the lower urinary tract. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  17. The Tumor Suppressor Cdkn3 Is Required for Maintaining the Proper Number of Centrosomes by Regulating the Centrosomal Stability of Mps1.

    PubMed

    Srinivas, Vinayaka; Kitagawa, Mayumi; Wong, Jasmine; Liao, Pei-Ju; Lee, Sang Hyun

    2015-11-24

    Supernumerary centrosomes promote the assembly of abnormal spindles in many human cancers. The observation that modest changes in the centrosomal levels of Mps1 kinase can cause centrosome overduplication in human cells suggests the existence of a regulatory system that may tightly control its centrosomal stability. Here, we show that Cdkn3, a Cdk-associated phosphatase, prevents Mps1-mediated centrosome overduplication. We identify Cdkn3 as a direct binding partner of Mps1. The interaction between Mps1 and Cdkn3 is required for Mps1 to recruit Cdkn3 to centrosomes. Subsequently, Mps1-bound Cdkn3 forms a regulatory system that controls the centrosomal levels of Mps1 through proteasome-mediated degradation and thereby prevents Mps1-mediated centrosome overduplication. Conversely, knockdown of Cdkn3 stabilizes Mps1 at centrosomes, which promotes centrosome overduplication. We suggest that Mps1 and Cdkn3 form a self-regulated feedback loop at centrosomes to tightly control the centrosomal levels of Mps1, which prevents centrosome overduplication in human cells. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Altered perception of distorted visual feedback occurs soon after whiplash injury: an experimental study of central nervous system processing.

    PubMed

    Daenen, Liesbeth; Nijs, Jo; Roussel, Nathalie; Wouters, Kristien; Cras, Patrick

    2012-01-01

    Sensory and motor system dysfunctions have been documented in a proportion of patients with acute whiplash associated disorders (WAD). Sensorimotor incongruence may occur and hence, may explain pain and other sensations in the acute stage after the trauma. The present study aimed at (1) evaluating whether a visually mediated incongruence between sensory feedback and motor output increases symptoms and triggers additional sensations in patients with acute WAD, (2) investigating whether the pattern of sensations in response to sensorimotor incongruence differs among patients suffering from acute and chronic WAD, and healthy controls. Experimental study. Patients with acute WAD were recruited within one month after whiplash injury via the emergency department of a local Red Cross medical care unit, the Antwerp University Hospital, and through primary care practices. Patients with chronic WAD were recruited through an advertisement on the World Wide Web and from the medical database of a local Red Cross medical care unit. Healthy controls were recruited from among the university college staff, family members, and acquaintances of the researchers. Thirty patients with acute WAD, 35 patients with chronic WAD, and 31 healthy persons were subjected to a coordination test. They performed congruent and incongruent arm movements while viewing a whiteboard or mirror. RESULTS. Twenty-eight patients with acute WAD reported sensations such as pain, tightness, feeling of peculiarity, and tiredness at some stage of the test protocol. No significant differences in frequencies and intensities of sensations were found between the various test stages (P > .05). Significantly more sensations were reported during the incongruent mirror stage compared to the incongruent control stage (P < .05). The pattern in intensity of sensations across the congruent and incongruent stages was significantly different between the WAD groups and the control group. The course and prognostic value of susceptibility to sensorimotor incongruence after an acute whiplash trauma are not yet clear from these results. A prospective longitudinal study with an expanded study population is needed to investigate if those with a lowered threshold to visually mediated sensorimotor incongruence in the acute stage are at risk to develop persistent pain and disability. Patients with acute WAD present an exacerbation of symptoms and additional sensations in response to visually mediated changes during action. These results indicate an altered perception of distorted visual feedback and suggest altered central sensorimotor nervous system processing in patients with acute WAD.

  19. Video-feedback Intervention to promote Positive Parenting adapted to Autism (VIPP-AUTI): A randomized controlled trial.

    PubMed

    Poslawsky, Irina E; Naber, Fabiënne Ba; Bakermans-Kranenburg, Marian J; van Daalen, Emma; van Engeland, Herman; van IJzendoorn, Marinus H

    2015-07-01

    In a randomized controlled trial, we evaluated the early intervention program Video-feedback Intervention to promote Positive Parenting adapted to Autism (VIPP-AUTI) with 78 primary caregivers and their child (16-61 months) with Autism Spectrum Disorder. VIPP-AUTI is a brief attachment-based intervention program, focusing on improving parent-child interaction and reducing the child's individual Autism Spectrum Disorder-related symptomatology in five home visits. VIPP-AUTI, as compared with usual care, demonstrated efficacy in reducing parental intrusiveness. Moreover, parents who received VIPP-AUTI showed increased feelings of self-efficacy in child rearing. No significant group differences were found on other aspects of parent-child interaction or on child play behavior. At 3-months follow-up, intervention effects were found on child-initiated joint attention skills, not mediated by intervention effects on parenting. Implementation of VIPP-AUTI in clinical practice is facilitated by the use of a detailed manual and a relatively brief training of interveners. © The Author(s) 2014.

  20. Interaction between nitric oxide and superoxide in the macula densa in aldosterone-induced alterations of tubuloglomerular feedback

    PubMed Central

    Zhang, Qian; Lin, Lin; Lu, Yan; Liu, Haifeng; Duan, Yanhua; Zhu, Xiaolong; Zou, Chengwei; Manning, R. Davis

    2013-01-01

    Tubuloglomerular feedback (TGF)-mediated constriction of the afferent arteriole is modulated by a balance between release of superoxide (O2−) and nitric oxide (NO) in macula densa (MD) cells. Aldosterone activates mineralocorticoid receptors that are expressed in the MD and induces both NO and O2− generation. We hypothesize that aldosterone enhances O2− production in the MD mediated by protein kinase C (PKC), which buffers the effect of NO in control of TGF response. Studies were performed in microdissected and perfused MD and in a MD cell line, MMDD1 cells. Aldosterone significantly enhanced O2− generation both in perfused MD and in MMDD1 cells. When aldosterone (10−7 mol/l) was added in the tubular perfusate, TGF response was reduced from 2.4 ± 0.3 μm to 1.4 ± 0.2 μm in isolated perfused MD. In the presence of tempol, a O2− scavenger, TGF response was 1.5 ± 0.2 μm. In the presence of both tempol and aldosterone in the tubular perfusate, TGF response was further reduced to 0.4 ± 0.2 μm. To determine if PKC is involved in aldosterone-induced O2− production, we exposed the O2− cells to a nonselective PKC inhibitor chelerythrine chloride, a specific PKCα inhibitor Go6976, or a PKCα siRNA, and the aldosterone-induced increase in O2− production was blocked. These data indicate that aldosterone-stimulated O2− production in the MD buffers the effect of NO in control of TGF response, an effect that was mediated by PKCα. PMID:23220724

  1. Phytochromes A and B mediate red-light-induced positive phototropism in roots

    NASA Technical Reports Server (NTRS)

    Kiss, John Z.; Mullen, Jack L.; Correll, Melanie J.; Hangarter, Roger P.

    2003-01-01

    The interaction of tropisms is important in determining the final growth form of the plant body. In roots, gravitropism is the predominant tropistic response, but phototropism also plays a role in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism that is mediated by the phototropin family of photoreceptors. In contrast, red light induces a positive phototropism in Arabidopsis roots. Because this red-light-induced response is weak relative to both gravitropism and negative phototropism, we used a novel device to study phototropism without the complications of a counteracting gravitational stimulus. This device is based on a computer-controlled system using real-time image analysis of root growth and a feedback-regulated rotatable stage. Our data show that this system is useful to study root phototropism in response to red light, because in wild-type roots, the maximal curvature detected with this apparatus is 30 degrees to 40 degrees, compared with 5 degrees to 10 degrees without the feedback system. In positive root phototropism, sensing of red light occurs in the root itself and is not dependent on shoot-derived signals resulting from light perception. Phytochrome (Phy)A and phyB were severely impaired in red-light-induced phototropism, whereas the phyD and phyE mutants were normal in this response. Thus, PHYA and PHYB play a key role in mediating red-light-dependent positive phototropism in roots. Although phytochrome has been shown to mediate phototropism in some lower plant groups, this is one of the few reports indicating a phytochrome-dependent phototropism in flowering plants.

  2. Phytochromes A and B mediate red-light-induced positive phototropism in roots.

    PubMed

    Kiss, John Z; Mullen, Jack L; Correll, Melanie J; Hangarter, Roger P

    2003-03-01

    The interaction of tropisms is important in determining the final growth form of the plant body. In roots, gravitropism is the predominant tropistic response, but phototropism also plays a role in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism that is mediated by the phototropin family of photoreceptors. In contrast, red light induces a positive phototropism in Arabidopsis roots. Because this red-light-induced response is weak relative to both gravitropism and negative phototropism, we used a novel device to study phototropism without the complications of a counteracting gravitational stimulus. This device is based on a computer-controlled system using real-time image analysis of root growth and a feedback-regulated rotatable stage. Our data show that this system is useful to study root phototropism in response to red light, because in wild-type roots, the maximal curvature detected with this apparatus is 30 degrees to 40 degrees, compared with 5 degrees to 10 degrees without the feedback system. In positive root phototropism, sensing of red light occurs in the root itself and is not dependent on shoot-derived signals resulting from light perception. Phytochrome (Phy)A and phyB were severely impaired in red-light-induced phototropism, whereas the phyD and phyE mutants were normal in this response. Thus, PHYA and PHYB play a key role in mediating red-light-dependent positive phototropism in roots. Although phytochrome has been shown to mediate phototropism in some lower plant groups, this is one of the few reports indicating a phytochrome-dependent phototropism in flowering plants.

  3. A Surprising Effect of Feedback on Learning

    ERIC Educational Resources Information Center

    Vollmeyer, Regina; Rheinberg, Falko

    2005-01-01

    As meta-analyses demonstrate feedback effects on performance, our study examined possible mediators. Based on our cognitive-motivational model [Vollmeyer, R., & Rheinberg, F. (1998). Motivationale Einflusse auf Erwerb und Anwendung von Wissen in einem computersimulierten System [Motivational influences on the acquisition and application of…

  4. The neuroendocrine genesis of polycystic ovary syndrome: A role for arcuate nucleus GABA neurons.

    PubMed

    Moore, Aleisha M; Campbell, Rebecca E

    2016-06-01

    Polycystic ovary syndrome (PCOS) is a prevalent and distressing endocrine disorder lacking a clearly identified aetiology. Despite its name, PCOS may result from impaired neuronal circuits in the brain that regulate steroid hormone feedback to the hypothalamo-pituitary-gonadal axis. Ovarian function in all mammals is controlled by the gonadotropin-releasing hormone (GnRH) neurons, a small group of neurons that reside in the pre-optic area of the hypothalamus. GnRH neurons drive the secretion of the gonadotropins from the pituitary gland that subsequently control ovarian function, including the production of gonadal steroid hormones. These hormones, in turn, provide important feedback signals to GnRH neurons via a hormone sensitive neuronal network in the brain. In many women with PCOS this feedback pathway is impaired, resulting in the downstream consequences of the syndrome. This review will explore what is currently known from clinical and animal studies about the identity, relative contribution and significance of the individual neuronal components within the GnRH neuronal network that contribute to the pathophysiology of PCOS. We review evidence for the specific neuronal pathways hypothesised to mediate progesterone negative feedback to GnRH neurons, and discuss the potential mechanisms by which androgens may evoke disruptions in these circuits at different developmental time points. Finally, this review discusses data providing compelling support for disordered progesterone-sensitive GABAergic input to GnRH neurons, originating specifically within the arcuate nucleus in prenatal androgen induced forms of PCOS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. The rice YABBY1 gene is involved in the feedback regulation of gibberellin metabolism.

    PubMed

    Dai, Mingqiu; Zhao, Yu; Ma, Qian; Hu, Yongfeng; Hedden, Peter; Zhang, Qifa; Zhou, Dao-Xiu

    2007-05-01

    Gibberellin (GA) biosynthesis is regulated by feedback control providing a mechanism for GA homeostasis in plants. However, regulatory elements involved in the feedback control are not known. In this report, we show that a rice (Oryza sativa) YABBY1 (YAB1) gene had a similar expression pattern as key rice GA biosynthetic genes GA3ox2 and GA20ox2. Overexpression of YAB1 in transgenic rice resulted in a semidwarf phenotype that could be fully rescued by applied GA. Quantification of the endogenous GA content revealed increases of GA(20) and decreases of GA(1) levels in the overexpression plants, in which the transcripts of the biosynthetic gene GA3ox2 were decreased. Cosuppression of YAB1 in transgenic plants induced expression of GA3ox2. The repression of GA3ox2 could be obtained upon treatment by dexamethasone of transgenic plants expressing a YAB1-glucocorticoid receptor fusion. Importantly, we show that YAB1 bound to a GA-responsive element within the GA3ox2 promoter. In addition, the expression of YAB1 was deregulated in GA biosynthesis and signaling mutants and could be either transiently induced by GA or repressed by a GA inhibitor. Finally, either overexpression or cosuppression of YAB1 impaired GA-mediated repression of GA3ox2. These data together suggest that YAB1 is involved in the feedback regulation of GA biosynthesis in rice.

  6. New perspectives concerning feedback influences on cardiorespiratory control during rhythmic exercise and on exercise performance.

    PubMed

    Dempsey, Jerome A

    2012-09-01

    The cardioaccelerator and ventilatory responses to rhythmic exercise in the human are commonly viewed as being mediated predominantly via feedforward 'central command' mechanisms, with contributions from locomotor muscle afferents to the sympathetically mediated pressor response. We have assessed the relative contributions of three types of feedback afferents on the cardiorespiratory response to voluntary, rhythmic exercise by inhibiting their normal 'tonic' activity in healthy animals and humans and in chronic heart failure. Transient inhibition of the carotid chemoreceptors during moderate intensity exercise reduced muscle sympathetic nerve activity (MSNA) and increased limb vascular conductance and blood flow; and reducing the normal level of respiratory muscle work during heavier intensity exercise increased limb vascular conductance and blood flow. These cardiorespiratory effects were prevented via ganglionic blockade and were enhanced in chronic heart failure and in hypoxia. Blockade of μ opioid sensitive locomotor muscle afferents, with preservation of central motor output via intrathecal fentanyl: (a) reduced the mean arterial blood pressure (MAP), heart rate and ventilatory responses to all steady state exercise intensities; and (b) during sustained high intensity exercise, reduced O(2) transport, increased central motor output and end-exercise muscle fatigue and reduced endurance performance. We propose that these three afferent reflexes - probably acting in concert with feedforward central command - contribute significantly to preserving O(2) transport to locomotor and to respiratory muscles during exercise. Locomotor muscle afferents also appear to provide feedback concerning the metabolic state of the muscle to influence central motor output, thereby limiting peripheral fatigue development.

  7. Leaders’ Behaviors Matter: The Role of Delegation in Promoting Employees’ Feedback-Seeking Behavior

    PubMed Central

    Zhang, Xiyang; Qian, Jing; Wang, Bin; Jin, Zhuyun; Wang, Jiachen; Wang, Yu

    2017-01-01

    Feedback helps employees to evaluate and improve their performance, but there have been relatively few empirical investigations into how leaders can encourage employees to seek feedback. To fill this gap we examined the relationship among delegation, psychological empowerment, and feedback-seeking behavior. We hypothesized that delegation promotes feedback-seeking behavior by psychologically empowering subordinates. In addition, power distance moderates the relationship between delegation and feedback-seeking behavior. Analysis of data from a sample of 248 full-time employees of a hotel group in northern China indicated that delegation predicts subordinates’ feedback seeking for individuals with moderate and high power distance orientation, but not for those with low power distance orientation. The mediation hypothesis was also supported. PMID:28638357

  8. Leaders' Behaviors Matter: The Role of Delegation in Promoting Employees' Feedback-Seeking Behavior.

    PubMed

    Zhang, Xiyang; Qian, Jing; Wang, Bin; Jin, Zhuyun; Wang, Jiachen; Wang, Yu

    2017-01-01

    Feedback helps employees to evaluate and improve their performance, but there have been relatively few empirical investigations into how leaders can encourage employees to seek feedback. To fill this gap we examined the relationship among delegation, psychological empowerment, and feedback-seeking behavior. We hypothesized that delegation promotes feedback-seeking behavior by psychologically empowering subordinates. In addition, power distance moderates the relationship between delegation and feedback-seeking behavior. Analysis of data from a sample of 248 full-time employees of a hotel group in northern China indicated that delegation predicts subordinates' feedback seeking for individuals with moderate and high power distance orientation, but not for those with low power distance orientation. The mediation hypothesis was also supported.

  9. Youth fitness testing: the effect of percentile-based evaluative feedback on intrinsic motivation.

    PubMed

    Whitehead, J R; Corbin, C B

    1991-06-01

    This study was a test of Deci and Ryan's (1985) cognitive evaluation theory in a fitness testing situation. More specifically, it was a test of Proposition 2 of that theory, which posits that external events that increase or decrease perceived competence will increase or decrease intrinsic motivation. Seventh and eighth grade schoolchildren (N = 105) volunteered for an experiment that was ostensibly to collect data on a new youth fitness test (the Illinois Agility Run). After two untimed practice runs, a specially adapted version of the Intrinsic Motivation Inventory (IMI) was administered as a pretest of intrinsic motivation. Two weeks later when subjects ran again, they were apparently electronically timed. In reality, the subjects were given bogus feedback. Subjects in a positive feedback condition were told their scores were above the 80th percentile, while those in a negative feedback condition were told their scores were below the 20th percentile. Those in a control condition received no feedback. The IMI was again administered to the subjects after their runs. Multivariate and subsequent univariate tests were significant for all four subscale dependent variables (perceived interest-enjoyment, competence, effort, and pressure-tension). Positive feedback enhanced all aspects of intrinsic motivation, whereas negative feedback decreased them. In a further test of cognitive evaluation theory, path analysis results supported the prediction that perceived competence would mediate changes in the other IMI subscales. Taken together, these results clearly support cognitive evaluation theory and also may have important implications regarding motivation for those who administer youth fitness tests.

  10. How to Apply Feedback to Improve Subjective Wellbeing of Government Servants Engaged in Environmental Protection in China?

    PubMed Central

    Wang, Xinmeng; Zhang, Na; Li, Miaomiao

    2018-01-01

    Background In order to improve subjective wellbeing of government servants engaged in environmental protection who work in high power distance in China, it is important to understand the impact mechanism of feedback. This study aims to analyze how feedback environment influences subjective wellbeing through basic psychological needs satisfaction and analyzing the moderating role of power distance. Method The study was designed as a cross-sectional study of 492 government servants engaged in environment protection in Shandong, China. Government servants who agreed to participate answered self-report questionnaires concerning demographic conditions, supervisor feedback environment, basic psychological need satisfaction, and power distance as well as subjective wellbeing. Results Employees in higher levels of supervisor feedback environment were more likely to experience subjective wellbeing. Full mediating effects were found for basic psychological needs satisfaction. Specifically, supervisor feedback environment firstly led to increased basic psychological needs satisfaction, which in turn resulted in increased subjective wellbeing. Additional analysis showed that the mediating effect of basic psychological needs satisfaction was stronger for employees who work in high power distance than in low power distance. Conclusion The results from the study indicate that supervisor feedback environment plays a vital role in improving subjective wellbeing of government servants engaged in environmental protection through basic psychological needs satisfaction, especially in high power distance. PMID:29662901

  11. Diet-induced obesity mediated by the JNK/DIO2 signal transduction pathway

    PubMed Central

    Vernia, Santiago; Cavanagh-Kyros, Julie; Barrett, Tamera; Jung, Dae Young; Kim, Jason K.; Davis, Roger J.

    2013-01-01

    The cJun N-terminal kinase (JNK) signaling pathway is a key mediator of metabolic stress responses caused by consuming a high-fat diet, including the development of obesity. To test the role of JNK, we examined diet-induced obesity in mice with targeted ablation of Jnk genes in the anterior pituitary gland. These mice exhibited an increase in the pituitary expression of thyroid-stimulating hormone (TSH), an increase in the blood concentration of thyroid hormone (T4), increased energy expenditure, and markedly reduced obesity compared with control mice. The increased amount of pituitary TSH was caused by reduced expression of type 2 iodothyronine deiodinase (Dio2), a gene that is required for T4-mediated negative feedback regulation of TSH expression. These data establish a molecular mechanism that accounts for the regulation of energy expenditure and the development of obesity by the JNK signaling pathway. PMID:24186979

  12. Design Of Combined Stochastic Feedforward/Feedback Control

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim

    1989-01-01

    Methodology accommodates variety of control structures and design techniques. In methodology for combined stochastic feedforward/feedback control, main objectives of feedforward and feedback control laws seen clearly. Inclusion of error-integral feedback, dynamic compensation, rate-command control structure, and like integral element of methodology. Another advantage of methodology flexibility to develop variety of techniques for design of feedback control with arbitrary structures to obtain feedback controller: includes stochastic output feedback, multiconfiguration control, decentralized control, or frequency and classical control methods. Control modes of system include capture and tracking of localizer and glideslope, crab, decrab, and flare. By use of recommended incremental implementation, control laws simulated on digital computer and connected with nonlinear digital simulation of aircraft and its systems.

  13. Dysregulation of D2-Mediated Dopamine Transmission in Monkeys after Chronic Escalating Methamphetamine Exposure

    PubMed Central

    Groman, S.M.; Lee, B.; Seu, E.; James, A.S.; Feiler, K.; Mandelkern, M.A.; London, E.D.; Jentsch, J.D.

    2012-01-01

    Compulsive drug-seeking and drug-taking are important substance-abuse behaviors that have been linked to alterations in dopaminergic neurotransmission and to impaired inhibitory control. Evidence supports the notions that abnormal D2 receptor-mediated dopamine transmission and inhibitory control may be heritable risk factors for addictions, and that they also reflect drug-induced neuroadaptations. To provide a mechanistic explanation for the drug-induced emergence of inhibitory-control deficits, this study examined how a chronic, escalating-dose regimen of methamphetamine administration affected dopaminergic neurochemistry and cognition in monkeys. Dopamine D2-like receptor and dopamine transporter (DAT) availability and reversal-learning performance were measured before and after exposure to methamphetamine (or saline), and brain dopamine levels were assayed at the conclusion of the study. Exposure to methamphetamine reduced dopamine D2-like receptor and DAT availability, and produced transient, selective impairments in the reversal of a stimulus-outcome association. Furthermore, individual differences in the change in D2-like receptor availability in the striatum were related to the change in response to positive feedback. These data provide evidence that chronic, escalating-dose methamphetamine administration alters the dopamine system in a manner similar to that observed in methamphetamine-dependent humans. They also implicate alterations in positive-feedback sensitivity associated with D2-like receptor dysfunction as the mechanism by which inhibitory control deficits emerge in stimulant-dependent individuals. Finally, a significant degree of neurochemical and behavioral variation in response to methamphetamine was detected, indicating that individual differences affect the degree to which drugs of abuse alter these processes. Identification of these factors ultimately may assist in the development of individualized treatments for substance dependence. PMID:22539846

  14. Dysregulation of D₂-mediated dopamine transmission in monkeys after chronic escalating methamphetamine exposure.

    PubMed

    Groman, Stephanie M; Lee, Buyean; Seu, Emanuele; James, Alex S; Feiler, Karen; Mandelkern, Mark A; London, Edythe D; Jentsch, J David

    2012-04-25

    Compulsive drug-seeking and drug-taking are important substance-abuse behaviors that have been linked to alterations in dopaminergic neurotransmission and to impaired inhibitory control. Evidence supports the notions that abnormal D₂ receptor-mediated dopamine transmission and inhibitory control may be heritable risk factors for addictions, and that they also reflect drug-induced neuroadaptations. To provide a mechanistic explanation for the drug-induced emergence of inhibitory-control deficits, this study examined how a chronic, escalating-dose regimen of methamphetamine administration affected dopaminergic neurochemistry and cognition in monkeys. Dopamine D₂-like receptor and dopamine transporter (DAT) availability and reversal-learning performance were measured before and after exposure to methamphetamine (or saline), and brain dopamine levels were assayed at the conclusion of the study. Exposure to methamphetamine reduced dopamine D₂-like receptor and DAT availability and produced transient, selective impairments in the reversal of a stimulus-outcome association. Furthermore, individual differences in the change in D₂-like receptor availability in the striatum were related to the change in response to positive feedback. These data provide evidence that chronic, escalating-dose methamphetamine administration alters the dopamine system in a manner similar to that observed in methamphetamine-dependent humans. They also implicate alterations in positive-feedback sensitivity associated with D₂-like receptor dysfunction as the mechanism by which inhibitory control deficits emerge in stimulant-dependent individuals. Finally, a significant degree of neurochemical and behavioral variation in response to methamphetamine was detected, indicating that individual differences affect the degree to which drugs of abuse alter these processes. Identification of these factors ultimately may assist in the development of individualized treatments for substance dependence.

  15. Voluntarily controlled but not merely observed visual feedback affects postural sway

    PubMed Central

    Asai, Tomohisa; Hiromitsu, Kentaro; Imamizu, Hiroshi

    2018-01-01

    Online stabilization of human standing posture utilizes multisensory afferences (e.g., vision). Whereas visual feedback of spontaneous postural sway can stabilize postural control especially when observers concentrate on their body and intend to minimize postural sway, the effect of intentional control of visual feedback on postural sway itself remains unclear. This study assessed quiet standing posture in healthy adults voluntarily controlling or merely observing visual feedback. The visual feedback (moving square) had either low or high gain and was either horizontally flipped or not. Participants in the voluntary-control group were instructed to minimize their postural sway while voluntarily controlling visual feedback, whereas those in the observation group were instructed to minimize their postural sway while merely observing visual feedback. As a result, magnified and flipped visual feedback increased postural sway only in the voluntary-control group. Furthermore, regardless of the instructions and feedback manipulations, the experienced sense of control over visual feedback positively correlated with the magnitude of postural sway. We suggest that voluntarily controlled, but not merely observed, visual feedback is incorporated into the feedback control system for posture and begins to affect postural sway. PMID:29682421

  16. The FARE Software

    ERIC Educational Resources Information Center

    Pitarello, Adriana

    2015-01-01

    This article highlights the importance of immediate corrective feedback in tutorial software for language teaching in an academic learning environment. We aim to demonstrate that, rather than simply reporting on the performance of the foreign language learner, this feedback can act as a mediator of students' cognitive and metacognitive activity.…

  17. A component analysis of biofeedback induced self-control of peripheral (finger) temperature.

    PubMed

    King, N J; Montgomery, R B

    1980-03-01

    Most of the research on biofeedback induced peripheral temperature control is open to serious methodological and theoretical criticisms. In the present research investigation, increase in peripheral (finger) temperature was targeted because of the possible therapeutic implications for the treatment of migraine and Raynaud's disease. Two experiments are reported in which the pretest-posttest control group design was employed to test the power of the variables in biofeedback induced self-control of finger temperature, and the necessity for subjects to engage in somatic manoeuvres. Significant increases in within-session and absolute finger temperature occurred in a test for self-control only for those subjects who had undergoing contingent feedback-somatic activity training conditions. It is suggested that future research should examine the role of mediational strategies in biofeedback-temperature training.

  18. Data Coaching: Measuring the Effects of Feedback on Low-Stakes Test Motivation

    ERIC Educational Resources Information Center

    Snyder, Nancy

    2012-01-01

    This study examines the relationships between students' academic motivation, evidence of achievement as measured by assessments and the effects of feedback in mediating effort. Policy makers currently view student achievement is as synonymous with proficiency on standardized tests. Testing students as a means of determining educational…

  19. Computer-Mediated Corrective Feedback and Language Accuracy in Telecollaborative Exchanges

    ERIC Educational Resources Information Center

    Vinagre, Margarita; Munoz, Beatriz

    2011-01-01

    Recent studies illustrate the potential that intercultural telecollaborative exchanges entail for language development through the use of corrective feedback from collaborating partners (Kessler, 2009; Lee, 2008; Sauro, 2009; Ware & O'Dowd, 2008). We build on this growing body of research by presenting the findings of a three-month-long…

  20. The effects of feedback in the implementation of web-mediated self-regulated learning.

    PubMed

    Tsai, Chia-Wen

    2010-04-01

    Many vocational students in Taiwan have been used to a "spoon-feeding" teaching method since they were children. They are used to following their school's and teachers' arrangements for their learning. Consequently, they usually lack the ability to manage their time and regulate their learning. If these students were to participate in an online or blended course without regulative learning habits, it may result in dissatisfactory and ineffective learning performance. In this work, two blended classes were studied and compared, one a class deploying feedback in the implementation of Web-mediated SRL and the other without. The results show that the feedback did not result in statistically significant differences in students' computing skills and their pass rate on professional certification tests. The potential reasons for the nonsignificant results and some implications of this study are discussed.

  1. Biomechanical basis of wing and haltere coordination in flies

    PubMed Central

    Deora, Tanvi; Singh, Amit Kumar; Sane, Sanjay P.

    2015-01-01

    The spectacular success and diversification of insects rests critically on two major evolutionary adaptations. First, the evolution of flight, which enhanced the ability of insects to colonize novel ecological habitats, evade predators, or hunt prey; and second, the miniaturization of their body size, which profoundly influenced all aspects of their biology from development to behavior. However, miniaturization imposes steep demands on the flight system because smaller insects must flap their wings at higher frequencies to generate sufficient aerodynamic forces to stay aloft; it also poses challenges to the sensorimotor system because precise control of wing kinematics and body trajectories requires fast sensory feedback. These tradeoffs are best studied in Dipteran flies in which rapid mechanosensory feedback to wing motor system is provided by halteres, reduced hind wings that evolved into gyroscopic sensors. Halteres oscillate at the same frequency as and precisely antiphase to the wings; they detect body rotations during flight, thus providing feedback that is essential for controlling wing motion during aerial maneuvers. Although tight phase synchrony between halteres and wings is essential for providing proper timing cues, the mechanisms underlying this coordination are not well understood. Here, we identify specific mechanical linkages within the thorax that passively mediate both wing–wing and wing–haltere phase synchronization. We demonstrate that the wing hinge must possess a clutch system that enables flies to independently engage or disengage each wing from the mechanically linked thorax. In concert with a previously described gearbox located within the wing hinge, the clutch system enables independent control of each wing. These biomechanical features are essential for flight control in flies. PMID:25605915

  2. Overload protection: avoidance response to heavy plantar surface loading.

    PubMed

    Robbins, S E; Hanna, A M; Gouw, G J

    1988-02-01

    Current footwear which are designed for use in running are examples of intentional biomechanical model integration into device design. The inadequacy of this footwear in protecting against injury is postulated to be due to fixation on inadequate models of locomotory biomechanics that do not provide for feedback control; in particular, an hypothesized plantar surface sensory-mediated feedback control system, which imparts overload protection during locomotion. A heuristic approach was used to identify the hypothesized system. A random series of loads (0 to 164 kg) was applied to the knee flexed at 90 degrees. In this testing system, plantar surface avoidance behavior was the difference between the sum of the leg weight and the load applied to the knee, and the load measured at the plantar surface; this was produced by activation of hip flexors. Significant avoidance behavior was found in all of the subjects (P less than 0.001). On all surfaces tested, including modern athletic footwear (P less than 0.001), its magnitude increased directly in relation to the load applied to the knee (P less than 0.001). There were significant differences in avoidance behavior in relation to the weight-bearing surfaces tested (P less than 0.05). With the identification of a feedback control system which would serve to moderate loading during locomotion, an explanation is provided as to why current athletic footwear do not protect and may be injurious; thus allowing the design of footwear which may be truly protective.

  3. Modafinil alters decision making based on feedback history - a randomized placebo-controlled double blind study in humans.

    PubMed

    Bellebaum, Christian; Kuchinke, Lars; Roser, Patrik

    2017-02-01

    Modafinil is becoming increasingly popular as a cognitive enhancer. Research on the effects of modafinil on cognitive function have yielded mixed results, with negative findings for simple memory and attention tasks and enhancing effects for more complex tasks. In the present study we examined whether modafinil, due to its known effect on the dopamine level in the striatum, alters feedback-related choice behaviour. We applied a task that separately tests the choice of previously rewarded behaviours (approach) and avoidance of previously punished behaviours. 18 participants received a single dose of 200 mg modafinil. Their performance was compared to a group of 22 participants who received placebo in a double-blind design. Modafinil but not placebo induced a significant bias towards approach behaviour as compared to the frequency of avoidance behaviour. General attention, overall feedback-based acquisition of choice behaviour and reaction times in high vs low conflict choices were not significantly affected by modafinil. This finding suggests that modafinil has a specific effect on dopamine-mediated choice behaviour based on the history of feedback, while a contribution of noradrenaline is also conceivable. The described change in decision making cannot be considered as cognitive enhancement, but might rather have detrimental effects on decisions in everyday life.

  4. The effects of feedback self-consistency, therapist status, and attitude toward therapy on reaction to personality feedback.

    PubMed

    Collins, David R; Stukas, Arthur A

    2006-08-01

    Individuals' reactions to interpersonal feedback may depend on characteristics of the feedback and the feedback source. The present authors examined the effects of experimentally manipulated personality feedback that they--in the guise of therapists--e-mailed to participants on the degree of their acceptance of the feedback. Consistent with Self-Verification Theory (W. B. Swann Jr., 1987), participants accepted feedback that was consistent with their self-views more readily than they did feedback that was inconsistent with their self-views. Furthermore, the authors found main effects for therapist's status and participant's attitude toward therapy. Significant interactions showed effects in which high-status therapists and positive client attitudes increased acceptance of self-inconsistent feedback, effects that were only partially mediated by clients' perceptions of therapist competence. The present results indicate the possibility that participants may be susceptible to self-concept change or to self-fulfilling prophecy effects in therapy when they have a positive attitude toward therapy or are working with a high-status therapist.

  5. Rapid control and feedback rates enhance neuroprosthetic control

    PubMed Central

    Shanechi, Maryam M.; Orsborn, Amy L.; Moorman, Helene G.; Gowda, Suraj; Dangi, Siddharth; Carmena, Jose M.

    2017-01-01

    Brain-machine interfaces (BMI) create novel sensorimotor pathways for action. Much as the sensorimotor apparatus shapes natural motor control, the BMI pathway characteristics may also influence neuroprosthetic control. Here, we explore the influence of control and feedback rates, where control rate indicates how often motor commands are sent from the brain to the prosthetic, and feedback rate indicates how often visual feedback of the prosthetic is provided to the subject. We developed a new BMI that allows arbitrarily fast control and feedback rates, and used it to dissociate the effects of each rate in two monkeys. Increasing the control rate significantly improved control even when feedback rate was unchanged. Increasing the feedback rate further facilitated control. We also show that our high-rate BMI significantly outperformed state-of-the-art methods due to higher control and feedback rates, combined with a different point process mathematical encoding model. Our BMI paradigm can dissect the contribution of different elements in the sensorimotor pathway, providing a unique tool for studying neuroprosthetic control mechanisms. PMID:28059065

  6. Rapid control and feedback rates enhance neuroprosthetic control

    NASA Astrophysics Data System (ADS)

    Shanechi, Maryam M.; Orsborn, Amy L.; Moorman, Helene G.; Gowda, Suraj; Dangi, Siddharth; Carmena, Jose M.

    2017-01-01

    Brain-machine interfaces (BMI) create novel sensorimotor pathways for action. Much as the sensorimotor apparatus shapes natural motor control, the BMI pathway characteristics may also influence neuroprosthetic control. Here, we explore the influence of control and feedback rates, where control rate indicates how often motor commands are sent from the brain to the prosthetic, and feedback rate indicates how often visual feedback of the prosthetic is provided to the subject. We developed a new BMI that allows arbitrarily fast control and feedback rates, and used it to dissociate the effects of each rate in two monkeys. Increasing the control rate significantly improved control even when feedback rate was unchanged. Increasing the feedback rate further facilitated control. We also show that our high-rate BMI significantly outperformed state-of-the-art methods due to higher control and feedback rates, combined with a different point process mathematical encoding model. Our BMI paradigm can dissect the contribution of different elements in the sensorimotor pathway, providing a unique tool for studying neuroprosthetic control mechanisms.

  7. ZAG-Otolith: Modification of Otolith-Ocular Reflexes, Motion Perception and Manual Control during Variable Radius Centrifugation Following Space Flight

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Clarke, A. H.; Rupert, A. H.; Harm, D. L.; Clement, G. R.

    2009-01-01

    Two joint ESA-NASA studies are examining changes in otolith-ocular reflexes and motion perception following short duration space flights, and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. METHODS. Data is currently being collected on astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation is utilized to elicit otolith reflexes in the lateral plane without concordant roll canal cues. Unilateral centrifugation (400 deg/s, 3.5 cm radius) stimulates one otolith positioned off-axis while the opposite side is centered over the axis of rotation. During this paradigm, roll-tilt perception is measured using a subjective visual vertical task and ocular counter-rolling is obtained using binocular video-oculography. During a second paradigm (216 deg/s, <20 cm radius), the effects of stimulus frequency (0.15 - 0.6 Hz) are examined on eye movements and motion perception. A closed-loop nulling task is also performed with and without vibrotactile display feedback of chair radial position. PRELIMINARY RESULTS. Data collection is currently ongoing. Results to date suggest there is a trend for perceived tilt and translation amplitudes to be increased at the low and medium frequencies on landing day compared to pre-flight. Manual control performance is improved with vibrotactile feedback. DISCUSSION. One result of this study will be to characterize the variability (gain, asymmetry) in both otolithocular responses and motion perception during variable radius centrifugation, and measure the time course of postflight recovery. This study will also address how adaptive changes in otolith-mediated reflexes correspond to one's ability to perform closed-loop nulling tasks following G-transitions, and whether manual control performance can be improved with vibrotactile feedback of orientation.

  8. Modification of Otolith-Ocular Reflexes, Motion Perception and Manual Control During Variable Radius Centrifugation Following Space Flight

    NASA Technical Reports Server (NTRS)

    Wood, Scott J.; Clarke, A. H.; Rupert, A. H.; Harm, D. L.; Clement, G. R.

    2009-01-01

    Two joint ESA-NASA studies are examining changes in otolith-ocular reflexes and motion perception following short duration space flights, and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. Data is currently being collected on astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation is utilized to elicit otolith reflexes in the lateral plane without concordant roll canal cues. Unilateral centrifugation (400 deg/s, 3.5 cm radius) stimulates one otolith positioned off-axis while the opposite side is centered over the axis of rotation. During this paradigm, roll-tilt perception is measured using a subjective visual vertical task and ocular counter-rolling is obtained using binocular video-oculography. During a second paradigm (216 deg/s, less than 20 cm radius), the effects of stimulus frequency (0.15 - 0.6 Hz) are examined on eye movements and motion perception. A closed-loop nulling task is also performed with and without vibrotactile display feedback of chair radial position. Data collection is currently ongoing. Results to date suggest there is a trend for perceived tilt and translation amplitudes to be increased at the low and medium frequencies on landing day compared to pre-flight. Manual control performance is improved with vibrotactile feedback. One result of this study will be to characterize the variability (gain, asymmetry) in both otolith-ocular responses and motion perception during variable radius centrifugation, and measure the time course of post-flight recovery. This study will also address how adaptive changes in otolith-mediated reflexes correspond to one's ability to perform closed-loop nulling tasks following G-transitions, and whether manual control performance can be improved with vibrotactile feedback of orientation.

  9. Phytochromes A and B Mediate Red-Light-Induced Positive Phototropism in Roots1

    PubMed Central

    Kiss, John Z.; Mullen, Jack L.; Correll, Melanie J.; Hangarter, Roger P.

    2003-01-01

    The interaction of tropisms is important in determining the final growth form of the plant body. In roots, gravitropism is the predominant tropistic response, but phototropism also plays a role in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism that is mediated by the phototropin family of photoreceptors. In contrast, red light induces a positive phototropism in Arabidopsis roots. Because this red-light-induced response is weak relative to both gravitropism and negative phototropism, we used a novel device to study phototropism without the complications of a counteracting gravitational stimulus. This device is based on a computer-controlled system using real-time image analysis of root growth and a feedback-regulated rotatable stage. Our data show that this system is useful to study root phototropism in response to red light, because in wild-type roots, the maximal curvature detected with this apparatus is 30° to 40°, compared with 5° to 10° without the feedback system. In positive root phototropism, sensing of red light occurs in the root itself and is not dependent on shoot-derived signals resulting from light perception. Phytochrome (Phy)A and phyB were severely impaired in red-light-induced phototropism, whereas the phyD and phyE mutants were normal in this response. Thus, PHYA and PHYB play a key role in mediating red-light-dependent positive phototropism in roots. Although phytochrome has been shown to mediate phototropism in some lower plant groups, this is one of the few reports indicating a phytochrome-dependent phototropism in flowering plants. PMID:12644690

  10. Patient DF's visual brain in action: Visual feedforward control in visual form agnosia.

    PubMed

    Whitwell, Robert L; Milner, A David; Cavina-Pratesi, Cristiana; Barat, Masihullah; Goodale, Melvyn A

    2015-05-01

    Patient DF, who developed visual form agnosia following ventral-stream damage, is unable to discriminate the width of objects, performing at chance, for example, when asked to open her thumb and forefinger a matching amount. Remarkably, however, DF adjusts her hand aperture to accommodate the width of objects when reaching out to pick them up (grip scaling). While this spared ability to grasp objects is presumed to be mediated by visuomotor modules in her relatively intact dorsal stream, it is possible that it may rely abnormally on online visual or haptic feedback. We report here that DF's grip scaling remained intact when her vision was completely suppressed during grasp movements, and it still dissociated sharply from her poor perceptual estimates of target size. We then tested whether providing trial-by-trial haptic feedback after making such perceptual estimates might improve DF's performance, but found that they remained significantly impaired. In a final experiment, we re-examined whether DF's grip scaling depends on receiving veridical haptic feedback during grasping. In one condition, the haptic feedback was identical to the visual targets. In a second condition, the haptic feedback was of a constant intermediate width while the visual target varied trial by trial. Despite this incongruent feedback, DF still scaled her grip aperture to the visual widths of the target blocks, showing only normal adaptation to the false haptically-experienced width. Taken together, these results strengthen the view that DF's spared grasping relies on a normal mode of dorsal-stream functioning, based chiefly on visual feedforward processing. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Impaired Feedforward Control and Enhanced Feedback Control of Speech in Patients with Cerebellar Degeneration

    PubMed Central

    Agnew, Zarinah; Nagarajan, Srikantan; Houde, John; Ivry, Richard B.

    2017-01-01

    The cerebellum has been hypothesized to form a crucial part of the speech motor control network. Evidence for this comes from patients with cerebellar damage, who exhibit a variety of speech deficits, as well as imaging studies showing cerebellar activation during speech production in healthy individuals. To date, the precise role of the cerebellum in speech motor control remains unclear, as it has been implicated in both anticipatory (feedforward) and reactive (feedback) control. Here, we assess both anticipatory and reactive aspects of speech motor control, comparing the performance of patients with cerebellar degeneration and matched controls. Experiment 1 tested feedforward control by examining speech adaptation across trials in response to a consistent perturbation of auditory feedback. Experiment 2 tested feedback control, examining online corrections in response to inconsistent perturbations of auditory feedback. Both male and female patients and controls were tested. The patients were impaired in adapting their feedforward control system relative to controls, exhibiting an attenuated anticipatory response to the perturbation. In contrast, the patients produced even larger compensatory responses than controls, suggesting an increased reliance on sensory feedback to guide speech articulation in this population. Together, these results suggest that the cerebellum is crucial for maintaining accurate feedforward control of speech, but relatively uninvolved in feedback control. SIGNIFICANCE STATEMENT Speech motor control is a complex activity that is thought to rely on both predictive, feedforward control as well as reactive, feedback control. While the cerebellum has been shown to be part of the speech motor control network, its functional contribution to feedback and feedforward control remains controversial. Here, we use real-time auditory perturbations of speech to show that patients with cerebellar degeneration are impaired in adapting feedforward control of speech but retain the ability to make online feedback corrections; indeed, the patients show an increased sensitivity to feedback. These results indicate that the cerebellum forms a crucial part of the feedforward control system for speech but is not essential for online, feedback control. PMID:28842410

  12. New perspectives concerning feedback influences on cardiorespiratory control during rhythmic exercise and on exercise performance

    PubMed Central

    Dempsey, Jerome A

    2012-01-01

    The cardioaccelerator and ventilatory responses to rhythmic exercise in the human are commonly viewed as being mediated predominantly via feedforward ‘central command’ mechanisms, with contributions from locomotor muscle afferents to the sympathetically mediated pressor response. We have assessed the relative contributions of three types of feedback afferents on the cardiorespiratory response to voluntary, rhythmic exercise by inhibiting their normal ‘tonic’ activity in healthy animals and humans and in chronic heart failure. Transient inhibition of the carotid chemoreceptors during moderate intensity exercise reduced muscle sympathetic nerve activity (MSNA) and increased limb vascular conductance and blood flow; and reducing the normal level of respiratory muscle work during heavier intensity exercise increased limb vascular conductance and blood flow. These cardiorespiratory effects were prevented via ganglionic blockade and were enhanced in chronic heart failure and in hypoxia. Blockade of μ opioid sensitive locomotor muscle afferents, with preservation of central motor output via intrathecal fentanyl: (a) reduced the mean arterial blood pressure (MAP), heart rate and ventilatory responses to all steady state exercise intensities; and (b) during sustained high intensity exercise, reduced O2 transport, increased central motor output and end-exercise muscle fatigue and reduced endurance performance. We propose that these three afferent reflexes – probably acting in concert with feedforward central command – contribute significantly to preserving O2 transport to locomotor and to respiratory muscles during exercise. Locomotor muscle afferents also appear to provide feedback concerning the metabolic state of the muscle to influence central motor output, thereby limiting peripheral fatigue development. PMID:22826128

  13. Exploring "DIALANG'S" Diagnostic Feedback in Online L2 Dynamic Assessment

    ERIC Educational Resources Information Center

    Ebadi, Saman

    2016-01-01

    Dynamic assessment (DA) as an alternative to psychometric-based testing focuses on the collaborative dialogue between the learners and the mediator to move the learners from their current capabilities. This study represents a web-based qualitative inquiry in online DA which aims at addressing the inadequacy of the diagnostic feedback of the…

  14. Asynchronous Computer-Mediated Corrective Feedback and the Correct Use of Prepositions: Is It Really Effective?

    ERIC Educational Resources Information Center

    Hosseini, Seyyed Behrooz

    2012-01-01

    An area that has recently attracted increasing attention is providing feedback on learners' writing accuracy through the Internet. However, research in this area has largely focused on synchronous communication, i.e., chatting, with fewer studies assessing asynchronous technologies, i.e., e-mailing. Therefore, this study investigates the…

  15. Learning new vocabulary in German: the effects of inferring word meanings, type of feedback, and time of test.

    PubMed

    Carpenter, Shana K; Sachs, Riebana E; Martin, Beth; Schmidt, Kristian; Looft, Ruxandra

    2012-02-01

    In the present study, introductory-level German students read a simplified story and learned the meanings of new German words by reading English translations in marginal glosses versus trying to infer (i.e., guess) their translations. Students who inferred translations were given feedback in English or in German, or no feedback at all. Although immediate retention of new vocabulary was better for students who used marginal glosses, students who inferred word meanings and then received English feedback forgot fewer translations over time. Plausible but inaccurate inferences (i.e., those that made sense in the context) were more likely to be corrected by students who received English feedback as compared with German feedback, providing support for the beneficial effects of mediating information. Implausible inaccurate inferences, however, were more likely to be corrected on the delayed vocabulary test by students who received German feedback as compared with English feedback, possibly because of the additional contextual support provided by German feedback.

  16. Investigating Students' Ideas About Buoyancy and the Influence of Haptic Feedback

    NASA Astrophysics Data System (ADS)

    Minogue, James; Borland, David

    2016-04-01

    While haptics (simulated touch) represents a potential breakthrough technology for science teaching and learning, there is relatively little research into its differential impact in the context of teaching and learning. This paper describes the testing of a haptically enhanced simulation (HES) for learning about buoyancy. Despite a lifetime of everyday experiences, a scientifically sound explanation of buoyancy remains difficult to construct for many. It requires the integration of domain-specific knowledge regarding density, fluid, force, gravity, mass, weight, and buoyancy. Prior studies suggest that novices often focus on only one dimension of the sinking and floating phenomenon. Our HES was designed to promote the integration of the subconcepts of density and buoyant forces and stresses the relationship between the object itself and the surrounding fluid. The study employed a randomized pretest-posttest control group research design and a suite of measures including an open-ended prompt and objective content questions to provide insights into the influence of haptic feedback on undergraduate students' thinking about buoyancy. A convenience sample (n = 40) was drawn from a university's population of undergraduate elementary education majors. Two groups were formed from haptic feedback (n = 22) and no haptic feedback (n = 18). Through content analysis, discernible differences were seen in the posttest explanations sinking and floating across treatment groups. Learners that experienced the haptic feedback made more frequent use of "haptically grounded" terms (e.g., mass, gravity, buoyant force, pushing), leading us to begin to build a local theory of language-mediated haptic cognition.

  17. Growth-rate dependent global effects on gene expression in bacteria

    PubMed Central

    Klumpp, Stefan; Zhang, Zhongge; Hwa, Terence

    2010-01-01

    Summary Bacterial gene expression depends not only on specific regulations but also directly on bacterial growth, because important global parameters such as the abundance of RNA polymerases and ribosomes are all growth-rate dependent. Understanding these global effects is necessary for a quantitative understanding of gene regulation and for the robust design of synthetic genetic circuits. The observed growth-rate dependence of constitutive gene expression can be explained by a simple model using the measured growth-rate dependence of the relevant cellular parameters. More complex growth dependences for genetic circuits involving activators, repressors and feedback control were analyzed, and salient features were verified experimentally using synthetic circuits. The results suggest a novel feedback mechanism mediated by general growth-dependent effects and not requiring explicit gene regulation, if the expressed protein affects cell growth. This mechanism can lead to growth bistability and promote the acquisition of important physiological functions such as antibiotic resistance and tolerance (persistence). PMID:20064380

  18. Invasive plants may promote predator-mediated feedback that inhibits further invasion

    PubMed Central

    Smith, Lauren M; Schmitz, Oswald J

    2015-01-01

    Understanding the impacts of invasive species requires placing invasion within a full community context. Plant invaders are often considered in the context of herbivores that may drive invasion by avoiding invaders while consuming natives (enemy escape), or inhibit invasion by consuming invaders (biotic resistance). However, predators that attack those herbivores are rarely considered as major players in invasion. Invasive plants often promote predators, generally by providing improved habitat. Here, we show that predator-promoting invaders may initiate a negative feedback loop that inhibits invasion. By enabling top-down control of herbivores, predator-promoting invaders lose any advantage gained through enemy escape, indirectly favoring natives. In cases where palatable invaders encounter biotic resistance, predator promotion may allow an invader to persist, but not dominate. Overall, results indicate that placing invaders in a full community context may reveal reduced impacts of invaders compared to expectations based on simple plant–plant or plant–herbivore subsystems. PMID:26120430

  19. Thymic progenitor homing and lymphocyte homeostasis are linked via S1P-controlled expression of thymic P-selectin/CCL25.

    PubMed

    Gossens, Klaus; Naus, Silvia; Corbel, Stephane Y; Lin, Shujun; Rossi, Fabio M V; Kast, Jürgen; Ziltener, Hermann J

    2009-04-13

    Thymic T cell progenitor (TCP) importation is a periodic, gated event that is dependent on the expression of functional P-selectin ligands on TCPs. Occupancy of intrathymic TCP niches is believed to negatively regulate TCP importation, but the nature of this feedback mechanism is not yet resolved. We show that P-selectin and CCL25 are periodically expressed in the thymus and are essential parts of the thymic gate-keeping mechanism. Periodicity of thymic TCP receptivity and the size of the earliest intrathymic TCP pool were dependent on the presence of functional P-selectin ligand on TCPs. Furthermore, we show that the numbers of peripheral blood lymphocytes directly affected thymic P-selectin expression and TCP receptivity. We identified sphingosine-1-phosphate (S1P) as one feedback signal that could mediate influence of the peripheral lymphocyte pool on thymic TCP receptivity. Our findings suggest a model whereby thymic TCP importation is controlled by both early thymic niche occupancy and the peripheral lymphocyte pool via S1P.

  20. Orphanin FQ-ORL-1 regulation of reproduction and reproductive behavior in the female.

    PubMed

    Sinchak, Kevin; Dalhousay, Lauren; Sanathara, Nayna

    2015-01-01

    Orphanin FQ (OFQ/N) and its receptor, opioid receptor-like receptor-1 (ORL-1), are expressed throughout steroid-responsive limbic and hypothalamic circuits that regulate female ovarian hormone feedback and reproductive behavior circuits. The arcuate nucleus of the hypothalamus (ARH) is a brain region that expresses OFQ/N and ORL-1 important for both sexual behavior and modulating estradiol feedback loops. Within the ARH, the activation of the OFQ/N-ORL-1 system facilitates sexual receptivity (lordosis) through the inhibition of β-endorphin neuronal activity. Estradiol initially activates ARH β-endorphin neurons to inhibit lordosis. Simultaneously, estradiol upregulates coexpression of OFQ/N and progesterone receptors and ORL-1 in ARH β-endorphin neurons. Ovarian hormones regulate pre- and postsynaptic coupling of ORL-1 to its G protein-coupled signaling pathways. When the steroid-primed rat is nonreceptive, estradiol acts pre- and postsynaptically to decrease the ability of the OFQ/N-ORL-1 system to inhibit ARH β-endorphin neurotransmission. Conversely, when sexually receptive, ORL-1 signaling is restored to inhibit β-endorphin neurotransmission. Although steroid signaling that facilitates lordosis converges to deactivate ARH β-endorphin neurons, estradiol-only facilitation of lordosis requires the activation of ORL-1, but estradiol+progesterone does not, indicating that multiple circuits mediate ovarian hormone signaling to deactivate ARH β-endorphin neurons. Research on the role of OFQ/N-ORL-1 in ovarian hormone feedback loops is just beginning. In the rat, OFQ/N may act to terminate gonadotropin-releasing hormone and luteinizing hormone release under positive and negative feedbacks. In the ewe, it appears to directly inhibit gonadotropin-releasing hormone release to mediate progesterone-negative feedback. As a whole, the localization and actions of OFQ/N-ORL-1 system indicate that it may mediate the actions of estradiol and progesterone to synchronize reproductive behavior and ovarian hormone feedback loops. © 2015 Elsevier Inc. All rights reserved.

  1. Dynamics and control of the ERK signaling pathway: Sensitivity, bistability, and oscillations.

    PubMed

    Arkun, Yaman; Yasemi, Mohammadreza

    2018-01-01

    Cell signaling is the process by which extracellular information is transmitted into the cell to perform useful biological functions. The ERK (extracellular-signal-regulated kinase) signaling controls several cellular processes such as cell growth, proliferation, differentiation and apoptosis. The ERK signaling pathway considered in this work starts with an extracellular stimulus and ends with activated (double phosphorylated) ERK which gets translocated into the nucleus. We model and analyze this complex pathway by decomposing it into three functional subsystems. The first subsystem spans the initial part of the pathway from the extracellular growth factor to the formation of the SOS complex, ShC-Grb2-SOS. The second subsystem includes the activation of Ras which is mediated by the SOS complex. This is followed by the MAPK subsystem (or the Raf-MEK-ERK pathway) which produces the double phosphorylated ERK upon being activated by Ras. Although separate models exist in the literature at the subsystems level, a comprehensive model for the complete system including the important regulatory feedback loops is missing. Our dynamic model combines the existing subsystem models and studies their steady-state and dynamic interactions under feedback. We establish conditions under which bistability and oscillations exist for this important pathway. In particular, we show how the negative and positive feedback loops affect the dynamic characteristics that determine the cellular outcome.

  2. Parametric modulation of reward sequences during a reversal task in ACC and VMPFC but not amygdala and striatum.

    PubMed

    Becker, Michael P I; Nitsch, Alexander M; Hewig, Johannes; Miltner, Wolfgang H R; Straube, Thomas

    2016-12-01

    Several regions of the frontal cortex interact with striatal and amygdala regions to mediate the evaluation of reward-related information and subsequent adjustment of response choices. Recent theories discuss the particular relevance of dorsal anterior cingulate cortex (dACC) for switching behavior; consecutively, ventromedial prefrontal cortex (VMPFC) is involved in mediating exploitative behaviors by tracking reward values unfolding after the behavioral switch. Amygdala, on the other hand, has been implied in coding the valence of stimulus-outcome associations and the ventral striatum (VS) has consistently been shown to code a reward prediction error (RPE). Here, we used fMRI data acquired in humans during a reversal task to parametrically model different sequences of positive feedback in order to unravel differential contributions of these brain regions to the tracking and exploitation of rewards. Parameters from an Optimal Bayesian Learner accurately predicted the divergent involvement of dACC and VMPFC during feedback processing: dACC signaled the first, but not later, presentations of positive feedback, while VMPFC coded trial-by-trial accumulations in reward value. Our results confirm that dACC carries a prominent confirmatory signal during processing of first positive feedback. Amygdala coded positive feedbacks more uniformly, while striatal regions were associated with RPE. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Impaired Feedforward Control and Enhanced Feedback Control of Speech in Patients with Cerebellar Degeneration.

    PubMed

    Parrell, Benjamin; Agnew, Zarinah; Nagarajan, Srikantan; Houde, John; Ivry, Richard B

    2017-09-20

    The cerebellum has been hypothesized to form a crucial part of the speech motor control network. Evidence for this comes from patients with cerebellar damage, who exhibit a variety of speech deficits, as well as imaging studies showing cerebellar activation during speech production in healthy individuals. To date, the precise role of the cerebellum in speech motor control remains unclear, as it has been implicated in both anticipatory (feedforward) and reactive (feedback) control. Here, we assess both anticipatory and reactive aspects of speech motor control, comparing the performance of patients with cerebellar degeneration and matched controls. Experiment 1 tested feedforward control by examining speech adaptation across trials in response to a consistent perturbation of auditory feedback. Experiment 2 tested feedback control, examining online corrections in response to inconsistent perturbations of auditory feedback. Both male and female patients and controls were tested. The patients were impaired in adapting their feedforward control system relative to controls, exhibiting an attenuated anticipatory response to the perturbation. In contrast, the patients produced even larger compensatory responses than controls, suggesting an increased reliance on sensory feedback to guide speech articulation in this population. Together, these results suggest that the cerebellum is crucial for maintaining accurate feedforward control of speech, but relatively uninvolved in feedback control. SIGNIFICANCE STATEMENT Speech motor control is a complex activity that is thought to rely on both predictive, feedforward control as well as reactive, feedback control. While the cerebellum has been shown to be part of the speech motor control network, its functional contribution to feedback and feedforward control remains controversial. Here, we use real-time auditory perturbations of speech to show that patients with cerebellar degeneration are impaired in adapting feedforward control of speech but retain the ability to make online feedback corrections; indeed, the patients show an increased sensitivity to feedback. These results indicate that the cerebellum forms a crucial part of the feedforward control system for speech but is not essential for online, feedback control. Copyright © 2017 the authors 0270-6474/17/379249-10$15.00/0.

  4. A feedback mechanism controlling SCRAMBLED receptor accumulation and cell-type pattern in Arabidopsis.

    PubMed

    Kwak, Su-Hwan; Schiefelbein, John

    2008-12-23

    Cellular pattern formation in the root epidermis of Arabidopsis occurs in a position-dependent manner, generating root-hair (H) cells contacting two underlying cortical cells and nonhair (N) cells contacting one cortical cell. SCRAMBLED (SCM), a leucine-rich repeat receptor-like kinase (LRR-RLK), mediates this process through its effect on a downstream transcription factor regulatory network. After perception of a positional cue, the SCM signaling pathway is proposed to preferentially repress WEREWOLF (WER) transcription factor expression in H cells and thereby bias the outcome of mutual lateral inhibition acting between H and N cells. However, the molecular mechanism responsible for this preferential SCM signaling is unknown. Here, we analyze the distribution of the SCM receptor and the biological effect of altering its accumulation pattern. We find that SCM expression and accumulation in the epidermal cell layer is necessary and sufficient to direct the cell-type pattern. Further, SCM preferentially accumulates in H cells, and this accumulation pattern is dependent on the downstream transcription factors. Thus, SCM participates in an autoregulatory feedback loop, enabling cells engaged in SCM signaling to maintain high levels of SCM receptor, which provides a simple mechanism for reinforcing a bias in receptor-mediated signaling to ensure robust pattern formation.

  5. Dysregulation of Suppressor of Cytokine Signaling 3 in Keratinocytes Causes Skin Inflammation Mediated by Interleukin-20 Receptor-Related Cytokines

    PubMed Central

    Uto-Konomi, Ayako; Miyauchi, Kosuke; Ozaki, Naoko; Motomura, Yasutaka; Suzuki, Yoshie; Yoshimura, Akihiko; Suzuki, Shinobu; Cua, Daniel; Kubo, Masato

    2012-01-01

    Homeostatic regulation of epidermal keratinocytes is controlled by the local cytokine milieu. However, a role for suppressor of cytokine signaling (SOCS), a negative feedback regulator of cytokine networks, in skin homeostasis remains unclear. Keratinocyte specific deletion of Socs3 (Socs3 cKO) caused severe skin inflammation with hyper-production of IgE, epidermal hyperplasia, and S100A8/9 expression, although Socs1 deletion caused no inflammation. The inflamed skin showed constitutive STAT3 activation and up-regulation of IL-6 and IL-20 receptor (IL-20R) related cytokines, IL-19, IL-20 and IL-24. Disease development was rescued by deletion of the Il6 gene, but not by the deletion of Il23, Il4r, or Rag1 genes. The expression of IL-6 in Socs3 cKO keratinocytes increased expression of IL-20R-related cytokines that further facilitated STAT3 hyperactivation, epidermal hyperplasia and neutrophilia. These results demonstrate that skin homeostasis is strictly regulated by the IL-6-STAT3-SOCS3 axis. Moreover, the SOCS3-mediated negative feedback loop in keratinocytes has a critical mechanistic role in the prevention of skin inflammation caused by hyperactivation of STAT3. PMID:22792286

  6. Patients' perceptions of sharing in decisions: a systematic review of interventions to enhance shared decision making in routine clinical practice.

    PubMed

    Légaré, France; Turcotte, Stéphane; Stacey, Dawn; Ratté, Stéphane; Kryworuchko, Jennifer; Graham, Ian D

    2012-01-01

    Shared decision making is the process in which a healthcare choice is made jointly by the health professional and the patient. Little is known about what patients view as effective or ineffective strategies to implement shared decision making in routine clinical practice. This systematic review evaluates the effectiveness of interventions to improve health professionals' adoption of shared decision making in routine clinical practice, as seen by patients. We searched electronic databases (PubMed, the Cochrane Library, EMBASE, CINAHL, and PsycINFO) from their inception to mid-March 2009. We found additional material by reviewing the reference lists of the studies found in the databases; systematic reviews of studies on shared decision making; the proceedings of various editions of the International Shared Decision Making Conference; and the transcripts of the Society for Medical Decision Making's meetings. In our study selection, we included randomized controlled trials, controlled clinical trials, controlled before-and-after studies, and interrupted time series analyses in which patients evaluated interventions to improve health professionals' adoption of shared decision making. The interventions in question consisted of the distribution of printed educational material; educational meetings; audit and feedback; reminders; and patient-mediated initiatives (e.g. patient decision aids). Two reviewers independently screened the studies and extracted data. Statistical analyses considered categorical and continuous process measures. We computed the standardized effect size for each outcome at the 95% confidence interval. The primary outcome of interest was health professionals' adoption of shared decision making as reported by patients in a self-administered questionnaire. Of the 6764 search results, 21 studies reported 35 relevant comparisons. Overall, the quality of the studies ranged from 0% to 83%. Only three of the 21 studies reported a clinically significant effect for the primary outcome that favored the intervention. The first study compared an educational meeting and a patient-mediated intervention with another patient-mediated intervention (median improvement of 74%). The second compared an educational meeting, a patient-mediated intervention, and audit and feedback with an educational meeting on an alternative topic (improvement of 227%). The third compared an educational meeting and a patient-mediated intervention with usual care (p = 0.003). All three studies were limited to the patient-physician dyad. To reduce bias, future studies should improve methods and reporting, and should analyze costs and benefits, including those associated with training of health professionals. Multifaceted interventions that include educating health professionals about sharing decisions with patients and patient-mediated interventions, such as patient decision aids, appear promising for improving health professionals' adoption of shared decision making in routine clinical practice as seen by patients.

  7. The Effectiveness of Synchronous and Asynchronous Written Corrective Feedback on Grammatical Accuracy in a Computer-Mediated Environment

    ERIC Educational Resources Information Center

    Shintani, Natsuko; Aubrey, Scott

    2016-01-01

    This study extends research on written corrective feedback (CF) by investigating how timing of CF affects grammar acquisition. Specifically, it examined the relative effects of synchronous and asynchronous CF on the accurate use of the hypothetical conditional structure. Participants were 68 intermediate-level students of English at a university…

  8. Self-Verification and Depressive Symptoms in Marriage and Courtship: A Multiple Pathway Model.

    ERIC Educational Resources Information Center

    Katz, Jennifer; Beach, Steven R. H.

    1997-01-01

    Examines whether self-verifying feedback may lead to decreased depressive symptoms. Results, based on 138 married women and 258 dating women, showed full mediational effects in the married sample and partial effects in the dating sample. Findings suggest that partner self-verifying feedback may intensify the effect of self-esteem on depression.…

  9. Computer-Mediated Synchronous and Asynchronous Corrective Feedback Provided by Trainee Teachers to Learners of French: A Preliminary Study

    ERIC Educational Resources Information Center

    Vidal, Julie; Thouësny, Sylvie

    2015-01-01

    In this paper, we investigate whether trainee teachers' practices, with respect to multimodal feedback, differ from current research, and to what extent it may affect students' language development. More specifically, the goal of the present study is threefold: (1) it observes how trainee teachers responded, whether synchronously, asynchronously,…

  10. Open and Anonymous Peer Review in a Digital Online Environment Compared in Academic Writing Context

    ERIC Educational Resources Information Center

    Razi, Salim

    2016-01-01

    This study compares the impact of "open" and "anonymous" peer feedback as an adjunct to teacher-mediated feedback in a digital online environment utilising data gathered on an academic writing course at a Turkish university. Students were divided into two groups with similar writing proficiencies. Students peer reviewed papers…

  11. Leader-member exchange and member performance: a new look at individual-level negative feedback-seeking behavior and team-level empowerment climate.

    PubMed

    Chen, Ziguang; Lam, Wing; Zhong, Jian An

    2007-01-01

    From a basis in social exchange theory, the authors investigated whether, and how, negative feedback-seeking behavior and a team empowerment climate affect the relationship between leader-member exchange (LMX) and member performance. Results showed that subordinates' negative feedback-seeking behavior mediated the relationship between LMX and both objective and subjective in-role performance. In addition, the level of a team's empowerment climate was positively related to subordinates' own sense of empowerment, which in turn negatively moderated the effects of LMX on negative feedback-seeking behavior. 2007 APA, all rights reserved

  12. Self-controlled video feedback on tactical skills for soccer teams results in more active involvement of players.

    PubMed

    van Maarseveen, Mariëtte J J; Oudejans, Raôul R D; Savelsbergh, Geert J P

    2018-02-01

    Many studies have shown that self-controlled feedback is beneficial for learning motor tasks, and that learners prefer to receive feedback after supposedly good trials. However, to date all studies conducted on self-controlled learning have used individual tasks and mainly relatively simple skills. Therefore, the aim of this study was to examine self-controlled feedback on tactical skills in small-sided soccer games. Highly talented youth soccer players were assigned to a self-control or yoked group and received video feedback on their offensive performance in 3 vs. 2 small-sided games. The results showed that the self-control group requested feedback mostly after good trials, that is, after they scored a goal. In addition, the perceived performance of the self-control group was higher on feedback than on no-feedback trials. Analyses of the conversations around the video feedback revealed that the players and coach discussed good and poor elements of performance and how to improve it. Although the coach had a major role in these conversations, the players of the self-control group spoke more and showed more initiative compared to the yoked group. The results revealed no significant beneficial effect of self-controlled feedback on performance as judged by the coach. Overall, the findings suggest that in such a complex situation as small-sided soccer games, self-controlled feedback is used both to confirm correct performance elements and to determine and correct errors, and that self-controlled learning stimulates the involvement of the learner in the learning process. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Feedback-Equivalence of Nonlinear Systems with Applications to Power System Equations.

    NASA Astrophysics Data System (ADS)

    Marino, Riccardo

    The key concept of the dissertation is feedback equivalence among systems affine in control. Feedback equivalence to linear systems in Brunovsky canonical form and the construction of the corresponding feedback transformation are used to: (i) design a nonlinear regulator for a detailed nonlinear model of a synchronous generator connected to an infinite bus; (ii) establish which power system network structures enjoy the feedback linearizability property and design a stabilizing control law for these networks with a constraint on the control space which comes from the use of d.c. lines. It is also shown that the feedback linearizability property allows the use of state feedback to contruct a linear controllable system with a positive definite linear Hamiltonian structure for the uncontrolled part if the state space is even; a stabilizing control law is derived for such systems. Feedback linearizability property is characterized by the involutivity of certain nested distributions for strongly accessible analytic systems; if the system is defined on a manifold M diffeomorphic to the Euclidean space, it is established that the set where the property holds is a submanifold open and dense in M. If an analytic output map is defined, a set of nested involutive distributions can be always defined and that allows the introduction of an observability property which is the dual concept, in some sense, to feedback linearizability: the goal is to investigate when a nonlinear system affine in control with an analytic output map is feedback equivalent to a linear controllable and observable system. Finally a nested involutive structure of distributions is shown to guarantee the existence of a state feedback that takes a nonlinear system affine in control to a single input one, both feedback equivalent to linear controllable systems, preserving one controlled vector field.

  14. Control theory for scanning probe microscopy revisited.

    PubMed

    Stirling, Julian

    2014-01-01

    We derive a theoretical model for studying SPM feedback in the context of control theory. Previous models presented in the literature that apply standard models for proportional-integral-derivative controllers predict a highly unstable feedback environment. This model uses features specific to the SPM implementation of the proportional-integral controller to give realistic feedback behaviour. As such the stability of SPM feedback for a wide range of feedback gains can be understood. Further consideration of mechanical responses of the SPM system gives insight into the causes of exciting mechanical resonances of the scanner during feedback operation.

  15. Realizing actual feedback control of complex network

    NASA Astrophysics Data System (ADS)

    Tu, Chengyi; Cheng, Yuhua

    2014-06-01

    In this paper, we present the concept of feedbackability and how to identify the Minimum Feedbackability Set of an arbitrary complex directed network. Furthermore, we design an estimator and a feedback controller accessing one MFS to realize actual feedback control, i.e. control the system to our desired state according to the estimated system internal state from the output of estimator. Last but not least, we perform numerical simulations of a small linear time-invariant dynamics network and a real simple food network to verify the theoretical results. The framework presented here could make an arbitrary complex directed network realize actual feedback control and deepen our understanding of complex systems.

  16. Learning feedback and feedforward control in a mirror-reversed visual environment.

    PubMed

    Kasuga, Shoko; Telgen, Sebastian; Ushiba, Junichi; Nozaki, Daichi; Diedrichsen, Jörn

    2015-10-01

    When we learn a novel task, the motor system needs to acquire both feedforward and feedback control. Currently, little is known about how the learning of these two mechanisms relate to each other. In the present study, we tested whether feedforward and feedback control need to be learned separately, or whether they are learned as common mechanism when a new control policy is acquired. Participants were trained to reach to two lateral and one central target in an environment with mirror (left-right)-reversed visual feedback. One group was allowed to make online movement corrections, whereas the other group only received visual information after the end of the movement. Learning of feedforward control was assessed by measuring the accuracy of the initial movement direction to lateral targets. Feedback control was measured in the responses to sudden visual perturbations of the cursor when reaching to the central target. Although feedforward control improved in both groups, it was significantly better when online corrections were not allowed. In contrast, feedback control only adaptively changed in participants who received online feedback and remained unchanged in the group without online corrections. Our findings suggest that when a new control policy is acquired, feedforward and feedback control are learned separately, and that there may be a trade-off in learning between feedback and feedforward controllers. Copyright © 2015 the American Physiological Society.

  17. Learning feedback and feedforward control in a mirror-reversed visual environment

    PubMed Central

    Kasuga, Shoko; Telgen, Sebastian; Ushiba, Junichi; Nozaki, Daichi

    2015-01-01

    When we learn a novel task, the motor system needs to acquire both feedforward and feedback control. Currently, little is known about how the learning of these two mechanisms relate to each other. In the present study, we tested whether feedforward and feedback control need to be learned separately, or whether they are learned as common mechanism when a new control policy is acquired. Participants were trained to reach to two lateral and one central target in an environment with mirror (left-right)-reversed visual feedback. One group was allowed to make online movement corrections, whereas the other group only received visual information after the end of the movement. Learning of feedforward control was assessed by measuring the accuracy of the initial movement direction to lateral targets. Feedback control was measured in the responses to sudden visual perturbations of the cursor when reaching to the central target. Although feedforward control improved in both groups, it was significantly better when online corrections were not allowed. In contrast, feedback control only adaptively changed in participants who received online feedback and remained unchanged in the group without online corrections. Our findings suggest that when a new control policy is acquired, feedforward and feedback control are learned separately, and that there may be a trade-off in learning between feedback and feedforward controllers. PMID:26245313

  18. Verbal Mediating Responses: Effects on Generalization of Say-Do Correspondence and Noncorrespondence

    ERIC Educational Resources Information Center

    Lima, Edhen Laura; Abreu-Rodrigues, Josele

    2010-01-01

    We analyzed the effects of verbal mediating responses on the acquisition and generalization of say-do correspondence and noncorrespondence. Participants were assigned to groups in which either reinforcers (feedback and tokens) were arranged for say-do correspondence and noncorrespondence, or no reinforcers were programmed. Participants in these…

  19. Interlocked positive and negative feedback network motifs regulate β-catenin activity in the adherens junction pathway

    PubMed Central

    Klinke, David J.; Horvath, Nicholas; Cuppett, Vanessa; Wu, Yueting; Deng, Wentao; Kanj, Rania

    2015-01-01

    The integrity of epithelial tissue architecture is maintained through adherens junctions that are created through extracellular homotypic protein–protein interactions between cadherin molecules. Cadherins also provide an intracellular scaffold for the formation of a multiprotein complex that contains signaling proteins, including β-catenin. Environmental factors and controlled tissue reorganization disrupt adherens junctions by cleaving the extracellular binding domain and initiating a series of transcriptional events that aim to restore tissue homeostasis. However, it remains unclear how alterations in cell adhesion coordinate transcriptional events, including those mediated by β-catenin in this pathway. Here were used quantitative single-cell and population-level in vitro assays to quantify the endogenous pathway dynamics after the proteolytic disruption of the adherens junctions. Using prior knowledge of isolated elements of the overall network, we interpreted these data using in silico model-based inference to identify the topology of the regulatory network. Collectively the data suggest that the regulatory network contains interlocked network motifs consisting of a positive feedback loop, which is used to restore the integrity of adherens junctions, and a negative feedback loop, which is used to limit β-catenin–induced gene expression. PMID:26224311

  20. Effect of vibrotactile feedback on an EMG-based proportional cursor control system.

    PubMed

    Li, Shunchong; Chen, Xingyu; Zhang, Dingguo; Sheng, Xinjun; Zhu, Xiangyang

    2013-01-01

    Surface electromyography (sEMG) has been introduced into the bio-mechatronics systems, however, most of them are lack of the sensory feedback. In this paper, the effect of vibrotactile feedback for a myoelectric cursor control system is investigated quantitatively. Simultaneous and proportional control signals are extracted from EMG using a muscle synergy model. Different types of feedback including vibrotactile feedback and visual feedback are added, assessed and compared with each other. The results show that vibrotactile feedback is capable of improving the performance of EMG-based human machine interface.

  1. "I'm* Two Rabbits" / "J'ai un Rouge Pullover*". How Corrective Feedback Is Handled in Collaborative Exchange Programmes between Early Language Learners

    ERIC Educational Resources Information Center

    Choffat-Durr, Anne; Macaire, Dominique

    2012-01-01

    This article presents how, in the social dynamics of two classrooms involved in an exchange programme, young learners provide their peers with asynchronous feedback taking place in the digital medium. Within two Call Triangles that interact thanks to Computer Mediated Communication tools, teachers sharing the same methodological precept on…

  2. Highly conserved sequences mediate the dynamic interplay of basic helix-loop-helix proteins regulating retinogenesis.

    PubMed

    Hernandez, Julio; Matter-Sadzinski, Lidia; Skowronska-Krawczyk, Dorota; Chiodini, Florence; Alliod, Christine; Ballivet, Marc; Matter, Jean-Marc

    2007-12-28

    The atonal homolog 5 (ATH5) protein is central to the transcriptional network regulating the specification of retinal ganglion cells, and its expression comes under the spatiotemporal control of several basic helix-loop-helix (bHLH) proteins in the course of retina development. Monitoring the in vivo occupancy of the ATH5 promoter by the ATH5, Ngn2, and NeuroM proteins and analyzing the DNA motifs they bind, we show that three evolutionarily conserved E-boxes are required for the bHLH proteins to control the different phases of ATH5 expression. E-box 4 mediates the activity of Ngn2, ATH5, and NeuroM along the pathway leading to the conversion of progenitors into newborn neurons. E-box 1, by mediating the antagonistic effects of Ngn2 and HES1 in proliferating progenitors, controls the expansion of the ATH5 expression domain in early retina. E-box 2 is required for the positive feedback by ATH5 that underlies the up-regulation of ATH5 expression when progenitors are going through their last cell cycle. The combinatorial nature of the regulation of the ATH5 promoter suggests that the bHLH proteins involved have no assigned E-boxes but use a common set at which they either cooperate or compete to finely tune ATH5 expression as development proceeds.

  3. Simulation and design of feedback control on resistive wall modes in Keda Torus eXperiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chenguang; Liu, Wandong; Li, Hong

    2014-12-15

    The feedback control of resistive wall modes (RWMs) in Keda Torus eXperiment (KTX) (Liu et al., Plasma Phys. Controlled Fusion 56, 094009 (2014)) is investigated by simulation. A linear model is built to describe the growth of the unstable modes in the absence of feedback and the resulting mode suppression due to feedback, given the typical reversed field pinch plasma equilibrium. The layout of KTX with two shell structures (the vacuum vessel and the stabilizing shell) is taken into account. The feedback performance is explored both in the scheme of “clean mode control” (Zanca et al., Nucl. Fusion 47, 1425more » (2007)) and “raw mode control.” The discrete time control model with specific characteristic times will mimic the real feedback control action and lead to the favored control cycle. Moreover, the conceptual design of feedback control system is also presented, targeting on both RWMs and tearing modes.« less

  4. A Web of applicant attraction: person-organization fit in the context of Web-based recruitment.

    PubMed

    Dineen, Brian R; Ash, Steven R; Noe, Raymond A

    2002-08-01

    Applicant attraction was examined in the context of Web-based recruitment. A person-organization (P-O) fit framework was adopted to examine how the provision of feedback to individuals regarding their potential P-O fit with an organization related to attraction. Objective and subjective P-O fit, agreement with fit feedback, and self-esteem also were examined in relation to attraction. Results of an experiment that manipulated fit feedback level after a self-assessment provided by a fictitious company Web site found that both feedback level and objective P-O fit were positively related to attraction. These relationships were fully mediated by subjective P-O fit. In addition, attraction was related to the interaction of objective fit, feedback, and agreement and objective fit, feedback, and self-esteem. Implications and future Web-based recruitment research directions are discussed.

  5. Prototype Willingness Model Drinking Cognitions Mediate Personalized Normative Feedback Efficacy.

    PubMed

    Lewis, Melissa A; Litt, Dana M; Tomkins, Mary; Neighbors, Clayton

    2017-05-01

    Personalized normative feedback (PNF) interventions have been shown to be efficacious at reducing college student drinking. Because descriptive norms have been shown to mediate PNF efficacy, the current study focused on examining additional prototype willingness model social reaction cognitions, namely, prototypes and willingness, as mediators of intervention efficacy. We expected the PNF interventions to be associated with increased prototype favorability of students who do not drink, which would in turn be associated with decreased willingness to drink and subsequently, less drinking. The current study included 622 college students (53.2% women; 62% Caucasian) who reported one or more heavy drinking episodes in the past month and completed baseline and three-month follow-up assessments. As posited by the framework of the prototype willingness model, sequential mediation analyses were conducted to evaluate increases in abstainer prototype favorability on willingness on drinking, and subsequently willingness to drink on drinking behavior. Mediation results revealed significant indirect effects of PNF on three-month drinking through three-month prototypes and willingness, indicating that the social reaction pathway of the prototype willingness model was supported. Findings have important implications for PNF interventions aiming to reduce high-risk drinking among college students. Study findings suggest that we should consider looking at additional socially-based mediators of PNF efficacy in addition to perceived descriptive norms.

  6. Prototype Willingness Model Drinking Cognitions Mediate Personalized Normative Feedback Efficacy

    PubMed Central

    Litt, Dana M.; Tomkins, Mary; Neighbors, Clayton

    2017-01-01

    Personalized normative feedback (PNF) interventions have been shown to be efficacious at reducing college student drinking. Because descriptive norms have been shown to mediate PNF efficacy, the current study focused on examining additional prototype willingness model social reaction cognitions, namely, prototypes and willingness, as mediators of intervention efficacy. We expected the PNF interventions to be associated with increased prototype favorability of students who do not drink, which would in turn be associated with decreased willingness to drink and subsequently, less drinking. The current study included 622 college students (53.2% women; 62% Caucasian) who reported one or more heavy drinking episodes in the past month and completed baseline and three-month follow-up assessments. As posited by the framework of the prototype willingness model, sequential mediation analyses were conducted to evaluate increases in abstainer prototype favorability on willingness on drinking, and subsequently willingness to drink on drinking behavior. Mediation results revealed significant indirect effects of PNF on three-month drinking through three-month prototypes and willingness, indicating that the social reaction pathway of the prototype willingness model was supported. Findings have important implications for PNF interventions aiming to reduce high-risk drinking among college students. Study findings suggest that we should consider looking at additional socially-based mediators of PNF efficacy in addition to perceived descriptive norms. PMID:27995431

  7. Exploring individual cognitions, self-regulation skills, and environmental-level factors as mediating variables of two versions of a Web-based computer-tailored nutrition education intervention aimed at adults: A randomized controlled trial.

    PubMed

    Springvloet, Linda; Lechner, Lilian; Candel, Math J J M; de Vries, Hein; Oenema, Anke

    2016-03-01

    This study explored whether the determinants that were targeted in two versions of a Web-based computer-tailored nutrition education intervention mediated the effects on fruit, high-energy snack, and saturated fat intake among adults who did not comply with dietary guidelines. A RCT was conducted with a basic (tailored intervention targeting individual cognitions and self-regulation), plus (additionally targeting environmental-level factors), and control group (generic nutrition information). Participants were recruited from the general Dutch adult population and randomly assigned to one of the study groups. Online self-reported questionnaires assessed dietary intake and potential mediating variables (behavior-specific cognitions, action- and coping planning, environmental-level factors) at baseline and one (T1) and four (T2) months post-intervention (i.e. four and seven months after baseline). The joint-significance test was used to establish mediating variables at different time points (T1-mediating variables - T2-intake; T1-mediating variables - T1-intake; T2-mediating variables - T2-intake). Educational differences were examined by testing interaction terms. The effect of the plus version on fruit intake was mediated (T2-T2) by intention and fruit availability at home and for high-educated participants also by attitude. Among low/moderate-educated participants, high-energy snack availability at home mediated (T1-T1) the effect of the basic version on high-energy snack intake. Subjective norm mediated (T1-T1) the effect of the basic version on fat intake among high-educated participants. Only some of the targeted determinants mediated the effects of both intervention versions on fruit, high-energy snack, and saturated fat intake. A possible reason for not finding a more pronounced pattern of mediating variables is that the educational content was tailored to individual characteristics and that participants only received feedback for relevant and not for all assessed mediating variables. Netherlands Trial Registry NTR3396. Copyright © 2015. Published by Elsevier Ltd.

  8. Stabilization of model-based networked control systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miranda, Francisco; Instituto Politécnico de Viana do Castelo, Viana do Castelo; Abreu, Carlos

    2016-06-08

    A class of networked control systems called Model-Based Networked Control Systems (MB-NCSs) is considered. Stabilization of MB-NCSs is studied using feedback controls and simulation of stabilization for different feedbacks is made with the purpose to reduce the network trafic. The feedback control input is applied in a compensated model of the plant that approximates the plant dynamics and stabilizes the plant even under slow network conditions. Conditions for global exponential stabilizability and for the choosing of a feedback control input for a given constant time between the information moments of the network are derived. An optimal control problem to obtainmore » an optimal feedback control is also presented.« less

  9. Modelling Feedback Excitation, Pacemaker Properties and Sensory Switching of Electrically Coupled Brainstem Neurons Controlling Rhythmic Activity

    PubMed Central

    Hull, Michael J.; Soffe, Stephen R.; Willshaw, David J.; Roberts, Alan

    2016-01-01

    What cellular and network properties allow reliable neuronal rhythm generation or firing that can be started and stopped by brief synaptic inputs? We investigate rhythmic activity in an electrically-coupled population of brainstem neurons driving swimming locomotion in young frog tadpoles, and how activity is switched on and off by brief sensory stimulation. We build a computational model of 30 electrically-coupled conditional pacemaker neurons on one side of the tadpole hindbrain and spinal cord. Based on experimental estimates for neuron properties, population sizes, synapse strengths and connections, we show that: long-lasting, mutual, glutamatergic excitation between the neurons allows the network to sustain rhythmic pacemaker firing at swimming frequencies following brief synaptic excitation; activity persists but rhythm breaks down without electrical coupling; NMDA voltage-dependency doubles the range of synaptic feedback strengths generating sustained rhythm. The network can be switched on and off at short latency by brief synaptic excitation and inhibition. We demonstrate that a population of generic Hodgkin-Huxley type neurons coupled by glutamatergic excitatory feedback can generate sustained asynchronous firing switched on and off synaptically. We conclude that networks of neurons with NMDAR mediated feedback excitation can generate self-sustained activity following brief synaptic excitation. The frequency of activity is limited by the kinetics of the neuron membrane channels and can be stopped by brief inhibitory input. Network activity can be rhythmic at lower frequencies if the neurons are electrically coupled. Our key finding is that excitatory synaptic feedback within a population of neurons can produce switchable, stable, sustained firing without synaptic inhibition. PMID:26824331

  10. Proinflammatory Cytokine Infusion Attenuates LH's Feedforward on Testosterone Secretion: Modulation by Age

    PubMed Central

    Yang, Rebecca; Roelfsema, Ferdinand; Takahashi, Paul

    2016-01-01

    Context: In the experimental animal, inflammatory signals quench LH's feedforward drive of testosterone (T) secretion and appear to impair GnRH-LH output. The degree to which such suppressive effects operate in the human is not known. Objective: To test the hypothesis that IL-2 impairs LH's feedforward drive on T and T's feedback inhibition of LH secretion in healthy men. Setting: Mayo Center for Translational Science Activities. Patients or Other Participants: A total of 35 healthy men, 17 young and 18 older. Interventions: Randomized prospective double-blind saline-controlled study of IL-2 infusion in 2 doses with concurrent 10-minute blood sampling for 24 hours. Main Outcome Measures: Deconvolution analysis of LH and T secretion. Results: After saline injection, older compared with young men exhibited reduced LH feedforward drive on T secretion (P < .001), and decreased T feedback inhibition of LH secretion (P < .01). After IL-2 injection, LH's feedforward onto T secretion declined markedly especially in young subjects (P < .001). Concomitantly, IL-2 potentiated T's proportional feedback on LH secretion especially in older volunteers. Conclusion: This investigation confirms combined feedforward and feedback deficits in older relative to young men given saline and demonstrates 1) joint mechanisms by which IL-2 enforces biochemical hypogonadism, viz, combined feedforward block and feedback amplification; and 2) unequal absolute inhibition of T and LH secretion by IL-2 in young and older men. These outcomes establish that the male gonadal axis is susceptible to dual-site suppression by a prototypic inflammatory mediator. Thus, we postulate that selected ILs might also enforce male hypogonadism in chronic systemic inflammation. PMID:26600270

  11. Proinflammatory Cytokine Infusion Attenuates LH's Feedforward on Testosterone Secretion: Modulation by Age.

    PubMed

    Veldhuis, Johannes; Yang, Rebecca; Roelfsema, Ferdinand; Takahashi, Paul

    2016-02-01

    In the experimental animal, inflammatory signals quench LH's feedforward drive of testosterone (T) secretion and appear to impair GnRH-LH output. The degree to which such suppressive effects operate in the human is not known. To test the hypothesis that IL-2 impairs LH's feedforward drive on T and T's feedback inhibition of LH secretion in healthy men. Mayo Center for Translational Science Activities. A total of 35 healthy men, 17 young and 18 older. Randomized prospective double-blind saline-controlled study of IL-2 infusion in 2 doses with concurrent 10-minute blood sampling for 24 hours. Deconvolution analysis of LH and T secretion. After saline injection, older compared with young men exhibited reduced LH feedforward drive on T secretion (P < .001), and decreased T feedback inhibition of LH secretion (P < .01). After IL-2 injection, LH's feedforward onto T secretion declined markedly especially in young subjects (P < .001). Concomitantly, IL-2 potentiated T's proportional feedback on LH secretion especially in older volunteers. This investigation confirms combined feedforward and feedback deficits in older relative to young men given saline and demonstrates 1) joint mechanisms by which IL-2 enforces biochemical hypogonadism, viz, combined feedforward block and feedback amplification; and 2) unequal absolute inhibition of T and LH secretion by IL-2 in young and older men. These outcomes establish that the male gonadal axis is susceptible to dual-site suppression by a prototypic inflammatory mediator. Thus, we postulate that selected ILs might also enforce male hypogonadism in chronic systemic inflammation.

  12. Evaluating Internal Model Strength and Performance of Myoelectric Prosthesis Control Strategies.

    PubMed

    Shehata, Ahmed W; Scheme, Erik J; Sensinger, Jonathon W

    2018-05-01

    On-going developments in myoelectric prosthesis control have provided prosthesis users with an assortment of control strategies that vary in reliability and performance. Many studies have focused on improving performance by providing feedback to the user but have overlooked the effect of this feedback on internal model development, which is key to improve long-term performance. In this paper, the strength of internal models developed for two commonly used myoelectric control strategies: raw control with raw feedback (using a regression-based approach) and filtered control with filtered feedback (using a classifier-based approach), were evaluated using two psychometric measures: trial-by-trial adaptation and just-noticeable difference. The performance of both strategies was also evaluated using Schmidt's style target acquisition task. Results obtained from 24 able-bodied subjects showed that although filtered control with filtered feedback had better short-term performance in path efficiency ( ), raw control with raw feedback resulted in stronger internal model development ( ), which may lead to better long-term performance. Despite inherent noise in the control signals of the regression controller, these findings suggest that rich feedback associated with regression control may be used to improve human understanding of the myoelectric control system.

  13. Strategies in probabilistic feedback learning in Parkinson patients OFF medication.

    PubMed

    Bellebaum, C; Kobza, S; Ferrea, S; Schnitzler, A; Pollok, B; Südmeyer, M

    2016-04-21

    Studies on classification learning suggested that altered dopamine function in Parkinson's Disease (PD) specifically affects learning from feedback. In patients OFF medication, enhanced learning from negative feedback has been described. This learning bias was not seen in observational learning from feedback, indicating different neural mechanisms for this type of learning. The present study aimed to compare the acquisition of stimulus-response-outcome associations in PD patients OFF medication and healthy control subjects in active and observational learning. 16 PD patients OFF medication and 16 controls were examined with three parallel learning tasks each, two feedback-based (active and observational) and one non-feedback-based paired associates task. No acquisition deficit was seen in the patients for any of the tasks. More detailed analyses on the learning strategies did, however, reveal that the patients showed more lose-shift responses during active feedback learning than controls, and that lose-shift and win-stay responses more strongly determined performance accuracy in patients than controls. For observational feedback learning, the performance of both groups correlated similarly with the performance in non-feedback-based paired associates learning and with the accuracy of observed performance. Also, patients and controls showed comparable evidence of feedback processing in observational learning. In active feedback learning, PD patients use alternative learning strategies than healthy controls. Analyses on observational learning did not yield differences between patients and controls, adding to recent evidence of a differential role of the human striatum in active and observational learning from feedback. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Negative plant-phyllosphere feedbacks in native Asteraceae hosts - a novel extension of the plant-soil feedback framework.

    PubMed

    Whitaker, Briana K; Bauer, Jonathan T; Bever, James D; Clay, Keith

    2017-08-01

    Over the past 25 years, the plant-soil feedback (PSF) framework has catalyzed our understanding of how belowground microbiota impact plant fitness and species coexistence. Here, we apply a novel extension of this framework to microbiota associated with aboveground tissues, termed 'plant-phyllosphere feedback (PPFs)'. In parallel greenhouse experiments, rhizosphere and phyllosphere microbiota of con- and heterospecific hosts from four species were independently manipulated. In a third experiment, we tested the combined effects of soil and phyllosphere feedback under field conditions. We found that three of four species experienced weak negative PSF whereas, in contrast, all four species experienced strong negative PPFs. Field-based feedback estimates were highly negative for all four species, though variable in magnitude. Our results suggest that phyllosphere microbiota, like rhizosphere microbiota, can potentially mediate plant species coexistence via negative feedbacks. Extension of the PSF framework to the phyllosphere is needed to more fully elucidate plant-microbiota interactions. © 2017 John Wiley & Sons Ltd/CNRS.

  15. Patient and Partner Feedback Reports to Improve Statin Medication Adherence: A Randomized Control Trial.

    PubMed

    Reddy, Ashok; Huseman, Tiffany L; Canamucio, Anne; Marcus, Steven C; Asch, David A; Volpp, Kevin; Long, Judith A

    2017-03-01

    Simple nudges such as reminders and feedback reports to either a patient or a partner may facilitate improved medication adherence. To test the impact of a pill bottle used to monitor adherence, deliver a daily alarm, and generate weekly medication adherence feedback reports on statin adherence. Three-month, three-arm randomized clinical trial (ClinicalTrials.gov identifier: NCT02480530). One hundred and twenty-six veterans with known coronary artery disease and poor adherence (medication possession ratio <80 %). Patients were randomized to one of three groups: (1) a control group (n = 36) that received a pill-monitoring device with no alarms or feedback; (2) an individual feedback group (n = 36) that received a daily alarm and a weekly medication adherence feedback report; and (3) a partner feedback group (n = 54) that received an alarm and a weekly feedback report that was shared with a friend, family member, or a peer. The intervention continued for 3 months, and participants were followed for an additional 3 months after the intervention period. Adherence as measured by pill bottle. Secondary outcomes included change in LDL (mg/dl), patient activation, and social support. During the 3-month intervention period, medication adherence was higher in both feedback arms than in the control arm (individual feedback group 89 %, partner feedback group 86 %, control group 67 %; p < 0.001 and = 0.001). At 6 months, there was no difference in medication adherence between either of the feedback groups and the control (individual feedback 60 %, partner feedback 52 %, control group 54 %; p = 0.75 and 0.97). Daily alarms combined with individual or partner feedback reports improved statin medication adherence. While neither an individual feedback nor partner feedback strategy created a sustainable medication adherence habit, the intervention itself is relatively easy to implement and low cost.

  16. Robust design of feedback feed-forward iterative learning control based on 2D system theory for linear uncertain systems

    NASA Astrophysics Data System (ADS)

    Li, Zhifu; Hu, Yueming; Li, Di

    2016-08-01

    For a class of linear discrete-time uncertain systems, a feedback feed-forward iterative learning control (ILC) scheme is proposed, which is comprised of an iterative learning controller and two current iteration feedback controllers. The iterative learning controller is used to improve the performance along the iteration direction and the feedback controllers are used to improve the performance along the time direction. First of all, the uncertain feedback feed-forward ILC system is presented by an uncertain two-dimensional Roesser model system. Then, two robust control schemes are proposed. One can ensure that the feedback feed-forward ILC system is bounded-input bounded-output stable along time direction, and the other can ensure that the feedback feed-forward ILC system is asymptotically stable along time direction. Both schemes can guarantee the system is robust monotonically convergent along the iteration direction. Third, the robust convergent sufficient conditions are given, which contains a linear matrix inequality (LMI). Moreover, the LMI can be used to determine the gain matrix of the feedback feed-forward iterative learning controller. Finally, the simulation results are presented to demonstrate the effectiveness of the proposed schemes.

  17. Adolescents' Social Network Site Use, Peer Appearance-Related Feedback, and Body Dissatisfaction: Testing a Mediation Model.

    PubMed

    de Vries, Dian A; Peter, Jochen; de Graaf, Hanneke; Nikken, Peter

    2016-01-01

    Previous correlational research indicates that adolescent girls who use social network sites more frequently are more dissatisfied with their bodies. However, we know little about the causal direction of this relationship, the mechanisms underlying this relationship, and whether this relationship also occurs among boys to the same extent. The present two-wave panel study (18 month time lag) among 604 Dutch adolescents (aged 11-18; 50.7% female; 97.7% native Dutch) aimed to fill these gaps in knowledge. Structural equation modeling showed that social network site use predicted increased body dissatisfaction and increased peer influence on body image in the form of receiving peer appearance-related feedback. Peer appearance-related feedback did not predict body dissatisfaction and thus did not mediate the effect of social network site use on body dissatisfaction. Gender did not moderate the findings. Hence, social network sites can play an adverse role in the body image of both adolescent boys and girls.

  18. Feedback is the breakfast of champions: the significance of self-controlled formal feedback for autonomous task engagement.

    PubMed

    Meng, Liang; Yang, Zijing

    2018-01-03

    With the aim of examining the positive effect of the formal feedback mechanism itself beyond its informational aspect, we engaged participants in the stopwatch task and recorded their electroencephalogram throughout the experiment. This task requires a button press to stop the watch within a given time interval, the completion of which is simultaneously accompanied by adequate information on task performance. In the self-controlled feedback mode, participants could freely choose whether to request formal feedback after completing the task. In another mode, additional feedback was not provided. The 'non-choice' cue was found to elicit a more negative cue-elicited feedback negativity compared with 'choice', suggesting that the opportunity to solicit formal feedback was perceived as more desirable. In addition, a more enhanced stimulus-preceding negativity was observed prior to the task initiation cue in the self-controlled feedback condition, indicating that participants paid more sustained anticipatory attention during task preparation. Taken together, these electrophysiological results suggested an inherent reward within the formal feedback mechanism itself and the significance of self-controlled formal feedback for autonomous task engagement.

  19. Observer-Based Adaptive Neural Network Control for Nonlinear Systems in Nonstrict-Feedback Form.

    PubMed

    Chen, Bing; Zhang, Huaguang; Lin, Chong

    2016-01-01

    This paper focuses on the problem of adaptive neural network (NN) control for a class of nonlinear nonstrict-feedback systems via output feedback. A novel adaptive NN backstepping output-feedback control approach is first proposed for nonlinear nonstrict-feedback systems. The monotonicity of system bounding functions and the structure character of radial basis function (RBF) NNs are used to overcome the difficulties that arise from nonstrict-feedback structure. A state observer is constructed to estimate the immeasurable state variables. By combining adaptive backstepping technique with approximation capability of radial basis function NNs, an output-feedback adaptive NN controller is designed through backstepping approach. It is shown that the proposed controller guarantees semiglobal boundedness of all the signals in the closed-loop systems. Two examples are used to illustrate the effectiveness of the proposed approach.

  20. Low-to-Medium Power Single Chip Digital Controlled DC-DC Regulator for Point-of-Load Applications

    NASA Technical Reports Server (NTRS)

    Adell, Philippe C. (Inventor); Bakkaloglu, Bertan (Inventor); Vermeire, Bert (Inventor); Liu, Tao (Inventor)

    2015-01-01

    A DC-DC converter for generating a DC output voltage includes: a digitally controlled pulse width modulator (DPWM) for controlling a switching power stage to supply a varying voltage to an inductor; and a digital voltage feedback circuit for controlling the DPWM in accordance with a feedback voltage corresponding to the DC output voltage, the digital voltage feedback circuit including: a first voltage controlled oscillator for converting the feedback voltage into a first frequency signal and to supply the first frequency signal to a first frequency discriminator; a second voltage controlled oscillator for converting a reference voltage into a second frequency signal and to supply the second frequency signal to a second frequency discriminator; a digital comparator for comparing digital outputs of the first and second frequency discriminators and for outputting a digital feedback signal; and a controller for controlling the DPWM in accordance with the digital feedback signal.

  1. Servo control booster system for minimizing following error

    DOEpatents

    Wise, William L.

    1985-01-01

    A closed-loop feedback-controlled servo system is disclosed which reduces command-to-response error to the system's position feedback resolution least increment, .DELTA.S.sub.R, on a continuous real-time basis for all operating speeds. The servo system employs a second position feedback control loop on a by exception basis, when the command-to-response error .gtoreq..DELTA.S.sub.R, to produce precise position correction signals. When the command-to-response error is less than .DELTA.S.sub.R, control automatically reverts to conventional control means as the second position feedback control loop is disconnected, becoming transparent to conventional servo control means. By operating the second unique position feedback control loop used herein at the appropriate clocking rate, command-to-response error may be reduced to the position feedback resolution least increment. The present system may be utilized in combination with a tachometer loop for increased stability.

  2. Complex inhibitory microcircuitry regulates retinal signaling near visual threshold

    PubMed Central

    Grimes, William N.; Zhang, Jun; Tian, Hua; Graydon, Cole W.; Hoon, Mrinalini; Rieke, Fred

    2015-01-01

    Neuronal microcircuits, small, localized signaling motifs involving two or more neurons, underlie signal processing and computation in the brain. Compartmentalized signaling within a neuron may enable it to participate in multiple, independent microcircuits. Each A17 amacrine cell in the mammalian retina contains within its dendrites hundreds of synaptic feedback microcircuits that operate independently to modulate feedforward signaling in the inner retina. Each of these microcircuits comprises a small (<1 μm) synaptic varicosity that typically receives one excitatory synapse from a presynaptic rod bipolar cell (RBC) and returns two reciprocal inhibitory synapses back onto the same RBC terminal. Feedback inhibition from the A17 sculpts the feedforward signal from the RBC to the AII, a critical component of the circuitry mediating night vision. Here, we show that the two inhibitory synapses from the A17 to the RBC express kinetically distinct populations of GABA receptors: rapidly activating GABAARs are enriched at one synapse while more slowly activating GABACRs are enriched at the other. Anatomical and electrophysiological data suggest that macromolecular complexes of voltage-gated (Cav) channels and Ca2+-activated K+ channels help to regulate GABA release from A17 varicosities and limit GABACR activation under certain conditions. Finally, we find that selective elimination of A17-mediated feedback inhibition reduces the signal to noise ratio of responses to dim flashes recorded in the feedforward pathway (i.e., the AII amacrine cell). We conclude that A17-mediated feedback inhibition improves the signal to noise ratio of RBC-AII transmission near visual threshold, thereby improving visual sensitivity at night. PMID:25972578

  3. Role of measurement in feedback-controlled quantum engines

    NASA Astrophysics Data System (ADS)

    Yi, Juyeon; Kim, Yong Woon

    2018-01-01

    In feedback controls, measurement is an essential step in designing protocols according to outcomes. For quantum mechanical systems, measurement has another effect; to supply energy to the measured system. We verify that in feedback-controlled quantum engines, measurement plays a dual role; not only as an auxiliary to perform feedback control but also as an energy supply to drive the engines. We consider a specific engine cycle exploiting feedback control followed by projective measurement and show that the maximum bound of the extractable work is set by both the efficacy of the feedback control and the energy change caused by projective measurement. We take a concrete example of an engine using an immobile spin-1/2 particle as a working substance and suggest two possible scenarios for work extraction.

  4. JMJD3 Is Crucial for the Female AVPV RIP-Cre Neuron-Controlled Kisspeptin-Estrogen Feedback Loop and Reproductive Function.

    PubMed

    Song, Anying; Jiang, Shujun; Wang, Qinghua; Zou, Jianghuan; Lin, Zhaoyu; Gao, Xiang

    2017-06-01

    The hypothalamic-pituitary-gonadal axis controls development, reproduction, and metabolism. Although most studies have focused on the hierarchy from the brain to the gonad, many questions remain unresolved concerning the feedback from the gonad to the central nervous system, especially regarding the potential epigenetic modifications in hypothalamic neurons. In the present report, we generated genetically modified mice lacking histone H3 lysine 27 (H3K27) demethylase Jumonji domain-containing 3 (JMJD3) in hypothalamic rat-insulin-promoter-expressing neurons (RIP-Cre neurons). The female mutant mice displayed late-onset obesity owing to reduced locomotor activity and decreased energy expenditure. JMJD3 deficiency in RIP-Cre neurons also results in delayed pubertal onset, an irregular estrous cycle, impaired fertility, and accelerated ovarian failure in female mice owing to the dysregulation of the hypothalamic-ovarian axis. We found that JMJD3 directly regulates Kiss1 gene expression by binding to the Kiss1 promoter and triggering H3K27me3 demethylation in the anteroventral periventricular (AVPV) nucleus. Further study confirmed that the aberrations arose from impaired kisspeptin signaling in the hypothalamic AVPV nucleus and subsequent estrogen deficiency. Estrogen replacement therapy can reverse obesity in mutant mice. Moreover, we demonstrated that Jmjd3 is an estrogen target gene in the hypothalamus. These results provide direct genetic and molecular evidence that JMJD3 is a key mediator for the kisspeptin-estrogen feedback loop. Copyright © 2017 Endocrine Society.

  5. Revisiting Synchronous Computer-Mediated Communication: Learner Perception and the Meaning of Corrective Feedback

    ERIC Educational Resources Information Center

    Kim, Hye Yeong

    2014-01-01

    Effectively exploring the efficacy of synchronous computer-mediated communication (SCMC) for pedagogical purposes can be achieved through the careful investigation of potentially beneficial, inherent attributes of SCMC. This study provides empirical evidence for the capacity of task-based SCMC to draw learner attention to linguistic forms by…

  6. Preparing Computing Students for Culturally Diverse E-Mediated IT Projects

    ERIC Educational Resources Information Center

    Conrad, Marc; French, Tim; Maple, Carsten; Zhang, Sijing

    2006-01-01

    In this paper we present an account of an undergraduate team-based assignment designed to facilitate, exhibit and record team-working skills in an e-mediated environment. By linking the student feedback received to Hofstede's classic model of cultural dimensions we aim to show the assignment's suitability in revealing the student's multi-cultural…

  7. Age and interviewer behavior as predictors of interrogative suggestibility.

    PubMed

    Dukala, Karolina; Polczyk, Romuald

    2014-05-01

    The main objective was to explore the influence of interviewer behavior-abrupt versus friendly-and the age of participants on interrogative suggestibility. The study involved 42 young adults and 50 elderly participants. The Gudjonsson Suggestibility Scale 2 was used. Data analysis involved a 2-factor between-subjects design (interviewer behavior × age) and mediation analysis. The scores of elderly participants were significantly lower than younger adults on memory indices and significantly higher on some suggestibility indexes. Some suggestibility indices in the abrupt experimental condition were higher than those in the friendly experimental condition. Elderly participants who were interviewed under the abrupt condition were more likely to change their answers after receiving negative feedback than younger adults. Memory quality was a mediator of the relationship between age and the tendency to yield to suggestive questions. Self-appraisal of memory was a mediator between both age and interviewer behavior and the tendency to change answers after negative feedback. Mechanisms of the relationship between age, interviewer behavior, and suggestibility are discussed on the basis of the mediational analyses. The findings suggest that a friendly manner should be adopted when interrogating witnesses.

  8. State feedback controller design for the synchronization of Boolean networks with time delays

    NASA Astrophysics Data System (ADS)

    Li, Fangfei; Li, Jianning; Shen, Lijuan

    2018-01-01

    State feedback control design to make the response Boolean network synchronize with the drive Boolean network is far from being solved in the literature. Motivated by this, this paper studies the feedback control design for the complete synchronization of two coupled Boolean networks with time delays. A necessary condition for the existence of a state feedback controller is derived first. Then the feedback control design procedure for the complete synchronization of two coupled Boolean networks is provided based on the necessary condition. Finally, an example is given to illustrate the proposed design procedure.

  9. Servo control of an optical trap.

    PubMed

    Wulff, Kurt D; Cole, Daniel G; Clark, Robert L

    2007-08-01

    A versatile optical trap has been constructed to control the position of trapped objects and ultimately to apply specified forces using feedback control. While the design, development, and use of optical traps has been extensive and feedback control has played a critical role in pushing the state of the art, few comprehensive examinations of feedback control of optical traps have been undertaken. Furthermore, as the requirements are pushed to ever smaller distances and forces, the performance of optical traps reaches limits. It is well understood that feedback control can result in both positive and negative effects in controlled systems. We give an analysis of the trapping limits as well as introducing an optical trap with a feedback control scheme that dramatically improves an optical trap's sensitivity at low frequencies.

  10. Peer Feedback Mediates the Impact of Self-Regulation Procedures on Strategy Use and Reading Comprehension in Reciprocal Teaching Groups

    ERIC Educational Resources Information Center

    Schünemann, Nina; Spörer, Nadine; Völlinger, Vanessa A.; Brunstein, Joachim C.

    2017-01-01

    The goal of this research was to highlight the role social regulatory processes play in making students' teamwork in reciprocal teaching (RT) groups (a classroom activity in which students take the teacher's role in small group reading sessions) effective. In addition to teamwork quality, we expected peer feedback to be a key factor in enhancing…

  11. High Accuracy Attitude Control of a Spacecraft Using Feedback Linearization

    DTIC Science & Technology

    1992-05-01

    High Accuracy Attitude Control of a Spacecraft Using Feedback Linearization A Thesis Presented by Louis Joseph PoehIman, Captain, USAF B.S., U.S. Air...High Accuracy Attitude Control of a Spacecraft Using Feedback Linearization by Louis Joseph Poehlman, Captain, USAF Submitted to the Department of...31 2-4 Attitude Determination and Control System Architecture ................. 33 3-1 Exact Linearization Using Nonlinear Feedback

  12. Relational interaction in occupational therapy: Conversation analysis of positive feedback.

    PubMed

    Weiste, Elina

    2018-01-01

    The therapeutic relationship is an important factor for good therapy outcomes. The primary mediator of a beneficial therapy relationship is clinician-client interaction. However, few studies identify the observable interactional attributes of good quality relational interactions, e.g. offering the client positive feedback. The present paper aims to expand current understanding of relational interaction by analyzing the real-time interactional practices therapists use for offering positive feedback, an important value in occupational therapy. The analysis is based on the conversation analysis of 15 video-recorded occupational therapy encounters in psychiatric outpatient clinics. Two types of positive feedback were identified. In aligning feedback, therapists encouraged and complimented clients' positive perspectives on their own achievements in adopting certain behaviour, encouraging and supporting their progress. In redirecting feedback, therapists shifted the perspective from clients' negative experiences to their positive experiences. This shift was interactionally successful if they laid the foundation for the shift in perspective and attuned their expressions to the clients' emotional states. Occupational therapists routinely provide their clients with positive feedback. Awareness of the interactional attributes related to positive feedback is critically important for successful relational interaction.

  13. The cerebellum in action: a simulation and robotics study.

    PubMed

    Hofstötter, Constanze; Mintz, Matti; Verschure, Paul F M J

    2002-10-01

    The control or prediction of the precise timing of events are central aspects of the many tasks assigned to the cerebellum. Despite much detailed knowledge of its physiology and anatomy, it remains unclear how the cerebellar circuitry can achieve such an adaptive timing function. We present a computational model pursuing this question for one extensively studied type of cerebellar-mediated learning: the classical conditioning of discrete motor responses. This model combines multiple current assumptions on the function of the cerebellar circuitry and was used to investigate whether plasticity in the cerebellar cortex alone can mediate adaptive conditioned response timing. In particular, we studied the effect of changes in the strength of the synapses formed between parallel fibres and Purkinje cells under the control of a negative feedback loop formed between inferior olive, cerebellar cortex and cerebellar deep nuclei. The learning performance of the model was evaluated at the circuit level in simulated conditioning experiments as well as at the behavioural level using a mobile robot. We demonstrate that the model supports adaptively timed responses under real-world conditions. Thus, in contrast to many other models that have focused on cerebellar-mediated conditioning, we investigated whether and how the suggested underlying mechanisms could give rise to behavioural phenomena.

  14. Epidermal growth factor receptor and integrins control force-dependent vinculin recruitment to E-cadherin junctions.

    PubMed

    Sehgal, Poonam; Kong, Xinyu; Wu, Jun; Sunyer, Raimon; Trepat, Xavier; Leckband, Deborah

    2018-03-20

    This study reports novel findings that link E-cadherin (also known as CDH1)-mediated force-transduction signaling to vinculin targeting to intercellular junctions via epidermal growth factor receptor (EGFR) and integrins. These results build on previous findings that demonstrated that mechanically perturbed E-cadherin receptors activate phosphoinositide 3-kinase and downstream integrins in an EGFR-dependent manner. Results of this study show that this EGFR-mediated kinase cascade controls the force-dependent recruitment of vinculin to stressed E-cadherin complexes - a key early signature of cadherin-based mechanotransduction. Vinculin targeting requires its phosphorylation at tyrosine 822 by Abl family kinases (hereafter Abl), but the origin of force-dependent Abl activation had not been identified. We now present evidence that integrin activation, which is downstream of EGFR signaling, controls Abl activation, thus linking E-cadherin to Abl through a mechanosensitive signaling network. These findings place EGFR and integrins at the center of a positive-feedback loop, through which force-activated E-cadherin signals regulate vinculin recruitment to cadherin complexes in response to increased intercellular tension.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.

  15. Protecting the turf: The effect of territorial marking on others' creativity.

    PubMed

    Brown, Graham; Baer, Markus

    2015-11-01

    Territorial marking allows people to communicate that a territory has been claimed. Across 2 studies, we examine the impact of territorial marking of one's ideas on others' invited creativity when asked to provide feedback. Integrating research on territoriality and self-construal, we examine the effect of control-oriented marking on invited creativity (Study 1), and the extent to which an independent versus interdependent self-construal moderates this effect (Study 2). Results of Study 1 demonstrate that the use of control-oriented marking to communicate a territorial claim over one's ideas inhibits invited creativity, and this effect is mediated by intrinsic motivation. Also consistent with our hypotheses, the results of Study 2 show that self-construal moderates the effect of control-oriented marking on others' intrinsic motivation and creativity. Marking diminishes invited creativity among people with an independent self-construal but serves to enhance the creativity of those with an interdependent self-construal. Consistent with Study 1, intrinsic motivation mediates this moderated effect. Our results highlight the important but heretofore understudied role of territoriality in affecting others' creativity as well as the role of independent versus interdependent self-construal in shaping this effect. (c) 2015 APA, all rights reserved).

  16. On the interaction structure of linear multi-input feedback control systems. M.S. Thesis; [problem solving, lattices (mathematics)

    NASA Technical Reports Server (NTRS)

    Wong, P. K.

    1975-01-01

    The closely-related problems of designing reliable feedback stabilization strategy and coordinating decentralized feedbacks are considered. Two approaches are taken. A geometric characterization of the structure of control interaction (and its dual) was first attempted and a concept of structural homomorphism developed based on the idea of 'similarity' of interaction pattern. The idea of finding classes of individual feedback maps that do not 'interfere' with the stabilizing action of each other was developed by identifying the structural properties of nondestabilizing and LQ-optimal feedback maps. Some known stability properties of LQ-feedback were generalized and some partial solutions were provided to the reliable stabilization and decentralized feedback coordination problems. A concept of coordination parametrization was introduced, and a scheme for classifying different modes of decentralization (information, control law computation, on-line control implementation) in control systems was developed.

  17. Temperature feedback control for long-term carrier-envelope phase locking

    DOEpatents

    Chang, Zenghu [Manhattan, KS; Yun, Chenxia [Manhattan, KS; Chen, Shouyuan [Manhattan, KS; Wang, He [Manhattan, KS; Chini, Michael [Manhattan, KS

    2012-07-24

    A feedback control module for stabilizing a carrier-envelope phase of an output of a laser oscillator system comprises a first photodetector, a second photodetector, a phase stabilizer, an optical modulator, and a thermal control element. The first photodetector may generate a first feedback signal corresponding to a first portion of a laser beam from an oscillator. The second photodetector may generate a second feedback signal corresponding to a second portion of the laser beam filtered by a low-pass filter. The phase stabilizer may divide the frequency of the first feedback signal by a factor and generate an error signal corresponding to the difference between the frequency-divided first feedback signal and the second feedback signal. The optical modulator may modulate the laser beam within the oscillator corresponding to the error signal. The thermal control unit may change the temperature of the oscillator corresponding to a signal operable to control the optical modulator.

  18. Animal personality and state-behaviour feedbacks: a review and guide for empiricists.

    PubMed

    Sih, Andrew; Mathot, Kimberley J; Moirón, María; Montiglio, Pierre-Olivier; Wolf, Max; Dingemanse, Niels J

    2015-01-01

    An exciting area in behavioural ecology focuses on understanding why animals exhibit consistent among-individual differences in behaviour (animal personalities). Animal personality has been proposed to emerge as an adaptation to individual differences in state variables, leading to the question of why individuals differ consistently in state. Recent theory emphasizes the role that positive feedbacks between state and behaviour can play in producing consistent among-individual covariance between state and behaviour, hence state-dependent personality. We review the role of feedbacks in recent models of adaptive personalities, and provide guidelines for empirical testing of model assumptions and predictions. We discuss the importance of the mediating effects of ecology on these feedbacks, and provide a roadmap for including state-behaviour feedbacks in behavioural ecology research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Algorithms for output feedback, multiple-model, and decentralized control problems

    NASA Technical Reports Server (NTRS)

    Halyo, N.; Broussard, J. R.

    1984-01-01

    The optimal stochastic output feedback, multiple-model, and decentralized control problems with dynamic compensation are formulated and discussed. Algorithms for each problem are presented, and their relationship to a basic output feedback algorithm is discussed. An aircraft control design problem is posed as a combined decentralized, multiple-model, output feedback problem. A control design is obtained using the combined algorithm. An analysis of the design is presented.

  20. Who wants feedback? An investigation of the variables influencing residents' feedback-seeking behavior in relation to night shifts.

    PubMed

    Teunissen, Pim W; Stapel, Diederik A; van der Vleuten, Cees; Scherpbier, Albert; Boor, Klarke; Scheele, Fedde

    2009-07-01

    The literature on feedback in clinical medical education has predominantly treated trainees as passive recipients. Past research has focused on how clinical supervisors can use feedback to improve a trainee's performance. On the basis of research in social and organizational psychology, the authors reconceptualized residents as active seekers of feedback. They investigated what individual and situational variables influence residents' feedback-seeking behavior on night shifts. Early in 2008, the authors sent obstetrics-gynecology residents in the Netherlands--both those in their first two years of graduate training and those gaining experience between undergraduate and graduate training--a questionnaire that assessed four predictor variables (learning and performance goal orientation, and instrumental and supportive leadership), two mediator variables (perceived feedback benefits and costs), and two outcome variables (frequency of feedback inquiry and monitoring). They used structural equation modeling software to test a hypothesized model of relationships between variables. The response rate was 76.5%. Results showed that residents who perceive more feedback benefits report a higher frequency of feedback inquiry and monitoring. More perceived feedback costs result mainly in more feedback monitoring. Residents with a higher learning goal orientation perceive more feedback benefits and fewer costs. Residents with a higher performance goal orientation perceive more feedback costs. Supportive physicians lead residents to perceive more feedback benefits and fewer costs. This study showed that some residents actively seek feedback. Residents' feedback-seeking behavior partially depends on attending physicians' supervisory style. Residents' goal orientations influence their perceptions of the benefits and costs of feedback-seeking.

  1. Autonomous benthic algal cultivator under feedback control of ecosystem metabolism

    USDA-ARS?s Scientific Manuscript database

    An autonomous and internally-controlled techno-ecological hybrid was developed that controls primary production of algae in a laboratory-scale cultivator. The technoecosystem is based on an algal turf scrubber (ATS) system that combines engineered feedback control programming with internal feedback...

  2. Pulling habits out of rats: adenosine 2A receptor antagonism in dorsomedial striatum rescues meth-amphetamine-induced deficits in goal-directed action.

    PubMed

    Furlong, Teri M; Supit, Alva S A; Corbit, Laura H; Killcross, Simon; Balleine, Bernard W

    2017-01-01

    Addiction is characterized by a persistent loss of behavioral control resulting in insensitivity to negative feedback and abnormal decision-making. Here, we investigated the influence of methamphetamine (METH)-paired contextual cues on decision-making in rats. Choice between goal-directed actions was sensitive to outcome devaluation in a saline-paired context but was impaired in the METH-paired context, a deficit that was also found when negative feedback was provided. Reductions in c-Fos-related immunoreactivity were found in dorsomedial striatum (DMS) but not dorsolateral striatum after exposure to the METH context suggesting this effect reflected a loss specifically in goal-directed control in the METH context. This reduction in c-Fos was localized to non-enkephalin-expressing neurons in the DMS, likely dopamine D1-expressing direct pathway neurons, suggesting a relative change in control by the D1-direct versus D2-indirect pathways originating in the DMS may have been induced by METH-context exposure. To test this suggestion, we infused the adenosine 2A receptor antagonist ZM241385 into the DMS prior to test to reduce activity in D2 neurons relative to D1 neurons in the hope of reducing the inhibitory output from this region of the striatum. We found that this treatment fully restored sensitivity to negative feedback in a test conducted in the METH-paired context. These results suggest that drug exposure alters decision-making by downregulation of the circuitry mediating goal-directed action, an effect that can be ameliorated by acute A 2A receptor inhibition in this circuit. © 2015 Society for the Study of Addiction.

  3. Movement goals and feedback and feedforward control mechanisms in speech production

    PubMed Central

    Perkell, Joseph S.

    2010-01-01

    Studies of speech motor control are described that support a theoretical framework in which fundamental control variables for phonemic movements are multi-dimensional regions in auditory and somatosensory spaces. Auditory feedback is used to acquire and maintain auditory goals and in the development and function of feedback and feedforward control mechanisms. Several lines of evidence support the idea that speakers with more acute sensory discrimination acquire more distinct goal regions and therefore produce speech sounds with greater contrast. Feedback modification findings indicate that fluently produced sound sequences are encoded as feedforward commands, and feedback control serves to correct mismatches between expected and produced sensory consequences. PMID:22661828

  4. Movement goals and feedback and feedforward control mechanisms in speech production.

    PubMed

    Perkell, Joseph S

    2012-09-01

    Studies of speech motor control are described that support a theoretical framework in which fundamental control variables for phonemic movements are multi-dimensional regions in auditory and somatosensory spaces. Auditory feedback is used to acquire and maintain auditory goals and in the development and function of feedback and feedforward control mechanisms. Several lines of evidence support the idea that speakers with more acute sensory discrimination acquire more distinct goal regions and therefore produce speech sounds with greater contrast. Feedback modification findings indicate that fluently produced sound sequences are encoded as feedforward commands, and feedback control serves to correct mismatches between expected and produced sensory consequences.

  5. The Drosophila Receptor Protein Tyrosine Phosphatase LAR Is Required for Development of Circadian Pacemaker Neuron Processes That Support Rhythmic Activity in Constant Darkness But Not during Light/Dark Cycles

    PubMed Central

    Agrawal, Parul

    2016-01-01

    In Drosophila, a transcriptional feedback loop that is activated by CLOCK-CYCLE (CLK-CYC) complexes and repressed by PERIOD-TIMELESS (PER-TIM) complexes keeps circadian time. The timing of CLK-CYC activation and PER-TIM repression is regulated post-translationally, in part through rhythmic phosphorylation of CLK, PER, and TIM. Although kinases that control PER, TIM, and CLK levels, activity, and/or subcellular localization have been identified, less is known about phosphatases that control clock protein dephosphorylation. To identify clock-relevant phosphatases, clock-cell-specific RNAi knockdowns of Drosophila phosphatases were screened for altered activity rhythms. One phosphatase that was identified, the receptor protein tyrosine phosphatase leukocyte-antigen-related (LAR), abolished activity rhythms in constant darkness (DD) without disrupting the timekeeping mechanism in brain pacemaker neurons. However, expression of the neuropeptide pigment-dispersing factor (PDF), which mediates pacemaker neuron synchrony and output, is eliminated in the dorsal projections from small ventral lateral (sLNv) pacemaker neurons when Lar expression is knocked down during development, but not in adults. Loss of Lar function eliminates sLNv dorsal projections, but PDF expression persists in sLNv and large ventral lateral neuron cell bodies and their remaining projections. In contrast to the defects in lights-on and lights-off anticipatory activity seen in flies that lack PDF, Lar RNAi knockdown flies anticipate the lights-on and lights-off transition normally. Our results demonstrate that Lar is required for sLNv dorsal projection development and suggest that PDF expression in LNv cell bodies and their remaining projections mediate anticipation of the lights-on and lights-off transitions during a light/dark cycle. SIGNIFICANCE STATEMENT In animals, circadian clocks drive daily rhythms in physiology, metabolism, and behavior via transcriptional feedback loops. Because key circadian transcriptional activators and repressors are regulated by phosphorylation, we screened for phosphatases that alter activity rhythms when their expression was reduced. One such phosphatase, leukocyte-antigen-related (LAR), abolishes activity rhythms, but does not disrupt feedback loop function. Rather, Lar disrupts clock output by eliminating axonal processes from clock neurons that release pigment-dispersing factor (PDF) neuropeptide into the dorsal brain, but PDF expression persists in their cell bodies and remaining projections. In contrast to flies that lack PDF, flies that lack Lar anticipate lights-on and lights-off transitions normally, which suggests that the remaining PDF expression mediates activity during light/dark cycles. PMID:27030770

  6. Focused ultrasound-mediated drug delivery through the blood-brain barrier

    PubMed Central

    Burgess, Alison; Shah, Kairavi; Hough, Olivia; Hynynen, Kullervo

    2015-01-01

    Despite recent advances in blood-brain barrier (BBB) research, it remains a significant hurdle for the pharmaceutical treatment of brain diseases. Focused ultrasound (FUS) is one method to transiently increase permeability of the BBB to promote drug delivery to specific brain regions. An introduction to the BBB and a brief overview of the methods which can be used to circumvent the BBB to promote drug delivery is provided. In particular, we discuss the advantages and limitations of FUS technology and the efficacy of FUS-mediated drug delivery in models of disease. MRI for targeting and evaluating FUS treatments, combined with administration of microbubbles, allows for transient, reproducible BBB opening. The integration of a real-time acoustic feedback controller has improved treatment safety. Successful clinical translation of FUS has the potential to transform the treatment of brain disease worldwide without requiring the development of new pharmaceutical agents. PMID:25936845

  7. Can job redesign interventions influence a broad range of employee outcomes by changing multiple job characteristics? A quasi-experimental study.

    PubMed

    Holman, David; Axtell, Carolyn

    2016-07-01

    Many job redesign interventions are based on a multiple mediator-multiple outcome model in which the job redesign intervention indirectly influences a broad range of employee outcomes by changing multiple job characteristics. As this model remains untested, the aim of this study is to test a multiple mediator-multiple outcome model of job redesign. Multilevel analysis of data from a quasi-experimental job redesign intervention in a call center confirmed the hypothesized model and showed that the job redesign intervention affected a broad range of employee outcomes (i.e., employee well-being, psychological contract fulfillment, and supervisor-rated job performance) through changes in 2 job characteristics (i.e., job control and feedback). The results provide further evidence for the efficacy and mechanisms of job redesign interventions. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  8. Negative feedback regulation of TGF-beta signaling by the SnoN oncoprotein.

    PubMed

    Stroschein, S L; Wang, W; Zhou, S; Zhou, Q; Luo, K

    1999-10-22

    Smad proteins mediate transforming growth factor-beta (TGF-beta) signaling to regulate cell growth and differentiation. The SnoN oncoprotein was found to interact with Smad2 and Smad4 and to repress their abilities to activate transcription through recruitment of the transcriptional corepressor N-CoR. Immediately after TGF-beta stimulation, SnoN is rapidly degraded by the nuclear accumulation of Smad3, allowing the activation of TGF-beta target genes. By 2 hours, TGF-beta induces a marked increase in SnoN expression, resulting in termination of Smad-mediated transactivation. Thus, SnoN maintains the repressed state of TGF-beta-responsive genes in the absence of ligand and participates in negative feedback regulation of TGF-beta signaling.

  9. Gq/5-HT2c receptor signals activate a local GABAergic inhibitory feedback circuit to modulate serotonergic firing and anxiety in mice.

    PubMed

    Spoida, Katharina; Masseck, Olivia A; Deneris, Evan S; Herlitze, Stefan

    2014-04-29

    Serotonin 2c receptors (5-HT2c-Rs) are drug targets for certain mental disorders, including schizophrenia, depression, and anxiety. 5-HT2c-Rs are expressed throughout the brain, making it difficult to link behavioral changes to circuit specific receptor expression. Various 5-HT-Rs, including 5-HT2c-Rs, are found in the dorsal raphe nucleus (DRN); however, the function of 5-HT2c-Rs and their influence on the serotonergic signals mediating mood disorders remain unclear. To investigate the role of 5-HT2c-Rs in the DRN in mice, we developed a melanopsin-based optogenetic probe for activation of Gq signals in cellular domains, where 5-HT2c-Rs are localized. Our results demonstrate that precise temporal control of Gq signals in 5-HT2c-R domains in GABAergic neurons upstream of 5-HT neurons provides negative feedback regulation of serotonergic firing to modulate anxiety-like behavior in mice.

  10. Gq/5-HT2c receptor signals activate a local GABAergic inhibitory feedback circuit to modulate serotonergic firing and anxiety in mice

    PubMed Central

    Spoida, Katharina; Masseck, Olivia A.; Deneris, Evan S.; Herlitze, Stefan

    2014-01-01

    Serotonin 2c receptors (5-HT2c-Rs) are drug targets for certain mental disorders, including schizophrenia, depression, and anxiety. 5-HT2c-Rs are expressed throughout the brain, making it difficult to link behavioral changes to circuit specific receptor expression. Various 5-HT-Rs, including 5-HT2c-Rs, are found in the dorsal raphe nucleus (DRN); however, the function of 5-HT2c-Rs and their influence on the serotonergic signals mediating mood disorders remain unclear. To investigate the role of 5-HT2c-Rs in the DRN in mice, we developed a melanopsin-based optogenetic probe for activation of Gq signals in cellular domains, where 5-HT2c-Rs are localized. Our results demonstrate that precise temporal control of Gq signals in 5-HT2c-R domains in GABAergic neurons upstream of 5-HT neurons provides negative feedback regulation of serotonergic firing to modulate anxiety-like behavior in mice. PMID:24733892

  11. Mechanosensation Dynamically Coordinates Polar Growth and Cell Wall Assembly to Promote Cell Survival.

    PubMed

    Davì, Valeria; Tanimoto, Hirokazu; Ershov, Dmitry; Haupt, Armin; De Belly, Henry; Le Borgne, Rémi; Couturier, Etienne; Boudaoud, Arezki; Minc, Nicolas

    2018-04-23

    How growing cells cope with size expansion while ensuring mechanical integrity is not known. In walled cells, such as those of microbes and plants, growth and viability are both supported by a thin and rigid encasing cell wall (CW). We deciphered the dynamic mechanisms controlling wall surface assembly during cell growth, using a sub-resolution microscopy approach to monitor CW thickness in live rod-shaped fission yeast cells. We found that polar cell growth yielded wall thinning and that thickness negatively influenced growth. Thickness at growing tips exhibited a fluctuating behavior with thickening phases followed by thinning phases, indicative of a delayed feedback promoting thickness homeostasis. This feedback was mediated by mechanosensing through the CW integrity pathway, which probes strain in the wall to adjust synthase localization and activity to surface growth. Mutants defective in thickness homeostasis lysed by rupturing the wall, demonstrating its pivotal role for walled cell survival. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. An integrative model linking feedback environment and organizational citizenship behavior.

    PubMed

    Peng, Jei-Chen; Chiu, Su-Fen

    2010-01-01

    Past empirical evidence has suggested that a positive supervisor feedback environment may enhance employees' organizational citizenship behavior (OCB). In this study, we aim to extend previous research by proposing and testing an integrative model that examines the mediating processes underlying the relationship between supervisor feedback environment and employee OCB. Data were collected from 259 subordinate-supervisor dyads across a variety of organizations in Taiwan. We used structural equation modeling to test our hypotheses. The results demonstrated that supervisor feedback environment influenced employees' OCB indirectly through (1) both positive affective-cognition and positive attitude (i.e., person-organization fit and organizational commitment), and (2) both negative affective-cognition and negative attitude (i.e., role stressors and job burnout). Theoretical and practical implications are discussed.

  13. Coherent feedback control of a single qubit in diamond

    NASA Astrophysics Data System (ADS)

    Hirose, Masashi; Cappellaro, Paola

    2016-04-01

    Engineering desired operations on qubits subjected to the deleterious effects of their environment is a critical task in quantum information processing, quantum simulation and sensing. The most common approach relies on open-loop quantum control techniques, including optimal-control algorithms based on analytical or numerical solutions, Lyapunov design and Hamiltonian engineering. An alternative strategy, inspired by the success of classical control, is feedback control. Because of the complications introduced by quantum measurement, closed-loop control is less pervasive in the quantum setting and, with exceptions, its experimental implementations have been mainly limited to quantum optics experiments. Here we implement a feedback-control algorithm using a solid-state spin qubit system associated with the nitrogen vacancy centre in diamond, using coherent feedback to overcome the limitations of measurement-based feedback, and show that it can protect the qubit against intrinsic dephasing noise for milliseconds. In coherent feedback, the quantum system is connected to an auxiliary quantum controller (ancilla) that acquires information about the output state of the system (by an entangling operation) and performs an appropriate feedback action (by a conditional gate). In contrast to open-loop dynamical decoupling techniques, feedback control can protect the qubit even against Markovian noise and for an arbitrary period of time (limited only by the coherence time of the ancilla), while allowing gate operations. It is thus more closely related to quantum error-correction schemes, although these require larger and increasing qubit overheads. Increasing the number of fresh ancillas enables protection beyond their coherence time. We further evaluate the robustness of the feedback protocol, which could be applied to quantum computation and sensing, by exploring a trade-off between information gain and decoherence protection, as measurement of the ancilla-qubit correlation after the feedback algorithm voids the protection, even if the rest of the dynamics is unchanged.

  14. Servo control booster system for minimizing following error

    DOEpatents

    Wise, W.L.

    1979-07-26

    A closed-loop feedback-controlled servo system is disclosed which reduces command-to-response error to the system's position feedback resolution least increment, ..delta..S/sub R/, on a continuous real-time basis, for all operational times of consequence and for all operating speeds. The servo system employs a second position feedback control loop on a by exception basis, when the command-to-response error greater than or equal to ..delta..S/sub R/, to produce precise position correction signals. When the command-to-response error is less than ..delta..S/sub R/, control automatically reverts to conventional control means as the second position feedback control loop is disconnected, becoming transparent to conventional servo control means. By operating the second unique position feedback control loop used herein at the appropriate clocking rate, command-to-response error may be reduced to the position feedback resolution least increment. The present system may be utilized in combination with a tachometer loop for increased stability.

  15. Undergraduate Taiwanese Students' Perceptions of Using Computer-Mediated Communication in a TOEIC Preparation Course

    ERIC Educational Resources Information Center

    Tai, Shu-hui April

    2016-01-01

    The aim of this study is to investigate Taiwanese undergraduate students' perception of using computer-mediated communication (CMC) in a TOEIC preparation course and determine if using an online format motivates them to succeed. As a result, five factors are addressed in the study, namely, attitude, motivation, study habit, feedback, and…

  16. Trait-mediated trophic interactions: is foraging theory keeping up?

    Treesearch

    Steven F. Railsback; Bret C. Harvey

    2013-01-01

    Many ecologists believe that there is a lack of foraging theory that works in community contexts, for populations of unique individuals each making trade-offs between food and risk that are subject to feedbacks from behavior of others. Such theory is necessary to reproduce the trait-mediated trophic interactions now recognized as widespread and strong. Game theory can...

  17. Sphingoid Bases and the Serine Catabolic Enzyme CHA1 Define a Novel Feedforward/Feedback Mechanism in the Response to Serine Availability*

    PubMed Central

    Montefusco, David J.; Newcomb, Benjamin; Gandy, Jason L.; Brice, Sarah E.; Matmati, Nabil; Cowart, L. Ashley; Hannun, Yusuf A.

    2012-01-01

    Targets of bioactive sphingolipids in Saccharomyces cerevisiae were previously identified using microarray experiments focused on sphingolipid-dependent responses to heat stress. One of these heat-induced genes is the serine deamidase/dehydratase Cha1 known to be regulated by increased serine availability. This study investigated the hypothesis that sphingolipids may mediate the induction of Cha1 in response to serine availability. The results showed that inhibition of de novo synthesis of sphingolipids, pharmacologically or genetically, prevented the induction of Cha1 in response to increased serine availability. Additional studies implicated the sphingoid bases phytosphingosine and dihydrosphingosine as the likely mediators of Cha1 up-regulation. The yeast protein kinases Pkh1 and Pkh2, known sphingoid base effectors, were found to mediate CHA1 up-regulation via the transcription factor Cha4. Because the results disclosed a role for sphingolipids in negative feedback regulation of serine metabolism, we investigated the effects of disrupting this mechanism on sphingolipid levels and on cell growth. Intriguingly, exposure of the cha1Δ strain to high serine resulted in hyperaccumulation of endogenous serine and in turn a significant accumulation of sphingoid bases and ceramides. Under these conditions, the cha1Δ strain displayed a significant growth defect that was sphingolipid-dependent. Together, this work reveals a feedforward/feedback loop whereby the sphingoid bases serve as sensors of serine availability and mediate up-regulation of Cha1 in response to serine availability, which in turn regulates sphingolipid levels by limiting serine accumulation. PMID:22277656

  18. A combined stochastic feedforward and feedback control design methodology with application to autoland design

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim

    1987-01-01

    A combined stochastic feedforward and feedback control design methodology was developed. The objective of the feedforward control law is to track the commanded trajectory, whereas the feedback control law tries to maintain the plant state near the desired trajectory in the presence of disturbances and uncertainties about the plant. The feedforward control law design is formulated as a stochastic optimization problem and is embedded into the stochastic output feedback problem where the plant contains unstable and uncontrollable modes. An algorithm to compute the optimal feedforward is developed. In this approach, the use of error integral feedback, dynamic compensation, control rate command structures are an integral part of the methodology. An incremental implementation is recommended. Results on the eigenvalues of the implemented versus designed control laws are presented. The stochastic feedforward/feedback control methodology is used to design a digital automatic landing system for the ATOPS Research Vehicle, a Boeing 737-100 aircraft. The system control modes include localizer and glideslope capture and track, and flare to touchdown. Results of a detailed nonlinear simulation of the digital control laws, actuator systems, and aircraft aerodynamics are presented.

  19. A novel P53/POMC/Gαs/SASH1 autoregulatory feedback loop activates mutated SASH1 to cause pathologic hyperpigmentation.

    PubMed

    Zhou, Ding'an; Wei, Zhiyun; Kuang, Zhongshu; Luo, Huangchao; Ma, Jiangshu; Zeng, Xing; Wang, Ke; Liu, Beizhong; Gong, Fang; Wang, Jing; Lei, Shanchuan; Wang, Dongsheng; Zeng, Jiawei; Wang, Teng; He, Yong; Yuan, Yongqiang; Dai, Hongying; He, Lin; Xing, Qinghe

    2017-04-01

    p53-Transcriptional-regulated proteins interact with a large number of other signal transduction pathways in the cell, and a number of positive and negative autoregulatory feedback loops act upon the p53 response. P53 directly controls the POMC/α-MSH productions induced by ultraviolet (UV) and is associated with UV-independent pathological pigmentation. When identifying the causative gene of dyschromatosis universalis hereditaria (DUH), we found three mutations encoding amino acid substitutions in the gene SAM and SH3 domain containing 1 (SASH1), and SASH1 was associated with guanine nucleotide-binding protein subunit-alpha isoforms short (Gαs). However, the pathological gene and pathological mechanism of DUH remain unknown for about 90 years. We demonstrate that SASH1 is physiologically induced by p53 upon UV stimulation and SASH and p53 is reciprocally induced at physiological and pathophysiological conditions. SASH1 is regulated by a novel p53/POMC/α-MSH/Gαs/SASH1 cascade to mediate melanogenesis. A novel p53/POMC/Gαs/SASH1 autoregulatory positive feedback loop is regulated by SASH1 mutations to induce pathological hyperpigmentation phenotype. Our study demonstrates that a novel p53/POMC/Gαs/SASH1 autoregulatory positive feedback loop is regulated by SASH1 mutations to induce pathological hyperpigmentation phenotype. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  20. Geometric foundations of the theory of feedback equivalence

    NASA Technical Reports Server (NTRS)

    Hermann, R.

    1987-01-01

    A description of feedback control is presented within the context of differential equations, differential geometry, and Lie theory. Work related to the integration of differential geometry with the control techniques of feedback linearization is summarized. Particular attention is given to the application of the theory of vector field systems. Feedback invariants for control systems in state space form are also addressed.

  1. Cross-entropy optimization for neuromodulation.

    PubMed

    Brar, Harleen K; Yunpeng Pan; Mahmoudi, Babak; Theodorou, Evangelos A

    2016-08-01

    This study presents a reinforcement learning approach for the optimization of the proportional-integral gains of the feedback controller represented in a computational model of epilepsy. The chaotic oscillator model provides a feedback control systems view of the dynamics of an epileptic brain with an internal feedback controller representative of the natural seizure suppression mechanism within the brain circuitry. Normal and pathological brain activity is simulated in this model by adjusting the feedback gain values of the internal controller. With insufficient gains, the internal controller cannot provide enough feedback to the brain dynamics causing an increase in correlation between different brain sites. This increase in synchronization results in the destabilization of the brain dynamics, which is representative of an epileptic seizure. To provide compensation for an insufficient internal controller an external controller is designed using proportional-integral feedback control strategy. A cross-entropy optimization algorithm is applied to the chaotic oscillator network model to learn the optimal feedback gains for the external controller instead of hand-tuning the gains to provide sufficient control to the pathological brain and prevent seizure generation. The correlation between the dynamics of neural activity within different brain sites is calculated for experimental data to show similar dynamics of epileptic neural activity as simulated by the network of chaotic oscillators.

  2. Altered neuromuscular control of leg stiffness following soccer-specific exercise.

    PubMed

    Oliver, Jon L; De Ste Croix, Mark B A; Lloyd, Rhodri S; Williams, Craig A

    2014-11-01

    To examine changes to neuromuscular control of leg stiffness following 42 min of soccer-specific exercise. Ten youth soccer players, aged 15.8 ± 0.4 years, stature 1.73 ± 0.06 m and mass 59.8 ± 9.7 kg, hopped on a force plate at a self-selected frequency before and after simulated soccer exercise performed on a non-motorised treadmill. During hopping, muscle activity was measured using surface electromyography from four lower limb muscles and analysed to determine feedforward- and feedback-mediated activity, as well as co-contraction. There was a small, non-significant change in stiffness following exercise (26.6 ± 10.6 vs. 24.0 ± 7.0 kN m(-1), p > 0.05, ES = 0.25), with half the group increasing and half decreasing their stiffness. Changes in stiffness were significantly related to changes in centre of mass (CoM) displacement (r = 0.90, p < 0.01, extremely large correlation) but not changes in peak ground reaction force (r = 0.58, p > 0.05, large correlation). A number of significant relationships were observed between changes in stiffness and CoM displacement with changes in feedforward, feedback and eccentric muscle activity of the soleus and vastus lateralis muscles following exercise (r = 0.64-0.98, p < 0.05, large-extremely large correlations), but not with changes in co-contraction (r = 0.11-0.55, p > 0.05, small-large correlations). Following soccer-specific exercise individual changes in feedforward- and reflex-mediated activity of the soleus and vastus lateralis, and not co-contraction around the knee and ankle, modulate changes in CoM displacement and leg stiffness.

  3. Hybrid Feedforward-Feedback Noise Control Using Virtual Sensors

    NASA Technical Reports Server (NTRS)

    Bean, Jacob; Fuller, Chris; Schiller, Noah

    2016-01-01

    Several approaches to active noise control using virtual sensors are evaluated for eventual use in an active headrest. Specifically, adaptive feedforward, feedback, and hybrid control structures are compared. Each controller incorporates the traditional filtered-x least mean squares algorithm. The feedback controller is arranged in an internal model configuration to draw comparisons with standard feedforward control theory results. Simulation and experimental results are presented that illustrate each controllers ability to minimize the pressure at both physical and virtual microphone locations. The remote microphone technique is used to obtain pressure estimates at the virtual locations. It is shown that a hybrid controller offers performance benefits over the traditional feedforward and feedback controllers. Stability issues associated with feedback and hybrid controllers are also addressed. Experimental results show that 15-20 dB reduction in broadband disturbances can be achieved by minimizing the measured pressure, whereas 10-15 dB reduction is obtained when minimizing the estimated pressure at a virtual location.

  4. Delay-based virtual congestion control in multi-tenant datacenters

    NASA Astrophysics Data System (ADS)

    Liu, Yuxin; Zhu, Danhong; Zhang, Dong

    2018-03-01

    With the evolution of cloud computing and virtualization, the congestion control of virtual datacenters has become the basic issue for multi-tenant datacenters transmission. Regarding to the friendly conflict of heterogeneous congestion control among multi-tenant, this paper proposes a delay-based virtual congestion control, which translates the multi-tenant heterogeneous congestion control into delay-based feedback uniformly by setting the hypervisor translation layer, modifying three-way handshake of explicit feedback and packet loss feedback and throttling receive window. The simulation results show that the delay-based virtual congestion control can effectively solve the unfairness of heterogeneous feedback congestion control algorithms.

  5. Comprehensive joint feedback control for standing by functional neuromuscular stimulation-a simulation study.

    PubMed

    Nataraj, Raviraj; Audu, Musa L; Kirsch, Robert F; Triolo, Ronald J

    2010-12-01

    Previous investigations of feedback control of standing after spinal cord injury (SCI) using functional neuromuscular stimulation (FNS) have primarily targeted individual joints. This study assesses the potential efficacy of comprehensive (trunk, hips, knees, and ankles) joint feedback control against postural disturbances using a bipedal, 3-D computer model of SCI stance. Proportional-derivative feedback drove an artificial neural network trained to produce muscle excitation patterns consistent with maximal joint stiffness values achievable about neutral stance given typical SCI muscle properties. Feedback gains were optimized to minimize upper extremity (UE) loading required to stabilize against disturbances. Compared to the baseline case of maximum constant muscle excitations used clinically, the controller reduced UE loading by 55% in resisting external force perturbations and by 84% during simulated one-arm functional tasks. Performance was most sensitive to inaccurate measurements of ankle plantar/dorsiflexion position and hip ab/adduction velocity feedback. In conclusion, comprehensive joint feedback demonstrates potential to markedly improve FNS standing function. However, alternative control structures capable of effective performance with fewer sensor-based feedback parameters may better facilitate clinical usage.

  6. Comprehensive Joint Feedback Control for Standing by Functional Neuromuscular Stimulation – a Simulation Study

    PubMed Central

    Nataraj, Raviraj; Audu, Musa L.; Kirsch, Robert F.; Triolo, Ronald J.

    2013-01-01

    Previous investigations of feedback control of standing after spinal cord injury (SCI) using functional neuromuscular stimulation (FNS) have primarily targeted individual joints. This study assesses the potential efficacy of comprehensive (trunk, hips, knees, and ankles) joint-feedback control against postural disturbances using a bipedal, three-dimensional computer model of SCI stance. Proportional-derivative feedback drove an artificial neural network trained to produce muscle excitation patterns consistent with maximal joint stiffness values achievable about neutral stance given typical SCI muscle properties. Feedback gains were optimized to minimize upper extremity (UE) loading required to stabilize against disturbances. Compared to the baseline case of maximum constant muscle excitations used clinically, the controller reduced UE loading by 55% in resisting external force perturbations and by 84% during simulated one-arm functional tasks. Performance was most sensitive to inaccurate measurements of ankle plantar/dorsiflexion position and hip ab/adduction velocity feedback. In conclusion, comprehensive joint-feedback demonstrates potential to markedly improve FNS standing function. However, alternative control structures capable of effective performance with fewer sensor-based feedback parameters may better facilitate clinical usage. PMID:20923741

  7. Decrease of a Current Mediated by Kv1.3 Channels Causes Striatal Cholinergic Interneuron Hyperexcitability in Experimental Parkinsonism.

    PubMed

    Tubert, Cecilia; Taravini, Irene R E; Flores-Barrera, Eden; Sánchez, Gonzalo M; Prost, María Alejandra; Avale, María Elena; Tseng, Kuei Y; Rela, Lorena; Murer, Mario Gustavo

    2016-09-06

    The mechanism underlying a hypercholinergic state in Parkinson's disease (PD) remains uncertain. Here, we show that disruption of the Kv1 channel-mediated function causes hyperexcitability of striatal cholinergic interneurons in a mouse model of PD. Specifically, our data reveal that Kv1 channels containing Kv1.3 subunits contribute significantly to the orphan potassium current known as IsAHP in striatal cholinergic interneurons. Typically, this Kv1 current provides negative feedback to depolarization that limits burst firing and slows the tonic activity of cholinergic interneurons. However, such inhibitory control of cholinergic interneuron excitability by Kv1.3-mediated current is markedly diminished in the parkinsonian striatum, suggesting that targeting Kv1.3 subunits and their regulatory pathways may have therapeutic potential in PD therapy. These studies reveal unexpected roles of Kv1.3 subunit-containing channels in the regulation of firing patterns of striatal cholinergic interneurons, which were thought to be largely dependent on KCa channels. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Evidence for parasite-mediated selection during short-lasting toxic algal blooms.

    PubMed

    Blanquart, François; Valero, Myriam; Alves-de-Souza, Catharina; Dia, Aliou; Lepelletier, Frédéric; Bigeard, Estelle; Jeanthon, Christian; Destombe, Christophe; Guillou, Laure

    2016-10-26

    Parasites play a role in the control of transient algal blooms, but it is not known whether parasite-mediated selection results in coevolution of the host and the parasites over this short time span. We investigated the presence of coevolution between the toxic dinoflagellate Alexandrium minutum and two naturally occurring endoparasites during blooms lasting a month in two river estuaries, using cross-inoculation experiments across time and space. Higher parasite abundance was associated with a large daily reduction in relative A. minutum abundances, demonstrating strong parasite-mediated selection. There was genetic variability in infectivity in both parasite species, and in resistance in the host. We found no evidence for coevolution in one estuary; however, in the other estuary, we found high genetic diversity in the two parasite species, fluctuations in infectivity and suggestion that the two parasites are well adapted to their host, as in 'Red Queen' dynamics. Thus, coevolution is possible over the short time span of a bloom, but geographically variable, and may feedback on community dynamics. © 2016 The Authors.

  9. Patient-focused and feedback research in psychotherapy: Where are we and where do we want to go?

    PubMed

    Lutz, Wolfgang; De Jong, Kim; Rubel, Julian

    2015-01-01

    In the last 15 years feedback interventions have had a significant impact on the field of psychotherapy research and have demonstrated their potential to enhance treatment outcomes, especially for patients with an increased risk of treatment failure. This article serves as an introduction to the special issue on "Patient-focused and feedback research in psychotherapy: Where are we and where do we want to go?" Current investigations on feedback research are concerned with potential moderators and mediators of these effects, as well as the design and the implementation of feedback into routine care. This introduction summarizes the current state of feedback research and provides an overview of the three main research topics in this issue: (1) How to implement feedback systems into routine practice and how do therapist and patient attitudes influence its effects?, (2) How to design feedback reports and decision support tools?, and (3) What are the reasons for patients to become at risk of treatment failure and how should therapists intervene with these patients? We believe that the studies included in this special issue reflect the current state of feedback research and provide promising pathways for future endeavors that will enhance our understanding of feedback effects.

  10. Optimal feedback scheme and universal time scaling for Hamiltonian parameter estimation.

    PubMed

    Yuan, Haidong; Fung, Chi-Hang Fred

    2015-09-11

    Time is a valuable resource and it is expected that a longer time period should lead to better precision in Hamiltonian parameter estimation. However, recent studies in quantum metrology have shown that in certain cases more time may even lead to worse estimations, which puts this intuition into question. In this Letter we show that by including feedback controls this intuition can be restored. By deriving asymptotically optimal feedback controls we quantify the maximal improvement feedback controls can provide in Hamiltonian parameter estimation and show a universal time scaling for the precision limit under the optimal feedback scheme. Our study reveals an intriguing connection between noncommutativity in the dynamics and the gain of feedback controls in Hamiltonian parameter estimation.

  11. The Persuasive Effect of Social Network Feedback on Mediated Communication: A Case Study in a Real Organization.

    PubMed

    Varotto, Alessandra; Gamberini, Luciano; Spagnolli, Anna; Martino, Francesco; Giovannardi, Isabella

    2016-03-01

    This study focuses on social feedback, namely on information on the outcome of users' online activity indirectly generated by other users, and investigates in a real setting whether it can affect subsequent activity and, if so, whether participants are aware of that. SkyPas, an application that calculates, transmits, and displays social feedback, was embedded in a common instant messaging service (Skype(™)) and used during a 7-week trial by 24 office workers at a large business organization. The trial followed an ABA scheme in which the B phase was the feedback provision phase. Results show that social feedback affects users' communication activity (participation, inward communication, outward communication, and reciprocity), sometimes even after the feedback provision phase. At the same time, users were poorly aware of this effect, showing a discrepancy between self-reported and observational measures. These results are then discussed in terms of design transparency and task compatibility.

  12. Novel synthetic monoketone transmute radiation-triggered NFκB-dependent TNFα cross-signaling feedback maintained NFκB and favors neuroblastoma regression.

    PubMed

    Aravindan, Sheeja; Natarajan, Mohan; Awasthi, Vibhudutta; Herman, Terence S; Aravindan, Natarajan

    2013-01-01

    Recently, we demonstrated that radiation (IR) instigates the occurrence of a NFκB-TNFα feedback cycle which sustains persistent NFκB activation in neuroblastoma (NB) cells and favors survival advantage and clonal expansion. Further, we reported that curcumin targets IR-induced survival signaling and NFκB dependent hTERT mediated clonal expansion in human NB cells. Herein, we investigated the efficacy of a novel synthetic monoketone, EF24, a curcumin analog in inhibiting persistent NFκB activation by disrupting the IR-induced NFκB-TNFα-NFκB feedback signaling in NB and subsequent mitigation of survival advantage and clonal expansion. EF24 profoundly suppressed the IR-induced NFκB-DNA binding activity/promoter activation and, maintained the NFκB repression by deterring NFκB-dependent TNFα transactivation/intercellular secretion in genetically varied human NB (SH-SY5Y, IMR-32, SK-PN-DW, MC-IXC and SK-N-MC) cell types. Further, EF24 completely suppressed IR-induced NFκB-TNFα cross-signaling dependent transactivation/translation of pro-survival IAP1, IAP2 and Survivin and subsequent cell survival. In corroboration, EF24 treatment maximally blocked IR-induced NFκB dependent hTERT transactivation/promoter activation, telomerase activation and consequent clonal expansion. EF24 displayed significant regulation of IR-induced feedback dependent NFκB and NFκB mediated survival signaling and complete regression of NB xenograft. Together, the results demonstrate for the first time that, novel synthetic monoketone EF24 potentiates radiotherapy and mitigates NB progression by selectively targeting IR-triggered NFκB-dependent TNFα-NFκB cross-signaling maintained NFκB mediated survival advantage and clonal expansion.

  13. Novel Synthetic Monoketone Transmute Radiation-Triggered NFκB-Dependent TNFα Cross-Signaling Feedback Maintained NFκB and Favors Neuroblastoma Regression

    PubMed Central

    Aravindan, Sheeja; Natarajan, Mohan; Awasthi, Vibhudutta; Herman, Terence S.; Aravindan, Natarajan

    2013-01-01

    Recently, we demonstrated that radiation (IR) instigates the occurrence of a NFκB-TNFα feedback cycle which sustains persistent NFκB activation in neuroblastoma (NB) cells and favors survival advantage and clonal expansion. Further, we reported that curcumin targets IR-induced survival signaling and NFκB dependent hTERT mediated clonal expansion in human NB cells. Herein, we investigated the efficacy of a novel synthetic monoketone, EF24, a curcumin analog in inhibiting persistent NFκB activation by disrupting the IR-induced NFκB-TNFα-NFκB feedback signaling in NB and subsequent mitigation of survival advantage and clonal expansion. EF24 profoundly suppressed the IR-induced NFκB-DNA binding activity/promoter activation and, maintained the NFκB repression by deterring NFκB-dependent TNFα transactivation/intercellular secretion in genetically varied human NB (SH-SY5Y, IMR-32, SK–PN–DW, MC-IXC and SK–N-MC) cell types. Further, EF24 completely suppressed IR-induced NFκB-TNFα cross-signaling dependent transactivation/translation of pro-survival IAP1, IAP2 and Survivin and subsequent cell survival. In corroboration, EF24 treatment maximally blocked IR-induced NFκB dependent hTERT transactivation/promoter activation, telomerase activation and consequent clonal expansion. EF24 displayed significant regulation of IR-induced feedback dependent NFκB and NFκB mediated survival signaling and complete regression of NB xenograft. Together, the results demonstrate for the first time that, novel synthetic monoketone EF24 potentiates radiotherapy and mitigates NB progression by selectively targeting IR-triggered NFκB-dependent TNFα-NFκB cross-signaling maintained NFκB mediated survival advantage and clonal expansion. PMID:23967300

  14. Method for neural network control of motion using real-time environmental feedback

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M. (Inventor)

    1997-01-01

    A method of motion control for robotics and other automatically controlled machinery using a neural network controller with real-time environmental feedback. The method is illustrated with a two-finger robotic hand having proximity sensors and force sensors that provide environmental feedback signals. The neural network controller is taught to control the robotic hand through training sets using back- propagation methods. The training sets are created by recording the control signals and the feedback signal as the robotic hand or a simulation of the robotic hand is moved through a representative grasping motion. The data recorded is divided into discrete increments of time and the feedback data is shifted out of phase with the control signal data so that the feedback signal data lag one time increment behind the control signal data. The modified data is presented to the neural network controller as a training set. The time lag introduced into the data allows the neural network controller to account for the temporal component of the robotic motion. Thus trained, the neural network controlled robotic hand is able to grasp a wide variety of different objects by generalizing from the training sets.

  15. Feedback control of flow vorticity at low Reynolds numbers.

    PubMed

    Zeitz, Maria; Gurevich, Pavel; Stark, Holger

    2015-03-01

    Our aim is to explore strategies of feedback control to design and stabilize novel dynamic flow patterns in model systems of complex fluids. To introduce the control strategies, we investigate the simple Newtonian fluid at low Reynolds number in a circular geometry. Then, the fluid vorticity satisfies a diffusion equation. We determine the mean vorticity in the sensing area and use two control strategies to feed it back into the system by controlling the angular velocity of the circular boundary. Hysteretic feedback control generates self-regulated stable oscillations in time, the frequency of which can be adjusted over several orders of magnitude by tuning the relevant feedback parameters. Time-delayed feedback control initiates unstable vorticity modes for sufficiently large feedback strength. For increasing delay time, we first observe oscillations with beats and then regular trains of narrow pulses. Close to the transition line between the resting fluid and the unstable modes, these patterns are relatively stable over long times.

  16. Robust Frequency-Domain Constrained Feedback Design via a Two-Stage Heuristic Approach.

    PubMed

    Li, Xianwei; Gao, Huijun

    2015-10-01

    Based on a two-stage heuristic method, this paper is concerned with the design of robust feedback controllers with restricted frequency-domain specifications (RFDSs) for uncertain linear discrete-time systems. Polytopic uncertainties are assumed to enter all the system matrices, while RFDSs are motivated by the fact that practical design specifications are often described in restricted finite frequency ranges. Dilated multipliers are first introduced to relax the generalized Kalman-Yakubovich-Popov lemma for output feedback controller synthesis and robust performance analysis. Then a two-stage approach to output feedback controller synthesis is proposed: at the first stage, a robust full-information (FI) controller is designed, which is used to construct a required output feedback controller at the second stage. To improve the solvability of the synthesis method, heuristic iterative algorithms are further formulated for exploring the feedback gain and optimizing the initial FI controller at the individual stage. The effectiveness of the proposed design method is finally demonstrated by the application to active control of suspension systems.

  17. Increasing Resilience to Traumatic Stress: Understanding the Protective Role of Well-Being.

    PubMed

    Tory Toole, J; Rice, Mark A; Cargill, Jordan; Craddock, Travis J A; Nierenberg, Barry; Klimas, Nancy G; Fletcher, Mary Ann; Morris, Mariana; Zysman, Joel; Broderick, Gordon

    2018-01-01

    The brain maintains homeostasis in part through a network of feedback and feed-forward mechanisms, where neurochemicals and immune markers act as mediators. Using a previously constructed model of biobehavioral feedback, we found that in addition to healthy equilibrium another stable regulatory program supported chronic depression and anxiety. Exploring mechanisms that might underlie the contributions of subjective well-being to improved therapeutic outcomes in depression, we iteratively screened 288 candidate feedback patterns linking well-being to molecular signaling networks for those that maintained the original homeostatic regimes. Simulating stressful trigger events on each candidate network while maintaining high levels of subjective well-being isolated a specific feedback network where well-being was promoted by dopamine and acetylcholine, and itself promoted norepinephrine while inhibiting cortisol expression. This biobehavioral feedback mechanism was especially effective in reproducing well-being's clinically documented ability to promote resilience and protect against onset of depression and anxiety.

  18. Optimization of Closed Loop Eigenvalues: Maneuvering, Vibration Control, and Structure/Control Design Iteration for Flexible Spacecraft.

    DTIC Science & Technology

    1986-05-31

    Nonlinear Feedback Control 8-16 for Spacecraft Attitude Maneuvers" 2. " Spacecraft Attitude Control Using 17-35... nonlinear state feedback control laws are developed for space- craft attitude control using the Euler parameters and conjugate angular momenta. Time... Nonlinear Feedback Control for Spacecraft Attitude Maneuvers," to appear in AIAA J. of Guidance, Control, and Dynamics, (AIAA Paper No. 83-2230-CP,

  19. Sprouty proteins are in vivo targets of Corkscrew/SHP-2 tyrosine phosphatases.

    PubMed

    Jarvis, Lesley A; Toering, Stephanie J; Simon, Michael A; Krasnow, Mark A; Smith-Bolton, Rachel K

    2006-03-01

    Drosophila Corkscrew protein and its vertebrate ortholog SHP-2 (now known as Ptpn11) positively modulate receptor tyrosine kinase (RTK) signaling during development, but how these tyrosine phosphatases promote tyrosine kinase signaling is not well understood. Sprouty proteins are tyrosine-phosphorylated RTK feedback inhibitors, but their regulation and mechanism of action are also poorly understood. Here, we show that Corkscrew/SHP-2 proteins control Sprouty phosphorylation and function. Genetic experiments demonstrate that Corkscrew/SHP-2 and Sprouty proteins have opposite effects on RTK-mediated developmental events in Drosophila and an RTK signaling process in cultured mammalian cells, and the genes display dose-sensitive genetic interactions. In cultured cells, inactivation of SHP-2 increases phosphorylation on the critical tyrosine of Sprouty 1. SHP-2 associates in a complex with Sprouty 1 in cultured cells and in vitro, and a purified SHP-2 protein dephosphorylates the critical tyrosine of Sprouty 1. Substrate-trapping forms of Corkscrew bind Sprouty in cultured Drosophila cells and the developing eye. These results identify Sprouty proteins as in vivo targets of Corkscrew/SHP-2 tyrosine phosphatases and show how Corkscrew/SHP-2 proteins can promote RTK signaling by inactivating a feedback inhibitor. We propose that this double-negative feedback circuit shapes the output profile of RTK signaling events.

  20. Neural activations associated with feedback and retrieval success

    NASA Astrophysics Data System (ADS)

    Wiklund-Hörnqvist, Carola; Andersson, Micael; Jonsson, Bert; Nyberg, Lars

    2017-11-01

    There is substantial behavioral evidence for a phenomenon commonly called "the testing effect", i.e. superior memory performance after repeated testing compared to re-study of to-be-learned materials. However, considerably less is known about the underlying neuro-cognitive processes that are involved in the initial testing phase, and thus underlies the actual testing effect. Here, we investigated functional brain activity related to test-enhanced learning with feedback. Subjects learned foreign vocabulary across three consecutive tests with correct-answer feedback. Functional brain-activity responses were analyzed in relation to retrieval and feedback events, respectively. Results revealed up-regulated activity in fronto-striatal regions during the first successful retrieval, followed by a marked reduction in activity as a function of improved learning. Whereas feedback improved behavioral performance across consecutive tests, feedback had a negligable role after the first successful retrieval for functional brain-activity modulations. It is suggested that the beneficial effects of test-enhanced learning is regulated by feedback-induced updating of memory representations, mediated via the striatum, that might underlie the stabilization of memory commonly seen in behavioral studies of the testing effect.

  1. Why self-controlled feedback enhances motor learning: Answers from electroencephalography and indices of motivation.

    PubMed

    Grand, Kirk F; Bruzi, Alessandro T; Dyke, Ford B; Godwin, Maurice M; Leiker, Amber M; Thompson, Andrew G; Buchanan, Taylor L; Miller, Matthew W

    2015-10-01

    It was tested whether learners who choose when to receive augmented feedback while practicing a motor skill exhibit enhanced augmented feedback processing and intrinsic motivation, along with superior learning, relative to learners who do not control their feedback. Accordingly, participants were assigned to either self-control (Self) or yoked groups and asked to practice a non-dominant arm beanbag toss. Self participants received augmented feedback at their discretion, whereas Yoked participants were given feedback schedules matched to Self counterparts. Participants' visual feedback was occluded, and when they received augmented feedback, their processing of it was indexed with the electroencephalography-derived feedback-related negativity (FRN). Participants self-reported intrinsic motivation via the Intrinsic Motivation Inventory (IMI) after practice, and completed a retention and transfer test the next day to index learning. Results partially support the hypothesis. Specifically, Self participants reported higher IMI scores, exhibited larger FRNs, and demonstrated better accuracy on the transfer test, but not on the retention test, nor did they exhibit greater consistency on the retention or transfer tests. Additionally, post-hoc multiple regression analysis indicated FRN amplitude predicted transfer test accuracy (accounting for IMI score). Results suggest self-controlled feedback schedules enhance feedback processing, which enhances the transfer of a newly acquired motor skill. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Motivation in vigilance - Effects of self-evaluation and experimenter-controlled feedback.

    NASA Technical Reports Server (NTRS)

    Warm, J. S.; Kanfer, F. H.; Kuwada, S.; Clark, J. L.

    1972-01-01

    Vigilance experiments have been performed to study the relative efficiency of feedback operations in enhancing vigilance performance. Two feedback operations were compared - i.e., experimenter-controlled feedback in the form of knowledge of results (KR) regarding response times to signal detections, and subject-controlled feedback in the form of self-evaluation (SE) of response times to signal detections. The subjects responded to the aperiodic offset of a visual signal during a 1-hr vigil. Both feedback operations were found to enhance performance efficiency: subjects in the KR and SE conditions had faster response times than controls receiving no evaluative feedback. Moreover, the data of the KR and SE groups did not differ significantly from each other. The results are discussed in terms of the hypothesis that self-evaluation is a critical factor underlying the incentive value of KR in vigilance tasks.

  3. Effect of Concurrent Visual Feedback Frequency on Postural Control Learning in Adolescents.

    PubMed

    Marco-Ahulló, Adrià; Sánchez-Tormo, Alexis; García-Pérez, José A; Villarrasa-Sapiña, Israel; González, Luis M; García-Massó, Xavier

    2018-04-13

    The purpose was to find better augmented visual feedback frequency (100% or 67%) for learning a balance task in adolescents. Thirty subjects were divided randomly into a control group, and 100% and 67% feedback groups. The three groups performed pretest (3 trials), practice (12 trials), posttest (3 trials) and retention (3 trials, 24 hours later). The reduced feedback group showed lower RMS in the posttest than in the pretest (p = 0.04). The control and reduced feedback groups showed significant lower median frequency in the posttest than in the pretest (p < 0.05). Both feedback groups showed lower values in retention than in the pretest (p < 0.05). Even when the effect of feedback frequency could not be detected in motor learning, 67% of the feedback was recommended for motor adaptation.

  4. Verbal communication improves laparoscopic team performance.

    PubMed

    Shiliang Chang; Waid, Erin; Martinec, Danny V; Bin Zheng; Swanstrom, Lee L

    2008-06-01

    The impact of verbal communication on laparoscopic team performance was examined. A total of 24 dyad teams, comprised of residents, medical students, and office staff, underwent 2 team tasks using a previously validated bench model. Twelve teams (feedback groups) received instant verbal instruction and feedback on their performance from an instructor which was compared with 12 teams (control groups) with minimal or no verbal feedback. Their performances were both video and audio taped for analysis. Surgical backgrounds were similar between feedback and control groups. Teams with more verbal feedback achieved significantly better task performance (P = .002) compared with the control group with less feedback. Impact of verbal feedback was more pronounced for tasks requiring team cooperation (aiming and navigation) than tasks depending on individual skills (knotting). Verbal communication, especially the instructions and feedback from an experienced instructor, improved team efficiency and performance.

  5. Feedback power control strategies in wireless sensor networks with joint channel decoding.

    PubMed

    Abrardo, Andrea; Ferrari, Gianluigi; Martalò, Marco; Perna, Fabio

    2009-01-01

    In this paper, we derive feedback power control strategies for block-faded multiple access schemes with correlated sources and joint channel decoding (JCD). In particular, upon the derivation of the feasible signal-to-noise ratio (SNR) region for the considered multiple access schemes, i.e., the multidimensional SNR region where error-free communications are, in principle, possible, two feedback power control strategies are proposed: (i) a classical feedback power control strategy, which aims at equalizing all link SNRs at the access point (AP), and (ii) an innovative optimized feedback power control strategy, which tries to make the network operational point fall in the feasible SNR region at the lowest overall transmit energy consumption. These strategies will be referred to as "balanced SNR" and "unbalanced SNR," respectively. While they require, in principle, an unlimited power control range at the sources, we also propose practical versions with a limited power control range. We preliminary consider a scenario with orthogonal links and ideal feedback. Then, we analyze the robustness of the proposed power control strategies to possible non-idealities, in terms of residual multiple access interference and noisy feedback channels. Finally, we successfully apply the proposed feedback power control strategies to a limiting case of the class of considered multiple access schemes, namely a central estimating officer (CEO) scenario, where the sensors observe noisy versions of a common binary information sequence and the AP's goal is to estimate this sequence by properly fusing the soft-output information output by the JCD algorithm.

  6. Comparing the Effects of Self-Controlled and Examiner-Controlled Feedback on Learning in Children With Developmental Coordination Disorder.

    PubMed

    Zamani, Mohamad Hosein; Fatemi, Rouholah; Soroushmoghadam, Keyvan

    2015-12-01

    Feedback can improve task learning in children with developmental coordination disorder (DCD). However, the frequency and type of feedback may play different role in learning and needs to more investigations. The aim of this study was to evaluate the acquisition and retention of new feedback skills in children with DCD under different frequency of self-control and control examiner feedback. In this quasi-experimental study with pretest-posttest design, participants based on their retention were divided into four feedback groups: self-controlled feedback groups with frequencies of 50% and75%, experimenter controls with frequencies of 50% and 75%. The study sample consisted of 24 boys with DCD aged between 9 to 11 years old in Ahvaz City, Iran. Then subjects practiced 30 throwing (6 blocks of 5 attempts) in eighth session. Acquisition test immediately after the last training session, and then the retention test were taken. Data were analyzed using the paired t-test, ANOVA and Tukey tests. The results showed no significant difference between groups in the acquisition phase (P > 0.05). However,in the retention session, group of self-control showed better performance than the control tester group (P < 0.05). Based on the current findings, self-control feedback with high frequency leads to more learning in DCD children. The results of this study can be used in rehabilitation programs to improve performance and learning in children with DCD.

  7. Short- and Long-Term Learning of Feedforward Control of a Myoelectric Prosthesis with Sensory Feedback by Amputees.

    PubMed

    Strbac, Matija; Isakovic, Milica; Belic, Minja; Popovic, Igor; Simanic, Igor; Farina, Dario; Keller, Thierry; Dosen, Strahinja

    2017-11-01

    Human motor control relies on a combination of feedback and feedforward strategies. The aim of this study was to longitudinally investigate artificial somatosensory feedback and feedforward control in the context of grasping with myoelectric prosthesis. Nine amputee subjects performed routine grasping trials, with the aim to produce four levels of force during four blocks of 60 trials across five days. The electrotactile force feedback was provided in the second and third block using multipad electrode and spatial coding. The first baseline and last validation block (open-loop control) evaluated the effects of long- (across sessions) and short-term (within session) learning, respectively. The outcome measures were the absolute error between the generated and target force, and the number of force saturations. The results demonstrated that the electrotactile feedback improved the performance both within and across sessions. In the validation block, the performance did not significantly decrease and the quality of open-loop control (baseline) improved across days, converging to the performance characterizing closed-loop control. This paper provides important insights into the feedback and feedforward processes in prosthesis control, contributing to the better understanding of the role and design of feedback in prosthetic systems.

  8. Robust high-performance control for robotic manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1989-01-01

    A robust control scheme to accomplish accurate trajectory tracking for an integrated system of manipulator-plus-actuators is proposed. The control scheme comprises a feedforward and a feedback controller. The feedforward controller contains any known part of the manipulator dynamics that can be used for online control. The feedback controller consists of adaptive position and velocity feedback gains and an auxiliary signal which is simply generated by a fixed-gain proportional/integral/derivative controller. The feedback controller is updated by very simple adaptation laws which contain both proportional and integral adaptation terms. By introduction of a simple sigma modification to the adaptation laws, robustness is guaranteed in the presence of unmodeled dynamics and disturbances.

  9. Efficacy of web-based personalized normative feedback: a two-year randomized controlled trial.

    PubMed

    Neighbors, Clayton; Lewis, Melissa A; Atkins, David C; Jensen, Megan M; Walter, Theresa; Fossos, Nicole; Lee, Christine M; Larimer, Mary E

    2010-12-01

    Web-based brief alcohol interventions have the potential to reach a large number of individuals at low cost; however, few controlled evaluations have been conducted to date. The present study was designed to evaluate the efficacy of gender-specific versus gender-nonspecific personalized normative feedback (PNF) with single versus biannual administration in a 2-year randomized controlled trial targeting a large sample of heavy-drinking college students. Participants included 818 freshmen (57.6% women; 42% non-Caucasian) who reported 1 or more heavy-drinking episodes in the previous month at baseline. Participants were randomly assigned in a 2 (gender-specific vs. gender-nonspecific PNF) × 2 (single vs. biannual administration of PNF) + 1 (attention control) design. Assessments occurred every 6 months for a 2-year period. Results from hierarchical generalized linear models provided modest effects on weekly drinking and alcohol-related problems but not on heavy episodic drinking. Relative to control, gender-specific biannual PNF was associated with reductions over time in weekly drinking (d = -0.16, 95% CI [-0.02, -0.31]), and this effect was partially mediated by changes in perceived norms. For women, but not men, gender-specific biannual PNF was associated with reductions over time in alcohol-related problems relative to control (d = -0.29, 95% CI [-0.15, -0.58]). Few other effects were evident. The present research provides modest support for the use of biannually administered web-based gender-specific PNF as an alternative to more costly indicated prevention strategies. (c) 2010 APA, all rights reserved.

  10. V/STOL tilt rotor aircraft study. Volume 7: Tilt rotor flight control program feedback studies

    NASA Technical Reports Server (NTRS)

    Alexander, H. R.; Eason, W.; Gillmore, K.; Morris, J.; Spittle, R.

    1973-01-01

    An exploratory study has been made of the use of feedback control in tilt rotor aircraft. This has included the use of swashplate cyclic and collective controls and direct lift control. Various sensor and feedback systems are evaluated in relation to blade loads alleviation, improvement in flying qualities, and modal suppression. Recommendations are made regarding additional analytical and wind tunnel investigations and development of feedback systems in the full scale flight vehicle. Estimated costs and schedules are given.

  11. Walking Flexibility after Hemispherectomy: Split-Belt Treadmill Adaptation and Feedback Control

    ERIC Educational Resources Information Center

    Choi, Julia T.; Vining, Eileen P. G.; Reisman, Darcy S.; Bastian, Amy J.

    2009-01-01

    Walking flexibility depends on use of feedback or reactive control to respond to unexpected changes in the environment, and the ability to adapt feedforward or predictive control for sustained alterations. Recent work has demonstrated that cerebellar damage impairs feedforward adaptation, but not feedback control, during human split-belt treadmill…

  12. Effects of emotional preferences on value-based decision making are mediated by mentalizing not reward networks

    PubMed Central

    Evans, Simon; Fleming, Stephen M.; Dolan, Raymond J.; Averbeck, Bruno B.

    2012-01-01

    Real-world decision-making often involves social considerations. Consequently, the social value of stimuli can induce preferences in choice behavior. However, it is unknown how financial and social values are integrated in the brain. Here, we investigated how smiling and angry face stimuli interacted with financial reward feedback in a stochastically-rewarded decision-making task. Subjects reliably preferred the smiling faces despite equivalent reward feedback, demonstrating a socially driven bias. We fit a Bayesian reinforcement learning model to factor the effects of financial rewards and emotion preferences in individual subjects, and regressed model predictions on the trial-by-trial fMRI signal. Activity in the sub-callosal cingulate and the ventral striatum, both involved in reward learning, correlated with financial reward feedback, whereas the differential contribution of social value activated dorsal temporo-parietal junction and dorsal anterior cingulate cortex, previously proposed as components of a mentalizing network. We conclude that the impact of social stimuli on value-based decision processes is mediated by effects in brain regions partially separable from classical reward circuitry. PMID:20946058

  13. Comparing Learners' State Anxiety during Task-Based Interaction in Computer-Mediated and Face-to-Face Communication

    ERIC Educational Resources Information Center

    Baralt, Melissa; Gurzynski-Weiss, Laura

    2011-01-01

    The construct of anxiety is often believed to be the affective factor with the greatest potential to pervasively affect the learning process (Horwitz, 2001), and recent research has demonstrated that anxiety can mediate whether learners are able to notice feedback and subsequently produce output (Sheen, 2008). In order to reduce the negative…

  14. The Mediational Effect of Academic Self-Discipline (ASD) between Academic Self-Efficacy (ASE) and College GPA

    ERIC Educational Resources Information Center

    Jung, Kyoung Rae

    2013-01-01

    Drawing upon self-efficacy theory (Bandura, 1997), the purpose of this study was to examine academic self-discipline (ASD) as a mediator of the relationship between academic self-efficacy (ASE) and college GPA, as well as the feedback effect of previous academic performance on subsequent ASE and ASD. To test this research question, I used…

  15. Dynamics of nonlinear feedback control.

    PubMed

    Snippe, H P; van Hateren, J H

    2007-05-01

    Feedback control in neural systems is ubiquitous. Here we study the mathematics of nonlinear feedback control. We compare models in which the input is multiplied by a dynamic gain (multiplicative control) with models in which the input is divided by a dynamic attenuation (divisive control). The gain signal (resp. the attenuation signal) is obtained through a concatenation of an instantaneous nonlinearity and a linear low-pass filter operating on the output of the feedback loop. For input steps, the dynamics of gain and attenuation can be very different, depending on the mathematical form of the nonlinearity and the ordering of the nonlinearity and the filtering in the feedback loop. Further, the dynamics of feedback control can be strongly asymmetrical for increment versus decrement steps of the input. Nevertheless, for each of the models studied, the nonlinearity in the feedback loop can be chosen such that immediately after an input step, the dynamics of feedback control is symmetric with respect to increments versus decrements. Finally, we study the dynamics of the output of the control loops and find conditions under which overshoots and undershoots of the output relative to the steady-state output occur when the models are stimulated with low-pass filtered steps. For small steps at the input, overshoots and undershoots of the output do not occur when the filtering in the control path is faster than the low-pass filtering at the input. For large steps at the input, however, results depend on the model, and for some of the models, multiple overshoots and undershoots can occur even with a fast control path.

  16. Antennally mediated negative feedback regulation of pheromone production in the pine engraver beetle, Ips pini

    NASA Astrophysics Data System (ADS)

    Ginzel, Matthew D.; Bearfield, Jeremy C.; Keeling, Christopher I.; McCormack, Colin C.; Blomquist, Gary J.; Tittiger, Claus

    2007-01-01

    Bark beetles use monoterpenoid aggregation pheromones to coordinate host colonization and mating. These chemical signals are produced de novo in midgut cells via the mevalonate pathway, and pheromone production may be regulated by a negative feedback system mediated through the antennae. In this study, we explored the effect of antennectomy on pheromone production and transcript levels of key mevalonate pathway genes in juvenile hormone III-treated male pine engraver beetles, Ips pini (Say). Antennectomized males produced significantly greater amounts of pheromone than podectomized males and those with intact antennae. Likewise, mRNA levels of three mevalonate pathway genes important in pheromone biosynthesis were measured by quantitative real-time PCR and found to be induced to a greater extent with antennectomy, suggesting a transcriptional regulation of pheromone production.

  17. Choosing Sensor Configuration for a Flexible Structure Using Full Control Synthesis

    NASA Technical Reports Server (NTRS)

    Lind, Rick; Nalbantoglu, Volkan; Balas, Gary

    1997-01-01

    Optimal locations and types for feedback sensors which meet design constraints and control requirements are difficult to determine. This paper introduces an approach to choosing a sensor configuration based on Full Control synthesis. A globally optimal Full Control compensator is computed for each member of a set of sensor configurations which are feasible for the plant. The sensor configuration associated with the Full Control system achieving the best closed-loop performance is chosen for feedback measurements to an output feedback controller. A flexible structure is used as an example to demonstrate this procedure. Experimental results show sensor configurations chosen to optimize the Full Control performance are effective for output feedback controllers.

  18. Feedforward/feedback control synthesis for performance and robustness

    NASA Technical Reports Server (NTRS)

    Wie, Bong; Liu, Qiang

    1990-01-01

    Both feedforward and feedback control approaches for uncertain dynamical systems are investigated. The control design objective is to achieve a fast settling time (high performance) and robustness (insensitivity) to plant modeling uncertainty. Preshapong of an ideal, time-optimal control input using a 'tapped-delay' filter is shown to provide a rapid maneuver with robust performance. A robust, non-minimum-phase feedback controller is synthesized with particular emphasis on its proper implementation for a non-zero set-point control problem. The proposed feedforward/feedback control approach is robust for a certain class of uncertain dynamical systems, since the control input command computed for a given desired output does not depend on the plant parameters.

  19. Inferential modeling and predictive feedback control in real-time motion compensation using the treatment couch during radiotherapy

    NASA Astrophysics Data System (ADS)

    Qiu, Peng; D'Souza, Warren D.; McAvoy, Thomas J.; Liu, K. J. Ray

    2007-09-01

    Tumor motion induced by respiration presents a challenge to the reliable delivery of conformal radiation treatments. Real-time motion compensation represents the technologically most challenging clinical solution but has the potential to overcome the limitations of existing methods. The performance of a real-time couch-based motion compensation system is mainly dependent on two aspects: the ability to infer the internal anatomical position and the performance of the feedback control system. In this paper, we propose two novel methods for the two aspects respectively, and then combine the proposed methods into one system. To accurately estimate the internal tumor position, we present partial-least squares (PLS) regression to predict the position of the diaphragm using skin-based motion surrogates. Four radio-opaque markers were placed on the abdomen of patients who underwent fluoroscopic imaging of the diaphragm. The coordinates of the markers served as input variables and the position of the diaphragm served as the output variable. PLS resulted in lower prediction errors compared with standard multiple linear regression (MLR). The performance of the feedback control system depends on the system dynamics and dead time (delay between the initiation and execution of the control action). While the dynamics of the system can be inverted in a feedback control system, the dead time cannot be inverted. To overcome the dead time of the system, we propose a predictive feedback control system by incorporating forward prediction using least-mean-square (LMS) and recursive least square (RLS) filtering into the couch-based control system. Motion data were obtained using a skin-based marker. The proposed predictive feedback control system was benchmarked against pure feedback control (no forward prediction) and resulted in a significant performance gain. Finally, we combined the PLS inference model and the predictive feedback control to evaluate the overall performance of the feedback control system. Our results show that, with the tumor motion unknown but inferred by skin-based markers through the PLS model, the predictive feedback control system was able to effectively compensate intra-fraction motion.

  20. Nutrient controls on biocomplexity of mangrove ecosystems

    USGS Publications Warehouse

    McKee, Karen L.

    2004-01-01

    Mangrove forests are important coastal ecosystems that provide a variety of ecological and societal services. These intertidal, tree-dominated communities along tropical coastlines are often described as “simple systems,” compared to other tropical forests with larger numbers of plant species and multiple understory strata; however, mangrove ecosystems have complex trophic structures, and organisms exhibit unique physiological, morphological, and behavioral adaptations to environmental conditions characteristic of the land-sea interface. Biogeochemical functioning of mangrove forests is also controlled by interactions among the microbial, plant, and animal communities and feedback linkages mediated by hydrology and other forcing functions. Scientists with the U.S. Geological Survey (USGS) at the National Wetlands Research Center are working to understand more fully the impact of nutrient variability on these delicate and important ecosystems.

  1. Two ways to feel the pressure: an endothelial Ca(2+) entry channel with dual mechanosensitivity.

    PubMed

    Groschner, Klaus

    2002-01-01

    One impressive function of the vascular endothelium is its ability to adjust the release of vasoactive mediators such as NO and PGI(2) almost instantaneously to changes in blood flow or blood pressure. Besides this fast feedback response to hemodynamic alterations, the endothelium is subject to long-term adaptations that are crucial for prevention of pathological processes such as atherogenesis. Among the various signals that are sensed by endothelial cells, mechanical forces which arise from pulsatile blood flow are probably most important for fast as well as long-term control of blood vessel function by the endothelium.

  2. Engineered microbes and methods for microbial oil production

    DOEpatents

    Stephanopoulos, Gregory; Tai, Mitchell; Chakraborty, Sagar

    2015-02-10

    Some aspects of this invention provide engineered microbes for oil production. Methods for microbe engineering and for use of engineered microbes are also provided herein. In some embodiments, microbes are provided that are engineered to modulate a combination of rate-controlling steps of lipid synthesis, for example, a combination of a step generating metabolites, acetyl-CoA, ATP or NADPH for lipid synthesis (a push step), and a step sequestering a product or an intermediate of a lipid synthesis pathway that mediates feedback inhibition of lipid synthesis (a pull step). Such push-and-pull engineered microbes exhibit greatly enhanced conversion yields and TAG synthesis and storage properties.

  3. Parkinson’s disease patients show impaired corrective grasp control and eye-hand coupling when reaching to grasp virtual objects

    PubMed Central

    Lukos, Jamie R.; Snider, Joseph; Hernandez, Manuel E.; Tunik, Eugene; Hillyard, Steven; Poizner, Howard

    2013-01-01

    The effect of Parkinson’s disease on hand-eye coordination and corrective response control during reach-to-grasp tasks remains unclear. Moderately impaired Parkinson’s disease patients (PD, n=9) and age-matched controls (n=12) reached to and grasped a virtual rectangular object, with haptic feedback provided to the thumb and index fingertip by two 3-degree of freedom manipulanda. The object rotated unexpectedly on a minority of trials, requiring subjects to adjust their grasp aperture. On half the trials, visual feedback of finger positions disappeared during the initial phase of the reach, when feedforward mechanisms are known to guide movement. PD patients were tested without (OFF) and with (ON) medication to investigate the effects of dopamine depletion and repletion on eye-hand coordination online corrective response control. We quantified eye-hand coordination by monitoring hand kinematics and eye position during the reach. We hypothesized that if the basal ganglia are important for eye-hand coordination and online corrections to object perturbations, then PD patients tested OFF medication would show reduced eye-hand spans and impoverished arm-hand coordination responses to the perturbation, which would be further exasperated when visual feedback of the hand was removed. Strikingly, PD patients tracked their hands with their gaze, and their movements became destabilized when having to make online corrective responses to object perturbations exhibiting pauses and changes in movement direction. These impairments largely remained even when tested in the ON state, despite significant improvement on the Unified Parkinson’s Disease Rating Scale. Our findings suggest that basal ganglia-cortical loops are essential for mediating eye-hand coordination and adaptive online responses for reach-to-grasp movements, and that restoration of tonic levels of dopamine may not be adequate to remediate this coordinative nature of basal ganglia modulated function. PMID:24056196

  4. The clinical relevance of advanced artificial feedback in the control of a multi-functional myoelectric prosthesis.

    PubMed

    Markovic, Marko; Schweisfurth, Meike A; Engels, Leonard F; Bentz, Tashina; Wüstefeld, Daniela; Farina, Dario; Dosen, Strahinja

    2018-03-27

    To effectively replace the human hand, a prosthesis should seamlessly respond to user intentions but also convey sensory information back to the user. Restoration of sensory feedback is rated highly by the prosthesis users, and feedback is critical for grasping in able-bodied subjects. Nonetheless, the benefits of feedback in prosthetics are still debated. The lack of consensus is likely due to the complex nature of sensory feedback during prosthesis control, so that its effectiveness depends on multiple factors (e.g., task complexity, user learning). We evaluated the impact of these factors with a longitudinal assessment in six amputee subjects, using a clinical setup (socket, embedded control) and a range of tasks (box and blocks, block turn, clothespin and cups relocation). To provide feedback, we have proposed a novel vibrotactile stimulation scheme capable of transmitting multiple variables from a multifunction prosthesis. The subjects wore a bracelet with four by two uniformly placed vibro-tactors providing information on contact, prosthesis state (active function), and grasping force. The subjects also completed a questionnaire for the subjective evaluation of the feedback. The tests demonstrated that feedback was beneficial only in the complex tasks (block turn, clothespin and cups relocation), and that the training had an important, task-dependent impact. In the clothespin relocation and block turn tasks, training allowed the subjects to establish successful feedforward control, and therefore, the feedback became redundant. In the cups relocation task, however, the subjects needed some training to learn how to properly exploit the feedback. The subjective evaluation of the feedback was consistently positive, regardless of the objective benefits. These results underline the multifaceted nature of closed-loop prosthesis control as, depending on the context, the same feedback interface can have different impact on performance. Finally, even if the closed-loop control does not improve the performance, it could be beneficial as it seems to improve the subjective experience. Therefore, in this study we demonstrate, for the first time, the relevance of an advanced, multi-variable feedback interface for dexterous, multi-functional prosthesis control in a clinically relevant setting.

  5. Comparing the effects of positive and negative feedback in information-integration category learning.

    PubMed

    Freedberg, Michael; Glass, Brian; Filoteo, J Vincent; Hazeltine, Eliot; Maddox, W Todd

    2017-01-01

    Categorical learning is dependent on feedback. Here, we compare how positive and negative feedback affect information-integration (II) category learning. Ashby and O'Brien (2007) demonstrated that both positive and negative feedback are required to solve II category problems when feedback was not guaranteed on each trial, and reported no differences between positive-only and negative-only feedback in terms of their effectiveness. We followed up on these findings and conducted 3 experiments in which participants completed 2,400 II categorization trials across three days under 1 of 3 conditions: positive feedback only (PFB), negative feedback only (NFB), or both types of feedback (CP; control partial). An adaptive algorithm controlled the amount of feedback given to each group so that feedback was nearly equated. Using different feedback control procedures, Experiments 1 and 2 demonstrated that participants in the NFB and CP group were able to engage II learning strategies, whereas the PFB group was not. Additionally, the NFB group was able to achieve significantly higher accuracy than the PFB group by Day 3. Experiment 3 revealed that these differences remained even when we equated the information received on feedback trials. Thus, negative feedback appears significantly more effective for learning II category structures. This suggests that the human implicit learning system may be capable of learning in the absence of positive feedback.

  6. Control Theory Perspective of Effects-Based Thinking and Operations: Modelling Operations as a Feedback Control System

    DTIC Science & Technology

    2007-11-01

    Control Theory Perspective of Effects-Based Thinking and Operations Modelling “Operations” as a Feedback Control System Philip S. E... Theory Perspective of Effects-Based Thinking and Operations Modelling “Operations” as a Feedback Control System Philip S. E. Farrell...Abstract This paper explores operations that involve effects-based thinking (EBT) using Control Theory techniques in order to highlight the concept’s

  7. Development of kinesthetic-motor and auditory-motor representations in school-aged children.

    PubMed

    Kagerer, Florian A; Clark, Jane E

    2015-07-01

    In two experiments using a center-out task, we investigated kinesthetic-motor and auditory-motor integrations in 5- to 12-year-old children and young adults. In experiment 1, participants moved a pen on a digitizing tablet from a starting position to one of three targets (visuo-motor condition), and then to one of four targets without visual feedback of the movement. In both conditions, we found that with increasing age, the children moved faster and straighter, and became less variable in their feedforward control. Higher control demands for movements toward the contralateral side were reflected in longer movement times and decreased spatial accuracy across all age groups. When feedforward control relies predominantly on kinesthesia, 7- to 10-year-old children were more variable, indicating difficulties in switching between feedforward and feedback control efficiently during that age. An inverse age progression was found for directional endpoint error; larger errors increasing with age likely reflect stronger functional lateralization for the dominant hand. In experiment 2, the same visuo-motor condition was followed by an auditory-motor condition in which participants had to move to acoustic targets (either white band or one-third octave noise). Since in the latter directional cues come exclusively from transcallosally mediated interaural time differences, we hypothesized that auditory-motor representations would show age effects. The results did not show a clear age effect, suggesting that corpus callosum functionality is sufficient in children to allow them to form accurate auditory-motor maps already at a young age.

  8. Development of kinesthetic-motor and auditory-motor representations in school-aged children

    PubMed Central

    Clark, Jane E.

    2015-01-01

    In two experiments using a center-out task, we investigated kinesthetic-motor and auditory-motor integrations in 5- to 12-year-old children and young adults. In experiment 1, participants moved a pen on a digitizing tablet from a starting position to one of three targets (visuo-motor condition), and then to one of four targets without visual feedback of the movement. In both conditions, we found that with increasing age, the children moved faster and straighter, and became less variable in their feedforward control. Higher control demands for movements toward the contralateral side were reflected in longer movement times and decreased spatial accuracy across all age groups. When feedforward control relies predominantly on kinesthesia, 7- to 10-year-old children were more variable, indicating difficulties in switching between feedforward and feedback control efficiently during that age. An inverse age progression was found for directional endpoint error; larger errors increasing with age likely reflect stronger functional lateralization for the dominant hand. In experiment 2, the same visuo-motor condition was followed by an auditory-motor condition in which participants had to move to acoustic targets (either white band or one-third octave noise). Since in the latter directional cues come exclusively from transcallosally mediated interaural time differences, we hypothesized that auditory-motor representations would show age effects. The results did not show a clear age effect, suggesting that corpus callosum functionality is sufficient in children to allow them to form accurate auditory-motor maps already at a young age. PMID:25912609

  9. Grip force control during virtual object interaction: effect of force feedback,accuracy demands, and training.

    PubMed

    Gibo, Tricia L; Bastian, Amy J; Okamura, Allison M

    2014-03-01

    When grasping and manipulating objects, people are able to efficiently modulate their grip force according to the experienced load force. Effective grip force control involves providing enough grip force to prevent the object from slipping, while avoiding excessive force to avoid damage and fatigue. During indirect object manipulation via teleoperation systems or in virtual environments, users often receive limited somatosensory feedback about objects with which they interact. This study examines the effects of force feedback, accuracy demands, and training on grip force control during object interaction in a virtual environment. The task required subjects to grasp and move a virtual object while tracking a target. When force feedback was not provided, subjects failed to couple grip and load force, a capability fundamental to direct object interaction. Subjects also exerted larger grip force without force feedback and when accuracy demands of the tracking task were high. In addition, the presence or absence of force feedback during training affected subsequent performance, even when the feedback condition was switched. Subjects' grip force control remained reminiscent of their employed grip during the initial training. These results motivate the use of force feedback during telemanipulation and highlight the effect of force feedback during training.

  10. Combined Auditory and Vibrotactile Feedback for Human-Machine-Interface Control.

    PubMed

    Thorp, Elias B; Larson, Eric; Stepp, Cara E

    2014-01-01

    The purpose of this study was to determine the effect of the addition of binary vibrotactile stimulation to continuous auditory feedback (vowel synthesis) for human-machine interface (HMI) control. Sixteen healthy participants controlled facial surface electromyography to achieve 2-D targets (vowels). Eight participants used only real-time auditory feedback to locate targets whereas the other eight participants were additionally alerted to having achieved targets with confirmatory vibrotactile stimulation at the index finger. All participants trained using their assigned feedback modality (auditory alone or combined auditory and vibrotactile) over three sessions on three days and completed a fourth session on the third day using novel targets to assess generalization. Analyses of variance performed on the 1) percentage of targets reached and 2) percentage of trial time at the target revealed a main effect for feedback modality: participants using combined auditory and vibrotactile feedback performed significantly better than those using auditory feedback alone. No effect was found for session or the interaction of feedback modality and session, indicating a successful generalization to novel targets but lack of improvement over training sessions. Future research is necessary to determine the cognitive cost associated with combined auditory and vibrotactile feedback during HMI control.

  11. Intermittent compared to continuous real-time fMRI neurofeedback boosts control over amygdala activation.

    PubMed

    Hellrung, Lydia; Dietrich, Anja; Hollmann, Maurice; Pleger, Burkhard; Kalberlah, Christian; Roggenhofer, Elisabeth; Villringer, Arno; Horstmann, Annette

    2018-02-01

    Real-time fMRI neurofeedback is a feasible tool to learn the volitional regulation of brain activity. So far, most studies provide continuous feedback information that is presented upon every volume acquisition. Although this maximizes the temporal resolution of feedback information, it may be accompanied by some disadvantages. Participants can be distracted from the regulation task due to (1) the intrinsic delay of the hemodynamic response and associated feedback and (2) limited cognitive resources available to simultaneously evaluate feedback information and stay engaged with the task. Here, we systematically investigate differences between groups presented with different variants of feedback (continuous vs. intermittent) and a control group receiving no feedback on their ability to regulate amygdala activity using positive memories and feelings. In contrast to the feedback groups, no learning effect was observed in the group without any feedback presentation. The group receiving intermittent feedback exhibited better amygdala regulation performance when compared with the group receiving continuous feedback. Behavioural measurements show that these effects were reflected in differences in task engagement. Overall, we not only demonstrate that the presentation of feedback is a prerequisite to learn volitional control of amygdala activity but also that intermittent feedback is superior to continuous feedback presentation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. The Roles of Feedback and Feedforward as Humans Learn to Control Unknown Dynamic Systems.

    PubMed

    Zhang, Xingye; Wang, Shaoqian; Hoagg, Jesse B; Seigler, T Michael

    2018-02-01

    We present results from an experiment in which human subjects interact with an unknown dynamic system 40 times during a two-week period. During each interaction, subjects are asked to perform a command-following (i.e., pursuit tracking) task. Each subject's performance at that task improves from the first trial to the last trial. For each trial, we use subsystem identification to estimate each subject's feedforward (or anticipatory) control, feedback (or reactive) control, and feedback time delay. Over the 40 trials, the magnitudes of the identified feedback controllers and the identified feedback time delays do not change significantly. In contrast, the identified feedforward controllers do change significantly. By the last trial, the average identified feedforward controller approximates the inverse of the dynamic system. This observation provides evidence that a fundamental component of human learning is updating the anticipatory control until it models the inverse dynamics.

  13. Control of complex motor gestures: orofacial muscle responses to load perturbations of lip during speech.

    PubMed

    Abbs, J H; Gracco, V L

    1984-04-01

    The contribution of ascending afferents to the control of speech movement was evaluated by applying unanticipated loads to the lower lip during the generation of combined upper lip-lower lip speech gestures. To eliminate potential contamination due to anticipation or adaptation, loads were applied randomly on only 10-15% of the trials. Physical characteristics of the perturbations were within the normal range of forces and movements involved in natural lip actions for speech. Compensatory responses in multiple facial muscles and lip movements were observed the first time a load was introduced, and achievement of the multimovement speech goals was never disrupted by these perturbations. Muscle responses were seen in the lower lip muscles, implicating corrective, feedback processes. Additionally, compensatory responses to these lower lip loads were also observed in the independently controlled muscles of the upper lip, reflecting the parallel operation of open-loop, sensorimotor mechanisms. Compensatory responses from both the upper and lower lip muscles were observed with small (1 mm) as well as large (15 mm) perturbations. The latencies of these compensatory responses were not discernible by conventional ensemble averaging. Moreover, responses at latencies of lower brain stem-mediated reflexes (i.e., 10-18 ms) were not apparent with inspection of individual records. Response latencies were determined on individual loaded trials through the use of a computer algorithm that took into account the variability of electromyograms (EMG) among the control trials. These latency measures confirmed the absence of brain stem-mediated responses and yielded response latencies that ranged from 22 to 75 ms. Response latencies appeared to be influenced by the time relation between load onset and the initiation of muscle activation. Examination of muscle activity changes for individual loaded trials revealed complementary variations in the magnitude of responses among multiple muscles contributing to a movement compensation. These observations may have implications for limb movement control if multimovement speech gestures are considered analogous to a limb action requiring coordinated movements around multiple joints. In this context, these speech motor control data might be interpreted to suggest that for complex movements, both corrective feedback and open-loop predictive processes are operating, with the latter involved in the control of coordination among multiple movement subcomponents.

  14. Design study of a feedback control system for the Multicyclic Flap System rotor (MFS)

    NASA Technical Reports Server (NTRS)

    Weisbrich, R.; Perley, R.; Howes, H.

    1977-01-01

    The feasibility of automatically providing higher harmonic control to a deflectable control flap at the tip of a helicopter rotor blade through feedback of selected independent parameter was investigated. Control parameters were selected for input to the feedback system. A preliminary circuit was designed to condition the selected parameters, weigh limiting factors, and provide a proper output signal to the multi-cyclic control actuators. Results indicate that feedback control for the higher harmonic is feasible; however, design for a flight system requires an extension of the present analysis which was done for one flight condition - 120 kts, 11,500 lbs gross weight and level flight.

  15. Feedback linearization for control of air breathing engines

    NASA Technical Reports Server (NTRS)

    Phillips, Stephen; Mattern, Duane

    1991-01-01

    The method of feedback linearization for control of the nonlinear nozzle and compressor components of an air breathing engine is presented. This method overcomes the need for a large number of scheduling variables and operating points to accurately model highly nonlinear plants. Feedback linearization also results in linear closed loop system performance simplifying subsequent control design. Feedback linearization is used for the nonlinear partial engine model and performance is verified through simulation.

  16. Indirect Identification of Linear Stochastic Systems with Known Feedback Dynamics

    NASA Technical Reports Server (NTRS)

    Huang, Jen-Kuang; Hsiao, Min-Hung; Cox, David E.

    1996-01-01

    An algorithm is presented for identifying a state-space model of linear stochastic systems operating under known feedback controller. In this algorithm, only the reference input and output of closed-loop data are required. No feedback signal needs to be recorded. The overall closed-loop system dynamics is first identified. Then a recursive formulation is derived to compute the open-loop plant dynamics from the identified closed-loop system dynamics and known feedback controller dynamics. The controller can be a dynamic or constant-gain full-state feedback controller. Numerical simulations and test data of a highly unstable large-gap magnetic suspension system are presented to demonstrate the feasibility of this indirect identification method.

  17. Self-Controlled Feedback Facilitates Motor Learning in Both High and Low Activity Individuals

    PubMed Central

    Fairbrother, Jeffrey T.; Laughlin, David D.; Nguyen, Timothy V.

    2012-01-01

    The purpose of this study was to determine if high and low activity individuals differed in terms of the effects of self-controlled feedback on the performance and learning of a movement skill. The task consisted of a blindfolded beanbag toss using the non-preferred arm. Participants were pre-screened according to their physical activity level using the International Physical Activity Questionnaire. An equal number of high activity (HA) and low activity (LA) participants were assigned to self-control (SC) and yoked (YK) feedback conditions, creating four groups: Self-Control-High Activity; Self-Control-Low Activity; Yoked-High Activity; and Yoked-Low Activity. SC condition participants were provided feedback whenever they requested it, while YK condition participants received feedback according to a schedule created by their SC counterpart. Results indicated that the SC condition was more accurate than the YK condition during acquisition and transfer phases, and the HA condition was more accurate than the LA condition during all phases of the experiment. A post-training questionnaire indicated that participants in the SC condition asked for feedback mostly after what they perceived to be “good” trials; those in the YK condition indicated that they would have preferred to receive feedback after “good” trials. This study provided further support for the advantages of self-controlled feedback when learning motor skills, additionally showing benefits for both active and less active individuals. The results suggested that the provision of self-controlled feedback to less active learners may be a potential avenue to teaching motor skills necessary to engage in greater amounts of physical activity. PMID:22969745

  18. Effectiveness of a smartphone app in increasing physical activity amongst male adults: a randomised controlled trial.

    PubMed

    Harries, Tim; Eslambolchilar, Parisa; Rettie, Ruth; Stride, Chris; Walton, Simon; van Woerden, Hugo C

    2016-09-02

    Smartphones are ideal for promoting physical activity in those with little intrinsic motivation for exercise. This study tested three hypotheses: H1 - receipt of social feedback generates higher step-counts than receipt of no feedback; H2 - receipt of social feedback generates higher step-counts than only receiving feedback on one's own walking; H3 - receipt of feedback on one's own walking generates higher step-counts than no feedback (H3). A parallel group randomised controlled trial measured the impact of feedback on steps-counts. Healthy male participants (n = 165) aged 18-40 were given phones pre-installed with an app that recorded steps continuously, without the need for user activation. Participants carried these with them as their main phones for a two-week run-in and six-week trial. Randomisation was to three groups: no feedback (control); personal feedback on step-counts; group feedback comparing step-counts against those taken by others in their group. The primary outcome measure, steps per day, was assessed using longitudinal multilevel regression analysis. Control variables included attitude to physical activity and perceived barriers to physical activity. Fifty-five participants were allocated to each group; 152 completed the study and were included in the analysis: n = 49, no feedback; n = 53, individual feedback; n = 50, individual and social feedback. The study provided support for H1 and H3 but not H2. Receipt of either form of feedback explained 7.7 % of between-subject variability in step-count (F = 6.626, p < 0.0005). Compared to the control, the expected step-count for the individual feedback group was 60 % higher (effect on log step-count = 0.474, 95 % CI = 0.166-0.782) and that for the social feedback group, 69 % higher (effect on log step-count = 0.526, 95 % CI = 0.212-0.840). The difference between the two feedback groups (individual vs social feedback) was not statistically significant. Always-on smartphone apps that provide step-counts can increase physical activity in young to early-middle-aged men but the provision of social feedback has no apparent incremental impact. This approach may be particularly suitable for inactive people with low levels of physical activity; it should now be tested with this population.

  19. Microelectromechanical accelerometer with resonance-cancelling control circuit including an idle state

    DOEpatents

    Chu, Dahlon D.; Thelen, Jr., Donald C.; Campbell, David V.

    2001-01-01

    A digital feedback control circuit is disclosed for use in an accelerometer (e.g. a microelectromechanical accelerometer). The digital feedback control circuit, which periodically re-centers a proof mass in response to a sensed acceleration, is based on a sigma-delta (.SIGMA..DELTA.) configuration that includes a notch filter (e.g. a digital switched-capacitor filter) for rejecting signals due to mechanical resonances of the proof mass and further includes a comparator (e.g. a three-level comparator). The comparator generates one of three possible feedback states, with two of the feedback states acting to re-center the proof mass when that is needed, and with a third feedback state being an "idle" state which does not act to move the proof mass when no re-centering is needed. Additionally, the digital feedback control system includes an auto-zero trim capability for calibration of the accelerometer for accurate sensing of acceleration. The digital feedback control circuit can be fabricated using complementary metal-oxide semiconductor (CMOS) technology, bi-CMOS technology or bipolar technology and used in single- and dual-proof-mass accelerometers.

  20. Virtual grasping: closed-loop force control using electrotactile feedback.

    PubMed

    Jorgovanovic, Nikola; Dosen, Strahinja; Djozic, Damir J; Krajoski, Goran; Farina, Dario

    2014-01-01

    Closing the control loop by providing somatosensory feedback to the user of a prosthesis is a well-known, long standing challenge in the field of prosthetics. Various approaches have been investigated for feedback restoration, ranging from direct neural stimulation to noninvasive sensory substitution methods. Although there are many studies presenting closed-loop systems, only a few of them objectively evaluated the closed-loop performance, mostly using vibrotactile stimulation. Importantly, the conclusions about the utility of the feedback were partly contradictory. The goal of the current study was to systematically investigate the capability of human subjects to control grasping force in closed loop using electrotactile feedback. We have developed a realistic experimental setup for virtual grasping, which operated in real time, included a set of real life objects, as well as a graphical and dynamical model of the prosthesis. We have used the setup to test 10 healthy, able bodied subjects to investigate the role of training, feedback and feedforward control, robustness of the closed loop, and the ability of the human subjects to generalize the control to previously "unseen" objects. Overall, the outcomes of this study are very optimistic with regard to the benefits of feedback and reveal various, practically relevant, aspects of closed-loop control.

  1. Improving Instruction Using Statistical Process Control.

    ERIC Educational Resources Information Center

    Higgins, Ronald C.; Messer, George H.

    1990-01-01

    Two applications of statistical process control to the process of education are described. Discussed are the use of prompt feedback to teachers and prompt feedback to students. A sample feedback form is provided. (CW)

  2. Feedback Power Control Strategies in Wireless Sensor Networks with Joint Channel Decoding

    PubMed Central

    Abrardo, Andrea; Ferrari, Gianluigi; Martalò, Marco; Perna, Fabio

    2009-01-01

    In this paper, we derive feedback power control strategies for block-faded multiple access schemes with correlated sources and joint channel decoding (JCD). In particular, upon the derivation of the feasible signal-to-noise ratio (SNR) region for the considered multiple access schemes, i.e., the multidimensional SNR region where error-free communications are, in principle, possible, two feedback power control strategies are proposed: (i) a classical feedback power control strategy, which aims at equalizing all link SNRs at the access point (AP), and (ii) an innovative optimized feedback power control strategy, which tries to make the network operational point fall in the feasible SNR region at the lowest overall transmit energy consumption. These strategies will be referred to as “balanced SNR” and “unbalanced SNR,” respectively. While they require, in principle, an unlimited power control range at the sources, we also propose practical versions with a limited power control range. We preliminary consider a scenario with orthogonal links and ideal feedback. Then, we analyze the robustness of the proposed power control strategies to possible non-idealities, in terms of residual multiple access interference and noisy feedback channels. Finally, we successfully apply the proposed feedback power control strategies to a limiting case of the class of considered multiple access schemes, namely a central estimating officer (CEO) scenario, where the sensors observe noisy versions of a common binary information sequence and the AP's goal is to estimate this sequence by properly fusing the soft-output information output by the JCD algorithm. PMID:22291536

  3. Method and apparatus for adaptive force and position control of manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun (Inventor)

    1989-01-01

    The present invention discloses systematic methods and apparatus for the design of real time controllers. Real-time control employs adaptive force/position by use of feedforward and feedback controllers, with the feedforward controller being the inverse of the linearized model of robot dynamics and containing only proportional-double-derivative terms is disclosed. The feedback controller, of the proportional-integral-derivative type, ensures that manipulator joints follow reference trajectories and the feedback controller achieves robust tracking of step-plus-exponential trajectories, all in real time. The adaptive controller includes adaptive force and position control within a hybrid control architecture. The adaptive controller, for force control, achieves tracking of desired force setpoints, and the adaptive position controller accomplishes tracking of desired position trajectories. Circuits in the adaptive feedback and feedforward controllers are varied by adaptation laws.

  4. The role of auditory and kinaesthetic feedback mechanisms on phonatory stability in children.

    PubMed

    Rathna Kumar, S B; Azeem, Suhail; Choudhary, Abhishek Kumar; Prakash, S G R

    2013-12-01

    Auditory feedback plays an important role in phonatory control. When auditory feedback is disrupted, various changes are observed in vocal motor control. Vocal intensity and fundamental frequency (F0) levels tend to increase in response to auditory masking. Because of the close reflexive links between the auditory and phonatory systems, it is likely that phonatory stability may be disrupted when auditory feedback is disrupted or altered. However, studies on phonatory stability under auditory masking condition in adult subjects showed that most of the subjects maintained normal levels of phonatory stability. The authors in the earlier investigations suggested that auditory feedback is not the sole contributor to vocal motor control and phonatory stability, a complex neuromuscular reflex system known as kinaesthetic feedback may play a role in controlling phonatory stability when auditory feedback is disrupted or lacking. This proposes the need to further investigate this phenomenon as to whether children show similar patterns of phonatory stability under auditory masking since their neuromotor systems are still at developmental stage, less mature and are less resistant to altered auditory feedback than adults. A total of 40 normal hearing and speaking children (20 male and 20 female) between the age group of 6 and 8 years participated as subjects. The acoustic parameters such as shimmer, jitter and harmonic-to-noise ratio (HNR) were measures and compared between no masking condition (0 dB ML) and masking condition (90 dB ML). Despite the neuromotor systems being less mature in children and less resistant than adults to altered auditory feedback, most of the children in the study demonstrated increased phonatory stability which was reflected by reduced shimmer, jitter and increased HNR values. This study implicates that most of the children demonstrate well established patterns of kinaesthetic feedback, which might have allowed them to maintain normal levels of vocal motor control even in the presence of disturbed auditory feedback. Hence, it can be concluded that children also exhibit kinaesthetic feedback mechanism to control phonatory stability when auditory feedback is disrupted which in turn highlights the importance of kinaesthetic feedback to be included in the therapeutic/intervention approaches for children with hearing and neurogenic speech deficits.

  5. Vibrotactile Feedback Alters Dynamics Of Static Postural Control In Persons With Parkinson's Disease But Not Older Adults At High Fall Risk.

    PubMed

    High, Carleigh M; McHugh, Hannah F; Mills, Stephen C; Amano, Shinichi; Freund, Jane E; Vallabhajosula, Srikant

    2018-06-01

    Aging and Parkinson's disease are often associated with impaired postural control. Providing extrinsic feedback via vibrotactile sensation could supplement intrinsic feedback to maintain postural control. We investigated the postural control response to vibrotactile feedback provided at the trunk during challenging stance conditions in older adults at high fall risk and individuals with Parkinson's disease compared to healthy older adults. Nine older adults at high fall risk, 9 persons with Parkinson's disease and 10 healthy older adults performed 30s quiet standing on a force platform under five challenging stance conditions with eyes open/closed and standing on firm/foam surface with feet together, each with and without vibrotactile feedback. During vibrotactile feedback trials, feedback was provided when participants swayed >10% over the center of their base of support. Participants were instructed vibrations would be in response to their movement. Magnitude of postural sway was estimated using center of pressure path length, velocity, and sway area. Dynamics of individuals' postural control was evaluated using detrended fluctuation analysis. Results showed that vibrotactile feedback induced a change in postural control dynamics among persons with Parkinson's disease when standing with intact intrinsic visual input and altered intrinsic somatosensory input, but there was no change in sway magnitude. However, use of vibrotactile feedback did not significantly alter dynamics of postural control in older adults with high risk of falling or reduce the magnitude of sway. Considering the effects of vibrotactile feedback were dependent on the population and stance condition, designing an optimal therapeutic regimen for balance training should be carefully considered and be specific to a target population. Furthermore, our results suggest that explicit instructions on how to respond to the vibrotactile feedback could affect training outcome. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems

    PubMed Central

    Xia, Feng; Ma, Longhua; Peng, Chen; Sun, Youxian; Dong, Jinxiang

    2008-01-01

    There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS) scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting cross-layer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An event-driven invocation mechanism for the feedback scheduler is also developed. Simulation results show that the proposed approach is efficient in dealing with channel capacity variations and noise interference, thus providing an enabling technology for control over WLAN. PMID:27879934

  7. Upper-Limb Robotic Exoskeletons for Neurorehabilitation: A Review on Control Strategies.

    PubMed

    Proietti, Tommaso; Crocher, Vincent; Roby-Brami, Agnes; Jarrasse, Nathanael

    2016-01-01

    Since the late 1990s, there has been a burst of research on robotic devices for poststroke rehabilitation. Robot-mediated therapy produced improvements on recovery of motor capacity; however, so far, the use of robots has not shown qualitative benefit over classical therapist-led training sessions, performed on the same quantity of movements. Multidegree-of-freedom robots, like the modern upper-limb exoskeletons, enable a distributed interaction on the whole assisted limb and can exploit a large amount of sensory feedback data, potentially providing new capabilities within standard rehabilitation sessions. Surprisingly, most publications in the field of exoskeletons focused only on mechatronic design of the devices, while little details were given to the control aspects. On the contrary, we believe a paramount aspect for robots potentiality lies on the control side. Therefore, the aim of this review is to provide a taxonomy of currently available control strategies for exoskeletons for neurorehabilitation, in order to formulate appropriate questions toward the development of innovative and improved control strategies.

  8. Listening and Speaking: A Cybernetic Synthesis.

    ERIC Educational Resources Information Center

    Nord, James R.

    1985-01-01

    Cybernetic feedback theory sees the individual as a self-organizing feedback control system that generates its own activity to control its own perceptions. Applying the principle of feedback to language use, it appears that speaking as an overt public behavior is controlled by an internally private listening capacity. With that listening capacity,…

  9. Effects of feedback delay on learning from positive and negative feedback in patients with Parkinson's disease off medication.

    PubMed

    Weismüller, Benjamin; Ghio, Marta; Logmin, Kazimierz; Hartmann, Christian; Schnitzler, Alfons; Pollok, Bettina; Südmeyer, Martin; Bellebaum, Christian

    2018-05-11

    Phasic dopamine (DA) signals conveyed from the substantia nigra to the striatum and the prefrontal cortex crucially affect learning from feedback, with DA bursts facilitating learning from positive feedback and DA dips facilitating learning from negative feedback. Consequently, diminished nigro-striatal dopamine levels as in unmedicated patients suffering from Parkinson's Disease (PD) have been shown to lead to a negative learning bias. Recent studies suggested a diminished striatal contribution to feedback processing when the outcome of an action is temporally delayed. This study investigated whether the bias towards negative feedback learning induced by a lack of DA in PD patients OFF medication is modulated by feedback delay. To this end, PD patients OFF medication and healthy controls completed a probabilistic selection task, in which feedback was given immediately (after 800 ms) or delayed (after 6800 ms). PD patients were impaired in immediate but not delayed feedback learning. However, differences in the preference for positive/negative learning between patients and controls were seen for both learning from immediate and delayed feedback, with evidence of stronger negative learning in patients than controls. A Bayesian analysis of the data supports the conclusion that feedback timing did not affect the learning bias in the patients. These results hint at reduced, but still relevant nigro-striatal contribution to feedback learning, when feedback is delayed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Electrotactile Feedback Improves Performance and Facilitates Learning in the Routine Grasping Task.

    PubMed

    Isaković, Milica; Belić, Minja; Štrbac, Matija; Popović, Igor; Došen, Strahinja; Farina, Dario; Keller, Thierry

    2016-06-13

    Aim of this study was to investigate the feasibility of electrotactile feedback in closed loop training of force control during the routine grasping task. The feedback was provided using an array electrode and a simple six-level spatial coding, and the experiment was conducted in three amputee subjects. The psychometric tests confirmed that the subjects could perceive and interpret the electrotactile feedback with a high success rate. The subjects performed the routine grasping task comprising 4 blocks of 60 grasping trials. In each trial, the subjects employed feedforward control to close the hand and produce the desired grasping force (four levels). First (baseline) and the last (validation) session were performed in open loop, while the second and the third session (training) included electrotactile feedback. The obtained results confirmed that using the feedback improved the accuracy and precision of the force control. In addition, the subjects performed significantly better in the validation vs. baseline session, therefore suggesting that electrotactile feedback can be used for learning and training of myoelectric control.

  11. Feedforward-feedback control of dissolved oxygen concentration in a predenitrification system.

    PubMed

    Yong, Ma; Yongzhen, Peng; Shuying, Wang

    2005-07-01

    As the largest single energy-consuming component in most biological wastewater treatment systems, aeration control is of great interest from the point of view of saving energy and improving wastewater treatment plant efficiency. In this paper, three different strategies, including conventional constant dissolved oxygen (DO) set-point control, cascade DO set-point control, and feedforward-feedback DO set-point control were evaluated using the denitrification layout of the IWA simulation benchmark. Simulation studies showed that the feedforward-feedback DO set-point control strategy was better than the other control strategies at meeting the effluent standards and reducing operational costs. The control strategy works primarily by feedforward control based on an ammonium sensor located at the head of the aerobic process. It has an important advantage over effluent measurements in that there is no (or only a very short) time delay for information; feedforward control was combined with slow feedback control to compensate for model approximations. The feedforward-feedback DO control was implemented in a lab-scale wastewater treatment plant for a period of 60 days. Compared to operation with constant DO concentration, the required airflow could be reduced by up to 8-15% by employing the feedforward-feedback DO-control strategy, and the effluent ammonia concentration could be reduced by up to 15-25%. This control strategy can be expected to be accepted by the operating personnel in wastewater treatment plants.

  12. Self-concept mediates the relation between achievement and emotions in mathematics.

    PubMed

    Van der Beek, Jojanneke P J; Van der Ven, Sanne H G; Kroesbergen, Evelyn H; Leseman, Paul P M

    2017-09-01

    Mathematics achievement is related to positive and negative emotions. Pekrun's control-value theory of achievement emotions suggests that students' self-concept (i.e., self-appraisal of ability) may be an important mediator of the relation between mathematics achievement and emotions. The aims were (1) to investigate the mediating role of mathematical self-concept in the relation between mathematics achievement and the achievement emotions of enjoyment and anxiety in a comprehensive model, and (2) to test possible differences in this mediating role between low-, average-, and high-achieving students. Participants were ninth-grade students (n = 1,014) from eight secondary schools in the Netherlands. Through an online survey including mathematical problems, students were asked to indicate their levels of mathematics enjoyment, anxiety, and self-concept. Structural equation modelling was used to test the mediating role of self-concept in the relation between mathematics achievement and emotions. Multigroup analyses were performed to compare these relations across the three achievement groups. Results confirmed full mediation of the relation between mathematics achievement and emotions by mathematical self-concept. Furthermore, we found higher self-concepts, more enjoyment and less math anxiety in high-achieving students compared to their average and low-achieving peers. No differences across these achievement groups were found in the relations in the mediational model. Mathematical self-concept plays a pivotal role in students' appraisal of mathematics. Mathematics achievement is only one factor explaining students' self-concept. Likely also classroom instruction and teachers' feedback strategies help to shape students' self-concept. © 2017 The British Psychological Society.

  13. The Preschool Classroom as a Context for Cognitive Development: Type of Teacher Feedback and Children's Metacognitive Control (El aula Preescolar como espacio de desarrollo cognitivo: tipo de feedback docente y control metacognitivo en los niños)

    ERIC Educational Resources Information Center

    Muñoz, Liz; Cruz, Josefina Santa

    2016-01-01

    Introduction: The aim of this work was to determine whether the type of feedback given by the preschool teacher during class impacts the children's metacognitive control. For this purpose, the children's behavior was analyzed while teachers provided feedback during collaborative learning sessions. Method: A quasi-experimental, cross-sectional…

  14. Optimal control of nonlinear continuous-time systems in strict-feedback form.

    PubMed

    Zargarzadeh, Hassan; Dierks, Travis; Jagannathan, Sarangapani

    2015-10-01

    This paper proposes a novel optimal tracking control scheme for nonlinear continuous-time systems in strict-feedback form with uncertain dynamics. The optimal tracking problem is transformed into an equivalent optimal regulation problem through a feedforward adaptive control input that is generated by modifying the standard backstepping technique. Subsequently, a neural network-based optimal control scheme is introduced to estimate the cost, or value function, over an infinite horizon for the resulting nonlinear continuous-time systems in affine form when the internal dynamics are unknown. The estimated cost function is then used to obtain the optimal feedback control input; therefore, the overall optimal control input for the nonlinear continuous-time system in strict-feedback form includes the feedforward plus the optimal feedback terms. It is shown that the estimated cost function minimizes the Hamilton-Jacobi-Bellman estimation error in a forward-in-time manner without using any value or policy iterations. Finally, optimal output feedback control is introduced through the design of a suitable observer. Lyapunov theory is utilized to show the overall stability of the proposed schemes without requiring an initial admissible controller. Simulation examples are provided to validate the theoretical results.

  15. The Effects of Face-to-Face and Computer-Mediated Peer Review on EFL Writers' Comments and Revisions

    ERIC Educational Resources Information Center

    Ho, Mei-ching

    2015-01-01

    This study investigates the use of face-to-face and computer-mediated peer review in an English as a Foreign Language (EFL) writing course to examine how different interaction modes affect comment categories, students' revisions, and their perceptions of peer feedback. The participants were an intact class of 13 students at a Taiwanese university.…

  16. Structure of Corrective Feedback for Selection of Ineffective Vegetable Parenting Practices for Use in a Simulation Videogame

    PubMed Central

    Beltran, Alicia; Chen, Tzu-An; O'Connor, Teresia; Hughes, Sheryl; Buday, Richard; Baranowski, Janice

    2013-01-01

    Abstract A serious videogame is being developed to train parents of preschool children in selecting and using parenting practices that are likely to encourage their child to eat more vegetables. The structure of feedback to the parents on their selection may influence what they learn from the game. Feedback Intervention Theory provides some guidance on the design of such messages. The structure of preferred performance feedback statements has not been investigated within serious videogames. Two feedback formats were tested for a player's preferences within the context of this videogame. Based on Feedback Intervention Theory, which proposes that threat to self-concept impairs feedback response, three-statement (a nonaffirming comment sandwiched between two affirming comments, called “Oreo” feedback, which should minimize threat to self-concept) and two-statement (a nonaffirming comment followed by an affirming comment) performance feedbacks were tailored to respondents. Tailoring was based on participants' report of frequency of use of effective and ineffective vegetable parenting practices and the reasons for use of the ineffective practices. Participants selected their preference between the two forms of feedback for each of eight ineffective vegetable parenting practices. In general, mothers (n=81) (no male respondents) slightly preferred the “Oreo” feedback, but the pattern of preferences varied by demographic characteristics. Stronger relationships by income suggest the feedback structure should be tailored to family income. Future research with larger and more diverse samples needs to test whether perceived threat to self-concept mediates the response to feedback and otherwise verify these findings. PMID:24761320

  17. Structure of Corrective Feedback for Selection of Ineffective Vegetable Parenting Practices for Use in a Simulation Videogame.

    PubMed

    Baranowski, Tom; Beltran, Alicia; Chen, Tzu-An; O'Connor, Teresia; Hughes, Sheryl; Buday, Richard; Baranowski, Janice

    2013-02-01

    A serious videogame is being developed to train parents of preschool children in selecting and using parenting practices that are likely to encourage their child to eat more vegetables. The structure of feedback to the parents on their selection may influence what they learn from the game. Feedback Intervention Theory provides some guidance on the design of such messages. The structure of preferred performance feedback statements has not been investigated within serious videogames. Two feedback formats were tested for a player's preferences within the context of this videogame. Based on Feedback Intervention Theory, which proposes that threat to self-concept impairs feedback response, three-statement (a nonaffirming comment sandwiched between two affirming comments, called "Oreo" feedback, which should minimize threat to self-concept) and two-statement (a nonaffirming comment followed by an affirming comment) performance feedbacks were tailored to respondents. Tailoring was based on participants' report of frequency of use of effective and ineffective vegetable parenting practices and the reasons for use of the ineffective practices. Participants selected their preference between the two forms of feedback for each of eight ineffective vegetable parenting practices. In general, mothers ( n =81) (no male respondents) slightly preferred the "Oreo" feedback, but the pattern of preferences varied by demographic characteristics. Stronger relationships by income suggest the feedback structure should be tailored to family income. Future research with larger and more diverse samples needs to test whether perceived threat to self-concept mediates the response to feedback and otherwise verify these findings.

  18. Effect of visuomotor-map uncertainty on visuomotor adaptation.

    PubMed

    Saijo, Naoki; Gomi, Hiroaki

    2012-03-01

    Vision and proprioception contribute to generating hand movement. If a conflict between the visual and proprioceptive feedback of hand position is given, reaching movement is disturbed initially but recovers after training. Although previous studies have predominantly investigated the adaptive change in the motor output, it is unclear whether the contributions of visual and proprioceptive feedback controls to the reaching movement are modified by visuomotor adaptation. To investigate this, we focused on the change in proprioceptive feedback control associated with visuomotor adaptation. After the adaptation to gradually introduce visuomotor rotation, the hand reached the shifted position of the visual target to move the cursor to the visual target correctly. When the cursor feedback was occasionally eliminated (probe trial), the end point of the hand movement was biased in the visual-target direction, while the movement was initiated in the adapted direction, suggesting the incomplete adaptation of proprioceptive feedback control. Moreover, after the learning of uncertain visuomotor rotation, in which the rotation angle was randomly fluctuated on a trial-by-trial basis, the end-point bias in the probe trial increased, but the initial movement direction was not affected, suggesting a reduction in the adaptation level of proprioceptive feedback control. These results suggest that the change in the relative contribution of visual and proprioceptive feedback controls to the reaching movement in response to the visuomotor-map uncertainty is involved in visuomotor adaptation, whereas feedforward control might adapt in a manner different from that of the feedback control.

  19. Monitoring and control of amygdala neurofeedback involves distributed information processing in the human brain.

    PubMed

    Paret, Christian; Zähringer, Jenny; Ruf, Matthias; Gerchen, Martin Fungisai; Mall, Stephanie; Hendler, Talma; Schmahl, Christian; Ende, Gabriele

    2018-03-30

    Brain-computer interfaces provide conscious access to neural activity by means of brain-derived feedback ("neurofeedback"). An individual's abilities to monitor and control feedback are two necessary processes for effective neurofeedback therapy, yet their underlying functional neuroanatomy is still being debated. In this study, healthy subjects received visual feedback from their amygdala response to negative pictures. Activation and functional connectivity were analyzed to disentangle the role of brain regions in different processes. Feedback monitoring was mapped to the thalamus, ventromedial prefrontal cortex (vmPFC), ventral striatum (VS), and rostral PFC. The VS responded to feedback corresponding to instructions while rPFC activity differentiated between conditions and predicted amygdala regulation. Control involved the lateral PFC, anterior cingulate, and insula. Monitoring and control activity overlapped in the VS and thalamus. Extending current neural models of neurofeedback, this study introduces monitoring and control of feedback as anatomically dissociated processes, and suggests their important role in voluntary neuromodulation. © 2018 Wiley Periodicals, Inc.

  20. Rapid feedback control and stabilization of an optical tweezers with a budget microcontroller

    NASA Astrophysics Data System (ADS)

    Nino, Daniel; Wang, Haowei; Milstein, Joshua N.

    2014-09-01

    Laboratories ranging the scientific disciplines employ feedback control to regulate variables within their experiments, from the flow of liquids within a microfluidic device to the temperature within a cell incubator. We have built an inexpensive, yet fast and rapidly deployed, feedback control system that is straightforward and flexible to implement from a commercially available Arduino Due microcontroller. This is in comparison with the complex, time-consuming and often expensive electronics that are commonly implemented. As an example of its utility, we apply our feedback controller to the task of stabilizing the main trapping laser of an optical tweezers. The feedback controller, which is inexpensive yet fast and rapidly deployed, was implemented from hacking an open source Arduino Due microcontroller. Our microcontroller based feedback system can stabilize the laser intensity to a few tenths of a per cent at 200 kHz, which is an order of magnitude better than the laser's base specifications, illustrating the utility of these devices.

  1. The inhibitory microcircuit of the substantia nigra provides feedback gain control of the basal ganglia output

    PubMed Central

    Brown, Jennifer; Pan, Wei-Xing; Dudman, Joshua Tate

    2014-01-01

    Dysfunction of the basal ganglia produces severe deficits in the timing, initiation, and vigor of movement. These diverse impairments suggest a control system gone awry. In engineered systems, feedback is critical for control. By contrast, models of the basal ganglia highlight feedforward circuitry and ignore intrinsic feedback circuits. In this study, we show that feedback via axon collaterals of substantia nigra projection neurons control the gain of the basal ganglia output. Through a combination of physiology, optogenetics, anatomy, and circuit mapping, we elaborate a general circuit mechanism for gain control in a microcircuit lacking interneurons. Our data suggest that diverse tonic firing rates, weak unitary connections and a spatially diffuse collateral circuit with distinct topography and kinetics from feedforward input is sufficient to implement divisive feedback inhibition. The importance of feedback for engineered systems implies that the intranigral microcircuit, despite its absence from canonical models, could be essential to basal ganglia function. DOI: http://dx.doi.org/10.7554/eLife.02397.001 PMID:24849626

  2. Passive and active roles of fat-free mass in the control of energy intake and body composition regulation.

    PubMed

    Dulloo, A G; Jacquet, J; Miles-Chan, J L; Schutz, Y

    2017-03-01

    While putative feedback signals arising from adipose tissue are commonly assumed to provide the molecular links between the body's long-term energy requirements and energy intake, the available evidence suggests that the lean body or fat-free mass (FFM) also plays a role in the drive to eat. A distinction must, however, be made between a 'passive' role of FFM in driving energy intake, which is likely to be mediated by 'energy-sensing' mechanisms that translate FFM-induced energy requirements to energy intake, and a more 'active' role of FFM in the drive to eat through feedback signaling between FFM deficit and energy intake. Consequently, a loss of FFM that results from dieting or sedentarity should be viewed as a risk factor for weight regain and increased fatness not only because of the impact of the FFM deficit in lowering the maintenance energy requirement but also because of the body's attempt to restore FFM by overeating-a phenomenon referred to as 'collateral fattening'. A better understanding of these passive and active roles of FFM in the control of energy intake will necessitate the elucidation of peripheral signals and energy-sensing mechanisms that drive hunger and appetite, with implications for both obesity prevention and its management.

  3. A Stochastic Model of the Yeast Cell Cycle Reveals Roles for Feedback Regulation in Limiting Cellular Variability.

    PubMed

    Barik, Debashis; Ball, David A; Peccoud, Jean; Tyson, John J

    2016-12-01

    The cell division cycle of eukaryotes is governed by a complex network of cyclin-dependent protein kinases (CDKs) and auxiliary proteins that govern CDK activities. The control system must function reliably in the context of molecular noise that is inevitable in tiny yeast cells, because mistakes in sequencing cell cycle events are detrimental or fatal to the cell or its progeny. To assess the effects of noise on cell cycle progression requires not only extensive, quantitative, experimental measurements of cellular heterogeneity but also comprehensive, accurate, mathematical models of stochastic fluctuations in the CDK control system. In this paper we provide a stochastic model of the budding yeast cell cycle that accurately accounts for the variable phenotypes of wild-type cells and more than 20 mutant yeast strains simulated in different growth conditions. We specifically tested the role of feedback regulations mediated by G1- and SG2M-phase cyclins to minimize the noise in cell cycle progression. Details of the model are informed and tested by quantitative measurements (by fluorescence in situ hybridization) of the joint distributions of mRNA populations in yeast cells. We use the model to predict the phenotypes of ~30 mutant yeast strains that have not yet been characterized experimentally.

  4. Induction of Salivary Proteins Modifies Measures of Both Orosensory and Postingestive Feedback during Exposure to a Tannic Acid Diet

    PubMed Central

    Torregrossa, Ann-Marie; Nikonova, Larissa; Bales, Michelle B.; Villalobos Leal, Maria; Smith, James C.; Contreras, Robert J.; Eckel, Lisa A.

    2014-01-01

    There are hundreds of proteins in saliva. Although it has long been hypothesized that these proteins modulate taste by interacting with taste receptors or taste stimuli, the functional impact of these proteins on feeding remains relatively unexplored. We have developed a new technique for saliva collection that does not interfere with daily behavioral testing and allows us to explore the relationship between feeding behavior and salivary protein expression. First, we monitored the alterations in salivary protein expression while simultaneously monitoring the animals' feeding behavior and meal patterns on a custom control diet or on the same diet mixed with 3% tannic acid. We demonstrated that six protein bands increased in density with dietary tannic acid exposure. Several of these bands were significantly correlated with behaviors thought to represent both orosensory and postingestive signaling. In a follow-up experiment, unconditioned licking to 0.01–3% tannic acid solutions was measured during a brief-access taste test before and after exposure to the tannic acid diet. In this experiment, rats with salivary proteins upregulated found the tannin solution less aversive (i.e., licked more) than those in the control condition. These data suggest a role for salivary proteins in mediating changes in both orosensory and postingestive feedback. PMID:25162297

  5. A Stochastic Model of the Yeast Cell Cycle Reveals Roles for Feedback Regulation in Limiting Cellular Variability

    PubMed Central

    Ball, David A.

    2016-01-01

    The cell division cycle of eukaryotes is governed by a complex network of cyclin-dependent protein kinases (CDKs) and auxiliary proteins that govern CDK activities. The control system must function reliably in the context of molecular noise that is inevitable in tiny yeast cells, because mistakes in sequencing cell cycle events are detrimental or fatal to the cell or its progeny. To assess the effects of noise on cell cycle progression requires not only extensive, quantitative, experimental measurements of cellular heterogeneity but also comprehensive, accurate, mathematical models of stochastic fluctuations in the CDK control system. In this paper we provide a stochastic model of the budding yeast cell cycle that accurately accounts for the variable phenotypes of wild-type cells and more than 20 mutant yeast strains simulated in different growth conditions. We specifically tested the role of feedback regulations mediated by G1- and SG2M-phase cyclins to minimize the noise in cell cycle progression. Details of the model are informed and tested by quantitative measurements (by fluorescence in situ hybridization) of the joint distributions of mRNA populations in yeast cells. We use the model to predict the phenotypes of ~30 mutant yeast strains that have not yet been characterized experimentally. PMID:27935947

  6. Stability analysis of dynamic collaboration model with control signals on two lanes

    NASA Astrophysics Data System (ADS)

    Li, Zhipeng; Zhang, Run; Xu, Shangzhi; Qian, Yeqing; Xu, Juan

    2014-12-01

    In this paper, the influence of control signals on the stability of two-lane traffic flow is mainly studied by applying control theory with lane changing behaviors. We present the two-lane dynamic collaboration model with lateral friction and the expressions of feedback control signals. What is more, utilizing the delayed feedback control theory to the two-lane dynamic collaboration model with control signals, we investigate the stability of traffic flow theoretically and the stability conditions for both lanes are derived with finding that the forward and lateral feedback signals can improve the stability of traffic flow while the backward feedback signals cannot achieve it. Besides, direct simulations are conducted to verify the results of theoretical analysis, which shows that the feedback signals have a significant effect on the running state of two vehicle groups, and the results are same with the theoretical analysis.

  7. Self-controlled concurrent feedback facilitates the learning of the final approach phase in a fixed-base flight simulator.

    PubMed

    Huet, Michaël; Jacobs, David M; Camachon, Cyril; Goulon, Cedric; Montagne, Gilles

    2009-12-01

    This study (a) compares the effectiveness of different types of feedback for novices who learn to land a virtual aircraft in a fixed-base flight simulator and (b) analyzes the informational variables that learners come to use after practice. An extensive body of research exists concerning the informational variables that allow successful landing. In contrast, few studies have examined how the attention of pilots can be directed toward these sources of information. In this study, 15 participants were asked to land a virtual Cessna 172 on 245 trials while trying to follow the glide-slope area as accurately as possible. Three groups of participants practiced under different feedback conditions: with self-controlled concurrent feedback (the self-controlled group), with imposed concurrent feedback (the yoked group), or without concurrent feedback (the control group). The self-controlled group outperformed the yoked group, which in turn outperformed the control group. Removing or manipulating specific sources of information during transfer tests had different effects for different individuals. However, removing the cockpit from the visual scene had a detrimental effect on the performance of the majority of the participants. Self-controlled concurrent feedback helps learners to more quickly attune to the informational variables that allow them to control the aircraft during the approach phase. Knowledge concerning feedback schedules can be used for the design of optimal practice methods for student pilots, and knowledge about the informational variables used by expert performers has implications for the design of cockpits and runways that facilitate the detection of these variables.

  8. Effects of interactive visual feedback training on post-stroke pusher syndrome: a pilot randomized controlled study.

    PubMed

    Yang, Yea-Ru; Chen, Yi-Hua; Chang, Heng-Chih; Chan, Rai-Chi; Wei, Shun-Hwa; Wang, Ray-Yau

    2015-10-01

    We investigated the effects of a computer-generated interactive visual feedback training program on the recovery from pusher syndrome in stroke patients. Assessor-blinded, pilot randomized controlled study. A total of 12 stroke patients with pusher syndrome were randomly assigned to either the experimental group (N = 7, computer-generated interactive visual feedback training) or control group (N = 5, mirror visual feedback training). The scale for contraversive pushing for severity of pusher syndrome, the Berg Balance Scale for balance performance, and the Fugl-Meyer assessment scale for motor control were the outcome measures. Patients were assessed pre- and posttraining. A comparison of pre- and posttraining assessment results revealed that both training programs led to the following significant changes: decreased severity of pusher syndrome scores (decreases of 4.0 ± 1.1 and 1.4 ± 1.0 in the experimental and control groups, respectively); improved balance scores (increases of 14.7 ± 4.3 and 7.2 ± 1.6 in the experimental and control groups, respectively); and higher scores for lower extremity motor control (increases of 8.4 ± 2.2 and 5.6 ± 3.3 in the experimental and control groups, respectively). Furthermore, the computer-generated interactive visual feedback training program produced significantly better outcomes in the improvement of pusher syndrome (p < 0.01) and balance (p < 0.05) compared with the mirror visual feedback training program. Although both training programs were beneficial, the computer-generated interactive visual feedback training program more effectively aided recovery from pusher syndrome compared with mirror visual feedback training. © The Author(s) 2014.

  9. AMP-activated protein kinase-mediated feedback phosphorylation controls the Ca2+/calmodulin (CaM) dependence of Ca2+/CaM-dependent protein kinase kinase β.

    PubMed

    Nakanishi, Akihiro; Hatano, Naoya; Fujiwara, Yuya; Sha'ri, Arian; Takabatake, Shota; Akano, Hiroki; Kanayama, Naoki; Magari, Masaki; Nozaki, Naohito; Tokumitsu, Hiroshi

    2017-12-01

    The Ca 2+ /calmodulin-dependent protein kinase kinase β (CaMKKβ)/5'-AMP-activated protein kinase (AMPK) phosphorylation cascade affects various Ca 2+ -dependent metabolic pathways and cancer growth. Unlike recombinant CaMKKβ that exhibits higher basal activity (autonomous activity), activation of the CaMKKβ/AMPK signaling pathway requires increased intracellular Ca 2+ concentrations. Moreover, the Ca 2+ /CaM dependence of CaMKKβ appears to arise from multiple phosphorylation events, including autophosphorylation and activities furnished by other protein kinases. However, the effects of proximal downstream kinases on CaMKKβ activity have not yet been evaluated. Here, we demonstrate feedback phosphorylation of CaMKKβ at multiple residues by CaMKKβ-activated AMPK in addition to autophosphorylation in vitro , leading to reduced autonomous, but not Ca 2+ /CaM-activated, CaMKKβ activity. MS analysis and site-directed mutagenesis of AMPK phosphorylation sites in CaMKKβ indicated that Thr 144 phosphorylation by activated AMPK converts CaMKKβ into a Ca 2+ /CaM-dependent enzyme as shown by completely Ca 2+ /CaM-dependent CaMKK activity of a phosphomimetic T144E CaMKKβ mutant. CaMKKβ mutant analysis indicated that the C-terminal domain (residues 471-587), including the autoinhibitory region, plays an important role in stabilizing an inactive conformation in a Thr 144 phosphorylation-dependent manner. Furthermore, immunoblot analysis with anti-phospho-Thr 144 antibody revealed phosphorylation of Thr 144 in CaMKKβ in transfected COS-7 cells that was further enhanced by exogenous expression of AMPKα. These results indicate that AMPK-mediated feedback phosphorylation of CaMKKβ regulates the CaMKKβ/AMPK signaling cascade and may be physiologically important for intracellular maintenance of Ca 2+ -dependent AMPK activation by CaMKKβ. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. CoGAPS matrix factorization algorithm identifies transcriptional changes in AP-2alpha target genes in feedback from therapeutic inhibition of the EGFR network

    PubMed Central

    Thakar, Manjusha; Howard, Jason D.; Kagohara, Luciane T.; Krigsfeld, Gabriel; Ranaweera, Ruchira S.; Hughes, Robert M.; Perez, Jimena; Jones, Siân; Favorov, Alexander V.; Carey, Jacob; Stein-O'Brien, Genevieve; Gaykalova, Daria A.; Ochs, Michael F.; Chung, Christine H.

    2016-01-01

    Patients with oncogene driven tumors are treated with targeted therapeutics including EGFR inhibitors. Genomic data from The Cancer Genome Atlas (TCGA) demonstrates molecular alterations to EGFR, MAPK, and PI3K pathways in previously untreated tumors. Therefore, this study uses bioinformatics algorithms to delineate interactions resulting from EGFR inhibitor use in cancer cells with these genetic alterations. We modify the HaCaT keratinocyte cell line model to simulate cancer cells with constitutive activation of EGFR, HRAS, and PI3K in a controlled genetic background. We then measure gene expression after treating modified HaCaT cells with gefitinib, afatinib, and cetuximab. The CoGAPS algorithm distinguishes a gene expression signature associated with the anticipated silencing of the EGFR network. It also infers a feedback signature with EGFR gene expression itself increasing in cells that are responsive to EGFR inhibitors. This feedback signature has increased expression of several growth factor receptors regulated by the AP-2 family of transcription factors. The gene expression signatures for AP-2alpha are further correlated with sensitivity to cetuximab treatment in HNSCC cell lines and changes in EGFR expression in HNSCC tumors with low CDKN2A gene expression. In addition, the AP-2alpha gene expression signatures are also associated with inhibition of MEK, PI3K, and mTOR pathways in the Library of Integrated Network-Based Cellular Signatures (LINCS) data. These results suggest that AP-2 transcription factors are activated as feedback from EGFR network inhibition and may mediate EGFR inhibitor resistance. PMID:27650546

  11. SMAD4 feedback regulates the canonical TGF-β signaling pathway to control granulosa cell apoptosis.

    PubMed

    Du, Xing; Pan, Zengxiang; Li, Qiqi; Liu, Honglin; Li, Qifa

    2018-02-02

    Canonical TGF-β signals are transduced from the cell surface to the cytoplasm, and then translocated into the nucleus, a process that involves ligands (TGF-β1), receptors (TGFBR2/1), receptor-activated SMADs (SMAD2/3), and the common SMAD (SMAD4). Here we provide evidence that SMAD4, a core component of the canonical TGF-β signaling pathway, regulates the canonical TGF-β signaling pathway in porcine granulosa cells (GCs) through a feedback mechanism. Genome-wide analysis and qRT-PCR revealed that SMAD4 affected miRNA biogenesis in GCs. Interestingly, TGFBR2, the type II receptor of the canonical TGF-β signaling pathway, was downregulated in SMAD4-silenced GCs and found to be a common target of SMAD4-inhibited miRNAs. miR-425, the most significantly elevated miRNA in SMAD4-silenced GCs, mediated the SMAD4 feedback regulation of the TGF-β signaling pathway. This was accomplished through a direct interaction between the transcription factor SMAD4 and the miR-425 promoter, and a direct interaction between miR-425 and the TGFBR2 3'-UTR. Furthermore, miR-425 enhanced GC apoptosis by targeting TGFBR2 and the canonical TGF-β signaling pathway, which was rescued by SMAD4 and TGF-β1. Overall, our findings demonstrate that a positive feedback mechanism exists within the canonical TGF-β signaling pathway. This study also provides new insights into mechanism underlying the canonical TGF-β signaling pathway, which regulates GC function and follicular development.

  12. Balanced bridge feedback control system

    NASA Technical Reports Server (NTRS)

    Lurie, Boris J. (Inventor)

    1990-01-01

    In a system having a driver, a motor, and a mechanical plant, a multiloop feedback control apparatus for controlling the movement and/or positioning of a mechanical plant, the control apparatus has a first local bridge feedback loop for feeding back a signal representative of a selected ratio of voltage and current at the output driver, and a second bridge feedback loop for feeding back a signal representative of a selected ratio of force and velocity at the output of the motor. The control apparatus may further include an outer loop for feeding back a signal representing the angular velocity and/or position of the mechanical plant.

  13. Study on real-time force feedback for a master-slave interventional surgical robotic system.

    PubMed

    Guo, Shuxiang; Wang, Yuan; Xiao, Nan; Li, Youxiang; Jiang, Yuhua

    2018-04-13

    In robot-assisted catheterization, haptic feedback is important, but is currently lacking. In addition, conventional interventional surgical robotic systems typically employ a master-slave architecture with an open-loop force feedback, which results in inaccurate control. We develop herein a novel real-time master-slave (RTMS) interventional surgical robotic system with a closed-loop force feedback that allows a surgeon to sense the true force during remote operation, provide adequate haptic feedback, and improve control accuracy in robot-assisted catheterization. As part of this system, we also design a unique master control handle that measures the true force felt by a surgeon, providing the basis for the closed-loop control of the entire system. We use theoretical and empirical methods to demonstrate that the proposed RTMS system provides a surgeon (using the master control handle) with a more accurate and realistic force sensation, which subsequently improves the precision of the master-slave manipulation. The experimental results show a substantial increase in the control accuracy of the force feedback and an increase in operational efficiency during surgery.

  14. Perceived teaching behaviors and self-determined motivation in physical education: a test of self-determination theory.

    PubMed

    Koka, Andre; Hagger, Martin S

    2010-03-01

    In the present study, we tested the effects of specific dimensions of perceived teaching behaviors on students' self-determined motivation in physical education. In accordance with the tenets of self-determination theory (Deci & Ryan, 1985, 2000), we expected the psychological needs for competence, autonomy, and relatedness would mediate these effects. Secondary school students (N=498) ages 12-17 years completed measures of perceived teaching behaviors for seven dimensions: (a) democratic behavior, (b) autocratic behavior (c) teaching and instruction, (d) situation consideration, (e) positive general feedback, (f) positive nonverbal feedback, and (h) negative nonverbal feedback. They also completed measures of perceived satisfaction for competence, autonomy, relatedness, and self-determined motivation. A path-analytic model revealed a positive, indirect effect of perceived positive general feedback on self-determined motivation. The effects of perceived autocratic behavior and negative nonverbal feedback were direct and negative, whereas the effects of teaching and instruction and situation consideration were direct and positive. Results suggest that feedback, situation consideration, and teaching and instruction are essential antecedents to self-determined motivation.

  15. Clustering and negative feedback by endocytosis in planar cell polarity signaling is modulated by ubiquitinylation of prickle.

    PubMed

    Cho, Bomsoo; Pierre-Louis, Gandhy; Sagner, Andreas; Eaton, Suzanne; Axelrod, Jeffrey D

    2015-05-01

    The core components of the planar cell polarity (PCP) signaling system, including both transmembrane and peripheral membrane associated proteins, form asymmetric complexes that bridge apical intercellular junctions. While these can assemble in either orientation, coordinated cell polarization requires the enrichment of complexes of a given orientation at specific junctions. This might occur by both positive and negative feedback between oppositely oriented complexes, and requires the peripheral membrane associated PCP components. However, the molecular mechanisms underlying feedback are not understood. We find that the E3 ubiquitin ligase complex Cullin1(Cul1)/SkpA/Supernumerary limbs(Slimb) regulates the stability of one of the peripheral membrane components, Prickle (Pk). Excess Pk disrupts PCP feedback and prevents asymmetry. We show that Pk participates in negative feedback by mediating internalization of PCP complexes containing the transmembrane components Van Gogh (Vang) and Flamingo (Fmi), and that internalization is activated by oppositely oriented complexes within clusters. Pk also participates in positive feedback through an unknown mechanism promoting clustering. Our results therefore identify a molecular mechanism underlying generation of asymmetry in PCP signaling.

  16. Adaptive Nonlinear Tracking Control of Kinematically Redundant Robot Manipulators with Sub-Task Extensions

    DTIC Science & Technology

    2005-01-01

    C. Hughes, Spacecraft Attitude Dynamics, New York, NY: Wiley, 1994. [8] H. K. Khalil, “Adaptive Output Feedback Control of Non- linear Systems...Closed-Loop Manipulator Control Using Quaternion Feedback ”, IEEE Trans. Robotics and Automation, Vol. 4, No. 4, pp. 434-440, (1988). [23] E...full-state feedback quaternion based controller de- veloped in [5] and focuses on the design of a general sub-task controller. This sub-task controller

  17. Acoustic emission feedback control for control of boiling in a microwave oven

    DOEpatents

    White, Terry L.

    1991-01-01

    An acoustic emission based feedback system for controlling the boiling level of a liquid medium in a microwave oven is provided. The acoustic emissions from the medium correlated with surface boiling is used to generate a feedback control signal proportional to the level of boiling of the medium. This signal is applied to a power controller to automatically and continuoulsly vary the power applied to the oven to control the boiling at a selected level.

  18. Intermittent Feedback-Control Strategy for Stabilizing Inverted Pendulum on Manually Controlled Cart as Analogy to Human Stick Balancing

    PubMed Central

    Yoshikawa, Naoya; Suzuki, Yasuyuki; Kiyono, Ken; Nomura, Taishin

    2016-01-01

    The stabilization of an inverted pendulum on a manually controlled cart (cart-inverted-pendulum; CIP) in an upright position, which is analogous to balancing a stick on a fingertip, is considered in order to investigate how the human central nervous system (CNS) stabilizes unstable dynamics due to mechanical instability and time delays in neural feedback control. We explore the possibility that a type of intermittent time-delayed feedback control, which has been proposed for human postural control during quiet standing, is also a promising strategy for the CIP task and stick balancing on a fingertip. Such a strategy hypothesizes that the CNS exploits transient contracting dynamics along a stable manifold of a saddle-type unstable upright equilibrium of the inverted pendulum in the absence of control by inactivating neural feedback control intermittently for compensating delay-induced instability. To this end, the motions of a CIP stabilized by human subjects were experimentally acquired, and computational models of the system were employed to characterize the experimental behaviors. We first confirmed fat-tailed non-Gaussian temporal fluctuation in the acceleration distribution of the pendulum, as well as the power-law distributions of corrective cart movements for skilled subjects, which was previously reported for stick balancing. We then showed that the experimental behaviors could be better described by the models with an intermittent delayed feedback controller than by those with the conventional continuous delayed feedback controller, suggesting that the human CNS stabilizes the upright posture of the pendulum by utilizing the intermittent delayed feedback-control strategy. PMID:27148031

  19. Intermittent Feedback-Control Strategy for Stabilizing Inverted Pendulum on Manually Controlled Cart as Analogy to Human Stick Balancing.

    PubMed

    Yoshikawa, Naoya; Suzuki, Yasuyuki; Kiyono, Ken; Nomura, Taishin

    2016-01-01

    The stabilization of an inverted pendulum on a manually controlled cart (cart-inverted-pendulum; CIP) in an upright position, which is analogous to balancing a stick on a fingertip, is considered in order to investigate how the human central nervous system (CNS) stabilizes unstable dynamics due to mechanical instability and time delays in neural feedback control. We explore the possibility that a type of intermittent time-delayed feedback control, which has been proposed for human postural control during quiet standing, is also a promising strategy for the CIP task and stick balancing on a fingertip. Such a strategy hypothesizes that the CNS exploits transient contracting dynamics along a stable manifold of a saddle-type unstable upright equilibrium of the inverted pendulum in the absence of control by inactivating neural feedback control intermittently for compensating delay-induced instability. To this end, the motions of a CIP stabilized by human subjects were experimentally acquired, and computational models of the system were employed to characterize the experimental behaviors. We first confirmed fat-tailed non-Gaussian temporal fluctuation in the acceleration distribution of the pendulum, as well as the power-law distributions of corrective cart movements for skilled subjects, which was previously reported for stick balancing. We then showed that the experimental behaviors could be better described by the models with an intermittent delayed feedback controller than by those with the conventional continuous delayed feedback controller, suggesting that the human CNS stabilizes the upright posture of the pendulum by utilizing the intermittent delayed feedback-control strategy.

  20. Active Nonlinear Feedback Control for Aerospace Systems. Processor

    DTIC Science & Technology

    1990-12-01

    relating to the role of nonlinearities in feedback control. These area include Lyapunov function theory, chaotic controllers, statistical energy analysis , phase robustness, and optimal nonlinear control theory.

  1. Minimal-Inversion Feedforward-And-Feedback Control System

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun

    1990-01-01

    Recent developments in theory of control systems support concept of minimal-inversion feedforward-and feedback control system consisting of three independently designable control subsystems. Applicable to the control of linear, time-invariant plant.

  2. Speaking truth to power: the effect of candid feedback on how individuals with power allocate resources.

    PubMed

    Oc, Burak; Bashshur, Michael R; Moore, Celia

    2015-03-01

    Subordinates are often seen as impotent, able to react to but not affect how powerholders treat them. Instead, we conceptualize subordinate feedback as an important trigger of powerholders' behavioral self-regulation and explore subordinates' reciprocal influence on how powerholders allocate resources to them over time. In 2 experiments using a multiparty, multiround dictator game paradigm, we found that when subordinates provided candid feedback about whether they found prior allocations to be fair or unfair, powerholders regulated how self-interested their allocations were over time. However, when subordinates provided compliant feedback about powerholders' prior allocation decisions (offered consistently positive feedback, regardless of the powerholders' prior allocation), those powerholders made increasingly self-interested allocations over time. In addition, we showed that guilt partially mediates this relationship: powerholders feel more guilty after receiving negative feedback about an allocation, subsequently leading to a less self-interested allocation, whereas they feel less guilty after receiving positive feedback about an allocation, subsequently taking more for themselves. Our findings integrate the literature on upward feedback with theory about moral self-regulation to support the idea that subordinates are an important source of influence over those who hold power over them. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  3. New MHD feedback control schemes using the MARTe framework in RFX-mod

    NASA Astrophysics Data System (ADS)

    Piron, Chiara; Manduchi, Gabriele; Marrelli, Lionello; Piovesan, Paolo; Zanca, Paolo

    2013-10-01

    Real-time feedback control of MHD instabilities is a topic of major interest in magnetic thermonuclear fusion, since it allows to optimize a device performance even beyond its stability bounds. The stability properties of different magnetic configurations are important test benches for real-time control systems. RFX-mod, a Reversed Field Pinch experiment that can also operate as a tokamak, is a well suited device to investigate this topic. It is equipped with a sophisticated magnetic feedback system that controls MHD instabilities and error fields by means of 192 active coils and a corresponding grid of sensors. In addition, the RFX-mod control system has recently gained new potentialities thanks to the introduction of the MARTe framework and of a new CPU architecture. These capabilities allow to study new feedback algorithms relevant to both RFP and tokamak operation and to contribute to the debate on the optimal feedback strategy. This work focuses on the design of new feedback schemes. For this purpose new magnetic sensors have been explored, together with new algorithms that refine the de-aliasing computation of the radial sideband harmonics. The comparison of different sensor and feedback strategy performance is described in both RFP and tokamak experiments.

  4. Advanced feedback control methods in EXTRAP T2R reversed field pinch

    NASA Astrophysics Data System (ADS)

    Yadikin, D.; Brunsell, P. R.; Paccagnella, R.

    2006-07-01

    Previous experiments in the EXTRAP T2R reversed field pinch device have shown the possibility of suppression of multiple resistive wall modes (RWM). A feedback system has been installed in EXTRAP T2R having 100% coverage of the toroidal surface by the active coil array. Predictions based on theory and the previous experimental results show that the number of active coils should be sufficient for independent stabilization of all unstable RWMs in the EXTRAP T2R. Experiments using different feedback schemes are performed, comparing the intelligent shell, the fake rotating shell, and the mode control with complex feedback gains. Stabilization of all unstable RWMs throughout the discharge duration of td≈10τw is seen using the intelligent shell feedback scheme. Mode rotation and the control of selected Fourier harmonics is obtained simultaneously using the mode control scheme with complex gains. Different sensor signals are studied. A feedback system with toroidal magnetic field sensors could have an advantage of lower feedback gain needed for the RWM suppression compared to the system with radial magnetic field sensors. In this study, RWM suppression is demonstrated, using also the toroidal field component as a sensor signal in the feedback system.

  5. When Optimal Feedback Control Is Not Enough: Feedforward Strategies Are Required for Optimal Control with Active Sensing.

    PubMed

    Yeo, Sang-Hoon; Franklin, David W; Wolpert, Daniel M

    2016-12-01

    Movement planning is thought to be primarily determined by motor costs such as inaccuracy and effort. Solving for the optimal plan that minimizes these costs typically leads to specifying a time-varying feedback controller which both generates the movement and can optimally correct for errors that arise within a movement. However, the quality of the sensory feedback during a movement can depend substantially on the generated movement. We show that by incorporating such state-dependent sensory feedback, the optimal solution incorporates active sensing and is no longer a pure feedback process but includes a significant feedforward component. To examine whether people take into account such state-dependency in sensory feedback we asked people to make movements in which we controlled the reliability of sensory feedback. We made the visibility of the hand state-dependent, such that the visibility was proportional to the component of hand velocity in a particular direction. Subjects gradually adapted to such a sensory perturbation by making curved hand movements. In particular, they appeared to control the late visibility of the movement matching predictions of the optimal controller with state-dependent sensory noise. Our results show that trajectory planning is not only sensitive to motor costs but takes sensory costs into account and argues for optimal control of movement in which feedforward commands can play a significant role.

  6. Spacecraft stability and control using new techniques for periodic and time-delayed systems

    NASA Astrophysics Data System (ADS)

    NAzari, Morad

    This dissertation addresses various problems in spacecraft stability and control using specialized theoretical and numerical techniques for time-periodic and time-delayed systems. First, the effects of energy dissipation are considered in the dual-spin spacecraft, where the damper masses in the platform (?) and the rotor (?) cause energy loss in the system. Floquet theory is employed to obtain stability charts for different relative spin rates of the subsystem [special characters omitted] with respect to the subsystem [special characters omitted]. Further, the stability and bifurcation of delayed feedback spin stabilization of a rigid spacecraft is investigated. The spin is stabilized about the principal axis of the intermediate moment of inertia using a simple delayed feedback control law. In particular, linear stability is analyzed via the exponential-polynomial characteristic equations and then the method of multiple scales is used to obtain the normal form of the Hopf bifurcation. Next, the dynamics of a rigid spacecraft with nonlinear delayed multi-actuator feedback control are studied, where a nonlinear feedback controller using an inverse dynamics approach is sought for the controlled system to have the desired linear delayed closed-loop dynamics (CLD). Later, three linear state feedback control strategies based on Chebyshev spectral collocation and the Lyapunov Floquet transformation (LFT) are explored for regulation control of linear periodic time delayed systems. First , a delayed feedback control law with discrete delay is implemented and the stability of the closed-loop response is investigated in the parameter space of available control gains using infinite-dimensional Floquet theory. Second, the delay differential equation (DDE) is discretized into a large set of ordinary differential equations (ODEs) using the Chebyshev spectral continuous time approximation (CSCTA) and delayed feedback with distributed delay is applied. The third strategy involves use of both CSCTA and the reduced Lyapunov Floquet transformation (RLFT) in order to design a non-delayed feedback control law. The delayed Mathieu equation is used as an illustrative example in which the closed-loop response and control effort are compared for all three control strategies. Finally, three example applications of control of time-periodic astrodynamic systems, i.e. formation flying control for an elliptic Keplerian chief orbit, body-fixed hovering control over a tumbling asteroid, and stationkeeping in Earth-Moon L1 halo orbits, are shown using versions of the control strategies introduced above. These applications employ a mixture of feedforward and non-delayed periodic-gain state feedback for tracking control of natural and non-natural motions in these systems. A major conclusion is that control effort is minimized by employing periodic-gain (rather than constant-gain) feedback control in such systems.

  7. Kinetics of lipid-nanoparticle-mediated intracellular mRNA delivery and function

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2017-10-01

    mRNA delivery into cells forms the basis for one of the new and promising ways to treat various diseases. Among suitable carriers, lipid nanoparticles (LNPs) with a size of about 100 nm are now often employed. Despite high current interest in this area, the understanding of the basic details of LNP-mediated mRNA delivery and function is limited. To clarify the kinetics of mRNA release from LNPs, the author uses three generic models implying (i) exponential, (ii) diffusion-controlled, and (iii) detachment-controlled kinetic regimes, respectively. Despite the distinct differences in these kinetics, the associated transient kinetics of mRNA translation to the corresponding protein and its degradation are shown to be not too sensitive to the details of the mRNA delivery by LNPs (or other nanocarriers). In addition, the author illustrates how this protein may temporarily influence the expression of one gene or a few equivalent genes. The analysis includes positive or negative regulation of the gene transcription via the attachment of the protein without or with positive or negative feedback in the gene expression. Stable, bistable, and oscillatory schemes have been scrutinized in this context.

  8. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Information Feedback Strategies in a Signal Controlled Network with Overlapped Routes

    NASA Astrophysics Data System (ADS)

    Tian, Li-Jun; Huang, Hai-Jun; Liu, Tian-Liang

    2009-07-01

    We investigate the effects of four different information feedback strategies on the dynamics of traffic, travelers' route choice and the resultant system performance in a signal controlled network with overlapped routes. Simulation results given by the cellular automaton model show that the system purpose-based mean velocity feedback strategy and the congestion coefficient feedback strategy have more advantages in improving network utilization efficiency and reducing travelers' travel times. The travel time feedback strategy and the individual purposed-based mean velocity feedback strategy behave slightly better to ensure user equity.

  9. Brain network involved in visual processing of movement stimuli used in upper limb robotic training: an fMRI study.

    PubMed

    Nocchi, Federico; Gazzellini, Simone; Grisolia, Carmela; Petrarca, Maurizio; Cannatà, Vittorio; Cappa, Paolo; D'Alessio, Tommaso; Castelli, Enrico

    2012-07-24

    The potential of robot-mediated therapy and virtual reality in neurorehabilitation is becoming of increasing importance. However, there is limited information, using neuroimaging, on the neural networks involved in training with these technologies. This study was intended to detect the brain network involved in the visual processing of movement during robotic training. The main aim was to investigate the existence of a common cerebral network able to assimilate biological (human upper limb) and non-biological (abstract object) movements, hence testing the suitability of the visual non-biological feedback provided by the InMotion2 Robot. A visual functional Magnetic Resonance Imaging (fMRI) task was administered to 22 healthy subjects. The task required observation and retrieval of motor gestures and of the visual feedback used in robotic training. Functional activations of both biological and non-biological movements were examined to identify areas activated in both conditions, along with differential activity in upper limb vs. abstract object trials. Control of response was also tested by administering trials with congruent and incongruent reaching movements. The observation of upper limb and abstract object movements elicited similar patterns of activations according to a caudo-rostral pathway for the visual processing of movements (including specific areas of the occipital, temporal, parietal, and frontal lobes). Similarly, overlapping activations were found for the subsequent retrieval of the observed movement. Furthermore, activations of frontal cortical areas were associated with congruent trials more than with the incongruent ones. This study identified the neural pathway associated with visual processing of movement stimuli used in upper limb robot-mediated training and investigated the brain's ability to assimilate abstract object movements with human motor gestures. In both conditions, activations were elicited in cerebral areas involved in visual perception, sensory integration, recognition of movement, re-mapping on the somatosensory and motor cortex, storage in memory, and response control. Results from the congruent vs. incongruent trials revealed greater activity for the former condition than the latter in a network including cingulate cortex, right inferior and middle frontal gyrus that are involved in the go-signal and in decision control. Results on healthy subjects would suggest the appropriateness of an abstract visual feedback provided during motor training. The task contributes to highlight the potential of fMRI in improving the understanding of visual motor processes and may also be useful in detecting brain reorganisation during training.

  10. Fundamental Principles of Coherent-Feedback Quantum Control

    DTIC Science & Technology

    2014-12-08

    in metrology (acceleration sensing, vibrometry, gravity wave detection) and in quantum information processing (continuous-variables quantum ...AFRL-OSR-VA-TR-2015-0009 FUNDAMENTAL PRINCIPLES OF COHERENT-FEEDBACK QUANTUM CONTROL Hideo Mabuchi LELAND STANFORD JUNIOR UNIV CA Final Report 12/08...foundations and potential applications of coherent-feedback quantum control. We have focused on potential applications in quantum -enhanced metrology and

  11. Dynamic Data-Driven UAV Network for Plume Characterization

    DTIC Science & Technology

    2016-05-23

    data collection where simulations and measurements become a symbiotic feedback control system where simulations inform measurement locations and the...and measurements become a symbiotic feedback control system where simulations inform measurement locations and the measured data augments simulations...data analysis techniques with mobile sensor data collection where simulations and measurements become a symbiotic feedback control system where

  12. Integrated Control Using the SOFFT Control Structure

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim

    1996-01-01

    The need for integrated/constrained control systems has become clearer as advanced aircraft introduced new coupled subsystems such as new propulsion subsystems with thrust vectoring and new aerodynamic designs. In this study, we develop an integrated control design methodology which accomodates constraints among subsystem variables while using the Stochastic Optimal Feedforward/Feedback Control Technique (SOFFT) thus maintaining all the advantages of the SOFFT approach. The Integrated SOFFT Control methodology uses a centralized feedforward control and a constrained feedback control law. The control thus takes advantage of the known coupling among the subsystems while maintaining the identity of subsystems for validation purposes and the simplicity of the feedback law to understand the system response in complicated nonlinear scenarios. The Variable-Gain Output Feedback Control methodology (including constant gain output feedback) is extended to accommodate equality constraints. A gain computation algorithm is developed. The designer can set the cross-gains between two variables or subsystems to zero or another value and optimize the remaining gains subject to the constraint. An integrated control law is designed for a modified F-15 SMTD aircraft model with coupled airframe and propulsion subsystems using the Integrated SOFFT Control methodology to produce a set of desired flying qualities.

  13. Design and evaluation of a Stochastic Optimal Feed-forward and Feedback Technology (SOFFT) flight control architecture

    NASA Technical Reports Server (NTRS)

    Ostroff, Aaron J.; Proffitt, Melissa S.

    1994-01-01

    This paper describes the design and evaluation of a stochastic optimal feed-forward and feedback technology (SOFFT) control architecture with emphasis on the feed-forward controller design. The SOFFT approach allows the designer to independently design the feed-forward and feedback controllers to meet separate objectives and then integrate the two controllers. The feed-forward controller has been integrated with an existing high-angle-of-attack (high-alpha) feedback controller. The feed-forward controller includes a variable command model with parameters selected to satisfy level 1 flying qualities with a high-alpha adjustment to achieve desired agility guidelines, a nonlinear interpolation approach that scales entire matrices for approximation of the plant model, and equations for calculating feed-forward gains developed for perfect plant-model tracking. The SOFFT design was applied to a nonlinear batch simulation model of an F/A-18 aircraft modified for thrust vectoring. Simulation results show that agility guidelines are met and that the SOFFT controller filters undesired pilot-induced frequencies more effectively during a tracking task than a flight controller that has the same feedback control law but does not have the SOFFT feed-forward control.

  14. Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4

    PubMed Central

    Foresti, Ombretta; Ruggiano, Annamaria; Hannibal-Bach, Hans K; Ejsing, Christer S; Carvalho, Pedro

    2013-01-01

    Sterol homeostasis is essential for the function of cellular membranes and requires feedback inhibition of HMGR, a rate-limiting enzyme of the mevalonate pathway. As HMGR acts at the beginning of the pathway, its regulation affects the synthesis of sterols and of other essential mevalonate-derived metabolites, such as ubiquinone or dolichol. Here, we describe a novel, evolutionarily conserved feedback system operating at a sterol-specific step of the mevalonate pathway. This involves the sterol-dependent degradation of squalene monooxygenase mediated by the yeast Doa10 or mammalian Teb4, a ubiquitin ligase implicated in a branch of the endoplasmic reticulum (ER)-associated protein degradation (ERAD) pathway. Since the other branch of ERAD is required for HMGR regulation, our results reveal a fundamental role for ERAD in sterol homeostasis, with the two branches of this pathway acting together to control sterol biosynthesis at different levels and thereby allowing independent regulation of multiple products of the mevalonate pathway. DOI: http://dx.doi.org/10.7554/eLife.00953.001 PMID:23898401

  15. Participative versus assigned production standard setting in a repetitive industrial task: a strategy for improving worker productivity.

    PubMed

    Das, B; Shikdar, A A

    1999-01-01

    The participative standard with feedback condition was superior to the assigned difficult (140% of normal) standard with feedback condition in terms of worker productivity. The percentage increase in worker productivity with the participative standard and feedback condition was 46%, whereas the increase in the assigned difficult standard with feedback was 23%, compared to the control group (no standard, no feedback). Worker productivity also improved significantly as a result of assigning a normal (100%) production standard with feedback, compared to the control group, and the increase was 12%. The participative standard with feedback condition emerges as the optimum strategy for improving worker productivity in a repetitive industrial production task.

  16. Quaternion-based adaptive output feedback attitude control of spacecraft using Chebyshev neural networks.

    PubMed

    Zou, An-Min; Dev Kumar, Krishna; Hou, Zeng-Guang

    2010-09-01

    This paper investigates the problem of output feedback attitude control of an uncertain spacecraft. Two robust adaptive output feedback controllers based on Chebyshev neural networks (CNN) termed adaptive neural networks (NN) controller-I and adaptive NN controller-II are proposed for the attitude tracking control of spacecraft. The four-parameter representations (quaternion) are employed to describe the spacecraft attitude for global representation without singularities. The nonlinear reduced-order observer is used to estimate the derivative of the spacecraft output, and the CNN is introduced to further improve the control performance through approximating the spacecraft attitude motion. The implementation of the basis functions of the CNN used in the proposed controllers depends only on the desired signals, and the smooth robust compensator using the hyperbolic tangent function is employed to counteract the CNN approximation errors and external disturbances. The adaptive NN controller-II can efficiently avoid the over-estimation problem (i.e., the bound of the CNNs output is much larger than that of the approximated unknown function, and hence, the control input may be very large) existing in the adaptive NN controller-I. Both adaptive output feedback controllers using CNN can guarantee that all signals in the resulting closed-loop system are uniformly ultimately bounded. For performance comparisons, the standard adaptive controller using the linear parameterization of spacecraft attitude motion is also developed. Simulation studies are presented to show the advantages of the proposed CNN-based output feedback approach over the standard adaptive output feedback approach.

  17. Output transformations and separation results for feedback linearisable delay systems

    NASA Astrophysics Data System (ADS)

    Cacace, F.; Conte, F.; Germani, A.

    2018-04-01

    The class of strict-feedback systems enjoys special properties that make it similar to linear systems. This paper proves that such a class is equivalent, under a change of coordinates, to the wider class of feedback linearisable systems with multiplicative input, when the multiplicative terms are functions of the measured variables only. We apply this result to the control problem of feedback linearisable nonlinear MIMO systems with input and/or output delays. In this way, we provide sufficient conditions under which a separation result holds for output feedback control and moreover a predictor-based controller exists. When these conditions are satisfied, we obtain that the existence of stabilising controllers for arbitrarily large delays in the input and/or the output can be proved for a wider class of systems than previously known.

  18. Acceleration feedback improves balancing against reflex delay

    PubMed Central

    Insperger, Tamás; Milton, John; Stépán, Gábor

    2013-01-01

    A model for human postural balance is considered in which the time-delayed feedback depends on position, velocity and acceleration (proportional–derivative–acceleration (PDA) feedback). It is shown that a PDA controller is equivalent to a predictive controller, in which the prediction is based on the most recent information of the state, but the control input is not involved into the prediction. A PDA controller is superior to the corresponding proportional–derivative controller in the sense that the PDA controller can stabilize systems with approximately 40 per cent larger feedback delays. The addition of a sensory dead zone to account for the finite thresholds for detection by sensory receptors results in highly intermittent, complex oscillations that are a typical feature of human postural sway. PMID:23173196

  19. Randomized Controlled Trial of a Web-Delivered Personalized Normative Feedback Intervention to Reduce Alcohol-Related Risky Sexual Behavior among College Students

    PubMed Central

    Lewis, Melissa A.; Patrick, Megan E.; Litt, Dana. M.; Atkins, David C.; Kim, Theresa; Blayney, Jessica A.; Norris, Jeanette; George, William H.; Larimer, Mary E.

    2014-01-01

    Objective The purpose of this study was to evaluate the efficacy of personalized normative feedback (PNF) on college student alcohol-related risky sexual behavior (RSB). Method In a randomized controlled trial, 480 (57.6% female) sexually-active college students were stratified by gender and level of drinking and randomly assigned to an alcohol only intervention, an alcohol-related RSB only intervention, a combined alcohol and alcohol-related RSB intervention, or control. All assessment and intervention procedures were web-based. Results Results indicated a significant reduction in drinking outcomes for the alcohol only and the combined alcohol and alcohol-related RSB interventions relative to control. Findings further demonstrated a significant reduction in alcohol-related RSB outcomes for the alcohol-related RSB only and the combined alcohol and alcohol-related RSB interventions relative to control. There were no significant intervention effects on alcohol-related negative consequences. These findings demonstrate that the combined alcohol and alcohol-related RSB intervention was the only intervention successful at reducing both drinking and alcohol-related RSB outcomes relative to control. There were no significant differences when comparing the combined alcohol and alcohol-related RSB intervention to the alcohol only intervention or the alcohol-related RSB only intervention. Finally, results suggested that the intervention effects on high-risk behaviors were mediated by reductions in descriptive normative perceptions. Conclusions These findings demonstrate that PNF specific to drinking in sexual situations was needed to reduce alcohol-related RSB. Furthermore, this study highlights the potential utility of a brief intervention that can be delivered via the Internet to reduce high-risk drinking and alcohol-related RSB among college students. PMID:24491076

  20. Plug-in module acceleration feedback control for fast steering mirror-based beam stabilization systems

    NASA Astrophysics Data System (ADS)

    Deng, Chao; Ren, Wei; Mao, Yao; Ren, Ge

    2017-08-01

    A plug-in module acceleration feedback control (Plug-In AFC) strategy based on the disturbance observer (DOB) principle is proposed for charge-coupled device (CCD)-based fast steering mirror (FSM) stabilization systems. In classical FSM tracking systems, dual-loop control (DLC), including velocity feedback and position feedback, is usually utilized to enhance the closed-loop performance. Due to the mechanical resonance of the system and CCD time delay, the closed-loop bandwidth is severely restricted. To solve this problem, cascade acceleration feedback control (AFC), which is a kind of high-precision robust control method, is introduced to strengthen the disturbance rejection property. However, in practical applications, it is difficult to realize an integral algorithm in an acceleration controller to compensate for the quadratic differential contained in the FSM acceleration model, resulting in a challenging controller design and a limited improvement. To optimize the acceleration feedback framework in the FSM system, different from the cascade AFC, the accelerometers are used to construct DOB to compensate for the platform vibrations directly. The acceleration nested loop can be plugged into the velocity loop without changing the system stability, and the controller design is quite simple. A series of comparative experimental results demonstrate that the disturbance rejection property of the CCD-based FSM can be effectively improved by the proposed approach.

  1. Lyapunov optimal feedback control of a nonlinear inverted pendulum

    NASA Technical Reports Server (NTRS)

    Grantham, W. J.; Anderson, M. J.

    1989-01-01

    Liapunov optimal feedback control is applied to a nonlinear inverted pendulum in which the control torque was constrained to be less than the nonlinear gravity torque in the model. This necessitates a control algorithm which 'rocks' the pendulum out of its potential wells, in order to stabilize it at a unique vertical position. Simulation results indicate that a preliminary Liapunov feedback controller can successfully overcome the nonlinearity and bring almost all trajectories to the target.

  2. Synergistic Effects on the Elderly People's Motor Control by Wearable Skin-Stretch Device Combined with Haptic Joystick

    PubMed Central

    Yoon, Han U.; Anil Kumar, Namita; Hur, Pilwon

    2017-01-01

    Cutaneous sensory feedback can be used to provide additional sensory cues to a person performing a motor task where vision is a dominant feedback signal. A haptic joystick has been widely used to guide a user by providing force feedback. However, the benefit of providing force feedback is still debatable due to performance dependency on factors such as the user's skill-level, task difficulty. Meanwhile, recent studies have shown the feasibility of improving a motor task performance by providing skin-stretch feedback. Therefore, a combination of two aforementioned feedback types is deemed to be promising to promote synergistic effects to consistently improve the person's motor performance. In this study, we aimed at identifying the effect of the combined haptic and skin-stretch feedbacks on the aged person's driving motor performance. For the experiment, 15 healthy elderly subjects (age 72.8 ± 6.6 years) were recruited and were instructed to drive a virtual power-wheelchair through four different courses with obstacles. Four augmented sensory feedback conditions were tested: no feedback, force feedback, skin-stretch feedback, and a combination of both force and skin-stretch feedbacks. While the haptic force was provided to the hand by the joystick, the skin-stretch was provided to the steering forearm by a custom-designed wearable skin-stretch device. We tested two hypotheses: (i) an elderly individual's motor control would benefit from receiving information about a desired trajectory from multiple sensory feedback sources, and (ii) the benefit does not depend on task difficulty. Various metrics related to skills and safety were used to evaluate the control performance. Repeated measure ANOVA was performed for those metrics with two factors: task scenario and the type of the augmented sensory feedback. The results revealed that elderly subjects' control performance significantly improved when the combined feedback of both haptic force and skin-stretch feedback was applied. The proposed approach suggest the feasibility to improve people's task performance by the synergistic effects of multiple augmented sensory feedback modalities. PMID:28690514

  3. Positive and negative feedback regulatory loops of thiol-oxidative stress response mediated by an unstable isoform of sigmaR in actinomycetes.

    PubMed

    Kim, Min-Sik; Hahn, Mi-Young; Cho, Yoobok; Cho, Sang-Nae; Roe, Jung-Hye

    2009-09-01

    Alternate sigma factors provide an effective way of diversifying bacterial gene expression in response to environmental changes. In Streptomyces coelicolor where more than 65 sigma factors are predicted, sigma(R) is the major regulator for response to thiol-oxidative stresses. sigma(R) becomes available when its bound anti-sigma factor RsrA is oxidized at sensitive cysteine thiols to form disulphide bonds. sigma(R) regulon includes genes for itself and multiple thiol-reducing systems, which constitute positive and negative feedback loops respectively. We found that the positive amplification loop involves an isoform of sigma(R) (sigma(R')) with an N-terminal extension of 55 amino acids, produced from an upstream start codon. A major difference between constitutive sigma(R) and inducible sigma(R') is that the latter is markedly unstable (t(1/2) approximately 10 min) compared with the former (> 70 min). The rapid turnover of sigma(R') is partly due to induced ClpP1/P2 proteases from the sigma(R) regulon. This represents a novel way of elaborating positive and negative feedback loops in a control circuit. Similar phenomenon may occur in other actinomycetes that harbour multiple start codons in the sigR homologous gene. We observed that sigH gene, the sigR orthologue in Mycobacterium smegmatis, produces an unstable larger isoform of sigma(H) upon induction by thiol-oxidative stress.

  4. Position Control of Tendon-Driven Fingers

    NASA Technical Reports Server (NTRS)

    Abdallah, Muhammad E.; Platt, Robert, Jr.; Hargrave, B.; Pementer, Frank

    2011-01-01

    Conventionally, tendon-driven manipulators implement some force control scheme based on tension feedback. This feedback allows the system to ensure that the tendons are maintained taut with proper levels of tensioning at all times. Occasionally, whether it is due to the lack of tension feedback or the inability to implement sufficiently high stiffnesses, a position control scheme is needed. This work compares three position controllers for tendon-driven manipulators. A new controller is introduced that achieves the best overall performance with regards to speed, accuracy, and transient behavior. To compensate for the lack of tension feedback, the controller nominally maintains the internal tension on the tendons by implementing a two-tier architecture with a range-space constraint. These control laws are validated experimentally on the Robonaut-2 humanoid hand. I

  5. Verifying detailed fluctuation relations for discrete feedback-controlled quantum dynamics

    NASA Astrophysics Data System (ADS)

    Camati, Patrice A.; Serra, Roberto M.

    2018-04-01

    Discrete quantum feedback control consists of a managed dynamics according to the information acquired by a previous measurement. Energy fluctuations along such dynamics satisfy generalized fluctuation relations, which are useful tools to study the thermodynamics of systems far away from equilibrium. Due to the practical challenge to assess energy fluctuations in the quantum scenario, the experimental verification of detailed fluctuation relations in the presence of feedback control remains elusive. We present a feasible method to experimentally verify detailed fluctuation relations for discrete feedback control quantum dynamics. Two detailed fluctuation relations are developed and employed. The method is based on a quantum interferometric strategy that allows the verification of fluctuation relations in the presence of feedback control. An analytical example to illustrate the applicability of the method is discussed. The comprehensive technique introduced here can be experimentally implemented at a microscale with the current technology in a variety of experimental platforms.

  6. Non-synaptic signaling from cerebellar climbing fibers modulates Golgi cell activity.

    PubMed

    Nietz, Angela K; Vaden, Jada H; Coddington, Luke T; Overstreet-Wadiche, Linda; Wadiche, Jacques I

    2017-10-13

    Golgi cells are the principal inhibitory neurons at the input stage of the cerebellum, providing feedforward and feedback inhibition through mossy fiber and parallel fiber synapses. In vivo studies have shown that Golgi cell activity is regulated by climbing fiber stimulation, yet there is little functional or anatomical evidence for synapses between climbing fibers and Golgi cells. Here, we show that glutamate released from climbing fibers activates ionotropic and metabotropic receptors on Golgi cells through spillover-mediated transmission. The interplay of excitatory and inhibitory conductances provides flexible control over Golgi cell spiking, allowing either excitation or a biphasic sequence of excitation and inhibition following single climbing fiber stimulation. Together with prior studies of spillover transmission to molecular layer interneurons, these results reveal that climbing fibers exert control over inhibition at both the input and output layers of the cerebellar cortex.

  7. Electrogenic properties of the Na+/K+ ATPase control transitions between normal and pathological brain states

    PubMed Central

    Krishnan, Giri P.; Filatov, Gregory; Shilnikov, Andrey

    2015-01-01

    Ionic concentrations fluctuate significantly during epileptic seizures. In this study, using a combination of in vitro electrophysiology, computer modeling, and dynamical systems analysis, we demonstrate that changes in the potassium and sodium intra- and extracellular ion concentrations ([K+] and [Na+], respectively) during seizure affect the neuron dynamics by modulating the outward Na+/K+ pump current. First, we show that an increase of the outward Na+/K+ pump current mediates termination of seizures when there is a progressive increase in the intracellular [Na+]. Second, we show that the Na+/K+ pump current is crucial in maintaining the stability of the physiological network state; a reduction of this current leads to the onset of seizures via a positive-feedback loop. We then present a novel dynamical mechanism for bursting in neurons with a reduced Na+/K+ pump. Overall, our study demonstrates the profound role of the current mediated by Na+/K+ ATPase on the stability of neuronal dynamics that was previously unknown. PMID:25589588

  8. Toxicity of Eosinophil MBP Is Repressed by Intracellular Crystallization and Promoted by Extracellular Aggregation

    PubMed Central

    Soragni, Alice; Yousefi, Shida; Stoeckle, Christina; Soriaga, Angela B.; Sawaya, Michael R.; Kozlowski, Evelyne; Schmid, Inès; Radonjic-Hoesli, Susanne; Boutet, Sebastien; Williams, Garth J.; Messerschmidt, Marc; Seibert, M. Marvin; Cascio, Duilio; Zatsepin, Nadia A.; Burghammer, Manfred; Riekel, Christian; Colletier, Jacques-Philippe; Riek, Roland; Eisenberg, David; Simon, Hans-Uwe

    2016-01-01

    SUMMARY Eosinophils are white blood cells that function in innate immunity and participate in the pathogenesis of various inflammatory and neoplastic disorders. Their secretory granules contain four cytotoxic proteins, including the eosinophil major basic protein (MBP-1). How MBP-1 toxicity is controlled within the eosinophil itself and activated upon extracellular release is unknown. Here we show how intragranular MBP-1 nanocrystals restrain toxicity, enabling its safe storage, and characterize them with an X-ray-free electron laser. Following eosinophil activation, MBP-1 toxicity is triggered by granule acidification, followed by extracellular aggregation, which mediates the damage to pathogens and host cells. Larger non-toxic amyloid plaques are also present in tissues of eosinophilic patients in a feedback mechanism that likely limits tissue damage under pathological conditions of MBP-1 oversecretion. Our results suggest that MBP-1 aggregation is important for innate immunity and immunopathology mediated by eosinophils and clarify how its polymorphic self-association pathways regulate toxicity intra- and extracellularly. PMID:25728769

  9. Exogenous γ-aminobutyric acid (GABA) affects pollen tube growth via modulating putative Ca2+-permeable membrane channels and is coupled to negative regulation on glutamate decarboxylase

    PubMed Central

    Yu, Guang-Hui; Zou, Jie; Feng, Jing; Peng, Xiong-Bo; Wu, Ju-You; Wu, Ying-Liang; Palanivelu, Ravishankar; Sun, Meng-Xiang

    2014-01-01

    γ-Aminobutyric acid (GABA) is implicated in pollen tube growth, but the molecular and cellular mechanisms that it mediates are largely unknown. Here, it is shown that exogenous GABA modulates putative Ca2+-permeable channels on the plasma membranes of tobacco pollen grains and pollen tubes. Whole-cell voltage-clamp experiments and non-invasive micromeasurement technology (NMT) revealed that the influx of Ca2+ increases in pollen tubes in response to exogenous GABA. It is also demonstrated that glutamate decarboxylase (GAD), the rate-limiting enzyme of GABA biosynthesis, is involved in feedback controls of Ca2+-permeable channels to fluctuate intracellular GABA levels and thus modulate pollen tube growth. The findings suggest that GAD activity linked with Ca2+-permeable channels relays an extracellular GABA signal and integrates multiple signal pathways to modulate tobacco pollen tube growth. Thus, the data explain how GABA mediates the communication between the style and the growing pollen tubes. PMID:24799560

  10. Interactions and feedbacks among phytobenthos, hydrodynamics, nutrient cycling and sediment transport in estuarine ecosystems

    NASA Astrophysics Data System (ADS)

    Bergamasco, A.; De Nat, L.; Flindt, M. R.; Amos, C. L.

    2003-11-01

    Phytobenthic communities can play an active role in modifying the environmental characteristics of the ecosystem in which they live so mediating the human impact on Coastal Zone habitats. Complicated feedbacks couple the establishment of phytobenthic communities with water quality and physical parameters in estuaries. Direct and indirect interactions between physical and biological attributes need to be considered in order to improve the management of these ecosystems to guarantee a sustainable use of coastal resources. Within the project F-ECTS ("Feedbacks of Estuarine Circulation and Transport of Sediments on phytobenthos") this issue was approached through a three-step strategy: (i) Monitoring: detailed fieldwork activities focusing on the measurement and evaluation of the main processes involving hydrodynamics, sediments, nutrients, light and phytobenthic biomass; (ii) Modeling: joint modeling of the suspended particulate matter erosion/transport/deposition and biological mediation of the hydrodynamics and (iii) GIS: development of GIS-based practical tools able to manage and exploit measured and modeled data on the basis of scientific investigation guidelines and procedures. The overall strategy is described by illustrating results of field measurements, providing details of model implementation and demonstrating the GIS-based tools.

  11. Effects of false feedback on affect, cognition, behavior, and postevent processing: the mediating role of self-focused attention.

    PubMed

    Makkar, Steve R; Grisham, Jessica R

    2013-03-01

    Current social phobia models (e.g., Clark & Wells, 1995; Leary & Kowalski, 1995) postulate that socially anxious individuals negatively appraise their anxiety sensations (e.g., sweating, heart racing, blushing) as evidence of poor social performance, and thus fear these anxiety symptoms will be noticed and judged negatively by others. Consequently, they become self-focused and hypervigilant of these sensations and use them to judge how they appear to others. To test this model, high (N=41) and low (N=38) socially anxious participants were shown false physiological feedback regarding an increase or decrease in heart rate prior to and during an impromptu speech task. Relative to participants who observed a false heart rate decrease, those in the increase condition reported higher levels of negative affect, more negative performance appraisals, and more frequent negative ruminative thoughts, and these effects were mediated by an increase in self-focused attention. The unhelpful effects of the physiological feedback were not specific to high socially anxious participants. The results have implications for current cognitive models as well as the treatment of social phobia. Copyright © 2012. Published by Elsevier Ltd.

  12. Asymmetric interjoint feedback contributes to postural control of redundant multi-link systems

    NASA Astrophysics Data System (ADS)

    Bunderson, Nathan E.; Ting, Lena H.; Burkholder, Thomas J.

    2007-09-01

    Maintaining the postural configuration of a limb such as an arm or leg is a fundamental neural control task that involves the coordination of multiple linked body segments. Biological systems are known to use a complex network of inter- and intra-joint feedback mechanisms arising from muscles, spinal reflexes and higher neuronal structures to stabilize the limbs. While previous work has shown that a small amount of asymmetric heterogenic feedback contributes to the behavior of these systems, a satisfactory functional explanation for this non-conservative feedback structure has not been put forth. We hypothesized that an asymmetric multi-joint control strategy would confer both an energetic and stability advantage in maintaining endpoint position of a kinematically redundant system. We tested this hypothesis by using optimal control models incorporating symmetric versus asymmetric feedback with the goal of maintaining the endpoint location of a kinematically redundant, planar limb. Asymmetric feedback improved endpoint control performance of the limb by 16%, reduced energetic cost by 21% and increased interjoint coordination by 40% compared to the symmetric feedback system. The overall effect of the asymmetry was that proximal joint motion resulted in greater torque generation at distal joints than vice versa. The asymmetric organization is consistent with heterogenic stretch reflex gains measured experimentally. We conclude that asymmetric feedback has a functionally relevant role in coordinating redundant degrees of freedom to maintain the position of the hand or foot.

  13. Vocal Responses to Perturbations in Voice Auditory Feedback in Individuals with Parkinson's Disease

    PubMed Central

    Liu, Hanjun; Wang, Emily Q.; Metman, Leo Verhagen; Larson, Charles R.

    2012-01-01

    Background One of the most common symptoms of speech deficits in individuals with Parkinson's disease (PD) is significantly reduced vocal loudness and pitch range. The present study investigated whether abnormal vocalizations in individuals with PD are related to sensory processing of voice auditory feedback. Perturbations in loudness or pitch of voice auditory feedback are known to elicit short latency, compensatory responses in voice amplitude or fundamental frequency. Methodology/Principal Findings Twelve individuals with Parkinson's disease and 13 age- and sex- matched healthy control subjects sustained a vowel sound (/α/) and received unexpected, brief (200 ms) perturbations in voice loudness (±3 or 6 dB) or pitch (±100 cents) auditory feedback. Results showed that, while all subjects produced compensatory responses in their voice amplitude or fundamental frequency, individuals with PD exhibited larger response magnitudes than the control subjects. Furthermore, for loudness-shifted feedback, upward stimuli resulted in shorter response latencies than downward stimuli in the control subjects but not in individuals with PD. Conclusions/Significance The larger response magnitudes in individuals with PD compared with the control subjects suggest that processing of voice auditory feedback is abnormal in PD. Although the precise mechanisms of the voice feedback processing are unknown, results of this study suggest that abnormal voice control in individuals with PD may be related to dysfunctional mechanisms of error detection or correction in sensory feedback processing. PMID:22448258

  14. Asymmetric interjoint feedback contributes to postural control of redundant multi-link systems

    PubMed Central

    Bunderson, Nathan E.; Ting, Lena H.; Burkholder, Thomas J.

    2008-01-01

    Maintaining the postural configuration of a limb such as an arm or leg is a fundamental neural control task that involves the coordination of multiple linked body segments. Biological systems are known to use a complex network of inter- and intra-joint feedback mechanisms arising from muscles, spinal reflexes, and higher neuronal structures to stabilize the limbs. While previous work has shown that a small amount of asymmetric heterogenic feedback contributes to the behavior of these systems, a satisfactory functional explanation for this nonconservative feedback structure has not been put forth. We hypothesized that an asymmetric multi-joint control strategy would confer both an energetic and stability advantage in maintaining endpoint position of a kinematically redundant system. We tested this hypothesis by using optimal control models incorporating symmetric versus asymmetric feedback with the goal of maintaining the endpoint location of a kinematically redundant, planar limb. Asymmetric feedback improved endpoint control performance of the limb by 16%, reduced energetic cost by 21% and increased interjoint coordination by 40% compared to the symmetric feedback system. The overall effect of the asymmetry was that proximal joint motion resulted in greater torque generation at distal joints than vice versa. The asymmetric organization is consistent with heterogenic stretch reflex gains measured experimentally. We conclude that asymmetric feedback has a functionally relevant role in coordinating redundant degrees of freedom to maintain the position of the hand or foot. PMID:17873426

  15. Examining the Minimal Required Elements of a Computer-Tailored Intervention Aimed at Dietary Fat Reduction: Results of a Randomized Controlled Dismantling Study

    ERIC Educational Resources Information Center

    Kroeze, Willemieke; Oenema, Anke; Dagnelie, Pieter C.; Brug, Johannes

    2008-01-01

    This study investigated the minimally required feedback elements of a computer-tailored dietary fat reduction intervention to be effective in improving fat intake. In all 588 Healthy Dutch adults were randomly allocated to one of four conditions in an randomized controlled trial: (i) feedback on dietary fat intake [personal feedback (P feedback)],…

  16. Corticocortical feedback increases the spatial extent of normalization.

    PubMed

    Nassi, Jonathan J; Gómez-Laberge, Camille; Kreiman, Gabriel; Born, Richard T

    2014-01-01

    Normalization has been proposed as a canonical computation operating across different brain regions, sensory modalities, and species. It provides a good phenomenological description of non-linear response properties in primary visual cortex (V1), including the contrast response function and surround suppression. Despite its widespread application throughout the visual system, the underlying neural mechanisms remain largely unknown. We recently observed that corticocortical feedback contributes to surround suppression in V1, raising the possibility that feedback acts through normalization. To test this idea, we characterized area summation and contrast response properties in V1 with and without feedback from V2 and V3 in alert macaques and applied a standard normalization model to the data. Area summation properties were well explained by a form of divisive normalization, which computes the ratio between a neuron's driving input and the spatially integrated activity of a "normalization pool." Feedback inactivation reduced surround suppression by shrinking the spatial extent of the normalization pool. This effect was independent of the gain modulation thought to mediate the influence of contrast on area summation, which remained intact during feedback inactivation. Contrast sensitivity within the receptive field center was also unaffected by feedback inactivation, providing further evidence that feedback participates in normalization independent of the circuit mechanisms involved in modulating contrast gain and saturation. These results suggest that corticocortical feedback contributes to surround suppression by increasing the visuotopic extent of normalization and, via this mechanism, feedback can play a critical role in contextual information processing.

  17. Corticocortical feedback increases the spatial extent of normalization

    PubMed Central

    Nassi, Jonathan J.; Gómez-Laberge, Camille; Kreiman, Gabriel; Born, Richard T.

    2014-01-01

    Normalization has been proposed as a canonical computation operating across different brain regions, sensory modalities, and species. It provides a good phenomenological description of non-linear response properties in primary visual cortex (V1), including the contrast response function and surround suppression. Despite its widespread application throughout the visual system, the underlying neural mechanisms remain largely unknown. We recently observed that corticocortical feedback contributes to surround suppression in V1, raising the possibility that feedback acts through normalization. To test this idea, we characterized area summation and contrast response properties in V1 with and without feedback from V2 and V3 in alert macaques and applied a standard normalization model to the data. Area summation properties were well explained by a form of divisive normalization, which computes the ratio between a neuron's driving input and the spatially integrated activity of a “normalization pool.” Feedback inactivation reduced surround suppression by shrinking the spatial extent of the normalization pool. This effect was independent of the gain modulation thought to mediate the influence of contrast on area summation, which remained intact during feedback inactivation. Contrast sensitivity within the receptive field center was also unaffected by feedback inactivation, providing further evidence that feedback participates in normalization independent of the circuit mechanisms involved in modulating contrast gain and saturation. These results suggest that corticocortical feedback contributes to surround suppression by increasing the visuotopic extent of normalization and, via this mechanism, feedback can play a critical role in contextual information processing. PMID:24910596

  18. Engines-only flight control system

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W. (Inventor); Gilyard, Glenn B (Inventor); Conley, Joseph L. (Inventor); Stewart, James F. (Inventor); Fullerton, Charles G. (Inventor)

    1994-01-01

    A backup flight control system for controlling the flightpath of a multi-engine airplane using the main drive engines is introduced. The backup flight control system comprises an input device for generating a control command indicative of a desired flightpath, a feedback sensor for generating a feedback signal indicative of at least one of pitch rate, pitch attitude, roll rate and roll attitude, and a control device for changing the output power of at least one of the main drive engines on each side of the airplane in response to the control command and the feedback signal.

  19. Hybrid force-velocity sliding mode control of a prosthetic hand.

    PubMed

    Engeberg, Erik D; Meek, Sanford G; Minor, Mark A

    2008-05-01

    Four different methods of hand prosthesis control are developed and examined experimentally. Open-loop control is shown to offer the least sensitivity when manipulating objects. Force feedback substantially improves upon open-loop control. However, it is shown that the inclusion of velocity and/or position feedback in a hybrid force-velocity control scheme can further improve the functionality of hand prostheses. Experimental results indicate that the sliding mode controller with force, position, and velocity feedback is less prone to unwanted force overshoot when initially grasping objects than the other controllers.

  20. Control of nonlinear systems with applications to constrained robots and spacecraft attitude stabilization

    NASA Technical Reports Server (NTRS)

    Krishnan, Hariharan

    1993-01-01

    This thesis is organized in two parts. In Part 1, control systems described by a class of nonlinear differential and algebraic equations are introduced. A procedure for local stabilization based on a local state realization is developed. An alternative approach to local stabilization is developed based on a classical linearization of the nonlinear differential-algebraic equations. A theoretical framework is established for solving a tracking problem associated with the differential-algebraic system. First, a simple procedure is developed for the design of a feedback control law which ensures, at least locally, that the tracking error in the closed loop system lies within any given bound if the reference inputs are sufficiently slowly varying. Next, by imposing additional assumptions, a procedure is developed for the design of a feedback control law which ensures that the tracking error in the closed loop system approaches zero exponentially for reference inputs which are not necessarily slowly varying. The control design methodologies are used for simultaneous force and position control in constrained robot systems. The differential-algebraic equations are shown to characterize the slow dynamics of a certain nonlinear control system in nonstandard singularly perturbed form. In Part 2, the attitude stabilization (reorientation) of a rigid spacecraft using only two control torques is considered. First, the case of momentum wheel actuators is considered. The complete spacecraft dynamics are not controllable. However, the spacecraft dynamics are small time locally controllable in a reduced sense. The reduced spacecraft dynamics cannot be asymptotically stabilized using continuous feedback, but a discontinuous feedback control strategy is constructed. Next, the case of gas jet actuators is considered. If the uncontrolled principal axis is not an axis of symmetry, the complete spacecraft dynamics are small time locally controllable. However, the spacecraft attitude cannot be asymptotically stabilized using continuous feedback, but a discontinuous stabilizing feedback control strategy is constructed. If the uncontrolled principal axis is an axis of symmetry, the complete spacecraft dynamics cannot be stabilized. However, the spacecraft dynamics are small time locally controllable in a reduced sense. The reduced spacecraft dynamics cannot be asymptotically stabilized using continuous feedback, but again a discontinuous feedback control strategy is constructed.

  1. Effect of intermittent feedback control on robustness of human-like postural control system

    NASA Astrophysics Data System (ADS)

    Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki

    2016-03-01

    Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies.

  2. Predictive Feedback and Feedforward Control for Systems with Unknown Disturbances

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Eure, Kenneth W.

    1998-01-01

    Predictive feedback control has been successfully used in the regulation of plate vibrations when no reference signal is available for feedforward control. However, if a reference signal is available it may be used to enhance regulation by incorporating a feedforward path in the feedback controller. Such a controller is known as a hybrid controller. This paper presents the theory and implementation of the hybrid controller for general linear systems, in particular for structural vibration induced by acoustic noise. The generalized predictive control is extended to include a feedforward path in the multi-input multi-output case and implemented on a single-input single-output test plant to achieve plate vibration regulation. There are cases in acoustic-induce vibration where the disturbance signal is not available to be used by the hybrid controller, but a disturbance model is available. In this case the disturbance model may be used in the feedback controller to enhance performance. In practice, however, neither the disturbance signal nor the disturbance model is available. This paper presents the theory of identifying and incorporating the noise model into the feedback controller. Implementations are performed on a test plant and regulation improvements over the case where no noise model is used are demonstrated.

  3. Effect of intermittent feedback control on robustness of human-like postural control system.

    PubMed

    Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki

    2016-03-02

    Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies.

  4. Effect of intermittent feedback control on robustness of human-like postural control system

    PubMed Central

    Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki

    2016-01-01

    Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies. PMID:26931281

  5. Feedback control of acoustic musical instruments: collocated control using physical analogs.

    PubMed

    Berdahl, Edgar; Smith, Julius O; Niemeyer, Günter

    2012-01-01

    Traditionally, the average professional musician has owned numerous acoustic musical instruments, many of them having distinctive acoustic qualities. However, a modern musician could prefer to have a single musical instrument whose acoustics are programmable by feedback control, where acoustic variables are estimated from sensor measurements in real time and then fed back in order to influence the controlled variables. In this paper, theory is presented that describes stable feedback control of an acoustic musical instrument. The presentation should be accessible to members of the musical acoustics community who may have limited or no experience with feedback control. First, the only control strategy guaranteed to be stable subject to any musical instrument mobility is described: the sensors and actuators must be collocated, and the controller must emulate a physical analog system. Next, the most fundamental feedback controllers and the corresponding physical analog systems are presented. The effects that these controllers have on acoustic musical instruments are described. Finally, practical design challenges are discussed. A proof explains why changing the resonance frequency of a musical resonance requires much more control power than changing the decay time of the resonance. © 2012 Acoustical Society of America.

  6. Effectiveness of patient feedback as an educational intervention to improve medical student consultation (PTA Feedback Study): study protocol for a randomized controlled trial.

    PubMed

    Lai, Michelle Mei Yee; Roberts, Noel; Martin, Jenepher

    2014-09-17

    Oral feedback from clinical educators is the traditional teaching method for improving clinical consultation skills in medical students. New approaches are needed to enhance this teaching model. Multisource feedback is a commonly used assessment method for learning among practising clinicians, but this assessment has not been explored rigorously in medical student education. This study seeks to evaluate if additional feedback on patient satisfaction improves medical student performance. The Patient Teaching Associate (PTA) Feedback Study is a single site randomized controlled, double-blinded trial with two parallel groups.An after-hours general practitioner clinic in Victoria, Australia, is adapted as a teaching clinic during the day. Medical students from two universities in their first clinical year participate in six simulated clinical consultations with ambulatory patient volunteers living with chronic illness. Eligible students will be randomized in equal proportions to receive patient satisfaction score feedback with the usual multisource feedback and the usual multisource feedback alone as control. Block randomization will be performed. We will assess patient satisfaction and consultation performance outcomes at baseline and after one semester and will compare any change in mean scores at the last session from that at baseline. We will model data using regression analysis to determine any differences between intervention and control groups. Full ethical approval has been obtained for the study. This trial will comply with CONSORT guidelines and we will disseminate data at conferences and in peer-reviewed journals. This is the first proposed trial to determine whether consumer feedback enhances the use of multisource feedback in medical student education, and to assess the value of multisource feedback in teaching and learning about the management of ambulatory patients living with chronic conditions. Australian New Zealand Clinical Trials Registry (ANZCTR): ACTRN12613001055796.

  7. Results of a multicentre randomised controlled trial of statistical process control charts and structured diagnostic tools to reduce ward-acquired meticillin-resistant Staphylococcus aureus: the CHART Project.

    PubMed

    Curran, E; Harper, P; Loveday, H; Gilmour, H; Jones, S; Benneyan, J; Hood, J; Pratt, R

    2008-10-01

    Statistical process control (SPC) charts have previously been advocated for infection control quality improvement. To determine their effectiveness, a multicentre randomised controlled trial was undertaken to explore whether monthly SPC feedback from infection control nurses (ICNs) to healthcare workers of ward-acquired meticillin-resistant Staphylococcus aureus (WA-MRSA) colonisation or infection rates would produce any reductions in incidence. Seventy-five wards in 24 hospitals in the UK were randomised into three arms: (1) wards receiving SPC chart feedback; (2) wards receiving SPC chart feedback in conjunction with structured diagnostic tools; and (3) control wards receiving neither type of feedback. Twenty-five months of pre-intervention WA-MRSA data were compared with 24 months of post-intervention data. Statistically significant and sustained decreases in WA-MRSA rates were identified in all three arms (P<0.001; P=0.015; P<0.001). The mean percentage reduction was 32.3% for wards receiving SPC feedback, 19.6% for wards receiving SPC and diagnostic feedback, and 23.1% for control wards, but with no significant difference between the control and intervention arms (P=0.23). There were significantly more post-intervention 'out-of-control' episodes (P=0.021) in the control arm (averages of 0.60, 0.28, and 0.28 for Control, SPC and SPC+Tools wards, respectively). Participants identified SPC charts as an effective communication tool and valuable for disseminating WA-MRSA data.

  8. Use of Accelerometer-Based Feedback of Walking Activity for Appraising Progress With Walking-Related Goals in Inpatient Stroke Rehabilitation: A Randomized Controlled Trial.

    PubMed

    Mansfield, Avril; Wong, Jennifer S; Bryce, Jessica; Brunton, Karen; Inness, Elizabeth L; Knorr, Svetlana; Jones, Simon; Taati, Babak; McIlroy, William E

    2015-10-01

    Regaining independent ambulation is important to those with stroke. Increased walking practice during "down time" in rehabilitation could improve walking function for individuals with stroke. To determine the effect of providing physiotherapists with accelerometer-based feedback on patient activity and walking-related goals during inpatient stroke rehabilitation. Participants with stroke wore accelerometers around both ankles every weekday during inpatient rehabilitation. Participants were randomly assigned to receive daily feedback about walking activity via their physiotherapists (n = 29) or to receive no feedback (n = 28). Changes in measures of daily walking (walking time, number of steps, average cadence, longest bout duration, and number of "long" walking bouts) and changes in gait control and function assessed in-laboratory were compared between groups. There was no significant increase in walking time, number of steps, longest bout duration, or number of long walking bouts for the feedback group compared with the control group (P values > .20). However, individuals who received feedback significantly increased cadence of daily walking more than the control group (P = .013). From the in-laboratory gait assessment, individuals who received feedback had a greater increase in walking speed and decrease in step time variability than the control group (P values < .030). Feedback did not increase the amount of walking completed by individuals with stroke. However, there was a significant increase in cadence, indicating that intensity of daily walking was greater for those who received feedback than the control group. Additionally, more intense daily walking activity appeared to translate to greater improvements in walking speed. © The Author(s) 2015.

  9. Significance of auditory and kinesthetic feedback to singers' pitch control.

    PubMed

    Mürbe, Dirk; Pabst, Friedemann; Hofmann, Gert; Sundberg, Johan

    2002-03-01

    An accurate control of fundamental frequency (F0) is required from singers. This control relies on auditory and kinesthetic feedback. However, a loud accompaniment may mask the auditory feedback, leaving the singers to rely on kinesthetic feedback. The object of the present study was to estimate the significance of auditory and kinesthetic feedback to pitch control in 28 students beginning a professional solo singing education. The singers sang an ascending and descending triad pattern covering their entire pitch range with and without masking noise in legato and staccato and in a slow and a fast tempo. F0 was measured by means of a computer program. The interval sizes between adjacent tones were determined and their departures from equally tempered tuning were calculated. The deviations from this tuning were used as a measure of the accuracy of intonation. Statistical analysis showed a significant effect of masking that amounted to a mean impairment of pitch accuracy by 14 cent across all subjects. Furthermore, significant effects were found of tempo as well as of the staccato/legato conditions. The results indicate that auditory feedback contributes significantly to singers' control of pitch.

  10. The inhibitory microcircuit of the substantia nigra provides feedback gain control of the basal ganglia output.

    PubMed

    Brown, Jennifer; Pan, Wei-Xing; Dudman, Joshua Tate

    2014-05-21

    Dysfunction of the basal ganglia produces severe deficits in the timing, initiation, and vigor of movement. These diverse impairments suggest a control system gone awry. In engineered systems, feedback is critical for control. By contrast, models of the basal ganglia highlight feedforward circuitry and ignore intrinsic feedback circuits. In this study, we show that feedback via axon collaterals of substantia nigra projection neurons control the gain of the basal ganglia output. Through a combination of physiology, optogenetics, anatomy, and circuit mapping, we elaborate a general circuit mechanism for gain control in a microcircuit lacking interneurons. Our data suggest that diverse tonic firing rates, weak unitary connections and a spatially diffuse collateral circuit with distinct topography and kinetics from feedforward input is sufficient to implement divisive feedback inhibition. The importance of feedback for engineered systems implies that the intranigral microcircuit, despite its absence from canonical models, could be essential to basal ganglia function. DOI: http://dx.doi.org/10.7554/eLife.02397.001. Copyright © 2014, Brown et al.

  11. Placement matching of alcohol-dependent patients based on a standardized intake assessment: rationale and design of a randomized controlled trial.

    PubMed

    Buchholz, Angela; Friedrichs, Anke; Berner, Michael; König, Hans-Helmut; Konnopka, Alexander; Kraus, Ludwig; Kriston, Levente; Küfner, Heinrich; Piontek, Daniela; Rist, Fred; Röhrig, Jeanette

    2014-10-14

    Despite considerable research on substance-abuse placement matching, evidence is still inconclusive. The aims of this exploratory trial are to evaluate (a) the effects of following matching guidelines on health-care costs and heavy drinking, and (b) factors affecting the implementation of matching guidelines in the treatment of alcohol-dependent patients. A total of 286 alcohol-dependent patients entering one of four participating detoxification units and having no arrangements for further treatment will be recruited. During the first week of treatment, all patients will be administered Measurements in the Addictions for Triage and Evaluation (MATE), European Quality of Life-Five Dimensions health status questionnaire (EQ-5D), and the Client Socio--Demographic and Service Receipt Inventory-European Version (CSSRI-EU). Patients who are randomly allocated to the intervention group will receive feedback regarding their assessment results, including clear recommendations for subsequent treatment. Patients of the control group will receive treatment as usual and, if requested, global feedback regarding their assessment results, but no recommendations for subsequent treatment. At discharge, treatment outcome and referral decisions will be recorded. Six months after discharge, patients will be administered MATE-Outcome, EQ-5D, and CSSRI-EU during a telephone interview. This trial will provide evidence on the effects and costs of using placement-matching guidelines based on a standardized assessment with structured feedback in the treatment of alcohol-dependent patients. A process evaluation will be conducted to facilitate better understanding of the relationship between the use of guidelines, outcomes, and potential mediating variables. German Clinical Trials Register DRKS00005035. Registered 03 June 2013.

  12. Brain-computer interface: changes in performance using virtual reality techniques.

    PubMed

    Ron-Angevin, Ricardo; Díaz-Estrella, Antonio

    2009-01-09

    The ability to control electroencephalographic (EEG) signals when different mental tasks are carried out would provide a method of communication for people with serious motor function problems. This system is known as a brain-computer interface (BCI). Due to the difficulty of controlling one's own EEG signals, a suitable training protocol is required to motivate subjects, as it is necessary to provide some type of visual feedback allowing subjects to see their progress. Conventional systems of feedback are based on simple visual presentations, such as a horizontal bar extension. However, virtual reality is a powerful tool with graphical possibilities to improve BCI-feedback presentation. The objective of the study is to explore the advantages of the use of feedback based on virtual reality techniques compared to conventional systems of feedback. Sixteen untrained subjects, divided into two groups, participated in the experiment. A group of subjects was trained using a BCI system, which uses conventional feedback (bar extension), and another group was trained using a BCI system, which submits subjects to a more familiar environment, such as controlling a car to avoid obstacles. The obtained results suggest that EEG behaviour can be modified via feedback presentation. Significant differences in classification error rates between both interfaces were obtained during the feedback period, confirming that an interface based on virtual reality techniques can improve the feedback control, specifically for untrained subjects.

  13. Tactile feedback is an effective instrument for the training of grasping with a prosthesis at low- and medium-force levels.

    PubMed

    De Nunzio, Alessandro Marco; Dosen, Strahinja; Lemling, Sabrina; Markovic, Marko; Schweisfurth, Meike Annika; Ge, Nan; Graimann, Bernhard; Falla, Deborah; Farina, Dario

    2017-08-01

    Grasping is a complex task routinely performed in an anticipatory (feedforward) manner, where sensory feedback is responsible for learning and updating the internal model of grasp dynamics. This study aims at evaluating whether providing a proportional tactile force feedback during the myoelectric control of a prosthesis facilitates learning a stable internal model of the prosthesis force control. Ten able-bodied subjects controlled a sensorized myoelectric prosthesis performing four blocks of consecutive grasps at three levels of target force (30, 50, and 70%), repeatedly closing the fully opened hand. In the first and third block, the subjects received tactile and visual feedback, respectively, while during the second and fourth block, the feedback was removed. The subjects also performed an additional block with no feedback 1 day after the training (Retest). The median and interquartile range of the generated forces was computed to assess the accuracy and precision of force control. The results demonstrated that the feedback was indeed an effective instrument for the training of prosthesis control. After the training, the subjects were still able to accurately generate the desired force for the low and medium target (30 and 50% of maximum force available in a prosthesis), despite the feedback being removed within the session and during the retest (low target force). However, the training was substantially less successful for high forces (70% of prosthesis maximum force), where subjects exhibited a substantial loss of accuracy as soon as the feedback was removed. The precision of control decreased with higher forces and it was consistent across conditions, determined by an intrinsic variability of repeated myoelectric grasping. This study demonstrated that the subject could rely on the tactile feedback to adjust the motor command to the prosthesis across trials. The subjects adjusted the mean level of muscle activation (accuracy), whereas the precision could not be modulated as it depends on the intrinsic myoelectric variability. They were also able to maintain the feedforward command even after the feedback was removed, demonstrating thereby a stable learning, but the retention depended on the level of the target force. This is an important insight into the role of feedback as an instrument for learning of anticipatory prosthesis force control.

  14. Engineered microbes and methods for microbial oil production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephanopoulos, Gregory; Tai, Mitchell; Chakraborty, Sagar

    Some aspects of this invention provide engineered microbes for oil production. Methods for microbe engineering and for use of engineered microbes are also provided herein. In some embodiments, microbes are provided that are engineered to modulate a combination of rate-controlling steps of lipid synthesis, for example, a combination of a step generating metabolites, acetyl-CoA, ATP or NADPH for lipid synthesis (a push step), and a step sequestering a product or an intermediate of a lipid synthesis pathway that mediates feedback inhibition of lipid synthesis (a pull step). Such push-and-pull engineered microbes exhibit greatly enhanced conversion yields and TAG synthesis andmore » storage properties.« less

  15. Study to eliminate ground resonance using active controls

    NASA Technical Reports Server (NTRS)

    Straub, F. K.

    1984-01-01

    The effectiveness of active control blade feathering in increasing rotor body damping and the possibility to eliminate ground resonance instabilities were investigated. An analytical model representing rotor flapping and lead-lag degrees of freedom and body pitch, roll, longitudinal and lateral motion is developed. Active control blade feathering is implemented as state variable feedback through a conventional swashplate. The influence of various feedback states, feedback gain, and weighting between the cyclic controls is studied through stability and response analyses. It is shown that blade cyclic inplane motion, roll rate and roll acceleration feedback can add considerable damping to the system and eliminate ground resonance instabilities, which the feedback phase is also a powerful parameter, if chosen properly, it maximizes augmentation of the inherent regressing lag mode damping. It is shown that rotor configuration parameters, like blade root hinge offset, flapping stiffness, and precone considerably influence the control effectiveness. It is found that active control is particularly powerful for hingeless and bearingless rotor systems.

  16. The basis for cosmic ray feedback: Written on the wind

    PubMed Central

    Zweibel, Ellen G.

    2017-01-01

    Star formation and supermassive black hole growth in galaxies appear to be self-limiting. The mechanisms for self-regulation are known as feedback. Cosmic rays, the relativistic particle component of interstellar and intergalactic plasma, are among the agents of feedback. Because cosmic rays are virtually collisionless in the plasma environments of interest, their interaction with the ambient medium is primarily mediated by large scale magnetic fields and kinetic scale plasma waves. Because kinetic scales are much smaller than global scales, this interaction is most conveniently described by fluid models. In this paper, I discuss the kinetic theory and the classical theory of cosmic ray hydrodynamics (CCRH) which follows from assuming cosmic rays interact only with self-excited waves. I generalize CCRH to generalized cosmic ray hydrodynamics, which accommodates interactions with extrinsic turbulence, present examples of cosmic ray feedback, and assess where progress is needed. PMID:28579734

  17. The basis for cosmic ray feedback: Written on the wind

    NASA Astrophysics Data System (ADS)

    Zweibel, Ellen G.

    2017-05-01

    Star formation and supermassive black hole growth in galaxies appear to be self-limiting. The mechanisms for self-regulation are known as feedback. Cosmic rays, the relativistic particle component of interstellar and intergalactic plasma, are among the agents of feedback. Because cosmic rays are virtually collisionless in the plasma environments of interest, their interaction with the ambient medium is primarily mediated by large scale magnetic fields and kinetic scale plasma waves. Because kinetic scales are much smaller than global scales, this interaction is most conveniently described by fluid models. In this paper, I discuss the kinetic theory and the classical theory of cosmic ray hydrodynamics (CCRH) which follows from assuming cosmic rays interact only with self-excited waves. I generalize CCRH to generalized cosmic ray hydrodynamics, which accommodates interactions with extrinsic turbulence, present examples of cosmic ray feedback, and assess where progress is needed.

  18. The basis for cosmic ray feedback: Written on the wind.

    PubMed

    Zweibel, Ellen G

    2017-05-01

    Star formation and supermassive black hole growth in galaxies appear to be self-limiting. The mechanisms for self-regulation are known as feedback . Cosmic rays, the relativistic particle component of interstellar and intergalactic plasma, are among the agents of feedback. Because cosmic rays are virtually collisionless in the plasma environments of interest, their interaction with the ambient medium is primarily mediated by large scale magnetic fields and kinetic scale plasma waves. Because kinetic scales are much smaller than global scales, this interaction is most conveniently described by fluid models. In this paper, I discuss the kinetic theory and the classical theory of cosmic ray hydrodynamics (CCRH) which follows from assuming cosmic rays interact only with self-excited waves. I generalize CCRH to generalized cosmic ray hydrodynamics, which accommodates interactions with extrinsic turbulence, present examples of cosmic ray feedback, and assess where progress is needed.

  19. Direct laser additive fabrication system with image feedback control

    DOEpatents

    Griffith, Michelle L.; Hofmeister, William H.; Knorovsky, Gerald A.; MacCallum, Danny O.; Schlienger, M. Eric; Smugeresky, John E.

    2002-01-01

    A closed-loop, feedback-controlled direct laser fabrication system is disclosed. The feedback refers to the actual growth conditions obtained by real-time analysis of thermal radiation images. The resulting system can fabricate components with severalfold improvement in dimensional tolerances and surface finish.

  20. Reinforcement learning for stabilizing an inverted pendulum naturally leads to intermittent feedback control as in human quiet standing.

    PubMed

    Michimoto, Kenjiro; Suzuki, Yasuyuki; Kiyono, Ken; Kobayashi, Yasushi; Morasso, Pietro; Nomura, Taishin

    2016-08-01

    Intermittent feedback control for stabilizing human upright stance is a promising strategy, alternative to the standard time-continuous stiffness control. Here we show that such an intermittent controller can be established naturally through reinforcement learning. To this end, we used a single inverted pendulum model of the upright posture and a very simple reward function that gives a certain amount of punishments when the inverted pendulum falls or changes its position in the state space. We found that the acquired feedback controller exhibits hallmarks of the intermittent feedback control strategy, namely the action of the feedback controller is switched-off intermittently when the state of the pendulum is located near the stable manifold of the unstable saddle-type upright equilibrium of the inverted pendulum with no active control: this action provides an opportunity to exploit transiently converging dynamics toward the unstable upright position with no help of the active feedback control. We then speculate about a possible physiological mechanism of such reinforcement learning, and suggest that it may be related to the neural activity in the pedunculopontine tegmental nucleus (PPN) of the brainstem. This hypothesis is supported by recent evidence indicating that PPN might play critical roles for generation and regulation of postural tonus, reward prediction, as well as postural instability in patients with Parkinson's disease.

  1. Robust non-fragile finite-frequency H∞ static output-feedback control for active suspension systems

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Chen, Changzheng; Yu, Shenbo

    2017-07-01

    This paper deals with the problem of non-fragile H∞ static output-feedback control of vehicle active suspension systems with finite-frequency constraint. The control objective is to improve ride comfort within the given frequency range and ensure the hard constraints in the time-domain. Moreover, in order to enhance the robustness of the controller, the control gain perturbation is also considered in controller synthesis. Firstly, a new non-fragile H∞ finite-frequency control condition is established by using generalized Kalman-Yakubovich-Popov (GKYP) lemma. Secondly, the static output-feedback control gain is directly derived by using a non-iteration algorithm. Different from the existing iteration LMI results, the static output-feedback design is simple and less conservative. Finally, the proposed control algorithm is applied to a quarter-car active suspension model with actuator dynamics, numerical results are made to show the effectiveness and merits of the proposed method.

  2. Vibration limiting of rotors by feedback control

    NASA Technical Reports Server (NTRS)

    Lewis, D. W.; Moore, J. W.; Bradley, P. L.; Allaire, P. E.

    1982-01-01

    Experimental findings of a three mass rotor with four channels of feedback control are reported. The channels are independently controllable with force being proportional to the velocity and/or instantaneous displacement from equilibrium of the shaft at the noncontacting probe locations (arranged in the vertical and horizontal attitudes near the support bearings). The findings suggest that automatic feedback control of rotors is feasible for limiting certain vibration levels. Control of one end of a rotor does afford some predictable vibration limiting of the rotor at the other end.

  3. An improved output feedback control of flexible large space structures

    NASA Technical Reports Server (NTRS)

    Lin, Y. H.; Lin, J. G.

    1980-01-01

    A special output feedback control design technique for flexible large space structures is proposed. It is shown that the technique will increase both the damping and frequency of selected modes for more effective control. It is also able to effect integrated control of elastic and rigid-body modes and, in particular, closed-loop system stability and robustness to modal truncation and parameter variation. The technique is seen as marking an improvement over previous work concerning large space structures output feedback control.

  4. Mitogen-Inducible Gene-6 Mediates Feedback Inhibition from Mutated BRAF towards the Epidermal Growth Factor Receptor and Thereby Limits Malignant Transformation

    PubMed Central

    Milewska, Malgorzata; Romano, David; Herrero, Ana; Guerriero, Maria Luisa; Birtwistle, Marc; Quehenberger, Franz; Hatzl, Stefan; Kholodenko, Boris N.; Segatto, Oreste; Kolch, Walter; Zebisch, Armin

    2015-01-01

    BRAF functions in the RAS-extracellular signal-regulated kinase (ERK) signaling cascade. Activation of this pathway is necessary to mediate the transforming potential of oncogenic BRAF, however, it may also cause a negative feedback that inhibits the epidermal growth factor receptor (EGFR). Mitogen-inducible gene-6 (MIG-6) is a potent inhibitor of the EGFR and has been demonstrated to function as a tumor suppressor. As MIG-6 can be induced via RAS-ERK signaling, we investigated its potential involvement in this negative regulatory loop. Focus formation assays were performed and demonstrated that MIG-6 significantly reduces malignant transformation induced by oncogenic BRAF. Although this genetic interaction was mirrored by a physical interaction between MIG-6 and BRAF, we did not observe a direct regulation of BRAF kinase activity by MIG-6. Interestingly, a selective chemical EGFR inhibitor suppressed transformation to a similar degree as MIG-6, whereas combining these approaches had no synergistic effect. By analyzing a range of BRAF mutated and wildtype cell line models, we could show that BRAF V600E causes a strong upregulation of MIG-6, which was mediated at the transcriptional level via the RAS-ERK pathway and resulted in downregulation of EGFR activation. This feedback loop is operational in tumors, as shown by the analysis of almost 400 patients with papillary thyroid cancer (PTC). Presence of BRAF V600E correlated with increased MIG-6 expression on the one hand, and with inactivation of the EGFR and of PI3K/AKT signaling on the other hand. Importantly, we also observed a more aggressive disease phenotype when BRAF V600E coexisted with low MIG-6 expression. Finally, analysis of methylation data was performed and revealed that higher methylation of MIG-6 correlated to its decreased expression. Taken together, we demonstrate that MIG-6 efficiently reduces cellular transformation driven by oncogenic BRAF by orchestrating a negative feedback circuit directed towards the EGFR. PMID:26065894

  5. Effects of Video Feedback on Early Coercive Parent–Child Interactions: The Intervening Role of Caregivers’ Relational Schemas

    PubMed Central

    Smith, Justin D.; Dishion, Thomas J.; Moore, Kevin J.; Shaw, Daniel S.; Wilson, Melvin N.

    2013-01-01

    Objective We examined the effect of adding a video feedback intervention component to the assessment feedback session of the Family Check-Up intervention (FCU; Dishion & Stormshak, 2007). We hypothesized that the addition of video feedback procedures during the FCU feedback at child age 2 would have a positive effect on caregivers’ negative relational schemas of their child, which in turn would mediate reductions in observed coercive caregiver-child interactions assessed at age 5. Method We observed the caregiver-child interaction videotapes of 79 high-risk families with toddlers exhibiting clinically significant problem behaviors. A quasi-random sample of families were provided with direct feedback on their interactions during the feedback session of the FCU protocol. Results Path analysis indicated that reviewing and engaging in feedback about videotaped age-2 assessment predicted reduced caregivers’ negative relational schemas of the child at age 3, which acted as an intervening variable on the reduction of observed parent–child coercive interactions recorded at age 5. Video feedback predicted improved family functioning over and above level of engagement in the FCU in subsequent years, indicating the important incremental contribution of using video feedback procedures in early family-based preventive interventions for problem behaviors. Conclusions Supportive video feedback on coercive family dynamics is an important strategy for promoting caregiver motivation to reduce negative attributions toward the child, which fuel coercive interactions. Our study also contributes to the clinical and research literature concerning coercion theory and effective intervention strategies by identifying a potential mechanism of change. PMID:23534831

  6. Feedback Providing Improvement Strategies and Reflection on Feedback Use: Effects on Students' Writing Motivation, Process, and Performance

    ERIC Educational Resources Information Center

    Duijnhouwer, Hendrien; Prins, Frans J.; Stokking, Karel M.

    2012-01-01

    This study investigated the effects of feedback providing improvement strategies and a reflection assignment on students' writing motivation, process, and performance. Students in the experimental feedback condition (n = 41) received feedback including improvement strategies, whereas students in the control feedback condition (n = 41) received…

  7. Multivariable control of the Space Shuttle Remote Manipulator System using linearization by state feedback. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Gettman, Chang-Ching LO

    1993-01-01

    This thesis develops and demonstrates an approach to nonlinear control system design using linearization by state feedback. The design provides improved transient response behavior allowing faster maneuvering of payloads by the SRMS. Modeling uncertainty is accounted for by using a second feedback loop designed around the feedback linearized dynamics. A classical feedback loop is developed to provide the easy implementation required for the relatively small on board computers. Feedback linearization also allows the use of higher bandwidth model based compensation in the outer loop, since it helps maintain stability in the presence of the nonlinearities typically neglected in model based designs.

  8. ASDTIC: A feedback control innovation

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.; Schoenfeld, A. D.

    1972-01-01

    The ASDTIC (Analog Signal to Discrete Time Interval Converter) control subsystem provides precise output control of high performance aerospace power supplies. The key to ASDTIC operation is that it stably controls output by sensing output energy change as well as output magnitude. The ASDTIC control subsystem and control module were developed to improve power supply performance during static and dynamic input voltage and output load variations, to reduce output voltage or current regulation due to component variations or aging, to maintain a stable feedback control with variations in the loop gain or loop time constants, and to standardize the feedback control subsystem for power conditioning equipment.

  9. ASDTIC - A feedback control innovation.

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.; Schoenfeld, A. D.

    1972-01-01

    The ASDTIC (analog signal to discrete time interval converter) control subsystem provides precise output control of high performance aerospace power supplies. The key to ASDTIC operation is that it stably controls output by sensing output energy change as well as output magnitude. The ASDTIC control subsystem and control module were developed to improve power supply performance during static and dynamic input voltage and output load variations, to reduce output voltage or current regulation due to component variations or aging, to maintain a stable feedback control with variations in the loop gain or loop time constants, and to standardize the feedback control subsystem for power conditioning equipment.

  10. Closed-loop control of grasping with a myoelectric hand prosthesis: which are the relevant feedback variables for force control?

    PubMed

    Ninu, Andrei; Dosen, Strahinja; Muceli, Silvia; Rattay, Frank; Dietl, Hans; Farina, Dario

    2014-09-01

    In closed-loop control of grasping by hand prostheses, the feedback information sent to the user is usually the actual controlled variable, i.e., the grasp force. Although this choice is intuitive and logical, the force production is only the last step in the process of grasping. Therefore, this study evaluated the performance in controlling grasp strength using a hand prosthesis operated through a complete grasping sequence while varying the feedback variables (e.g., closing velocity, grasping force), which were provided to the user visually or through vibrotactile stimulation. The experiments were conducted on 13 volunteers who controlled the Otto Bock Sensor Hand Speed prosthesis. Results showed that vibrotactile patterns were able to replace the visual feedback. Interestingly, the experiments demonstrated that direct force feedback was not essential for the control of grasping force. The subjects were indeed able to control the grip strength, predictively, by estimating the grasping force from the prosthesis velocity of closing. Therefore, grasping without explicit force feedback is not completely blind, contrary to what is usually assumed. In our study we analyzed grasping with a specific prosthetic device, but the outcomes are also applicable for other devices, with one or more degrees-of-freedom. The necessary condition is that the electromyography (EMG) signal directly and proportionally controls the velocity/grasp force of the hand, which is a common approach among EMG controlled prosthetic devices. The results provide important indications on the design of closed-loop EMG controlled prosthetic systems.

  11. Using Arrays of Microelectrodes Implanted in Residual Peripheral Nerves to Provide Dextrous Control of, and Modulated Sensory Feedback from, a Hand Prosthesis

    DTIC Science & Technology

    2015-10-01

    Modulated Sensory Feedback from, a Hand Prosthesis PRINCIPAL INVESTIGATOR: Bradley Greger, PhD CONTRACTING ORGANIZATION: Arizona State University...Residual Peripheral Nerves to Provide Dextrous Control of, and Modulated Sensory Feedback from, a Hand Prosthesis 5a. CONTRACT NUMBER 5b. GRANT...Peripheral Nerve Interface, Prosthetic Hand, Neural Prosthesis , Sensory Feedback, Micro-stimulation, Electrophysiology, Action Potentials, Micro

  12. Active control of multiple resistive wall modes

    NASA Astrophysics Data System (ADS)

    Brunsell, P. R.; Yadikin, D.; Gregoratto, D.; Paccagnella, R.; Liu, Y. Q.; Bolzonella, T.; Cecconello, M.; Drake, J. R.; Kuldkepp, M.; Manduchi, G.; Marchiori, G.; Marrelli, L.; Martin, P.; Menmuir, S.; Ortolani, S.; Rachlew, E.; Spizzo, G.; Zanca, P.

    2005-12-01

    A two-dimensional array of saddle coils at Mc poloidal and Nc toroidal positions is used on the EXTRAP T2R reversed-field pinch (Brunsell P R et al 2001 Plasma Phys. Control. Fusion 43 1457) to study active control of resistive wall modes (RWMs). Spontaneous growth of several RWMs with poloidal mode number m = 1 and different toroidal mode number n is observed experimentally, in agreement with linear MHD modelling. The measured plasma response to a controlled coil field and the plasma response computed using the linear circular cylinder MHD model are in quantitive agreement. Feedback control introduces a linear coupling of modes with toroidal mode numbers n, n' that fulfil the condition |n - n'| = Nc. Pairs of coupled unstable RWMs are present in feedback experiments with an array of Mc × Nc = 4 × 16 coils. Using intelligent shell feedback, the coupled modes are generally not controlled even though the field is suppressed at the active coils. A better suppression of coupled modes may be achieved in the case of rotating modes by using the mode control feedback scheme with individually set complex gains. In feedback with a larger array of Mc × Nc = 4 × 32 coils, the coupling effect largely disappears, and with this array, the main internal RWMs n = -11, -10, +5, +6 are all simultaneously suppressed throughout the discharge (7 8 wall times). With feedback there is a two-fold extension of the pulse length, compared to discharges without feedback.

  13. Enhanced negative feedback responses in remitted depression.

    PubMed

    Santesso, Diane L; Steele, Katherine T; Bogdan, Ryan; Holmes, Avram J; Deveney, Christen M; Meites, Tiffany M; Pizzagalli, Diego A

    2008-07-02

    Major depressive disorder (MDD) is characterized by hypersensitivity to negative feedback that might involve frontocingulate dysfunction. MDD patients exhibit enhanced electrophysiological responses to negative internal (errors) and external (feedback) cues. Whether this dysfunction extends to remitted depressed (RD) individuals with a history of MDD is currently unknown. To address this issue, we examined the feedback-related negativity in RD and control participants using a probabilistic punishment learning task. Despite equivalent behavioral performance, RD participants showed larger feedback-related negativities to negative feedback relative to controls; group differences remained after accounting for residual anxiety and depressive symptoms. The present findings suggest that abnormal responses to negative feedback extend to samples at increased risk for depressive episodes in the absence of current symptoms.

  14. Delivering Faster Congestion Feedback with the Mark-Front Strategy

    NASA Technical Reports Server (NTRS)

    Liu, Chunlei; Jain, Raj

    2001-01-01

    Computer networks use congestion feedback from the routers and destinations to control the transmission load. Delivering timely congestion feedback is essential to the performance of networks. Reaction to the congestion can be more effective if faster feedback is provided. Current TCP/IP networks use timeout, duplicate Acknowledgement Packets (ACKs) and explicit congestion notification (ECN) to deliver the congestion feedback, each provides a faster feedback than the previous method. In this paper, we propose a markfront strategy that delivers an even faster congestion feedback. With analytical and simulation results, we show that mark-front strategy reduces buffer size requirement, improves link efficiency and provides better fairness among users. Keywords: Explicit Congestion Notification, mark-front, congestion control, buffer size requirement, fairness.

  15. Processing of Continuously Provided Punishment and Reward in Children with ADHD and the Modulating Effects of Stimulant Medication: An ERP Study

    PubMed Central

    Groen, Yvonne; Tucha, Oliver; Wijers, Albertus A.; Althaus, Monika

    2013-01-01

    Objectives Current models of ADHD suggest abnormal reward and punishment sensitivity, but the exact mechanisms are unclear. This study aims to investigate effects of continuous reward and punishment on the processing of performance feedback in children with ADHD and the modulating effects of stimulant medication. Methods 15 Methylphenidate (Mph)-treated and 15 Mph-free children of the ADHD-combined type and 17 control children performed a selective attention task with three feedback conditions: no-feedback, gain and loss. Event Related Potentials (ERPs) time-locked to feedback and errors were computed. Results All groups performed more accurately with gain and loss than without feedback. Feedback-related ERPs demonstrated no group differences in the feedback P2, but an enhanced late positive potential (LPP) to feedback stimuli (both gains and losses) for Mph-free children with ADHD compared to controls. Feedback-related ERPs in Mph-treated children with ADHD were similar to controls. Correlational analyses in the ADHD groups revealed that the severity of inattention problems correlated negatively with the feedback P2 amplitude and positively with the LPP to losses and omitted gains. Conclusions The early selective attention for rewarding and punishing feedback was relatively intact in children with ADHD, but the late feedback processing was deviant (increased feedback LPP). This may explain the often observed positive effects of continuous reinforcement on performance and behaviour in children with ADHD. However, these group findings cannot be generalised to all individuals with the ADHD, because the feedback-related ERPs were associated with the severity of the inattention problems. Children with ADHD-combined type with more inattention problems showed both deviant early attentional selection of feedback stimuli, and deviant late processing of non-reward and punishment. PMID:23555639

  16. Processing of continuously provided punishment and reward in children with ADHD and the modulating effects of stimulant medication: an ERP study.

    PubMed

    Groen, Yvonne; Tucha, Oliver; Wijers, Albertus A; Althaus, Monika

    2013-01-01

    Current models of ADHD suggest abnormal reward and punishment sensitivity, but the exact mechanisms are unclear. This study aims to investigate effects of continuous reward and punishment on the processing of performance feedback in children with ADHD and the modulating effects of stimulant medication. 15 Methylphenidate (Mph)-treated and 15 Mph-free children of the ADHD-combined type and 17 control children performed a selective attention task with three feedback conditions: no-feedback, gain and loss. Event Related Potentials (ERPs) time-locked to feedback and errors were computed. All groups performed more accurately with gain and loss than without feedback. Feedback-related ERPs demonstrated no group differences in the feedback P2, but an enhanced late positive potential (LPP) to feedback stimuli (both gains and losses) for Mph-free children with ADHD compared to controls. Feedback-related ERPs in Mph-treated children with ADHD were similar to controls. Correlational analyses in the ADHD groups revealed that the severity of inattention problems correlated negatively with the feedback P2 amplitude and positively with the LPP to losses and omitted gains. The early selective attention for rewarding and punishing feedback was relatively intact in children with ADHD, but the late feedback processing was deviant (increased feedback LPP). This may explain the often observed positive effects of continuous reinforcement on performance and behaviour in children with ADHD. However, these group findings cannot be generalised to all individuals with the ADHD, because the feedback-related ERPs were associated with the severity of the inattention problems. Children with ADHD-combined type with more inattention problems showed both deviant early attentional selection of feedback stimuli, and deviant late processing of non-reward and punishment.

  17. Real-time control of hind limb functional electrical stimulation using feedback from dorsal root ganglia recordings

    NASA Astrophysics Data System (ADS)

    Bruns, Tim M.; Wagenaar, Joost B.; Bauman, Matthew J.; Gaunt, Robert A.; Weber, Douglas J.

    2013-04-01

    Objective. Functional electrical stimulation (FES) approaches often utilize an open-loop controller to drive state transitions. The addition of sensory feedback may allow for closed-loop control that can respond effectively to perturbations and muscle fatigue. Approach. We evaluated the use of natural sensory nerve signals obtained with penetrating microelectrode arrays in lumbar dorsal root ganglia (DRG) as real-time feedback for closed-loop control of FES-generated hind limb stepping in anesthetized cats. Main results. Leg position feedback was obtained in near real-time at 50 ms intervals by decoding the firing rates of more than 120 DRG neurons recorded simultaneously. Over 5 m of effective linear distance was traversed during closed-loop stepping trials in each of two cats. The controller compensated effectively for perturbations in the stepping path when DRG sensory feedback was provided. The presence of stimulation artifacts and the quality of DRG unit sorting did not significantly affect the accuracy of leg position feedback obtained from the linear decoding model as long as at least 20 DRG units were included in the model. Significance. This work demonstrates the feasibility and utility of closed-loop FES control based on natural neural sensors. Further work is needed to improve the controller and electrode technologies and to evaluate long-term viability.

  18. Real-time control of hind limb functional electrical stimulation using feedback from dorsal root ganglia recordings

    PubMed Central

    Bruns, Tim M; Wagenaar, Joost B; Bauman, Matthew J; Gaunt, Robert A; Weber, Douglas J

    2013-01-01

    Objective Functional electrical stimulation (FES) approaches often utilize an open-loop controller to drive state transitions. The addition of sensory feedback may allow for closed-loop control that can respond effectively to perturbations and muscle fatigue. Approach We evaluated the use of natural sensory nerve signals obtained with penetrating microelectrode arrays in lumbar dorsal root ganglia (DRG) as real-time feedback for closed-loop control of FES-generated hind limb stepping in anesthetized cats. Main results Leg position feedback was obtained in near real-time at 50 ms intervals by decoding the firing rates of more than 120 DRG neurons recorded simultaneously. Over 5 m of effective linear distance was traversed during closed-loop stepping trials in each of two cats. The controller compensated effectively for perturbations in the stepping path when DRG sensory feedback was provided. The presence of stimulation artifacts and the quality of DRG unit sorting did not significantly affect the accuracy of leg position feedback obtained from the linear decoding model as long as at least 20 DRG units were included in the model. Significance This work demonstrates the feasibility and utility of closed-loop FES control based on natural neural sensors. Further work is needed to improve the controller and electrode technologies and to evaluate long-term viability. PMID:23503062

  19. The mechanosensory calcium-selective ion channel: key component of a plasmalemmal control centre?

    NASA Technical Reports Server (NTRS)

    Pickard, B. G.; Ding, J. P.

    1993-01-01

    Mechanosensory calcium-selective ion channels probably serve to detect not only mechanical stress but also electrical, thermal, and diverse chemical stimuli. Because all stimuli result in a common output, most notably a shift in second messenger calcium concentration, the channels are presumed to serve as signal integrators. Further, insofar as second messenger calcium in turn gives rise to mechanical, electrical, and diverse chemical changes, the channels are postulated to initiate regulatory feedbacks. It is proposed that the channels and the feedback loops play a wide range of roles in regulating normal plant function, as well as in mediating disturbance of normal function by environmental stressors and various pathogens. In developing evidence for the physiological performance of the channel, a model for a cluster of regulatory plasmalemmal proteins and cytoskeletal elements grouped around a set of wall-to-membrane and transmembrane linkers has proved useful. An illustration of how the model might operate is presented. It is founded on the demonstration that several xenobiotics interfere both with normal channel behaviour and with gravitropic reception. Accordingly, the first part of the illustration deals with how the channels and the control system within which they putatively operate might initiate gravitropism. Assuming that gravitropism is an asymmetric expression of growth, the activities of the channels and the plasmalemmal control system are extrapolated to account for regulation of both rate and allometry of cell expansion. Finally, it is discussed how light, hormones, redox agents and herbicides could in principle affect growth via the putative plasmalemmal control cluster or centre.

  20. High alpha feedback control for agile half-loop maneuvers of the F-18 airplane

    NASA Technical Reports Server (NTRS)

    Stalford, Harold

    1988-01-01

    A nonlinear feedback control law for the F/A-18 airplane that provides time-optimal or agile maneuvering of the half-loop maneuver at high angles of attack is given. The feedback control law was developed using the mathematical approach of singular perturbations, in which the control devices considered were conventional aerodynamic control surfaces and thrusting. The derived nonlinear control law was used to simulate F/A-18 half-loop maneuvers. The simulated results at Mach 0.6 and 0.9 compared well with pilot simulations conducted at NASA.

  1. Dissociation between active and observational learning from positive and negative feedback in Parkinsonism.

    PubMed

    Kobza, Stefan; Ferrea, Stefano; Schnitzler, Alfons; Pollok, Bettina; Südmeyer, Martin; Bellebaum, Christian

    2012-01-01

    Feedback to both actively performed and observed behaviour allows adaptation of future actions. Positive feedback leads to increased activity of dopamine neurons in the substantia nigra, whereas dopamine neuron activity is decreased following negative feedback. Dopamine level reduction in unmedicated Parkinson's Disease patients has been shown to lead to a negative learning bias, i.e. enhanced learning from negative feedback. Recent findings suggest that the neural mechanisms of active and observational learning from feedback might differ, with the striatum playing a less prominent role in observational learning. Therefore, it was hypothesized that unmedicated Parkinson's Disease patients would show a negative learning bias only in active but not in observational learning. In a between-group design, 19 Parkinson's Disease patients and 40 healthy controls engaged in either an active or an observational probabilistic feedback-learning task. For both tasks, transfer phases aimed to assess the bias to learn better from positive or negative feedback. As expected, actively learning patients showed a negative learning bias, whereas controls learned better from positive feedback. In contrast, no difference between patients and controls emerged for observational learning, with both groups showing better learning from positive feedback. These findings add to neural models of reinforcement-learning by suggesting that dopamine-modulated input to the striatum plays a minor role in observational learning from feedback. Future research will have to elucidate the specific neural underpinnings of observational learning.

  2. Adaptive optimal stochastic state feedback control of resistive wall modes in tokamaks

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Sen, A. K.; Longman, R. W.

    2006-01-01

    An adaptive optimal stochastic state feedback control is developed to stabilize the resistive wall mode (RWM) instability in tokamaks. The extended least-square method with exponential forgetting factor and covariance resetting is used to identify (experimentally determine) the time-varying stochastic system model. A Kalman filter is used to estimate the system states. The estimated system states are passed on to an optimal state feedback controller to construct control inputs. The Kalman filter and the optimal state feedback controller are periodically redesigned online based on the identified system model. This adaptive controller can stabilize the time-dependent RWM in a slowly evolving tokamak discharge. This is accomplished within a time delay of roughly four times the inverse of the growth rate for the time-invariant model used.

  3. Adaptive Optimal Stochastic State Feedback Control of Resistive Wall Modes in Tokamaks

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Sen, A. K.; Longman, R. W.

    2007-06-01

    An adaptive optimal stochastic state feedback control is developed to stabilize the resistive wall mode (RWM) instability in tokamaks. The extended least square method with exponential forgetting factor and covariance resetting is used to identify the time-varying stochastic system model. A Kalman filter is used to estimate the system states. The estimated system states are passed on to an optimal state feedback controller to construct control inputs. The Kalman filter and the optimal state feedback controller are periodically redesigned online based on the identified system model. This adaptive controller can stabilize the time dependent RWM in a slowly evolving tokamak discharge. This is accomplished within a time delay of roughly four times the inverse of the growth rate for the time-invariant model used.

  4. Comparing joint kinematics and center of mass acceleration as feedback for control of standing balance by functional neuromuscular stimulation.

    PubMed

    Nataraj, Raviraj; Audu, Musa L; Triolo, Ronald J

    2012-05-06

    The purpose of this study was to determine the comparative effectiveness of feedback control systems for maintaining standing balance based on joint kinematics or total body center of mass (COM) acceleration, and assess their clinical practicality for standing neuroprostheses after spinal cord injury (SCI). In simulation, controller performance was measured according to the upper extremity effort required to stabilize a three-dimensional model of bipedal standing against a variety of postural disturbances. Three cases were investigated: proportional-derivative control based on joint kinematics alone, COM acceleration feedback alone, and combined joint kinematics and COM acceleration feedback. Additionally, pilot data was collected during external perturbations of an individual with SCI standing with functional neuromuscular stimulation (FNS), and the resulting joint kinematics and COM acceleration data was analyzed. Compared to the baseline case of maximal constant muscle excitations, the three control systems reduced the mean upper extremity loading by 51%, 43% and 56%, respectively against external force-pulse perturbations. Controller robustness was defined as the degradation in performance with increasing levels of input errors expected with clinical deployment of sensor-based feedback. At error levels typical for body-mounted inertial sensors, performance degradation due to sensor noise and placement were negligible. However, at typical tracking error levels, performance could degrade as much as 86% for joint kinematics feedback and 35% for COM acceleration feedback. Pilot data indicated that COM acceleration could be estimated with a few well-placed sensors and efficiently captures information related to movement synergies observed during perturbed bipedal standing following SCI. Overall, COM acceleration feedback may be a more feasible solution for control of standing with FNS given its superior robustness and small number of inputs required.

  5. Comparing joint kinematics and center of mass acceleration as feedback for control of standing balance by functional neuromuscular stimulation

    PubMed Central

    2012-01-01

    Background The purpose of this study was to determine the comparative effectiveness of feedback control systems for maintaining standing balance based on joint kinematics or total body center of mass (COM) acceleration, and assess their clinical practicality for standing neuroprostheses after spinal cord injury (SCI). Methods In simulation, controller performance was measured according to the upper extremity effort required to stabilize a three-dimensional model of bipedal standing against a variety of postural disturbances. Three cases were investigated: proportional-derivative control based on joint kinematics alone, COM acceleration feedback alone, and combined joint kinematics and COM acceleration feedback. Additionally, pilot data was collected during external perturbations of an individual with SCI standing with functional neuromuscular stimulation (FNS), and the resulting joint kinematics and COM acceleration data was analyzed. Results Compared to the baseline case of maximal constant muscle excitations, the three control systems reduced the mean upper extremity loading by 51%, 43% and 56%, respectively against external force-pulse perturbations. Controller robustness was defined as the degradation in performance with increasing levels of input errors expected with clinical deployment of sensor-based feedback. At error levels typical for body-mounted inertial sensors, performance degradation due to sensor noise and placement were negligible. However, at typical tracking error levels, performance could degrade as much as 86% for joint kinematics feedback and 35% for COM acceleration feedback. Pilot data indicated that COM acceleration could be estimated with a few well-placed sensors and efficiently captures information related to movement synergies observed during perturbed bipedal standing following SCI. Conclusions Overall, COM acceleration feedback may be a more feasible solution for control of standing with FNS given its superior robustness and small number of inputs required. PMID:22559852

  6. Integrated optical sensor

    DOEpatents

    Watkins, Arthur D.; Smartt, Herschel B.; Taylor, Paul L.

    1994-01-01

    An integrated optical sensor for arc welding having multifunction feedback control. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties.

  7. Integrated optical sensor

    DOEpatents

    Watkins, A.D.; Smartt, H.B.; Taylor, P.L.

    1994-01-04

    An integrated optical sensor for arc welding having multifunction feedback control is described. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties. 6 figures.

  8. Approximating the linear quadratic optimal control law for hereditary systems with delays in the control

    NASA Technical Reports Server (NTRS)

    Milman, Mark H.

    1987-01-01

    The fundamental control synthesis issue of establishing a priori convergence rates of approximation schemes for feedback controllers for a class of distributed parameter systems is addressed within the context of hereditary systems. Specifically, a factorization approach is presented for deriving approximations to the optimal feedback gains for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the controls, trajectories and feedback kernels. Two algorithms are derived from the basic approximation scheme, including a fast algorithm, in the time-invariant case. A numerical example is also considered.

  9. Approximating the linear quadratic optimal control law for hereditary systems with delays in the control

    NASA Technical Reports Server (NTRS)

    Milman, Mark H.

    1988-01-01

    The fundamental control synthesis issue of establishing a priori convergence rates of approximation schemes for feedback controllers for a class of distributed parameter systems is addressed within the context of hereditary schemes. Specifically, a factorization approach is presented for deriving approximations to the optimal feedback gains for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the controls, trajectories and feedback kernels. Two algorithms are derived from the basic approximation scheme, including a fast algorithm, in the time-invariant case. A numerical example is also considered.

  10. Slip speed feedback for grip force control.

    PubMed

    Damian, D D; Arita, A H; Martinez, H; Pfeifer, R

    2012-08-01

    Grasp stability in the human hand has been resolved by means of an intricate network of mechanoreceptors integrating numerous cues about mechanical events, through an ontogenetic grasp practice. An engineered prosthetic interface introduces considerable perturbation risks in grasping, calling for feedback modalities that address the underlying slip phenomenon. In this study, we propose an enhanced slip feedback modality, with potential for myoelectric-based prosthetic applications, that relays information regarding slip events, particularly slip occurrence and slip speed. The proposed feedback modality, implemented using electrotactile stimulation, was evaluated in psychophysical studies of slip control in a simplified setup. The obtained results were compared with vision and a binary slip feedback that transmits on-off information about slip detection. The slip control efficiency of the slip speed display is comparable to that obtained with vision feedback, and it clearly outperforms the efficiency of the on-off slip modality in such tasks. These results suggest that the proposed tactile feedback is a promising sensory method for the restoration of stable grasp in prosthetic applications.

  11. Adaptation of handwriting size under distorted visual feedback in patients with Parkinson's disease and elderly and young controls

    PubMed Central

    Teulings, H; Contreras-Vidal, J; Stelmach, G; Adler, C

    2002-01-01

    Objective: The ability to use visual feedback to control handwriting size was compared in patients with Parkinson's disease (PD), elderly people, and young adults to better understand factors playing a part in parkinsonian micrographia. Methods: The participants wrote sequences of eight cursive l loops with visual target sizes of 0.5 and 2 cm on a flat panel display digitiser which both recorded and displayed the pen movements. In the pre-exposure and postexposure conditions, the display digitiser showed the actual pen trace in real time and real size. In the distortion exposure conditions, the gain of the vertical dimension of the visual feedback was either reduced to 70% or enlarged to 140%. Results: The young controls showed a gradual visuomotor adaptation that compensated for the visual feedback distortions during the exposure conditions. They also showed significant after effects during the postexposure conditions. The elderly controls marginally corrected for the size distortions and showed small after effects. The patients with PD, however, showed no trial by trial adaptations or after effects but instead, a progressive amplification of the distortion effect in each individual trial. Conclusion: The young controls used visual feedback to update their visuomotor map. The elderly controls seemed to make little use of visual feedback. The patients with Parkinson's disease rely on the visual feedback of previous or of ongoing strokes to programme subsequent strokes. This recursive feedback may play a part in the progressive reductions in handwriting size found in parkinsonian micrographia. PMID:11861687

  12. Feedback to semi-professional counselors in treating child aggression.

    PubMed

    Shechtman, Zipora; Tutian, Rony

    2017-05-01

    To investigate the impact of outcome feedback provided to semi-professional counselors of children and adolescents at risk for aggressive behavior, following group treatment. Participants included 230 aggressive children and adolescents and 64 educators in a quasi-experimental design of 3 conditions: experimental group with feedback, experimental group without feedback, and control group (no treatment). The current study employed a feedback system based on self-report aggression scores measured after each session, provided to teachers, including an alert system and weekly follow-up group support. Outcomes were more favorable for the treatment children than the control group, but feedback had no impact on the results. Outcome feedback provided to group therapists does not have an effect on children and adolescents' reduction of aggression. Further research is needed to identify possible reasons for failure to show feedback effect.

  13. \\mathscr{H}_2 optimal control techniques for resistive wall mode feedback in tokamaks

    NASA Astrophysics Data System (ADS)

    Clement, Mitchell; Hanson, Jeremy; Bialek, Jim; Navratil, Gerald

    2018-04-01

    DIII-D experiments show that a new, advanced algorithm enables resistive wall mode (RWM) stability control in high performance discharges using external coils. DIII-D can excite strong, locked or nearly locked external kink modes whose rotation frequencies and growth rates are on the order of the magnetic flux diffusion time of the vacuum vessel wall. Experiments have shown that modern control techniques like linear quadratic Gaussian (LQG) control require less current than the proportional controller in use at DIII-D when using control coils external to DIII-D’s vacuum vessel. Experiments were conducted to develop control of a rotating n  =  1 perturbation using an LQG controller derived from VALEN and external coils. Feedback using this LQG algorithm outperformed a proportional gain only controller in these perturbation experiments over a range of frequencies. Results from high βN experiments also show that advanced feedback techniques using external control coils may be as effective as internal control coil feedback using classical control techniques.

  14. A variable-gain output feedback control design methodology

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim; Moerder, Daniel D.; Broussard, John R.; Taylor, Deborah B.

    1989-01-01

    A digital control system design technique is developed in which the control system gain matrix varies with the plant operating point parameters. The design technique is obtained by formulating the problem as an optimal stochastic output feedback control law with variable gains. This approach provides a control theory framework within which the operating range of a control law can be significantly extended. Furthermore, the approach avoids the major shortcomings of the conventional gain-scheduling techniques. The optimal variable gain output feedback control problem is solved by embedding the Multi-Configuration Control (MCC) problem, previously solved at ICS. An algorithm to compute the optimal variable gain output feedback control gain matrices is developed. The algorithm is a modified version of the MCC algorithm improved so as to handle the large dimensionality which arises particularly in variable-gain control problems. The design methodology developed is applied to a reconfigurable aircraft control problem. A variable-gain output feedback control problem was formulated to design a flight control law for an AFTI F-16 aircraft which can automatically reconfigure its control strategy to accommodate failures in the horizontal tail control surface. Simulations of the closed-loop reconfigurable system show that the approach produces a control design which can accommodate such failures with relative ease. The technique can be applied to many other problems including sensor failure accommodation, mode switching control laws and super agility.

  15. Non-fragile observer-based output feedback control for polytopic uncertain system under distributed model predictive control approach

    NASA Astrophysics Data System (ADS)

    Zhu, Kaiqun; Song, Yan; Zhang, Sunjie; Zhong, Zhaozhun

    2017-07-01

    In this paper, a non-fragile observer-based output feedback control problem for the polytopic uncertain system under distributed model predictive control (MPC) approach is discussed. By decomposing the global system into some subsystems, the computation complexity is reduced, so it follows that the online designing time can be saved.Moreover, an observer-based output feedback control algorithm is proposed in the framework of distributed MPC to deal with the difficulties in obtaining the states measurements. In this way, the presented observer-based output-feedback MPC strategy is more flexible and applicable in practice than the traditional state-feedback one. What is more, the non-fragility of the controller has been taken into consideration in favour of increasing the robustness of the polytopic uncertain system. After that, a sufficient stability criterion is presented by using Lyapunov-like functional approach, meanwhile, the corresponding control law and the upper bound of the quadratic cost function are derived by solving an optimisation subject to convex constraints. Finally, some simulation examples are employed to show the effectiveness of the method.

  16. Low-Cloud Feedbacks from Cloud-Controlling Factors: A Review

    DOE PAGES

    Klein, Stephen A.; Hall, Alex; Norris, Joel R.; ...

    2017-10-24

    Here, the response to warming of tropical low-level clouds including both marine stratocumulus and trade cumulus is a major source of uncertainty in projections of future climate. Climate model simulations of the response vary widely, reflecting the difficulty the models have in simulating these clouds. These inadequacies have led to alternative approaches to predict low-cloud feedbacks. Here, we review an observational approach that relies on the assumption that observed relationships between low clouds and the “cloud-controlling factors” of the large-scale environment are invariant across time-scales. With this assumption, and given predictions of how the cloud-controlling factors change with climate warming,more » one can predict low-cloud feedbacks without using any model simulation of low clouds. We discuss both fundamental and implementation issues with this approach and suggest steps that could reduce uncertainty in the predicted low-cloud feedback. Recent studies using this approach predict that the tropical low-cloud feedback is positive mainly due to the observation that reflection of solar radiation by low clouds decreases as temperature increases, holding all other cloud-controlling factors fixed. The positive feedback from temperature is partially offset by a negative feedback from the tendency for the inversion strength to increase in a warming world, with other cloud-controlling factors playing a smaller role. A consensus estimate from these studies for the contribution of tropical low clouds to the global mean cloud feedback is 0.25 ± 0.18 W m –2 K –1 (90% confidence interval), suggesting it is very unlikely that tropical low clouds reduce total global cloud feedback. Because the prediction of positive tropical low-cloud feedback with this approach is consistent with independent evidence from low-cloud feedback studies using high-resolution cloud models, progress is being made in reducing this key climate uncertainty.« less

  17. Low-Cloud Feedbacks from Cloud-Controlling Factors: A Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Stephen A.; Hall, Alex; Norris, Joel R.

    Here, the response to warming of tropical low-level clouds including both marine stratocumulus and trade cumulus is a major source of uncertainty in projections of future climate. Climate model simulations of the response vary widely, reflecting the difficulty the models have in simulating these clouds. These inadequacies have led to alternative approaches to predict low-cloud feedbacks. Here, we review an observational approach that relies on the assumption that observed relationships between low clouds and the “cloud-controlling factors” of the large-scale environment are invariant across time-scales. With this assumption, and given predictions of how the cloud-controlling factors change with climate warming,more » one can predict low-cloud feedbacks without using any model simulation of low clouds. We discuss both fundamental and implementation issues with this approach and suggest steps that could reduce uncertainty in the predicted low-cloud feedback. Recent studies using this approach predict that the tropical low-cloud feedback is positive mainly due to the observation that reflection of solar radiation by low clouds decreases as temperature increases, holding all other cloud-controlling factors fixed. The positive feedback from temperature is partially offset by a negative feedback from the tendency for the inversion strength to increase in a warming world, with other cloud-controlling factors playing a smaller role. A consensus estimate from these studies for the contribution of tropical low clouds to the global mean cloud feedback is 0.25 ± 0.18 W m –2 K –1 (90% confidence interval), suggesting it is very unlikely that tropical low clouds reduce total global cloud feedback. Because the prediction of positive tropical low-cloud feedback with this approach is consistent with independent evidence from low-cloud feedback studies using high-resolution cloud models, progress is being made in reducing this key climate uncertainty.« less

  18. Adaptive NN control for discrete-time pure-feedback systems with unknown control direction under amplitude and rate actuator constraints.

    PubMed

    Chen, Weisheng

    2009-07-01

    This paper focuses on the problem of adaptive neural network tracking control for a class of discrete-time pure-feedback systems with unknown control direction under amplitude and rate actuator constraints. Two novel state-feedback and output-feedback dynamic control laws are established where the function tanh(.) is employed to solve the saturation constraint problem. Implicit function theorem and mean value theorem are exploited to deal with non-affine variables that are used as actual control. Radial basis function neural networks are used to approximate the desired input function. Discrete Nussbaum gain is used to estimate the unknown sign of control gain. The uniform boundedness of all closed-loop signals is guaranteed. The tracking error is proved to converge to a small residual set around the origin. A simulation example is provided to illustrate the effectiveness of control schemes proposed in this paper.

  19. Combined feedforward and feedback control of a redundant, nonlinear, dynamic musculoskeletal system.

    PubMed

    Blana, Dimitra; Kirsch, Robert F; Chadwick, Edward K

    2009-05-01

    A functional electrical stimulation controller is presented that uses a combination of feedforward and feedback for arm control in high-level injury. The feedforward controller generates the muscle activations nominally required for desired movements, and the feedback controller corrects for errors caused by muscle fatigue and external disturbances. The feedforward controller is an artificial neural network (ANN) which approximates the inverse dynamics of the arm. The feedback loop includes a PID controller in series with a second ANN representing the nonlinear properties and biomechanical interactions of muscles and joints. The controller was designed and tested using a two-joint musculoskeletal model of the arm that includes four mono-articular and two bi-articular muscles. Its performance during goal-oriented movements of varying amplitudes and durations showed a tracking error of less than 4 degrees in ideal conditions, and less than 10 degrees even in the case of considerable fatigue and external disturbances.

  20. The effect of multimodal and enriched feedback on SMR-BCI performance.

    PubMed

    Sollfrank, T; Ramsay, A; Perdikis, S; Williamson, J; Murray-Smith, R; Leeb, R; Millán, J D R; Kübler, A

    2016-01-01

    This study investigated the effect of multimodal (visual and auditory) continuous feedback with information about the uncertainty of the input signal on motor imagery based BCI performance. A liquid floating through a visualization of a funnel (funnel feedback) provided enriched visual or enriched multimodal feedback. In a between subject design 30 healthy SMR-BCI naive participants were provided with either conventional bar feedback (CB), or visual funnel feedback (UF), or multimodal (visual and auditory) funnel feedback (MF). Subjects were required to imagine left and right hand movement and were trained to control the SMR based BCI for five sessions on separate days. Feedback accuracy varied largely between participants. The MF feedback lead to a significantly better performance in session 1 as compared to the CB feedback and could significantly enhance motivation and minimize frustration in BCI use across the five training sessions. The present study demonstrates that the BCI funnel feedback allows participants to modulate sensorimotor EEG rhythms. Participants were able to control the BCI with the funnel feedback with better performance during the initial session and less frustration compared to the CB feedback. The multimodal funnel feedback provides an alternative to the conventional cursorbar feedback for training subjects to modulate their sensorimotor rhythms. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Data-driven model reference control of MIMO vertical tank systems with model-free VRFT and Q-Learning.

    PubMed

    Radac, Mircea-Bogdan; Precup, Radu-Emil; Roman, Raul-Cristian

    2018-02-01

    This paper proposes a combined Virtual Reference Feedback Tuning-Q-learning model-free control approach, which tunes nonlinear static state feedback controllers to achieve output model reference tracking in an optimal control framework. The novel iterative Batch Fitted Q-learning strategy uses two neural networks to represent the value function (critic) and the controller (actor), and it is referred to as a mixed Virtual Reference Feedback Tuning-Batch Fitted Q-learning approach. Learning convergence of the Q-learning schemes generally depends, among other settings, on the efficient exploration of the state-action space. Handcrafting test signals for efficient exploration is difficult even for input-output stable unknown processes. Virtual Reference Feedback Tuning can ensure an initial stabilizing controller to be learned from few input-output data and it can be next used to collect substantially more input-state data in a controlled mode, in a constrained environment, by compensating the process dynamics. This data is used to learn significantly superior nonlinear state feedback neural networks controllers for model reference tracking, using the proposed Batch Fitted Q-learning iterative tuning strategy, motivating the original combination of the two techniques. The mixed Virtual Reference Feedback Tuning-Batch Fitted Q-learning approach is experimentally validated for water level control of a multi input-multi output nonlinear constrained coupled two-tank system. Discussions on the observed control behavior are offered. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Does visual feedback during walking result in similar improvements in trunk control for young and older healthy adults?

    PubMed

    Anson, Eric; Rosenberg, Russell; Agada, Peter; Kiemel, Tim; Jeka, John

    2013-11-26

    Most current applications of visual feedback to improve postural control are limited to a fixed base of support and produce mixed results regarding improved postural control and transfer to functional tasks. Currently there are few options available to provide visual feedback regarding trunk motion while walking. We have developed a low cost platform to provide visual feedback of trunk motion during walking. Here we investigated whether augmented visual position feedback would reduce trunk movement variability in both young and older healthy adults. The subjects who participated were 10 young and 10 older adults. Subjects walked on a treadmill under conditions of visual position feedback and no feedback. The visual feedback consisted of anterior-posterior (AP) and medial-lateral (ML) position of the subject's trunk during treadmill walking. Fourier transforms of the AP and ML trunk kinematics were used to calculate power spectral densities which were integrated as frequency bins "below the gait cycle" and "gait cycle and above" for analysis purposes. Visual feedback reduced movement power at very low frequencies for lumbar and neck translation but not trunk angle in both age groups. At very low frequencies of body movement, older adults had equivalent levels of movement variability with feedback as young adults without feedback. Lower variability was specific to translational (not angular) trunk movement. Visual feedback did not affect any of the measured lower extremity gait pattern characteristics of either group, suggesting that changes were not invoked by a different gait pattern. Reduced translational variability while walking on the treadmill reflects more precise control maintaining a central position on the treadmill. Such feedback may provide an important technique to augment rehabilitation to minimize body translation while walking. Individuals with poor balance during walking may benefit from this type of training to enhance path consistency during over-ground locomotion.

  3. Stability of hand force production. I. Hand level control variables and multifinger synergies.

    PubMed

    Reschechtko, Sasha; Latash, Mark L

    2017-12-01

    We combined the theory of neural control of movement with referent coordinates and the uncontrolled manifold hypothesis to explore synergies stabilizing the hand action in accurate four-finger pressing tasks. In particular, we tested a hypothesis on two classes of synergies, those among the four fingers and those within a pair of control variables, stabilizing hand action under visual feedback and disappearing without visual feedback. Subjects performed four-finger total force and moment production tasks under visual feedback; the feedback was later partially or completely removed. The "inverse piano" device was used to lift and lower the fingers smoothly at the beginning and at the end of each trial. These data were used to compute pairs of hypothetical control variables. Intertrial analysis of variance within the finger force space was used to quantify multifinger synergies stabilizing both force and moment. A data permutation method was used to quantify synergies among control variables. Under visual feedback, synergies in the spaces of finger forces and hypothetical control variables were found to stabilize total force. Without visual feedback, the subjects showed a force drift to lower magnitudes and a moment drift toward pronation. This was accompanied by disappearance of the four-finger synergies and strong attenuation of the control variable synergies. The indexes of the two types of synergies correlated with each other. The findings are interpreted within the scheme with multiple levels of abundant variables. NEW & NOTEWORTHY We extended the idea of hierarchical control with referent spatial coordinates for the effectors and explored two types of synergies stabilizing multifinger force production tasks. We observed synergies among finger forces and synergies between hypothetical control variables that stabilized performance under visual feedback but failed to stabilize it after visual feedback had been removed. Indexes of two types of synergies correlated with each other. The data suggest the existence of multiple mechanisms stabilizing motor actions. Copyright © 2017 the American Physiological Society.

  4. Learned control over spinal nociception in patients with chronic back pain.

    PubMed

    Krafft, S; Göhmann, H-D; Sommer, J; Straube, A; Ruscheweyh, R

    2017-10-01

    Descending pain inhibition suppresses spinal nociception, reducing nociceptive input to the brain. It is modulated by cognitive and emotional processes. In subjects with chronic pain, it is impaired, possibly contributing to pain persistence. A previously developed feedback method trains subjects to activate their descending inhibition. Participants are trained to use cognitive-emotional strategies to reduce their spinal nociception, as quantified by the nociceptive flexor reflex (RIII reflex), under visual feedback about their RIII reflex size. The aim of the present study was to test whether also subjects with chronic back pain can achieve a modulation of their descending pain inhibition under RIII feedback. In total, 33 subjects with chronic back pain received either true (n = 18) or sham RIII feedback (n = 15), 15 healthy control subjects received true RIII feedback. All three groups achieved significant RIII suppression, largest in controls (to 76 ± 26% of baseline), intermediate in chronic back pain subjects receiving true feedback (to 82 ± 13%) and smallest in chronic back pain subjects receiving sham feedback (to 89 ± 14%, all p < 0.05). However, only chronic pain subjects receiving true feedback significantly improved their descending inhibition over the feedback training, quantified by the conditioned pain modulation effect (test pain reduction of baseline before training: to 98 ± 26%, after: to 80 ± 21%, p < 0.01). Our results show that subjects with chronic back pain can achieve a reduction of their spinal nociception and improve their descending pain inhibition under RIII feedback training. Subjects with chronic back pain can learn to control their spinal nociception, quantified by the RIII reflex, when they receive feedback about the RIII reflex. © 2017 European Pain Federation - EFIC®.

  5. Combustion Control System Design of Diesel Engine via ASPR based Output Feedback Control Strategy with a PFC

    NASA Astrophysics Data System (ADS)

    Mizumoto, Ikuro; Tsunematsu, Junpei; Fujii, Seiya

    2016-09-01

    In this paper, a design method of an output feedback control system with a simple feedforward input for a combustion model of diesel engine will be proposed based on the almost strictly positive real-ness (ASPR-ness) of the controlled system for a combustion control of diesel engines. A parallel feedforward compensator (PFC) design scheme which renders the resulting augmented controlled system ASPR will also be proposed in order to design a stable output feedback control system for the considered combustion model. The effectiveness of our proposed method will be confirmed through numerical simulations.

  6. Modeling CICR in rat ventricular myocytes: voltage clamp studies

    PubMed Central

    2010-01-01

    Background The past thirty-five years have seen an intense search for the molecular mechanisms underlying calcium-induced calcium-release (CICR) in cardiac myocytes, with voltage clamp (VC) studies being the leading tool employed. Several VC protocols including lowering of extracellular calcium to affect Ca2+ loading of the sarcoplasmic reticulum (SR), and administration of blockers caffeine and thapsigargin have been utilized to probe the phenomena surrounding SR Ca2+ release. Here, we develop a deterministic mathematical model of a rat ventricular myocyte under VC conditions, to better understand mechanisms underlying the response of an isolated cell to calcium perturbation. Motivation for the study was to pinpoint key control variables influencing CICR and examine the role of CICR in the context of a physiological control system regulating cytosolic Ca2+ concentration ([Ca2+]myo). Methods The cell model consists of an electrical-equivalent model for the cell membrane and a fluid-compartment model describing the flux of ionic species between the extracellular and several intracellular compartments (cell cytosol, SR and the dyadic coupling unit (DCU), in which resides the mechanistic basis of CICR). The DCU is described as a controller-actuator mechanism, internally stabilized by negative feedback control of the unit's two diametrically-opposed Ca2+ channels (trigger-channel and release-channel). It releases Ca2+ flux into the cyto-plasm and is in turn enclosed within a negative feedback loop involving the SERCA pump, regulating[Ca2+]myo. Results Our model reproduces measured VC data published by several laboratories, and generates graded Ca2+ release at high Ca2+ gain in a homeostatically-controlled environment where [Ca2+]myo is precisely regulated. We elucidate the importance of the DCU elements in this process, particularly the role of the ryanodine receptor in controlling SR Ca2+ release, its activation by trigger Ca2+, and its refractory characteristics mediated by the luminal SR Ca2+ sensor. Proper functioning of the DCU, sodium-calcium exchangers and SERCA pump are important in achieving negative feedback control and hence Ca2+ homeostasis. Conclusions We examine the role of the above Ca2+ regulating mechanisms in handling various types of induced disturbances in Ca2+ levels by quantifying cellular Ca2+ balance. Our model provides biophysically-based explanations of phenomena associated with CICR generating useful and testable hypotheses. PMID:21062495

  7. Coexisting synchronous and asynchronous states in locally coupled array of oscillators by partial self-feedback control

    NASA Astrophysics Data System (ADS)

    Bera, Bidesh K.; Ghosh, Dibakar; Parmananda, Punit; Osipov, G. V.; Dana, Syamal K.

    2017-07-01

    We report the emergence of coexisting synchronous and asynchronous subpopulations of oscillators in one dimensional arrays of identical oscillators by applying a self-feedback control. When a self-feedback is applied to a subpopulation of the array, similar to chimera states, it splits into two/more sub-subpopulations coexisting in coherent and incoherent states for a range of self-feedback strength. By tuning the coupling between the nearest neighbors and the amount of self-feedback in the perturbed subpopulation, the size of the coherent and the incoherent sub-subpopulations in the array can be controlled, although the exact size of them is unpredictable. We present numerical evidence using the Landau-Stuart system and the Kuramoto-Sakaguchi phase model.

  8. Feedback: A Systems Approach to Evaluation and Course Design. Working Papers No. 21.

    ERIC Educational Resources Information Center

    Holmes, John

    Two types of feedback are examined, and their use in controlling the processes of instructional development and improvement are discussed. Closed-loop feedback, the most direct, uses immediate feedback about a process or product to make immediate adjustments in it. Open-loop feedback, in which input cannot be changed immediately, uses feedback to…

  9. Endocavitary thermal therapy by MRI-guided phased-array contact ultrasound: experimental and numerical studies on the multi-input single-output PID temperature controller's convergence and stability.

    PubMed

    Salomir, Rares; Rata, Mihaela; Cadis, Daniela; Petrusca, Lorena; Auboiroux, Vincent; Cotton, François

    2009-10-01

    Endocavitary high intensity contact ultrasound (HICU) may offer interesting therapeutic potential for fighting localized cancer in esophageal or rectal wall. On-line MR guidance of the thermotherapy permits both excellent targeting of the pathological volume and accurate preoperatory monitoring of the temperature elevation. In this article, the authors address the issue of the automatic temperature control for endocavitary phased-array HICU and propose a tailor-made thermal model for this specific application. The convergence and stability of the feedback loop were investigated against tuning errors in the controller's parameters and against input noise, through ex vivo experimental studies and through numerical simulations in which nonlinear response of tissue was considered as expected in vivo. An MR-compatible, 64-element, cooled-tip, endorectal cylindrical phased-array applicator of contact ultrasound was integrated with fast MR thermometry to provide automatic feedback control of the temperature evolution. An appropriate phase law was applied per set of eight adjacent transducers to generate a quasiplanar wave, or a slightly convergent one (over the circular dimension). A 2D physical model, compatible with on-line numerical implementation, took into account (1) the ultrasound-mediated energy deposition, (2) the heat diffusion in tissue, and (3) the heat sink effect in the tissue adjacent to the tip-cooling balloon. This linear model was coupled to a PID compensation algorithm to obtain a multi-input single-output static-tuning temperature controller. Either the temperature at one static point in space (situated on the symmetry axis of the beam) or the maximum temperature in a user-defined ROI was tracked according to a predefined target curve. The convergence domain in the space of controller's parameters was experimentally explored ex vivo. The behavior of the static-tuning PID controller was numerically simulated based on a discrete-time iterative solution of the bioheat transfer equation in 3D and considering temperature-dependent ultrasound absorption and blood perfusion. The intrinsic accuracy of the implemented controller was approximately 1% in ex vivo trials when providing correct estimates for energy deposition and heat diffusivity. Moreover, the feedback loop demonstrated excellent convergence and stability over a wide range of the controller's parameters, deliberately set to erroneous values. In the extreme case of strong underestimation of the ultrasound energy deposition in tissue, the temperature tracking curve alone, at the initial stage of the MR-controlled HICU treatment, was not a sufficient indicator for a globally stable behavior of the feedback loop. Our simulations predicted that the controller would be able to compensate for tissue perfusion and for temperature-dependent ultrasound absorption, although these effects were not included in the controller's equation. The explicit pattern of acoustic field was not required as input information for the controller, avoiding time-consuming numerical operations. The study demonstrated the potential advantages of PID-based automatic temperature control adapted to phased-array MR-guided HICU therapy. Further studies will address the integration of this ultrasound device with a miniature RF coil for high resolution MRI and, subsequently, the experimental behavior of the controller in vivo.

  10. Feedback control methods for drug dosage optimisation. Concepts, classification and clinical application.

    PubMed

    Vozeh, S; Steimer, J L

    1985-01-01

    The concept of feedback control methods for drug dosage optimisation is described from the viewpoint of control theory. The control system consists of 5 parts: (a) patient (the controlled process); (b) response (the measured feedback); (c) model (the mathematical description of the process); (d) adaptor (to update the parameters); and (e) controller (to determine optimum dosing strategy). In addition to the conventional distinction between open-loop and closed-loop control systems, a classification is proposed for dosage optimisation techniques which distinguishes between tight-loop and loose-loop methods depending on whether physician's interaction is absent or included as part of the control step. Unlike engineering problems where the process can usually be controlled by fully automated devices, therapeutic situations often require that the physician be included in the decision-making process to determine the 'optimal' dosing strategy. Tight-loop and loose-loop methods can be further divided into adaptive and non-adaptive, depending on the presence of the adaptor. The main application areas of tight-loop feedback control methods are general anaesthesia, control of blood pressure, and insulin delivery devices. Loose-loop feedback methods have been used for oral anticoagulation and in therapeutic drug monitoring. The methodology, advantages and limitations of the different approaches are reviewed. A general feature common to all application areas could be observed: to perform well under routine clinical conditions, which are characterised by large interpatient variability and sometimes also intrapatient changes, control systems should be adaptive. Apart from application in routine drug treatment, feedback control methods represent an important research tool. They can be applied for the investigation of pathophysiological and pharmacodynamic processes. A most promising application is the evaluation of the relationship between an intermediate response (e.g. drug level), which is often used as feedback for dosage adjustment, and the final therapeutic goal.

  11. Alien/CSN2 gene expression is regulated by thyroid hormone in rat brain.

    PubMed

    Tenbaum, Stephan P; Juenemann, Stefan; Schlitt, Thomas; Bernal, Juan; Renkawitz, Rainer; Muñoz, Alberto; Baniahmad, Aria

    2003-02-01

    Alien has been described as a corepressor for the thyroid hormone receptor (TR). Corepressors are coregulators that mediate gene silencing of DNA-bound transcriptional repressors. We describe here that Alien gene expression in vivo is regulated by thyroid hormone both in the rat brain and in cultured cells. In situ hybridization revealed that Alien is widely expressed in the mouse embryo and also throughout the rat brain. Hypothyroid animals exhibit lower expression of both Alien mRNAs and protein levels as compared with normal animals. Accordingly, we show that Alien gene is inducible after thyroid hormone treatment both in vivo and in cell culture. In cultured cells, the hormonal induction is mediated by either TRalpha or TRbeta, while cells lacking detectable amounts of functional TR lack hormonal induction of Alien. We have detected two Alien-specific mRNAs by Northern experiments and two Alien-specific proteins in vivo and in cell lines by Western analysis, one of the two forms representing the CSN2 subunit of the COP9 signalosome. Interestingly, both Alien mRNAs and both detected proteins are regulated by thyroid hormone in vivo and in cell lines. Furthermore, we provide evidence for the existence of at least two Alien genes in rodents. Taken together, we conclude that Alien gene expression is under control of TR and thyroid hormone. This suggests a negative feedback mechanism between TR and its own corepressor. Thus, the reduction of corepressor levels may represent a control mechanism of TR-mediated gene silencing.

  12. Method and apparatus for large motor control

    DOEpatents

    Rose, Chris R [Santa Fe, NM; Nelson, Ronald O [White Rock, NM

    2003-08-12

    Apparatus and method for providing digital signal processing method for controlling the speed and phase of a motor involves inputting a reference signal having a frequency and relative phase indicative of a time based signal; modifying the reference signal to introduce a slew-rate limited portion of each cycle of the reference signal; inputting a feedback signal having a frequency and relative phase indicative of the operation of said motor; modifying the feedback signal to introduce a slew-rate limited portion of each cycle of the feedback signal; analyzing the modified reference signal and the modified feedback signal to determine the frequency of the modified reference signal and of the modified feedback signal and said relative phase between said modified reference signal and said modified feedback signal; and outputting control signals to the motor for adjusting said speed and phase of the motor based on the frequency determination and determination of the relative phase.

  13. Control your anger! The neural basis of aggression regulation in response to negative social feedback

    PubMed Central

    van Duijvenvoorde, Anna C. K.; Bakermans-Kranenburg, Marian J.; Crone, Eveline A.

    2016-01-01

    Abstract Negative social feedback often generates aggressive feelings and behavior. Prior studies have investigated the neural basis of negative social feedback, but the underlying neural mechanisms of aggression regulation following negative social feedback remain largely undiscovered. In the current study, participants viewed pictures of peers with feedback (positive, neutral or negative) to the participant’s personal profile. Next, participants responded to the peer feedback by pressing a button, thereby producing a loud noise toward the peer, as an index of aggression. Behavioral analyses showed that negative feedback led to more aggression (longer noise blasts). Conjunction neuroimaging analyses revealed that both positive and negative feedback were associated with increased activity in the medial prefrontal cortex (PFC) and bilateral insula. In addition, more activation in the right dorsal lateral PFC (dlPFC) during negative feedback vs neutral feedback was associated with shorter noise blasts in response to negative social feedback, suggesting a potential role of dlPFC in aggression regulation, or top-down control over affective impulsive actions. This study demonstrates a role of the dlPFC in the regulation of aggressive social behavior. PMID:26755768

  14. Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest.

    PubMed

    Mangan, Scott A; Schnitzer, Stefan A; Herre, Edward A; Mack, Keenan M L; Valencia, Mariana C; Sanchez, Evelyn I; Bever, James D

    2010-08-05

    The accumulation of species-specific enemies around adults is hypothesized to maintain plant diversity by limiting the recruitment of conspecific seedlings relative to heterospecific seedlings. Although previous studies in forested ecosystems have documented patterns consistent with the process of negative feedback, these studies are unable to address which classes of enemies (for example, pathogens, invertebrates, mammals) exhibit species-specific effects strong enough to generate negative feedback, and whether negative feedback at the level of the individual tree is sufficient to influence community-wide forest composition. Here we use fully reciprocal shade-house and field experiments to test whether the performance of conspecific tree seedlings (relative to heterospecific seedlings) is reduced when grown in the presence of enemies associated with adult trees. Both experiments provide strong evidence for negative plant-soil feedback mediated by soil biota. In contrast, above-ground enemies (mammals, foliar herbivores and foliar pathogens) contributed little to negative feedback observed in the field. In both experiments, we found that tree species that showed stronger negative feedback were less common as adults in the forest community, indicating that susceptibility to soil biota may determine species relative abundance in these tropical forests. Finally, our simulation models confirm that the strength of local negative feedback that we measured is sufficient to produce the observed community-wide patterns in tree-species relative abundance. Our findings indicate that plant-soil feedback is an important mechanism that can maintain species diversity and explain patterns of tree-species relative abundance in tropical forests.

  15. Fluidic Oscillator Array for Synchronized Oscillating Jet Generation

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti (Inventor)

    2017-01-01

    A fluidic oscillator array includes a plurality of fluidic-oscillator main flow channels. Each main flow channel has an inlet and an outlet. Each main flow channel has first and second control ports disposed at opposing sides thereof, and has a first and a second feedback ports disposed at opposing sides thereof. The feedback ports are located downstream of the control ports with respect to a direction of a fluid flow through the main flow channel. The system also includes a first fluid accumulator in fluid communication with each first control port and each first feedback port, and a second fluid accumulator in fluid communication with each second control port and each second feedback port.

  16. Fluidic Oscillator Array for Synchronized Oscillating Jet Generation

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti (Inventor)

    2016-01-01

    A fluidic oscillator array includes a plurality of fluidic-oscillator main flow channels. Each main flow channel has an inlet and an outlet. Each main flow channel has first and second control ports disposed at opposing sides thereof, and has a first and a second feedback ports disposed at opposing sides thereof. The feedback ports are located downstream of the control ports with respect to a direction of a fluid flow through the main flow channel. The system also includes a first fluid accumulator in fluid communication with each first control port and each first feedback port, and a second fluid accumulator in fluid communication with each second control port and each second feedback port.

  17. Adaptive Fuzzy Control for Nonstrict Feedback Systems With Unmodeled Dynamics and Fuzzy Dead Zone via Output Feedback.

    PubMed

    Wang, Lijie; Li, Hongyi; Zhou, Qi; Lu, Renquan

    2017-09-01

    This paper investigates the problem of observer-based adaptive fuzzy control for a category of nonstrict feedback systems subject to both unmodeled dynamics and fuzzy dead zone. Through constructing a fuzzy state observer and introducing a center of gravity method, unmeasurable states are estimated and the fuzzy dead zone is defuzzified, respectively. By employing fuzzy logic systems to identify the unknown functions. And combining small-gain approach with adaptive backstepping control technique, a novel adaptive fuzzy output feedback control strategy is developed, which ensures that all signals involved are semi-globally uniformly bounded. Simulation results are given to demonstrate the effectiveness of the presented method.

  18. The moderating role of team resources in translating nursing teams' accountability into learning and performance: a cross-sectional study.

    PubMed

    Rashkovits, Sarit; Drach-Zahavy, Anat

    2017-05-01

    The aim of this study was to test the moderated-mediation model suggesting that nursing teams' accountability affects team effectiveness by enhancing team learning when relevant resources are available to the team. Disappointing evidence regarding improvement in nurses' safe and quality care elevate the need in broadening our knowledge regarding the factors that enhance constant learning in nursing teams. Accountability is considered as crucial for team learning and quality of care but empirical findings have shown mixed evidence. A cross-sectional design. Forty-four nursing teams participated in the study. Data were collected in 2013-2014: Head nurses completed validated questionnaires, regarding team resources for learning (time availability, team autonomy and team performance feedback), and nursing teams' effectiveness; and nurses answered questionnaires regarding teams' accountability and learning (answers were aggregated to the team level). The model was tested using a moderated-mediation analysis with resources as moderating variables, and team learning as the mediator in the team accountability-team effectiveness link. The results of a mixed linear regression show that, as expected, nursing teams' accountability was positively linked to nursing teams' learning, when time availability, and team autonomy were high rather than low, and team performance feedback was low rather than high. Nurturing team accountability is not enough for achieving team learning and subsequent team effectiveness. Rather there is a need to provide nursing teams with adequate time, autonomy, and be cautious with performance feedback, as the latter may motivate nurses to repeat routine work strategies rather than explore improved ones. © 2016 John Wiley & Sons Ltd.

  19. Efficacy of Synaptic Inhibition Depends on Multiple, Dynamically Interacting Mechanisms Implicated in Chloride Homeostasis

    PubMed Central

    Doyon, Nicolas; Prescott, Steven A.; Castonguay, Annie; Godin, Antoine G.; Kröger, Helmut; De Koninck, Yves

    2011-01-01

    Chloride homeostasis is a critical determinant of the strength and robustness of inhibition mediated by GABAA receptors (GABAARs). The impact of changes in steady state Cl− gradient is relatively straightforward to understand, but how dynamic interplay between Cl− influx, diffusion, extrusion and interaction with other ion species affects synaptic signaling remains uncertain. Here we used electrodiffusion modeling to investigate the nonlinear interactions between these processes. Results demonstrate that diffusion is crucial for redistributing intracellular Cl− load on a fast time scale, whereas Cl−extrusion controls steady state levels. Interaction between diffusion and extrusion can result in a somato-dendritic Cl− gradient even when KCC2 is distributed uniformly across the cell. Reducing KCC2 activity led to decreased efficacy of GABAAR-mediated inhibition, but increasing GABAAR input failed to fully compensate for this form of disinhibition because of activity-dependent accumulation of Cl−. Furthermore, if spiking persisted despite the presence of GABAAR input, Cl− accumulation became accelerated because of the large Cl− driving force that occurs during spikes. The resulting positive feedback loop caused catastrophic failure of inhibition. Simulations also revealed other feedback loops, such as competition between Cl− and pH regulation. Several model predictions were tested and confirmed by [Cl−]i imaging experiments. Our study has thus uncovered how Cl− regulation depends on a multiplicity of dynamically interacting mechanisms. Furthermore, the model revealed that enhancing KCC2 activity beyond normal levels did not negatively impact firing frequency or cause overt extracellular K− accumulation, demonstrating that enhancing KCC2 activity is a valid strategy for therapeutic intervention. PMID:21931544

  20. The Theory of Planned Behavior as a Predictor of Growth in Risky College Drinking*

    PubMed Central

    Collins, Susan E.; Witkiewitz, Katie; Larimer, Mary E.

    2011-01-01

    Objective: This study tested the Theory of Planned Behavior (TPB) as a predictor of growth in risky college drinking over a 3-month period. As predicted by the TPB model, it was hypothesized that attitudes, subjective norms, and perceived behavioral control would predict intention to engage in risky drinking, which would in turn predict growth in future risky drinking. Method: Participants were 837 college drinkers (64.2% female) who were randomly selected from two U.S. West Coast universities to participate in a larger study on college drinking norms. This study used latent growth analyses to test the ability of the TPB to predict baseline levels of as well as linear and quadratic growth in risky college drinking (i.e., heavy episodic drinking and peak drinking quantity). Results: Chi-square tests and fit indices indicated close fit for the final structural models. Self-efficacy, attitudes, and subjective norms significantly predicted baseline intention, which in turn predicted future heavy episodic drinking. Self-efficacy and attitudes were also related to intention in the model of peak drinking; however, subjective norms were not a significant predictor of intention in the peak drinking model. Mediation analyses showed that intention to engage in risky drinking mediated the effects of self-efficacy and attitudes on growth in risky drinking. Conclusions: Findings supported the TPB in predicting risky college drinking. Although the current findings should be replicated before definitive conclusions are drawn, results suggest that feedback on self-efficacy, attitudes, and intentions to engage in risky drinking may be a helpful addition to personalized feedback interventions for this population. PMID:21388605

  1. Online Instructor's Use of Audio Feedback to Increase Social Presence and Student Satisfaction

    ERIC Educational Resources Information Center

    Portolese Dias, Laura; Trumpy, Robert

    2014-01-01

    This study investigates the impact of written group feedback, versus audio feedback, based upon four student satisfaction measures in the online classroom environment. Undergraduate students in the control group were provided both individual written feedback and group written feedback, while undergraduate students in the experimental treatment…

  2. Structured output-feedback controller synthesis with design specifications

    NASA Astrophysics Data System (ADS)

    Hao, Yuqing; Duan, Zhisheng

    2017-03-01

    This paper considers the problem of structured output-feedback controller synthesis with finite frequency specifications. Based on the orthogonal space information of input matrix, an improved parameter-dependent Lyapunov function method is first proposed. Then, a two-stage construction method is designed, which depends on an initial centralised controller. Corresponding design conditions for three types of output-feedback controllers are presented in terms of unified representations. Moreover, heuristic algorithms are provided to explore the desirable controllers. Finally, the effectiveness of these proposed methods is illustrated via some practical examples.

  3. Analysis of a dc bus system with a nonlinear constant power load and its delayed feedback control.

    PubMed

    Konishi, Keiji; Sugitani, Yoshiki; Hara, Naoyuki

    2014-02-01

    This paper tackles a destabilizing problem of a direct-current (dc) bus system with constant power loads, which can be considered a fundamental problem of dc power grid networks. The present paper clarifies scenarios of the destabilization and applies the well-known delayed-feedback control to the stabilization of the destabilized bus system on the basis of nonlinear science. Further, we propose a systematic procedure for designing the delayed feedback controller. This controller can converge the bus voltage exactly on an unstable operating point without accurate information and can track it using tiny control energy even when a system parameter, such as the power consumption of the load, is slowly varied. These features demonstrate that delayed feedback control can be considered a strong candidate for solving the destabilizing problem.

  4. Adaptive Neural Output Feedback Control for Nonstrict-Feedback Stochastic Nonlinear Systems With Unknown Backlash-Like Hysteresis and Unknown Control Directions.

    PubMed

    Yu, Zhaoxu; Li, Shugang; Yu, Zhaosheng; Li, Fangfei

    2018-04-01

    This paper investigates the problem of output feedback adaptive stabilization for a class of nonstrict-feedback stochastic nonlinear systems with both unknown backlashlike hysteresis and unknown control directions. A new linear state transformation is applied to the original system, and then, control design for the new system becomes feasible. By combining the neural network's (NN's) parameterization, variable separation technique, and Nussbaum gain function method, an input-driven observer-based adaptive NN control scheme, which involves only one parameter to be updated, is developed for such systems. All closed-loop signals are bounded in probability and the error signals remain semiglobally bounded in the fourth moment (or mean square). Finally, the effectiveness and the applicability of the proposed control design are verified by two simulation examples.

  5. Series-nonuniform rational B-spline signal feedback: From chaos to any embedded periodic orbit or target point.

    PubMed

    Shao, Chenxi; Xue, Yong; Fang, Fang; Bai, Fangzhou; Yin, Peifeng; Wang, Binghong

    2015-07-01

    The self-controlling feedback control method requires an external periodic oscillator with special design, which is technically challenging. This paper proposes a chaos control method based on time series non-uniform rational B-splines (SNURBS for short) signal feedback. It first builds the chaos phase diagram or chaotic attractor with the sampled chaotic time series and any target orbit can then be explicitly chosen according to the actual demand. Second, we use the discrete timing sequence selected from the specific target orbit to build the corresponding external SNURBS chaos periodic signal, whose difference from the system current output is used as the feedback control signal. Finally, by properly adjusting the feedback weight, we can quickly lead the system to an expected status. We demonstrate both the effectiveness and efficiency of our method by applying it to two classic chaotic systems, i.e., the Van der Pol oscillator and the Lorenz chaotic system. Further, our experimental results show that compared with delayed feedback control, our method takes less time to obtain the target point or periodic orbit (from the starting point) and that its parameters can be fine-tuned more easily.

  6. Closed-loop control of anesthesia: a primer for anesthesiologists.

    PubMed

    Dumont, Guy A; Ansermino, J Mark

    2013-11-01

    Feedback control is ubiquitous in nature and engineering and has revolutionized safety in fields from space travel to the automobile. In anesthesia, automated feedback control holds the promise of limiting the effects on performance of individual patient variability, optimizing the workload of the anesthesiologist, increasing the time spent in a more desirable clinical state, and ultimately improving the safety and quality of anesthesia care. The benefits of control systems will not be realized without widespread support from the health care team in close collaboration with industrial partners. In this review, we provide an introduction to the established field of control systems research for the everyday anesthesiologist. We introduce important concepts such as feedback and modeling specific to control problems and provide insight into design requirements for guaranteeing the safety and performance of feedback control systems. We focus our discussion on the optimization of anesthetic drug administration.

  7. Attitude stabilization of a rigid spacecraft using two momentum wheel actuators

    NASA Technical Reports Server (NTRS)

    Krishnan, Hariharan; Mcclamroch, N. Harris; Reyhanoglu, Mahmut

    1993-01-01

    It is well known that three momentum wheel actuators can be used to control the attitude of a rigid spacecraft and that arbitrary reorientation maneuvers of the spacecraft can be accomplished using smooth feedback. If failure of one of the momentum wheel actuators occurs, it is demonstrated that two momentum wheel actuators can be used to control the attitude of a rigid spacecraft and that arbitrary reorientation maneuvers of the spacecraft can be accomplished. Although the complete spacecraft equations are not controllable, the spacecraft equations are small time locally controllable in a reduced nonlinear sense. The reduced spacecraft dynamics cannot be asymptotically stabilized to any equilibrium attitude using a time-variant continuous feedback control law, but discontinuous feedback control strategies are constructed which stabilize any equilibrium attitude of the spacecraft in finite time. Consequently, reorientation of the spacecraft can be accomplished using discontinuous feedback control.

  8. Solid state light source driver establishing buck or boost operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, Fred

    A solid state light source driver circuit that operates in either a buck convertor or a boost convertor configuration is provided. The driver circuit includes a controller, a boost switch circuit and a buck switch circuit, each coupled to the controller, and a feedback circuit, coupled to the light source. The feedback circuit provides feedback to the controller, representing a DC output of the driver circuit. The controller controls the boost switch circuit and the buck switch circuit in response to the feedback signal, to regulate current to the light source. The controller places the driver circuit in its boostmore » converter configuration when the DC output is less than a rectified AC voltage coupled to the driver circuit at an input node. The controller places the driver circuit in its buck converter configuration when the DC output is greater than the rectified AC voltage at the input node.« less

  9. Automatic feedback to promote safe walking and speech loudness control in persons with multiple disabilities: two single-case studies.

    PubMed

    Lancioni, Giulio E; Singh, Nirbhay N; O'Reilly, Mark F; Green, Vanessa A; Alberti, Gloria; Boccasini, Adele; Smaldone, Angela; Oliva, Doretta; Bosco, Andrea

    2014-08-01

    Assessing automatic feedback technologies to promote safe travel and speech loudness control in two men with multiple disabilities, respectively. The men were involved in two single-case studies. In Study I, the technology involved a microprocessor, two photocells, and a verbal feedback device. The man received verbal alerting/feedback when the photocells spotted an obstacle in front of him. In Study II, the technology involved a sound-detecting unit connected to a throat and an airborne microphone, and to a vibration device. Vibration occurred when the man's speech loudness exceeded a preset level. The man included in Study I succeeded in using the automatic feedback in substitution of caregivers' alerting/feedback for safe travel. The man of Study II used the automatic feedback to successfully reduce his speech loudness. Automatic feedback can be highly effective in helping persons with multiple disabilities improve their travel and speech performance.

  10. A new approach to approximating the linear quadratic optimal control law for hereditary systems with control delays

    NASA Technical Reports Server (NTRS)

    Milman, M. H.

    1985-01-01

    A factorization approach is presented for deriving approximations to the optimal feedback gain for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the feedback kernels.

  11. Adaptive Sliding Mode Control of Dynamic Systems Using Double Loop Recurrent Neural Network Structure.

    PubMed

    Fei, Juntao; Lu, Cheng

    2018-04-01

    In this paper, an adaptive sliding mode control system using a double loop recurrent neural network (DLRNN) structure is proposed for a class of nonlinear dynamic systems. A new three-layer RNN is proposed to approximate unknown dynamics with two different kinds of feedback loops where the firing weights and output signal calculated in the last step are stored and used as the feedback signals in each feedback loop. Since the new structure has combined the advantages of internal feedback NN and external feedback NN, it can acquire the internal state information while the output signal is also captured, thus the new designed DLRNN can achieve better approximation performance compared with the regular NNs without feedback loops or the regular RNNs with a single feedback loop. The new proposed DLRNN structure is employed in an equivalent controller to approximate the unknown nonlinear system dynamics, and the parameters of the DLRNN are updated online by adaptive laws to get favorable approximation performance. To investigate the effectiveness of the proposed controller, the designed adaptive sliding mode controller with the DLRNN is applied to a -axis microelectromechanical system gyroscope to control the vibrating dynamics of the proof mass. Simulation results demonstrate that the proposed methodology can achieve good tracking property, and the comparisons of the approximation performance between radial basis function NN, RNN, and DLRNN show that the DLRNN can accurately estimate the unknown dynamics with a fast speed while the internal states of DLRNN are more stable.

  12. Depth Camera-Based 3D Hand Gesture Controls with Immersive Tactile Feedback for Natural Mid-Air Gesture Interactions

    PubMed Central

    Kim, Kwangtaek; Kim, Joongrock; Choi, Jaesung; Kim, Junghyun; Lee, Sangyoun

    2015-01-01

    Vision-based hand gesture interactions are natural and intuitive when interacting with computers, since we naturally exploit gestures to communicate with other people. However, it is agreed that users suffer from discomfort and fatigue when using gesture-controlled interfaces, due to the lack of physical feedback. To solve the problem, we propose a novel complete solution of a hand gesture control system employing immersive tactile feedback to the user's hand. For this goal, we first developed a fast and accurate hand-tracking algorithm with a Kinect sensor using the proposed MLBP (modified local binary pattern) that can efficiently analyze 3D shapes in depth images. The superiority of our tracking method was verified in terms of tracking accuracy and speed by comparing with existing methods, Natural Interaction Technology for End-user (NITE), 3D Hand Tracker and CamShift. As the second step, a new tactile feedback technology with a piezoelectric actuator has been developed and integrated into the developed hand tracking algorithm, including the DTW (dynamic time warping) gesture recognition algorithm for a complete solution of an immersive gesture control system. The quantitative and qualitative evaluations of the integrated system were conducted with human subjects, and the results demonstrate that our gesture control with tactile feedback is a promising technology compared to a vision-based gesture control system that has typically no feedback for the user's gesture inputs. Our study provides researchers and designers with informative guidelines to develop more natural gesture control systems or immersive user interfaces with haptic feedback. PMID:25580901

  13. Depth camera-based 3D hand gesture controls with immersive tactile feedback for natural mid-air gesture interactions.

    PubMed

    Kim, Kwangtaek; Kim, Joongrock; Choi, Jaesung; Kim, Junghyun; Lee, Sangyoun

    2015-01-08

    Vision-based hand gesture interactions are natural and intuitive when interacting with computers, since we naturally exploit gestures to communicate with other people. However, it is agreed that users suffer from discomfort and fatigue when using gesture-controlled interfaces, due to the lack of physical feedback. To solve the problem, we propose a novel complete solution of a hand gesture control system employing immersive tactile feedback to the user's hand. For this goal, we first developed a fast and accurate hand-tracking algorithm with a Kinect sensor using the proposed MLBP (modified local binary pattern) that can efficiently analyze 3D shapes in depth images. The superiority of our tracking method was verified in terms of tracking accuracy and speed by comparing with existing methods, Natural Interaction Technology for End-user (NITE), 3D Hand Tracker and CamShift. As the second step, a new tactile feedback technology with a piezoelectric actuator has been developed and integrated into the developed hand tracking algorithm, including the DTW (dynamic time warping) gesture recognition algorithm for a complete solution of an immersive gesture control system. The quantitative and qualitative evaluations of the integrated system were conducted with human subjects, and the results demonstrate that our gesture control with tactile feedback is a promising technology compared to a vision-based gesture control system that has typically no feedback for the user's gesture inputs. Our study provides researchers and designers with informative guidelines to develop more natural gesture control systems or immersive user interfaces with haptic feedback.

  14. Vibrotactile Feedback for Brain-Computer Interface Operation

    PubMed Central

    Cincotti, Febo; Kauhanen, Laura; Aloise, Fabio; Palomäki, Tapio; Caporusso, Nicholas; Jylänki, Pasi; Mattia, Donatella; Babiloni, Fabio; Vanacker, Gerolf; Nuttin, Marnix; Marciani, Maria Grazia; Millán, José del R.

    2007-01-01

    To be correctly mastered, brain-computer interfaces (BCIs) need an uninterrupted flow of feedback to the user. This feedback is usually delivered through the visual channel. Our aim was to explore the benefits of vibrotactile feedback during users' training and control of EEG-based BCI applications. A protocol for delivering vibrotactile feedback, including specific hardware and software arrangements, was specified. In three studies with 33 subjects (including 3 with spinal cord injury), we compared vibrotactile and visual feedback, addressing: (I) the feasibility of subjects' training to master their EEG rhythms using tactile feedback; (II) the compatibility of this form of feedback in presence of a visual distracter; (III) the performance in presence of a complex visual task on the same (visual) or different (tactile) sensory channel. The stimulation protocol we developed supports a general usage of the tactors; preliminary experimentations. All studies indicated that the vibrotactile channel can function as a valuable feedback modality with reliability comparable to the classical visual feedback. Advantages of using a vibrotactile feedback emerged when the visual channel was highly loaded by a complex task. In all experiments, vibrotactile feedback felt, after some training, more natural for both controls and SCI users. PMID:18354734

  15. Acute Stress Modulates Feedback Processing in Men and Women: Differential Effects on the Feedback-Related Negativity and Theta and Beta Power

    PubMed Central

    Banis, Stella; Geerligs, Linda; Lorist, Monicque M.

    2014-01-01

    Sex-specific prevalence rates in mental and physical disorders may be partly explained by sex differences in physiological stress responses. Neural networks that might be involved are those underlying feedback processing. Aim of the present EEG study was to investigate whether acute stress alters feedback processing, and whether stress effects differ between men and women. Male and female participants performed a gambling task, in a control and a stress condition. Stress was induced by exposing participants to a noise stressor. Brain activity was analyzed using both event-related potential and time-frequency analyses, measuring the feedback-related negativity (FRN) and feedback-related changes in theta and beta oscillatory power, respectively. While the FRN and feedback-related theta power were similarly affected by stress induction in both sexes, feedback-related beta power depended on the combination of stress induction condition and sex. FRN amplitude and theta power increases were smaller in the stress relative to the control condition in both sexes, demonstrating that acute noise stress impairs performance monitoring irrespective of sex. However, in the stress but not in the control condition, early lower beta-band power increases were larger for men than women, indicating that stress effects on feedback processing are partly sex-dependent. Our findings suggest that sex-specific effects on feedback processing may comprise a factor underlying sex-specific stress responses. PMID:24755943

  16. On the stabilization of decentralized control systems.

    NASA Technical Reports Server (NTRS)

    Wang, S.-H.; Davison, E. J.

    1973-01-01

    This paper considers the problem of stabilizing a linear time-variant multivariable system by using several local feedback control laws. Each local feedback control law depends only on partial system outputs. A necessary and sufficient condition for the existence of local control laws with dynamic compensation to stabilize a given system is derived. This condition is stated in terms of a new notion, called fixed modes, which is a natural generalization of the well-known concept of uncontrollable modes and unobservable modes that occur in centralized control system problems. A procedure that constructs a set of stabilizing feedback control laws is given.

  17. Mathematical Modeling of RNA-Based Architectures for Closed Loop Control of Gene Expression.

    PubMed

    Agrawal, Deepak K; Tang, Xun; Westbrook, Alexandra; Marshall, Ryan; Maxwell, Colin S; Lucks, Julius; Noireaux, Vincent; Beisel, Chase L; Dunlop, Mary J; Franco, Elisa

    2018-05-08

    Feedback allows biological systems to control gene expression precisely and reliably, even in the presence of uncertainty, by sensing and processing environmental changes. Taking inspiration from natural architectures, synthetic biologists have engineered feedback loops to tune the dynamics and improve the robustness and predictability of gene expression. However, experimental implementations of biomolecular control systems are still far from satisfying performance specifications typically achieved by electrical or mechanical control systems. To address this gap, we present mathematical models of biomolecular controllers that enable reference tracking, disturbance rejection, and tuning of the temporal response of gene expression. These controllers employ RNA transcriptional regulators to achieve closed loop control where feedback is introduced via molecular sequestration. Sensitivity analysis of the models allows us to identify which parameters influence the transient and steady state response of a target gene expression process, as well as which biologically plausible parameter values enable perfect reference tracking. We quantify performance using typical control theory metrics to characterize response properties and provide clear selection guidelines for practical applications. Our results indicate that RNA regulators are well-suited for building robust and precise feedback controllers for gene expression. Additionally, our approach illustrates several quantitative methods useful for assessing the performance of biomolecular feedback control systems.

  18. Dissociation between Active and Observational Learning from Positive and Negative Feedback in Parkinsonism

    PubMed Central

    Kobza, Stefan; Ferrea, Stefano; Schnitzler, Alfons; Pollok, Bettina

    2012-01-01

    Feedback to both actively performed and observed behaviour allows adaptation of future actions. Positive feedback leads to increased activity of dopamine neurons in the substantia nigra, whereas dopamine neuron activity is decreased following negative feedback. Dopamine level reduction in unmedicated Parkinson’s Disease patients has been shown to lead to a negative learning bias, i.e. enhanced learning from negative feedback. Recent findings suggest that the neural mechanisms of active and observational learning from feedback might differ, with the striatum playing a less prominent role in observational learning. Therefore, it was hypothesized that unmedicated Parkinson’s Disease patients would show a negative learning bias only in active but not in observational learning. In a between-group design, 19 Parkinson’s Disease patients and 40 healthy controls engaged in either an active or an observational probabilistic feedback-learning task. For both tasks, transfer phases aimed to assess the bias to learn better from positive or negative feedback. As expected, actively learning patients showed a negative learning bias, whereas controls learned better from positive feedback. In contrast, no difference between patients and controls emerged for observational learning, with both groups showing better learning from positive feedback. These findings add to neural models of reinforcement-learning by suggesting that dopamine-modulated input to the striatum plays a minor role in observational learning from feedback. Future research will have to elucidate the specific neural underpinnings of observational learning. PMID:23185586

  19. Design of a temperature measurement and feedback control system based on an improved magnetic nanoparticle thermometer

    NASA Astrophysics Data System (ADS)

    Du, Zhongzhou; Sun, Yi; Liu, Jie; Su, Rijian; Yang, Ming; Li, Nana; Gan, Yong; Ye, Na

    2018-04-01

    Magnetic fluid hyperthermia, as a novel cancer treatment, requires precise temperature control at 315 K-319 K (42 °C-46 °C). However, the traditional temperature measurement method cannot obtain the real-time temperature in vivo, resulting in a lack of temperature feedback during the heating process. In this study, the feasibility of temperature measurement and feedback control using magnetic nanoparticles is proposed and demonstrated. This technique could be applied in hyperthermia. Specifically, the triangular-wave temperature measurement method is improved by reconstructing the original magnetization response of magnetic nanoparticles based on a digital phase-sensitive detection algorithm. The standard deviation of the temperature in the magnetic nanoparticle thermometer is about 0.1256 K. In experiments, the temperature fluctuation of the temperature measurement and feedback control system using magnetic nanoparticles is less than 0.5 K at the expected temperature of 315 K. This shows the feasibility of the temperature measurement method for temperature control. The method provides a new solution for temperature measurement and feedback control in hyperthermia.

  20. Randomised controlled trial of routine individual feedback to improve rationality and reduce numbers of test requests.

    PubMed

    Winkens, R A; Pop, P; Bugter-Maessen, A M; Grol, R P; Kester, A D; Beusmans, G H; Knottnerus, J A

    1995-02-25

    Feedback can be described as a way to provide information on doctors' performance to enable changes in future behaviour. Feedback is used with the aim of changing test-ordering behaviour. It can lead to reductions in test usage and cost savings. It is not sufficiently clear, however, whether feedback leads to more appropriate test use. Since 1985, the Diagnostic Coordinating Center Maastricht has been giving feedback on diagnostic tests as a routine health care activity to all family doctors in its region. Both quantity and quality of requests are discussed. In a randomised, controlled trial over 2.5 years, discussion of tests not included previously was added to the existing routine feedback. One group of family doctors (n = 39) received feedback on test-group A (electrocardiography, endoscopy, cervical smears, and allergy tests), the other (n = 40) on test-group B (radiographic and ultrasonographic tests). Thus, each group of doctors acted as a control group for the other. Changes in volume and rationality of requests were analysed. The number of requests decreased during the trial (p = 0.036). Request numbers decreased particularly for test-group A (p = 0.04). The proportion of requests that were non-rational decreased more in the intervention than in the control groups (p = 0.009). Rationality improved predominantly for test-group B (p = 0.043). Thus, routine feedback can change the quantity and quality of requests.

  1. Using a Feedback Environment to Improve Creative Performance: A Dynamic Affect Perspective.

    PubMed

    Gong, Zhenxing; Zhang, Na

    2017-01-01

    Prior research on feedback and creative performance has neglected the dynamic nature of affect and has focused only on the influence of positive affect. We argue that creative performance is the result of a dynamic process in which a person experiences a phase of negative affect and subsequently enters a state of high positive affect that is influenced by the feedback environment. Hierarchical regression was used to analyze a sample of 264 employees from seven industry firms. The results indicate that employees' perceptions of a supportive supervisor feedback environment indirectly influence their level of creative performance through positive affect (t2); the negative affect (t1) moderates the relationship between positive affect (t2) and creative performance (t2), rendering the relationship more positive if negative affect (t1) is high. The change in positive affect mediates the relationship between the supervisor feedback environment and creative performance; a decrease in negative affect moderates the relationship between increased positive affect and creative performance, rendering the relationship more positive if the decrease in negative affect is large. The implications for improving the creative performances of employees are further discussed.

  2. The effect of feedback-assisted reduction in heart rate reactivity on videogame performance.

    PubMed

    Larkin, K T; Manuck, S B; Kasprowicz, A L

    1990-12-01

    In 67 male volunteers, we examined the reduction of cardiovascular responsivity to a psychomotor challenge (videogame) achieved by use of heart rate (HR) feedback and effects of these procedures on concomitant behavioral performance. Each subject participated in a pretraining assessment of his cardiovascular responses to the videogame, a training condition, and a posttraining assessment identical to the initial evaluation. During training, subjects were assigned to one of four conditions: (a) a habituation control group receiving no instructions to alter HR (HC); (b) an instructions-only control group receiving instructions to maintain a low or unchanged HR during videogame presentations (IC); (c) a feedback group receiving instructions to reduce HR using ongoing HR feedback (FB-); or (d) a feedback group receiving instructions to lower HR and given HR feedback plus a score contingency in which total game score was jointly determined by subjects' game performance and success at HR control (FB+). Subjects receiving feedback (FB+, FB-) exhibited greater reductions in HR response to the videogame in the posttraining assessment than control (HC, IC) subjects; FB+ subjects showed greater HR reductions than subjects in any other group. FB+ and FB- subjects showed a lower SBP at posttraining relative to the two control groups, but no reduction in task-induced blood pressure reactivity. There were no group differences in videogame performance, either before or following training.

  3. Social Norms and Financial Incentives to Promote Employees’ Healthy Food Choices: A Randomized Controlled Trial

    PubMed Central

    Thorndike, Anne N.; Riis, Jason; Levy, Douglas E.

    2016-01-01

    Population-level strategies to improve healthy food choices are needed for obesity prevention. We conducted a randomized controlled trial of 2,672 employees at Massachusetts General Hospital who were regular customers of the hospital cafeteria with all items labeled green (healthy), yellow (less healthy), or red (unhealthy) to determine if social norm (peer-comparison) feedback with or without financial incentives increased employees’ healthy food choices. Participants were randomized in 2012 to three arms: 1) monthly letter with social norm feedback about healthy food purchases, comparing employee to “all” and to “healthiest” customers (feedback-only); 2) monthly letter with social norm feedback plus small financial incentive for increasing green purchases (feedback-incentive); or 3) no contact (control). The main outcome was change in proportion of green-labeled purchases at end of 3-month intervention. Post-hoc analyses examined linear trends. At baseline, the proportion of green-labeled purchases (50%) did not differ between arms. At end of the 3-month intervention, the percentage increase in green-labeled purchases was larger in the feedback-incentive arm compared to control (2.2% vs. 0.1%, P=0.03), but the two intervention arms were not different. The rate of increase in green-labeled purchases was higher in both feedback-only (P=0.04) and feedback-incentive arms (P=0.004) compared to control. At end of a 3-month wash-out, there were no differences between control and intervention arms. Social norms plus small financial incentives increased employees’ healthy food choices over the short-term. Future research will be needed to assess the impact of this relatively low-cost intervention on employees’ food choices and weight over the long-term. Trial Registration: Clinical Trials.gov NCT01604499 PMID:26827617

  4. Social norms and financial incentives to promote employees' healthy food choices: A randomized controlled trial.

    PubMed

    Thorndike, Anne N; Riis, Jason; Levy, Douglas E

    2016-05-01

    Population-level strategies to improve healthy food choices are needed for obesity prevention. We conducted a randomized controlled trial of 2672 employees at the Massachusetts General Hospital who were regular customers of the hospital cafeteria with all items labeled green (healthy), yellow (less healthy), or red (unhealthy) to determine if social norm (peer-comparison) feedback with or without financial incentives increased employees' healthy food choices. Participants were randomized in 2012 to three arms: 1) monthly letter with social norm feedback about healthy food purchases, comparing employee to "all" and to "healthiest" customers (feedback-only); 2) monthly letter with social norm feedback plus small financial incentive for increasing green purchases (feedback-incentive); or 3) no contact (control). The main outcome was change in proportion of green-labeled purchases at the end of 3-month intervention. Post-hoc analyses examined linear trends. At baseline, the proportion of green-labeled purchases (50%) did not differ between arms. At the end of the 3-month intervention, the percentage increase in green-labeled purchases was larger in the feedback-incentive arm compared to control (2.2% vs. 0.1%, P=0.03), but the two intervention arms were not different. The rate of increase in green-labeled purchases was higher in both feedback-only (P=0.04) and feedback-incentive arms (P=0.004) compared to control. At the end of a 3-month wash-out, there were no differences between control and intervention arms. Social norms plus small financial incentives increased employees' healthy food choices over the short-term. Future research will be needed to assess the impact of this relatively low-cost intervention on employees' food choices and weight over the long-term. Clinical Trials.gov: NCT01604499. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Valence and agency influence striatal response to feedback in patients with major depressive disorder

    PubMed Central

    Späti, Jakub; Chumbley, Justin; Doerig, Nadja; Brakowski, Janis; Holtforth, Martin Grosse; Seifritz, Erich; Spinelli, Simona

    2015-01-01

    Background Reduced sensitivity to positive feedback is common in patients with major depressive disorder (MDD). However, findings regarding negative feedback are ambiguous, with both exaggerated and blunted responses being reported. The ventral striatum (VS) plays a major role in processing valenced feedback, and previous imaging studies have shown that the locus of controls (self agency v. external agency) over the outcome influences VS response to feedback. We investigated whether attributing the outcome to one’s own action or to an external agent influences feedback processing in patients with MDD. We hypothesized that depressed participants would be less sensitive to the feedback attribution reflected by an altered VS response to self-attributed gains and losses. Methods Using functional MRI and a motion prediction task, we investigated the neural responses to self-attributed (SA) and externally attributed (EA) monetary gains and losses in unmedicated patients with MDD and healthy controls. Results We included 21 patients and 25 controls in our study. Consistent with our prediction, healthy controls showed a VS response influenced by feedback valence and attribution, whereas in depressed patients striatal activity was modulated by valence but was insensitive to attribution. This attribution insensitivity led to an altered ventral putamen response for SA – EA losses in patients with MDD compared with healthy controls. Limitations Depressed patients with comorbid anxiety disorder were included. Conclusion These results suggest an altered assignment of motivational salience to SA losses in patients with MDD. Altered striatal response to SA negative events may reinforce the belief of not being in control of negative outcomes contributing to a cycle of learned helplessness. PMID:26107160

  6. Feedback-Driven Mode Rotation Control by Electro-Magnetic Torque

    NASA Astrophysics Data System (ADS)

    Okabayashi, M.; Strait, E. J.; Garofalo, A. M.; La Haye, R. J.; in, Y.; Hanson, J. M.; Shiraki, D.; Volpe, F.

    2013-10-01

    The recent experimental discovery of feedback-driven mode rotation control, supported by modeling, opens new approaches for avoidance of locked tearing modes that otherwise lead to disruptions. This approach is an application of electro-magnetic (EM) torque using 3D fields, routinely maximized through a simple feedback system. In DIII-D, it is observed that a feedback-applied radial field can be synchronized in phase with the poloidal field component of a large amplitude tearing mode, producing the maximum EM torque input. The mode frequency can be maintained in the 10 Hz to 100 Hz range in a well controlled manner, sustaining the discharges. Presently, in the ITER internal coils designed for edge localized mode (ELM) control can only be varied at few Hz, yet, well below the inverse wall time constant. Hence, ELM control system could in principle be used for this feedback-driven mode control in various ways. For instance, the locking of MHD modes can be avoided during the controlled shut down of multi hundreds Mega Joule EM stored energy in case of emergency. Feedback could also be useful to minimize mechanical resonances at the disruption events by forcing the MHD frequency away from dangerous ranges. Work supported by the US DOE under DE-AC02-09CH11466, DE-FC-02-04ER54698, DE-FG02-08ER85195, and DE-FG02-04ER54761.

  7. Locus of Control and Effects of Failure on Performance and Perceived Competence

    ERIC Educational Resources Information Center

    Shavit, Hana; Rabinowitz, Aaron

    1978-01-01

    Reactions to ego related performance feedback of 117 internal and external locus of control eighth-grade children were investigated. Both internals and externals were equally pleased by success feedback and displeased by failure, and their competence judgment was influenced by the feedback received. However, internals exhibited more effective…

  8. The relevance of central command for the neural cardiovascular control of exercise.

    PubMed

    Williamson, J W

    2010-11-01

    This paper briefly reviews the role of central command in the neural control of the circulation during exercise. While defined as a feedforward component of the cardiovascular control system, central command is also associated with perception of effort or effort sense. The specific factors influencing perception of effort and their effect on autonomic regulation of cardiovascular function during exercise can vary according to condition. Centrally mediated integration of multiple signals occurring during exercise certainly involves feedback mechanisms, but it is unclear whether or how these signals modify central command via their influence on perception of effort. As our understanding of central neural control systems continues to develop, it will be important to examine more closely how multiple sensory signals are prioritized and processed centrally to modulate cardiovascular responses during exercise. The purpose of this article is briefly to review the concepts underlying central command and its assessment via perception of effort, and to identify potential areas for future studies towards determining the role and relevance of central command for neural control of exercise.

  9. The relevance of central command for the neural cardiovascular control of exercise

    PubMed Central

    Williamson, J W

    2010-01-01

    This paper briefly reviews the role of central command in the neural control of the circulation during exercise. While defined as a feedfoward component of the cardiovascular control system, central command is also associated with perception of effort or effort sense. The specific factors influencing perception of effort and their effect on autonomic regulation of cardiovascular function during exercise can vary according to condition. Centrally mediated integration of multiple signals occurring during exercise certainly involves feedback mechanisms, but it is unclear whether or how these signals modify central command via their influence on perception of effort. As our understanding of central neural control systems continues to develop, it will be important to examine more closely how multiple sensory signals are prioritized and processed centrally to modulate cardiovascular responses during exercise. The purpose of this article is briefly to review the concepts underlying central command and its assessment via perception of effort, and to identify potential areas for future studies towards determining the role and relevance of central command for neural control of exercise. PMID:20696787

  10. Error correcting mechanisms during antisaccades: contribution of online control during primary saccades and offline control via secondary saccades.

    PubMed

    Bedi, Harleen; Goltz, Herbert C; Wong, Agnes M F; Chandrakumar, Manokaraananthan; Niechwiej-Szwedo, Ewa

    2013-01-01

    Errors in eye movements can be corrected during the ongoing saccade through in-flight modifications (i.e., online control), or by programming a secondary eye movement (i.e., offline control). In a reflexive saccade task, the oculomotor system can use extraretinal information (i.e., efference copy) online to correct errors in the primary saccade, and offline retinal information to generate a secondary corrective saccade. The purpose of this study was to examine the error correction mechanisms in the antisaccade task. The roles of extraretinal and retinal feedback in maintaining eye movement accuracy were investigated by presenting visual feedback at the spatial goal of the antisaccade. We found that online control for antisaccade is not affected by the presence of visual feedback; that is whether visual feedback is present or not, the duration of the deceleration interval was extended and significantly correlated with reduced antisaccade endpoint error. We postulate that the extended duration of deceleration is a feature of online control during volitional saccades to improve their endpoint accuracy. We found that secondary saccades were generated more frequently in the antisaccade task compared to the reflexive saccade task. Furthermore, we found evidence for a greater contribution from extraretinal sources of feedback in programming the secondary "corrective" saccades in the antisaccade task. Nonetheless, secondary saccades were more corrective for the remaining antisaccade amplitude error in the presence of visual feedback of the target. Taken together, our results reveal a distinctive online error control strategy through an extension of the deceleration interval in the antisaccade task. Target feedback does not improve online control, rather it improves the accuracy of secondary saccades in the antisaccade task.

  11. Error Correcting Mechanisms during Antisaccades: Contribution of Online Control during Primary Saccades and Offline Control via Secondary Saccades

    PubMed Central

    Bedi, Harleen; Goltz, Herbert C.; Wong, Agnes M. F.; Chandrakumar, Manokaraananthan; Niechwiej-Szwedo, Ewa

    2013-01-01

    Errors in eye movements can be corrected during the ongoing saccade through in-flight modifications (i.e., online control), or by programming a secondary eye movement (i.e., offline control). In a reflexive saccade task, the oculomotor system can use extraretinal information (i.e., efference copy) online to correct errors in the primary saccade, and offline retinal information to generate a secondary corrective saccade. The purpose of this study was to examine the error correction mechanisms in the antisaccade task. The roles of extraretinal and retinal feedback in maintaining eye movement accuracy were investigated by presenting visual feedback at the spatial goal of the antisaccade. We found that online control for antisaccade is not affected by the presence of visual feedback; that is whether visual feedback is present or not, the duration of the deceleration interval was extended and significantly correlated with reduced antisaccade endpoint error. We postulate that the extended duration of deceleration is a feature of online control during volitional saccades to improve their endpoint accuracy. We found that secondary saccades were generated more frequently in the antisaccade task compared to the reflexive saccade task. Furthermore, we found evidence for a greater contribution from extraretinal sources of feedback in programming the secondary “corrective” saccades in the antisaccade task. Nonetheless, secondary saccades were more corrective for the remaining antisaccade amplitude error in the presence of visual feedback of the target. Taken together, our results reveal a distinctive online error control strategy through an extension of the deceleration interval in the antisaccade task. Target feedback does not improve online control, rather it improves the accuracy of secondary saccades in the antisaccade task. PMID:23936308

  12. Depression screening with patient-targeted feedback in cardiology: DEPSCREEN-INFO randomised clinical trial.

    PubMed

    Löwe, Bernd; Blankenberg, Stefan; Wegscheider, Karl; König, Hans-Helmut; Walter, Dirk; Murray, Alexandra M; Gierk, Benjamin; Kohlmann, Sebastian

    2017-02-01

    International guidelines advocate depression screening in patients with coronary heart disease (CHD) and other chronic illnesses, but evidence is lacking. To test the differential efficacy of written patient-targeted feedback v. no written patient feedback after depression screening. Patients with CHD or hypertension from three cardiology settings were randomised and screened for depression (ClinicalTrials.gov Identifier: NCT01879111). Compared with the control group, where only cardiologists received written feedback, in the intervention group both cardiologists and patients received written feedback regarding depression status. Depression severity was measured 1 month (primary outcome) and 6 months after screening. The control group (n = 220) and the patient-feedback group (n = 155) did not differ in depression severity 1 month after screening. Six months after screening, the patient-feedback group showed significantly greater improvements in depression severity and was twice as likely to seek information about depression compared with the control group. Patient-targeted feedback in addition to screening has a significant but small effect on depression severity after 6 months and may encourage patients to take an active role in the self-management of depression. © The Royal College of Psychiatrists 2017.

  13. Developing Preceptors through Virtual Communities and Networks: Experiences from a Pilot Project

    PubMed Central

    Ackman, Margaret L; Romanick, Marcel

    2011-01-01

    Background: Supporting preceptors is critical to the expansion of experiential learning opportunities for the pharmacy profession. Informal learning opportunities within communities of practitioners are important for hospital preceptors. However, such communities may be limited by geographic separation of preceptors from peers, faculty members, and supports within the pharmacy services department. Objective: To use computer-mediated conferencing to create a sense of community among preceptors, specifically by using this medium to provide initial development of and continuing support for preceptors, and to examine preceptors’ satisfaction with this approach. Methods: Thirty-nine preceptors who had completed a day-long face-to-face preceptor development workshop and who were supervising students in 1 of 2 specific rotation blocks were invited to participate in the study. The pharmacists used computer-mediated conferencing to meet for virtual networking about specific topics. They met once before the student rotation to receive instructions about the technology and to discuss student orientation and scheduling, and 3 times during the student rotation for open discussion of specific topics. Evaluation and feedback were solicited by means of an electronic survey and virtual (i.e., computer-based) feedback sessions with an independent facilitator. Results: The response rate was 66% (26/39) for the electronic survey, but only 15% (6/39) for the virtual feedback sessions. All of the respondents were experienced preceptors, but for 92% (22/24), this was their first experience with computer-mediated conferencing. Overall, the sessions had a positive reception, and participants found it useful to share information and experiences with other preceptors. The main challenges were related to the technology, perceived lack of support for their participation in the sessions, and inconvenience related to the timing of sessions. Conclusion: Computer-mediated conferencing allowed preceptors to learn from and to support each other despite geographic distance. The participants felt that these sessions encouraged them to serve as preceptors regularly. Such encouragement could contribute to the retention of preceptors, which is important to the expansion of experiential learning. PMID:22479095

  14. Developing Preceptors through Virtual Communities and Networks: Experiences from a Pilot Project.

    PubMed

    Ackman, Margaret L; Romanick, Marcel

    2011-11-01

    Supporting preceptors is critical to the expansion of experiential learning opportunities for the pharmacy profession. Informal learning opportunities within communities of practitioners are important for hospital preceptors. However, such communities may be limited by geographic separation of preceptors from peers, faculty members, and supports within the pharmacy services department. To use computer-mediated conferencing to create a sense of community among preceptors, specifically by using this medium to provide initial development of and continuing support for preceptors, and to examine preceptors' satisfaction with this approach. Thirty-nine preceptors who had completed a day-long face-to-face preceptor development workshop and who were supervising students in 1 of 2 specific rotation blocks were invited to participate in the study. The pharmacists used computer-mediated conferencing to meet for virtual networking about specific topics. They met once before the student rotation to receive instructions about the technology and to discuss student orientation and scheduling, and 3 times during the student rotation for open discussion of specific topics. Evaluation and feedback were solicited by means of an electronic survey and virtual (i.e., computer-based) feedback sessions with an independent facilitator. The response rate was 66% (26/39) for the electronic survey, but only 15% (6/39) for the virtual feedback sessions. All of the respondents were experienced preceptors, but for 92% (22/24), this was their first experience with computer-mediated conferencing. Overall, the sessions had a positive reception, and participants found it useful to share information and experiences with other preceptors. The main challenges were related to the technology, perceived lack of support for their participation in the sessions, and inconvenience related to the timing of sessions. Computer-mediated conferencing allowed preceptors to learn from and to support each other despite geographic distance. The participants felt that these sessions encouraged them to serve as preceptors regularly. Such encouragement could contribute to the retention of preceptors, which is important to the expansion of experiential learning.

  15. The global repressor FliZ antagonizes gene expression by σS-containing RNA polymerase due to overlapping DNA binding specificity.

    PubMed

    Pesavento, Christina; Hengge, Regine

    2012-06-01

    FliZ, a global regulatory protein under the control of the flagellar master regulator FlhDC, was shown to antagonize σ(S)-dependent gene expression in Escherichia coli. Thereby it plays a pivotal role in the decision between alternative life-styles, i.e. FlhDC-controlled flagellum-based motility or σ(S)-dependent curli fimbriae-mediated adhesion and biofilm formation. Here, we show that FliZ is an abundant DNA-binding protein that inhibits gene expression mediated by σ(S) by recognizing operator sequences that resemble the -10 region of σ(S)-dependent promoters. FliZ does so with a structural element that is similar to region 3.0 of σ(S). Within this element, R108 in FliZ corresponds to K173 in σ(S), which contacts a conserved cytosine at the -13 promoter position that is specific for σ(S)-dependent promoters. R108 as well as C(-13) are also crucial for DNA binding by FliZ. However, while a number of FliZ binding sites correspond to known σ(S)-dependent promoters, promoter activity is not a prerequisite for FliZ binding and repressor function. Thus, we demonstrate that FliZ also feedback-controls flagellar gene expression by binding to a site in the flhDC control region that shows similarity only to a -10 element of a σ(S)-dependent promoter, but does not function as a promoter.

  16. Model-Free control performance improvement using virtual reference feedback tuning and reinforcement Q-learning

    NASA Astrophysics Data System (ADS)

    Radac, Mircea-Bogdan; Precup, Radu-Emil; Roman, Raul-Cristian

    2017-04-01

    This paper proposes the combination of two model-free controller tuning techniques, namely linear virtual reference feedback tuning (VRFT) and nonlinear state-feedback Q-learning, referred to as a new mixed VRFT-Q learning approach. VRFT is first used to find stabilising feedback controller using input-output experimental data from the process in a model reference tracking setting. Reinforcement Q-learning is next applied in the same setting using input-state experimental data collected under perturbed VRFT to ensure good exploration. The Q-learning controller learned with a batch fitted Q iteration algorithm uses two neural networks, one for the Q-function estimator and one for the controller, respectively. The VRFT-Q learning approach is validated on position control of a two-degrees-of-motion open-loop stable multi input-multi output (MIMO) aerodynamic system (AS). Extensive simulations for the two independent control channels of the MIMO AS show that the Q-learning controllers clearly improve performance over the VRFT controllers.

  17. Accessibility, stabilizability, and feedback control of continuous orbital transfer.

    PubMed

    Gurfil, Pini

    2004-05-01

    This paper investigates the problem of low-thrust orbital transfer using orbital element feedback from a control-theoretic standpoint, concepts of controllability, feedback stabilizability, and their interaction. The Gauss variational equations (GVEs) are used to model the state-space dynamics. First, the notion of accessibility, a weaker form of controllability, is presented. It is then shown that the GVEs are globally accessible. Based on the accessibility result, a nonlinear feedback controller is derived that asymptotically steers a vehicle from an initial elliptic Keplerian orbit to any given elliptic Keplerian orbit. The performance of the new controller is illustrated by simulating an orbital transfer between two geosynchronous Earth orbits. It is shown that the low-thrust controller requires less fuel than an impulsive maneuver for the same transfer time. Closed-form, analytic expressions for the new orbital transfer controller are given. Finally, it is proved, based on a topological nonlinear stabilizability test, that there does not exist a continuous closed-loop controller that can transfer a spacecraft to a parabolic escape trajectory.

  18. Vibration suppression for large scale adaptive truss structures using direct output feedback control

    NASA Technical Reports Server (NTRS)

    Lu, Lyan-Ywan; Utku, Senol; Wada, Ben K.

    1993-01-01

    In this article, the vibration control of adaptive truss structures, where the control actuation is provided by length adjustable active members, is formulated as a direct output feedback control problem. A control method named Model Truncated Output Feedback (MTOF) is presented. The method allows the control feedback gain to be determined in a decoupled and truncated modal space in which only the critical vibration modes are retained. The on-board computation required by MTOF is minimal; thus, the method is favorable for the applications of vibration control of large scale structures. The truncation of the modal space inevitably introduces spillover effect during the control process. In this article, the effect is quantified in terms of active member locations, and it is shown that the optimal placement of active members, which minimizes the spillover effect (and thus, maximizes the control performance) can be sought. The problem of optimally selecting the locations of active members is also treated.

  19. Spacecraft nonlinear control

    NASA Technical Reports Server (NTRS)

    Sheen, Jyh-Jong; Bishop, Robert H.

    1992-01-01

    The feedback linearization technique is applied to the problem of spacecraft attitude control and momentum management with control moment gyros (CMGs). The feedback linearization consists of a coordinate transformation, which transforms the system to a companion form, and a nonlinear feedback control law to cancel the nonlinear dynamics resulting in a linear equivalent model. Pole placement techniques are then used to place the closed-loop poles. The coordinate transformation proposed here evolves from three output functions of relative degree four, three, and two, respectively. The nonlinear feedback control law is presented. Stability in a neighborhood of a controllable torque equilibrium attitude (TEA) is guaranteed and this fact is demonstrated by the simulation results. An investigation of the nonlinear control law shows that singularities exist in the state space outside the neighborhood of the controllable TEA. The nonlinear control law is simplified by a standard linearization technique and it is shown that the linearized nonlinear controller provides a natural way to select control gains for the multiple-input, multiple-output system. Simulation results using the linearized nonlinear controller show good performance relative to the nonlinear controller in the neighborhood of the TEA.

  20. A CRY-BIC negative-feedback circuitry regulating blue light sensitivity of Arabidopsis.

    PubMed

    Wang, Xu; Wang, Qin; Han, Yun-Jeong; Liu, Qing; Gu, Lianfeng; Yang, Zhaohe; Su, Jun; Liu, Bobin; Zuo, Zecheng; He, Wenjin; Wang, Jian; Liu, Bin; Matsui, Minami; Kim, Jeong-Il; Oka, Yoshito; Lin, Chentao

    2017-11-01

    Cryptochromes are blue light receptors that regulate various light responses in plants. Arabidopsis cryptochrome 1 (CRY1) and cryptochrome 2 (CRY2) mediate blue light inhibition of hypocotyl elongation and long-day (LD) promotion of floral initiation. It has been reported recently that two negative regulators of Arabidopsis cryptochromes, Blue light Inhibitors of Cryptochromes 1 and 2 (BIC1 and BIC2), inhibit cryptochrome function by blocking blue light-dependent cryptochrome dimerization. However, it remained unclear how cryptochromes regulate the BIC gene activity. Here we show that cryptochromes mediate light activation of transcription of the BIC genes, by suppressing the activity of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), resulting in activation of the transcription activator ELONGATED HYPOCOTYL 5 (HY5) that is associated with chromatins of the BIC promoters. These results demonstrate a CRY-BIC negative-feedback circuitry that regulates the activity of each other. Surprisingly, phytochromes also mediate light activation of BIC transcription, suggesting a novel photoreceptor co-action mechanism to sustain blue light sensitivity of plants under the broad spectra of solar radiation in nature. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

Top