Science.gov

Sample records for mediated c-h activation

  1. Gold(I)-mediated C-H activation of arenes.

    PubMed

    Lu, Pengfei; Boorman, Tanya C; Slawin, Alexandra M Z; Larrosa, Igor

    2010-04-28

    We demonstrate the first Au(I)-mediated C-H activation of arenes. Au(I) salts undergo C-H activation with electron-poor arenes, in stark contrast to Au(III) salts, which activate electron-rich arenes. This operationally simple and highly regioselective process occurs under very mild conditions and gives access to a variety of Au(I)-arene complexes in excellent yields.

  2. Palladium mediated intramolecular multiple C-X/C-H cross coupling and C-H activation: synthesis of carbazole alkaloids calothrixin B and murrayaquinone A.

    PubMed

    Kaliyaperumal, Srinivasan A; Banerjee, Shyamapada; U K, Syam Kumar

    2014-08-28

    Straightforward palladium mediated syntheses of calothrixin B and murrayaquinone A are described. Regioselective palladium mediated intramolecular multiple C-X/C-H cross coupling reaction on N-(4-((2-bromophenyl)amino)-2,5-dimethoxybenzyl)-N-(2-iodophenyl)acetamide followed by CAN oxidation afforded calothrixin B in excellent yield in two steps. A linear synthesis has also been developed for calothrixin B. Utilizing C-H functionalization as well as palladium mediated intramolecular C-X/C-H cross coupling reaction, murrayaquinone A synthesis was achieved. Overall, these synthetic methodologies provide an expedient entry to these biologically active alkaloids in a short reaction sequence.

  3. Synthesis of new class of alkyl azarene pyridinium zwitterions via iodine mediated sp3 C-H bond activation.

    PubMed

    Kumar, Atul; Gupta, Garima; Srivastava, Suman

    2011-12-16

    An efficient and conceptually different approach toward C-H bond activation by using iodine mediated sp(3) C-H functionalization for the synthesis of alkyl azaarene pyridinium zwitterions is described. This work has the interesting distinction of being the first synthesis of a new class of alkyl azaarene pyridinium zwitterion via transition-metal-free sp(3) C-H bond activation of an alkyl azaarene.

  4. Elaboration of copper-oxygen mediated C-H activation chemistry in consideration of future fuel and feedstock generation.

    PubMed

    Lee, Jung Yoon; Karlin, Kenneth D

    2015-04-01

    To contribute solutions to current energy concerns, improvements in the efficiency of dioxygen mediated C-H bond cleavage chemistry, for example, selective oxidation of methane to methanol, could minimize losses in natural gas usage or produce feedstocks for fuels. Oxidative C-H activation is also a component of polysaccharide degradation, potentially affording alternative biofuels from abundant biomass. Thus, an understanding of active-site chemistry in copper monooxygenases, those activating strong C-H bonds is briefly reviewed. Then, recent advances in the synthesis-generation and study of various copper-oxygen intermediates are highlighted. Of special interest are cupric-superoxide, Cu-hydroperoxo and Cu-oxy complexes. Such investigations can contribute to an enhanced future application of C-H oxidation or oxygenation processes using air, as concerning societal energy goals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. A theoretical view on CrO2+-mediated C-H bond activation in ethane

    NASA Astrophysics Data System (ADS)

    Tong, YongChun; Zhang, XiaoYong; Wang, QingYun; Xu, XinJian; Wang, YongCheng

    2015-06-01

    The gas-phase reaction of C-H bond activation in ethane by CrO2+ has been investigated using density functional theory (DFT) at the UB3LYP/6-311G(2d,p) level. Our results reveal that the activation process is actually a spin-forbidden reaction. The involved crossing point between the doublet and quartet potential energy surfaces (PES) has been discussed by two well-known methods, i.e., intrinsic reaction coordinate (IRC) approach for crossing point (CP) and Harvey's algorithm for minimum energy crossing point (MECP). The obtained single ( P1ISC = 2.48 × 10-3) and double ( P1ISC = 4.95 × 10-3) passes estimated at MECP show that the intersystem crossing (ISC) occurs with a little probability. The C-H bond activation processes should proceed to be endothermic by 73.16 kJ/mol on the doublet surface without any spin change.

  6. Transition-state metal aryl bond stability determines regioselectivity in palladium acetate mediated C-H bond activation of heteroarenes.

    PubMed

    Petit, Alban; Flygare, Josh; Miller, Alex T; Winkel, Gerrit; Ess, Daniel H

    2012-07-20

    Density functional calculations reveal that the stability of developing metal aryl bonds in Pd(II)-acetate C-H activation transition states determines regioselectivity in arene and heteroarene compounds. This kinetic-thermodynamic connection explains the general preference for activation of the strongest C-H bond and provides the possibility for regioselectivity prediction.

  7. Two-State Reactivity in Low-Valent Iron-Mediated C-H Activation and the Implications for Other First-Row Transition Metals.

    PubMed

    Sun, Yihua; Tang, Hao; Chen, Kejuan; Hu, Lianrui; Yao, Jiannian; Shaik, Sason; Chen, Hui

    2016-03-23

    C-H bond activation/functionalization promoted by low-valent iron complexes has recently emerged as a promising approach for the utilization of earth-abundant first-row transition metals to carry out this difficult transformation. Herein we use extensive density functional theory and high-level ab initio coupled cluster calculations to shed light on the mechanism of these intriguing reactions. Our key mechanistic discovery for C-H arylation reactions reveals a two-state reactivity (TSR) scenario in which the low-spin Fe(II) singlet state, which is initially an excited state, crosses over the high-spin ground state and promotes C-H bond cleavage. Subsequently, aryl transmetalation occurs, followed by oxidation of Fe(II) to Fe(III) in a single-electron transfer (SET) step in which dichloroalkane serves as an oxidant, thus promoting the final C-C coupling and finalizing the C-H functionalization. Regeneration of the Fe(II) catalyst for the next round of C-H activation involves SET oxidation of the Fe(I) species generated after the C-C bond coupling. The ligand sphere of iron is found to play a crucial role in the TSR mechanism by stabilization of the reactive low-spin state that mediates the C-H activation. This is the first time that the successful TSR concept conceived for high-valent iron chemistry is shown to successfully rationalize the reactivity for a reaction promoted by low-valent iron complexes. A comparative study involving other divalent middle and late first-row transition metals implicates iron as the optimum metal in this TSR mechanism for C-H activation. It is predicted that stabilization of low-spin Mn(II) using an appropriate ligand sphere should produce another promising candidate for efficient C-H bond activation. This new TSR scenario therefore emerges as a new strategy for using low-valent first-row transition metals for C-H activation reactions.

  8. An iridium-mediated C-H activation/CO2-carboxylation reaction of 1,1-bisdiphenylphosphinomethane.

    PubMed

    Langer, Jens; Fabra, María José; García-Orduña, Pilar; Lahoz, Fernando J; Görls, Helmar; Oro, Luis A; Westerhausen, Matthias

    2010-09-07

    The reaction of 1,1-bisdiphenylphosphinomethane (dppm, 4 eq.) with [IrCl(coe)(2)](2) results in a solvent dependent equilibrium from which the complexes [IrCl(dppm)(dppm-H)(H)] (1) and [Ir(dppm)(2)]Cl (2) were isolated. When 2 is dissolved in methanol, [IrCl(dppm)(2)(H)][OCH(3)] (4) is formed as dominant species in solution. The C-H activation reaction which leads to 1 and 4 can be suppressed by adding an additional dppm ligand per iridium center resulting in the formation of [Ir(dppm)(3)]Cl (5). If the reaction of dppm with [IrX(coe)(2)](2) (X = Cl, I) is performed under an atmosphere of CO(2) the complexes [IrX(dppm)(H){(Ph(2)P)(2)C-COOH}] (6: X = Cl; 7: X = I) are formed by a CH activation/CO(2) carboxylation sequence. The reaction of 6 with NH(4)PF yields [IrCl(dppm)(2)(H)]PF(6).(10). Additionally the lithium compounds [Li(dme)(2)(dppm-H)] (3) and [Li(dme){(Ph(2)P)(2)CHCOO}](2) (8) were prepared for comparison. The molecular structures of the compounds 1, 3, 5, 7, 8 and of the related iridium complex [IrCl(dppm)(2)(H)]I (11) are reported.

  9. Beyond ferryl-mediated hydroxylation: 40 years of the rebound mechanism and C-H activation.

    PubMed

    Huang, Xiongyi; Groves, John T

    2017-04-01

    Since our initial report in 1976, the oxygen rebound mechanism has become the consensus mechanistic feature for an expanding variety of enzymatic C-H functionalization reactions and small molecule biomimetic catalysts. For both the biotransformations and models, an initial hydrogen atom abstraction from the substrate (R-H) by high-valent iron-oxo species (Fe(n)=O) generates a substrate radical and a reduced iron hydroxide, [Fe(n-1)-OH ·R]. This caged radical pair then evolves on a complicated energy landscape through a number of reaction pathways, such as oxygen rebound to form R-OH, rebound to a non-oxygen atom affording R-X, electron transfer of the incipient radical to yield a carbocation, R(+), desaturation to form olefins, and radical cage escape. These various flavors of the rebound process, often in competition with each other, give rise to the wide range of C-H functionalization reactions performed by iron-containing oxygenases. In this review, we first recount the history of radical rebound mechanisms, their general features, and key intermediates involved. We will discuss in detail the factors that affect the behavior of the initial caged radical pair and the lifetimes of the incipient substrate radicals. Several representative examples of enzymatic C-H transformations are selected to illustrate how the behaviors of the radical pair [Fe(n-1)-OH ·R] determine the eventual reaction outcome. Finally, we discuss the powerful potential of "radical rebound" processes as a general paradigm for developing novel C-H functionalization reactions with synthetic, biomimetic catalysts. We envision that new chemistry will continue to arise by bridging enzymatic "radical rebound" with synthetic organic chemistry.

  10. Pd(II)-catalyzed regioselective 2-alkylation of indoles via a norbornene-mediated C-H activation: mechanism and applications.

    PubMed

    Jiao, Lei; Herdtweck, Eberhardt; Bach, Thorsten

    2012-09-05

    A palladium-catalyzed direct 2-alkylation reaction of free N-H indoles was developed based on a norbornene-mediated regioselective cascade C-H activation. The detailed reaction mechanism was investigated by NMR spectroscopic analyses, characterization of the key intermediate, deuterium labeling experiments, and kinetic studies. The results indicate that a catalytic cycle operates, in which an N-norbornene type palladacycle is formed as the key intermediate. Oxidative addition of alkyl bromide to the Pd(II) center in this intermediate is the rate-determining step of the reaction. The synthetic utility of this indole 2-alkylation method was demonstrated by its application in natural product total synthesis. A new and general strategy to synthesize Aspidosperma alkaloids was established employing the indole 2-alkylation reaction as the key step, and two structurally different Aspidosperma alkaloids, aspidospermidine and goniomitine, were synthesized in concise routes.

  11. Lanthanum-mediated C-H bond activation of propyne and identification of La(C₃H₂) isomers.

    PubMed

    Hewage, Dilrukshi; Roudjane, Mourad; Silva, W Ruchira; Kumari, Sudesh; Yang, Dong-Sheng

    2015-03-26

    η(2)-Propadienylidenelanthanum [La(η(2)-CCCH2)] and deprotiolanthanacyclobutadiene [La(HCCCH)] of La(C3H2) are identified from the reaction mixture of neutral La atom activation of propyne in the gas phase. The two isomers are characterized with mass-analyzed threshold ionization spectroscopy combined with electronic structure calculations and spectral simulations. La(η(2)-CCCH2) and La(HCCCH) are formed by concerted 1,3- and 3,3-dehydrogenation, respectively. Both isomers prefer a doublet ground state with a La 6s-based unpaired electron, and La(η(2)-CCCH2) is slightly more stable than La(HCCCH). Ionization of the neutral doublet state of either isomer produces a singlet ion state by removing the La-based electron. The geometry change upon ionization results in the excitation of a symmetric metal-hydrocarbon stretching mode in the ionic state, whereas thermal excitation leads to the observation of the same stretching mode in the neutral state. Although the La atom is in a formal oxidation state of +2, the ionization energies of these metal-hydrocarbon radicals are lower than that of the neutral La atom. Deuteration has a very small effect on the ionization energies of the two isomers and the metal-hydrocarbon stretching mode of La(η(2)-CCCH2), but it reduces considerably the metal-ligand stretching frequencies of La(HCCCH).

  12. A Consecutive C-H Functionalization Triggered by Oxidation of Active sp(3) C-H Bonds: Construction of 3,4-Dihydroquinoline-3-one Derivatives.

    PubMed

    Jia, Xiaodong; Hou, Wentao; Shao, Yu; Yuan, Yu; Chen, Qian; Li, Pengfei; Liu, Xiaofei; Ji, Honghe

    2017-09-21

    We report a consecutive C-H functionalization that constructs 3,4-dihydroquinoline-3-one derivatives in high yields. This reaction is triggered by oxidation of active sp(3) C-H bonds of glycines and N-benzylanilines. In this radical mediated transformation, four sp(3) C-H bonds are functionalized efficiently, together with construction of one heterocyclic ring with a quaternary carbon center. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Oxidative esterification via photocatalytic C-H activation

    EPA Science Inventory

    Direct oxidative esterification of alcohol via photocatalytic C-H activation has been developed using VO@g-C3N4 catalyst; an expeditious esterification of alcohols occurs under neutral conditions using visible light as the source of energy.

  14. Oxidative esterification via photocatalytic C-H activation

    EPA Science Inventory

    Direct oxidative esterification of alcohol via photocatalytic C-H activation has been developed using VO@g-C3N4 catalyst; an expeditious esterification of alcohols occurs under neutral conditions using visible light as the source of energy.

  15. Cobalt-Catalyzed Regioselective Borylation of Arenes: N-Heterocyclic Silylene as an Electron Donor in the Metal-Mediated Activation of C-H Bonds.

    PubMed

    Ren, Hailong; Zhou, Yu-Peng; Bai, Yunping; Cui, Chunming; Driess, Matthias

    2017-04-27

    C-H Borylation of arenes has been a subject of great interest recently because of its atom-economy and the wide applicability of borylated products in value-added synthesis. A new bis(silylene)cobalt(II) complex bearing a bis(N-heterocyclic silylene)-pyridine pincer ligand (SiNSi) has been synthesized and structurally characterized. It enabled the regioselective catalytic C-H borylation of pyridines, furans, and fluorinated arenes. Notably, it exhibited complementary regioselectivity for the borylation of fluorinated arenes compared to previously known catalytic systems, demonstrating that N-heterocyclic silylene donors have enormous potential in metal-catalyzed catalytic applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Oxidatively Induced C-H Activation at High Valent Nickel.

    PubMed

    Chong, Eugene; Kampf, Jeff W; Ariafard, Alireza; Canty, Allan J; Sanford, Melanie S

    2017-05-03

    This communication describes a series of oxidatively induced intramolecular arene C-H activation reactions of Ni(II) model complexes to yield Ni(IV) σ-aryl products. These reactions proceed within 10 min at room temperature, which represents among the mildest conditions reported for C-H cleavage at a Ni center. A combination of density functional theory and preliminary experimental mechanistic studies implicate a pathway involving initial 2e(-) oxidation of the Ni(II) starting materials by the F(+) transfer reagent N-fluoro-2,4,6-trimethylpyridinium triflate followed by triflate-assisted C-H cleavage at Ni(IV) to yield the products.

  17. Oxidative esterification via photocatalytic C-H activation

    EPA Pesticide Factsheets

    Direct oxidative esterification of alcohol via photocatalytic C??H activation has been developed using VO@g-C3N4 catalyst; an expeditious esterification of alcohols occurs under neutral conditions using visible light as the source of energy.This dataset is associated with the following publication:Varma , R., S. Verma, R.B.N. Baig, C. Han, and M. Nadagouda. Oxidative esterification via photocatalytic C-H activation. GREEN CHEMISTRY. Royal Society of Chemistry, Cambridge, UK, 18: 251-254, (2015).

  18. C-H bond activation by f-block complexes.

    PubMed

    Arnold, Polly L; McMullon, Max W; Rieb, Julia; Kühn, Fritz E

    2015-01-02

    Most homogeneous catalysis relies on the design of metal complexes to trap and convert substrates or small molecules to value-added products. Organometallic lanthanide compounds first gave a tantalizing glimpse of their potential for catalytic C-H bond transformations with the selective cleavage of one C-H bond in methane by bis(permethylcyclopentadienyl)lanthanide methyl [(η(5) -C5 Me5 )2 Ln(CH3 )] complexes some 25 years ago. Since then, numerous metal complexes from across the periodic table have been shown to selectively activate hydrocarbon C-H bonds, but the challenges of closing catalytic cycles still remain; many f-block complexes show great potential in this important area of chemistry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Carbon-Hydrogen (C-H) Bond Activation at Pd(IV): A Frontier in C-H Functionalization Catalysis.

    PubMed

    Topczewski, Joseph J; Sanford, Melanie S

    2015-01-01

    The direct functionalization of carbon-hydrogen (C-H) bonds has emerged as a versatile strategy for the synthesis and derivatization of organic molecules. Among the methods for C-H bond activation, catalytic processes that utilize a Pd(II)/Pd(IV) redox cycle are increasingly common. The C-H activation step in most of these catalytic cycles is thought to occur at a Pd(II) centre. However, a number of recent reports have suggested the feasibility of C-H cleavage occurring at Pd(IV) complexes. Importantly, these latter processes often result in complementary reactivity and selectivity relative to analogous transformations at Pd(II). This Mini Review highlights proposed examples of C-H activation at Pd(IV) centres. Applications of this transformation in catalysis as well as mechanistic details obtained from stoichiometric model studies are discussed. Furthermore, challenges and future perspectives for the field are reviewed.

  20. Divergence between organometallic and single-electron-transfer mechanisms in copper(II)-mediated aerobic C-H oxidation.

    PubMed

    Suess, Alison M; Ertem, Mehmed Z; Cramer, Christopher J; Stahl, Shannon S

    2013-07-03

    Copper(II)-mediated C-H oxidation is the subject of extensive interest in synthetic chemistry, but the mechanisms of many of these reactions are poorly understood. Here, we observe different products from Cu(II)-mediated oxidation of N-(8-quinolinyl)benzamide, depending on the reaction conditions. Under basic conditions, the benzamide group undergoes directed C-H methoxylation or chlorination. Under acidic conditions, the quinoline group undergoes nondirected chlorination. Experimental and computational mechanistic studies implicate an organometallic C-H activation/functionalization mechanism under the former conditions and a single-electron-transfer mechanism under the latter conditions. This rare observation of divergent, condition-dependent mechanisms for oxidation of a single substrate provides a valuable foundation for understanding Cu(II)-mediated C-H oxidation reactions.

  1. C-H activation: Complex peptides made simple

    NASA Astrophysics Data System (ADS)

    Bartlett, Sean; Spring, David R.

    2017-01-01

    Nature oxidizes biosynthetic intermediates into structurally and functionally diverse peptides. An iron-catalysed C-H oxidation mimics this approach in the lab, enabling chemists to synthesize structural analogues with ease.

  2. Copper-mediated stereospecific C-H oxidative sulfenylation of terminal alkenes with disulfides.

    PubMed

    Tu, Hai-Yong; Hu, Bo-Lun; Deng, Chen-Liang; Zhang, Xing-Guo

    2015-11-04

    A copper and iodine-mediated C-H oxidative sulfenylation of olefins with diaryl disulfides has been developed for the stereospecific synthesis of vinyl thioether. With the combination of Cu(OTf)2 and I2, a variety of terminal alkenes underwent oxidative coupling reaction with various diaryl disulfides successfully to afford the corresponding E-vinyl sulfides in moderate to good yields.

  3. Enzyme catalysis: C-H activation is a Reiske business

    NASA Astrophysics Data System (ADS)

    Bruner, Steven D.

    2011-05-01

    Enzymes that selectively oxidize unactivated C-H bonds are capable of constructing complex molecules with high efficiency. A new member of this enzyme family is RedG, a Reiske-type oxygenase that catalyses chemically challenging cyclizations in the biosynthesis of prodiginine natural products.

  4. Metal-free synthesis of N-fused heterocyclic iodides via C-H functionalization mediated by tert-butylhydroperoxide.

    PubMed

    Sharma, Krishna K; Patel, Dhananjay I; Jain, Rahul

    2015-10-21

    Direct, regioselective and metal-free synthesis of fused N-heterocyclic iodides is reported. This regioselective C-H functionalization is mediated by tert-butylhydroperoxide (TBHP), via dual activation of molecular iodine and a heterocyclic substrate, resulting in the in situ generation of electrophilic iodine species (I(+)), and free radical(s) (t)BuO˙ or (t)BuOO˙, driving the iodination reaction.

  5. Copper-catalyzed oxaziridine-mediated oxidation of C-H bonds.

    PubMed

    Motiwala, Hashim F; Gülgeze, Belgin; Aubé, Jeffrey

    2012-08-17

    The highly regio- and chemoselective oxidation of activated C-H bonds has been observed via copper-catalyzed reactions of oxaziridines. The oxidation proceeded with a variety of substrates, primarily comprising allylic and benzylic examples, as well as one example of an otherwise unactivated tertiary C-H bond. The mechanism of the reaction is proposed to involve single-electron transfer to the oxaziridines to generate a copper-bound radical anion, followed by hydrogen atom abstraction and collapse to products, with regeneration of the catalyst by a final single-electron transfer event. The involvement of allylic radical intermediates was supported by a radical-trapping experiment with TEMPO.

  6. Metal-free oxidative olefination of primary amines with benzylic C-H bonds through direct deamination and C-H bond activation.

    PubMed

    Gong, Liang; Xing, Li-Juan; Xu, Tong; Zhu, Xue-Ping; Zhou, Wen; Kang, Ning; Wang, Bin

    2014-09-14

    An oxidative olefination reaction between aliphatic primary amines and benzylic sp(3) C-H bonds has been achieved using N-bromosuccinimide as catalyst and tert-butyl hydroperoxide as oxidant. The olefination proceeds under mild metal-free conditions through direct deamination and benzylic C-H bond activation, and provides easy access to biologically active 2-styrylquinolines with (E)-configuration.

  7. Silver-mediated palladium-catalyzed direct C-H arylation of 3-bromoisothiazole-4-carbonitrile.

    PubMed

    Ioannidou, Heraklidia A; Koutentis, Panayiotis A

    2011-03-18

    Silver(I) fluoride-mediated Pd-catalyzed C-H direct arylation/heteroarylation of 3-bromoisothiazole-4-carbonitrile (1a) gives twenty-four 5-aryl/heteroaryl-3-bromoisothiazole-4-carbonitriles. The reaction was partially optimized with respect to catalyst, ligand, and base. During this study 3,3'-dibromo-5,5'-biisothiazole-4,4'-dicarbonitrile (3a) was isolated as a byproduct and subsequently prepared via the silver-mediated Pd-catalyzed oxidative dimerization of 3-bromoisothiazole-4-carbonitrile in 67% yield. The analogous phenylation and oxidative dimerization of 3-chloroisothiazole-4-carbonitrile (1b) gave 3-chloro-5-phenylisothiazole-4-carbonitrile (4) and 3,3'-dichloro-5,5'-biisothiazole-4,4'-dicarbonitrile (3b) in 96% and 69% yields, respectively.

  8. Surface-Controlled Mono/Diselective ortho C-H Bond Activation.

    PubMed

    Li, Qing; Yang, Biao; Lin, Haiping; Aghdassi, Nabi; Miao, Kangjian; Zhang, Junjie; Zhang, Haiming; Li, Youyong; Duhm, Steffen; Fan, Jian; Chi, Lifeng

    2016-03-02

    One of the most charming and challenging topics in organic chemistry is the selective C-H bond activation. The difficulty arises not only from the relatively large bond-dissociation enthalpy, but also from the poor reaction selectivity. In this work, Au(111) and Ag(111) surfaces were used to address ortho C-H functionalization and ortho-ortho couplings of phenol derivatives. More importantly, the competition between dehydrogenation and deoxygenation drove the diversity of reaction pathways of phenols on surfaces, that is, diselective ortho C-H bond activation on Au(111) surfaces and monoselective ortho C-H bond activation on Ag(111) surfaces. The mechanism of this unprecedented phenomenon was extensively explored by scanning tunneling microscopy, density function theory, and X-ray photoelectron spectroscopy. Our findings provide new pathways for surface-assisted organic synthesis via the mono/diselective C-H bond activation.

  9. Electrostatic and Charge-Induced Methane Activation by a Concerted Double C-H Bond Insertion.

    PubMed

    Geng, Caiyun; Li, Jilai; Weiske, Thomas; Schlangen, Maria; Shaik, Sason; Schwarz, Helmut

    2017-02-01

    A mechanistically unique, simultaneous activation of two C-H bonds of methane has been identified during the course of its reaction with the cationic copper carbide, [Cu-C](+). Detailed high-level quantum chemical calculations support the experimental findings obtained in the highly diluted gas phase using FT-ICR mass spectrometry. The behavior of [Cu-C](+)/CH4 contrasts that of [Au-C](+)/CH4, for which a stepwise bond-activation scenario prevails. An explanation for the distinct mechanistic differences of the two coinage metal complexes is given. It is demonstrated that the coupling of [Cu-C](+) with methane to form ethylene and Cu(+) is modeled very well by the reaction of a carbon atom with methane mediated by an oriented external electric field of a positive point charge.

  10. RhCl(PPh3)3-mediated C-H oxyfunctionalization of pyrrolido-functionalized bisazoaromatic pincers: a combined experimental and theoretical scrutiny of redox-active and spectroscopic properties.

    PubMed

    Ghorui, Tapas; Roy, Sima; Pramanik, Shuvam; Pramanik, Kausikisankar

    2016-04-07

    A potentially symmetrical NNN pyrrolido-functionalized pincer ligand, HL = 2,5-bis(phenylazo)-1H-pyrrole, reacts with [Rh(I)Cl(PPh3)3] in toluene in the presence of air, affording an emerald crystalline solid of the composition [Rh(III)(L(O))Cl(PPh3)2]. A spontaneous C-H oxyfunctionalization of the aromatic ring with atmospheric oxygen leads to phenoxido functionalized organic transformation at room temperature. X-ray diffraction and MASS spectral analyses authenticate the unsymmetrical NNO coordination of the title ligand with a dangling phenylazo moiety. Cyclic voltammetry of redox innocent Rh(iii) complexes exhibits a reversible oxidative response at E1/2≈ 0.9 V vs. Ag/AgCl along with a quasi-reversible reductive response near -1.0 V. The electronic structures of the electro-active species are scrutinized by DFT calculations at the B3LYP-level of theory and both the responses are found to be ligand-centered (LC) in nature. Furthermore, an EPR study of the one-electron oxidized radical cation [Rh(III)(L(O))Cl(PPh3)2]˙(+) validates that the oxidation process is confined exclusively on the ligand framework (spin density: ρPhenoxido≈-0.50 and ρPyrrolido≈-0.40). Moreover, an appreciable involvement of the pyrrolido function apart from the phenoxido group of the redox-active ligand (L(O)) is apparent in the oxidation process from the nature of HOMO and thus, this type of ligand system provides two oxidizable domains within the single ligand backbone. A comparison of the relative oxidizability power between the two potential oxidizable centers viz. pyrrolido and phenoxido rings reveals that the former is somewhat less efficient for oxidation. In contrast, reductive response is mainly associated with both the coordinated and free azo chromophores. Time-dependent DFT and natural transition orbital (NTO) analyses on the complexes elucidate the origin of UV-vis absorptions.

  11. Manganese(I)-Catalyzed Dispersion-Enabled C-H/C-C Activation.

    PubMed

    Meyer, Tjark H; Liu, Weiping; Feldt, Milica; Wuttke, Axel; Mata, Ricardo A; Ackermann, Lutz

    2017-03-20

    C-H/C-C Functionalizations were achieved with the aid of a versatile manganese(I) catalyst. Thus, an organometallic manganese-catalyzed C-H activation set the stage for silver-free C-H/C-C transformations with ample substrate scope and excellent levels of chemo-, site-, and diastereo-selectivities. The robust nature of the manganese(I) catalysis regime was reflected by the first C-H/C-C functionalization on amino acids under racemization-free reaction conditions. Detailed experimental and computational mechanistic studies provided strong evidence for a facile C-H activation and a rate-determining C-C cleavage, with considerable contribution from London dispersion interactions.

  12. Transition-metal-catalyzed additions of C-H bonds to C-X (X = N, O) multiple bonds via C-H bond activation.

    PubMed

    Yan, Guobing; Wu, Xiangmei; Yang, Minghua

    2013-09-14

    Chemical transformations via catalytic C-H bond activation have been established as one of the most powerful tools in organic synthetic chemistry. Transition-metal-catalyzed addition reactions of C-H bonds to polar C-X (X = N, O) multiple bonds, such as aldehydes, ketones, imines, isocyanates, nitriles, isocyanides, carbon monoxide and carbon dioxide, have undergone a rapid development in recent years. In this review, recent advances in this active area have been highlighted and their mechanisms have been discussed.

  13. Zinc(II)-Mediated Carbene Insertion into C-H Bonds in Alkanes.

    PubMed

    Kulkarni, Naveen V; Dash, Chandrakanta; Jayaratna, Naleen B; Ridlen, Shawn G; Karbalaei Khani, Sarah; Das, Animesh; Kou, Xiaodi; Yousufuddin, Muhammed; Cundari, Thomas R; Dias, H V Rasika

    2015-12-07

    The cationic zinc adduct {[HB(3,5-(CF3)2Pz)3]Zn(NCMe)2}ClO4 catalyzes the functionalization of tertiary, secondary, and primary C-H bonds of alkanes via carbene insertion. Ethyl diazoacetate serves as the :CHCO2Et carbene precursor. The counteranion, supporting ligand, and coordinating solvents affect the catalytic activity. An in situ generated {[HB(3,5-(CF3)2Pz)3]Zn}(+) species containing a bulkier {B[3,5-(CF3)2C6H3]4}(-) anion gives the best results among the zinc catalysts used.

  14. Rhodium(III)-Catalyzed C-H Activation of Nitrones and Annulative Coupling with Nitroalkenes.

    PubMed

    Bai, Dachang; Jia, Qingqian; Xu, Teng; Zhang, Qiuqiu; Wu, Fen; Ma, Chaorui; Liu, Bingxian; Chang, Junbiao; Li, Xingwei

    2017-09-15

    Rh(III)-catalyzed synthesis of nitro-functionalized indenes has been realized via C-H activation of arylnitrones and annulation with nitroolefins. The reaction proceeded in moderate to high yields with good functional group tolerance under ambient atmosphere.

  15. Spontaneous reduction and C-H borylation of arenes mediated by uranium(III) disproportionation.

    PubMed

    Arnold, Polly L; Mansell, Stephen M; Maron, Laurent; McKay, David

    2012-07-15

    Transition-metal-arene complexes such as bis(benzene)chromium Cr(η(6)-C(6)H(6))(2) are historically important to d-orbital bonding theory and have modern importance in organic synthesis, catalysis and organic spintronics. In investigations of f-block chemistry, however, arenes are invariably used as solvents rather than ligands. Here, we show that simple uranium complexes UX(3) (X = aryloxide, amide) spontaneously disproportionate, transferring an electron and X-ligand, allowing the resulting UX(2) to bind and reduce arenes, forming inverse sandwich molecules [X(2)U(µ-η(6):η(6)-arene)UX(2)] and a UX(4) by-product. Calculations and kinetic studies suggest a 'cooperative small-molecule activation' mechanism involving spontaneous arene reduction as an X-ligand is transferred. These mild reaction conditions allow functionalized arenes such as arylsilanes to be incorporated. The bulky UX(3) are also inert to reagents such as boranes that would react with the traditional harsh reaction conditions, allowing the development of a new in situ arene C-H bond functionalization methodology converting C-H to C-B bonds.

  16. Intramolecular iron-mediated C-H bond heterolysis with an assist of pendant base in a [FeFe]-hydrogenase model.

    PubMed

    Zheng, Dehua; Wang, Ning; Wang, Mei; Ding, Shengda; Ma, Chengbing; Darensbourg, Marcetta Y; Hall, Michael B; Sun, Licheng

    2014-12-03

    Although many metalloenzymes containing iron play a prominent role in biological C-H activation processes, to date iron-mediated C(sp(3))-H heterolysis has not been reported for synthetic models of Fe/S-metalloenzymes. In contrast, ample precedent has established that nature's design for reversible hydrogen activation by the diiron hydrogenase ([FeFe]-H2ase) active site involves multiple irons, sulfur bridges, a redox switch, and a pendant amine base, in an intricate arrangement to perform H-H heterolytic cleavage. In response to whether this strategy might be extended to C-H activation, we report that a [FeFe]-H2ase model demonstrates iron-mediated intramolecular C-H heterolytic cleavage via an agostic C-H interaction, with proton removal by a nearby pendant amine, affording Fe(II)-[Fe'(II)-CH-S] three-membered-ring products, which can be reduced back to 1 by Cp2Co in the presence of HBF4. The function of the pendant base as a proton shuttle was confirmed by the crystal structures of the N-protonated intermediate and the final deprotonated product in comparison with that of a similar but pendant-amine-free complex that does not show evidence of C-H activation. The mechanism of the process was backed up by DFT calculations.

  17. Synthesis of 1H-indazoles and 1H-pyrazoles via FeBr3/O2 mediated intramolecular C-H amination.

    PubMed

    Zhang, Tianshui; Bao, Weiliang

    2013-02-01

    A new synthesis of substituted 1H-indazoles and 1H-pyrazoles from arylhydrazones via FeBr(3)/O(2) mediated C-H activation/C-N bond formation reactions is reported. The corresponding 1,3-diaryl-substituted indazoles and trisubstituted pyrazoles were obtained in moderate to excellent yields under mild conditions.

  18. Synthesis of Dihydropyridines and Pyridines from Imines and Alkynes via C-H Activation

    SciTech Connect

    Ellman, Jonathan A.; Colby, Denise; Bergman, Robert

    2007-11-20

    A convenient one-pot C-H alkenylation/electrocyclization/aromatization sequence has been developed for the synthesis of highly substituted pyridine derivatives from alkynes and {alpha},{beta}-unsaturated N-benzyl aldimines and ketimines that proceeds through dihydropyridine intermediates. A new class of ligands for C-H activation was developed, providing broader scope for the alkenylation step than could be achieved with previously reported ligands. Substantial information was obtained about the mechanism of the reaction. This included the isolation of a C-H activated complex and its structure determination by X-ray analysis; in addition, kinetic simulations using the Copasi software were employed to determine rate constants for this transformation, implicating facile C-H oxidative addition and slow reductive elimination steps.

  19. Synthesis of dihydropyridines and pyridines from imines and alkynes via C-H activation.

    PubMed

    Colby, Denise A; Bergman, Robert G; Ellman, Jonathan A

    2008-03-19

    A convenient one-pot C-H alkenylation/electrocyclization/aromatization sequence has been developed for the synthesis of highly substituted pyridine derivatives from alkynes and alpha,beta-unsaturated N-benzyl aldimines and ketimines that proceeds through dihydropyridine intermediates. A new class of ligands for C-H activation was developed, providing broader scope for the alkenylation step than could be achieved with previously reported ligands. Substantial information was obtained about the mechanism of the reaction. This included the isolation of a C-H activated complex and its structure determination by X-ray analysis; in addition, kinetic simulations using the Copasi software were employed to determine rate constants for this transformation, implicating facile C-H oxidative addition and slow reductive elimination steps.

  20. Activation of remote meta-C-H bonds assisted by an end-on template.

    PubMed

    Leow, Dasheng; Li, Gang; Mei, Tian-Sheng; Yu, Jin-Quan

    2012-06-27

    Functionalization of unactivated carbon-hydrogen (C-H) single bonds is an efficient strategy for rapid generation of complex molecules from simpler ones. However, it is difficult to achieve selectivity when multiple inequivalent C-H bonds are present in the target molecule. The usual approach is to use σ-chelating directing groups, which lead to ortho-selectivity through the formation of a conformationally rigid six- or seven-membered cyclic pre-transition state. Despite the broad utility of this approach, proximity-driven reactivity prevents the activation of remote C-H bonds. Here we report a class of easily removable nitrile-containing templates that direct the activation of distal meta-C-H bonds (more than ten bonds away) of a tethered arene. We attribute this new mode of C-H activation to a weak 'end-on' interaction between the linear nitrile group and the metal centre. The 'end-on' coordination geometry relieves the strain of the cyclophane-like pre-transition state of the meta-C-H activation event. In addition, this template overrides the intrinsic electronic and steric biases as well as ortho-directing effects with two broadly useful classes of arene substrates (toluene derivatives and hydrocinnamic acids).

  1. Ligand Lone-Pair Influence on Hydrocarbon C-H Activation. A Computational Perspective

    SciTech Connect

    Ess, Daniel H.; Gunnoe, T. Brent; Cundari, Thomas R.; Goddard, William A.; Periana, Roy A.

    2010-12-03

    Mid to late transition metal complexes that break hydrocarbon C-H bonds by transferring the hydrogen to a heteroatom ligand while forming a metal-alkyl bond offer a promising strategy for C-H activation. Here we report a density functional (B3LYP, M06, and X3LYP) analysis of cis-(acac)2MX and TpM(L)X (M = Ir, Ru, Os, and Rh; acac = acetylacetonate, Tp = tris(pyrazolyl)borate; X = CH3, OH, OMe, NH2, and NMe2) systems for methane C-H bond activation reaction kinetics and thermodynamics. We address the importance of whether a ligand lone pair provides an intrinsic kinetic advantage through possible electronic dπ-pπ repulsions for M-OR and M-NR2 systems versus M-CH3 systems. This involves understanding the energetic impact of the X ligand group on ligand loss, C-H bond coordination, and C-H bond cleavage steps as well as understanding how the nucleophilicity of the ligand X group, the electrophilicity of the transition metal center, and cis-ligand stabilization effect influence each of these steps. We also explore how spectator ligands and second- versus third-row transition metal centers impact the energetics of each of these C-H activation steps.

  2. C-H and C-N Activation at Redox-Active Pyridine Complexes of Iron.

    PubMed

    MacLeod, K Cory; Lewis, Richard A; DeRosha, Daniel E; Mercado, Brandon Q; Holland, Patrick L

    2017-01-19

    Pyridine activation by inexpensive iron catalysts has great utility, but the steps through which iron species can break the strong (105-111 kcal mol(-1) ) C-H bonds of pyridine substrates are unknown. In this work, we report the rapid room-temperature cleavage of C-H bonds in pyridine, 4-tert-butylpyridine, and 2-phenylpyridine by an iron(I) species, to give well-characterized iron(II) products. In addition, 4-dimethylaminopyridine (DMAP) undergoes room-temperature C-N bond cleavage, which forms a dimethylamidoiron(II) complex and a pyridyl-bridged tetrairon(II) square. These facile bond-cleaving reactions are proposed to occur through intermediates having a two-electron reduced pyridine that bridges two iron centers. Thus, the redox non-innocence of the pyridine can play a key role in enabling high regioselectivity for difficult reactions.

  3. Palladium-catalysed C-H activation of aliphatic amines to give strained nitrogen heterocycles

    NASA Astrophysics Data System (ADS)

    McNally, Andrew; Haffemayer, Benjamin; Collins, Beatrice S. L.; Gaunt, Matthew J.

    2014-06-01

    The development of new chemical transformations based on catalytic functionalization of unactivated C-H bonds has the potential to simplify the synthesis of complex molecules dramatically. Transition metal catalysis has emerged as a powerful tool with which to convert these unreactive bonds into carbon-carbon and carbon-heteroatom bonds, but the selective transformation of aliphatic C-H bonds is still a challenge. The most successful approaches involve a `directing group', which positions the metal catalyst near a particular C-H bond, so that the C-H functionalization step occurs via cyclometallation. Most directed aliphatic C-H activation processes proceed through a five-membered-ring cyclometallated intermediate. Considering the number of new reactions that have arisen from such intermediates, it seems likely that identification of distinct cyclometallation pathways would lead to the development of other useful chemical transformations. Here we report a palladium-catalysed C-H bond activation mode that proceeds through a four-membered-ring cyclopalladation pathway. The chemistry described here leads to the selective transformation of a methyl group that is adjacent to an unprotected secondary amine into a synthetically versatile nitrogen heterocycle. The scope of this previously unknown bond disconnection is highlighted through the development of C-H amination and carbonylation processes, leading to the synthesis of aziridines and β-lactams (respectively), and is suggestive of a generic C-H functionalization platform that could simplify the synthesis of aliphatic secondary amines, a class of small molecules that are particularly important features of many pharmaceutical agents.

  4. Computational study on the mechanism and selectivity of C-H bond activation and dehydrogenative functionalization in the synthesis of rhazinilam.

    PubMed

    Ellis, Corey S; Ess, Daniel H

    2011-09-02

    The key platinum mediated C-H bond activation and functionalization steps in the synthesis of (-)-rhazinilam (Johnson, J. A.; Li, N.; Sames, D. J. Am. Chem. Soc. 2002, 124, 6900) were investigated using the M06 and B3LYP density functional approximation methods. This computational study reveals that ethyl group dehydrogenation begins with activation of a primary C-H bond in preference to a secondary C-H bond in an insertion/methane elimination pathway. The C-H activation step is found to be reversible while the methane elimination (reductive elimination) transition state controls rate and diastereoselectivity. The chiral oxazolinyl ligand induces ethyl group selectivity through stabilizing weak interactions between its phenyl group (or cyclohexyl group) and the carboxylate group. After C-H activation and methane elimination steps, Pt-C bond functionalization occurs through β-hydride elimination to give the alkene platinum hydride complex.

  5. C-H activation reactions as useful tools for medicinal chemists.

    PubMed

    Caro-Diaz, Eduardo J E; Urbano, Mariangela; Buzard, Daniel J; Jones, Robert M

    2016-11-15

    In recent years, there has been an exponential rise in the number of reports describing synthetic methods that utilize catalytic sp(3) and sp(2) C-H bond activation. Many have emerged as powerful synthetic tools for accessing biologically active motifs. Indeed, application to C-C and C-heteroatom bond formation, provides new directives for the construction of new pharmaceutical entities. Herein, we highlight some recent novel C-H activation processes that exemplify the utility of these transformations in medicinal chemistry.

  6. Oxidation-promoted activation of a ferrocene C-H bond by a rhodium complex.

    PubMed

    Labande, Agnès; Debono, Nathalie; Sournia-Saquet, Alix; Daran, Jean-Claude; Poli, Rinaldo

    2013-05-14

    The oxidation of a rhodium(I) complex containing a ferrocene-based heterodifunctional phosphine N-heterocyclic carbene (NHC) ligand produces a stable, planar chiral rhodium(III) complex with an unexpected C-H activation on ferrocene. The oxidation of rhodium(I) to rhodium(III) may be accomplished by initial oxidation of ferrocene to ferrocenium and subsequent electron transfer from rhodium to ferrocenium. Preliminary catalytic tests showed that the rhodium(III) complex is active for the Grignard-type arylation of 4-nitrobenzaldehyde via C-H activation of 2-phenylpyridine.

  7. A steric tethering approach enables palladium-catalysed C-H activation of primary amino alcohols.

    PubMed

    Calleja, Jonas; Pla, Daniel; Gorman, Timothy W; Domingo, Victoriano; Haffemayer, Benjamin; Gaunt, Matthew J

    2015-12-01

    Aliphatic primary amines are a class of chemical feedstock essential to the synthesis of higher-order nitrogen-containing molecules, commonly found in biologically active compounds and pharmaceutical agents. New methods for the construction of complex amines remain a continuous challenge to synthetic chemists. Here, we outline a general palladium-catalysed strategy for the functionalization of aliphatic C-H bonds within amino alcohols, an important class of small molecule. Central to this strategy is the temporary conversion of catalytically incompatible primary amino alcohols into hindered secondary amines that are capable of undergoing a sterically promoted palladium-catalysed C-H activation. Furthermore, a hydrogen bond between amine and catalyst intensifies interactions around the palladium and orients the aliphatic amine substituents in an ideal geometry for C-H activation. This catalytic method directly transforms simple, easily accessible amines into highly substituted, functionally concentrated and structurally diverse products, and can streamline the synthesis of biologically important amine-containing molecules.

  8. A steric tethering approach enables palladium-catalysed C-H activation of primary amino alcohols

    NASA Astrophysics Data System (ADS)

    Calleja, Jonas; Pla, Daniel; Gorman, Timothy W.; Domingo, Victoriano; Haffemayer, Benjamin; Gaunt, Matthew J.

    2015-12-01

    Aliphatic primary amines are a class of chemical feedstock essential to the synthesis of higher-order nitrogen-containing molecules, commonly found in biologically active compounds and pharmaceutical agents. New methods for the construction of complex amines remain a continuous challenge to synthetic chemists. Here, we outline a general palladium-catalysed strategy for the functionalization of aliphatic C-H bonds within amino alcohols, an important class of small molecule. Central to this strategy is the temporary conversion of catalytically incompatible primary amino alcohols into hindered secondary amines that are capable of undergoing a sterically promoted palladium-catalysed C-H activation. Furthermore, a hydrogen bond between amine and catalyst intensifies interactions around the palladium and orients the aliphatic amine substituents in an ideal geometry for C-H activation. This catalytic method directly transforms simple, easily accessible amines into highly substituted, functionally concentrated and structurally diverse products, and can streamline the synthesis of biologically important amine-containing molecules.

  9. Efficient photocatalytic selective nitro-reduction and C-H bond oxidation over ultrathin sheet mediated CdS flowers.

    PubMed

    Pahari, Sandip Kumar; Pal, Provas; Srivastava, Divesh N; Ghosh, Subhash Ch; Panda, Asit Baran

    2015-06-28

    We report here a visible light driven selective nitro-reduction and oxidation of saturated sp(3) C-H bonds using ultrathin (0.8 nm) sheet mediated uniform CdS flowers as catalyst under a household 40 W CFL lamp and molecular oxygen as oxidant. The CdS flowers were synthesized using a simple surfactant assisted hydrothermal method.

  10. Mechanism of a C-H bond activation reaction in room-temperature alkane solution

    SciTech Connect

    Bromberg, S.E.; Yang, H.; Asplund, M.C.

    1997-10-10

    Chemical reactions that break alkane carbon-hydrogen (C-H) bonds are normally carried out under conditions of high temperature and pressure because these bonds are extremely strong ({approx} 100 kilocalories per mole), but certain metal complexes can activate C-H bonds in alkane solution under the mild conditions of room temperature and pressure. Time-resolved infrared experiments probing the initial femtosecond dynamics through the nano- and microsecond kinetics to the final stable products have been used to generate a detailed picture of the C-H activation reaction. Structures of all of the intermediates involved in the reaction of Tp*Rh(CO){sub 2} (Tp* = HB-Pz{sub 3}*, Pz* = 3,5-di-methylpyrazolyl) in alkane solution have been identified and assigned, and energy barriers for each reaction step from solvation to formation of the final alkyl hydride product have been estimated from transient lifetimes. 27 refs., 6 figs.

  11. The mechanism of a C-H Bond Activation reaction in roomtemperature alkane solution

    SciTech Connect

    Bromberg, Steven E.; Yang, Haw; Asplund, Matthew C.; Lian, T.; McNamara, B.K.; Kotz, K.T.; Yeston, J.S.; Wilkens, M.; Frei, H.; Bergman,Robert G.; Harris, C.B.

    1997-07-31

    Chemical reactions that break alkane carbon-hydrogen (C-H) bonds are normally carried out under conditions of high temperature and pressure because these bonds are extremely strong ({approx}100 kilocalories per mole), but certain metal complexes can activate C-H bonds in alkane solution under the mild conditions of room temperature and pressure. Time-resolved infrared experiments probing the initial femtosecond dynamics through the nano- and microsecond kinetics to the final stable products have been used to generate a detailed picture of the C-H activation reaction. Structures of all of the intermediates involved in the reaction of Tp*Rh(CO)2 (Tp* = HB-Pz3*, Pz* = 3,5-dimethylpyrazolyl) in alkane solution have been identified and assigned, and energy barriers for each reaction step from solvation to formation of the final alkylhydride product have been estimated from transient lifetimes.

  12. Activation of C-H bonds in nitrones leads to iridium hydrides with antitumor activity.

    PubMed

    Song, Xiaoda; Qian, Yong; Ben, Rong; Lu, Xiang; Zhu, Hai-Liang; Chao, Hui; Zhao, Jing

    2013-08-22

    We report the design and synthesis of a series of new cyclometalated iridium hydrides derived from the C-H bond activation of aromatic nitrones and the biological evaluation of these iridium hydrides as antitumor agents. The nitrone ligands are based on the structure of a popular antioxidant, α-phenyl-N-tert-butylnitrone (PBN). Compared to cisplatin, the iridium hydrides exhibit excellent antitumor activity on HepG2 cells. The metal-coordinated compound with the most potent anticancer activity, 2f, was selected for further analysis because of its ability to induce apoptosis and interact with DNA. During in vitro studies and in vivo efficacy analysis with tumor xenograft models in Institute of Cancer Research (ICR) mice, complex 2f exhibited antitumor activity that was markedly superior to that of cisplatin. Our results suggest, for the first time, that metal hydrides could be a new type of metal-based antitumor agent.

  13. Consequences of metal-oxide interconversion for C-H bond activation during CH4 reactions on Pd catalysts.

    PubMed

    Chin, Ya-Huei Cathy; Buda, Corneliu; Neurock, Matthew; Iglesia, Enrique

    2013-10-16

    Mechanistic assessments based on kinetic and isotopic methods combined with density functional theory are used to probe the diverse pathways by which C-H bonds in CH4 react on bare Pd clusters, Pd cluster surfaces saturated with chemisorbed oxygen (O*), and PdO clusters. C-H activation routes change from oxidative addition to H-abstraction and then to σ-bond metathesis with increasing O-content, as active sites evolve from metal atom pairs (*-*) to oxygen atom (O*-O*) pairs and ultimately to Pd cation-lattice oxygen pairs (Pd(2+)-O(2-)) in PdO. The charges in the CH3 and H moieties along the reaction coordinate depend on the accessibility and chemical state of the Pd and O centers involved. Homolytic C-H dissociation prevails on bare (*-*) and O*-covered surfaces (O*-O*), while C-H bonds cleave heterolytically on Pd(2+)-O(2-) pairs at PdO surfaces. On bare surfaces, C-H bonds cleave via oxidative addition, involving Pd atom insertion into the C-H bond with electron backdonation from Pd to C-H antibonding states and the formation of tight three-center (H3C···Pd···H)(‡) transition states. On O*-saturated Pd surfaces, C-H bonds cleave homolytically on O*-O* pairs to form radical-like CH3 species and nearly formed O-H bonds at a transition state (O*···CH3(•)···*OH)(‡) that is looser and higher in enthalpy than on bare Pd surfaces. On PdO surfaces, site pairs consisting of exposed Pd(2+) and vicinal O(2-), Pd(ox)-O(ox), cleave C-H bonds heterolytically via σ-bond metathesis, with Pd(2+) adding to the C-H bond, while O(2-) abstracts the H-atom to form a four-center (H3C(δ-)···Pd(ox)···H(δ+)···O(ox))(‡) transition state without detectable Pd(ox) reduction. The latter is much more stable than transition states on *-* and O*-O* pairs and give rise to a large increase in CH4 oxidation turnover rates at oxygen chemical potentials leading to Pd to PdO transitions. These distinct mechanistic pathways for C-H bond activation, inferred from theory

  14. Copper/silver-mediated direct ortho-ethynylation of unactivated (hetero)aryl C-H bonds with terminal alkyne.

    PubMed

    Liu, Yue-Jin; Liu, Yan-Hua; Yin, Xue-Song; Gu, Wen-Jia; Shi, Bing-Feng

    2015-01-02

    A copper/silver-mediated oxidative ortho-ethynylation of unactivated aryl C-H bonds with terminal alkyne has been developed. The reaction uses the removable PIP directing group and features broad substrate scope, high functional-group tolerance, and compatibility with a wide range of heterocycles, providing an efficient synthesis of aryl alkynes. This procedure highlights the potential of copper catalysts to promote unique, synthetically enabling C-H functionalization reactions that lie outside of the current scope of precious metal catalysis.

  15. Iodine-mediated [Formula: see text] C-H functionalization of methyl ketones: a one-pot synthesis of functionalized indolizines via the 1,3-dipolar cycloaddition reaction between pyridinium ylides and ynones.

    PubMed

    Yavari, Issa; Sheykhahmadi, Jamil; Naeimabadi, Maryam; Halvagar, Mohammad Reza

    2017-02-01

    An efficient transition-metal-free approach toward C-H bond activation by using molecular [Formula: see text]-mediated [Formula: see text] C-H bond functionalization for the synthesis of indolizine derivatives via 1,3-dipolar cycloaddition reaction of nitrogen ylides with ynones is described.

  16. Synthesis of a Benzodiazepine-derived Rhodium NHC Complex by C-H Bond Activation

    SciTech Connect

    Bergman, Roberg G.; Gribble, Jr., Michael W.; Ellman, Jonathan A.

    2008-01-30

    The synthesis and characterization of a Rh(I)-NHC complex generated by C-H activation of 1,4-benzodiazepine heterocycle are reported. This complex constitutes a rare example of a carbene tautomer of a 1,4-benzodiazepine aldimine stabilized by transition metal coordination and demonstrates the ability of the catalytically relevant RhCl(PCy{sub 3}){sub 2} fragment to induce NHC-forming tautomerization of heterocycles possessing a single carbene-stabilizing heteroatom. Implications for the synthesis of benzodiazepines and related pharmacophores via C-H functionalization are discussed.

  17. Late-stage diversification of biologically active pyridazinones via a direct C-H functionalization strategy.

    PubMed

    Li, Wei; Fan, Zhoulong; Geng, Kaijun; Xu, Youjun; Zhang, Ao

    2015-01-14

    Divergent C-H functionalization reactions (arylation, carboxylation, olefination, thiolation, acetoxylation, halogenation, naphthylation) using a pyridazinone moiety as an internal directing group were successfully established. This approach offers a late-stage, ortho-selective diversification of a biologically active pyridazinone scaffold. Seven series of novel pyridazinone analogues were synthesized conveniently as the synthetic precursors of potential sortase A (SrtA) inhibitors.

  18. Magnetic graphitic carbon nitride: its application in the C-H activation of amines.

    PubMed

    Verma, Sanny; Nasir Baig, R B; Han, Changseok; Nadagouda, Mallikarjuna N; Varma, Rajender S

    2015-11-04

    Magnetic graphitic carbon nitride, Fe@g-C3N4, has been synthesized by adorning a graphitic carbon nitride (g-C3N4) support with iron oxide via non-covalent interaction. The magnetically recyclable catalyst showed excellent reactivity for the expeditious C-H activation and cyanation of amines.

  19. Nickel-catalyzed N-vinylation of heteroaromatic amines via C-H bond activation.

    PubMed

    Landge, Vinod G; Rana, Jagannath; Subaramanian, Murugan; Balaraman, Ekambaram

    2017-08-23

    Here, we report a ligand- and reductant-free nickel-catalyzed N-vinylation of heteroaromatic amines using biorenewable p-cymene as a solvent. This unprecedented cross-coupling strategy has high functional group tolerance (halides, alkoxy, cyano, chiral motif, etc.) and proceeded via C-H bond activation.

  20. Revealing the nature of the active site on the carbon catalyst for C-H bond activation.

    PubMed

    Sun, XiaoYing; Li, Bo; Su, Dangsheng

    2014-09-28

    A reactivity descriptor for the C-H bond activation on the nanostructured carbon catalyst is proposed. Furthermore the calculations reveal that the single ketone group can be an active site in ODH reaction.

  1. Time resolved infrared studies of C-H bond activation by organometallics

    SciTech Connect

    Asplund, M.C. |

    1998-06-01

    This work describes how step-scan Fourier Transform Infrared spectroscopy and visible and near infrared ultrafast lasers have been applied to the study of the photochemical activation of C-H bonds in organometallic systems, which allow for the selective breaking of C-H bonds in alkanes. The author has established the photochemical mechanism of C-H activation by Tp{sup *}Rh(CO){sub 2}(Tp{sup *} = HB-Pz{sup *}{sub 3}, Pz = 3,5-dimethylpyrazolyl) in alkane solution. The initially formed monocarbonyl forms a weak solvent complex, which undergoes a change in Tp{sup *} ligand connectivity. The final C-H bond breaking step occurs at different time scales depending on the structure of the alkane. In linear solvents, the time scale is <50 ns and cyclic alkanes is {approximately}200 ps. The reactivity of the Tp{sup *}Rh(CO){sub 2} system has also been studied in aromatic solvents. Here the reaction proceeds through two different pathways, with very different time scales. The first proceeds in a manner analogous to alkanes and takes <50 ns. The second proceeds through a Rh-C-C complex, and takes place on a time scale of 1.8 {micro}s.

  2. Highly Active Gold(I)-Silver(I) Oxo Cluster Activating sp³ C-H Bonds of Methyl Ketones under Mild Conditions.

    PubMed

    Pei, Xiao-Li; Yang, Yang; Lei, Zhen; Chang, Shan-Shan; Guan, Zong-Jie; Wan, Xian-Kai; Wen, Ting-Bin; Wang, Quan-Ming

    2015-04-29

    The activation of C(sp(3))-H bonds is challenging, due to their high bond dissociation energy, low proton acidity, and highly nonpolar character. Herein we report a unique gold(I)-silver(I) oxo cluster protected by hemilabile phosphine ligands [OAu3Ag3(PPhpy2)3](BF4)4 (1), which can activate C(sp(3))-H bonds under mild conditions for a broad scope of methyl ketones (RCOCH3, R = methyl, phenyl, 2-methylphenyl, 2-aminophenyl, 2-hydroxylphenyl, 2-pyridyl, 2-thiazolyl, tert-butyl, ethyl, isopropyl). Activation happens via triple deprotonation of the methyl group, leading to formation of heterometallic Au(I)-Ag(I) clusters with formula RCOCAu4Ag4(PPhpy2)4(BF4)5 (PPhpy2 = bis(2-pyridyl)phenylphosphine). Cluster 1 can be generated in situ via the reaction of [OAu3Ag(PPhpy2)3](BF4)2 with 2 equiv of AgBF4. The oxo ion and the metal centers are found to be essential in the cleavage of sp(3) C-H bonds of methyl ketones. Interestingly, cluster 1 selectively activates the C-H bonds in -CH3 rather than the N-H bonds in -NH2 or the O-H bond in -OH which is traditionally thought to be more reactive than C-H bonds. Control experiments with butanone, 3-methylbutanone, and cyclopentanone as substrates show that the auration of the C-H bond of the terminal methyl group is preferred over secondary or tertiary sp(3) C-H bonds; in other words, the C-H bond activation is influenced by steric effect. This work highlights the powerful reactivity of metal clusters toward C-H activation and sheds new light on gold(I)-mediated catalysis.

  3. I2-Mediated 2H-indazole synthesis via halogen-bond-assisted benzyl C-H functionalization.

    PubMed

    Yi, Xiangli; Jiao, Lei; Xi, Chanjuan

    2016-10-18

    I2-Mediated benzyl C-H functionalization has been developed for the synthesis of 2H-indazoles, which features high efficiency, simple conditions and no need for metals. Mechanistic experiments and DFT calculations have revealed halogen bond assistance and a radical chain process for this reaction. The azo group and the bound iodine cooperate in the hydrogen abstraction step, which circumvents the thermodynamic disfavor of direct hydrogen abstraction by a simple iodine radical.

  4. Mild and Efficient Palladium-Catalyzed Direct Trifluoroethylation of Aromatic Systems by C-H Activation.

    PubMed

    Tóth, Balázs L; Kovács, Szabolcs; Sályi, Gergő; Novák, Zoltán

    2016-02-05

    The introduction of trifluoroalkyl groups into aromatic molecules is an important transformation in the field of organic and medicinal chemistry. However, the direct installation of fluoroalkyl groups onto aromatic molecules still represents a challenging and highly demanding synthetic task. Herein, a simple trifluoroethylation process that relies on the palladium-catalyzed C-H activation of aromatic compounds is described. With the utilization of a highly active trifluoroethyl(mesityl)iodonium salt, the developed catalytic method enables the first highly efficient and selective trifluoroethylation of aromatic compounds. The robust catalytic procedure provides the desired products in up to 95 % yield at 25 °C in 1.5 to 3 hours and tolerates a broad range of functional groups. The utilization of hypervalent reagents opens new synthetic possibilities for direct alkylations and fluoroalkylations in the field of transition-metal-catalyzed C-H activation.

  5. Electrophilic, Ambiphilic, and Nucleophilic C-H bond Activation. Understanding the electronic continuum of C-H bond activation through transition-state and reaction pathway interaction energy decompositions

    SciTech Connect

    Ess, Daniel H.; Goddard, William A.; Periana, Roy A.

    2010-10-29

    The potential energy and interaction energy profiles for metal- and metal-ligand-mediated alkane C-H bond activation were explored using B3LYP density functional theory (DFT) and the absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA). The set of complexes explored range from late transition metal group 10 (Pt and Pd) and group 11 (Au) metal centers to group 7-9 (Ir, Rh, Ru, and W) metal centers as well as a group 3 Sc complex. The coordination geometries, electron metal count (d8, d6, d4, and d0), and ligands (N-heterocycles, O-donor, phosphine, and Cp*) are also diverse. Quantitative analysis using ALMO-EDA of both directions of charge-transfer stabilization (occupied to unoccupied orbital stabilization) energies between the metal-ligand fragment and the coordinated C-H bond in the transition state for cleavage of the C-H bond allows classification of C-H activation reactions as electrophilic, ambiphilic, or nucleophilic on the basis of the net direction of charge-transfer energy stabilization. This bonding pattern transcends any specific mechanistic or bonding paradigm, such as oxidative addition, σ-bond metathesis, or substitution. Late transition metals such as Au(III), Pt(II), Pd(II), and Rh(III) metal centers with N-heterocycle, halide, or O-donor ligands show electrophilically dominated reaction profiles with forward charge-transfer from the C-H bond to the metal, leading to more stabilization than reverse charge transfer from the metal to the C-H bond. Transition states and reaction profiles for d6 Ru(II) and Ir(III) metals with Tp and acac ligands were found to have nearly equal forward and reverse charge-transfer energy stabilization. This ambiphilic region also includes the classically labeled electrophilic cationic species Cp*(PMe3)Ir(Me). Nucleophilic character, where the metal to C-H bond charge-transfer interaction is most stabilizing, was found in

  6. Hydroacylation of α,β-unsaturated esters via aerobic C-H activation

    NASA Astrophysics Data System (ADS)

    Chudasama, Vijay; Fitzmaurice, Richard J.; Caddick, Stephen

    2010-07-01

    The development of methods for carbon-carbon bond formation under benign conditions is an ongoing challenge for the synthetic chemist. In recent years there has been considerable interest in using selective C-H activation as a direct route for generating reactive intermediates. In this article, we describe the use of aldehyde auto-oxidation as a simple, clean and effective method for C-H activation, resulting in the generation of an acyl radical. This acyl radical can be used for carbon-carbon bond formation and herein we describe the application of this method for the hydroacylation of α,β-unsaturated esters without the requirement of additional catalysts or reagents. This methodology generates unsymmetrical ketones, which have been shown to have broad use in organic synthesis.

  7. Late-Stage Diversification of Biologically Active Molecules via Chemoenzymatic C-H Functionalization.

    PubMed

    Durak, Landon J; Payne, James T; Lewis, Jared C

    2016-03-04

    Engineered variants of rebeccamycin halogenase were used to selectively halogenate a number of biologically active aromatic compounds. Subsequent Pd-catalyzed cross-coupling reactions on the crude extracts of these reactions were used to install aryl, amine, and ether substituents at the halogenation site. This simple, chemoenzymatic method enables non-directed functionalization of C-H bonds on a range of substrates to provide access to derivatives that would be challenging or inefficient to prepare by other means.

  8. Asymmetric Intramolecular Alkylation of Chiral Aromatic Imines via Catalytic C-H Bond Activation

    SciTech Connect

    Watzke, Anja; Wilson, Rebecca; O'Malley, Steven; Bergman, Robert; Ellman, Jonathan

    2007-04-16

    The asymmetric intramolecular alkylation of chiral aromatic aldimines, in which differentially substituted alkenes are tethered meta to the imine, was investigated. High enantioselectivities were obtained for imines prepared from aminoindane derivatives, which function as directing groups for the rhodium-catalyzed C-H bond activation. Initial demonstration of catalytic asymmetric intramolecular alkylation also was achieved by employing a sterically hindered achiral imine substrate and catalytic amounts of a chiral amine.

  9. Ruthenium(II)-catalyzed C-H activation with isocyanates: a versatile route to phthalimides.

    PubMed

    De Sarkar, Suman; Ackermann, Lutz

    2014-10-20

    A cationic ruthenium(II)-complex was utilized in the efficient synthesis of phthalimide derivatives by C-H activation with synthetically useful amides. The reaction proceeded through a mechanistically unique insertion of a cycloruthenated species into a C-Het multiple bond of isocyanate. The novel method also proved applicable for the synthesis of heteroaromatic unsymmetric diamides as well as a potent COX-2 enzyme inhibitor.

  10. Molecular heterogeneous catalysts derived from bipyridine-based organosilica nanotubes for C-H bond activation.

    PubMed

    Zhang, Shengbo; Wang, Hua; Li, Mei; Han, Jinyu; Liu, Xiao; Gong, Jinlong

    2017-06-01

    Heterogeneous metal complex catalysts for direct C-H activation with high activity and durability have always been desired for transforming raw materials into feedstock chemicals. This study described the design and synthesis of one-dimensional organosilica nanotubes containing 2,2'-bipyridine (bpy) ligands in the framework (BPy-NT) and their post-synthetic metalation to provide highly active and robust molecular heterogeneous catalysts. By adjusting the ratios of organosilane precursors, very short BPy-NT with ∼50 nm length could be controllably obtained. The post-synthetic metalation of bipyridine-functionalized nanotubes with [IrCp*Cl(μ-Cl)]2 (Cp* = η(5)-pentamethylcyclopentadienyl) and [Ir(cod)(OMe)]2 (cod = 1,5-cyclooctadiene) afforded solid catalysts, IrCp*-BPy-NT and Ir(cod)-BPy-NT, which were utilized for C-H oxidation of heterocycles and cycloalkanes as well as C-H borylation of arenes. The cut-short nanotube catalysts displayed enhanced activities and durability as compared to the analogous homogeneous catalysts and other conventional heterogeneous catalysts, benefiting from the isolated active sites as well as the fast transport of substrates and products. After the reactions, a detailed characterization of Ir-immobilized BPy-NT via TEM, SEM, nitrogen adsorption, UV/vis, XPS, and (13)C CP MAS NMR indicated the molecular nature of the active species as well as stable structures of nanotube scaffolds. This study demonstrates the potential of BPy-NT with a short length as an integration platform for the construction of efficient heterogeneous catalytic systems for organic transformations.

  11. Photocatalytic C??H Activation of Hydrocarbons over VO@g??C3N4

    EPA Pesticide Factsheets

    A highly selective and sustainable method has been developed for the oxidation of methyl arenes and their analogues. The VO@g-C3N4 catalyst is very efficient in the C??H activation and oxygen insertion reaction resulting in formation of the corresponding carbonyl compounds and phenols.This dataset is associated with the following publication:Verma, S., R.B. Nasir Baig, M. Nadagouda , and R. Varma. Photocatalytic C−H Activation of Hydrocarbons over VO@g‑C3N4. ACS Sustainable Chemistry & Engineering. American Chemical Society, Washington, DC, USA, 4(4): 2333-2336, (2016).

  12. Magnetic graphitic carbon nitride: its applicationin the C-& H-activation of amines.

    EPA Pesticide Factsheets

    Magnetic graphitic carbon nitride, Fe@g-C3N4, has been synthesized by adorning graphitic carbon nitride (g-C3N4) support with iron oxide via non-covalent interaction. The magnetically recyclable catalyst showed excellent reactivity for expeditious C-H activation and cyanation of amines.This dataset is associated with the following publication:Verma, S., R.B. Nasir Baig, H. Changseok, M. Nadagouda , and R. Varma. Magnetic graphitic carbon nitride: its applicationin the C–H activation of amines. CHEMICAL COMMUNICATIONS. Royal Society of Chemistry, Cambridge, UK, 51(85): 15554 - 15557, (2015).

  13. C-H Bond Activation/Arylation Catalyzed by Arene-Ruthenium-Aniline Complexes in Water.

    PubMed

    Binnani, Chinky; Tyagi, Deepika; Rai, Rohit K; Mobin, Shaikh M; Singh, Sanjay K

    2016-11-07

    Water-soluble arene-ruthenium complexes coordinated with readily available aniline-based ligands were successfully employed as highly active catalysts in the C-H bond activation and arylation of 2-phenylpyridine with aryl halides in water. A variety of (hetero)aryl halides were also used for the ortho-C-H bond arylation of 2-phenylpyridine to afford the corresponding ortho- monoarylated products as major products in moderate to good yields. Our investigations, including time-scaled NMR spectroscopy and mass spectrometry studies, evidenced that the coordinating aniline-based ligands, having varying electronic and steric properties, had a significant influence on the catalytic activity of the resulting arene-ruthenium-aniline-based complexes. Moreover, mass spectrometry identification of the cycloruthenated species, {(η(6) -arene)Ru(κ(2) -C,N-phenylpyridine)}(+) , and several ligand-coordinated cycloruthenated species, such as [(η(6) -arene)Ru(4-methylaniline)(κ(2) -C,N-phenylpyridine)](+) , found during the reaction of 2-phenylpyridine with the arene-ruthenium-aniline complexes further authenticated the crucial roles of these species in the observed highly active and tuned catalyst. At last, the structures of a few of the active catalysts were also confirmed by single-crystal X-ray diffraction studies.

  14. Radical-Mediated C-H Functionalization: A Strategy for Access to Modified Cyclodextrins.

    PubMed

    Alvarez-Dorta, Dimitri; León, Elisa I; Kennedy, Alan R; Martín, Angeles; Pérez-Martín, Inés; Suárez, Ernesto

    2016-12-02

    A simple and efficient radical C-H functionalization to access modified cyclodextrins (CDs) has been developed. The well-defined conformation of glycosidic and aglyconic bonds in α-, β-, and γ-CDs favors the intramolecular 1,8-hydrogen atom transfer (HAT) promoted by the 6(I)-O-yl radical, which abstracts regioselectively the hydrogen at C5(II) of the contiguous pyranose. The C5(II)-radical evolves by a polar crossover mechanism to a stable 1,3,5-trioxocane ring between two adjacent glucoses or alternatively triggers the inversion of one α-d-glucose into a 5-C-acetoxy-β-l-idose unit possessing a (1)C4 conformation. The 6(I,IV)- and 6(I,III)-diols of α- and β-CDs behave similarly to the monoalcohols, forming mostly compounds originating from two 1,8-HAT consecutive processes. In the case of 6(I,II)-diols the proximity of the two 6-O-yl radicals in adjacent sugar units allows the formation of unique lactone rings within the CD framework via a 1,8-HAT-β-scission tandem mechanism. X-ray diffraction carried out on the crystalline 1,4-bis(trioxocane)-α-CD derivative shows a severe distortion toward a narrower elliptical shape for the primary face.

  15. Pd-Catalyzed C-H activation/oxidative cyclization of acetanilide with norbornene: concise access to functionalized indolines.

    PubMed

    Gao, Yang; Huang, Yubing; Wu, Wanqing; Huang, Kefan; Jiang, Huanfeng

    2014-08-07

    An efficient Pd-catalyzed oxidative cyclization reaction for the synthesis of functionalized indolines by direct C-H activation of acetanilide has been developed. The norbornylpalladium species formed via direct ortho C-H activation of acetanilides is supposed to be a key intermediate in this transformation.

  16. Selective molecular recognition, C-H bond activation, and catalysis in nanoscale reaction vessels

    SciTech Connect

    Fiedler, Dorothea; Leung, Dennis H.; Raymond, Kenneth N.; Bergman, Robert G.

    2004-11-27

    Supramolecular chemistry represents a way to mimic enzyme reactivity by using specially designed container molecules. We have shown that a chiral self-assembled M{sub 4}L{sub 6} supramolecular tetrahedron can encapsulate a variety of cationic guests, with varying degrees of stereoselectivity. Reactive iridium guests can be encapsulated and the C-H bond activation of aldehydes occurs, with the host cavity controlling the ability of substrates to interact with the metal center based upon size and shape. In addition, the host container can act as a catalyst by itself. By restricting reaction space and preorganizing the substrates into reactive conformations, it accelerates the sigmatropic rearrangement of enammonium cations.

  17. Annulation of Aromatic Imines via Directed C-H BondActivation

    SciTech Connect

    Thalji, Reema K.; Ahrendt, Kateri A.; Bergman, Robert G.; Ellman,Jonathan A.

    2005-04-14

    A directed C-H bond activation approach to the synthesis of indans, tetralins, dihydrofurans, dihydroindoles, and other polycyclic aromatic compounds is presented. Cyclization of aromatic ketimines and aldimines containing alkenyl groups tethered at the meta position relative to the imine directing group has been achieved using (PPh{sub 3}){sub 3}RhCl (Wilkinson's catalyst). The cyclization of a range of aromatic ketimines and aldimines provides bi- and tricyclic ring systems with good regioselectivity. Different ring sizes and substitution patterns can be accessed through the coupling of monosubstituted, 1,1- or 1,2-disubstituted, and trisubstituted alkenes bearing both electron-rich and electron-deficient functionality.

  18. Understanding trends in C-H bond activation in heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Latimer, Allegra A.; Kulkarni, Ambarish R.; Aljama, Hassan; Montoya, Joseph H.; Yoo, Jong Suk; Tsai, Charlie; Abild-Pedersen, Frank; Studt, Felix; Nørskov, Jens K.

    2017-02-01

    While the search for catalysts capable of directly converting methane to higher value commodity chemicals and liquid fuels has been active for over a century, a viable industrial process for selective methane activation has yet to be developed. Electronic structure calculations are playing an increasingly relevant role in this search, but large-scale materials screening efforts are hindered by computationally expensive transition state barrier calculations. The purpose of the present letter is twofold. First, we show that, for the wide range of catalysts that proceed via a radical intermediate, a unifying framework for predicting C-H activation barriers using a single universal descriptor can be established. Second, we combine this scaling approach with a thermodynamic analysis of active site formation to provide a map of methane activation rates. Our model successfully rationalizes the available empirical data and lays the foundation for future catalyst design strategies that transcend different catalyst classes.

  19. Understanding trends in C-H bond activation in heterogeneous catalysis.

    PubMed

    Latimer, Allegra A; Kulkarni, Ambarish R; Aljama, Hassan; Montoya, Joseph H; Yoo, Jong Suk; Tsai, Charlie; Abild-Pedersen, Frank; Studt, Felix; Nørskov, Jens K

    2017-02-01

    While the search for catalysts capable of directly converting methane to higher value commodity chemicals and liquid fuels has been active for over a century, a viable industrial process for selective methane activation has yet to be developed. Electronic structure calculations are playing an increasingly relevant role in this search, but large-scale materials screening efforts are hindered by computationally expensive transition state barrier calculations. The purpose of the present letter is twofold. First, we show that, for the wide range of catalysts that proceed via a radical intermediate, a unifying framework for predicting C-H activation barriers using a single universal descriptor can be established. Second, we combine this scaling approach with a thermodynamic analysis of active site formation to provide a map of methane activation rates. Our model successfully rationalizes the available empirical data and lays the foundation for future catalyst design strategies that transcend different catalyst classes.

  20. Understanding trends in C-H bond activation in heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Latimer, Allegra A.; Kulkarni, Ambarish R.; Aljama, Hassan; Montoya, Joseph H.; Yoo, Jong Suk; Tsai, Charlie; Abild-Pedersen, Frank; Studt, Felix; Nørskov, Jens K.

    2016-10-01

    While the search for catalysts capable of directly converting methane to higher value commodity chemicals and liquid fuels has been active for over a century, a viable industrial process for selective methane activation has yet to be developed. Electronic structure calculations are playing an increasingly relevant role in this search, but large-scale materials screening efforts are hindered by computationally expensive transition state barrier calculations. The purpose of the present letter is twofold. First, we show that, for the wide range of catalysts that proceed via a radical intermediate, a unifying framework for predicting C-H activation barriers using a single universal descriptor can be established. Second, we combine this scaling approach with a thermodynamic analysis of active site formation to provide a map of methane activation rates. Our model successfully rationalizes the available empirical data and lays the foundation for future catalyst design strategies that transcend different catalyst classes.

  1. The effect of nano confinement on the C-h activation and its corresponding structure-activity relationship.

    PubMed

    Shao, Jing; Yuan, Linghua; Hu, Xingbang; Wu, Youting; Zhang, Zhibing

    2014-11-27

    The C-H activation of methane, ethane, and t-butane on inner and outer surfaces of nitrogen-doped carbon nanotube (NCNTs) are investigated using density functional theory. It includes NCNTs with different diameters, different N and O concentrations, and different types (armchair and zigzag). A universal structure-reactivity relationship is proposed to characterize the C-H activation occurring both on the inner and outer surfaces of the nano channel. The C-O bond distance, spin density and charge carried by active oxygen are found to be highly related to the C-H activation barriers. Based on these theoretical results, some useful strategies are suggested to guide the rational design of more effective catalysts by nano channel confinement.

  2. The Effect of Nano Confinement on the C-H Activation and its Corresponding Structure-Activity Relationship

    NASA Astrophysics Data System (ADS)

    Shao, Jing; Yuan, Linghua; Hu, Xingbang; Wu, Youting; Zhang, Zhibing

    2014-11-01

    The C-H activation of methane, ethane, and t-butane on inner and outer surfaces of nitrogen-doped carbon nanotube (NCNTs) are investigated using density functional theory. It includes NCNTs with different diameters, different N and O concentrations, and different types (armchair and zigzag). A universal structure-reactivity relationship is proposed to characterize the C-H activation occurring both on the inner and outer surfaces of the nano channel. The C-O bond distance, spin density and charge carried by active oxygen are found to be highly related to the C-H activation barriers. Based on these theoretical results, some useful strategies are suggested to guide the rational design of more effective catalysts by nano channel confinement.

  3. Visible light mediated efficient oxidative benzylic sp(3) C-H to ketone derivatives obtained under mild conditions using O2.

    PubMed

    Yi, Hong; Bian, Changliang; Hu, Xia; Niu, Linbin; Lei, Aiwen

    2015-09-25

    A photooxygenation of benzylic sp(3) C-H reaction has been demonstrated using O2 mediated by visible light. This protocol provides a simple and mild route to obtain ketones from benzylic sp(3) C-H bonds. Various benzylic sp(3) C-H bonds can be transformed into the desired ketone derivatives in moderate to good yields. The (18)O2 labelling experiments demonstrated that the oxygen introduced into ketone originated from dioxygen. A plausible mechanism has been proposed accordingly.

  4. C-H Activation on Co,O Sites: Isolated Surface Sites versus Molecular Analogs.

    PubMed

    Estes, Deven P; Siddiqi, Georges; Allouche, Florian; Kovtunov, Kirill V; Safonova, Olga V; Trigub, Alexander L; Koptyug, Igor V; Copéret, Christophe

    2016-11-16

    The activation and conversion of hydrocarbons is one of the most important challenges in chemistry. Transition-metal ions (V, Cr, Fe, Co, etc.) isolated on silica surfaces are known to catalyze such processes. The mechanisms of these processes are currently unknown but are thought to involve C-H activation as the rate-determining step. Here, we synthesize well-defined Co(II) ions on a silica surface using a metal siloxide precursor followed by thermal treatment under vacuum at 500 °C. We show that these isolated Co(II) sites are catalysts for a number of hydrocarbon conversion reactions, such as the dehydrogenation of propane, the hydrogenation of propene, and the trimerization of terminal alkynes. We then investigate the mechanisms of these processes using kinetics, kinetic isotope effects, isotopic labeling experiments, parahydrogen induced polarization (PHIP) NMR, and comparison with a molecular analog. The data are consistent with all of these reactions occurring by a common mechanism, involving heterolytic C-H or H-H activation via a 1,2 addition across a Co-O bond.

  5. 2008 C. H. McCloy lecture. Social psychology and physical activity: back to the future.

    PubMed

    Gill, Diane L

    2009-12-01

    In the early 1970s, both my academic career and the psychology subdiscipline within kinesiology began as "social psychology and physical activity. "Since then, sport and exercise psychology research has shifted away from the social to a narrower biopsycho-(no social) approach, and professional practice has focused on the elite rather than the larger public. Psychology can contribute to an integrative and relevant professional discipline by going back to the future as social psychology and physical activity and by incorporating three of C. H. McCloy's themes (a) evidence-based practice, (b) beyond dualisms, and (c) commitment to public service. Our scholarship must move beyond dualisms to recognize complexities and connections and be truly scholarship for practice. Social psychology and physical activity can serve the public by advocating for inclusive, empowering physical activity programs that promote health and well being for all.

  6. Enhanced Reactivity in Hydrogen Atom Transfer from Tertiary Sites of Cyclohexanes and Decalins via Strain Release: Equatorial C-H Activation vs Axial C-H Deactivation.

    PubMed

    Salamone, Michela; Ortega, Vanesa B; Bietti, Massimo

    2015-05-01

    Absolute rate constants for hydrogen atom transfer (HAT) from cycloalkanes and decalins to the cumyloxyl radical (CumO(•)) were measured by laser flash photolysis. Very similar reactivities were observed for the C-H bonds of cyclopentane and cyclohexane, while the tertiary C-H bond of methylcyclopentane was found to be 6 times more reactive than the tertiary axial C-H bond of methylcyclohexane, pointing toward a certain extent of tertiary axial C-H bond deactivation. Comparison between the cis and trans isomers of 1,2-dimethylcyclohexane, 1,4-dimethylcyclohexane and decalin provides a quantitative evaluation of the role played by strain release in these reactions. kH values for HAT from tertiary equatorial C-H bonds were found to be at least 1 order of magnitude higher than those for HAT from the corresponding tertiary axial C-H bonds (kH(eq)/kH(ax) = 10-14). The higher reactivity of tertiary equatorial C-H bonds was explained in terms of 1,3-diaxial strain release in the HAT transition state. Increase in torsional strain in the HAT transition state accounts instead for tertiary axial C-H bond deactivation. The results are compared with those obtained for the corresponding C-H functionalization reactions by dioxiranes and nonheme metal-oxo species indicating that CumO(•) can represent a convenient model for the reactivity patterns of these oxidants.

  7. Palladium-catalyzed oxidative arylalkylation of activated alkenes: dual C-H bond cleavage of an arene and acetonitrile.

    PubMed

    Wu, Tao; Mu, Xin; Liu, Guosheng

    2011-12-23

    Not one but two: The title reaction proceeds through the dual C-H bond cleavage of both aniline and acetonitrile. The reaction affords a variety of cyano-bearing indolinones in excellent yield. Mechanistic studies demonstrate that this reaction involves a fast arylation of the olefin and a rate-determining C-H activation of the acetonitrile.

  8. Carbon-Hydrogen (C-H) Bond Activation at PdIV: A Frontier in C–H Functionalization Catalysis

    PubMed Central

    Topczewski, Joseph J.; Sanford, Melanie S.

    2014-01-01

    The direct functionalization of carbon-hydrogen (C-H) bonds has emerged as a versatile strategy for the synthesis and derivatization of organic molecules. Among the methods for C-H bond activation, catalytic processes that utilize a PdII/PdIV redox cycle are increasingly common. The C-H activation step in most of these catalytic cycles is thought to occur at a PdII centre. However, a number of recent reports have suggested the feasibility of C-H cleavage occurring at PdIV complexes. Importantly, these latter processes often result in complementary reactivity and selectivity relative to analogous transformations at PdII. This Mini Review highlights proposed examples of C-H activation at PdIV centres. Applications of this transformation in catalysis as well as mechanistic details obtained from stoichiometric model studies are discussed. Furthermore, challenges and future perspectives for the field are reviewed. PMID:25544882

  9. A study on Zr-Ir multiple bonding active for C-H bond cleavage.

    PubMed

    Oishi, Masataka; Oshima, Masato; Suzuki, Hiroharu

    2014-07-07

    Zr-Ir hydrido complexes with ansa-(cyclopentadienyl)(amide) as the supporting ligand in the zirconium fragment, e.g., (L(1)ZrR)(Cp*Ir)(μ-H)3 [L(1) = Me2Si(η(5)-C5Me4)(N(t)Bu), R = Cl (5), Ph (7), Me (10), alkyl, and aryl] were designed, synthesized, and isolated as tractable early-late heterodinuclear complexes. Despite the presence of the three supporting hydride ligands, Zr-Ir distances in the crystal structures of 5, alkyl, and aryl complexes [2.74-2.76 Å] were slightly longer than the sum of the element radii of Zr and Ir [2.719 Å]. These hydrocarbyl complexes displayed the thermolytic C-H activation of a variety of aromatic compounds and several organometallic compounds. Also, the substrate scope and limitation in the Zr-Ir system were studied. The regiochemical outcomes during the C-H activation of pyridine derivatives and methoxyarenes suggested the in situ generation of a Lewis acidic active intermediate, i.e., (L(1)Zr)(Cp*IrH2) (III). The existence of III and relevant σ-complex intermediates {L(1)Zr(η(2)-R-H)}(Cp*IrH2) (IIR) (R = Me, Ph) in the ligand exchange was demonstrated by the direct isolation of a Et3PO-adduct of III (39b) from 7 and kinetic studies. The structure of the direct Zr-Ir bonds in IIPh, IIMe, III, and 39b were probed using computational studies. The unprecedented strong M-M' interactions in the early-late heterobimetallic (ELHB) complexes have been proposed herein.

  10. The selective preparation of an aluminum oxide and its isomeric C-H-activated hydroxide.

    PubMed

    Zhu, Hongping; Chai, Jianfang; Jancik, Vojtech; Roesky, Herbert W; Merrill, William A; Power, Philip P

    2005-07-27

    An aluminum oxide [LAlO]2 (1) has been prepared by the oxidative addition of aluminum(I) monomer LAl (L = HC[(CMe)(NAr)]2, Ar = 2,6-iPr2C6H3) with molecular oxygen. The short Al-O bonds in Al2(mu-O)2 result in short Al...Al contacts and subsequent steric crowding of the Ar substituents from the two oriented L. 1 hydrolyzes to form [LAl(OH)]2(mu-O) (2). A C-H-activated aluminum hydroxide 4, an isomer of 1, however, is obtained by hydrolysis of the bulky aluminum amide 3 rather than by a conversion by high temperature treatment of 1. This indicates selective preparation of isomers 1 and 4.

  11. C-H activation of ethers by pyridine tethered PCsp3P-type iridium complexes.

    PubMed

    Cui, Peng; Babbini, Dominic C; Iluc, Vlad M

    2016-06-14

    Iridium PCsp3P complexes featuring a novel bis(2-diphenylphosphinophenyl)-2-pyridylmethane ligand (PC(Py)HP) are reported. C-H activation reactions between the dihydride complex [(PC(Py)P)Ir(H)2] and tetrahydrofuran or methyl tert-butyl ether in the presence of a hydrogen acceptor, norbornene (NBE), at ambient temperature led exclusively to the hydrido oxyalkyl complexes, [(PC(Py)P)IrH(C4H7O)] and [(PC(Py)P)IrH(CH2O(t)Bu)], respectively. The internal pyridine donor is important and stabilizes these species by coordination to the iridium center. The coordination of pyridine to the iridium center is labile, however, and its dissociation occurs in the presence of a suitable substrate, as demonstrated by the intramolecular nucleophilic attack of pyridine on a vinylidene intermediate generated from PhC[triple bond, length as m-dash]CH.

  12. Rh(III)-catalyzed synthesis of sultones through C-H activation directed by a sulfonic acid group.

    PubMed

    Qi, Zisong; Wang, Mei; Li, Xingwei

    2014-09-04

    A new rhodium-catalyzed synthesis of sultones via the oxidative coupling of sulfonic acids with internal alkynes is described. The reaction proceeds via aryl C-H activation assisted by a sulfonic acid group.

  13. Oxygenation via C-H/C-C Bond Activation with Molecular Oxygen.

    PubMed

    Liang, Yu-Feng; Jiao, Ning

    2017-07-18

    The selective oxidation of organic molecules is a fundamentally important component of modern synthetic chemistry. In the past decades, direct oxidative C-H and C-C bond functionalization has proved to be one of the most efficient and straightforward methods to synthesize complex products from simple and readily available starting materials. Among these oxidative processes, the use of molecular oxygen as a green and sustainable oxidant has attracted considerable attention because of its highly atom-economical, abundant, and environmentally friendly characteristics. The development of new protocols using molecular oxygen as an ideal oxidant is highly desirable in oxidation chemistry. More importantly, the oxygenation reaction of simple molecules using molecular oxygen as the oxygen source offers one of the most ideal processes for the construction of O-containing compounds. Aerobic oxidation and oxygenation by enzymes, such as monooxygenase, tyrosinase, and dopamine β-monooxygenase, have been observed in some biological C-H bond hydroxylation processes. Encouraged by these biological transformations, transition-metal- or organocatalyst-catalyzed oxygenation through dioxygen activation has attracted academic and industrial prospects. In this Account, we describe some advances from our group in oxygenation via C-H/C-C bond activation with molecular oxygen as the oxidant and oxygen source for the synthesis of O-containing compounds. Under an atmosphere of O2 (1 atm) or air (1 atm), we have successfully incorporated one or two O atoms from O2 into simple and readily available substrates through C-H, C-C, C═C, and C≡C bond cleavage by transition-metal catalysis, organocatalysis, and photocatalysis. Moreover, we have devised cyclization reactions with molecular oxygen to construct O-heterocycles. Most of these transformations can tolerate a broad range of functional groups. Furthermore, on the basis of isotope labeling experiments, electron paramagnetic resonance

  14. Synthesis of Spiropentadiene Pyrazolones by Rh(III)-Catalyzed Formal sp(3) C-H Activation/Annulation.

    PubMed

    Zheng, Jiuan; Li, Panpan; Gu, Meng; Lin, Aijun; Yao, Hequan

    2017-06-02

    A Rh-catalyzed enol-directed formal sp(3) C-H activation/annulation of α-arylidene pyrazolones with alkynes has been developed. This reaction provides a convenient route to synthesize spiropentadiene pyrazolones in good to excellent yields at room temperature, exhibiting good functional group tolerance, gram scalability, and high regioselectivity. Of note, the α-arylidene pyrazolone was introduced as a novel C3 synthon in C-H activation/annulation.

  15. Photolysis and thermolysis of bis(imino)pyridine cobalt azides: C-H activation from putative cobalt nitrido complexes.

    PubMed

    Hojilla Atienza, Crisita Carmen; Bowman, Amanda C; Lobkovsky, Emil; Chirik, Paul J

    2010-11-24

    A series of planar aryl-substituted bis(imino)pyridine cobalt azide complexes were prepared and evaluated as synthetic precursors for the corresponding cobalt nitrido compounds. Thermolysis or photolysis of two examples resulted in intramolecular C-H activation of the benzylic positions of the aryl substituents. For the mesityl-substituted compound, C-H activation by the putative nitride resulted in formation of a neutral imine ligand and modification of the chelate by hydrogen transfer to the imine carbon.

  16. Iron Mineral Catalyzed C-H Activation As a Potential Pathway for Halogenation Processes

    NASA Astrophysics Data System (ADS)

    Tubbesing, C.; Schoeler, H. F.; Benzing, K.; Krause, T.; Lippe, S.; Rudloff, M.

    2014-12-01

    Due to increasing drinking water demand of mankind and an expected climate change the impact of salt lakes and salt deserts will increase within the next decades. Furthermore, a rising sea level influences coastal areas like salt marshes and abets processes which will lead to elevated organohalogen formation. An additional increase of the global warming potential, of particle formation and stratospheric ozone depletion is expected. Understanding these multifaceted processes is essential for mankind to be prepared for these alterations of the atmosphere. For example, Keppler et al. (2000) described the production of volatile halogenated organic compounds via oxidation of organic matter driven by ferric iron. However, the formation of long-chained alkyl halides in salt lakes is yet undisclosed. Despite the relative "inertness" of alkanes a direct halogenation of these compounds might be envisaged. In 2005 Vaillancourt et al. discovered a nonheme iron enzyme which is able to halogenate organic compounds via generating the high valent ferryl cation as reaction center. Based on various publications about C-H activation (Bergman, 2007) we postulate a halogenation process in which an iron containing minerals catalyse the C-H bond cleavage of organic compounds in soils. The generated organic radicals are highly reactive towards halides connected to the iron complex. We suggest that next to diagenetically altered iron containing enzymes, minerals such as oxides, hydroxides and sulfides are involved in abiotic halogenation processes. We applied the amino acid methionine as organic model compound and soluble iron species as reactants. All samples were incubated in aqueous phases containing various NaCl concentrations. As a result various halogenated ethanes and ethenes were identified as reaction products. References Bergman, R. G. (2007) Nature, 446(7134) 391-393 Keppler, F., et al. (2000) Nature, 403(6767) 298-301 Vaillancourt, F. H., et al. (2005) Nature, 436(7054) 1191-1194

  17. Anti-inflammatory activity of Arnica montana 6cH: preclinical study in animals.

    PubMed

    Macêdo, S B; Ferreira, L R; Perazzo, F F; Carvalho, J C

    2004-04-01

    The anti-inflammatory effect of Arnica montana 6cH was evaluated using acute and chronic inflammation models. In the acute, model, carrageenin-induced rat paw oedema, the group treated with Arnica montana 6cH showed 30% inhibition compared to control (P < 0.05). Treatment with Arnica 6cH, 30 min prior to carrageenin, did not produce any inhibition of the inflammatory process. In the chronic model, Nystatin-induced oedema, the group treated 3 days previously with Arnica montana 6cH had reduced inflammation 6 h after the inflammatory agent was applied (P < 0.05). When treatment was given 6 h after Nystatin treatment, there was no significant inhibitory effect. In a model based on histamine-induced increase of vascular permeability, pretreatment with Arnica montana 6cH blocked the action of histamine in increasing vascular permeability.

  18. Direct Functionalization of Nitrogen Heterocycles via Rh-Catalyzed C-H Bond Activation

    PubMed Central

    Lewis, Jared C.; Bergman, Robert G.; Ellman, Jonathan A.

    2008-01-01

    Conspectus Nitrogen heterocycles are present in many compounds of enormous practical importance, ranging from pharmaceutical agents and biological probes to electroactive materials. Direct functionalization of nitrogen heterocycles through C-H bond activation constitutes a powerful means of regioselectively introducing a variety of substituents with diverse functional groups onto the heterocycle scaffold. Working together, our two groups have developed a family of Rh-catalyzed heterocycle alkylation and arylation reactions that are notable for their high level of functional-group compatibility. This Account describes our work in this area, emphasizing the relevant mechanistic insights that enabled synthetic advances and distinguished the resulting transformations from other methods. We initially discovered an intramolecular Rh-catalyzed C-2-alkylation of azoles by alkenyl groups. That reaction provided access to a number of di-, tri-, and tetracyclic azole derivatives. We then developed conditions that exploited microwave heating to expedite these reactions. While investigating the mechanism of this transformation, we discovered that a novel substrate-derived Rh-N-heterocyclic carbene (NHC) complex was involved as an intermediate. We then synthesized analogous Rh–NHC complexes directly by treating precursors to the intermediate [RhCl(PCy3)2] with N-methylbenzimidazole, 3-methyl-3,4-dihydroquinazoline, and 1-methyl-1,4-benzodiazepine-2-one. Extensive kinetic analysis and DFT calculations supported a mechanism for carbene formation in which the catalytically active RhCl(PCy3)2 fragment coordinates to the heterocycle before intramolecular activation of the C-H bond occurs. The resulting Rh-H intermediate ultimately tautomerizes to the observed carbene complex. With this mechanistic information and the discovery that acid co-catalysts accelerate the alkylation, we developed conditions that efficiently and intermolecularly alkylate a variety of heterocycles, including

  19. Direct Functionalization of Nitrogen Heterocycles via Rh-Catalyzed C-H Bond Activation

    SciTech Connect

    Lewis, Jared; Bergman, Robert; Ellman, Jonathan

    2008-02-04

    Nitrogen heterocycles are present in many compounds of enormous practical importance, ranging from pharmaceutical agents and biological probes to electroactive materials. Direct funtionalization of nitrogen heterocycles through C-H bond activation constitutes a powerful means of regioselectively introducing a variety of substituents with diverse functional groups onto the heterocycle scaffold. Working together, our two groups have developed a family of Rh-catalyzed heterocycle alkylation and arylation reactions that are notable for their high level of functional-group compatibility. This Account describes their work in this area, emphasizing the relevant mechanistic insights that enabled synthetic advances and distinguished the resulting transformations from other methods. They initially discovered an intramolecular Rh-catalyzed C-2-alkylation of azoles by alkenyl groups. That reaction provided access to a number of di-, tri-, and tetracyclic azole derivatives. They then developed conditions that exploited microwave heating to expedite these reactions. While investigating the mechanism of this transformation, they discovered that a novel substrate-derived Rh-N-heterocyclic carbene (NHC) complex was involved as an intermediate. They then synthesized analogous Rh-NHC complexes directly by treating precursors to the intermediate [RhCl(PCy{sub 3}){sub 2}] with N-methylbenzimidazole, 3-methyl-3,4-dihydroquinazolein, and 1-methyl-1,4-benzodiazepine-2-one. Extensive kinetic analysis and DFT calculations supported a mechanism for carbene formation in which the catalytically active RhCl(PCy{sub 3}){sub 2} fragment coordinates to the heterocycle before intramolecular activation of the C-H bond occurs. The resulting Rh-H intermediate ultimately tautomerizes to the observed carbene complex. With this mechanistic information and the discovery that acid co-catalysts accelerate the alkylation, they developed conditions that efficiently and intermolecularly alkylate a variety of

  20. Graphene Oxide Catalyzed C-H Bond Activation: The Importance Oxygen Functional Groups for Biaryl Construction

    SciTech Connect

    Gao, Yongjun; Tang, Pei; Zhou, Hu; Zhang, Wei; Yang, Hanjun; Yan, Ning; Hu, Gang; Mei, Donghai; Wang, Jianguo; Ma, Ding

    2016-02-24

    A heterogeneous, inexpensive and environment-friendly carbon catalytic system was developed for the C-H bond arylation of benzene resulting in the subsequent formation of biaryl compounds. The oxygen-containing groups on these graphene oxide sheets play an essential role in the observed catalytic activity. The catalytic results of model compounds and DFT calculations show that these functional groups promote this reaction by stabilization and activation of K ions at the same time of facilitating the leaving of I. And further mechanisms studies show that it is the charge induced capabilities of oxygen groups connected to specific carbon skeleton together with the giant π-reaction platform provided by the π-domain of graphene that played the vital roles in the observed excellent catalytic activity. D. Mei acknowledges the support from the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory.

  1. Mechanistic Insight into the Rh(III)-Catalyzed C-H Activation of 2-Acetyl-1-Arythydrazines in Water.

    PubMed

    Wu, Weirong; Liu, Tao; Huang, Caiyun; Zhang, Jing; Man, Xiaoping

    2017-03-02

    A mechanistic study of the Cp*Rh(III)-catalyzed C-H functionalization of 2-acetyl-1-arythydrazines with diazo compounds in water was carried out by using density functional theory calculations. The results reveal that the acetyl-bonded N-H deprotonation is prior to the phenyl C-H activation. The mechanisms from protonation by acetic acid disagree with the proposal by the Wang group. Different from the Rh(III)-catalyzed C-H activation reported by experimental literature, the rate-determining step of the whole catalytic cycle with an overall barrier of 31.7 kcal mol(-1) (IV → TS12-P') is the protonation process of hydroxy O rather than the C-H bond cleavage step. The present theoretical study rationalizes the experimental observation at the molecular level.

  2. Functionalization of non-activated C-H bonds in the synthesis of vitamin D metabolites and analogs.

    PubMed

    Moman, Edelmiro

    2014-01-01

    The development of non-microbial methods for the selective functionalization of non-activated C-H bonds has constituted a challenge, with important economical and environmental implications, for chemists for over a century. The present review provides a comprehensive and current compendium that illustrates the power of C-H functionalization and, namely, of remote functionalization strategies, to expeditiously access vitamin D analogs with intricate structures.

  3. Unexpected C-H activation of Ru(II)-dithiomaltol complexes upon oxidation.

    PubMed

    Backlund, Malin; Ziller, Joseph; Farmer, Patrick J

    2008-04-07

    Thione-substituted derivatives of maltol are of interest in several applications of metal-based drugs. In order to investigate the effect of the oxygenation on such thione chelates, Ru complexes of 3-hydroxy-2-methyl-4-thiopyrone (thiomaltol or Htma) and 3-hydroxy-2-methyl-4H-thiopyran-4-thione (dithiomaltol or Httma), [Ru(bpy)2(tma)](+), 1, and [Ru(bpy) 2(ttma)] (+), 2, were synthesized as diamagnetic PF6(-) salts. Peroxidation of 2 unexpectedly generated products of C-H activation at its pendant methyl group; an air-stable aldehyde [Ru(bpy)2(ttma-aldehyde)](+), 4, was the major product. In addition, an intermediate oxidation product [Ru(bpy) 2(ttma-alcohol)](PF6), 3, was characterized. Both 3 and 4 are also formed by reaction of 2 with outersphere oxidants (e.g., Na2IrCl6) and by bulk electrolysis under anaerobic conditions. Similar oxidations of the analogous [Ru(bpy)2(ettma)](+), 2' , complex (3-hydroxy-2-ethyl-4H-thiopyran-4-thione; ethyl dithiomaltol or Hettma) formed the corresponding ketone, [Ru(bpy)2(ettma-ketone)](PF6), 4', by oxidation at the same position adjacent to the conjugated ring. The structures of the aldehyde 4 and starting materials 1 and 2 have been confirmed by X-ray crystallography, and all complexes have been characterized by UV-vis, (1)H NMR, and IR spectroscopies. Initial mechanistic investigations are discussed.

  4. Chemically Non-Innocent Cyclic (Alkyl)(Amino)Carbenes: Ligand Rearrangement, C-H and C-F Bond Activation.

    PubMed

    Turner, Zoë R

    2016-08-01

    A cyclic (alkyl)(amino)carbene (CAAC) was found to undergo unprecedented rearrangements and transformations of its core structure in the presence of Group 1 and 2 metals. Although the carbene was also found to be prone to intramolecular C-H activation, it was competent for intermolecular activation of a variety of sp-, sp(2) -, and sp(3) -hybridized C-H bonds. Double C-F activation of hexafluorobenzene was also observed in this work. These processes all hold relevance to the role of these carbenes in catalysis, as well as to their use in the synthesis of new and unusual main group or transition metal complexes.

  5. N-heterocyclic carbene gold(I) and copper(I) complexes in C-H bond activation.

    PubMed

    Gaillard, Sylvain; Cazin, Catherine S J; Nolan, Steven P

    2012-06-19

    Environmental concerns have and will continue to have a significant role in determining how chemistry is carried out. Chemists will be challenged to develop new, efficient synthetic processes that have the fewest possible steps leading to a target molecule, the goal being to decrease the amount of waste generated and reduce energy use. Along this path, chemists will need to develop highly selective reactions with atom-economical pathways producing nontoxic byproduct. In this context, C-H bond activation and functionalization is an extremely attractive method. Indeed, for most organic transformations, the presence of a reactive functionality is required. In Total Synthesis, the "protection and deprotection" approach with such reactive groups limits the overall yield of the synthesis, involves the generation of significant chemical waste, costs energy, and in the end is not as green as one would hope. In turn, if a C-H bond functionalization were possible, instead of the use of a prefunctionalized version of the said C-H bond, the number of steps in a synthesis would obviously be reduced. In this case, the C-H bond can be viewed as a dormant functional group that can be activated when necessary during the synthetic strategy. One issue increasing the challenge of such a desired reaction is selectivity. The cleavage of a C-H bond (bond dissociation requires between 85 and 105 kcal/mol) necessitates a high-energy species, which could quickly become a drawback for the control of chemo-, regio-, and stereoselectivity. Transition metal catalysts are useful reagents for surmounting this problem; they can decrease the kinetic barrier of the reaction yet retain control over selectivity. Transition metal complexes also offer important versatility in having distinct pathways that can lead to activation of the C-H bond. An oxidative addition of the metal in the C-H bond, and a base-assisted metal-carbon bond formation in which the base can be coordinated (or not) to the metal

  6. Advancements in the Synthesis and Applications of Cationic N-Heterocycles through Transition Metal-Catalyzed C-H Activation.

    PubMed

    Gandeepan, Parthasarathy; Cheng, Chien-Hong

    2016-02-18

    Cationic N-heterocycles are an important class of organic compounds largely present in natural and bioactive molecules. They are widely used as fluorescent dyes for biological studies, as well as in spectroscopic and microscopic methods. These compounds are key intermediates in many natural and pharmaceutical syntheses. They are also a potential candidate for organic light-emitting diodes (OLEDs). Because of these useful applications, the development of new methods for the synthesis of cationic N-heterocycles has received a lot of attention. In particular, many C-H activation methodologies that realize high step- and atom-economies toward these compounds have been developed. In this review, recent advancements in the synthesis and applications of cationic N-heterocycles through C-H activation reactions are summarized. The new C-H activation reactions described in this review are preferred over their classical analogs.

  7. Amidines for versatile ruthenium(II)-catalyzed oxidative C-H activations with internal alkynes and acrylates.

    PubMed

    Li, Jie; John, Michael; Ackermann, Lutz

    2014-04-25

    Cationic ruthenium complexes derived from KPF6 or AgOAc enabled efficient oxidative CH functionalizations on aryl and heteroaryl amidines. Thus, oxidative annulations of diversely decorated internal alkynes provided expedient access to 1-aminoisoquinolines, while catalyzed C-H activations with substituted acrylates gave rise to structurally novel 1-iminoisoindolines. The powerful ruthenium(II) catalysts displayed a remarkably high site-, regio- and, chemoselectivity. Therefore, the catalytic system proved tolerant of a variety of important electrophilic functional groups. Detailed mechanistic studies provided strong support for the cationic ruthenium(II) catalysts to operate by a facile, reversible C-H activation.

  8. Highly Active Nickel Catalysts for C-H Functionalization Identified through Analysis of Off-Cycle Intermediates.

    PubMed

    Nett, Alex J; Zhao, Wanxiang; Zimmerman, Paul M; Montgomery, John

    2015-06-24

    An inhibitory role of 1,5-cyclooctadiene (COD) in nickel-catalyzed C-H functionalization processes was identified and studied. The bound COD participates in C-H activation by capturing the hydride, leading to a stable off-cycle π-allyl complex that greatly diminished overall catalytic efficiency. Computational studies elucidated the origin of the effect and enabled identification of a 1,5-hexadiene-derived pre-catalyst that avoids the off-cycle intermediate and provides catalytic efficiencies that are superior to those of catalysts derived from Ni(COD)2.

  9. Single-Component Phosphinous Acid Ruthenium(II) Catalysts for Versatile C-H Activation by Metal-Ligand Cooperation.

    PubMed

    Zell, Daniel; Warratz, Svenja; Gelman, Dmitri; Garden, Simon J; Ackermann, Lutz

    2016-01-22

    Well-defined ruthenium(II) phosphinous acid (PA) complexes enabled chemo-, site-, and diastereoselective C-H functionalization of arenes and alkenes with ample scope. The outstanding catalytic activity was reflected by catalyst loadings as low as 0.75 mol %, and the most step-economical access reported to date to angiotensin II receptor antagonist blockbuster drugs. Mechanistic studies indicated a kinetically relevant C-X cleavage by a single-electron transfer (SET)-type elementary process, and provided evidence for a PA-assisted C-H ruthenation step.

  10. C-H activation dependent Pd-catalyzed carbonylative coupling of (hetero)aryl bromides and polyfluoroarenes.

    PubMed

    Lian, Zhong; Friis, Stig D; Skrydstrup, Troels

    2015-02-04

    The carbonylative coupling of aryl and heteroaryl bromides with polyfluoroarenes via palladium-catalyzed C-H activation is presented. This transformation proceeds efficiently at moderate reaction temperatures and does not require strong base or reactive intermediates. A near stoichiometric amount of CO is sufficient and the methodology can thus be easily expanded to include the preparation of [(13)C]-acyl labeled benzopolyfluorophenones.

  11. Cationic Pd(II)-catalyzed C-H activation/cross-coupling reactions at room temperature: synthetic and mechanistic studies.

    PubMed

    Nishikata, Takashi; Abela, Alexander R; Huang, Shenlin; Lipshutz, Bruce H

    2016-01-01

    Cationic palladium(II) complexes have been found to be highly reactive towards aromatic C-H activation of arylureas at room temperature. A commercially available catalyst [Pd(MeCN)4](BF4)2 or a nitrile-free cationic palladium(II) complex generated in situ from the reaction of Pd(OAc)2 and HBF4, effectively catalyzes C-H activation/cross-coupling reactions between aryl iodides, arylboronic acids and acrylates under milder conditions than those previously reported. The nature of the directing group was found to be critical for achieving room temperature conditions, with the urea moiety the most effective in promoting facile coupling reactions at an ortho C-H position. This methodology has been utilized in a streamlined and efficient synthesis of boscalid, an agent produced on the kiloton scale annually and used to control a range of plant pathogens in broadacre and horticultural crops. Mechanistic investigations led to a proposed catalytic cycle involving three steps: (1) C-H activation to generate a cationic palladacycle; (2) reaction of the cationic palladacycle with an aryl iodide, arylboronic acid or acrylate, and (3) regeneration of the active cationic palladium catalyst. The reaction between a cationic palladium(II) complex and arylurea allowed the formation and isolation of the corresponding palladacycle intermediate, characterized by X-ray analysis. Roles of various additives in the stepwise process have also been studied.

  12. Rhodium(III)-catalyzed C-H activation/annulation with vinyl esters as an acetylene equivalent.

    PubMed

    Webb, Nicola J; Marsden, Stephen P; Raw, Steven A

    2014-09-19

    The behavior of electron-rich alkenes in rhodium-catalyzed C-H activation/annulation reactions is investigated. Vinyl acetate emerges as a convenient acetylene equivalent, facilitating the synthesis of sixteen 3,4-unsubstituted isoquinolones, as well as select heteroaryl-fused pyridones. The complementary regiochemical preferences of enol ethers versus enol esters/enamides is discussed.

  13. C-H bond activation enables the rapid construction and late-stage diversification of functional molecules

    NASA Astrophysics Data System (ADS)

    Wencel-Delord, Joanna; Glorius, Frank

    2013-05-01

    The beginning of the twenty-first century has witnessed significant advances in the field of C-H bond activation, and this transformation is now an established piece in the synthetic chemists' toolbox. This methodology has the potential to be used in many different areas of chemistry, for example it provides a perfect opportunity for the late-stage diversification of various kinds of organic scaffolds, ranging from relatively small molecules like drug candidates, to complex polydisperse organic compounds such as polymers. In this way, C-H activation approaches enable relatively straightforward access to a plethora of analogues or can help to streamline the lead-optimization phase. Furthermore, synthetic pathways for the construction of complex organic materials can now be designed that are more atom- and step-economical than previous methods and, in some cases, can be based on synthetic disconnections that are just not possible without C-H activation. This Perspective highlights the potential of metal-catalysed C-H bond activation reactions, which now extend beyond the field of traditional synthetic organic chemistry.

  14. Metal-free oxidative hydroxyalkylarylation of activated alkenes by direct sp3 C-H functionalization of alcohols.

    PubMed

    Meng, Yuan; Guo, Li-Na; Wang, Hua; Duan, Xin-Hua

    2013-09-04

    A metal-free tandem radical addition/cyclization reaction of activated alkenes and alcohols has been developed. The process provides an efficient and atom economical access to various valuable hydroxyl-containing oxindoles through the direct sp(3) C-H functionalization of alcohols.

  15. Rhodium-Catalyzed C-C Bond Formation via Heteroatom-Directed C-H Bond Activation

    SciTech Connect

    Colby, Denise; Bergman, Robert; Ellman, Jonathan

    2010-05-13

    Once considered the 'holy grail' of organometallic chemistry, synthetically useful reactions employing C-H bond activation have increasingly been developed and applied to natural product and drug synthesis over the past decade. The ubiquity and relative low cost of hydrocarbons makes C-H bond functionalization an attractive alternative to classical C-C bond forming reactions such as cross-coupling, which require organohalides and organometallic reagents. In addition to providing an atom economical alternative to standard cross - coupling strategies, C-H bond functionalization also reduces the production of toxic by-products, thereby contributing to the growing field of reactions with decreased environmental impact. In the area of C-C bond forming reactions that proceed via a C-H activation mechanism, rhodium catalysts stand out for their functional group tolerance and wide range of synthetic utility. Over the course of the last decade, many Rh-catalyzed methods for heteroatom-directed C-H bond functionalization have been reported and will be the focus of this review. Material appearing in the literature prior to 2001 has been reviewed previously and will only be introduced as background when necessary. The synthesis of complex molecules from relatively simple precursors has long been a goal for many organic chemists. The ability to selectively functionalize a molecule with minimal pre-activation can streamline syntheses and expand the opportunities to explore the utility of complex molecules in areas ranging from the pharmaceutical industry to materials science. Indeed, the issue of selectivity is paramount in the development of all C-H bond functionalization methods. Several groups have developed elegant approaches towards achieving selectivity in molecules that possess many sterically and electronically similar C-H bonds. Many of these approaches are discussed in detail in the accompanying articles in this special issue of Chemical Reviews. One approach that has

  16. Aspects of C-H Activation in Metal Complexes Containing Sulfur Ligands

    SciTech Connect

    Rakowski-DuBois, Mary C.

    2004-10-08

    those of related Cp-molybdenum complexes with sulfide ligands, which also activate hydrogen, but generally form hydrosulfido products without H2S elimination. C-H and C-S Cleavage Reactions. New mononuclear Cp{prime}Re(dithiolate) complexes such as Cp{prime}ReCl2(SC2H4S), 1, have been prepared and characterized and have been found to display a very interesting range of reactions. The thermal reaction of 1 involves the dehydrogenation of the alkanedithiolate ligand to form Cp{prime}ReCl2(SCH=CHS), 2 as well as a competing elimination of olefin from the dithiolate ligand in 1. On the basic of kinetic and related studies, the mechanism is proposed to involve a sequential series of reactions. In the first reaction, the olefin extrusion is proposed to produce a reactive Re-disulfide or Re-bis(sulfido) intermediate, CpReCl2S2 which serves as an oxidant for the dithiolate complex 1. The ability of the bis sulfido complex to dehydrogenate hydrocarbons is a unique feature and several additional dehydrogenation reactions with this system have been characterized, including the oxidation of other dithiolate complexes, of tetrahydro-naphthalene and of cyclohexadiene. Precedents for the role of metal sulfides in dehydrogenation reactions have been reported for heterogeneous metal sulfide surfaces. This work has begun to provide information about the electronic and structural features necessary for such reactivity. Carbon Sulfur Bond Formation. When the thermal reaction of 1 was carried out in the presence of excess dry ethene a new reaction was observed in which the dithiolate ligand is displaced by incoming olefin to form the cyclic organic product, 1,4-dithiane. The Re product is identified as Cp{prime}Re(alkene)Cl2 on the basis of NMR and mass spectroscopic data. Similar reactions with alkynes have been found to form unsaturated 6-membered rings and reactions with 1,3 dithiolate complexes form the organic 7-membered rings. To our knowledge the formation of cyclic bis-thioethers by

  17. Activation of Propane C-H and C-C Bonds by Gas-Phase Pt Atom: A Theoretical Study

    PubMed Central

    Li, Fang-Ming; Yang, Hua-Qing; Ju, Ting-Yong; Li, Xiang-Yuan; Hu, Chang-Wei

    2012-01-01

    The reaction mechanism of the gas-phase Pt atom with C3H8 has been systematically investigated on the singlet and triplet potential energy surfaces at CCSD(T)//BPW91/6-311++G(d, p), Lanl2dz level. Pt atom prefers the attack of primary over secondary C-H bonds in propane. For the Pt + C3H8 reaction, the major and minor reaction channels lead to PtC3H6 + H2 and PtCH2 + C2H6, respectively, whereas the possibility to form products PtC2H4 + CH4 is so small that it can be neglected. The minimal energy reaction pathway for the formation of PtC3H6 + H2, involving one spin inversion, prefers to start at the triplet state and afterward proceed along the singlet state. The optimal C-C bond cleavages are assigned to C-H bond activation as the first step, followed by cleavage of a C-C bond. The C-H insertion intermediates are kinetically favored over the C-C insertion intermediates. From C-C to C-H oxidative insertion, the lowering of activation barrier is mainly caused by the more stabilizing transition state interaction ΔE≠int, which is the actual interaction energy between the deformed reactants in the transition state. PMID:22942766

  18. Oxygen activation and intramolecular C-H bond activation by an amidate-bridged diiron(II) complex.

    PubMed

    Jones, Matthew B; Hardcastle, Kenneth I; Hagen, Karl S; MacBeth, Cora E

    2011-07-18

    A diiron(II) complex containing two μ-1,3-(κN:κO)-amidate linkages has been synthesized using the 2,2',2''-tris(isobutyrylamido)triphenylamine (H(3)L(iPr)) ligand. The resulting diiron complex, 1, reacts with dioxygen (or iodosylbenzene) to effect intramolecular C-H bond activation at the methine position of the ligand isopropyl group. The ligand-activated product, 2, has been isolated and characterized by a variety of methods including X-ray crystallography. Electrospray ionization mass spectroscopy of 2 prepared from(18)O(2) was used to confirm that the oxygen atom incorporated into the ligand framework is derived from molecular oxygen.

  19. Conversion of 1-alkenes into 1,4-diols through an auxiliary-mediated formal homoallylic C-H oxidation.

    PubMed

    Ghavtadze, Nugzar; Melkonyan, Ferdinand S; Gulevich, Anton V; Huang, Chunhui; Gevorgyan, Vladimir

    2014-02-01

    The ubiquitous nature of C-H bonds in organic molecules makes them attractive as a target for rapid complexity generation, but brings with it the problem of achieving selective reactions. In developing new methodologies for C-H functionalization, alkenes are an attractive starting material because of their abundance and low cost. Here we describe the conversion of 1-alkenes into 1,4-diols. The method involves the installation of a new Si,N-type chelating auxiliary group on the alkene followed by iridium-catalysed C-H silylation of an unactivated δ-C(sp(3))-H bond to produce a silolane intermediate. Oxidation of the C-Si bonds affords a 1,4-diol. The method is demonstrated to have broad scope and good functional group compatibility by application to the selective 1,4-oxygenation of several natural products and derivatives.

  20. Mechanistic Investigations of C-H Activations on Silica-Supported Co(ii) Sites in Catalytic Propane Dehydrogenation.

    PubMed

    Estes, Deven P

    2017-04-26

    Catalytic reactions involving C-H bond activations are central to the chemical industry. One such example, alkane dehydrogenation, has recently become very important due to shortfalls in propene production and a large supply of cheap propane. However, current technologies are inefficient and have only moderate selectivity. In order to understand how to improve currently used catalysts, we must know more about the mechanism by which propane is dehydrogenated. We show here that Co(ii) sites on silica are good catalysts for the dehydrogenation of propane, having high activity and selectivity that is reasonably stable over the course of 10 h. Mechanistic investigations of this catalyst show that the main activation mechanism is most likely C-H activation by 1,2 addition.

  1. Tandem C-H activation/arylation catalyzed by low-valent iron complexes with bisiminopyridine ligands.

    PubMed

    Salanouve, Elise; Bouzemame, Ghania; Blanchard, Sébastien; Derat, Etienne; Desage-El Murr, Marine; Fensterbank, Louis

    2014-04-14

    Tandem C-H activation/arylation between unactivated arenes and aryl halides catalyzed by iron complexes that bear redox-active non-innocent bisiminopyridine ligands is reported. Similar reactions catalyzed by first-row transition metals have been shown to involve substrate-based aryl radicals, whereas our catalytic system likely involves ligand-centered radicals. Preliminary mechanistic investigations based on spectroscopic and reactivity studies, in conjunction with DFT calculations, led us to propose that the reaction could proceed through an inner-sphere C-H activation pathway, which is rarely observed in the case of iron complexes. This bielectronic noble-metal-like behavior could be sustained by the redox-active non-innocent bisiminopyridine ligands.

  2. C-H bond activation of benzene by unsaturated η2-cyclopropene and η2-benzyne complexes of niobium.

    PubMed

    Boulho, Cédric; Oulié, Pascal; Vendier, Laure; Etienne, Michel; Pimienta, Véronique; Locati, Abel; Bessac, Fabienne; Maseras, Feliu; Pantazis, Dimitrios A; McGrady, John E

    2010-10-13

    We report the synthesis of a niobium cyclopropyl complex, Tp(Me2)NbMe(c-C(3)H(5))(MeCCMe), and show that thermal loss of methane from this compound generates an intermediate that is capable of activating both aliphatic and aromatic C-H bonds. Isotopic labeling, trapping studies, a detailed kinetic analysis, and density functional theory all suggest that the active intermediate is an η(2)-cyclopropene complex formed via β-hydrogen abstraction rather than an isomeric cyclopropylidene species. C-H activation chemistry of this type represents a rather unusual reactivity pattern for η(2)-alkene complexes but is favored in this case by the strain in the C(3) ring which prevents the decomposition of the key intermediate via loss of cyclopropene.

  3. C-H bond activation of methane in aqueous solution: a hybrid quantum mechanical/effective fragment potential study.

    PubMed

    Da Silva, Júlio C S; Rocha, Willian R

    2011-12-01

    In this study, we investigated the C-H bond activation of methane catalyzed by the complex [PtCl(4)](2-), using the hybrid quantum mechanical/effective fragment potential (EFP) approach. We analyzed the structures, energetic properties, and reaction mechanism involved in the elementary steps that compose the catalytic cycle of the Shilov reaction. Our B3LYP/SBKJC/cc-pVDZ/EFP results show that the methane activation may proceed through two pathways: (i) electrophilic addition or (ii) direct oxidative addition of the C-H bond of the alkane. The electrophilic addition pathway proceeds in two steps with formation of a σ-methane complex, with a Gibbs free energy barrier of 24.6 kcal mol(-1), followed by the cleavage of the C-H bond, with an energy barrier of 4.3 kcal mol(-1) . The activation Gibbs free energy, calculated for the methane uptake step was 24.6 kcal mol(-1), which is in good agreement with experimental value of 23.1 kcal mol(-1) obtained for a related system. The results shows that the activation of the C-H bond promoted by the [PtCl(4)](2-) catalyst in aqueous solution occurs through a direct oxidative addition of the C-H bond, in a single step, with an activation free energy of 25.2 kcal mol(-1), as the electrophilic addition pathway leads to the formation of a σ-methane intermediate that rapidly undergoes decomposition. The inclusion of long-range solvent effects with polarizable continuum model does not change the activation energies computed at the B3LYP/SBKJC/cc-pVDZ/EFP level of theory significantly, indicating that the large EFP water cluster used, obtained from Monte Carlo simulations and analysis of the center-of-mass radial pair distribution function, captures the most important solvent effects.

  4. Reactivity of oxygen radical anions bound to scandia nanoparticles in the gas phase: C-H bond activation.

    PubMed

    Tian, Li-Hua; Meng, Jing-Heng; Wu, Xiao-Nan; Zhao, Yan-Xia; Ding, Xun-Lei; He, Sheng-Gui; Ma, Tong-Mei

    2014-01-20

    The activation of C-H bonds in alkanes is currently a hot research topic in chemistry. The atomic oxygen radical anion (O(-·)) is an important species in C-H activation. The mechanistic details of C-H activation by O(-·) radicals can be well understood by studying the reactions between O(-·) containing transition metal oxide clusters and alkanes. Here the reactivity of scandium oxide cluster anions toward n-butane was studied by using a high-resolution time-of-flight mass spectrometer coupled with a fast flow reactor. Hydrogen atom abstraction (HAA) from n-butane by (Sc2O3)(N)O(-) (N=1-18) clusters was observed. The reactivity of (Sc2O3)(N)O(-) (N=1-18) clusters is significantly sizedependent and the highest reactivity was observed for N=4 (Sc8O13(-)) and 12 (Sc24O37(-)). Larger (Sc2O3)(N)O(-) clusters generally have higher reactivity than the smaller ones. Density functional theory calculations were performed to interpret the reactivity of (Sc2O3)(N)O(-) (N=1-5) clusters, which were found to contain the O(-·) radicals as the active sites. The local charge environment around the O(-·) radicals was demonstrated to control the experimentally observed size-dependent reactivity. This work is among the first to report HAA reactivity of cluster anions with dimensions up to nanosize toward alkane molecules. The anionic O(-·) containing scandium oxide clusters are found to be more reactive than the corresponding cationic ones in the C-H bond activation.

  5. Ru(ii)-Catalyzed C-H activation and annulation of salicylaldehydes with monosubstituted and disubstituted alkynes.

    PubMed

    Baruah, Swagata; Kaishap, Partha Pratim; Gogoi, Sanjib

    2016-10-27

    The Ru(ii)-catalyzed C-H activation and annulation reaction of salicylaldehydes and disubstituted alkynes affords chromones in high yields. This reaction also works with terminal alkynes and tolerates a wide range of sensitive functional groups. The selectivity pattern of this Ru(ii)-catalyzed annulation reaction is different from the known Au(i), Rh(iii)-catalyzed annulation reactions of salicylaldehydes and terminal alkynes.

  6. Fundamental Role of Exchange-Enhanced Reactivity in C-H Activation by S=2 Oxoiron(IV) Complexes

    PubMed Central

    Janardanan, Deepa; Wang, Yong; Schyman, Patric

    2010-01-01

    It is shown that H-abstraction reactivity by oxoiron(IV) complexes with a quintet ground state is highly enhanced due to exchange-stabilization endowed by the increased number of the exchange d-d interactions near the transition state. It is postulated that nonheme enzymes evolved to make use of this fundamental mechanism in activation of strong C-H bonds. PMID:20358569

  7. Easy activation of two C-H bonds of an N-heterocyclic carbene N-methyl group.

    PubMed

    Cabeza, Javier A; del Río, Ignacio; Miguel, Daniel; Sánchez-Vega, M Gabriela

    2005-08-21

    The first trinuclear clusters containing NHC ligands are described; the compound [Ru3(Me2Im)(CO)11](Me2Im=1,3-dimethylimidazol-2-ylidene) is easily converted into [Ru3(mu-H)2(mu3-MeImCH)(CO)9] by a process involving the activation of two C-H bonds of a methyl group that is an example of degradation of a metal-coordinated NHC ligand under mild conditions.

  8. Palladium-catalyzed C-H activation/intramolecular amination reaction: a new route to 3-aryl/alkylindazoles.

    PubMed

    Inamoto, Kiyofumi; Saito, Tadataka; Katsuno, Mika; Sakamoto, Takao; Hiroya, Kou

    2007-07-19

    A method for the catalytic C-H activation of hydrazone compounds followed by intramolecular amination is described. It requires the use of a catalytic amount of Pd(OAc)2 in the presence of Cu(OAc)2 and AgOCOCF3, which efficiently effects the cyclization to afford variously substituted indazoles. The reactions proceed under relatively mild conditions and thus tolerate a variety of functional groups, including alkoxycarbonyl and cyano groups and halogen atoms.

  9. Vapour-induced solid-state C-H bond activation for the clean synthesis of an organopalladium biothiol sensor.

    PubMed

    Monas, Andrea; Užarević, Krunoslav; Halasz, Ivan; Kulcsár, Marina Juribašić; Ćurić, Manda

    2016-10-27

    Room-temperature accelerated aging in the solid state has been applied for atom- and energy-efficient activation of either one or two C-H bonds of azobenzene and methyl orange by palladium(ii) acetate. Organopalladium complexes are prepared in quantitative reactions without potentially harmful side products. Dicyclopalladated methyl orange is water-soluble and is a selective chromogenic biothiol sensor at physiologically-relevant micromolar concentrations in buffered aqueous media.

  10. Copper-dioxygen complex mediated C-H bond oxygenation: relevance for particulate methane monooxygenase (pMMO).

    PubMed

    Himes, Richard A; Karlin, Kenneth D

    2009-02-01

    Particulate methane monooxygenase (pMMO), an integral membrane protein found in methanotrophic bacteria, catalyzes the oxidation of methane to methanol. Expression and greater activity of the enzyme in the presence of copper ion suggest that pMMO is a cuprous metalloenzyme. Recent advances - especially the first crystal structures of pMMO - have energized the field, but the nature of the active site(s) and the mechanism of methane oxidation remain poorly understood-yet hotly contested. Herein the authors briefly review the current understanding of the pMMO metal sites and discuss advances in small molecule Cu-O(2) chemistry that may contribute to an understanding of copper-ion mediated hydrocarbon oxidation chemistry.

  11. A Simple Base-Mediated Halogenation of Acidic sp2 C-H Bonds under Non-Cryogenic Conditions

    PubMed Central

    Do, Hien-Quang; Daugulis, Olafs

    2009-01-01

    A new method has been developed for in situ halogenation of acidic sp2 carbon-hydrogen bonds in heterocycles and electron-deficient arenes. Either selective monohalogenation or one-step exhaustive polyhalogenation is possible for substrates possessing several C-H bonds that are flanked by electron-withdrawing groups. For the most acidic arenes, such as pentafluorobenzene, K3PO4 base can be employed instead of BuLi for metalation/halogenation sequences. PMID:19102661

  12. Oxidative C-H/C-H Coupling Reactions between Two (Hetero)arenes.

    PubMed

    Yang, Yudong; Lan, Jingbo; You, Jingsong

    2017-01-13

    Transition metal-mediated C-H bond activation and functionalization represent one of the most straightforward and powerful tools in modern organic synthetic chemistry. Bi(hetero)aryls are privileged π-conjugated structural cores in biologically active molecules, organic functional materials, ligands, and organic synthetic intermediates. The oxidative C-H/C-H coupling reactions between two (hetero)arenes through 2-fold C-H activation offer a valuable opportunity for rapid assembly of diverse bi(hetero)aryls and further exploitation of their applications in pharmaceutical and material sciences. This review provides a comprehensive overview of the fundamentals and applications of transition metal-mediated/catalyzed oxidative C-H/C-H coupling reactions between two (hetero)arenes. The substrate scope, limitation, reaction mechanism, regioselectivity, and chemoselectivity, as well as related control strategies of these reactions are discussed. Additionally, the applications of these established methods in the synthesis of natural products and exploitation of new organic functional materials are exemplified. In the last section, a short introduction on oxidant- or Lewis acid-mediated oxidative Ar-H/Ar-H coupling reactions is presented, considering that it is a very powerful method for the construction of biaryl units and polycylic arenes.

  13. Synthesis and catalytic applications of 1,2,3-triazolylidene gold(i) complexes in silver-free oxazoline syntheses and C-H bond activation.

    PubMed

    Pretorius, René; Fructos, Manuel R; Müller-Bunz, Helge; Gossage, Robert A; Pérez, Pedro J; Albrecht, Martin

    2016-10-07

    A series of novel 1,2,3-triazolylidene gold(i) chloride complexes have been synthesised and fully characterised. Silver-free methodologies for chloride ion abstraction of these complexes were evaluated for their potential as Au-based catalyst precursors. Using simple potassium salts or MeOTf as chloride scavengers produced metal complexes that catalyse both the regioselective synthesis of oxazolines and the C-H activation of benzene or styrene for carbene transfer from ethyl diazoacetate. These results indicate that Ag-free activation of 1,2,3-triazolylidene gold(i) chloride complexes is feasible for the generation of catalytically active Au triazolylidene species. However, silver-mediated activation imparts substantially higher catalytic activity in oxazoline synthesis.

  14. Cu-Mediated C-H (18)F-Fluorination of Electron-Rich (Hetero)arenes.

    PubMed

    McCammant, Matthew S; Thompson, Stephen; Brooks, Allen F; Krska, Shane W; Scott, Peter J H; Sanford, Melanie S

    2017-07-21

    This communication describes a method for the nucleophilic radiofluorination of electron-rich arenes. The reaction involves the initial C(sp(2))-H functionalization of an electron-rich arene with MesI(OH)OTs to form a (mesityl)(aryl)iodonium salt. This salt is then used in situ in a Cu-mediated radiofluorination with [(18)F]KF. This approach leverages the stability and availability of electron-rich arene starting materials to enable mild late-stage radiofluorination of toluene, anisole, aniline, pyrrole, and thiophene derivatives. The radiofluorination has been automated to access a 41 mCi dose of an (18)F-labeled nimesulide derivative in high (2800 ± 700 Ci/mmol) specific activity.

  15. Cu-catalyzed cross-dehydrogenative coupling: A versatile strategy for C-C bond formations via the oxidative activation of sp3 C-H bonds

    NASA Astrophysics Data System (ADS)

    Li, Zhiping; Bohle, D. Scott; Li, Chao-Jun

    2006-06-01

    Cu-catalyzed cross-dehydrogenative coupling (CDC) methodologies were developed based on the oxidative activation of sp3 C-H bonds adjacent to a nitrogen atom. Various sp, sp2, and sp3 C-H bonds of pronucleophiles were used in the Cu-catalyzed CDC reactions. Based on these results, the mechanisms of the CDC reactions also are discussed. C-H activation | catalysis | Baylis-Hillman reaction | Mannich reaction | Friedel-Crafts reaction

  16. Mechanism of cooperative catalysis in a Lewis acid promoted nickel-catalyzed dual C-H activation reaction.

    PubMed

    Anand, Megha; Sunoj, Raghavan B

    2012-09-07

    The mechanism of cooperativity offered by AlMe(3) in a Ni-catalyzed dehydrogenative cycloaddition between substituted formamides and an alkyne is investigated by using DFT(SMD(toluene)/M06/6-31G**) methods. The preferred pathway is identified to involve dual C-H activation, with first a higher barrier formyl C(sp(2))-H oxidative insertion followed by benzylic methyl C(sp(3))-H activation. The cooperativity is traced to be of kinetic origin as evidenced by stabilized transition states when AlMe(3) is bound to the formyl group, particularly in the oxidative insertion step.

  17. Contrasting electronic requirements for C-H binding and C-H activation in d(6) half-sandwich complexes of rhenium and tungsten.

    PubMed

    Thenraj, Murugesan; Samuelson, Ashoka G

    2015-09-15

    A computational study of the interaction half-sandwich metal fragments (metal = Re/W, electron count = d(6)), containing linear nitrosyl (NO(+) ), carbon monoxide (CO), trifluorophosphine (PF3 ), N-heterocyclic carbene (NHC) ligands with alkanes are conducted using density functional theory employing the hybrid meta-GGA functional (M06). Electron deficiency on the metal increases with the ligand in the order NHC < CO < PF3 < NO(+). Electron-withdrawing ligands like NO(+) lead to more stable alkane complexes than NHC, a strong electron donor. Energy decomposition analysis shows that stabilization is due to orbital interaction involving charge transfer from the alkane to the metal. Reactivity and dynamics of the alkane fragment are facilitated by electron donors on the metal. These results match most of the experimental results known for CO and PF3 complexes. The study suggests activation of alkane in metal complexes to be facile with strong donor ligands like NHC. © 2015 Wiley Periodicals, Inc.

  18. 2009 C. H. McCloy Lecture. Seeing Is Believing: Observing Physical Activity and Its Contexts

    ERIC Educational Resources Information Center

    McKenzie, Thomas L.

    2010-01-01

    Direct (systematic) observation has been a mainstay of my research for over three decades. I believe it is an important tool for assessing physical activity, because it can simultaneously provide contextually rich data on the setting in which the activity occurs. It is particularly useful for those interested in using ecological and…

  19. Physical Activity, Physical Fitness, and Health. C.H. McCloy Research Lecture: 1993.

    ERIC Educational Resources Information Center

    Blair, Steven N.

    1993-01-01

    Examines recent evidence on the relations between physical activity, physical fitness, and health, noting the possible causal nature of the associations. The article evaluates the public health burden of sedentary lifestyles in the United States and provides suggestions for increasing participation in physical activity. (SM)

  20. Activation of C-H Bonds of Alkyl- and Arylnitriles by the TaCl5-PPh3 Lewis Pair.

    PubMed

    Rahman, Md Mamdudur; Smith, Mark D; Amaya, José A; Makris, Thomas M; Peryshkov, Dmitry V

    2017-09-13

    A new pathway of activation of C-H bonds of alkyl- and arylnitriles by a cooperative action of TaCl5 and PPh3 under mild conditions is reported. Coordination of nitriles to the highly Lewis acidic Ta(V) center resulted in an activation of their aliphatic and aromatic C-H bonds, allowing nucleophilic attack and deprotonation by the relatively weak base PPh3. The propensity of Ta(V) to form multiple bonds to nitrogen-containing ligands is an important driving force of the reaction as it led to a sequence of bond rearrangements and the emergence of, in the case of benzonitrile, a zwitterionic enediimido complex of Ta(V) through C═C double bond formation between two activated nitrile fragments. These transformations highlight the special role of the high-valent transition metal halide in substrate activation and distinguish the reactivity of the TaCl5-PPh3 system from both non-metal- and late transition metal-based frustrated Lewis pairs.

  1. Rhodium(III)-Catalyzed Enantiotopic C-H Activation Enables Access to P-Chiral Cyclic Phosphinamides.

    PubMed

    Sun, Yang; Cramer, Nicolai

    2017-01-02

    Compounds with stereogenic phosphorus atoms are frequently used as ligands for transition-metal as well as organocatalysts. A direct catalytic enantioselective method for the synthesis of P-chiral compounds from easily accessible diaryl phosphinamides is presented. The use of rhodium(III) complexes equipped with a suitable atropochiral cyclopentadienyl ligand is shown to enable an enantiodetermining C-H activation step. Upon trapping with alkynes, a broad variety of cyclic phosphinamides with a stereogenic phosphorus(V) atom are formed in high yields and enantioselectivities. Moreover, these can be reduced enantiospecifically to P-chiral phosphorus(III) compounds.

  2. Reactivity of mononuclear alkylperoxo copper(II) complex. O-O bond cleavage and C-H bond activation.

    PubMed

    Kunishita, Atsushi; Ishimaru, Hirohito; Nakashima, Satoru; Ogura, Takashi; Itoh, Shinobu

    2008-04-02

    A detailed reactivity study has been carried out for the first time on a new mononuclear alkylperoxo copper(II) complex, which is generated by the reaction of copper(II) complex supported by the bis(pyridylmethyl)amine tridentate ligand containing a phenyl group at the 6-position of the pyridine donor groups and cumene hydroperoxide (CmOOH) in CH3CN. The cumylperoxo copper(II) complex thus obtained has been found to undergo homolytic cleavage of the O-O bond and induce C-H bond activation of exogenous substrates, providing important insights into the catalytic mechanism of copper monooxygenases.

  3. Double N,B-Type Bidentate Boryl Ligands Enabling a Highly Active Iridium Catalyst for C-H Borylation.

    PubMed

    Wang, Guanghui; Xu, Liang; Li, Pengfei

    2015-07-01

    Boryl ligands hold promise in catalysis due to their very high electron-donating property. In this communication double N,B-type boryl anions were designed as bidentate ligands to promote an sp(2) C-H borylation reaction. A symmetric pyridine-containing tetraaminodiborane(4) compound (1) was readily prepared as the ligand precursor that could be used, in combination with [Ir(OMe)(COD)]2, to in situ generate a highly active catalyst for a broad range of (hetero)arene substrates including highly electron-rich and/or sterically hindered ones. This work provides the first example of a bidentate boryl ligand in supporting homogeneous organometallic catalysis.

  4. Synthesis of Active Hexafluoroisopropyl Benzoates through a Hydrogen-Bond-Enabled Palladium(II)-Catalyzed C-H Alkoxycarbonylation Reaction.

    PubMed

    Wang, Yang; Gevorgyan, Vladimir

    2017-03-13

    A Pd(II) -catalyzed ortho C-H alkoxycarbonylation reaction of aryl silanes toward active hexafluoroisopropyl (HFIP) benzoate esters has been developed. This efficient reaction features high selectivity and good functional-group tolerance. Notably, given the general nature of the silyl-tethered directing group, this method delivers products bearing two independently modifiable sites. NMR studies reveal the presence of hydrogen bonding between HFIP and a pyrimidine nitrogen atom of the directing group, and it is thought to be crucial for the success of this alkoxycarbonylation reaction.

  5. C. H. McCloy Lecture: Fifty Years of Advancements in Fitness and Activity Research

    ERIC Educational Resources Information Center

    Corbin, Charles B.

    2012-01-01

    Over the past 50 years progress in fitness and activity research has been influenced by social events, technical innovations, and changes in the field of physical education and kinesiology. The conventional wisdom of the 1950s yielded to a new wisdom based on research evidence. The author's research, as well as the research of others, from 1960 to…

  6. C-H Bond Activation by Early Transition Metal Carbide Cluster Anion MoC3 (-).

    PubMed

    Li, Zi-Yu; Hu, Lianrui; Liu, Qing-Yu; Ning, Chuan-Gang; Chen, Hui; He, Sheng-Gui; Yao, Jiannian

    2015-12-01

    Although early transition metal (ETM) carbides can activate CH bonds in condensed-phase systems, the electronic-level mechanism is unclear. Atomic clusters are ideal model systems for understanding the mechanisms of bond activation. For the first time, CH activation of a simple alkane (ethane) by an ETM carbide cluster anion (MoC3 (-) ) under thermal-collision conditions has been identified by using high-resolution mass spectrometry, photoelectron imaging spectroscopy, and high-level quantum chemical calculations. Dehydrogenation and ethene elimination were observed in the reaction of MoC3 (-) with C2 H6 . The CH activation follows a mechanism of oxidative addition that is much more favorable in the carbon-stabilized low-spin ground electronic state than in the high-spin excited state. The reaction efficiency between the MoC3 (-) anion and C2 H6 is low (0.23±0.05) %. A comparison between the anionic and a highly efficient cationic reaction system (Pt(+) +C2 H6 ) was made. It turned out that the potential-energy surfaces for the entrance channels of the anionic and cationic reaction systems can be very different. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. C. H. McCloy Lecture: Fifty Years of Advancements in Fitness and Activity Research

    ERIC Educational Resources Information Center

    Corbin, Charles B.

    2012-01-01

    Over the past 50 years progress in fitness and activity research has been influenced by social events, technical innovations, and changes in the field of physical education and kinesiology. The conventional wisdom of the 1950s yielded to a new wisdom based on research evidence. The author's research, as well as the research of others, from 1960 to…

  8. Probing the limits of ligand steric bulk: backbone C-H activation in a saturated N-heterocyclic carbene.

    PubMed

    Phillips, Nicholas; Tirfoin, Remi; Aldridge, Simon

    2014-03-24

    The consequences of extremely high steric loading have been probed for late transition metal complexes featuring the expanded ring N-heterocyclic carbene 6-Dipp. The reluctance of this ligand to form 2:1 complexes with d-block metals (rationalised on the basis of its percentage buried volume, % Vbur , of 50.8%) leads to C-H and C-N bond activation processes driven by attack at the backbone β-CH2 unit. In the presence of Ir(I) (or indeed H(+) ) the net result is the formation of an allyl formamidine fragment, while Au(I) brings about an additional ring (re-)closure step via nucleophilic attack at the coordinated alkene. The net transformation of 6-Dipp in the presence of [(6-Dipp)Au](+) represents to our knowledge the first example of backbone C-H activation of a saturated N-heterocyclic carbene, proceeding in this case via a mechanism which involves free carbene in addition to the Au(I) centre. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Theoretical study of the activation of alkane C-H and C-C bonds by different transition metals

    SciTech Connect

    Blomberg, M.R.A.; Siegbahn, P.E.M.; Nagashima, Umpei; Wennerberg, J. )

    1991-01-16

    The activation of C-H and C-C bonds by different transition metal atoms has been studied using quantum chemical methods including electron correlation. The metals studied are iron, cobalt, nickel, rhodium, and palladium. A general result for all these metals is that the barrier for C-C insertion is found to be 14-20 kcal/mol higher than the barrier for C-H insertion. This can be explained by the difference in directionality between bonds to methyl groups and to hydrogen atoms. The size of the activation barrier is similar among transition metals in the same row but is considerably lower for the second-row metals than for the first-row metals studied here. This latter result follows from the more efficient sd-hybridization obtained for second-row metals, which in turn follows from the more similar size of the nd and (n + 1)s orbitals for these atoms. The differences in the atomic spectra between first- and second-row metals also play a part in making the barrier for second-row metals lower.

  10. Designing catalysts for functionalization of unactivated C-H bonds based on the CH activation reaction.

    PubMed

    Hashiguchi, Brian G; Bischof, Steven M; Konnick, Michael M; Periana, Roy A

    2012-06-19

    In an effort to augment or displace petroleum as a source of liquid fuels and chemicals, researchers are seeking lower cost technologies that convert natural gas (largely methane) to products such as methanol. Current methane to methanol technologies based on highly optimized, indirect, high-temperature chemistry (>800 °C) are prohibitively expensive. A new generation of catalysts is needed to rapidly convert methane and O(2) (ideally as air) directly to methanol (or other liquid hydrocarbons) at lower temperatures (~250 °C) and with high selectivity. Our approach is based on the reaction between CH bonds of hydrocarbons (RH) and transition metal complexes, L(n)M-X, to generate activated L(n)M-R intermediates while avoiding the formation of free radicals or carbocations. We have focused on the incorporation of this reaction into catalytic cycles by integrating the activation of the CH bond with the functionalization of L(n)M-R to generate the desired product and regenerate the L(n)M-X complex. To avoid free-radical reactions possible with the direct use of O(2), our approach is based on the use of air-recyclable oxidants. In addition, the solvent serves several roles including protection of the product, generation of highly active catalysts, and in some cases, as the air-regenerable oxidant. We postulate that there could be three distinct classes of catalyst/oxidant/solvent systems. The established electrophilic class combines electron-poor catalysts in acidic solvents that conceptually react by net removal of electrons from the bonding orbitals of the CH bond. The solvent protects the CH(3)OH by conversion to more electron-poor [CH(3)OH(2)](+) or the ester and also increases the electrophilicity of the catalyst by ligand protonation. The nucleophilic class matches electron-rich catalysts with basic solvents and conceptually reacts by net donation of electrons to the antibonding orbitals of the CH bond. In this case, the solvent could protect the CH(3)OH by

  11. Palladium-catalyzed meta-selective C-H bond activation with a nitrile-containing template: computational study on mechanism and origins of selectivity.

    PubMed

    Yang, Yun-Fang; Cheng, Gui-Juan; Liu, Peng; Leow, Dasheng; Sun, Tian-Yu; Chen, Ping; Zhang, Xinhao; Yu, Jin-Quan; Wu, Yun-Dong; Houk, K N

    2014-01-08

    Density functional theory investigations have elucidated the mechanism and origins of meta-regioselectivity of Pd(II)-catalyzed C-H olefinations of toluene derivatives that employ a nitrile-containing template. The reaction proceeds through four major steps: C-H activation, alkene insertion, β-hydride elimination, and reductive elimination. The C-H activation step, which proceeds via a concerted metalation-deprotonation (CMD) pathway, is found to be the rate- and regioselectivity-determining step. For the crucial C-H activation, four possible active catalytic species-monomeric Pd(OAc)2, dimeric Pd2(OAc)4, heterodimeric PdAg(OAc)3, and trimeric Pd3(OAc)6-have been investigated. The computations indicated that the C-H activation with the nitrile-containing template occurs via a Pd-Ag heterodimeric transition state. The nitrile directing group coordinates with Ag while the Pd is placed adjacent to the meta-C-H bond in the transition state, leading to the observed high meta-selectivity. The Pd2(OAc)4 dimeric mechanism also leads to the meta-C-H activation product but with higher activation energies than the Pd-Ag heterodimeric mechanism. The Pd monomeric and trimeric mechanisms require much higher activation free energies and are predicted to give ortho products. Structural and distortion energy analysis of the transition states revealed significant effects of distortions of the template on mechanism and regioselectivity, which provided hints for further developments of new templates.

  12. Reactivity control of C-H bond activation over vanadium-silver bimetallic oxide cluster cations.

    PubMed

    Li, Xiao-Na; Wu, Xiao-Nan; Ding, Xun-Lei; Xu, Bo; He, Sheng-Gui

    2012-08-27

    Vanadium-silver bimetallic oxide cluster ions (V(x)Ag(y)O(z)(+); x=1-4, y=1-4, z=3-11) are produced by laser ablation and reacted with ethane in a fast-flow reactor. A reflectron time of flight (Re-TOF) mass spectrometer is used to detect the cluster distribution before and after the reactions. Hydrogen atom abstraction (HAA) reactions are identified over VAgO(3)(+), V(2)Ag(2)O(6)(+), V(2)Ag(4)O(7)(+), V(3)AgO(8)(+), V(3)Ag(3)O(9)(+), and V(4)Ag(2)O(11)(+) ions, in which the oxygen-centered radicals terminally bonded on V atoms are active sites for the facile HAA reactions. DFT calculations are performed to study the structures, bonding, and reactivity. The reaction mechanisms of V(2)Ag(2)O(6)(+) +C(2)H(6) are also given. The doped Ag atoms with a valence state of +1 are highly dispersed at the periphery of the V(x)Ag(y)O(z)(+) cluster ions. The reactivity can be well-tuned gradually by controlling the number of Ag atoms. The steric protection due to the peripherally bonded Ag atoms greatly enhances the selectivity of the V-Ag bimetallic oxide clusters with respect to the corresponding pure vanadium oxide systems. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Uranium azide photolysis results in C-H bond activation and provides evidence for a terminal uranium nitride

    NASA Astrophysics Data System (ADS)

    Thomson, Robert K.; Cantat, Thibault; Scott, Brian L.; Morris, David E.; Batista, Enrique R.; Kiplinger, Jaqueline L.

    2010-09-01

    Uranium nitride [U≡N]x is an alternative nuclear fuel that has great potential in the expanding future of nuclear power; however, very little is known about the U≡N functionality. We show, for the first time, that a terminal uranium nitride complex can be generated by photolysis of an azide (U-N=N=N) precursor. The transient U≡N fragment is reactive and undergoes insertion into a ligand C-H bond to generate new N-H and N-C bonds. The mechanism of this unprecedented reaction has been evaluated through computational and spectroscopic studies, which reveal that the photochemical azide activation pathway can be shut down through coordination of the terminal azide ligand to the Lewis acid B(C6F5)3. These studies demonstrate that photochemistry can be a powerful tool for inducing redox transformations for organometallic actinide complexes, and that the terminal uranium nitride fragment is reactive, cleaving strong C-H bonds.

  14. Direct Synthesis of Protoberberine Alkaloids by Rh-Catalyzed C-H Bond Activation as the Key Step.

    PubMed

    Jayakumar, Jayachandran; Cheng, Chien-Hong

    2016-01-26

    A one-pot reaction of substituted benzaldehydes with alkyne-amines by a Rh-catalyzed C-H activation and annulation to afford various natural and unnatural protoberberine alkaloids is reported. This reaction provides a convenient route for the generation of a compound library of protoberberine salts, which recently have attracted great attention because of their diverse biological activities. In addition, pyridinium salt derivatives can also be formed in good yields from α,β-unsaturated aldehydes and amino-alkynes. This reaction proceeds with excellent regioselectivity and good functional group compatibility under mild reaction conditions by using O2 as the oxidant. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Metal-organic cooperative catalysis in C-H and C-C bond activation and its concurrent recovery.

    PubMed

    Park, Young Jun; Park, Jung-Woo; Jun, Chul-Ho

    2008-02-01

    The development of an efficient catalytic activation (cleavage) system for C-H and C-C bonds is an important challenge in organic synthesis, because these bonds comprise a variety of organic molecules such as natural products, petroleum oils, and polymers on the earth. Among many elegant approaches utilizing transition metals to activate C-H and C-C bonds facilely, chelation-assisted protocols based on the coordinating ability of an organic moiety have attracted great attention, though they have often suffered from the need for an intact coordinating group in a substrate. In this Account, we describe our entire efforts to activate C-H or C-C bonds adjacent to carbonyl groups by employing a new concept of metal-organic cooperative catalysis (MOCC), which enables the temporal installation of a 2-aminopyridyl group into common aldehydes or ketones in a catalytic way. Consequently, a series of new catalytic reactions such as alcohol hydroacylation, oxo-ester synthesis, C-C triple bond cleavage, hydrative dimerization of alkynes, and skeletal rearrangements of cyclic ketones was realized through MOCC. In particular, in the quest for an optimized MOCC system composed of a Wilkinson's catalyst (Ph 3P) 3RhCl and an organic catalyst (2-amino-3-picoline), surprising efficiency enhancements could be achieved when benzoic acid and aniline were introduced as promoters for the aldimine formation process. Furthermore, a notable accomplishment of C-C bond activation has been made using 2-amino-3-picoline as a temporary chelating auxiliary in the reactions of unstrained ketones with various terminal olefins and Wilkinson's catalyst. In the case of seven-membered cyclic ketones, an interesting ring contraction to five- or six-membered ones takes place through skeletal rearrangements initiated by the C-C bond activation of MOCC. On the other hand, the fundamental advances of these catalytic systems into recyclable processes could be achieved by immobilizing both metal and organic

  16. The role of group 14 element hydrides in the activation of C-H bonds in cyclic olefins.

    PubMed

    Summerscales, Owen T; Caputo, Christine A; Knapp, Caroline E; Fettinger, James C; Power, Philip P

    2012-09-05

    Formally, triple-bonded dimetallynes ArEEAr [E = Ge (1), Sn (2); Ar = C(6)H(3)-2,6-(C(6)H(3)-2,6-(i)Pr(2))(2)] have been previously shown to activate aliphatic, allylic C-H bonds in cyclic olefins, cyclopentadiene (CpH), cyclopentene (c-C(5)H(8)) and 1,4-cyclohexadiene, with intriguing selectivity. In the case of the five-membered carbocycles, cyclopentadienyl species ArECp [E = Ge (3), Sn (4)] are formed. In this study, we examine the mechanisms for activation of CpH and c-C(5)H(8) using experimental methods and describe a new product found from the reaction between 1 and c-C(5)H(8), an asymmetrically substituted digermene ArGe(H)Ge(c-C(5)H(9))Ar (5), crystallized in 46% yield. This compound contains a hydrogenated cyclopentyl moiety and is found to be produced in a 3:2 ratio with 3, explaining the fate of the liberated H atoms following triple C-H activation. We show that when these C-H activation reactions are carried out in the presence of tert-butyl ethylene (excess), compounds {ArE(CH(2)CH(2)tBu)}(2) [E = Ge(8), Sn(9)] are obtained in addition to ArECp; in the case of CpH, the neohexyl complexes replace the production of H(2) gas, and for c-C(5)H(8) they displace cyclopentyl product 5 and account for all the hydrogen removed in the dehydroaromatization reactions. To confirm the source of 8 and 9, it was demonstrated that these molecules are formed cleanly between the reaction of (ArEH)(2) [E = Ge(6), Sn(7)] and tert-butyl ethylene, new examples of noncatalyzed hydro-germylation and -stannylation. Therefore, the presence of transient hydrides of the type 6 and 7 can be surmised to be reactive intermediates in the production of 3 and 4, along with H(2), from 1 and 2 and CpH (respectively), or the formation of 3 and 5 from 1. The reaction of 6 or 7 with CpH gave 3 or 4, respectively, with concomitant H(2) evolution, demonstrating the basic nature of these low-valent group 14 element hydrides and their key role in the 'cascade' of C-H activation steps

  17. Activation of C-H bond in methane by Pd atom from the bonding evolution theory perspective.

    PubMed

    Nizovtsev, Anton S

    2013-08-15

    We report detailed study focused on the electron density redistribution during the simple oxidative addition reaction being the crucial stage of various catalytic processes. The bonding evolution theory based on the electron localization function and Thom's catastrophe theory shows that activation of methane's C-H bond by Pd atom consist of six elementary steps. The important feature revealed is the pronounced reorganization of Pd's outer core maxima corresponding to N-shell electrons of metal. Electronic rearrangements identified in this model reaction are likely to be the case in the more complex reactions of the same type involving transition metal compounds and, in principle, can be observed by modern ultrafast spectroscopy and diffraction techniques.

  18. Activation of C-H and B-H bonds through agostic bonding: an ELF/QTAIM insight.

    PubMed

    Zins, Emilie-Laure; Silvi, Bernard; Alikhani, M Esmaïl

    2015-04-14

    Agostic bonding is of paramount importance in C-H bond activation processes. The reactivity of the σ C-H bond thus activated will depend on the nature of the metallic center, the nature of the ligand involved in the interaction and co-ligands, as well as on geometric parameters. Because of their importance in organometallic chemistry, a qualitative classification of agostic bonding could be very much helpful. Herein we propose descriptors of the agostic character of bonding based on the electron localization function (ELF) and Quantum Theory of Atoms in Molecules (QTAIM) topological analysis. A set of 31 metallic complexes taken, or derived, from the literature was chosen to illustrate our methodology. First, some criteria should prove that an interaction between a metallic center and a σ X-H bond can indeed be described as "agostic" bonding. Then, the contribution of the metallic center in the protonated agostic basin, in the ELF topological description, may be used to evaluate the agostic character of bonding. A σ X-H bond is in agostic interaction with a metal center when the protonated X-H basin is a trisynaptic basin with a metal contribution strictly larger than the numerical uncertainty, i.e. 0.01 e. In addition, it was shown that the weakening of the electron density at the X-Hagostic bond critical point with respect to that of X-Hfree well correlates with the lengthening of the agostic X-H bond distance as well as with the shift of the vibrational frequency associated with the νX-H stretching mode. Furthermore, the use of a normalized parameter that takes into account the total population of the protonated basin, allows the comparison of the agostic character of bonding involved in different complexes.

  19. A Highly Reactive Mononuclear Non-Heme Manganese(IV)-Oxo Complex That Can Activate the Strong C-H Bonds of Alkanes

    SciTech Connect

    Wu, Xiujuan; Seo, Mi Sook; Davis, Katherine M; Lee, Yong-Min; Chen, Junying; Cho, Kyung-Bin; Pushkar, Yulia N; Nam, Wonwoo

    2012-03-15

    A mononuclear non-heme manganese(IV)-oxo complex has been synthesized and characterized using various spectroscopic methods. The Mn(IV)-oxo complex shows high reactivity in oxidation reactions, such as C-H bond activation, oxidations of olefins, alcohols, sulfides, and aromatic compounds, and N-dealkylation. In C-H bond activation, the Mn(IV)-oxo complex can activate C-H bonds as strong as those in cyclohexane. It is proposed that C-H bond activation by the non-heme Mn(IV)-oxo complex does not occur via an oxygen-rebound mechanism. The electrophilic character of the non-heme Mn(IV)-oxo complex is demonstrated by a large negative ρ value of ~4.4 in the oxidation of para-substituted thioanisoles.

  20. Rationalizing current strategies to protect N-heterocyclic carbene-based ruthenium catalysts active in olefin metathesis from C-H (de)activation.

    PubMed

    Poater, Albert; Bahri-Laleh, Naeimeh; Cavallo, Luigi

    2011-06-21

    Defending second generation Ru-catalysts in olefin metathesis from C-H (de)activation reactions requires precise catalyst design strategies. Computer simulations are used here to rationalize precisely the role of the currently used catalyst structural modifications, and the way these modifications cooperate.

  1. Overcoming the Limitations of C-H Activation with Strongly Coordinating N-Heterocycles by Cobalt Catalysis.

    PubMed

    Wang, Hui; Lorion, Mélanie M; Ackermann, Lutz

    2016-08-22

    Strongly coordinating nitrogen heterocycles, including pyrimidines, oxazolines, pyrazoles, and pyridines, were fully tolerated in cobalt-catalyzed C-H amidations by imidate assistance. Structurally complex quinazolines are thus accessible in a step-economic manner. Our findings also establish the relative powers of directing groups in cobalt(III)-catalyzed C-H functionalization for the first time.

  2. Investigations of iridium-mediated reversible C-H bond cleavage: characterization of a 16-electron iridium(III) methyl hydride complex.

    PubMed

    Bernskoetter, Wesley H; Hanson, Susan Kloek; Buzak, Sara K; Davis, Zoe; White, Peter S; Swartz, Rodney; Goldberg, Karen I; Brookhart, Maurice

    2009-06-24

    New iridium complexes of a tridentate pincer ligand, 2,6-bis(di-tert-butylphosphinito)pyridine (PONOP), have been prepared and used in the study of hydrocarbon C-H bond activation. Intermolecular oxidative addition of a benzene C-H bond was directly observed with [(PONOP)Ir(I)(cyclooctene)][PF(6)] at ambient temperature, resulting in a cationic five-coordinate iridium(III) phenyl hydride product. Protonation of the (PONOP)Ir(I) methyl complex yielded the corresponding iridium(III) methyl hydride cation, a rare five-coordinate, 16-valence electron transition metal alkyl hydride species which was characterized by X-ray diffraction. Kinetic studies of C-H bond coupling and reductive elimination reactions from the five-coordinate complexes have been carried out. Exchange NMR spectroscopy measurements established a barrier of 17.8(4) kcal/mol (22 degrees C) for H-C(aryl) bond coupling in the iridium(III) phenyl hydride cation and of 9.3(4) kcal/mol (-105 degrees C) for the analogous H-C(alkyl) coupling in the iridium(III) methyl hydride cation. The origin of the higher barrier of H-C(aryl) relative to H-C(alkyl) bond coupling is proposed to be influenced by a hindered rotation about the Ir-C(aryl) bond, a result of the sterically demanding PONOP ligand.

  3. Non-innocent additives in a palladium(II)-catalyzed C-H bond activation reaction: insights into multimetallic active catalysts.

    PubMed

    Anand, Megha; Sunoj, Raghavan B; Schaefer, Henry F

    2014-04-16

    The role of a widely employed additive (AgOAc) in a palladium acetate-catalyzed ortho-C-H bond activation reaction has been examined using the M06 density functional theory. A new hetero-bimetallic Pd-(μ-OAc)3-Ag is identified as the most likely active species. This finding could have far-reaching implications with respect to the notion of the active species in palladium catalysis in the presence of other metal salt additives.

  4. Computational rationalization of the selective C-H and C-F activations of fluoroaromatic imines and ketones by cobalt complexes.

    PubMed

    Li, Jingjing; Zhang, Dongju; Sun, Hongjian; Li, Xiaoyan

    2014-03-28

    While selective C-H and C-F activations of fluoroaromatic imines and ketones with transition metal complexes supported by PMe3 have been successfully achieved in recent publications, insight into the molecular mechanism and energetics of those reactions is still lacking. Focusing on three typical substrates, 2,6-difluorobenzophenone imine (A) and 2,6-difluorobenzophenone (B), and 2,4'-difluorobenzophenone (C), the present work theoretically studied their C-H and C-F cyclometalation reactions promoted by the activator Co(PMe3)4 or CoMe(PMe3)4. It is found that reaction A + Co(PMe3)4 favors the C-F activation, reaction A + CoMe(PMe3)4 prefers the C-H activation, whereas both the C-H and C-F activation pathways may be viable for reactions B + CoMe(PMe3)4 and C + CoMe(PMe3)4. The experimentally observed C-H and C-F cyclometalation products have been rationalized by analyzing the thermodynamic and kinetic properties of two activation pathways. From calculated results combined with the experimental observations, we believe that three factors, i.e. the oxidation state of the metal center in the activators, the anchoring group of substrates, and substituted fluoroatom counts of the aromatic ring in substrates, affect the selectivity of C-H and C-F activations of fluoroaromatic ketones and imines. Calculated results are enlightening about the rational design of activators and substrates of fluoroaromatic imines and ketones to obtain the exclusive C-H or C-F bond activation product.

  5. Preferential activation of primary C-H bonds in the reactions of small alkanes with the diatomic MgO(+*) cation.

    PubMed

    Schröder, Detlef; Roithová, Jana; Alikhani, Esmail; Kwapien, Karolina; Sauer, Joachim

    2010-04-06

    The C-H bond activation of small alkanes by the gaseous MgO(+*) cation is probed by mass spectrometric means. In addition to H-atom abstraction from methane, the MgO(+*) cation reacts with ethane, propane, n- and iso-butane through several pathways, which can all be assigned to the occurrence of initial C-H bond activations. Specifically, the formal C-C bond cleavages observed are assigned to C-H bond activation as the first step, followed by cleavage of a beta-C-C bond concomitant with release of the corresponding alkyl radical. Kinetic modeling of the observed product distributions reveals a high preference of MgO(+*) for the attack of primary C-H bonds. This feature represents a notable distinction of the main-group metal oxide MgO(+*) from various transition-metal oxide cations, which show a clear preference for the attack of secondary C-H bonds. The results of complementary theoretical calculations indicate that the C-H bond activation of larger alkanes by the MgO(+*) cation is subject to pronounced kinetic control.

  6. Selective Cyclization of Arylnitrones to Indolines under External Oxidant-Free Conditions: Dual Role of Rh(III) Catalyst in the C-H Activation and Oxygen Atom Transfer.

    PubMed

    Dateer, Ramesh B; Chang, Sukbok

    2015-04-22

    The first example of Rh(III)-catalyzed cyclization of arylnitrones to indolines under external oxidant-free conditions is presented. An intermolecular coupling of arylnitrones with internal alkynes is made possible by the dual role of the Cp*Rh(III) catalyst mediating both the C-H bond activation and O-atom transfer. Synthetically important and pharmacologically privileged indoline derivatives were obtained in good yields with high diastereoselectivity.

  7. The Stereoselective Formation of Bicyclic Enamines with Bridgehead Unsaturation via Tandem C-H Bond Activation/Alkenylation/Electrocyclization

    SciTech Connect

    Ellman, Jonathan A.; Yotphan, Sirilata; Bergman, Robert

    2007-12-10

    Rhodium-catalyzed intermolecular C-H activation of {alpha}, {beta}-unsaturated imines in the presence of alkynes leads to a tandem process in which coupling to the alkyne occurs at the {beta}-C-H bond of the imine, followed by electrocyclization of the resulting azatriene intermediates to give dihydropyridines (eq 1). Consideration of the intramolecular version of this overall transformation (Scheme 1) raises interesting regiochemical issues. For example in a compound such as 1, where the nitrogen and alkyne are connected by a 4-carbon tether, the presumed first-formed hydrido(vinyl)rhodium function can add to the triple bond in a 1,2-fashion, producing complex 2 with a new endocyclic double bond. Alternatively, addition might occur in a 2,1-fashion, leading to product 4 with an exocyclic double bond. We now wish to report that this intramolecular cyclization occurs smoothly at 100 C, and the exocyclic double bond route is exclusively followed. Remarkably, products such as 4 do not resist further cyclization. Even though both the transition state for this process and the resulting product are presumably strained, the overall transformation leads to good yields of unusual bridgehead doubly-bonded enamines such as 5. The unique chemistry of conjugated enamine 5 is consistent with the increased strain of this molecule as well as with inhibited conjugation between the nitrogen lone pair and the adjacent double bond (vida infra). We began our investigation into the C-H activation/cyclization of alkyne-tethered imine 1 by extensive screening of transition metal catalysts for this process. Rhodium-based catalysts were found to be the most efficient (Table 1), leading exclusively to the bridgehead dienamine; none of the catalysts that were employed in the screening led to quinolizidine 3 or to the product of intramolecular Diels-Alder reaction. The optimized reaction conditions employ the electron-rich monophosphine ligand (p-NMe{sub 2})PhPEt{sub 2} in 1:1 ratio relative

  8. (13)C ENDOR Spectroscopy of Lipoxygenase-Substrate Complexes Reveals the Structural Basis for C-H Activation by Tunneling.

    PubMed

    Horitani, Masaki; Offenbacher, Adam R; Carr, Cody A Marcus; Yu, Tao; Hoeke, Veronika; Cutsail, George E; Hammes-Schiffer, Sharon; Klinman, Judith P; Hoffman, Brian M

    2017-02-08

    In enzymatic C-H activation by hydrogen tunneling, reduced barrier width is important for efficient hydrogen wave function overlap during catalysis. For native enzymes displaying nonadiabatic tunneling, the dominant reactive hydrogen donor-acceptor distance (DAD) is typically ca. 2.7 Å, considerably shorter than normal van der Waals distances. Without a ground state substrate-bound structure for the prototypical nonadiabatic tunneling system, soybean lipoxygenase (SLO), it has remained unclear whether the requisite close tunneling distance occurs through an unusual ground state active site arrangement or by thermally sampling conformational substates. Herein, we introduce Mn(2+) as a spin-probe surrogate for the SLO Fe ion; X-ray diffraction shows Mn-SLO is structurally faithful to the native enzyme. (13)C ENDOR then reveals the locations of (13)C10 and reactive (13)C11 of linoleic acid relative to the metal; (1)H ENDOR and molecular dynamics simulations of the fully solvated SLO model using ENDOR-derived restraints give additional metrical information. The resulting three-dimensional representation of the SLO active site ground state contains a reactive (a) conformer with hydrogen DAD of ∼3.1 Å, approximately van der Waals contact, plus an inactive (b) conformer with even longer DAD, establishing that stochastic conformational sampling is required to achieve reactive tunneling geometries. Tunneling-impaired SLO variants show increased DADs and variations in substrate positioning and rigidity, confirming previous kinetic and theoretical predictions of such behavior. Overall, this investigation highlights the (i) predictive power of nonadiabatic quantum treatments of proton-coupled electron transfer in SLO and (ii) sensitivity of ENDOR probes to test, detect, and corroborate kinetically predicted trends in active site reactivity and to reveal unexpected features of active site architecture.

  9. C-H Bond Activation by Pd-substituted CeO2: Substituted Ions versus Reduced Species

    SciTech Connect

    Misch, Lauren M; Kurzman, Joshua A; Derk, Alan R; Kim, Young-Il; Seshadri, Ram; Metiu, Horia; McFarland, Eric W; Stucky, Galen D

    2012-02-07

    Substituted metal oxides containing ionic species have been attracting a great deal of attention because of their potential ability to reduce the usage of precious metals in heterogeneous catalysts. We investigate Pd-substituted CeO2 for C-H bond activation reactions including the partial oxidation and dry reforming of CH4. This catalyst has been previously studied for CO oxidation, NOx reduction, and the water-gas shift reaction. Pd-substituted CeO2, Ce1-xPdxO2-δ, was prepared as a powder with high surface area and a hollow sphere morphology using ultrasonic spray pyrolysis. The catalysts were extensively characterized using synchrotron X-ray diffraction and other techniques, confirming phase pure samples up to 10 mol % Pd substitution. Ce0.95Pd0.05O2-δ was found to be active for partial oxidation of CH4 around 500 °C and higher. Our studies, including postcatalytic synchrotron diffraction, suggest that the single-phase Ce1-xPdxO2-δ material is not the active species and that catalysis occurs instead over the reduced two-phase Pd0/CeO2. This observation has been further confirmed by verifying the activity of the reduced Pd0/CeO2 catalysts for ethylene hydrogenation, a reaction that is known to require Pd0.

  10. Spectroscopic and Electronic Structure Studies Probing Covalency Contributions to C-H Bond Activation and Transition State Stabilization in Xanthine Oxidase

    PubMed Central

    Sempombe, Joseph; Stein, Benjamin; Kirk, Martin L.

    2011-01-01

    A detailed EPR and computational study of a key paramagnetic form of xanthine oxidase (XO) has been performed which serves as a basis for developing a valence bond description of C-H activation and transition state stabilization along the reaction coordinate with aldehyde substrates. EPR spectra of aldehyde Inhibited XO have been analyzed in order to provide information regarding the relationship between the g-, 95,97Mo hyperfine (AMo), and the 13C hyperfine (AC) tensors. The analysis of the EPR spectra have allowed for greater insight into the electronic origin of key delocalizations within the Mo-Oeq-C fragment, and how these contribute to C-H bond activation/cleavage and transition state (TS) stabilization. A natural bond orbital analysis of the enzyme reaction coordinate with aldehyde substrates shows that both Mo=S π→C-H σ* (ΔE= 24.3 kcal/mol) and C-H σ → Mo=S π* (ΔE = 20.0 kcal/mol) back donation are important in activating the substrate for C-H bond for cleavage. Additional contributions to C-H activation derive from Oeq lp→C-H σ* (lp = lone pair; ΔE = 8.2 kcal/mol), and S lp→C-H σ* (ΔE = 13.2 kcal/mol) stabilizing interactions. The Oeq donor ligand that derives from water is part of the Mo-Oeq-C fragment probed in the EPR spectra of XO Inhibited, and the observation of Oeq lp→C-H σ* back donation indicates a key role for the Oeq in activating the substrate C-H bond for cleavage. We also show that the Oeq donor plays an even more important role in transition state (TS) stabilization. We find that Oeq→(Mo + C) charge transfer dominantly contributes to stabilization of the TS (ΔE = 89.5 kcal/mol) and the Mo-Oeq-C delocalization pathway reduces strong electronic repulsions that contribute to the classical TS energy barrier. The Mo-Oeq-C delocalization at the TS allows for the TS to be described in valence bond terms as a resonance hybrid of the reactant (R) and product (P) valence bond wavefunctions. PMID:21972782

  11. Heterolytic Activation of C-H Bonds on Cr(III)-O Surface Sites Is a Key Step in Catalytic Polymerization of Ethylene and Dehydrogenation of Propane.

    PubMed

    Conley, Matthew P; Delley, Murielle F; Núñez-Zarur, Francisco; Comas-Vives, Aleix; Copéret, Christophe

    2015-06-01

    We describe the reactivity of well-defined chromium silicates toward ethylene and propane. The initial motivation for this study was to obtain a molecular understanding of the Phillips polymerization catalyst. The Phillips catalyst contains reduced chromium sites on silica and catalyzes the polymerization of ethylene without activators or a preformed Cr-C bond. Cr(II) sites are commonly proposed active sites in this catalyst. We synthesized and characterized well-defined chromium(II) silicates and found that these materials, slightly contaminated with a minor amount of Cr(III) sites, have poor polymerization activity and few active sites. In contrast, chromium(III) silicates have 1 order of magnitude higher activity. The chromium(III) silicates initiate polymerization by the activation of a C-H bond of ethylene. Density functional theory analysis of this process showed that the C-H bond activation step is heterolytic and corresponds to a σ-bond metathesis type process. The same well-defined chromium(III) silicate catalyzes the dehydrogenation of propane at elevated temperatures with activities similar to those of a related industrial chromium-based catalyst. This reaction also involves a key heterolytic C-H bond activation step similar to that described for ethylene but with a significantly higher energy barrier. The higher energy barrier is consistent with the higher pKa of the C-H bond in propane compared to the C-H bond in ethylene. In both cases, the rate-determining step is the heterolytic C-H bond activation.

  12. Chemistry of oxygenates on transition metal surfaces: Activation of C- H, C-C, and C-O bonds

    SciTech Connect

    Not Available

    1991-01-01

    Goal is to understand the requirements for and competition between activation of C-H, C-C, and C-O bonds in the synthesis and decomposition of oxygenates on transition metal surfaces. Efforts during the past year was devoted primarily to the role of activation of {beta}-CH bonds in decarbonylation of higher oxygenates on surfaces of metals such as Rh and Pd; studies were completed of more than a dozen C{sub 1}-C{sub 3} oxygenates on Rh(111), and progress was made with reagents for which {beta}-CH scission is blocked. It is shown that alcohols and aldehydes do not react via a common pathway on on Rh(111). Ethanol and acetaldehyde are formed from CO + H{sub 2} by parallel routes on Rh catalysts which do not contain interacting supports or oxide promoters; i.e., the two compounds result from CO insertion into different metal-hydrocarbon bonds. Aldehydes decarbonylate via {alpha}-CH scission to form acyl, followed by C-C scission to release an alkyl ligand; this ligand undergoes hydrogenation and dehydrogenation steps. Alcohols form surface alkoxides, but these do not dehydrogenate further to the aldehydes, they release CO + H{sub 2} but no volatile hydrocarbon. These results indicate that {beta}-CH scissors to form a surface oxametallacycle intermediate; supporting evidence is spresented for this intermediate. Chemistry of alcohols blocked to different extends at the {beta}-position was also studied; complete blocking (CF{sub 3}CH{sub 2}OH) forces the reaction to follow the aldehyde-acyl path, while partial substitution at the {beta} position (branched alcohols) favors the oxametallacycle pathway. (DLC)

  13. The Unexpected Reactivity of the Carbon Sites on the Nanostructured Carbon Catalysts towards the C-H Bond Activation from the Analysis of the Aromaticity.

    PubMed

    Sun, XiaoYing; Li, Bo; Su, DangSheng

    2016-06-06

    It is believed that the oxygen groups on the carbon catalysts are responsible for the observed reactivity for C-H bond activations. On the other hand, the oxygen groups also reduce the aromaticity of the host. The loss of the aromaticity increases reactivities of the carbon atoms and they become the active sites for the C-H bond activation. The newly identified C-C site exhibits the comparable catalytic performance in the oxidative dehydrogenation (ODH) of propane compared with the conventional oxygen groups like quinone and ketone. A series of calculations indicate that the aromaticity might be a useful descriptor for the carbon catalysts.

  14. Double C-H bond activation of acetylene by atomic boron in forming aromatic cyclic-HBC2BH in solid neon.

    PubMed

    Jian, Jiwen; Li, Wei; Wu, Xuan; Zhou, Mingfei

    2017-06-01

    The organo-boron species formed from the reactions of boron atoms with acetylene in solid neon are investigated using matrix isolation infrared spectroscopy with isotopic substitutions as well as quantum chemical calculations. Besides the previously reported single C-H bond activation species, a cyclic-HBC2BH diboron species is formed via double C-H bond activation of acetylene. It is characterized to have a closed-shell singlet ground state with planar D2h symmetry. Bonding analysis indicates that it is a doubly aromatic species involving two delocalized σ electrons and two delocalized π electrons. This finding reveals the very first example of double C-H bond activation of acetylene in forming new organo-boron compounds.

  15. Structural, kinetic, and thermodynamic study of the reversible thermal C-H activation/reductive elimination of alkanes at iridium

    SciTech Connect

    Buchanan, J.M.; Stryker, J.M.; Bergman, R.G.

    1986-04-02

    The hydrido alkyl iridium complex Cp*(PMe/sub 3/)Ir(Cy)(H) (1, Cp* = eta/sup 5/-C/sub 5/; Cy = cyclohexyl) has been isolated by air-free chromatography at -80/sup 0/C, and its molecular structure has been determined by X-ray diffraction. Thermolysis of 1 in benzene cleanly produces cyclohexane and Cp*(PMe/sub 3/)Ir(Ph)(H) (2). The rate of reaction is first-order in 1, zero-order in benzene, and inhibited by cyclohexane; its activation parameters are ..delta..H/sup + +/ = 35.6 +/- 0.5 kcal/mol and ..delta..S/sup + +/ = +10 +/- 2 eu. An inverse isotope effect, kappa/sub h/kappa/sub d/ = 0.7 +/- 0.1, is calculated from rates of cyclohexane and cyclohexane-d/sub 12/ reductive elimination at 130/sup 0/C, and deuterium scrambling between the hydride and ..cap alpha..-cyclohexyl positions is observed to occur competitively with reductive elimination. A mechanism is proposed in which cyclohexane loss from 1 is reversible and produces (Cp*(PMe/sub 3/)Ir), which oxidatively adds to a C-H bond in a benzene solvent molecule to form 2. Evidence is also presented for the possible intermediacy of a cyclohexane/(Cp*(PMe/sub 3/)Ir) sigma-complex, which is formed before free (Cp*(PMe/sub 3/)Ir) is released. Equilibrium constants for the equilibration of several pairs of alkanes and their corresponding iridium(III) hydrido alkyl complexes have been determined and imply the following trend in solution phase iridium-carbon bond dissociation enthalpies: phenyl >> n-pentyl > 2,3-dimethylbutyl > cyclopentyl approx. cyclohexyl > neopentyl.

  16. Hydroxy functionalization of non-activated C-H and C=C bonds: new perspectives for the synthesis of alcohols through biocatalytic processes.

    PubMed

    Gröger, Harald

    2014-03-17

    New perspectives through enzymes: Recent breakthroughs have been achieved in the selective hydroxy functionalization of non-activated C-H and C=C bonds. Enzymes turned out to be suitable catalysts for the ω-hydroxylation of (substituted) alkanes and regioselective hydroxylation of aromatic hydrocarbons with atmospheric oxygen as the oxidant, and the asymmetric addition of water to non-activated alkenes.

  17. Rhodium-Catalyzed β-Selective Oxidative Heck-Type Coupling of Vinyl Acetate via C-H Activation.

    PubMed

    Zhang, Hui-Jun; Lin, Weidong; Su, Feng; Wen, Ting-Bin

    2016-12-16

    An efficient Rh(III)-catalyzed direct ortho-C-H olefination of acetanilides with vinyl acetate was developed. This protocol provides a straightforward pathway to a series of (E)-2-acetamidostyryl acetates, giving access to indole derivatives following a simple hydrolysis/cyclization process.

  18. Palladium-Catalyzed Enantioselective C-H Activation of Aliphatic Amines Using Chiral Anionic BINOL-Phosphoric Acid Ligands.

    PubMed

    Smalley, Adam P; Cuthbertson, James D; Gaunt, Matthew J

    2017-02-01

    The design of an enantioselective Pd(II)-catalyzed C-H amination reaction is described. The use of a chiral BINOL phosphoric acid ligand enables the conversion of readily available amines into synthetically valuable aziridines in high enantiomeric ratios. The aziridines can be derivatized to afford a range of chiral amine building blocks incorporating motifs readily encountered in pharmaceutically relevant molecules.

  19. Asymmetric Synthesis of (-)-Incarvillateine Employing an Intramolecular Alkylation via Rh-Catalyzed Olefinic C-H Bond Activation

    SciTech Connect

    Tsai, Andy; Bergman, Robert; Ellman, Jonathan

    2008-02-18

    An asymmetric total synthesis of (-)-incarvillateine, a natural product having potent analgesic properties, has been achieved in 11 steps and 15.4% overall yield. The key step is a rhodium-catalyzed intramolecular alkylation of an olefinic C-H bond to set two stereocenters. Additionally, this transformation produces an exocyclic, tetrasubstituted alkene through which the bicyclic piperidine moiety can readily be accessed.

  20. Synthesis of ferrocene derivatives with planar chirality via palladium-catalyzed enantioselective C-H bond activation.

    PubMed

    Pi, Chao; Cui, Xiuling; Liu, Xiuyan; Guo, Mengxing; Zhang, Hanyu; Wu, Yangjie

    2014-10-03

    The first catalytic and enantioselective C-H direct acylation of ferrocene derivatives has been developed. A series of 2-acyl-1-dimethylaminomethylferrocenes with planar chirality were provided under highly efficient and concise one-pot conditions with up to 85% yield and 98% ee. The products obtained could be easily converted to various chiral ligands via diverse transformations.

  1. C-H functionalization: thoroughly tuning ligands at a metal ion, a chemist can greatly enhance catalyst's activity and selectivity.

    PubMed

    Shul'pin, Georgiy B

    2013-09-28

    This brief essay consists of a few "exciting stories" devoted to relations within a metal-complex catalyst between a metal ion and a coordinated ligand. When, as in the case of a human couple, the rapport of the partners is cordial and a love cements these relations, a chemist finds an ideal married couple, in other words he obtains a catalyst of choice which allows him to functionalize C-H bonds very efficiently and selectively. Examples of such lucky marriages in the catalytic world of ions and ligands are discussed here. Activity of the catalyst is characterized by turnover number (TON) or turnover frequency (TOF) as well as by yield of a target product. Introducing a chelating N,N- or N,O-ligand to the catalyst molecule (this can be an iron or manganese derivative) sharply enhances its activity. However, the activity of vanadium derivatives (with additionally added to the solution pyrazinecarboxylic acid, PCA) as well as of various osmium complexes does not dramatically depend on the nature of ligands surrounding metal ions. Complexes of these metals are very efficient catalysts in oxidations with H2O2. Osmium derivatives are record-holders exhibiting extremely high TONs whereas vanadium complexes are on the second position. Finally, elegant examples of alkane functionalization on the ions of non-transition metals (aluminium, gallium etc.) are described when one ligand within the metal complex (namely, hydroperoxyl ligand HOO(-)) helps other ligand of this complex (H2O2 molecule coordinated to the metal) to disintegrate into two species, generating very reactive hydroxyl radical. Hydrogen peroxide molecule, even ligated to the metal ion, is perfectly stable without the assistance of the neighboring HOO(-) ligand. This ligand can be easily oxidized donating an electron to its partner ligand (H2O2). In an analogous case, when the central ion in the catalyst is a transition metal, this ion changing its oxidation state can donate an electron to the coordinated H2O2

  2. Synthesis of Isocoumarins from Cyclic 2-Diazo-1,3-diketones and Benzoic Acids via Rh(III)-Catalyzed C-H Activation and Esterification.

    PubMed

    Yang, Cheng; He, Xinwei; Zhang, Lanlan; Han, Guang; Zuo, Youpeng; Shang, Yongjia

    2017-02-17

    A mild and efficient Rh(III)-catalyzed C-H activation/esterification reaction for the synthesis of isocoumarins has been developed. This procedure uses readily available benzoic acids and cyclic diazo-1,3-diketones as starting materials and involves domino intermolecular C-H activation in combination with intramolecular esterification to give the corresponding isocoumarins in moderate to excellent yields. This process provides a facile approach for the construction of isocoumarins containing various functional groups that does not require any additives.

  3. Mechanistic insights on iodine(III) promoted metal-free dual C-H activation involved in the formation of a spirocyclic bis-oxindole.

    PubMed

    Sreenithya, A; Sunoj, Raghavan B

    2014-12-05

    The mechanism of a metal-free, phenyliodine(III) bis(trifluoroacetate) promoted, dual aryl C-H activation of an anilide to a spirocyclic bis-oxindole is examined using density functional theory (M06-2X). The most preferred pathway proceeds through the involvement of a novel iodonium ion intermediate and a pivotal trifluoroacetate counterion. The two sequential aryl C-H activations, assisted by trifluoroacetate as well as the superior leaving group ability of PhI, facilitate the formation of spirocyclic bis-oxindole.

  4. Distinctive activation and functionalization of hydrocarbon C-H bonds initiated by Cp*W(NO)(η(3)-allyl)(CH2CMe3) complexes.

    PubMed

    Baillie, Rhett A; Legzdins, Peter

    2014-02-18

    Converting hydrocarbon feedstocks into value-added chemicals continues to offer challenges to contemporary preparative chemists. A particularly important remaining challenge is the selective activation and functionalization of the C(sp(3))-H linkages of alkanes, which are relatively abundant but chemically inert. This Account outlines the discovery and development of C-H bond functionalization mediated by a family of tungsten organometallic nitrosyl complexes. Specifically, it describes how gentle thermolyses of any of four 18-electron Cp*W(NO)(η(3)-allyl)(CH2CMe3) complexes (Cp* = η(5)-C5Me5; η(3)-allyl = η(3)-H2CCHCHMe, η(3)-H2CCHCHSiMe3, η(3)-H2CCHCHPh, or η(3)-H2CCHCMe2) results in the loss of neopentane and the transient formation of a 16-electron intermediate species, Cp*W(NO)(η(2)-allene) and/or Cp*W(NO)(η(2)-diene). We have never detected any of these species spectroscopically, but we infer their existence based on trapping experiments with trimethylphosphine (PMe3) and labeling experiments using deuterated hydrocarbon substrates. This Account first summarizes the syntheses and properties of the four chiral Cp*W(NO)(η(3)-allyl)(CH2CMe3) complexes. It then outlines the various types of C-H activations we have effected with each of the 16-electron (η(2)-allene) or (η(2)-diene) intermediate nitrosyl complexes, and presents the results of mechanistic investigations of some of these processes. It next describes the characteristic chemical properties of the Cp*W(NO)(η(3)-allyl)(η(1)-hydrocarbyl) compounds formed by the single activations of C(sp(3))-H bonds, with particular emphasis on those reactions that result in the selective functionalization of the original hydrocarbon substrate. We are continuing development of methods to release the acyl ligands from the metal centers while keeping the Cp*W(NO)(η(3)-allyl) fragments intact, with the ultimate aim of achieving these distinctive conversions of alkanes into functionalized organics in a

  5. The Effect of the Electronic Nature of Spectator Ligands in the C-H Bond Activation of Ethylene by Cr(III) Silicates: An ab initio Study.

    PubMed

    Núñez-Zarur, Francisco; Comas-Vives, Aleix

    2015-01-01

    The Phillips catalyst, chromium oxides supported on silica, is one of the most widely used catalysts for the industrial production of polyethylene (PE). We recently synthesized a well-defined mononuclear Cr(III) silicate as active site model of the Phillips catalyst. The catalytic activity of this well-defined catalyst was similar to the industrial Phillips catalyst. We proposed that C-H bond activation of ethylene over a Cr-O bond initiates polymerization in this Cr(III) catalyst. Our results also showed that the presence of a second ethylene olefin in the coordination sphere of Cr decreases the intrinsic energy barrier of the C-H activation of ethylene. In order to understand the effect of this additional ligand in the C-H activation of ethylene by the Cr(III) catalyst, we evaluated the energetics of this step with different spectator ligands (C2H4, C2F4, N2 and CO) coordinated to the Cr center. The Charge Decomposition Analysis (CDA) of the bonding interactions between the Cr(III) catalyst and the ligands showed that the intrinsic energy barrier for the C-H activation of ethylene decreases with the increasing electron-donor properties of the spectator ligand.

  6. Control of C-H Bond Activation by Mo-Oxo Complexes: pKa or Bond Dissociation Free Energy (BDFE)?

    PubMed

    Nazemi, Azadeh; Cundari, Thomas R

    2017-09-25

    A density functional theory (DFT) study (BMK/6-31+G(d)) was initiated to investigate the activation of benzylic carbon-hydrogen bonds by a molybdenum-oxo complex with a potentially redox noninnocent supporting ligand-a simple mimic of the active species of the enzyme ethylbenzene dehydrogenase (EBDH)-through deprotonation (C-H bond heterolysis) or hydrogen atom abstraction (C-H bond homolysis) routes. Activation free-energy barriers for neutral and anionic Mo-oxo complexes were high, but lower for anionic complexes than neutral complexes. Interesting trends as a function of substituents were observed that indicated significant H(δ+) character in the transition states (TS), which was further supported by the preference for [2 + 2] addition over HAA for most complexes. Hence, it was hypothesized that C-H activation by these EBDH mimics is controlled more by the pKa than by the bond dissociation free energy of the C-H bond being activated. Therefore, the results suggest promising pathways for designing more efficient and selective catalysts for hydrocarbon oxidation based on EBDH active-site mimics.

  7. A general strategy for organocatalytic activation of C-H bonds via photoredox catalysis: direct arylation of benzylic ethers.

    PubMed

    Qvortrup, Katrine; Rankic, Danica A; MacMillan, David W C

    2014-01-15

    Direct C-H functionalization and arylation of benzyl ethers has been accomplished via photoredox organocatalysis. The productive merger of a thiol catalyst and a commercially available iridium photoredox catalyst in the presence of household light directly affords benzylic arylation products in good to excellent yield. The utility of this methodology is further demonstrated in direct arylation of 2,5-dihydrofuran to form a single regioisomer.

  8. Interplay of Tunneling, Two-State Reactivity, and Bell-Evans-Polanyi Effects in C-H Activation by Nonheme Fe(IV)O Oxidants.

    PubMed

    Mandal, Debasish; Shaik, Sason

    2016-02-24

    The study of C-H bond activation reactions by nonheme Fe(IV)O species with nine hydrocarbons shows that the kinetic isotope effect (KIE) involves strong tunneling and is a signature of the reactive spin states. Theory reproduces the observed spike-like appearance of plots of KIE(exp) against the C-H bond dissociation energy, and its origins are discussed. The experimentally observed Bell-Evans-Polanyi correlations, in the presence of strong tunneling, are reproduced, and the pattern is rationalized.

  9. Mechanistic insight into conjugated N-N bond cleavage by Rh(III)-catalyzed redox-neutral C-H activation of pyrazolones.

    PubMed

    Wu, Weirong; Liu, Yuxia; Bi, Siwei

    2015-08-14

    Density functional theory (DFT) calculations have been performed to investigate the detailed mechanism of Rh(III)-catalyzed redox-neutral C-H activation of pyrazolones with PhC≡CPh. It is found that (1) the methylene C-H activation is prior to the phenyl C-H activation, (2) the N-N bond cleavage is realized via Rh(III) → Rh(I) → Rh(III) rather than via Rh(III) → Rh(V) → Rh(III). The zwitterionic Rh(I) complex is identified to be a key intermediate in promoting the N-N bond cleavage. (3) Different from the Rh(III)-catalyzed hydrazine-directed C-H activation for indole synthesis, the rate-determining step of the reaction studied in this work is the Rh(III) → Rh(I) → Rh(III) process resulting in the N-N bond cleavage rather than the alkyne insertion step. The present theoretical study provides new insight into the mechanism of the conjugated N-N bond cleavage.

  10. Air/Water-Stable Tridentate NHC-PdII Complex; Catalytic C-H Activation of Hydrocarbons via H/D Exchange Process in D2O

    PubMed Central

    Lee, Joo Ho; Yoo, Kyung Soo; Park, Chan Pil; Olsen, Janet M.; Sakaguchi, Satoshi; Surya Prakash, G. K.; Mathew, Thomas; Jung, Kyung Woon

    2009-01-01

    While developing novel catalysts for carbon-carbon or carbon-heteroatom coupling (N, O, or F), we were able to introduce tridentate NHC-amidate-alkoxide palladium(II) complexes. In aqueous solution, these NHC-Pd(II) complexes showed high ability for C-H activation of various hydrocarbons (cyclohexane, cyclopentane, dimethyl ether, THF, acetone, and toluene) under mild conditions. PMID:20221298

  11. C-H activation of imidazolium salts by Pt(0) at ambient temperature: synthesis of hydrido platinum bis(carbene) compounds.

    PubMed

    Duin, Marcel A; Clement, Nicolas D; Cavell, Kingsley J; Elsevier, Cornelis J

    2003-02-07

    A zerovalent platinum(carbene) complex with two monoalkene ligands, which is able to activate C-H bonds of imidazolium salts at room temperature to yield isolable hydrido platinum(II) bis(carbene) compounds, has been synthesised for the first time.

  12. Mn-salen catalysed benzylic C-H activation for the synthesis of aryl [(18)F]CF3-containing PET probes.

    PubMed

    Carroll, L; Evans, H L; Spivey, A C; Aboagye, E O

    2015-05-18

    The development of a Mn-salen complex catalysed oxidative benzylic fluorination of non-activated C-H bonds using [(18)F]fluoride is described for installation of [(18)F]CHRF, [(18)F]CR2F and particularly [(18)F]CF3 containing groups in the presence of other functional groups.

  13. Elementary steps of iron catalysis: exploring the links between iron alkyl and iron olefin complexes for their relevance in C-H activation and C-C bond formation.

    PubMed

    Casitas, Alicia; Krause, Helga; Goddard, Richard; Fürstner, Alois

    2015-01-26

    The alkylation of complexes 2 and 7 with Grignard reagents containing β-hydrogen atoms is a process of considerable relevance for the understanding of C-H activation as well as C-C bond formation mediated by low-valent iron species. Specifically, reaction of 2 with EtMgBr under an ethylene atmosphere affords the bis-ethylene complex 1 which is an active precatalyst for prototype [2+2+2] cycloaddition reactions and a valuable probe for mechanistic studies. This aspect is illustrated by its conversion into the bis-alkyne complex 6 as an unprecedented representation of a cycloaddition catalyst loaded with two substrates molecules. On the other hand, alkylation of 2 with 1 equivalent of cyclohexylmagnesium bromide furnished the unique iron alkyl species 11 with a 14-electron count, which has no less than four β-H atoms but is nevertheless stable at low temperature against β-hydride elimination. In contrast, the exhaustive alkylation of 1 with cyclohexylmagnesium bromide triggers two consecutive C-H activation reactions mediated by a single iron center. The resulting complex has a diene dihydride character in solution (15), whereas its structure in the solid state is more consistent with an η(3) -allyl iron hydride rendition featuring an additional agostic interaction (14). Finally, the preparation of the cyclopentadienyl iron complex 25 illustrates how an iron-mediated C-H activation cascade can be coaxed to induce a stereoselective CC bond formation. The structures of all relevant new iron complexes in the solid state are presented.

  14. Rhodium(III)-Catalyzed Oxadiazole-Directed Alkenyl C-H Activation for Synthetic Access to 2-Acylamino and 2-Amino Pyridines.

    PubMed

    Yang, Fan; Yu, Jiaojiao; Liu, Yun; Zhu, Jin

    2017-10-06

    We report herein a Rh(III)-catalyzed alkenyl C-H activation protocol for the coupling of oxadiazoles with alkynes and synthesis of 2-acylamino and 2-amino pyridines, an important heterocyclic scaffold for various naturals products and synthetic pharmaceuticals bearing a readily reacting functional group. The selective protection/deprotection of amino groups through simple solvent switching, good functional group compatibility, superior product yield, and high regioselectivity are some of the notable synthetic features witnessed in this reaction protocol.

  15. Palladium(II)-Catalyzed C-H Bond Activation/C-C and C-O Bond Formation Reaction Cascade: Direct Synthesis of Coumestans.

    PubMed

    Neog, Kashmiri; Borah, Ashwini; Gogoi, Pranjal

    2016-12-02

    A palladium catalyzed cascade reaction of 4-hydroxycoumarins and in situ generated arynes has been developed for the direct synthesis of coumestans. This cascade strategy proceeds via C-H bond activation/C-O and C-C bond formations in a single reaction vessel. This methodology affords moderate to good yields of coumestans and is tolerant of a variety of functional groups including halide. The methodology was applied to the synthesis of natural product flemichapparin C.

  16. Iodine-catalyzed [Formula: see text] C-H bond activation by selenium dioxide: synthesis of diindolylmethanes and di(3-indolyl)selanides.

    PubMed

    Naidu, P Seetham; Majumder, Swarup; Bhuyan, Pulak J

    2015-11-01

    An efficient reaction protocol was developed for the synthesis of several diindolylmethane derivatives via the [Formula: see text] C-H bond activation of aryl methyl ketones by [Formula: see text] and indoles in the presence of catalytic amounts of [Formula: see text] at 80 [Formula: see text] using dioxane as solvent. Unexpectedly, an interesting class of di(3-indolyl)selenide compounds was isolated when the reaction was carried out at room temperature.

  17. Density functional theory study of Rh(III)-catalyzed C-H activations and intermolecular annulations between benzamide derivatives and allenes.

    PubMed

    Xing, Zhong; Huang, Fang; Sun, Chuanzhi; Zhao, Xue; Liu, Jianbiao; Chen, Dezhan

    2015-04-20

    Density functional theory has been applied to gain insight into the Cp*Rh(OAc)2-catalyzed C-H activation and intermolecular annulation of benzamide derivatives with allenes. The study shows that the reactions proceed in three steps: (1) C-H activation induced by Rh catalyst reacting with benzamide derivatives, (2) carborhodation of allene, and (3) regeneration of Rh catalyst. The results indicate that the N-H deprotonation makes the following C-H activation much easier. The regio- and stereoselectivities of 1a (N-pivaloyloxy benzamide)/2a (cyclohexylallene) and 1b (N-pivaloyloxy-4-methyl-benzamide)/2b (1,1-dimethyl allene) depend on the allene carborhodation step. The steric hindrance effect is the dominant factor. We also discuss the reaction mechanism of 1c (N-methoxy benzamide)/2a. The chemoselectivity between 1c/2a is determined by the N-O cleavage step. Replacement of OPiv by OMe leads to loss of the stabilization effect provided by C=O in OPiv. Additionally, Cp*Rh(OAc)(OPiv) is produced in the Cp*Rh(OAc)2 regeneration step, which can work as catalyst as well.

  18. Merging Visible Light Photoredox Catalysis with Metal Catalyzed C-H Activations: On the Role of Oxygen and Superoxide Ions as Oxidants.

    PubMed

    Fabry, David C; Rueping, Magnus

    2016-09-20

    The development of efficient catalytic systems for direct aromatic C-H bond functionalization is a long-desired goal of chemists, because these protocols provide environmental friendly and waste-reducing alternatives to classical methodologies for C-C and C-heteroatom bond formation. A key challenge for these transformations is the reoxidation of the in situ generated metal hydride or low-valent metal complexes of the primary catalytic bond forming cycle. To complete the catalytic cycle and to regenerate the C-H activation catalyst, (super)stoichiometric amounts of Cu(II) or Ag(I) salts have often been applied. Recently, "greener" approaches have been developed by applying molecular oxygen in combination with Cu(II) salts, internal oxidants that are cleaved during the reaction, or solvents or additives enabling the metal hydride reoxidation. All these approaches improved the environmental friendliness but have not overcome the obstacles associated with the overall limited functional group and substrate tolerance. Hence, catalytic processes that do not feature the unfavorable aspects described above and provide products in a streamlined as well as economically and ecologically advantageous manner would be desirable. In this context, we decided to examine visible light photoredox catalysis as a new alternative to conventionally applied regeneration/oxidation procedures. This Account summarizes our recent advances in this expanding area and will highlight the new concept of merging distinct redox catalytic processes for C-H functionalizations through the application of visible light photoredox catalysis. Photoredox catalysis can be considered as catalytic electron-donating or -accepting processes, making use of visible-light absorbing homogeneous and heterogeneous metal-based catalysts, as well as organic dye sensitizers or polymers. As a consequence, photoredox catalysis is, in principle, an ideal tool for the recycling of any given metal catalyst via a coupled

  19. Promotional effects of chemisorbed oxygen and hydroxide in the activation of C-H and O-H bonds over transition metal surfaces

    NASA Astrophysics Data System (ADS)

    Hibbitts, David; Neurock, Matthew

    2016-08-01

    Electronegative coadsorbates such as atomic oxygen (O*) and hydroxide (OH*) can act as Brønsted bases when bound to Group 11 as well as particular Group 8-10 metal surfaces and aid in the activation of X-H bonds. First-principle density functional theory calculations were carried out to systematically explore the reactivity of the C-H bonds of methane and surface methyl intermediates as well as the O-H bond of methanol directly and with the assistance of coadsorbed O* and OH* intermediates over Group 11 (Cu, Ag, and Au) and Group 8-10 transition metal (Ru, Rh, Pd, Os, Ir, and Pt) surfaces. C-H as well as O-H bond activation over the metal proceeds via a classic oxidative addition type mechanism involving the insertion of the metal center into the C-H or O-H bond. O* and OH* assist C-H and O-H activation over particular Group 11 and Group 8-10 metal surfaces via a σ-bond metathesis type mechanism involving the oxidative addition of the C-H or O-H bond to the metal along with a reductive deprotonation of the acidic C-H and O-H bond over the M-O* or M-OH* site pair. The O*- and OH*-assisted C-H activation paths are energetically preferred over the direct metal catalyzed C-H scission for all Group 11 metals (Cu, Ag, and Au) with barriers that are 0.4-1.5 eV lower than those for the unassisted routes. The barriers for O*- and OH*-assisted C-H activation of CH4 on the Group 8-10 transition metals, however, are higher than those over the bare transition metal surfaces by as much as 1.4 eV. The C-H activation of adsorbed methyl species show very similar trends to those for CH4 despite the differences in structure between the weakly bound methane and the covalently adsorbed methyl intermediates. The activation of the O-H bond of methanol is significantly promoted by O* as well as OH* intermediates over both the Group 11 metals (Cu, Ag, and Au) as well as on all Group 8-10 metals studied (Ru, Rh, Pd, Os, Ir, and Pt). The O*- and OH*-assisted CH3O-H barriers are 0.6 to 2

  20. Regioselective introduction of heteroatoms at the C-8 position of quinoline N-oxides: remote C-H activation using N-oxide as a stepping stone.

    PubMed

    Hwang, Heejun; Kim, Jinwoo; Jeong, Jisu; Chang, Sukbok

    2014-07-30

    Reported herein is the metal-catalyzed regioselective C-H functionalization of quinoline N-oxides at the 8-position: direct iodination and amidation were developed using rhodium and iridium catalytic systems, respectively. Mechanistic study of the amidation revealed that the unique regioselectivity is achieved through the smooth formation of N-oxide-chelated iridacycle and that an acid additive plays a key role in the rate-determining protodemetalation step. While this approach of remote C-H activation using N-oxide as a directing group could readily be applied to a wide range of heterocyclic substrates under mild conditions with high functional group tolerance, an efficient synthesis of zinquin ester (a fluorescent zinc indicator) was demonstrated.

  1. Simultaneous structure-activity studies and arming of natural products by C-H amination reveal cellular targets of eupalmerin acetate.

    PubMed

    Li, Jing; Cisar, Justin S; Zhou, Cong-Ying; Vera, Brunilda; Williams, Howard; Rodríguez, Abimael D; Cravatt, Benjamin F; Romo, Daniel

    2013-06-01

    Natural products have a venerable history of, and enduring potential for the discovery of useful biological activity. To fully exploit this, the development of chemical methodology that can functionalize unique sites within these complex structures is highly desirable. Here, we describe the use of rhodium(II)-catalysed C-H amination reactions developed by Du Bois to carry out simultaneous structure-activity relationship studies and arming (alkynylation) of natural products at 'unfunctionalized' positions. Allylic and benzylic C-H bonds in the natural products undergo amination while olefins undergo aziridination, and tertiary amine-containing natural products are converted to amidines by a C-H amination-oxidation sequence or to hydrazine sulfamate zwitterions by an unusual N-amination. The alkynylated derivatives are ready for conversion into cellular probes that can be used for mechanism-of-action studies. Chemo- and site-selectivity was studied with a diverse library of natural products. For one of these-the marine-derived anticancer diterpene, eupalmerin acetate-quantitative proteome profiling led to the identification of several protein targets in HL-60 cells, suggesting a polypharmacological mode of action.

  2. Simultaneous structure-activity studies and arming of natural products by C-H amination reveal cellular targets of eupalmerin acetate

    NASA Astrophysics Data System (ADS)

    Li, Jing; Cisar, Justin S.; Zhou, Cong-Ying; Vera, Brunilda; Williams, Howard; Rodríguez, Abimael D.; Cravatt, Benjamin F.; Romo, Daniel

    2013-06-01

    Natural products have a venerable history of, and enduring potential for the discovery of useful biological activity. To fully exploit this, the development of chemical methodology that can functionalize unique sites within these complex structures is highly desirable. Here, we describe the use of rhodium(II)-catalysed C-H amination reactions developed by Du Bois to carry out simultaneous structure-activity relationship studies and arming (alkynylation) of natural products at ‘unfunctionalized’ positions. Allylic and benzylic C-H bonds in the natural products undergo amination while olefins undergo aziridination, and tertiary amine-containing natural products are converted to amidines by a C-H amination-oxidation sequence or to hydrazine sulfamate zwitterions by an unusual N-amination. The alkynylated derivatives are ready for conversion into cellular probes that can be used for mechanism-of-action studies. Chemo- and site-selectivity was studied with a diverse library of natural products. For one of these—the marine-derived anticancer diterpene, eupalmerin acetate—quantitative proteome profiling led to the identification of several protein targets in HL-60 cells, suggesting a polypharmacological mode of action.

  3. Metalloporphyrin-mediated asymmetric nitrogen-atom transfer to hydrocarbons: aziridination of alkenes and amidation of saturated C-H bonds catalyzed by chiral ruthenium and manganese porphyrins.

    PubMed

    Liang, Jiang-Lin; Huang, Jie-Sheng; Yu, Xiao-Qi; Zhu, Nianyong; Che, Chi-Ming

    2002-04-02

    Chiral metalloporphyrins [Mn(Por*)(OH)(MeOH)] (1) and [Ru(Por*)(CO)(EtOH)] (2) catalyze asymmetric aziridination of aromatic alkenes and asymmetric amidation of benzylic hydrocarbons to give moderate enantiomeric excesses. The mass balance in these nitrogen-atom-transfer processes has been examined. With PhI=NTs as the nitrogen source, the aziridination of styrenes, trans-stilbene, 2-vinylnaphthalene, indene, and 2,2-dimethylchromene catalyzed by complex 1 or 2 resulted in up to 99 % substrate conversions and up to 94 % aziridine selectivities, whereas the amidation of ethylbenzenes, indan, tetralin, 1-, and 2-ethylnaphthalene catalyzed by complex 2 led to substrate conversions of up to 32 % and amide selectivities of up to 91 %. Complex 1 or 2 can also catalyze the asymmetric amidation of 4-methoxyethylbenzene, tetralin, and 2-ethylnaphthalene with "PhI(OAc)(2) + NH(2)SO(2)Me", affording the N-substituted methanesulfonamides in up to 56 % ee with substrate conversions of up to 34 % and amide selectivities of up to 92 %. Extension of the "complex 1 + PhI=NTs" or "complex 1 + PhI(OAc)(2) + NH(2)R (R=Ts, Ns)" amidation protocol to a steroid resulted in diastereoselective amidation of cholesteryl acetate at the allylic C-H bonds at C-7 with substrate conversions of up to 49 % and amide selectivities of up to 90 % (alpha:beta ratio: up to 4.2:1). An aziridination- and amidation-active chiral bis(tosylimido)ruthenium(VI) porphyrin, [Ru(Por*)(NTs)(2)] (3), and a ruthenium porphyrin aziridine adduct, [Ru(Por*)(CO)(TsAz)] (4, TsAz=N-tosyl-2- (4-chlorophenyl)aziridine), have been isolated from the reaction of 2 with PhI=NTs and N-tosyl-2-(4-chlorophenyl)aziridine, respectively. The imidoruthenium porphyrin 3 could be an active species in the aziridination or amidation catalyzed by complex 2 described above. The second-order rate constants for the reactions of 3 with styrenes, 2-vinylnaphthalene, indene, ethylbenzenes, and 2-ethylnaphthalene range from 3.7-42.5x10(-3) dm(3

  4. Chelerythrine delayed tumor growth and increased survival duration of Dalton's lymphoma bearing BALB/c H(2d) mice by activation of NK cells in vivo.

    PubMed

    Kumar, Sanjay; Tomar, Munendra Singh; Acharya, Arbind

    2015-01-01

    The aims of the present investigation were to evaluate the antitumor effect of chelerythrine (CHE) on in vivo growth and survival duration of BALB/c (H2d) mice bearing Dalton's lymphoma (DL) and enhanced function of tumor associated NK cells (TANK cells). BALB/c (H2d) mice at 8-10 weeks of age of either sex were used. Increasing concentration of CHE (1.25, 2.5, and 5.0 mg/kg), staurosporine (0.625, 1.0, 1.5, and 2.0 mg/kg) and cyclophosphamide (25, 50, 100, and 200 mg/kg) were administered intraperitoneally and tumor regression and survival duration of tumor bearing host were determined, and thereafter expression of NKG2D and NKG2A on TANK cells were detected. Our results show that treatment with 2.5 mg/kg of CHE results in a significant reduction in mean tumor volume and increased survival duration of DL bearing BALB/c (H2d) mice when compared to control. Activating receptor NKG2D on TANK cells were observed upregulated in contrast to inhibitory receptor NKG2A. CHE reduced mean tumor volume and increased survival duration of DL bearing BALB/c (H2d) mice. Increased expression of activating receptor NKG2D on TANK cells results in recovery of immunosuppression during tumor progression. Therefore, CHE could be a potential anticancer therapeutic agent that may be used to replace chemo-radio-therapy in future.

  5. Development of deuterium labeling method based on the heterogeneous platinum group metal-catalyzed C-H activation.

    PubMed

    Sajiki, Hironao

    2013-01-01

    Deuterium (D) labeled compounds are utilized in various scientific fields such as mechanistic elucidation of reactions, preparation of new functional materials, tracers for microanalysis, deuterium labeled heavy drugs and so on. Although the H-D exchange reaction is a straightforward method to produce deuterated organic compounds, many precedent methods require expensive deuterium gas and/or harsh reaction conditions. A part of our leading research agendas is intended to the development of novel and functional heterogeneous platinum-group catalysts and the reclamation of unknown functionalities of existing heterogeneous platinum-group catalysts. During the course of the study, benzylic positions of substrates were site-selectively deuterated under mild and palladium-on-carbon (Pd/C)-catalyzed hydrogenation conditions in heavy water (D2O). Heat conditions promoted the H-D exchange reactivity and facilitated the H-D exchange reaction at not only the benzylic sites but also inactive C-H bonds and heterocyclic nuclei. It is noteworthy that platinum-on-carbon (Pt/C) indicated a quite high affinity toward aromatic nuclei, and the H-D exchange reaction was strongly enhanced by the use of Pt/C as a catalyst under milder conditions. The mixed use of Pd/C and Pt/C was found to be more efficient in the H-D exchange reaction compared to the independent use of Pd/C or Pt/C. Furthermore, simple alkanes could also be efficiently deuterated under rhodium-on-carbon (Rh/C)-catalyzed conditions. The use of ruthenium-on-carbon (Ru/C) enabled the regiospecific and efficient deuterium incorporation at α-positions of alcohols and results were applied as a regio- and stereoselective multi-deuteration method of sugar derivatives.

  6. Activation of two C-H bonds of NHC N-methyl groups on triosmium and triruthenium carbonyl clusters.

    PubMed

    Cabeza, Javier A; Del Río, Ignacio; Miguel, Daniel; Pérez-Carreño, Enrique; Sánchez-Vega, M Gabriela

    2008-04-14

    The thermolysis of the NHC triosmium cluster [Os3(Me2Im)(CO)11] (1a; Me2Im = 1,3-dimethylimidazol-2-ylidene) in toluene at reflux temperature sequentially affords the edge-bridged cluster [Os3(micro-H)(micro-kappa2-MeImCH2)(CO)10] () and the face-capped derivative [Os3(micro-H)2(micro3-kappa2-MeImCH)(CO)9] (3a). These products result from the sequential oxidative addition of one (2a) and two (3a) N-methyl C-H bonds of the original NHC ligand. The related face-capped triruthenium cluster [Ru3(micro-H)2(micro3-kappa2-MeImCH)(CO)9] (3b) has been prepared by heating the NHC triruthenium cluster [Ru3(Me2Im)(CO)11] (1b) in THF at reflux temperature. In this case, the pentanuclear derivatives [Ru5(Me2Im)(micro4-kappa2-CO)(CO)14] (4b) and [Ru5(Me2Im)2(micro4-kappa2-CO)(CO)13] (5b) are minor reaction products, but a ruthenium cluster analogous to has not been obtained. The face-capped oxazole-derived NHC triruthenium cluster [Ru3(micro-H)2(micro3-kappa2-OxCH)(CO)9] (3c; MeOx = N-methyloxazol-2-ylidene) is the only isolated product of the thermolysis of [Ru3(MeOx)(CO)11] (1c) in THF at reflux temperature.

  7. Ruthenium(II)-Catalyzed C-H Activation of Imidamides and Divergent Couplings with Diazo Compounds: Substrate-Controlled Synthesis of Indoles and 3H-Indoles.

    PubMed

    Li, Yunyun; Qi, Zisong; Wang, He; Yang, Xifa; Li, Xingwei

    2016-09-19

    Indoles are an important structural motif that is commonly found in biologically active molecules. In this work, conditions for divergent couplings between imidamides and acceptor-acceptor diazo compounds were developed that afforded NH indoles and 3H-indoles under ruthenium catalysis. The coupling of α-diazoketoesters afforded NH indoles by cleavage of the C(N2 )-C(acyl) bond whereas α-diazomalonates gave 3H-indoles by C-N bond cleavage. This reaction constitutes the first intermolecular coupling of diazo substrates with arenes by ruthenium-catalyzed C-H activation.

  8. Nickel(II)-Catalyzed Site-Selective C-H Bond Trifluoromethylation of Arylamine in Water through a Coordinating Activation Strategy.

    PubMed

    Xu, Jun; Qiao, Li; Shen, Jiabin; Chai, Kejie; Shen, Chao; Zhang, Pengfei

    2017-10-02

    The first example of nickel(II)-catalyzed site-selective C-H bond trifluoromethylation of arylamine in water is established. In this transformation, a coordinating activation strategy is performed by the utilization of picolinamide as a directing group, and target products are obtained in moderate to good yields. In addition, the catalyst-in-water system can be reutilized eight times with a slight loss of catalytic activity and applied in the green, concise synthesis of acid red 266. Furthermore, a series of control experiments verify that a single-electron transfer mechanism is responsible for this reaction.

  9. Interplay of Electronic Cooperativity and Exchange Coupling in Regulating the Reactivity of Diiron(IV)-oxo Complexes towards C-H and O-H Bond Activation.

    PubMed

    Ansari, Azaj; Ansari, Mursaleem; Singha, Asmita; Rajaraman, Gopalan

    2017-07-26

    Activation of inert C-H bonds such as those of methane are extremely challenging for chemists but in nature, the soluble methane monooxygenase (sMMO) enzyme readily oxidizes methane to methanol by using a diiron(IV) species. This has prompted chemists to look for similar model systems. Recently, a (μ-oxo)bis(μ-carboxamido)diiron(IV) ([Fe(IV)2 O(L)2 ](2+) L=N,N-bis-(3',5'-dimethyl-4'-methoxypyridyl-2'-methyl)-N'-acetyl-1,2-diaminoethane) complex has been generated by bulk electrolysis and this species activates inert C-H bonds almost 1000 times faster than mononuclear Fe(IV) =O species and at the same time selectively activates O-H bonds of alcohols. The very high reactivity and selectivity of this species is puzzling and herein we use extensive DFT calculations to shed light on this aspect. We have studied the electronic and spectral features of diiron {Fe(III) -μ(O)-Fe(III) }(+2) (complex I), {Fe(III) -μ(O)-Fe(IV) }(+3) (II), and {Fe(IV) -μ(O)-Fe(IV) }(+4) (III) complexes. Strong antiferromagnetic coupling between the Fe centers leads to spin-coupled S=0, S=3/2, and S=0 ground state for species I-III respectively. The mechanistic study of the C-H and O-H bond activation reveals a multistate reactivity scenario where C-H bond activation is found to occur through the S=4 spin-coupled state corresponding to the high-spin state of individual Fe(IV) centers. The O-H bond activation on the other hand, occurs through the S=2 spin-coupled state corresponding to an intermediate state of individual Fe(IV) centers. Molecular orbital analysis reveals σ-π/π-π channels for the reactivity. The nature of the magnetic exchange interaction is found to be switched during the course of the reaction and this offers lower energy pathways. Significant electronic cooperativity between two metal centers during the course of the reaction has been witnessed and this uncovers the reason behind the efficiency and selectivity observed. The catalyst is found to prudently choose the

  10. Selective C-H and C-C Bond Activation: Electronic Regimes as a Tool for Designing d(10) MLn Catalysts.

    PubMed

    Wolters, Lando P; Bickelhaupt, F Matthias

    2015-10-01

    We wish to understand how a transition-metal catalyst can be rationally designed so as to selectively activate one particular bond in a substrate, herein, C-H and C-C bonds in ethane. To this end, we quantum chemically analyzed the activity and selectivity of a large series of model catalysts towards ethane and, for comparison, methane, by using the activation strain model and quantitative molecular orbital theory. The model catalysts comprise d(10) MLn complexes with coordination numbers n=0, 1, and 2; metal centers M=Co(-), Rh(-), Ir(-), Ni, Pd, Pt, Cu(+), Ag(+), and Au(+); and ligands L=NH3, PH3, and CO. Our analyses reveal that rather subtle electronic differences between bonds can be exploited to induce a lower barrier for activating one or the other, depending, among other factors, on the catalysts electronic regime (i.e., s-regime versus d-regime catalysts). Interestingly, the concepts and design principles emerging from this work can also be applied to the more challenging problem of differentiating between activation of the C-H bonds in ethane versus those in methane. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Efficient synthesis of frutinone A and its derivatives through palladium-catalyzed C - H activation/carbonylation.

    PubMed

    Shin, Yongje; Yoo, Changho; Moon, Youngtaek; Lee, Yunho; Hong, Sungwoo

    2015-04-01

    Frutinone A, a biologically active ingredient of an antimicrobial herbal extract, demonstrates potent inhibitory activity towards the CYP1A2 enzyme. A three-step total synthesis of frutinone A with an overall yield of 44 % is presented. The construction of the chromone-annelated coumarin core was achieved through palladium-catalyzed CH carbonylation of 2-phenolchromones. The straightforward synthetic route allowed facile substitutions around the frutinone A core and thus rapid exploration of the structure-activity relationship (SAR) profile of the derivatives. The inhibitory activity of the synthesized frutinone A derivatives were determined for CYP1A2, and ten compounds exhibited one-to-two digit nanomolar inhibitory activity towards the CYP1A2 enzyme.

  12. Rh(III)-Catalyzed Carbocyclization of 3-(Indolin-1-yl)-3-oxopropanenitriles with Alkynes and Alkenes through C-H Activation.

    PubMed

    Zhou, Tao; Wang, Yanwei; Li, Bin; Wang, Baiquan

    2016-10-07

    Rh(III)-catalyzed carbocyclization reactions of 3-(indolin-1-yl)-3-oxopropanenitriles with alkynes and alkenes have been developed to form 1,7-fused indolines through C-H activation. These reactions have a broad range of substrates and high yields. Unsymmetrical aryl-alkyl substituted alkynes proceeded smoothly with high regioselectivity. Electron-rich alkynes could undergo further oxidative coupling reaction to form polycyclic compounds. For alkenes, 1,2-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-4-ones were formed via C(sp(2))-H bond alkenylation and C(sp(2))-H, C(sp(3))-H oxidative coupling reactions.

  13. Reactivity of alkynylindole-2-carboxamides in [Pd]-catalysed C-H activation and phase transfer catalysis: formation of pyrrolo-diindolones vs. β-carbolinones.

    PubMed

    Tulichala, R N Prasad; Swamy, K C Kumara

    2016-05-11

    The divergent behaviour of 3-alkynylindole-2-carboxamides, under palladium catalysed conditions and phase-transfer catalytic conditions, is described. Thus, palladium catalysed intramolecular C-N and C-C bond formation in a single step by C-H activation involving 3-alkynylindole-2-carboxamides and leading to pyrrolodiindolones in high yields is developed. In contrast, using the same precursors, a high yielding regio- and chemo-selective route for 3-substituted β-carbolinones by phase-transfer catalysis is established via intramolecular C-N bond formation. The structures of key products are confirmed by X-ray crystallography.

  14. Insertion of polar and nonpolar unsaturated molecules into carbon-rhenium bonds generated by C-H bond activation: synthesis of phthalimidine and indene derivatives.

    PubMed

    Kuninobu, Yoichiro; Tokunaga, Yukimi; Kawata, Atsushi; Takai, Kazuhiko

    2006-01-11

    A rhenium complex, [ReBr(CO)(3)(thf)](2), catalyzes the reaction of an aromatic aldimine with an isocyanate and an acetylene to give a phthalimidine and an indene derivative in a quantitative yield, respectively. The reactions proceed via C-H bond activation, insertion of the isocyanate or the acetylene, intramolecular nucleophilic cyclization to the aldimine of the generated amido- or alkenyl-rhenium species, and reductive elimination. In contrast to ruthenium and rhodium catalysts, which are usually employed in this type of reaction, the rhenium catalyst promotes the insertion of a polar unsaturated molecule. This occurs more easily than the insertion of a nonpolar unsaturated molecule.

  15. Tuning reactivity and site selectivity of simple arenes in C-H activation: ortho-arylation of anisoles via arene-metal π-complexation.

    PubMed

    Ricci, Paolo; Krämer, Katrina; Larrosa, Igor

    2014-12-31

    Current approaches to achieve site selectivity in the C-H activation of arenes involve the use of directing groups or highly electron-poor arenes. In contrast, simple arenes, such as anisole, are characterized by poor reactivity and selectivity. We report that π-complexation to a Cr(CO)3 unit enhances the reactivity of anisoles providing an unprecedented ortho-selective arylation. This mild methodology can be used for the late stage functionalization of bioactive compounds containing the anisole motif, allowing the construction of novel organic scaffolds with few synthetic steps.

  16. 9,10-Dihydrophenanthrene derivatives and one 1,4-anthraquinone firstly isolated from Dioscorea zingiberensis C. H. Wright and their biological activities.

    PubMed

    Du, Dan; Zhang, Rui; Xing, Zhihua; Liang, Yuyan; Li, Shengfu; Jin, Tao; Xia, Qing; Long, Dan; Xin, Guang; Wang, Guangzhi; Huang, Wen

    2016-03-01

    Two new phenanthrene derivatives, 2,5,7-trimethoxy-9,10-dihydrophenanthrene-1,4-dione (1) and 2,5,6-trihydroxy-3,4-dimethoxy-9,10-dihydrophenanthrene (3), one new anthracenedione, 2,5,7-trimethoxyanthracene-1,4-dione (2), together with two known 9,10-dihydrophenanthrenes (4-5) were isolated from the rhizomes of Dioscorea zingiberensis C. H. Wright. The structures of these new compounds were established based on extensive NMR spectroscopy. Several isolated compounds were evaluated for the inhibition against nitric oxide (NO) production in the lipopolysaccharide (LPS)-activated RAW 264.7 macrophage cell line, DPPH radical scavenging, and inhibitory activity on Free Fatty Acids (FFAs) induced triglyceride accumulation in HepG2 cells. Compound 2 exhibited moderate anti-inflammatory activity, compound 3 possessed comparable DPPH radical scavenging activity as Vitamin C, compounds 2 and 4 showed potent inhibitory activities on triglyceride accumulation.

  17. Iridium(I)-catalyzed regioselective C-H activation and hydrogen-isotope exchange of non-aromatic unsaturated functionality.

    PubMed

    Kerr, William J; Mudd, Richard J; Paterson, Laura C; Brown, Jack A

    2014-11-03

    Isotopic labelling is a key technology of increasing importance for the investigation of new CH activation and functionalization techniques, as well as in the construction of labelled molecules for use within both organic synthesis and drug discovery. Herein, we report for the first time selective iridium-catalyzed CH activation and hydrogen-isotope exchange at the β-position of unsaturated organic compounds. The use of our highly active [Ir(cod)(IMes)(PPh3 )][PF6 ] (cod=1,5-cyclooctadiene) catalyst, under mild reaction conditions, allows the regioselective β-activation and labelling of a range of α,β-unsaturated compounds with differing steric and electronic properties. This new process delivers high levels of isotope incorporation over short reaction times by using low levels of catalyst loading. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The Children's Health and Activity Modification Program (C.H.A.M.P.): participants' perspectives of a four-week lifestyle intervention for children with obesity.

    PubMed

    Pearson, Erin S; Irwin, Jennifer D; Burke, Shauna M

    2012-12-01

    To date, there is a paucity of qualitative research examining the influence of community-based interventions for childhood obesity on the participants themselves. This study explored the experiences of children who participated in the Children's Health and Activity Modification Program (C.H.A.M.P.), a four-week day camp for children with obesity aged 8-14, in order to uncover key program elements for positive behavior change. Following the intervention, children (n = 36) participated in focus groups where they were asked about their experiences pertaining to physical activity and nutrition, what it was like to be part of a team, and how they felt about themselves. Findings revealed that participants perceived C.H.A.M.P. as helpful (e.g. in making healthier food choices, being more active, and feeling more confident and self-aware). This pilot study offers unique insights into the perspectives of children with obesity. Results are discussed with respect to future program development and research for childhood obesity treatment.

  19. 1994 C. H. McCloy Research Lecture: Does Physical Activity Play a Role in Preventing Osteoporosis?

    ERIC Educational Resources Information Center

    Drinkwater, Barbara L.

    1994-01-01

    Review considers problems encountered in relating women's physical activity to increases in bone mass, noting the implications of recommending exercise to help prevent osteoporosis based on that information. Research indicates that for the full benefit of exercise on skeletal health, there must be adequate gonadal hormone levels. (SM)

  20. 2008 C. H. McCloy Lecture: Social Psychology and Physical Activity--Back to the Future

    ERIC Educational Resources Information Center

    Gill, Diane L.

    2009-01-01

    In the early 1970s, both my academic career and the psychology subdiscipline within kinesiology began as "social psychology and physical activity." Since then, sport and exercise psychology research has shifted away from the social to a narrower bio-psycho-(no social) approach, and professional practice has focused on the elite rather…

  1. 1994 C. H. McCloy Research Lecture: Does Physical Activity Play a Role in Preventing Osteoporosis?

    ERIC Educational Resources Information Center

    Drinkwater, Barbara L.

    1994-01-01

    Review considers problems encountered in relating women's physical activity to increases in bone mass, noting the implications of recommending exercise to help prevent osteoporosis based on that information. Research indicates that for the full benefit of exercise on skeletal health, there must be adequate gonadal hormone levels. (SM)

  2. 2008 C. H. McCloy Lecture: Social Psychology and Physical Activity--Back to the Future

    ERIC Educational Resources Information Center

    Gill, Diane L.

    2009-01-01

    In the early 1970s, both my academic career and the psychology subdiscipline within kinesiology began as "social psychology and physical activity." Since then, sport and exercise psychology research has shifted away from the social to a narrower bio-psycho-(no social) approach, and professional practice has focused on the elite rather…

  3. Access to Silylated Pyrazole Derivatives by Palladium-Catalyzed C-H Activation of a TMS group.

    PubMed

    Mistico, Laetitia; Querolle, Olivier; Meerpoel, Lieven; Angibaud, Patrick; Durandetti, Muriel; Maddaluno, Jacques

    2016-07-04

    A simple and efficient approach to new silylated heterocycles of potential interest in medicinal chemistry is presented. A set of bromophenyl trimethylsilyl pyrazole intermediates can be transformed by direct organometallic routes into two families of regioisomeric iodoaryl substrates; using either arylzinc or aryllithium chemistry, the TMS group remains on the pyrazole ring or translocates to the aryl moiety. These two families can then be efficiently transformed into benzo silino pyrazoles thanks to a single-step cyclization relying on the Pd-catalyzed activation of a non-activated C(sp(3) )-H bond alpha to a silicon atom. The experimental conditions used, which are fully compatible with the pyrazole ring, suggest that this reaction evolves through a concerted metalation-deprotonation (CMD) mechanism.

  4. C/H{sub 2}O reaction under supercritical conditions and their repercussions in the preparation of activated carbon

    SciTech Connect

    Salvador, F.; Senchez-Montero, M.J.; Izquierdo, C.

    2007-09-15

    Two chars prepared by carbonization of oak wood and anthracite were used to perform a comparative study of the gasification with supercritical water (SCW) and with steam. This work reports the effects of the type of char, the activating agent, temperature, flow rate, and particle size employed on the kinetics, mechanism of reaction, and the characteristics of the activated carbons obtained. The results show that the reactivity of the two chars is much higher with SCW than with steam. Although this increase can be explained in terms of the greater penetration of SCW and diffusional effects in the pore structure of the chars, some aspects suggest a possible change in the mechanism of reaction favored by the formation of clusters in SCW. The evolution of porosity was also found to differ when the char was gasified with SCW and with steam, being governed strongly by the starting material. When the oak char was activated with SCW, the smallest microporosity was broadened from the very first moments due to its very open pore structure, providing carbons with larger micropores and some mesoporosity. In contrast, in the case of the anthracite char, with a narrower pore structure, the evolution of the porosity was slower and less uniform, favoring external gasification of the particle. Accordingly, the carbons had a broader distribution of micropores, and mesoporosity was scarce.

  5. Synthesis, Characterization, and C-H Activation Reactions of Novel Organometallic O-donor Ligated Rh(III) Complexes

    SciTech Connect

    Tenn, William J.; Conley, Brian L.; Bischof, Steven M.; Periana, Roy A.

    2010-09-17

    The synthesis and characterization of the O-donor ligated, air and water stable organometallic complexes trans- (2), and cis-(hfac-O,O) 2Rh(CH3)(py) (3), trans-(hfac-O,O)2Rh(C6H5)(py) (4), cis-(hfac-O,O)2Rh(C6H5)(py) (5), and cis-(hfac-O,O)2Rh(Mes)(py) (6) (where hfac-O,O = κ 2-O,O-1,1,1,5,5,5-hexafluoroacetylacetonato) are reported. These compounds are analogues to the O-donor iridium complexes that are active catalysts for the hydroarylation and C–H activation reactions as well as the bis-acetylacetonato rhodium complexes, which we recently reported. The trans-complex 2 undergoes a quantitative trans to cis isomerization in cyclohexane to form 3, which activates C–H bonds in both benzene and mesitylene to form compounds 5 and 6, respectively. All of these compounds are air and water stable and do not lead to decomposition products. Complex 5 promotes hydroarylation of styrene by benzene to generate dihydrostilbene.

  6. Low-energy reaction rate constants for the Ni+-assisted decomposition of acetaldehyde: observation of C-H and C-C activation.

    PubMed

    Dee, S Jason; Castleberry, Vanessa A; Villarroel, Otsmar J; Laboren, Ivanna E; Bellert, Darrin J

    2010-02-04

    Rate constants for the low-energy Ni(+)-assisted dissociative reaction of acetaldehyde have been measured under jet-cooled conditions in the gas phase. The rate constants are acquired through monitoring the time dependence of fragment Ni(+)CO formation. The decomposition of the precursor Ni(+)-acetaldehyde cluster ion proceeds via consecutive, parallel reaction coordinates that originate with the Ni(+)-assisted cleavage of either a C-C or an aldehyde C-H bond. The energies used to initiate these reactions are well below that required to cleave sigma-bonds in the isolated acetaldehyde molecule. Direct measurement of the reaction kinetics over a range of energies indicates that the rate-limiting step in the dissociative mechanism changes at cluster ion internal energies = 17,200 +/- 400 cm(-1). Arguments are presented that this energy marks the closure of the dissociative coordinate that initiates with C-H sigma-bond activation and thus provides a measure of the activation energy of this dissociative pathway.

  7. Trimethylsilylmethyl complexes of the rare-earth metals with sterically hindered N-heterocyclic carbene ligands: adduct formation and C-H bond activation.

    PubMed

    Fegler, Waldemar; Spaniol, Thomas P; Okuda, Jun

    2010-08-07

    Tris(trimethylsilylmethyl) complexes of yttrium and lutetium [LnR(3)(THF)(2)] (R = CH(2)SiMe(3)) were treated with sterically bulky N-heterocyclic carbenes (NHC) 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr) and 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene (IMes). IPr gave labile mono-adducts [LnR(3)(NHC)], isolated as thermally robust crystals and fully characterized by NMR spectroscopy and X-ray diffraction. IMes gave a similar lutetium mono-adduct [LuR(3)(IMes)] with the lutetium alkyl [LuR(3)(THF)(2)], whereas the yttrium alkyl [YR(3)(THF)(2)] resulted in the formation of an ortho-metalated product. This compound, isolated as a crystalline bis(THF) adduct, contains a strained six-membered chelate ring that has been formed by the C-H bond activation of one of the ortho-methyl groups of the mesityl group. In contrast [LuR(3)(IMes)] only slowly underwent a similar C-H bond activation.

  8. Direct arylation of benzene with aryl bromides using high-temperature/high-pressure process windows: expanding the scope of C-H activation chemistry.

    PubMed

    Pieber, Bartholomäus; Cantillo, David; Kappe, C Oliver

    2012-04-16

    A detailed investigation on the direct arylation of benzene with aryl bromides by using first-row transition metals under high-temperature/high-pressure (high-T/p) conditions is described. By employing a parallel reactor platform for rapid reaction screening and discovery at elevated temperatures, various metal/ligand/base combinations were evaluated for their ability to enable biaryl formation through C-H activation. The combination of cobalt(III) acetylacetonate and lithium bis(trimethylsilyl)amide was subjected to further process intensification at 200 °C (15 bar), allowing a significant reduction of the catalyst/base loading and a dramatic increase in catalytic efficiency (turnover frequency) by a factor of 1000 compared to traditional protocols. The high-throughput screening additionally identified novel nickel- and copper-based metal/ligand combinations that favored an amination pathway competing with C-H activation, with the addition of ligands, such as 1,10-phenanthroline, having a profound influence on the selectivity. In addition to metal-based catalysts, high-T/p process windows were also successfully applied to transition-metal-free systems, utilizing 1,10-phenanthroline as organocatalyst.

  9. Bipyridine- and phenanthroline-based metal-organic frameworks for highly efficient and tandem catalytic organic transformations via directed C-H activation.

    PubMed

    Manna, Kuntal; Zhang, Teng; Greene, Francis X; Lin, Wenbin

    2015-02-25

    We report here the synthesis of a series of robust and porous bipyridyl- and phenanthryl-based metal-organic frameworks (MOFs) of UiO topology (BPV-MOF, mBPV-MOF, and mPT-MOF) and their postsynthetic metalation to afford highly active single-site solid catalysts. While BPV-MOF was constructed from only bipyridyl-functionalized dicarboxylate linker, both mBPV- and mPT-MOF were built with a mixture of bipyridyl- or phenanthryl-functionalized and unfunctionalized dicarboxylate linkers. The postsynthetic metalation of these MOFs with [Ir(COD)(OMe)]2 provided Ir-functionalized MOFs (BPV-MOF-Ir, mBPV-MOF-Ir, and mPT-MOF-Ir), which are highly active catalysts for tandem hydrosilylation of aryl ketones and aldehydes followed by dehydrogenative ortho-silylation of benzylicsilyl ethers as well as C-H borylation of arenes using B2pin2. Both mBPV-MOF-Ir and mPT-MOF-Ir catalysts displayed superior activities compared to BPV-MOF-Ir due to the presence of larger open channels in the mixed-linker MOFs. Impressively, mBPV-MOF-Ir exhibited high TONs of up to 17,000 for C-H borylation reactions and was recycled more than 15 times. The mPT-MOF-Ir system is also active in catalyzing tandem dehydrosilylation/dehydrogenative cyclization of N-methylbenzyl amines to azasilolanes in the absence of a hydrogen acceptor. Importantly, MOF-Ir catalysts are significantly more active (up to 95 times) and stable than their homogeneous counterparts for all three reactions, strongly supporting the beneficial effects of active site isolation within MOFs. This work illustrates the ability to increase MOF open channel sizes by using the mixed linker approach and shows the enormous potential of developing highly active and robust single-site solid catalysts based on MOFs containing nitrogen-donor ligands for important organic transformations.

  10. Self-optimisation and model-based design of experiments for developing a C-H activation flow process.

    PubMed

    Echtermeyer, Alexander; Amar, Yehia; Zakrzewski, Jacek; Lapkin, Alexei

    2017-01-01

    A recently described C(sp(3))-H activation reaction to synthesise aziridines was used as a model reaction to demonstrate the methodology of developing a process model using model-based design of experiments (MBDoE) and self-optimisation approaches in flow. The two approaches are compared in terms of experimental efficiency. The self-optimisation approach required the least number of experiments to reach the specified objectives of cost and product yield, whereas the MBDoE approach enabled a rapid generation of a process model.

  11. Rh(I)-Catalyzed Arylation of Heterocycles via C-H Bond Activation: Expanded Scope Through Mechanistic Insight

    SciTech Connect

    Lewis, Jared; Berman, Ashley; Bergman, Robert; Ellman, Jonathan

    2007-07-18

    A practical, functional group tolerant method for the Rh-catalyzed direct arylation of a variety of pharmaceutically important azoles with aryl bromides is described. Many of the successful azole and aryl bromide coupling partners are not compatible with methods for the direct arylation of heterocycles using Pd(0) or Cu(I) catalysts. The readily prepared, low molecular weight ligand, Z-1-tert-butyl-2,3,6,7-tetrahydrophosphepine, which coordinates to Rh in a bidentate P-olefin fashion to provide a highly active yet thermally stable arylation catalyst, is essential to the success of this method. By using the tetrafluoroborate salt of the corresponding phosphonium, the reactions can be assembled outside of a glove box without purification of reagents or solvent. The reactions are also conducted in THF or dioxane, which greatly simplifies product isolation relative to most other methods for direct arylation of azoles employing high-boiling amide solvents. The reactions are performed with heating in a microwave reactor to obtain excellent product yields in two hours.

  12. Computational Mechanistic Study of Redox-Neutral Rh(III)-Catalyzed C-H Activation Reactions of Arylnitrones with Alkynes: Role of Noncovalent Interactions in Controlling Selectivity.

    PubMed

    Xing, Yang-Yang; Liu, Jian-Biao; Tian, Ying-Ying; Sun, Chuan-Zhi; Huang, Fang; Chen, De-Zhan

    2016-11-23

    The mechanism of redox-neutral Rh(III)-catalyzed coupling reactions of arylnitrones with alkynes was investigated by density functional theory (DFT) calculations. The free energy profiles associated with the catalytic cycle, involving C(sp(2))-H activation, insertion of alkyne, transfer of O atom, cyclization and protodemetalation, are presented and analyzed. An overwhelming preference for alkyne insertion into Rh-C over Rh-O is observed among all pathways, and the most favorable route is determined. The pivalate-assisted C-H activation step is turnover-limiting, and the cyclization step determines the diastereoselectivity of the reaction, with the stereoselectivity arising mainly from the difference of noncovalent interactions in key transition states. The detailed mechanism of O atom transfer, Rh(III)-Rh(I)-Rh(III) versus Rh(III)-Rh(V)-Rh(III) cycle, is discussed.

  13. Aliphatic Halogenase Enables Late-Stage C-H Functionalization: Selective Synthesis of a Brominated Fischerindole Alkaloid with Enhanced Antibacterial Activity.

    PubMed

    Zhu, Qin; Hillwig, Matthew L; Doi, Yohei; Liu, Xinyu

    2016-03-15

    The anion promiscuity of a newly discovered standalone aliphatic halogenase WelO5 was probed and enabled the selective synthesis of 13R-bromo-12-epi-fischerindole U via late-stage enzymatic functionalization of an unactivated sp(3) C-H bond. Pre-saturating the WelO5 active site with a non-native bromide anion was found to be critical to the highly selective in vitro transfer of bromine, instead of chlorine, to the target carbon center and also allowed the relative binding affinity of bromide and chloride towards the WelO5 enzyme to be assessed. This study further revealed the critical importance of halogen substitution on modulating the antibiotic activity of fischerindole alkaloids and highlights the promise of WelO5-type aliphatic halogenases as enzymatic tools to fine-tune the bioactivity of complex natural products.

  14. An active-site phenylalanine directs substrate binding and C-H cleavage in the alpha-ketoglutarate-dependent dioxygenase TauD.

    PubMed

    McCusker, Kevin P; Klinman, Judith P

    2010-04-14

    Enzymes that cleave C-H bonds are often found to depend on well-packed hydrophobic cores that influence the distance between the hydrogen donor and acceptor. Residue F159 in taurine alpha-ketoglutarate dioxygenase (TauD) is demonstrated to play an important role in the binding and orientation of its substrate, which undergoes a hydrogen atom transfer to the active site Fe(IV)=O. Mutation of F159 to smaller hydrophobic side chains (L, V, A) leads to substantially reduced rates for substrate binding and for C-H bond cleavage, as well as increased contribution of the chemical step to k(cat) under steady-state turnover conditions. The greater sensitivity of these substrate-dependent processes to mutation at position 159 than observed for the oxygen activation process supports a previous conclusion of modularity of function within the active site of TauD (McCusker, K. P.; Klinman, J. P. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 19791-19795). Extraction of intrinsic deuterium kinetic isotope effects (KIEs) using single turnover transients shows 2- to 4-fold increase in the size of the KIE for F159V in relation to wild-type and F159L. It appears that there is a break in behavior following removal of a single methylene from the side chain of F159L to generate F159V, whereby the protein active site loses its ability to restore the internuclear distance between substrate and Fe(IV)=O that supports optimal hydrogenic wave function overlap.

  15. Manganese Catalyzed C-H Halogenation.

    PubMed

    Liu, Wei; Groves, John T

    2015-06-16

    The remarkable aliphatic C-H hydroxylations catalyzed by the heme-containing enzyme, cytochrome P450, have attracted sustained attention for more than four decades. The effectiveness of P450 enzymes as highly selective biocatalysts for a wide range of oxygenation reactions of complex substrates has driven chemists to develop synthetic metalloporphyrin model compounds that mimic P450 reactivity. Among various known metalloporphyrins, manganese derivatives have received considerable attention since they have been shown to be versatile and powerful mediators for alkane hydroxylation and olefin epoxidation. Mechanistic studies have shown that the key intermediates of the manganese porphyrin-catalyzed oxygenation reactions include oxo- and dioxomanganese(V) species that transfer an oxygen atom to the substrate through a hydrogen abstraction/oxygen recombination pathway known as the oxygen rebound mechanism. Application of manganese porphyrins has been largely restricted to catalysis of oxygenation reactions until recently, however, due to ultrafast oxygen transfer rates. In this Account, we discuss recently developed carbon-halogen bond formation, including fluorination reactions catalyzed by manganese porphyrins and related salen species. We found that biphasic sodium hypochlorite/manganese porphyrin systems can efficiently and selectively convert even unactivated aliphatic C-H bonds to C-Cl bonds. An understanding of this novel reactivity derived from results obtained for the oxidation of the mechanistically diagnostic substrate and radical clock, norcarane. Significantly, the oxygen rebound rate in Mn-mediated hydroxylation is highly correlated with the nature of the trans-axial ligands bound to the manganese center (L-Mn(V)═O). Based on the ability of fluoride ion to decelerate the oxygen rebound step, we envisaged that a relatively long-lived substrate radical could be trapped by a Mn-F fluorine source, effecting carbon-fluorine bond formation. Indeed, this idea

  16. Merging C-H activation and alkene difunctionalization at room temperature: a palladium-catalyzed divergent synthesis of indoles and indolines.

    PubMed

    Manna, Manash Kumar; Hossian, Asik; Jana, Ranjan

    2015-02-06

    A palladium-catalyzed 1,2-carboamination through C-H activation at room temperature is reported for the synthesis of 2-arylindoles, and indolines from readily available, inexpensive aryl ureas and vinyl arenes. The reaction initiates with a urea-directed electrophilic ortho palladation, alkene insertion, and β-hydride elimination sequences to provide the Fujiwara-Moritani arylation product. Subsequently, aza-Wacker cyclization, and β-hydride elimination provide the 2-arylindoles in high yields. Intercepting the common σ-alkyl-Pd intermediate, corresponding indolines are also achieved. The indoline formation is attributed to the generation of stabilized, cationic π-benzyl-Pd species to suppress β-hydride elimination.

  17. The ansa effect in permethylmolybdenocene chemistry: A [Me{sub 2}Si] ansa bridge promotes intermolecular C-H and C-C bond activation

    SciTech Connect

    Churchill, D.; Shin, J.H.; Hascall, T.; Hahn, J.M.; Bridgewater, B.M.; Parkin, G.

    1999-06-21

    Access to the [Me{sub 2}Si] ansa-bridged permethylmolybdenocene system is provided by the synthesis of [Me{sub 2}Si(C{sub 5}Me{sub 4}){sub 2}]MoCl{sub 2} from the reaction of MoCl{sub 5} with a mixture of [Me{sub 2}Si(C{sub 5}Me{sub 4}){sub 2}]Li{sub 2} and NaBH{sub 4}, followed by treatment with CHCl{sub 3}. Comparison with the chemistry of the non-ansa Cp{sup *}{sub 2}MoX{sub 2} system indicates that incorporation of the [Me{sub 2}Si] ansa bridge promotes intermolecular C-H and C-C bond activation reactions.

  18. Merging allylic C-H bond activation and C-C bond cleavage en route to the formation of a quaternary carbon stereocenter in acyclic systems.

    PubMed

    Vasseur, Alexandre; Marek, Ilan

    2017-01-01

    This protocol describes a diastereoselective approach for the synthesis of complex molecular architectures containing two stereogenic centers in a 1,4 relationship, one of which being an all-carbon quaternary stereogenic center. Such molecules could be intermediates in the synthesis of steroids, for example. Conceived as a single-flask synthetic sequence from ω-ene cyclopropanes, the protocol involves a concerted allylic C-H and C-C bond activation promoted by the Negishi reagent (Cp2Zr(η(2)-butene)). This zirconium-promenade-based procedure affords bifunctionalized products in high diastereomeric ratios after reaction of ω-ene cyclopropanes with the Negishi complex, followed by a thermal treatment and sequential addition of two different electrophiles. The method proves to be particularly efficient when carbonyl compounds are used as first electrophiles and hydrogen or elemental halides are used as second electrophiles. In addition, it offers the opportunity to create new C-C bonds via remote functionalization of a (sp(3))-C-H bond, a result of a copper or copper/palladium transmetalation step that extends the scope of the process to alkyl, acyl and aromatic halide compounds as second electrophiles. The typical described protocol allows the synthesis of the highly diastereo-enriched 2-((1R*,2S*)-2-butyl-2 propylcyclopropyl)ethanol and may provide a new entry to access complex molecular segments of natural products such as steroids or C30 botryococcene. It requires a simple reaction setup and takes ∼18.5 h to run the reaction and 2 h for isolation and purification.

  19. Rare-earth-metal alkylaluminates supported by N-donor-functionalized cyclopentadienyl ligands: C-H bond activation and performance in isoprene polymerization.

    PubMed

    Jende, Lars N; Maichle-Mössmer, Cäcilia; Anwander, Reiner

    2013-11-25

    Homoleptic tetramethylaluminate complexes [Ln(AlMe4)3] (Ln=La, Nd, Y) reacted with HCp(NMe2) (Cp(NMe2) =1-[2-(N,N-dimethylamino)-ethyl]-2,3,4,5-tetramethyl-cyclopentadienyl) in pentane at -35 °C to yield half-sandwich rare-earth-metal complexes, [{C5 Me4CH2CH2NMe2 (AlMe3)}Ln(AlMe4)2]. Removal of the N-donor-coordinated trimethylaluminum group through donor displacement by using an equimolar amount of Et2O at ambient temperature only generated the methylene-bridged complexes [{C5Me4CH2CH2NMe(μ-CH2)AlMe3}Ln(AlMe4)] with the larger rare-earth-metal ions lanthanum and neodymium. X-ray diffraction analysis revealed the formation of isostructural complexes and the C-H bond activation of one aminomethyl group. The formation of Ln(μ-CH2)Al moieties was further corroborated by (13)C and (1)H-(13)C HSQC NMR spectroscopy. In the case of the largest metal center, lanthanum, this C-H bond activation could be suppressed at -35 °C, thereby leading to the isolation of [(Cp(NMe2))La(AlMe4)2], which contains an intramolecularly coordinated amino group. The protonolysis reaction of [Ln(AlMe4)3] (Ln=La, Nd) with the anilinyl-substituted cyclopentadiene HCp(AMe2) (Cp(AMe2) =1-[1-(N,N-dimethylanilinyl)]-2,3,4,5-tetramethylcyclopentadienyl) at -35 °C generated the half-sandwich complexes [(Cp(AMe2))Ln(AlMe4)2]. Heating these complexes at 75 °C resulted in the C-H bond activation of one of the anilinium methyl groups and the formation of [{C5Me4C6H4NMe(μ-CH2)AlMe3}Ln(AlMe4)] through the elimination of methane. In contrast, the smaller yttrium metal center already gave the aminomethyl-activated complex at -35 °C, which is isostructural to those of lanthanum and neodymium. The performance of complexes [{C5Me4CH2CH2NMe(μ-CH2 )AlMe3}-Ln(AlMe4)], [(Cp(AMe2))Ln(AlMe4)2], and [{C5Me4C6H4NMe(μ-CH2)AlMe3}Ln(AlMe4)] in the polymerization of isoprene was investigated upon activation with [Ph3C][B(C6F5)4], [PhNMe2 H][B(C6F5)4], and B(C6F5)3. The highest stereoselectivities were observed

  20. Iridium-imine and -amine complexes relevant to the (S)-metolachlor process: structures, exchange kinetics, and C-H activation by Iri causing racemization.

    PubMed

    Dorta, Romano; Broggini, Diego; Kissner, Reinhard; Togni, Antonio

    2004-09-20

    Iridium complexes of DMA-imine [2,6-dimethylphenyl-1'-methyl-2'-methoxyethylimine, 1 a) and (R)-DMA-amine [(1'R)-2,6-dimethylphenyl-1'-methyl-2'-methoxyethylamine, 2 a] that are relevant to the catalytic imine hydrogenation step of the Syngenta (S)-Metolachlor process were synthesized: metathetical exchange of [Ir2Cl2(cod)2] (cod=1,5-cyclooctadiene) with [Ag(1 a)2]BF4 and [Ag((R)-2 a)2]BF4 afforded [Ir(cod)(kappa2- -1 a)]BF4 (11) and [Ir(cod)(kappa2-(R)-2 a)]BF4 ((R)-19)), respectively. These complexes were then used in stopped-flow experiments to study the displacement of amine 2 a from complex 19 by imine 1 a to form the imine complex 11, thus modeling the product/substrate exchange step in the catalytic cycle. The data suggest a two-step associative mechanism characterized by k1=(2.6+/-0.3) x 10(2) M(-1) s(-1) and k2=(4.3+/-0.6) x 10(-2) s(-1) with the respective activation energies EA1=(7.5+/-0.6) kJ mol(-1) and EA2=(37+/-3) kJ mol(-1). Furthermore, complex 11 reacted with H2O to afford the hydrolysis product [Ir(cod)(eta(6-)-2,6-dimethylaniline)]BF4 (12), and with I2 to liberate quantitatively the DMA-iminium salt 14. On the other hand, the chiral amine complex (R)-19 formed the optically inactive eta6-bound compound [Ir(cod)(eta6-rac-2 a)]BF4 (rac-18) upon dissolution in THF at room temperature, presumably via intramolecular C-H activation. This racemization was found to be a two-step event with k'1=9.0 x 10(-4) s(-1) and k2=2.89 x 10(-5) s(-1), featuring an optically active intermediate prior to sp3 C-H activation. Compounds 11, 12, rac-18, and (R)-19 were structurally characterized by single-crystal X-ray analyses.

  1. Ligand versus Complex: C-F and C-H Bond Activation of Polyfluoroaromatics at a Cyclic (Alkyl)(Amino)Carbene.

    PubMed

    Paul, Ursula S D; Radius, Udo

    2017-03-17

    C-F and C-H bond activation reactions of polyfluoroaromatics at the cyclic (alkyl)(amino)carbene (cAAC) cAAC(methyl) (1) are reported. Studies on the C-F bond activation using the cAAC-stabilized nickel(0) complex [Ni(cAAC(methyl) )2 ] (2) have shown that 2 does not react with fluorinated arenes. However, these investigations led to the observation of C-F bond cleavage of perfluorinated arenes by the carbene ligand cAAC(methyl) (1) itself. The reaction of 1 with C6 F6 , C6 F5 -C6 F5 , C6 F5 -CF3 , and C5 F5 N afforded the insertion products of cAAC into one of the C-F bonds of the substrate, that is, the C-F bond activation products (cAAC(methyl) )F(Ar(f) ) (Ar(f) =C6 F5 4 a, C6 F4 -C6 F5 4 b, C6 F4 -CF3 4 c, C5 F4 N 4 d). These products decompose readily upon heating to 80 °C within a few hours in solution with formation of ionic iminium salts [(cAAC(methyl) )(Ar(f) )][X] 6 a-d or neutral alkenyl perfluoroaryl imine compounds 7 a-d. The compounds (cAAC(methyl) )F(Ar(f) ) 4 a-d readily transfer fluoride, which has been exemplified by the fluoride transfer of all compounds using BF3 etherate as fluoride acceptor. Fluoride transfer has also been achieved starting from (cAAC(methyl) )F(C6 F4 -CF3 ) (4 c) or (cAAC(methyl) )F(C5 F4 N) (4 d) to other selected substrates such as trimethylchlorosilane, benzoyl chloride and tosyl chloride. Instead of C-F bond activation, insertion of the cAAC into the C-H bond was observed if 1 was treated with the partially fluorinated arenes C6 F5 H, 1,2,4,5-C6 F4 H2 , 1,3,5-C6 F3 H3 , and 1,3-C6 F2 H4 . The compounds (cAAC(methyl) )H(Ar(f) ) (Ar(f) =C6 F5 12 e, 2,3,5,6-C6 F4 H 12 f, 2,4,6-C6 F3 H2 12 g and 2,6-C6 F2 H3 12 h) have been isolated in good yields and have been characterized including X-ray analysis. Fluorobenzene C6 FH5 (pKa ≈37), the least C-H acidic fluoroarene used in this study, does not react. In order to investigate the scope and limitations of this type of cAAC C-H bond activation

  2. The Molybdenum Active Site of Formate Dehydrogenase Is Capable of Catalyzing C-H Bond Cleavage and Oxygen Atom Transfer Reactions.

    PubMed

    Hartmann, Tobias; Schrapers, Peer; Utesch, Tillmann; Nimtz, Manfred; Rippers, Yvonne; Dau, Holger; Mroginski, Maria Andrea; Haumann, Michael; Leimkühler, Silke

    2016-04-26

    Formate dehydrogenases (FDHs) are capable of performing the reversible oxidation of formate and are enzymes of great interest for fuel cell applications and for the production of reduced carbon compounds as energy sources from CO2. Metal-containing FDHs in general contain a highly conserved active site, comprising a molybdenum (or tungsten) center coordinated by two molybdopterin guanine dinucleotide molecules, a sulfido and a (seleno-)cysteine ligand, in addition to a histidine and arginine residue in the second coordination sphere. So far, the role of these amino acids in catalysis has not been studied in detail, because of the lack of suitable expression systems and the lability or oxygen sensitivity of the enzymes. Here, the roles of these active site residues is revealed using the Mo-containing FDH from Rhodobacter capsulatus. Our results show that the cysteine ligand at the Mo ion is displaced by the formate substrate during the reaction, the arginine has a direct role in substrate binding and stabilization, and the histidine elevates the pKa of the active site cysteine. We further found that in addition to reversible formate oxidation, the enzyme is further capable of reducing nitrate to nitrite. We propose a mechanistic scheme that combines both functionalities and provides important insights into the distinct mechanisms of C-H bond cleavage and oxygen atom transfer catalyzed by formate dehydrogenase.

  3. Development of a supramolecular ensemble of an AIEE active hexaphenylbenzene derivative and Ag@Cu2O core-shell NPs: an efficient photocatalytic system for C-H activation.

    PubMed

    Chopra, Radhika; Kumar, Manoj; Bhalla, Vandana

    2016-08-09

    A supramolecular ensemble having Ag@Cu2O core-shell nanoparticles stabilized by aggregates of a hexaphenylbenzene derivative has been developed which exhibits excellent photocatalytic efficiency in reactions involving preparation of imidazole and benzimidazole derivatives via C-H activation.

  4. Solvent effects and activation parameters in the competitive cleavage of C-CN and C-H bonds in 2-methyl-3-butenenitrile using [(dippe)NiH]2.

    PubMed

    Swartz, Brett D; Reinartz, Nicole M; Brennessel, William W; García, Juventino J; Jones, William D

    2008-07-02

    The reaction of [(dippe)NiH]2 with 2-methyl-3-butenenitrile (2M3BN) in solvents spanning a wide range of polarities shows significant differences in the ratio of C-H and C-CN activated products. C-H cleavage is favored in polar solvents, whereas C-C cleavage is favored in nonpolar solvents. This variation is attributed to the differential solvation of the transition states, which was further supported through the use of sterically bulky solvents and weakly coordinating solvents. Variation of the temperature of reaction of [(dippe)NiH]2 with 2M3BN in decane and N,N-dimethylformamide (DMF) allowed for the calculation of Eyring activation parameters for the C-CN activation and C-H activation mechanisms. The activation parameters for the C-H activation pathway were DeltaH(double dagger) = 11.4 +/- 5.3 kcal/mol and DeltaS(double dagger) = -45 +/- 15 e.u., compared with DeltaH(double dagger) = 17.3 +/- 2.6 kcal/mol and DeltaS(double dagger) = -29 +/- 7 e.u. for the C-CN activation pathway. These parameters indicate that C-H activation is favored enthalpically, but not entropically, over C-C activation, implying a more ordered transition state for the former.

  5. A kinetico-mechanistic study on the C-H bond activation of primary benzylamines; cooperative and solid-state cyclopalladation on dimeric complexes.

    PubMed

    Font, Helena; Font-Bardia, Mercè; Gómez, Kerman; González, Gabriel; Granell, Jaume; Macho, Israel; Martínez, Manuel

    2014-09-28

    The cyclometallation reactions of dinuclear μ-acetato complexes of the type [Pd(AcO)(μ-AcO)L]2 (L = 4-RC6H4CH2NH2, R = H, Cl, F, CF3), a process found to occur readily even in the solid state, have been studied from a kinetico-mechanistic perspective. Data indicate that the dinuclear acetato bridged derivatives are excellent starting materials to activate carbon-hydrogen bonds in a facile way. In all cases the established concerted ambiphilic proton abstraction by a coordinated acetato ligand has been proved. The metallation has also been found to occur in a cooperative manner, with the metallation of the first palladium unit of the dimeric complex being rate determining; no intermediate mono-metallated compounds are observed in any of the processes. The kinetically favoured bis-cyclopalladated compound obtained after complete C-H bond activation does not correspond to the final isolated XRD-characterized complexes. This species, bearing the classical open-book dimeric form, has a much more complex structure than the final isolated compound, with different types of acetato ligands.

  6. C-H vs C-C bond activation of acetonitrile and benzonitrile via oxidative addition: rhodium vs nickel and Cp* vs Tp' (Tp' = hydrotris(3,5-dimethylpyrazol-1-yl)borate, Cp* = η(5)-pentamethylcyclopentadienyl).

    PubMed

    Evans, Meagan E; Li, Ting; Jones, William D

    2010-11-17

    The photochemical reaction of (C(5)Me(5))Rh(PMe(3))H(2) (1) in neat acetonitrile leads to formation of the C-H activation product, (C(5)Me(5))Rh(PMe(3))(CH(2)CN)H (2). Thermolysis of this product in acetonitrile or benzene leads to thermal rearrangement to the C-C activation product, (C(5)Me(5))Rh(PMe(3))(CH(3))(CN) (4). Similar results were observed for the reaction of 1 with benzonitrile. The photolysis of 1 in neat benzonitrile results in C-H activation at the ortho, meta, and para positions. Thermolysis of the mixture in neat benzonitrile results in clean conversion to the C-C activation product, (C(5)Me(5))Rh(PMe(3))(C(6)H(5))(CN) (5). DFT calculations on the acetonitrile system show the barrier to C-H activation to be 4.3 kcal mol(-1) lower than the barrier to C-C activation. A high-energy intermediate was also located and found to connect the transition states leading to C-H and C-C activation. This intermediate has an agostic hydrogen interaction with the rhodium center. Reactions of acetonitrile and benzonitrile with the fragment [Tp'Rh(CNneopentyl)] show only C-H and no C-C activation. These reactions with rhodium are compared and contrasted to related reactions with [Ni(dippe)H](2), which show only C-CN bond cleavage.

  7. Driving Forces for Covalent Assembly of Porphyrins by Selective C-H Bond Activation and Intermolecular Coupling on a Copper Surface.

    PubMed

    Floris, Andrea; Haq, Sam; In't Veld, Mendel; Amabilino, David B; Raval, Rasmita; Kantorovich, Lev

    2016-05-11

    Recent synthesis of covalent organic assemblies at surfaces has opened the promise of producing robust nanostructures for functional interfaces. To uncover how this new chemistry works at surfaces and understand the underlying mechanisms that control bond-breaking and bond-making processes at specific positions of the participating molecules, we study here the coupling reaction of tetra(mesityl)porphyrin molecules, which creates covalently connected networks on the Cu(110) surface by utilizing the 4-methyl groups as unique connection points. Using scanning tunneling microscopy (STM), state-of-the-art density functional theory (DFT), and Nudged Elastic Band (NEB) calculations, we show that the unique directionality of the covalent bonding is found to stem from a chain of highly selective C-H activation and dehydrogenation processes, followed by specific intermolecular C-C coupling reactions that are facilitated by the surface, by steric constraints, and by anisotropic molecular diffusion. These insights provide the first steps toward developing synthetic rules for complex two-dimensional covalent organic chemistry that can be enacted directly at a surface to deliver specific macromolecular structures designed for specific functions.

  8. Nitro and amino substitution in the D-ring of 5-(2-dimethylaminoethyl)- 2,3-methylenedioxy-5H-dibenzo[c,h][1,6]naphthyridin-6-ones: effect on topoisomerase-I targeting activity and cytotoxicity.

    PubMed

    Singh, Sudhir K; Ruchelman, Alexander L; Li, Tsai-Kun; Liu, Angela; Liu, Leroy F; LaVoie, Edmond J

    2003-05-22

    5H-8,9-dimethoxy-5-(2-N,N-dimethylaminoethyl)-2,3-methylenedioxydibenzo[c,h][1,6]naphthyridin-6-one exhibits potent TOP1-targeting activity and pronounced antitumor activity. It was hypothesized that replacement of the two methoxyl groups with a nitro substituent would allow for retention of similar activity. In this study 8-, 9-, and 10-nitro-5H-2,3-methylenedioxy-5-(2-N,N-dimethylaminoethyl)dibenzo[c,h][1,6]naphthyridin-6-one and their amino derivatives were synthesized and assessed for their relative TOP1-targeting activity and cytotoxicity. In the case of both the 8- and 9-nitro analogues, their TOP1-targeting activity and cytotoxicity are greater than that of camptothecin and comparable to that of 5H-8,9-dimethoxy-5-(2-N,N-dimethylaminoethyl)-2,3-methylenedioxydibenzo[c,h][1,6]naphthyridin-6-one.

  9. Chemistry of oxygenates on transition metal surfaces: Activation of C- H, C-C, and C-O bonds. Progress report, December 15, 1991

    SciTech Connect

    Not Available

    1991-12-31

    Goal is to understand the requirements for and competition between activation of C-H, C-C, and C-O bonds in the synthesis and decomposition of oxygenates on transition metal surfaces. Efforts during the past year was devoted primarily to the role of activation of {beta}-CH bonds in decarbonylation of higher oxygenates on surfaces of metals such as Rh and Pd; studies were completed of more than a dozen C{sub 1}-C{sub 3} oxygenates on Rh(111), and progress was made with reagents for which {beta}-CH scission is blocked. It is shown that alcohols and aldehydes do not react via a common pathway on on Rh(111). Ethanol and acetaldehyde are formed from CO + H{sub 2} by parallel routes on Rh catalysts which do not contain interacting supports or oxide promoters; i.e., the two compounds result from CO insertion into different metal-hydrocarbon bonds. Aldehydes decarbonylate via {alpha}-CH scission to form acyl, followed by C-C scission to release an alkyl ligand; this ligand undergoes hydrogenation and dehydrogenation steps. Alcohols form surface alkoxides, but these do not dehydrogenate further to the aldehydes, they release CO + H{sub 2} but no volatile hydrocarbon. These results indicate that {beta}-CH scissors to form a surface oxametallacycle intermediate; supporting evidence is spresented for this intermediate. Chemistry of alcohols blocked to different extends at the {beta}-position was also studied; complete blocking (CF{sub 3}CH{sub 2}OH) forces the reaction to follow the aldehyde-acyl path, while partial substitution at the {beta} position (branched alcohols) favors the oxametallacycle pathway. (DLC)

  10. C-H activation in pyridoxal-5'-phosphate Schiff bases: the role of the imine nitrogen. A combined experimental and computational study.

    PubMed

    Casasnovas, Rodrigo; Adrover, Miquel; Ortega-Castro, Joaquin; Frau, Juan; Donoso, Josefa; Muñoz, Francisco

    2012-09-06

    The origins of C-H activation in pyridoxal-5'-phosphate (PLP) Schiff bases and modulation of reaction specificity in PLP-enzymes are still not completely understood. There are no available studies that compare the reactivity of C4' carbons in ketimine Schiff bases with that of Cα carbons in their aldimine counterparts, which is essential to unravel the mechanisms that govern the evolution of their common carbanionic intermediates. Second-order rate constants for phosphate-catalyzed proton/deuterium exchange reactions in D(2)O of C4' carbons suffer a 10(5)-fold increase due to Schiff base formation (k(B) = 5.3 × 10(1) M(-1) s(-1)) according to NMR measurements. The C4' carbon acidity is also increased to pK(a) = 9.8, which is significantly higher than that of Cα in PLP-aldimines. DFT calculations reveal the role of each heteroatom in modulating the electrophilicity of C4' and Cα carbons. Specifically, the protonation state of pyridine nitrogen is the main factor in determining the absolute carbon acidity in aldimines (pK(a) of Cα varies from ∼14 to ∼23) and ketimines (pK(a) of C4' varies from ∼12 to ∼18), whereas the protonation state of both imine nitrogen and O3' phenol oxygen modulates the relative acidities of Cα and C4' from 1.5 to 7.5 pK(a) units. Our results provide an explanation to the modulation of reaction specificity observed in different PLP-enzymes based on the differences in the protonation state of the cofactor and H-bonding patterns in the active site.

  11. Rh(III)-Catalyzed Diastereoselective Annulation of Amides with Quinone Monoacetals: Access to Bridged Nine-Membered Heterocycles via C-H Activation.

    PubMed

    Yang, Wei; Dong, Jinhuan; Wang, Jingyi; Xu, Xianxiu

    2017-02-03

    An unprecedented Rh(III)-catalyzed annulation of various benzamides and acrylamides with quinone monoacetals was developed for the facile and efficient one-pot synthesis of bridged nine-membered benzo[c]azonine-1,5(2H)-diones and 2-azabicyclo[4.3.1]dec-4-ene-3,8-diones. It is the first example of synthesis of nine-membered heterocycles through Rh(III)-catalyzed C-H bond functionalization, and both aryl and vinyl C-H bonds are tolerant in this reaction. A plausible mechanism is proposed on the basis of control experiments.

  12. Unprecedented Reaction Pathway of Sterically Crowded Calcium Complexes: Sequential C-N Bond Cleavage Reactions Induced by C-H Bond Activations.

    PubMed

    Yang, Yang; Wang, Haobing; Ma, Haiyan

    2017-01-17

    Five bis(quinolylmethyl)-(1H-indolylmethyl)amine (BQIA) compounds, that is, {(quinol-8-yl-CH2 )2 NCH2 (3-Br-1H-indol-2-yl)} (L(1) H) and {[(8-R(3) -quinol-2-yl)CH2 ]2 NCH(R(2) )[3-R(1) -1H-indol-2-yl]} (L(2-5) H) (L(2) H: R(1) =Br, R(2) =H, R(3) =H; L(3) H: R(1) =Br, R(2) =H, R(3) =iPr; L(4) H: R(1) =H, R(2) =CH3 , R(3) =iPr; L(5) H: R(1) =H, R(2) =nBu, R(3) =iPr) were synthesized and used to prepare calcium complexes. The reactions of L(1-5) H with silylamido calcium precursors (Ca[N(SiMe2 R)2 ]2 (THF)2 , R=Me or H) at room temperature gave heteroleptic products (L(1, 2) )CaN(SiMe3 )2 (1, 2), (L(3, 4) )CaN(SiHMe2 )2 (3 a, 4 a) and homoleptic complexes (L(3, 5) )2 Ca (D3, D5). NMR and X-ray analyses proved that these calcium complexes were stabilized through Ca⋅⋅⋅C-Si, Ca⋅⋅⋅H-Si or Ca⋅⋅⋅H-C agostic interactions. Unexpectedly, calcium complexes ((L(3-5) )CaN(SiMe3 )2 ) bearing more sterically encumbered ligands of the same type were extremely unstable and underwent C-N bond cleavage processes as a consequence of intramolecular C-H bond activation, leading to the exclusive formation of (E)-1,2-bis(8-isopropylquinol-2-yl)ethane. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Variable coordination of amine functionalised N-heterocyclic carbene ligands to Ru, Rh and Ir: C-H and N-H activation and catalytic transfer hydrogenation.

    PubMed

    Cross, Warren B; Daly, Christopher G; Boutadla, Youcef; Singh, Kuldip

    2011-10-14

    Chelating amine and amido complexes of late transition metals are highly valuable bifunctional catalysts in organic synthesis, but complexes of bidentate amine-NHC and amido-NHC ligands are scarce. Hence, we report the reactions of a secondary-amine functionalised imidazolium salt 2a and a primary-amine functionalised imidazolium salt 2b with [(p-cymene)RuCl(2)](2) and [Cp*MCl(2)](2) (M = Rh, Ir). Treating 2a with [Cp*MCl(2)](2) and NaOAc gave the cyclometallated compounds Cp*M(C,C)I (M = Rh, 3; M = Ir, 4), resulting from aromatic C-H activation. In contrast, treating 2b with [(p-cymene)RuCl(2)](2), Ag(2)O and KI gave the amine-NHC complex [(p-cymene)Ru(C,NH(2))I]I (5). The reaction of 2b with [Cp*MCl(2)](2) (M = Rh, Ir), NaO(t)Bu and KI gave the amine-NHC complex [Cp*Rh(NH(2))I]I (6) or the amido-NHC complex Cp*Ir(C,NH)I (7); both protonation states of the Ir complex could be accessed: treating 7 with trifluoroacetic acid gave the amine-NHC complex [Cp*Ir(C,NH(2))I][CF(3)CO(2)] (8). These are the first primary amine- or amido-NHC complexes of Rh and Ir. Solid-state structures of the complexes 3-8 have been determined by single crystal X-ray diffraction. Complexes 5, 6 and 7 are pre-catalysts for the catalytic transfer hydrogenation of acetophenone to 1-phenylethanol, with ruthenium complex 5 demonstrating especially high reactivity.

  14. Aerobic synthesis of substituted quinoline from aldehyde and aniline: copper-catalyzed intermolecular C-H active and C-C formative cyclization.

    PubMed

    Yan, Rulong; Liu, Xingxing; Pan, Congming; Zhou, Xiaoqiang; Li, Xiaoni; Kang, Xing; Huang, Guosheng

    2013-09-20

    An efficient method for the direct synthesis of substituted quinolines from anilines and aldehydes through C-H functionalization, C-C/C-N bond formation, and C-C bond cleavage has been developed. The method is simple and practical and employs air as an oxidant.

  15. Possible mechanism of adaptogenic activity of seabuckthorn (Hippophae rhamnoides) during exposure to cold, hypoxia and restraint (C-H-R) stress induced hypothermia and post stress recovery in rats.

    PubMed

    Saggu, Shalini; Kumar, Ratan

    2007-12-01

    The present study was carried out to investigate mechanism of adaptogenic activity of seabuckthorn dry leaves aqueous lyophilized extract, administered in rats at a dose of 100 mg/kg body weight prior to cold (5 degrees C)-hypoxia (428 mmHg)-restraint (C-H-R) exposure up to fall of T(rec) 23 degrees C and recovery (T(rec) 37 degrees C) from C-H-R induced hypothermia. The effect of extract treatment was studied on key metabolic regulatory enzymes in blood, liver and muscle and tissue glycogen in rats on attaining T(rec) 23 degrees C and post stress recovery of T(rec) 37 degrees C. In control rats during C-H-R exposure on attaining T(rec) 23 degrees C there was significant decrease in enzyme activities of blood hexokinase (HK), citrate synthase (CS) and glucose-6-phosphate dehydrogenase (G-6-PD); liver CS; and in muscle glycogen, and CS and G-6-PD activities. In control rats on recovery of T(rec) 37 degrees C there was also a significant decrease in liver and muscle glycogen levels along with decreased enzyme activities of blood G-6-PD; liver CS; and liver and muscle G-6-PD. This suggested that during severe stressful exposure to C-H-R and post stress recovery the aerobic metabolism as well as hexose monophosphate (HMP) pathway is suppressed. The single and five doses extract treatment restricted the decrease or better maintained tissue glycogen and enzyme activities, viz. HK, phosphofructokinase (PFK), CS and G-6-PD, in blood, liver and muscle, during C-H-R exposure (T(rec) 23 degrees C) and recovery of T(rec) 37 degrees C. The results suggest that seabuckthorn extract treatment caused a trend for shifting anaerobic metabolism to aerobic during C-H-R exposure and post stress recovery.

  16. Three closely related 1-(naphthalen-2-yl)prop-2-en-1-ones: pseudosymmetry, disorder and supramoleular assembly mediated by C-H...π and C-Br...π interactions.

    PubMed

    Girisha, Marisiddaiah; Sagar, Belakavadi K; Yathirajan, Hemmige S; Rathore, Ravindranath S; Glidewell, Christopher

    2017-02-01

    It has been observed that when electron-rich naphthyl rings are present in chalcones they can participate in π-π stacking interactions, and this can play an important role in orientating inhibitors within the active sites of enzymes, while chalcones containing heterocyclic substituents additionally exhibit fungistatic and fungicidal properties. With these considerations in mind, three new chalcones containing 2-naphthyl substituents were prepared. 3-(4-Fluorophenyl)-1-(naphthalen-2-yl)prop-2-en-1-one, C19H13FO, (I), crystallizes with Z' = 2 in the space group P-1 and the four molecules in the unit cell adopt an arrangement which resembles that in the space group P21/a. Although 3-(4-bromophenyl)-1-(naphthalen-2-yl)prop-2-en-1-one, C19H13BrO, (II), with Z' = 1, is not isostructural with (I), the molecules of (I) and (II) adopt very similar conformations. In 1-(naphthalen-2-yl)-3-(thiophen-2-yl)prop-2-en-1-one, C17H12OS, (III), the thiophene unit is disordered over two sets of atomic sites, with occupancies of 0.780 (3) and 0.220 (3), which are related by a near 180° rotation of the thiophene unit about its exocyclic C-C bond. The molecules of compound (I) are linked by three independent C-H...π(arene) hydrogen bonds to form centrosymmetric octamolecular aggregates, whereas the molecules of compound (II) are linked into molecular ladders by a combination of C-H...π(arene) and C-Br...π(arene) interactions, and those of compound (III) are linked into centrosymmetric dimers by C-H...π(thiophene) interactions.

  17. DFT Mechanistic Study of Rh(III)-Catalyzed [3 + 2]/[5 + 2] Annulation of 4-Aryl-1,2,3-triazoles and Alkynes Unveils the Dual C-H Activation Strategy.

    PubMed

    Zhang, Zhongchao; Yang, Shengwen; Li, Juan; Liao, Xiaojian

    2016-10-21

    Li and co-workers recently developed a dual C-H bond activation strategy, using a Rh(III) catalyst, for [3 + 2]/[5 + 2] annulation of primary 4-aryl-1,2,3-triazoles and alkynes. The Rh(III)-catalyzed dual annulation of 4-aryl-1,2,3-triazoles and alkynes is challenging because only single annulation is achieved using Rh(II) and Ni(0) catalysts. Intrigued by the novel strategy, we performed a density functional theory study to unravel this challenging dual C-H bond activation. A Friedel-Crafts type mechanism proved be more favorable than a concerted metalation-deprotonation (CMD) mechanism for the first C-H bond activation. The second C-H bond activation proceeded via a CMD mechanism. More importantly, the calculation explained why only AgSbF6, among several candidates, performed perfectly, whereas others failed, and why the dual annulation of 4-aryl-1,2,3-triazoles with alkynes was achieved with a Rh(III) catalyst but not with Rh(II) and Ni(0) catalysts. Due to the active catalyst being [Cp*Rh(OAc)](+), AgSbF6, in which SbF6(-) is a stable anion, among several candidates performed perfectly. The success of the Rh(III)-catalyzed dual C-H bond activation has two origins: (i) the active catalyst [Cp*Rh(OAc)](+) is more stable than Cp*Rh(OAc)2 when the Ag salt is AgSbF6, and this facilitates the first alkyne insertion; and (ii) a rhodium-carbene is easily formed.

  18. Cobalt-catalyzed C-H borylation.

    PubMed

    Obligacion, Jennifer V; Semproni, Scott P; Chirik, Paul J

    2014-03-19

    A family of pincer-ligated cobalt complexes has been synthesized and are active for the catalytic C-H borylation of heterocycles and arenes. The cobalt catalysts operate with high activity and under mild conditions and do not require excess borane reagents. Up to 5000 turnovers for methyl furan-2-carboxylate have been observed at ambient temperature with 0.02 mol % catalyst loadings. A catalytic cycle that relies on a cobalt(I)-(III) redox couple is proposed.

  19. C-H bond activation of the methyl group of the supporting ligand in an osmium(III) complex upon reaction with H2O2: formation of an organometallic osmium(IV) complex.

    PubMed

    Sugimoto, Hideki; Ashikari, Kenji; Itoh, Shinobu

    2013-01-18

    Oxidation of the hydroxoosmium(III) complex resulted in C-H bond activation of the methyl group of the supporting ligand (N,N'-dimethyl-2,11-diaza[3.3](2,6)pyridinophane). The product was an osmium(IV) complex exhibiting a seven-coordinate structure with an additional Os-CH(2) bond.

  20. Radical-Induced Metal and Solvent-Free Cross-Coupling Using TBAI-TBHP: Oxidative Amidation of Aldehydes and Alcohols with N-Chloramines via C-H Activation.

    PubMed

    Achar, Tapas Kumar; Mal, Prasenjit

    2015-01-02

    A solvent-free cross-coupling method for oxidative amidation of aldehydes and alcohols via a metal-free radial pathway has been demonstrated. The proposed methodology uses the TBAI-TBHP combination which efficiently induces metal-free C-H activation of aldehydes under neat conditions at 50 °C or ball-milling conditions at room temperature.

  1. RNA-mediated gene activation

    PubMed Central

    Jiao, Alan L; Slack, Frank J

    2014-01-01

    The regulation of gene expression by non-coding RNAs (ncRNAs) has become a new paradigm in biology. RNA-mediated gene silencing pathways have been studied extensively, revealing diverse epigenetic and posttranscriptional mechanisms. In contrast, the roles of ncRNAs in activating gene expression remains poorly understood. In this review, we summarize the current knowledge of gene activation by small RNAs, long non-coding RNAs, and enhancer-derived RNAs, with an emphasis on epigenetic mechanisms. PMID:24185374

  2. A Prussian blue/carbon dot nanocomposite as an efficient visible light active photocatalyst for C-H activation of amines.

    PubMed

    Maaoui, Houcem; Kumar, Pawan; Kumar, Anurag; Pan, Guo-Hui; Chtourou, Radouane; Szunerits, Sabine; Boukherroub, Rabah; Jain, Suman L

    2016-10-05

    A Prussian blue/carbon dot (PB/CD) nanocomposite was synthesised and used as a visible-light active photocatalyst for the oxidative cyanation of tertiary amines to α-aminonitriles by using NaCN/acetic acid as a cyanide source and H2O2 as an oxidant. The developed photocatalyst afforded high yields of products after 8 h of visible light irradiation at room temperature. The catalyst was recycled and reused several times without any significant loss in its activity.

  3. N-Doped Cationic PAHs by Rh(III)-Catalyzed Double C-H Activation and Annulation of 2-Arylbenzimidazoles with Alkynes.

    PubMed

    Villar, José M; Suárez, Jaime; Varela, Jesús A; Saá, Carlos

    2017-04-07

    A novel class of N-doped cationic PAHs (polycyclic aromatic hydrocarbons) bearing the benzo[c,d]fluoranthene scaffold has been synthesized by the Rh(III)-catalyzed double-oxidative annulation of 2-arylbenzimidazoles with alkynes. The overall process involves a double C-N bond formation through a double C-H/N-H functionalization.The solid-state structures and electronic properties of the new N-doped PAHs were analyzed. These cationic azapolycycles were readily reduced in the presence of LiAlH4 or by the addition of PhLi to give interesting phenyl and diphenylmethanediamine derivatives.

  4. P450-catalyzed intramolecular sp(3) C-H amination with arylsulfonyl azide substrates.

    PubMed

    Singh, Ritesh; Bordeaux, Melanie; Fasan, Rudi

    2014-01-06

    The direct amination of aliphatic C-H bonds represents a most valuable transformation in organic chemistry. While a number of transition metal-based catalysts have been developed and investigated for this purpose, the possibility to execute this transformation with biological catalysts has remained largely unexplored. Here, we report that cytochrome P450 enzymes can serve as efficient catalysts for mediating intramolecular benzylic C-H amination reactions in a variety of arylsulfonyl azide compouds. Under optimized conditions, the P450 catalysts were found to support up to 390 total turnovers leading to the formation of the desired sultam products with excellent regioselectivity. In addition, the chiral environment provided by the enzyme active site allowed for the reaction to proceed in a stereo- and enantioselective manner. The C-H amination activity, substrate profile, and enantio/stereoselectivity of these catalysts could be modulated by utilizing enzyme variants with engineered active sites.

  5. Unexpected intermediates and products in the C-F bond activation of tetrafluorobenzenes with a bis(triethylphosphine)nickel synthon: direct evidence of a rapid and reversible C-H bond activation by Ni(0).

    PubMed

    Johnson, Samuel A; Huff, Carla W; Mustafa, Ferheen; Saliba, Mark

    2008-12-24

    The reaction of (PEt(3))(2)Ni(eta(2)-C(14)H(10)), a source of the reactive Ni(PEt(3))(2) moiety, with 1,2,4,5-F(4)C(6)H(2) yields a mixture of three C-F bond activation products that include the unexpected products (PEt(3))(2)NiF-2,3,5,6-F(4)C(6)H and (PEt(3))(2)NiF-2,3,5-F(3)C(6)H(2). Monitoring the reaction mixture via (19)F and (1)H NMR also reveals the presence of the C-H bond activation product, (PEt(3))(2)NiH-2,3,5,6-F(4)C(6)H which is produced in a rapid equilibrium reaction. This observation provides insight into the steps necessary to modify nickel complexes for selective C-F bond activation in a variety of polyfluorinated aromatic substrates, but also expands the potential of simple nickel compounds for C-H bond activation and functionalization reactions.

  6. C-H activation on a diphosphine and hydrido-bridged diiridium complex: generation and detection of an active IrII-IrII species [(Cp*Ir)2(micro-dmpm)(micro-H)]+.

    PubMed

    Takahashi, Yoshinori; Nonogawa, Mitsuru; Fujita, Ken-ichi; Yamaguchi, Ryohei

    2008-07-21

    Reaction of [Cp*Ir(micro-H)](2) (5) (Cp* = eta(5)-C(5)Me(5)) with bis(dimethylphosphino)methane (dmpm) gives a new neutral diiridium complex [(Cp*Ir)(2)(micro-dmpm)(micro-H)(2)] (3). Treatment of 3 with methyl triflate at -30 degrees C results in the formation of [(Cp*Ir)(H)(micro-dmpm)(micro-H)(Me)(IrCp*)][OTf] (6). Warming a solution of above 0 degrees C brings about predominant generation of 32e(-) Ir(II)-Ir(II) species [(Cp*Ir)(micro-dmpm)(micro-H)(IrCp*)][OTf] (7). Further heating of the solution of 7 up to 30 degrees C for 14 h leads to quantitative formation of a new complex [(Cp*Ir)(H)(micro-Me(2)PCH(2)PMeCH(2))(micro-H)(IrCp*)][OTf] (8), which is formed by intramolecular oxidative addition of the methyl C-H bond of the dmpm ligand. Intermolecular C-H bond activation reactions with 7 are also examined. Reactions of 7 with aromatic molecules (benzene, toluene, furan, and pyridine) at room temperature result in the smooth sp(2) C-H activation to give [(Cp*Ir)(H)(micro-dmpm)(micro-H)(Ar)(IrCp*)][OTf] (Ar = Ph (9); Ar = m-Tol (10a) or p-Tol (10b); Ar = 2-Fur (11)) and [(Cp*Ir)(H)(micro-dmpm)(micro-C(5)H(4)N)(H)(IrCp*)][OTf] (12), respectively. Complex also reacts with cyclopentene at 0 degrees C to give [(Cp*Ir)(H)(micro-dmpm)(micro-H)(1-cyclopentenyl)(IrCp*)][OTf] (13). Structures of 3, 8 and 12 have been confirmed by X-ray analysis.

  7. One-Pot Synthesis of Functionalized Carbazoles via a CAN-Catalyzed Multicomponent Process Comprising a C-H Activation Step.

    PubMed

    González, Juan F; Rocchi, Damiano; Tejero, Tomás; Merino, Pedro; Menéndez, J Carlos

    2017-07-21

    The microwave-promoted three-component reaction between o-nitrochalcones, primary amines and β-dicarbonyl compounds in the presence of Ce(IV) ammonium nitrate constitutes the first example of a multicomponent carbazole synthesis. This reaction furnishes highly substituted and functionalized carbazole derivatives via a double annulation process that generates two C-C and two C-N bonds, with water as the only side product. Mechanistically, this transformation has some unusual features that include an intramolecular coupled hydrogenation-dehydrogenation process, the functionalization of a C-H group by direct attack onto a nitrogen function and a CAN-catalyzed reduction via hydride transfer from ethanol. The mechanisms of these reactions were studied with the aid of computational techniques.

  8. A Tale of Copper Coordination Frameworks: Controlled Single-Crystal-to-Single-Crystal Transformations and Their Catalytic C-H Bond Activation Properties.

    PubMed

    Chen, Yifa; Feng, Xiao; Huang, Xianqiang; Lin, Zhengguo; Pei, Xiaokun; Li, Siqing; Li, Jikun; Wang, Shan; Li, Rui; Wang, Bo

    2015-09-28

    Metal-organic frameworks (MOFs), as a class of microporous materials with well-defined channels and rich functionalities, hold great promise for various applications. Yet the formation and crystallization processes of various MOFs with distinct topology, connectivity, and properties remain largely unclear, and the control of such processes is rather challenging. Starting from a 0D Cu coordination polyhedron, MOP-1, we successfully unfolded it to give a new 1D-MOF by a single-crystal-to-single-crystal (SCSC) transformation process at room temperature as confirmed by SXRD. We also monitored the continuous transformation states by FTIR and PXRD. Cu MOFs with 2D and 3D networks were also obtained from this 1D-MOF by SCSC transformations. Furthermore, Cu MOFs with 0D, 1D, and 3D networks, MOP-1, 1D-MOF, and HKUST-1, show unique performances in the kinetics of the C-H bond catalytic oxidation reaction.

  9. Correlating Reactivity and Selectivity to Cyclopentadienyl Ligand Properties in Rh(III)-Catalyzed C-H Activation Reactions: An Experimental and Computational Study.

    PubMed

    Piou, Tiffany; Romanov-Michailidis, Fedor; Romanova-Michaelides, Maria; Jackson, Kelvin E; Semakul, Natthawat; Taggart, Trevor D; Newell, Brian S; Rithner, Christopher D; Paton, Robert S; Rovis, Tomislav

    2017-01-25

    Cp(X)Rh(III)-catalyzed C-H functionalization reactions are a proven method for the efficient assembly of small molecules. However, rationalization of the effects of cyclopentadienyl (Cp(X)) ligand structure on reaction rate and selectivity has been viewed as a black box, and a truly systematic study is lacking. Consequently, predicting the outcomes of these reactions is challenging because subtle variations in ligand structure can cause notable changes in reaction behavior. A predictive tool is, nonetheless, of considerable value to the community as it would greatly accelerate reaction development. Designing a data set in which the steric and electronic properties of the Cp(X)Rh(III) catalysts were systematically varied allowed us to apply multivariate linear regression algorithms to establish correlations between these catalyst-based descriptors and the regio-, diastereoselectivity, and rate of model reactions. This, in turn, led to the development of quantitative predictive models that describe catalyst performance. Our newly described cone angles and Sterimol parameters for Cp(X) ligands served as highly correlative steric descriptors in the regression models. Through rational design of training and validation sets, key diastereoselectivity outliers were identified. Computations reveal the origins of the outstanding stereoinduction displayed by these outliers. The results are consistent with partial η(5)-η(3) ligand slippage that occurs in the transition state of the selectivity-determining step. In addition to the instructive value of our study, we believe that the insights gained are transposable to other group 9 transition metals and pave the way toward rational design of C-H functionalization catalysts.

  10. Cobalt-Catalyzed Oxidative C-H/C-H Cross-Coupling between Two Heteroarenes.

    PubMed

    Tan, Guangying; He, Shuang; Huang, Xiaolei; Liao, Xingrong; Cheng, Yangyang; You, Jingsong

    2016-08-22

    The first example of cobalt-catalyzed oxidative C-H/C-H cross-coupling between two heteroarenes is reported, which exhibits a broad substrate scope and a high tolerance level for sensitive functional groups. When the amount of Co(OAc)2 ⋅4 H2 O is reduced from 6.0 to 0.5 mol %, an excellent yield is still obtained at an elevated temperature with a prolonged reaction time. The method can be extended to the reaction between an arene and a heteroarene. It is worth noting that the Ag2 CO3 oxidant is renewable. Preliminary mechanistic studies by radical trapping experiments, hydrogen/deuterium exchange experiments, kinetic isotope effect, electron paramagnetic resonance (EPR), and high resolution mass spectrometry (HRMS) suggest that a single electron transfer (SET) pathway is operative, which is distinctly different from the dual C-H bond activation pathway that the well-described oxidative C-H/C-H cross-coupling reactions between two heteroarenes typically undergo. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The amide C-N bond of isatins as the directing group and the internal oxidant in Ru-catalyzed C-H activation and annulation reactions: access to 8-amido isocoumarins.

    PubMed

    Kaishap, Partha Pratim; Sarma, Bipul; Gogoi, Sanjib

    2016-07-28

    The N-O, N-N and O-O bonds are the frequently used internally oxidative directing groups used in various redox-neutral coupling reactions. The sole use of the C-N bond as the oxidizing directing group was reported recently by Li X. and co-workers for the Rh(iii)-catalyzed C-H activation of phenacyl ammonium salts. Herein, we report the use of the amide C-N bond of isatins as the oxidizing directing group for the Ru(ii)-catalyzed redox-neutral C-H activation and annulation reactions with alkynes which afford 8-amido isocoumarins. The reaction also features excellent regioselectivity with alkyl aryl substituted alkynes.

  12. Rh(III)-Catalyzed Cascade Annulation/C-H Activation of o-Ethynylanilines with Diazo Compounds: One-Pot Synthesis of Benzo[a]carbazoles via 1,4-Rhodium Migration.

    PubMed

    Guo, Songjin; Yuan, Kai; Gu, Meng; Lin, Aijun; Yao, Hequan

    2016-10-05

    A Rh(III)-catalyzed cascade annulation/C-H activation of o-ethynylanilines with diazo compounds has been developed. This concise method allows for the rapid formation of a number of benzo[a]carbazoles in high yields, exhibiting good functional group tolerance and scalability. The key to the success of this approach involves one C-N bond and two C-C bond formation, and an aryl-to-aryl 1,4-rhodium migration.

  13. 1,2-Diphosphonium dication: a strong P-based Lewis acid in frustrated lewis pair (FLP)-activations of B-H, Si-H, C-H, and H-H bonds.

    PubMed

    Holthausen, Michael H; Bayne, Julia M; Mallov, Ian; Dobrovetsky, Roman; Stephan, Douglas W

    2015-06-17

    A highly Lewis acidic diphosphonium dication [(C10H6)(Ph2P)2](2+) (1), in combination with a Lewis basic phosphine, acts as a purely phosphorus-based frustrated Lewis pair (FLP) and abstracts hydride from [HB(C6F5)3](-) and Et3SiH demonstrating the remarkable hydridophilicity of 1. The P-based FLP is also shown to activate H2 and C-H bonds.

  14. Rare-earth metal complexes having an unusual indolyl-1,2-dianion through C-H activation with a novel η1:(μ2-η1:η1) bonding with metals.

    PubMed

    Zhu, Xiancui; Zhou, Shuangliu; Wang, Shaowu; Wei, Yun; Zhang, Lijun; Wang, Fenhua; Wang, Shaoyin; Feng, Zhijun

    2012-12-21

    Studies on the reactions of 3-(tert-butyliminomethine)indole or 3-(tert-butylaminomethylene)indole with rare-earth metal amides [(Me(3)Si)(2)N](3)RE(III)(μ-Cl)Li(THF)(3) (RE = Y, Yb) led to the discovery of different reactivity patterns with isolation of novel rare-earth metal complexes having a unique indolyl-1,2-dianion in a novel η(1):(μ(2)-η(1):η(1)) bonding mode through C-H activation.

  15. C-H fluorination: U can fluorinate unactivated bonds

    NASA Astrophysics Data System (ADS)

    Neumann, Constanze N.; Ritter, Tobias

    2016-09-01

    Introducing C-F bonds into organic molecules is a challenging task, particularly through C-H activation methods. Now, a uranium-based photocatalyst turns traditional selectivity rules on their heads and fluorinates unfunctionalized alkane Csp3-H bonds, even in the presence of C-H bonds that are typically more reactive.

  16. Using a non-spin flip model to rationalize the irregular patterns observed in the activation of the C-H and Si-H bonds of small molecules by CpMCO (M = Co, Rh) complexes.

    PubMed

    Castro, Guadalupe; Colmenares, Fernando

    2017-09-20

    The activation of the C-H and Si-H bonds of CH(CH3)3 and SiH(CH3)3 molecules by organometallic compounds CpMCO (M = Co, Rh) has been investigated through DFT and CASSCF-MRMP2 calculations. In particular, we have analyzed the pathways joining the lowest-lying triplet and singlet states of the reactants with the products arising from the insertion of the metal atom into the C-H or Si-H bonds of the organic molecules. Channels connecting the reactants with the inserted structure Cp(CO)H-M-C(CH3)3 through the oxidative addition of the C-H bond of the organic molecule to the metal fragment were found only for the reaction CpRhCO + CH(CH3)3. However, inserted structures could also be obtained for the interactions of SiH(CH3)3 with CpCoCO and CpRhCO by two sequential reactions involving the formation and rebounding of the radical fragments Cp(CO)H-M + Si(CH3)3. According to this two-step reaction scheme, the complex CpCoCO is unable to activate the C-H bond of the CH(CH3)3 molecule due to the high energy at which the radical fragments Cp(CO)H-M + C(CH3)3 are located. The picture attained for these interactions is consistent with the available experimental data for this kind of reaction and allows rationalization of the differences in the reactivity patterns determined for them without using spin-flip models, as has been proposed in previous studies.

  17. Metal-Catalyzed Decarboxylative C-H Functionalization.

    PubMed

    Wei, Ye; Hu, Peng; Zhang, Min; Su, Weiping

    2017-03-07

    C-H bond activation and decarboxylation are two significant processes in organic synthesis. The combination of these processes provides a novel synthetic strategy, that is, decarboxylative C-H bond functionalization. Considerable attention has been focused on such an active research field. This review offers an overview of the utility of decarboxylative C-H bond functionalization in the synthesis of various organic compounds, such as styrenes, chalcones, biaryls, and heterocycles, covering most of the recent advances of the decarboxylative functionalization of Csp-H, Csp(2)-H, and Csp(3)-H bonds, as well as their scopes, limitations, practical applications, and synthetic potentials.

  18. Iron-Catalyzed C-H Alkylation of Heterocyclic C-H Bonds.

    PubMed

    Babu, Kaki Raveendra; Zhu, Nengbo; Bao, Hongli

    2017-01-06

    An efficient, iron-catalyzed C-H alkylation of benzothiazoles by using alkyl diacyl peroxides and alkyl tert-butyl peresters which are readily accessible from carboxylic acids to synthesize 2-alkylbenzothiazoles is developed. This reaction is environmentally benign and compatible with a broad range of functional groups. Various primary, secondary, and tertiary alkyl groups can be efficiently incorporated into diverse benzothiazoles. The effectiveness of this method is illustrated by late-stage functionalization of biologically active heterocycles.

  19. Moving to Sustainable Metals. Multifunctional Ligands in Catalytic, Outer Sphere C-H, N-H and O-H Activation

    SciTech Connect

    Crabtree, Robert

    2015-03-03

    Much of our work during this grant period has emphasized green chemistry and sustainability. For example, we were able to convert glycerine, a waste byproduct of biodiesel production, into lactic acid, a compound with numerous applications, notably in the food and cosmetics industry, as well as being a source material for a biodegradable plastic. This work required a catalyst, that ceases to work after a certain lapse of time. We were able to identify the way in which this deactivation occurs by identifying some of the metal catalyst deactivation products. These proved to be multimetallic clusters containing up to six metals and up to 14 hydrogen atoms. Both the catalytic reaction itself and the deactivation structures are novel and unexpected. We have previously proposed that nitrogen heterocycles could be good energy carriers in a low CO2 future world. In another part of our study, we found catalysts for introduction of hydrogen, an energy carrier that is hard to store, into nitrogen heterocycles. The mechanism of this process proved to be unusual in that the catalyst transfers the H2 to the heterocycle in the form of H+ and H-, first transferring the H+ and only then the H-. In a third area of study, some of our compounds, originally prepared for DOE catalysis purposes, also proved useful in hydrocarbon oxidation and in water oxidation. The latter is important in solar-to-fuel work, because, by analogy with natural photosynthesis, the goal of the Yale Solar Group of four PIs is to convert sunlight to hydrogen and oxygen, which requires water splitting catalysts. The catalysts that proved useful mediate the latter reaction: water oxidation to oxygen. In a more technical study, we developed methods for distinguishing the case where catalysis is mediated by a soluble catalyst from cases where catalysis arises from a deposit of finely divided solid. One particular application involved electrocatalysis

  20. Bipyridine- and phenanthroline-based metal-organic frameworks for highly efficient and tandem catalytic organic transformations via directed C-H activation

    SciTech Connect

    Manna, Kuntal; Zhang, Teng; Greene, Francis X.; Lin, Wenbin

    2015-02-16

    We report here the synthesis of a series of robust and porous bipyridyl- and phenanthryl-based metal–organic frameworks (MOFs) of UiO topology (BPV-MOF, mBPV-MOF, and mPT-MOF) and their postsynthetic metalation to afford highly active single-site solid catalysts. While BPV-MOF was constructed from only bipyridyl-functionalized dicarboxylate linker, both mBPV- and mPT-MOF were built with a mixture of bipyridyl- or phenanthryl-functionalized and unfunctionalized dicarboxylate linkers. The postsynthetic metalation of these MOFs with [Ir(COD)(OMe)]2 provided Ir-functionalized MOFs (BPV-MOF-Ir, mBPV-MOF-Ir, and mPT-MOF-Ir), which are highly active catalysts for tandem hydrosilylation of aryl ketones and aldehydes followed by dehydrogenative ortho-silylation of benzylicsilyl ethers as well as C–H borylation of arenes using B₂pin₂. Both mBPV-MOF-Ir and mPT-MOF-Ir catalysts displayed superior activities compared to BPV-MOF-Ir due to the presence of larger open channels in the mixed-linker MOFs. Impressively, mBPV-MOF-Ir exhibited high TONs of up to 17000 for C–H borylation reactions and was recycled more than 15 times. The mPT-MOF-Ir system is also active in catalyzing tandem dehydrosilylation/dehydrogenative cyclization of N-methylbenzyl amines to azasilolanes in the absence of a hydrogen acceptor. Importantly, MOF-Ir catalysts are significantly more active (up to 95 times) and stable than their homogeneous counterparts for all three reactions, strongly supporting the beneficial effects of active site isolation within MOFs. This work illustrates the ability to increase MOF open channel sizes by using the mixed linker approach and shows the enormous potential of developing highly active and robust single-site solid catalysts based on MOFs containing nitrogen-donor ligands for important organic transformations.

  1. C-H bond activation by radical ion pairs derived from R3P/Al(C6F5)3 frustrated Lewis pairs and N2O.

    PubMed

    Ménard, Gabriel; Hatnean, Jillian A; Cowley, Hugh J; Lough, Alan J; Rawson, Jeremy M; Stephan, Douglas W

    2013-05-01

    Al(C6F5)3/R3P [R = tert-butyl (tBu), mesityl (Mes), naphthyl (Nap)] frustrated Lewis pairs react with N2O to form species having the formula R3P(N2O)Al(C6F5)3, which react with additional alane to generate proposed frustrated radical ion pairs formulated as [R3P·][(μ-O·)(Al(C6F5)3)2] that can activate C-H bonds. For R = tBu, C-H activation of a tBu group affords [tBu2PMe(C(CH2)Me)][(μ-OH)(Al(C6F5)3)2]. In the case of R = Mes, the radical cation salt [Mes3P·][(μ-HO)(Al(C6F5)3)2] is isolated, while for R = Nap, the activation of toluene and bromobenzene gives [(Nap)3PCH2Ph][(μ-OH)(Al(C6F5)3)2] and [(Nap)3PC6H4Br][(μ-HO)(Al(C6F5)3)2], respectively.

  2. Review of biological and pharmacological activities of the endemic Taiwanese bitter medicinal mushroom, Antrodia camphorata (M. Zang et C. H. Su) Sh. H. Wu et al. (higher Basidiomycetes).

    PubMed

    Yue, Patrick Ying-Kit; Wong, Yi-Yi; Chan, Tony Yuk-Kit; Law, Carman Ka-Man; Tsoi, Yeuk-Ki; Leung, Kelvin Sze-Yin

    2012-01-01

    Antrodia camphorata is an extremely rare fungus native to the forested regions of Taiwan. It is also a traditional Chinese medicine, and Taiwanese aborigines applied it for treating liver diseases and protecting from food and drug intoxication. Scientific studies have demonstrated that A. camphorata crude extracts and pure compounds possess a variety of beneficial functions, such as anti-hypertensive, anti-hyperlipidemic, anti-inflammatory, anti-oxidant, anti-tumor, and immuno-modulatory activities. Recent studies have shown that many of these biological and pharmacological activities can be attributed to various active constituents, including polysaccharides, terpenoids, steroids, lignans, benzoquinone derivatives, benzenoids, and maleic and succinic acid derivatives. A. camphorata has been considered as a novel phytotherapeutic agent. However, detailed mechanistic studies or even clinical trials on A. camphorata are still rare. With the help of modern analytical techniques, it is not surprising that many novel constituents are being identified or fractionated from A. camphorata mycelium and fruiting bodies. This review summarizes the latest published results from A. camphorata research, focusing on the biological and pharmacological activities of the crude extract and known constituents of A. camphorata.

  3. Symbolic Mediation in Cognitive Activity

    ERIC Educational Resources Information Center

    Veraksa, Alexander N.

    2011-01-01

    This article used two studies to investigate sign and symbol mediation in children aged 8-11 years. In role play, children exist at one at the same time in objective reality and their representation of reality. We cannot observe their mental representation directly, but the issue of whether signs or symbols mediate early role play is an important…

  4. Symbolic Mediation in Cognitive Activity

    ERIC Educational Resources Information Center

    Veraksa, Alexander N.

    2011-01-01

    This article used two studies to investigate sign and symbol mediation in children aged 8-11 years. In role play, children exist at one at the same time in objective reality and their representation of reality. We cannot observe their mental representation directly, but the issue of whether signs or symbols mediate early role play is an important…

  5. Dry Reforming of Methane on a Highly-Active Ni-CeO2 Catalyst: Effects of Metal-Support Interactions on C-H Bond Breaking.

    PubMed

    Liu, Zongyuan; Grinter, David C; Lustemberg, Pablo G; Nguyen-Phan, Thuy-Duong; Zhou, Yinghui; Luo, Si; Waluyo, Iradwikanari; Crumlin, Ethan J; Stacchiola, Dario J; Zhou, Jing; Carrasco, Javier; Busnengo, H Fabio; Ganduglia-Pirovano, M Verónica; Senanayake, Sanjaya D; Rodriguez, José A

    2016-06-20

    Ni-CeO2 is a highly efficient, stable and non-expensive catalyst for methane dry reforming at relative low temperatures (700 K). The active phase of the catalyst consists of small nanoparticles of nickel dispersed on partially reduced ceria. Experiments of ambient pressure XPS indicate that methane dissociates on Ni/CeO2 at temperatures as low as 300 K, generating CHx and COx species on the surface of the catalyst. Strong metal-support interactions activate Ni for the dissociation of methane. The results of density-functional calculations show a drop in the effective barrier for methane activation from 0.9 eV on Ni(111) to only 0.15 eV on Ni/CeO2-x (111). At 700 K, under methane dry reforming conditions, no signals for adsorbed CHx or C species are detected in the C 1s XPS region. The reforming of methane proceeds in a clean and efficient way.

  6. Extremely elevated room-temperature kinetic isotope effects quantify the critical role of barrier width in enzymatic C-H activation.

    PubMed

    Hu, Shenshen; Sharma, Sudhir C; Scouras, Alexander D; Soudackov, Alexander V; Carr, Cody A Marcus; Hammes-Schiffer, Sharon; Alber, Tom; Klinman, Judith P

    2014-06-11

    The enzyme soybean lipoxygenase (SLO) has served as a prototype for hydrogen-tunneling reactions, as a result of its unusual kinetic isotope effects (KIEs) and their temperature dependencies. Using a synergy of kinetic, structural, and theoretical studies, we show how the interplay between donor-acceptor distance and active-site flexibility leads to catalytic behavior previously predicted by quantum tunneling theory. Modification of the size of two hydrophobic residues by site-specific mutagenesis in SLO reduces the reaction rate 10(4)-fold and is accompanied by an enormous and unprecedented room-temperature KIE. Fitting of the kinetic data to a non-adiabatic model implicates an expansion of the active site that cannot be compensated by donor-acceptor distance sampling. A 1.7 Å resolution X-ray structure of the double mutant further indicates an unaltered backbone conformation, almost identical side-chain conformations, and a significantly enlarged active-site cavity. These findings show the compelling property of room-temperature hydrogen tunneling within a biological context and demonstrate the very high sensitivity of such tunneling to barrier width.

  7. C-H activation by a mononuclear manganese(III) hydroxide complex: synthesis and characterization of a manganese-lipoxygenase mimic?

    PubMed

    Goldsmith, Christian R; Cole, Adam P; Stack, T Daniel P

    2005-07-13

    Lipoxygenases are mononuclear non-heme metalloenzymes that regio- and stereospecifically convert 1,4-pentadiene subunit-containing fatty acids into alkyl peroxides. The rate-determining step is generally accepted to be hydrogen atom abstraction from the pentadiene subunit of the substrate by an active metal(III)-hydroxide species to give a metal(II)-water species and an organic radical. All known plant and animal lipoxygenases contain iron as the active metal; recently, however, manganese was found to be the active metal in a fungal lipoxygenase. Reported here are the synthesis and characterization of a mononuclear Mn(III) complex, [Mn(III)(PY5)(OH)](CF(3)SO(3))(2) (PY5 = 2,6-bis(bis(2-pyridyl)methoxymethane)pyridine), that reacts with hydrocarbon substrates in a manner most consistent with hydrogen atom abstraction and provides chemical precedence for the proposed reaction mechanism. The neutral penta-pyridyl ligation of PY5 endows a strong Lewis acidic character to the metal center allowing the Mn(III) compound to perform this oxidation chemistry. Thermodynamic analysis of [Mn(III)(PY5)(OH)](2+) and the reduced product, [Mn(II)(PY5)(H(2)O)](2+), estimates the strength of the O-H bond in the metal-bound water in the Mn(II) complex to be 82 (+/-2) kcal mol(-)(1), slightly less than that of the O-H bond in the related reduced iron complex, [Fe(II)(PY5)(MeOH)](2+). [Mn(III)(PY5)(OH)](2+) reacts with hydrocarbon substrates at rates comparable to those of the analogous [Fe(III)(PY5)(OMe)](2+) at 323 K. The crystal structure of [Mn(III)(PY5)(OH)](2+) displays Jahn-Teller distortions that are absent in [Mn(II)(PY5)(H(2)O)](2+), notably a compression along the Mn(III)-OH axis. Consequently, a large internal structural reorganization is anticipated for hydrogen atom transfer, which may be correlated to the lessened dependence of the rate of substrate oxidation on the substrate bond dissociation energy as compared to other metal complexes. The results presented here suggest

  8. Gold Nanoparticles Deposited on Surface Modified Carbon Xerogels as Reusable Catalysts for Cyclohexane C-H Activation in the Presence of CO and Water.

    PubMed

    Ribeiro, Ana Paula da Costa; Martins, Luísa Margarida Dias Ribeiro de Sousa; Carabineiro, Sónia Alexandra Correia; Figueiredo, José Luís; Pombeiro, Armando José Latourrette

    2017-04-09

    The use of gold as a promotor of alkane hydrocarboxylation is reported for the first time. Cyclohexane hydrocarboxylation to cyclohexanecarboxylic acid (up to 55% yield) with CO, water, and peroxodisulfate in a water/acetonitrile medium at circa 50 °C has been achieved in the presence of gold nanoparticles deposited by a colloidal method on a carbon xerogel in its original form (CX), after oxidation with HNO₃ (-ox), or after oxidation with HNO₃ and subsequent treatment with NaOH (-ox-Na). Au/CX-ox-Na behaves as re-usable catalyst maintaining its initial activity and selectivity for at least seven consecutive cycles. Green metric values of atom economy or carbon efficiency also attest to the improvement brought by this novel catalytic system to the hydrocarboxylation of cyclohexane.

  9. myo-Inositol Oxygenase: a Radical New Pathway for O2 and C-H Activation at a Nonheme Diiron Cluster

    PubMed Central

    Bollinger, J. Martin; Diao, Yinghui; Matthews, Megan L.; Xing, Gang; Krebs, Carsten

    2009-01-01

    The enzyme myo-inositol oxygenase (MIOX) catalyzes conversion of myo-inositol (cyclohexan-1,2,3,5/4,6-hexa-ol or MI) to D-glucuronate (DG), initiating the only known pathway in humans for catabolism of the carbon skeleton of cell-signaling inositol (poly)phosphates and phosphoinositides. Recent kinetic, spectroscopic, and crystallographic studies have shown that the enzyme activates its substrates, MI and O2, at a carboxylate-bridged nonheme diiron(II/III) cluster, making it the first of many known nonheme diiron oxygenases to employ the mixed-valent form of its cofactor. Evidence suggests that (1) the Fe(III) site coordinates MI via its C1 and C6 hydroxyl groups, (2) the Fe(II) site reversibly coordinates O2 to produce a superoxo-diiron(III/III) intermediate, and (3) the pendant oxygen atom of the superoxide ligand abstracts hydrogen from C1 to initiate the unique C-C-bond-cleaving, four-electron oxidation reaction. This review recounts the studies leading to the recognition of the novel cofactor requirement and catalytic mechanism of MIOX and forecasts how remaining gaps in our understanding might be filled by additional experiments. PMID:19173070

  10. Generation and reactivity of putative support systems, Ce-Al neutral binary oxide nanoclusters: CO oxidation and C-H bond activation

    NASA Astrophysics Data System (ADS)

    Wang, Zhe-Chen; Yin, Shi; Bernstein, Elliot R.

    2013-11-01

    Both ceria (CeO2) and alumina (Al2O3) are very important catalyst support materials. Neutral binary oxide nanoclusters (NBONCs), CexAlyOz, are generated and detected in the gas phase and their reactivity with carbon monoxide (CO) and butane (C4H10) is studied. The very active species CeAlO4• can react with CO and butane via O atom transfer (OAT) and H atom transfer (HAT), respectively. Other CexAlyOz NBONCs do not show reactivities toward CO and C4H10. The structures, as well as the reactivities, of CexAlyOz NBONCs are studied theoretically employing density functional theory (DFT) calculations. The ground state CeAlO4• NBONC possesses a kite-shaped structure with an OtCeObObAlOt configuration (Ot, terminal oxygen; Ob, bridging oxygen). An unpaired electron is localized on the Ot atom of the AlOt moiety rather than the CeOt moiety: this Ot centered radical moiety plays a very important role for the reactivity of the CeAlO4• NBONC. The reactivities of Ce2O4, CeAlO4•, and Al2O4 toward CO are compared, emphasizing the importance of a spin-localized terminal oxygen for these reactions. Intramolecular charge distributions do not appear to play a role in the reactivities of these neutral clusters, but could be important for charged isoelectronic BONCs. DFT studies show that the reaction of CeAlO4• with C4H10 to form the CeAlO4H•C4H9• encounter complex is barrierless. While HAT processes have been previously characterized for cationic and anionic oxide clusters, the reported study is the first observation of a HAT process supported by a ground state neutral oxide cluster. Mechanisms for catalytic oxidation of CO over surfaces of AlxOy/MmOn or MmOn/AlxOy materials are proposed consistent with the presented experimental and theoretical results.

  11. Ethane C-H bond activation on the Fe(iv)-oxo species in a Zn-based cluster of metal-organic frameworks: a density functional theory study.

    PubMed

    Impeng, Sarawoot; Siwaipram, Siwarut; Bureekaew, Sareeya; Probst, Michael

    2017-02-01

    We first investigate the feasibility of designing a Fe-oxo complex for the activation of alkane C-H bonds by (a) incorporating an Fe ion into a Zn-based cluster derived from a metal-organic framework (MOF) and (b) creating the Fe-oxo complex via decomposition of N2O over a Fe(2+)-substituted Zn-based cluster (Fe-Zn3O(pyrazole)6). From the energy profile, it turns out that both steps should be feasible and that the resulting Fe-oxo complex is stable. In the main step, we then investigate the reactivity of this Fe-oxo cluster for the C-H bond cleavage of ethane by calculating the reaction energy profile and analyzing the electronic structure along the relevant steps. Two mechanisms, namely the σ and π pathways on the triplet and quintet potential energy surfaces, were unraveled for this study of catalytic activity. It is shown that the σ pathway on the quintet surface is kinetically and thermodynamically favorable with an energy barrier of 22.5 kcal mol(-1). The π pathway on the quintet and triplet surfaces has activation energies of 26.9 kcal mol(-1) and 24.9 kcal mol(-1), respectively. An alternative unusual pathway called the δ mechanism on the triplet surface is also observed with an energy barrier of 12.6 kcal mol(-1). It is, however, thermodynamically at a disadvantage compared to the σ pathway on the quintet surface. Favorable d-d interaction on the Fe center and less steric hindrance from the equatorial ligands at the transition state are the key factors that cause the σ pathway on the quintet surface to have the lowest activation energy. All our calculations are of the cluster type and have been performed at the B3LYP-D3/def2-TZVP level of theory.

  12. Reactivity of Tp(Me2) -supported yttrium alkyl complexes toward aromatic N-heterocycles: ring-opening or C-C bond formation directed by C-H activation.

    PubMed

    Yi, Weiyin; Zhang, Jie; Huang, Shujian; Weng, Linhong; Zhou, Xigeng

    2014-01-13

    Unusual chemical transformations such as three-component combination and ring-opening of N-heterocycles or formation of a carbon-carbon double bond through multiple C-H activation were observed in the reactions of Tp(Me2) -supported yttrium alkyl complexes with aromatic N-heterocycles. The scorpionate-anchored yttrium dialkyl complex [Tp(Me2) Y(CH2 Ph)2 (THF)] reacted with 1-methylimidazole in 1:2 molar ratio to give a rare hexanuclear 24-membered rare-earth metallomacrocyclic compound [Tp(Me2) Y(μ-N,C-Im)(η(2) -N,C-Im)]6 (1; Im=1-methylimidazolyl) through two kinds of C-H activations at the C2- and C5-positions of the imidazole ring. However, [Tp(Me2) Y(CH2 Ph)2 (THF)] reacted with two equivalents of 1-methylbenzimidazole to afford a C-C coupling/ring-opening/C-C coupling product [Tp(Me2) Y{η(3) -(N,N,N)-N(CH3 )C6 H4 NHCHC(Ph)CN(CH3 )C6 H4 NH}] (2). Further investigations indicated that [Tp(Me2) Y(CH2 Ph)2 (THF)] reacted with benzothiazole in 1:1 or 1:2 molar ratio to produce a C-C coupling/ring-opening product {(Tp(Me2) )Y[μ-η(2) :η(1) -SC6 H4 N(CHCHPh)](THF)}2 (3). Moreover, the mixed Tp(Me2) /Cp yttrium monoalkyl complex [(Tp(Me2) )CpYCH2 Ph(THF)] reacted with two equivalents of 1-methylimidazole in THF at room temperature to afford a trinuclear yttrium complex [Tp(Me2) CpY(μ-N,C-Im)]3 (5), whereas when the above reaction was carried out at 55 °C for two days, two structurally characterized metal complexes [Tp(Me2) Y(Im-Tp(Me2) )] (7; Im-Tp(Me2) =1-methyl-imidazolyl-Tp(Me2) ) and [Cp3 Y(HIm)] (8; HIm=1-methylimidazole) were obtained in 26 and 17 % isolated yields, respectively, accompanied by some unidentified materials. The formation of 7 reveals an uncommon example of construction of a CC bond through multiple C-H activations.

  13. Dehydrofluorination of Hydrofluorocarbons by Titanium Alkylidynes via Sequential C-H/C-F Bond Activation Reactions. A Synthetic, Structural, and Mechanistic Study of 1,2-CH Bond Addition and [beta]-Fluoride Elimination

    SciTech Connect

    Fout, A.R.; Scott, J.; Miller, D.L.; Bailey, B.C.; Pink, M.; Mindiola, D.J.

    2009-01-07

    The neopentylidene-neopentyl complex (PNP)Ti=CH{sup t}Bu(CH{sub 2}{sup t}Bu) (1); (PNP{sup -} = N[2-P(CHMe{sub 2}){sub 2}-4-methylphenyl]{sub 2}) extrudes neopentane in neat fluorobenzene under mild conditions (25 C) to generate the transient titanium alkylidyne (PNP)Ti-C{sup t}Bu (A), which subsequently undergoes regioselective 1,2-CH bond addition of a fluorobenzene across the Ti-C linkage to generate (PNP)Ti=CH{sup t}Bu(o-FC{sub 6}H{sub 4}) (2). Kinetic and mechanistic studies suggest that the C-H activation process is pseudo-first-order in titanium, with the {alpha}-hydrogen abstraction being the rate-determining step and the post-rate-determining step being the C-H bond activation of fluorobenzene. At 100 C complex 2 does not equilibrate back to A and the preference for C-H activation in benzene versus fluorobenzene is 2:3, respectively. Compound 1 also reacts readily, and in most cases cleanly, with a series of hydrofluoroarenes (HAr{sub F}), to form a family of alkylidene-arylfluoride derivatives of the type (PNP)Ti=CH{sup t}Bu(Ar{sub F}). Thermolysis of the latter compounds generates the titanium alkylidene-fluoride (PNP)Ti=CH{sup t}Bu(F) (14) by a {beta}-fluoride elimination, concurrent with formation of o-benzyne. {beta}-Fluoride elimination to yield 14 occurs from 2 under elevated temperatures with k{sub average} = 4.96(16) x 10{sup -5} s{sup -1} and with activation parameters {Delta}H{sub {-+}} = 29(1) kcal/mol and {Delta}S{sub {-+}} = -3(4) cal/mol {center_dot}K. It was found that {beta}-fluoride elimination is accelerated when electron-rich groups are adjacent to the fluoride group, thus implying that a positive charge buildup at the arylfluoride ring occurs in the activated complex of 2. The alkylidene derivative (PNP)Ti=CHSiMe{sub 3}(CH{sub 2}SiMe{sub 3}) (15) also undergoes {alpha}-hydrogen abstraction to form the putative (PNP)Ti'-CSiMe{sub 3} (B) at higher temperatures (>70 C) and dehydrofluorinates the same series of HArF when the reaction

  14. General allylic C-H alkylation with tertiary nucleophiles.

    PubMed

    Howell, Jennifer M; Liu, Wei; Young, Andrew J; White, M Christina

    2014-04-16

    A general method for intermolecular allylic C-H alkylation of terminal olefins with tertiary nucleophiles has been accomplished employing palladium(II)/bis(sulfoxide) catalysis. Allylic C-H alkylation furnishes products in good yields (avg. 64%) with excellent regio- and stereoselectivity (>20:1 linear:branched, >20:1 E:Z). For the first time, the olefin scope encompasses unactivated aliphatic olefins as well as activated aromatic/heteroaromatic olefins and 1,4-dienes. The ease of appending allyl moieties onto complex scaffolds is leveraged to enable this mild and selective allylic C-H alkylation to rapidly diversify phenolic natural products. The tertiary nucleophile scope is broad and includes latent functionality for further elaboration (e.g., aliphatic alcohols, α,β-unsaturated esters). The opportunities to effect synthetic streamlining with such general C-H reactivity are illustrated in an allylic C-H alkylation/Diels-Alder reaction cascade: a reactive diene is generated via intermolecular allylic C-H alkylation and approximated to a dienophile contained within the tertiary nucleophile to furnish a common tricyclic core found in the class I galbulimima alkaloids.

  15. A germanium isocyanide complex featuring (n → π*) back-bonding and its conversion to a hydride/cyanide product via C-H bond activation under mild conditions.

    PubMed

    Brown, Zachary D; Vasko, Petra; Fettinger, James C; Tuononen, Heikki M; Power, Philip P

    2012-03-07

    Reaction of the diarylgermylene Ge(Ar(Me(6)))(2) [Ar(Me(6)) = C(6)H(3)-2,6-(C(6)H(2)-2,4,6-(CH(3))(3))(2)] with tert-butyl isocyanide gave the Lewis adduct species (Ar(Me(6)))(2)GeCNBu(t), in which the isocyanide ligand displays a decreased C-N stretching frequency consistent with an n → π* back-bonding interaction. Density functional theory confirmed that the HOMO is a Ge-C bonding combination between the lone pair of electrons on the germanium atom and the C-N π* orbital of the isocyanide ligand. The complex undergoes facile C-H bond activation to produce a new diarylgermanium hydride/cyanide species and isobutene via heterolytic cleavage of the N-Bu(t) bond. © 2012 American Chemical Society

  16. Direct bis-arylation of cyclobutanecarboxamide via double C-H activation: an auxiliary-aided diastereoselective Pd-catalyzed access to trisubstituted cyclobutane scaffolds having three contiguous stereocenters and an all-cis stereochemistry.

    PubMed

    Parella, Ramarao; Gopalakrishnan, Bojan; Babu, Srinivasarao Arulananda

    2013-12-06

    An auxiliary-aided Pd-catalyzed highly diastereoselective double C-H activation and direct bis-arylation of methylene C(sp(3))-H bonds of cyclobutanecarboxamides and the syntheses of several novel trisubstituted cyclobutanecarboxamide scaffolds having an all-cis stereochemistry are reported. Extensive screening of various auxiliaries and reaction conditions was performed to firmly establish the optimized reaction conditions required for effecting the mono- or double C-H arylation of cyclobutanecarboxamides. The auxiliary-attached cyclobutanecarboxamides 15a, 15g, and 15h, prepared from the auxiliaries such as, 8-aminoquinoline, 2-(methylthio)aniline, and N',N'-dimethylethane-1,2-diamine were found to undergo an efficient direct bis-arylation. The Pd-catalyzed arylation reaction of N-(quinolin-8-yl)cyclobutanecarboxamide 15a with one equivalent or more of aryl iodides, afforded the corresponding bis-arylated cyclobutanecarboxamides 16a-y. Nevertheless, the Pd-catalyzed arylation of 15a with just 0.5 equiv of the aryl iodides 13a, 13b, 13e, and 13m, selectively gave the corresponding monoarylated cyclobutanecarboxamides 17a-17d. The Pd-catalyzed arylation of 15g or 15h with one equivalent or more of aryl iodides afforded the bis-arylated cyclobutanecarboxamides 19a-19c and 21a-21m, respectively. However, the Pd-catalyzed arylations of compounds 15g or 15h with just 0.5 equiv of aryl iodides were ineffective. The stereochemistry of compounds obtained in this work was unambiguously assigned from the X-ray structures of representative products.

  17. The selective activation of a C-F bond with an auxiliary strong Lewis acid: a method to change the activation preference of C-F and C-H bonds.

    PubMed

    Wang, Lin; Sun, Hongjian; Li, Xiaoyan; Fuhr, Olaf; Fenske, Dieter

    2016-11-15

    The selective activation of the C-F bonds in substituted (2,6-difluorophenyl)phenylimines (2,6-F2H3C6-(C[double bond, length as m-dash]NH)-n'-R-C6H4 (n' = 2, R = H (1); n' = 2, R = Me (2); n' = 4, R = tBu (3))) by Fe(PMe3)4 with an auxiliary strong Lewis acid (LiBr, LiI, or ZnCl2) was explored. As a result, iron(ii) halides ((H5C6-(C[double bond, length as m-dash]NH)-2-FH3C6)FeX(PMe3)3 (X = Br (8); Cl (9)) and (n-RH4C6-(C[double bond, length as m-dash]NH)-2'-FH3C6)FeX(PMe3)3 (n = 2, R = Me, X = Br (11); n = 4, R = tBu, X = I (12))) were obtained. Under similar reaction conditions, using LiBF4 instead of LiBr or ZnCl2, the reaction of (2,6-difluorophenyl)phenylimine with Fe(PMe3)4 afforded an ionic complex [(2,6-F2H3C6-(C[double bond, length as m-dash]NH)-H4C6)Fe(PMe3)4](BF4) (10) via the activation of a C-H bond. The method of C-F bond activation with an auxiliary strong Lewis acid is appropriate for monofluoroarylmethanimines. Without the Lewis acid, iron(ii) hydrides ((2-RH4C6-(C[double bond, length as m-dash]NH)-2'-FH3C6)FeH(PMe3)3 (R = H (13); Me (14))) were generated from the reactions of Fe(PMe3)4 with the monofluoroarylmethanimines (2-FH4C6-(C[double bond, length as m-dash]NH)-2'-RC6H4 (R = H (4); Me (5))); however, in the presence of ZnCl2 or LiBr, iron(ii) halides ((2-RH4C6-(C[double bond, length as m-dash]NH)-H4C6)FeX(PMe3)3 (R = H, X = Cl (15); R = Me, X = Br (16))) could be obtained through the activation of a C-F bond. Furthermore, a C-F bond activation with good regioselectivity in (pentafluorophenyl)arylmethanimines (F5C6-(C[double bond, length as m-dash]NH)-2,6-Y2C6H3 (Y = F (6); H (7))) could be realized in the presence of ZnCl2 to produce iron(ii) chlorides ((2,6-Y2H3C6-(C[double bond, length as m-dash]NH)-F4C6)FeCl(PMe3)3 (Y = F (17); H (18))). This series of iron(ii) halides could be used to catalyze the hydrosilylation reaction of aldehydes. Due to the stability of iron(ii) halides to high temperature, the reaction mixture was allowed to be

  18. Selective activation of C-F and C-H bonds with iron complexes, the relevant mechanism study by DFT calculations and study on the chemical properties of hydrido iron complex.

    PubMed

    Xu, Xiaofeng; Jia, Jiong; Sun, Hongjian; Liu, Yuxia; Xu, Wengang; Shi, Yujie; Zhang, Dongju; Li, Xiaoyan

    2013-03-14

    The reactions of (2,6-difluorophenyl)phenylmethanone (2,6-F(2)C(6)H(3)-C(=O)-C(6)H(5)) (1) and (2,6-difluorophenyl)phenylmethanimine (2,6-F(2)C(6)H(3)-C(=NH)-C(6)H(5)) (3) with Fe(PMe(3))(4) afforded different selective C-F/C-H bond activation products. The reaction of 1 with Fe(PMe(3))(4) gave rise to bis-chelate iron(II) complex [C(6)H(5)-C(=O)-3-FC(6)H(3))Fe(PMe(3))](2) (2) via C-F bond activation. The reaction of 3 with Fe(PMe(3))(4) delivered chelate hydrido iron(II) complex 2,6-F(2)C(6)H(3)-C(=NH)-C(6)H(4))Fe(H)(PMe(3))(3) (4) through C-H bond activation. The DFT calculations show the detailed elementary steps of the mechanism of formation of hydrido complex 4 and indicate 4 is the kinetically preferred product. Complex 4 reacted with HCl, CH(3)Br and CH(3)I delivered the chelate iron halides (2,6-F(2)C(6)H(3)-C(=NH)-C(6)H(4))Fe(PMe(3))(3)X (X = Cl (5); Br (6); I (7)). A ligand (PMe(3)) replacement by CO of 4 was observed giving (2,6-F(2)C(6)H(3)-C(=NH)-C(6)H(4))Fe(H)(CO)(PMe(3))(2) (8). The chelate ligand exchange occurred through the reaction of 4 with salicylaldehydes. The reaction of 4 with Me(3)SiC[triple bond, length as m-dash]CH afforded (2,6-F(2)C(6)H(3)-C([double bond, length as m-dash]N)-C(6)H(5))Fe(C≡C-SiMe(3))(PMe(3))(3) (11). A reaction mechanism from 4 to 11 was discussed with the support of IR monitoring. The molecular structures of complexes 2, 4, 6, 7, 10 and 11 were determined by X-ray diffraction.

  19. Mechanistic insights into C-H amination via dicopper nitrenes.

    PubMed

    Aguila, Mae Joanne B; Badiei, Yosra M; Warren, Timothy H

    2013-06-26

    We examine important reactivity pathways relevant to stoichiometric and catalytic C-H amination via isolable β-diketiminato dicopper alkylnitrene intermediates {[Cl2NN]Cu}2(μ-NR). Kinetic studies involving the stoichiometric amination of ethylbenzene by {[Cl2NN]Cu}2(μ-N(t)Bu) (3) demonstrate that the terminal nitrene [Cl2NN]Cu═N(t)Bu is the active intermediate in C-H amination. Initial rates exhibit saturation behavior at high ethylbenzene loadings and an inverse dependence on the copper species [Cl2NN]Cu, both consistent with dissociation of a [Cl2NN]Cu fragment from 3 prior to C-H amination. C-H amination experiments employing 1,4-dimethylcyclohexane and benzylic radical clock substrate support a stepwise H-atom abstraction/radical rebound pathway. Dicopper nitrenes [Cu]2(μ-NCHRR') derived from 1° and 2° alkylazides are unstable toward tautomerization to copper(I) imine complexes [Cu](HN═CRR'), rendering 1° and 2° alkylnitrene complexes unsuitable for C-H amination.

  20. Formation and High Reactivity of the anti-Dioxo Form of High-Spin μ-Oxodioxodiiron(IV) as the Active Species That Cleaves Strong C-H Bonds.

    PubMed

    Kodera, Masahito; Ishiga, Shin; Tsuji, Tomokazu; Sakurai, Katsutoshi; Hitomi, Yutaka; Shiota, Yoshihito; Sajith, P K; Yoshizawa, Kazunari; Mieda, Kaoru; Ogura, Takashi

    2016-04-18

    Recently, it was shown that μ-oxo-μ-peroxodiiron(III) is converted to high-spin μ-oxodioxodiiron(IV) through O-O bond scission. Herein, the formation and high reactivity of the anti-dioxo form of high-spin μ-oxodioxodiiron(IV) as the active oxidant are demonstrated on the basis of resonance Raman and electronic-absorption spectral changes, detailed kinetic studies, DFT calculations, activation parameters, kinetic isotope effects (KIE), and catalytic oxidation of alkanes. Decay of μ-oxodioxodiiron(IV) was greatly accelerated on addition of substrate. The reactivity order of substrates is tolueneC-H bond cleavage of ethylbenzene than the most reactive diiron system reported so far. The KIE for the reaction with toluene/[D8 ]toluene is 95 at -30 °C, which the largest in diiron systems reported so far. The present diiron complex efficiently catalyzes the oxidation of various alkanes with H2 O2 .

  1. Enzyme-controlled nitrogen-atom transfer enables regiodivergent C-H amination.

    PubMed

    Hyster, Todd K; Farwell, Christopher C; Buller, Andrew R; McIntosh, John A; Arnold, Frances H

    2014-11-05

    We recently demonstrated that variants of cytochrome P450BM3 (CYP102A1) catalyze the insertion of nitrogen species into benzylic C-H bonds to form new C-N bonds. An outstanding challenge in the field of C-H amination is catalyst-controlled regioselectivity. Here, we report two engineered variants of P450BM3 that provide divergent regioselectivity for C-H amination-one favoring amination of benzylic C-H bonds and the other favoring homo-benzylic C-H bonds. The two variants provide nearly identical kinetic isotope effect values (2.8-3.0), suggesting that C-H abstraction is rate-limiting. The 2.66-Å crystal structure of the most active enzyme suggests that the engineered active site can preorganize the substrate for reactivity. We hypothesize that the enzyme controls regioselectivity through localization of a single C-H bond close to the iron nitrenoid.

  2. FT-IR spectroscopy, intra-molecular C-H⋯O interactions, HOMO, LUMO, MESP analysis and biological activity of two natural products, triclisine and rufescine: DFT and QTAIM approaches

    NASA Astrophysics Data System (ADS)

    Srivastava, Ambrish Kumar; Pandey, Anoop Kumar; Jain, Sudha; Misra, Neeraj

    2015-02-01

    The present study deals with two natural products, triclisine and rufescine which are extracted from the Amazonian wines but ubiquitous in nature. The quantum chemical density functional method at B3PW91/6-311+G(d,p) level is used to obtain the equilibrium geometries of these molecules. The quantum theory of atoms-in-molecule approach is employed to study various intra-molecular C-H⋯O interactions within these molecules. We have also performed vibrational analyses of triclisine and rufescine at their equilibrium geometries and presented the complete assignments of the significant vibrational modes. The calculated vibrational frequencies are shown to be in perfect agreement with the experimentally observed FTIR spectra of molecules under study. In addition, the electronic properties of these molecules are also discussed with the help of HOMO-LUMO and MESP surfaces and a number of electronic as well as thermodynamic parameters are calculated which are closely related to their chemical reactivity and reaction paths. The biological activities of both molecules have also been predicted which highlight their pharmacological importance.

  3. Rh(V) -Nitrenoid as a Key Intermediate in Rh(III) -Catalyzed Heterocyclization by C-H Activation: A Computational Perspective on the Cycloaddition of Benzamide and Diazo Compounds.

    PubMed

    Zhou, Tao; Guo, Wei; Xia, Yuanzhi

    2015-06-15

    A mechanistic study of the substituent-dependent ring formations in Rh(III) -catalyzed C-H activation/cycloaddition of benzamide and diazo compounds was carried out by using DFT calculations. The results indicated that the decomposition of the diazo is facilitated upon the formation of the five-membered rhodacycle, in which the Rh(III) center is more electrophilic. The insertion of carbenoid into Rh-C(phenyl) bond occurs readily and forms a 6-membered rhodacycle, however, the following C-N bond formation is difficult both kinetically and thermodynamically by reductive elimination from the Rh(III) species. Instead, the Rh(V) -nitrenoid intermediate could be formed by migration of the pivalate from N to Rh, which undergoes the heterocyclization much more easily and complementary ring-formations could be modulated by the nature of the substituent at the α-carbon. When a vinyl is attached, the stepwise 1,3-allylic migration occurs prior to the pivalate migration and the 8-membered ring product will be formed. On the other hand, the pivalate migration becomes more favorable for the phenyl-contained intermediate because of the difficult 1,3-allylic migration accompanied by dearomatization, thus the 5-membered ring product was formed selectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Assessment of DFT methods for computing activation energies of Mo/W-mediated reactions.

    PubMed

    Hu, Lianrui; Chen, Hui

    2015-10-13

    Using high level ab initio coupled cluster calculations as reference, the performances of 15 commonly used density functionals (DFs) on activation energy calculations for typical Mo/W-mediated reactions have been systematically assessed for the first time in this work. The selected representative Mo/W-mediated reactions cover a wide range from enzymatic reactions to organometallic reactions, which include Mo-catalyzed aldehyde oxidation (aldehyde oxidoreductase), Mo-catalyzed dimethyl sulfoxide (DMSO) reduction (DMSO reductase), W-catalyzed acetylene hydration (acetylene hydratase), Mo/W-mediated olefin metathesis, Mo/W-mediated olefin epoxidation, W-mediated alkyne metathesis, and W-mediated C-H bond activation. Covering both Mo- and W-mediated reactions, four DFs of B2GP-PLYP, M06, B2-PLYP, and B3LYP are uniformly recommended with and without DFT empirical dispersion correction. Among these four DFs, B3LYP is notably improved in performance by DFT empirical dispersion correction. In addition to the absolute value of calculation error, if the trend of DFT results is also a consideration, B2GP-PLYP, B2-PLYP, and M06 keep better performance than other functionals tested and constitute our final recommendation of DFs for both Mo- and W-mediated reactions.

  5. Quinoline-2-carboimine copper complex immobilized on amine functionalized silica coated magnetite nanoparticles: a novel and magnetically retrievable catalyst for the synthesis of carbamates via C-H activation of formamides.

    PubMed

    Sharma, R K; Dutta, Sriparna; Sharma, Shivani

    2015-01-21

    In the present study, we report the synthesis of a highly efficient and magnetically retrievable catalytic system (Cu-2QC@Am-SiO2@Fe3O4) through the covalent immobilization of quinoline-2-carboxaldehyde (2QC) on an amine functionalized silica coated ferrite nanosupport followed by metallation with copper acetate. The structure of the organic-inorganic hybrid nanomaterial has been confirmed using various physicochemical techniques such as Powder X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-Ray Spectroscopy (EDS), Energy Dispersive X-Ray Fluorescence Spectroscopy (ED-XRF), Atomic Absorption Spectroscopy (AAS), Inductively Coupled Plasma Spectroscopy (ICP) and Vibrating Sample Magnetometry (VSM). The resulting nanocatalyst exhibits a remarkable catalytic efficacy in the synthesis of industrially and pharmaceutically significant carbamates via the C-H activation of formamides under solvent free conditions. The most important attribute of the present methodology is that the catalyst can be recovered simply through an external magnetic force and reused several times without any significant deterioration in its activity. Furthermore, the heterogeneity test has been carried out in order to ensure the intrinsic stability of the nanostructured catalyst. The activity of the Cu-2QC@Am-SiO2@Fe3O4 nanocatalyst has been found to be far more superior in comparison with the literature precedents in terms of the product yield, cost and reusability of the catalyst. Besides, ambient reaction conditions, simple workup procedure, wide substrate scope and cost effectiveness are some of the other outstanding features of this protocol that make it economical and sustainable.

  6. C. H. Patterson: The Counselor's Counselor.

    ERIC Educational Resources Information Center

    Goodyear, Rodney K.; Watkins, C. Edward, Jr.

    1983-01-01

    Interviewed C. H. Patterson, spokesperson for client-centered therapy and for counseling itself. Discusses some of the books and articles he has written and their impact on the profession. The interview reviews Patterson's career and focuses on him as a person and as a professional. (JAC)

  7. Scalable C-H Oxidation with Copper: Synthesis of Polyoxypregnanes.

    PubMed

    See, Yi Yang; Herrmann, Aaron T; Aihara, Yoshinori; Baran, Phil S

    2015-11-04

    Steroids bearing C12 oxidations are widespread in nature, yet only one preparative chemical method addresses this challenge in a low-yielding and not fully understood fashion: Schönecker's Cu-mediated oxidation. This work shines new light onto this powerful C-H oxidation method through mechanistic investigation, optimization, and wider application. Culminating in a scalable, rapid, high-yielding, and operationally simple protocol, this procedure is applied to the first synthesis of several parent polyoxypregnane natural products, representing a gateway to over 100 family members.

  8. First principles (DFT) characterization of Rh(I) /dppp-catalyzed C-H activation by tandem 1,2-addition/1,4-Rh shift reactions of norbornene to phenylboronic acid.

    PubMed

    Kantchev, Eric Assen B; Pangestu, Surya R; Zhou, Feng; Sullivan, Michael B; Su, Hai-Bin

    2014-11-17

    The C-H activation in the tandem, "merry-go-round", [(dppp)Rh]-catalyzed (dppp=1,3-bis(diphenylphosphino)propane), four-fold addition of norborene to PhB(OH)2 has been postulated to occur by a C(alkyl)H oxidative addition to square-pyramidal Rh(III) -H species, which in turn undergoes a C(aryl)-H reductive elimination. Our DFT calculations confirm the Rh(I) /Rh(III) mechanism. At the IEFPCM(toluene, 373.15 K)/PBE0/DGDZVP level of theory, the oxidative addition barrier was calculated to be 12.9 kcal mol(-1) , and that of reductive elimination was 5.0 kcal mol(-1) . The observed selectivity of the reaction correlates well with the relative energy barriers of the cycle steps. The higher barrier (20.9 kcal mol(-1) ) for norbornyl-Rh protonation ensures that the reaction is steered towards the 1,4-shift (total barrier of 16.3 kcal mol(-1) ), acting as an equilibration shuttle. The carborhodation (13.2 kcal mol(-1) ) proceeds through a lower barrier than the protonation (16.7 kcal mol(-1) ) of the rearranged aryl-Rh species in the absence of o- or m-substituents, ensuring multiple carborhodations take place. However, for 2,5-dimethylphenyl, which was used as a model substrate, the barrier for carborhodation is increased to 19.4 kcal mol(-1) , explaining the observed termination of the reaction at 1,2,3,4-tetra(exo-norborn-2-yl)benzene. Finally, calculations with (Z)-2-butene gave a carborhodation barrier of 20.2 kcal mol(-1) , suggesting that carborhodation of non-strained, open-chain substrates would be disfavored relative to protonation.

  9. Generating Cu(II)-Oxyl / Cu(III)-Oxo Species from Cu(I)-α-Ketocarboxylate Complexes and O2: In silico Studies on Ligand Effects and C-H-activation Reactivity

    PubMed Central

    Huber, Stefan M.; Ertem, M. Zahid; Aquilante, Francesco

    2010-01-01

    A mechanism for the oxygenation of Cu(I) complexes with α-ketocarboxylate ligands is elaborated that is based on a combination of density functional theory and multireference second-order perturbation theory (CASSCF/CASPT2) calculations. The reaction proceeds in a manner largely analogous to those of similar Fe(II) α-ketocarboxylate systems, i.e. by initial attack of a coordinated oxygen molecule on a ketocarboxylate ligand with concomitant decarboxylation. Subsequently, two reactive intermediates may be generated, a Cu-peracid structure and a [CuO]+ species, both of which are capable of oxidizing a phenyl ring that is a component of the supporting ligand. Hydroxylation by the [CuO]+ species is predicted to proceed with a smaller activation free energy. The effects of electronic and steric variatons on the oxygenation mechanisms were studied by introducing substituents at several positions of the ligand backbone and by investigating various N-donor ligands. In general, more electron-donation by the N-donor ligand leads to increased stabilization of the more Cu(II)/Cu(III)-like intermediates (oxygen adducts and [CuO]+ species) relative to the more Cu(I)-like peracid intermediate. For all ligands investi-gated, the [CuO]+ intermediates are best described as Cu(II)-O•- species having triplet ground states. The reactivity of these compounds in C-H abstraction reactions decreases with more electron-donating N-donor ligands, which also increase the Cu-O bond strength, although the Cu-O bond is generally predicted to be rather weak (with a bond order of about 0.5). A comparison of several methods to obtain singlet energies for the reaction intermediates indicates that multireference second-order perturbation theory is likely more accurate for the initial oxygen adducts, but not necessarily for subsequent reaction intermediates. PMID:19322769

  10. β-Hydride Elimination and C-H Activation by an Iridium Acetate Complex, Catalyzed by Lewis Acids. Alkane Dehydrogenation Cocatalyzed by Lewis Acids and [2,6-Bis(4,4-dimethyloxazolinyl)-3,5-dimethylphenyl]iridium.

    PubMed

    Gao, Yang; Guan, Changjian; Zhou, Meng; Kumar, Akshai; Emge, Thomas J; Wright, Ashley M; Goldberg, Karen I; Krogh-Jespersen, Karsten; Goldman, Alan S

    2017-05-10

    NaBAr(F)4 (sodium tetrakis[(3,5-trifluoromethyl)phenyl]borate) was found to catalyze reactions of (Phebox)Ir(III)(acetate) (Phebox = 2,6-bis(4,4-dimethyloxazolinyl)-3,5-dimethylphenyl) complexes, including (i) β-H elimination of (Phebox)Ir(OAc)(n-alkyl) to give (Phebox)Ir(OAc)(H) and the microscopic reverse, alkene insertion into the Ir-H bond of (Phebox)Ir(OAc)(H), and (ii) hydrogenolysis of the Ir-alkyl bond of (Phebox)Ir(OAc)(n-alkyl) and the microscopic reverse, C-H activation by (Phebox)Ir(OAc)(H), as indicated by H/D exchange experiments. For example, β-H elimination of (Phebox)Ir(OAc)(n-octyl) (2-Oc) proceeded on a time scale of minutes at -15 °C in the presence of (0.4 mM) NaBAr(F)4 as compared with a very slow reaction at 125 °C in the absence of NaBAr(F)4. In addition to NaBAr(F)4, other Lewis acids are also effective. Density functional theory calculations capture the effect of the Na(+) cation and indicate that it operates primarily by promoting κ(2)-κ(1) dechelation of the acetate anion, which opens the coordination site needed to allow the observed reaction to proceed. In accord with the effect on these individual stoichiometric reactions, NaBAr(F)4 was also found to cocatalyze, with (Phebox)Ir(OAc)(H), the acceptorless dehydrogenation of n-dodecane.

  11. Spectroscopic Identification of Y(C4H6) Isomers Formed by Yttrium-Mediated C-H Bond Activation of Butenes

    NASA Astrophysics Data System (ADS)

    Kim, Jong Hyun; Yang, Dong-Sheng

    2016-06-01

    Y(C4H6) was observed from the reactions of laser-vaporized Y atom with 1-butene (CH2=CHCH2CH3) and iso-butene (CH2=C(CH3)2) in a pulsed molecular beam source, and its structural isomers were investigated with mass-analyzed threshold ionization spectroscopy combined with electronic structure calculations and spectral simulations. Y(C4H6) was identified as a five-membered metallacycle [Y(CH2-CH=CH-CH2)] from the Y + 1-butene reaction and a tetrahedral structure [YC(CH2)3] from the Y + iso-butene reaction. The metallacycle has a Cs structure with Y binding to the two terminal carbon atoms, whereas the tetrahedron has C3v symmetry with Y binding to the tertiary carbon atom of trimethylenemethane. Both isomers have a doublet ground state with the highest molecular orbital being largely a Y 5s character. Ionization removes the metal based electron, and the resultant singlet ion has a similar structure to the neutral complex. However, the adiabatic ionization energy [46309(5) cm-1] of the tetrahedron is considerably higher than that [43473(5) cm-1] of the cyclic structure.

  12. Rh(III)-Catalyzed meta-C-H Olefination Directed by a Nitrile Template.

    PubMed

    Xu, Hua-Jin; Lu, Yi; Farmer, Marcus E; Wang, Huai-Wei; Zhao, Dan; Kang, Yan-Shang; Sun, Wei-Yin; Yu, Jin-Quan

    2017-02-15

    A range of Rh(III)-catalyzed ortho-C-H functionalizations have been developed; however, extension of this reactivity to remote C-H functionalizations through large-ring rhodacyclic intermediates has yet to be demonstrated. Herein we report the first example of the use of a U-shaped nitrile template to direct Rh(III)-catalyzed remote meta-C-H activation via a postulated 12-membered macrocyclic intermediate. Because the ligands used for Rh(III) catalysts are significantly different from those of Pd(II) catalysts, this offers new opportunities for future development of ligand-promoted meta-C-H activation reactions.

  13. Cell Cholesterol Homeostasis: Mediation by Active Cholesterol

    PubMed Central

    Steck, Theodore L.; Lange, Yvonne

    2010-01-01

    Recent evidence suggests that the major pathways mediating cell cholesterol homeostasis respond to a common signal: active membrane cholesterol. Active cholesterol is that fraction which exceeds the complexing capacity of the polar bilayer lipids. Increments in plasma membrane cholesterol exceeding this threshold have an elevated chemical activity (escape tendency) and redistribute via diverse transport proteins to both circulating plasma lipoproteins and intracellular organelles. Active cholesterol prompts several feedback responses thereby. It is the substrate for its own esterification and for the synthesis of regulatory side-chain oxysterols. It also stimulates manifold pathways that down-regulate the biosynthesis, curtail the ingestion and increase the export of cholesterol. Thus, the abundance of cholesterol is tightly coupled to that of its polar lipid partners through active cholesterol. PMID:20843692

  14. Ruthenium-catalyzed direct C-H amidation of arenes including weakly coordinating aromatic ketones.

    PubMed

    Kim, Jiyu; Kim, Jinwoo; Chang, Sukbok

    2013-06-03

    C-H activation: The ruthenium-catalyzed direct sp(2) C-H amidation of arenes by using sulfonyl azides as the amino source is presented (see scheme). A wide range of substrates were readily amidated including arenes bearing weakly coordinating groups. Synthetic utility of the thus obtained products was demonstrated in the preparation of biologically active heterocycles.

  15. A General Strategy for the Nickel-Catalyzed C-H Alkylation of Anilines.

    PubMed

    Ruan, Zhixiong; Lackner, Sebastian; Ackermann, Lutz

    2016-02-24

    The C-H alkylation of aniline derivatives with both primary and secondary alkyl halides was achieved with a versatile nickel catalyst of a vicinal diamine ligand. Step-economic access to functionalized 2-pyrimidyl anilines, key structural motifs in anticancer drugs, is thus provided. The C-H functionalization proceeded through facile C-H activation and SET-type C-X bond cleavage with the assistance of a monodentate directing group, which could be removed in a traceless fashion.

  16. [[correlation between macro- and micro-stability C(H)2 domains of human IgG2 and their biological activity. II. Calculation of thermodynamic functions characterizing domains stability].

    PubMed

    Tishchenko, V M

    2014-01-01

    The thermodynamic parameters of the stabilization of the native structure C(H)2 domains of human myeloma immunoglobulin LOM and SIN second subclass and their firstly obtained hFc fragments were determined using the methods of scanning microcalorimenry. A decrease in the termal stability and energy stability of the native of these domains in the intact proteins correlated in the "phisiological" range of temperatures (20-37 degrees C), mainly, with entropy factor.

  17. An Iminium Salt Organocatalyst for Selective Aliphatic C-H Hydroxylation.

    PubMed

    Wang, Daoyong; Shuler, William G; Pierce, Conor J; Hilinski, Michael K

    2016-08-05

    The first examples of catalysis of aliphatic C-H hydroxylation by an iminium salt are presented. The method allows the selective organocatalytic hydroxylation of unactivated 3° C-H bonds at room temperature using hydrogen peroxide as the terminal oxidant. Hydroxylation of an unactivated 2° C-H bond is also demonstrated. Furthermore, improved functional group compatibility over other catalytic methods is reported in the form of selectivity for aliphatic C-H hydroxylation over alcohol oxidation. On the basis of initial mechanistic studies, an oxaziridinium species is proposed as the active oxidant.

  18. Silver-mediated oxidative aliphatic C-H trifluoromethylthiolation.

    PubMed

    Guo, Shuo; Zhang, Xiaofei; Tang, Pingping

    2015-03-23

    The first example of a practical and direct trifluoromethylthiolation reaction of unactivated aliphatic CH bonds employs a silver-based reagent. The reaction is operationally simple, scalable, and proceeds under aqueous conditions in air. Furthermore, its broad scope and good functional-group compatibility were demonstrated by applying this method to the selective trifluoromethylthiolation of natural products and natural-product derivatives. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Mechanochemical Rhodium(III)-Catalyzed C-H Bond Functionalization of Acetanilides under Solventless Conditions in a Ball Mill.

    PubMed

    Hermann, Gary N; Becker, Peter; Bolm, Carsten

    2015-06-15

    In a proof-of-principle study, a planetary ball mill was applied to rhodium(III)-catalyzed C-H bond functionalization. Under solventless conditions and in the presence of a minute amount of Cu(OAc)2, the mechanochemical activation led to the formation of an active rhodium species, thus enabling an oxidative Heck-type cross-coupling reaction with dioxygen as the terminal oxidant. The absence of an organic solvent, the avoidance of a high reaction temperature, the possibility of minimizing the amount of the metallic mediator, and the simplicity of the protocol result in a powerful and environmentally benign alternative to the common solution-based standard protocol.

  20. Approximate thermochemical tables for some C-H and C-H-O species

    NASA Technical Reports Server (NTRS)

    Bahn, G. S.

    1973-01-01

    Approximate thermochemical tables are presented for some C-H and C-H-O species and for some ionized species, supplementing the JANAF Thermochemical Tables for application to finite-chemical-kinetics calculations. The approximate tables were prepared by interpolation and extrapolation of limited available data, especially by interpolations over chemical families of species. Original estimations have been smoothed by use of a modification for the CDC-6600 computer of the Lewis Research Center PACl Program which was originally prepared for the IBM-7094 computer Summary graphs for various families show reasonably consistent curvefit values, anchored by properties of existing species in the JANAF tables.

  1. Catalytic meta-selective C-H functionalization to construct quaternary carbon centres.

    PubMed

    Paterson, Andrew J; St John-Campbell, Sahra; Mahon, Mary F; Press, Neil J; Frost, Christopher G

    2015-08-18

    A catalytic meta-selective C-H functionalization of 2-phenylpyridines using a range of tertiary halides is described. The protocol is simple to perform and uses commercially available reagents to construct challenging quaternary carbon centres in a regioselective manner. Preliminary studies suggest the C-H functionalization proceeds through a radical process directed via a remote σ-activation.

  2. The activation of C-H bonds in C1-C3 alkanes by zirconium(III,IV) and titanium(III,IV) hydrides immobilized on the surface of SiO2: a density functional theory study

    NASA Astrophysics Data System (ADS)

    Ustynyuk, L. Yu.; Aleshkin, I. A.; Suleimanov, Yu. V.; Besedin, D. V.; Ustynyuk, Yu. A.; Lunin, V. V.

    2007-05-01

    Model reactions of the (≡Si-O-)3MIVH (1), (≡Si-O-)2MIVH2 (2), and (≡Si-O-)2MIIIH (3) hydrides, where M = Ti and Zr, immobilized on the surface of silica with methane and propane were studied by the density functional theory with the PBE functional. The reactions involved the breaking of C-H alkane bonds and the formation of the (≡Si-O-)3MR, (≡Si-O-)2M(H)R, and (≡Si-O-)2MR products (R = Me, n-Pr, and i-Pr), respectively. Reactions with the participation of 1 and 2 were found to occur as bimolecular processes without the formation of agostic-type prereaction complexes. With 3, the reaction was accompanied by the formation of stable prereaction and postreaction complexes. The conclusion was drawn that dihydrides 2 and trivalent metal hydrides 3 were much more reactive with respect to alkane C-H bonds than monohydrides 1. All the systems studied were characterized by low reaction regioselectivities.

  3. Lck activation mediates neuroprotection during ischemic preconditioning

    PubMed Central

    Bae, Ok-Nam; Rajanikant, Krishnamurthy; Min, Jiangyong; Smith, Jeremy; Baek, Seung-Hoon; Serfozo, Kelsey; Hejabian, Siamak; Lee, Ki Yong; Kassab, Mounzer; Majid, Arshad

    2012-01-01

    The molecular mechanisms underlying preconditioning (PC), a powerful endogenous neuroprotective phenomenon, remain to be fully elucidated. Once identified, these endogenous mechanisms could be manipulated for therapeutic gain. We investigated whether Lck, a member of the Src kinases family, mediates PC. We employed both in vitro primary cortical neurons and in vivo mouse cerebral focal ischemia models of preconditioning, cellular injury and neuroprotection. Genetically engineered mice deficient in LcK, gene silencing using siRNA and pharmacological approaches were used. Cortical neurons preconditioned with sub-lethal exposure to NMDA or oxygen glucose deprivation (OGD) exhibited enhanced Lck kinase activity, and were resistant to injury on subsequent exposure to lethal levels of NMDA or OGD. Lck gene silencing using siRNA abolished tolerance against both stimuli. Lck−/− mice or neurons isolated from Lck−/− mice did not exhibit PC-induced tolerance. An Lck antagonist administered to wild-type mice significantly attenuated the neuroprotective effect of PC in the mouse focal ischemia model. Using pharmacological and gene silencing strategies, we also showed that PKCε is an upstream regulator of Lck, and Fyn is a downstream target of Lck. We have discovered that Lck plays an essential role in PC in both cellular and animal models of stroke. Our data also show that the PKCε-Lck-Fyn axis is a key mediator of PC. These findings provide new opportunities for stroke therapy development. PMID:22623673

  4. Directing group-controlled regioselectivity in an enzymatic C-H bond oxygenation.

    PubMed

    Negretti, Solymar; Narayan, Alison R H; Chiou, Karoline C; Kells, Petrea M; Stachowski, Jessica L; Hansen, Douglas A; Podust, Larissa M; Montgomery, John; Sherman, David H

    2014-04-02

    Highly regioselective remote hydroxylation of a natural product scaffold is demonstrated by exploiting the anchoring mechanism of the biosynthetic P450 monooxygenase PikCD50N-RhFRED. Previous studies have revealed structural and biochemical evidence for the role of a salt bridge between the desosamine N,N-dimethylamino functionality of the natural substrate YC-17 and carboxylate residues within the active site of the enzyme, and selectivity in subsequent C-H bond functionalization. In the present study, a substrate-engineering approach was conducted that involves replacing desosamine with varied synthetic N,N-dimethylamino anchoring groups. We then determined their ability to mediate enzymatic total turnover numbers approaching or exceeding that of the natural sugar, while enabling ready introduction and removal of these amino anchoring groups from the substrate. The data establish that the size, stereochemistry, and rigidity of the anchoring group influence the regioselectivity of enzymatic hydroxylation. The natural anchoring group desosamine affords a 1:1 mixture of regioisomers, while synthetic anchors shift YC-17 analogue C-10/C-12 hydroxylation from 20:1 to 1:4. The work demonstrates the utility of substrate engineering as an orthogonal approach to protein engineering for modulation of regioselective C-H functionalization in biocatalysis.

  5. Solute-mediated interactions between active droplets

    NASA Astrophysics Data System (ADS)

    Moerman, Pepijn G.; Moyses, Henrique W.; van der Wee, Ernest B.; Grier, David G.; van Blaaderen, Alfons; Kegel, Willem K.; Groenewold, Jan; Brujic, Jasna

    2017-09-01

    Concentration gradients play a critical role in embryogenesis, bacterial locomotion, as well as the motility of active particles. Particles develop concentration profiles around them by dissolution, adsorption, or the reactivity of surface species. These gradients change the surface energy of the particles, driving both their self-propulsion and governing their interactions. Here, we uncover a regime in which solute gradients mediate interactions between slowly dissolving droplets without causing autophoresis. This decoupling allows us to directly measure the steady-state, repulsive force, which scales with interparticle distance as F ˜1 /r2 . Our results show that the dissolution process is diffusion rather than reaction rate limited, and the theoretical model captures the dependence of the interactions on droplet size and solute concentration, using a single fit parameter, l =16 ±3 nm , which corresponds to the length scale of a swollen micelle. Our results shed light on the out-of-equilibrium behavior of particles with surface reactivity.

  6. Computational Exploration of Rh(III)/Rh(V) and Rh(III)/Rh(I) Catalysis in Rhodium(III)-Catalyzed C-H Activation Reactions of N-Phenoxyacetamides with Alkynes.

    PubMed

    Yang, Yun-Fang; Houk, K N; Wu, Yun-Dong

    2016-06-01

    The selective rhodium-catalyzed functionalization of arenes is greatly facilitated by oxidizing directing groups that act both as directing groups and internal oxidants. We report density functional theory (B3LYP and M06) investigations on the mechanism of rhodium(III)-catalyzed redox coupling reaction of N-phenoxyacetamides with alkynes. The results elucidated the role of the internal oxidizing directing group, and the role of Rh(III)/Rh(I) and Rh(III)/Rh(V) catalysis of C-H functionalizations. A novel Rh(III)-Rh(V)-Rh(III) cycle successfully rationalizes recent experimental observations by Liu and Lu et al. ( Liu , G. Angew. Chem. Int. Ed. 2013 , 52 , 6033 ) on the reactions of N-phenoxyacetamides with alkynes in different solvents. Natural Bond Orbital (NBO) analysis confirms the identity of Rh(V) intermediate in the catalytic cycle.

  7. Enantioselective, intermolecular benzylic C-H amination catalysed by an engineered iron-haem enzyme

    NASA Astrophysics Data System (ADS)

    Prier, Christopher K.; Zhang, Ruijie K.; Buller, Andrew R.; Brinkmann-Chen, Sabine; Arnold, Frances H.

    2017-07-01

    C-H bonds are ubiquitous structural units of organic molecules. Although these bonds are generally considered to be chemically inert, the recent emergence of methods for C-H functionalization promises to transform the way synthetic chemistry is performed. The intermolecular amination of C-H bonds represents a particularly desirable and challenging transformation for which no efficient, highly selective, and renewable catalysts exist. Here we report the directed evolution of an iron-containing enzymatic catalyst—based on a cytochrome P450 monooxygenase—for the highly enantioselective intermolecular amination of benzylic C-H bonds. The biocatalyst is capable of up to 1,300 turnovers, exhibits excellent enantioselectivities, and provides access to valuable benzylic amines. Iron complexes are generally poor catalysts for C-H amination: in this catalyst, the enzyme's protein framework confers activity on an otherwise unreactive iron-haem cofactor.

  8. Arene-metal π-complexation as a traceless reactivity enhancer for C-H arylation.

    PubMed

    Ricci, Paolo; Krämer, Katrina; Cambeiro, Xacobe C; Larrosa, Igor

    2013-09-11

    Current approaches to facilitate C-H arylation of arenes involve the use of either strongly electron-withdrawing substituents or directing groups. Both approaches require structural modification of the arene, limiting their generality. We present a new approach where C-H arylation is made possible without altering the connectivity of the arene via π-complexation of a Cr(CO)3 unit, greatly enhancing the reactivity of the aromatic C-H bonds. We apply this approach to monofluorobenzenes, highly unreactive arenes, which upon complexation become nearly as reactive as pentafluorobenzene itself in their couplings with iodoarenes. DFT calculations indicate that C-H activation via a concerted metalation-deprotonation transition state is facilitated by the predisposition of C-H bonds in (Ar-H)Cr(CO)3 to bend out of the aromatic plane.

  9. VTST/MT studies of the catalytic mechanism of C-H activation by transition metal complexes with [Cu2(μ-O2)], [Fe2(μ-O2)] and Fe(IV)-O cores based on DFT potential energy surfaces.

    PubMed

    Kim, Yongho; Mai, Binh Khanh; Park, Sumin

    2017-04-01

    High-valent Cu and Fe species, which are generated from dioxygen activation in metalloenzymes, carry out the functionalization of strong C-H bonds. Understanding the atomic details of the catalytic mechanism has long been one of the main objectives of bioinorganic chemistry. Large H/D kinetic isotope effects (KIEs) were observed in the C-H activation by high-valent non-heme Cu or Fe complexes in enzymes and their synthetic models. The H/D KIE depends significantly on the transition state properties, such as structure, energies, frequencies, and shape of the potential energy surface, when the tunneling effect is large. Therefore, theoretical predictions of kinetic parameters such as rate constants and KIEs can provide a reliable link between atomic-level quantum mechanical mechanisms and experiments. The accurate prediction of the tunneling effect is essential to reproduce the kinetic parameters. The rate constants and HD/KIE have been calculated using the variational transition-state theory including multidimensional tunneling based on DFT potential energy surfaces along the reaction coordinate. Excellent agreement was observed between the predicted and experimental results, which assures the validity of the DFT potential energy surfaces and, therefore, the proposed atomic-level mechanisms. The [Cu2(μ-O)2], [Fe2(μ-O)2], and Fe(IV)-oxo species were employed for C-H activation, and their role as catalysts was discussed at an atomic level.

  10. Mechanistic Variants in Gas-Phase Metal-Oxide Mediated Activation of Methane at Ambient Conditions.

    PubMed

    Li, Jilai; Zhou, Shaodong; Zhang, Jun; Schlangen, Maria; Usharani, Dandamudi; Shaik, Sason; Schwarz, Helmut

    2016-09-07

    The C-H bond activation of methane mediated by a prototypical heteronuclear metal-oxide cluster, [Al2Mg2O5](•+), was investigated by using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) in conjunction with high-level quantum mechanical calculations. Experimentally, hydrogen-atom abstraction from methane by the cluster ion [Al2Mg2O5](•+) takes place at ambient conditions. As to the mechanism, according to our computational findings, both the proton-coupled electron transfer (PCET) and the conventional hydrogen-atom transfer (HAT) are feasible and compete with each other. This is in distinct contrast to the [XYO2](+) (X, Y = Mg, Al, Si) cluster oxide ions which activate methane exclusively via the PCET route (Li, J.; Zhou, S.; Zhang, J.; Schlangen, M.; Weiske, T.; Usharani, D.; Shaik, S.; Schwarz, H. J. Am. Chem. Soc. 2016, 138, 7973-7981). The electronic origins of the mechanistically rather complex reactivity scenarios of the [Al2Mg2O5](•+)/CH4 couple were elucidated. For the PCET mechanism, in which the Lewis acid-base pair [Al(+)-O(-)] of the cluster acts as the active site, a clear correlation has been established between the nature of the transition state, the corresponding barrier height, the Lewis acidity-basicity of the [M(+)-O(-)] unit, as well as the bond order of the M(+)-O(-) bond. Also addressed is the role of the spin and charge distributions of a terminal oxygen radical site in the direct HAT route. The knowledge of the factors that control the reactivity of PCET and HAT pathways not only deepens our mechanistic understanding of metal-oxide mediated C-H bond activation but may also provide guidance for the rational design of catalysts.

  11. Asymmetric Allylic C-H Oxidation for the Synthesis of Chromans.

    PubMed

    Wang, Pu-Sheng; Liu, Peng; Zhai, Yu-Jia; Lin, Hua-Chen; Han, Zhi-Yong; Gong, Liu-Zhu

    2015-10-14

    An enantioselective intramolecular allylic C-H oxidation to generate optically active chromans has been accomplished under the cooperative catalysis of a palladium complex of chiral phosphoramidite ligand and 2-fluorobenzoic acid. Mechanistic studies suggest that this reaction commences with a Pd-catalyzed allylic C-H activation event and then undergoes asymmetric allylic alkoxylation. The synthetic significance of the method has been embodied by concisely building up a key chiral intermediate to access (+)-diversonol.

  12. Pd(II)-catalysed meta-C-H functionalizations of benzoic acid derivatives.

    PubMed

    Li, Shangda; Cai, Lei; Ji, Huafang; Yang, Long; Li, Gang

    2016-01-27

    Benzoic acids are highly important structural motifs in drug molecules and natural products. Selective C-H bond functionalization of benzoic acids will provide synthetically useful tools for step-economical organic synthesis. Although direct ortho-C-H functionalizations of benzoic acids or their derivatives have been intensely studied, the ability to activate meta-C-H bond of benzoic acids or their derivatives in a general manner via transition-metal catalysis has been largely unsuccessful. Although chelation-assisted meta-C-H functionalization of electron-rich arenes was reported, chelation-assisted meta-C-H activation of electron-poor arenes such as benzoic acid derivatives remains a formidable challenge. Herein, we report a general protocol for meta-C-H olefination of benzoic acid derivatives using a nitrile-based sulfonamide template. A broad range of benzoic acid derivatives are meta-selectively olefinated using molecular oxygen as the terminal oxidant. The meta-C-H acetoxylation, product of which is further transformed at the meta-position, is also reported.

  13. meta-C-H Bromination on Purine Bases by Heterogeneous Ruthenium Catalysis.

    PubMed

    Warratz, Svenja; Burns, David J; Zhu, Cuiju; Korvorapun, Korkit; Rogge, Torben; Scholz, Julius; Jooss, Christian; Gelman, Dmitri; Ackermann, Lutz

    2017-02-01

    Methods for positionally selective remote C-H functionalizations are in high demand. Herein, we disclose the first heterogeneous ruthenium catalyst for meta-selective C-H functionalizations, which enabled remote halogenations with excellent site selectivity and ample scope. The versatile heterogeneous Ru@SiO2 catalyst was broadly applicable and could be easily recovered and reused, which set the stage for the direct fluorescent labeling of purines. In contrast to palladium, rhodium, iridium, or cobalt complexes, solely the ruthenium catalysis manifold provided access to meta-halogenated purine derivatives, illustrating the unique power of ruthenium C-H activation catalysis.

  14. Structure of an isolated unglycosylated antibody C(H)2 domain.

    PubMed

    Prabakaran, Ponraj; Vu, Bang K; Gan, Jianhua; Feng, Yang; Dimitrov, Dimiter S; Ji, Xinhua

    2008-10-01

    The C(H)2 (C(H)3 for IgM and IgE) domain of an antibody plays an important role in mediating effector functions and preserving antibody stability. It is the only domain in human immunoglobulins (Igs) which is involved in weak interchain protein-protein interactions with another C(H)2 domain solely through sugar moieties. The N-linked glycosylation at Asn297 is conserved in mammalian IgGs as well as in homologous regions of other antibody isotypes. To examine the structural details of the C(H)2 domain in the absence of glycosylation and other antibody domains, the crystal structure of an isolated unglycosylated antibody gamma1 C(H)2 domain was determined at 1.7 A resolution and compared with corresponding C(H)2 structures from intact Fc, IgG and Fc receptor complexes. Furthermore, the oligomeric state of the protein in solution was studied using size-exclusion chromatography. The results suggested that the unglycosylated human antibody C(H)2 domain is a monomer and that its structure is similar to that found in the intact Fc, IgG and Fc receptor complex structures. However, certain structural variations were observed in the Fc receptor-binding sites. Owing to its small size, stability and non-immunogenic Ig template, the C(H)2-domain structure could be useful for the development by protein design of antibody domains exerting effector functions and/or antigen specificity and as a robust scaffold in protein-engineering applications.

  15. Ni nanoparticle catalyzed growth of MWCNTs on Cu NPs @ a-C:H substrate

    NASA Astrophysics Data System (ADS)

    Ghodselahi, T.; Solaymani, S.; Akbarzadeh Pasha, M.; Vesaghi, M. A.

    2012-11-01

    NiCu NPs @ a-C:H thin films with different Cu content were prepared by co-deposition by RF-sputtering and RF-plasma enhanced chemical vapor deposition (RF-PECVD) from acetylene gas and Cu and Ni targets. The prepared samples were used as catalysts for growing multi-wall carbon nanotubes (MWCNTs) from liquid petroleum gas (LPG) at 825 °C by thermal chemical vapor deposition (TCVD). By addition of Cu NPs @ a-C:H thin layer as substrate for Ni NPs catalyst, the density of the grown CNTs is greatly enhanced in comparison to bare Si substrate. Furthermore the average diameter of the grown CNTs decreases by decreasing of Cu content of Cu NPs @ a-C:H thin layer. However Cu NPs @ a-C:H by itself has no catalytic property in MWCNTs growth. Morphology and electrical and optical properties of Cu NPs @ a-C:H thin layer is affected by Cu content and each of them is effective parameter on growth of MWCNTs based on Ni NPs catalyst. Moreover, adding of a low amount of Ni NPs doesn't vary optical, electrical and morphology properties of Cu NPs @ a-C:H thin layer but it has a profound effect on its catalytic activity. Finally the density and diameter of MWCNTs can be optimized by selection of the Cu NPs @ a-C:H thin layer as substrate of Ni NPs.

  16. Iridium-catalyzed C-H borylation of pyridines.

    PubMed

    Sadler, Scott A; Tajuddin, Hazmi; Mkhalid, Ibraheem A I; Batsanov, Andrei S; Albesa-Jove, David; Cheung, Man Sing; Maxwell, Aoife C; Shukla, Lena; Roberts, Bryan; Blakemore, David C; Lin, Zhenyang; Marder, Todd B; Steel, Patrick G

    2014-10-07

    The iridium-catalysed C-H borylation is a valuable and attractive method for the preparation of aryl and heteroaryl boronates. However, application of this methodology for the preparation of pyridyl and related azinyl boronates can be challenged by low reactivity and propensity for rapid protodeborylation, particularly for a boronate ester ortho to the azinyl nitrogen. Competition experiments have revealed that the low reactivity is due to inhibition of the active catalyst through coordination of the azinyl nitrogen lone pair at the vacant site on the iridium. This effect can be overcome through the incorporation of a substituent at C-2. Moreover, when this is sufficiently electron-withdrawing protodeborylation is sufficiently slowed to permit isolation and purification of the C-6 boronate ester. Following functionalization, reduction of the directing C-2 substituent provides the product arising from formal ortho borylation of an unhindered pyridine ring.

  17. Mediators of change following a senior school physical activity intervention.

    PubMed

    Lubans, David R; Sylva, Kathy

    2009-01-01

    It has been suggested that the low level of effectiveness of youth interventions is due to a lack of knowledge regarding the mechanisms responsible for behaviour change. The identification of behaviour mediators is necessary for the progression of physical activity research, as it allows researchers to determine which components of an intervention are responsible for mediating behaviour change. The purpose of this study was to identify mediators of behaviour change in a physical activity intervention for senior school students. Participants (n=78) were randomly allocated to control or intervention conditions for a period of 10 weeks. Moderate-to-vigorous physical activity (MVPA) and potential mediators were assessed at baseline and post-intervention (10 weeks). Hypothesized mediators were derived from Bandura's Social Cognitive Theory and included: peer support, exercise self-efficacy and outcome expectancy. Mediation was assessed using the product-of-coefficients test described by MacKinnon and colleagues, based on the criteria for mediation identified by Baron and Kenny. While none of the variables satisfied all four criteria for mediation among males or females, self-efficacy was able to satisfy the first three criteria among females in the study. Exercise self-efficacy may be a mediator of physical activity behaviour in adolescent girls.

  18. Trends in applying C-H oxidation to the total synthesis of natural products.

    PubMed

    Qiu, Yuanyou; Gao, Shuanhu

    2016-04-01

    Covering: 2006 to 2015C-H functionalization remains one of the frontier challenges in organic chemistry and drives quite an active area of research. It has recently been applied in various novel strategies for the synthesis of natural products. It can dramatically increase synthetic efficiency when incorporated into retrosynthetic analyses of complex natural products, making it an essential part of current trends in organic synthesis. In this Review, we focus on selected case studies of recent applications of C-H oxidation methodologies in which the C-H bond has been exploited effectively to construct C-O and C-N bonds in natural product syntheses. Examples of syntheses representing different types of C-H oxidation are discussed to illustrate the potential of this approach and inspire future applications.

  19. Pushing the limits of catalytic C-H amination in polyoxygenated cyclobutanes.

    PubMed

    Nocquet, Pierre-Antoine; Hensienne, Raphaël; Wencel-Delord, Joanna; Laigre, Eugénie; Sidelarbi, Khadidja; Becq, Frédéric; Norez, Caroline; Hazelard, Damien; Compain, Philippe

    2016-03-07

    A synthetic route to a new class of conformationally constrained iminosugars based on a 5-azaspiro[3.4]octane skeleton has been developed by way of Rh(ii)-catalyzed C(sp(3))-H amination. The pivotal stereocontrolled formation of the quaternary C-N bond by insertion into the C-H bonds of the cyclobutane ring was explored with a series of polyoxygenated substrates. In addition to anticipated regioselective issues induced by the high density of activated α-ethereal C-H bonds, this systematic study showed that cyclobutane C-H bonds were, in general, poorly reactive towards catalytic C-H amination. This was demonstrated inter alia by the unexpected formation of a oxathiazonane derivative, which constitutes a very rare example of the formation of a 9-membered ring by way of catalyzed C(sp(3))-H amination. A complete stereocontrol could be however achieved by activating the key insertion position as an allylic C-H bond in combination with reducing the electron density at the undesired C-H insertion sites by using electron-withdrawing protecting groups. Preliminary biological evaluations of the synthesized spiro-iminosugars were performed, which led to the identification of a new class of correctors of the defective F508del-CFTR gating involved in cystic fibrosis.

  20. Manganese Porphyrins Catalyze Selective C-H Bond Halogenations

    SciTech Connect

    Liu, Wei; Groves, John T.

    2010-08-31

    We report a manganese porphyrin mediated aliphatic C-H bond chlorination using sodium hypochlorite as the chlorine source. In the presence of catalytic amounts of phase transfer catalyst and manganese porphyrin Mn(TPP)Cl 1, reaction of sodium hypochlorite with different unactivated alkanes afforded alkyl chlorides as the major products with only trace amounts of oxygenation products. Substrates with strong C-H bonds, such as neopentane (BDE =~100 kcal/mol) can be also chlorinated with moderate yield. Chlorination of a diagnostic substrate, norcarane, afforded rearranged products indicating a long-lived carbon radical intermediate. Moreover, regioselective chlorination was achieved by using a hindered catalyst, Mn(TMP)Cl, 2. Chlorination of trans-decalin with 2 provided 95% selectivity for methylene-chlorinated products as well as a preference for the C2 position. This novel chlorination system was also applied to complex substrates. With 5α-cholestane as the substrate, we observed chlorination only at the C2 and C3 positions in a net 55% yield, corresponding to the least sterically hindered methylene positions in the A-ring. Similarly, chlorination of sclareolide afforded the equatorial C2 chloride in a 42% isolated yield. Regarding the mechanism, reaction of sodium hypochlorite with the MnIII porphyrin is expected to afford a reactive MnV=O complex that abstracts a hydrogen atom from the substrate, resulting in a free alkyl radical and a MnIV—OH complex. We suggest that this carbon radical then reacts with a MnIV—OCl species, providing the alkyl chloride and regenerating the reactive MnV=O complex. The regioselectivity and the preference for CH2 groups can be attributed to nonbonded interactions between the alkyl groups on the substrates and the aryl groups of the manganese porphyrin. The results are indicative of a bent [Mnv=O---H---C] geometry due to the C—H approach to the Mn

  1. Catalytic C-H bond silylation of aromatic heterocycles.

    PubMed

    Toutov, Anton A; Liu, Wen-Bo; Betz, Kerry N; Stoltz, Brian M; Grubbs, Robert H

    2015-12-01

    This protocol describes a method for the direct silylation of the carbon-hydrogen (C-H) bond of aromatic heterocycles using inexpensive and abundant potassium tert-butoxide (KOt-Bu) as the catalyst. This catalytic cross-dehydrogenative coupling of simple hydrosilanes and various electron-rich aromatic heterocycles enables the synthesis of valuable silylated heteroarenes. The products thus obtained can be used as versatile intermediates, which facilitate the divergent synthesis of pharmaceutically relevant compound libraries from a single Si-containing building block. Moreover, a variety of complex Si-containing motifs, such as those produced by this protocol, are being actively investigated as next-generation therapeutic agents, because they can have improved pharmacokinetic properties compared with the original all-carbon drug molecules. Current competing methods for C-H bond silylation tend to be incompatible with functionalities, such as Lewis-basic heterocycles, that are often found in pharmaceutical substances; this leaves de novo synthesis as the principal strategy for preparation of the target sila-drug analog. Moreover, competing methods tend to be limited in the scope of hydrosilane that can be used, which restricts the breadth of silicon-containing small molecules that can be accessed. The approach outlined in this protocol enables the chemoselective and regioselective late-stage silylation of small heterocycles, including drugs and drug derivatives, with a broad array of hydrosilanes in the absence of precious metal catalysts, stoichiometric reagents, sacrificial hydrogen acceptors or high temperatures. Moreover, H2 is the only by-product generated. The procedure normally requires 48-75 h to be completed.

  2. PIC Activation through Functional Interplay between Mediator and TFIIH.

    PubMed

    Malik, Sohail; Molina, Henrik; Xue, Zhu

    2017-01-06

    The multiprotein Mediator coactivator complex functions in large part by controlling the formation and function of the promoter-bound preinitiation complex (PIC), which consists of RNA polymerase II and general transcription factors. However, precisely how Mediator impacts the PIC, especially post-recruitment, has remained unclear. Here, we have studied Mediator effects on basal transcription in an in vitro transcription system reconstituted from purified components. Our results reveal a close functional interplay between Mediator and TFIIH in the early stages of PIC development. We find that under conditions when TFIIH is not normally required for transcription, Mediator actually represses transcription. TFIIH, whose recruitment to the PIC is known to be facilitated by the Mediator, then acts to relieve Mediator-induced repression to generate an active form of the PIC. Gel mobility shift analyses of PICs and characterization of TFIIH preparations carrying mutant XPB translocase subunit further indicate that this relief of repression is achieved through expending energy via ATP hydrolysis, suggesting that it is coupled to TFIIH's established promoter melting activity. Our interpretation of these results is that Mediator functions as an assembly factor that facilitates PIC maturation through its various stages. Whereas the overall effect of the Mediator is to stimulate basal transcription, its initial engagement with the PIC generates a transcriptionally inert PIC intermediate, which necessitates energy expenditure to complete the process.

  3. Mediator Undergoes a Compositional Change during Transcriptional Activation.

    PubMed

    Petrenko, Natalia; Jin, Yi; Wong, Koon Ho; Struhl, Kevin

    2016-11-03

    Mediator is a transcriptional co-activator recruited to enhancers by DNA-binding activators, and it also interacts with RNA polymerase (Pol) II as part of the preinitiation complex (PIC). We demonstrate that a single Mediator complex associates with the enhancer and core promoter in vivo, indicating that it can physically bridge these transcriptional elements. However, the Mediator kinase module associates strongly with the enhancer, but not with the core promoter, and it dissociates from the enhancer upon depletion of the TFIIH kinase. Severing the kinase module from Mediator by removing the connecting subunit Med13 does not affect Mediator association at the core promoter but increases occupancy at enhancers. Thus, Mediator undergoes a compositional change in which the kinase module, recruited via Mediator to the enhancer, dissociates from Mediator to permit association with Pol II and the PIC. As such, Mediator acts as a dynamic bridge between the enhancer and core promoter. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Effect of Bridgehead Steric Bulk on the Intramolecular C-H Heterolysis of [FeFe]-Hydrogenase Active Site Models Containing a P2N2 Pendant Amine Ligand.

    PubMed

    Zheng, Dehua; Wang, Mei; Wang, Ning; Cheng, Minglun; Sun, Licheng

    2016-01-19

    A series of pendant amine-containing [FeFe]-hydrogenase models, [X(CH2S-μ)2{Fe(CO)3}{Fe(CO)(P2(Ph)N2(Bn))}] (1H, X = CH2; 2Me, C(CH3)2; 3Et, C(CH2CH3)2; and P2(Ph)N2(Bn) = 1,5-dibenzyl-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane) with different groups at the bridgehead carbon of the S-to-S linker were synthesized. The oxidations of these complexes as well as the reverse reduction reaction were studied by cyclic voltammetry and in situ IR spectroscopy. Regardless of the bridgehead steric bulk, all three complexes demonstrate intramolecular iron-mediated C(sp(3))-H bond heterolytic cleavage with the assistance of the pendant amine base within the chelating diphosphine ligand in the two-electron oxidation process. X-ray crystallographic analysis shows that the doubly oxidized products, [1'H](+), [2'Me](+), and [3'Et](+), all have a rigid FeSC three-membered ring at the open apical site of the rotated iron center. The most noticeable difference in structures of the oxidized complexes is that the single CO ligand of the rotated Fe(P2(Ph)N2(Bn))(CO) unit in [1'H](+) and [2'Me](+) is found below the Fe···Fe vector, while in [3'Et](+) an unusually rotated Fe(P2(Ph)N2(Bn))(CO) moiety positions one of the P donors within the bidentate ligand under the Fe···Fe vector. The starting Fe(I)Fe(I) complexes can be recovered from their corresponding doubly oxidized complexes by reduction in the presence of Brönsted acid.

  5. C-H Bond Activation of Methane by PtII-N-Heterocyclic Carbene Complexes. The Importance of Having the Ligands in the Right Place at the Right Time

    SciTech Connect

    Prince, Bruce M.; Cundari, Thomas R

    2012-02-13

    A DFT study of methane C–H activation barriers for neutral NHC–PtII–methoxy complexes yielded 22.8 and 26.1 kcal/mol for oxidative addition (OA) and oxidative hydrogen migration (OHM), respectively. Interestingly, this is unlike the case for cationic NHC–PtII–methoxy complexes, whereby OHM entails a calculated barrier of 26.9 kcal/mol but the OA barrier is only 14.4 kcal/mol. Comparing transition state (TS) and ground state (GS) geometries implies an ~10 kcal/mol “penalty” to the barriers arising from positioning the NHC and OMe ligands into a relative orientation that is preferred in the GS to the orientation that is favored in the TS. The results thus imply an intrinsic barrier arising from C–H scission of ~15 ± 2 kcal/mol for NHC–PtII–methoxy complexes. Calculations show the importance of designing C–H activation catalysts where the GS active species is already structurally “prepared” and which either does not need to undergo any geometric perturbations to access the methane C–H activation TS or is not energetically prohibited from such perturbations.

  6. Metal-ligand cooperation in C-H and H2 activation by an electron-rich PNP Ir(I) system: facile ligand dearomatization-aromatization as key steps.

    PubMed

    Ben-Ari, Eyal; Leitus, Gregory; Shimon, Linda J W; Milstein, David

    2006-12-06

    Unusual reactions are reported, in which the aromatic PNP ligand (PNP = 2,6-bis-(di-tert-butylphosphinomethyl)pyridine) acts in concert with the metal in the activation of H2 and benzene, via facile aromatization/dearomatization processes of the ligand. A new, dearomatized electron-rich (PNP*)Ir(I) complex 2 (PNP* = deprotonated PNP) activates benzene to form the aromatic (PNP)Ir(I)Ph 4, which upon treatment with CO undergoes a surprising oxidation process to form (PNP*)Ir(III)(H)CO 6, involving proton migration from the ligand "arm" to the metal, with concomitant dearomatization. 4 undergoes stereoselective activation of H2 to exclusively form the trans-dihydride 7, rather than the expected cis-dihydride complex. Our evidence, including D-labeling, suggests the possibility that the Ir(I)-Ph complex is transformed to the dearomatized Ir(III)(Ph)(H) (independently prepared at low temperature), which may be the actual intermediate undergoing H2 activation.

  7. Evolution of C-H Bond Functionalization from Methane to Methodology.

    PubMed

    Hartwig, John F

    2016-01-13

    This Perspective presents the fundamental principles, the elementary reactions, the initial catalytic systems, and the contemporary catalysts that have converted C-H bond functionalization from a curiosity to a reality for synthetic chemists. Many classes of elementary reactions involving transition-metal complexes cleave C-H bonds at typically unreactive positions. These reactions, coupled with a separate or simultaneous functionalization process lead to products containing new C-C, C-N, and C-O bonds. Such reactions were initially studied for the conversion of light alkanes to liquid products, but they have been used (and commercialized in some cases) most often for the synthesis of the more complex structures of natural products, medicinally active compounds, and aromatic materials. Such a change in direction of research in C-H bond functionalization is remarkable because the reactions must occur at an unactivated C-H bond over functional groups that are more reactive than the C-H bond toward classical reagents. The scope of reactions that form C-C bonds or install functionality at an unactivated C-H bond will be presented, and the potential future utility of these reactions will be discussed.

  8. Is It Fe(III)-Oxyl Radical That Abstracts Hydrogen in the C-H Activation of TauD? A Theoretical Study Based on the DFT Potential Energy Surfaces.

    PubMed

    Mai, Binh Khanh; Kim, Yongho

    2016-04-18

    Taurine:α-ketoglutarate dioxygenase (TauD) is one of the most important enzymes in the α-ketoglutarate dioxygenase family, which are involved in many important biochemical processes. TauD converts taurine into amino acetaldehyde and sulfite at its nonheme iron center, and a large H/D kinetic isotope effect (KIE) has been found in the hydrogen atom transfer (HAT) of taurine suggesting a large tunneling effect. Recently, highly electrophilic Fe(III)-oxyl radicals have been proposed as a key species for HAT in the catalytic mechanism of C–H activation, which might be prepared prior to the actual HAT. In order to investigate this hypothesis and large tunneling effect, DFT potential energy surfaces along the intrinsic reaction path were generated. The predicted rate constants and H/D KIEs using variational transition-state theory including multidimensional tunneling, based on these potential surfaces, have excellent agreement with experimental data. This study revealed that the reactive processes of C–H activation consisted of two distinguishable parts: (1) the substrate approaching the Fe(IV)-oxo center without C–H bond cleavage, which triggers the catalytic process by inducing metal-to-ligand charge transfer to form the Fe(III)-oxyl species, and (2) the actual HAT from the substrate to the Fe(III)-oxyl species. Most of the activation energy was used in the first part, and the actual HAT required only a small amount of energy to overcome the TS with a very large tunneling effect. The donor–acceptor interaction between σC–H and σ*Fe–O orbitals reduced the activation energy significantly to make C–H activation feasible.

  9. Dicobalt-μ-oxo polyoxometalate compound, [(α(2)-P2W17O61Co)2O](14-): a potent species for water oxidation, C-H bond activation, and oxygen transfer.

    PubMed

    Barats-Damatov, Delina; Shimon, Linda J W; Weiner, Lev; Schreiber, Roy E; Jiménez-Lozano, Pablo; Poblet, Josep M; de Graaf, Coen; Neumann, Ronny

    2014-02-03

    High-valent oxo compounds of transition metals are often implicated as active species in oxygenation of hydrocarbons through carbon-hydrogen bond activation or oxygen transfer and also in water oxidation. Recently, several examples of cobalt-catalyzed water oxidation have been reported, and cobalt(IV) species have been suggested as active intermediates. A reactive species, formally a dicobalt(IV)-μ-oxo polyoxometalate compound [(α2-P2W17O61Co)2O](14-), [(POMCo)2O], has now been isolated and characterized by the oxidation of a monomeric [α2-P2W17O61Co(II)(H2O)](8-), [POMCo(II)H2O], with ozone in water. The crystal structure shows a nearly linear Co-O-Co moiety with a Co-O bond length of ∼1.77 Å. In aqueous solution [(POMCo)2O] was identified by (31)P NMR, Raman, and UV-vis spectroscopy. Reactivity studies showed that [(POMCo)2O]2O] is an active compound for the oxidation of H2O to O2, direct oxygen transfer to water-soluble sulfoxides and phosphines, indirect epoxidation of alkenes via a Mn porphyrin, and the selective oxidation of alcohols by carbon-hydrogen bond activation. The latter appears to occur via a hydrogen atom transfer mechanism. Density functional and CASSCF calculations strongly indicate that the electronic structure of [(POMCo)2O]2O] is best defined as a compound having two cobalt(III) atoms with two oxidized oxygen atoms.

  10. Transition-metal-catalyzed π-bond-assisted C - H bond functionalization: an emerging trend in organic synthesis.

    PubMed

    Gandeepan, Parthasarathy; Cheng, Chien-Hong

    2015-04-01

    Transition-metal-catalyzed C - H activation is considered to be an important tool in organic synthesis and has been accepted and widely used by chemists because it is straightforward, cost-effective, and environmentally friendly. A variety of functional groups have been used to direct metal complexes and achieve regioselective C - H activation. Most directing is achieved through the σ-bond coordination of functional groups to the metal catalyst, followed by ortho-selective C - H bond cleavage. However, recent work has demonstrated that π-coordinating functional groups can also assist in guiding metal complexes for site-selective C - H bond activation. This emerging approach significantly expands the scope of C - H activation reactions in organic synthesis. Herein, recent developments in this field are summarized.

  11. Direct catalytic oxyamination of benzene to aniline over Cu(II) nanoclusters supported on CuCr2O4 spinel nanoparticles via simultaneous activation of C-H and N-H bonds.

    PubMed

    Acharyya, Shankha S; Ghosh, Shilpi; Bal, Rajaram

    2014-11-11

    We report the facile synthesis of a highly efficient, reusable catalyst comprising Cu(II) nanoclusters supported on CuCr2O4 spinel nanoparticles for the oxyamination of benzene to aniline (H2O2 + NH3) under mild aqueous reaction conditions. The synergy between the Cu(II) nanoclusters and CuCr2O4 spinel nanoparticles plays the most vital role towards its high catalytic activity.

  12. In situ Investigation of Methane Dry Reforming on M-CeO2(111) {M= Co, Ni, Cu} Surfaces: Metal-Support Interactions and the activation of C-H bonds at Low Temperature

    DOE PAGES

    Rodriguez, Jose A.; Liu, Zongyuan; Lustemberg, Pablo; ...

    2017-08-16

    Studies with a series of M-CeO2(111) {M= Co, Ni, Cu} surfaces indicate that metal-oxide interactions can play a very important role for the activation of methane and its reforming with CO2 at relatively low temperatures (600-700 K). Among the systems examined, Co-CeO2(111) exhibits the best performance and Cu-CeO2(111) has negligible activity. Experiments using ambient pressure XPS indicate that methane dissociates on Co-CeO2(111), at temperatures as low as 300 K, generating CHx and COx species on the catalyst surface. The results of density-functional calculations show a reduction in the methane activation barrier from 1.07 eV on Co(0001) to 0.87 eV onmore » Co2+/CeO2(111), and to only 0.05 eV on Co0/CeO2-x(111). At 700 K, under methane dry reforming conditions, CO2 dissociates on the oxide surface and a catalytic cycle is established without coke deposition. In conclusion, a significant part of the CHx formed on the Co0/CeO2-x (111) catalyst recombines to yield ethane or ethylene.« less

  13. Chemoselective hydroxylation of aliphatic sp3 C-H bonds using a ketone catalyst and aqueous H2O2.

    PubMed

    Pierce, Conor J; Hilinski, Michael K

    2014-12-19

    The first ketone-catalyzed method for the oxidation of aliphatic C-H bonds is reported. The reaction conditions employ aryl trifluoromethyl ketones in catalytic amounts and hydrogen peroxide as the terminal oxidant. Hydroxylation is stereospecific and chemoselective for tertiary over secondary C-H bonds. A catalytic cycle invoking a dioxirane as the active oxidant is proposed.

  14. Benzylic C-H trifluoromethylation of phenol derivatives.

    PubMed

    Egami, Hiromichi; Ide, Takafumi; Kawato, Yuji; Hamashima, Yoshitaka

    2015-12-04

    Phenol derivatives were trifluoromethylated using copper/Togni reagent. In dimethylformamide, the benzylic C-H bond at the para position of the hydroxyl group was selectively substituted with a CF3 group. In contrast, aromatic C-H trifluoromethylation occurred in alcoholic solvents. Practical utility of the reactions was demonstrated by application to the synthesis of a potent enoyl-acyl carrier protein reductase (FabI) inhibitor.

  15. Mechanism of catalytic functionalization of primary C-H bonds using a silylation strategy.

    PubMed

    Parija, Abhishek; Sunoj, Raghavan B

    2013-08-16

    The mechanism of Ir-catalyzed γ-functionalization of a primary sp(3)(C-H) bond in 2-methyl cyclohexanol is examined using the density functional theory (M06). The nature of the active catalyst for the initial silylation of alcohol is identified as the monomer derived from [Ir(cod)OMe]2 while that for γ-sp(3)(C-H) activation leading to oxasilolane is [IrH(nbe)(phen)]. The rate-determining step is found to involve Si-C coupling through reductive elimination.

  16. Terminal olefins to chromans, isochromans, and pyrans via allylic C-H oxidation.

    PubMed

    Ammann, Stephen E; Rice, Grant T; White, M Christina

    2014-08-06

    The synthesis of chroman, isochroman, and pyran motifs has been accomplished via a combination of Pd(II)/bis-sulfoxide C-H activation and Lewis acid co-catalysis. A wide range of alcohols are found to be competent nucleophiles for the transformation under uniform conditions (catalyst, solvent, temperature). Mechanistic studies suggest that the reaction proceeds via initial C-H activation followed by a novel inner-sphere functionalization pathway. Consistent with this, the reaction shows reactivity trends orthogonal to those of traditional Pd(0)-catalyzed allylic substitutions.

  17. Carboxylate-assisted ruthenium-catalyzed alkyne annulations by C-H/Het-H bond functionalizations.

    PubMed

    Ackermann, Lutz

    2014-02-18

    To improve the atom- and step-economy of organic syntheses, researchers would like to capitalize upon the chemistry of otherwise inert carbon-hydrogen (C-H) bonds. During the past decade, remarkable progress in organometallic chemistry has set the stage for the development of increasingly viable metal catalysts for C-H bond activation reactions. Among these methods, oxidative C-H bond functionalizations are particularly attractive because they avoid the use of prefunctionalized starting materials. For example, oxidative annulations that involve sequential C-H and heteroatom-H bond cleavages allow for the modular assembly of regioselectively decorated heterocycles. These structures serve as key scaffolds for natural products, functional materials, crop protecting agents, and drugs. While other researchers have devised rhodium or palladium complexes for oxidative alkyne annulations, my laboratory has focused on the application of significantly less expensive, yet highly selective ruthenium complexes. This Account summarizes the evolution of versatile ruthenium(II) complexes for annulations of alkynes via C-H/N-H, C-H/O-H, or C-H/N-O bond cleavages. To achieve selective C-H bond functionalizations, we needed to understand the detailed mechanism of the crucial C-H bond metalation with ruthenium(II) complexes and particularly the importance of carboxylate assistance in this process. As a consequence, our recent efforts have resulted in widely applicable methods for the versatile preparation of differently decorated arenes and heteroarenes, providing access to among others isoquinolones, 2-pyridones, isoquinolines, indoles, pyrroles, or α-pyrones. Most of these reactions used Cu(OAc)2·H2O, which not only acted as the oxidant but also served as the essential source of acetate for the carboxylate-assisted ruthenation manifold. Notably, the ruthenium(II)-catalyzed oxidative annulations also occurred under an ambient atmosphere of air with cocatalytic amounts of Cu(OAc)2

  18. Iron Complex Catalyzed Selective C-H Bond Oxidation with Broad Substrate Scope.

    PubMed

    Jana, Sandipan; Ghosh, Munmun; Ambule, Mayur; Sen Gupta, Sayam

    2017-02-17

    The use of a peroxidase-mimicking Fe complex has been reported on the basis of the biuret-modified TAML macrocyclic ligand framework (Fe-bTAML) as a catalyst to perform selective oxidation of unactivated 3° C-H bonds and activatedC-H bonds with low catalyst loading (1 mol %) and high product yield (excellent mass balance) under near-neutral conditions and broad substrate scope (18 substrates which includes arenes, heteroaromatics, and polar functional groups). Aliphatic C-H oxidation of 3° and 2° sites of complex substrates was achieved with predictable selectivity using steric, electronic, and stereoelectronic rules that govern site selectivity, which included oxidation of (+)-artemisinin to (+)-10β-hydroxyartemisinin. Mechanistic studies indicate Fe(V)(O) to be the active oxidant during these reactions.

  19. Aldose reductase mediates retinal microglia activation

    SciTech Connect

    Chang, Kun-Che; Shieh, Biehuoy; Petrash, J. Mark

    2016-04-29

    Retinal microglia (RMG) are one of the major immune cells in charge of surveillance of inflammatory responses in the eye. In the absence of an inflammatory stimulus, RMG reside predominately in the ganglion layer and inner or outer plexiform layers. However, under stress RMG become activated and migrate into the inner nuclear layer (INL) or outer nuclear layer (ONL). Activated RMG in cell culture secrete pro-inflammatory cytokines in a manner sensitive to downregulation by aldose reductase inhibitors. In this study, we utilized CX3CR1{sup GFP} mice carrying AR mutant alleles to evaluate the role of AR on RMG activation and migration in vivo. When tested on an AR{sup WT} background, IP injection of LPS induced RMG activation and migration into the INL and ONL. However, this phenomenon was largely prevented by AR inhibitors or in AR null mice, or was exacerbated in transgenic mice that over-express AR. LPS-induced increases in ocular levels of TNF-α and CX3CL-1 in WT mice were substantially lower in AR null mice or were reduced by AR inhibitor treatment. These studies demonstrate that AR expression in RMG may contribute to the proinflammatory phenotypes common to various eye diseases such as uveitis and diabetic retinopathy. - Highlights: • AR inhibition prevents retinal microglial activation. • Endotoxin-induced ocular cytokine production is reduced in AR null mice. • Overexpression of AR spontaneously induces retinal microglial activation.

  20. Uranium-mediated activation of small molecules.

    PubMed

    Arnold, Polly L

    2011-08-28

    Molecular complexes of uranium are capable of activating a range of industrially and economically important small molecules such as CO, CO(2), and N(2); new and often unexpected reactions provide insight into an element that needs to be well-understood if future clean-energy solutions are to involve nuclear power.

  1. Glutamate Mediated Astrocytic Filtering of Neuronal Activity

    PubMed Central

    Herzog, Nitzan; De Pittà, Maurizio; Jacob, Eshel Ben; Berry, Hugues; Hanein, Yael

    2014-01-01

    Neuron-astrocyte communication is an important regulatory mechanism in various brain functions but its complexity and role are yet to be fully understood. In particular, the temporal pattern of astrocyte response to neuronal firing has not been fully characterized. Here, we used neuron-astrocyte cultures on multi-electrode arrays coupled to Ca2+ imaging and explored the range of neuronal stimulation frequencies while keeping constant the amount of stimulation. Our results reveal that astrocytes specifically respond to the frequency of neuronal stimulation by intracellular Ca2+ transients, with a clear onset of astrocytic activation at neuron firing rates around 3-5 Hz. The cell-to-cell heterogeneity of the astrocyte Ca2+ response was however large and increasing with stimulation frequency. Astrocytic activation by neurons was abolished with antagonists of type I metabotropic glutamate receptor, validating the glutamate-dependence of this neuron-to-astrocyte pathway. Using a realistic biophysical model of glutamate-based intracellular calcium signaling in astrocytes, we suggest that the stepwise response is due to the supralinear dynamics of intracellular IP3 and that the heterogeneity of the responses may be due to the heterogeneity of the astrocyte-to-astrocyte couplings via gap junction channels. Therefore our results present astrocyte intracellular Ca2+ activity as a nonlinear integrator of glutamate-dependent neuronal activity. PMID:25521344

  2. Transition metal-free intramolecular regioselective couplings of aliphatic and aromatic C-H bonds

    PubMed Central

    Tian, Hua; Yang, Haijun; Zhu, Changjin; Fu, Hua

    2016-01-01

    Cross-dehydrogenative couplings of two different C-H bonds have emerged as an attractive goal in organic synthesis. However, achieving regioselective C-H activation is a great challenge because C-H bonds are ubiquitous in organic compounds. Actually, the regioselective couplings promoted by enzymes are a common occurrence in nature. Herein, we have developed simple, efficient and general transition metal-free intramolecular couplings of alphatic and aromatic C-H bonds. The protocol uses readily available aryl triazene as the radical initiator, cheap K2S2O8 as the oxidant, and the couplings were performed well with excellent tolerance of functional groups. Interestingly, α-carbon configuration of some amino acid residues in the substrates was kept after the reactions, and the couplings for substrates with substituted phenylalanine residues exhibited complete β-carbon diastereoselectivity for induction of the chiral α-carbon. Therefore, the present study should provide a novel strategy for regioselective cross-dehydrogenative couplings of two different C-H bonds. PMID:26822836

  3. Transition metal-free intramolecular regioselective couplings of aliphatic and aromatic C-H bonds.

    PubMed

    Tian, Hua; Yang, Haijun; Zhu, Changjin; Fu, Hua

    2016-01-29

    Cross-dehydrogenative couplings of two different C-H bonds have emerged as an attractive goal in organic synthesis. However, achieving regioselective C-H activation is a great challenge because C-H bonds are ubiquitous in organic compounds. Actually, the regioselective couplings promoted by enzymes are a common occurrence in nature. Herein, we have developed simple, efficient and general transition metal-free intramolecular couplings of alphatic and aromatic C-H bonds. The protocol uses readily available aryl triazene as the radical initiator, cheap K2S2O8 as the oxidant, and the couplings were performed well with excellent tolerance of functional groups. Interestingly, α-carbon configuration of some amino acid residues in the substrates was kept after the reactions, and the couplings for substrates with substituted phenylalanine residues exhibited complete β-carbon diastereoselectivity for induction of the chiral α-carbon. Therefore, the present study should provide a novel strategy for regioselective cross-dehydrogenative couplings of two different C-H bonds.

  4. Scalable and sustainable electrochemical allylic C-H oxidation.

    PubMed

    Horn, Evan J; Rosen, Brandon R; Chen, Yong; Tang, Jiaze; Chen, Ke; Eastgate, Martin D; Baran, Phil S

    2016-05-05

    New methods and strategies for the direct functionalization of C-H bonds are beginning to reshape the field of retrosynthetic analysis, affecting the synthesis of natural products, medicines and materials. The oxidation of allylic systems has played a prominent role in this context as possibly the most widely applied C-H functionalization, owing to the utility of enones and allylic alcohols as versatile intermediates, and their prevalence in natural and unnatural materials. Allylic oxidations have featured in hundreds of syntheses, including some natural product syntheses regarded as "classics". Despite many attempts to improve the efficiency and practicality of this transformation, the majority of conditions still use highly toxic reagents (based around toxic elements such as chromium or selenium) or expensive catalysts (such as palladium or rhodium). These requirements are problematic in industrial settings; currently, no scalable and sustainable solution to allylic oxidation exists. This oxidation strategy is therefore rarely used for large-scale synthetic applications, limiting the adoption of this retrosynthetic strategy by industrial scientists. Here we describe an electrochemical C-H oxidation strategy that exhibits broad substrate scope, operational simplicity and high chemoselectivity. It uses inexpensive and readily available materials, and represents a scalable allylic C-H oxidation (demonstrated on 100 grams), enabling the adoption of this C-H oxidation strategy in large-scale industrial settings without substantial environmental impact.

  5. Mediation of mouse natural cytotoxic activity by tumour necrosis factor

    NASA Astrophysics Data System (ADS)

    Ortaldo, John R.; Mason, Llewellyn H.; Mathieson, Bonnie J.; Liang, Shu-Mei; Flick, David A.; Herberman, Ronald B.

    1986-06-01

    Natural cell-mediated cytotoxic activity in the mouse has been associated with two types of effector cells, the natural killer (NK) cell and the natural cytotoxic (NC) cell, which seem to differ with regard to their patterns of target selectivity, cell surface characteristics and susceptibility to regulatory factors1. During studies on the mechanism of action of cytotoxic molecules, it became evident that WEHI-164, the prototype NC target cell, was highly susceptible to direct lysis by both human and mouse recombinant tumour necrosis factor (TNF). Here we show that NC, but not NK activity mediated by normal splenocytes, is abrogated by rabbit antibodies to recombinant and natural TNF, respectively. Thus, the cell-mediated activity defined as NC is due to release of TNF by normal spleen cells and does not represent a unique natural effector mechanism.

  6. Pleiotrophin mediates hematopoietic regeneration via activation of RAS.

    PubMed

    Himburg, Heather A; Yan, Xiao; Doan, Phuong L; Quarmyne, Mamle; Micewicz, Eva; McBride, William; Chao, Nelson J; Slamon, Dennis J; Chute, John P

    2014-11-01

    Hematopoietic stem cells (HSCs) are highly susceptible to ionizing radiation-mediated death via induction of ROS, DNA double-strand breaks, and apoptotic pathways. The development of therapeutics capable of mitigating ionizing radiation-induced hematopoietic toxicity could benefit both victims of acute radiation sickness and patients undergoing hematopoietic cell transplantation. Unfortunately, therapies capable of accelerating hematopoietic reconstitution following lethal radiation exposure have remained elusive. Here, we found that systemic administration of pleiotrophin (PTN), a protein that is secreted by BM-derived endothelial cells, substantially increased the survival of mice following radiation exposure and after myeloablative BM transplantation. In both models, PTN increased survival by accelerating the recovery of BM hematopoietic stem and progenitor cells in vivo. PTN treatment promoted HSC regeneration via activation of the RAS pathway in mice that expressed protein tyrosine phosphatase receptor-zeta (PTPRZ), whereas PTN treatment did not induce RAS signaling in PTPRZ-deficient mice, suggesting that PTN-mediated activation of RAS was dependent upon signaling through PTPRZ. PTN strongly inhibited HSC cycling following irradiation, whereas RAS inhibition abrogated PTN-mediated induction of HSC quiescence, blocked PTN-mediated recovery of hematopoietic stem and progenitor cells, and abolished PTN-mediated survival of irradiated mice. These studies demonstrate the therapeutic potential of PTN to improve survival after myeloablation and suggest that PTN-mediated hematopoietic regeneration occurs in a RAS-dependent manner.

  7. Pleiotrophin mediates hematopoietic regeneration via activation of RAS

    PubMed Central

    Himburg, Heather A.; Yan, Xiao; Doan, Phuong L.; Quarmyne, Mamle; Micewicz, Eva; McBride, William; Chao, Nelson J.; Slamon, Dennis J.; Chute, John P.

    2014-01-01

    Hematopoietic stem cells (HSCs) are highly susceptible to ionizing radiation–mediated death via induction of ROS, DNA double-strand breaks, and apoptotic pathways. The development of therapeutics capable of mitigating ionizing radiation–induced hematopoietic toxicity could benefit both victims of acute radiation sickness and patients undergoing hematopoietic cell transplantation. Unfortunately, therapies capable of accelerating hematopoietic reconstitution following lethal radiation exposure have remained elusive. Here, we found that systemic administration of pleiotrophin (PTN), a protein that is secreted by BM-derived endothelial cells, substantially increased the survival of mice following radiation exposure and after myeloablative BM transplantation. In both models, PTN increased survival by accelerating the recovery of BM hematopoietic stem and progenitor cells in vivo. PTN treatment promoted HSC regeneration via activation of the RAS pathway in mice that expressed protein tyrosine phosphatase receptor-zeta (PTPRZ), whereas PTN treatment did not induce RAS signaling in PTPRZ-deficient mice, suggesting that PTN-mediated activation of RAS was dependent upon signaling through PTPRZ. PTN strongly inhibited HSC cycling following irradiation, whereas RAS inhibition abrogated PTN-mediated induction of HSC quiescence, blocked PTN-mediated recovery of hematopoietic stem and progenitor cells, and abolished PTN-mediated survival of irradiated mice. These studies demonstrate the therapeutic potential of PTN to improve survival after myeloablation and suggest that PTN-mediated hematopoietic regeneration occurs in a RAS-dependent manner. PMID:25250571

  8. A Chiral Nitrogen Ligand for Enantioselective, Iridium-Catalyzed Silylation of Aromatic C-H Bonds.

    PubMed

    Su, Bo; Zhou, Tai-Gang; Li, Xian-Wei; Shao, Xiao-Ru; Xu, Pei-Lin; Wu, Wen-Lian; Hartwig, John F; Shi, Zhang-Jie

    2017-01-19

    Iridium catalysts containing dative nitrogen ligands are highly active for the borylation and silylation of C-H bonds, but chiral analogs of these catalysts for enantioselective silylation reactions have not been developed. We report a new chiral pyridinyloxazoline ligand for enantioselective, intramolecular silylation of symmetrical diarylmethoxy diethylsilanes. Regioselective and enantioselective silylation of unsymmetrical substrates was also achieved in the presence of this newly developed system. Preliminary mechanistic studies imply that C-H bond cleavage is irreversible, but not the rate-determining step.

  9. Iron-Catalyzed Oxyfunctionalization of Aliphatic Amines at Remote Benzylic C-H Sites.

    PubMed

    Mbofana, Curren T; Chong, Eugene; Lawniczak, James; Sanford, Melanie S

    2016-09-02

    We report the development of an iron-catalyzed method for the selective oxyfunctionalization of benzylic C(sp(3))-H bonds in aliphatic amine substrates. This transformation is selective for benzylic C-H bonds that are remote (i.e., at least three carbons) from the amine functional group. High site selectivity is achieved by in situ protonation of the amine with trifluoroacetic acid, which deactivates more traditionally reactive C-H sites that are α to nitrogen. The scope and synthetic utility of this method are demonstrated via the synthesis and derivatization of a variety of amine-containing, biologically active molecules.

  10. Catalytic intermolecular amination of C-H bonds: method development and mechanistic insights.

    PubMed

    Fiori, Kristin Williams; Du Bois, J

    2007-01-24

    Reaction methodology for intermolecular C-H amination of benzylic and 3 degrees C-H bonds is described. This process uses the starting alkane as the limiting reagent, gives optically pure tetrasubstituted amines through stereospecific insertion into enantiomeric 3 degrees centers, displays high chemoselectivity for benzylic oxidation, and enables the facile preparation of isotopically enriched 15N-labeled compounds. Access to substituted amines, amino alcohols, and diamines is thereby made possible in a single transformation. Important information relevant to understanding the initial steps in the catalytic cycle, reaction chemoselectivity, the nature of the active oxidant, and pathways for catalyst inactivation has been gained through mechanistic analysis; these studies are also presented.

  11. Erosion of a-C:H films under interaction with nitrous oxide afterglow discharge

    NASA Astrophysics Data System (ADS)

    Zalavutdinov, R. Kh.; Gorodetsky, A. E.; Bukhovets, V. L.; Zakharov, A. P.; Mazul, I. V.

    2009-06-01

    Hydrocarbon film removal using chemically active oxygen formed in a direct current glow discharge with a hollow cathode in nitrous oxide was investigated. In the afterglow region sufficiently fast removal of a-C:H films about 500 nm thick during about 8 h was achieved at N 2O pressure of 12 Pa and 370 K. The erosion rate in the afterglow region was directly proportional to the initial pressure and increased two orders of magnitude at temperature rising from 300 to 500 K. The products of a-C:H film plasmolysis were CO, CO 2, H 2O, and H 2. After removal of a-C:H films previously deposited on stainless steel, molybdenum or tungsten 3-30 nm thick oxide films were formed on the substrates. Reactions of oxygen ion neutralization and atomic oxygen recombination suppressed further oxidation of the materials.

  12. Age mediation of frontoparietal activation during visual feature search.

    PubMed

    Madden, David J; Parks, Emily L; Davis, Simon W; Diaz, Michele T; Potter, Guy G; Chou, Ying-hui; Chen, Nan-kuei; Cabeza, Roberto

    2014-11-15

    Activation of frontal and parietal brain regions is associated with attentional control during visual search. We used fMRI to characterize age-related differences in frontoparietal activation in a highly efficient feature search task, detection of a shape singleton. On half of the trials, a salient distractor (a color singleton) was present in the display. The hypothesis was that frontoparietal activation mediated the relation between age and attentional capture by the salient distractor. Participants were healthy, community-dwelling individuals, 21 younger adults (19-29 years of age) and 21 older adults (60-87 years of age). Top-down attention, in the form of target predictability, was associated with an improvement in search performance that was comparable for younger and older adults. The increase in search reaction time (RT) associated with the salient distractor (attentional capture), standardized to correct for generalized age-related slowing, was greater for older adults than for younger adults. On trials with a color singleton distractor, search RT increased as a function of increasing activation in frontal regions, for both age groups combined, suggesting increased task difficulty. Mediational analyses disconfirmed the hypothesized model, in which frontal activation mediated the age-related increase in attentional capture, but supported an alternative model in which age was a mediator of the relation between frontal activation and capture.

  13. SUMOylation of p53 mediates interferon activities

    PubMed Central

    Marcos-Villar, Laura; Pérez-Girón, José V; Vilas, Jéssica M; Soto, Atenea; de la Cruz-Hererra, Carlos F; Lang, Valerie; Collado, Manuel; Vidal, Anxo; Rodríguez, Manuel S; Muñoz-Fontela, César; Rivas, Carmen

    2013-01-01

    There is growing evidence that many host proteins involved in innate and intrinsic immunity are regulated by SUMOylation, and that SUMO contributes to the regulatory process that governs the initiation of the type I interferon (IFN) response. The tumor suppressor p53 is a modulator of the IFN response that plays a role in virus-induced apoptosis and in IFN-induced senescence. Here we demonstrate that IFN treatment increases the levels of SUMOylated p53 and induces cellular senescence through a process that is partially dependent upon SUMOylation of p53. Similarly, we show that vesicular stomatitis virus (VSV) infection induces p53 SUMOylation, and that this modification favors the control of VSV replication. Thus, our study provides evidence that IFN signaling induces p53 SUMOylation, which results in the activation of a cellular senescence program and contributes to the antiviral functions of interferon. PMID:23966171

  14. Selective intermolecular amination of C-H bonds at tertiary carbon centers.

    PubMed

    Roizen, Jennifer L; Zalatan, David N; Du Bois, J

    2013-10-18

    C-H insertion: A method for intermolecular amination of tertiary CH bonds is described that uses limiting amounts of substrate and a convenient phenol-derived nitrogen source. Structure-selectivity and mechanistic studies suggest that steric interaction between the substrate and active oxidant is the principal determinant of product selectivity.

  15. Teaching enantioselectivity to C-H bond functionalizations: initial steps of a rather long shot.

    PubMed

    Cramer, Nicolai

    2012-01-01

    The direct functionalization of non-activated C-H bonds, especially in an enantioselective manner, requires metal catalysts equipped with ligands with specifically designed properties. Examples for asymmetric C(sp(2))-H and C(sp(3))-H functionalizations using palladium- and rhodium catalysts are shown. This work was rewarded by the 2012 Werner Prize of the Swiss Chemical Society.

  16. Adenine suppresses IgE-mediated mast cell activation.

    PubMed

    Silwal, Prashanta; Shin, Keuna; Choi, Seulgi; Kang, Seong Wook; Park, Jin Bong; Lee, Hyang-Joo; Koo, Suk-Jin; Chung, Kun-Hoe; Namgung, Uk; Lim, Kyu; Heo, Jun-Young; Park, Jong Il; Park, Seung-Kiel

    2015-06-01

    Nucleobase adenine is produced by dividing human lymphoblasts mainly from polyamine synthesis and inhibits immunological functions of lymphocytes. We investigated the anti-allergic effect of adenine on IgE-mediated mast cell activation in vitro and passive cutaneous anaphylaxis (PCA) in mice. Intraperitoneal injection of adenine to IgE-sensitized mice attenuated IgE-mediated PCA reaction in a dose dependent manner, resulting in a median effective concentration of 4.21 mg/kg. In mast cell cultures, only adenine among cytosine, adenine, adenosine, ADP and ATP dose-dependently suppressed FcɛRI (a high affinity receptor for IgE)-mediated degranulation with a median inhibitory concentration of 1.6mM. It also blocked the production of LTB4, an inflammatory lipid mediator, and inflammatory cytokines TNF-α and IL-4. In addition, adenine blocked thapsigargin-induced degranulation which is FcɛRI-independent but shares FcɛRI-dependent signaling events. Adenine inhibited the phosphorylation of signaling molecules important to FcɛRI-mediated allergic reactions such as Syk, PLCγ2, Gab2, Akt, and mitogen activated protein kinases ERK and JNK. From this result, we report for the first time that adenine inhibits PCA in mice and allergic reaction by inhibiting FcɛRI-mediated signaling events in mast cells. Therefore, adenine may be useful for the treatment of mast cell-mediated allergic diseases. Also, the upregulation of adenine production may provide another mechanism for suppressing mast cell activity especially at inflammatory sites.

  17. Ab initio study of C + H3+ reactions

    NASA Technical Reports Server (NTRS)

    Talbi, D.; DeFrees, D. J.

    1991-01-01

    The reaction C + H3+ --> CH(+) + H2 is frequently used in models of dense interstellar cloud chemistry with the assumption that it is fast, i.e. there are no potential energy barriers inhibiting it. Ab initio molecular orbital study of the triplet CH3+ potential energy surface (triplet because the reactant carbon atom is a ground state triplet) supports this hypothesis. The reaction product is 3 pi CH+; the reaction is to exothermic even though the product is not in its electronic ground state. No path has been found on the potential energy surface for C + H3+ --> CH2(+) + H reaction.

  18. LIME mediates immunological synapse formation through activation of VAV.

    PubMed

    Son, Myoungsun; Park, Inyoung; Lee, Ok-Hee; Rhee, Inmoo; Park, Changwon; Yun, Yungdae

    2012-04-01

    Lck Interacting Membrane protein (LIME) was previously characterized as a transmembrane adaptor protein mediating TCR-dependent T cell activation. Here, we show that LIME associates with Vav in response to TCR stimulation and is required for Vav guanine nucleotide exchange factor (GEF) activity for Rac1. Consistent with this finding, actin polymerization at the immunological synapse (IS) was markedly enhanced by overexpression of LIME, but was reduced by expression of a LIME shRNA. Moreover, TCR-mediated cell adhesion to ICAM-1, laminin, or fibronectin was downregulated by expression of LIME shRNA. In addition, in the IS, LIME but not LAT was found to localize at the peripheral-supramolecular activation cluster (p-SMAC) where the integrins were previously shown to be localized. Together, these results establish LIME as a transmembrane adaptor protein linking TCR stimulation to IS formation and integrin activation through activation of Vav.

  19. Palladium-Catalyzed Allylic C-H Bond Functionalization of Olefins

    NASA Astrophysics Data System (ADS)

    Liu, Guosheng; Wu, Yichen

    Transition metal-mediated carbon-hydrogen bond cleavage and functionalization is a mechanistically interesting and synthetically attractive process. One of the important cases is the removal of a allylic hydrogen from an olefin by a PdII salt to yield a π-allylpalladium complex, followed by nucleophilic attack to efficient produce allylic derivatives. In contrast to the well-known allylic acetoxylation of cyclohexene, the reaction of open-chain olefins is fairly poor until recent several years. Some palladium catalytic systems have been reported to achieve allylic C-H functionalization, including acetoxylation, amination and alkylation of terminal alkenes. In the most of cases, ligand is crucial to the success of the transformation. This review surveys the recent development of palladium-catalyzed allylic C-H functionalziation of alkenes. These results promise a significant increase in the scope of olefin transformation.

  20. Catalytic C-H bond functionalisation chemistry: the case for quasi-heterogeneous catalysis.

    PubMed

    Reay, Alan J; Fairlamb, Ian J S

    2015-11-25

    This feature article examines the potential of heterogeneous Pd species to mediate catalytic C-H bond functionalisation processes employing suitable substrates (e.g. aromatic/heteroaromatic compounds). A focus is placed on the reactivity of supported and non-supported Pd nanoparticle (PdNPs) catalysts, in addition to the re-appropriation of well-established heterogeneous Pd catalysts such as Pd/C. Where possible, reasonable comparisons are made between PdNPs and traditional 'homogeneous' Pd precatalyst sources (which form PdNPs). The involvement of higher order Pd species in traditional cross-coupling processes, such as Mizoroki-Heck, Sonogashira and Suzuki-Miyaura reactions, allows the exemplification of potential future topics for study in the area of catalytic C-H bond functionalisation processes.

  1. Intrinsic-mediated caspase activation is essential for cardiomyocyte hypertrophy

    PubMed Central

    Putinski, Charis; Abdul-Ghani, Mohammad; Stiles, Rebecca; Brunette, Steve; Dick, Sarah A.; Fernando, Pasan; Megeney, Lynn A.

    2013-01-01

    Cardiomyocyte hypertrophy is the cellular response that mediates pathologic enlargement of the heart. This maladaptation is also characterized by cell behaviors that are typically associated with apoptosis, including cytoskeletal reorganization and disassembly, altered nuclear morphology, and enhanced protein synthesis/translation. Here, we investigated the requirement of apoptotic caspase pathways in mediating cardiomyocyte hypertrophy. Cardiomyocytes treated with hypertrophy agonists displayed rapid and transient activation of the intrinsic-mediated cell death pathway, characterized by elevated levels of caspase 9, followed by caspase 3 protease activity. Disruption of the intrinsic cell death pathway at multiple junctures led to a significant inhibition of cardiomyocyte hypertrophy during agonist stimulation, with a corresponding reduction in the expression of known hypertrophic markers (atrial natriuretic peptide) and transcription factor activity [myocyte enhancer factor-2, nuclear factor kappa B (NF-κB)]. Similarly, in vivo attenuation of caspase activity via adenoviral expression of the biologic effector caspase inhibitor p35 blunted cardiomyocyte hypertrophy in response to agonist stimulation. Treatment of cardiomyocytes with procaspase 3 activating compound 1, a small-molecule activator of caspase 3, resulted in a robust induction of the hypertrophy response in the absence of any agonist stimulation. These results suggest that caspase-dependent signaling is necessary and sufficient to promote cardiomyocyte hypertrophy. These results also confirm that cell death signal pathways behave as active remodeling agents in cardiomyocytes, independent of inducing an apoptosis response. PMID:24101493

  2. Mediating role of activity level in the depressive realism effect.

    PubMed

    Blanco, Fernando; Matute, Helena; A Vadillo, Miguel

    2012-01-01

    Several classic studies have concluded that the accuracy of identifying uncontrollable situations depends heavily on depressive mood. Nondepressed participants tend to exhibit an optimistic illusion of control, whereas depressed participants tend to better detect a lack of control. Recently, we suggested that the different activity levels (measured as the probability of responding during a contingency learning task) exhibited by depressed and nondepressed individuals is partly responsible for this effect. The two studies presented in this paper provide further support for this mediational hypothesis, in which mood is the distal cause of the illusion of control operating through activity level, the proximal cause. In Study 1, the probability of responding, P(R), was found to be a mediator variable between the depressive symptoms and the judgments of control. In Study 2, we intervened directly on the mediator variable: The P(R) for both depressed and nondepressed participants was manipulated through instructions. Our results confirm that P(R) manipulation produced differences in the participants' perceptions of uncontrollability. Importantly, the intervention on the mediator variable cancelled the effect of the distal cause; the participants' judgments of control were no longer mood dependent when the P(R) was manipulated. This result supports the hypothesis that the so-called depressive realism effect is actually mediated by the probability of responding.

  3. Mediating Role of Activity Level in the Depressive Realism Effect

    PubMed Central

    Blanco, Fernando; Matute, Helena; A. Vadillo, Miguel

    2012-01-01

    Several classic studies have concluded that the accuracy of identifying uncontrollable situations depends heavily on depressive mood. Nondepressed participants tend to exhibit an optimistic illusion of control, whereas depressed participants tend to better detect a lack of control. Recently, we suggested that the different activity levels (measured as the probability of responding during a contingency learning task) exhibited by depressed and nondepressed individuals is partly responsible for this effect. The two studies presented in this paper provide further support for this mediational hypothesis, in which mood is the distal cause of the illusion of control operating through activity level, the proximal cause. In Study 1, the probability of responding, P(R), was found to be a mediator variable between the depressive symptoms and the judgments of control. In Study 2, we intervened directly on the mediator variable: The P(R) for both depressed and nondepressed participants was manipulated through instructions. Our results confirm that P(R) manipulation produced differences in the participants’ perceptions of uncontrollability. Importantly, the intervention on the mediator variable cancelled the effect of the distal cause; the participants’ judgments of control were no longer mood dependent when the P(R) was manipulated. This result supports the hypothesis that the so-called depressive realism effect is actually mediated by the probability of responding. PMID:23029435

  4. Project T.E.A.C.H.: An Evaluative Study.

    ERIC Educational Resources Information Center

    Howarth, Les

    A survey of 17 graduates of Project T.E.A.C.H. (Teacher Effectiveness and Classroom Handling), an inservice education program offered through the Ontario (Canada) Public School Men Teacher's Association in conjunction with Lesley College, used closed- and open-ended questions to obtain evaluations of the project's effectiveness. Five project areas…

  5. Pd-catalyzed C-H fluorination with nucleophilic fluoride.

    PubMed

    McMurtrey, Kate B; Racowski, Joy M; Sanford, Melanie S

    2012-08-17

    The palladium-catalyzed C-H fluorination of 8-methylquinoline derivatives with nucleophilic fluoride is reported. This transformation involves the use of AgF as the fluoride source in combination with a hypervalent iodine oxidant. Both the scope and mechanism of the reaction are discussed.

  6. Chelation-assisted Pd-catalysed ortho-selective oxidative C-H/C-H cross-coupling of aromatic carboxylic acids with arenes and intramolecular Friedel-Crafts acylation: one-pot formation of fluorenones.

    PubMed

    Sun, Denan; Li, Bijin; Lan, Jingbo; Huang, Quan; You, Jingsong

    2016-03-04

    Pd-Catalysed ortho-selective oxidative C-H/C-H cross-coupling of aromatic carboxylic acids with arenes and subsequent intramolecular Friedel-Crafts acylation has been accomplished for the first time through a chelation-assisted C-H activation strategy. Starting from the readily available substrates, a variety of fluorenone derivatives are obtained in one pot. The direct use of naturally occurring carboxylic acid functionalities as directing groups avoids unnecessary steps for installation and removal of an extra directing group.

  7. Weak coordination as a powerful means for developing broadly useful C-H functionalization reactions.

    PubMed

    Engle, Keary M; Mei, Tian-Sheng; Wasa, Masayuki; Yu, Jin-Quan

    2012-06-19

    Reactions that convert carbon-hydrogen (C-H) bonds into carbon-carbon (C-C) or carbon-heteroatom (C-Y) bonds are attractive tools for organic chemists, potentially expediting the synthesis of target molecules through new disconnections in retrosynthetic analysis. Despite extensive inorganic and organometallic study of the insertion of homogeneous metal species into unactivated C-H bonds, practical applications of this technology in organic chemistry are still rare. Only in the past decade have metal-catalyzed C-H functionalization reactions become more widely utilized in organic synthesis. Research in the area of homogeneous transition metal-catalyzed C-H functionalization can be broadly grouped into two subfields. They reflect different approaches and goals and thus have different challenges and opportunities. One approach involves reactions of completely unfunctionalized aromatic and aliphatic hydrocarbons, which we refer to as "first functionalization". Here the substrates are nonpolar and hydrophobic and thus interact very weakly with polar metal species. To overcome this weak affinity and drive metal-mediated C-H cleavage, chemists often use hydrocarbon substrates in large excess (for example, as solvent). Because highly reactive metal species are needed in first functionalization, controlling the chemoselectivity to avoid overfunctionalization is often difficult. Additionally, because both substrates and products are comparatively low-value chemicals, developing cost-effective catalysts with exceptionally high turnover numbers that are competitive with alternatives (including heterogeneous catalysts) is challenging. Although an exciting field, first functionalization is beyond the scope of this Account. The second subfield of C-H functionalization involves substrates containing one or more pre-existing functional groups, termed "further functionalization". One advantage of this approach is that the existing functional group (or groups) can be used to chelate

  8. Inhibition of Stat1-mediated gene activation by PIAS1

    PubMed Central

    Liu, Bin; Liao, Jiayu; Rao, Xiaoping; Kushner, Steven A.; Chung, Chan D.; Chang, David D.; Shuai, Ke

    1998-01-01

    STAT (signal transducer and activator of transcription) proteins are latent cytoplasmic transcription factors that become activated by tyrosine phosphorylation in response to cytokine stimulation. Tyrosine phosphorylated STATs dimerize and translocate into the nucleus to activate specific genes. Different members of the STAT protein family have distinct functions in cytokine signaling. Biochemical and genetic analysis has demonstrated that Stat1 is essential for gene activation in response to interferon stimulation. Although progress has been made toward understanding STAT activation, little is known about how STAT signals are down-regulated. We report here the isolation of a family of PIAS (protein inhibitor of activated STAT) proteins. PIAS1, but not other PIAS proteins, blocked the DNA binding activity of Stat1 and inhibited Stat1-mediated gene activation in response to interferon. Coimmunoprecipitation analysis showed that PIAS1 was associated with Stat1 but not Stat2 or Stat3 after ligand stimulation. The in vivo PIAS1–Stat1 interaction requires phosphorylation of Stat1 on Tyr-701. These results identify PIAS1 as a specific inhibitor of Stat1-mediated gene activation and suggest that there may exist a specific PIAS inhibitor in every STAT signaling pathway. PMID:9724754

  9. AKT mediated glycolytic shift regulates autophagy in classically activated macrophages.

    PubMed

    Matta, Sumit Kumar; Kumar, Dhiraj

    2015-09-01

    Autophagy is considered as an innate defense mechanism primarily due to its role in the targeting of intracellular pathogens for lysosomal degradation. Here we report inhibition of autophagy as an adaptive response in classically activated macrophages that helps achieve high cellular ROS production and cell death-another hallmark of innate mechanisms. We show prolonged classical activation of Raw 264.7 macrophages by treating them with IFN-γ and LPS inhibited autophagy. The inhibition of autophagy was dependent on nitric oxide (NO) production which activated the AKT-mTOR signaling, the known negative regulators of autophagy. Autophagy inhibition in these cells was accompanied with a shift to aerobic glycolysis along with a decline in the mitochondrial membrane potential (MOMP). The decline in MOMP coupled with autophagy inhibition led to increased mitochondrial content and considerably elevated cellular ROS, eventually causing cell death. Next, using specific siRNA mediated knockdowns we show AKT was responsible for the glycolytic shift and autophagy inhibition in activated macrophages. Surprisingly, AKT knockdown in activated macrophages also rescued them from cell death. Finally we show that AKT mediated autophagy inhibition in the activated macrophages correlated with the depletion of glucose from the extracellular medium, and glucose supplementation not only rescued autophagy levels and reversed other phenotypes of activated macrophages, but also inhibited cell death. Thus we report here a novel link between AKT mediated glycolytic metabolism and autophagy in the activated macrophages, and provide a possible mechanism for sustained macrophage activation in vivo. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. TRPV3 channels mediate strontium-induced mouse egg activation

    PubMed Central

    Carvacho, Ingrid; Lee, Hoi Chang; Fissore, Rafael A.; Clapham, David E.

    2014-01-01

    SUMMARY In mammals, calcium influx is required for oocyte maturation and egg activation. The molecular identities of the calcium-permeant channels that underlie the initiation of embryonic development are not established. Here, we describe a Transient Receptor Potential (TRP) ion channel current activated by TRP agonists that is absent in TrpV3−/− eggs. TRPV3 current is differentially expressed during oocyte maturation, reaching a peak of maximum density and activity at metaphase of meiosis II (MII), the stage of fertilization. Selective activation of TRPV3 channels provokes egg activation by mediating massive calcium entry. Widely used to activate eggs, strontium application is known to yield normal offspring in combination with somatic cell nuclear transfer. We show that TRPV3 is required for strontium influx, as TrpV3−/− eggs failed to permeate Sr2+ or undergo strontium-induced activation. We propose that TRPV3 is the major mediator of calcium influx in mouse eggs and is a putative target for artificial egg activation. PMID:24316078

  11. Caspase-9 mediates Puma activation in UCN-01-induced apoptosis.

    PubMed

    Nie, C; Luo, Y; Zhao, X; Luo, N; Tong, A; Liu, X; Yuan, Z; Wang, C; Wei, Y

    2014-10-30

    The protein kinase inhibitor 7-hydroxystaurosporine (UCN-01) is one of the most potent and frequently used proapoptotic stimuli. The BH3-only molecule of Bcl-2 family proteins has been reported to contribute to UCN-01-induced apoptosis. Here we have found that UCN-01 triggers Puma-induced mitochondrial apoptosis pathway. Our data confirmed that Akt-FoxO3a pathway mediated Puma activation. Importantly, we elucidate the detailed mechanisms of Puma-induced apoptosis. Our data have also demonstrated that caspase-9 is a decisive molecule of Puma induction after UCN-01 treatment. Caspase-9 mediates apoptosis through two kinds of feedback loops. On the one hand, caspase-9 enhances Puma activation by cleaving Bcl-2 and Bcl-xL independent of caspase-3. On the other hand, caspase-9 directly activated caspase-3 in the presence of caspase-3. Caspase-3 could cleave XIAP in an another positive feedback loop to further sensitize cancer cells to UCN-01-induced apoptosis. Therefore, caspase-9 mediates Puma activation to determine the threshold for overcoming chemoresistance in cancer cells.

  12. Determining the vibrational pattern via overtone cold spectra: C-H methyl stretches of propyne.

    PubMed

    Portnov, Alex; Bespechansky, Evgeny; Ganot, Yuval; Rosenwaks, Salman; Bar, Ilana

    2005-06-08

    Vibrationally mediated photodissociation and photoacoustic (PA) spectroscopy were employed for studying the intramolecular dynamics of propyne initially excited to the first through fourth overtone of methyl C-H stretching modes. Room-temperature PA and jet-cooled action spectra, monitoring the absorption of the parent and the yield of the ensuing H photofragments, respectively, were obtained. The PA spectra exhibit mainly broad features, while the action spectra, due to inhomogeneous structure reduction, expose multiple peaks of recognizable shapes in the differing overtone manifolds. Symmetric rotor simulations of the band contours of the action spectra allowed retrieving of band origins and linewidths. The linewidths of the bands in each manifold enabled estimates for energy redistribution times out of the corresponding states to the bath states, the times ranging from 18+/-6 ps for two quanta of C-H excitation to subpicosecond for five quanta. The data were also analyzed in terms of a normal-mode model and a joint local-/normal-mode model. These models enabled determination of harmonic frequencies, anharmonicities, and interaction parameters reproducing the observed data in all monitored regions and provided spectral assignments. The measured Doppler profiles were well fitted by Gaussians with widths suggesting low average translational energies for the released H photofragments. These low energies and their similarities to those for dissociation of propyne isotopomers preexcited to acetylenic C-H stretches were ascribed to an indirect dissociation process occurring after internal conversion to the ground electronic state and isomerization to allene.

  13. Carbon stars with alpha-C:H emission

    NASA Technical Reports Server (NTRS)

    Gerbault, Florence; Goebel, John H.

    1989-01-01

    Many carbon stars in the IRS low resolution spectra (LRS) catalog were found which display emission spectra that compare favorable with the absorption spectrum of alpha-C:H. These stars have largely been classified as 4X in the LRS which has led to their interpretation by others in terms of displaying a mixture of the UIRF's 8.6 micron band and SiC at 11.5 microns. It was also found that many of these stars have a spectral upturn at 20+ microns which resembles the MgS band seen in carbon stars and planetary nebulae. It was concluded that this group of carbon stars will evolve into planetary nebulae like NGC 7027 and IC 418. In the presence of hard ultraviolet radiation the UIRF's will light up and be displayed as narrow emission bands on top of the broad alpha-C:H emission bands.

  14. Metal-catalysed azidation of tertiary C-H bonds suitable for late-stage functionalization.

    PubMed

    Sharma, Ankit; Hartwig, John F

    2015-01-29

    Many enzymes oxidize unactivated aliphatic C-H bonds selectively to form alcohols; however, biological systems do not possess enzymes that catalyse the analogous aminations of C-H bonds. The absence of such enzymes limits the discovery of potential medicinal candidates because nitrogen-containing groups are crucial to the biological activity of therapeutic agents and clinically useful natural products. In one prominent example illustrating the importance of incorporating nitrogen-based functionality, the conversion of the ketone of erythromycin to the -N(Me)CH2- group in azithromycin leads to a compound that can be dosed once daily with a shorter treatment time. For such reasons, synthetic chemists have sought catalysts that directly convert C-H bonds to C-N bonds. Most currently used catalysts for C-H bond amination are ill suited to the intermolecular functionalization of complex molecules because they require excess substrate or directing groups, harsh reaction conditions, weak or acidic C-H bonds, or reagents containing specialized groups on the nitrogen atom. Among C-H bond amination reactions, those forming a C-N bond at a tertiary alkyl group would be particularly valuable, because this linkage is difficult to form from ketones or alcohols that might be created in a biosynthetic pathway by oxidation. Here we report a mild, selective, iron-catalysed azidation of tertiary C-H bonds that occurs without excess of the valuable substrate. The reaction tolerates aqueous environments and is suitable for the functionalization of complex structures in the late stages of a multistep synthesis. Moreover, this azidation makes it possible to install a range of nitrogen-based functional groups, including those from Huisgen 'click' cycloadditions and the Staudinger ligation. We anticipate that these reactions will create opportunities to modify natural products, their precursors and their derivatives to produce analogues that contain different polarity and charge as a

  15. Metal-catalysed azidation of tertiary C-H bonds suitable for late-stage functionalization

    NASA Astrophysics Data System (ADS)

    Sharma, Ankit; Hartwig, John F.

    2015-01-01

    Many enzymes oxidize unactivated aliphatic C-H bonds selectively to form alcohols; however, biological systems do not possess enzymes that catalyse the analogous aminations of C-H bonds. The absence of such enzymes limits the discovery of potential medicinal candidates because nitrogen-containing groups are crucial to the biological activity of therapeutic agents and clinically useful natural products. In one prominent example illustrating the importance of incorporating nitrogen-based functionality, the conversion of the ketone of erythromycin to the -N(Me)CH2- group in azithromycin leads to a compound that can be dosed once daily with a shorter treatment time. For such reasons, synthetic chemists have sought catalysts that directly convert C-H bonds to C-N bonds. Most currently used catalysts for C-H bond amination are ill suited to the intermolecular functionalization of complex molecules because they require excess substrate or directing groups, harsh reaction conditions, weak or acidic C-H bonds, or reagents containing specialized groups on the nitrogen atom. Among C-H bond amination reactions, those forming a C-N bond at a tertiary alkyl group would be particularly valuable, because this linkage is difficult to form from ketones or alcohols that might be created in a biosynthetic pathway by oxidation. Here we report a mild, selective, iron-catalysed azidation of tertiary C-H bonds that occurs without excess of the valuable substrate. The reaction tolerates aqueous environments and is suitable for the functionalization of complex structures in the late stages of a multistep synthesis. Moreover, this azidation makes it possible to install a range of nitrogen-based functional groups, including those from Huisgen `click' cycloadditions and the Staudinger ligation. We anticipate that these reactions will create opportunities to modify natural products, their precursors and their derivatives to produce analogues that contain different polarity and charge as a

  16. Palladium-catalyzed allylic C-H fluorination.

    PubMed

    Braun, Marie-Gabrielle; Doyle, Abigail G

    2013-09-04

    The first catalytic allylic C-H fluorination reaction using a nucleophilic fluoride source is reported. Under the influence of a Pd/Cr cocatalyst system, simple olefin substrates undergo fluorination with Et3N·3HF in good yields with high branched:linear regioselectivity. The mild conditions and broad scope make this reaction a powerful alternative to established methods for the preparation of allylic fluorides from prefunctionalized substrates.

  17. Spillover-mediated feedforward-inhibition functionally segregates interneuron activity

    PubMed Central

    Coddington, Luke T.; Rudolph, Stephanie; Lune, Patrick Vande; Overstreet-Wadiche, Linda; Wadiche, Jacques I.

    2013-01-01

    Summary Neurotransmitter spillover represents a form of neural transmission not restricted to morphologically defined synaptic connections. Communication between climbing fibers (CFs) and molecular layer interneurons (MLIs) in the cerebellum is mediated exclusively by glutamate spillover. Here, we show how CF stimulation functionally segregates MLIs based on their location relative to glutamate release. Excitation of MLIs that reside within the domain of spillover diffusion coordinates inhibition of MLIs outside the diffusion limit. CF excitation of MLIs is dependent on extrasynaptic NMDA receptors that enhance the spatial and temporal spread of CF signaling. Activity mediated by functionally segregated MLIs converges onto neighboring Purkinje cells (PCs) to generate a long-lasting biphasic change in inhibition. These data demonstrate how glutamate release from single CFs modulates excitability of neighboring PCs, thus expanding the influence of CFs on cerebellar cortical activity in a manner not predicted by anatomical connectivity. PMID:23707614

  18. Nitric oxide mediates local activity-dependent excitatory synapse development.

    PubMed

    Nikonenko, Irina; Nikonenko, Alexander; Mendez, Pablo; Michurina, Tatyana V; Enikolopov, Grigori; Muller, Dominique

    2013-10-29

    Learning related paradigms play an important role in shaping the development and specificity of synaptic networks, notably by regulating mechanisms of spine growth and pruning. The molecular events underlying these synaptic rearrangements remain poorly understood. Here we identify NO signaling as a key mediator of activity-dependent excitatory synapse development. We find that chronic blockade of NO production in vitro and in vivo interferes with the development of hippocampal and cortical excitatory spine synapses. The effect results from a selective loss of activity-mediated spine growth mechanisms and is associated with morphological and functional alterations of remaining synapses. These effects of NO are mediated by a cGMP cascade and can be reproduced or prevented by postsynaptic expression of vasodilator-stimulated phosphoprotein phospho-mimetic or phospho-resistant mutants. In vivo analyses show that absence of NO prevents the increase in excitatory synapse density induced by environmental enrichment and interferes with the formation of local clusters of excitatory synapses. We conclude that NO plays an important role in regulating the development of excitatory synapses by promoting local activity-dependent spine-growth mechanisms.

  19. Airway structural cells regulate TLR5-mediated mucosal adjuvant activity.

    PubMed

    Van Maele, L; Fougeron, D; Janot, L; Didierlaurent, A; Cayet, D; Tabareau, J; Rumbo, M; Corvo-Chamaillard, S; Boulenouar, S; Jeffs, S; Vande Walle, L; Lamkanfi, M; Lemoine, Y; Erard, F; Hot, D; Hussell, T; Ryffel, B; Benecke, A G; Sirard, J-C

    2014-05-01

    Antigen-presenting cell (APC) activation is enhanced by vaccine adjuvants. Most vaccines are based on the assumption that adjuvant activity of Toll-like receptor (TLR) agonists depends on direct, functional activation of APCs. Here, we sought to establish whether TLR stimulation in non-hematopoietic cells contributes to flagellin's mucosal adjuvant activity. Nasal administration of flagellin enhanced T-cell-mediated immunity, and systemic and secretory antibody responses to coadministered antigens in a TLR5-dependent manner. Mucosal adjuvant activity was not affected by either abrogation of TLR5 signaling in hematopoietic cells or the presence of flagellin-specific, circulating neutralizing antibodies. We found that flagellin is rapidly degraded in conducting airways, does not translocate into lung parenchyma and stimulates an early immune response, suggesting that TLR5 signaling is regionalized. The flagellin-specific early response of lung was regulated by radioresistant cells expressing TLR5 (particularly the airway epithelial cells). Flagellin stimulated the epithelial production of a small set of mediators that included the chemokine CCL20, which is known to promote APC recruitment in mucosal tissues. Our data suggest that (i) the adjuvant activity of TLR agonists in mucosal vaccination may require TLR stimulation of structural cells and (ii) harnessing the effect of adjuvants on epithelial cells can improve mucosal vaccines.

  20. PKG-1α mediates GATA4 transcriptional activity.

    PubMed

    Ma, Yanlin; Wang, Jun; Yu, Yanhong; Schwartz, Robert J

    2016-06-01

    GATA4, a zinc-finger transcription factor, is central for cardiac development and diseases. Here we show that GATA4 transcriptional activity is mediated by cell signaling via cGMP dependent PKG-1α activity. Protein kinase G (PKG), a serine/tyrosine specific kinase is the major effector of cGMP signaling. We observed enhanced transcriptional activity elicited by co-expressed GATA4 and PKG-1α. Phosphorylation of GATA4 by PKG-1α was detected on serine 261 (S261), while the C-terminal activation domain of GATA4 associated with PKG-1α. GATA4's DNA binding activity was enhanced by PKG-1α via by both phosphorylation and physical association. More importantly, a number of human disease-linked GATA4 mutants exhibited impaired S261 phosphorylation, pointing to defective S261 phosphorylation in the elaboration of human heart diseases. We showed S261 phosphorylation was favored by PKG-1α but not by PKA, and several other kinase signaling pathways such as MAPK and PKC. Our observations demonstrate that cGMP-PKG signaling mediates transcriptional activity of GATA4 and links defective GATA4 and PKG-1α mutations to the development of human heart disease.

  1. Interneuron-mediated inhibition synchronizes neuronal activity during slow oscillation

    PubMed Central

    Chen, Jen-Yung; Chauvette, Sylvain; Skorheim, Steven; Timofeev, Igor; Bazhenov, Maxim

    2012-01-01

    The signature of slow-wave sleep in the electroencephalogram (EEG) is large-amplitude fluctuation of the field potential, which reflects synchronous alternation of activity and silence across cortical neurons. While initiation of the active cortical states during sleep slow oscillation has been intensively studied, the biological mechanisms which drive the network transition from an active state to silence remain poorly understood. In the current study, using a combination of in vivo electrophysiology and thalamocortical network simulation, we explored the impact of intrinsic and synaptic inhibition on state transition during sleep slow oscillation. We found that in normal physiological conditions, synaptic inhibition controls the duration and the synchrony of active state termination. The decline of interneuron-mediated inhibition led to asynchronous downward transition across the cortical network and broke the regular slow oscillation pattern. Furthermore, in both in vivo experiment and computational modelling, we revealed that when the level of synaptic inhibition was reduced significantly, it led to a recovery of synchronized oscillations in the form of seizure-like bursting activity. In this condition, the fast active state termination was mediated by intrinsic hyperpolarizing conductances. Our study highlights the significance of both intrinsic and synaptic inhibition in manipulating sleep slow rhythms. PMID:22641778

  2. Synthesis of antiviral tetrahydrocarbazole derivatives by photochemical and acid-catalyzed C-H functionalization via intermediate peroxides (CHIPS).

    PubMed

    Gulzar, Naeem; Klussmann, Martin

    2014-06-20

    The direct functionalization of C-H bonds is an important and long standing goal in organic chemistry. Such transformations can be very powerful in order to streamline synthesis by saving steps, time and material compared to conventional methods that require the introduction and removal of activating or directing groups. Therefore, the functionalization of C-H bonds is also attractive for green chemistry. Under oxidative conditions, two C-H bonds or one C-H and one heteroatom-H bond can be transformed to C-C and C-heteroatom bonds, respectively. Often these oxidative coupling reactions require synthetic oxidants, expensive catalysts or high temperatures. Here, we describe a two-step procedure to functionalize indole derivatives, more specifically tetrahydrocarbazoles, by C-H amination using only elemental oxygen as oxidant. The reaction uses the principle of C-H functionalization via Intermediate PeroxideS (CHIPS). In the first step, a hydroperoxide is generated oxidatively using visible light, a photosensitizer and elemental oxygen. In the second step, the N-nucleophile, an aniline, is introduced by Brønsted-acid catalyzed activation of the hydroperoxide leaving group. The products of the first and second step often precipitate and can be conveniently filtered off. The synthesis of a biologically active compound is shown.

  3. Synthesis of Antiviral Tetrahydrocarbazole Derivatives by Photochemical and Acid-catalyzed C-H Functionalization via Intermediate Peroxides (CHIPS)

    PubMed Central

    Gulzar, Naeem; Klussmann, Martin

    2014-01-01

    The direct functionalization of C-H bonds is an important and long standing goal in organic chemistry. Such transformations can be very powerful in order to streamline synthesis by saving steps, time and material compared to conventional methods that require the introduction and removal of activating or directing groups. Therefore, the functionalization of C-H bonds is also attractive for green chemistry. Under oxidative conditions, two C-H bonds or one C-H and one heteroatom-H bond can be transformed to C-C and C-heteroatom bonds, respectively. Often these oxidative coupling reactions require synthetic oxidants, expensive catalysts or high temperatures. Here, we describe a two-step procedure to functionalize indole derivatives, more specifically tetrahydrocarbazoles, by C-H amination using only elemental oxygen as oxidant. The reaction uses the principle of C-H functionalization via Intermediate PeroxideS (CHIPS). In the first step, a hydroperoxide is generated oxidatively using visible light, a photosensitizer and elemental oxygen. In the second step, the N-nucleophile, an aniline, is introduced by Brønsted-acid catalyzed activation of the hydroperoxide leaving group. The products of the first and second step often precipitate and can be conveniently filtered off. The synthesis of a biologically active compound is shown. PMID:24998636

  4. Emerging activity in bilayered dispersions with wake-mediated interactions

    NASA Astrophysics Data System (ADS)

    Bartnick, Jörg; Kaiser, Andreas; Löwen, Hartmut; Ivlev, Alexei V.

    2016-06-01

    In a bilayered system of particles with wake-mediated interactions, the action-reaction symmetry for the effective forces between particles of different layers is broken. Under quite general conditions we show that, if the interaction nonreciprocity exceeds a certain threshold, this creates an active dispersion of self-propelled clusters of Brownian particles. The emerging activity promotes unusual melting scenarios and an enormous diffusivity in the dense fluid. Our results are obtained by computer simulation and analytical theory and can be verified in experiments with colloidal dispersions and complex plasmas.

  5. Emerging activity in bilayered dispersions with wake-mediated interactions

    SciTech Connect

    Bartnick, Jörg; Kaiser, Andreas; Löwen, Hartmut; Ivlev, Alexei V.

    2016-06-14

    In a bilayered system of particles with wake-mediated interactions, the action-reaction symmetry for the effective forces between particles of different layers is broken. Under quite general conditions we show that, if the interaction nonreciprocity exceeds a certain threshold, this creates an active dispersion of self-propelled clusters of Brownian particles. The emerging activity promotes unusual melting scenarios and an enormous diffusivity in the dense fluid. Our results are obtained by computer simulation and analytical theory and can be verified in experiments with colloidal dispersions and complex plasmas.

  6. Rhodium mediated bond activation: from synthesis to catalysis

    SciTech Connect

    Ho, Hung-An

    2012-01-01

    Recently, our lab has developed monoanionic tridentate ligand, ToR, showing the corresponding coordination chemistry and catalyst reactivity of magnesium, zirconium, zinc and iridium complexes. This thesis details synthetic chemistry, structural study and catalytic reactivity of the ToR-supported rhodium compounds. Tl[ToR] has been proved to be a superior ligand transfer agent for synthesizing rhodium complexes. The salt metathesis route of Tl[ToM] with [Rh(μ-Cl)(CO)]2 and [Rh(μ- Cl)(COE)]2 gives ToMRh(CO)2 (2.2) and ToMRhH(β3-C8H13) (3.1) respectively while Tl[ToM] with [Rh(μ-Cl)(CO)]2 affords ToPRh(CO)2 (2.3). 2.2 reacts with both strong and weak electrophiles, resulting in the oxazoline N-attacked and the metal center-attacked compounds correspondingly. Using one of the metal center-attacked electrophiles, 2.3 was demonstrated to give high diastereoselectivity. Parallel to COE allylic C-H activation complex 3.1, the propene and allylbenzene allylic C-H activation products have also been synthesized. The subsequent functionalization attempts have been examined by treating with Brønsted acids, Lewis acids, electrophiles, nucleophiles, 1,3-dipolar reagents and reagents containing multiple bonds able to be inserted. Various related complexes have been obtained under these conditions, in which one of the azide insertion compounds reductively eliminates to give an allylic functionalization product stoichiometrically. 3.1 reacts with various primary alcohols to give the decarbonylation dihydride complex ToMRh(H)2CO (4.1). 4.1 shows catalytic reactivity for primary alcohol decarbonylation under a photolytic condition. Meanwhile, 2.2 has been found to be more reactive than 4.1 for catalytic alcohol decarbonylation under the same condition. Various complexes and primary

  7. Controlling factors for C-H functionalization versus cyclopropanation of dihydronaphthalenes.

    PubMed

    Nadeau, Etienne; Ventura, Dominic L; Brekan, Jonathan A; Davies, Huw M L

    2010-03-19

    Rhodium(II)-catalyzed reactions of vinyldiazoacetates with dihydronaphthalenes were systematically studied. These substrates underwent cyclopropanantion and/or the combined C-H activation/Cope rearrangement in good overall yield and with good diastereo- and enantiocontrol. The selectivity of these reactions was profoundly influenced by the nature of the chiral catalyst, the vinyldiazoacetate, and the dihydronaphthalene. The best combinations for achieving the highest selectivity in the cyclopropanation and the combined C-H activation/Cope rearrangement of 1,2-dihydronaphthalenes are methyl 2-diazopent-3-enoate (2a)/Rh(2)(S-DOSP)(4) and methyl 3-(tert-butyldimethylsilyloxy)-2-diazopent-3-enoate (2b)/Rh(2)(S-PTAD)(4). These combinations are very effective at enantiodivergent reactions of 1-methyl-1,2-dihydronaphthalenes.

  8. Human Neutrophil-Mediated Nonoxidative Antifungal Activity against Cryptococcus neoformans

    PubMed Central

    Mambula, Salamatu S.; Simons, Elizabeth R.; Hastey, Ryan; Selsted, Michael E.; Levitz, Stuart M.

    2000-01-01

    It has long been appreciated that polymorphonuclear leukocytes (PMN) kill Cryptococcus neoformans, at least in part via generation of fungicidal oxidants. The aim of this study was to examine the contribution of nonoxidative mechanisms to the inhibition and killing of C. neoformans. Treatment of human PMN with inhibitors and scavengers of respiratory burst oxidants only partially reversed anticryptococcal activity, suggesting that both oxidative and nonoxidative mechanisms were operative. To define the mediators of nonoxidative anticryptococcal activity, PMN were fractionated into cytoplasmic, primary (azurophil) granule, and secondary (specific) granule fractions. Incubation of C. neoformans with these fractions for 18 h resulted in percents inhibition of growth of 67.4 ± 3.4, 84.6 ± 4.4, and 29.2 ± 10.5 (mean ± standard error, n = 3), respectively. Anticryptococcal activity of the cytoplasmic fraction was abrogated by zinc and depletion of calprotectin. Antifungal activity of the primary granules was significantly reduced by pronase treatment, boiling, high ionic strength, and magnesium but not calcium. Fractionation of the primary granules by reverse phase high-pressure liquid chromatography on a C4 column over an acetonitrile gradient revealed multiple peaks with anticryptococcal activity. Of these, peaks 1 and 6 had substantial fungistatic and fungicidal activity. Peak 1 was identified by acid-urea polyacrylamide gel electrophoresis (PAGE) and mass spectroscopy as human neutrophil proteins (defensins) 1 to 3. Analysis of peak 6 by sodium dodecyl sulfate-PAGE revealed multiple bands. Thus, human PMN have nonoxidative anticryptococcal activity residing principally in their cytoplasmic and primary granule fractions. Calprotectin mediates the cytoplasmic activity, whereas multiple proteins, including defensins, are responsible for activity of the primary granules. PMID:11035733

  9. Mild Palladium Catalyzed ortho C-H Bond Functionalizations of Aniline Derivatives.

    PubMed

    Tischler, Ms Orsolya; Tóth, Mr Balázs; Novák, Zoltán

    2017-02-01

    This account collects the developments and transformations which avoid the utilization of harsh reaction conditions in the field of palladium catalyzed, ortho-directed C-H activation of aniline derivatives from the first attempts to up-to-date results, including the results of our research laboratory. The discussed functionalizations performed under mild conditions include acylation, olefination, arylation, alkylation, alkoxylation reactions. Beside the optimization studies and the synthetic applications mechanistic investigations are also presented.

  10. Seeing the B-A-C-H motif

    NASA Astrophysics Data System (ADS)

    Catravas, Palmyra

    2005-09-01

    Musical compositions can be thought of as complex, multidimensional data sets. Compositions based on the B-A-C-H motif (a four-note motif of the pitches of the last name of Johann Sebastian Bach) span several centuries of evolving compositional styles and provide an intriguing set for analysis since they contain a common feature, the motif, buried in dissimilar contexts. We will present analyses which highlight the content of this unusual set of pieces, with emphasis on visual display of information.

  11. Elaboration of Copper-Oxygen Mediated C–H Activation Chemistry in Consideration of Future Fuel and Feedstock Generation

    PubMed Central

    Lee, Jung Yoon; Karlin, Kenneth D

    2015-01-01

    To contribute solutions for current energy concerns, improvements in the efficiency of C-H bond cleavage chemistry, e.g., selective oxidation of methane to methanol, could minimize losses in natural gas usage or produce feedstocks for fuels. Oxidative C-H activation is also a component of polysaccharide degradation, affording alternative biofuels from abundant biomass. Thus, an understanding of active-site chemistry in copper monooxygenases, those activating strong C-H bonds is briefly reviewed. Then, recent advances in the synthesis-generation and study of various copper-oxygen intermediates are highlighted. Of special interest are cupric-superoxide, Cu-hydroperoxo and Cu-oxy complexes. Such investigations can contribute to an enhanced future application of C-H oxidation or oxygenation processes using air, as concerning societal energy goals. PMID:25756327

  12. Manganese(I)-Catalyzed Regioselective C-H Allenylation: Direct Access to 2-Allenylindoles.

    PubMed

    Lu, Qingquan; Greßies, Steffen; Klauck, Felix J R; Glorius, Frank

    2017-06-01

    A Mn(I) -catalyzed regioselective C-H allenylation is reported that allows a broad range of 2-allenylindoles to be synthesized regioselectively on a gram scale under simple conditions. Notably, a highly efficient chirality transfer was observed (up to 93 % ee) in this transformation. This procedure was further found to allow, for the first time, the direct preparation of ketones by Mn(I) -catalyzed C-H activation. Mechanistic investigations revealed that the precoordination of the oxygen atom to the manganese center as well as the congested tertiary carbon atom in the propargylic carbonates play a crucial role. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Phosphorylation of C-H bonds of aromatic compounds using metals and metal complexes

    NASA Astrophysics Data System (ADS)

    Budnikova, Yu H.; Sinyashin, O. G.

    2015-09-01

    Key achievements and current trends in the development of methods for phosphorylation of aromatic C-H bonds catalyzed by metal salts and complexes are considered. The most important and promising approaches of the last decade, including those concerning the synthesis and properties of arylphosphonates, are distinguished. Methods for the introduction of a phosphonate group into non-activated and functionally substituted aromatic compounds and heteroaromatic molecules and phosphorylation-cyclization reactions involving acetylenes, 2-isocyanobiphenyls and alkynoates are analyzed. The possibilities of ligand-directed phosphorylation of compounds with aromatic C-H bonds and presumed mechanisms and intermediates in the C-P bond formation reactions are considered. The potential of this extensively developing research trend in organic and organoelement chemistry is highlighted. The bibliography includes 263 references.

  14. AhR-mediated and antiestrogenic activity of humic substances.

    PubMed

    Janosek, J; Bittner, M; Hilscherová, K; Bláha, L; Giesy, J P; Holoubek, I

    2007-04-01

    Humic substances (HS) were for decades regarded as inert in the ecosystems with respect to their possible toxicity. However, HS have been recently shown to elicit various adverse effects generally attributed to xenobiotics. In our study, we used MVLN and H4IIE-luc cell lines stably transfected with luciferase gene under control of estrogen receptor (ER) and Ah receptor (AhR; receptor connected with so-called dioxin-like toxicity) for assessment of anti/estrogenic and AhR-mediated effects of 12 commercially available humic substances. Out of those, five humic acids were shown to induce AhR-mediated activity with relative potencies related to TCDD 2.6 x 10(-8)-7.4 x 10(-8). Organic extracts of HS solutions also elicited high activities what means that lipophilic molecules are responsible for a great part of effect. However, relatively high activity remaining in extracted solution suggests also presence of polar AhR-agonists. Contribution of persistent organic compounds to the observed effects was ruled out by H(2)SO(4) treatment. Eight out of twelve HS elicited significant antiestrogenic effects with IC(50) ranging from 40 to 164 mg l(-1). The possible explanations of the antiestrogenic effect include sorption of 17-beta-estradiol (E2) on HS, changes in membrane permeability for E2 or another specific mechanism.

  15. Pt +-mediated activation of methane: theory and experiment

    NASA Astrophysics Data System (ADS)

    Heinemann, Christoph; Wesendrup, Ralf; Schwarz, Helmut

    1995-06-01

    A combined theoretical and experimental study on the Pt +-mediated activation of methane is presented. Dehydrogenation of CH 4 by thermalized Pt + cations (Pt + + CH 4 ← PtCH 2+ + H 2) proceeds along a doublet ground state potential energy surface and is found to be reversible under the conditions of Fourier transform ion-cyclotron resonance mass spectrometry. The recently reported oxidation of the cationic platinum carbene PtCH 2+ by O 2 produces electronically excited Pt + cations, which are detected in the 4F9/2 state by means of charge-transfer bracketing experiments.

  16. 15 CFR 930.44 - Availability of mediation for disputes concerning proposed activities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Availability of mediation for disputes... PROGRAMS Consistency for Federal Agency Activities § 930.44 Availability of mediation for disputes..., either party may request the Secretarial mediation or OCRM mediation services provided for in subpart G. ...

  17. 15 CFR 930.45 - Availability of mediation for previously reviewed activities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Availability of mediation for... PROGRAMS Consistency for Federal Agency Activities § 930.45 Availability of mediation for previously..., either party may request the Secretarial mediation or OCRM mediation services provided for in subpart G...

  18. 15 CFR 930.44 - Availability of mediation for disputes concerning proposed activities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Availability of mediation for disputes... PROGRAMS Consistency for Federal Agency Activities § 930.44 Availability of mediation for disputes..., either party may request the Secretarial mediation or OCRM mediation services provided for in subpart G. ...

  19. 15 CFR 930.45 - Availability of mediation for previously reviewed activities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Availability of mediation for... PROGRAMS Consistency for Federal Agency Activities § 930.45 Availability of mediation for previously..., either party may request the Secretarial mediation or OCRM mediation services provided for in subpart G...

  20. 15 CFR 930.44 - Availability of mediation for disputes concerning proposed activities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Availability of mediation for disputes... PROGRAMS Consistency for Federal Agency Activities § 930.44 Availability of mediation for disputes..., either party may request the Secretarial mediation or OCRM mediation services provided for in subpart G. ...

  1. 15 CFR 930.44 - Availability of mediation for disputes concerning proposed activities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Availability of mediation for disputes... PROGRAMS Consistency for Federal Agency Activities § 930.44 Availability of mediation for disputes..., either party may request the Secretarial mediation or OCRM mediation services provided for in subpart G. ...

  2. 15 CFR 930.45 - Availability of mediation for previously reviewed activities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Availability of mediation for... PROGRAMS Consistency for Federal Agency Activities § 930.45 Availability of mediation for previously..., either party may request the Secretarial mediation or OCRM mediation services provided for in subpart G...

  3. 15 CFR 930.45 - Availability of mediation for previously reviewed activities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Availability of mediation for... PROGRAMS Consistency for Federal Agency Activities § 930.45 Availability of mediation for previously..., either party may request the Secretarial mediation or OCRM mediation services provided for in subpart G...

  4. 15 CFR 930.45 - Availability of mediation for previously reviewed activities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Availability of mediation for... PROGRAMS Consistency for Federal Agency Activities § 930.45 Availability of mediation for previously..., either party may request the Secretarial mediation or OCRM mediation services provided for in subpart G...

  5. 15 CFR 930.44 - Availability of mediation for disputes concerning proposed activities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Availability of mediation for disputes... PROGRAMS Consistency for Federal Agency Activities § 930.44 Availability of mediation for disputes..., either party may request the Secretarial mediation or OCRM mediation services provided for in subpart G. ...

  6. Serum Inflammatory Mediators as Markers of Human Lyme Disease Activity

    PubMed Central

    Soloski, Mark J.; Crowder, Lauren A.; Lahey, Lauren J.; Wagner, Catriona A.

    2014-01-01

    Chemokines and cytokines are key signaling molecules that orchestrate the trafficking of immune cells, direct them to sites of tissue injury and inflammation and modulate their states of activation and effector cell function. We have measured, using a multiplex-based approach, the levels of 58 immune mediators and 7 acute phase markers in sera derived from of a cohort of patients diagnosed with acute Lyme disease and matched controls. This analysis identified a cytokine signature associated with the early stages of infection and allowed us to identify two subsets (mediator-high and mediator-low) of acute Lyme patients with distinct cytokine signatures that also differed significantly (p<0.0005) in symptom presentation. In particular, the T cell chemokines CXCL9 (MIG), CXCL10 (IP-10) and CCL19 (MIP3B) were coordinately increased in the mediator-high group and levels of these chemokines could be associated with seroconversion status and elevated liver function tests (p = 0.027 and p = 0.021 respectively). There was also upregulation of acute phase proteins including CRP and serum amyloid A. Consistent with the role of CXCL9/CXCL10 in attracting immune cells to the site of infection, CXCR3+ CD4 T cells are reduced in the blood of early acute Lyme disease (p = 0.01) and the decrease correlates with chemokine levels (p = 0.0375). The levels of CXCL9/10 did not relate to the size or number of skin lesions but elevated levels of serum CXCL9/CXCL10 were associated with elevated liver enzymes levels. Collectively these results indicate that the levels of serum chemokines and the levels of expression of their respective chemokine receptors on T cell subsets may prove to be informative biomarkers for Lyme disease and related to specific disease manifestations. PMID:24740099

  7. Fine Control over Site and Substrate Selectivity in Hydrogen Atom Transfer-Based Functionalization of Aliphatic C-H Bonds.

    PubMed

    Salamone, Michela; Carboni, Giulia; Bietti, Massimo

    2016-10-07

    The selective functionalization of unactivated aliphatic C-H bonds over intrinsically more reactive ones represents an ongoing challenge of synthetic chemistry. Here we show that in hydrogen atom transfer (HAT) from the aliphatic C-H bonds of alkane, ether, alcohol, amide, and amine substrates to the cumyloxyl radical (CumO(•)) fine control over site and substrate selectivity is achieved by means of acid-base interactions. Protonation of the amines and metal ion binding to amines and amides strongly deactivates the C-H bonds of these substrates toward HAT to CumO(•), providing a powerful method for selective functionalization of unactivated or intrinsically less reactive C-H bonds. With 5-amino-1-pentanol, site-selectivity has been drastically changed through protonation of the strongly activating NH2 group, with HAT that shifts to the C-H bonds that are adjacent to the OH group. In the intermolecular selectivity studies, trifluoroacetic acid, Mg(ClO4)2, and LiClO4 have been employed in a orthogonal fashion for selective functionalization of alkane, ether, alcohol, and amide (or amine) substrates in the presence of an amine (or amide) one. Ca(ClO4)2, that promotes deactivation of amines and amides by Ca(2+) binding, offers, moreover, the opportunity to selectively functionalize the C-H bonds of alkane, ether, and alcohol substrates in the presence of both amines and amides.

  8. Catalytic alkylation of remote C-H bonds enabled by proton-coupled electron transfer.

    PubMed

    Choi, Gilbert J; Zhu, Qilei; Miller, David C; Gu, Carol J; Knowles, Robert R

    2016-11-10

    Despite advances in hydrogen atom transfer (HAT) catalysis, there are currently no molecular HAT catalysts that are capable of homolysing the strong nitrogen-hydrogen (N-H) bonds of N-alkyl amides. The motivation to develop amide homolysis protocols stems from the utility of the resultant amidyl radicals, which are involved in various synthetically useful transformations, including olefin amination and directed carbon-hydrogen (C-H) bond functionalization. In the latter process-a subset of the classical Hofmann-Löffler-Freytag reaction-amidyl radicals remove hydrogen atoms from unactivated aliphatic C-H bonds. Although powerful, these transformations typically require oxidative N-prefunctionalization of the amide starting materials to achieve efficient amidyl generation. Moreover, because these N-activating groups are often incorporated into the final products, these methods are generally not amenable to the direct construction of carbon-carbon (C-C) bonds. Here we report an approach that overcomes these limitations by homolysing the N-H bonds of N-alkyl amides via proton-coupled electron transfer. In this protocol, an excited-state iridium photocatalyst and a weak phosphate base cooperatively serve to remove both a proton and an electron from an amide substrate in a concerted elementary step. The resultant amidyl radical intermediates are shown to promote subsequent C-H abstraction and radical alkylation steps. This C-H alkylation represents a catalytic variant of the Hofmann-Löffler-Freytag reaction, using simple, unfunctionalized amides to direct the formation of new C-C bonds. Given the prevalence of amides in pharmaceuticals and natural products, we anticipate that this method will simplify the synthesis and structural elaboration of amine-containing targets. Moreover, this study demonstrates that concerted proton-coupled electron transfer can enable homolytic activation of common organic functional groups that are energetically inaccessible using

  9. Catalytic alkylation of remote C-H bonds enabled by proton-coupled electron transfer

    NASA Astrophysics Data System (ADS)

    Choi, Gilbert J.; Zhu, Qilei; Miller, David C.; Gu, Carol J.; Knowles, Robert R.

    2016-11-01

    Despite advances in hydrogen atom transfer (HAT) catalysis, there are currently no molecular HAT catalysts that are capable of homolysing the strong nitrogen-hydrogen (N-H) bonds of N-alkyl amides. The motivation to develop amide homolysis protocols stems from the utility of the resultant amidyl radicals, which are involved in various synthetically useful transformations, including olefin amination and directed carbon-hydrogen (C-H) bond functionalization. In the latter process—a subset of the classical Hofmann-Löffler-Freytag reaction—amidyl radicals remove hydrogen atoms from unactivated aliphatic C-H bonds. Although powerful, these transformations typically require oxidative N-prefunctionalization of the amide starting materials to achieve efficient amidyl generation. Moreover, because these N-activating groups are often incorporated into the final products, these methods are generally not amenable to the direct construction of carbon-carbon (C-C) bonds. Here we report an approach that overcomes these limitations by homolysing the N-H bonds of N-alkyl amides via proton-coupled electron transfer. In this protocol, an excited-state iridium photocatalyst and a weak phosphate base cooperatively serve to remove both a proton and an electron from an amide substrate in a concerted elementary step. The resultant amidyl radical intermediates are shown to promote subsequent C-H abstraction and radical alkylation steps. This C-H alkylation represents a catalytic variant of the Hofmann-Löffler-Freytag reaction, using simple, unfunctionalized amides to direct the formation of new C-C bonds. Given the prevalence of amides in pharmaceuticals and natural products, we anticipate that this method will simplify the synthesis and structural elaboration of amine-containing targets. Moreover, this study demonstrates that concerted proton-coupled electron transfer can enable homolytic activation of common organic functional groups that are energetically inaccessible using

  10. The Impact of EFL Teachers' Mediation in Wiki-Mediated Collaborative Writing Activities on Student-Student Collaboration

    ERIC Educational Resources Information Center

    Alghasab, Maha

    2016-01-01

    This paper focuses on how teachers mediate wiki collaborative writing activities, and the impact of their mediations on students' collaboration. It is based on a study conducted with three English as a Foreign Language (EFL) teachers and their students (aged 17-18 years) at two government-funded girls' high schools in Kuwait. The selected groups…

  11. Ferroptosis as a p53-mediated activity during tumour suppression.

    PubMed

    Jiang, Le; Kon, Ning; Li, Tongyuan; Wang, Shang-Jui; Su, Tao; Hibshoosh, Hanina; Baer, Richard; Gu, Wei

    2015-04-02

    Although p53-mediated cell-cycle arrest, senescence and apoptosis serve as critical barriers to cancer development, emerging evidence suggests that the metabolic activities of p53 are also important. Here we show that p53 inhibits cystine uptake and sensitizes cells to ferroptosis, a non-apoptotic form of cell death, by repressing expression of SLC7A11, a key component of the cystine/glutamate antiporter. Notably, p53(3KR), an acetylation-defective mutant that fails to induce cell-cycle arrest, senescence and apoptosis, fully retains the ability to regulate SLC7A11 expression and induce ferroptosis upon reactive oxygen species (ROS)-induced stress. Analysis of mutant mice shows that these non-canonical p53 activities contribute to embryonic development and the lethality associated with loss of Mdm2. Moreover, SLC7A11 is highly expressed in human tumours, and its overexpression inhibits ROS-induced ferroptosis and abrogates p53(3KR)-mediated tumour growth suppression in xenograft models. Our findings uncover a new mode of tumour suppression based on p53 regulation of cystine metabolism, ROS responses and ferroptosis.

  12. Dirhodium Catalyzed C-H Arene Amination using Hydroxylamines

    PubMed Central

    Paudyal, Mahesh P.; Adebesin, Adeniyi Michael; Burt, Scott R.; Ess, Daniel H.; Ma, Zhiwei; Kürti, László; Falck, John R.

    2016-01-01

    Primary and N-alkyl arylamine motifs are key functional groups in pharmaceuticals, agrochemicals and functional materials as well as in bioactive natural products. However, there is a dearth of generally applicable methods for the direct replacement of aryl hydrogens with –NH2/-NH-alkyl moieties. Here, we present a mild dirhodium-catalyzed C-H amination for conversion of structurally diverse monocyclic and fused aromatics to the corresponding primary and N-alkyl arylamines using either NH2/NHalkyl-O-(sulfonyl)hydroxylamines as aminating agents; the relatively weak RSO2O-N bond functions as an internal oxidant. The methodology is operationally simple, scalable, and fast at or below ambient temperature, furnishing arylamines in moderate-to-good yields and with good regioselectivity. It can be readily extended to the synthesis of fused N-heterocycles. PMID:27609890

  13. Enantioselective Functionalization of Allylic C-H Bonds Following a Strategy of Functionalization and Diversification

    PubMed Central

    Sharma, Ankit; Hartwig, John F.

    2013-01-01

    We report the enantioselective functionalization of allylic C-H bonds in terminal alkenes by a strategy involving the installation of a temporary functional group at the terminal carbon atom by C-H bond functionalization, followed by diversification of this intermediate with a broad scope of reagents. The method consists of a one-pot sequence of palladium-catalyzed allylic C-H bond oxidation under neutral conditions to form linear allyl benzoates, followed by iridium-catalyzed allylic substitution. This overall transformation forms a variety of chiral products containing a new C-N, C-O, C-S or C-C bond at the allylic position in good yield with high branched-to-linear selectivity and excellent enantioselectivity (ee ≤ 97%). The broad scope of the overall process results from separating the oxidation and functionalization steps; by doing so, the scope of nucleophile encompasses those sensitive to direct oxidative functionalization. The high enantioselectivity of the overall process is achieved by developing an allylic oxidation that occurs without acid to form the linear isomer with high selectivity. These allylic functionalization processes are amenable to an iterative sequence leading to (1,n)-functionalized products with catalyst-controlled diastereo- and enantioselectivity. The utility of the method in the synthesis of biologically active molecules has been demonstrated. PMID:24156776

  14. Enantioselective functionalization of allylic C-H bonds following a strategy of functionalization and diversification.

    PubMed

    Sharma, Ankit; Hartwig, John F

    2013-11-27

    We report the enantioselective functionalization of allylic C-H bonds in terminal alkenes by a strategy involving the installation of a temporary functional group at the terminal carbon atom by C-H bond functionalization, followed by the catalytic diversification of this intermediate with a broad scope of reagents. The method consists of a one-pot sequence of palladium-catalyzed allylic C-H bond oxidation under neutral conditions to form linear allyl benzoates, followed by iridium-catalyzed allylic substitution. This overall transformation forms a variety of chiral products containing a new C-N, C-O, C-S, or C-C bond at the allylic position in good yield with a high branched-to-linear selectivity and excellent enantioselectivity (ee ≤97%). The broad scope of the overall process results from separating the oxidation and functionalization steps; by doing so, the scope of nucleophile encompasses those sensitive to direct oxidative functionalization. The high enantioselectivity of the overall process is achieved by developing an allylic oxidation that occurs without acid to form the linear isomer with high selectivity. These allylic functionalization processes are amenable to an iterative sequence leading to (1,n)-functionalized products with catalyst-controlled diastereo- and enantioselectivity. The utility of the method in the synthesis of biologically active molecules has been demonstrated.

  15. Hydrogen-bond-assisted controlled C-H functionalization via adaptive recognition of a purine directing group.

    PubMed

    Kim, Hyun Jin; Ajitha, Manjaly J; Lee, Yongjae; Ryu, Jaeyune; Kim, Jin; Lee, Yunho; Jung, Yousung; Chang, Sukbok

    2014-01-22

    We have developed the Rh-catalyzed selective C-H functionalization of 6-arylpurines, in which the purine moiety directs the C-H bond activation of the aryl pendant. While the first C-H amination proceeds via the N1-chelation assistance, the subsequent second C-H bond activation takes advantage of an intramolecular hydrogen-bonding interaction between the initially formed amino group and one nitrogen atom, either N1 or N7, of the purinyl part. Isolation of a rhodacycle intermediate and the substrate variation studies suggest that N1 is the main active site for the C-H functionalization of both the first and second amination in 6-arylpurines, while N7 plays an essential role in controlling the degree of functionalization serving as an intramolecular hydrogen-bonding site in the second amination process. This pseudo-Curtin-Hammett situation was supported by density functional calculations, which suggest that the intramolecular hydrogen-bonding capability helps second amination by reducing the steric repulsion between the first installed ArNH and the directing group.

  16. Enantiotopos-selective C-H oxygenation catalyzed by a supramolecular ruthenium complex.

    PubMed

    Frost, James R; Huber, Stefan M; Breitenlechner, Stefan; Bannwarth, Christoph; Bach, Thorsten

    2015-01-07

    Spirocyclic oxindoles undergo an enantioselective oxygenation reaction (nine examples; e.r. up to 97:3) upon catalysis by a chiral ruthenium porphyrin complex (1 mol %). The catalyst exhibits a lactam ring, which is responsible for substrate association through hydrogen bonds, and an active ruthenium center, which is in a defined spatial relationship to the oxygenation substrate. DFT calculations illustrate the perfect alignment of the active site with the reactive C-H bond and suggest--in line with the kinetic isotope effect--an oxygen rebound mechanism for the reaction.

  17. The antileishmanial activity of xanthohumol is mediated by mitochondrial inhibition.

    PubMed

    Monzote, Lianet; Lackova, Alexandra; Staniek, Katrin; Steinbauer, Silvia; Pichler, Gerald; Jäger, Walter; Gille, Lars

    2016-12-12

    Xanthohumol (Xan) is a natural constituent of human nutrition. Little is known about its actions on leishmanial parasites and their mitochondria as putative target. Therefore, we determined the antileishmanial activity of Xan and resveratrol (Res, as alternative compound with antileishmanial activity) with respect to mitochondria in Leishmania amazonensis promastigotes/amastigotes (LaP/LaA) in comparison with their activity in peritoneal macrophages from mouse (PMM) and macrophage cell line J774A.1 (J774). Mechanistic studies were conducted in Leishmania tarentolae promastigotes (LtP) and mitochondrial fractions isolated from LtP. Xan and Res demonstrated antileishmanial activity in LaA [half inhibitory concentration (IC50): Xan 7 µ m, Res 14 µ m]; while they had less influence on the viability of PMM (IC50: Xan 70 µ m, Res >438 µ m). In contrast to Res, Xan strongly inhibited oxygen consumption in Leishmania (LtP) but not in J774 cells. This was based on the inhibition of the mitochondrial electron transfer complex II/III by Xan, which was less pronounced with Res. Neither Xan nor Res increased mitochondrial superoxide release in LtP, while both decreased the mitochondrial membrane potential in LtP. Bioenergetic studies showed that LtP mitochondria have no spare respiratory capacity in contrast to mitochondria in J774 cells and can therefore much less adapt to stress by mitochondrial inhibitors, such as Xan. These data show that Xan may have antileishmanial activity, which is mediated by mitochondrial inhibition.

  18. Amphetamine activates calcium channels through dopamine transporter-mediated depolarization.

    PubMed

    Cameron, Krasnodara N; Solis, Ernesto; Ruchala, Iwona; De Felice, Louis J; Eltit, Jose M

    2015-11-01

    Amphetamine (AMPH) and its more potent enantiomer S(+)AMPH are psychostimulants used therapeutically to treat attention deficit hyperactivity disorder and have significant abuse liability. AMPH is a dopamine transporter (DAT) substrate that inhibits dopamine (DA) uptake and is implicated in DA release. Furthermore, AMPH activates ionic currents through DAT that modify cell excitability presumably by modulating voltage-gated channel activity. Indeed, several studies suggest that monoamine transporter-induced depolarization opens voltage-gated Ca(2+) channels (CaV), which would constitute an additional AMPH mechanism of action. In this study we co-express human DAT (hDAT) with Ca(2+) channels that have decreasing sensitivity to membrane depolarization (CaV1.3, CaV1.2 or CaV2.2). Although S(+)AMPH is more potent than DA in transport-competition assays and inward-current generation, at saturating concentrations both substrates indirectly activate voltage-gated L-type Ca(2+) channels (CaV1.3 and CaV1.2) but not the N-type Ca(2+) channel (CaV2.2). Furthermore, the potency to achieve hDAT-CaV electrical coupling is dominated by the substrate affinity on hDAT, with negligible influence of L-type channel voltage sensitivity. In contrast, the maximal coupling-strength (defined as Ca(2+) signal change per unit hDAT current) is influenced by CaV voltage sensitivity, which is greater in CaV1.3- than in CaV1.2-expressing cells. Moreover, relative to DA, S(+)AMPH showed greater coupling-strength at concentrations that induced relatively small hDAT-mediated currents. Therefore S(+)AMPH is not only more potent than DA at inducing hDAT-mediated L-type Ca(2+) channel currents but is a better depolarizing agent since it produces tighter electrical coupling between hDAT-mediated depolarization and L-type Ca(2+) channel activation.

  19. Polyoxometalate active charge-transfer material for mediated redox flow battery

    DOEpatents

    Anderson, Travis Mark; Hudak, Nicholas; Staiger, Chad; Pratt, Harry

    2017-01-17

    Redox flow batteries including a half-cell electrode chamber coupled to a current collecting electrode are disclosed herein. In a general embodiment, a separator is coupled to the half-cell electrode chamber. The half-cell electrode chamber comprises a first redox-active mediator and a second redox-active mediator. The first redox-active mediator and the second redox-active mediator are circulated through the half-cell electrode chamber into an external container. The container includes an active charge-transfer material. The active charge-transfer material has a redox potential between a redox potential of the first redox-active mediator and a redox potential of the second redox-active mediator. The active charge-transfer material is a polyoxometalate or derivative thereof. The redox flow battery may be particularly useful in energy storage solutions for renewable energy sources and for providing sustained power to an electrical grid.

  20. Enzymatic hydroxylation of an unactivated methylene C-H bond guided by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Narayan, Alison R. H.; Jiménez-Osés, Gonzalo; Liu, Peng; Negretti, Solymar; Zhao, Wanxiang; Gilbert, Michael M.; Ramabhadran, Raghunath O.; Yang, Yun-Fang; Furan, Lawrence R.; Li, Zhe; Podust, Larissa M.; Montgomery, John; Houk, K. N.; Sherman, David H.

    2015-08-01

    The hallmark of enzymes from secondary metabolic pathways is the pairing of powerful reactivity with exquisite site selectivity. The application of these biocatalytic tools in organic synthesis, however, remains under-utilized due to limitations in substrate scope and scalability. Here, we report how the reactivity of a monooxygenase (PikC) from the pikromycin pathway is modified through computationally guided protein and substrate engineering, and applied to the oxidation of unactivated methylene C-H bonds. Molecular dynamics and quantum mechanical calculations were used to develop a predictive model for substrate scope, site selectivity and stereoselectivity of PikC-mediated C-H oxidation. A suite of menthol derivatives was screened computationally and evaluated through in vitro reactions, where each substrate adhered to the predicted models for selectivity and conversion to product. This platform was also expanded beyond menthol-based substrates to the selective hydroxylation of a variety of substrate cores ranging from cyclic to fused bicyclic and bridged bicyclic compounds.

  1. H2S mediated thermal and photochemical methane activation

    PubMed Central

    Baltrusaitis, Jonas; de Graaf, Coen; Broer, Ria; Patterson, Eric

    2013-01-01

    Sustainable, low temperature methods of natural gas activation are critical in addressing current and foreseeable energy and hydrocarbon feedstock needs. Large portions of natural gas resources are still too expensive to process due to their high content of hydrogen sulfide gas (H2S) in mixture with methane, CH4, altogether deemed as sub-quality or “sour” gas. We propose a unique method for activating this “sour” gas to form a mixture of sulfur-containing hydrocarbon intermediates, CH3SH and CH3SCH3, and an energy carrier, such as H2. For this purpose, we computationally investigated H2S mediated methane activation to form a reactive CH3SH species via direct photolysis of sub-quality natural gas. Photoexcitation of hydrogen sulfide in the CH4+H2S complex results in a barrier-less relaxation via a conical intersection to form a ground state CH3SH+H2 complex. The resulting CH3SH can further be heterogeneously coupled over acidic catalysts to form higher hydrocarbons while the H2 can be used as a fuel. This process is very different from a conventional thermal or radical-based processes and can be driven photolytically at low temperatures, with enhanced controllability over the process conditions currently used in industrial oxidative natural gas activation. Finally, the proposed process is CO2 neutral, as opposed to the currently industrially used methane steam reforming (SMR). PMID:24150813

  2. Cyanate-mediated inhibition of neutrophil myeloperoxidase activity.

    PubMed Central

    Qian, M; Eaton, J W; Wolff, S P

    1997-01-01

    Cyanate (CNO-) forms spontaneously in solutions containing urea, and is present in urine and the body fluids of uraemic patients. We have explored the possibility that CNO- might be one of the unknown substances responsible for the reported impairment, by urine and uraemic plasma, of neutrophil oxidative metabolism (especially as measured by luminol-enhanced chemiluminescence). Luminol-enhanced chemiluminescence generated by human neutrophils derives predominantly from the activity of myeloperoxidase (MPO) which produces hypochlorous acid from H2O2 and Cl-. We hypothesized that CNO- (which resembles the 'pseudohalide' thiocyanate, an alternative substrate for MPO) might somehow interfere with the activity of MPO. In support of this, we find: (i) CNO- inhibits both peroxidative and halogenating activities of MPO and also inhibits the enzyme within intact human neutrophils; (ii) the inhibition is H2O2-dependent, irreversible, accompanied by covalent addition of [14C]CNO- (or a carbon-containing fragment thereof) to the enzyme; (iii) CNO- also inhibits Cl-/H2O2/MPO-mediated bacterial killing. Impairment of this arm of neutrophil bactericidal activity by CNO- formed from urea may be one factor in the risk of urinary-tract infection associated with urinary stasis and perhaps in the generalized increase in susceptibility to infection in uraemic patients. PMID:9337863

  3. H2S-mediated thermal and photochemical methane activation.

    PubMed

    Baltrusaitis, Jonas; de Graaf, Coen; Broer, Ria; Patterson, Eric V

    2013-12-02

    Sustainable, low-temperature methods for natural gas activation are critical in addressing current and foreseeable energy and hydrocarbon feedstock needs. Large portions of natural gas resources are still too expensive to process due to their high content of hydrogen sulfide gas (H2S) mixed with methane, deemed altogether as sub-quality or "sour" gas. We propose a unique method of activation to form a mixture of sulfur-containing hydrocarbon intermediates, CH3SH and CH3SCH3 , and an energy carrier such as H2. For this purpose, we investigated the H2S-mediated methane activation to form a reactive CH3SH species by means of direct photolysis of sub-quality natural gas. Photoexcitation of hydrogen sulfide in the CH4 + H2S complex resulted in a barrierless relaxation by a conical intersection to form a ground-state CH3SH + H2 complex. The resulting CH3SH could further be coupled over acidic catalysts to form higher hydrocarbons, and the resulting H2 used as a fuel. This process is very different from conventional thermal or radical-based processes and can be driven photolytically at low temperatures, with enhanced control over the conditions currently used in industrial oxidative natural gas activation. Finally, the proposed process is CO2 neutral, as opposed to the current industrial steam methane reforming (SMR).

  4. Acid-catalyzed oxidative addition of a C-H bond to a square planar d⁸ iridium complex.

    PubMed

    Hackenberg, Jason D; Kundu, Sabuj; Emge, Thomas J; Krogh-Jespersen, Karsten; Goldman, Alan S

    2014-06-25

    While the addition of C-H bonds to three-coordinate Ir(I) fragments is a central theme in the field of C-H bond activation, addition to square planar four-coordinate complexes is far less precedented. The dearth of such reactions may be attributed, at least in part, to kinetic factors elucidated in seminal work by Hoffmann. C-H additions to square planar carbonyl complexes in particular are unprecedented, in contrast to the extensive chemistry of oxidative addition of other substrates (e.g., H2, HX) to Vaska's Complex and related species. We report that Bronsted acids will catalyze the addition of the alkynyl C-H bond of phenylacetylene to the pincer complex (PCP)Ir(CO). The reaction occurs to give exclusively the trans-C-H addition product. Our proposed mechanism, based on kinetics and DFT calculations, involves initial protonation of (PCP)Ir(CO) to generate a highly active five-coordinate cationic intermediate, which forms a phenylacetylene adduct that is then deprotonated to give product.

  5. Ruthenium(II)-catalysed remote C-H alkylations as a versatile platform to meta-decorated arenes

    NASA Astrophysics Data System (ADS)

    Li, Jie; Korvorapun, Korkit; de Sarkar, Suman; Rogge, Torben; Burns, David J.; Warratz, Svenja; Ackermann, Lutz

    2017-06-01

    The full control of positional selectivity is of prime importance in C-H activation technology. Chelation assistance served as the stimulus for the development of a plethora of ortho-selective arene functionalizations. In sharp contrast, meta-selective C-H functionalizations continue to be scarce, with all ruthenium-catalysed transformations currently requiring difficult to remove or modify nitrogen-containing heterocycles. Herein, we describe a unifying concept to access a wealth of meta-decorated arenes by a unique arene ligand effect in proximity-induced ruthenium(II) C-H activation catalysis. The transformative nature of our strategy is mirrored by providing a step-economical entry to a range of meta-substituted arenes, including ketones, acids, amines and phenols--key structural motifs in crop protection, material sciences, medicinal chemistry and pharmaceutical industries.

  6. Aqua mediated synthesis of bio-active compounds.

    PubMed

    Panda, Siva S

    2013-05-01

    Recently the aqueous medium has attracted the interest of organic chemists, and many. Moreover, in the past 20 years, the drug-discovery process has undergone extraordinary changes, and high-throughput biological screening of potential drug candidates has led to an ever-increasing demand for novel drug-like compounds. Noteworthy advantages were observed during the course of study on aqua mediated synthesis of compounds of medicinal importance. The established advantages of water as a solvent for reactions are, water is the most abundant and available resource on the planet and many biochemical processes occur in aqueous medium. This review will focus on describing new developments in the application of water in medicinal chemistry for the synthesis of bio-active compounds possessing various biological properties.

  7. Language Mediated Concept Activation in Bilingual Memory Facilitates Cognitive Flexibility

    PubMed Central

    Kharkhurin, Anatoliy V.

    2017-01-01

    This is the first attempt of empirical investigation of language mediated concept activation (LMCA) in bilingual memory as a cognitive mechanism facilitating divergent thinking. Russian–English bilingual and Russian monolingual college students were tested on a battery of tests including among others Abbreviated Torrance Tests for Adults assessing divergent thinking traits and translingual priming (TLP) test assessing the LMCA. The latter was designed as a lexical decision priming test, in which a prime and a target were not related in Russian (language of testing), but were related through their translation equivalents in English (spoken only by bilinguals). Bilinguals outperformed their monolingual counterparts on divergent thinking trait of cognitive flexibility, and bilinguals’ performance on this trait could be explained by their TLP effect. Age of second language acquisition and proficiency in this language were found to relate to the TLP effect, and therefore were proposed to influence the directionality and strength of connections in bilingual memory. PMID:28701981

  8. Language Mediated Concept Activation in Bilingual Memory Facilitates Cognitive Flexibility.

    PubMed

    Kharkhurin, Anatoliy V

    2017-01-01

    This is the first attempt of empirical investigation of language mediated concept activation (LMCA) in bilingual memory as a cognitive mechanism facilitating divergent thinking. Russian-English bilingual and Russian monolingual college students were tested on a battery of tests including among others Abbreviated Torrance Tests for Adults assessing divergent thinking traits and translingual priming (TLP) test assessing the LMCA. The latter was designed as a lexical decision priming test, in which a prime and a target were not related in Russian (language of testing), but were related through their translation equivalents in English (spoken only by bilinguals). Bilinguals outperformed their monolingual counterparts on divergent thinking trait of cognitive flexibility, and bilinguals' performance on this trait could be explained by their TLP effect. Age of second language acquisition and proficiency in this language were found to relate to the TLP effect, and therefore were proposed to influence the directionality and strength of connections in bilingual memory.

  9. INCREASED ENDOCRINE ACTIVITY OF XENOBIOTIC CHEMICALS AS MEDIATED BY METABOLIC ACTIVATION

    EPA Science Inventory

    This research is part of an effort to develop in vitro assays and QSARs applicable to untested chemicals on EPA inventories through study of estrogen receptor (ER) binding and estrogen mediated gene expression in fish. The current effort investigates metabolic activation of chemi...

  10. INCREASED ENDOCRINE ACTIVITY OF XENOBIOTIC CHEMICALS AS MEDIATED BY METABOLIC ACTIVATION

    EPA Science Inventory

    This research is part of an effort to develop in vitro assays and QSARs applicable to untested chemicals on EPA inventories through study of estrogen receptor (ER) binding and estrogen mediated gene expression in fish. The current effort investigates metabolic activation of chemi...

  11. ortho-C-H Arylation of Benzoic Acids with Aryl Bromides and Chlorides Catalyzed by Ruthenium.

    PubMed

    Biafora, Agostino; Krause, Thilo; Hackenberger, Dagmar; Belitz, Florian; Gooßen, Lukas J

    2016-11-14

    A system consisting of catalytic amounts of [(p-cym)RuCl2 ]2 /PEt3 ⋅HBF4 , K2 CO3 as the base, and NMP as the solvent efficiently mediates the ortho-C-H arylation of benzoic acids with aryl bromides at 100 °C. Replacing the phosphine ligand with the amino acid dl-pipecolinic acid enables the analogous transformation with aryl chlorides. The key advantage of this broadly applicable transformation is the use of an inexpensive ruthenium catalyst in combination with simple carboxylates as directing groups, which can either be tracelessly removed or used as anchor points for decarboxylative ipso substitutions. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Cytokine-Mediated Activation of NK Cells during Viral Infection

    PubMed Central

    Freeman, Bailey E.; Raué, Hans-Peter; Hill, Ann B.

    2015-01-01

    ABSTRACT Natural killer (NK) cells provide a first line of defense against infection via the production of antiviral cytokines and direct lysis of target cells. Cytokines such as interleukin 12 (IL-12) and IL-18 are critical regulators of NK cell activation, but much remains to be learned about how cytokines interact to regulate NK cell function. Here, we have examined cytokine-mediated activation of NK cells during infection with two natural mouse pathogens, lymphocytic choriomeningitis virus (LCMV) and murine cytomegalovirus (MCMV). Using a systematic screen of 1,849 cytokine pairs, we identified the most potent combinations capable of eliciting gamma interferon (IFN-γ) production in NK cells. We observed that NK cell responses to cytokine stimulation were reduced 8 days after acute LCMV infection but recovered to preinfection levels by 60 days postinfection. In contrast, during MCMV infection, NK cell responses to cytokines remained robust at all time points examined. Ly49H-positive (Ly49H+) NK cells recognizing viral ligand m157 showed preferential proliferation during early MCMV infection. A population of these cells was still detected beyond 60 days postinfection, but these divided cells did not demonstrate enhanced IFN-γ production in response to innate cytokine stimulation. Instead, the maturation state of the NK cells (as determined by CD11b or CD27 surface phenotype) was predictive of responsiveness to cytokines, regardless of Ly49H expression. These results help define cytokine interactions that regulate NK cell activation and highlight variations in NK cell function during two unrelated viral infections. IMPORTANCE Natural killer cells play an important role in immunity to many viral infections. From an initial screen of 1,849 cytokine pairs, we identified the most stimulatory cytokine combinations capable of inducing IFN-γ production by NK cells. Ly49H+ NK cells, which can be directly activated by MCMV protein m157, preferentially proliferated

  13. Palladium-Catalyzed Construction of Heteroatom-Containing π-Conjugated Systems by Intramolecular Oxidative C-H/C-H Coupling Reaction.

    PubMed

    Saito, Kenta; Chikkade, Prasanna Kumara; Kanai, Motomu; Kuninobu, Yoichiro

    2015-06-01

    Synthesis of heteroatom-containing ladder-type π-conjugated molecules was successfully achieved via a palladium-catalyzed intramolecular oxidative C-H/C-H cross-coupling reaction. This reaction provides a variety of π-conjugated molecules bearing heteroatoms, such as nitrogen, oxygen, phosphorus, and sulfur atoms, and a carbonyl group. The π-conjugated molecules were synthesized efficiently, even in gram scale, and larger π-conjugated molecules were also obtained by a double C-H/C-H cross-coupling reaction and successive oxidative cycloaromatization.

  14. alpha-Diimine Ligand Coordination and C H Bond Activation in the Reaction of Os3(CO)10(MeCN)2 with 6-R-2,2'-Bipyridine (where R = Et, Ph): X-ray Diffraction Structures of the Ortho-Metalated

    SciTech Connect

    Carrano, Carl J.; Wang, Xiaoping; Poola, Bhaskar; Powell, Cynthia B.; Richmond, Michael G.

    2009-01-01

    The reactivity of the labile cluster Os3(CO)10(MeCN)2 (1) with the monofunctionalized heterocyclic ligands 6-R-2,2 -bipyridine (where R = Et, Ph) has been investigated. The alkyl-substituted heterocycle 6-Et-2,2 -bipyridine reacts with 1 in refluxing CH2Cl2 to give an isomeric mixture of HOs3(CO)9(N2C12H11) due to cyclometalation of the side-chain ethyl group (2) and ortho metalation of the unsubstituted bipyridine ring (3). The solid-state structure of the latter cluster, HOs3(CO)9(N2C10H6-6-Et) (3), has unequivocally established the site of the C-H bond activation in the product. Treatment of 1 with the aryl-substituted ligand 6-Ph-2,2 -bipyridine proceeds similarly with ortho metalation at the ancillary phenyl group and the C-6 ortho site of the unsubstituted bipyridine ring, as verified by 1H NMR spectroscopy. The X-ray diffraction structure of the thermodynamically more stable bipyridine-metalated cluster HOs3(CO)9(N2C10H6-6-Ph) (5) has been determined. The course of these reactions is discussed with respect to our recent study involving the reaction of cluster 1 with the ligand 6-Me-2,2 -bipyridine. Graphical Abstract The reaction between the labile cluster Os3(CO)10(MeCN)2 (1) and the monofunctionalized heterocyclic ligand 6-Et-2,2 -bipyridine proceeds readily at room temperature to furnish an isomeric mixture of the cyclometalated and ortho-metalated hydride-bridged clusters HOs3(CO)9(N2C12H11) (2 and 3). Treatment of 1 with 6-Ph-2,2 -bipyridine also yields two distinct hydride-containing clusters that result from independent ortho-metalation paths involving the 6-phenyl substituent and unsubstituted bipyridine group. The bipyridine-derived ortho metalation attendant in the new clusters HOs3(CO)9(N2C10H6-6-Et) (3) and HOs3(CO)9(N2C10H6-6-Ph) (5) has been established by X-ray crystallography.

  15. Retinoic Acid-mediated Nuclear Receptor Activation and Hepatocyte Proliferation

    PubMed Central

    Bushue, Nathan; Wan, Yu-Jui Yvonne

    2016-01-01

    Due to their well-known differentiation and apoptosis-inducing abilities, retinoic acid (RA) and its analogs have strong anti-cancer efficacy in human cancers. However, in vivo RA is a liver mitogen. While speculation has persisted that RA-mediated signaling is likely involved in hepatocyte proliferation during liver regeneration, direct evidence is still required. Findings in support of this proposition include observations that a release of retinyl palmitate (the precursor of RA) occurs in liver stellate cells following liver injury. Nevertheless, the biological action of this released vitamin A is virtually unknown. More likely is that the released vitamin A is converted to RA, the biological form, and then bound to a specific receptor (retinoid x receptor; RXRα), which is most abundantly expressed in the liver. Considering the mitogenic effects of RA, the RA-activated RXRα would likely then influence hepatocyte proliferation and liver tissue repair. At present, the mechanism by which RA stimulates hepatocyte proliferation is largely unknown. This review summarizes the activation of nuclear receptors (peroxisome proliferator activated receptor-α, pregnane x receptor, constitutive androstane receptor, and farnesoid x receptor) in an RXRα dependent manner to induce hepatocyte proliferation, providing a link between RA and its proliferative role. PMID:27635169

  16. Activation of AhR-mediated toxicity pathway by emerging ...

    EPA Pesticide Factsheets

    Polychlorinated diphenyl sulfides (PCDPSs) are a group of environmental pollutants for which limited toxicological information is available. This study tested the hypothesis that PCDPSs could activate the mammalian aryl hydrocarbon receptor (AhR) mediated toxicity pathways. Eighteen PCDPSs were tested in the H4IIE-luc transactivation assay, with 13/18 causing concentration-dependent AhR activation. Potencies of several congeners were similar to those of mono-ortho substituted polychlorinated biphenyls. A RNA sequencing (RNA-seq)-based transcriptomic analysis was performed on H4IIE cells treated with two PCDPS congeners, 2,2',3,3',4,5,6-hepta-CDPS, and 2,4,4',5-tetra-CDPS. Results of RNA-seq revealed a remarkable modulation on a relatively short gene list by exposure to the tested concentrations of PCDPSs, among which, Cyp1 responded with the greatest fold up-regulation. Both the identities of the modulated transcripts and the associated pathways were consistent with targets and pathways known to be modulated by other types of AhR agonists and there was little evidence for significant off-target effects within the cellular context of the H4IIE bioassay. The results suggest AhR activation as a toxicologically relevant mode of action for PCDPSs suggests the utility of AhR-related toxicity pathways for predicting potential hazards associated with PCDPS exposure in mammals and potentially other vertebrates. Polychlorinated diphenyl sulfides (PCDPSs) are a group of en

  17. Activation of AhR-mediated toxicity pathway by emerging ...

    EPA Pesticide Factsheets

    Polychlorinated diphenyl sulfides (PCDPSs) are a group of environmental pollutants for which limited toxicological information is available. This study tested the hypothesis that PCDPSs could activate the mammalian aryl hydrocarbon receptor (AhR) mediated toxicity pathways. Eighteen PCDPSs were tested in the H4IIE-luc transactivation assay, with 13/18 causing concentration-dependent AhR activation. Potencies of several congeners were similar to those of mono-ortho substituted polychlorinated biphenyls. A RNA sequencing (RNA-seq)-based transcriptomic analysis was performed on H4IIE cells treated with two PCDPS congeners, 2,2',3,3',4,5,6-hepta-CDPS, and 2,4,4',5-tetra-CDPS. Results of RNA-seq revealed a remarkable modulation on a relatively short gene list by exposure to the tested concentrations of PCDPSs, among which, Cyp1 responded with the greatest fold up-regulation. Both the identities of the modulated transcripts and the associated pathways were consistent with targets and pathways known to be modulated by other types of AhR agonists and there was little evidence for significant off-target effects within the cellular context of the H4IIE bioassay. The results suggest AhR activation as a toxicologically relevant mode of action for PCDPSs suggests the utility of AhR-related toxicity pathways for predicting potential hazards associated with PCDPS exposure in mammals and potentially other vertebrates. Polychlorinated diphenyl sulfides (PCDPSs) are a group of en

  18. Observation of Fe(V)=O using variable-temperature mass spectrometry and its enzyme-like C-H and C=C oxidation reactions

    NASA Astrophysics Data System (ADS)

    Prat, Irene; Mathieson, Jennifer S.; Güell, Mireia; Ribas, Xavi; Luis, Josep M.; Cronin, Leroy; Costas, Miquel

    2011-10-01

    Oxo-transfer chemistry mediated by iron underpins many biological processes and today is emerging as synthetically very important for the catalytic oxidation of C-H and C=C moieties that are hard to activate conventionally. Despite the vast amount of research in this area, experimental characterization of the reactive species under catalytic conditions is very limited, although a Fe(V)=O moiety was postulated. Here we show, using variable-temperature mass spectrometry, the generation of a Fe(V)=O species within a synthetic non-haem complex at -40 °C and its reaction with an olefin. Also, with isotopic labelling we were able both to follow oxygen-atom transfer from H2O2/H2O through Fe(V)=O to the products and to probe the reactivity as a function of temperature. This study pioneers the implementation of variable-temperature mass spectrometry to investigate reactive intermediates.

  19. Observation of Fe(V)=O using variable-temperature mass spectrometry and its enzyme-like C-H and C=C oxidation reactions.

    PubMed

    Prat, Irene; Mathieson, Jennifer S; Güell, Mireia; Ribas, Xavi; Luis, Josep M; Cronin, Leroy; Costas, Miquel

    2011-09-04

    Oxo-transfer chemistry mediated by iron underpins many biological processes and today is emerging as synthetically very important for the catalytic oxidation of C-H and C=C moieties that are hard to activate conventionally. Despite the vast amount of research in this area, experimental characterization of the reactive species under catalytic conditions is very limited, although a Fe(V)=O moiety was postulated. Here we show, using variable-temperature mass spectrometry, the generation of a Fe(V)=O species within a synthetic non-haem complex at -40 °C and its reaction with an olefin. Also, with isotopic labelling we were able both to follow oxygen-atom transfer from H(2)O(2)/H(2)O through Fe(V)=O to the products and to probe the reactivity as a function of temperature. This study pioneers the implementation of variable-temperature mass spectrometry to investigate reactive intermediates.

  20. Diarylindenotetracenes via a selective cross-coupling/C-H functionalization: electron donors for organic photovoltaic cells.

    PubMed

    Gu, Xingxian; Luhman, Wade A; Yagodkin, Elisey; Holmes, Russell J; Douglas, Christopher J

    2012-03-16

    A direct synthesis of new donor materials for organic photovoltaic cells is reported. Diaryindenotetracenes were synthesized utilizing a Kumada-Tamao-Corriu cross-coupling of peri-substituted tetrachlorotetracene with spontaneous indene annulation via C-H activation. Vacuum deposited planar heterojunction organic photovoltaic cells incorporating these molecules as electron donors exhibit power conversion efficiencies exceeding 1.5% with open-circuit voltages ranging from 0.7 to 1.1 V when coupled with C(60) as an electron acceptor.

  1. Palladium-catalyzed direct ortho C-H arylation of 2-arylpyridine derivatives with aryltrimethoxysilane.

    PubMed

    Li, Wu; Yin, Zhangwei; Jiang, Xiaoqing; Sun, Peipei

    2011-10-21

    A Pd(OAc)(2)-catalyzed cross-coupling reaction between 2-arylpyridine and aryltrimethoxysilane in the presence of AgF and BQ in 1,4-dioxane was studied. After various reaction parameters (catalyst, oxidant, additive, solvent and reaction temperature) were examined, the optimal conditions for the reaction were identified. The synthesis is compatible to aryltrimethoxysilane with both electron-withdrawing and electron-donating groups on the aryl moiety with moderate yields. The kinetic isotope effect (k(H)/k(D)) for the C-H bond activation was provided.

  2. Pd(II)-Catalyzed Alkylation of Tertiary Carbon via Directing-Group-Mediated C(sp(3))-H Activation: Synthesis of Chiral 1,1,2-Trialkyl Substituted Cyclopropanes.

    PubMed

    Hoshiya, Naoyuki; Takenaka, Kei; Shuto, Satoshi; Uenishi, Jun'ichi

    2016-01-04

    A Pd(OAc)2-catalyzed alkylation reaction of the tertiary carbon of chiral cyclopropane substrates with alkyl iodides and bromides via C(sp(3))-H activation has been developed. This is an elusive example of a C-H activation-mediated alkylation of tertiary carbon to effectively construct a quaternary carbon center. The alkylation proceeded with various alkyl halides, including those of functional groups, to provide a variety of chiral cis- and trans-1,1,2,-trialkyl substituted cyclopropanes of medicinal chemical importance.

  3. Physician-based activity counseling: intervention effects on mediators of motivational readiness for physical activity.

    PubMed

    Pinto, B M; Lynn, H; Marcus, B H; DePue, J; Goldstein, M G

    2001-01-01

    In theory-based interventions for behavior change, there is a need to examine the effects of interventions on the underlying theoretical constructs and the mediating role of such constructs. These two questions are addressed in the Physically Active for Life study, a randomized trial of physician-based exercise counseling for older adults. Three hundred fifty-five patients participated (intervention n = 181, control n = 174; mean age = 65.6 years). The underlying theories used were the Transtheoretical Model, Social Cognitive Theory and the constructs of decisional balance (benefits and barriers), self-efficacy, and behavioral and cognitive processes of change. Motivational readiness for physical activity and related constructs were assessed at baseline, 6 weeks, and 8 months. Linear or logistic mixed effects models were used to examine intervention effects on the constructs, and logistic mixed effects models were used for mediator analyses. At 6 weeks, the intervention had significant effects on decisional balance, self-efficacy, and behavioral processes, but these effects were not maintained at 8 months. At 6 weeks, only decisional balance and behavioral processes were identified as mediators of motivational readiness outcomes. Results suggest that interventions of greater intensity and duration may be needed for sustained changes in mediators and motivational readiness for physical activity among older adults.

  4. Site-Selective Aliphatic C-H Chlorination Using N-Chloroamides Enables a Synthesis of Chlorolissoclimide.

    PubMed

    Quinn, Ryan K; Könst, Zef A; Michalak, Sharon E; Schmidt, Yvonne; Szklarski, Anne R; Flores, Alex R; Nam, Sangkil; Horne, David A; Vanderwal, Christopher D; Alexanian, Erik J

    2016-01-20

    Methods for the practical, intermolecular functionalization of aliphatic C-H bonds remain a paramount goal of organic synthesis. Free radical alkane chlorination is an important industrial process for the production of small molecule chloroalkanes from simple hydrocarbons, yet applications to fine chemical synthesis are rare. Herein, we report a site-selective chlorination of aliphatic C-H bonds using readily available N-chloroamides and apply this transformation to a synthesis of chlorolissoclimide, a potently cytotoxic labdane diterpenoid. These reactions deliver alkyl chlorides in useful chemical yields with substrate as the limiting reagent. Notably, this approach tolerates substrate unsaturation that normally poses major challenges in chemoselective, aliphatic C-H functionalization. The sterically and electronically dictated site selectivities of the C-H chlorination are among the most selective alkane functionalizations known, providing a unique tool for chemical synthesis. The short synthesis of chlorolissoclimide features a high yielding, gram-scale radical C-H chlorination of sclareolide and a three-step/two-pot process for the introduction of the β-hydroxysuccinimide that is salient to all the lissoclimides and haterumaimides. Preliminary assays indicate that chlorolissoclimide and analogues are moderately active against aggressive melanoma and prostate cancer cell lines.

  5. Nickel-Catalyzed Insertion of Alkynes and Electron-Deficient Olefins into Unactivated sp(3) C-H Bonds.

    PubMed

    Maity, Soham; Agasti, Soumitra; Earsad, Arif Mahammad; Hazra, Avijit; Maiti, Debabrata

    2015-08-03

    Insertion of unsaturated systems such as alkynes and olefins into unactivated sp(3) C-H bonds remains an unexplored problem. We herein address this issue by successfully incorporating a wide variety of functionalized alkynes and electron-deficient olefins into the unactivated sp(3) C-H bond of pivalic acid derivatives with excellent syn- and linear- selectivity. A strongly chelating 8-aminoquinoline directing group proved beneficial for these insertion reactions, while an air-stable and inexpensive Ni(II) salt has been employed as the active catalyst.

  6. Palladium(II)-catalyzed ortho-C-H arylation/alkylation of N-benzoyl α-amino ester derivatives.

    PubMed

    Misal Castro, Luis C; Chatani, Naoto

    2014-04-14

    The palladium-catalyzed arylation/alkylation of ortho-C-H bonds in N-benzoyl α-amino ester derivatives is described. In such a system both the NH-amido and the CO2R groups in the α-amino ester moieties play a role in successful C-H activation/C-C bond formation using iodoaryl coupling partners. A wide variety of functional groups and electron-rich/deficient iodoarenes are tolerated. The yields obtained range from 20 to 95%.

  7. Asymmetric Lewis acid organocatalysis of the Diels-Alder reaction by a silylated C-H acid.

    PubMed

    Gatzenmeier, Tim; van Gemmeren, Manuel; Xie, Youwei; Höfler, Denis; Leutzsch, Markus; List, Benjamin

    2016-02-26

    Silylium ion equivalents have shown promise as Lewis acid catalysts for a range of important C-C bond-forming reactions. Here we describe chiral C-H acids that upon in situ silylation, generate silylium-carbanion pairs, which are extremely active Lewis acid catalysts for enantioselective Diels-Alder reactions of cinnamates with cyclopentadiene. Enantiomeric ratios of up to 97:3 and diastereomeric ratios of more than 20:1 are observed across a diverse set of substitution patterns with 1 mole percent (mol %) of C-H acid catalyst and 10 mol % of a silylating reagent. The results show promise for broad applications of such C-H acid-derived silylium ion equivalents in asymmetric Lewis acid catalysis.

  8. M-cadherin-mediated intercellular interactions activate satellite cell division.

    PubMed

    Marti, Merce; Montserrat, Núria; Pardo, Cristina; Mulero, Lola; Miquel-Serra, Laia; Rodrigues, Alexandre Miguel Cavaco; Andrés Vaquero, José; Kuebler, Bernd; Morera, Cristina; Barrero, María José; Izpisua Belmonte, Juan Carlos

    2013-11-15

    Adult muscle stem cells and their committed myogenic precursors, commonly referred to as the satellite cell population, are involved in both muscle growth after birth and regeneration after damage. It has been previously proposed that, under these circumstances, satellite cells first become activated, divide and differentiate, and only later fuse to the existing myofiber through M-cadherin-mediated intercellular interactions. Our data show that satellite cells fuse with the myofiber concomitantly to cell division, and only when the nuclei of the daughter cells are inside the myofiber, do they complete the process of differentiation. Here we demonstrate that M-cadherin plays an important role in cell-to-cell recognition and fusion, and is crucial for cell division activation. Treatment of satellite cells with M-cadherin in vitro stimulates cell division, whereas addition of anti-M-cadherin antibodies reduces the cell division rate. Our results suggest an alternative model for the contribution of satellite cells to muscle development, which might be useful in understanding muscle regeneration, as well as muscle-related dystrophies.

  9. Growth mechanism and composition of ultrasmooth a-C:H:Si films grown from energetic ions for superlubricity

    SciTech Connect

    Chen, Xinchun Kato, Takahisa

    2014-01-28

    Growth mechanism and ion energy dependence of composition of ultrasmooth a-C:H:Si films grown from ionization of tetramethylsilane (TMS) and toluene mixture at a fixed gas ratio have been investigated by varying the applied bias voltage. The dynamic scaling theory is employed to evaluate the roughness evolution of a-C:H:Si films, and to extract roughness and growth exponents of α ∼ 0.51 and β ∼ 0, respectively. The atomically smooth surface of a-C:H:Si films with Ra ∼ 0.1 nm is thermally activated by the energetic ion-impact induced subsurface “polishing” process for ion dominated deposition. The ion energy (bias voltage) plays a paramount role in determining the hydrogen incorporation, bonding structure and final stoichiometry of a-C:H:Si films. The hydrogen content in the films measured by ERDA gradually decreases from 36.7 to 17.3 at. % with increasing the bias voltage from 0.25 to 3.5 kV, while the carbon content in the films increases correspondingly from 52.5 to 70.1 at. %. The Si content is kept almost constant at ∼9–10 at. %. Depending on the ion-surface interactions, the bonding structure of a-C:H:Si films grown in different ion energy regions evolves from chain-developed polymer-like to cross-linked diamond-like to sp{sup 2}-bonded a–C as revealed by XPS, Raman, and FTIR analysis. Such a structural evolution is reflected in their measured nanomechanical properties such as hardness, modulus, and compressive stress. An enhanced viscoplastic behavior (i.e., viscoplastic exponent of ∼0.06) is observed for polymeric a-C:H:Si films. A hydrogen content threshold (H > 20 at. %) exists for the as-grown a-C:H:Si films to exhibit superlow friction in dry N{sub 2} atmosphere. An extremely low friction coefficient of ∼0.001 can be obtained for polymer-like a-C:H:Si film. These near-frictionless a-C:H:Si films are strongly promising for applications in industrial lubricating systems.

  10. Growth mechanism and composition of ultrasmooth a-C:H:Si films grown from energetic ions for superlubricity

    NASA Astrophysics Data System (ADS)

    Chen, Xinchun; Kato, Takahisa

    2014-01-01

    Growth mechanism and ion energy dependence of composition of ultrasmooth a-C:H:Si films grown from ionization of tetramethylsilane (TMS) and toluene mixture at a fixed gas ratio have been investigated by varying the applied bias voltage. The dynamic scaling theory is employed to evaluate the roughness evolution of a-C:H:Si films, and to extract roughness and growth exponents of α ˜ 0.51 and β ˜ 0, respectively. The atomically smooth surface of a-C:H:Si films with Ra ˜ 0.1 nm is thermally activated by the energetic ion-impact induced subsurface "polishing" process for ion dominated deposition. The ion energy (bias voltage) plays a paramount role in determining the hydrogen incorporation, bonding structure and final stoichiometry of a-C:H:Si films. The hydrogen content in the films measured by ERDA gradually decreases from 36.7 to 17.3 at. % with increasing the bias voltage from 0.25 to 3.5 kV, while the carbon content in the films increases correspondingly from 52.5 to 70.1 at. %. The Si content is kept almost constant at ˜9-10 at. %. Depending on the ion-surface interactions, the bonding structure of a-C:H:Si films grown in different ion energy regions evolves from chain-developed polymer-like to cross-linked diamond-like to sp2-bonded a-C as revealed by XPS, Raman, and FTIR analysis. Such a structural evolution is reflected in their measured nanomechanical properties such as hardness, modulus, and compressive stress. An enhanced viscoplastic behavior (i.e., viscoplastic exponent of ˜0.06) is observed for polymeric a-C:H:Si films. A hydrogen content threshold (H > 20 at. %) exists for the as-grown a-C:H:Si films to exhibit superlow friction in dry N2 atmosphere. An extremely low friction coefficient of ˜0.001 can be obtained for polymer-like a-C:H:Si film. These near-frictionless a-C:H:Si films are strongly promising for applications in industrial lubricating systems.

  11. Room-temperature C-H arylation: merger of Pd-catalyzed C-H functionalization and visible-light photocatalysis.

    PubMed

    Kalyani, Dipannita; McMurtrey, Kate B; Neufeldt, Sharon R; Sanford, Melanie S

    2011-11-23

    This communication describes the development of a room-temperature ligand-directed C-H arylation reaction using aryldiazonium salts. This was achieved by the successful merger of palladium-catalyzed C-H functionalization and visible-light photoredox catalysis. The new method is general for a variety of directing groups and tolerates many common functional groups.

  12. Fujiwara-Moritani Reaction of Weinreb Amides using a Ruthenium-Catalyzed C-H Functionalization Reaction.

    PubMed

    Das, Riki; Kapur, Manmohan

    2015-07-01

    The ruthenium-catalyzed Fujiwara-Moritani reaction (oxidative-Heck reaction) of Weinreb amides is reported herein. The reaction affords exclusively ortho-C-H olefination products, has excellent substrate scope and tolerates halogen functionalities, which increase the synthetic utility of the method. A variety of activated olefins as well as styrenes can be employed as coupling partners.

  13. Role of Lewis acid additives in a palladium catalyzed directed C-H functionalization reaction of benzohydroxamic acid to isoxazolone.

    PubMed

    Athira, C; Sunoj, Raghavan B

    2016-12-20

    Metallic salts as well as protic additives are widely employed in transition metal catalyzed C-H bond functionalization reactions to improve the efficiency of catalytic protocols. In one such example, ZnCl2 and pivalic acid are used as additives in a palladium catalyzed synthesis of isoxazolone from a readily available benzohydroxamic acid under one pot conditions. In this article, we present some important mechanistic insights into the role of ZnCl2 and pivalic acid, gained by using density functional theory (M06) computations. Two interesting modes of action of ZnCl2 are identified in various catalytic steps involved in the formation of isoxazolone. The conventional Lewis acid coordination wherein zinc chloride (ZnCl2·(DMA)) binds to the carbonyl group is found to be more favored in the C-H activation step. However, the participation of a hetero-bimetallic Pd-Zn species is preferred in reductive elimination leading to Caryl-N bond formation. Pivalic acid helps in relay proton transfer in C-H bond activation through a cyclometallation deprotonation (CMD) process. The explicit inclusion of ZnCl2 and solvent N,N-dimethyl acetamide (DMA) stabilizes the transition state and also helps reduce the activation barrier for the C-H bond activation step. The electronic communication between the two metal species is playing a crucial role in stabilizing the Caryl-N bond formation transition state through a Pd-Zn hetero-bimetallic interaction.

  14. Synthesis of spiro-oxoindoles through Pd-catalyzed remote C-H alkylation using α-diazocarbonyl compounds.

    PubMed

    Pérez-Gómez, Marta; Hernández-Ponte, Sergio; Bautista, Delia; García-López, José-Antonio

    2017-03-02

    In this communication we describe a new route to spiro-oxoindole derivatives through a novel Pd-catalyzed cascade process. This reaction is based on the remote C-H activation performed by σ-alkyl Pd(ii) species generated in situ via intramolecular carbopalladation of alkenes, followed by insertion of a carbenoid coupling partner.

  15. Lipopolysaccharide (LPS)-mediated macrophage activation: the role of calcium in the generation of tumoricidal activity

    SciTech Connect

    Drysdale, B.E.; Shin, H.S.

    1986-03-01

    As the authors reported, calcium ionophore, A23187, activates macrophages (M theta) for tumor cell killing and the activated M theta produce a soluble cytotoxic factor (M theta-CF) that is similar if not identical to tumor necrosis factor. Based on these observations they have investigated whether calcium is involved in the activation mediated by another potent M theta activator, LPS. The authors have shown that A23187 caused uptake of extracellular /sup 45/Ca/sup + +/ but LPS did not. They have examined the effect of depleting extracellular calcium by using medium containing no added calcium containing 1.0 mM EGTA. In no case did depletion result in decreased M theta-CF production by the M theta activated with LPS. Measurements using the fluorescent, intracellular calcium indicator, Quin 2 have also been performed. While ionomycin, caused a rapid change in the Quin-2 signal, LPS at a concentration even in excess of that required to activate the M theta caused no change in the signal. When high doses of Quin 2 or another intracellular chelator, 8-(diethylaminol-octyl-3,4,5-trimethoxybenzoate, were used to treat M theta, M theta-CF production decreased and cytotoxic activity was impaired. These data indicate that one or more of the processes involved in M theta-CF production does require calcium, but that activation mediated by LPS occurs without the influx of extracellular calcium or redistribution of intracellular calcium.

  16. Histone Acetyltransferase Complexes Can Mediate Transcriptional Activation by the Major Glucocorticoid Receptor Activation Domain

    PubMed Central

    Wallberg, Annika E.; Neely, Kristen E.; Gustafsson, Jan-Åke; Workman, Jerry L.; Wright, Anthony P. H.; Grant, Patrick A.

    1999-01-01

    Previous studies have shown that the Ada adapter proteins are important for glucocorticoid receptor (GR)-mediated gene activation in yeast. The N-terminal transactivation domain of GR, τ1, is dependent upon Ada2, Ada3, and Gcn5 for transactivation in vitro and in vivo. Using in vitro techniques, we demonstrate that the GR-τ1 interacts directly with the native Ada containing histone acetyltransferase (HAT) complex SAGA but not the related Ada complex. Mutations in τ1 that reduce τ1 transactivation activity in vivo lead to a reduced binding of τ1 to the SAGA complex and conversely, mutations increasing the transactivation activity of τ1 lead to an increased binding of τ1 to SAGA. In addition, the Ada-independent NuA4 HAT complex also interacts with τ1. GAL4-τ1-driven transcription from chromatin templates is stimulated by SAGA and NuA4 in an acetyl coenzyme A-dependent manner. Low-activity τ1 mutants reduce SAGA- and NuA4-stimulated transcription while high-activity τ1 mutants increase transcriptional activation, specifically from chromatin templates. Our results demonstrate that the targeting of native HAT complexes by the GR-τ1 activation domain mediates transcriptional stimulation from chromatin templates. PMID:10454542

  17. The PI3K-mediated activation of CRAC independently regulates adenylyl cyclase activation and chemotaxis.

    PubMed

    Comer, Frank I; Lippincott, Christopher K; Masbad, Joseph J; Parent, Carole A

    2005-01-26

    The ability of a cell to detect an external chemical signal and initiate a program of directed migration along a gradient comprises the fundamental process called chemotaxis. Investigations in Dictyostelium discoideum and neutrophils have established that pleckstrin homology (PH) domain-containing proteins that bind to the PI3K products PI(3,4)P2 and PI(3,4,5)P3, such as CRAC (cytosolic regulator of adenylyl cyclase) and Akt/PKB, translocate specifically to the leading edge of chemotaxing cells. CRAC is essential for the chemoattractant-mediated activation of the adenylyl cyclase ACA, which converts ATP into cAMP, the primary chemoattractant for D. discoideum. The mechanisms by which CRAC activates ACA remain to be determined. We now show that in addition to its essential role in the activation of ACA, CRAC is involved in regulating chemotaxis. Through mutagenesis, we show that these two functions are independently regulated downstream of PI3K. A CRAC mutant that has lost the capacity to bind PI3K products does not support chemotaxis and shows minimal ACA activation. Finally, overexpression of CRAC and various CRAC mutants show strong effects on ACA activation with little effect on chemotaxis. These findings establish that chemoattractant-mediated activation of PI3K is important for the CRAC-dependent regulation of both chemotaxis and adenylyl cyclase activation.

  18. Oxidative addition of methane and benzene C--H bonds to rhodium center: A DFT study

    NASA Astrophysics Data System (ADS)

    Bi, Siwei; Zhang, Zhenwei; Zhu, Shufen

    2006-11-01

    A density functional theory study on mechanisms of the oxidative addition of methane and benzene C-H bonds to the rhodium center containing Cp and PMe 3 ligands has been performed. Our calculated results confirm that the C-H bond cleavage from a sigma complex to a hydride alkyl complex is the rate-determining step. Compared with the case of methane C-H bond, the oxidative addition of benzene C-H bond is more favorable kinetically and thermodynamically. Stronger backdonation from metal center to the σ ∗ antibonding orbital of benzene C-H bond is responsible for the observations.

  19. Plasma-activated air mediates plasmid DNA delivery in vivo

    PubMed Central

    Edelblute, Chelsea M; Heller, Loree C; Malik, Muhammad A; Bulysheva, Anna; Heller, Richard

    2016-01-01

    Plasma-activated air (PAA) provides a noncontact DNA transfer platform. In the current study, PAA was used for the delivery of plasmid DNA in a 3D human skin model, as well as in vivo. Delivery of plasmid DNA encoding luciferase to recellularized dermal constructs was enhanced, resulting in a fourfold increase in luciferase expression over 120 hours compared to injection only (P < 0.05). Delivery of plasmid DNA encoding green fluorescent protein (GFP) was confirmed in the epidermal layers of the construct. In vivo experiments were performed in BALB/c mice, with skin as the delivery target. PAA exposure significantly enhanced luciferase expression levels 460-fold in exposed sites compared to levels obtained from the injection of plasmid DNA alone (P < 0.001). Expression levels were enhanced when the plasma reactor was positioned more distant from the injection site. Delivery of plasmid DNA encoding GFP to mouse skin was confirmed by immunostaining, where a 3-minute exposure at a 10 mm distance displayed delivery distribution deep within the dermal layers compared to an exposure at 3 mm where GFP expression was localized within the epidermis. Our findings suggest PAA-mediated delivery warrants further exploration as an alternative approach for DNA transfer for skin targets. PMID:27110584

  20. Inhibition of Nonsense-Mediated RNA Decay Activates Autophagy

    PubMed Central

    Wengrod, Jordan; Martin, Leenus; Wang, Ding; Frischmeyer-Guerrerio, Pamela; Dietz, Harry C.

    2013-01-01

    Nonsense-mediated RNA decay (NMD) is an mRNA surveillance mechanism which rapidly degrades select cytoplasmic mRNAs. We and others have shown that NMD is a dynamically regulated process inhibited by amino acid deprivation, hypoxia, and other cellular stresses commonly generated by the tumor microenvironment. This inhibition of NMD can result in the accumulation of misfolded, mutated, and aggregated proteins, but how cells adapt to these aberrant proteins is unknown. Here we demonstrate that the inhibition of NMD activates autophagy, an established protein surveillance mechanism, both in vitro and in vivo. Conversely, the hyperactivation of NMD blunts the induction of autophagy in response to a variety of cellular stresses. The regulation of autophagy by NMD is due, in part, to stabilization of the documented NMD target ATF4. NMD inhibition increases intracellular amino acids, a hallmark of autophagy, and the concomitant inhibition of autophagy and NMD, either molecularly or pharmacologically, leads to synergistic cell death. Together these studies indicate that autophagy is an adaptive response to NMD inhibition and uncover a novel relationship between an mRNA surveillance system and a protein surveillance system, with important implications for the treatment of cancer. PMID:23508110

  1. Inhibition of nonsense-mediated RNA decay activates autophagy.

    PubMed

    Wengrod, Jordan; Martin, Leenus; Wang, Ding; Frischmeyer-Guerrerio, Pamela; Dietz, Harry C; Gardner, Lawrence B

    2013-06-01

    Nonsense-mediated RNA decay (NMD) is an mRNA surveillance mechanism which rapidly degrades select cytoplasmic mRNAs. We and others have shown that NMD is a dynamically regulated process inhibited by amino acid deprivation, hypoxia, and other cellular stresses commonly generated by the tumor microenvironment. This inhibition of NMD can result in the accumulation of misfolded, mutated, and aggregated proteins, but how cells adapt to these aberrant proteins is unknown. Here we demonstrate that the inhibition of NMD activates autophagy, an established protein surveillance mechanism, both in vitro and in vivo. Conversely, the hyperactivation of NMD blunts the induction of autophagy in response to a variety of cellular stresses. The regulation of autophagy by NMD is due, in part, to stabilization of the documented NMD target ATF4. NMD inhibition increases intracellular amino acids, a hallmark of autophagy, and the concomitant inhibition of autophagy and NMD, either molecularly or pharmacologically, leads to synergistic cell death. Together these studies indicate that autophagy is an adaptive response to NMD inhibition and uncover a novel relationship between an mRNA surveillance system and a protein surveillance system, with important implications for the treatment of cancer.

  2. Rv3168 phosphotransferase activity mediates kanamycin resistance in Mycobacterium tuberculosis.

    PubMed

    Ahn, Jae-Woo; Kim, Kyung-Jin

    2013-11-28

    Tuberculosis is a worldwide epidemic disease caused by Mycobacterium tuberculosis, with an estimated one-third of the human population currently affected. Treatment of this disease with aminoglycoside antibiotics has become less effective owing to antibiotic resistance. Recent determination of the crystal structure of the M. tuberculosis Rv3168 protein suggests a structure similar to that of Enterococcus faecalis APH(3')-IIIa, and that this protein may be an aminoglycoside phosphotransferase. To determine whether Rv3168 confers antibiotic resistance against kanamycin, we performed dose-response antibiotic resistance experiments using kanamycin. Expression of the Rv3168 protein in Escherichia coli conferred antibiotic resistance against 100 μM kanamycin, a concentration that effected cell growth arrest in the parental E. coli strain and an E. coli strain expressing the Rv3168(D249A) mutant, in which the catalytic Asp249 residue was mutated to alanine. Furthermore, we detected phosphotransferase activity of Rv3168 against kanamycin as a substrate. Moreover, docking simulation of kanamycin into the Rv3168 structure suggests that kanamycin fits well into the substrate binding pocket of the protein, and that the phosphorylation-hydroxyl-group of kanamycin was located at a position similar to that in E. faecalis APH(3')-IIIa. On the basis of these results, we suggest that the Rv3168 mediates kanamycin resistance in M. tuberculosis, likely through phosphotransferase targeting of kanamycin.

  3. Substituting activities mediates the effect of cognitive flexibility on physical activity: a daily diary study.

    PubMed

    Kelly, Scout M; Updegraff, John A

    2017-03-02

    Pursuit of physical activity goals often requires modifying plans, but research on these flexible processes is limited. Cognitive flexibility may heighten one's likelihood of using flexible self-regulatory strategies (e.g., substitution), thereby increasing physical activity. This study used daily diary methodology to test the indirect effect of cognitive flexibility on physical activity via activity substitution. A sample of 128 college students (73% female, mean age 19.9) completed baseline measures and cognitive flexibility assessments, then logged physical activity daily for 2 weeks. Activity substitution was defined as adopting an alternate activity on a day another planned activity was unfulfilled. Controlling for baseline activity, intentions, and time, a multilevel mediation model revealed a significant indirect effect of cognitive flexibility on physical activity via activity substitution (b = 81.36, p = .041). Our results indicate that people with greater cognitive flexibility are more likely to use flexible self-regulation, leading to greater physical activity.

  4. Signal-Induced Transcriptional Activation by Dif Requires the dTRAP80 Mediator Module

    PubMed Central

    Park, Jin Mo; Kim, Jung Mo; Kim, Lark Kyun; Kim, Se Nyun; Kim-Ha, Jeongsil; Hoe Kim, Jung; Kim, Young-Joon

    2003-01-01

    The Mediator complex is the major multiprotein transcriptional coactivator complex in Drosophila melanogaster. Mediator components interact with diverse sets of transcriptional activator proteins to elicit the sophisticated regulation of gene expression. The distinct phenotypes associated with certain mutations in some of the Mediator genes and the specific in vitro interactions of Mediator gene products with transcriptional activator proteins suggest the presence of activator-specific binding subunits within the Mediator complex. However, the physiological relevance of these selective in vitro interactions has not been addressed. Therefore, we analyzed dTRAP80, one of the putative activator-binding subunits of the Mediator, for specificity of binding to a number of natural transcriptional activators from Drosophila. Among the group of activator proteins that requires the Mediator complex for transcriptional activation, only a subset of these proteins interacted with dTRAP80 in vitro and only these dTRAP80-interacting activators were defective for activation under dTRAP80-deficient in vivo conditions. In particular, activation of Drosophila antimicrobial peptide drosomycin gene expression by the NF-κB-like transcription factor Dif during induction of the Toll signaling pathway was dependent on the dTRAP80 module. These results, and the indirect support from the dTRAP80 artificial recruitment assay, indicate that dTRAP80 serves as a genuine activator-binding target responsible for a distinct group of activators. PMID:12556495

  5. Key mechanistic features of Ni-catalyzed C-H/C-O biaryl coupling of azoles and naphthalen-2-yl pivalates.

    PubMed

    Xu, Huiying; Muto, Kei; Yamaguchi, Junichiro; Zhao, Cunyuan; Itami, Kenichiro; Musaev, Djamaladdin G

    2014-10-22

    The mechanism of the Ni-dcype-catalyzed C-H/C-O coupling of benzoxazole and naphthalen-2-yl pivalate was studied. Special attention was devoted to the base effect in the C-O oxidative addition and C-H activation steps as well as the C-H substrate effect in the C-H activation step. No base effect in the C(aryl)-O oxidative addition to Ni-dcype was found, but the nature of the base and C-H substrate plays a crucial role in the following C-H activation. In the absence of base, the azole C-H activation initiated by the C-O oxidative addition product Ni(dcype)(Naph)(PivO), 1B, proceeds via ΔG = 34.7 kcal/mol barrier. Addition of Cs2CO3 base to the reaction mixture forms the Ni(dcype)(Naph)[PivOCs·CsCO3], 3_Cs_clus, cluster complex rather than undergoing PivO(-) → CsCO3(-) ligand exchange. Coordination of azole to the resulting 3_Cs_clus complex forms intermediate with a weak Cs-heteroatom(azole) bond, the existence of which increases acidity of the activated C-H bond and reduces C-H activation barrier. This conclusion from computation is consistent with experiments showing that the addition of Cs2CO3 to the reaction mixture of 1B and benzoxazole increases yield of C-H/C-O coupling from 32% to 67% and makes the reaction faster by 3-fold. This emerging mechanistic knowledge was validated by further exploring base and C-H substrate effects via replacing Cs2CO3 with K2CO3 and benzoxazole (1a) with 1H-benzo[d]imidazole (1b) or quinazoline (1c). We proposed the modified catalytic cycle for the Ni(cod)(dcype)-catalyzed C-H/C-O coupling of benzoxazole and naphthalen-2-yl pivalate.

  6. Spiraeoside inhibits mast cells activation and IgE-mediated allergic responses by suppressing phospholipase C-γ-mediated signaling.

    PubMed

    Kim, Jung Kuk; Seo, Young-Kyo; Park, Sehoon; Park, Soo-Ah; Lim, Seyoung; Lee, Susie; Kwon, Ohman; Seo, Jeong Kon; Choi, Ung-Kyu; Ryu, Sung Ho; Suh, Pann-Ghill

    2015-06-01

    Mast cells are responsible for IgE-mediated allergic responses through the secretion of various inflammatory cytokines and mediators. Therefore, the pharmacological regulation of mast cell activation is an important goal in the development of novel anti-allergic drugs. In this study, we found that spiraeoside (SP) inhibits mast cell activation and allergic responses in vivo. SP dose-dependently inhibited the degranulation induced by IgE-antigen (Ag) stimulation in RBL-2H3 mast cells without cytotoxic effects. At the molecular level, SP reduced the Ag-induced phosphorylation and subsequent activation of phospholipase C-γ2 (PLC-γ2). Moreover, SP inhibited the phosphorylation of spleen tyrosine kinase (Syk), linker for activation of T cells (LAT), and downstream MAPKs, such as ERK1/2, p38, and JNK, eventually attenuating expression of TNF-α and IL-4. Finally, we found that SP significantly inhibited IgE-mediated passive cutaneous anaphylaxis (PCA) in mice. Taken together, our results strongly suggest that SP suppresses IgE-mediated mast cell activation and allergic responses by inhibiting Lyn-induced PLC-γ2/MAPK signaling in mast cells.

  7. Activation Domain-Mediated Enhancement of Activator Binding to Chromatin in Mammalian Cells

    NASA Astrophysics Data System (ADS)

    Bunker, Christopher A.; Kingston, Robert E.

    1996-10-01

    DNA binding by transcriptional activators is typically an obligatory step in the activation of gene expression. Activator binding and subsequent steps in transcription are repressed by genomic chromatin. Studies in vitro have suggested that overcoming this repression is an important function of some activation domains. Here we provide quantitative in vivo evidence that the activation domain of GAL4-VP16 can increase the affinity of GAL4 for its binding site on genomic DNA in mammalian cells. Moreover, the VP16 activation domain has a much greater stimulatory effect on expression from a genomic reporter gene than on a transiently transfected reporter gene, where factor binding is more permissive. We found that not all activation domains showed a greater activation potential in a genomic context, suggesting that only some activation domains can function in vivo to alleviate the repressive effects of chromatin. These data demonstrate the importance of activation domains in relieving chromatin-mediated repression in vivo and suggest that one way they function is to increase binding of the activator itself.

  8. Mechanism and Site Selectivity in Visible-Light Photocatalyzed C-H Functionalization: Insights from DFT Calculations.

    PubMed

    Demissie, Taye B; Hansen, Jørn H

    2016-08-19

    Visible-light photocatalyzed (VLPC) late-stage C-H functionalization is a powerful addition to the chemical synthesis toolkit. VLPC has a demonstrated potential for discovery of elusive and valuable transformations, particularly in functionalization of bioactive heterocycles. In order to fully harvest the potential of VLPC in the context of complex molecule synthesis, a thorough understanding of the elementary processes involved is crucial. This would enable more rational design of suitable reagents and catalysts, as well as prediction of activated C-H sites for functionalization. Such knowledge is essential when VLPC is to be employed in retrosynthetic analysis of complex molecules. Herein, we present a density functional theory (DFT) study of mechanistic details in the C-H functionalization of bioactive heterocycles exemplified by the methylation of the antifungal agent voriconazole. Moreover, we show that readily computed atomic charges can predict major site-selectivity in good agreement with experimental studies and thus be informative tools for the identification of active C-H functionalization sites in synthetic planning.

  9. A versatile tripodal Cu(I) reagent for C-N bond construction via nitrene-transfer chemistry: catalytic perspectives and mechanistic insights on C-H aminations/amidinations and olefin aziridinations.

    PubMed

    Bagchi, Vivek; Paraskevopoulou, Patrina; Das, Purak; Chi, Lingyu; Wang, Qiuwen; Choudhury, Amitava; Mathieson, Jennifer S; Cronin, Leroy; Pardue, Daniel B; Cundari, Thomas R; Mitrikas, George; Sanakis, Yiannis; Stavropoulos, Pericles

    2014-08-13

    A Cu(I) catalyst (1), supported by a framework of strongly basic guanidinato moieties, mediates nitrene-transfer from PhI═NR sources to a wide variety of aliphatic hydrocarbons (C-H amination or amidination in the presence of nitriles) and olefins (aziridination). Product profiles are consistent with a stepwise rather than concerted C-N bond formation. Mechanistic investigations with the aid of Hammett plots, kinetic isotope effects, labeled stereochemical probes, and radical traps and clocks allow us to conclude that carboradical intermediates play a major role and are generated by hydrogen-atom abstraction from substrate C-H bonds or initial nitrene-addition to one of the olefinic carbons. Subsequent processes include solvent-caged radical recombination to afford the major amination and aziridination products but also one-electron oxidation of diffusively free carboradicals to generate amidination products due to carbocation participation. Analyses of metal- and ligand-centered events by variable temperature electrospray mass spectrometry, cyclic voltammetry, and electron paramagnetic resonance spectroscopy, coupled with computational studies, indicate that an active, but still elusive, copper-nitrene (S = 1) intermediate initially abstracts a hydrogen atom from, or adds nitrene to, C-H and C═C bonds, respectively, followed by a spin flip and radical rebound to afford intra- and intermolecular C-N containing products.

  10. Schisandra polysaccharide evokes immunomodulatory activity through TLR 4-mediated activation of macrophages.

    PubMed

    Zhao, Ting; Feng, Yun; Li, Jing; Mao, Riwen; Zou, Ye; Feng, Weiwei; Zheng, Daheng; Wang, Wei; Chen, Yao; Yang, Liuqing; Wu, Xiangyang

    2014-04-01

    Schisandra chinensis (Turcz.) Baill has been used in traditional Chinese medicine for centuries. Previous studies have shown that Schisandra polysaccharide (SCPP11) has robust antitumor activity in vivo. In this study, the immunomodulatory activity and mechanisms of action of SCPP11 were investigated further to reveal its mechanism of action against tumors. Results showed that SCPP11 increased the thymus and spleen indices, pinocytic activity of peritoneal macrophages, and hemolysin formation in CTX-induced immunosuppressed mice. Moreover, SCPP11 significantly increased immunoglobulin levels, cytokines levels in vivo and induced RAW264.7 cells to secrete cytokines in vitro. RAW264.7 cells pretreated with SCPP11 significantly inhibited the proliferation of HepG-2 cells. In addition, SCPP11 promoted both the expression of iNOS protein and of iNOS and TNF-α mRNA. TLR-4 is a possible receptor for SCPP11-mediated macrophage activation. Therefore, the data suggest that SCPP11 exerted its antitumor activity by improving immune system functions through TLR-4-mediated up-regulation of NO and TNF-α. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Plasminogen activator inhibitor-1 impairs plasminogen activation-mediated vascular smooth muscle cell apoptosis

    PubMed Central

    Rossignol, Patrick; Angles-Cano, Eduardo; Lijnen, Henri Roger

    2006-01-01

    SUMMARY The role of plasminogen activator inhibitor-1 (PAI-1) in vascular smooth muscle cell (VSMC) apoptosis mediated by plasminogen activation was studied with the use of aortic VSMC derived from mice with deficiency of PAI-1 (PAI-1−/−), tissue-type (t-PA−/−) or urokinase-type (u-PA−/−) plasminogen activator or from wild-type (WT) mice with corresponding genetic background. Plasminogen incubated with confluent VSMC was activated in a concentration-dependent and saturable manner for all 4 cell types, with maximal activation rates that were comparable for WT, u-PA−/− and t-PA−/− cells, but about 2- fold higher for PAI-1−/− cells. Plasminogen activation was impaired by addition of the lysine analogue 6-aminohexanoic acid, and by addition of t-PA and u-PA neutralizing antibodies, suggesting that it depends on binding to cell surface COOH-terminal lysine residues, and on plasminogen activator activity. Morphological alterations consistent with apoptosis were observed much earlier in PAI-1−/− than in WT VSMC. Without addition of plasminogen, the apoptotic index was similar for all 4 cell types, whereas after incubation with physiological plasminogen concentrations, it was greater in PAI-1−/− VSMC, as compared to WT, t-PA−/− or u-PA−/− VSMC. Furthermore, the apoptotic rate paralleled the release of plasmin. Thus, plasmin-mediated apoptosis of VSMC occurs via plasminogen activation by either t-PA or u-PA and is impaired by PAI-1. PMID:17080225

  12. Antiurolithic activity of Origanum vulgare is mediated through multiple pathways

    PubMed Central

    2011-01-01

    Background Origanum vulgare Linn has traditionally been used in the treatment of urolithiasis. Therefore, we investigated the crude extract of Origanum vulgare for possible antiurolithic effect, to rationalize its medicinal use. Methods The crude aqueous-methanolic extract of Origanum vulgare (Ov.Cr) was studied using the in vitro and in vivo methods. In the in vitro experiments, supersaturated solution of calcium and oxalate, kidney epithelial cell lines (MDCK) and urinary bladder of rabbits were used, whereas, in the in vivo studies, rat model of urolithiasis was used for the study of preventive and curative effect. Results In the in vitro experiments, Ov.Cr exhibited a concentration-dependent (0.25-4 mg/ml) inhibitory effect on the slope of nucleation and aggregation and also decreased the number of calcium oxalate monohydrate crystals (COM) produced in calcium oxalate metastable solutions. It also showed concentration-dependent antioxidant effect against DPPH free radical and lipid peroxidation induced in rat kidney tissue homogenate. Ov.Cr reduced the cell toxicity using MTT assay and LDH release in renal epithelial cells (MDCK) exposed to oxalate (0.5 mM) and COM (66 μg/cm2) crystals. Ov.Cr relaxed high K+ (80 mM) induced contraction in rabbit urinary bladder strips, and shifted the calcium concentration-response curves (CRCs) towards right with suppression of the maximum response similar to that of verapamil, a standard calcium channel blocker. In male Wistar rats receiving lithogenic treatment comprising of 0.75% ethylene glycol in drinking water given for 3 weeks along with ammonium chloride (NH4Cl) for the first 5 days, Ov.Cr treatment (10-30 mg/kg) prevented as well as reversed toxic changes including loss of body weight, polyurea, crystalluria, oxaluria, raised serum urea and creatinine levels and crystal deposition in kidneys compared to their respective controls. Conclusion These data indicating the antiurolithic activity in Ov.Cr, possibly mediated

  13. Induction of aryl hydrocarbon receptor-mediated and estrogen receptor-mediated activities, and modulation of cell proliferation by dinaphthofurans.

    PubMed

    Vondrácek, Jan; Chramostová, Katerina; Plísková, Martina; Bláha, Ludek; Brack, Werner; Kozubík, Alois; Machala, Miroslav

    2004-09-01

    A group of heterocyclic aromatic compounds, dinaphthofurans (DNFs), recently have been identified as potentially significant contaminants in freshwater sediments. In the present study, a battery of in vitro assays was used for detection of toxic effects of DNFs that are potentially associated with endocrine disruption and tumor promotion. Dinaphthofurans were found to act as relatively potent inducers of aryl hydrocarbon receptor (AhR)-mediated activity in the chemical-activated luciferase reporter gene expression DR-CALUX assay. The relative AhR-inducing potencies of DNFs were similar or even higher than relative potencies of unsubstituted polycyclic aromatic hydrocarbons (PAHs), with dinaphtho[1,2-b;2'3'-d]furan being the most potent AhR agonist. Two compounds, dinaphtho[2,1-b;2'3'-d]furan and dinaphtho[1,2-b;1'2'-d]furan, induced estrogen receptor (ER)-mediated activity in the estrogen receptor-mediated CALUX (the ER-CALUX) assay. Two types of potential tumor-promoting effects of DNFs were investigated, using in vitro bioassays for detection of inhibition of gap-junctional intercellular communication and detection of a release from contact inhibition. Although the acute inhibition of gap-junctional intercellular communication was not observed, all six tested DNFs were able to release rat liver epithelial WB-F344 cells from contact inhibition at concentrations as low as 100 nM. In summary, the present study indicated that DNFs can exert multiple biological effects in vitro, including induction of the AhR-mediated activity, release of cells from contact inhibition, and induction of ER-mediated activity.

  14. Pathways and kinetics of methane and ethane C-H bond cleavage on PdO(101)

    NASA Astrophysics Data System (ADS)

    Antony, Abbin; Asthagiri, Aravind; Weaver, Jason F.

    2013-09-01

    We used conventional density functional theory (DFT) and dispersion-corrected DFT (DFT-D3) calculations to investigate C-H bond activation pathways for methane and ethane σ-complexes adsorbed on the PdO(101) surface. The DFT-D3 calculations predict lower and more physically realistic values of the apparent C-H bond cleavage barriers, which are defined relative to the gas-phase energy level, while giving nearly the same energy differences between stationary states as predicted by conventional DFT for a given reaction pathway. For the stable CH4 η2 complex on PdO(101), DFT-D3 predicts that the C-H bond cleavage barriers are 55.2 and 16.1 kJ/mol relative to the initial molecularly adsorbed and gaseous states, respectively. We also predict that dehydrogenation of the resulting CH3 groups and conversion to CH3O species are significantly more energetically demanding than the initial C-H bond activation of CH4 on PdO(101). Using DFT-D3, we find that an η2 and an η1 ethane complex can undergo C-H bond cleavage on PdO(101) with intrinsic energy barriers that are similar to that of the methane complex, but with apparent barriers that are close to zero. We also investigated the dissociation kinetics of methane and ethane on PdO(101) using microkinetic models, with parameters derived from the DFT-D3 relaxed structures. We find that a so-called 3N - 2 model, in which two frustrated adsorbate motions are treated as free motions, predicts desorption pre-factors and alkane dissociation probabilities that agree well with estimates obtained from the literature. The microkinetic simulations demonstrate the importance of accurately describing entropic contributions in kinetic simulations of alkane dissociative chemisorption.

  15. Iridium-catalyzed C-H borylation of heteroarenes: scope, regioselectivity, application to late-stage functionalization, and mechanism.

    PubMed

    Larsen, Matthew A; Hartwig, John F

    2014-03-19

    A study on the iridium-catalyzed C-H borylation of heteroarenes is reported. Several heteroarenes containing multiple heteroatoms were found to be amenable to C-H borylation catalyzed by the combination of an iridium(I) precursor and tetramethylphenanthroline. The investigations of the scope of the reaction led to the development of powerful rules for predicting the regioselectivity of borylation, foremost of which is that borylation occurs distal to nitrogen atoms. One-pot functionalizations are reported of the heteroaryl boronate esters formed in situ, demonstrating the usefulness of the reported methodology for the synthesis of complex heteroaryl structures. Application of this methodology to the synthesis and late-stage functionalization of biologically active compounds is also demonstrated. Mechanistic studies show that basic heteroarenes can bind to the catalyst and alter the resting state from the olefin-bound complex observed during arene borylation to a species containing a bound heteroarene, leading to catalyst deactivation. Studies on the origins of the observed regioselectivity show that borylation occurs distal to N-H bonds due to rapid N-H borylation, creating an unfavorable steric environment for borylation adjacent to these bonds. Computational studies and mechanistic studies show that the lack of observable borylation of C-H bonds adjacent to basic nitrogen is not the result of coordination to a bulky Lewis acid prior to C-H activation, but the combination of a higher-energy pathway for the borylation of these bonds relative to other C-H bonds and the instability of the products formed from borylation adjacent to basic nitrogen.

  16. Ligand binding to the AMP-activated protein kinase active site mediates protection of the activation loop from dephosphorylation.

    PubMed

    Chandrashekarappa, Dakshayini G; McCartney, Rhonda R; Schmidt, Martin C

    2013-01-04

    The AMP-activated protein kinase (AMPK) is a conserved signaling molecule in a pathway that maintains adenosine triphosphate homeostasis. Recent studies have suggested that low energy adenylate ligands bound to one or more sites in the γ subunit of AMPK promote the formation of an active, phosphatase-resistant conformation. We propose an alternative model in which the kinase domain association with the heterotrimer core results in activation of the kinase catalytic activity, whereas low energy adenylate ligands bound in the kinase active site promote phosphatase resistance. Purified Snf1 α subunit with a conservative, single amino acid substitution in the kinase domain is protected from dephosphorylation by adenosine diphosphate in the complete absence of the β and γ subunits. Staurosporine, a compound known to bind to the active site of many protein kinases, mediates strong protection from dephosphorylation to yeast and mammalian AMPK enzymes. The analog-sensitive Snf1-I132G protein but not wild type Snf1 exhibits protection from dephosphorylation when bound by the adenosine analog 2NM-PP1 in vitro and in vivo. These data demonstrate that ligand binding to the Snf1 active site can mediate phosphatase resistance. Finally, Snf1 kinase with an amino acid substitution at the interface of the kinase domain and the heterotrimer core exhibits normal regulation of phosphorylation in vivo but greatly reduced Snf1 kinase activity, supporting a model in which kinase domain association with the heterotrimer core is needed for kinase activation.

  17. Alcohols as alkylating agents in heteroarene C-H functionalization

    NASA Astrophysics Data System (ADS)

    Jin, Jian; MacMillan, David W. C.

    2015-09-01

    Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage. One of the core principles underlying DNA biosynthesis is the radical-mediated elimination of H2O to deoxygenate ribonucleotides, an example of `spin-centre shift', during which an alcohol C-O bond is cleaved, resulting in a carbon-centred radical intermediate. Although spin-centre shift is a well-understood biochemical process, it is underused by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylation reactions using alcohols as radical precursors. Because conventional radical-based alkylation methods require the use of stoichiometric oxidants, increased temperatures or peroxides, a mild protocol using simple and abundant alkylating agents would have considerable use in the synthesis of diversely functionalized pharmacophores. Here we describe the development of a dual catalytic alkylation of heteroarenes, using alcohols as mild alkylating reagents. This method represents the first, to our knowledge, broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer catalysis. The value of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone.

  18. Transition Metal-Free Selective Double sp(3) C-H Oxidation of Cyclic Amines to 3-Alkoxyamine Lactams.

    PubMed

    Osorio-Nieto, Urbano; Chamorro-Arenas, Delfino; Quintero, Leticia; Höpfl, Herbert; Sartillo-Piscil, Fernando

    2016-09-16

    The first chemical method for selective dual sp(3) C-H functionalization at the alpha-and beta positions of cyclic amines to their corresponding 3-alkoxyamine lactams is reported. Unlike traditional Cα-H oxidation of amines to amides mediated by transition metals, the present protocol, which involves the use of NaClO2/TEMPO/NaClO in either aqueous or organic solvent, not only allows the Cα-H oxidation but also the subsequent functionalization of the unreactive β-methylene group in an unprecedented tandem fashion and using environmentally friendly reactants.

  19. Rh(III)-catalyzed addition of alkenyl C-H bond to isocyanates and intramolecular cyclization: direct synthesis 5-ylidenepyrrol-2(5H)-ones.

    PubMed

    Hou, Wei; Zhou, Bing; Yang, Yaxi; Feng, Huijin; Li, Yuanchao

    2013-04-19

    The rhodium-catalyzed addition of an alkenyl C-H bond to isocyanates via sp(2) C-H bond activation followed by an intramolecular cyclization is described. This atom-economic and catalytic reaction affords a simple and straightforward access to biologically relevant 5-ylidene pyrrol-2(5H)-ones and can be carried out under mild and neutral conditions in the absence of any additives and environmentally hazardous waste production.

  20. Pressure-dependent studies on hydration of the C-H group in formic acid

    NASA Astrophysics Data System (ADS)

    Chang, Hai-Chou; Jiang, Jyh-Chiang; Chao, Ming-Chi; Lin, Ming-Shan; Lin, Sheng Hsien; Chen, Hsin-Yen; Hsueh, Hung-Chung

    2001-11-01

    The infrared spectroscopic profiles of HCOOD/D2O mixtures were measured as a function of pressure and concentration. The C-H bond of HCOOD shortens as the pressure is elevated, while the increase in C-H bond length upon diluting HCOOD with D2O was observed. Based on the experimental results, the shift in frequency of C-H stretching band is concluded to relate to the mechanism of the hydration of the C-H group and the water structure in the vicinity of the C-H group. The pressure-dependent results can be attributed to the strengthening of C-H---O electrostatic/dispersion interaction upon increasing pressure. The observations are in accord with ab initio calculation forecasting a blueshift of the C-H stretching mode via C-H---O interaction in HCOOD-water/(HCOOD)2-(D2O) complexes relative to the noninteracting monomer/dimer. Hydrogen-bonding nonadditivity and the size of water clusters are suggested to be responsible to cause the redshift in C-H stretching mode upon dilution HCOOD with D2O.