Science.gov

Sample records for mediates transforming growth

  1. Mediation of wound-related Rous sarcoma virus tumorigenesis by TFG (transforming growth factor)-. beta

    SciTech Connect

    Sieweke, M.H.; Bissell, M.J. ); Thompson, N.L.; Sporn, M.B. )

    1990-06-29

    In Rous sarcoma virus (RSV)-infected chickens, wounding leads to tumor formation with nearly 100% frequency in tissues that would otherwise remain tumor-free. Identifying molecular mediators of this phenomenon should yield important clues to the mechanisms involved in RSV tumorigenesis. Immunohistochemical staining showed that TGF-{beta} is present locally shortly after wounding, but not in unwounded controls. In addition, subcutaneous administration of recombinant transforming growth factor {beta}1 (TGF-{beta}1) could substitute completely for wounding in tumor induction. A treatment protocol of four doses of 800 nanograms of TGF-{beta} resulted in v-src-expressing tumors with 100% frequency; four doses of only 10 nanograms still led to tumor formation in 80% of the animals. This effect was specific, as other growth factors with suggested roles in would healing did not elicit the same response. Epidermal growth factor (EGF) or TGF-{alpha} had no effect, and platelet-derived growth factor (PDGF) or insulin-like growth factor-1 (IGF-1) yielded only occasional tumors after longer latency. TGF-{beta} release during the would-healing response may thus be a critical event that creates a conducive environment for RSV tumorigenesis and may act as a cofactor for transformation in this system. 31 refs., 3 figs., 2 tabs.

  2. Transforming growth factor-beta1 mediates cellular response to DNA damage in situ

    NASA Technical Reports Server (NTRS)

    Ewan, Kenneth B.; Henshall-Powell, Rhonda L.; Ravani, Shraddha A.; Pajares, Maria Jose; Arteaga, Carlos; Warters, Ray; Akhurst, Rosemary J.; Barcellos-Hoff, Mary Helen

    2002-01-01

    Transforming growth factor (TGF)-beta1 is rapidly activated after ionizing radiation, but its specific role in cellular responses to DNA damage is not known. Here we use Tgfbeta1 knockout mice to show that radiation-induced apoptotic response is TGF-beta1 dependent in the mammary epithelium, and that both apoptosis and inhibition of proliferation in response to DNA damage decrease as a function of TGF-beta1 gene dose in embryonic epithelial tissues. Because apoptosis in these tissues has been shown previously to be p53 dependent, we then examined p53 protein activation. TGF-beta1 depletion, by either gene knockout or by using TGF-beta neutralizing antibodies, resulted in decreased p53 Ser-18 phosphorylation in irradiated mammary gland. These data indicate that TGF-beta1 is essential for rapid p53-mediated cellular responses that mediate cell fate decisions in situ.

  3. Valproic acid overcomes transforming growth factor-β-mediated sorafenib resistance in hepatocellular carcinoma

    PubMed Central

    Matsuda, Yasunobu; Wakai, Toshifumi; Kubota, Masayuki; Osawa, Mami; Hirose, Yuki; Sakata, Jun; Kobayashi, Takashi; Fujimaki, Shun; Takamura, Masaaki; Yamagiwa, Satoshi; Aoyagi, Yutaka

    2014-01-01

    Sorafenib is a multi-kinase inhibitor approved for hepatocellular carcinoma, but rarely causes tumor regression in patients with chronic liver diseases. To investigate whether growth factor-mediated signaling is involved in sorafenib resistance, HepG2 and PLC/PRF/5 hepatoma cells were exposed to epidermal growth factor (EGF), hepatocyte growth factor (HGF) or transforming growth factor-β (TGF-β) prior to treatment with sorafenib. Furthermore, to identify an effective combination treatment with sorafenib, growth factor-sensitized cells were treated with sorafenib alone or in combination with celecoxib, lovastatin or valproic acid (VPA). Trypan blue staining and Annexin V assays showed that the cytotoxic effect of sorafenib was inhibited by 15-54% in cells sensitized to TGF-β (P<0.05). Western blotting analysis showed that TGF-β significantly activated extracellular signal-regulated kinase (ERK)-mediated AKT signaling, and sorafenib failed to suppress both ERK and AKT in TGF-β-sensitized cells. The decreased anti-tumor effect of sorafenib was rescued by chemical inhibition of ERK and AKT. When TGF-β-sensitized cells were treated with sorafenib plus VPA, the levels of phosphorylated ERK and AKT were considerably suppressed and the numbers of dead cells were increased by 3.7-5.7-fold compared with those exposed to sorafenib alone (P<0.05). Moreover, low dose sorafenib-induced cell migration was effectively suppressed by combination treatment with sorafenib and VPA. Collectively, TGF-β/ERK/AKT signaling might play a critical role in sorafenib resistance in hepatoma cells, and combination treatment with VPA may be effective against this drug resistance. PMID:24817927

  4. Transforming growth factor-β: an important mediator in Helicobacter pylori-associated pathogenesis

    PubMed Central

    Li, Nianshuang; Xie, Chuan; Lu, Nong-Hua

    2015-01-01

    Helicobacter pylori (H.pylori) is a Gram-negative, microaerophilic, helical bacillus that specifically colonizes the gastric mucosa. The interaction of virulence factors, host genetic factors, and environmental factors contributes to the pathogenesis of H. pylori-associated conditions, such as atrophic gastritis and intestinal metaplasia. Infection with H. pylori has recently been recognized as the strongest risk factor for gastric cancer. As a pleiotropic cytokine, transforming growth factor (TGF)-β regulates various biological processes, including cell cycle, proliferation, apoptosis, and metastasis. Recent studies have shed new light on the involvement of TGF-β signaling in the pathogenesis of H. pylori infection. This review focuses on the potential etiological roles of TGF-β in H. pylori-mediated gastric pathogenesis. PMID:26583078

  5. Redox-mediated activation of latent transforming growth factor-beta 1

    NASA Technical Reports Server (NTRS)

    Barcellos-Hoff, M. H.; Dix, T. A.; Chatterjee, A. (Principal Investigator)

    1996-01-01

    Transforming growth factor beta 1 (TGF beta) is a multifunctional cytokine that orchestrates response to injury via ubiquitous cell surface receptors. The biological activity of TGF beta is restrained by its secretion as a latent complex (LTGF beta) such that activation determines the extent of TGF beta activity during physiological and pathological events. TGF beta action has been implicated in a variety of reactive oxygen-mediated tissue processes, particularly inflammation, and in pathologies such as reperfusion injury, rheumatoid arthritis, and atherosclerosis. It was recently shown to be rapidly activated after in vivo radiation exposure, which also generates reactive oxygen species (ROS). In the present studies, the potential for redox-mediated LTGF beta activation was investigated using a cell-free system in which ROS were generated in solution by ionizing radiation or metal ion-catalyzed ascorbate reaction. Irradiation (100 Gray) of recombinant human LTGF beta in solution induced 26% activation compared with that elicited by standard thermal activation. Metal-catalyzed ascorbate oxidation elicited extremely efficient recombinant LTGF beta activation that matched or exceeded thermal activation. The efficiency of ascorbate activation depended on ascorbate concentrations and the presence of transition metal ions. We postulate that oxidation of specific amino acids in the latency-conferring peptide leads to a conformation change in the latent complex that allows release of TGF beta. Oxidative activation offers a novel route for the involvement of TGF beta in tissue processes in which ROS are implicated and endows LTGF beta with the ability to act as a sensor of oxidative stress and, by releasing TGF beta, to function as a signal for orchestrating the response of multiple cell types. LTGF beta redox sensitivity is presumably directed toward recovery of homeostasis; however, oxidation may also be a mechanism of LTGF beta activation that can be deleterious during

  6. Surface proteome analysis identifies platelet derived growth factor receptor-alpha as a critical mediator of transforming growth factor-beta-induced collagen secretion.

    PubMed

    Heinzelmann, Katharina; Noskovičová, Nina; Merl-Pham, Juliane; Preissler, Gerhard; Winter, Hauke; Lindner, Michael; Hatz, Rudolf; Hauck, Stefanie M; Behr, Jürgen; Eickelberg, Oliver

    2016-05-01

    Fibroblasts are extracellular matrix-producing cells in the lung. Fibroblast activation by transforming growth factor-beta leads to myofibroblast-differentiation and increased extracellular matrix deposition, a hallmark of pulmonary fibrosis. While fibroblast function with respect to migration, invasion, and extracellular matrix deposition has been well-explored, little is known about the surface proteome of lung fibroblasts in general and its specific response to fibrogenic growth factors, in particular transforming growth factor-beta. We thus performed a cell-surface proteome analysis of primary human lung fibroblasts in presence/absence of transforming growth factor-beta, followed by characterization of our findings using FACS analysis, Western blot, and siRNA-mediated knockdown experiments. We identified 213 surface proteins significantly regulated by transforming growth factor-beta, platelet derived growth factor receptor-alpha being one of the top down-regulated proteins. Transforming growth factor beta-induced downregulation of platelet derived growth factor receptor-alpha induced upregulation of platelet derived growth factor receptor-beta expression and phosphorylation of Akt, a downstream target of platelet derived growth factor signaling. Importantly, collagen type V expression and secretion was strongly increased after forced knockdown of platelet derived growth factor receptor-alpha, an effect that was potentiated by transforming growth factor-beta. We therefore show previously underappreciated cross-talk of transforming growth factor-beta and platelet derived growth factor signaling in human lung fibroblasts, resulting in increased extracellular matrix deposition in a platelet derived growth factor receptor-alpha dependent manner. These findings are of particular importance for the treatment of lung fibrosis patients with high pulmonary transforming growth factor-beta activity.

  7. Constitutive Smad linker phosphorylation in melanoma: a mechanism of resistance to transforming growth factor-β-mediated growth inhibition.

    PubMed

    Cohen-Solal, Karine A; Merrigan, Kim T; Chan, Joseph L-K; Goydos, James S; Chen, Wenjin; Foran, David J; Liu, Fang; Lasfar, Ahmed; Reiss, Michael

    2011-06-01

    Melanoma cells are resistant to transforming growth factor-β (TGFβ)-induced cell-cycle arrest. In this study, we investigated a mechanism of resistance involving a regulatory domain, called linker region, in Smad2 and Smad3, main downstream effectors of TGFβ. Melanoma cells in culture and tumor samples exhibited constitutive Smad2 and Smad3 linker phosphorylation. Treatment of melanoma cells with the MEK1/2 inhibitor, U0126, or the two pan-CDK and GSK3 inhibitors, Flavopiridol and R547, resulted in decreased linker phosphorylation of Smad2 and Smad3. Overexpression of the linker phosphorylation-resistant Smad3 EPSM mutant in melanoma cells resulted in an increase in expression of p15(INK4B) and p21(WAF1) , as compared with cells transfected with wild-type (WT) Smad3. In addition, the cell numbers of EPSM Smad3-expressing melanoma cells were significantly reduced compared with WT Smad3-expressing cells. These results suggest that the linker phosphorylation of Smad3 contributes to the resistance of melanoma cells to TGFβ-mediated growth inhibition.

  8. CD43 promotes cells transformation by preventing merlin-mediated contact inhibition of growth.

    PubMed

    Camacho-Concha, Nohemi; Olivos-Ortiz, Amiel; Nuñez-Rivera, Alfredo; Pedroza-Saavedra, Adolfo; Gutierrez-Xicotencatl, Lourdes; Rosenstein, Yvonne; Pedraza-Alva, Gustavo

    2013-01-01

    In normal tissues, strict control of tissue size is achieved by regulating cell numbers. The mechanism that controls total cell number is known as contact inhibition of growth and it depends on the NF2/Merlin pathway. Negative regulation of this pathway by deleterious mutations or by oncogenes results in cell transformation and tumor progression. Here we provide evidence that the CD43 sialomucin cooperates with oncogenic signals to promote cell transformation by abrogating the contact inhibition of growth through a molecular mechanism that involves AKT-dependent Merlin phosphorylation and degradation. Accordingly, inhibition of endogenous CD43 expression by RNA interference in lung, cervix and colon human cancer cells impaired tumor growth in vivo. These data underscore a previously unidentified role for CD43 in non-hematopoietic tumor progression.

  9. CD43 Promotes Cells Transformation by Preventing Merlin-Mediated Contact Inhibition of Growth

    PubMed Central

    Camacho-Concha, Nohemi; Olivos-Ortiz, Amiel; Nuñez-Rivera, Alfredo; Pedroza-Saavedra, Adolfo; Gutierrez-Xicotencatl, Lourdes; Rosenstein, Yvonne; Pedraza-Alva, Gustavo

    2013-01-01

    In normal tissues, strict control of tissue size is achieved by regulating cell numbers. The mechanism that controls total cell number is known as contact inhibition of growth and it depends on the NF2/Merlin pathway. Negative regulation of this pathway by deleterious mutations or by oncogenes results in cell transformation and tumor progression. Here we provide evidence that the CD43 sialomucin cooperates with oncogenic signals to promote cell transformation by abrogating the contact inhibition of growth through a molecular mechanism that involves AKT-dependent Merlin phosphorylation and degradation. Accordingly, inhibition of endogenous CD43 expression by RNA interference in lung, cervix and colon human cancer cells impaired tumor growth in vivo. These data underscore a previously unidentified role for CD43 in non-hematopoietic tumor progression. PMID:24260485

  10. 14-3-3 sigma and 14-3-3 zeta plays an opposite role in cell growth inhibition mediated by transforming growth factor-beta 1.

    PubMed

    Hong, Hye-Young; Jeon, Woo-Kwang; Bae, Eun-Jin; Kim, Shin-Tae; Lee, Ho-Jae; Kim, Seong-Jin; Kim, Byung-Chul

    2010-03-01

    The expression of 14-3-3 proteins is dysregulated in various types of cancer. This study was undertaken to investigate the effects of 14-3-3 zeta and 14-3-3 sigma on cell growth inhibition mediated by transforming growth factor-beta 1 (TGF-beta1). Mouse mammary epithelial cells (Eph4) that are transformed with oncogenic c-H-Ras (EpRas) and no longer sensitive to TGF-beta1-mediated growth inhibition displayed increased expression of 14-3-3 zeta and decreased expression of 14-3-3 sigma compared with parental Eph4 cells. Using small interfering RNA-mediated knockdown and overexpression of 14-3-3 sigma or 14-3-3 zeta, we showed that 14-3-3 sigma is required for TGF-beta1-mediated growth inhibition whereas 14-3-3 zeta negatively modulates this growth inhibitory response. Notably, overexpression of 14-3-3 zeta increased the level of Smad3 protein that is phosphorylated at linker regions and cannot mediate the TGF-beta1 growth inhibitory response. Consistent with this finding, mutation of the 14-3-3 zeta phosphorylation sites in Smad3 markedly reduced the 14-3-3 zeta-mediated inhibition of TGF-beta1-induced p15 promoter-reporter activity and cell cycle arrest, suggesting that these residues are critical targets of 14-3-3 zeta in the suppression of TGF-beta1-mediated growth. Taken together, our findings indicate that dysregulation of 14-3-3 sigma or 14-3-3 zeta contributes to TGF-beta1 resistance in cancer cells.

  11. Hammerhead Ribozyme-Mediated Knockdown of mRNA for Fibrotic Growth Factors: Transforming Growth Factor-Beta 1 and Connective Tissue Growth Factor

    PubMed Central

    Robinson, Paulette M.; Blalock, Timothy D.; Yuan, Rong; Lewin, Alfred S.; Schultz, Gregory S.

    2013-01-01

    Excessive scarring (fibrosis) is a major cause of pathologies in multiple tissues, including lung, liver, kidney, heart, cornea, and skin. The transforming growth factor- β (TGF- β) system has been shown to play a key role in regulating the formation of scar tissue throughout the body. Furthermore, connective tissue growth factor (CTGF) has been shown to mediate most of the fibrotic actions of TGF- β, including stimulation of synthesis of extracellular matrix and differentiation of fibroblasts into myofibroblasts. Currently, no approved drugs selectively and specifically regulate scar formation. Thus, there is a need for a drug that selectively targets the TGF- β cascade at the molecular level and has minimal off-target side effects. This chapter focuses on the design of hammerhead ribozymes, measurement of kinetic activity, and assessment of knockdown mRNAs of TGF- β and CTGF in cell cultures. PMID:22131029

  12. Inhibition of CD1d-mediated antigen presentation by the transforming growth factor-β/Smad signalling pathway.

    PubMed

    Bailey, Jennifer C; Iyer, Abhirami K; Renukaradhya, Gourapura J; Lin, Yinling; Nguyen, Hoa; Brutkiewicz, Randy R

    2014-12-01

    CD1d-mediated lipid antigen presentation activates a subset of innate immune lymphocytes called invariant natural killer T (NKT) cells that, by virtue of their potent cytokine production, bridge the innate and adaptive immune systems. Transforming growth factor (TGF-β) is a known immune modulator that can activate the mitogen-activated protein kinase p38; we have previously shown that p38 is a negative regulator of CD1d-mediated antigen presentation. Several studies implicate a role for TGF-β in the activation of p38. Therefore, we hypothesized that TGF-β would impair antigen presentation by CD1d. Indeed, a dose-dependent decrease in CD1d-mediated antigen presentation and impairment of lipid antigen processing was observed in response to TGF-β treatment. However, it was found that this inhibition was not through p38 activation. Instead, Smads 2, 3 and 4, downstream elements of the TGF-β canonical signalling pathway, contributed to the observed effects. In marked contrast to that observed with CD1d, TGF-β was found to enhance MHC class II-mediated antigen presentation. Overall, these results suggest that the canonical TGF-β/Smad pathway negatively regulates an important arm of the host's innate immune responses - CD1d-mediated lipid antigen presentation to NKT cells.

  13. Spatial signalling mediated by the transforming growth factor-β signalling pathway during tooth formation

    PubMed Central

    He, Xin-Yu; Sun, Ke; Xu, Ruo-Shi; Tan, Jia-Li; Pi, Cai-Xia; Wan, Mian; Peng, Yi-Ran; Ye, Ling; Zheng, Li-Wei; Zhou, Xue-Dong

    2016-01-01

    Tooth development relies on sequential and reciprocal interactions between the epithelial and mesenchymal tissues, and it is continuously regulated by a variety of conserved and specific temporal-spatial signalling pathways. It is well known that suspensions of tooth germ cells can form tooth-like structures after losing the positional information provided by the epithelial and mesenchymal tissues. However, the particular stage in which the tooth germ cells start to form tooth-like structures after losing their positional information remains unclear. In this study, we investigated the reassociation of tooth germ cells suspension from different morphological stages during tooth development and the phosphorylation of Smad2/3 in this process. Four tooth morphological stages were designed in this study. The results showed that tooth germ cells formed odontogenic tissue at embryonic day (E) 14.5, which is referred to as the cap stage, and they formed tooth-like structures at E16.5, which is referred to as the early bell stage, and E18.5, which is referred to as the late bell stage. Moreover, the transforming growth factor-β signalling pathway might play a role in this process. PMID:27982023

  14. Ionizing Radiation Promotes Migration and Invasion of Cancer Cells Through Transforming Growth Factor-Beta-Mediated Epithelial-Mesenchymal Transition

    SciTech Connect

    Zhou Yongchun; Liu Junye; Li Jing; Zhang Jie; Xu Yuqiao; Zhang Huawei; Qiu Lianbo; Ding Guirong; Su Xiaoming; Mei Shi; Guo Guozhen

    2011-12-01

    Purpose: To examine whether ionizing radiation enhances the migratory and invasive abilities of cancer cells through transforming growth factor (TGF-{beta})-mediated epithelial-mesenchymal transition (EMT). Methods and Materials: Six cancer cell lines originating from different human organs were irradiated by {sup 60}Co {gamma}-ray at a total dose of 2 Gy, and the changes associated with EMT, including morphology, EMT markers, migration and invasion, were observed by microscope, Western blot, immunofluorescence, scratch assay, and transwell chamber assay, respectively. Then the protein levels of TGF-{beta} in these cancer cells were detected by enzyme-linked immunosorbent assay, and the role of TGF-{beta} signaling pathway in the effect of ionizing radiation on EMT was investigate by using the specific inhibitor SB431542. Results: After irradiation with {gamma}-ray at a total dose of 2 Gy, cancer cells presented the mesenchymal phenotype, and compared with the sham-irradiation group the expression of epithelial markers was decreased and of mesenchymal markers was increased, the migratory and invasive capabilities were strengthened, and the protein levels of TGF-{beta} were enhanced. Furthermore, events associated with EMT induced by IR in A549 could be reversed through inhibition of TGF-{beta} signaling. Conclusions: These results suggest that EMT mediated by TGF-{beta} plays a critical role in IR-induced enhancing of migratory and invasive capabilities in cancer cells.

  15. The kinases MEKK2 and MEKK3 regulate transforming growth factor-β-mediated helper T cell differentiation.

    PubMed

    Chang, Xing; Liu, Fang; Wang, Xiaofang; Lin, Aiping; Zhao, Hongyu; Su, Bing

    2011-02-25

    Mitogen-activated protein kinases (MAPKs) are key mediators of the T cell receptor (TCR) signals but their roles in T helper (Th) cell differentiation are unclear. Here we showed that the MAPK kinase kinases MEKK2 (encoded by Map3k2) and MEKK3 (encoded by Map3k3) negatively regulated transforming growth factor-β (TGF-β)-mediated Th cell differentiation. Map3k2(-/-)Map3k3(Lck-Cre/-) mice showed an abnormal accumulation of regulatory T (Treg) and Th17 cells in the periphery, consistent with Map3k2(-/-)Map3k3(Lck-Cre/-) naive CD4(+) T cells' differentiation into Treg and Th17 cells with a higher frequency than wild-type (WT) cells after TGF-β stimulation in vitro. In addition, Map3k2(-/-)Map3k3(Lck-Cre/-) mice developed more severe experimental autoimmune encephalomyelitis. Map3k2(-/-)Map3k3(Lck-Cre/-) T cells exhibited impaired phosphorylation of SMAD2 and SMAD3 proteins at their linker regions, which negatively regulated the TGF-β responses in T cells. Thus, the crosstalk between TCR-induced MAPK and the TGF-β signaling pathways is important in regulating Th cell differentiation.

  16. Transforming growth factor-α mediates estrogen-induced upregulation of glutamate transporter GLT-1 in rat primary astrocytes

    PubMed Central

    Lee, Eunsook; Sidoryk-Węgrzynowicz, Marta; Yin, Zhaobao; Webb, Anton; Son, Deok-Soo; Aschner, Michael

    2012-01-01

    Glutamate transporter-1 (GLT-1) plays a central role in preventing excitotoxicity by removing excess glutamate from the synaptic clefts. 17β-estradiol (E2) and tamoxifen (TX), a selective estrogen receptor modulator (SERM), afford neuroprotection in a range of experimental models. However, the mechanisms that mediate E2 and TX neuroprotection have yet to be elucidated. We tested the hypothesis that E2 and TX enhance GLT-1 function by increasing transforming growth factor (TGF)-α expression and thus, attenuate manganese (Mn)-induced impairment in astrocytic GLT-1 expression and glutamate uptake in rat neonatal primary astrocytes. The results showed that E2 (10 nM) and TX (1 μM) increased GLT-1 expression and reversed the Mn-induced reduction in GLT-1, both at the mRNA and protein levels. E2/TX also concomitantly reversed the Mn-induced inhibition of astrocytic glutamate uptake. E2/TX activated the GLT-1 promoter and attenuated the Mn-induced repression of the GLT-1 promoter in astrocytes. TGF-α knock-down (siRNA) abolished the E2/TX effect on GLT-1 expression, and inhibition of epidermal growth factor receptor (TGF-α receptor) suppressed the effect of E2/TX on GLT-1 expression and GLT-1 promoter activity. E2/TX also increased TGF-α mRNA and protein levels with a concomitant increase in astrocytic glutamate uptake. All estrogen receptors (ERs: ER-α ER-β and GPR30) were involved in mediating E2 effects on the regulation of TGF-α, GLT-1, and glutamate uptake. These results indicate that E2/TX increase GLT-1 expression in astrocytes via TGF-α signaling, thus offering an important putative target for the development of novel therapeutics for neurological disorders. PMID:22488924

  17. Transforming growth factor-α mediates estrogen-induced upregulation of glutamate transporter GLT-1 in rat primary astrocytes.

    PubMed

    Lee, Eunsook; Sidoryk-Wegrzynowicz, Marta; Yin, Zhaobao; Webb, Anton; Son, Deok-Soo; Aschner, Michael

    2012-07-01

    Glutamate transporter-1 (GLT-1) plays a central role in preventing excitotoxicity by removing excess glutamate from the synaptic clefts. 17β-Estradiol (E2) and tamoxifen (TX), a selective estrogen receptor (ER) modulator, afford neuroprotection in a range of experimental models. However, the mechanisms that mediate E2 and TX neuroprotection have yet to be elucidated. We tested the hypothesis that E2 and TX enhance GLT-1 function by increasing transforming growth factor (TGF)-α expression and, thus, attenuate manganese (Mn)-induced impairment in astrocytic GLT-1 expression and glutamate uptake in rat neonatal primary astrocytes. The results showed that E2 (10 nM) and TX (1 μM) increased GLT-1 expression and reversed the Mn-induced reduction in GLT-1, both at the mRNA and protein levels. E2/TX also concomitantly reversed the Mn-induced inhibition of astrocytic glutamate uptake. E2/TX activated the GLT-1 promoter and attenuated the Mn-induced repression of the GLT-1 promoter in astrocytes. TGF-α knockdown (siRNA) abolished the E2/TX effect on GLT-1 expression, and inhibition of epidermal growth factor receptor (TGF-α receptor) suppressed the effect of E2/TX on GLT-1 expression and GLT-1 promoter activity. E2/TX also increased TGF-α mRNA and protein levels with a concomitant increase in astrocytic glutamate uptake. All ERs (ER-α, ER-β, and G protein-coupled receptor 30) were involved in mediating E2 effects on the regulation of TGF-α, GLT-1, and glutamate uptake. These results indicate that E2/TX increases GLT-1 expression in astrocytes via TGF-α signaling, thus offering an important putative target for the development of novel therapeutics for neurological disorders.

  18. Lack of Radiation Dose or Quality Dependence of Epithelial-to-Mesenchymal Transition (EMT) Mediated by Transforming Growth Factor {beta}

    SciTech Connect

    Andarawewa, Kumari L.; Costes, Sylvain V.; Fernandez-Garcia, Ignacio; Chou, William S.; Ravani, Shraddha A.; Park, Howard; Barcellos-Hoff, Mary Helen

    2011-04-01

    Purpose: Epithelial-to-mesenchymal transition (EMT) is a phenotype that alters cell morphology, disrupts morphogenesis, and increases motility. Our prior studies have shown that the progeny of human mammary epithelial cells (HMECs) irradiated with 2 Gy undergoes transforming growth factor {beta} (TGF-{beta})-mediated EMT. In this study we determined whether radiation dose or quality affected TGF-{beta}-mediated EMT. Methods and Materials: HMECs were cultured on tissue culture plastic or in Matrigel (BD Biosciences, San Jose, CA) and exposed to low or high linear energy transfer (LET) and TGF-{beta} (400 pg/mL). Image analysis was used to measure membrane-associated E-cadherin, a marker of functional epithelia, or fibronectin, a product of mesenchymal cells, as a function of radiation dose and quality. Results: E-cadherin was reduced in TGF-{beta}-treated cells irradiated with low-LET radiation doses between 0.03 and 2 Gy compared with untreated, unirradiated cells or TGF-{beta} treatment alone. The radiation quality dependence of TGF-{beta}-mediated EMT was determined by use of 1 GeV/amu (gigaelectron volt / atomic mass unit) {sup 56}Fe ion particles at the National Aeronautics and Space Administration's Space Radiation Laboratory. On the basis of the relative biological effectiveness of 2 for {sup 56}Fe ion particles' clonogenic survival, TGF-{beta}-treated HMECs were irradiated with equitoxic 1-Gy {sup 56}Fe ion or 2-Gy {sup 137}Cs radiation in monolayer. Furthermore, TGF-{beta}-treated HMECs irradiated with either high- or low-LET radiation exhibited similar loss of E-cadherin and gain of fibronectin and resulted in similar large, poorly organized colonies when embedded in Matrigel. Moreover, the progeny of HMECs exposed to different fluences of {sup 56}Fe ion underwent TGF-{beta}-mediated EMT even when only one-third of the cells were directly traversed by the particle. Conclusions: Thus TGF-{beta}-mediated EMT, like other non-targeted radiation effects, is

  19. Integrin-linked kinase mediates the hydrogen peroxide-dependent transforming growth factor-β1 up-regulation.

    PubMed

    Gonzalez-Ramos, M; de Frutos, S; Griera, M; Luengo, A; Olmos, G; Rodriguez-Puyol, D; Calleros, L; Rodriguez-Puyol, M

    2013-08-01

    Transforming growth factor type-β1 (TGF-β1) has been recognized as a central mediator in many pathological events related to extracellular matrix (ECM) proteins accumulation, where their locally increased expression has been implicated in the fibrosis process of numerous organs, including glomerular fibrosis in the kidney. We and others have reported the TGF-β1 synthesis regulation by reactive oxygen species (ROS), and moreover we also described the implication of integrin-linked kinase (ILK) in the AP-1-dependent TGF-β1 up-regulation. Thus, we propose here that hydrogen peroxide (H2O2)-dependent TGF-β1 regulation may be mediated by ILK activation. First we confirmed the increase in TGF-β1 expression in human mesangial cells (HMC) after treatment with H2O2 or with an alternative H2O2-generating system such as the glucose-oxidase enzyme (GOX). By using immunoblotting, immunofluorescence, and ELISA techniques, we demonstrate that extracellular H2O2 up-regulates TGF-β1 transcription, as well as increases TGF-β1 promoter activity. Furthermore, catalase-decreased intracellular H2O2 abolished TGF-β1 up-regulation. The use of pharmacological inhibitors as well as knockdown of ILK with small interfering RNA (siRNA) demonstrated the implication of a PI3K/ILK/AKT/ERK MAPK signaling pathway axis in the H2O2-induced TGF-β1 overexpression. Finally, we explored the physiological relevance of these findings by treating HMC with angiotensin II, a known stimuli of H2O2 synthesis. Our results confirm the relevance of previous findings after a more physiological stimulus. In summary, our results provide evidence that ILK activity changes may act as a mechanism in response to different stimuli such as H2O2 in the induced TGF-β1 up-regulation in pathological or even physiological conditions.

  20. Calycosin inhibits migration and invasion through modulation of transforming growth factor beta-mediated mesenchymal properties in U87 and U251 cells

    PubMed Central

    Nie, Xiao-hu; Ou-yang, Jia; Xing, Ying; Li, Dan-yan; Liu, Ru-en; Xu, Ru-xiang

    2016-01-01

    In this study, we investigated the potential anticancer effects of calycosin against human glioblastoma cells, including the impacts on cell proliferation, apoptosis, and cell cycle distribution. We further studied its inhibitory activity on migration and invasion in U87 and U251 cells. Furthermore, transforming growth factor beta-mediated reductions of mesenchymal-associated genes/activators, matrix metalloproteinases-2, and -9 were detected in this process. Administration of calycosin in a glioblastoma xenograft model showed that calycosin could not only reduce tumor volume but also suppress transforming growth factor beta as well as its downstream molecules. These results revealed calycosin as a potential antitumor agent in human glioblastoma. PMID:26955262

  1. ROLES OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF-A) IN MEDIATION OF DIOXIN (TCDD)-INDUCED DELAYS IN DEVELOPMENT OF THE MOUSE MAMMARY GLAND

    EPA Science Inventory

    Roles of Epidermal Growth Factor (EGF) and Transforming Growth Factor-alpha (TGF-a) in Mediation of Dioxin (TCDD)-Induced Delays in Development of the Mouse Mammary Gland.
    Suzanne E. Fenton, Barbara Abbott, Lamont Bryant, and Angela Buckalew. U.S. EPA, NHEERL, Reproductive Tox...

  2. Fluoxetine Prevents Aβ1-42-Induced Toxicity via a Paracrine Signaling Mediated by Transforming-Growth-Factor-β1

    PubMed Central

    Caraci, Filippo; Tascedda, Fabio; Merlo, Sara; Benatti, Cristina; Spampinato, Simona F.; Munafò, Antonio; Leggio, Gian Marco; Nicoletti, Ferdinando; Brunello, Nicoletta; Drago, Filippo; Sortino, Maria Angela; Copani, Agata

    2016-01-01

    Selective reuptake inhibitors (SSRIs), such as fluoxetine and sertraline, increase circulating Transforming-Growth-Factor-β1 (TGF-β1) levels in depressed patients, and are currently studied for their neuroprotective properties in Alzheimer’s disease. TGF-β1 is an anti-inflammatory cytokine that exerts neuroprotective effects against β-amyloid (Aβ)-induced neurodegeneration. In the present work, the SSRI, fluoxetine, was tested for the ability to protect cortical neurons against 1 μM oligomeric Aβ1-42-induced toxicity. At therapeutic concentrations (100 nM–1 μM), fluoxetine significantly prevented Aβ-induced toxicity in mixed glia-neuronal cultures, but not in pure neuronal cultures. Though to a lesser extent, also sertraline was neuroprotective in mixed cultures, whereas serotonin (10 nM–10 μM) did not mimick fluoxetine effects. Glia-conditioned medium collected from astrocytes challenged with fluoxetine protected pure cortical neurons against Aβ toxicity. The effect was lost in the presence of a neutralizing antibody against TGF-β1 in the conditioned medium, or when the specific inhibitor of type-1 TGF-β1 receptor, SB431542, was added to pure neuronal cultures. Accordingly, a 24 h treatment of cortical astrocytes with fluoxetine promoted the release of active TGF-β1 in the culture media through the conversion of latent TGF-β1 to mature TGF-β1. Unlike fluoxetine, both serotonin and sertraline did not stimulate the astrocyte release of active TGF-β1. We conclude that fluoxetine is neuroprotective against Aβ toxicity via a paracrine signaling mediated by TGF-β1, which does not result from a simplistic SERT blockade. PMID:27826242

  3. Fluoxetine Prevents Aβ1-42-Induced Toxicity via a Paracrine Signaling Mediated by Transforming-Growth-Factor-β1.

    PubMed

    Caraci, Filippo; Tascedda, Fabio; Merlo, Sara; Benatti, Cristina; Spampinato, Simona F; Munafò, Antonio; Leggio, Gian Marco; Nicoletti, Ferdinando; Brunello, Nicoletta; Drago, Filippo; Sortino, Maria Angela; Copani, Agata

    2016-01-01

    Selective reuptake inhibitors (SSRIs), such as fluoxetine and sertraline, increase circulating Transforming-Growth-Factor-β1 (TGF-β1) levels in depressed patients, and are currently studied for their neuroprotective properties in Alzheimer's disease. TGF-β1 is an anti-inflammatory cytokine that exerts neuroprotective effects against β-amyloid (Aβ)-induced neurodegeneration. In the present work, the SSRI, fluoxetine, was tested for the ability to protect cortical neurons against 1 μM oligomeric Aβ1-42-induced toxicity. At therapeutic concentrations (100 nM-1 μM), fluoxetine significantly prevented Aβ-induced toxicity in mixed glia-neuronal cultures, but not in pure neuronal cultures. Though to a lesser extent, also sertraline was neuroprotective in mixed cultures, whereas serotonin (10 nM-10 μM) did not mimick fluoxetine effects. Glia-conditioned medium collected from astrocytes challenged with fluoxetine protected pure cortical neurons against Aβ toxicity. The effect was lost in the presence of a neutralizing antibody against TGF-β1 in the conditioned medium, or when the specific inhibitor of type-1 TGF-β1 receptor, SB431542, was added to pure neuronal cultures. Accordingly, a 24 h treatment of cortical astrocytes with fluoxetine promoted the release of active TGF-β1 in the culture media through the conversion of latent TGF-β1 to mature TGF-β1. Unlike fluoxetine, both serotonin and sertraline did not stimulate the astrocyte release of active TGF-β1. We conclude that fluoxetine is neuroprotective against Aβ toxicity via a paracrine signaling mediated by TGF-β1, which does not result from a simplistic SERT blockade.

  4. Interactions between stromal cell--derived keratinocyte growth factor and epithelial transforming growth factor in immune-mediated crypt cell hyperplasia.

    PubMed Central

    Bajaj-Elliott, M; Poulsom, R; Pender, S L; Wathen, N C; MacDonald, T T

    1998-01-01

    Immune reactions in the gut are associated with increased epithelial cell proliferation. Here we have studied the role of keratinocyte growth factor (KGF; FGF7) and transforming growth factor-alpha (TGF-alpha) in the epithelial cell hyperplasia seen in explants of fetal human small intestine after activation of lamina propria T cells with the superantigen Staphylococcus aureus enterotoxin B (SEB). After the addition of SEB to the explants there is a 10-fold increase in KGF mRNA by 72 h of culture. KGF transcripts were abundant in the lamina propria using in situ hybridization and the culture supernatants contained elevated amounts of KGF protein. SEB had no direct effect on KGF mRNA and protein production by cultured lamina propria mesenchymal cells, but both were upregulated by TNF-alpha. Accompanying the increase in KGF there was also an increase in TGF-alpha precursor proteins in the culture supernatants and the phosphorylated form of the EGFR receptor was also detected in the tissue. Increased TGF-alpha precursor proteins were also detected in the supernatants of control explants stimulated with KGF alone. The direct addition of KGF and TGF-alpha enhanced epithelial cell proliferation and antibodies against KGF and TGF-alpha partially inhibited SEB-induced crypt hyperplasia. These results suggest molecular cross-talk between the KGF/KGFR and the TGF-alpha/EGFR in immune-mediated crypt cell hyperplasia. PMID:9788959

  5. Fyn mediates transforming growth factor-beta1-induced down-regulation of E-cadherin in human A549 lung cancer cells.

    PubMed

    Kim, An Na; Jeon, Woo-Kwang; Lim, Kyu-Hyoung; Lee, Hui-Young; Kim, Woo Jin; Kim, Byung-Chul

    2011-04-01

    Transforming growth factor-beta (TGF-β) signaling positively contributes to the regulation of tumor metastasis. However, the underlying molecular mechanisms are less well defined. We here show that Fyn, a member of Src family tyrosine kinases, plays a critical role in mediating TGF-β1-induced down-regulation of E-cadherin in human A549 lung cancer cells. Blockade of Fyn with siRNA knockdown or ligand-binding defective mutant significantly lowered the ability of TGF-β1 to repress E-cadherin expression. Furthermore, our results demonstrated that Fyn facilitates TGF-β1-mediated suppression of E-cadherin through p38 kinase-dependent induction of Snail. Collectively, our findings identify a Fyn-p38-Snail cascade as a new signaling pathway mediating oncogenic TGF-β function.

  6. Extracellular matrix proteoglycan decorin-mediated myogenic satellite cell responsiveness to transforming growth factor-beta1 during cell proliferation and differentiation Decorin and transforming growth factor-beta1 in satellite cells.

    PubMed

    Li, Xuehui; McFarland, Douglas C; Velleman, Sandra G

    2008-10-01

    Transforming growth factor-beta1 (TGF-beta1) is a potent inhibitor of muscle cell proliferation and differentiation. Decorin, a small proteoglycan in the extracellular matrix, binds to TGF-beta1 and modulates the activity of TGF-beta1 during muscle cell growth and development. However, its interaction with TGF-beta1 and involvement in myogenesis is not well characterized. In the present study, chicken myogenic satellite cells, myogenic precursors for muscle growth and repair, were isolated from the pectoralis major muscle and used to investigate the biological function of TGF-beta1 and decorin during myogenesis. The over-expression of decorin in satellite cells significantly increased cell proliferation, compared to the control cells. Consistent with this result, reducing decorin expression decreased cell proliferation, which suggests a decorin-mediated mechanism is involved in the regulation of myogenic satellite cell proliferation. Satellite cells over-expressing decorin were less sensitive to TGF-beta1 during proliferation, which indicates that decorin may sequester TGF-beta1 leading to increased proliferation. During satellite cell differentiation, the over-expression of decorin induced differentiation by increasing the muscle specific creatine kinase concentration. However, the addition of TGF-beta1 diminished decorin-mediated cell responsiveness to TGF-beta1 during differentiation. Taken together, these results suggest that decorin induces myogenic satellite cell proliferation and differentiation by regulating cellular responsiveness to TGF-beta1. An alternative TGF-beta1-independent pathway may be involved in the regulation of satellite cells by decorin.

  7. Glucose Stimulation of Transforming Growth Factor-β Bioactivity in Mesangial Cells Is Mediated by Thrombospondin-1

    PubMed Central

    Poczatek, Maria H.; Hugo, Christian; Darley-Usmar, Victor; Murphy-Ullrich, Joanne E.

    2000-01-01

    Glucose is a key factor in the development of diabetic complications, including diabetic nephropathy. The development of diabetic glomerulosclerosis is dependent on the fibrogenic growth factor, transforming growth factor-β (TGF-β). Previously we showed that thrombospondin-1 (TSP-1) activates latent TGF-β both in vitro and in vivo. Activation occurs as the result of specific interactions of latent TGF-β with TSP-1, which potentially alter the conformation of latent TGF-β. As glucose also up-regulates TSP-1 expression, we hypothesized that the increased TGF-β bioactivity observed in rat and human mesangial cells cultured with high glucose concentrations is the result of latent TGF-β activation by autocrine TSP-1. Glucose-induced bioactivity of TGF-β in mesangial cell cultures was reduced to basal levels by peptides from two different sequences that antagonize activation of latent TGF-β by TSP, but not by the plasmin inhibitor, aprotinin. Furthermore, glucose-dependent stimulation of matrix protein synthesis was inhibited by these antagonist peptides. These studies demonstrate that glucose stimulation of TGF-β activity and the resultant matrix protein synthesis are dependent on the action of autocrine TSP-1 to convert latent TGF-β to its biologically active form. These data suggest that antagonists of TSP-dependent TGF-β activation may be the basis of novel therapeutic approaches for ameliorating diabetic renal fibrosis. PMID:11021838

  8. Fibulin-2 is Essential for Angiotensin II-Induced Myocardial Fibrosis Mediated by Transforming Growth Factor (TGF)-β

    PubMed Central

    Khan, Shaukat A.; Dong, Hailong; Joyce, Jennifer; Sasaki, Takako; Chu, Mon-Li; Tsuda, Takeshi

    2016-01-01

    Fibrosis is an ominous pathological process in failing myocardium, but its pathogenesis is poorly understood. We recently reported that loss of an extracellular matrix (ECM) protein, fibulin-2, protected against ventricular dysfunction after myocardial infarction (MI) in association with absence of activation of transforming growth factor (TGF)-β signaling and suppressed up-regulation of ECM protein expression during myocardial remodeling. Here, we investigated a role of fibulin-2 in the development of myocardial hypertrophy and fibrosis induced by continuous pressor-dosage of Ang II infusion. Both wild type (WT) and fibulin-2 null (Fbln2KO) mice developed comparable hypertension and myocardial hypertrophy by Ang II infusion. However, myocardial fibrosis with significant up-regulation of collagen type I and III mRNA was only seen in WT but not in Fbln2KO mice.Transforming growth factor (TGF)-β1 mRNA and its downstream signal, Smad2, were significantly up-regulated in WT by Ang II, whereas there were no Ang II-induced changes in Flbn2KO, suggesting fibulin-2 is necessary for Ang II-induced TGF-β signaling that induces myocardial fibrosis. To test whether fibulin-2 is sufficient for Ang II-induced TGF-β up-regulation, isolated Flbn2KO cardiac fibroblasts were treated with Ang II after transfecting with fibulin-2 expression vector or pretreating with recombinant fibulin-2 protein. Ang II-induced TGF-β signaling in Fbln2KO cells was partially rescued by exogenous fibulin-2, suggesting that fibulin-2 is required and probably sufficient for Ang II-induced TGF-β activation. Smad2 phosphorylation was induced just by adding recombinant fibulin-2 to KO cells, suggesting that extracellular interaction between fibulin-2 and latent TGF-β triggered initial TGF-β activation. Our study indicates that Ang II cannot induce TGF-β activation without fibulin-2 and that fibulin-2 plays an essential role in Ang II-induced TGF-β signaling and subsequent myocardial fibrosis

  9. Transforming growth factor-β1 reduces megalin- and cubilin-mediated endocytosis of albumin in proximal-tubule-derived opossum kidney cells

    PubMed Central

    Gekle, Michael; Knaus, Petra; Nielsen, Rikke; Mildenberger, Sigrid; Freudinger, Ruth; Wohlfarth, Verena; Sauvant, Christoph; Christensen, Erik I

    2003-01-01

    Transforming growth factor (TGF)-β1 is a member of a superfamily of multifunctional cytokines involved in several pathological processes of the kidney, including fibrogenesis, apoptosis and epithelial-mesenchymal transition. These events lead to tubulointerstitial fibrosis and glomerulosclerosis. Less is known about TGF-β1-induced alterations of cell function. An important function of proximal tubular cells is reabsorption of filtered proteins, including albumin, via megalin-cubilin-dependent receptor-mediated endocytosis. In this study we used a well established cell culture model (proximal-tubule-derived opossum kidney (OK) cells) in order to test the hypothesis that TGF-β1 reduces megalin-cubilin-mediated endocytosis. Previously we have shown that albumin endocytosis in OK cells is mediated by megalin/cubulin. TGF-β1 led to a time- and dose-dependent downregulation of megalin-cubilin-mediated endocytosis without affecting two other transport systems tested. Binding, internalization and intracellular trafficking of the ligand albumin were affected. Decreased binding resulted from reduced cubilin and megalin expression in the 200 000 g membrane fraction. The underlying mechanism of TGF-β1 action does not involve mitogen-activated protein kinases, protein kinase C or A, or reactive oxygen species. In contrast, TGF-β1-induced downregulation of megalin-cubilin-mediated endocytosis was sensitive to inhibition of translation and transcription and was preceded by Smad2 and 3 phosphorylation. Dominant negative Smad2/3 constructs prevented the effect of TGF-β1. In conclusion our data indicate that enhanced levels of TGF-β1 occurring in various nephropathies can lead to downregulation of megalin-cubilin-dependent endocytosis. Probably, TGF-β1 leads to Smad2- and Smad3-dependent expression of negative regulators of receptor-mediated endocytosis. PMID:14561830

  10. Transforming growth factor-beta1 reduces megalin- and cubilin-mediated endocytosis of albumin in proximal-tubule-derived opossum kidney cells.

    PubMed

    Gekle, Michael; Knaus, Petra; Nielsen, Rikke; Mildenberger, Sigrid; Freudinger, Ruth; Wohlfarth, Verena; Sauvant, Christoph; Christensen, Erik I

    2003-10-15

    Transforming growth factor (TGF)-beta1 is a member of a superfamily of multifunctional cytokines involved in several pathological processes of the kidney, including fibrogenesis, apoptosis and epithelial-mesenchymal transition. These events lead to tubulointerstitial fibrosis and glomerulosclerosis. Less is known about TGF-beta1-induced alterations of cell function. An important function of proximal tubular cells is reabsorption of filtered proteins, including albumin, via megalin-cubilin-dependent receptor-mediated endocytosis. In this study we used a well established cell culture model (proximal-tubule-derived opossum kidney (OK) cells) in order to test the hypothesis that TGF-beta1 reduces megalin-cubilin-mediated endocytosis. Previously we have shown that albumin endocytosis in OK cells is mediated by megalin/cubulin. TGF-beta1 led to a time- and dose-dependent downregulation of megalin-cubilin-mediated endocytosis without affecting two other transport systems tested. Binding, internalization and intracellular trafficking of the ligand albumin were affected. Decreased binding resulted from reduced cubilin and megalin expression in the 200 000 g membrane fraction. The underlying mechanism of TGF-beta1 action does not involve mitogen-activated protein kinases, protein kinase C or A, or reactive oxygen species. In contrast, TGF-beta1-induced downregulation of megalin-cubilin-mediated endocytosis was sensitive to inhibition of translation and transcription and was preceded by Smad2 and 3 phosphorylation. Dominant negative Smad2/3 constructs prevented the effect of TGF-beta1. In conclusion our data indicate that enhanced levels of TGF-beta1 occurring in various nephropathies can lead to downregulation of megalin-cubilin-dependent endocytosis. Probably, TGF-beta1 leads to Smad2- and Smad3-dependent expression of negative regulators of receptor-mediated endocytosis.

  11. Mitogen-Inducible Gene-6 Mediates Feedback Inhibition from Mutated BRAF towards the Epidermal Growth Factor Receptor and Thereby Limits Malignant Transformation.

    PubMed

    Milewska, Malgorzata; Romano, David; Herrero, Ana; Guerriero, Maria Luisa; Birtwistle, Marc; Quehenberger, Franz; Hatzl, Stefan; Kholodenko, Boris N; Segatto, Oreste; Kolch, Walter; Zebisch, Armin

    2015-01-01

    BRAF functions in the RAS-extracellular signal-regulated kinase (ERK) signaling cascade. Activation of this pathway is necessary to mediate the transforming potential of oncogenic BRAF, however, it may also cause a negative feedback that inhibits the epidermal growth factor receptor (EGFR). Mitogen-inducible gene-6 (MIG-6) is a potent inhibitor of the EGFR and has been demonstrated to function as a tumor suppressor. As MIG-6 can be induced via RAS-ERK signaling, we investigated its potential involvement in this negative regulatory loop. Focus formation assays were performed and demonstrated that MIG-6 significantly reduces malignant transformation induced by oncogenic BRAF. Although this genetic interaction was mirrored by a physical interaction between MIG-6 and BRAF, we did not observe a direct regulation of BRAF kinase activity by MIG-6. Interestingly, a selective chemical EGFR inhibitor suppressed transformation to a similar degree as MIG-6, whereas combining these approaches had no synergistic effect. By analyzing a range of BRAF mutated and wildtype cell line models, we could show that BRAF V600E causes a strong upregulation of MIG-6, which was mediated at the transcriptional level via the RAS-ERK pathway and resulted in downregulation of EGFR activation. This feedback loop is operational in tumors, as shown by the analysis of almost 400 patients with papillary thyroid cancer (PTC). Presence of BRAF V600E correlated with increased MIG-6 expression on the one hand, and with inactivation of the EGFR and of PI3K/AKT signaling on the other hand. Importantly, we also observed a more aggressive disease phenotype when BRAF V600E coexisted with low MIG-6 expression. Finally, analysis of methylation data was performed and revealed that higher methylation of MIG-6 correlated to its decreased expression. Taken together, we demonstrate that MIG-6 efficiently reduces cellular transformation driven by oncogenic BRAF by orchestrating a negative feedback circuit directed

  12. Mitogen-Inducible Gene-6 Mediates Feedback Inhibition from Mutated BRAF towards the Epidermal Growth Factor Receptor and Thereby Limits Malignant Transformation

    PubMed Central

    Milewska, Malgorzata; Romano, David; Herrero, Ana; Guerriero, Maria Luisa; Birtwistle, Marc; Quehenberger, Franz; Hatzl, Stefan; Kholodenko, Boris N.; Segatto, Oreste; Kolch, Walter; Zebisch, Armin

    2015-01-01

    BRAF functions in the RAS-extracellular signal-regulated kinase (ERK) signaling cascade. Activation of this pathway is necessary to mediate the transforming potential of oncogenic BRAF, however, it may also cause a negative feedback that inhibits the epidermal growth factor receptor (EGFR). Mitogen-inducible gene-6 (MIG-6) is a potent inhibitor of the EGFR and has been demonstrated to function as a tumor suppressor. As MIG-6 can be induced via RAS-ERK signaling, we investigated its potential involvement in this negative regulatory loop. Focus formation assays were performed and demonstrated that MIG-6 significantly reduces malignant transformation induced by oncogenic BRAF. Although this genetic interaction was mirrored by a physical interaction between MIG-6 and BRAF, we did not observe a direct regulation of BRAF kinase activity by MIG-6. Interestingly, a selective chemical EGFR inhibitor suppressed transformation to a similar degree as MIG-6, whereas combining these approaches had no synergistic effect. By analyzing a range of BRAF mutated and wildtype cell line models, we could show that BRAF V600E causes a strong upregulation of MIG-6, which was mediated at the transcriptional level via the RAS-ERK pathway and resulted in downregulation of EGFR activation. This feedback loop is operational in tumors, as shown by the analysis of almost 400 patients with papillary thyroid cancer (PTC). Presence of BRAF V600E correlated with increased MIG-6 expression on the one hand, and with inactivation of the EGFR and of PI3K/AKT signaling on the other hand. Importantly, we also observed a more aggressive disease phenotype when BRAF V600E coexisted with low MIG-6 expression. Finally, analysis of methylation data was performed and revealed that higher methylation of MIG-6 correlated to its decreased expression. Taken together, we demonstrate that MIG-6 efficiently reduces cellular transformation driven by oncogenic BRAF by orchestrating a negative feedback circuit directed

  13. Fluoride Regulate Osteoblastic Transforming Growth Factor-β1 Signaling by Mediating Recycling of the Type I Receptor ALK5

    PubMed Central

    Yang, Chen; Wang, Yan; Xu, Hui

    2017-01-01

    This study aimed to preliminary investigate the role of activin receptor-like kinase (ALK) 5 as one of TGF-βR1 subtypes in bone turnover and osteoblastic differentiation induced by fluoride. We analyzed bone mineral density and the expression of genes related with transforming growth factor-β1(TGF-β1) signaling and bone turnover in rats treated by different concentrations of fluoride with or without SB431542 in vivo. Moreover, MTT assay, alkaline phosphatase staining, RT-PCR, immunocytochemical analysis and western blot analysis were used to detect the influence on bone marrow stem cells (BMSC) after stimulating by varying concentration of fluoride with or without SB431542 in vitro. The in vivo study showed SB431542 treatment affected bone density and gene expression of rats, which indicated TGF-β1 and ALK5 might take part in fluoride-induced bone turnover and bone formation. The in vitro study showed low concentration of fluoride improved BMSC cells viability, alkaline phosphatase activity, and osteocalcin protein expression which were inhibited by high concentration of fluoride. The gene expression of Runx2 and ALK5 in cells increased after low concentration fluoride treatment which was also inhibited by high concentration of fluoride. Fluoride treatment inhibited gene and protein expression of Samd3 (except 1 mgF-/L). Compared with fluoride treatment alone, cells differentiation was inhibited with SB431542 treatment. Moreover, the expression of Runx2, ALK5 and Smad3 were influenced by SB431542 treatment. In conclusion, this preliminary study indicated that fluoride regulated osteoblastic TGFβ1 signaling in bone turnover and cells differentiation via ALK5. PMID:28125630

  14. Pluripotent Nontumorigenic Adipose Tissue-Derived Muse Cells have Immunomodulatory Capacity Mediated by Transforming Growth Factor-β1.

    PubMed

    Gimeno, María L; Fuertes, Florencia; Barcala Tabarrozzi, Andres E; Attorressi, Alejandra I; Cucchiani, Rodolfo; Corrales, Luis; Oliveira, Talita C; Sogayar, Mari C; Labriola, Leticia; Dewey, Ricardo A; Perone, Marcelo J

    2017-01-01

    Adult mesenchymal stromal cell-based interventions have shown promising results in a broad range of diseases. However, their use has faced limited effectiveness owing to the low survival rates and susceptibility to environmental stress on transplantation. We describe the cellular and molecular characteristics of multilineage-differentiating stress-enduring (Muse) cells derived from adipose tissue (AT), a subpopulation of pluripotent stem cells isolated from human lipoaspirates. Muse-AT cells were efficiently obtained using a simple, fast, and affordable procedure, avoiding cell sorting and genetic manipulation methods. Muse-AT cells isolated under severe cellular stress, expressed pluripotency stem cell markers and spontaneously differentiated into the three germ lineages. Muse-AT cells grown as spheroids have a limited proliferation rate, a diameter of ∼15 µm, and ultrastructural organization similar to that of embryonic stem cells. Muse-AT cells evidenced high stage-specific embryonic antigen-3 (SSEA-3) expression (∼60% of cells) after 7-10 days growing in suspension and did not form teratomas when injected into immunodeficient mice. SSEA-3(+) -Muse-AT cells expressed CD105, CD29, CD73, human leukocyte antigen (HLA) class I, CD44, and CD90 and low levels of HLA class II, CD45, and CD34. Using lipopolysaccharide-stimulated macrophages and antigen-challenged T-cell assays, we have shown that Muse-AT cells have anti-inflammatory activities downregulating the secretion of proinflammatory cytokines, such as interferon-γ and tumor necrosis factor-α. Muse-AT cells spontaneously gained transforming growth factor-β1 expression that, in a phosphorylated SMAD2-dependent manner, might prove pivotal in their observed immunoregulatory activity through decreased expression of T-box transcription factor in T cells. Collectively, the present study has demonstrated the feasibility and efficiency of obtaining Muse-AT cells that can potentially be harnessed as

  15. Pluripotent Nontumorigenic Adipose Tissue-Derived Muse Cells Have Immunomodulatory Capacity Mediated by Transforming Growth Factor-β1.

    PubMed

    Gimeno, María L; Fuertes, Florencia; Barcala Tabarrozzi, Andres E; Attorressi, Alejandra I; Cucchiani, Rodolfo; Corrales, Luis; Oliveira, Talita C; Sogayar, Mari C; Labriola, Leticia; Dewey, Ricardo A; Perone, Marcelo J

    2016-08-02

    : Adult mesenchymal stromal cell-based interventions have shown promising results in a broad range of diseases. However, their use has faced limited effectiveness owing to the low survival rates and susceptibility to environmental stress on transplantation. We describe the cellular and molecular characteristics of multilineage-differentiating stress-enduring (Muse) cells derived from adipose tissue (AT), a subpopulation of pluripotent stem cells isolated from human lipoaspirates. Muse-AT cells were efficiently obtained using a simple, fast, and affordable procedure, avoiding cell sorting and genetic manipulation methods. Muse-AT cells isolated under severe cellular stress, expressed pluripotency stem cell markers and spontaneously differentiated into the three germ lineages. Muse-AT cells grown as spheroids have a limited proliferation rate, a diameter of ∼15 µm, and ultrastructural organization similar to that of embryonic stem cells. Muse-AT cells evidenced high stage-specific embryonic antigen-3 (SSEA-3) expression (∼60% of cells) after 7-10 days growing in suspension and did not form teratomas when injected into immunodeficient mice. SSEA-3(+)-Muse-AT cells expressed CD105, CD29, CD73, human leukocyte antigen (HLA) class I, CD44, and CD90 and low levels of HLA class II, CD45, and CD34. Using lipopolysaccharide-stimulated macrophages and antigen-challenged T-cell assays, we have shown that Muse-AT cells have anti-inflammatory activities downregulating the secretion of proinflammatory cytokines, such as interferon-γ and tumor necrosis factor-α. Muse-AT cells spontaneously gained transforming growth factor-β1 expression that, in a phosphorylated SMAD2-dependent manner, might prove pivotal in their observed immunoregulatory activity through decreased expression of T-box transcription factor in T cells. Collectively, the present study has demonstrated the feasibility and efficiency of obtaining Muse-AT cells that can potentially be harnessed as

  16. [Transforming growth factor-β1 and Snail1 mediate tubular epithelial-mesenchymal transition in diabetic rats].

    PubMed

    Fang, Kai-Yun; Lou, Jing-Lei; Xiao, Ying; Shi, Ming-Juan; Gui, Hua-Zheng; Guo, Bing; Zhang, Guo-Zhong

    2008-02-25

    The present study was aimed to explore the expressions of transforming growth factor-β1 (TGF-β1) and Snail1 in renal tissues of diabetic rats, and their role in tubular epithelial-mesenchymal transition (TEMT). Induced diabetic rats were randomly divided into 2-, 4-, 8-, 12-, 16-, 20-, 24-week and 16wA, 20wA, 24wA groups. The rats in 16wA, 20wA and 24wA groups were treated with insulin to control blood glucose to the normal level from the 13th week. The age-matched rats were set as controls. Blood glucose, 24-hour urine protein, serum creatinine (Scr), kidney index of rats were measured. PAS staining was used to observe the renal pathological changes. Immunohistochemical staining and (or) Western blot were employed to determine the expressions of TGF-β1, Snail1, E-cadherin, α-smooth muscle actin (α-SMA) and fibronectin (FN) proteins. The expressions of Snail1 and E-cadherin mRNAs in renal cortex were examined by RT-PCR. Blood glucose, 24-hour urine protein, Scr and kidney index increased remarkably in diabetic rats as compared with those in the control groups (P<0.05, P<0.01) and insulin-treated rats (P<0.01). TGF-β1 and Snail1 protein expressions could not be detected by immunohistochemical staining in the normal renal tissues, however, the strongly positive staining was observed in diabetic rat renal tubules. A time-dependent loss of TGF-β1 and Snail1 expressions was detected in the kidney of insulin-treated rats. In diabetic rats tubular α-SMA positive staining was seen at the 16th week. E-cadherin expression was lost in diabetic rats. The expressions of TGF-β1, Snail1 proteins and Snail1 mRNA were significantly up-regulated in diabetic rats, while down-regulated in insulin-treated rats (P<0.01). The expressions of E-cadherin protein and mRNA in the cortex were contrary to the expressions of TGF-β1 and Snail1. Therefore, TGF-β1 and Snail1 are possibly involved in the pathogenesis of TEMT in diabetic nephropathy rats.

  17. Akt-mediated transforming growth factor-β1-induced epithelial-mesenchymal transition in cultured human esophageal squamous cancer cells.

    PubMed

    Xuan, X; Zeng, Q; Li, Y; Gao, Y; Wang, F; Zhang, H; Wang, Z; He, H; Li, S

    2014-06-01

    Epithelial-mesenchymal transition (EMT) has a crucial role during embryonic development and has also come under intense scrutiny as a mechanism through which esophageal squamous cell cancer (ESCC) progresses to become metastatic. Transforming growth factor beta (TGF-β)-mediated EMT has been observed in a variety of cell types and has been identified as the main inducer of EMT in many types of cancer. Akt activity is involved in TGF-β-mediated EMT; however, its precise relationship and role in EMT in ESCC has not been well explained to date. Our data demonstrated that in human ESCC tissues Akt and its activated form, phosphorylated-Akt (p-Akt), were overexpressed; in addition, Akt and p-Akt were negatively correlated with epithelial cadherin (E-cadherin). In EC-9706 cells, exogenous TGF-β1 could induce EMT and at the same time could increase the EC-9706 cell invasive and metastatic ability. Moreover, Akt knockdown by small-interfering RNA could attenuate the EMT induced by TGF-β1 by increasing the epithelial marker E-cadherin and decreasing the mesenchymal marker Vimentin. Silencing Akt expression could decrease the migration ability of EC-9706 cells efficiently. In short, Akt is likely to have a more important role in the EMT induced by TGF-β1 in EC-9706 and may contribute to the invasive and metastatic ability of EC-9706. Akt may be an effective therapeutic in advanced and metastatic ESCC.

  18. KSHV MicroRNAs Mediate Cellular Transformation and Tumorigenesis by Redundantly Targeting Cell Growth and Survival Pathways

    PubMed Central

    Moody, Rosalie; Zhu, Ying; Huang, Yufei; Cui, Xiaodong; Jones, Tiffany; Bedolla, Roble; Lei, Xiufen; Bai, Zhiqiang; Gao, Shou-Jiang

    2013-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is causally linked to several human cancers, including Kaposi's sarcoma, primary effusion lymphoma and multicentric Castleman's disease, malignancies commonly found in HIV-infected patients. While KSHV encodes diverse functional products, its mechanism of oncogenesis remains unknown. In this study, we determined the roles KSHV microRNAs (miRs) in cellular transformation and tumorigenesis using a recently developed KSHV-induced cellular transformation system of primary rat mesenchymal precursor cells. A mutant with a cluster of 10 precursor miRs (pre-miRs) deleted failed to transform primary cells, and instead, caused cell cycle arrest and apoptosis. Remarkably, the oncogenicity of the mutant virus was fully restored by genetic complementation with the miR cluster or several individual pre-miRs, which rescued cell cycle progression and inhibited apoptosis in part by redundantly targeting IκBα and the NF-κB pathway. Genomic analysis identified common targets of KSHV miRs in diverse pathways with several cancer-related pathways preferentially targeted. These works define for the first time an essential viral determinant for KSHV-induced oncogenesis and identify NF-κB as a critical pathway targeted by the viral miRs. Our results illustrate a common theme of shared functions with hierarchical order among the KSHV miRs. PMID:24385912

  19. The non-ankyrin C terminus of Ikappa Balpha physically interacts with p53 in vivo and dissociates in response to apoptotic stress, hypoxia, DNA damage, and transforming growth factor-beta 1-mediated growth suppression.

    PubMed

    Chang, Nan-Shan

    2002-03-22

    Transforming growth factor beta (TGF-beta1) suppresses the growth of mink lung Mv1Lu epithelial cells, whereas testicular hyaluronidase abolishes the growth inhibition. Exposure of Mv1Lu cells to TGF-beta1 rapidly resulted in down-regulation of cytosolic IkappaBalpha and hyaluronidase prevented this effect, suggesting a possible role of IkappaBalpha in the growth regulation. Ectopic expression of wild-type and dominant negative IkappaBalpha prevented TGF-beta1-mediated growth suppression. Nonetheless, the blocking effect of IkappaBalpha is not related to regulation of NF-kappaB function by its N-terminal ankyrin-repeat region (amino acids 1-243). Removal of the PEST (proline-glutamic acid-serine-threonine) domain-containing C terminus (amino acids 244-314) abolished the IkappaBalpha function, and the C terminus alone blocked the TGF-beta1 growth-inhibitory effect. Co-immunoprecipitation by anti-p53 antibody using Mv1Lu and other types of cells, as well as rat liver and spleen, revealed that a portion of cytosolic IkappaBalpha physically interacted with p53. In contrast, Mdm2, an inhibitor of p53, was barely detectable in the immunoprecipitates. The cytosolic p53 x IkappaBalpha complex rapidly dissociated in response to apoptotic stress, etoposide- and UV-mediated DNA damage, hypoxia, and TGF-beta1-mediated growth suppression. Also, a rapid increase in the formation of the nuclear p53 x IkappaBalpha complex was observed during exposure to etoposide and UV. In contrast, TGF-beta1-mediated promotion of fibroblast growth failed to mediate p53 x IkappaBalpha dissociation. Mapping by yeast two-hybrid showed that the non-ankyrin C terminus of IkappaBalpha physically interacted with the proline-rich region and a phosphorylation site, serine 46, in p53. Deletion of serine 46 or alteration of serine 46 to glycine abolished the p53 x IkappaBalpha interaction. Alteration to threonine retained the binding interaction, suggesting that serine 46 phosphorylation is involved in the

  20. Congenic mice provide in vivo evidence for a genetic locus that modulates intrinsic transforming growth factor β1-mediated signaling and bone acquisition.

    PubMed

    Mukherjee, Aditi; Larson, Emily A; Carlos, Amy S; Belknap, John K; Rotwein, Peter; Klein, Robert F

    2012-06-01

    Osteoporosis, the most common skeletal disorder, is characterized by low bone mineral density (BMD) and an increased risk of fragility fractures. BMD is the best clinical predictor of future osteoporotic fracture risk, but is a complex trait controlled by multiple environmental and genetic determinants with individually modest effects. Quantitative trait locus (QTL) mapping is a powerful method for identifying chromosomal regions encompassing genes involved in shaping complex phenotypes, such as BMD. Here we have applied QTL analysis to male and female genetically-heterogeneous F(2) mice derived from a cross between C57BL/6 and DBA/2 strains, and have identified 11 loci contributing to femoral BMD. Further analysis of a QTL on mouse chromosome 7 following the generation of reciprocal congenic strains has allowed us to determine that the high BMD trait, which tracks with the DBA/2 chromosome and exerts equivalent effects on male and female mice, is manifested by enhanced osteogenic differentiation of mesenchymal stem cells (MSCs) in vitro and by increased growth of metatarsal bones in short-term primary culture. An insertion/deletion DNA polymorphism in Ltbp4 exon 12 that causes the in-frame removal of 12 codons in the DBA/2-derived gene maps within 0.6 Mb of the marker most tightly linked to the QTL. LTBP4, one of four paralogous mouse proteins that modify the bioavailability of the transforming growth factor β (TGF-β) family of growth factors, is expressed in differentiating MSC-derived osteoblasts and in long bones, and reduced responsiveness to TGF-β1 is observed in MSCs of mice homozygous for the DBA/2 chromosome 7. Taken together, our results identify a potential genetic and biochemical relationship between decreased TGF-β1-mediated signaling and enhanced femoral BMD that may be regulated by a variant LTBP4 molecule.

  1. Cell Contact–Dependent Immunosuppression by Cd4+Cd25+Regulatory T Cells Is Mediated by Cell Surface–Bound Transforming Growth Factor β

    PubMed Central

    Nakamura, Kazuhiko; Kitani, Atsushi; Strober, Warren

    2001-01-01

    CD4+CD25+ T cells have been identified as a population of immunoregulatory T cells, which mediate suppression of CD4+CD25− T cells by cell–cell contact and not secretion of suppressor cytokines. In this study, we demonstrated that CD4+CD25+ T cells do produce high levels of transforming growth factor (TGF)-β1 and interleukin (IL)-10 compared with CD4+CD25− T cells when stimulated by plate-bound anti-CD3 and soluble anti-CD28 and/or IL-2, and secretion of TGF-β1 (but not other cytokines), is further enhanced by costimulation via cytotoxic T lymphocyte–associated antigen (CTLA)-4. As in prior studies, we found that CD4+CD25+ T cells suppress proliferation of CD4+CD25− T cells; however, we observed here that such suppression is abolished by the presence of anti–TGF-β. In addition, we found that CD4+CD25+ T cells suppress B cell immunoglobulin production and that anti–TGF-β again abolishes such suppression. Finally, we found that stimulated CD4+CD25+ T cells but not CD4+CD25− T cells express high and persistent levels of TGF-β1 on the cell surface. This, plus the fact that we could find no evidence that a soluble factor mediates suppression, strongly suggests that CD4+CD25+ T cells exert immunosuppression by a cell–cell interaction involving cell surface TGF-β1. PMID:11535631

  2. Functional cooperation between Smad proteins and activator protein-1 regulates transforming growth factor-beta-mediated induction of endothelin-1 expression.

    PubMed

    Rodríguez-Pascual, Fernando; Redondo-Horcajo, Mariano; Lamas, Santiago

    2003-06-27

    Endothelin-1 (ET-1) is a 21-amino-acid potent vasoconstrictor peptide that is mainly produced by vascular endothelial cells. Expression of the ET-1 gene is subject to complex regulation by numerous factors, among which transforming growth factor-beta (TGF-beta) is one of the most important. It has been widely documented that TGF-beta increases ET-1 mRNA and peptide levels. We have explored the mechanism by which TGF-beta upregulates ET-1 expression in endothelial cells. Transcriptional activation of the ET-1 promoter accounted for the TGF-beta-induced increase in ET-1 mRNA levels. We have identified within the ET-1 promoter two DNA elements indispensable for TGF-beta-mediated induction of ET-1: an activator protein-1 (AP-1) site at -108/-102, known to be important for constitutive and induced expression, and a novel regulatory sequence located at -193/-171, which constitutes a specific binding site for Smad transcription factors. Mutation of both elements abolished TGF-beta responsiveness. Binding of Smad3/Smad4 and c-Jun to their corresponding DNA elements was evidenced by electrophoretic mobility shift assays. Furthermore, the coactivator CREB-binding protein (CBP)/p300 was found to play an essential role in the induction of the gene. The simultaneous requirement for two distinct and independent DNA elements suggests that Smads and activator protein-1 functionally cooperate through CBP/p300 to mediate TGF-beta-induced transcriptional activation of the ET-1 gene.

  3. miR-34a mediates oxaliplatin resistance of colorectal cancer cells by inhibiting macroautophagy via transforming growth factor-β/Smad4 pathway

    PubMed Central

    Sun, Chen; Wang, Fu-Jing; Zhang, Hao-Gang; Xu, Xun-Zheng; Jia, Rui-Chun; Yao, Lei; Qiao, Peng-Fei

    2017-01-01

    AIM To investigate whether microRNA (miR)-34a mediates oxaliplatin (OXA) resistance of colorectal cancer (CRC) cells by inhibiting macroautophagy via the transforming growth factor (TGF)-β/Smad4 pathway. METHODS miR-34a expression levels were detected in CRC tissues and CRC cell lines by quantitative real-time polymerase chain reaction. Computational search, functional luciferase assay and western blotting were used to demonstrate the downstream target of miR-34a in CRC cells. Cell viability was measured with Cell Counting Kit-8. Apoptosis and macroautophagy of CRC cells were analyzed by flow cytometry and transmission electron microscopy, and expression of beclin I and LC3-II was detected by western blotting. RESULTS Expression of miR-34a was significantly reduced while expression of TGF-β and Smad4 was increased in CRC patients treated with OXA-based chemotherapy. OXA treatment also resulted in decreased miR-34a levels and increased TGF-β and Smad4 levels in both parental cells and the OXA-resistant CRC cells. Activation of macroautophagy contributed to OXA resistance in CRC cells. Expression levels of Smad4 and miR-34a in CRC patients had a significant inverse correlation and overexpressing miR-34a inhibited macroautophagy activation by directly targeting Smad4 through the TGF-β/Smad4 pathway. OXA-induced downregulation of miR-34a and increased drug resistance by activating macroautophagy in CRC cells. CONCLUSION miR-34a mediates OXA resistance of CRC by inhibiting macroautophagy via the TGF-β/Smad4 pathway. PMID:28348487

  4. Polyubiquitination of Transforming Growth Factor β-activated Kinase 1 (TAK1) at Lysine 562 Residue Regulates TLR4-mediated JNK and p38 MAPK Activation

    PubMed Central

    Chen, I-Ting; Hsu, Pang-Hung; Hsu, Wan-Ching; Chen, Nien-Jung; Tseng, Ping-Hui

    2015-01-01

    Toll-like receptor 4 (TLR4) plays an important role in innate immunity by eliciting inflammation. Upon receptor engagement, transforming growth factor β-activated kinase 1 (TAK1) is an essential mediator that transmits a signal from the receptor to downstream effectors, IκB kinase (IKK) and the mitogen-activated protein kinases (MAPKs), which control the production of inflammatory cytokines. However, the association between phosphorylation and ubiquitination of TAK1 is not yet clear. Here, we examined the crosstalk between phosphorylation and polyubiquitination of TAK1 and further investigated the mechanism of distinct activation of MAPKs and IKK. Inhibition of TAK1 phosphorylation enhanced Lys63-linked polyubiquitination of TAK1. Conversely, ubiquitin modification was counteracted by phospho-mimic TAK1 mutant, T(184,187)D. Moreover, using LC-MS analysis, Lys562 of TAK1 was identified as a novel Lys63-linked ubiquitination site and as the key residue in the feedback regulation. Mutation of Lys562 of TAK1 leads to a decrease in TAK1 phosphorylation and specific inhibition of the MAPK pathway, but has no effect on formation of the TAK1-containing complex. Our findings demonstrate a feedback loop for phosphorylation and ubiquitination of TAK1, indicating a dynamic regulation between TAK1 polyubiquitiantion and phosphorylated activation, and the molecular mechanism by which IKK and MAPKs are differentially activated in the TLR4 pathway. PMID:26189595

  5. A negative feedback control of transforming growth factor-beta signaling by glycogen synthase kinase 3-mediated Smad3 linker phosphorylation at Ser-204.

    PubMed

    Millet, Caroline; Yamashita, Motozo; Heller, Mary; Yu, Li-Rong; Veenstra, Timothy D; Zhang, Ying E

    2009-07-24

    Through the action of its membrane-bound type I receptor, transforming growth factor-beta (TGF-beta) elicits a wide range of cellular responses that regulate cell proliferation, differentiation, and apo ptosis. Many of these signaling responses are mediated by Smad proteins. As such, controlling Smad activity is crucial for proper signaling by TGF-beta and its related factors. Here, we show that TGF-beta induces phosphorylation at three sites in the Smad3 linker region in addition to the two C-terminal residues, and glycogen synthase kinase 3 is responsible for phosphorylation at one of these sites, namely Ser-204. Alanine substitution at Ser-204 and/or the neighboring Ser-208, the priming site for glycogen synthase kinase 3 in vivo activity, strengthened the affinity of Smad3 to CREB-binding protein, suggesting that linker phosphorylation may be part of a negative feedback loop that modulates Smad3 transcriptional activity. Thus, our findings reveal a novel aspect of the Smad3 signaling mechanism that controls the final amplitude of cellular responses to TGF-beta.

  6. Agrobacterium-mediated sorghum transformation.

    PubMed

    Zhao, Z Y; Cai, T; Tagliani, L; Miller, M; Wang, N; Pang, H; Rudert, M; Schroeder, S; Hondred, D; Seltzer, J; Pierce, D

    2000-12-01

    Agrobacterium tumefaciens was used to genetically transform sorghum. Immature embryos of a public (P898012) and a commercial line (PHI391) of sorghum were used as the target explants. The Agrobacterium strain used was LBA4404 carrying a 'Super-binary' vector with a bar gene as a selectable marker for herbicide resistance in the plant cells. A series of parameter tests was used to establish a baseline for conditions to be used in stable transformation experiments. A number of different transformation conditions were tested and a total of 131 stably transformed events were produced from 6175 embryos in these two sorghum lines. Statistical analysis showed that the source of the embryos had a very significant impact on transformation efficiency, with field-grown embryos producing a higher transformation frequency than greenhouse-grown embryos. Southern blot analysis of DNA from leaf tissues of T0 plants confirmed the integration of the T-DNA into the sorghum genome. Mendelian segregation in the T1 generation was confirmed by herbicide resistance screening. This is the first report of successful use of Agrobacterium for production of stably transformed sorghum plants. The Agrobacterium method we used yields a higher frequency of stable transformation that other methods reported previously.

  7. Barley Transformation Using Agrobacterium-Mediated Techniques

    NASA Astrophysics Data System (ADS)

    Harwood, Wendy A.; Bartlett, Joanne G.; Alves, Silvia C.; Perry, Matthew; Smedley, Mark A.; Leyland, Nicola; Snape, John W.

    Methods for the transformation of barley using Agrobacterium-mediated techniques have been available for the past 10 years. Agrobacterium offers a number of advantages over biolistic-mediated techniques in terms of efficiency and the quality of the transformed plants produced. This chapter describes a simple system for the transformation of barley based on the infection of immature embryos with Agrobacterium tumefaciens followed by the selection of transgenic tissue on media containing the antibiotic hygromycin. The method can lead to the production of large numbers of fertile, independent transgenic lines. It is therefore ideal for studies of gene function in a cereal crop system.

  8. Role of Flightless-I (Drosophila) homolog in the transcription activation of type I collagen gene mediated by transforming growth factor beta

    SciTech Connect

    Lim, Mi-Sun; Jeong, Kwang Won

    2014-11-21

    Highlights: • FLII activates TGFβ-mediated expression of COL1A2 gene. • TGFβ induces the association of FLII with SMAD3 and BRG1 in A549 cells. • FLII is required for the recruitment of SWI/SNF complex and chromatin accessibility to COL1A2 promoter. - Abstract: Flightless-I (Drosophila) homolog (FLII) is a nuclear receptor coactivator that is known to interact with other transcriptional regulators such as the SWI/SNF complex, an ATP-dependent chromatin-remodeling complex, at the promoter or enhancer region of estrogen receptor (ER)-α target genes. However, little is known about the role of FLII during transcription initiation in the transforming growth factor beta (TGFβ)/SMAD-dependent signaling pathway. Here, we demonstrate that FLII functions as a coactivator in the expression of type I collagen gene induced by TGFβ in A549 cells. FLII activates the reporter gene driven by COL1A2 promoter in a dose-dependent manner. Co-expression of GRIP1, CARM1, or p300 did not show any synergistic activation of transcription. Furthermore, the level of COL1A2 expression correlated with the endogenous level of FLII mRNA level. Depletion of FLII resulted in a reduction of TGFβ-induced expression of COL1A2 gene. In contrast, over-expression of FLII caused an increase in the endogenous expression of COL1A2. We also showed that FLII is associated with Brahma-related gene 1 (BRG1) as well as SMAD in A549 cells. Notably, the recruitment of BRG1 to the COL1A2 promoter region was decreased in FLII-depleted A549 cells, suggesting that FLII is required for TGFβ-induced chromatin remodeling, which is carried out by the SWI/SNF complex. Furthermore, formaldehyde-assisted isolation of regulatory elements (FAIRE)-quantitative polymerase chain reaction (qPCR) experiments revealed that depletion of FLII caused a reduction in chromatin accessibility at the COL1A2 promoter. These results suggest that FLII plays a critical role in TGFβ/SMAD-mediated transcription of the COL1A2 gene

  9. Attenuation of corneal myofibroblast development through nanoparticle-mediated soluble transforming growth factor-β type II receptor (sTGFβRII) gene transfer

    PubMed Central

    Sharma, Ajay; Rodier, Jason T.; Tandon, Ashish; Klibanov, Alexander M.

    2012-01-01

    Purpose To explore (i) the potential of polyethylenimine (PEI)-DNA nanoparticles as a vector for delivering genes into human corneal fibroblasts, and (ii) whether the nanoparticle-mediated soluble extracellular domain of the transforming growth factor–β type II receptor (sTGFβRII) gene therapy could be used to reduce myofibroblasts and fibrosis in the cornea using an in vitro model. Methods PEI-DNA nanoparticles were prepared at a nitrogen-to-phosphate ratio of 30 by mixing linear PEI and a plasmid encoding sTGFβRII conjugated to the fragment crystallizable (Fc) portion of human immunoglobulin. The PEI-DNA polyplex formation was confirmed through gel retardation assay. Human corneal fibroblasts (HCFs) were generated from donor corneas; myofibroblasts and fibrosis were induced with TGFβ1 (1 ng/ml) stimulation employing serum-free conditions. The sTGFβRII conjugated to the Fc portion of human immunoglobulin gene was introduced into HCF using either PEI-DNA nanoparticles or Lipofectamine. Suitable negative and positive controls to compare selected nanoparticle and therapeutic gene efficiency were included. Delivered gene copies and mRNA (mRNA) expression were quantified with real-time quantitative PCR (qPCR) and protein with enzyme-linked immunosorbent assay (ELISA). The changes in fibrosis parameters were quantified by measuring fibrosis marker α-smooth muscle actin (SMA) mRNA and protein levels with qPCR, immunostaining, and immunoblotting. Cytotoxicity was determined using cellular viability, proliferation, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Results PEI readily bound to plasmids to form nanoparticular polyplexes and exhibited much greater transfection efficiency (p<0.01) than the commercial reagent Lipofectamine. The PEI-DNA-treated cultures showed 4.5×104 plasmid copies/µg DNA in real-time qPCR and 7,030±87 pg/ml sTGFβRII protein in ELISA analyses, whereas Lipofectamine-transfected cultures demonstrated 1.9

  10. Agrobacterium-mediated transformation of Fusarium proliferatum.

    PubMed

    Bernardi-Wenzel, J; Quecine, M C; Azevedo, J L; Pamphile, J A

    2016-06-03

    Fusarium proliferatum is an important pathogen that is associated with plant diseases and primarily affects aerial plant parts by producing different mycotoxins, which are toxic to humans and animals. Within the last decade, this fungus has also been described as one of the causes of red root rot or sudden death syndrome in soybean, which causes extensive damage to this crop. This study describes the Agrobacterium tumefaciens-mediated transformation of F. proliferatum as a tool for the disruption of pathogenicity genes. The genetic transformation was performed using two binary vectors (pCAMDsRed and pFAT-GFP) containing the hph (hygromycin B resistance) gene as a selection marker and red and green fluorescence, respectively. The presence of acetosyringone and the use of filter paper or nitrocellulose membrane were evaluated for their effect on the transformation efficiency. A mean processing rate of 94% was obtained with 96 h of co-cultivation only in the presence of acetosyringone and the use of filter paper or nitrocellulose membrane did not affect the transformation process. Hygromycin B resistance and the presence of the hph gene were confirmed by PCR, and fluorescence due to the expression of GFP and DsRed protein was monitored in the transformants. A high rate of mitotic stability (95%) was observed. The efficiency of Agrobacterium-mediated transformation of F. proliferatum allows the technique to be used for random insertional mutagenesis studies and to analyze fungal genes involved in the infection process.

  11. Syndecan-2 Exerts Antifibrotic Effects by Promoting Caveolin-1–mediated Transforming Growth Factor-β Receptor I Internalization and Inhibiting Transforming Growth Factor-β1 Signaling

    PubMed Central

    Shi, Yuanyuan; Gochuico, Bernadette R.; Yu, Guoying; Tang, Xiaomeng; Osorio, Juan C.; Fernandez, Isis E.; Risquez, Cristobal F.; Patel, Avignat S.; Shi, Ying; Wathelet, Marc G.; Goodwin, Andrew J.; Haspel, Jeffrey A.; Ryter, Stefan W.; Billings, Eric M.; Kaminski, Naftali; Morse, Danielle

    2013-01-01

    Rationale: Alveolar transforming growth factor (TGF)-β1 signaling and expression of TGF-β1 target genes are increased in patients with idiopathic pulmonary fibrosis (IPF) and in animal models of pulmonary fibrosis. Internalization and degradation of TGF-β receptor TβRI inhibits TGF-β signaling and could attenuate development of experimental lung fibrosis. Objectives: To demonstrate that after experimental lung injury, human syndecan-2 confers antifibrotic effects by inhibiting TGF-β1 signaling in alveolar epithelial cells. Methods: Microarray assays were performed to identify genes differentially expressed in alveolar macrophages of patients with IPF versus control subjects. Transgenic mice that constitutively overexpress human syndecan-2 in macrophages were developed to test the antifibrotic properties of syndecan-2. In vitro assays were performed to determine syndecan-2–dependent changes in epithelial cell TGF-β1 signaling, TGF-β1, and TβRI internalization and apoptosis. Wild-type mice were treated with recombinant human syndecan-2 during the fibrotic phase of bleomycin-induced lung injury. Measurements and Main Results: We observed significant increases in alveolar macrophage syndecan-2 levels in patients with IPF. Macrophage-specific overexpression of human syndecan-2 in transgenic mice conferred antifibrotic effects after lung injury by inhibiting TGF-β1 signaling and downstream expression of TGF-β1 target genes, reducing extracellular matrix production and alveolar epithelial cell apoptosis. In vitro, syndecan-2 promoted caveolin-1–dependent internalization of TGF-β1 and TβRI in alveolar epithelial cells, which inhibited TGF-β1 signaling and epithelial cell apoptosis. Therapeutic administration of human syndecan-2 abrogated lung fibrosis in mice. Conclusions: Alveolar macrophage syndecan-2 exerts antifibrotic effects by promoting caveolin-1–dependent TGF-β1 and TβRI internalization and inhibiting TGF-β1 signaling in alveolar epithelial

  12. Alternative method for diagnosis of two polymorphisms in the human transforming growth factor-beta1 by PCR-mediated double site-directed mutagenesis.

    PubMed

    Hubacek, J A; Lacha, J

    2000-05-01

    Cytokine transforming growth factor-beta1 plays an important role in physiological processes during ontogenesis, cell differentiation, immune responses, carcinogenesis, inflammation, wound healing, fibroproduction, progression of renal insufficiency and arteriosclerotic lesion development. Its biological function is influenced through the two signal peptide polymorphisms. We describe a new, economical, easy and fast alternative method which allows detection of both polymorphisms from one PCR product with subsequent restriction analysis with two different restriction enzymes. This method could facilitate further research on the role of this cytokine in human disease.

  13. Transforming growth factor-beta induced by live or ultraviolet-inactivated equid herpes virus type-1 mediates immunosuppression in the horse.

    PubMed

    Charan, S; Palmer, K; Chester, P; Mire-Sluis, A R; Meager, A; Edington, N

    1997-04-01

    Up to 21 days after exposure to live or ultraviolet-inactivated equid herpesvirus type-1 (EHV-1) autologous serum from ponies caused an immunosuppressive effect if incorporated into T-cell proliferation assays to EHV-1. The suppressive factor in the sera of ponies also inhibited T-cell response to phytohaemagglutinin. Increased levels of circulating activated transforming growth factor-beta 1 (TGF-beta 1) were detected, and the suppressive activity of the serum could be reversed by antibody to TGF-beta 1. In a challenge experiment the ponies which exhibited circulating TGF-beta 1 activity succumbed to infection while the ones with similar magnitudes of T-cell responses, but no TGF-beta 1 activity, were protected. A definition of this immunosuppressive mechanism and its mode of induction must be central to the design of vaccines and to an understanding of the pathogenesis of EHV-1.

  14. T cell receptor (TCR)-transgenic CD8 lymphocytes rendered insensitive to transforming growth factor beta (TGFβ) signaling mediate superior tumor regression in an animal model of adoptive cell therapy

    PubMed Central

    2012-01-01

    Tumor antigen-reactive T cells must enter into an immunosuppressive tumor microenvironment, continue to produce cytokine and deliver apoptotic death signals to affect tumor regression. Many tumors produce transforming growth factor beta (TGFβ), which inhibits T cell activation, proliferation and cytotoxicity. In a murine model of adoptive cell therapy, we demonstrate that transgenic Pmel-1 CD8 T cells, rendered insensitive to TGFβ by transduction with a TGFβ dominant negative receptor II (DN), were more effective in mediating regression of established B16 melanoma. Smaller numbers of DN Pmel-1 T cells effectively mediated tumor regression and retained the ability to produce interferon-γ in the tumor microenvironment. These results support efforts to incorporate this DN receptor in clinical trials of adoptive cell therapy for cancer. PMID:22713761

  15. FoxO3a mediates transforming growth factor-beta1-induced apoptosis in FaO rat hepatoma cells.

    PubMed

    Kim, Byung-Chul

    2008-10-31

    FoxO3a is a member of the forkhead box class O (FoxO) transcription factor family and an important regulator of apoptosis. This work aimed to elucidate the involvement of FoxO3a in transforming growth factor-beta1 (TGF-beta1)-induced apoptosis in FaO rat hepatoma cells. TGF-beta1 caused a time-dependent activation of FoxO3a and a subsequent increase in FoxO response-element-containing luciferase reporter activity, which was Akt-sensitive. The FaO cells stably transfected with a wild type FoxO3a were more susceptible to the formation of apoptotic bodies, populations of sub-G1 apoptotic cells, and collapse of the mitochondrial-membrane potential triggered by TGF-beta1. In contrast, transfection with small-interfering RNA (siRNA) oligonucleotide specific for FoxO3a significantly inhibited caspase activation in FaO cells treated with TGF-beta1. It thus appears that FoxO3a plays a crucial mediatory role in the TGF-beta1 signaling pathway leading to apoptosis.

  16. Cross Talk between Id1 and Its Interactive Protein Dril1 Mediate Fibroblast Responses to Transforming Growth Factor-β in Pulmonary Fibrosis

    PubMed Central

    Lin, Ling; Zhou, Zhihong; Zheng, Liang; Alber, Sean; Watkins, Simon; Ray, Prabir; Kaminski, Naftali; Zhang, Yingze; Morse, Danielle

    2008-01-01

    The presence of activated fibroblasts or myofibroblasts represents a hallmark of progressive lung fibrosis. Because the transcriptional response of fibroblasts to transforming growth factor-β1 (TGF-β1) is a determinant of disease progression, we investigated the role of the transcriptional regulator inhibitor of differentiation-1 (Id1) in the setting of lung fibrosis. Mice lacking the gene for Id1 had increased susceptibility to bleomycin-induced lung fibrosis, and fibroblasts lacking Id1 exhibited enhanced responses to TGF-β1. Because the effect of Id1 on fibrosis could not be explained by known mechanisms, we performed protein interaction screening and identified a novel binding partner for Id1, known as dead ringer-like-1 (Dril1). Dril1 shares structural similarities with Id1 and was recently implicated in TGF-β1 signaling during embryogenesis. To date, little is known about the function of Dril1 in humans. Although it has not been previously implicated in fibrotic disease, we found that Dril1 was highly expressed in lungs from patients with idiopathic pulmonary fibrosis and was regulated by TGF-β1 in human fibroblasts. Dril1 enhanced activation of TGF-β1 target genes, whereas Id1 decreased expression of these same molecules. Id1 inhibited DNA binding by Dril1, and the two proteins co-localized in vitro and in vivo, providing a potential mechanism for suppression of fibrosis by Id1 through inhibition of the profibrotic function of Dril1. PMID:18583319

  17. Noggin-Mediated Retinal Induction Reveals a Novel Interplay Between Bone Morphogenetic Protein Inhibition, Transforming Growth Factor β, and Sonic Hedgehog Signaling.

    PubMed

    Messina, Andrea; Lan, Lei; Incitti, Tania; Bozza, Angela; Andreazzoli, Massimiliano; Vignali, Robert; Cremisi, Federico; Bozzi, Yuri; Casarosa, Simona

    2015-08-01

    It has long been known that the depletion of bone morphogenetic protein (BMP) is one of the key factors necessary for the development of anterior neuroectodermal structures. However, the precise molecular mechanisms that underlie forebrain regionalization are still not completely understood. Here, we show that Noggin1 is involved in the regionalization of anterior neural structures in a dose-dependent manner. Low doses of Noggin1 expand prosencephalic territories, while higher doses specify diencephalic and retinal regions at the expense of telencephalic areas. A similar dose-dependent mechanism determines the ability of Noggin1 to convert pluripotent cells in prosencephalic or diencephalic/retinal precursors, as shown by transplant experiments and molecular analyses. At a molecular level, the strong inhibition of BMP signaling exerted by high doses of Noggin1 reinforces the Nodal/transforming growth factor (TGF)β signaling pathway, leading to activation of Gli1 and Gli2 and subsequent activation of Sonic Hedgehog (SHH) signaling. We propose a new role for Noggin1 in determining specific anterior neural structures by the modulation of TGFβ and SHH signaling.

  18. Role of Rho/ROCK and p38 MAP kinase pathways in transforming growth factor-beta-mediated Smad-dependent growth inhibition of human breast carcinoma cells in vivo.

    PubMed

    Kamaraju, Anil K; Roberts, Anita B

    2005-01-14

    TGF-beta is a multifunctional cytokine known to exert its biological effects through a variety of signaling pathways of which Smad signaling is considered to be the main mediator. At present, the Smad-independent pathways, their interactions with each other, and their roles in TGF-beta-mediated growth inhibitory effects are not well understood. To address these questions, we have utilized a human breast cancer cell line MCF10CA1h and demonstrate that p38 MAP kinase and Rho/ROCK pathways together with Smad2 and Smad3 are necessary for TGF-beta-mediated growth inhibition of this cell line. We show that Smad2/3 are indispensable for TGF-beta-mediated growth inhibition, and that both p38 and Rho/ROCK pathways affect the linker region phosphorylation of Smad2/3. Further, by using Smad3 mutated at the putative phosphorylation sites in the linker region, we demonstrate that phosphorylation at Ser203 and Ser207 residues is required for the full transactivation potential of Smad3, and that these residues are targets of the p38 and Rho/ROCK pathways. We demonstrate that activation of the p38 MAP kinase pathway is necessary for the full transcriptional activation potential of Smad2/Smad3 by TGF-beta, whereas activity of Rho/ROCK is necessary for both down-regulation of c-Myc protein and up-regulation of p21waf1 protein, directly interfering with p21waf1 transcription. Our results not only implicate Rho/ROCK and p38 MAPK pathways as necessary for TGF-beta-mediated growth inhibition, but also demonstrate their individual contributions and the basis for their cooperation with each other.

  19. [Transforming growth factor of beta-type].

    PubMed

    Stoĭka, R S

    1988-01-01

    Recent data about the structure and properties of the beta-type transforming growth factor as well as evidence about its influence on different target cells are presented. The regulatory action of the factor is shown to depend mainly on the type of tested cells, conditions of their culturing and the presence of other bioregulators of cell proliferation in the medium. The prospects of the beta-type transforming growth factor use in practice are considered.

  20. Spleen tyrosine kinase mediates high glucose-induced transforming growth factor-{beta}1 up-regulation in proximal tubular epithelial cells

    SciTech Connect

    Yang, Won Seok; Chang, Jai Won; Han, Nam Jeong; Lee, Sang Koo; Park, Su-Kil

    2012-09-10

    The role of spleen tyrosine kinase (Syk) in high glucose-induced intracellular signal transduction has yet to be elucidated. We investigated whether Syk is implicated in high glucose-induced transforming growth factor-{beta}1 (TGF-{beta}1) up-regulation in cultured human proximal tubular epithelial cells (HK-2 cell). High glucose increased TGF-{beta}1 gene expression through Syk, extracellular signal-regulated kinase (ERK), AP-1 and NF-{kappa}B. High glucose-induced AP-1 DNA binding activity was decreased by Syk inhibitors and U0126 (an ERK inhibitor). Syk inhibitors suppressed high glucose-induced ERK activation, whereas U0126 had no effect on Syk activation. High glucose-induced NF-{kappa}B DNA binding activity was also decreased by Syk inhibitors. High glucose increased nuclear translocation of p65 without serine phosphorylation of I{kappa}B{alpha} and without degradation of I{kappa}B{alpha}, but with an increase in tyrosine phosphorylation of I{kappa}B{alpha} that may account for the activation of NF-{kappa}B. Both Syk inhibitors and Syk-siRNA attenuated high glucose-induced I{kappa}B{alpha} tyrosine phosphorylation and p65 nuclear translocation. Depletion of p21-activated kinase 2 (Pak2) by transfection of Pak2-siRNA abolished high glucose-induced Syk activation. In summary, high glucose-induced TGF-{beta}1 gene transcription occurred through Pak2, Syk and subsequent ERK/AP-1 and NF-{kappa}B pathways. This suggests that Syk might be implicated in the diabetic kidney disease.

  1. Transforming growth factor-β and Smads.

    PubMed

    Lan, Hui Yao; Chung, Arthur C K

    2011-01-01

    Diabetic nephropathy (DN) is a major diabetic complication. Transforming growth factor-β(TGF-β) is a key mediator in the development of diabetic complications. It is well known that TGF-β exerts its biological effects by activating downstream mediators, called Smad2and Smad3, which is negatively regulated by an inhibitory Smad7. Recent studies also demonstrated that under disease conditions Smads act as signal integrators and interact with other signaling pathways such as the MAPK and NF-κB pathways. In addition, Smad2and Smad3 can reciprocally regulate target genes of TGF-β signaling. Novel research into microRNA has revealed the complexity of TGF-β signaling during DN. It has been found that TGF-β and elevated glucose concentration can positively regulate miR-192 and miR-377, but negatively regulate miR-29a in a diabetic milieu. These microRNAs are found to contribute to DN. Although targeting TGF-β may exert adverse effects on immune system, therapeutic approach against TGF-β signaling during DN still draws much attention. Blocking TGF-β signaling by neutralizing antibody, anti-sense oligonucleotides, and soluble receptors have been tested, but effects are limited. Gene transfer of Smad7 into diseased kidneys demonstrates a prominent inhibition on renal fibrosis and amelioration of renal impairment. Alteration of TGF-β-regulated microRNA expression in diseased kidneys may provide an alternative therapeutic approach against DN. In conclusion, TGF-β/Smad signaling plays a critical role in DN. A better understanding of the role of TGF-β/Smad signaling in the development of DN should provide an effective therapeutic strategy to combat DN.

  2. Transforming growth factor beta1 and aldosterone

    PubMed Central

    Matsuki, Kota; Hathaway, Catherine K.; Chang, Albert S.; Smithies, Oliver; Kakoki, Masao

    2016-01-01

    Purpose of review It is well established that blocking renin-angiotensin II-aldosterone system (RAAS) is effective for the treatment of cardiovascular and renal complications in hypertension and diabetes mellitus. Although the induction of transforming growth factor beta1 (TGFbeta1) by components of RAAS mediates the hypertrophic and fibrogenic changes in cardiovascular-renal complications, it is still controversial as to whether TGFbeta1 can be a target to prevent such complications. Here we review recent findings on the role of TGFbeta1 in fluid homeostasis, focusing on the relationship with aldosterone. Recent findings TGFbeta1 suppresses adrenal production of aldosterone and renal tubular sodium reabsorption. We have generated mice with TGFbeta1 mRNA expression graded in five steps from 10% to 300% normal, and found that blood pressure and plasma volume are negatively regulated by TGFbeta1. Notably, the 10 % hypomorph exhibits primary aldosteronism and sodium and water retention due to markedly impaired urinary excretion of water and electrolytes. Summary These results identify TGFbeta signaling as an important counterregulatory system against aldosterone. Understanding the molecular mechanisms for the suppressive effects of TGFbeta1 on adrenocortical and renal function may further our understanding of primary aldosteronism as well as assist in the development of novel therapeutic strategies for hypertension. PMID:25587902

  3. Plant transformation via pollen tube-mediated gene transfer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic transformation using foreign genes and the subsequent development of transgenic plants has been employed to develop enhanced elite germplasm. Although some skepticism exits regarding pollen tube-mediated gene transfer (PTT), reports demonstrating improved transformation efficiency with PTT ...

  4. Kaempferol Suppresses Transforming Growth Factor-β1-Induced Epithelial-to-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-179.

    PubMed

    Jo, Eunji; Park, Seong Ji; Choi, Yu Sun; Jeon, Woo-Kwang; Kim, Byung-Chul

    2015-07-01

    Kaempferol, a natural dietary flavonoid, is well known to possess chemopreventive and therapeutic anticancer efficacy; however, its antimetastatic effects have not been mechanistically studied so far in any cancer model. This study was aimed to investigate the inhibitory effect and accompanying mechanisms of kaempferol on epithelial-to-mesenchymal transition (EMT) and cell migration induced by transforming growth factor-β1 (TGF-β1). In human A549 non-small lung cancer cells, kaempferol strongly blocked the enhancement of cell migration by TGF-β1-induced EMT through recovering the loss of E-cadherin and suppressing the induction of mesenchymal markers as well as the upregulation of TGF-β1-mediated matrix metalloproteinase-2 activity. Interestingly, kaempferol reversed TGF-β1-mediated Snail induction and E-cadherin repression by weakening Smad3 binding to the Snail promoter without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation under TGF-β1 stimulation. Mechanism study revealed that the phosphorylation of Smad3 linker region induced by TGF-β1 was required for the induction of EMT and cell migration, and selective downregulation of the phosphorylation of Smad3 at Thr179 residue (not Ser204, Ser208, and Ser213) in the linker region was responsible for the inhibition by kaempferol of TGF-β1-induced EMT and cell migration. Furthermore, Akt1 was required for TGF-β1-mediated induction of EMT and cell migration and directly phosphorylated Smad3 at Thr179, and kaempferol completely abolished TGF-β1-induced Akt1 phosphorylation. In summary, kaempferol blocks TGF-β1-induced EMT and migration of lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at Thr179 residue, providing the first evidence of a molecular mechanism for the anticancer effect of kaempferol.

  5. Cooperative involvement of NFAT and SnoN mediates transforming growth factor-β (TGF-β) induced EMT in metastatic breast cancer (MDA-MB 231) cells.

    PubMed

    Sengupta, Suman; Jana, Samir; Biswas, Subir; Mandal, Palash Kumar; Bhattacharyya, Arindam

    2013-12-01

    Epithelial to mesenchymal transition (EMT) is a secondary phenomenon concomitantly associated with the tumor progression. The regulatory signals and mechanistic details of EMT are not fully elucidated. Here, we shared a TGF-β mediated mechanism of EMT in breast cancer (MDA-MB 231) cells. Initial exposure of TGF-β for 48 h, enhanced the rate of cell proliferation and associated with EMT of MDA-MB 231 cells. The EMT was characterized by observing the increased N-cadherin, fibronectin, Snail expression and associated with the morphological change with a reduced E-cadherin expression. NFAT, a transcription factor, alters tumor suppressive function of TGF-β towards tumor progression. Up regulation of NFAT, coupled with a foremost translocation of one oncogenic protein SnoN from cytoplasm to nucleus was noticed during this TGF-β mediated EMT. Silencing of NFAT also showed the inhibition of TGF-β mediated EMT characterized by down regulation of N-cadherin and associated with reduced expression of SnoN. In addition, it was also observed that NFAT sequestering the Smad3 prevents the proteasome mediated degradation of SnoN and this SnoN has a role on the regulation of MMP-2, MMP-9 activity. Increased Smad3-SnoN interaction and proteasome mediated degradation of SnoN were detected after silencing of NFAT with a reduced MMP-2, MMP-9 activity. All of these observations provide a fresh mechanism in which by a twofold involvement of NFAT and SnoN plays a crucial role in TGF-β mediated EMT by recruiting the effector molecules N-cadherin and MMP-2, MMP-9.

  6. Cancer cells. 3: Growth factors and transformation

    SciTech Connect

    Feramisco, J.; Ozanne, B.; Stiles, C.

    1985-01-01

    This book contains over 50 papers. Some of the titles are: Structure of Human Epidermal Growth Factor and Expression of Normal and Variant mRNAs in Epdermoid Carcinoma Cells; Tyrosine Kinase Activity Associated with the v-erb-B Gene Product; Cloning and Characterization of Human Epidermal Growth Factor-Receptor Gene Sequences in A431 Carcinoma Cells; Anti-oncogenes and the Suppression of Tumor Formation; and Normal Human sis/PDGF-2 Gene Expression Induces Cellular Transformation.

  7. The human papillomavirus-16 (HPV-16) oncoprotein E7 conjugates with and mediates the role of the transforming growth factor-beta inducible early gene 1 (TIEG1) in apoptosis.

    PubMed

    Chang, Hung-Shu; Lin, Ching-Hui; Yang, Chien-Hui; Liang, Yuh-Jin; Yu, Winston C Y

    2010-11-01

    The human papillomavirus (HPV) oncoprotein E7 is a major transforming protein. The E7 protein does not possess intrinsic enzymatic activity, but rather functions through direct and indirect interactions with cellular proteins, several of which are well known cellular tumor suppressors. Using the yeast two-hybrid system, we found that transforming growth factor-beta inducible early gene 1 (TIEG1), a member of the Krüppel-like family (KLF) that has been implicated as a putative tumor suppressor, interacts and forms a specific complex with HPV-16 E7. TIEG1 has been shown to mimic the effects of TGF-beta in various carcinoma cells and plays a critical role in the apoptotic cascade. Our results indicate that E7 binds to the C-terminus of TIEG1 and induces its degradation via the ubiquitin pathway. E7 not only increased the ubiquitination of TIEG1 but also influenced the ability of TIEG1 to affect apoptosis. Our results suggest that suppression of TIEG1-mediated signaling by E7 may contribute to HPV-associated carcinogenesis.

  8. CD8 Co-receptor promotes susceptibility of CD8+ T cells to transforming growth factor-β (TGF-β)-mediated suppression

    PubMed Central

    Zloza, Andrew; Jagoda, Michael C.; Lyons, Gretchen E.; Graves, Michael C.; Kohlhapp, Frederick J.; O’Sullivan, Jeremy A.; Lacek, Andrew T.; Nishimura, Michael I.

    2015-01-01

    CD8+ T cell function depends on a finely orchestrated balance of activation/suppression signals. While the stimulatory role of the CD8 co-receptor and pleiotropic capabilities of TGF-β have been studied individually, the influence of CD8 co-receptor on TGF-β function in CD8+ T cells is unknown. Here, we show that while CD8 enhances T cell activation, it also enhances susceptibility to TGF-β-mediated immune suppression. Using Jurkat cells expressing a full-length, truncated or no αβCD8 molecule, we demonstrate that cells expressing full-length αβCD8 were highly susceptible, αβCD8-truncated cells were partially susceptible, and CD8-deficient cells were completely resistant to suppression by TGF-β. Additionally, we determined that inhibition of Lck rendered mouse CD8+ T cells highly resistant to TGF-β suppression. Resistance was not associated with TGF-β receptor expression but did correlate with decreased Smad3 and increased Smad7 levels. These findings highlight a previously unrecognized third role for CD8 co-receptor which appears to prepare activated CD8+ T cells for response to TGF-β. Based on the important role which TGF-β-mediated suppression plays in tumor immunology, these findings unveil necessary considerations in formulation of CD8+ T cell-related cancer immunotherapy strategies. PMID:21193909

  9. Mucin1 mediates autocrine transforming growth factor beta signaling through activating the c-Jun N-terminal kinase/activator protein 1 pathway in human hepatocellular carcinoma cells.

    PubMed

    Li, Qiongshu; Liu, Guomu; Shao, Dan; Wang, Juan; Yuan, Hongyan; Chen, Tanxiu; Zhai, Ruiping; Ni, Weihua; Tai, Guixiang

    2015-02-01

    In a previous study, we observed by global gene expression analysis that oncogene mucin1 (MUC1) silencing decreased transforming growth factor beta (TGF-β) signaling in the human hepatocellular carcinoma (HCC) cell line SMMC-7721. In this study, we report that MUC1 overexpression enhanced the levels of phosphorylated Smad3 linker region (p-Smad3L) (Ser-213) and its target gene MMP-9 in HCC cells, suggesting that MUC1 mediates TGF-β signaling. To investigate the effect of MUC1 on TGF-β signaling, we determined TGF-β secretion in MUC1 gene silencing and overexpressing cell lines. MUC1 expression enhanced not only TGF-β1 expression at the mRNA and protein levels but also luciferase activity driven by a TGF-β promoter, as well as elevated the activation of c-Jun N-terminal kinase (JNK) and c-Jun, a member of the activation protein 1 (AP-1) transcription factor family. Furthermore, pharmacological reduction of TGF-β receptor (TβR), JNK and c-Jun activity inhibited MUC1-induced autocrine TGF-β signaling. Moreover, a co-immunoprecipitation assay showed that MUC1 directly bound and activated JNK. In addition, both MUC1-induced TGF-β secretion and exogenous TGF-β1 significantly increased Smad signaling and cell migration, which were markedly inhibited by either TβR inhibitor or small interfering RNA silencing of TGF-β1 gene in HCC cells. The high correlation between MUC1 and TGF-β1 or p-Smad3L (Ser-213) expression was shown in tumor tissues from HCC patients by immunohistochemical staining analysis. Collectively, these results indicate that MUC1 mediates autocrine TGF-β signaling by activating the JNK/AP-1 pathway in HCC cells. Therefore, MUC1 plays a key role in HCC progression and could serve as an attractive target for HCC therapy.

  10. Upregulation of long non-coding RNA HIF 1α-anti-sense 1 induced by transforming growth factor-β-mediated targeting of sirtuin 1 promotes osteoblastic differentiation of human bone marrow stromal cells

    PubMed Central

    XU, YAO; WANG, SHILONG; TANG, CHAOLIANG; CHEN, WENJUN

    2015-01-01

    The present study aimed to investigate the regulatory mechanism of long non-coding RNA hypoxia-inducible factor 1α-anti-sense 1 (lncRNA HIF1α-AS1) in osteoblast differentiation as well as its targeting by sirtuin 1 (SIRT1), which may be inhibited by transforming growth factor (TGF)-β in bone marrow stromal cells (BMSCs). Real-time polymerase chain reaction (PCR), western blot analysis, lncRNA PCR arrays and chromatin immunoprecipitation were performed in order to examine the interference of SIRT1 expression by TGF-β, the effects of SIRT1 overexpression on lncRNA HIF1α-AS1 and the regulation of the expression of homeobox (HOX)D10, which promotes BMSC differentiation, by lncRNA HIF1α-AS1. The results showed that TGF-β interfered with SIRT1 expression. Furthermore, lncRNA HIF1α-AS1 was significantly downregulated following overexpression of SIRT1. In addition, low expression of HIF1α-AS1 was sufficient to block the expression of HOXD10. The present study further demonstrated that downregulation of HOXD10 by HIF1α-AS1 interfered with acetylation, and subsequently resulted in the inhibition of osteoblast differentiation. These results suggested that HIF1α-AS1 is an essential mediator of osteoblast differentiation, and may thus represent a gene-therapeutic agent for the treatment of human bone diseases. PMID:26460121

  11. Solution-mediated phase transformation: significance during dissolution and implications for bioavailability.

    PubMed

    Greco, Kristyn; Bogner, Robin

    2012-09-01

    Solubility improvement of poorly soluble drug compounds is a key approach to ensuring the successful development of many new drugs. Methods used to improve the solubility of drug compounds include forming a salt, cocrystal, or amorphous solid. These methods of improving solubility can often lead to a phenomenon called solution-mediated phase transformation, a phase change that is facilitated through exposure to solution. Solution-mediated phase transformation occurs in three steps: dissolution to create a supersaturated solution followed by nucleation of less soluble phase and the growth of that phase. When the growth of the less soluble phase occurs on the surface of the metastable solid, this phenomenon can cause a marked decrease in dissolution rate during in vitro dissolution evaluation, and ultimately in vivo. Therefore, transformation to a less soluble solid during dissolution is an important aspect to consider when evaluating approaches to increase the solubility of a poorly soluble drug. Identification of solution-mediated phase transformation during dissolution is reviewed for powder dissolution, rotating disk method, and channel flow-through apparatus. Types of solution-mediated phase transformation are described in this report, including those involving salts, polymorphs, amorphous solids, and cocrystals. Many experimental examples are provided. Evidence of potential solution-mediated phase transformation in vivo is discussed to better understand the relationship between in vitro dissolution evaluation and in vivo performance.

  12. Transforming growth factor beta 1 prevents cytokine-mediated inhibitory effects and induction of nitric oxide synthase in the RINm5F insulin-containing beta-cell line.

    PubMed

    Mabley, J G; Cunningham, J M; John, N; Di Matteo, M A; Green, I C

    1997-12-01

    The aim of this study was to examine if the growth factor, transforming growth factor beta 1 (TGF beta 1), could prevent induction of nitric oxide synthase and cytokine-mediated inhibitory effects in the insulin-containing, clonal beta cell line RINm5F. Treatment of RINm5F cells for 24 h with interleukin-1 beta (IL-1 beta) (100 pM) induced expression of nitric oxide synthase and inhibited glyceraldehyde-stimulated insulin secretion. Combinations of IL-1 beta (100 pM), tumour necrosis factor-alpha (100 pM) and interferon-gamma (100 pM) reduced RINm5F cell viability (determined by the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium (MTT) reduction assay) and de novo protein synthesis, as measured by incorporation of radiolabelled amino acids into perchloric acid-precipitable protein. Pretreatment of RINm5F cells with TGF beta 1 (10 pM) for 18 or 24 h, prior to the addition of either IL-1 beta or combined cytokines, prevented cytokine-induced inhibition of insulin secretion, protein synthesis and the loss of cell viability. TGF beta 1 pretreatment inhibited cytokine-induced expression and activity of nitric oxide synthase in RINm5F cells as determined by Western blotting and by cytosolic conversion of radiolabelled arginine into labelled citrulline and nitric oxide. Chemically generated superoxide also induced expression of nitric oxide synthase possibly due to direct activation of the nuclear transcription factor NF kappa B, an effect prevented by both an antioxidant and TGF beta 1 pretreatment. In conclusion, the mechanism of action of TGF beta 1 in blocking cytokine inhibitory effects was by preventing induction of nitric oxide synthase.

  13. Agrobacterium-mediated transformation of maize (Zea mays) immature embryos.

    PubMed

    Lee, Hyeyoung; Zhang, Zhanyuan J

    2014-01-01

    Agrobacterium tumefaciens-mediated transformation is one of the most efficient and simple gene delivery systems for genetic improvement and biology studies in maize. This system has become more widely used by both public and private laboratories. However, transformation efficiencies vary greatly from laboratory to laboratory for the same genotype. Here, we illustrate our advanced Agrobacterium-mediated transformation method in Hi-II maize using simple binary vectors. The protocol utilizes immature embryos as starting explants and the bar gene as a selectable marker coupled with bialaphos as a selective agent. The protocol offers efficient transformation results with high reproducibility, provided that some experimental conditions are well controlled. This transformation method, with minor modifications, can be also employed to transform certain maize inbreds.

  14. Altered iron homeostasis involvement in arsenite-mediated cell transformation

    PubMed Central

    Wu, Jing; Eckard, Jonathan; Chen, Haobin; Costa, Max; Frenkel, Krystyna; Huang, Xi

    2010-01-01

    Chronic exposure to low doses of arsenite causes transformation of human osteogenic sarcoma (HOS) cells. Although oxidative stress is considered important in arsenite-induced cell transformation, the molecular and cellular mechanisms by which arsenite transforms human cells are still unknown. In the present study, we investigated whether altered iron homeostasis, known to affect cellular oxidative stress, can contribute to the arsenite-mediated cell transformation. Using arsenite-induced HOS cell transformation as a model, it was found that total iron levels are significantly higher in transformed HOS cells in comparison to parental control HOS cells. Under normal iron metabolism conditions, iron homeostasis is tightly controlled by inverse regulation of ferritin and transferrin receptor (TfR) through iron regulatory proteins (IRP). Increased iron levels in arsenite transformed cells should theoretically lead to higher ferritin and lower TfR in these cells than in controls. However, the results showed that both ferritin and TfR are decreased, apparently through two different mechanisms. A lower ferritin level in cytoplasm was due to the decreased mRNA in the arsenite-transformed HOS cells, while the decline in TfR was due to a lowered IRP-binding activity. By challenging cells with iron, it was further established that arsenite-transformed HOS cells are less responsive to iron treatment than control HOS cells, which allows accumulation of iron in the transformed cells, as exemplified by significantly lower ferritin induction. On the other hand, caffeic acid phenethyl ester (CAPE), an antioxidant previously shown to suppress As-mediated cell transformation, prevents As-mediated ferritin depletion. In conclusion, our results suggest that altered iron homeostasis contributes to arsenite-induced oxidative stress and, thus, may be involved in arsenite-mediated cell transformation. PMID:16443159

  15. Anti-inflammatory effects of tumour necrosis factor (TNF)-alpha are mediated via TNF-R2 (p75) in tolerogenic transforming growth factor-beta-treated antigen-presenting cells.

    PubMed

    Masli, Sharmila; Turpie, Bruce

    2009-05-01

    Exposure of macrophages to transforming growth factor (TGF)-beta is known to alter their functional phenotype such that antigen presentation by these cells leads to tolerance rather than an inflammatory immune response. Typically, eye-derived antigen-presenting cells (APCs) exposed to TGF-beta in the local environment are known to induce a form of peripheral tolerance and protect the eye from inflammatory immune effector-mediated damage. In response to TGF-beta, APCs increase their expression of tumour necrosis factor (TNF)-alpha and TNF receptor 2 (TNF-R2). Although TNF-alpha has been implicated in tolerance and the associated regulation of the inflammatory immune response, its source and the receptors involved remain unclear. In this report we determined the contribution of TNF-alpha and TNF-R2 expressed by TGF-beta-treated APCs to their anti-inflammatory tolerogenic effect. Our results indicate that APC-derived TNF-alpha is essential for the ability of APCs to regulate the immune response and their IL-12 secretion. Moreover, in the absence of TNF-R2, APCs exposed to TGF-beta failed to induce tolerance or regulatory cells known to participate in this tolerance. Also, blocking of TNF-R1 signalling enhanced the ability of the APCs to secrete increased TGF-beta in response to TGF-beta exposure. Together our results support an anti-inflammatory role of TNF-alpha in regulation of an immune response by TGF-beta-treated APCs and suggest that TNF-R2 contributes significantly to this role.

  16. Enhanced transformation of triclosan by laccase in the presence of redox mediators.

    PubMed

    Murugesan, Kumarasamy; Chang, Yoon-Young; Kim, Young-Mo; Jeon, Jong-Rok; Kim, Eun-Ju; Chang, Yoon-Seok

    2010-01-01

    Triclosan (TCS), an antimicrobial agent, is an emerging and persistent environmental pollutant that is often found as a contaminant in surface waters and sediments; hence, knowledge of its degradability is important. In this study we investigated laccase-mediated TCS transformation and detoxification, using laccase (from the fungus Ganoderma lucidum) in the presence and absence of redox mediators. Transformation products were identified using HPLC, ESI-MS and GC-MS, and transformation mechanisms were proposed. In the absence of redox mediator, 56.5% TCS removal was observed within 24h, concomitant with formation of new products with molecular weights greater than that of TCS. These products were dimers and trimers of TCS, as confirmed by ESI-MS analysis. Among the various mediators tested, 1-hydroxybenzotriazole (HBT) and syringaldehyde (SYD) significantly enhanced TCS transformation ( approximately 90%). The presence of these mediators resulted in products with lower molecular weights than TCS, including 2,4-dichlorophenol (2,4-DCP; confirmed by GC-MS) and dechlorinated forms of 2,4-DCP. When SYD was used as the mediator, dechlorination resulted in 2-chlorohydroquinone (2-CHQ). Bacterial growth inhibition studies revealed that laccase-mediated transformation of TCS effectively decreased its toxicity, with ultimate conversion to less toxic or nontoxic products. Our results confirmed the involvement of two mechanisms of laccase-catalyzed TCS removal: (i) oligomerization in the absence of redox mediators, and (ii) ether bond cleavage followed by dechlorination in the presence of redox mediators. These results suggest that laccase in combination with natural redox mediator systems may be a useful strategy for the detoxification and elimination of TCS from aqueous systems.

  17. Can microbes mediate nano-transformation?

    NASA Astrophysics Data System (ADS)

    Prasad, K.; Jha, Anal K.; Prasad, Kamlesh; Kulkarni, A. R.

    2010-10-01

    A green low-cost and reproducible microbe ( Lactobacillus) and baker's yeast ( Saccharomyces cerevisiae) mediated biosynthesis of metallic and oxide nanoparticles are reported. Silver and copper oxide nanoparticles are synthesized using Lactobacillus sp. and Saccharomyces cerevisiae. The synthesis is performed akin to room temperature in the laboratory ambience. X-ray and transmission electron microscopy analyses are performed to ascertain the formation of metallic and oxide nanoparticles. Individual nanoparticles having the dimensions of 2-6 nm (metallic) and 10-20 nm (oxide) are found. A possible mechanism involved for the synthesis of metallic and oxide nanoparticles has also been proposed in which pH as well as the partial pressure of gaseous hydrogen (r-H2) or redox potential of the culture solution seem to play an important role in the process.

  18. Nacnac‐Cobalt‐Mediated P4 Transformations

    PubMed Central

    Spitzer, Fabian; Graßl, Christian; Balázs, Gábor; Mädl, Eric; Keilwerth, Martin; Zolnhofer, Eva M.; Meyer, Karsten

    2017-01-01

    Abstract A comparison of P4 activations mediated by low‐valent β‐diketiminato (L) cobalt complexes is presented. The formal Co0 source [K2(L3Co)2(μ2:η1,η1‐N2)] (1) reacts with P4 to form a mixture of the monoanionic complexes [K(thf)6][(L3Co)2(μ2:η4,η4‐P4)] (2) and [K(thf)6][(L3Co)2(μ2:η3,η3‐P3)] (3). The analogue CoI precursor [L3Co(tol)] (4 a), however, selectively yields the corresponding neutral derivative [(L3Co)2(μ2:η4,η4‐P4)] (5 a). Compound 5 a undergoes thermal P atom loss to form the unprecedented complex [(L3Co)2(μ2:η3,η3‐P3)] (6). The products 2 and 3 can be obtained selectively by an one‐electron reduction of their neutral precursors 5 a and 6, respectively. The electrochemical behaviour of 2, 3, 5 a, and 6 is monitored by cyclic voltammetry and their magnetism is examined by SQUID measurements and the Evans method. The initial CoI‐mediated P4 activation is not influenced by applying the structurally different ligands L1 and L2, which is proven by the formation of the isostructural products [(LCo)2(μ2:η4,η4‐P4)] [L=L3 (5 a), L1 (5 b), L2 (5 c)]. PMID:28032678

  19. Phase transformation and growth of hygroscopic aerosols

    SciTech Connect

    Tang, I.N.

    1995-09-01

    Ambient aerosols frequently contain large portions of hygroscopic inorganic salts such as chlorides, nitrates, and sulfates in either pure or mixed forms. Such inorganic salt aerosols exhibit the properties of deliquescence and efflorescence in air. The phase transformation from a solid particle to a saline droplet usually occurs spontaneously when the relative humidity of the atmosphere reaches a level specific to the chemical composition of the aerosol particle. Conversely, when the relative humidity decreases and becomes low enough, the saline droplet will evaporate and suddenly crystallize, expelling all its water content. The phase transformation and growth of aerosols play an important role in many atmospheric processes affecting air quality, visibility degradation, and climate changes. In this chapter, an exposition of the underlying thermodynamic principles is given, and recent advances in experimental methods utilizing single-particle levitation are discussed. In addition, pertinent and available thermodynamic data, which are needed for predicting the deliquescence properties of single and multi-component aerosols, are compiled. This chapter is useful to research scientists who are either interested in pursuing further studies of aerosol thermodynamics, or required to model the dynamic behavior of hygroscopic aerosols in a humid environment.

  20. Agrobacterium-mediated genetic transformation of Prunus salicina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report Agrobacterium tumefaciens-mediated transformation from hypocotyls slices of two Prunus salicina varieties, 'Angeleno' and 'Larry Anne', using a modification of the technique previously described for P. domestica. Regeneration rates on thidiazuron (TDZ) and indole-3-butyric acid (IBA) supp...

  1. Transforming growth factor-β3 regulates cell junction restructuring via MAPK-mediated mRNA destabilization and Smad-dependent protein degradation of junctional adhesion molecule B (JAM-B).

    PubMed

    Zhang, Xu; Lui, Wing-Yee

    2015-06-01

    Junctional adhesion molecule-B (JAM-B) is found between Sertoli cells at the blood-testis barrier (BTB) as well as between Sertoli and germ cells at the apical ectoplasmic specializations (ES) in the testis. The expression of JAM-B is tightly regulated to modulate the passage of spermatocytes across the BTB as well as the release of mature spermatozoa from the seminiferous epithelium. Transforming growth factor beta (TGF-β) family is implicated in the regulation of testicular cell junction dynamics during spermatogenesis. This study aims to investigate the effects of TGF-β3 on the expression of JAM-B as well as the underlying mechanisms on how TGF-β3 regulates JAM-B expression to facilitate the disassembly of the BTB and apical ES. Our results revealed that TGF-β3 suppresses JAM-B at post-transcriptional and post-translational levels. Inhibitor, siRNA knockdown and co-immunoprecipitation have shown that TGF-β3 induces JAM-B protein degradation via ubiquitin-proteasome pathway. Immunofluorescence staining further confirmed that blockage of ubiquitin-proteasome pathway could abrogate TGF-β3-induced loss of JAM-B at the cell-cell interface. siRNA knockdown and immunofluorescence staining also demonstrated that activation of Smad signaling is required for TGF-β3-induced JAM-B protein degradation. In addition, TGF-β3 reduces JAM-B mRNA levels, at least in part, via post-transcriptional regulation. mRNA stability assay has confirmed that TGF-β3 promotes the degradation of JAM-B transcript and TGF-β3-mediated mRNA destabilization requires the activation of ERK1/2 and p54 JNK signal cascades. Taken together, TGF-β3 significantly downregulates JAM-B expression via post-transcriptional and post-translational modulation and results in the disruption of BTB and apical ES.

  2. Transforming growth factor beta regulates thyroid growth. Role in the pathogenesis of nontoxic goiter.

    PubMed Central

    Grubeck-Loebenstein, B; Buchan, G; Sadeghi, R; Kissonerghis, M; Londei, M; Turner, M; Pirich, K; Roka, R; Niederle, B; Kassal, H

    1989-01-01

    The production and growth regulatory activity of transforming growth factor beta were studied in human thyroid tissue. As estimated by its mRNA expression in fresh tissue samples, transforming growth factor beta was produced in normal and in diseased thyroid glands. Transforming growth factor beta mRNA was mainly produced by thyroid follicular cells and in lesser quantities by thyroid infiltrating mononuclear cells. The concentrations of transforming growth factor beta mRNA were lower in iodine-deficient nontoxic goiter than in Graves' disease and normal thyroid tissue. Transforming growth factor beta protein secretion by cultured thyroid follicular cells was also low in nontoxic goiter, but could be increased by addition of sodium iodide (10 microM) to the culture medium. Recombinant transforming growth factor beta did not affect basal tritiated thymidine incorporation in cultured thyroid follicular cells, but inhibited, at a concentration of 10 ng/ml, the growth stimulatory influence of insulin-like growth factor I, epidermal growth factor, transforming growth factor alpha, TSH, and partly that of normal human serum on cultured thyroid follicular cells. This inhibition was greater in Graves' disease than in nontoxic goiter. These results suggest that transforming growth factor beta may act as an autocrine growth inhibitor on thyroid follicular cells. Decreased transforming growth factor beta production and decreased responsiveness to transforming growth factor beta may be cofactors in the pathogenesis of iodine-deficient nontoxic goiter. Images PMID:2921318

  3. Agrobacterium tumefaciens-mediated transformation of Botryosphaeria dothidea.

    PubMed

    Chen, Liang; Wang, Qun; Chen, Hua; Sun, Gengwu; Liu, Huixiang; Wang, Hongkai

    2016-07-01

    Botryosphaeria dothidea is a severe causal agent of die-back and cankers of many woody plants and causes great losses in many regions. The pathogenic mechanism of this pathogen has not been well explored due to lack of mutants and genetic information. In this study, we developed an Agrobacterium tumefaciens-mediated transformation (ATMT) protocol for B. dothidea protoplasts using vector pBHt2 containing the hph gene as a selection marker under the control of trp C promoter. Using this protocol we successfully generated the B. dothidea transformants with efficiency about 23 transformants per 10(5) protoplasts. This is the first report of genetic transformation of B. dothidea via ATMT and this protocol provides an effective tool for B. dothidea genome manipulation, gene identification and functional analysis.

  4. Complexion-mediated martensitic phase transformation in Titanium

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Tasan, C. C.; Lai, M. J.; Dippel, A.-C.; Raabe, D.

    2017-02-01

    The most efficient way to tune microstructures and mechanical properties of metallic alloys lies in designing and using athermal phase transformations. Examples are shape memory alloys and high strength steels, which together stand for 1,500 million tons annual production. In these materials, martensite formation and mechanical twinning are tuned via composition adjustment for realizing complex microstructures and beneficial mechanical properties. Here we report a new phase transformation that has the potential to widen the application window of Ti alloys, the most important structural material in aerospace design, by nanostructuring them via complexion-mediated transformation. This is a reversible martensitic transformation mechanism that leads to a final nanolaminate structure of α'' (orthorhombic) martensite bounded with planar complexions of athermal ω (a-ω, hexagonal). Both phases are crystallographically related to the parent β (BCC) matrix. As expected from a planar complexion, the a-ω is stable only at the hetero-interface.

  5. Complexion-mediated martensitic phase transformation in Titanium.

    PubMed

    Zhang, J; Tasan, C C; Lai, M J; Dippel, A-C; Raabe, D

    2017-02-01

    The most efficient way to tune microstructures and mechanical properties of metallic alloys lies in designing and using athermal phase transformations. Examples are shape memory alloys and high strength steels, which together stand for 1,500 million tons annual production. In these materials, martensite formation and mechanical twinning are tuned via composition adjustment for realizing complex microstructures and beneficial mechanical properties. Here we report a new phase transformation that has the potential to widen the application window of Ti alloys, the most important structural material in aerospace design, by nanostructuring them via complexion-mediated transformation. This is a reversible martensitic transformation mechanism that leads to a final nanolaminate structure of α″ (orthorhombic) martensite bounded with planar complexions of athermal ω (a-ω, hexagonal). Both phases are crystallographically related to the parent β (BCC) matrix. As expected from a planar complexion, the a-ω is stable only at the hetero-interface.

  6. Complexion-mediated martensitic phase transformation in Titanium

    PubMed Central

    Zhang, J.; Tasan, C. C.; Lai, M. J.; Dippel, A. -C.; Raabe, D.

    2017-01-01

    The most efficient way to tune microstructures and mechanical properties of metallic alloys lies in designing and using athermal phase transformations. Examples are shape memory alloys and high strength steels, which together stand for 1,500 million tons annual production. In these materials, martensite formation and mechanical twinning are tuned via composition adjustment for realizing complex microstructures and beneficial mechanical properties. Here we report a new phase transformation that has the potential to widen the application window of Ti alloys, the most important structural material in aerospace design, by nanostructuring them via complexion-mediated transformation. This is a reversible martensitic transformation mechanism that leads to a final nanolaminate structure of α″ (orthorhombic) martensite bounded with planar complexions of athermal ω (a–ω, hexagonal). Both phases are crystallographically related to the parent β (BCC) matrix. As expected from a planar complexion, the a–ω is stable only at the hetero-interface. PMID:28145484

  7. Anomalous plasticity in defect-mediated phase transformations

    NASA Astrophysics Data System (ADS)

    Ghimire, Punam; Ravelo, R.; Germann, T. C.

    2014-03-01

    Large-scale molecular dynamics simulations of shocked wave propagation in metallic single crystals exhibit high elastic limits and are ideally suited for investigating the role defect nucleation and multiplication play on the kinetics of phase transformations. Here we report on the morphology and kinetics of shocked-induced phase transformations in Aluminum single crystals. The atomic interactions were modeled utilizing various embedded atom method (EAM) models of Aluminum, with most models exhibiting an artificial fcc -->bcc phase transformation in the 25-30 GPa range. For cases where plastic deformation precedes the phase transformation, anomalous defect structures atypical of plastic deformation in bcc lattices nucleate early on but anneal out with time. In all cases, the defect-mediated phase transitions proceed at faster rates than defect-free ones. Part of this work supported by the Air Force Office of Scientific Research under AFOSR Award No. FA9550-12-1-0476.

  8. Advanced-glycation-end-product-cholesterol-aggregated-protein accelerates the proliferation of mesangial cells mediated by transforming-growth-factor-beta 1 receptors and the ERK-MAPK pathway.

    PubMed

    Hirasawa, Yasushi; Sakai, Takayuki; Ito, Masanori; Yoshimura, Hiromitsu; Feng, Yibin; Nagamatsu, Tadashi

    2011-12-15

    Hyperglycemia and hyperlipidemia are considered critical to the development of diabetic nephropathy. The aim of this study is to clarify the effect of cholesterol on advanced-glycation-end-products and the mechanisms behind the advanced-glycation-end-product-cholesterol-aggregated bovine serum albumin (BSA)-induced proliferation of mesangial cells. Mesangial cells were treated with advanced-glycation-end-product-cholesterol-aggregated-BSA, and RNA and protein were isolated. Cholesterol caused a 1.5-fold increase in fluorescent intensity and 2-fold increase in advanced-glycation-end-products in vitro. Pyridoxamine, aminoguanidine, and N-acetyl-l-cycteine suppressed the production of advanced-glycation-end-product-cholesterol-aggregated-BSA. Advanced-glycation-end-product-cholesterol-BSA was analyzed by matrix-assisted-laser-desorption/ionization-time of flight mass spectrometry, and peaks were found to shift toward a higher mass. Advanced-glycation-end-product-cholesterol-aggregated-BSA induced overexpression of the mRNA of transforming growth factor-beta1, collagen type 1, collagen type 4 and receptor for advanced-glycation-end-products, and the proliferation of mesangial cells. The injection of advanced-glycation-end-product-cholesterol-aggregated-BSA caused glomerular changes and albuminuria in non-diabetic mice. A transforming-growth-factor-beta receptor 1 kinase inhibitor or Mitogen-activated-Protein-Kinase/Extracellular-Signal-regulated-Kinase kinase (ERK) inhibitor (U-0126) suppressed the proliferation of mesangial cells induced by advanced-glycation-end-product-cholesterol-aggregated-BSA dose-dependently. U-0126 inhibited the phosphorylation of ERK1/2 in advanced-glycation-end-product-cholesterol-aggregated-BSA treated mesangial cells. These findings suggested that cholesterol promotes the formation of advanced-glycation-end-products-protein and that advanced-glycation-end-product-cholesterol-aggregated protein stimulates mesangial cells to proliferate via

  9. An efficient regeneration protocol for Agrobacterium-mediated transformation of melon (Cucumis melo L.).

    PubMed

    Zhang, H J; Gao, P; Wang, X Z; Luan, F S

    2014-01-08

    An efficient selection and plant regeneration protocol for Agrobacterium-mediated transformation, using cotyledon node zone-stem connection region of melon, has been developed. The new Agrobacterium-mediated transformation methodology, independent of organ culture, used the entire germinated seed as explants. The transformation system was maximized to maintain the integrity of melon itself, thus avoiding the limitations of traditional tissue culture methods. The transformation was carried out under a non-sterile environment. The incorporation of a selectable marker (neomycin phosphotransferase II) into the genome of transgenic plants was confirmed by PCR and Southern blot analyses. The transformation frequency based on the PCR was 13%. Transgenic melon plants were usually detected by PCR in less than 1 month after Agrobacterium inoculation, and seeds could be harvested in 3 months. The growth characteristics and morphology of the transgenic plants were identical to the untransformed wild-type plants. This method would be beneficial for facilitating the characteristics of gene functions and for boosting the manipulation of melon transformation for commercial purposes.

  10. Optimization of Agrobacterium-Mediated Transformation in Soybean

    PubMed Central

    Li, Shuxuan; Cong, Yahui; Liu, Yaping; Wang, Tingting; Shuai, Qin; Chen, Nana; Gai, Junyi; Li, Yan

    2017-01-01

    High transformation efficiency is a prerequisite for study of gene function and molecular breeding. Agrobacterium tumefaciens-mediated transformation is a preferred method in many plants. However, the transformation efficiency in soybean is still low. The objective of this study is to optimize Agrobacterium-mediated transformation in soybean by improving the infection efficiency of Agrobacterium and regeneration efficiency of explants. Firstly, four factors affecting Agrobacterium infection efficiency were investigated by estimation of the rate of GUS transient expression in soybean cotyledonary explants, including Agrobacterium concentrations, soybean explants, Agrobacterium suspension medium, and co-cultivation time. The results showed that an infection efficiency of over 96% was achieved by collecting the Agrobacterium at a concentration of OD650 = 0.6, then using an Agrobacterium suspension medium containing 154.2 mg/L dithiothreitol to infect the half-seed cotyledonary explants (from mature seeds imbibed for 1 day), and co-cultured them for 5 days. The Agrobacterium infection efficiencies for soybean varieties Jack Purple and Tianlong 1 were higher than the other six varieties. Secondly, the rates of shoot elongation were compared among six different concentration combinations of gibberellic acid (GA3) and indole-3-acetic acid (IAA). The shoot elongation rate of 34 and 26% was achieved when using the combination of 1.0 mg/L GA3 and 0.1 mg/L IAA for Jack Purple and Tianlong 1, respectively. This rate was higher than the other five concentration combinations of GA3 and IAA, with an 18 and 11% increase over the original laboratory protocol (a combination of 0.5 mg/L GA3 and 0.1 mg/L IAA), respectively. The transformation efficiency was 7 and 10% for Jack Purple and Tianlong 1 at this optimized hormone concentration combination, respectively, which was 2 and 6% higher than the original protocol, respectively. Finally, GUS histochemical staining, PCR, herbicide

  11. Transforming Growth Factor Beta, Bioenergetics and Mitochondria in Renal Disease

    PubMed Central

    Gabriella, Casalena; Ilse, Daehn; Erwin, Bottinger

    2012-01-01

    The transforming growth factor beta (TGF-β ) family is comprised of over 30 family members that are structurally related secreted dimeric cytokines, including TGF-β, activins, and bone morphogenetic proteins (BMPs)/growth and differentiation factors (GDFs). TGF-β are pluripotent regulators of cell proliferation, differentiation, apoptosis, migration, and adhesion of many different cell types. TGF-β pathways are highly evolutionarily conserved and control embryogenesis, tissue repair, and tissue homeostasis in invertebrates and vertebrates. Aberrations in TGF-β activity and signaling underlie a broad spectrum of developmental disorders and major pathologies in humans, including cancer, fibrosis and autoimmune diseases. Recent observations indicate an emerging role for TGF-β in regulation of mitochondrial bioenergetics and oxidative stress responses characteristic of chronic degenerative diseases and ageing. Conversely, energy and metabolic sensory pathways cross-regulate mediators of TGF-β signaling. Here we review TGF-β and regulation of bioenergetic and mitochondrial functions, including energy and oxidant metabolism and apoptotic cell death, as well as their emerging relevance in renal biology and disease. PMID:22835461

  12. Frugivore-Mediated Selection in A Habitat Transformation Scenario

    PubMed Central

    Fontúrbel, Francisco E.; Medel, Rodrigo

    2017-01-01

    Plant-animal interactions are strong drivers of phenotypic evolution. However, the extent to which anthropogenic habitat transformation creates new selective scenarios for plant-animal interactions is a little explored subject. We examined the effects of native forest replacement by exotic Eucalyptus trees on the frugivore-mediated phenotypic selection coefficients imposed by the relict marsupial Dromiciops gliroides upon traits involved in frugivore attraction and germination success of the mistletoe Tristerix corymbosus (Loranthaceae). We found significant gradients for seed weight and sugar content along the native - transformed habitat gradient. While selection for larger seed weight was more relevant in native habitats, fruits with intermediate sugar content were promoted in transformed habitats. The spatial habitat structure and microclimate features such as the degree of sunlight received influenced the natural selection processes, as they correlated with the phenotypic traits analysed. The response of this plant-frugivore interaction to human disturbance seemed to be context-dependent, in which extremely transformed habitats would offer new opportunities for natural selection on dispersal-related traits. Even in recent transformation events like this, human disturbance acts as a strong contemporary evolution driver. PMID:28349942

  13. Frugivore-Mediated Selection in A Habitat Transformation Scenario.

    PubMed

    Fontúrbel, Francisco E; Medel, Rodrigo

    2017-03-28

    Plant-animal interactions are strong drivers of phenotypic evolution. However, the extent to which anthropogenic habitat transformation creates new selective scenarios for plant-animal interactions is a little explored subject. We examined the effects of native forest replacement by exotic Eucalyptus trees on the frugivore-mediated phenotypic selection coefficients imposed by the relict marsupial Dromiciops gliroides upon traits involved in frugivore attraction and germination success of the mistletoe Tristerix corymbosus (Loranthaceae). We found significant gradients for seed weight and sugar content along the native - transformed habitat gradient. While selection for larger seed weight was more relevant in native habitats, fruits with intermediate sugar content were promoted in transformed habitats. The spatial habitat structure and microclimate features such as the degree of sunlight received influenced the natural selection processes, as they correlated with the phenotypic traits analysed. The response of this plant-frugivore interaction to human disturbance seemed to be context-dependent, in which extremely transformed habitats would offer new opportunities for natural selection on dispersal-related traits. Even in recent transformation events like this, human disturbance acts as a strong contemporary evolution driver.

  14. Highly efficient transformation system for Malassezia furfur and Malassezia pachydermatis using Agrobacterium tumefaciens-mediated transformation.

    PubMed

    Celis, A M; Vos, A M; Triana, S; Medina, C A; Escobar, N; Restrepo, S; Wösten, H A B; de Cock, H

    2017-03-01

    Malassezia spp. are part of the normal human and animal mycobiota but are also associated with a variety of dermatological diseases. The absence of a transformation system hampered studies to reveal mechanisms underlying the switch from the non-pathogenic to pathogenic life style. Here we describe, a highly efficient Agrobacterium-mediated genetic transformation system for Malassezia furfur and M. pachydermatis. A binary T-DNA vector with the hygromycin B phosphotransferase (hpt) selection marker and the green fluorescent protein gene (gfp) was introduced in M. furfur and M. pachydermatis by combining the transformation protocols of Agaricus bisporus and Cryptococcus neoformans. Optimal temperature and co-cultivation time for transformation were 5 and 7days at 19°C and 24°C, respectively. Transformation efficiency was 0.75-1.5% for M. furfur and 0.6-7.5% for M. pachydermatis. Integration of the hpt resistance cassette and gfp was verified using PCR and fluorescence microscopy, respectively. The T-DNA was mitotically stable in approximately 80% of the transformants after 10 times sub-culturing in the absence of hygromycin. Improving transformation protocols contribute to study the biology and pathophysiology of Malassezia.

  15. Transforming growth factor beta 1, a cytokine with regenerative functions

    PubMed Central

    Sulaiman, Wale; Nguyen, Doan H.

    2016-01-01

    We review the biology and role of transforming growth factor beta 1 (TGF-β1) in peripheral nerve injury and regeneration, as it relates to injuries to large nerve trunks (i.e., sciatic nerve, brachial plexus), which often leads to suboptimal functional recovery. Experimental studies have suggested that the reason for the lack of functional recovery resides in the lack of sufficient mature axons reaching their targets, which is a result of the loss of the growth-supportive environment provided by the Schwann cells in the distal stump of injured nerves. Using an established chronic nerve injury and delayed repair animal model that accurately mimics chronic nerve injuries in humans, we summarize our key findings as well as others to better understand the pathophysiology of poor functional recovery. We demonstrated that 6 month TGF-β1 treatment for chronic nerve injury significantly improved Schwann cell capacity to support axonal regeneration. When combined with forskolin, the effect was additive, as evidenced by a near doubling of regenerated axons proximal to the repair site. We showed that in vivo application of TGF-β1 and forskolin directly onto chronically injured nerves reactivated chronically denervated Schwann cells, induced their proliferation, and upregulated the expression of regeneration-associated proteins. The effect of TGF-β1 and forskolin on old nerve injuries is quite impressive and the treatment regiment appears to mediate a growth-supportive milieu in the injured peripheral nerves. In summary, TGF-β1 and forskolin treatment reactivates chronically denervated Schwann cells and could potentially be used to extend and prolong the regenerative responses to promote axonal regeneration. PMID:27904475

  16. [Transformation of Didymella bryoniae mediated by Agrobacterium tumefaciens].

    PubMed

    Ren, Haiying; Fang, Li; Li, Gang; Ru, Shuijiang; Wang, Hanrong

    2010-06-01

    Gummy stem blight, a plant disease caused by Didymella bryoniae, is one of the major diseases in melon. The disease can seriously reduce melon yield and quality. However, little information is available on the genetics and functional genomics of the fungal pathogen. In this study, we developed an Agrobacterium-mediated transformation system for D. bryoniae by using a universal pathogenic isolate DB11 and the Agrobacterium tumefaciens strain C58C1 carrying plasmid pBIG2RHPH2 harboring the hygromycin B phosphotransferase gene (hph). Total 45 transformants could be obtained per 1 x 10(5) spores when 1 x 10(6) spores per milliliter of D. bryoniae spore suspension were cocultivated with Agrobacterium cells at OD600 = 0.15 for 48 h in the presence of induction medium (pH 5.2) containing acetosyringone at 200 microg/mL and selection medium contained 100 microg/mL of hygromycin B and 200 microg/mL of cefotaxime sodium, ampicillin and tetracycline, respectively. The transformants were stable when grown on PDA medium without hygromycin B for five times and were verified by PCR amplification with the hph primers and by Southern blot analysis with the hph probe. The transformation system will be useful for further studies of functional genes in D. bryoniae.

  17. Agrobacterium-mediated genetic transformation of the desiccation tolerant resurrection plant Ramonda myconi (L.) Rchb.

    PubMed

    Tóth, Sándor; Kiss, Csaba; Scott, Peter; Kovács, Gabriella; Sorvari, Seppo; Toldi, Ottó

    2006-05-01

    In this paper we describe the first procedure for Agrobacterium tumefaciens-mediated genetic transformation of the desiccation tolerant plant Ramonda myconi (L.) Rchb. Previously, we reported the establishment of a reliable and effective tissue culture system based on the integrated optimisation of antioxidant and growth regulator composition and the stabilisation of the pH of the culture media by means of a potassium phosphate buffer. This efficient plant regeneration via callus phase provided a basis for the optimisation of the genetic transformation in R. myconi. For gene delivery, both a standard (method A) and a modified protocol (method B) have been applied. Since the latter has previously resulted in successful transformation of another resurrection plant, Craterostigma plantagineum, an identical protocol was utilized in transformation of R. myconi, as this method may prove general for dicotyledonous resurrection plants. On this basis, physical and biochemical key variables in transformation were evaluated such as mechanical microwounding of plant explants and in vitro preinduction of vir genes. While the physical enhancement of bacterial penetration was proved to be essential for successful genetic transformation of R. myconi, an additional two-fold increase in the transformation frequency was obtained when the above physical and biochemical treatments were applied in combination. All R0 and R1 transgenic plants were fertile, and no morphological abnormalities were observed on the whole-plant level.

  18. Stable Agrobacterium-mediated transformation of maritime pine based on kanamycin selection.

    PubMed

    Alvarez, José M; Ordás, Ricardo J

    2013-01-01

    An efficient transformation protocol based on kanamycin selection was developed for Agrobacterium-mediated transformation of maritime pine embryonal masses. The binary vector pBINUbiGUSint, which contained neomycin phosphotransferase II (nptII) as a selectable marker gene and β -glucuronidase (uidA) as a reporter gene, was used for transformation studies. Different factors, such as embryogenic line, bacterial strain, bacterial concentration, and coculture duration, were examined and optimized. For selection of transformants, 15 mgL(-1) kanamycin was used. The highest transformation efficiency (11.4 events per gram of fresh mass) was achieved when a vigorously growing embryonal mass (embryogenic line L01) was cocultivated with Agrobacterium strain AGL1 at the optical density (OD(600 nm)) of 0.3 for 72 h. Evidence of the stable transgene integration was obtained by polymerase chain reaction for the nptII and uidA genes and expression of the uidA gene. Maturation capacity of the transgenic lines was negatively affected by the transformation process. Induction of axillary shoots by preculturing the embryos with benzyladenine allowed overcoming the low maturation rates of some transformed lines. The transgenic embryos were germinated and the axillar shoots were rooted. Transgenic plants were transferred to potting substrate showing normal growth.

  19. Stable Agrobacterium-Mediated Transformation of Maritime Pine Based on Kanamycin Selection

    PubMed Central

    Alvarez, José M.; Ordás, Ricardo J.

    2013-01-01

    An efficient transformation protocol based on kanamycin selection was developed for Agrobacterium-mediated transformation of maritime pine embryonal masses. The binary vector pBINUbiGUSint, which contained neomycin phosphotransferase II (nptII) as a selectable marker gene and β-glucuronidase (uidA) as a reporter gene, was used for transformation studies. Different factors, such as embryogenic line, bacterial strain, bacterial concentration, and coculture duration, were examined and optimized. For selection of transformants, 15 mgL−1 kanamycin was used. The highest transformation efficiency (11.4 events per gram of fresh mass) was achieved when a vigorously growing embryonal mass (embryogenic line L01) was cocultivated with Agrobacterium strain AGL1 at the optical density (OD600 nm) of 0.3 for 72 h. Evidence of the stable transgene integration was obtained by polymerase chain reaction for the nptII and uidA genes and expression of the uidA gene. Maturation capacity of the transgenic lines was negatively affected by the transformation process. Induction of axillary shoots by preculturing the embryos with benzyladenine allowed overcoming the low maturation rates of some transformed lines. The transgenic embryos were germinated and the axillar shoots were rooted. Transgenic plants were transferred to potting substrate showing normal growth. PMID:24376383

  20. Gene Targets in Prostate Tumor Cells that Mediate Aberrant Growth and Invasiveness

    DTIC Science & Technology

    2005-02-01

    Craig A. Hauser , Ph.D. Gabriele Foos, Ph.D. CONTRACTING ORGANIZATION: The Burnham Institute La Jolla, California 92037 REPORT DATE: February 2005 TYPE...NUMBERS Gene Targets in Prostate Tumor Cells that Mediate DAMD17-02-1-0019 Aberrant Growth and Invasiveness 6. AUTHOR(S) Craig A. Hauser , Ph.D. Gabriele...REPORTABLE OUTCOMES Foos G, Hauser CA (2004) The role of Ets transcription factors in mediating cellular transformation. In: Handbook of Experimental

  1. Transforming Growth Factor-β and the Hallmarks of Cancer

    PubMed Central

    Tian, Maozhen; Neil, Jason R.; Schiemann, William P.

    2010-01-01

    Tumorigenesis is in many respects a process of dysregulated cellular evolution that drives malignant cells to acquire six phenotypic hallmarks of cancer, including their ability to proliferate and replicate autonomously, to resist cytostatic and apoptotic signals, and to induce tissue invasion, metastasis, and angiogenesis. Transforming growth factor-β (TGF-β) is a potent pleiotropic cytokine that functions as a formidable barrier to the development of cancer hallmarks in normal cells and tissues. Paradoxically, tumorigenesis counteracts the tumor suppressing activities of TGF-β, thus enabling TGF-β to stimulate cancer invasion and metastasis. Fundamental gaps exist in our knowledge of how malignant cells overcome the cytostatic actions of TGF-β, and of how TGF-β stimulates the acquisition of cancer hallmarks by developing and progressing human cancers. Here we review the molecular and cellular mechanisms that underlie the ability of TGF-β to mediate tumor suppression in normal cells, and conversely, to facilitate cancer progression and disease dissemination in malignant cells. PMID:20940046

  2. Transforming growth factor-β and the hallmarks of cancer.

    PubMed

    Tian, Maozhen; Neil, Jason R; Schiemann, William P

    2011-06-01

    Tumorigenesis is in many respects a process of dysregulated cellular evolution that drives malignant cells to acquire six phenotypic hallmarks of cancer, including their ability to proliferate and replicate autonomously, to resist cytostatic and apoptotic signals, and to induce tissue invasion, metastasis, and angiogenesis. Transforming growth factor-β (TGF-β) is a potent pleiotropic cytokine that functions as a formidable barrier to the development of cancer hallmarks in normal cells and tissues. Paradoxically, tumorigenesis counteracts the tumor suppressing activities of TGF-β, thus enabling TGF-β to stimulate cancer invasion and metastasis. Fundamental gaps exist in our knowledge of how malignant cells overcome the cytostatic actions of TGF-β, and of how TGF-β stimulates the acquisition of cancer hallmarks by developing and progressing human cancers. Here we review the molecular and cellular mechanisms that underlie the ability of TGF-β to mediate tumor suppression in normal cells, and conversely, to facilitate cancer progression and disease dissemination in malignant cells.

  3. Laccase-mediated transformation of triclosan in aqueous solution with metal cations and humic acid.

    PubMed

    Sun, Kai; Kang, Fuxing; Waigi, Michael Gatheru; Gao, Yanzheng; Huang, Qingguo

    2017-01-01

    Triclosan (TCS) is a broad-spectrum antimicrobial agent that is found extensively in natural aquatic environments. Enzyme-catalyzed oxidative coupling reactions (ECOCRs) can be used to remove TCS in aqueous solution, but there is limited information available to indicate how metal cations (MCs) and natural organic matter (NOM) influence the environmental fate of TCS during laccase-mediated ECOCRs. In this study, we demonstrated that the naturally occurring laccase from Pleurotus ostreatus was effective in removing TCS during ECOCRs, and the oligomerization of TCS was identified as the dominant reaction pathway by high-resolution mass spectrometry (HRMS). The growth inhibition studies of green algae (Chlamydomonas reinhardtii and Scenedesmus obliquus) proved that laccase-mediated ECOCRs could effectively reduce the toxicity of TCS. The presence of dissolved MCs (Mn(2+), Al(3+), Ca(2+), Cu(2+), and Fe(2+) ions) influenced the removal and transformation of TCS via different mechanisms. Additionally, the transformation of TCS in systems with NOM derived from humic acid (HA) was hindered, and the apparent pseudo first-order kinetics rate constants (k) for TCS decreased as the HA concentration increased, which likely corresponded to the combined effect of both noncovalent (sorption) and covalent binding between TCS and humic molecules. Our results provide a novel insight into the fate and transformation of TCS by laccase-mediated ECOCRs in natural aquatic environments in the presence of MCs and NOM.

  4. Phase transformation and growth of hygroscopic aerosols

    SciTech Connect

    Tang, I.N.

    1999-11-01

    Ambient aerosols play an important role in many atmospheric processes affecting air quality, visibility degradation, and climatic changes as well. Both natural and anthropogenic sources contribute to the formation of ambient aerosols, which are composed mostly of sulfates, nitrates, and chlorides in either pure or mixed forms. These inorganic salt aerosols are hygroscopic by nature and exhibit the properties of deliquescence and efflorescence in humid air. For pure inorganic salt particles with diameter larger than 0.1 micron, the phase transformation from a solid particle to a saline droplet occurs only when the relative humidity in the surrounding atmosphere reaches a certain critical level corresponding to the water activity of the saturated solution. The droplet size or mass in equilibrium with relative humidity can be calculated in a straightforward manner from thermodynamic considerations. For aqueous droplets 0.1 micron or smaller, the surface curvature effect on vapor pressure becomes important and the Kelvin equation must be used.

  5. Compensatory adrenal growth - A neurally mediated reflex

    NASA Technical Reports Server (NTRS)

    Dallman, M. F.; Engeland, W. C.; Shinsako, J.

    1976-01-01

    The responses of young rats to left adrenalectomy or left adrenal manipulation were compared to surgical sham adrenalectomy in which adrenals were observed but not touched. At 12 h right adrenal wet weight, dry weight, DNA, RNA, and protein content were increased (P less than 0.05) after the first two operations. Left adrenal manipulation resulted in increased right adrenal weight at 12 h but no change in left adrenal weight. Sequential manipulation of the left adrenal at time 0 and the right adrenal at 12 h resulted in an enlarged right adrenal at 12 h (P less than 0.01), and an enlarged left adrenal at 24 h (P less than 0.05), showing that the manipulated gland was capable of response. Bilateral adrenal manipulation of the adrenal glands resulted in bilateral enlargement of 12 h (P less than 0.01). Taken together with previous results, these findings strongly suggest that compensatory adrenal growth is a neurally mediated reflex.

  6. Autocrine growth inhibition by transforming growth factor β-1 (TGFβ-1) in human neuroendocrine tumour cells

    PubMed Central

    Wimmel, A; Wiedenmann, B; Rosewicz, S

    2003-01-01

    Background and aim: The role of transforming growth factor β-1 (TGFβ-1) in neuroendocrine tumour biology is currently unknown. We therefore examined the expression and biological significance of TGFβ signalling components in neuroendocrine tumours (NETs) of the gastroenteropancreatic (GEP) tract. Methods: Expression of TGFβ-1 and its receptors, Smads and Smad regulated proteins, was examined in surgically resected NET specimens and human NET cell lines by immunohistochemistry, reverse transcriptase-polymerase chain reaction, immunoblotting, and ELISA. Activation of TGFβ-1 dependent promoters was tested by transactivation assays. Growth regulation was evaluated by cell numbers, soft agar assays, and cell cycle analysis using flow cytometry. The role of endogenous TGFβ was assessed by a TGFβ neutralising antibody and stable transfection of a dominant negative TGFβR II receptor construct. Results: Coexpression of TGFβ-1 and its receptors TGFβR I and TGFβR II was detected in 67% of human NETs and in all three NET cell lines examined. NET cell lines expressed the TGFβ signal transducers Smad 2, 3, and 4. In two of the three cell lines, TGFβ-1 treatment resulted in transactivation of a TGFβ responsive reporter construct as well as inhibition of c-myc and induction of p21(WAF1) expression. TGFβ-1 inhibited anchorage dependent and independent growth in a time and dose dependent manner in TGFβ-1 responsive cell lines. TGFβ-1 mediated growth inhibition was due to G1 arrest without evidence of induction of apoptosis. Functional inactivation of endogenous TGFβ revealed the existence of an autocrine antiproliferative loop in NET cells. Conclusions: Neuroendocrine tumour cells of the gastroenteropancreatic tract are subject to paracrine and autocrine growth inhibition by TGFβ-1, which may account in part for the low proliferative index of this tumour entity. PMID:12912863

  7. Agrobacterium-mediated genetic transformation of pineapple (Ananas comosus L., Merr.).

    PubMed

    Mhatre, Minal

    2013-01-01

    Pineapple (Ananas comosus L., Merr.) is a commercially important crop, grown in the tropical and subtropical regions. However, the crop is faced with postharvest damage and poor varietal and nutritional improvement. Being a vegetatively propagated crop, conventional breeding programs take longer time for genetic improvement, which may not necessarily successfully develop an improved cultivar. Hence, the genetic modification of pineapple is an alternative handy approach to improve pineapple. We have established an Agrobacterium-mediated transformation system using leaf bases from in vitro-grown pineapple plants. Being a monocot, acetosyringone is added to the culture medium for overnight growth of Agrobacterium and transformation to transfer a gene of interest MSI99 soybean ferritin. Leaf bases isolated from in vitro shoot cultures are treated with Agrobacterium suspension at two dilutions, 10× and 20×, for 30 min. Explants are subsequently blot dried and cultured on gelrite solidified hormone-free Pin1 medium for 2 days (cocultivation). Periodic transfer is first done to the regeneration medium (Pin1) containing cefotaxime for the suppression of Agrobacterium growth. The transformants are selected by culturing on Pin1 medium containing cefotaxime and kanamycin. Multiple shoots, regenerated in leaf bases, are further multiplied and individually rooted in the liquid RM medium amended with antibiotics to recover plants. Putative transformants are analyzed for transgene integration and expression using standard molecular biological methods of PCR, RT-PCR, and genomic Southern.

  8. Cells transformed by murine herpesvirus 68 (MHV-68) release compounds with transforming and transformed phenotype suppressing activity resembling growth factors.

    PubMed

    Šupolíková, M; Staňová, A Vojs; Kúdelová, M; Marák, J; Zelník, V; Golais, F

    2015-12-01

    In this study, we investigated the medium of three cell lines transformed with murine herpesvirus 68 (MHV-68) in vitro and in vivo, 68/HDF, 68/NIH3T3, and S11E, for the presence of compounds resembling growth factors of some herpesviruses which have displayed transforming and transformed phenotype suppressing activity in normal and tumor cells. When any of spent medium was added to cell culture we observed the onset of transformed phenotype in baby hamster kidney cells (BHK-21) cells and transformed phenotype suppressing activity in tumor human epithelial cells (HeLa). In media tested, we have identified the presence of putative growth factor related to MHV-68 (MHGF-68). Its bivalent properties have been blocked entirely by antisera against MHV-68 and two monoclonal antibodies against glycoprotein B (gB) of MHV-68 suggesting viral origin of MHGF-68. The results of initial efforts to separate MHGF-68 on FPLC Sephadex G15 column in the absence of salts revealed the loss of its transforming activity but transformed phenotype suppressing activity retained. On the other hand, the use of methanol-water mobile phase on RP-HPLC C18 column allowed separation of MHGF-68 to two compounds. Both separated fractions, had only the transforming activity to normal cells. Further experiments exploring the nature and the structure of hitherto unknown MHGF-68 are now in the progress to characterize its molecular and biological properties.

  9. Dual functions of transcription factors, transforming growth factor-beta-inducible early gene (TIEG)2 and Sp3, are mediated by CACCC element and Sp1 sites of human monoamine oxidase (MAO) B gene.

    PubMed

    Ou, Xiao-Ming; Chen, Kevin; Shih, Jean C

    2004-05-14

    Monoamine oxidases (MAO) A and B catalyze the oxidative deamination of many biogenic and dietary amines. Abnormal expression of MAO has been implicated in several psychiatric and neurodegenerative disorders. Human MAO B core promoter (-246 to -99 region) consists of CACCC element flanked by two clusters of overlapping Sp1 sites. Here, we show that cotransfection with transforming growth factor (TGF)-beta-inducible early gene (TIEG)2 increased MAO B gene expression at promoter, mRNA, protein, and catalytic activity levels in both SH-SY5Y and HepG2 cells. Mutation of the CACCC element increased the MAO B promoter activity, and cotransfection with TIEG2 further increased the promoter activity, suggesting that CACCC was a repressor element. This increase was reduced when the proximal Sp1 overlapping sites was mutated. Similar interactions were found with Sp3. These results showed that TIEG2 and Sp3 were repressors at the CACCC element but were activators at proximal Sp1 overlapping sites of MAO B. Gel-shift and chromatin immunoprecipitation assays showed that TIEG2 and Sp3 bound directly to CACCC element and the proximal Sp1 sites in both synthetic oligonucleotides and natural MAO B core promoter. TIEG2 had a higher affinity to Sp1 sites than CACCC element, whereas Sp3 had an equal affinity to both elements. Thus, TIEG2 was an activator, but Sp3 had no effect on MAO B gene expression. This study provides new insights into MAO B gene expression and illustrates the complexity of gene regulation.

  10. Agrobacterium-mediated transformation of bottle gourd (Lagenaria siceraria Standl.).

    PubMed

    Han, J-S; Kim, C K; Park, S H; Hirschi, K D; Mok, I- G

    2005-03-01

    We describe a procedure for producing transgenic bottle gourd plants by inoculating cotyledon explants with Agrobacterium tumefaciens strain AGL1 that carries the binary vector pCAMBIA3301 containing a glufosinate ammonium-resistance (bar) gene and the beta-D-glucuronidase (GUS) reporter gene. The most effective bacterial infection was observed when cotyledon explants of 4-day-old seedlings were co-cultivated with Agrobacterium for 6-8 days on co-cultivation medium supplemented with 0.1-0.001 mg/l L-alpha-(2-aminoethoxyvinyl) glycine (AVG). The putatively transformed shoots directly emerged at the proximal end of cotyledon explants after 2-3 weeks of culturing on selection medium containing 2 mg/l DL-phosphinothricin. These shoots were rooted after 3 weeks of culturing on half-strength MS medium containing 0.1 mg/l indole acetic acid and 1 mg/l DL-phosphinothricin. Transgenic plants were obtained at frequencies of 1.9%. Stable integration and transmission of the transgenes in T1 generation plants were confirmed by a histochemical GUS assay, polymerase chain reaction and Southern blot analyses. Genetic segregation analysis of T1 progenies showed that transgenes were inherited in a Mendelian fashion. To our knowledge, this study is the first to show Agrobacterium-mediated transformation in bottle gourd.

  11. Requirement of Stat3 but not Stat1 activation for epidermal growth factor receptor- mediated cell growth In vitro.

    PubMed Central

    Grandis, J R; Drenning, S D; Chakraborty, A; Zhou, M Y; Zeng, Q; Pitt, A S; Tweardy, D J

    1998-01-01

    Stimulation of epidermal growth factor receptor (EGFR) by ligand(s) leads to activation of signaling molecules including Stat1 and Stat3, two members of the signal transducers and activators of transcription (STAT) protein family. Activation of Stat1 and Stat3 was constitutive in transformed squamous epithelial cells, which produce elevated levels of TGF-alpha, and was enhanced by the addition of exogenous TGF-alpha. Targeting of Stat3 using antisense oligonucleotides directed against the translation initiation site, resulted in significant growth inhibition. In addition, cells stably transfected with dominant negative mutant Stat3 constructs failed to proliferate in vitro. In contrast, targeting of Stat1 using either antisense or dominant-negative strategies had no effect on cell growth. Thus, TGF-alpha/EGFR-mediated autocrine growth of transformed epithelial cells is dependent on activation of Stat3 but not Stat1. PMID:9769331

  12. Mediators in cell growth and differentiation

    SciTech Connect

    Ford, R.J.; Maizel, A.L.

    1985-01-01

    This book contains papers divided among seven sections. The section headings are: Cell Cycle and Control of Cell Growth, Growth Factors for Nonlymphoid Cells, Colony-Stimulating Factors, Stem Cells and Hematopoiesis, Lymphoid Growth Factors, Growth Factors in Neoplasia, Interferon, and Differentiation in Normal and Neoplastic Cells.

  13. Transforming Growth Factor-B Receptors in Human Breast Cancer.

    DTIC Science & Technology

    1998-05-01

    receptor. Nature 370:341-347,1994 60. Wang T, Donahoe P, Zervos AS: Specific interaction of type I receptors of the TGFß family with the immunophilin...Res 56: 44^48,1996 82. Kadin ME. Cavaille-Coll MW, Gertz R. Massague J, Chei- fetz S. George D: Loss of receptors for transforming growth factor ß

  14. Differential in vitro phenotype pattern, transforming growth factor-beta(1) activity and mRNA expression of transforming growth factor-beta(1) in Apert osteoblasts.

    PubMed

    Locci, P; Baroni, T; Pezzetti, F; Lilli, C; Marinucci, L; Martinese, D; Becchetti, E; Calvitti, M; Carinci, F

    1999-09-01

    The phenotype of Apert osteoblasts differs from that of normal osteoblasts in the accumulation of macromolecules in the extracellular matrix. Apert osteoblasts increase type I collagen, fibronectin and glycosaminoglycans secretion compared with normal osteoblasts. Because the extracellular matrix macromolecule accumulation is greatly modulated by transforming growth factor-beta(1), we examined the ability of normal and Apert osteoblasts to secrete transforming growth factor-beta(1) by CCL-64 assay and to produce transforming growth factor-beta(1 )by analysis of the mRNA expression of transforming growth factor-beta(1). Northern blot analysis revealed an increased amount of transforming growth factor-beta(1) mRNA expression in Apert osteoblasts compared with normal ones. Moreover, the level of the active transforming growth factor-beta(1) isoform was higher in Apert than in normal media. In pathologic cells, the increase in transforming growth factor-beta(1) gene expression was associated with a parallel increase in the factor secreted into the medium. The level of transforming growth factor-beta(1) was decreased by the addition of basic fibroblast growth factor. Transforming growth factor-beta(1) is controlled temporally and spatially during skeletal tissue development and produces complex stimulatory and inhibitory changes in osteoblast functions. We hypothesise that in vitro differences between normal and Apert osteoblasts may be correlated to different transforming growth factor-beta(1) cascade patterns, probably due to an altered balance between transforming growth factor-beta(1) and basic fibroblast growth factor.

  15. Bcl-2 is a critical mediator of intestinal transformation

    PubMed Central

    van der Heijden, Maartje; Zimberlin, Cheryl D.; Nicholson, Anna M.; Colak, Selcuk; Kemp, Richard; Meijer, Sybren L.; Medema, Jan Paul; Greten, Florian R.; Jansen, Marnix; Winton, Douglas J.; Vermeulen, Louis

    2016-01-01

    Intestinal tumour formation is generally thought to occur following mutational events in the stem cell pool. However, active NF-κB signalling additionally facilitates malignant transformation of differentiated cells. We hypothesized that genes shared between NF-κB and intestinal stem cell (ISCs) signatures might identify common pathways that are required for malignant growth. Here, we find that the NF-κB target Bcl-2, an anti-apoptotic gene, is specifically expressed in ISCs in both mice and humans. Bcl-2 is dispensable in homeostasis and, although involved in protecting ISCs from radiation-induced damage, it is non-essential in tissue regeneration. Bcl-2 is upregulated in adenomas, and its loss or inhibition impairs outgrowth of oncogenic clones, because Bcl-2 alleviates apoptotic priming in epithelial cells following Apc loss. Furthermore, Bcl-2 expression in differentiated epithelial cells renders these cells amenable to clonogenic outgrowth. Collectively, our results indicate that Bcl-2 is required for efficient intestinal transformation following Apc-loss and constitutes a potential chemoprevention target. PMID:26956214

  16. Transforming growth factor β signaling in uterine development and function.

    PubMed

    Li, Qinglei

    2014-01-01

    Transforming growth factor β (TGFβ) superfamily is evolutionarily conserved and plays fundamental roles in cell growth and differentiation. Mounting evidence supports its important role in female reproduction and development. TGFBs1-3 are founding members of this growth factor family, however, the in vivo function of TGFβ signaling in the uterus remains poorly defined. By drawing on mouse and human studies as a main source, this review focuses on the recent progress on understanding TGFβ signaling in the uterus. The review also considers the involvement of dysregulated TGFβ signaling in pathological conditions that cause pregnancy loss and fertility problems in women.

  17. Efficient Agrobacterium-mediated transformation of commercial hybrid poplar Populus nigra L. x P. maximowiczii A. Henry.

    PubMed

    Yevtushenko, Dmytro P; Misra, Santosh

    2010-03-01

    Many economically important species of Populus, especially those in sections Aigeiros and Tacamahaca, remain recalcitrant to genetic transformation. In this study, a simple and reliable protocol was developed for the efficient Agrobacterium-mediated transformation of a difficult-to-transform, but commercially viable, hybrid poplar Populus nigra L. x P. maximowiczii A. Henry (NM6). A plant transformation vector designed to express the beta-glucuronidase (GUS) gene was used to detect transformation events at early stages of plant regeneration and to optimize parameters affecting poplar transformation. The use of zeatin riboside in shoot-induction medium, regeneration of shoots via indirect organogenesis, and early selection pressure were the major modifications that drastically improved the efficiency of poplar transformation and minimized the number of untransformed regenerants. Transgenic shoots were routinely obtained 4-10 weeks after co-culture with A. tumefaciens, with a greater than 90% rate of plant recovery. Stable transgene integration, ranging from a single insertion to ten copies per genome, was confirmed by Southern blot analysis. The mean transformation frequency was 36.3% and about two-thirds of the lines had 1-2 transgene copies. Among the explants, petioles and leaves had a higher transformation frequency than did stem segments. Growth characteristics and the morphology of transgenic poplar plants were identical to untransformed controls. These findings will accelerate the development of P. nigra x P. maximowiczii plants with novel traits, and may also be useful to improve transformation procedures for other Populus species.

  18. Increased susceptibility to atrial fibrillation secondary to atrial fibrosis in transgenic goats expressing transforming growth factor - B1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in people with significant morbidity and mortality. There is a strong association between atrial fibrosis and AF. Transforming growth factor B1 (TGF-B1) is an essential mediator of atrial fibrosis in animal models and human pat...

  19. Polyethylene glycol (PEG)-mediated transformation in filamentous fungal pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic transformation is an essential tool in molecular biology for many purposes including the study of gene function and the genetic improvement of an organism. The genetic transformation of many fungal species is a well established process that can be carried out by utilizing different transform...

  20. High frequency regeneration via direct somatic embryogenesis and efficient Agrobacterium- mediated genetic transformation of tobacco

    PubMed Central

    Pathi, Krishna Mohan; Tula, Suresh; Tuteja, Narendra

    2013-01-01

    A direct somatic embryogenesis protocol was developed for four cultivars of Nicotiana species, by using leaf disc as an explant. Direct somatic embryogenesis of Nicotiana by using BAP and IAA has not been investigated so far. This method does not require formation of callus tissues which leads to somaclonal variations. The frequency of somatic embryogenesis was strongly influenced by the plant growth hormones. The somatic embryos developing directly from explant tissue were noticed after 6 d of culture. Somatic embryogenesis of a high frequency (87–96%) was observed in cultures of the all four genotypes (Nicotiana tabacum, N. benthamiyana, N. xanthi, N. t cv petihavana). The results showed that the best medium for direct somatic embryogenesis was MS supplemented with 2.5 mg/l, 0.2 mg/l IAA and 2% sucrose. Subculture of somatic embryos onto hormone free MS medium resulted in their conversion into plants for all genotypes. About 95% of the regenerated somatic embryos germinated into complete plantlets. The plants showed morphological and growth characteristics similar to those of seed-derived plants. Explants were transformed using Agrobacterium tumifacious LBA4404 plasmid pCAMBIA1301 harboring the GUS gene. The regenerated transgenic plants were confirmed by PCR analysis and histochemical GUS assay. The transformation efficiency obtained by using the Agrobacterium- mediated transformation was more than 95%. This method takes 6 wk to accomplish complete transgenic plants through direct somatic embryogenesis. The transgenic plantlets were acclimatized successfully with 98% survival in greenhouse and they showed normal morphological characteristics and were fertile. The regeneration and transformation method described herein is very simple, highly efficient and fast for the introduction of any foreign gene directly in tobacco through direct somatic embryogenesis. PMID:23518589

  1. Special phase transformation and crystal growth pathways observed in nanoparticles†

    PubMed Central

    Gilbert, Benjamin; Zhang, Hengzhong; Huang, Feng; Finnegan, Michael P; Waychunas, Glenn A; Banfield, Jillian F

    2003-01-01

    Phase transformation and crystal growth in nanoparticles may happen via mechanisms distinct from those in bulk materials. We combine experimental studies of as-synthesized and hydrothermally coarsened titania (TiO2) and zinc sulfide (ZnS) with thermodynamic analysis, kinetic modeling and molecular dynamics (MD) simulations. The samples were characterized by transmission electron microscopy, X-ray diffraction, synchrotron X-ray absorption and scattering, and UV-vis spectroscopy. At low temperatures, phase transformation in titania nanoparticles occurs predominantly via interface nucleation at particle–particle contacts. Coarsening and crystal growth of titania nanoparticles can be described using the Smoluchowski equation. Oriented attachment-based crystal growth was common in both hydrothermal solutions and under dry conditions. MD simulations predict large structural perturbations within very fine particles, and are consistent with experimental results showing that ligand binding and change in aggregation state can cause phase transformation without particle coarsening. Such phenomena affect surface reactivity, thus may have important roles in geochemical cycling.

  2. Transforming growth factor β as regulator of cancer stemness and metastasis

    PubMed Central

    Bellomo, Claudia; Caja, Laia; Moustakas, Aristidis

    2016-01-01

    Key elements of cancer progression towards metastasis are the biological actions of cancer stem cells and stromal cells in the tumour microenvironment. Cross-communication between tumour and stromal cells is mediated by secreted cytokines, one of which, the transforming growth factor β (TGFβ), regulates essentially every cell within the malignant tissue. In this article, we focus on the actions of TGFβ on cancer stem cells, cancer-associated fibroblasts and immune cells that assist the overall process of metastatic dissemination. We aim at illustrating intricate connections made by various cells in the tumour tissue and which depend on the action of TGFβ. PMID:27537386

  3. Agrobacterium tumefaciens-mediated transformation in the entomopathogenic fungus Lecanicillium lecanii and development of benzimidazole fungicide resistant strains.

    PubMed

    Zhang, Yan-Jun; Zhao, Jin-Jin; Xie, Ming; Peng, De-Liang

    2014-10-01

    Lecanicillium lecanii has been used in the biological control of several insects in agricultural practice. Since the gene manipulation tools for this entomopathogenic fungus have not been sufficiently developed, Agrobacterium tumefaciens-mediated transformation (ATMT) in L. lecanii was investigated in this study, using the wild-type isolate FZ9906 as a progenitor strain and the hygromycin B resistance (hph) gene as a selection marker. Furthermore, a field carbendazim-resistant (mrt) gene from Botrytis cinerea was expressed in L. lecanii FZ9906 via the ATMT system. The results revealed that the frequency of transformation surpassed 25transformants/10(6) conidia, most of the putative transformants contained a single copy of T-DNA, and the T-DNA inserts were stably inherited after five generations. All putative transformants had indistinguishable biological characteristics relative to the wild-type strain, excepting two transformants with altered growth habits or virulence. Moreover, the resistance of the putative transformants to carbendazim (MBC) was improved, and the highest one was 380-fold higher than the wild-type strain. In conclusion, ATMT is an effective and suitable system for L. lecanii transformation, and will be a useful tool for the basic and application research of gene functions and gene modifications of this strain.

  4. Daylength mediated control of seasonal growth patterns in perennial trees.

    PubMed

    Petterle, Anna; Karlberg, Anna; Bhalerao, Rishikesh P

    2013-06-01

    Daylength is a key regulator of seasonal growth patterns in perennial trees in temperate regions. Cessation of growth is induced by short day signal in these trees before the advent of winter and constitutes a major adaptive developmental program. In this review, we report on the recent progress made in identifying the molecular mechanisms that underlie the daylength mediated control of seasonal growth in perennial trees. A major finding that has emerged from the analysis of this process is that the regulation of growth cessation in perennial trees and flowering time by daylength in annuals such as Arabidopsis thaliana involves identical signalling components.

  5. Nanowire growth by an electron beam induced massive phase transformation

    SciTech Connect

    Sood, Shantanu; Kisslinger, Kim; Gouma, Perena

    2014-11-15

    Tungsten trioxide nanowires of a high aspect ratio have been synthesized in-situ in a TEM under an electron beam of current density 14A/cm² due to a massive polymorphic reaction. Sol-gel processed pseudocubic phase nanocrystals of tungsten trioxide were seen to rapidly transform to one dimensional monoclinic phase configurations, and this reaction was independent of the substrate on which the material was deposited. The mechanism of the self-catalyzed polymorphic transition and accompanying radical shape change is a typical characteristic of metastable to stable phase transformations in nanostructured polymorphic metal oxides. A heuristic model is used to confirm the metastable to stable growth mechanism. The findings are important to the control electron beam deposition of nanowires for functional applications starting from colloidal precursors.

  6. Nanowire growth by an electron beam induced massive phase transformation

    DOE PAGES

    Sood, Shantanu; Kisslinger, Kim; Gouma, Perena

    2014-11-15

    Tungsten trioxide nanowires of a high aspect ratio have been synthesized in-situ in a TEM under an electron beam of current density 14A/cm² due to a massive polymorphic reaction. Sol-gel processed pseudocubic phase nanocrystals of tungsten trioxide were seen to rapidly transform to one dimensional monoclinic phase configurations, and this reaction was independent of the substrate on which the material was deposited. The mechanism of the self-catalyzed polymorphic transition and accompanying radical shape change is a typical characteristic of metastable to stable phase transformations in nanostructured polymorphic metal oxides. A heuristic model is used to confirm the metastable to stablemore » growth mechanism. The findings are important to the control electron beam deposition of nanowires for functional applications starting from colloidal precursors.« less

  7. Microbial mediated retention/transformation of organic and inorganic materials in freshwater and marine ecosystems

    EPA Science Inventory

    Aquatic ecosystems are globally connected by hydrological and biogeochemical cycles. Microorganisms inhabiting aquatic ecosystems form the basis of food webs, mediate essential element cycles, decompose natural organic matter, transform inorganic nutrients and metals, and degrad...

  8. Insulin-like growth factor 1: common mediator of multiple enterotrophic hormones and growth factors

    PubMed Central

    Bortvedt, Sarah F.; Lund, P. Kay

    2013-01-01

    Purpose of review To summarize recent evidence that IGF1 mediates growth effects of multiple trophic factors and discuss clinical relevance. Recent findings Recent reviews and original reports indicate benefits of growth hormone (GH) and long-acting glucagon-like peptide 2 (GLP2) analogues in short bowel syndrome and Crohn’s disease. This review highlights evidence that biomarkers of sustained small intestinal growth or mucosal healing and evaluation of intestinal epithelial stem cell biomarkers may improve clinical measures of intestinal growth or response to trophic hormones. Compelling evidence that IGF1 mediates growth effects of GH and GLP2 on intestine or linear growth in preclinical models of resection or Crohn’s disease is presented, along with a concept that these hormones or IGF1 may enhance sustained growth if given early after bowel resection. Evidence that SOCS protein induction by GH or GLP2 in normal or inflamed intestine, may limit IGF1-induced growth, but protect against risk of dysplasia or fibrosis is reviewed. Whether IGF1 receptor mediates IGF1 action and potential roles of insulin receptors are addressed. Summary IGF1 has a central role in mediating trophic hormone action in small intestine. Better understanding of benefits and risks of IGF1, receptors that mediate IGF1 action, and factors that limit undesirable growth are needed. PMID:22241077

  9. Toll-like receptor 2 (TLR2), transforming growth factor-β, hyaluronan (HA), and receptor for HA-mediated motility (RHAMM) are required for surfactant protein A-stimulated macrophage chemotaxis.

    PubMed

    Foley, Joseph P; Lam, David; Jiang, Hongmei; Liao, Jie; Cheong, Naeun; McDevitt, Theresa M; Zaman, Aisha; Wright, Jo Rae; Savani, Rashmin C

    2012-10-26

    The innate immune system protects the host from bacterial and viral invasion. Surfactant protein A (SPA), a lung-specific collectin, stimulates macrophage chemotaxis. However, the mechanisms regulating this function are unknown. Hyaluronan (HA) and its receptors RHAMM (receptor for HA-mediated motility, CD168) and CD44 also regulate cell migration and inflammation. We therefore examined the role of HA, RHAMM, and CD44 in SPA-stimulated macrophage chemotaxis. Using antibody blockade and murine macrophages, SPA-stimulated macrophage chemotaxis was dependent on TLR2 but not the other SPA receptors examined. Anti-TLR2 blocked SPA-induced production of TGFβ. In turn, TGFβ1-stimulated chemotaxis was inhibited by HA-binding peptide and anti-RHAMM antibody but not anti-TLR2 antibody. Macrophages from TLR2(-/-) mice failed to migrate in response to SPA but responded normally to TGFβ1 and HA, effects that were blocked by anti-RHAMM antibody. Macrophages from WT and CD44(-/-) mice had similar responses to SPA, whereas those from RHAMM(-/-) mice had decreased chemotaxis to SPA, TGFβ1, and HA. In primary macrophages, SPA-stimulated TGFβ production was dependent on TLR2, JNK, and ERK but not p38. Pam3Cys, a specific TLR2 agonist, stimulated phosphorylation of JNK, ERK, and p38, but only JNK and ERK inhibition blocked Pam3Cys-stimulated chemotaxis. We have uncovered a novel pathway for SPA-stimulated macrophage chemotaxis where SPA stimulation via TLR2 drives JNK- and ERK-dependent TGFβ production. TGFβ1, in turn, stimulates macrophage chemotaxis in a RHAMM and HA-dependent manner. These findings are highly relevant to the regulation of innate immune responses by SPA with key roles for specific components of the extracellular matrix.

  10. Toll-like Receptor 2 (TLR2), Transforming Growth Factor-β, Hyaluronan (HA), and Receptor for HA-mediated Motility (RHAMM) Are Required for Surfactant Protein A-stimulated Macrophage Chemotaxis*

    PubMed Central

    Foley, Joseph P.; Lam, David; Jiang, Hongmei; Liao, Jie; Cheong, Naeun; McDevitt, Theresa M.; Zaman, Aisha; Wright, Jo Rae; Savani, Rashmin C.

    2012-01-01

    The innate immune system protects the host from bacterial and viral invasion. Surfactant protein A (SPA), a lung-specific collectin, stimulates macrophage chemotaxis. However, the mechanisms regulating this function are unknown. Hyaluronan (HA) and its receptors RHAMM (receptor for HA- mediated motility, CD168) and CD44 also regulate cell migration and inflammation. We therefore examined the role of HA, RHAMM, and CD44 in SPA-stimulated macrophage chemotaxis. Using antibody blockade and murine macrophages, SPA-stimulated macrophage chemotaxis was dependent on TLR2 but not the other SPA receptors examined. Anti-TLR2 blocked SPA-induced production of TGFβ. In turn, TGFβ1-stimulated chemotaxis was inhibited by HA-binding peptide and anti-RHAMM antibody but not anti-TLR2 antibody. Macrophages from TLR2−/− mice failed to migrate in response to SPA but responded normally to TGFβ1 and HA, effects that were blocked by anti-RHAMM antibody. Macrophages from WT and CD44−/− mice had similar responses to SPA, whereas those from RHAMM−/− mice had decreased chemotaxis to SPA, TGFβ1, and HA. In primary macrophages, SPA-stimulated TGFβ production was dependent on TLR2, JNK, and ERK but not p38. Pam3Cys, a specific TLR2 agonist, stimulated phosphorylation of JNK, ERK, and p38, but only JNK and ERK inhibition blocked Pam3Cys-stimulated chemotaxis. We have uncovered a novel pathway for SPA-stimulated macrophage chemotaxis where SPA stimulation via TLR2 drives JNK- and ERK-dependent TGFβ production. TGFβ1, in turn, stimulates macrophage chemotaxis in a RHAMM and HA-dependent manner. These findings are highly relevant to the regulation of innate immune responses by SPA with key roles for specific components of the extracellular matrix. PMID:22948158

  11. Human transforming growth factor. beta. -. cap alpha. /sub 2/-macroglobulin complex is a latent form of transforming growth factor. beta

    SciTech Connect

    Huang, S.S.; O'Grady, P.; Huang, J.S.

    1987-05-01

    Human platelet-derived transforming growth factor ..beta.. (TGF..beta..) has been shown to be present as a high molecular weight latent form in human serum. Appearance of transforming growth factor activity, along with the change from high molecular weight form to low molecular weight form, was observed following treatment of the latent form of TGF..beta.. with acid or urea, suggesting that the latent form of TGF..beta.. is a complex of TGF..beta.. and a high molecular weight binding protein. Human ..cap alpha../sub 2/-M has been found to be a plasma binding protein for platelet-derived growth factor (PDGF) in serum or plasma. TGF..beta.. and PDGF share similar properties. They, therefore, investigated the interaction between /sup 125/I-TGF..beta.. and ..cap alpha../sub 2/M. /sup 125/I-TGF..beta.. and purified human ..cap alpha../sub 2/M formed a complex as demonstrated by polyacrylamide gel electrophoresis. Most of the /sup 125/I-TGF..beta..-..cap alpha../sub 2/M complex could be dissociated by acid or urea treatment. These results suggest that ..cap alpha../sub 2/M is a binding protein for TGF..beta.. and that TGF..beta..-..cap alpha../sub 2/M complex may be the latent form of TGF..beta.. in serum.

  12. Transformational Leadership and Teacher Commitment to Organizational Values: The Mediating Effects of Collective Teacher Efficacy

    ERIC Educational Resources Information Center

    Ross, John A.; Gray, Peter

    2006-01-01

    Transformational leadership researchers have given little attention to teacher expectations that mediate between goals and actions. The most important of these expectations, teacher efficacy, refers to teacher beliefs that they will be able to bring about student learning. This study examined the mediating effects of teacher efficacy by comparing…

  13. Transforming growth factor (TGF)-. alpha. in human milk

    SciTech Connect

    Okada, Masaki; Wakai, Kae; Shizume, Kazuo ); Iwashita, Mitsutoshi ); Ohmura, Eiji; Kamiya, Yoshinobu; Murakami, Hitomi; Onoda, Noritaka; Tsushima, Toshio

    1991-01-01

    Transforming growth factor (TGF)-{alpha} and epidermal growth factor (EGF) were measured in human milk by means of homologous radioimmunoassay. As previously reported, EGF concentration in the colostrum was approximately 200 ng/ml and decreased to 50 ng/ml by day 7 postpartum. The value of immunoreactive (IR)-TGF-{alpha} was 2.2-7.2 ng/ml, much lower than that of EGF. In contrast to EGF, the concentration of IR-TGF-{alpha} was fairly stable during the 7 postpartum days. There was no relationship between the concentrations of IR-TGF-{alpha} and IR-EGF, suggesting that the regulatory mechanism in the release of the two growth factors is different. On gel-chromatography using a Sephadex G-50 column, IR-EGF appeared in the fraction corresponding to that of authentic human EGF, while 70%-80% of the IR-TGF-{alpha} was eluted as a species with a molecular weight greater than that of authentic human TGF-{alpha}. Although the physiological role of TGF-{alpha} in milk is not known, it is possible that it is involved in the development of the mammary gland and/or the growth of newborn infants.

  14. Mediation Analysis in a Latent Growth Curve Modeling Framework

    ERIC Educational Resources Information Center

    von Soest, Tilmann; Hagtvet, Knut A.

    2011-01-01

    This article presents several longitudinal mediation models in the framework of latent growth curve modeling and provides a detailed account of how such models can be constructed. Logical and statistical challenges that might arise when such analyses are conducted are also discussed. Specifically, we discuss how the initial status (intercept) and…

  15. Incisional wound healing in transforming growth factor-beta1 null mice.

    PubMed

    Koch, R M; Roche, N S; Parks, W T; Ashcroft, G S; Letterio, J J; Roberts, A B

    2000-01-01

    Expression of endogenous transforming growth factor-beta1 is reduced in many animal models of impaired wound healing, and addition of exogenous transforming growth factor-beta has been shown to improve healing. To test the hypothesis that endogenous transforming growth factor-beta1 is essential for normal wound repair, we have studied wound healing in mice in which the transforming growth factor-beta1 gene has been deleted by homologous recombination. No perceptible differences were observed in wounds made in 3-10-day-old neonatal transforming growth factor-beta1 null mice compared to wild-type littermates. To preclude interference from maternally transferred transforming growth factor-beta1, cutaneous wounds were also made on the backs of 30-day-old transforming growth factor-beta1 null and littermate control mice treated with rapamycin, which extends their lifetime and suppresses the inflammatory response characteristic of the transforming growth factor-beta1 null mice. Again, no impairment in healing was seen in transforming growth factor-beta1 null mice. Instead these wounds showed an overall reduction in the amount of granulation tissue and an increased rate of epithelialization compared to littermate controls. Our data suggest that release of transforming growth factor-beta1 from degranulating platelets or secretion by infiltrating macrophages and fibroblasts is not critical to initiation or progression of tissue repair and that endogenous transforming growth factor-beta1 may actually function to increase inflammation and retard wound closure.

  16. Transformed Drosophila Cells Evade Diet-Mediated Insulin Resistance Through Wingless Signaling

    PubMed Central

    Hirabayashi, Susumu; Baranski, Thomas J.; Cagan, Ross L.

    2013-01-01

    SUMMARY Risk of specific cancers increases in patients with metabolic dysfunction including obesity and diabetes. Here we use Drosophila as a model to explore the effects of diet on tumor progression. Feeding Drosophila a diet high in carbohydrates was previously demonstrated to direct metabolic dysfunction including hyperglycemia, hyperinsulinemia and insulin-resistance. We demonstrate that high dietary sugar also converts Ras/Src transformed tissue from localized growths to aggressive tumors with emergent metastases. While most tissues displayed insulin resistance, Ras/Src tumors retained insulin pathway sensitivity, increased the ability to import glucose, and resisted apoptosis. High dietary sugar increased canonical Wingless/Wnt pathway activity, which upregulated Insulin Receptor gene expression to promote insulin sensitivity. The result is a feed-forward circuit that amplified diet-mediated malignant phenotypes within Ras/Src transformed tumors. By targeting multiple steps in this circuit with rationally applied drug combinations, we demonstrate the potential of combinatorial drug intervention to treat diet-enhanced malignant tumors. PMID:23911328

  17. Distinct tyrosine autophosphorylation sites negatively and positively modulate neu-mediated transformation.

    PubMed Central

    Dankort, D L; Wang, Z; Blackmore, V; Moran, M F; Muller, W J

    1997-01-01

    A number of cytoplasmic signaling molecules are thought to mediate mitogenic signaling from the activated Neu receptor tyrosine kinase through binding specific phosphotyrosine residues located within the intracellular portion of Neu/c-ErbB-2. An activated neu oncogene containing tyrosine-to-phenylalanine substitutions at each of the known autophosphorylation sites was generated and assessed for its specific transforming potential in Rat1 and NIH 3T3 fibroblasts. Mutation of these sites resulted in a dramatic impairment of the transforming potential of neu. To assess the role of these tyrosine phosphorylation sites in cellular transformation, the transforming potential of a series of mutants in which individual tyrosine residues were restored to this transformation-debilitated neu mutant was evaluated. Reversion of any one of four mutated sites to tyrosine residues restored wild-type transforming activity. While each of these transforming mutants displayed Ras-dependent signaling, the transforming activity of two of these mutants was correlated with their ability to bind either the GRB2 or SHC adapter molecules that couple receptor tyrosine kinases to the Ras signaling pathway. By contrast, restoration of a tyrosine residue located at position 1028 completely suppressed the basal transforming activity of this mutated neu molecule or other transforming neu molecules which possessed single tyrosine residues. These data argue that the transforming potential of activated neu is mediated both by positive and negative regulatory tyrosine phosphorylation sites. PMID:9271418

  18. ipt Gene transformation in petunia by an Agrobacterium mediated method.

    PubMed

    Bai, L J; Ye, C J; Lu, J Y; Yang, D E; Xue, H; Pan, Y; Cao, P X; Wang, B; Liu, M

    2009-01-01

    To prevent leaf senescence of petunia, the cytokinin biosynthetic gene isopentenyl transferase (ipt) was placed under the control of 35S promoter and introduced into petunia. PCR analysis showed an expected 0.5 Kb fragment of ipt gene in transgenic petunia. RT-PCR analysis indicated the expression of ipt gene in the transgenic lines. Leaves from transgenic plants remained green and healthy in normal culture condition, while the non-transformed plants turned to yellow. Transgenic plants showed a reduction in height and smaller leaf sizes. In transgenic lines, the internodes were shorter, and the roots grew slower than the non-transformed plants.

  19. Transformational leadership and task cohesion in sport: the mediating role of inside sacrifice.

    PubMed

    Cronin, Lorcan Donal; Arthur, Calum Alexander; Hardy, James; Callow, Nichola

    2015-02-01

    In this cross-sectional study, we examined a mediational model whereby transformational leadership is related to task cohesion via sacrifice. Participants were 381 American (Mage = 19.87 years, SD = 1.41) Division I university athletes (188 males, 193 females) who competed in a variety of sports. Participants completed measures of coach transformational leadership, personal and teammate inside sacrifice, and task cohesion. After conducting multilevel mediation analysis, we found that both personal and teammate inside sacrifice significantly mediated the relationships between transformational leadership behaviors and task cohesion. However, there were differential patterns of these relationships for male and female athletes. Interpretation of the results highlights that coaches should endeavor to display transformational leadership behaviors as they are related to personal and teammate inside sacrifices and task cohesion.

  20. UV stimulation of DNA-mediated transformation of human cells

    SciTech Connect

    van Duin, M.; Westerveld, A.; Hoeijmakers, J.H.

    1985-04-01

    Irradiation of dominant marker DNA with UV light (150 to 1,000 J/m2) was found to stimulate the transformation of human cells by this marker from two- to more than fourfold. This phenomenon is also displayed by xeroderma pigmentosum cells, which are deficient in the excision repair of UV-induced pyrimidine dimers in the DNA. Also, exposure to UV of the transfected (xeroderma pigmentosum) cells enhanced the transfection efficiency. Removal of the pyrimidine dimers from the DNA by photoreactivating enzyme before transfection completely abolished the stimulatory effect, indicating that dimer lesions are mainly responsible for the observed enhancement. A similar stimulation of the transformation efficiency is exerted by 2-acetoxy-2-acetylaminofluorene modification of the DNA. These findings suggest that lesions which are targets for the excision repair pathway induce the increase in transformation frequency. The stimulation was found to be independent of sequence homology between the irradiated DNA and the host chromosomal DNA. Therefore, the increase of the transformation frequency is not caused by a mechanism inducing homologous recombination between these two DNAs. UV treatment of DNA before transfection did not have a significant effect on the amount of DNA integrated into the xeroderma pigmentosum genome.

  1. Transforming Ourselves through the Power of Mediated Instruction.

    ERIC Educational Resources Information Center

    Guadarrama, Irma N., Ed.; Kirksey, Lockie, Ed.

    1996-01-01

    A collection of essays on English-as-a-Second-Language (ESL) and bilingual education focuses on issues in making curricula meaningful for teachers and students. Articles include: "Critical Mediation: When Teachers and Students Connect in the 'Ecliptic Zone'" (Irma N. Guadarrama); "Reflecting on Ideological Baggage: Latino…

  2. Role of bacterial virulence proteins in Agrobacterium-mediated transformation of Aspergillus awamori.

    PubMed

    Michielse, C B; Ram, A F J; Hooykaas, P J J; Hondel, C A M J J van den

    2004-05-01

    The Agrobacterium-mediated transformation of Aspergillus awamori was optimized using defined co-cultivation conditions, which resulted in a reproducible and efficient transformation system. Optimal co-cultivation conditions were used to study the role of Agrobacterium tumefaciens virulence proteins in T-DNA transfer. This study revealed that inactivation of either of the regulatory proteins (VirA, VirG), any of the transport pore proteins (VirB), proteins involved in generation of the T-strand (VirD, VirC) or T-strand protection and targeting (VirE2) abolishes or severely reduces the formation of transformants. The results indicate that the Agrobacterium-mediated transformation of A. awamori requires an intact T-DNA machinery for efficient transformation; however, the plant host range factors, like VirE3, VirH, and VirF, are not important.

  3. Development of Transgenic Papaya through Agrobacterium-Mediated Transformation

    PubMed Central

    Azad, Md. Abul Kalam; Rabbani, Md. Golam; Amin, Latifah; Sidik, Nik Marzuki

    2013-01-01

    Transgenic papaya plants were regenerated from hypocotyls and immature zygotic embryo after cocultivation with Agrobacterium tumefaciens LBA-4404 carrying a binary plasmid vector system containing neomycin phosphotransferase (nptII) gene as the selectable marker and β-glucuronidase (GUS) as the reporter gene. The explants were co-cultivated with Agrobacterium tumefaciens on regeneration medium containing 500 mg/L carbenicillin + 200 mg/L cefotaxime for one week. The cocultivated explants were transferred into the final selection medium containing 500 mg/L carbenicillin + 200 mg/L cefotaxime + 50 mg/L kanamycin for callus induction as well as plant regeneration. The callus derived from the hypocotyls of Carica papaya cv. Shahi showed the highest positive GUS activities compared to Carica papaya cv. Ranchi. The transformed callus grew vigorously and formed embryos followed by transgenic plantlets successfully. The result of this study showed that the hypocotyls of C. papaya cv. Shahi and C. papaya cv. Ranchi are better explants for genetic transformation compared to immature embryos. The transformed C. papaya cv. Shahi also showed the maximum number of plant regeneration compared to that of C. papaya cv. Ranchi. PMID:24066284

  4. The latent transforming growth factor beta binding protein (LTBP) family.

    PubMed Central

    Oklü, R; Hesketh, R

    2000-01-01

    The transforming growth factor beta (TGFbeta) cytokines are a multi-functional family that exert a wide variety of effects on both normal and transformed mammalian cells. The secretion and activation of TGFbetas is regulated by their association with latency-associated proteins and latent TGFbeta binding proteins (LTBPs). Over the past few years, three members of the LTBP family have been identified, in addition to the protoype LTBP1 first sequenced in 1990. Three of the LTBP family are expressed in a variety of isoforms as a consequence of alternative splicing. This review summarizes the differences between the isoforms in terms of the effects on domain structure and hence possible function. The close identity between LTBPs and members of the fibrillin family, mutations in which have been linked directly to Marfan's syndrome, suggests that anomalous expression of LTBPs may be associated with disease. Recent data indicating that differential expression of LTBP1 isoforms occurs during the development of coronary heart disease is considered, together with evidence that modulation of LTBP function, and hence of TGFbeta activity, is associated with a variety of cancers. PMID:11104663

  5. Role of growth factors in the growth of normal and transformed cells

    SciTech Connect

    Lokeshwar, V.B.

    1989-01-01

    Growth factors play an important role in the growth of normal cells. However, their untimely and/or excess production leads to neoplastic transformation. The role of growth factors in the growth of normal cells was studied by investigating the mechanism of transmodulation of the cell surface EGF receptor number by protamine. Protamine increased the EGF stimulated mitogenic response in Swiss mouse 3T3 cells and A431 cells by increasing the number of functionally active EGF receptors. Protamine also increased EGF receptor number in plasma membranes and solubilized membranes. This was evidenced by an increase in both {sup 125}I-EGF-EGF-receptor complex and EGF stimulated phosphorylation of the EGF receptor. The solubilized EGF receptor was retained on a protamine-agarose gel indicating that protamine might increase EGF receptor number by directly activating cryptic EGF receptors in the plasma membranes. The role of growth factors in neoplastic transformation was studied by investigating the role of the oncogene v-sis in the growth of Simian sarcoma virus (SSV) transformed cells. The product of the oncogene v-sis is 94% homologous to the B chain of PDGF. This study found that (i) v-sis gene product is synthesized as a 32 kDa unglycosylated monomer which is glycosylated, dimerized and proteolytically processed into p36, p72, p68, p58, p44 and p27 mol. wt. species respectively. (ii) p36, p72, p68 and p58 are very likely formed in the endoplasmic reticulum and/or Golgi complex. A fraction of newly synthesized p72, p68 and p58 is degraded intracellularly at a fast rate. (iii) p44 is a secretory product which remains tightly associated with the cell surface. p44 is recaptured by the cells through interaction with cell surface PDGF receptors and degraded into p27. (iv) During long term cultures p44 is extracellularly cleaved into a 27 kDa product.

  6. Regulatory focus and burnout in nurses: The mediating effect of perception of transformational leadership.

    PubMed

    Shi, Rui; Zhang, Shilei; Xu, Hang; Liu, Xufeng; Miao, Danmin

    2015-12-01

    This correlation study investigated the relationship between nurses' regulatory focus and burnout, as mediated by their perceptions of transformational leadership, using a cross-sectional research design with anonymous questionnaires. In July-August 2012, data were collected from 378 nurses from three hospitals in Shaanxi Province, China, using self-report questionnaires for measuring the nurses' regulatory focus, their level of burnout and their perception of whether the leadership of their supervisor was transformational. Structural equation modelling and bootstrapping procedures were used to identify the mediating effect of their perceptions of transformational leadership. The results supported our hypothesized model. The type of regulatory focus emerged as a significant predictor of burnout. Having a perception of transformational leadership partially mediated the relationship between regulatory focus and burnout. Having a promotion focus reduced burnout when the participants perceived transformational leadership, whereas having a prevention focus exhibited the opposite pattern. The mediating effect of the perception of transformational leadership suggests that a promotion focus may help diminish burnout, directly and indirectly. Nurse managers must be aware of the role of a regulatory focus and cultivate promotion focus in their followers.

  7. Genomic regions responsible for amenability to Agrobacterium-mediated transformation in barley

    PubMed Central

    Hisano, Hiroshi; Sato, Kazuhiro

    2016-01-01

    Different plant cultivars of the same genus and species can exhibit vastly different genetic transformation efficiencies. However, the genetic factors underlying these differences in transformation rate remain largely unknown. In barley, ‘Golden Promise’ is one of a few cultivars reliable for Agrobacterium-mediated transformation. By contrast, cultivar ‘Haruna Nijo’ is recalcitrant to genetic transformation. We identified genomic regions of barley important for successful transformation with Agrobacterium, utilizing the ‘Haruna Nijo’ × ‘Golden Promise’ F2 generation and genotyping by 124 genome-wide SNP markers. We observed significant segregation distortions of these markers from the expected 1:2:1 ratio toward the ‘Golden Promise’-type in regions of chromosomes 2H and 3H, indicating that the alleles of ‘Golden Promise’ in these regions might contribute to transformation efficiency. The same regions, which we termed Transformation Amenability (TFA) regions, were also conserved in transgenic F2 plants generated from a ‘Morex’ × ‘Golden Promise’ cross. The genomic regions identified herein likely include necessary factors for Agrobacterium-mediated transformation in barley. The potential to introduce these loci into any haplotype of barley opens the door to increasing the efficiency of transformation for target alleles into any haplotype of barley by the TFA-based methods proposed in this report. PMID:27874056

  8. Inhibition of Nb2 T-lymphoma cell growth by transforming growth factor-beta.

    PubMed Central

    Rayhel, E J; Prentice, D A; Tabor, P S; Flurkey, W H; Geib, R W; Laherty, R F; Schnitzer, S B; Chen, R; Hughes, J P

    1988-01-01

    Transforming growth factor-beta (TGF-beta) inhibits proliferation of Nb2 cells, a rat T lymphoma, in response to lactogens and interleukin-2. Prostaglandins may play an important role in the pathway through which TGF-beta exerts its inhibitory actions, because prostaglandin E2 also inhibits proliferation of Nb2 cells, and indomethacin, an inhibitor of prostaglandin synthesis, reverses the inhibitory effects of TGF-beta on Nb2 cell proliferation. PMID:3262338

  9. NF-κB directly mediates epigenetic deregulation of common microRNAs in Epstein-Barr virus-mediated transformation of B-cells and in lymphomas

    PubMed Central

    Vento-Tormo, Roser; Rodríguez-Ubreva, Javier; Lisio, Lorena Di; Islam, Abul B. M. M. K.; Urquiza, Jose M.; Hernando, Henar; López-Bigas, Nuria; Shannon-Lowe, Claire; Martínez, Nerea; Montes-Moreno, Santiago; Piris, Miguel A.; Ballestar, Esteban

    2014-01-01

    MicroRNAs (miRNAs) have negative effects on gene expression and are major players in cell function in normal and pathological conditions. Epstein-Barr virus (EBV) infection of resting B lymphocytes results in their growth transformation and associates with different B cell lymphomas. EBV-mediated B cell transformation involves large changes in gene expression, including cellular miRNAs. We performed miRNA expression analysis in growth transformation of EBV-infected B cells. We observed predominant downregulation of miRNAs and upregulation of a few miRNAs. We observed similar profiles of miRNA expression in B cells stimulated with CD40L/IL-4, and those infected with EBNA-2- and LMP-1-deficient EBV particles, suggesting the implication of the NF-kB pathway, common to all four situations. In fact, the NF-kB subunit p65 associates with the transcription start site (TSS) of both upregulated and downregulated miRNAs following EBV infection This occurs together with changes at histone H3K27me3 and histone H3K4me3. Inhibition of the NF-kB pathway impairs changes in miRNA expression, NF-kB binding and changes at the above histone modifications near the TSS of these miRNA genes. Changes in expression of these miRNAs also occurred in diffuse large B cell lymphomas (DLBCL), which are strongly NF-kB dependent. Our results highlight the relevance of the NF-kB pathway in epigenetically mediated miRNA control in B cell transformation and DLBCL. PMID:25200074

  10. Growth factors as mediators of exercise actions on the brain.

    PubMed

    Llorens-Martín, M; Torres-Alemán, I; Trejo, José L

    2008-01-01

    Physical exercise has long been recognized as highly beneficial for brain and body health. The molecular mechanisms responsible for translation of exercise stimuli in the brain have claimed attention due to mounting evidence for the neuroprotective actions of the exercise and its positive effects in preventing both ageing and neurodegenerative disease. These molecular mediators are currently under investigation with new tools able to yield deep insights into the neurobiology of exercise. In the present work we focus on the evidence pertaining to the mediation of exercise effects by insulin-like growth factor 1 (IGF1), as recent reports suggest that this growth factor shows brain area-specific, temporal rank-sensitive, and behavioural task-dependent features in response to exercise.

  11. Penfluridol suppresses pancreatic tumor growth by autophagy-mediated apoptosis

    PubMed Central

    Ranjan, Alok; Srivastava, Sanjay K.

    2016-01-01

    Pancreatic tumors exhibit enhanced autophagy as compared to any other cancer, making it resistant to chemotherapy. We evaluated the effect of penfluridol against pancreatic cancer. Penfluridol treatment induced apoptosis and inhibited the growth of Panc-1, BxPC-3 and AsPC-1, pancreatic cancer cells with IC50 ranging between 6–7 μM after 24 h of treatment. Significant autophagy was induced by penfluridol treatment in pancreatic cancer cells. Punctate LC3B and autophagosomes staining confirmed autophagy. Inhibiting autophagy by chloroquine, bafilomycin, 3-methyladenine or LC3BsiRNA, significantly blocked penfluridol-induced apoptosis, suggesting that autophagy lead to apoptosis in our model. Penfluridol treatment suppressed the growth of BxPC-3 tumor xenografts by 48% as compared to 17% when treated in combination with chloroquine. Similarly, penfluridol suppressed the growth of AsPC-1 tumors by 40% versus 16% when given in combination with chloroquine. TUNEL staining and caspase-3 cleavage revealed less apoptosis in the tumors from mice treated with penfluridol and chloroquine as compared to penfluridol alone. Penfluridol treatment also suppressed the growth of orthotopically implanted Panc-1 tumors by 80% by inducing autophagy-mediated apoptosis in the tumors. These studies established that penfluridol inhibits pancreatic tumor growth by autophagy-mediated apoptosis. Since penfluridol is already in clinic, positive findings from our study will accelerate its clinical development. PMID:27189859

  12. Agrobacterium-mediated transformation of apricot (Prunus armeniaca L.) leaf explants.

    PubMed

    Petri, César; Wang, Hong; Alburquerque, Nuria; Faize, Mohamed; Burgos, Lorenzo

    2008-08-01

    A protocol for Agrobacterium-mediated stable transformation for scored, whole leaf explants of the apricot (Prunus armeniaca) cultivar Helena was developed. Regenerated shoots were selected using a two-step increased concentrations of paromomycin sulphate. Different factors affecting survival of transformed buds, including possible toxicity of green fluorescent protein (GFP) and time of exposure to high cytokine concentration in the regeneration medium, were examined. Transformation efficiency, based on PCR analysis of individual putative transformed shoots from independent lines was 5.6%, when optimal conditions for bud survival were provided. Southern blot analysis on four randomly chosen PCR-positive shoots confirmed the presence of the nptII transgene. This is the first time that stable transformation of an apricot cultivar is reported and constitutes also one of the few reports on the transformation of Prunus cultivars.

  13. Increased expression of transforming growth factor α precursors in acute experimental colitis in rats

    PubMed Central

    Hoffmann, P; Zeeh, J; Lakshmanan, J; Wu, V; Procaccino, F; Reinshagen, M; McRoberts, J; Eysselein, V

    1997-01-01

    Background and aim—Epidermal growth factor (EGF) and transforming growth factor α (TGF-α), members of the EGF family of growth factors, protect rat gastric and colonic mucosa against injury. Having shown previously that exogenously applied EGF protects rat colonic mucosa against injury, the aim of the present study was to evaluate the endogenously expressed ligand mediating the protective effect of EGF/TGF-α in vivo. 
Methods—In an experimental model of trinitrobenzene sulphonic acid (TNBS)/ ethanol induced colitis in rats EGF and TGF-α expression was evaluated using a ribonuclease protection assay, northern blot analysis, western blot analysis, and immunohistochemistry. 
Results—TGF-α mRNA increased 3-4 times at 4-8 hours after induction of colitis and returned to control levels within 24 hours. TGF-α immunoreactive protein with a molecular size of about 28kDa representing TGF-α precursors increased markedly after induction of colitis with a peak at 8-12 hours. No fully processed 5.6 kDa TGF-α protein was detected in normal or inflamed colon tissue. Only a weak signal for EGF mRNA expression was detected in the rat colon and no EGF protein was observed by immunohistochemistry or western blot analysis. 
Conclusions—TGF-α precursors are the main ligands for the EGF receptor in acute colitis. It is hypothesised that TGF-α precursors convey the biological activity of endogenous TGF-α peptides during mucosal defence and repair. 

 Keywords: transforming growth factor alpha (TGF-α); epidermal growth factor (EGF); precursor molecules; colitis; rat PMID:9301498

  14. Pin1 promotes transforming growth factor-beta-induced migration and invasion.

    PubMed

    Matsuura, Isao; Chiang, Keng-Nan; Lai, Chen-Yu; He, Dongming; Wang, Guannan; Ramkumar, Romila; Uchida, Takafumi; Ryo, Akihide; Lu, Kunping; Liu, Fang

    2010-01-15

    Transforming growth factor-beta (TGF-beta) regulates a wide variety of biological activities. It induces potent growth-inhibitory responses in normal cells but promotes migration and invasion of cancer cells. Smads mediate the TGF-beta responses. TGF-beta binding to the cell surface receptors leads to the phosphorylation of Smad2/3 in their C terminus as well as in the proline-rich linker region. The serine/threonine phosphorylation sites in the linker region are followed by the proline residue. Pin1, a peptidyl-prolyl cis/trans isomerase, recognizes phosphorylated serine/threonine-proline motifs. Here we show that Smad2/3 interacts with Pin1 in a TGF-beta-dependent manner. We further show that the phosphorylated threonine 179-proline motif in the Smad3 linker region is the major binding site for Pin1. Although epidermal growth factor also induces phosphorylation of threonine 179 and other residues in the Smad3 linker region the same as TGF-beta, Pin1 is unable to bind to the epidermal growth factor-stimulated Smad3. Further analysis suggests that phosphorylation of Smad3 in the C terminus is necessary for the interaction with Pin1. Depletion of Pin1 by small hairpin RNA does not significantly affect TGF-beta-induced growth-inhibitory responses and a number of TGF-beta/Smad target genes analyzed. In contrast, knockdown of Pin1 in human PC3 prostate cancer cells strongly inhibited TGF-beta-mediated migration and invasion. Accordingly, TGF-beta induction of N-cadherin, which plays an important role in migration and invasion, is markedly reduced when Pin1 is depleted in PC3 cells. Because Pin1 is overexpressed in many cancers, our findings highlight the importance of Pin1 in TGF-beta-induced migration and invasion of cancer cells.

  15. Transforming growth factor-beta induces endothelin-1 expression through activation of the Smad signaling pathway.

    PubMed

    Rodríguez-Pascual, Fernando; Reimunde, Francisco Manuel; Redondo-Horcajo, Mariano; Lamas, Santiago

    2004-11-01

    Expression of the endothelin-1 gene is subject to complex regulation by different factors, among which transforming growth factor-beta is one of the most important. We have analyzed the mechanism by which transforming growth factor-beta increases endothelin-1 expression in vascular endothelial cells. Transcriptional activation of the endothelin-1 promoter accounted for the transforming growth factor-beta-induced increase in endothelin-1 mRNA levels. Two DNA elements within the promoter are responsible for this effect: a Smad binding element and a proximal activator protein-1 site. Mutation of both elements abolished transforming growth factor-beta responsiveness. Overexpression of the Smad3 isoform strongly potentiates transforming growth factor-beta- induced endothelin-1 promoter activity in a phosphorylation-dependent manner. These results demonstrate that transforming growth factor-beta induces endothelin-1 expression by a functional cooperation between Smads and activator protein-1 through activation of the Smad signaling pathway.

  16. Twin-mediated crystal growth: an enigma resolved

    NASA Astrophysics Data System (ADS)

    Shahani, Ashwin J.; Gulsoy, E. Begum; Poulsen, Stefan O.; Xiao, Xianghui; Voorhees, Peter W.

    2016-06-01

    During crystal growth, faceted interfaces may be perturbed by defects, leading to a rich variety of polycrystalline growth forms. One such defect is the coherent Σ3 {111} twin boundary, which is widely known to catalyze crystal growth. These defects have a profound effect on the properties of many materials: for example, electron-hole recombination rates strongly depend on the character of the twin boundaries in polycrystalline Si photovoltaic cells. However, the morphology of the twinned interface during growth has long been a mystery due to the lack of four-dimensional (i.e., space and time resolved) experiments. Many controversial mechanisms have been proposed for this process, most of which lack experimental verification. Here, we probe the real-time interfacial dynamics of polycrystalline Si particles growing from an Al-Si-Cu liquid via synchrotron-based X-ray tomography. Our novel analysis of the time evolution of the interfacial normals allows us to quantify unambiguously the habit plane and grain boundary orientations during growth. This, when combined with direct measurements of the interfacial morphology provide the first confirmation of twin-mediated growth, proposed over 50 years ago. Using the insights provided by these experiments, we have developed a unified picture of the phenomena responsible for the dynamics of faceted Si growth.

  17. Thyroid hormone mediates otolith growth and development during flatfish metamorphosis.

    PubMed

    Schreiber, A M; Wang, X; Tan, Y; Sievers, Q; Sievers, B; Lee, M; Burrall, K

    2010-11-01

    Flatfish begin life as bilaterally symmetrical larvae that swim up-right, then abruptly metamorphose into asymmetrically shaped juveniles with lateralized swimming postures. Flatfish metamorphosis is mediated entirely by thyroid hormone (TH). Changes in flatfish swim posture are thought to be regulated via vestibular remodeling, although the influence of TH on teleost inner ear development remains unclear. This study addresses the role of TH on the development of the three otolith end-organs (sacculus, utricle, and lagena) during southern flounder (Paralichthys lethostigma) metamorphosis. Compared with pre-metamorphosis, growth rates of the sacculus and utricle otoliths increase dramatically during metamorphosis in a manner that is uncoupled from general somatic growth. Treatment of P. lethostigma larvae with methimazol (a pharmacological inhibitor of endogenous TH production) inhibits growth of the sacculus and utricle, whereas treatment with TH dramatically accelerates their growth. In contrast with the sacculus and utricle otoliths that begin to form and mineralize during embryogenesis, a non-mineralized lagena otolith is first visible 10-12 days after hatching. The lagena grows during pre- and pro-metamorphosis, then abruptly mineralizes during metamorphic climax. Mineralization of the lagena, but not growth, can be induced with TH treatment, whereas treatment with methimazol completely inhibits lagena mineralization without inhibiting its growth. These findings suggest that during southern flounder metamorphosis TH exerts differential effects on growth and development among the three types of otolith.

  18. Twin-mediated crystal growth: an enigma resolved

    PubMed Central

    Shahani, Ashwin J.; Gulsoy, E. Begum; Poulsen, Stefan O.; Xiao, Xianghui; Voorhees, Peter W.

    2016-01-01

    During crystal growth, faceted interfaces may be perturbed by defects, leading to a rich variety of polycrystalline growth forms. One such defect is the coherent Σ3 {111} twin boundary, which is widely known to catalyze crystal growth. These defects have a profound effect on the properties of many materials: for example, electron-hole recombination rates strongly depend on the character of the twin boundaries in polycrystalline Si photovoltaic cells. However, the morphology of the twinned interface during growth has long been a mystery due to the lack of four-dimensional (i.e., space and time resolved) experiments. Many controversial mechanisms have been proposed for this process, most of which lack experimental verification. Here, we probe the real-time interfacial dynamics of polycrystalline Si particles growing from an Al-Si-Cu liquid via synchrotron-based X-ray tomography. Our novel analysis of the time evolution of the interfacial normals allows us to quantify unambiguously the habit plane and grain boundary orientations during growth. This, when combined with direct measurements of the interfacial morphology provide the first confirmation of twin-mediated growth, proposed over 50 years ago. Using the insights provided by these experiments, we have developed a unified picture of the phenomena responsible for the dynamics of faceted Si growth. PMID:27346073

  19. Expression of Foreign Genes Demonstrates the Effectiveness of Pollen-Mediated Transformation in Zea mays

    PubMed Central

    Yang, Liyan; Cui, Guimei; Wang, Yixue; Hao, Yaoshan; Du, Jianzhong; Zhang, Hongmei; Wang, Changbiao; Zhang, Huanhuan; Wu, Shu-Biao; Sun, Yi

    2017-01-01

    Plant genetic transformation has arguably been the core of plant improvement in recent decades. Efforts have been made to develop in planta transformation systems due to the limitations present in the tissue-culture-based methods. Herein, we report an improved in planta transformation system, and provide the evidence of reporter gene expression in pollen tube, embryos and stable transgenicity of the plants following pollen-mediated plant transformation with optimized sonication treatment of pollen. The results showed that the aeration at 4°C treatment of pollen grains in sucrose prior to sonication significantly improved the pollen viability leading to improved kernel set and transformation efficiency. Scanning electron microscopy observation revealed that the removal of operculum covering pollen pore by ultrasonication might be one of the reasons for the pollen grains to become competent for transformation. Evidences have shown that the eGfp gene was expressed in the pollen tube and embryos, and the Cry1Ac gene was detected in the subsequent T1 and T2 progenies, suggesting the successful transfer of the foreign genes to the recipient plants. The Southern blot analysis of Cry1Ac gene in T2 progenies and PCR-identified Apr gene segregation in T2 seedlings confirmed the stable inheritance of the transgene. The outcome illustrated that the pollen-mediated genetic transformation system can be widely applied in the plant improvement programs with apparent advantages over tissue-culture-based transformation methods. PMID:28377783

  20. Agrobacterium-mediated transformation of Euphorbia tirucalli callus.

    PubMed

    Uchida, Hidenobu; Yamashita, Hirofumi; Anai, Toyoaki; Muranaka, Toshiya; Ohyama, Kanji

    2010-01-01

    In order to establish a basis for transformation technology in the petroleum plant Euphorbia tirucalli, the callus of the plant was infected with Agrobacterium, washed with distilled water, sterilized with distilled water containing 100 mg/l of carbenicillin, selected on solidified B5 medium containing 13 mg/l of G418 and 100 mg/l of carbenicillin, and then on solidified B5 medium containing 25 mg/l of G418 and 100 mg/l of carbenicillin for the transgenic calli, and then the callus lines were subcultured successively on solidified B5 medium containing 50 mg/l of G418. We performed PCR analysis of sterilized G418-resistant callus line DNA and concluded that the gene introduced was integrated into the callus genome.

  1. Roles for Transforming Growth Factor Beta Superfamily Proteins in Early Folliculogenesis

    PubMed Central

    Trombly, Daniel J.; Woodruff, Teresa K.; Mayo, Kelly E.

    2010-01-01

    Primordial follicle formation and the subsequent transition of follicles to the primary and secondary stages encompass the early events during folliculogenesis in mammals. These processes establish the ovarian follicle pool and prime follicles for entry into subsequent growth phases during the reproductive cycle. Perturbations during follicle formation can affect the size of the primordial follicle pool significantly, and alterations in follicle transition can cause follicles to arrest at immature stages or result in premature depletion of the follicle reserve. Determining the molecular events that regulate primordial follicle formation and early follicle growth may lead to the development of new fertility treatments. Over the last decade, many of the growth factors and signaling proteins that mediate the early stages of folliculogenesis have been identified using mouse genetic models, in vivo injection studies, and ex vivo organ culture approaches. These studies reveal important roles for the transforming growth factor β (TGF-β) superfamily of proteins in the ovary. This article reviews these roles for TGF-β family proteins and focuses in particular on work from our laboratories on the functions of activin in early folliculogenesis. PMID:19197801

  2. Improved Agrobacterium-mediated transformation and high efficiency of root formation from hypocotyl meristem of spring Brassica napus 'Precocity' cultivar.

    PubMed

    Liu, X X; Lang, S R; Su, L Q; Liu, X; Wang, X F

    2015-12-14

    Rape seed (Brassica napus L.) is one of the most important oil seed crops in the world. Genetic manipulation of rapeseed requires a suitable tissue culture system and an efficient method for plant regeneration, as well as an efficient transformation procedure. However, development of transgenic B. napus has been problematic, and current studies are limited to cultivated varieties. In this study, we report a protocol for regeneration of transgenic rape after Agrobacterium-mediated transformation of hypocotyls from the spring B. napus 'Precocity' cultivar. We analyzed the effects of plant growth regulators in the medium on regeneration. Additionally, factors affecting the transformation efficiency, including seedling age, Agrobacterium concentration, infection time, and co-cultivation time, were assessed by monitoring GUS expression. Results from these experiments revealed that transformation was optimized when the meristematic parts of the hypocotyls were taken from 8 day-old seedlings, cultured on Murashinge and Skoog basal media containing 0.1 mg/L 1-naphthaleneacetic acid and 2.5 mg/L 6-benzylaminopurine, and incubated in Agrobacterium suspension (OD600 = 0.5) for 3 to 5 min, followed by 2 days of co-cultivation. Integration of T-DNA into the plant genome was confirmed by polymerase chain reaction (PCR), b-glucuronidase histochemical staining, and quantitative real-time PCR. The protocols developed for regeneration, transformation, and rooting described in this study could help to accelerate the development of transgenic spring rape varieties with novel features.

  3. Agrobacterium tumefaciens-mediated transformation of Valsa mali: an efficient tool for random insertion mutagenesis.

    PubMed

    Wang, Caixia; Guan, Xiangnan; Wang, Hanyan; Li, Guifang; Dong, Xiangli; Wang, Guoping; Li, Baohua

    2013-01-01

    Valsa mali is a causal agent of apple and pear trees canker disease, which is a destructive disease that causes serious economic losses in eastern Asia, especially in China. The lack of an efficient transformation system for Valsa mali retards its investigation, which poses difficulties to control the disease. In this research, a transformation system for this pathogen was established for the first time using A. tumefaciens-mediated transformation (ATMT), with the optimal transformation conditions as follows: 10(6)/mL conidia suspension, cocultivation temperature 22°C, cocultivation time 72 hours, and 200  μ M acetosyringone (AS) in the inductive medium. The average transformation efficiency was 1015.00 ± 37.35 transformants per 10(6) recipient conidia. Thirty transformants were randomly selected for further confirmation and the results showed the presence of T-DNA in all hygromycin B resistant transformants and also revealed random and single gene integration with genetic stability. Compared with wild-type strain, those transformants exhibited various differences in morphology, conidia production, and conidia germination ability. In addition, pathogenicity assays revealed that 14 transformants had mitigated pathogenicity, while one had enhanced infection ability. The results suggest that ATMT of V. mali is a useful tool to gain novel insight into this economically important pathogen at molecular levels.

  4. Agrobacterium-mediated transformation of the endophytic fungus Acremonium implicatum associated with Brachiaria grasses.

    PubMed

    Abello, Javier; Kelemu, Segenet; García, Celsa

    2008-03-01

    Acremonium implicatum is a seed-transmitted endophytic fungus that forms symbiotic associations with the economically significant tropical forage grasses, Brachiaria species. To take advantage of the endophyte's plant protective properties, we developed an efficient Agrobacterium-mediated transformation system for Acremonium implicatum, using green fluorescent protein (GFP) expression and vector pSK1019 (trpC promoter) or pCAMBIA1300 (CaMV35S promoter). We found that transformation efficiency doubled for both mycelial and conidial transformation as the co-cultivation period for Agrobacterium tumefaciens and Acremonium implicatum was increased from 48 to 72h. Significantly, optimal results were obtained for either mycelial or conidial transformation with Agrobacterium tumefaciens strain AGL-1 and vector pSK1019 under the control of the trpC promoter. However, mycelial transformation consistently generated a significantly higher number of transformants than did conidial transformation. The mitotic stability of the transferred DNA was confirmed by growing ten transformants in liquid and agar media for six generations. In all cases, resistance to the selection pressure (hygromycin B) was maintained. Fluorescence emission was retained by the transformants and also expressed in Brachiaria tissues from plants inoculated with GFP-transformed A. implicatum. This technology will help in the transfer and expression of agronomically important genes in host plants.

  5. Agrobacterium tumefaciens-mediated genetic transformation of the entomopathogenic fungus Beauveria bassiana.

    PubMed

    dos Reis, Maria Cecília; Pelegrinelli Fungaro, Maria Helena; Delgado Duarte, Rubens Tadeu; Furlaneto, Luciana; Furlaneto, Marcia Cristina

    2004-08-01

    Agrobacterium tumefaciens-mediated transformation (agro-transformation) was successfully applied to the entomogenous fungus Beauveria bassiana. Conidia of B. bassiana were transformed to hygromycin B resistance using the hph gene of Escherichia coli as the selective trait, under the control of a heterologous fungal promoter and the Aspergillus nidulans trpC terminator. The efficiency of transformation was up to 28 and 96 transformants per 10(4) and 10(5) target conidia, respectively, using three distinct vectors. High mitotic stability of the transformants (80-100%) was demonstrated after five successive transfers on a nonselective medium. Abortive transformants were observed for all the hph(r) vectors used. Putative transformants were analysed for the presence of the hph gene by PCR and Southern analysis. The latter analysis revealed the integration of two or more copies of the hph gene in the genome. The agro-transformation method was found to be effective for the isolation of B. bassiana hygromycin resistant transformants and may represent a useful tool for insertional mutagenesis studies in this fungus.

  6. 4-Hydroxyestradiol induces mammary epithelial cell transformation through Nrf2-mediated heme oxygenase-1 overexpression

    PubMed Central

    Park, Sin-Aye; Lee, Mee-Hyun; Na, Hye-Kyung; Surh, Young-Joon

    2017-01-01

    Estrogen (17β-estradiol, E2) undergoes oxidative metabolism by CYP1B1 to form 4-hydroxyestradiol (4-OHE2), a putative carcinogenic metabolite of estrogen. Our previous study showed that 4-OHE2-induced production of reactive oxygen species contributed to neoplastic transformation of human breast epithelial (MCF-10A) cells. In this study, 4-OHE2, but not E2, increased the expression of heme oxygenase-1 (HO-1), a sensor and regulator of oxidative stress, in MCF-10A cells. Silencing the HO-1 gene in MCF-10A cells suppressed 4-OHE2-induced cell proliferation and transformation. In addition, subcutaneous administration of 4-OHE2 markedly enhanced the growth of the MDA-MB-231 human breast cancer xenografts, which was retarded by zinc protoporphyrin, a pharmacological inhibitor of HO-1. 4-OHE2-induced HO-1 expression was mediated by NF-E2-related factor 2 (Nrf2). We speculate that an electrophilic quinone formed as a consequence of oxidation of 4-OHE2 binds directly to Kelch-like ECH-associated protein 1 (Keap1), an inhibitory protein that sequesters Nrf2 in the cytoplasm. This will diminish association between Nrf2 and Keap1. 4-OHE2 failed to interrupt the interaction between Keap1 and Nrf2 and to induce HO-1 expression in Keap1-C273S or C288S mutant cells. Lano-LC-ESI-MS/MS analysis in MCF-10A-Keap1-WT cells which were treated with 4-OHE2 revealed that the peptide fragment containing Cys288 gained a molecular mass of 287.15 Da, equivalent to the addition of a single molecule of 4-OHE2-derived ortho-quinones. PMID:27438141

  7. Transgenic plants from shoot apical meristems of Vitis vinifera L. "Thompson Seedless" via Agrobacterium-mediated transformation.

    PubMed

    Dutt, M; Li, Z T; Dhekney, S A; Gray, D J

    2007-12-01

    Shoot apical meristem explants of Vitis vinifera "Thompson Seedless" were used for Agrobacterium-mediated genetic transformation. It was determined that the meristems had to be subjected to a dark growth phase then wounded to obtain transgenic plants. Morphological and histological studies illustrated the role of wounding to expose apical meristem cells for transformation. A bifunctional egfp/nptII fusion gene was used to select kanamycin resistant plants that expressed green fluorescent protein (GFP). Kanamycin at a concentration of 16 mg L(-1) in selection medium resulted in recovery of non-chimeric transgenic plants that uniformly expressed GFP, whereas 8 mg L(-1) kanamycin allowed non-transgenic and/or chimeric plants to develop. Polymerase chain reaction (PCR) and Southern blot analyses confirmed the presence of transgenes and their stable integration into the genome of regenerated plants. Up to 1% of shoot tips produced stable transgenic cultures within 6 weeks of treatment, resulting in a total of 18 independent lines.

  8. Plant-mediated transformation of perchlorate into chloride

    SciTech Connect

    Nzengung, V.A.; Wang, C.; Harvey, G.

    1999-05-01

    The decontamination of perchlorate-contaminated water by woody plants was investigated in sand and hydroponic bioreactors. Willow trees were found to be the most favorable woody plants with phraetophytic characteristics in comparative screen tests with eastern cottonwoods and Eucalyptus cineria. Willows decontaminated aqueous solutions dosed with 10--100 mg/.L of perchlorate to below the method detection limit of 2 {micro}g/L. Two phytoprocesses were identified as important in the remediation of perchlorate-contaminated water: (1) uptake and phytodegradation of perchlorate in the tree branches and leaves and (2) rhizodegradation. Exposure of rooted willow trees to perchlorate-dosed media stimulated rhizodegradation. Homogeneous degradation studies using media from the root zone of dosed willow trees confirmed that rhizosphere-associated microorganisms mediated the degradation of perchlorate to chloride. Experiments conducted with varying ranges of nitrate concentrations clearly indicated that high nitrate concentrations interfered with rhizodegradation of perchlorate. This study provides evidence that the efficacy of phytoremediation of perchlorate-contaminated environments may depend on the concentration of competing terminal electron acceptors, such as nitrate, and the nitrogen source of the nutrient solution., Since perchlorate does not volatilize from water readily, a perchlorate remediation scheme may involve an intensively cultivated plantation of trees with phraetophytic characteristics and irrigation with the contaminated water.

  9. Transforming growth factor-{beta}-inducible phosphorylation of Smad3.

    PubMed

    Wang, Guannan; Matsuura, Isao; He, Dongming; Liu, Fang

    2009-04-10

    Smad proteins transduce the transforming growth factor-beta (TGF-beta) signal at the cell surface into gene regulation in the nucleus. Upon TGF-beta treatment, the highly homologous Smad2 and Smad3 are phosphorylated by the TGF-beta receptor at the SSXS motif in the C-terminal tail. Here we show that in addition to the C-tail, three (S/T)-P sites in the Smad3 linker region, Ser(208), Ser(204), and Thr(179) are phosphorylated in response to TGF-beta. The linker phosphorylation peaks at 1 h after TGF-beta treatment, behind the peak of the C-tail phosphorylation. We provide evidence suggesting that the C-tail phosphorylation by the TGF-beta receptor is necessary for the TGF-beta-induced linker phosphorylation. Although the TGF-beta receptor is necessary for the linker phosphorylation, the receptor itself does not phosphorylate these sites. We further show that ERK is not responsible for TGF-beta-dependent phosphorylation of these three sites. We show that GSK3 accounts for TGF-beta-inducible Ser(204) phosphorylation. Flavopiridol, a pan-CDK inhibitor, abolishes TGF-beta-induced phosphorylation of Thr(179) and Ser(208), suggesting that the CDK family is responsible for phosphorylation of Thr(179) and Ser(208) in response to TGF-beta. Mutation of the linker phosphorylation sites to nonphosphorylatable residues increases the ability of Smad3 to activate a TGF-beta/Smad-target gene as well as the growth-inhibitory function of Smad3. Thus, these observations suggest that TGF-beta-induced phosphorylation of Smad3 linker sites inhibits its antiproliferative activity.

  10. Transgenic sugar beet tolerant to imidazolinone obtained by Agrobacterium-mediated transformation.

    PubMed

    Kishchenko, E M; Komarnitskii, I K; Kuchuk, N V

    2011-01-01

    Sugar beet is highly sensitive to imidazolinone herbicides thus rotational restrictions exist. In order to develop imidazolinone tolerant sugar beets als gene from Arabidopsis thaliana encoding acetolactate synthase with S653N mutation was used for genetic transformation. Transgenic sugar beet plants were obtained by Agrobacterium-mediated transformation of aseptic seedlings using vacuum-infiltration. The efficiency of genetic transformation was 5.8%. RT-PCR analysis of obtained plants revealed accumulation of specific als transcript. The resistance to imidazolinone was proved for developed transgenic sugar beet plants in vitro and in greenhouse conditions after spraying with imazethapyr (Pursuit, BASF).

  11. Plant Cell Division Analyzed by Transient Agrobacterium-Mediated Transformation of Tobacco BY-2 Cells.

    PubMed

    Buschmann, Henrik

    2016-01-01

    The continuing analysis of plant cell division will require additional protein localization studies. This is greatly aided by GFP-technology, but plant transformation and the maintenance of transgenic lines can present a significant technical bottleneck. In this chapter I describe a method for the Agrobacterium-mediated genetic transformation of tobacco BY-2 cells. The method allows for the microscopic analysis of fluorescence-tagged proteins in dividing cells in within 2 days after starting a coculture. This transient transformation procedure requires only standard laboratory equipment. It is hoped that this rapid method would aid researchers conducting live-cell localization studies in plant mitosis and cytokinesis.

  12. The pleiotropic roles of transforming growth factor beta inhomeostasis and carcinogenesis of endocrine organs.

    SciTech Connect

    Fleisch, Markus C.; Maxwell, Christopher A.; Barcellos-Hoff,Mary-Helen

    2006-01-13

    Transforming growth factor beta (TGF-beta) is a ubiquitous cytokine that plays a critical role in numerous pathways regulating cellular and tissue homeostasis. TGF-beta is regulated by hormones and is a primary mediator of hormone response in uterus, prostate and mammary gland. This review will address the role of TGF-beta in regulating hormone dependent proliferation and morphogenesis. The subversion of TGF-beta regulation during the processes of carcinogenesis, with particular emphasis on its effects on genetic stability and epithelial to mesenchymal transition (EMT), will also be examined. An understanding of the multiple and complex mechanisms of TGF-beta regulation of epithelial function, and the ultimate loss of TGF-beta function during carcinogenesis, will be critical in the design of novel therapeutic interventions for endocrine-related cancers.

  13. Inhibition of spermidine synthase gene expression by transforming growth factor-beta 1 in hepatoma cells.

    PubMed Central

    Nishikawa, Y; Kar, S; Wiest, L; Pegg, A E; Carr, B I

    1997-01-01

    We screened genes responsive to transforming growth factor-beta (TGF-beta 1) protein in a human hepatoma cell line (Hep3B) using a PCR-mediated differential display technique, in order to investigate the mechanisms involved in TGF-beta-induced growth suppression. We found a gene that was down-regulated by TGF-beta 1 to be completely identical in an approx. 620 bp segment to the gene for the enzyme spermidine synthase, which mediates the conversion of putrescine into spermidine. Both spermidine synthase mRNA expression and its enzyme activity were decreased after TGF-beta 1 treatment of Hep3B cells. The inhibition of spermidine synthase gene expression by TGF-beta 1 protein was also observed in other hepatoma cell lines. The expression of genes for other biosynthetic enzymes in polyamine metabolism (ornithine decarboxylase and S-adenosylmethionine decarboxylase) was also inhibited to the same extent as for spermidine synthase, while the gene expression of spermidine/spermine N1-acetyltransferase, a catabolic enzyme, was relatively resistant to TGF-beta 1. Spermine levels in Hep3B cells were decreased by TGF-beta 1 treatment, although the levels of spermidine and putrescine were unchanged, probably due to compensation by remaining spermidine/spermine N1-acetyltransferase activity. Exogenously added spermidine or spermine, but not putrescine, partially antagonized the growth-inhibitor effects of TGF-beta 1 on Hep3B cells. Our data suggest that down-regulation of gene expression of the enzymes involved in polyamine metabolism, including spermidine synthase, may be associated with the mechanism of TGF-beta-induced growth suppression. PMID:9020892

  14. Mitochondrial Porin Isoform AtVDAC1 Regulates the Competence of Arabidopsis thaliana to Agrobacterium-Mediated Genetic Transformation

    PubMed Central

    Kwon, Tackmin

    2016-01-01

    The efficiency of Agrobacterium-mediated transformation in plants depends on the virulence of Agrobacterium strains, the plant tissue culture conditions, and the susceptibility of host plants. Understanding the molecular interactions between Agrobacterium and host plant cells is crucial when manipulating the susceptibility of recalcitrant crop plants and protecting orchard trees from crown gall disease. It was discovered that Arabidopsis voltage-dependent anion channel 1 (atvdac1) mutant has drastic effects on Agrobacterium-mediated tumorigenesis and growth developmental phenotypes, and that these effects are dependent on a Ws-0 genetic background. Genetic complementation of Arabidopsis vdac1 mutants and yeast porin1-deficient strain with members of the AtVDAC gene family revealed that AtVDAC1 is required for Agrobacterium-mediated transformation, and there is weak functional redundancy between AtVDAC1 and AtVDAC3, which is independent of porin activity. Furthermore, atvdac1 mutants were deficient in transient and stable transformation by Agrobacterium, suggesting that AtVDAC1 is involved in the early stages of Agrobacterium infection prior to transferred-DNA (T-DNA) integration. Transgenic plants overexpressing AtVDAC1 not only complemented the phenotypes of the atvdac1 mutant, but also showed high efficiency of transient T-DNA gene expression; however, the efficiency of stable transformation was not affected. Moreover, the effect of phytohormone treatment on competence to Agrobacterium was compromised in atvdac1 mutants. These data indicate that AtVDAC1 regulates the competence of Arabidopsis to Agrobacterium infection. PMID:27643450

  15. Agrobacterium rhizogenes-mediated transformation of Taraxacum platycarpum and changes of morphological characters.

    PubMed

    Lee, M H; Yoon, E S; Jeong, J H; Choi, Y E

    2004-06-01

    Transformed hairy roots were efficiently induced from seedlings of Taraxacum platycarpum by infection with Agrobacterium rhizogenes 15834. Root explants produced transformed roots at a higher frequency (76.5+/-3.5%) as compared to stem (32.7+/-4.8%) or cotyledon (16.2+/-5.7%). Hairy roots exhibited active elongation with high branching of roots on growth regulator-free medium. The competence of plant regeneration from non-transformed adventitious roots and transformed hairy roots was compared. The frequency of adventitious shoot formation from transformed roots was much higher (88.5+/-9.8%) than that of non-transformed roots (31.7 +/-9.5%) on hormone-free medium. Rooting of hairy root-derived adventitious shoots occurred easily on growth regulator-free medium but no rooting was observed on non-transformed shoots. The stable introduction of rol genes into Taraxacum plants was confirmed by PCR and Southern hybridization. Transgenic plantlets showed considerable differences in their morphology when compared to the corresponding wild-type (non-transgenic) plants. Plantlets formed from transformed roots had numerous fibrous roots with abundant lateral branches instead of the thickened taproots in non-transformed plants. The differences observed may reflect the modification of morphological root characters by introduction of rol genes.

  16. Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications.

    PubMed

    Krenek, Pavel; Samajova, Olga; Luptovciak, Ivan; Doskocilova, Anna; Komis, George; Samaj, Jozef

    2015-11-01

    Agrobacterium tumefaciens is widely used as a versatile tool for development of stably transformed model plants and crops. However, the development of Agrobacterium based transient plant transformation methods attracted substantial attention in recent years. Transient transformation methods offer several applications advancing stable transformations such as rapid and scalable recombinant protein production and in planta functional genomics studies. Herein, we highlight Agrobacterium and plant genetics factors affecting transfer of T-DNA from Agrobacterium into the plant cell nucleus and subsequent transient transgene expression. We also review recent methods concerning Agrobacterium mediated transient transformation of model plants and crops and outline key physical, physiological and genetic factors leading to their successful establishment. Of interest are especially Agrobacterium based reverse genetics studies in economically important crops relying on use of RNA interference (RNAi) or virus-induced gene silencing (VIGS) technology. The applications of Agrobacterium based transient plant transformation technology in biotech industry are presented in thorough detail. These involve production of recombinant proteins (plantibodies, vaccines and therapeutics) and effectoromics-assisted breeding of late blight resistance in potato. In addition, we also discuss biotechnological potential of recombinant GFP technology and present own examples of successful Agrobacterium mediated transient plant transformations.

  17. Agrobacterium tumefaciens-mediated transformation of blueberry (Vaccinium corymbosum L.).

    PubMed

    Song, Guo-Qing; Sink, K C

    2004-12-01

    Transient expression studies using blueberry leaf explants and monitored by beta-glucuronidase (GUS) assays indicated Agrobacterium tumefaciens strain EHA105 was more effective than LBA4404 or GV3101; and the use of acetosyringone (AS) at 100 microM for inoculation and 6 days co-cultivation was optimum compared to 2, 4, 8, 10 or 12 days. Subsequently, explants of the cultivars Aurora, Bluecrop, Brigitta, and Legacy were inoculated with strain EHA105 containing the binary vector pBISN1 with the neomycin phosphotransferase gene (nptII) and an intron-interrupted GUS gene directed by the chimeric super promoter (Aocs)3AmasPmas. Co-cultivation was for 6 days on modified woody plant medium (WPM) plus 100 microM AS. Explants were then placed on modified WPM supplemented with 1.0 mg l(-1) thidiazuron, 0.5 mg l(-1) alpha-naphthaleneacetic, 10 mg l(-1) kanamycin (Km), and 250 mg l(-1) cefotaxime. Selection for Km-resistant shoots was carried out in the dark for 2 weeks followed by culture in the light at 30 microE m(-2) s(-1) at 25 degrees C. After 12 weeks, selected shoots that were both Km resistant and GUS positive were obtained from 15.3% of the inoculated leaf explants of cultivar Aurora. Sixty-eight independent clones derived from such shoots all tested positive by the polymerase chain reaction using a nptII primer. Eight of eight among these 68 clones tested positive by Southern hybridization using a gusA gene derived probe. The transformation protocol also yielded Km-resistant, GUS-positive shoots that were also PCR positive at frequencies of 5.0% for Bluecrop, 10.0% for Brigitta and 5.6% for Legacy.

  18. A high-efficiency Agrobacterium-mediated transformation system of rice (Oryza sativa L.).

    PubMed

    Ozawa, Kenjirou

    2012-01-01

    Agrobacterium-mediated transformation of rice has been routinely performed according to the protocol reported by Hiei et al. (Plant J. 6:271-282, 1994). However, several elite japonica and many indica varieties cannot be efficiently transformed by Agrobacterium system. Also a large number of transformants are required to generate T-DNA insertion and FOX libraries as well as gene-targeting studies. To overcome these challenges, we established a high-efficiency transformation system in rice by cocultivating rice calli with Agrobacterium on filter papers moistened with enriched liquid media instead of using solid media (Ozawa, Plant Sci. 176:522-527, 2009; Ozawa and Takaiwa, Plant Sci. 179:333-337, 2010). In this system, the transformation efficiency of the calli is almost 100% in many varieties.

  19. A simple and efficient Agrobacterium-mediated procedure for transformation of tomato.

    PubMed

    Sharma, Manoj K; Solanke, Amolkumar U; Jani, Dewal; Singh, Yogendra; Sharma, Arun K

    2009-09-01

    We describe a highly efficient and reproducible Agrobacterium-mediated transformation protocol applicable to several varieties of tomato (Solanum lycopersicum, earlier known as Lycopersicum esculentum). Conditions such as co-cultivation period, bacterial concentration, concentration of benzyl amino purine (BAP), zeatin and indole acetic acid (IAA) were optimized. Co-cultivation of explants with a bacterial concentration of 108 cells/ml for three days on 2 mg/l BAP, followed by regeneration on a medium containing 1 mg/ml zeatin resulted in a transformation frequency of 41.4%. Transformation of tomato plants was confirmed by Southern blot analysis and beta-glucuronidase (GUS) assay. The protocol developed showed very high efficiency of transformation for tomato varieties Pusa Ruby, Arka Vikas and Sioux. The optimized transformation procedure is simple, efficient and does not require tobacco, Petunia, tomato suspension feeder layer or acetosyringone.

  20. Transforming growth factor-beta and wound healing.

    PubMed

    Faler, Byron J; Macsata, Robyn A; Plummer, Dahlia; Mishra, Lopa; Sidawy, Anton N

    2006-03-01

    Acute and chronic wounds are a source of significant morbidity for patients, and they demand a growing portion of health-care time and finances to be devoted to their care. Transforming growth factor-beta (TGF-beta) has surfaced from abundant research as a key signal in orchestrating wound repair. In beginning this review, we discuss the inflammatory, proliferative, and maturational phases of wound healing. We then focus on TGF-beta by first discussing the pathway from its production to the target cell where Smad proteins execute an intracellular signaling cascade. To review TGF-beta's role in wound healing, we discuss the actions of it individually on keratinocytes, fibroblasts, endothelial cells, and monocytes, which are the major cell types involved in wound repair. From illustrating these cellular actions of TGF-beta, we summarize its multipotent role in the process of wound repair. As a clinical correlation, we also review research dedicated to the involvement of TGF-beta in venous stasis ulcers.

  1. Modifying muscular dystrophy through transforming growth factor-β.

    PubMed

    Ceco, Ermelinda; McNally, Elizabeth M

    2013-09-01

    Muscular dystrophy arises from ongoing muscle degeneration and insufficient regeneration. This imbalance leads to loss of muscle, with replacement by scar or fibrotic tissue, resulting in muscle weakness and, eventually, loss of muscle function. Human muscular dystrophy is characterized by a wide range of disease severity, even when the same genetic mutation is present. This variability implies that other factors, both genetic and environmental, modify the disease outcome. There has been an ongoing effort to define the genetic and molecular bases that influence muscular dystrophy onset and progression. Modifier genes for muscle disease have been identified through both candidate gene approaches and genome-wide surveys. Multiple lines of experimental evidence have now converged on the transforming growth factor-β (TGF-β) pathway as a modifier for muscular dystrophy. TGF-β signaling is upregulated in dystrophic muscle as a result of a destabilized plasma membrane and/or an altered extracellular matrix. Given the important biological role of the TGF-β pathway, and its role beyond muscle homeostasis, we review modifier genes that alter the TGF-β pathway and approaches to modulate TGF-β activity to ameliorate muscle disease.

  2. Lox-dependent gene expression in transgenic plants obtained via Agrobacterium-mediated transformation.

    PubMed

    Shcherbak, N; Kishchenko, O; Sakhno, L; Komarnytsky, I; Kuchuk, M

    2013-01-01

    Lox sites of the Cre/lox recombination system from bacteriophage P1 were analyzed for their ability to affect on transgene expression when inserted upstream from a gene coding sequence adjacent to the right border (RB) of T-DNA. Wild and mutated types of lox sites were tested for their effect upon bar gene expression in plants obtained via Agrobacterium-mediated and biolistic transformation methods. Lox-mediated expression of bar gene, recognized by resistance of transgenic plants to PPT, occurred only in plants obtained via Agrobacterium-mediated transformation. RT-PCR analysis confirms that PPT-resistant phenotype of transgenic plants obtained via Agrobacterium-mediated transformation was caused by activation of bar gene. The plasmid with promoterless gus gene together with the lox site adjacent to the RB was constructed and transferred to Nicotiana tabacum as well. Transgenic plants exhibited GUS activity and expression of gus gene was detected in plant leaves. Expression of bar gene from the vectors containing lox site near RB allowed recovery of numerous PPT-resistant transformants of such important crops as Beta vulgaris, Brassica napus, Lactuca sativa and Solanum tuberosum. Our results demonstrate that the lox site sequence adjacent to the RB can be used to control bar gene expression in transgenic plants.

  3. Optimized conditions for biolistic-mediated transformation of Lilium longilforum 'Nellie White'

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A variety of tissues were used for biolistic-mediated transformation of Lilum longiflorum 'Nellie White'. Transgenic plants were not recovered from five-month-old, non-embryogenic callus or suspension cells that had been bombarded with pDM327 that contains the bar-uidA fusion gene under control the ...

  4. Transformational Leadership and Knowledge Sharing: Mediating Roles of Employee's Empowerment, Commitment, and Citizenship Behaviors

    ERIC Educational Resources Information Center

    Han, Seung Hyun; Seo, Gaeun; Yoon, Seung Won; Yoon, Dong-Yeol

    2016-01-01

    Purpose: The purpose of this paper is to empirically examine the fundamental process through which transformational leaders play a significant role in employees' knowledge sharing by investigating mediating roles of individual affects, particularly psychological empowerment, organizational commitment and organizational citizenship behavior (OCB).…

  5. K-Ras promotes growth transformation and invasion of immortalized human pancreatic cells by Raf and phosphatidylinositol 3-kinase signaling.

    PubMed

    Campbell, Paul M; Groehler, Angela L; Lee, Kwang M; Ouellette, Michel M; Khazak, Vladimir; Der, Channing J

    2007-03-01

    Mutational activation of the K-Ras oncogene is well established as a key genetic step in the development and growth of pancreatic adenocarcinomas. However, the mechanism by which aberrant Ras signaling promotes uncontrolled pancreatic tumor cell growth remains to be fully elucidated. The recent use of primary human cells to study Ras-mediated oncogenesis provides important model cell systems to dissect this mechanism. We have used a model of telomerase-immortalized human pancreatic duct-derived cells (E6/E7/st) to study mechanisms of Ras growth transformation. First, we found that human papillomavirus E6 and E7 oncogenes, which block the function of the p53 and Rb tumor suppressors, respectively, and SV40 small t antigen were required to allow mutant K-Ras(12D) growth transformation. Second, K-Ras(12D) caused growth transformation in vitro, including enhanced growth rate and loss of density dependency for growth, anchorage independence, and invasion through reconstituted basement membrane proteins, and tumorigenic transformation in vivo. Third, we determined that the Raf, phosphatidylinositol 3-kinase (PI3K), and Ral guanine nucleotide exchange factor effector pathways were activated, although extracellular signal-regulated kinase (ERK) activity was not up-regulated persistently. Finally, pharmacologic inhibition of Raf/mitogen-activated protein kinase/ERK and PI3K signaling impaired K-Ras-induced anchorage-independent growth and invasion. In summary, our studies established, characterized, and validated E6/E7/st cells for the study of Ras-induced oncogenesis.

  6. Harnessing High Density Lipoproteins to Block Transforming Growth Factor Beta and to Inhibit the Growth of Liver Tumor Metastases

    PubMed Central

    Medina-Echeverz, José; Fioravanti, Jessica; Díaz-Valdés, Nancy; Frank, Kathrin; Aranda, Fernando; Gomar, Celia; Ardaiz, Nuria; Dotor, Javier; Umansky, Viktor; Prieto, Jesús; Berraondo, Pedro

    2014-01-01

    Transforming growth factor β (TGF-β) is a powerful promoter of cancer progression and a key target for antitumor therapy. As cancer cells exhibit active cholesterol metabolism, high density lipoproteins (HDLs) appear as an attractive delivery system for anticancer TGFβ-inhibitory molecules. We constructed a plasmid encoding a potent TGF-β-blocking peptide (P144) linked to apolipoprotein A-I (ApoA-I) through a flexible linker (pApoLinkerP144). The ApoLinkerP144 sequence was then incorporated into a hepatotropic adeno-associated vector (AAVApoLinkerP144). The aim was to induce hepatocytes to produce HDLs containing a modified ApoA-I capable of blocking TGF-β. We observed that transduction of the murine liver with pApoLinkerP144 led to the appearance of a fraction of circulating HDL containing the fusion protein. These HDLs were able to attenuate TGF-β signaling in the liver and to enhance IL-12 -mediated IFN-γ production. Treatment of liver metastasis of MC38 colorectal cancer with AAVApoLinkerP144 resulted in a significant reduction of tumor growth and enhanced expression of IFN-γ and GM-CSF in cancerous tissue. ApoLinkerP144 also delayed MC38 liver metastasis in Rag2−/−IL2rγ−/− immunodeficient mice. This effect was associated with downregulation of TGF-β target genes essential for metastatic niche conditioning. Finally, in a subset of ret transgenic mice, a model of aggressive spontaneous metastatic melanoma, AAVApoLinkerP144 delayed tumor growth in association with increased CD8+ T cell numbers in regional lymph nodes. In conclusion, modification of HDLs to transport TGF-β-blocking molecules is a novel and promising approach to inhibit the growth of liver metastases by immunological and non-immunological mechanisms. PMID:24797128

  7. Transformational leadership, intrinsic motivation, and trust: a moderated-mediated model of workplace safety.

    PubMed

    Conchie, Stacey M

    2013-04-01

    Two studies examine the role of motivation and trust in the relationship between safety-specific transformational leadership and employees' safety behavior. Study 1 tested the prediction that intrinsic and identified regulation motivations mediate the relationship between safety-specific transformational leadership and employees' safety behaviors. Study 2 further explored this relationship by testing the prediction that the mediating role of intrinsic motivation is dependent on employees' level of trust in their leader. Survey data from the U.K. construction industry supported both predictions. However, the mediating role of intrinsic motivation was found only for challenge safety citizenship behaviors (i.e., voice) and not for affiliative safety citizenship behaviors (i.e., helping). These findings suggest that employees' intrinsic motivation is important to the effectiveness of leaders' efforts to promote some but not all forms of safety behavior.

  8. Transforming growth factor alpha and epidermal growth factor levels in normal human gastrointestinal mucosa.

    PubMed Central

    Cartlidge, S. A.; Elder, J. B.

    1989-01-01

    Acid soluble proteins from 23 samples of normal human gastrointestinal mucosa derived from four normal adult organ donors were extracted and subjected to specific radiommunoassays for transforming growth factor alpha (TGF alpha) and urogastrone epidermal growth factor (URO-EGF). All tissues were found to contain immunoreactive TGF alpha and levels ranged from 57 to 4,776 pg-1 wet weight of tissue. Although levels varied between tissue donors, the distribution of TGF alpha throughout the gastrointestinal tract appeared similar in all cases. URO-EGF levels were much lower (0-216 pg g-1 wet weight). TGF alpha levels in extracts of gastrointestinal mucosa from a 7-year-old female donor were higher and the observed distribution was markedly different from adult levels. URO-EGF was not detected in mucosal or submucosal tissue extracts from this patient. Further studies in juveniles are indicated. PMID:2803941

  9. De-ubiquitinating enzyme, USP11, promotes transforming growth factor β-1 signaling through stabilization of transforming growth factor β receptor II

    PubMed Central

    Jacko, A M; Nan, L; Li, S; Tan, J; Zhao, J; Kass, D J; Zhao, Y

    2016-01-01

    The transforming growth factor β-1 (TGFβ-1) signaling pathway plays a central role in the pathogenesis of pulmonary fibrosis. Two TGFβ-1 receptors, TβRI and TβRII, mediate this pathway. TβRI protein stability, as mediated by the ubiquitin/de-ubiquitination system, has been well studied; however, the molecular regulation of TβRII still remains unclear. Here we reveal that a de-ubiquitinating enzyme, USP11, promotes TGFβ-1 signaling through de-ubiquitination and stabilization of TβRII. We elucidate the role that mitoxantrone (MTX), an USP11 inhibitor, has in the attenuation of TGFβ-1 signaling. Inhibition or downregulation of USP11 results in increases in TβRII ubiquitination and reduction of TβRII stability. Subsequently, TGFβ-1 signaling is greatly attenuated, as shown by the decreases in phosphorylation of SMAD2/3 levels as well as that of fibronectin (FN) and smooth muscle actin (SMA). Overexpression of USP11 reduces TβRII ubiquitination and increases TβRII stabilization, thereby elevating phosphorylation of SMAD2/3 and the ultimate expression of FN and SMA. Further, elevated expression of USP11 and TβRII were detected in lung tissues from bleomycin-challenged mice and IPF patients. Therefore, USP11 may contribute to the pathogenesis of pulmonary fibrosis by stabilization of TβRII and promotion of TGFβ-1 signaling. This study provides mechanistic evidence for development of USP11 inhibitors as potential antifibrotic drugs for pulmonary fibrosis. PMID:27853171

  10. Osteopontin Mediates an MZF1-TGF-β1-Dependent Transformation of Mesenchymal Stem Cells into Cancer Associated Fibroblasts in Breast Cancer

    PubMed Central

    Weber, Cynthia E.; Kothari, Anai N.; Wai, Philip Y.; Li, Neill Y.; Driver, Joseph; Zapf, Matthew A.C.; Franzen, Carrie A.; Gupta, Gopal N.; Osipo, Clodio; Zlobin, Andrei; Syn, Wing Kin; Zhang, Jiwang; Kuo, Paul C.; Mi, Zhiyong

    2014-01-01

    Interactions between tumor cells and cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TMEN) significantly influence cancer growth and metastasis. Transforming growth factor-β (TGF-β) is known to be a critical mediator of the CAF phenotype, and osteopontin (OPN) expression in tumors is associated with more aggressive phenotypes and poor patient outcomes. The potential link between these two pathways has not been previously addressed. Utilizing in vitro studies using human mesenchymal stem cells (MSCs) and MDA-MB231 (OPN+) and MCF7 (OPN−) human breast cancer cell lines, we demonstrate that OPN induces integrin-dependent MSC expression of TGF-β1 to mediate adoption of the CAF phenotype. This OPN-TGF-β1 pathway requires the transcription factor, myeloid zinc finger 1 (MZF1). In vivo studies with xenotransplant models in NOD-scid mice showed that OPN expression increases cancer growth and metastasis by mediating MSC-to-CAF transformation in a process that is MZF1- and TGF-β1-dependent. We conclude that tumor-derived OPN engenders MSC-to-CAF transformation in the microenvironment to promote tumor growth and metastasis via the OPN-MZF1-TGF-β1 pathway. PMID:25531323

  11. Growth hormone STAT5-mediated signaling and its modulation in mice liver during the growth period.

    PubMed

    Martinez, Carolina S; Piazza, Verónica G; Ratner, Laura D; Matos, Marina N; González, Lorena; Rulli, Susana B; Miquet, Johanna G; Sotelo, Ana I

    2013-01-01

    Postnatal growth exhibits two instances of rapid growth in mice: the first is perinatal and independent of growth hormone (GH), the second is peripuberal and GH-dependent. Signal transducer and activator of transcription 5b (STAT5b) is the main GH-signaling mediator and it is related to IGF1 synthesis and somatic growth. The aim of this work was to assess differential STAT5 sensitivity to GH during the growth period in mouse liver of both sexes. Three representative ages were selected: 1-week-old animals, in the GH-independent phase of growth; 2.5-week-old mice, at the onset of the GH-dependent phase of growth; and 9-week-old young adults. GH-signaling mediators were assessed by immunoblotting, quantitative RT-PCR and immunohistochemistry. GH-induced STAT5 phosphorylation is low at one-week and maximal at 2.5-weeks of age when compared to young adults, accompanied by higher protein content at the onset of growth. Suppressor CIS and phosphatase PTP1B exhibit high levels in one-week animals, which gradually decline, while SOCS2 and SOCS3 display higher levels at adulthood. Nuclear phosphorylated STAT5 is low in one-week animals while in 2.5-week animals it is similar to 9-week control; expression of SOCS3, an early response GH-target gene, mimics this pattern. STAT5 coactivators glucocorticoid receptor (GR) and hepatic nuclear factor 1 (HNF1) abundance is higher in adulthood. Therefore, GH-induced STAT5 signaling presents age-dependent activity in liver, with its maximum coinciding with the onset of GH-dependent phase of growth, accompanied by an age-dependent variation of modulating factors. This work contributes to elucidate the molecular mechanisms implicated in GH responsiveness during growth.

  12. Effect of transforming growth factor-β1 on human intrahepatic cholangiocarcinoma cell growth

    PubMed Central

    Shimizu, Tetsuya; Yokomuro, Shigeki; Mizuguchi, Yoshiaki; Kawahigashi, Yutaka; Arima, Yasuo; Taniai, Nobuhiko; Mamada, Yasuhiro; Yoshida, Hiroshi; Akimaru, Koho; Tajiri, Takashi

    2006-01-01

    AIM: To elucidate the biological effects of transforming growth factor-β1 (TGF-β1) on intrahepatic cholan-giocarcinoma (ICC). METHODS: We investigated the effects of TGF-β1 on human ICC cell lines (HuCCT1, MEC, and HuH-28) by monitoring the influence of TGF-β1 on tumor growth and interleukin-6 (IL-6) expression in ICC cells. RESULTS: All three human ICC cell lines produced TGF-β1 and demonstrated accelerated growth in the presence of TGF-β1 with no apoptotic effect. Studies on HuCCT1 revealed a TGF-β1-induced stimulation of the expression of TGF-β1, as well as a decrease in TGF-β1 mRNA expression induced by neutralizing anti-TGF-β1 antibody. These results indicate that TGF-β1 stimulates the production and function of TGF-β1 in an autocrine fashion. Further, IL-6 secretion was observed in all three cell lines and exhibited an inhibitory response to neutralizing anti-TGF-β1 antibody. Experiments using HuCCT1 revealed a TGF-β1-induced acceleration of IL-6 protein expression and mRNA levels. These findings demonstrate a functional interaction between TGF-β1 and IL-6. All three cell lines proliferated in the presence of IL-6. In contrast, TGF-β1 induced no growth effect in HuCCT1 in the presence of small interfering RNA against a specific cell surface receptor of IL-6 and signal transducer and activator of transcription-3. CONCLUSION: ICC cells produce TGF-β1 and confer a TGF-β1-induced growth effect in an autocrine fashion. TGF-β1 activates IL-6 production, and the functional interaction between TGF-β1 and IL-6 contributes to ICC cell growth by TGF-β1. PMID:17072955

  13. Efficient Agrobacterium tumefaciens-mediated transformation and regeneration of garlic (Allium sativum) immature leaf tissue.

    PubMed

    Kenel, Fernand; Eady, Colin; Brinch, Sheree

    2010-03-01

    Transgenic garlic (Allium sativum) plants have been recovered directly from immature leaf material by selective culture following Agrobacterium-mediated transformation. This method involved the use of a binary vector containing the mgfp-ER reporter gene and hpt selectable marker, and followed a similar protocol developed previously for the transformation of immature onion embryos. The choice of tissue and post-transformation selection procedure resulted in a large increase in recovery of transgenic plants compared with previously confirmed allium transformation protocols. The presence of transgenes in the genome of the plants was confirmed using Southern analysis. This improvement in frequency and the use of clonal commercial "Printanor" germplasm now makes possible the integration of useful agronomic and quality traits into this crop.

  14. An Efficient PEG/CaCl₂-Mediated Transformation Approach for the Medicinal Fungus Wolfiporia cocos.

    PubMed

    Sun, Qiao; Wei, Wei; Zhao, Juan; Song, Jia; Peng, Fang; Zhang, Shaopeng; Zheng, Yonglian; Chen, Ping; Zhu, Wenjun

    2015-09-01

    Sclerotia of Wolfiporia cocos are of medicinal and culinary value. The genes and molecular mechanisms involved in W. cocos sclerotial formation are poorly investigated because of the lack of a suitable and reproducible transformation system for W. cocos. In this study, a PEG/ CaCl₂-mediated genetic transformation system for W. cocos was developed. The promoter Pgpd from Ganoderma lucidum effectively drove expression of the hygromycin B phosphotransferase gene in W. cocos, and approximately 30 transformants were obtained per 10 μg DNA when the protoplast suspension density was 10(6) protoplasts/ml. However, no transformants were obtained under the regulation of the PtrpC promoter from Aspergillus nidulans.

  15. Vasopressin regulation of epithelial colonic proliferation and permeability is mediated by pericryptal platelet-derived growth factor A.

    PubMed

    Miró, Lluïsa; Pérez-Bosque, Anna; Maijó, Mònica; Naftalin, Richard J; Moretó, Miquel

    2014-10-01

    Arginine vasopressin (AVP) has trophic effects on the rat distal colon, increasing the growth of pericryptal myofibroblasts and reducing the colonic crypt wall permeability. This study aimed to reproduce in vitro the effects of AVP observed in vivo using cultures of human CCD-18Co myofibroblasts and T84 colonic epithelial cells. Proliferation of myofibroblasts was quantified by bromodeoxyuridine incorporation; the expression of platelet-derived growth factor A (PDGFA), platelet-derived growth factor B, epidermal growth factor, transforming growth factor-β and vascular endothelial growth factor was measured by PCR and the expression of epithelial junction proteins by Western blot. Arginine vasopressin stimulated myofibroblast proliferation and the expression of PDGFA without affecting the expression of platelet-derived growth factor B, epidermal growth factor, transforming growth factor-β or vascular endothelial growth factor. These effects were prevented when AVP receptor inhibitors were present in the medium. Pre-incubation of CCD-18Co cells with anti-PDGF antibody or with an inhibitor of the PDGF receptor abolished the effects of AVP. When colonocytes were incubated with medium obtained from myofibroblasts incubated with AVP, both cell proliferation and the expression of epithelial junction proteins increased; however, direct incubation of colonocytes with AVP did not modify these variables. These results demonstrate that AVP stimulates myofibroblast proliferation and induces PDGFA secretion, implying that PDGFA mediates local myofibroblast proliferation by an autocrine feedback loop and regulates epithelial proliferation and permeability by a paracrine mechanism.

  16. Transforming growth factor β-activated kinase 1 transcriptionally suppresses hepatitis B virus replication

    PubMed Central

    Pang, Jinke; Zhang, Geng; Lin, Yong; Xie, Zhanglian; Liu, Hongyan; Tang, Libo; Lu, Mengji; Yan, Ran; Guo, Haitao; Sun, Jian; Hou, Jinlin; Zhang, Xiaoyong

    2017-01-01

    Hepatitis B Virus (HBV) replication in hepatocytes is restricted by the host innate immune system and related intracellular signaling pathways. Transforming growth factor β-activated kinase 1 (TAK1) is a key mediator of toll-like receptors and pro-inflammatory cytokine signaling pathways. Here, we report that silencing or inhibition of endogenous TAK1 in hepatoma cell lines leads to an upregulation of HBV replication, transcription, and antigen expression. In contrast, overexpression of TAK1 significantly suppresses HBV replication, while an enzymatically inactive form of TAK1 exerts no effect. By screening TAK1-associated signaling pathways with inhibitors and siRNAs, we found that the MAPK-JNK pathway was involved in TAK1-mediated HBV suppression. Moreover, TAK1 knockdown or JNK pathway inhibition induced the expression of farnesoid X receptor α, a transcription factor that upregulates HBV transcription. Finally, ectopic expression of TAK1 in a HBV hydrodynamic injection mouse model resulted in lower levels of HBV DNA and antigens in both liver and serum. In conclusion, our data suggest that TAK1 inhibits HBV primarily at viral transcription level through activation of MAPK-JNK pathway, thus TAK1 represents an intrinsic host restriction factor for HBV replication in hepatocytes. PMID:28045080

  17. Fibroblast growth factor-2 promotes in vitro mitral valve interstitial cell repair through transforming growth factor-β/Smad signaling.

    PubMed

    Han, Li; Gotlieb, Avrum I

    2011-01-01

    Transforming growth factor (TGF)-β and fibroblast growth factor (FGF)-2 both promote repair in valve interstitial cell (VIC) injury models; however, the relationship between TGF-β and FGF-2 in wound repair are not well understood. VIC confluent monolayers were wounded by mechanical injury and incubated separately or in combination with FGF-2, neutralizing antibody to FGF-2, neutralizing antibody to TGF-β, and betaglycan antibody for 24 hours after wounding. Phosphorylated Smad2/3 (pSmad2/3) was localized at the wound edge (WE) and at the monolayer away from the WE. Down-regulation of pSmad2/3 protein expression via small-interfering RNA transfection was performed. The extent of wound closure was monitored for up to 96 hours. FGF-2 incubation resulted in a significant increase in nuclear pSmad2/3 staining at the WE. Neutralizing antibody to TGF-β alone or with FGF-2 present resulted in a similar significant decrease in pSmad2/3. Neutralizing antibody to FGF-2 alone or with FGF-2 present showed a similar significant decrease in pSmad2/3; however, significantly more staining was observed than treatment with neutralizing antibody to TGF-β. Incubation with betaglycan antibody inhibited FGF-2-mediated pSmad2/3 signaling. Wound closure corresponded with pSmad2/3 staining at the WE. Down-regulation of pSmad2/3 via small-interfering RNA transfection significantly reduced the extent to which FGF-2 promoted wound closure. Fibroblast growth factor-2 promotes in vitro VIC wound repair, at least in part, through the TGF-β/Smad2/3 signaling pathway.

  18. Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection.

    PubMed

    Hu, T; Metz, S; Chay, C; Zhou, H P; Biest, N; Chen, G; Cheng, M; Feng, X; Radionenko, M; Lu, F; Fry, J

    2003-06-01

    An Agrobacterium-mediated transformation system with glyphosate selection has been developed for the large-scale production of transgenic plants. The system uses 4-day precultured immature embryos as explants. A total of 30 vectors containing the 5-enol-pyruvylshikimate-3-phosphate synthase gene from Agrobacterium strain CP4 (aroA:CP4), which confers resistance to glyphosate, were introduced into wheat using this system. The aroA:CP4 gene served two roles in this study-selectable marker and gene of interest. More than 3,000 transgenic events were produced with an average transformation efficiency of 4.4%. The entire process from isolation of immature embryos to production of transgenic plantlets was 50-80 days. Transgenic events were evaluated over several generations based on genetic, agronomic and molecular criteria. Forty-six percent of the transgenic events fit a 3:1 segregation ratio. Molecular analysis confirmed that four of six lead transgenic events selected from Agrobacterium transformation contained a single insert and a single copy of the transgene. Stable expression of theAROA:CP4 gene was confirmed by ELISA through nine generations. A comparison of Agrobacterium-mediated transformation to a particle bombardment system demonstrated that the Agrobacterium system is reproducible, has a higher transformation efficiency with glyphosate selection and produces higher quality transgenic events in wheat. One of the lead events from this study, no. 33391, has been identified as a Roundup Ready wheat commercial candidate.

  19. Identification of virulence genes in the corn pathogen Colletotrichum graminicola by Agrobacterium tumefaciens-mediated transformation.

    PubMed

    Münch, Steffen; Ludwig, Nancy; Floss, Daniela S; Sugui, Janyce A; Koszucka, Anna M; Voll, Lars M; Sonnewald, Uwe; Deising, Holger B

    2011-01-01

    A previously developed Agrobacterium tumefaciens-mediated transformation (ATMT) protocol for the plant pathogenic fungus Colletotrichum graminicola led to high rates of tandem integration of the whole Ti-plasmid, and was therefore considered to be unsuitable for the identification of pathogenicity and virulence genes by insertional mutagenesis in this pathogen. We used a modified ATMT protocol with acetosyringone present only during the co-cultivation of C. graminicola and A. tumefaciens. Analysis of 105 single-spore isolates randomly chosen from a collection of approximately 2000 transformants, indicated that almost 70% of the transformants had single T-DNA integrations. Of 500 independent transformants tested, 10 exhibited attenuated virulence in infection assays on whole plants. Microscopic analyses primarily revealed defects at different pre-penetration stages of infection-related morphogenesis. Three transformants were characterized in detail. The identification of the T-DNA integration sites was performed by amplification of genomic DNA ends after endonuclease digestion and polynucleotide tailing. In one transformant, the T-DNA had integrated into the 5'-flank of a gene with similarity to allantoicase genes of other Ascomycota. In the second and third transformants, the T-DNA had integrated into an open reading frame (ORF) and into the 5'-flank of an ORF. In both cases, the ORFs have unknown function.

  20. Agrobacterium-Mediated Stable Genetic Transformation of Populus angustifolia and Populus balsamifera

    PubMed Central

    Maheshwari, Priti; Kovalchuk, Igor

    2016-01-01

    The present study demonstrates Agrobacterium tumefaciens-mediated stable genetic transformation of two species of poplar – Populus angustifolia and Populus balsamifera. The binary vector pCAMBIA-Npro-long-Luc containing the luciferase reporter gene was used to transform stem internode and axillary bud explants. Putative transformants were regenerated on selection-free medium using our previously established in vitro regeneration method. Explant type, genotype, effect of pre-culture, Agrobacterium concentration, a time period of infection and varying periods of co-culture with bacteria were tested for the transformation frequency. The highest frequency of transformation was obtained with stem internode explants pre-cultured for 2 days, infected with Agrobacterium culture at the concentration of OD600 = 0.5 for 10 min and co-cultivated with Agrobacterium for 48 h. Out of the two genotypes tested, P. balsamifera exhibited a higher transformation rate in comparison to P. angustifolia. The primary transformants that exhibited luciferase activity in a bioluminescence assay under the CCD camera when subjected to polymerase chain reaction and Southern blot analysis revealed a stable single-copy integration of luc in their genomes. The reported protocol is highly reproducible and can be applied to other species of poplar; it will also be useful for future genetic engineering of one of the most important families of woody plants for sustainable development. PMID:27014319

  1. A simple model for dislocation emission mediated dynamic nanovoid growth

    NASA Astrophysics Data System (ADS)

    Wilkerson, Justin; Ramesh, K. T.

    2015-06-01

    Failure of ductile metals has long been attributed to the microscopic processes of void nucleation, growth, and finally coalescence leading to fracture. Our traditional view of void nucleation is associated with interface debonding at second-phase particles. However, much of this understanding has been gleaned from observations of quasi-static fracture surfaces. Under more extreme dynamic loading conditions second-phase particles may not necessarily be the dominant source of void nucleating material defects, and a few key experimental observations of laser spall surfaces seem to support this assertion. Here, we motivate an alternative mechanism to the traditional view, namely shock-induced vacancy generation and clustering followed by nanovoid growth mediated by dislocation emission. This mechanism only becomes active at very large stresses, and thus it is desirable to establish a closed-form criterion for the macroscopic stress required to activate dislocation emission in porous materials. Following an approach similar to Lubarda and co-workers, we make use of stability arguments applied to the analytic solutions of the elastic interactions of dislocations and voids to derive the desired criterion. We then propose a dynamic nanovoid growth law that is motivated by the kinetics of dislocation emission. The resulting failure model is validated against a number of molecular dynamics simulations with favorable agreement. Lastly, we make use of our simple model to predict some interesting anomalous behaviors associated with high surface energies and nonlinear elasticity.

  2. Transforming growth factor alpha and epidermal growth factor levels in bladder cancer and their relationship to epidermal growth factor receptor.

    PubMed Central

    Mellon, J. K.; Cook, S.; Chambers, P.; Neal, D. E.

    1996-01-01

    We have examined levels of epidermal growth factor (EGF) and transforming growth factor alpha (TGF-alpha) in neoplastic and non-neoplastic bladder tissue using a standard radioimmunoassay technique. Tumour samples had much higher TGF-alpha levels compared with EGF and TGF-alpha levels in malignant tissue were significantly higher than in benign bladder samples. There was, in addition, a difference in mean EGF levels from 'normal' bladder samples from non-tumour bearing areas of bladder in patients with bladder cancer compared with 'normal' bladder tissue obtained at the time of organ retrieval surgery. Levels of EGF and TGF-alpha did not correlate with levels of EGF receptor (EGFR) as determined by a radioligand binding method but levels of TGF-alpha > 10 ng gm-1 of tumour tissue did correlate with EGFR positivity defined using immunohistochemistry. These data suggest that TGF-alpha is the likely ligand for EGFR in bladder tumours. PMID:8605103

  3. Agrobacterium-mediated transformation of rough lemon (Citrus jambhiri Lush) with yeast HAL2 gene

    PubMed Central

    2012-01-01

    Background Rough lemon (Citrus jambhiri Lush.) is the most commonly used Citrus rootstock in south Asia. It is extremely sensitive to salt stress that decreases the growth and yield of Citrus crops in many areas worldwide. Over expression of the yeast halotolerant gene (HAL2) results in increasing the level of salt tolerance in transgenic plants. Results Transformation of rough lemon was carried out by using Agrobacterium tumefaciens strains LBA4404 harboring plasmid pJRM17. Transgenic shoots were selected on kanamycin 100 mg L-1 along with 250 mg L-1 each of cefotaxime and vancomycin for effective inhibition of Agrobacterium growth. The Murashige and Skoog (MS) medium containing 200 μM acetoseryngone (AS) proved to be the best inoculation and co-cultivation medium for transformation. MS medium supplemented with 3 mg L-1 of 6-benzylaminopurine (BA) showed maximum regeneration efficiency of the transformed explants. The final selection of the transformed plants was made on the basis of PCR and Southern blot analysis. Conclusion Rough lemon has been successfully transformed via Agrobacterium tumefaciens with β-glucuronidase (GUS) and HAL2. Various factors affecting gene transformation and regeneration efficiency were also investigated. PMID:22691292

  4. Nitric oxide synthase inhibitors attenuate transforming-growth-factor-beta 1-stimulated capillary organization in vitro.

    PubMed Central

    Papapetropoulos, A.; Desai, K. M.; Rudic, R. D.; Mayer, B.; Zhang, R.; Ruiz-Torres, M. P.; García-Cardeña, G.; Madri, J. A.; Sessa, W. C.

    1997-01-01

    Angiogenesis is a complex process involving endothelial cell (EC) proliferation, migration, differentiation, and organization into patent capillary networks. Nitric oxide (NO), an EC mediator, has been reported to be antigenic as well as proangiogenic in different models of in vivo angiogenesis. Our aim was to investigate the role of NO in capillary organization using rat microvascular ECs (RFCs) grown in three-dimensional (3D) collagen gels. RFCs placed in 3D cultures exhibited extensive tube formation in the presence of transforming growth factor-beta 1. Addition of the NO synthase (NOS) inhibitors L-nitro-arginine methylester (L-NAME, 1 mmol/L) or L-monomethyl-nitro-l-arginine (1 mmol/L) inhibited tube formation and the accumulation of nitrite in the media by approximately 50%. Incubation of the 3D cultures with excess L-arginine reversed the inhibitory effect of L-NAME on tube formation. In contrast to the results obtained in 3D cultures, inhibition of NO synthesis by L-NAME did not influence RFC proliferation in two-dimensional (2D) cultures or antagonize the ability of transforming growth factor-beta 1 to suppress EC proliferation in 2D cultures. Reverse transcriptase-polymerase chain reaction revealed the constitutive expression of all three NOS isoforms, neuronal, inducible, and endothelial NOSs, in 2D and 3D cultures. Moreover, Western blot analysis demonstrated the presence of immunoreactive protein for all NOS isoforms in 3D cultures of RFCs. In addition, in the face of NOS blockade, co-treatment with the NO donor sodium nitroprusside or the stable analog of cGMP, 8-bromo-cGMP, restored capillary tube formation. Thus, the autocrine production of NO and the activation of soluble guanylate cyclase are necessary events in the process of differentiation and in vitro capillary tube organization of RFCs. Images Figure 2 Figure 4 Figure 5 PMID:9137106

  5. Agrobacterium-mediated transformation of oat (Avena sativa L.) cultivars via immature embryo and leaf explants.

    PubMed

    Gasparis, Sebastian; Bregier, Cezary; Orczyk, Waclaw; Nadolska-Orczyk, Anna

    2008-11-01

    This paper reports on the successful Agrobacterium-mediated transformation of oat, and on some factors influencing this process. In the first step of the experiments, three cultivars, two types of explant, and three combinations of strain/vectors, which were successfully used for transformation of other cereals were tested. Transgenic plants were obtained from the immature embryos of cvs. Bajka, Slawko and Akt and from leaf base explants of cv. Bajka after transformation with A. thumefaciens strain LBA4404(pTOK233). The highest transformation rate (12.3%) was obtained for immature embryos of cv. Bajka. About 79% of the selected plants proved to be transgenic; however, only 14.3% of the T(0) plants and 27.5% of the T(1) showed GUS expression. Cell competence of both types of explant differed in terms of their transformation ability and transgene expression. The next step of the study was to test the suitability for oat transformation of the pGreen binary vector combined with different selection cassettes: nptII or bar under the nos or 35S promoter. Transgenic plants were selected in combinations transformed with nos::nptII, 35S::nptII and nos::bar. The highest transformation efficiency (5.3%) was obtained for cv. Akt transformed with nos::nptII. A detailed analysis of the T(0) plants selected from a given callus line and their progeny revealed that they were the mixture of transgenic, chimeric-transgenic and non-transgenic individuals. Southern blot analysis of T(0) and T(1) showed simple integration pattern with the low copy number of the introduced transgenes.

  6. TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF)

    EPA Science Inventory

    TITLE:
    TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF). AUTHORS (ALL): Abbott, Barbara D.1; Best, Deborah S.1; Narotsky, Michael G.1. SPONSOR NAME: None INSTITUTIONS (ALL): 1. Repro Tox ...

  7. Strategies to improve low copy transgenic events in Agrobacterium-mediated transformation of maize.

    PubMed

    Sivamani, Elumalai; Li, Xianggan; Nalapalli, Samson; Barron, Yoshimi; Prairie, Anna; Bradley, David; Doyle, Michele; Que, Qiudeng

    2015-12-01

    Transgenic plants containing low copy transgene insertion free of vector backbone are highly desired for many biotechnological applications. We have investigated two different strategies for increasing the percentage of low copy events in Agrobacterium-mediated transformation experiments in maize. One of the strategies is to use a binary vector with two separate T-DNAs, one T-DNA containing an intact E.coli manA gene encoding phosphomannose isomerase (PMI) as selectable marker gene cassette and another T-DNA containing an RNAi cassette of PMI sequences. By using this strategy, low copy transgenic events containing the transgenes were increased from 43 to 60 % in maize. An alternate strategy is using selectable marker gene cassettes containing regulatory or coding sequences derived from essential plant genes such as 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) or MADS box transcription factor. In this paper we demonstrate that higher percentage of low copy transgenic events can be obtained in Agrobacterium-mediated maize transformation experiments using both strategies. We propose that the above two strategies can be used independently or in combination to increase transgenic events that contain low copy transgene insertion in Agrobacterium-mediated transformation experiments.

  8. Advances in Agrobacterium tumefaciens-mediated genetic transformation of graminaceous crops.

    PubMed

    Singh, Roshan Kumar; Prasad, Manoj

    2016-05-01

    Steady increase in global population poses several challenges to plant science research, including demand for increased crop productivity, grain yield, nutritional quality and improved tolerance to different environmental factors. Transgene-based approaches are promising to address these challenges by transferring potential candidate genes to host organisms through different strategies. Agrobacterium-mediated gene transfer is one such strategy which is well known for enabling efficient gene transfer in both monocot and dicots. Due to its versatility, this technique underwent several advancements including development of improved in vitro plant regeneration system, co-cultivation and selection methods, and use of hyper-virulent strains of Agrobacterium tumefaciens harbouring super-binary vectors. The efficiency of this method has also been enhanced by the use of acetosyringone to induce the activity of vir genes, silver nitrate to reduce the Agrobacterium-induced necrosis and cysteine to avoid callus browning during co-cultivation. In the last two decades, extensive efforts have been invested towards achieving efficient Agrobacterium-mediated transformation in cereals. Though high-efficiency transformation systems have been developed for rice and maize, comparatively lesser progress has been reported in other graminaceous crops. In this context, the present review discusses the progress made in Agrobacterium-mediated transformation system in rice, maize, wheat, barley, sorghum, sugarcane, Brachypodium, millets, bioenergy and forage and turf grasses. In addition, it also provides an overview of the genes that have been recently transferred to these graminaceous crops using Agrobacterium, bottlenecks in this technique and future possibilities for crop improvement.

  9. Polymer-mediated growth of crystals and mesocrystals.

    PubMed

    Cölfen, Helmut

    2013-01-01

    Polymers are important additives for the control of mineralization reactions in both biological and bioinspired mineralization. The reason is that they allow for a number of interactions with the growing crystals and even amorphous minerals. These can substantially influence the way the mineral grows on several levels. Already in the prenucleation phase, polymers can control the formation of prenucleation clusters and subsequently the nucleation event. Also, polymers can control whether the further crystallization follows a classical or nonclassical particle-mediated growth path. In this chapter, the main ways in which polymers can be used to control a crystallization reaction will be highlighted. In addition, polymers that are useful for this purpose and the experimental conditions suitable for directing a crystallization reaction into the desired direction through the use of polymers will be described.

  10. Study of surfactant mediated growth of Ni/V superlattices

    SciTech Connect

    Amir, S. M.; Gupta, Mukul; Potdar, Satish; Gupta, Ajay; Stahn, Jochen

    2013-07-14

    The Ni/V multilayers are useful as soft x-ray mirrors, polarizers, and phase retarders. For these applications, it is necessary that the interfaces roughness and interdiffusion must be as small as possible. The V-on-Ni and Ni-on-V interfaces are asymmetric due to the difference in the surface free energy of Ni and V. In this work, we report Ag surfactant mediated growth of Ni/V superlattices prepared using ion beam sputter deposition technique. These superlattices were studied using x-ray and neutron scattering techniques. It was found that when added in an optimum amount, Ag surfactant results in reduced interface roughness and interdiffusion across the interfaces. Obtained results can be understood with the surfactant floating-off mechanism leading to a balance in the surface free energy of Ni and V.

  11. Sphingosine kinase-1 mediates androgen-induced osteoblast cell growth

    SciTech Connect

    Martin, Claire; Lafosse, Jean-Michel; Malavaud, Bernard; Cuvillier, Olivier

    2010-01-01

    Herein we report that the lipid kinase sphingosine kinase-1 (SphK1) is instrumental in mediating androgen-induced cell proliferation in osteoblasts. Dihydrotestosterone (DHT) triggered cell growth in steroid-deprived MC3T3 cells, which was associated with a rapid stimulation of SphK1 and activation of both Akt and ERK signaling pathways. This mechanism relied on functional androgen receptor/PI3K/Akt nongenotropic signaling as pharmacological antagonists could block SphK1 stimulation by DHT and its consequences. Finally, SphK1 inhibition not only abrogated DHT-induced ERK activation but also blocked cell proliferation, while ERK inhibition had no impact, suggesting that SphK1 was critical for DHT signaling yet independently of the ERK.

  12. Agrobacterium tumefaciens-mediated transformation of Penicillium expansum PE-12 and its application in molecular breeding.

    PubMed

    Zhang, Tian; Qi, Zhen; Wang, Yueyue; Zhang, Fangyuan; Li, Renyong; Yu, Qingsheng; Chen, Xiangbin; Wang, Huojun; Xiong, Xin; Tang, Kexuan

    2013-03-30

    Lipase produced by Penicillium expansum is widely used in laundry detergent and leather industry; however, the absence of an efficient transformation technology sets a major obstacle for further enhancement of its lipase productivity through advanced gene engineering. In this work, Agrobacterium tumefaciens-mediated transformation (ATMT) was investigated for P. expansum PE-12 transformation, using hygromycin phosphotransferase (hph) as a selectable marker gene. As a result, we revealed that the frequency of transformation surpassed 100 transformants/10(5)condida, most of the integrated T-DNA appeared as a single copy at a random position in chromosomal DNA, and all the transformants showed mitotic stability. Facilitated by this newly established method, for the first time, P. expansum PE-12 was genetically engineered to improve the lipase yield, through a homologous expression vector carrying the endogenous lipase gene (PEL) driven by the strong constitutive promoter of the glyceraldehydes-3-phosphate dehydrogenase gene (gpdA) from Aspergillus nidulans. The highest expression level of the engineered strain reached up to 1700 U/mL, nearly 2-fold of the original industrial strain (900 U/mL). Our reproducible ATMT system has not only revealed the great potential of homologous expression-directed genetic engineering, which is more efficient and specific compared to traditional mutagenesis, but also provided new possibilities and perspectives for any other practical applications of P. expansum-related genetic engineering in the future.

  13. Agrobacterium tumefaciens-mediated transformation of the entomopathogenic fungus Nomuraea rileyi.

    PubMed

    Shao, Changwen; Yin, Youping; Qi, Zhaoran; Li, Ren; Song, Zhangyong; Li, Yan; Wang, Zhongkang

    2015-10-01

    An Agrobacterium-mediated genetic transformation system for the entomopathogenic fungus Nomuraea rileyi was established. Three binary T-DNA vectors, pPZP-Hph, pPZP-Hph-RNAi and pPZP-Hph-DsRed2, were constructed. The trpc promoter from Aspergillus nidulans was used as the cis-regulatory element to drive the expression of hygromycin phosphotransferase (hph) gene and DsRed2, which conferred the hygromycin B (Hyg B) resistance and red fluorescence visualization, respectively. The blastospores and conidia were used as the recipients. The blastospores' transformation efficiency reached ∼20-40 transformants per 10(6) blastospores, whereas the conidia were not transformed. Based on an analysis of five generations of subcultures, PCR and Southern blotting assays, the Ptrpc-hph cassette had integrated into the genomes of all transformants, which contained single copy of the hph gene and showed mitotic stability. Abundant altered morphologic phenotypes in colonies, blastospores and hyphae formations were observed in the arbitrary insertional mutants of N. rileyi, which made it possible to study the relationships between the functions and the interrupted genes over the whole genome. The transformation protocol will promote the functional characterization of genes, and the construction of genetically engineered strains of this important entomopathogenic fungus, and potentially of other similar fungal pathogens.

  14. Optimization of factors affecting Agrobacterium-mediated transformation of Micro-Tom tomatoes.

    PubMed

    Guo, M; Zhang, Y L; Meng, Z J; Jiang, J

    2012-03-16

    Micro-Tom is the smallest known variety of tomatoes. An orthogonal experimental design L(16) (4(5)) was used to optimize Agrobacterium-mediated transformation of cotyledon explants of Lycopersicon esculentum cv. Micro-Tom. Four parameters were investigated to determine their effect on transformation frequency: the concentration of bacterial suspension, time of dip in bacterial suspension, co-cultivation time, and concentration of carbenicillin. We also examined the effect of these parameters on contamination rate, necrosis rate, mortality, cut-surface browning rate, and undamaged explant rate. Both the bacterial and carbenicillin concentrations had a significant influence on the rate of infected explants. The time of co-cultivation also had a significant influence on the transformation parameters. The optimal transformation protocol consisted of an Agrobacterium suspension of 0.5 × 10(8) cells/mL (OD(600) = 0.5) and an infection time of 5 min, one day of co-cultivation and 500 mg/L carbenicillin. Under these conditions, the transformation efficiency of the shoots reached 5.1%; the mean transformation frequency was 3.9% (N = 838).

  15. Drop in transforming growth factor-alpha and osteoprotegerin level in gingival crevicular fluid from patients with gingivitis.

    PubMed

    Otogoto, Junichi; Mogi, Makio

    2009-01-01

    Inflammatory mediators, especially cytokine, play a central role in the pathogenesis of gingivitis. The aim of this study was to identify and quantify the various growth factors, and cytokines in the gingival crevicular fluid (GCF) of patients with gingivitis, as compared with those of control subjects. The levels of cytokine in the samples were determined by their respective ELISAs. The transforming growth factor (TGF)-alpha and osteoprotegerin (OPG) level were significantly lower in patients with gingivitis than in the controls (p < 0.05). Also, there was a positive correlation between TGF-alpha and OPG levels (r = 0.761). These results suggest that the decrease in growth factor TGF-alpha is associated with the pathophysiology and/or the progress of gingivitis.

  16. Mitochondrial oligomers boost glycolysis in cancer stem cells to facilitate blebbishield-mediated transformation after apoptosis

    PubMed Central

    Jinesh, GG; Molina, JR; Huang, L; Laing, NM; Mills, GB; Bar-Eli, M; Kamat, AM

    2016-01-01

    Apoptosis culminates in secondary necrosis due to lack of ATP. Cancer stem cells form spheres after apoptosis by evoking the blebbishield emergency program. Hence, determining how blebbishields avoid secondary necrosis is crucial. Here we demonstrate that N-Myc and VEGFR2 control transformation from blebbishields, during which oligomers of K-Ras, p27, BAD, Bax, and Bak boost glycolysis to avoid secondary necrosis. Non-apoptotic cancer cells also utilize oligomers to boost glycolysis, which differentiates the glycolytic function of oligomers from their apoptotic action. Smac mimetic in combination with TNF-α or TRAIL but not in combination with FasL abrogates transformation from blebbishields by inducing secondary necrosis. Thus blebbishield-mediated transformation is dependent on glycolysis, and Smac mimetics represent potential candidates to abrogate the blebbishield emergency program. PMID:27551498

  17. Functional analysis of the white gene of Drosophila by P-factor-mediated transformation.

    PubMed

    Gehring, W J; Klemenz, R; Weber, U; Kloter, U

    1984-09-01

    A 12-kb DNA segment spanning the white (w) locus of Drosophila has been inserted into a P-transposon vector and used for P-factor-mediated germ-line transformation. Several red-eyed transformants were recovered which complement the white mutant phenotype. Analysis of the eye pigments and the interaction with the zeste mutation indicates that the w gene inserted at several new chromosomal sites is expressed normally. The tissue-specific accumulation of w transcripts, as studied by in situ hybridization to tissue sections, is the same in transformant and wild-type larvae. This indicates that all the genetic information specified by the w locus is contained within this 12-kb segment of DNA. By secondary mobilization it was shown that the w sequences have been inserted as a functional P(w) transposon which is capable of further transposition.

  18. Relationship between transformational leadership style and organizational commitment: Mediating effect of psychological empowerment

    NASA Astrophysics Data System (ADS)

    Asif, Muhammad; Ayyub, Samia; Bashir, Muhammad Khawar

    2014-12-01

    This study explores the relationship between style of transformational leadership and organizational commitment of employees with mediating role of psychological empowerment in the textile sector Punjab Pakistan. Data was collected using tools from 250 employees. The transformational leadership questionnaire, MLQ-Multifactor leadership Questionnaire [1] was used to verify the perception of the employees towards transformational leadership style in two dimensions i.e. idealized influence and inspirational motivation. The organizational commitment questionnaire designed by [2] was used to verify the affective organizational commitment. Further, psychological empowerment questionnaire was developed by [3] which was used to examine the state of psychological empowerment of textile sector employees. Pearson Correlation revealed that there exists a positive significant relationship between idealized influence and affective organizational commitment, Inspirational motivation and affective organizational commitment, affective organizational commitment and psychological empowerment. The results from the study put forward that there is a significant relationship between style of transformational leadership and organizational commitment. The mediating variable which one is suitable in the model i.e. psychological empowerment and the model is good fit as the F value is significant.

  19. Agrobacterium tumefasciens-mediated transformation of the aquatic fungus Blastocladiella emersonii.

    PubMed

    Vieira, André L G; Camilo, César M

    2011-08-01

    Agrobacterium tumefaciens is widely used for plant DNA transformation and more recently, has also been used to transform yeast, filamentous fungi and even human cells. Using this technique, we developed the first transformation protocol for the saprobic aquatic fungus Blastocladiella emersonii, a Blastocladiomycete localized at the base of fungal phylogenetic tree, which has been shown as a promising and interesting model of study of cellular function and differentiation. We constructed binary T-DNA vectors containing hygromycin phosphotransferase (hph) or enhanced green fluorescent protein (egfp) genes, under the control of Aspergillus nidulans trpC promoter and terminator sequences. 24 h of co-cultivation in induction medium (IM) agar plates, followed by transfer to PYG-agar plates containing cefotaxim to kill Agrobacterium tumefsciens and hygromycin to select transformants, resulted in growth and sporulation of resistant transformants. Genomic DNA from the pool o resistant zoospores were shown to contain T-DNA insertion as evidenced by PCR amplification of hph gene. Using a similar protocol we could also evidence the expression of enhanced green fluorescent protein (EGFP) in zoospores derived from transformed cells. This protocol can also open new perspectives for other non-transformable closely related fungi, like the Chytridiomycete class.

  20. Connective tissue growth factor/CCN2-null mouse embryonic fibroblasts retain intact transforming growth factor-{beta} responsiveness

    SciTech Connect

    Mori, Yasuji; Hinchcliff, Monique; Wu, Minghua; Warner-Blankenship, Matthew; Lyons, Karen M.

    2008-03-10

    Background: The matricellular protein connective tissue growth factor (CCN2) has been implicated in pathological fibrosis, but its physiologic role remains elusive. In vitro, transforming growth factor-{beta} (TGF-{beta}) induces CCN2 expression in mesenchymal cells. Because CCN2 can enhance profibrotic responses elicited by TGF-{beta}, it has been proposed that CCN2 functions as an essential downstream signaling mediator for TGF-{beta}. To explore this notion, we characterized TGF-{beta}-induced activation of fibroblasts from CCN2-null (CCN2{sup -/-}) mouse embryos. Methods: The regulation of CCN2 expression was examined in vivo in a model of fibrosis induced by bleomycin. Cellular TGF-{beta} signal transduction and regulation of collagen gene expression were examined in CCN2{sup -/-} MEFs by immunohistochemistry, Northern, Western and RT-PCR analysis, immunocytochemistry and transient transfection assays. Results: Bleomycin-induced skin fibrosis in the mouse was associated with substantial CCN2 up-regulation in lesional fibroblasts. Whereas in vitro proliferation rate of CCN2{sup -/-} MEFs was markedly reduced compared to wild type MEFs, TGF-{beta}-induced activation of the Smad pathways, including Smad2 phosphorylation, Smad2/3 and Smad4 nuclear accumulation and Smad-dependent transcriptional responses, were unaffected by loss of CCN2. The stimulation of COL1A2 and fibronectin mRNA expression and promoter activity, and of corresponding protein levels, showed comparable time and dose-response in wild type and CCN2{sup -/-} MEFs, whereas stimulation of alpha smooth muscle actin and myofibroblast transdifferentiation showed subtle impairment in MEFs lacking CCN2. Conclusion: Whereas endogenous CCN2 plays a role in regulation of proliferation and TGF-{beta}-induced myofibroblast transdifferentiation, it appears to be dispensable for Smad-dependent stimulation of collagen and extracellular matrix synthesis in murine embryonic fibroblasts.

  1. Differential effects of transforming growth factor type beta on the growth and function of adrenocortical cells in vitro.

    PubMed Central

    Hotta, M; Baird, A

    1986-01-01

    Transforming growth factor type beta (TGF-beta) suppresses basal as well as corticotropin (ACTH)-stimulated steroid formation by bovine adrenocortical cells in culture. The effect is dose dependent and is not accompanied by any change in adrenocortical cell growth. The minimum effective dose of TGF-beta is 4 X 10(-13) M (10 pg/ml), and maximal inhibition is observed at a concentration of 4 X 10(-11) M (1 ng/ml). A 16- to 20-hr incubation with TGF-beta is required to decrease steroidogenesis, and 12-18 hr are required before cells treated with TGF-beta recover complete responsiveness to corticotropin. Increases in cAMP mediated by corticotropin, forskolin, and isobutylmethylxanthine are not modified by the addition of TGF-beta; thus adenylate cyclase activity is unaffected by TGF-beta. Although TGF-beta inhibits the formation of all of the delta 4-steroids measured (including cortisol, corticosterone, aldosterone, and androstenedione), its effect can be completely reversed by the addition of 25-hydroxycholesterol, pregnenolone, or progesterone to the cells. In contrast, the addition of low density lipoprotein has no effect suggesting that TGF-beta targets the conversion of cholesterol precursors to cholesterol. The results demonstrate a highly potent effect of TGF-beta on the differentiated function of the adrenocortical cell. The inhibition of steroidogenesis can be dissociated from any effect on cell proliferation, and it occurs distal to the formation of cAMP but proximal to the formation of cholesterol. The results suggest that in the adrenal, TGF-beta or TGF-beta-like proteins may be playing an important role in modifying the differentiated state of the adrenocortical cell. PMID:3020557

  2. Human Sarcoma Growth Is Sensitive to Small-Molecule Mediated AXIN Stabilization

    PubMed Central

    Rossi, Marco; Valensin, Silvia; Tunici, Patrizia; Mori, Elisa; Caradonna, Nicola; Varrone, Maurizio; Salerno, Massimiliano

    2014-01-01

    Sarcomas are mesenchymal tumors showing high molecular heterogeneity, reflected at the histological level by the existence of more than fifty different subtypes. Genetic and epigenetic evidences link aberrant activation of the Wnt signaling to growth and progression of human sarcomas. This phenomenon, mainly accomplished by autocrine loop activity, is sustained by gene amplification, over-expression of Wnt ligands and co-receptors or epigenetic silencing of endogenous Wnt antagonists. We previously showed that pharmacological inhibition of Wnt signaling mediated by Axin stabilization produced in vitro and in vivo antitumor activity in glioblastoma tumors. Here, we report that targeting different sarcoma cell lines with the Wnt inhibitor/Axin stabilizer SEN461 produces a less transformed phenotype, as supported by modulation of anchorage-independent growth in vitro. At the molecular level, SEN461 treatment enhanced the stability of the scaffold protein Axin1, a key negative regulator of the Wnt signaling with tumor suppressor function, resulting in downstream effects coherent with inhibition of canonical Wnt signaling. Genetic phenocopy of small molecule Axin stabilization, through Axin1 over-expression, coherently resulted in strong impairment of soft-agar growth. Importantly, sarcoma growth inhibition through pharmacological Axin stabilization was also observed in a xenograft model in vivo in female CD-1 nude mice. Our findings suggest the usefulness of Wnt inhibitors with Axin stabilization activity as a potentialyl clinical relevant strategy for certain types of sarcomas. PMID:24842792

  3. Axl as a mediator of cellular growth and survival

    PubMed Central

    Axelrod, Haley; Pienta, Kenneth J.

    2014-01-01

    The control of cellular growth and proliferation is key to the maintenance of homeostasis. Survival, proliferation, and arrest are regulated, in part, by Growth Arrest Specific 6 (Gas6) through binding to members of the TAM receptor tyrosine kinase family. Activation of the TAM receptors leads to downstream signaling through common kinases, but the exact mechanism within each cellular context varies and remains to be completely elucidated. Deregulation of the TAM family, due to its central role in mediating cellular proliferation, has been implicated in multiple diseases. Axl was cloned as the first TAM receptor in a search for genes involved in the progression of chronic to acute-phase leukemia, and has since been established as playing a critical role in the progression of cancer. The oncogenic nature of Axl is demonstrated through its activation of signaling pathways involved in proliferation, migration, inhibition of apoptosis, and therapeutic resistance. Despite its recent discovery, significant progress has been made in the development of effective clinical therapeutics targeting Axl. In order to accurately define the role of Axl in normal and diseased processes, it must be analyzed in a cell type-specific context. PMID:25344858

  4. Parthenolide suppresses pancreatic cell growth by autophagy-mediated apoptosis

    PubMed Central

    Liu, Weifeng; Wang, Xinshuai; Sun, Junjun; Yang, Yanhui; Li, Wensheng; Song, Junxin

    2017-01-01

    Pancreatic cancer is an aggressive malignancy and is unresponsive to conventional chemotherapies. Parthenolide, a sesquiterpene lactone isolated from feverfew, has exhibited potent anticancer effects against various cancers. The purpose of this report was to investigate the effect and underlying mechanism of parthenolide in human pancreatic cancer Panc-1 and BxPC3 cells. The results demonstrated that parthenolide suppressed the growth and induced apoptosis of Panc-1 and BxPC3 pancreatic cancer cells with the half maximal inhibitory concentration (IC50) ranging between 7 and 9 μM after 24 h of treatment. Significant autophagy was induced by parthenolide treatment in pancreatic cancer cells. Parthenolide treatment concentration-dependently increased the percentage of autophagic cells and significantly increased the expression levels of p62/SQSTM1, Beclin 1, and LC3II in Panc-1 cells. Punctate LC3II staining confirmed autophagy. Furthermore, inhibiting autophagy by chloroquine, 3-methyladenine, or LC3II siRNA significantly blocked parthenolide-induced apoptosis, suggesting that parthenolide induced apoptosis through autophagy in this study. In conclusion, these studies established that parthenolide inhibits pancreatic cell growth by autophagy-mediated apoptosis. Data of the present study suggest that parthenolide can serve as a potential chemotherapeutic agent for pancreatic cancer. PMID:28176967

  5. Attenuated Transforming Growth Factor Beta Signaling as a Therapeutic for Prostate Cancer Progression

    DTIC Science & Technology

    2008-04-01

    upregulates VEGF expression only. Circulation 1994;90:649-52. 4. Igarashi A, Okochi H , Bradham DM, Grotendorst GR. Regulation of connective tissue growth...2005;65:8887-95. 10. Uhl M, Aulwurm S, Wischhusen J, et al. SD-208, a novel transforming growth factor beta receptor I kinase inhibitor, inhibits growth...cancer. Endocr Relat Cancer 2005;12:805-22. 18. Kawada M, Inoue H , Masuda T, Ikeda D. Insulin-like growth factor I secreted from prostate stromal

  6. Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation.

    PubMed

    Lu, Xiaohui; Levine, Ross; Tong, Wei; Wernig, Gerlinde; Pikman, Yana; Zarnegar, Sara; Gilliland, D Gary; Lodish, Harvey

    2005-12-27

    A recurrent somatic activating mutation in the nonreceptor tyrosine kinase JAK2 (JAK2V617F) occurs in the majority of patients with the myeloproliferative disorders polycythemia vera, essential thrombocythemia, myelofibrosis with myeloid metaplasia, and, less commonly, chronic myelomonocytic leukemia. We do not understand the basis for the specificity of the JAK2V617F mutation in clonal disorders of the myeloid, but not lymphoid, lineage, nor has the basis for the pleiotropic phenotype of JAK2V617F-associated myeloproliferative disorders been delineated. However, the presence of the identical mutation in patients with related, but clinicopathologically distinct, myeloid disorders suggests that interactions between the JAK2V617F kinase and other signaling molecules may influence the phenotype of hematopoietic progenitors expressing JAK2V617F. Here, we show that coexpression of the JAK2V617F mutant kinase with a homodimeric Type I cytokine receptor, the erythropoietin receptor (EpoR), the thrombopoietin receptor, or the granulocyte colony-stimulating-factor receptor, is necessary for transformation of hematopoietic cells to growth-factor independence and for hormone-independent activation of JAK-STAT signaling. Furthermore, EpoR mutations that impair erythropoietin-mediated JAK2 or STAT5 activation also impair transformation mediated by the JAK2V617F kinase, indicating that JAK2V617F requires a cytokine receptor scaffold for its transforming and signaling activities. Our results reveal the molecular basis for the prevalence of JAK2V617F in diseases of myeloid lineage cells that express these Type I cytokine receptors but not in lymphoid lineage cells that do not.

  7. Syntrophic growth via quinone-mediated interspecies electron transfer

    PubMed Central

    Smith, Jessica A.; Nevin, Kelly P.; Lovley, Derek R.

    2015-01-01

    The mechanisms by which microbial species exchange electrons are of interest because interspecies electron transfer can expand the metabolic capabilities of microbial communities. Previous studies with the humic substance analog anthraquinone-2,6-disulfonate (AQDS) suggested that quinone-mediated interspecies electron transfer (QUIET) is feasible, but it was not determined if sufficient energy is available from QUIET to support the growth of both species. Furthermore, there have been no previous studies on the mechanisms for the oxidation of anthrahydroquinone-2,6-disulfonate (AHQDS). A co-culture of Geobacter metallireducens and G. sulfurreducens metabolized ethanol with the reduction of fumarate much faster in the presence of AQDS, and there was an increase in cell protein. G. sulfurreducens was more abundant, consistent with G. sulfurreducens obtaining electrons from acetate that G. metallireducens produced from ethanol, as well as from AHQDS. Co-cultures initiated with a citrate synthase-deficient strain of G. sulfurreducens that was unable to use acetate as an electron donor also metabolized ethanol with the reduction of fumarate and cell growth, but acetate accumulated over time. G. sulfurreducens and G. metallireducens were equally abundant in these co-cultures reflecting the inability of the citrate synthase-deficient strain of G. sulfurreducens to metabolize acetate. Evaluation of the mechanisms by which G. sulfurreducens accepts electrons from AHQDS demonstrated that a strain deficient in outer-surface c-type cytochromes that are required for AQDS reduction was as effective at QUIET as the wild-type strain. Deletion of additional genes previously implicated in extracellular electron transfer also had no impact on QUIET. These results demonstrate that QUIET can yield sufficient energy to support the growth of both syntrophic partners, but that the mechanisms by which electrons are derived from extracellular hydroquinones require further investigation. PMID

  8. Role of polypeptide growth factors in phenotypic transformation of normal rat kidney cells

    SciTech Connect

    van Zoelen, E.J.J.; van Oostwaard, T.M.J.; de Laat, S.W.

    1988-01-05

    A serum-free assay has been established for studying the role of polypeptide growth factors in inducing loss of density-dependent inhibition of growth of normal rat kidney (NRK) cells. The process has been characterized by measuring the time course of (/sup 3/H)thymidine incorporation into confluent, quiescent NRK cultures stimulated by defined polypeptide growth factors, in combination with cell counting studies, increases in DNA content, and cell cycle analysis by means of a fluorescence-activated cell sorter. It is shown that none of the growth factors tested is able to induce loss of density-dependent inhibition of growth by itself, but strong synergism was observed when combinations of growth factors were tested. None of the above factors was found to be essential, however, since any combination of three of the above four growth factors strongly induced the process. Strong parallels were observed between the growth factor requirements for inducing loss of density-dependent inhibition of growth under serum-free conditions and the requirements for induction of anchorage-independent proliferation under growth factor-defined assay conditions. This indicates that most likely the same cellular processes underlie these two aspects of phenotypic transformation, although data indicate that anchorage-independent proliferation may be a more restricted property of phenotypic transformation than loss of density dependence of proliferation. It is concluded that phenotypic transformation of NRK cells does not require specific polypeptide growth factors, but reflects the ability of these cells to respond to multiple growth factors.

  9. Integrative gene transfer in the truffle Tuber borchii by Agrobacterium tumefaciens-mediated transformation.

    PubMed

    Brenna, Andrea; Montanini, Barbara; Muggiano, Eleonora; Proietto, Marco; Filetici, Patrizia; Ottonello, Simone; Ballario, Paola

    2014-01-01

    Agrobacterium tumefaciens-mediated transformation is a powerful tool for reverse genetics and functional genomic analysis in a wide variety of plants and fungi. Tuber spp. are ecologically important and gastronomically prized fungi ("truffles") with a cryptic life cycle, a subterranean habitat and a symbiotic, but also facultative saprophytic lifestyle. The genome of a representative member of this group of fungi has recently been sequenced. However, because of their poor genetic tractability, including transformation, truffles have so far eluded in-depth functional genomic investigations. Here we report that A. tumefaciens can infect Tuber borchii mycelia, thereby conveying its transfer DNA with the production of stably integrated transformants. We constructed two new binary plasmids (pABr1 and pABr3) and tested them as improved transformation vectors using the green fluorescent protein as reporter gene and hygromycin phosphotransferase as selection marker. Transformants were stable for at least 12 months of in vitro culture propagation and, as revealed by TAIL- PCR analysis, integration sites appear to be heterogeneous, with a preference for repeat element-containing genome sites.

  10. Agrobacterium tumefaciens-mediated transformation of Withania somnifera (L.) Dunal: an important medicinal plant.

    PubMed

    Pandey, Vibha; Misra, Pratibha; Chaturvedi, Pankaj; Mishra, Manoj K; Trivedi, Prabodh K; Tuli, Rakesh

    2010-02-01

    This report describes Agrobacterium tumefaciens-mediated transformation of Withania somnifera--an important Indian medicinal plant. A. tumefaciens strain LBA4404, containing the binary vector pIG121Hm was used for transformation, along with the gusA reporter gene with intron under the transcriptional control of the Cauliflower Mosaic Virus (CaMV) 35S promoter. The leaf segments from two-and-a-half-month-old green house-grown seedlings were more efficient in transformation, as compared to those from the in vitro-grown shoots. Second expanded leaf from the shoot tip gave the highest transient transformation efficiency. Selection of transgenic shoots was done in the presence of 50 mg l(-1) kanamycin. Polymerase chain reaction analysis of T(0) transgenic plants showed the presence of gusA and nptII genes. The expression of these transgenes in T(1) progeny was confirmed by RT-PCR. The integration of gusA gene was confirmed by Southern blot analysis. The transformation efficiency was found to be 1.67%.

  11. Highly efficient transformation and plant regeneration of tall fescue mediated by Agrobacterium tumefaciens.

    PubMed

    Hu, Zhang-Hua; Chen, Jin-Qing; Wu, Guan-Ting; Jin, Wei; Lang, Chun-Xiu; Huang, Rui-Zhi; Wang, Fu-Lin; Liu, Zhi-Hong; Chen, Xiao-Yun

    2005-04-01

    An efficient and reproducible system has been developed for the production of transgenic plants in tall fescue (Festuca arundinacea Schreb.) using A. tumefaciens-mediated transformation. Two-months-old suspension cultures served as excellent explants for transformation. The explants were inoculated with an A. tumefaciens strain EHA105 carrying a plasmid pDBA121 containing genes for hygromycin phosphotransferase (hpt) and phosphinotricin acetyltransferase (bar). The commercial herbicide Basta was used as a selective agent. Inclusion of acetosyringone (ACS) 20 mg/L in the co-culture medium led to an increase in transformation efficiency. The efficiency of transformation was highly dependent on the genotype, the explant, the culture medium and selective agent used. Tall fescue transformation efficiency is 2.85-10.9 plants per gram fresh weight (FW) of suspension cultures. This is much higher than the corresponding values reported before (2-5 plants). So far more than 300 transgenic plants have been obtained, the fertility of some transgenic plants had decreased. Stable integration and high expression of the transgenes were confirmed by PCR analysis and Southern blot hybridization or herbicide Basta spraying test.

  12. Agrobacterium tumefaciens-mediated transformation of the causative agent of Valsa canker of apple tree Valsa mali var. mali.

    PubMed

    Hu, Yang; Dai, Qingqing; Liu, Yangyang; Yang, Zhe; Song, Na; Gao, Xiaoning; Voegele, Ralf Thomas; Kang, Zhensheng; Huang, Lili

    2014-06-01

    Valsa mali var. mali (Vmm), which is the causative agent of Valsa canker of apple tree, causes heavy damage to apple production in eastern Asia. In this article, we report Agrobacterium tumefaciens-mediated transformation (ATMT) of Vmm and expression of gfp (green fluorescent protein) in this fungus. The transformation system was optimized to a transformation efficiency of approximately 150 transformants/10(6) conidia, and a library containing over 4,000 transformants was generated. The tested transformants were mitotically stable. One hundred percent hph (hygromycin B phosphotransferase) integration into Vmm was identified by PCR and five single-copy integration of T-DNA was detected in the eighteen transformants by Southern blot. To our knowledge, this is the first report of ATMT of Vmm. Furthermore, this library has been used to identify genes involved in the virulence of the pathogen, and the transformation system may also be useful to the transformation of other species of the genus Valsa.

  13. [Genetic transformation of OSISAP1 gene to onion (Allium cepa L.) mediated by amicroprojectile bombardment].

    PubMed

    Xu, Qi-Jiang; Cui, Cheng-Ri

    2007-06-01

    Microprojectile bombardment-mediated transformation method has been developed for onion (Allium cepa L.) using embryogenic calli, induced from stem discs, as target tissue. Zinc-finger protein gene OSISAP1 (Oryza sative subspecies indica stress-associated protein gene) was introduced into the open-pollinated onion cultivar (subs.) 'HG400B'. Bombardment parameters were optimized as: the pressure is 1,100 psi, the distance is 6 cm, two times, the ratio of mass between plasmid DNA and golden particles is 1:320. An efficient microprojectile bombardment-mediated transformation system of onion (Allium cepa L.) callus has been established. The binary vector used carried the nptII gene for kanamycin resistance and the GUS reporter gene. Transgenic cultures were screened for their ability to express the GUS reporter gene and to grow in the presence of kanamycin (150 mg/L). Transient expression of GUS reporter gene was observed through histochemical staining of embryogenic callus transformed by microprojectile bombardment. The putative transgenic plants were analysed at the molecular level using PCR, southern hybridization, and RT-PCR. The results confirmed that the OSISAP1 gene was integrated as one copy into the genome of onion and expression. Transgenic plants were produced efficiently with a transformation frequency of about 10%. Test of salinity-alkali stress showed that sodium chloride and sodium bicarbonate at 200 mmol/L effectively killed non-transgenic plants within 1 week of irrigation, while the transgenic plants were completely unaffected by salinity of 400 mmol/L. So transformation with the OSISAP1 gene raised the salinity-alkali-tolerance of the transgenic plants to a high level.

  14. An embryogenic suspension cell culture system for Agrobacterium-mediated transformation of citrus.

    PubMed

    Dutt, M; Grosser, J W

    2010-11-01

    A method for the genetic transformation of several citrus cultivars is described, including cultivars observed to be recalcitrant to conventional epicotyl-mediated transformation. Embryogenic cell suspension cultures, established from unfertilized ovules were used as target tissues for Agrobacterium-mediated transformation. Several modifications were made to the culture environment to investigate factors required for efficient transfer of the T-DNA and the subsequent regeneration of transgenic citrus plants. It was determined that co-cultivation of citrus cells and Agrobacterium in EME medium supplemented with maltose (EME-M) and 100 μM acetosyringone for 5 days at 25°C was optimum for transformation of each of the citrus cultivars. Efficient selection was obtained and escapes were prevented when the antibiotic hygromycin B was used as a selection antibiotic following transformation with an Agrobacterium strain containing hptII in the T-DNA region. Transgenic embryo regeneration and development was enhanced in medium that contained a liquid overlay consisting of a 1:2 mixture of 0.6 M BH3 and 0.15 M EME-M media. PCR and Southern blot analyses confirmed the presence of the T-DNA and the stable integration into the genome of regenerated plants, while RT-PCR demonstrated variable amounts of RNA being transcribed in different transgenic lines. This protocol can create an avenue for insertion of useful traits into any polyembryonic citrus cultivar that can be established as embryogenic cell suspension cultures, including popular specialty mandarins and seedless cultivars.

  15. Chondrocytes Directly Transform into Bone Cells in Mandibular Condyle Growth

    PubMed Central

    Jing, Y.; Zhou, X.; Han, X.; Jing, J.; von der Mark, K.; Wang, J.; de Crombrugghe, B.; Hinton, R.J.; Feng, J.Q.

    2015-01-01

    For decades, it has been widely accepted that hypertrophic chondrocytes undergo apoptosis prior to endochondral bone formation. However, very recent studies in long bone suggest that chondrocytes can directly transform into bone cells. Our initial in vivo characterization of condylar hypertrophic chondrocytes revealed modest numbers of apoptotic cells but high levels of antiapoptotic Bcl-2 expression, some dividing cells, and clear alkaline phosphatase activity (early bone marker). Ex vivo culture of newborn condylar cartilage on a chick chorioallantoic membrane showed that after 5 d the cells on the periphery of the explants had begun to express Col1 (bone marker). The cartilage-specific cell lineage–tracing approach in triple mice containing Rosa 26tdTomato (tracing marker), 2.3 Col1GFP (bone cell marker), and aggrecan CreERT2 (onetime tamoxifen induced) or Col10-Cre (activated from E14.5 throughout adult stage) demonstrated the direct transformation of chondrocytes into bone cells in vivo. This transformation was initiated at the inferior portion of the condylar cartilage, in contrast to the initial ossification site in long bone, which is in the center. Quantitative data from the Col10-Cre compound mice showed that hypertrophic chondrocytes contributed to ~80% of bone cells in subchondral bone, ~70% in a somewhat more inferior region, and ~40% in the most inferior part of the condylar neck (n = 4, P < 0.01 for differences among regions). This multipronged approach clearly demonstrates that a majority of chondrocytes in the fibrocartilaginous condylar cartilage, similar to hyaline cartilage in long bones, directly transform into bone cells during endochondral bone formation. Moreover, ossification is initiated from the inferior portion of mandibular condylar cartilage with expansion in one direction. PMID:26341973

  16. Differences in kinase-mediated regulation of cell cycle progression in normal and transformed cells

    SciTech Connect

    Crissman, H.A.; Gadbois, D.M.; Tobey, R.A.; Stevenson, A.P.; Kraemer, P.M.; Bustos, L.D.; Dickson, J.A.; Bradbury, E.M. )

    1993-01-01

    Staurosporine (Stsp), a general protein kinase inhibitor, was used to investigate the role of kinase-mediated mechanisms in regulating mammalian cell proliferation. Low levels of Stsp (1-2nM) prevented nontransformed cells from entering S phase, indicating that protein phosphorylation processes are essential for commitment of DNA replication in normal cells. Cells resumed cycling when Stsp was removed. The period of sensitivity of nontransformed human diploid fibroblasts to low levels of the drug commenced 3 h later than the G0/G1 boundary and extended through the G1/S boundary. The initial block point at 3 h corresponds neither to the serum nor the amino acid restriction point. In contrast, neither low nor high concentrations (100nm) of Stsp affected G1 progression of transformed cells. High drug concentrations blocked normal cells in G1 and G2 but affected only G2-progression in transformed cells. These results indicate that kinase-mediated regulation of DNA replication is lost as a result of neoplastic transformation, but the G2-arrest mechanism remains intact.

  17. A 16-amino acid peptide from human alpha2-macroglobulin binds transforming growth factor-beta and platelet-derived growth factor-BB.

    PubMed Central

    Webb, D. J.; Roadcap, D. W.; Dhakephalkar, A.; Gonias, S. L.

    2000-01-01

    Alpha2-macroglobulin (alpha2M) is a major carrier of transforming growth factor-beta (TGF-beta) in vitro and in vivo. By screening glutathione S-transferase (GST) fusion proteins with overlapping sequences, we localized the TGFbeta-binding site to aa 700-738 of the mature human alpha2M subunit. In separate experiments, we screened overlapping synthetic peptides corresponding to aa 696-777 of alpha2M and identified a single 16-mer (718-733) that binds TGF-beta1. Platelet-derived growth factor-BB (PDGF-BB) bound to the same peptide, even though TGF-beta and PDGF-BB share almost no sequence identity. The sequence of the growth factor-binding peptide, WDLVVVNSAGVAEVGV, included a high proportion of hydrophobic amino acids. The analogous peptide from murinoglobulin, a human alpha2M homologue that does not bind growth factors, contained only three nonconservative amino acid substitutions; however, the MUG peptide failed to bind TGF-beta1 and PDGF-BB. These results demonstrate that a distinct and highly-restricted site in alpha2M, positioned near the C-terminal flank of the bait region, mediates growth factor binding. At least part of the growth factor-binding site is encoded by exon 18 of the alpha2M gene, which is notable for a 5' splice site polymorphism that has been implicated in Alzheimer's Disease. PMID:11106172

  18. Noncanonical transforming growth factor β (TGFβ) signaling in cranial neural crest cells causes tongue muscle developmental defects.

    PubMed

    Iwata, Jun-ichi; Suzuki, Akiko; Pelikan, Richard C; Ho, Thach-Vu; Chai, Yang

    2013-10-11

    Microglossia is a congenital birth defect in humans and adversely impacts quality of life. In vertebrates, tongue muscle derives from the cranial mesoderm, whereas tendons and connective tissues in the craniofacial region originate from cranial neural crest (CNC) cells. Loss of transforming growth factor β (TGFβ) type II receptor in CNC cells in mice (Tgfbr2(fl/fl);Wnt1-Cre) causes microglossia due to a failure of cell-cell communication between cranial mesoderm and CNC cells during tongue development. However, it is still unclear how TGFβ signaling in CNC cells regulates the fate of mesoderm-derived myoblasts during tongue development. Here we show that activation of the cytoplasmic and nuclear tyrosine kinase 1 (ABL1) cascade in Tgfbr2(fl/fl);Wnt1-Cre mice results in a failure of CNC-derived cell differentiation followed by a disruption of TGFβ-mediated induction of growth factors and reduction of myogenic cell proliferation and differentiation activities. Among the affected growth factors, the addition of fibroblast growth factor 4 (FGF4) and neutralizing antibody for follistatin (FST; an antagonist of bone morphogenetic protein (BMP)) could most efficiently restore cell proliferation, differentiation, and organization of muscle cells in the tongue of Tgfbr2(fl/fl);Wnt1-Cre mice. Thus, our data indicate that CNC-derived fibroblasts regulate the fate of mesoderm-derived myoblasts through TGFβ-mediated regulation of FGF and BMP signaling during tongue development.

  19. High frequency vector-mediated transformation and gene replacement in Tetrahymena.

    PubMed Central

    Gaertig, J; Gu, L; Hai, B; Gorovsky, M A

    1994-01-01

    Recently, we developed a mass DNA-mediated transformation technique for the ciliated protozoan Tetrahymena thermophila that introduces transforming DNA by electroporation into conjugating cells. Other studies demonstrated that a neomycin resistance gene flanked by Tetrahymena H4-I gene regulatory sequences transformed Tetrahymena by homologous recombination within the H4-I locus when microinjected into the macronucleus. We describe the use of conjugant electrotransformation (CET) for gene replacement and for the development of new independently replicating vectors and a gene cassette that can be used as a selectable marker in gene knockout experiments. Using CET, the neomycin resistance gene flanked by H4-I sequences transformed Tetrahymena, resulting in the replacement of the H4-I gene or integrative recombination of the H4-I/neo/H4-I gene (but not vector sequences) in the 5' or 3' flanking region of the H4-I locus. Gene replacement was obtained with non-digested plasmid DNA but releasing the insert increased the frequency of replacement events about 6-fold. The efficiency of transformation by the H4-I/neo/H4-I selectable marker was unchanged when a single copy of the Tetrahymena rDNA replication origin was included on the transforming plasmid. However, the efficiency of transformation using CET increased greatly when a tandem repeat of the replication origin fragment was used. This high frequency of transformation enabled mapping of the region required for H4-I promoter function to within 333 bp upstream of the initiator ATG. Similarly approximately 300 bp of sequence downstream of the translation terminator TGA of the beta-tubulin 2 (BTU2) gene could substitute for the 3' region of the H4-I gene. This hybrid H4-I/neo/BTU2 gene did not transform Tetrahymena when subcloned on a plasmid lacking an origin of replication, but did transform at high frequency on a two origin plasmid. Thus, the H4-I/neo/BTU2 cassette is a selectable marker that can be used for gene

  20. Agrobacterium-mediated transformation of promising oil-bearing marine algae Parachlorella kessleri.

    PubMed

    Rathod, Jayant Pralhad; Prakash, Gunjan; Pandit, Reena; Lali, Arvind M

    2013-11-01

    Parachlorella kessleri is a unicellular alga which grows in fresh as well as marine water and is commercially important as biomass/lipid feedstock and in bioremediation. The present study describes the successful transformation of marine P. kessleri with the help of Agrobacterium tumefaciens. Transformed marine P. kessleri was able to tolerate more than 10 mg l(-1) hygromycin concentration. Co-cultivation conditions were modulated to allow the simultaneous growth of both marine P. kessleri and A. tumefaciens. For co-cultivation, P. kessleri was shifted from Walne's to tris acetate phosphate medium to reduce the antibiotic requirement during selection. In the present study, the transfer of T-DNA was successful without using acetosyringone. Biochemical and genetic analyses were performed for expression of transgenes by GUS assay and PCR in transformants. Establishment of this protocol would be useful in further genetic modification of oil-bearing Parachlorella species.

  1. Modulation of transforming growth factor beta receptor levels on microvascular endothelial cells during in vitro angiogenesis.

    PubMed Central

    Sankar, S; Mahooti-Brooks, N; Bensen, L; McCarthy, T L; Centrella, M; Madri, J A

    1996-01-01

    Microvascular endothelial cells (RFCs) cultured in two-dimensional (2D) cultures proliferate rapidly and exhibit an undifferentiated phenotype. Addition of transforming growth factor beta1 (TGFbeta1) increases fibronectin expression and inhibits proliferation. RFCs cultured in three-dimensional (3D) type I collagen gels proliferate slowly and are refractory to the anti-proliferative effects of TGF beta1. TGF beta1 promotes tube formation in 3D cultures. TGF beta1 increases fibronectin expression and urokinase plasminogen activator (uPA) activity and plasminogen activator inhibitor-1 (PAI-1) levels in 3D cultures. Since the TGF beta type I and II receptors have been reported to regulate different activities induced by TGF beta1, we compared the TGF beta receptor profiles on cells in 2D and 3D cultures. RFCs in 3D cultures exhibited a significant loss of cell surface type II receptor compared with cells in 2D cultures. The inhibitory effect of TGF beta1 on proliferation is suppressed in transfected 2D cultures expressing a truncated form of the type II receptor, while its stimulatory effect on fibronectin production is reduced in both 2D and 3D transfected cultures expressing a truncated form of the type I receptor. These data suggest that the type II receptor mediates the antiproliferative effect of TGF beta1 while the type I receptor mediates the matrix response of RFCs to TGF beta1 and demonstrate that changes in the matrix environment can modulate the surface expression of TGF beta receptors, altering the responsiveness of RFCs to TGF beta1. PMID:8617876

  2. Transforming growth factor Beta 1 stimulates profibrotic activities of luteal fibroblasts in cows.

    PubMed

    Maroni, Dulce; Davis, John S

    2012-11-01

    Luteolysis is characterized by angioregression, luteal cell apoptosis, and remodeling of the extracellular matrix characterized by deposition of collagen 1. Transforming growth factor beta 1 (TGFB1) is a potent mediator of wound healing and fibrotic processes through stimulation of the synthesis of extracellular matrix components. We hypothesized that TGFB1 stimulates profibrotic activities of luteal fibroblasts. We examined the actions of TGFB1 on luteal fibroblast proliferation, extracellular matrix production, floating gel contraction, and chemotaxis. Fibroblasts were isolated from the bovine corpus luteum. Western blot analysis showed that luteal fibroblasts expressed collagen 1 and prolyl 4-hydroxylase but did not express markers of endothelial or steroidogenic cells. Treatment of fibroblasts with TGFB1 stimulated the phosphorylation of SMAD2 and SMAD3. [(3)H]thymidine incorporation studies showed that TGFB1 caused concentration-dependent reductions in DNA synthesis in luteal fibroblasts and significantly (P < 0.05) reduced the proliferative effect of FGF2 and fetal calf serum. However, TGFB1 did not reduce the viability of luteal fibroblasts. Treatment of luteal fibroblasts with TGFB1 induced the expression of laminin, collagen 1, and matrix metalloproteinase 1 as determined by Western blot analysis and gelatin zymography of conditioned medium. TGFB1 increased the chemotaxis of luteal fibroblasts toward fibronectin in a transwell system. Furthermore, TGFB1 increased the fibroblast-mediated contraction of floating bovine collagen 1 gels. These results suggest that TGFB1 contributes to the structural regression of the corpus luteum by stimulating luteal fibroblasts to remodel and contract the extracellular matrix.

  3. Hepatocyte growth factor counteracts transforming growth factor-beta1, through attenuation of connective tissue growth factor induction, and prevents renal fibrogenesis in 5/6 nephrectomized mice.

    PubMed

    Inoue, Tsutomu; Okada, Hirokazu; Kobayashi, Tatsuya; Watanabe, Yusuke; Kanno, Yoshihiko; Kopp, Jeffrey B; Nishida, Takashi; Takigawa, Masaharu; Ueno, Munehisa; Nakamura, Toshikazu; Suzuki, Hiromichi

    2003-02-01

    We investigated the mechanism of the anti-fibrotic effects of hepatocyte growth factor (HGF) in the kidney, with respect to its effect on connective tissue growth factor (CTGF), a down-stream, profibrotic mediator of transforming growth factor-beta1 (TGF-beta1). In wild-type (WT) mice with 5/6 nephrectomy (Nx), HGF and TGF-beta1 mRNAs increased transiently in the remnant kidney by week 1 after the Nx, returned to baseline levels, and increased again at weeks 4 to 12. In contrast, CTGF and alpha1(I) procollagen (COLI) mRNAs increased in parallel with HGF and TGF-beta1 during the early stage, but did not re-increase during the late stage. In the case of TGF-beta1 transgenic (TG) mice with 5/6 Nx, excess TGF-beta1 derived from the transgene enhanced CTGF expression significantly in the remnant kidney, accordingly accelerating renal fibrogenesis. Administration of dHGF (5.0 mg/kg/day) to TG mice with 5/6 Nx for 4 weeks from weeks 2 to 6 suppressed CTGF expression in the remnant kidney, attenuating renal fibrosis and improving the survival rate. In an experiment in vitro, renal tubulointerstitial fibroblasts (TFB) were co-cultured with proximal tubular epithelial cells (PTEC). Pretreatment with HGF reduced significantly CTGF induction in PTEC by TGF-beta1, consequently suppressing COLI synthesis in TFB. In conclusion, HGF can block, at least partially, renal fibrogenesis promoted by TGF-beta1 in the remnant kidney, via attenuation of CTGF induction.

  4. Transforming growth factor alpha induces collagen degradation and cell migration in differentiating human epidermal raft cultures.

    PubMed Central

    Turksen, K; Choi, Y; Fuchs, E

    1991-01-01

    When cultured on plastic and treated with transforming growth factor alpha (TGF alpha), human keratinocytes exhibit an increase in proliferation at the colony periphery, apparently as a consequence of enhanced cell migration (Barrandon and Green, 1987). To investigate the effects of TGF alpha on a differentiating stratified squamous epithelium and to begin to examine the molecular basis mediating this influence, we cultured human epidermal cells on a gelled lattice of collagen and fibroblasts, floating on the air-liquid interface. Under these conditions, raft cultures differentiate and exhibit morphological and biochemical features of human skin in vivo (Asselineau et al., 1986; Kopan et al., 1987). When 3-wk-old raft cultures were treated with TGF alpha, basal cells showed a marked increase in cell proliferation. At elevated concentrations of TGF alpha, the organization of cells within the artificial tissue changed and islands of basal cells entered the collagen matrix. Biochemical analysis of the response revealed that type I collagenase and gelatinase were induced by keratinocytes within 12 h after TGF alpha treatment. In contrast, invasion of basal cells into the collagen matrix was not significant until 48-72 h post-treatment, suggesting that collagenase and gelatinase production may be a prerequisite to this phenomenon. These results have important implications for the possible role of TGF alpha in squamous cell carcinoma and tumor invasion. Images PMID:1663788

  5. Astrocyte-derived growth factors and estrogen neuroprotection: role of transforming growth factor-α in estrogen-induced upregulation of glutamate transporters in astrocytes.

    PubMed

    Karki, Pratap; Smith, Keisha; Johnson, James; Lee, Eunsook

    2014-05-25

    Extensive studies from the past decade have completely revolutionized our understanding about the role of astrocytes in the brain from merely supportive cells to an active role in various physiological functions including synaptic transmission via cross-talk with neurons and neuroprotection via releasing neurotrophic factors. Particularly, numerous studies have reported that astrocytes mediate the neuroprotective effects of 17β-estradiol (E2) and selective estrogen receptor modulators (SERMs) in various clinical and experimental models of neuronal injury. Astrocytes contain two main glutamate transporters, glutamate aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1), that play a key role in preventing excitotoxic neuronal death, a process associated with most neurodegenerative diseases. E2 has been shown to increase expression of both GLAST and GLT-1 mRNA and protein and glutamate uptake in astrocytes. Growth factors such as transforming growth factor-α (TGF-α) appear to mediate E2-induced enhancement of these transporters. These findings suggest that E2 exerts neuroprotection against excitotoxic neuronal injuries, at least in part, by enhancing astrocytic glutamate transporter levels and function. Therefore, the present review will discuss proposed mechanisms involved in astrocyte-mediated E2 neuroprotection, with a focus on glutamate transporters.

  6. Effects of ethanol on transforming growth factor Β1-dependent and -independent mechanisms of neural stem cell apoptosis.

    PubMed

    Hicks, Steven D; Miller, Michael W

    2011-06-01

    Stem cell vitality is critical for the growth of the developing brain. Growth factors can define the survival of neural stem cells (NSCs) and ethanol can affect growth factor-mediated activities. The present study tested two hypotheses: (a) ethanol causes the apoptotic death of NSCs and (b) this effect is influenced by the ambient growth factor. Monolayer cultures of non-immortalized NS-5 cells were exposed to fibroblast growth factor (FGF) 2 or transforming growth factor (TGF) β1 in the absence or presence of ethanol for 48 h. Ethanol killed NSCs as measured by increases in the numbers of ethidium bromide+ and annexin V+ cells and decreases in the number of calcein AM+ (viable) cells. These toxic effects were promoted by TGFβ1. A quantitative polymerase chain reaction array of apoptosis-related mRNAs revealed an ethanol-induced increase (≥2-fold change; p<0.05) in transcripts involved in Fas ligand (FasL) and tumor necrosis factor (TNF) signaling. These effects, particularly the FasL pathway, were potentiated by TGFβ1. Immunocytochemical analyses of NS-5 cells showed that transcriptional alterations translated into consistent up-regulation of protein expression. Experiments with the neocortical proliferative zones harvested from fetal mice exposed to ethanol showed that ethanol activated similar molecular systems in vivo. Thus, ethanol induces NSC death through two distinct molecular mechanisms, one is initiated by TGFβ1 (FasL) and another (through TNF) which is TGFβ1-independent.

  7. Agrobacterium-mediated transformation of Malus robusta with tomato iron transporter gene.

    PubMed

    Qu, Shen-Chun; Huang, Xiao-De; Zhang, Zhen; Yao, Quan-Hong; Tao, Jian-Min; Qiao, Yu-Shan; Zhang, Jun-Yi

    2005-06-01

    The tomato iron transporter gene (LeIRT2) was introduced to Malus robusta Rehd. via Agrobacterium-mediated transformation to produce iron-deficiency tolerant apple rootstock. A total of 19 putative transformants were obtained, 11 of which were verified by PCR amplification to carry a fragment of the transgene. Among them, nine were confirmed to carry the transgene by Southern blot analysis with one to three copies of the transgene integrated into the plant genome. Two transgenic plants, one carrying one copy and the other three copies of the transgene, were hydroponically cultured to test their tolerance to iron-deficiency, which was found only in the transgenic plant with a single copy, which weighted 21%-4% greater than those of the control plants.

  8. Electric field mediated transformation: isolation and characterization of a TK+ subclone.

    PubMed

    Zerbib, D; Amalric, F; Teissié, J

    1985-06-28

    Transformation of mammalian TK- cells by a plasmid carrying the TK gene from Herpes virus simplex 1 (pAGO) was mediated by electroporation. The cells were treated either in suspension or growing in monolayers directly in the petri dish. The yield of transformation was between 8.10(-5) and 2.10(-4) per microgram DNA depending on the experimental conditions. The structure of the integrated DNA was investigated proving the occurrence of a duplication process that affected preferentially the pBR322 part of the pAGO DNA (60 copies per cell). The TK gene that gave the TK+ phenotype to the selected clone was present in less than 6 copies.

  9. Control of transforming growth factor-beta activity: latency vs. activation.

    PubMed

    Harpel, J G; Metz, C N; Kojima, S; Rifkin, D B

    1992-01-01

    Transforming growth factor-beta is a pluripotent regulator of cell growth and differentiation. The growth factor is expressed as a latent complex that must be converted to an active form before interacting with its ubiquitous high affinity receptors. This conversion involves the release of the mature growth factor through disruption of the non-covalent interactions with its pro-peptide or latency associated peptide. The mechanisms for this release in vivo have not been fully characterized but appear to be cell specific and might involve processes such as acidification or proteolysis. Although several factors including transcriptional regulation, receptor modulation and scavenging of the active growth factor have been implicated, the critical step controlling the biological effects of transforming growth factor-beta may be the activation of the latent molecule.

  10. AGROBACTERIUM-MEDIATED TRANSFORMATION IN THE GREEN ALGA HAEMATOCOCCUS PLUVIALIS (CHLOROPHYCEAE, VOLVOCALES)(1).

    PubMed

    Kathiresan, S; Chandrashekar, A; Ravishankar, G A; Sarada, R

    2009-06-01

    The first successful Agrobacterium-mediated transformation of the green alga Haematococcus pluvialis Flot. using the binary vectors hosting the genes coding for GUS (β-glucuronidase), GFP (green fluorescent protein), and hpt (hygromycin phosphotransferase) is reported here. Colonies resistant to hygromycin at 10 mg · L(-1) expressed β-glucuronidase. The greenish yellow fluorescence of GFP was observed when the hygromycin-resistant cells were viewed with a fluorescent microscope. PCR was used to successfully amplify fragments of the hpt (407 bp) and GUS (515 bp) genes from transformed cells, while Southern blots indicated the integration of the hygromycin gene into the genome of H. pluvialis. SEM indicated that the cell wall of H. pluvialis was altered on infection with Agrobacterium. The transformation achieved here by Agrobacterium does not need treatment with acetosyringone or the wounding of cells. A robust transformation method for this alga would pave the way for manipulation of many important pathways relevant to the food, pharmaceutical, and nutraceutical industries.

  11. Deletion of host histone acetyltransferases and deacetylases strongly affects Agrobacterium-mediated transformation of Saccharomyces cerevisiae.

    PubMed

    Soltani, Jalal; van Heusden, Gerard Paul H; Hooykaas, Paul J J

    2009-09-01

    Agrobacterium tumefaciens is a plant pathogen that genetically transforms plant cells by transferring a part of its Ti-plasmid, the T-strand, to the host cell. Under laboratory conditions, it can also transform cells from many different nonplant organisms, including the yeast Saccharomyces cerevisiae. Collections of S. cerevisiae strains have been developed with systematic deletion of all coding sequences. Here, we used these collections to identify genes involved in the Agrobacterium-mediated transformation (AMT) of S. cerevisiae. We found that deletion of genes (GCN5, NGG1, YAF9 and EAF7) encoding subunits of the SAGA, SLIK, ADA and NuA4 histone acetyltransferase complexes highly increased the efficiency of AMT, while deletion of genes (HDA2, HDA3 and HST4) encoding subunits of histone deacetylase complexes decreased AMT. These effects are specific for AMT as the efficiency of chemical (lithium acetate) transformation was not or only slightly affected by these deletions. Our data are consistent with a positive role of host histone deacetylation in AMT.

  12. [Agrobacterium-mediated transformation of LJAMP2 gene into 'Red Sun' kiwifruit and its molecular identification].

    PubMed

    Zhou, Yue; Zhao, Xupeng; Wu, Xiuhua; Zhang, Yanling; Zhang, Lin; Luo, Keming; Tang, Shaohu

    2014-06-01

    Bacterial canker caused by Pseudomonas syringae pv. Actinidiae is one of the most important diseases of kiwifruit (Actinidia chinensis) and leads to considerable yield losses. In order to obtain transgenic plants with resistance for 'Red Sun' kiwifruit to canker disease, a non-specific lipid transfer protein-like antimicrobial protein gene (LJAMP2) from motherwort (Leonurus japonicus) was introduced into 'Red Sun' kiwifruit through Agrobacterium-mediated transformation. After two days of co-cultivation with A. tumefaciens strain LBA4404 harboring 35S:LJAMP2, the transformed explants were transferred to the selection medium containing 25 mg/L kanamycin+3.0 mg/L BA+1.0 mg/L NAA. The regeneration efficiency of kanamycin-resistant shoots reached to 85%. All (100%) of kanamycin-resistant shoots rooted on half-strength MS medium supplemented with 0.8 mg/L IBA and a total of 40 regenerated plantlets were obtained. PCR and histochemical GUS activity analysis show that 23 of 40 lines (57.50%) were positive, suggesting that the LJAMP2 gene was integrated into the genome of 'Red Sun' kiwifruit. Taken together, we established an efficient genetic transformation method for 'Red Sun' kiwifruit using A. tumefaciens and the transformation frequency reached 5.11%. This protocol will be useful for the genetic breeding of 'Red Sun' kiwifruit for improvement of disease resistance.

  13. Nucleation and growth mechanisms of ion etching and surfactant-mediated growth

    NASA Astrophysics Data System (ADS)

    Chan, Lana Hiului

    2001-07-01

    Nucleation and growth mechanisms of ion etching of Cu(100) and surfactant (Sb) mediated Ag growth on Ge(100) were studied in ultra-high vacuum (UHV) using scanning tunneling microscopy (STM), low energy electron diffraction (LEED), temperature programmed desorption (TPD), and low energy ion scattering spectroscopy (LEISS). The formation of vacancy clusters from ion etching was characterized and could be modeled and understood as the reverse of film growth. The results suggest that a barrier exists for vacancies to ascend steps. This additional barrier also contributes to pit ordering. The interaction of the Sb with Ge was investigated. Antimony was found to form intermixed surface with Ge. The intermixing, however, could be controlled by deposition and annealing temperatures and Sb coverage. The growth of Ag with and without Sb on Ge(100) was studied and compared. Without Sb, Ag formed elongated 2D islands and 3D clusters. A new metastable Ag-Ge surface alloy phase was found when Ag was deposited at 470 K. This alloy phase can only be obtained by deposition at 470 K. Annealing to 470 K gave a surface with 3D clusters only. When Sb was used as a surfactant for Ag growth, no surface alloy was observed and the cluster shape was isotropic instead of rectangular. On the Sb covered surface, nucleation appeared to be dominated by defects at low temperatures. At higher temperatures, Sb increased the diffusion barrier for Ag. Other effects of using Sb on Ag growth included increase in cluster density and decrease in cluster size. Antimony did not work as a conventional surfactant since it did not segregate to the top of the film at elevated temperatures.

  14. c-Jun/AP-1 pathway-mediated cyclin D1 expression participates in low dose arsenite-induced transformation in mouse epidermal JB6 Cl41 cells

    SciTech Connect

    Zhang Dongyun; Li Jingxia; Gao Jimin; Huang Chuanshu

    2009-02-15

    Arsenic is a well-documented human carcinogen associated with skin carcinogenesis. Our previous work reveals that arsenite exposure is able to induce cell transformation in mouse epidermal cell JB6 Cl41 through the activation of ERK, rather than JNK pathway. Our current studies further evaluate downstream pathway in low dose arsenite-induced cell transformation in JB6 Cl41 cells. Our results showed that treatment of cells with low dose arsenite induced activation of c-Jun/AP-1 pathway, and ectopic expression of dominant negative mutant of c-Jun (TAM67) blocked arsenite-induced transformation. Furthermore, our data indicated that cyclin D1 was an important downstream molecule involved in c-Jun/AP-1-mediated cell transformation upon low dose arsenite exposure, because inhibition of cyclin D1 expression by its specific siRNA in the JB6 Cl41 cells resulted in impairment of anchorage-independent growth of cells induced by low dose arsenite. Collectively, our results demonstrate that c-Jun/AP-1-mediated cyclin D1 expression is at least one of the key events implicated in cell transformation upon low dose arsenite exposure.

  15. HTLV-I Tax-Mediated Inactivation of Cell Cycle Checkpoints and DNA Repair Pathways Contribute to Cellular Transformation: “A Random Mutagenesis Model”

    PubMed Central

    Nicot, Christophe

    2015-01-01

    To achieve cellular transformation, most oncogenic retroviruses use transduction by proto-oncogene capture or insertional mutagenesis, whereby provirus integration disrupts expression of tumor suppressors or proto-oncogenes. In contrast, the Human T-cell leukemia virus type 1 (HTLV-I) has been classified in a separate class referred to as “transactivating retroviruses”. Current views suggest that the viral encoded Tax protein transactivates expression of cellular genes leading to deregulated growth and transformation. However, if Tax-mediated transactivation was indeed sufficient for cellular transformation, a fairly high frequency of infected cells would eventually become transformed. In contrast, the frequency of transformation by HTLV-I is very low, likely less than 5%. This review will discuss the current understanding and recent discoveries highlighting critical functions of Tax in cellular transformation. HTLV-I Tax carries out essential functions in order to override cell cycle checkpoints and deregulate cellular division. In addition, Tax expression is associated with increased DNA damage and genome instability. Since Tax can inhibit multiple DNA repair pathways and stimulate unfaithful DNA repair or bypass checkpoints, these processes allow accumulation of genetic mutations in the host genome. Given this, a “Random Mutagenesis” transformation model seems more suitable to characterize the oncogenic activities of HTLV-I. PMID:26835512

  16. Transforming growth factor-beta during carcinogenesis: the shift from epithelial to mesenchymal signaling.

    PubMed

    Matsuzaki, Koichi; Okazaki, Kazuichi

    2006-04-01

    Transforming growth factor-beta (TGF-beta) activates not only TGF-beta type I receptor (TbetaRI) but also c-Jun N-terminal kinase (JNK), changing unphosphorylated Smad3 to its phosphoisoforms: C-terminally phosphorylated Smad3 (pSmad3C) and linker phosphorylated Smad3 (pSmad3L). While the TbetaRI/pSmad3C pathway inhibits growth of normal epithelial cells, JNK/pSmad3L-mediated signaling is involved in invasion by activated mesenchymal cells. During sporadic human colorectal carcinogenesis, TGF-beta signaling confers a selective advantage on tumor cells by shifting from the TbetaRI/pSmad3C pathway characteristic of mature epithelial cells to the JNK/pSmad3L pathway, which is more characteristic of the state of flux shown by the activated mesenchymal cells. JNK acts as a regulator of TGF-beta signaling by increasing the basal level of pSmad3L available for action in the nuclei of the invasive adenocarcinoma, in the meantime shutting down TGF-beta-dependent nuclear activity of pSmad3C. Loss of epithelial homeostasis and acquisition of a migratory, mesenchymal phenotype are essential for tumor invasion. From the viewpoint of TGF-beta signaling, a key therapeutic aim in cancer would be restoration of the lost tumor suppressor function observed in normal colorectal epithelial cells at the expense of effects promoting aggressive behavior of the adenocarcinoma. Specific inhibitors of the JNK/pSmad3L pathway might prove useful in this respect. In the case of molecularly targeted therapy for human cancer, pSmad3L and pSmad3C could be assessed as biomarkers to evaluate the likely benefit from specific inhibition of the JNK/pSmad3L pathway.

  17. Improvement of Agrobacterium-mediated transformation in Hi-II maize (Zea mays) using standard binary vectors.

    PubMed

    Vega, Juan M; Yu, Weichang; Kennon, Angela R; Chen, Xinlu; Zhang, Zhanyuan J

    2008-02-01

    High-frequency transformation of maize (Zea mays L.) using standard binary vectors is advantageous for functional genomics and other genetic engineering studies. Recent advances in Agrobacterium tumefaciens-mediated transformation of maize have made it possible for the public to transform maize using standard binary vectors without a need of the superbinary vector. While maize Hi-II has been a preferred maize genotype to use in various maize transformation efforts, there is still potential and need in further improving its transformation frequency. Here we report the enhanced Agrobacterium-mediated transformation of immature zygotic embryos of maize Hi-II using standard binary vectors. This improved transformation process employs low-salt media in combined use with antioxidant L-cysteine alone or L-cysteine and dithiothreitol (DTT) during the Agrobacterium infection stage. Three levels of N6 medium salts, 10, 50, and 100%, were tested. Both 10 and 50% salts were found to enhance the T-DNA transfer in Hi-II. Addition of DTT to the cocultivation medium also improves the T-DNA transformation. About 12% overall and the highest average of 18% transformation frequencies were achieved from a large number of experiments using immature embryos grown in various seasons. The enhanced transformation protocol established here will be advantageous for maize genetic engineering studies including transformation-based functional genomics.

  18. A rapid, highly efficient and economical method of Agrobacterium-mediated in planta transient transformation in living onion epidermis.

    PubMed

    Xu, Kedong; Huang, Xiaohui; Wu, Manman; Wang, Yan; Chang, Yunxia; Liu, Kun; Zhang, Ju; Zhang, Yi; Zhang, Fuli; Yi, Liming; Li, Tingting; Wang, Ruiyue; Tan, Guangxuan; Li, Chengwei

    2014-01-01

    Transient transformation is simpler, more efficient and economical in analyzing protein subcellular localization than stable transformation. Fluorescent fusion proteins were often used in transient transformation to follow the in vivo behavior of proteins. Onion epidermis, which has large, living and transparent cells in a monolayer, is suitable to visualize fluorescent fusion proteins. The often used transient transformation methods included particle bombardment, protoplast transfection and Agrobacterium-mediated transformation. Particle bombardment in onion epidermis was successfully established, however, it was expensive, biolistic equipment dependent and with low transformation efficiency. We developed a highly efficient in planta transient transformation method in onion epidermis by using a special agroinfiltration method, which could be fulfilled within 5 days from the pretreatment of onion bulb to the best time-point for analyzing gene expression. The transformation conditions were optimized to achieve 43.87% transformation efficiency in living onion epidermis. The developed method has advantages in cost, time-consuming, equipment dependency and transformation efficiency in contrast with those methods of particle bombardment in onion epidermal cells, protoplast transfection and Agrobacterium-mediated transient transformation in leaf epidermal cells of other plants. It will facilitate the analysis of protein subcellular localization on a large scale.

  19. A Rapid, Highly Efficient and Economical Method of Agrobacterium-Mediated In planta Transient Transformation in Living Onion Epidermis

    PubMed Central

    Xu, Kedong; Huang, Xiaohui; Wu, Manman; Wang, Yan; Chang, Yunxia; Liu, Kun; Zhang, Ju; Zhang, Yi; Zhang, Fuli; Yi, Liming; Li, Tingting; Wang, Ruiyue; Tan, Guangxuan; Li, Chengwei

    2014-01-01

    Transient transformation is simpler, more efficient and economical in analyzing protein subcellular localization than stable transformation. Fluorescent fusion proteins were often used in transient transformation to follow the in vivo behavior of proteins. Onion epidermis, which has large, living and transparent cells in a monolayer, is suitable to visualize fluorescent fusion proteins. The often used transient transformation methods included particle bombardment, protoplast transfection and Agrobacterium-mediated transformation. Particle bombardment in onion epidermis was successfully established, however, it was expensive, biolistic equipment dependent and with low transformation efficiency. We developed a highly efficient in planta transient transformation method in onion epidermis by using a special agroinfiltration method, which could be fulfilled within 5 days from the pretreatment of onion bulb to the best time-point for analyzing gene expression. The transformation conditions were optimized to achieve 43.87% transformation efficiency in living onion epidermis. The developed method has advantages in cost, time-consuming, equipment dependency and transformation efficiency in contrast with those methods of particle bombardment in onion epidermal cells, protoplast transfection and Agrobacterium-mediated transient transformation in leaf epidermal cells of other plants. It will facilitate the analysis of protein subcellular localization on a large scale. PMID:24416168

  20. The role of transforming growth factor-beta, insulin-like growth factor I, and basic fibroblast growth factor in distraction osteogenesis of the mandible.

    PubMed

    Farhadieh, R D; Dickinson, R; Yu, Y; Gianoutsos, M P; Walsh, W R

    1999-01-01

    Distraction osteogenesis is a viable method for regenerating large amounts of bone. In contrast to fracture healing, the mode of bone formation in distraction osteogenesis is primarily intramembranous ossification. The basic biology of the process is still not well understood. The growth factor cascade is likely to play an important role in distraction. This study examines the growth factor cascade in a lengthened ovine mandible model. Twenty-four animals were divided into four groups with varying rates of distraction (1, 2, 3, and 4 mm/day). A unilateral distractor at the angle of the mandible was used. The mandibles were lengthened to 24 mm and fixed for a period of 5 weeks, after which the animals were killed. The sections were probed for transforming growth factor-beta, basic fibroblast growth factor, and insulin-like growth factor I. The growth factors studied were present in all four groups. Transforming growth factor-beta, basic fibroblast growth factor, and insulin-like growth factor I were present in both the bony matrix of the sections and the cytoplasm of the cells, osteoblasts, and a small number of mesenchymal cells. The sections obtained from groups distracted at faster rates showed stronger presence of the growth factors examined by more intense staining. In fracture healing, the localization of transforming growth factor-beta in stage I of healing corresponded with the precise region of intramembranous ossification in stage II. Diffuse presence of transforming growth factor-beta throughout the lengthened region corresponded with the process of intramembranous ossification observed in distraction. In fracture healing, insulin-like growth factor I and basic fibroblast growth factor have been shown to promote proliferation and differentiation of osteoblasts from precursor cells. The intense presence of insulin-like growth factor I and basic fibroblast growth factor in the distracted region may account for osteoblast proliferation and formation from

  1. Substrate flexibility regulates growth and apoptosis of normal but not transformed cells

    NASA Technical Reports Server (NTRS)

    Wang, H. B.; Dembo, M.; Wang, Y. L.

    2000-01-01

    One of the hallmarks of oncogenic transformation is anchorage-independent growth (27). Here we demonstrate that responses to substrate rigidity play a major role in distinguishing the growth behavior of normal cells from that of transformed cells. We cultured normal or H-ras-transformed NIH 3T3 cells on flexible collagen-coated polyacrylamide substrates with similar chemical properties but different rigidity. Compared with cells cultured on stiff substrates, nontransformed cells on flexible substrates showed a decrease in the rate of DNA synthesis and an increase in the rate of apoptosis. These responses on flexible substrates are coupled to decreases in cell spreading area and traction forces. In contrast, transformed cells maintained their growth and apoptotic characteristics regardless of substrate flexibility. The responses in cell spreading area and traction forces to substrate flexibility were similarly diminished. Our results suggest that normal cells are capable of probing substrate rigidity and that proper mechanical feedback is required for regulating cell shape, cell growth, and survival. The loss of this response can explain the unregulated growth of transformed cells.

  2. Temporal Control of Transforming Growth Factor (TGF) - Betal Expression on Mammary Cell Multistep Transformation

    DTIC Science & Technology

    2000-10-01

    phosphorylation of Smad2 tumors, EMT appears to be initiated by TGF-P produced and Smad3 at specific Erk consensus sites in the linker by peritumoral host...1243-1252. linker region of Smad2 and Smad3 , which, in turn, inhibit Smad accumula- Inhibition of autocrine TGF-j signaling, by expression of dominant...mediated mostly by TGF-P1 and TGF-j2 are potent immunosuppressants the receptor specific Smad2 and Smad3 proteins [47,48], [73]. Thus, elevated levels

  3. An improved Agrobacterium-mediated transformation system for the functional genetic analysis of Penicillium marneffei.

    PubMed

    Kummasook, Aksarakorn; Cooper, Chester R; Vanittanakom, Nongnuch

    2010-12-01

    We have developed an improved Agrobacterium-mediated transformation (AMT) system for the functional genetic analysis of Penicillium marneffei, a thermally dimorphic, human pathogenic fungus. Our AMT protocol included the use of conidia or pre-germinated conidia of P. marneffei as the host recipient for T-DNA from Agrobacterium tumefaciens and co-cultivation at 28°C for 36 hours. Bleomycin-resistant transformants were selected as yeast-like colonies following incubation at 37°C. The efficiency of transformation was approximately 123 ± 3.27 and 239 ± 13.12 transformants per plate when using 5 × 10(4) conidia and pre-germinated conidia as starting materials, respectively. Southern blot analysis demonstrated that 95% of transformants contained single copies of T-DNA. Inverse PCR was employed for identifying flanking sequences at the T-DNA insertion sites. Analysis of these sequences indicated that integration occurred as random recombination events. Among the mutants isolated were previously described stuA and gasC defective strains. These AMT-derived mutants possessed single T-DNA integrations within their particular coding sequences. In addition, other morphological and pigmentation mutants possessing a variety of gene-specific defects were isolated, including two mutants having T-DNA integrations within putative promoter regions. One of the latter integration events was accompanied by the deletion of the entire corresponding gene. Collectively, these results indicated that AMT could be used for large-scale, functional genetic analyses in P. marneffei. Such analyses can potentially facilitate the identification of those genetic elements related to morphogenesis, as well as pathogenesis in this medically important fungus.

  4. Prevention of KLF4-mediated tumor initiation and malignant transformation by UAB30 rexinoid.

    PubMed

    Jiang, Wen; Deng, Wentao; Bailey, Sarah K; Nail, Clint D; Frost, Andra R; Brouillette, Wayne J; Muccio, Donald D; Grubbs, Clinton J; Ruppert, J Michael; Lobo-Ruppert, Susan M

    2009-02-01

    The transcription factor KLF4 acts in post-mitotic epithelial cells to promote differentiation and functions in a context-dependent fashion as an oncogene. In the skin KLF4 is co-expressed with the nuclear receptors RARgamma and RXRalpha, and formation of the skin permeability barrier is a shared function of these three proteins. We utilized a KLF4-transgenic mouse model of skin cancer in combination with cultured epithelial cells to examine functional interactions between KLF4 and retinoic acid receptors. In cultured cells, activation of a conditional, KLF4-estrogen receptor fusion protein by 4-hydroxytamoxifen resulted in rapid upregulation of transcripts for nuclear receptors including RARgamma and RXRalpha. We tested retinoids in epithelial cell transformation assays, including an RAR-selective agonist (all-trans RA), an RXR-selective agonist (9-cis UAB30, rexinoid), and a pan agonist (9-cis RA). Unlike for several other genes, transformation by KLF4 was inhibited by each retinoid, implicating distinct nuclear receptor heterodimers as modulators of KLF4 transforming activity. When RXRalpha expression was suppressed by RNAi in cultured cells, transformation was promoted and the inhibitory effect of 9-cis UAB30 was attenuated. Similarly as shown for other mouse models of skin cancer, rexinoid prevented skin tumor initiation resulting from induction of KLF4 in basal keratinocytes. Rexinoid permitted KLF4 expression and KLF4-induced cell cycling, but attenuated the KLF4-induced misexpression of cytokeratin 1 in basal cells. Neoplastic lesions including hyperplasia, dysplasia and squamous cell carcinoma-like lesions were prevented for up to 30 days. Taken together, the results identify retinoid receptors including RXRalpha as ligand-dependent inhibitors of KLF4-mediated transformation or tumorigenesis.

  5. Recovery of transgenic plants by pollen-mediated transformation in Brassica juncea.

    PubMed

    Wang, Jingxue; Li, Yonghu; Liang, Chao

    2008-06-01

    The aroA-M1 encoding the mutant of 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPS) was introduced into the Brassica juncea genome by sonication-assisted, pollen-mediated transformation. The plasmid DNA and collected pollen grains were mixed in 0.3 mol/L sucrose solution and treated with mild ultrasonication. The treated pollen was then pollinated onto the oilseed stigmas after the stamens were removed artificially. Putative transgenic plants were obtained by screening germinating seeds on a medium containing glyphosate. Southern blot analysis of glyphosate-resistant plants indicated that the aroA-M1 gene had been integrated into the oilseed genome. Western blot analysis further confirmed that the EPSPS coded by aroA-M1 gene was expressed in transgenic plants. The transgenic plants exhibited increased resistance to glyphosate compared to untransformed plants. Some of those transgenic plants had considerably high resistance to glyphosate. The genetic analysis of T1 progeny further confirmed that the inheritance of the introduced genes followed the Mendelian rules. The results indicated that foreign genes can be transferred by pollen-mediated transformation combined with mild ultrasonication.

  6. Ligand Receptor-Mediated Regulation of Growth in Plants.

    PubMed

    Haruta, Miyoshi; Sussman, Michael R

    2017-01-01

    Growth and development of multicellular organisms are coordinately regulated by various signaling pathways involving the communication of inter- and intracellular components. To form the appropriate body patterns, cellular growth and development are modulated by either stimulating or inhibiting these pathways. Hormones and second messengers help to mediate the initiation and/or interaction of the various signaling pathways in all complex multicellular eukaryotes. In plants, hormones include small organic molecules, as well as larger peptides and small proteins, which, as in animals, act as ligands and interact with receptor proteins to trigger rapid biochemical changes and induce the intracellular transcriptional and long-term physiological responses. During the past two decades, the availability of genetic and genomic resources in the model plant species, Arabidopsis thaliana, has greatly helped in the discovery of plant hormone receptors and the components of signal transduction pathways and mechanisms used by these immobile but highly complex organisms. Recently, it has been shown that two of the most important plant hormones, auxin and abscisic acid (ABA), act through signaling pathways that have not yet been recognized in animals. For example, auxins stimulate cell elongation by bringing negatively acting transcriptional repressor proteins to the proteasome to be degraded, thus unleashing the gene expression program required for increasing cell size. The "dormancy" inducing hormone, ABA, binds to soluble receptor proteins and inhibits a specific class of protein phosphatases (PP2C), which activates phosphorylation signaling leading to transcriptional changes needed for the desiccation of the seeds prior to entering dormancy. While these two hormone receptors have no known animal counterparts, there are also many similarities between animal and plant signaling pathways. For example, in plants, the largest single gene family in the genome is the protein kinase

  7. Transforming Growth Factor β Induces Bone Marrow Mesenchymal Stem Cell Migration via Noncanonical Signals and N-cadherin.

    PubMed

    Dubon, Maria Jose; Yu, Jinyeong; Choi, Sanghyuk; Park, Ki-Sook

    2017-02-18

    Transforming growth factor-beta (TGF-β) induces the migration and mobilization of bone marrow-derived mesenchymal stem cells (BM-MSCs) to maintain bone homeostasis during bone remodeling and facilitate the repair of peripheral tissues. Although many studies have reported the mechanisms through which TGF-β mediates the migration of various types of cells, including cancer cells, the intrinsic cellular mechanisms underlying cellular migration and mobilization of BM-MSCs mediated by TGF-β are unclear. In this study, we showed that TGF-β activated noncanonical signaling molecules, such as Akt, extracellular signal-regulated kinase 1/2 (ERK1/2), focal adhesion kinase (FAK), and p38, via TGF-β type I receptor in human BM-MSCs and murine BM-MSC-like ST2 cells. Inhibition of Rac1 by NSC23766 and Src by PP2 resulted in impaired TGF-β-mediated migration. These results suggested that the Smad-independent, noncanonical signals activated by TGF-β were necessary for migration. We also showed that N-cadherin-dependent intercellular interactions were required for TGF-β-mediated migration using functional inhibition of N-cadherin with EDTA treatment and a neutralizing antibody (GC-4 antibody) or siRNA-mediated knockdown of N-cadherin. However, N-cadherin knockdown did not affect the global activation of noncanonical signals in response to TGF-β. Therefore, these results suggested that the migration of BM-MSCs in response to TGF-β was mediated through N-cadherin and noncanonical TGF-β signals. This article is protected by copyright. All rights reserved.

  8. Transforming growth factor-beta1 to the bone.

    PubMed

    Janssens, Katrien; ten Dijke, Peter; Janssens, Sophie; Van Hul, Wim

    2005-10-01

    TGF-beta1 is a ubiquitous growth factor that is implicated in the control of proliferation, migration, differentiation, and survival of many different cell types. It influences such diverse processes as embryogenesis, angiogenesis, inflammation, and wound healing. In skeletal tissue, TGF-beta1 plays a major role in development and maintenance, affecting both cartilage and bone metabolism, the latter being the subject of this review. Because it affects both cells of the osteoblast and osteoclast lineage, TGF-beta1 is one of the most important factors in the bone environment, helping to retain the balance between the dynamic processes of bone resorption and bone formation. Many seemingly contradictory reports have been published on the exact functioning of TGF-beta1 in the bone milieu. This review provides an overall picture of the bone-specific actions of TGF-beta1 and reconciles experimental discrepancies that have been reported for this multifunctional cytokine.

  9. Her2 oncogene transformation enhances 5-aminolevulinic acid-mediated protoporphyrin IX production and photodynamic therapy response

    PubMed Central

    Yang, Xue; Palasuberniam, Pratheeba; Myers, Kenneth A.; Wang, Chenguang; Chen, Bin

    2016-01-01

    Enhanced protoporphyrin IX (PpIX) production in tumors derived from the administration of 5-aminolevulinic acid (ALA) enables the use of ALA as a prodrug for photodynamic therapy (PDT) and fluorescence-guided tumor resection. Although ALA has been successfully used in the clinic, the mechanism underlying enhanced ALA-induced PpIX production in tumors is not well understood. Human epidermal growth receptor 2 (Her2, Neu, ErbB2) is a driver oncogene in human cancers, particularly breast cancers. Here we showed that, in addition to activating Her2/Neu cell signaling, inducing epithelial-mesenchymal transition and upregulating glycolytic enzymes, transfection of NeuT (a mutated Her2/Neu) oncogene in MCF10A human breast epithelial cells significantly enhanced ALA-induced PpIX fluorescence by elevating some enzymes involved in PpIX biosynthesis. Furthermore, NeuT-transformed and vector control cells exhibited drastic differences in the intracellular localization of PpIX, either produced endogenously from ALA or applied exogenously. In vector control cells, PpIX displayed a cell contact-dependent membrane localization at high cell densities and increased mitochondrial localization at low cell densities. In contrast, no predominant membrane localization of PpIX was observed in NeuT cells and ALA-induced PpIX showed a consistent mitochondrial localization regardless of cell density. PDT with ALA caused significantly more decrease in cell viability in NeuT cells than in vector cells. Our data demonstrate that NeuT oncogene transformation enhanced ALA-induced PpIX production and altered PpIX intracellular localization, rendering NeuT-transformed cells increased response to ALA-mediated PDT. These results support the use of ALA for imaging and photodynamic targeting Her2/Neu-positive tumors. PMID:27527860

  10. Efficient gene targeting in Penicillium chrysogenum using novel Agrobacterium-mediated transformation approaches.

    PubMed

    de Boer, Paulo; Bronkhof, Jurian; Dukiќ, Karolina; Kerkman, Richard; Touw, Hesselien; van den Berg, Marco; Offringa, Remko

    2013-12-01

    The industrial production of β-lactam antibiotics by Penicillium chrysogenum has increased tremendously over the last decades, however, further optimization via classical strain and process improvement has reached its limits. The availability of the genome sequence provides new opportunities for directed strain improvement, but this requires the establishment of an efficient gene targeting (GT) system. Recently, mutations affecting the non-homologous end joining (NHEJ) pathway were shown to increase GT efficiencies following PEG-mediated DNA transfer in P. chrysogenum from 1% to 50%. Apart from direct DNA transfer many fungi can efficiently be transformed using the T-DNA transfer system of the soil bacterium Agrobacterium tumefaciens, however, for P. chrysogenum no robust system for Agrobacterium-mediated transformation was available. We obtained efficient AMT of P. chrysogenum spores with the nourseothricin acetyltransferase gene as selection marker, and using this system we investigated if AMT in a NHEJ mutant background could further enhance GT efficiencies. In general, AMT resulted in higher GT efficiencies than direct DNA transfer, although the final frequencies depended on the Agrobacterium strain and plasmid backbone used. Providing overlapping and complementing fragments on two different plasmid backbones via the same Agrobacterium host was shown to be most effective. This so-called split-marker or bi-partite method resulted in highly efficient GT (>97%) almost exclusively without additional ectopic T-DNA insertions. As this method provides for an efficient GT method independent of protoplasts, it can be applied to other fungi for which no protoplasts can be generated or for which protoplast transformation leads to varying results.

  11. Growth suppression of Leydig TM3 cells mediated by aryl hydrocarbon receptor

    SciTech Connect

    Iseki, Minoru; Ikuta, Togo; Kobayashi, Tetsuya; Kawajiri, Kaname . E-mail: kawajiri@cancer-c.pref.saitama.jp

    2005-06-17

    Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin induces developmental toxicity in reproductive organs. To elucidate the function of AhR, we generated stable transformants of TM3 cells overexpressing wild-type aryl hydrocarbon receptor (AhR) or its mutants which carried mutations in nuclear localization signal or nuclear export signal. In the presence of 3-methylcholanthrene (MC), proliferation of the cells transfected with wild-type AhR was completely suppressed, whereas cells expressing AhR mutants proliferated in a manner equivalent to control TM3 cells, suggesting AhR-dependent growth inhibition. The suppression was associated with up-regulation of cyclin-dependent kinase inhibitor p21{sup Cip1}, which was abolished by pretreatment with actinomycin D. A p38 MAPK specific inhibitor, SB203580, blocked the increase of p21{sup Cip1} mRNA in response to MC. Treatment with indigo, another AhR ligand, failed to increase of p21{sup Cip1} mRNA, although up-regulation of mRNA for CYP1A1 was observed. These data suggest AhR in Leydig cells mediates growth inhibition by inducing p21{sup Cip1}.

  12. The growth and transformation of American ego psychology.

    PubMed

    Wallerstein, Robert S

    2002-01-01

    The roots of ego psychology trace back to Sigmund Freud's The Ego and the Id (1923) and "Inhibitions, Symptoms and Anxiety" (1926), works followed by two additional fundaments, Anna Freud's The Ego and the Mechanisms of Defense (1936) and Heinz Hartmann's Ego Psychology and the Problem of Adaptation (1939). It was brought to full flowering in post-World War II America by Hartmann and his many collaborators, and for over two decades it maintained a monolithic hegemony over American psychoanalysis. Within this framework the conceptions of the psychoanalytic psychotherapies evolved as specific modifications of psychoanalytic technique directed to the clinical needs of the spectrum of patients not amenable to psychoanalysis proper. This American consensus on the ego psychology paradigm and its array of technical implementations fragmented several decades ago, with the rise in America of Kohut's self psychology, geared to the narcissistic disorders, and with the importation from Britain of neo-Kleinian and object-relational perspectives, all coinciding with the rapid growth of the varieties of relational psychoanalysis, with its shift in focus to the two-person, interactive, and co-constructed transference-countertransference matrix. Implications of this intermingled theoretical pluralism (as contrasted with the unity of the once dominant ego psychology paradigm) for the evolution of the American ego psychology are spelled out.

  13. Heparin-binding epidermal growth factor-like growth factor, a v-Jun target gene, induces oncogenic transformation

    PubMed Central

    Fu, Shu-ling; Bottoli, Ivan; Goller, Martin; Vogt, Peter K.

    1999-01-01

    Jun is a transcription factor belonging to the activator protein 1 family. A mutated version of Jun (v-Jun) transduced by the avian retrovirus ASV17 induces oncogenic transformation in avian cell cultures and sarcomas in young galliform birds. The oncogenicity of Jun probably results from transcriptional deregulation of v-Jun-responsive target genes. Here we describe the identification and characterization of a growth-related v-Jun target, a homolog of heparin-binding epidermal growth factor-like growth factor (HB-EGF). HB-EGF is strongly expressed in chicken embryo fibroblasts (CEF) transformed by v-Jun. HB-EGF expression is not detectable or is marginal in nontransformed CEF. Using a hormone-inducible Jun-estrogen receptor chimera, we found that HB-EGF expression is correlated with v-Jun activity. In this system, induction of v-Jun is followed within 1 hr by elevated levels of HB-EGF. In CEF infected with various Jun mutants, HB-EGF expression is correlated with the oncogenic potency of the mutant. Constitutive expression of HB-EGF conveys to CEF the ability to grow in soft agar and to form multilayered foci of transformed cells on a solid substrate. These observations suggest that HB-EGF is an effector of Jun-induced oncogenic transformation. PMID:10318950

  14. Agrobacterium tumefaciens-mediated sorghum transformation using a mannose selection system.

    PubMed

    Gao, Zhensheng; Xie, Xueju; Ling, Yan; Muthukrishnan, Subbarat; Liang, George H

    2005-11-01

    A dual-marker plasmid containing the selectable marker gene, manA, and the reporter gene, sgfp, was used to transform immature sorghum embryos by employing an Agrobacterium-mediated system. Both genes were under the control of the ubi1 promoter in a binary vector pPZP201. The Escherichia coli phosphomannose isomerase (PMI) gene, pmi, was used as the selectable marker gene and mannose was used as the selective agent. The sgfp gene encoding green fluorescence protein (GFP) was the reporter gene and served as a visual screening marker. A total of 167 transgenic plants were obtained from nine different embryogenic callus lines grown on a selection medium containing 1%-2% mannose. Embryoids and shoots regenerated via embryogenesis, that showed strong GFP fluorescence, were selected from two sorghum genotypes: C401, an inbred line, and Pioneer 8505, a commercial hybrid. The GFP accumulation in transgenic plants was observed with a dissecting stereomicroscope. The integration and expression of the manA gene was confirmed by Southern blot and Western blot analyses, and the feasibility of manA selection was demonstrated by the chlorophenol red (CPR) assay. Our results indicated that transgenes segregated in the Mendelian fashion in the T1 generation. The conversion of mannose to a metabolizable fructose carbon source is beneficial to plants. In addition, except in soybean and a few legumes, no endogenous PMI activity has been detected in plant species, indicating that PMI is useful in the transformation of sorghum. In addition, PMI has no sequence homology to known allergens. Optimization of this selection system for sorghum transformation provides an efficient way to produce transgenic plants without using antibiotic or herbicidal agents as selectable markers, and our results showed that the transformation efficiency reached 2.88% for Pioneer 8505 and 3.30% for C401, both values higher than in previously published reports.

  15. Induction of apoptosis in bacillus Calmette-Guérin-activated T cells by transforming growth factor-beta.

    PubMed

    Méndez-Samperio, P; Hernández-Garay, M; García-Martínez, E

    2000-06-15

    In view of the critical role played by bacillus Calmette-Guérin (BCG) in the development and functional activation of protective T cells against tuberculosis, it has become important to understand the mechanisms by which cytokines regulate BCG-mediated immune responses. There is evidence that cytokine-mediated suppression of T cell function by mechanisms, including apoptosis, may reduce host resistance in tuberculosis. However, it is unclear whether cytokine-mediated suppression of antigen-responsive T cells through apoptotic mechanisms may be operating during human cellular activation induced by BCG. Here we present evidence, for the first time, that treatment of BCG-activated T cells with transforming growth factor-beta (TGF-beta) induces cellular apoptosis. These results were further supported by the fact that treatment of cells with a blocking mAb directed to TGF-beta significantly inhibited the percentage of apoptosis induced by TGF-beta. Interestingly, TGF-beta-mediated death of BCG-activated T cells in cultures containing interleukin (IL)-12 was observed. Moreover, our results demonstrated the induction of apoptosis by TGF-beta in BCG-activated T cells cultured in the presence of exogenous IL-12. In addition, our data indicated that TGF-beta significantly inhibited both BCG-induced cell growth determined by thymidine uptake and BCG-induced IFN-gamma secretion. Finally, TGF-beta-induced apoptosis in BCG-activated T cells correlated inversely with BCG-induced IFN-gamma secretion. Taken together, these findings indicate that TGF-beta induces apoptosis in human T cells activated with BCG and at the same time suggest that loss of BCG-reactive T cells through apoptotic mechanisms could contribute to an increased susceptibility to Mycobacterium tuberculosis infection.

  16. Effect of sulodexide on plasma transforming growth factor-beta1 in healthy volunteers.

    PubMed

    Borawski, Jacek; Dubowski, Miroslaw; Pawlak, Krystyna; Mysliwiec, Michal

    2010-02-01

    It is unknown whether the glycosaminoglycan drug sulodexide interferes with transforming growth factor-beta1--a member of heparin-binding family and a potent regulator of human biology and diseases. Hence, a 2-week pilot study was performed in 11 healthy men. Sulodexide was initially administered intravenously in a single dose, then--orally for 12 days and--again intravenously on study completion. Initial injection had no effect on activated form of the growth factor measured in plasma after 10 and 120 min; no change was also observed after 120 min from drug ingestion on day 7. On final intravenous administration, the growth factor levels increased by almost 60% after 10 min and remained elevated; the 120-min levels directly correlated with sulodexide dosage. Baseline cytokine levels decreased during the 2-week trial by more than 50%. In conclusion, transforming growth factor-beta1 release and likely downregulation of its expression may constitute novel pharmacological effects of sulodexide.

  17. Agrobacterium-mediated genetic transformation of Coffea arabica (L.) is greatly enhanced by using established embryogenic callus cultures

    PubMed Central

    2011-01-01

    Background Following genome sequencing of crop plants, one of the main challenges today is determining the function of all the predicted genes. When gene validation approaches are used for woody species, the main obstacle is the low recovery rate of transgenic plants from elite or commercial cultivars. Embryogenic calli have frequently been the target tissue for transformation, but the difficulty in producing or maintaining embryogenic tissues is one of the main problems encountered in genetic transformation of many woody plants, including Coffea arabica. Results We identified the conditions required for successful long-term proliferation of embryogenic cultures in C. arabica and designed a highly efficient and reliable Agrobacterium tumefaciens-mediated transformation method based on these conditions. The transformation protocol with LBA1119 harboring pBin 35S GFP was established by evaluating the effect of different parameters on transformation efficiency by GFP detection. Using embryogenic callus cultures, co-cultivation with LBA1119 OD600 = 0.6 for five days at 20 °C enabled reproducible transformation. The maintenance conditions for the embryogenic callus cultures, particularly a high auxin to cytokinin ratio, the age of the culture (optimum for 7-10 months of proliferation) and the use of a yellow callus phenotype, were the most important factors for achieving highly efficient transformation (> 90%). At the histological level, successful transformation was related to the number of proembryogenic masses present. All the selected plants were proved to be transformed by PCR and Southern blot hybridization. Conclusion Most progress in increasing transformation efficiency in coffee has been achieved by optimizing the production conditions of embryogenic cultures used as target tissues for transformation. This is the first time that a strong positive effect of the age of the culture on transformation efficiency was demonstrated. Our results make Agrobacterium-mediated

  18. Attenuation of TGF-β signaling suppresses premature senescence in a p21-dependent manner and promotes oncogenic Ras-mediated metastatic transformation in human mammary epithelial cells.

    PubMed

    Lin, Shu; Yang, Junhua; Elkahloun, Abdel G; Bandyopadhyay, Abhik; Wang, Long; Cornell, John E; Yeh, I-Tien; Agyin, Joseph; Tomlinson, Gail; Sun, Lu-Zhe

    2012-04-01

    The molecular mechanisms that drive triple-negative, basal-like breast cancer progression are elusive. Few molecular targets have been identified for the prevention or treatment of this disease. Here we developed a series of isogenic basal-like human mammary epithelial cells (HMECs) with altered transforming growth factor-β (TGF-β) sensitivity and different malignancy, resembling a full spectrum of basal-like breast carcinogenesis, and determined the molecular mechanisms that contribute to oncogene-induced transformation of basal-like HMECs when TGF-β signaling is attenuated. We found that expression of a dominant-negative type II receptor (DNRII) of TGF-β abrogated autocrine TGF-β signaling in telomerase-immortalized HMECs and suppressed H-Ras-V12-induced senescence-like growth arrest (SLGA). Furthermore, coexpression of DNRII and H-Ras-V12 rendered HMECs highly tumorigenic and metastatic in vivo in comparison with H-Ras-V12-transformed HMECs that spontaneously escaped H-Ras-V12-induced SLGA. Microarray analysis revealed that p21 was the major player mediating Ras-induced SLGA, and attenuated or loss of p21 expression contributed to the escape from SLGA when autocrine TGF-β signaling was blocked in HMECs. Furthermore, knockdown of p21 also suppressed H-Ras-V12-induced SLGA. Our results identify that autocrine TGF-β signaling is an integral part of the cellular anti-transformation network by suppressing the expression of a host of genes, including p21-regulated genes, that mediate oncogene-induced transformation in basal-like breast cancer.

  19. Role of transforming growth factor beta 1 on hepatic regeneration and apoptosis in liver diseases.

    PubMed Central

    Takiya, S; Tagaya, T; Takahashi, K; Kawashima, H; Kamiya, M; Fukuzawa, Y; Kobayashi, S; Fukatsu, A; Katoh, K; Kakumu, S

    1995-01-01

    AIMS--To investigate the effects of transforming growth factor beta 1 (TGF-beta 1) on regeneration and induction of apoptosis of liver cell and bile duct in various liver diseases. METHODS--Formalin fixed paraffin wax sections of 18 liver tissue samples were obtained by needle biopsy, surgery, or necropsy; these included six liver cirrhosis, three obstructive jaundice; five fulminant hepatitis, one subacute hepatitis, and three normal liver. Expression of TGF-beta 1, apoptosis related Le(y) antigen, Fas antigen, a receptor for tumour necrosis factor, and biotin nick end labelling with terminal deoxynucleotidyl transferase mediated dUTP (TUNEL) for locating DNA fragmentation, was investigated histochemically. RESULTS--TGF-beta 1 was expressed in areas of atypical bile duct proliferation, where bile duct continuously proliferated from liver cells. In occlusive jaundice and fulminant hepatitis, TUNEL was positive in nuclei and cytoplasm of metaplastic cells which formed incomplete bile ducts, and these cells appeared to extend from TGF-beta 1 expressing liver cells. Fas antigen was found only on the cell membrane of proliferated bile duct in fulminant hepatitis, which differed from TGF-beta 1 and TUNEL positive areas. Le(y) antigen was expressed in liver cell and bile duct at the areas with atypical bile duct proliferation, but its coexpression with TUNEL was rare. CONCLUSIONS--TGF-beta 1 plays a role in the arrest of liver cell regeneration and atypical bile duct proliferation, and in areas of rapidly progressing atypical bile duct proliferation, such as in fulminant hepatitis or bile retention. Apoptosis appears to be induced by TGF-beta 1. This phenomenon may account for the inadequate hepatic regeneration that occurs with liver disease. Images PMID:8567993

  20. Gene Expression Changes during the Development of Acute Lung Injury Role of Transforming Growth Factor β

    PubMed Central

    Wesselkamper, Scott C.; Case, Lisa M.; Henning, Lisa N.; Borchers, Michael T.; Tichelaar, Jay W.; Mason, John M.; Dragin, Nadine; Medvedovic, Mario; Sartor, Maureen A.; Tomlinson, Craig R.; Leikauf, George D.

    2005-01-01

    Rationale: Acute lung injury can occur from multiple causes, resulting in high mortality. The pathophysiology of nickel-induced acute lung injury in mice is remarkably complex, and the molecular mechanisms are uncertain. Objectives: To integrate molecular pathways and investigate the role of transforming growth factor β (TGF-β) in acute lung injury in mice. Methods: cDNA microarray analyses were used to identify lung gene expression changes after nickel exposure. MAPPFinder analysis of the microarray data was used to determine significantly altered molecular pathways. TGF-β1 protein in bronchoalveolar lavage fluid, as well as the effect of inhibition of TGF-β, was assessed in nickel-exposed mice. The effect of TGF-β on surfactant-associated protein B (Sftpb) promoter activity was measured in mouse lung epithelial cells. Measurements and Main Results: Genes that decreased the most after nickel exposure play important roles in lung fluid absorption or surfactant and phospholipid synthesis, and genes that increased the most were involved in TGF-β signaling. MAPPFinder analysis further established TGF-β signaling to be significantly altered. TGF-β–inducible genes involved in the regulation of extracellular matrix function and fibrinolysis were significantly increased after nickel exposure, and TGF-β1 protein was also increased in the lavage fluid. Pharmacologic inhibition of TGF-β attenuated nickel-induced protein in bronchoalveolar lavage. In addition, treatment with TGF-β1 dose-dependently repressed Sftpb promoter activity in vitro, and a novel TGF-β–responsive region in the Sftpb promoter was identified. Conclusions: These data suggest that TGF-β acts as a central mediator of acute lung injury through the alteration of several different molecular pathways. PMID:16100012

  1. RhoA Modulates Smad Signaling during Transforming Growth Factor-β-induced Smooth Muscle Differentiation*

    PubMed Central

    Chen, Shiyou; Crawford, Michelle; Day, Regina M.; Briones, Victorino R.; Leader, Jennifer E.; Jose, Pedro A.; Lechleider, Robert J.

    2007-01-01

    We recently reported that transforming growth factor (TGF)-β induced the neural crest stem cell line Monc-1 to differentiate into a spindle-like contractile smooth muscle cell (SMC) phenotype and that Smad signaling played an important role in this phenomenon. In addition to Smad signaling, other pathways such as mitogen-activated protein kinase (MAPK), phosphoinositol-3 kinase, and RhoA have also been shown to mediate TGF-β actions. The objectives of this study were to examine whether these signaling pathways contribute to TGF-β-induced SMC development and to test whether Smad signaling cross-talks with other pathway(s) during SMC differentiation induced by TGF-β. We demonstrate here that RhoA signaling is critical to TGF-β-induced SMC differentiation. RhoA kinase (ROCK) inhibitor Y27632 significantly blocks the expression of multiple SMC markers such as smooth muscle α-actin, SM22α, and calponin in TGF-β-treated Monc-1 cells. In addition, Y27632 reversed the cell morphology and abolished the contractility of TGF-β-treated cells. RhoA signaling was activated as early as 5 min following TGF-β addition. Dominant negative RhoA blocked nuclear translocation of Smad2 and Smad3 because of the inhibition of phosphorylation of both Smads and inhibited Smad-dependent SBE promoter activity, whereas constitutively active RhoA significantly enhanced SBE promoter activity. Consistent with these results, C3 exotoxin, an inhibitor of RhoA activation, significantly attenuated SBE promoter activity and inhibited Smad nuclear translocation. Taken together, these data point to a new role for RhoA as a modulator of Smad activation while regulating TGF-β-induced SMC differentiation. PMID:16317010

  2. Transforming growth factor-β in normal nociceptive processing and pathological pain models.

    PubMed

    Lantero, Aquilino; Tramullas, Mónica; Díaz, Alvaro; Hurlé, María A

    2012-02-01

    The transforming growth factor-β (TGF-β) superfamily is a multifunctional, contextually acting family of cytokines that participate in the regulation of development, disease and tissue repair in the nervous system. The TGF-β family is composed of several members, including TGF-βs, bone morphogenetic proteins (BMPs) and activins. In this review, we discuss recent findings that suggest TGF-β function as important pleiotropic modulators of nociceptive processing both physiologically and under pathological painful conditions. The strategy of increasing TGF-β signaling by deleting "BMP and activin membrane-bound inhibitor" (BAMBI), a TGF-β pseudoreceptor, has demonstrated the inhibitory role of TGF-β signaling pathways in normal nociception and in inflammatory and neuropathic pain models. In particular, strong evidence suggests that TGF-β1 is a relevant mediator of nociception and has protective effects against the development of chronic neuropathic pain by inhibiting the neuroimmune responses of neurons and glia and promoting the expression of endogenous opioids within the spinal cord. In the peripheral nervous system, activins and BMPs function as target-derived differentiation factors that determine and maintain the phenotypic identity and circuit assembly of peptidergic nociceptors. In this context, activin is involved in the complex events of neuroinflammation that modulate the expression of pain during wound healing. These findings have provided new insights into the physiopathology of nociception. Moreover, specific members of the TGF-β family and their signaling effectors and modulator molecules may be promising molecular targets for novel therapeutic agents for pain management.

  3. Transforming growth factor beta-independent shuttling of Smad4 between the cytoplasm and nucleus.

    PubMed

    Pierreux, C E; Nicolás, F J; Hill, C S

    2000-12-01

    Smad4 plays a pivotal role in all transforming growth factor beta (TGF-beta) signaling pathways. Here we describe six widely expressed alternatively spliced variants of human Smad4 with deletions of different exons in the linker, the region of Smad4 that separates the two well-conserved MH1 and MH2 domains. All these Smad4 variants form complexes with activated Smad2 and Smad3 and are incorporated into DNA-binding complexes with the transcription factor Fast-1, regardless of the amount of linker they contain. However, sequences encoded by exons 5 to 7 in the linker are essential for transcriptional activation. Most importantly, our observation that different Smad4 isoforms have different subcellular localizations has led us to the identification of a functional CRM1-dependent nuclear export signal in the Smad4 linker and a constitutively active nuclear localization signal in the N-terminal MH1 domain. In the absence of TGF-beta signaling, we conclude that Smad4 is rapidly and continuously shuttling between the nucleus and the cytoplasm, the distribution of Smad4 between the nucleus and the cytoplasm being dictated by the relative strengths of the nuclear import and export signals. We demonstrate that inhibition of CRM1-mediated nuclear export by treatment of cells with leptomycin B results in endogenous Smad4 accumulating very rapidly in the nucleus. Endogenous Smad2 and Smad3 are completely unaffected by leptomycin B treatment, indicating that the nucleocytoplasmic shuttling is specific for Smad4. We propose that, upon TGF-beta signaling, complex formation between Smad4 and activated Smad2 or -3 leads to nuclear accumulation of Smad4 through inhibition of its nuclear export. We demonstrate that after prolonged TGF-beta signaling Smad2 becomes dephosphorylated and Smad2 and Smad4 accumulate back in the cytoplasm.

  4. Transforming growth factor-beta receptor requirements for the induction of the endothelin-1 gene.

    PubMed

    Castañares, Cristina; Redondo-Horcajo, Mariano; Magan-Marchal, Noemi; Lamas, Santiago; Rodriguez-Pascual, Fernando

    2006-06-01

    Expression of the endothelin (ET)-1 gene is subject to complex regulation by numerous factors, among which the cytokine transforming growth factor-beta (TGF-beta) is one of the most important. TGF-beta action is based on the activation of the Smad signaling pathway. Smad proteins activate transcription of the gene by cooperation with activator protein-1 (AP-1) at specific sites on the ET-1 promoter. Smad signaling pathway is initiated by binding of the cytokine to a heteromeric complex of type I and type II receptors. Signal is then propagated to the nucleus by specific members of the Smad family. Most cell types contain a type I receptor known as ALK5. However, endothelial cells are unique because they coexpress an additional type I receptor named ALK1. These forms do not constitute redundant receptors with the same function, but they actually activate different Smad-mediated expression programs that lead to specific endothelial phenotypes. TGF-beta/ALK5/Smad3 pathway is associated to a mature endothelium because it leads to inhibition of cell migration/proliferation. Conversely, TGF-beta/ALK1/Smad5 activates both processes and is more related to the angiogenic state. We have analyzed the TGF-beta receptor subtype requirements for the activation of the ET-1 gene. For that purpose, we have overexpressed type I receptor and Smad isoforms in endothelial cells and analyzed the effect on ET-1 expression. Our experiments indicate that TGF-beta induces ET-1 expression preferentially through the activation of the ALK5/Smad3 pathway and, therefore, the expression of the vaso-constrictor may be associated to a quiescent and mature endothelial phenotype.

  5. Agrobacterium-mediated transformation of potato using PLRV-rep and PVY CP genes and assessment of replicase mediated resistance against natural infection of PLRV

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Replicase-and coat protein gene-mediated resistances against potato leafroll virus (PLRV) and potato virus Y (PVY), respectively, demonstrated to be an effective way of protecting potato against two major virus problems (PLRV & PVY) world-wide. Potato cultivar Desiree was transformed using Agrobacte...

  6. Nickel and cadmium-induced SLBP depletion: A potential pathway to metal mediated cellular transformation

    PubMed Central

    Jordan, Ashley; Zhang, Xiaoru; Li, Jinquan; Laulicht-Glick, Freda; Sun, Hong

    2017-01-01

    Both nickel and cadmium compounds have been established as group I carcinogens for several decades. Despite over-whelming evidence of these compounds’ carcinogenicity in humans, the specific underlying molecular mechanisms that govern metal induced cellular transformation remain unclear. In this study, we found that there were slightly different effects on decreased SLBP mRNA and protein as well as increased polyA H3.1 in our nickel exposed cells. This suggested that nickel and arsenic have similar effects on canonical histone mRNA transcription and translation. We also saw that the depletion of SLBP protein was reversed by inhibiting the proteosome. Finally, we showed that inhibiting the SLBP mRNA and protein levels were rescued by epigenetic modifiers suggesting that nickel’s effects on SLBP may be mediated via epigenetic mechanisms. Taken together these results suggest a similar mechanism by which both arsenic and nickel may exert their carcinogenic effects. PMID:28306745

  7. Transformation of soybean Gy3 gene into Artemisaarenaria mediated by corona discharge

    NASA Astrophysics Data System (ADS)

    Chao, Lu-meng; Na, Ri; Xue, Dan; Xu, Yongze; Liu, Teng

    2013-03-01

    In order to improve the protein content of desert plant, a method of genetic transformation mediated by corona discharge was established. Artemisia seeds were processed in corona electric field for 120 min at 12 kV, and then soaked in 0.1 SSC media that contained Soybean Gy3 gene DNA to incubate for 12 h at 26 °C. Finally the seeds were inoculated on the differentiation medium. Polymerase Chain Reaction (PCR) and Reverse Transcription Polymerase Chain Reaction (RT-PCR) detection showed that the Soybean Gy3 gene had been successfully introduced into genomic DNA of the regenerated plants of Artemisaarenaria. The study provided a new way for corona discharge in plant genetic modification.

  8. Cooperation of epidermis and inner tissues in auxin-mediated growth of maize coleoptiles.

    PubMed

    Kutschera, U; Bergfeld, R; Schopfer, P

    1987-02-01

    The function of the epidermis in auxinmediated elongation growth of maize (Zea mays L.) coleoptile segments was investigated. The following results were obtained: i) In the intact organ, there is a strong tissue tension produced by the expanding force of the inner tissues which is balanced by the contracting force of the outer epidermal wall. The compression imposed by the stretched outer epidermal wall upon the inner tissues gives rise to a wall-pressure difference which can be transformed into a water-potential difference between inner tissues and external medium (water) by removal of the outer epidermal wall. ii) Peeled segments fail to respond to auxin with normal growth. The plastic extensibility of the inner-tissue cell walls (measured with a constant-load extensiometer using living segments) is not influenced by auxin (or abscisic acid) in peeled or nonpeeled segments. It is concluded that auxin induces (and abscisic acid inhibits) elongation of the intact segment by increasing (decreasing) the extensibility specifically in the outer epidermal wall. In addition, tissue tension (and therewith the pressure acting on the outer epidermal wall) is maintained at a constant level over several hours of auxin-mediated growth, indicating that the inner cells also contribute actively to organ elongation. However, this contribution does not involve an increase of cell-wall extensibility, but a continuous shifting of the potential extension threshold (i.e., the length to which the inner tissues would extend by water uptake after peeling) ahead of the actual segment length. Thus, steady growth involves the coordinated action of wall loosening in the epidermis and regeneration of tissue tension by the inner tissues. iii) Electron micrographs show the accumulation of striking osmiophilic material (particles of approx. 0.3 μm diameter) specifically at the plasma membrane/cell-wall interface of the outer epidermal wall of auxin-treated segments. iv) Peeled segments fail to

  9. Reverse Austenite Transformation and Grain Growth in a Low-Carbon Steel

    NASA Astrophysics Data System (ADS)

    Garcin, Thomas; Ueda, Keiji; Militzer, Matthias

    2017-02-01

    The mechanisms controlling the reverse austenite transformation and the subsequent grain growth are examined in a low-carbon steel during slow continuous heating. The ex-situ metallographic analysis of quenched samples is complemented by in-situ dilatometry of the phase transformation and real-time laser ultrasonic measurements of the austenite grain size. Although the initial state of the microstructure (bainite or martensite) has only limited impact on the austenite transformation temperature, it has significant influence on the mean austenite grain size and the rate of grain growth. The coarsening of austenite islands during reverse transformation occurring from the martensitic microstructure is responsible for a large austenite grain structure at the completion of the austenite formation. On the other hand, a much finer austenite grain size is obtained when the austenite transforms from the bainite microstructure. Upon further heating, the rate of austenite grain growth is limited by the presence of nanometric precipitates present in the bainite microstructure leading to a significantly finer austenite grain size. These results give important guidance for the design of thermomechanical-controlled processing of heavy-gage steel plates.

  10. Studies of transformational leadership in consumer service: leadership trust and the mediating-moderating role of cooperative conflict management.

    PubMed

    Yang, Yi-Feng

    2012-02-01

    This is the third in a series of studies evaluating how transformational leadership is associated with related variables such as job satisfaction, change commitment, leadership trust, cooperative conflict management, and market orientation. The present paper evaluates the effects of transformational leadership and cooperative conflict management along with their mediating and moderating of leadership trust in the life insurance industry for two sample groups, sales managers and sales employees. The main effect of leadership trust was mediated and moderated by cooperative conflict management. Cooperative conflict management made a more important contribution than transformational leadership or the moderating effect (interaction), but these three together were the most important variables predicting highest leadership trust. Transformational leadership has an indirect influence on leadership trust. This work summarizes the specific contribution and importance of building successful leadership trust associations with employees in relation to leadership and satisfaction with change commitment.

  11. FoxO proteins mediate hypoxic induction of connective tissue growth factor in endothelial cells.

    PubMed

    Samarin, Jana; Wessel, Julia; Cicha, Iwona; Kroening, Sven; Warnecke, Christina; Goppelt-Struebe, Margarete

    2010-02-12

    Hypoxia, a driving force in neovascularization, promotes alterations in gene expression mediated by hypoxia-inducible factor (HIF)-1alpha. Connective tissue growth factor (CTGF, CCN2) is a modulator of endothelial cell growth and migration, but its regulation by hypoxia is poorly understood. Therefore, we analyzed signaling pathways involved in the regulation of CTGF by hypoxia in endothelial cells. Exposure to low oxygen tension or treatment with the hypoxia-mimetic dimethyloxalyl glycine (DMOG) stabilized HIF-1alpha and up-regulated CTGF in human umbilical vein endothelial cells and in a murine microvascular endothelial cell line. Induction of CTGF correlated with a HIF-dependent increase in protein and mRNA levels, and nuclear accumulation of the transcription factor FoxO3a. By contrast, gene expression and cellular localization of FoxO1 were not significantly altered by hypoxia. Expression of CTGF was strongly reduced by siRNA silencing of FoxO1 or FoxO3a. Furthermore, nuclear exclusion of FoxO1/3a transcription factors by inhibition of serine/threonine protein phosphatases by okadaic acid inhibited CTGF expression, providing evidence for both FoxO proteins as regulators of CTGF expression. The DMOG-stimulated induction of CTGF was further increased when endothelial cells were co-incubated with transforming growth factor-beta, an activator of Smad signaling. Activation of RhoA-Rho kinase signaling by the microtubule-disrupting drug combretastatin A4 also enhanced the DMOG-induced CTGF expression, thus placing CTGF induction by hypoxia in a network of interacting signaling pathways. Our findings provide evidence that FoxO1, hypoxia-stimulated expression of FoxO3a and its nuclear accumulation are required for the induction of CTGF by hypoxia in endothelial cells.

  12. Immune Cells, if Rendered Insensitive to Transforming Growth Factorbeta, Can Cure Prostate Cancer

    DTIC Science & Technology

    2007-02-01

    insensitive bone marrow transplants have met with the same fate by developing autoimmune syndrome , although these animals were able to eliminate challenged......Rendered Insensitive to Transforming Growth Factor-beta, Can 5a. CONTRACT NUMBER Cure Prostate Cancer 5b. GRANT NUMBER W81XWH-04-1-0166 5c. PROGRAM

  13. Application of sonication in combination with vacuum infiltration enhances the Agrobacterium-mediated genetic transformation in Indian soybean cultivars.

    PubMed

    Arun, Muthukrishnan; Subramanyam, Kondeti; Mariashibu, Thankaraj Salammal; Theboral, Jeevaraj; Shivanandhan, Ganeshan; Manickavasagam, Markandan; Ganapathi, Andy

    2015-02-01

    Soybean is a recalcitrant crop to Agrobacterium-mediated genetic transformation. Development of highly efficient, reproducible, and genotype-independent transformation protocol is highly desirable for soybean genetic improvement. Hence, an improved Agrobacterium-mediated genetic transformation protocol has been developed for cultivar PK 416 by evaluating various parameters including Agrobacterium tumefaciens strains (LBA4404, EHA101, and EHA105 harboring pCAMBIA1304 plasmid), sonication duration, vacuum infiltration pressure, and vacuum duration using cotyledonary node explants of soybean prepared from 7-day-old seedlings. The transformed plants were successfully developed through direct organogenesis system. Transgene expression was assessed by GUS histochemical and gfp visual assays, and integration was analyzed by PCR and Southern blot hybridization. Among the different combinations and durations evaluated, a maximum transformation efficiency of 18.6 % was achieved when the cotyledonary node explants of cv. PK 416 were sonicated for 20 s and vacuum infiltered for 2 min at 250 mmHg in A. tumefaciens EHA105 suspension. The amenability of the standardized protocol was tested on four more soybean cultivars JS 90-41, Hara Soy, Co 1, and Co 2 in which all the cultivars responded favorably with transformation efficiency ranging from 13.3 to 16.6 %. The transformation protocol developed in the present study would be useful to transform diverse soybean cultivars with desirable traits.

  14. Tumor Suppressor Bromodomain-containing Protein 7 Cooperates with Smads to Promote Transforming Growth Factor-β Responses

    PubMed Central

    Liu, Jinquan; He, Zhou; Zhang, Ye; You, Han; Huang, Jun; Lin, Xia; Feng, Xin-Hua

    2016-01-01

    Smad proteins are central mediators in the canonical transforming growth factor-β (TGF-β) signaling pathway in mammalian cells. We report here that bromodomain-containing protein 7 (BRD7) functions as a novel transcription coactivator for Smads in TGF-β signaling. BRD7 forms a TGF-β inducible complex with Smad3/4 through its N-terminal Smad-binding domain. BRD7 simultaneously binds to acetylated histones to promote Smad-chromatin association, and associates with histone acetyltransferase p300 to enhance Smad transcriptional activity. Ectopic expression of BRD7, but not its mutants defective in Smad binding, enhances TGF-β transcriptional, tumor suppressing and epithelial-mesenchymal transition (EMT) responses. Conversely, depletion of BRD7 inhibits TGF-β responses. Thus, our study provides compelling evidence for a new function of BRD7 in fine-tuning TGF-β physiological responses. PMID:27270427

  15. From Nanowires to Biofilms: An Exploration of Novel Mechanisms of Uranium Transformation Mediated by Geobacter Bacteria

    SciTech Connect

    REGUERA, GEMMA

    2014-01-16

    One promising strategy for the in situ bioremediation of radioactive groundwater contaminants that has been identified by the SBR Program is to stimulate the activity of dissimilatory metal-reducing microorganisms to reductively precipitate uranium and other soluble toxic metals. The reduction of U(VI) and other soluble contaminants by Geobacteraceae is directly dependent on the reduction of Fe(III) oxides, their natural electron acceptor, a process that requires the expression of Geobacter’s conductive pili (pilus nanowires). Expression of conductive pili by Geobacter cells leads to biofilm development on surfaces and to the formation of suspended biogranules, which may be physiological closer to biofilms than to planktonic cells. Biofilm development is often assumed in the subsurface, particularly at the matrix-well screen interface, but evidence of biofilms in the bulk aquifer matrix is scarce. Our preliminary results suggest, however, that biofilms develop in the subsurface and contribute to uranium transformations via sorption and reductive mechanisms. In this project we elucidated the mechanism(s) for uranium immobilization mediated by Geobacter biofilms and identified molecular markers to investigate if biofilm development is happening in the contaminated subsurface. The results provided novel insights needed in order to understand the metabolic potential and physiology of microorganisms with a known role in contaminant transformation in situ, thus having a significant positive impact in the SBR Program and providing novel concept to monitor, model, and predict biological behavior during in situ treatments.

  16. Main Group Lewis Acid-Mediated Transformations of Transition-Metal Hydride Complexes.

    PubMed

    Maity, Ayan; Teets, Thomas S

    2016-08-10

    This Review highlights stoichiometric reactions and elementary steps of catalytic reactions involving cooperative participation of transition-metal hydrides and main group Lewis acids. Included are reactions where the transition-metal hydride acts as a reactant as well as transformations that form the metal hydride as a product. This Review is divided by reaction type, illustrating the diverse roles that Lewis acids can play in mediating transformations involving transition-metal hydrides as either reactants or products. We begin with a discussion of reactions where metal hydrides form direct adducts with Lewis acids, elaborating the structure and dynamics of the products of these reactions. The bulk of this Review focuses on reactions where the transition metal and Lewis acid act in cooperation, and includes sections on carbonyl reduction, H2 activation, and hydride elimination reactions, all of which can be promoted by Lewis acids. Also included is a section on Lewis acid-base secondary coordination sphere interactions, which can influence the reactivity of hydrides. Work from the past 50 years is included, but the majority of this Review focuses on research from the past decade, with the intent of showcasing the rapid emergence of this field and the potential for further development into the future.

  17. Atomic mechanisms of diffusional nucleation and growth and comparisons with their counterparts in shear transformations

    NASA Astrophysics Data System (ADS)

    Aaronson, Hubert I.

    1993-02-01

    An integrated overview is presented of a viewpoint on the present understanding of nucleation and growth mechanisms in both diffusional and shear (martensitic) transformations. Special emphasis is placed on the roles played by the anisotropy of interphase boundary structure and energy and also upon elastic shear strain energy in both types of transformation. Even though diffusional nucleation is based on random statistical fluctuations, use of the time reversal principle shows that interfacial energy anisotropy leads to accurately reproducible orientation relationships and hence to partially or fully coherent boundaries, even when nucleation at a grain boundary requires an irrational orientation relationship to obtain. Since the fully coherent boundary areas separating most linear misfit compensating defects are wholly immobile during diffusional growth because of the improbability of moving substitutional atoms even temporarily into interstitial sites under conditions normally encountered, partially and fully coherent interphase boundaries should be immovable without the intervention of growth ledges. These ledges, however, must be heavily kinked and usually irregular in both spacing and path if they, too, are not to be similarly trapped. On the other hand, the large shear strain energy usually associated with martensite requires that its formation be initiated through a process which avoids the activation barrier associated with nucleation, perhaps by the Olson-Cohen matrix dislocation rearrangement mechanism. During growth, certain ledges on martensite plates serve as transformation dislocations and perform the crystal structure change (Bain strain). However, the terraces between these ledges in martensite (unlike those present during diffusional growth) are also mobile during non-fcc/hcp transformations; glissile dislocations on these terraces perform the lattice invariant deformation. Growth ledges operative during both diffusional and shear growth probably

  18. Agrobacterium-mediated genetic transformation of yam (Dioscorea rotundata): an important tool for functional study of genes and crop improvement

    PubMed Central

    Nyaboga, Evans; Tripathi, Jaindra N.; Manoharan, Rajesh; Tripathi, Leena

    2014-01-01

    Although genetic transformation of clonally propagated crops has been widely studied as a tool for crop improvement and as a vital part of the development of functional genomics resources, there has been no report of any existing Agrobacterium-mediated transformation of yam (Dioscorea spp.) with evidence of stable integration of T-DNA. Yam is an important crop in the tropics and subtropics providing food security and income to over 300 million people. However, yam production remains constrained by increasing levels of field and storage pests and diseases. A major constraint to the development of biotechnological approaches for yam improvement has been the lack of an efficient and robust transformation and regeneration system. In this study, we developed an Agrobacterium-mediated transformation of Dioscorea rotundata using axillary buds as explants. Two cultivars of D. rotundata were transformed using Agrobacterium tumefaciens harboring the binary vectors containing selectable marker and reporter genes. After selection with appropriate concentrations of antibiotic, shoots were developed on shoot induction and elongation medium. The elongated antibiotic-resistant shoots were subsequently rooted on medium supplemented with selection agent. Successful transformation was confirmed by polymerase chain reaction, Southern blot analysis, and reporter genes assay. Expression of gusA gene in transgenic plants was also verified by reverse transcription polymerase chain reaction analysis. Transformation efficiency varied from 9.4 to 18.2% depending on the cultivars, selectable marker genes, and the Agrobacterium strain used for transformation. It took 3–4 months from Agro-infection to regeneration of complete transgenic plant. Here we report an efficient, fast and reproducible protocol for Agrobacterium-mediated transformation of D. rotundata using axillary buds as explants, which provides a useful platform for future genetic engineering studies in this economically important

  19. A ubiquitin-specific protease possesses a decisive role for adenovirus replication and oncogene-mediated transformation.

    PubMed

    Ching, Wilhelm; Koyuncu, Emre; Singh, Sonia; Arbelo-Roman, Christina; Hartl, Barbara; Kremmer, Elisabeth; Speiseder, Thomas; Meier, Chris; Dobner, Thomas

    2013-03-01

    Adenoviral replication depends on viral as well as cellular proteins. However, little is known about cellular proteins promoting adenoviral replication. In our screens to identify such proteins, we discovered a cellular component of the ubiquitin proteasome pathway interacting with the central regulator of adenoviral replication. Our binding assays mapped a specific interaction between the N-terminal domains of both viral E1B-55K and USP7, a deubiquitinating enzyme. RNA interference-mediated downregulation of USP7 severely reduced E1B-55K protein levels, but more importantly negatively affected adenoviral replication. We also succeeded in resynthesizing an inhibitor of USP7, which like the knockdown background reduced adenoviral replication. Further assays revealed that not only adenoviral growth, but also adenoviral oncogene-driven cellular transformation relies on the functions of USP7. Our data provide insights into an intricate mechanistic pathway usurped by an adenovirus to promote its replication and oncogenic functions, and at the same time open up possibilities for new antiviral strategies.

  20. A Ubiquitin-specific Protease Possesses a Decisive Role for Adenovirus Replication and Oncogene-mediated Transformation

    PubMed Central

    Arbelo-Roman, Christina; Hartl, Barbara; Kremmer, Elisabeth; Speiseder, Thomas; Meier, Chris; Dobner, Thomas

    2013-01-01

    Adenoviral replication depends on viral as well as cellular proteins. However, little is known about cellular proteins promoting adenoviral replication. In our screens to identify such proteins, we discovered a cellular component of the ubiquitin proteasome pathway interacting with the central regulator of adenoviral replication. Our binding assays mapped a specific interaction between the N-terminal domains of both viral E1B-55K and USP7, a deubiquitinating enzyme. RNA interference-mediated downregulation of USP7 severely reduced E1B-55K protein levels, but more importantly negatively affected adenoviral replication. We also succeeded in resynthesizing an inhibitor of USP7, which like the knockdown background reduced adenoviral replication. Further assays revealed that not only adenoviral growth, but also adenoviral oncogene-driven cellular transformation relies on the functions of USP7. Our data provide insights into an intricate mechanistic pathway usurped by an adenovirus to promote its replication and oncogenic functions, and at the same time open up possibilities for new antiviral strategies. PMID:23555268

  1. Solution growth of spherulitic rod and platelet calcium phosphate assemblies through polymer-assisted mesoscopic transformations.

    PubMed

    Kosma, Vassiliki A; Beltsios, Konstantinos G

    2013-05-01

    Solution growth of apatite its precursors in the presence of urea commercial gelatin is found to lead, under appropriate conditions, to a rich spectrum of morphologies, among them high aspect ratio needles in uniform sturdy spherulitic assemblies resulting from a herein documented morphological 'Chrysalis Transformation'; the latter transformation involves the growth of parallel arrays of high aspect ratio needles within micron-scale tablets the formation of a radial needle arrangement upon disruption of tablet wrapping. A different level of gelatin leads to the formation of sturdy platelet-based spherulites through another morphological transformation. We also probe the role of four simple synthetic water-soluble polymers; we find that three of them (poly(vinyl alcohol), polyvinylpyrrolidone and polyacrylamide)) also affect substantially the assembly habits of apatite; the effect is similar to that of gelatin but the attained control is less perfect/complete. The case of poly(vinyl alcohol) provides, through variation of the degree of hydrolysis, insights as regards the chain architecture features that might favor morphological transformations. Morphological transformations of particle assemblies documented herein constitute novel ways of generating dense quasi-isotropic reinforcements with high aspect ratio ceramic particles; it becomes possible to tailor calcium phosphate phases at the structural level of crystal assembly.

  2. NEDD4-2 (neural precursor cell expressed, developmentally down-regulated 4-2) negatively regulates TGF-β (transforming growth factor-β) signalling by inducing ubiquitin-mediated degradation of Smad2 and TGF-β type I receptor

    PubMed Central

    2004-01-01

    Inhibitory Smad, Smad7, is a potent inhibitor of TGF-β (transforming growth factor-β) superfamily signalling. By binding to activated type I receptors, it prevents the activation of R-Smads (receptor-regulated Smads). To identify new components of the Smad pathway, we performed yeast two-hybrid screening using Smad7 as bait, and identified NEDD4-2 (neural precursor cell expressed, developmentally down-regulated 4-2) as a direct binding partner of Smad7. NEDD4-2 is structurally similar to Smurfs (Smad ubiquitin regulatory factors) 1 and 2, which were identified previously as E3 ubiquitin ligases for R-Smads and TGF-β superfamily receptors. NEDD4-2 functions like Smurfs 1 and 2 in that it associates with TGF-β type I receptor via Smad7, and induces its ubiquitin-dependent degradation. Moreover, NEDD4-2 bound to TGF-β-specific R-Smads, Smads 2 and 3, in a ligand-dependent manner, and induced degradation of Smad2, but not Smad3. However, in contrast with Smurf2, NEDD4-2 failed to induce ubiquitination of SnoN (Ski-related novel protein N), although NEDD4-2 bound to SnoN via Smad2 more strongly than Smurf2. We showed further that overexpressed NEDD4-2 prevents transcriptional activity induced by TGF-β and BMP, whereas silencing of the NEDD4-2 gene by siRNA (small interfering RNA) resulted in enhancement of the responsiveness to TGF-β superfamily cytokines. These data suggest that NEDD4-2 is a member of the Smurf-like C2-WW-HECT (WW is Trp-Trp and HECT is homologous to the E6-accessory protein) type E3 ubiquitin ligases, which negatively regulate TGF-β superfamily signalling through similar, but not identical, mechanisms to those used by Smurfs. PMID:15496141

  3. Transforming growth factor-β evokes Ca2+ waves and enhances gene expression in human pulmonary fibroblasts.

    PubMed

    Mukherjee, Subhendu; Kolb, Martin R J; Duan, Fuqin; Janssen, Luke J

    2012-06-01

    Fibroblasts maintain the structural framework of animal tissue by synthesizing extracellular matrix molecules. Chronic lung diseases are characterized in part by changes in fibroblast numbers, properties, and more. Fibroblasts respond to a variety of growth factors, cytokines, and proinflammatory mediators. However, the signaling mechanisms behind these responses have not been fully explored. We sought to determine the role of Ca(2+) waves in transforming growth factor-β (TGF-β)-mediated gene expression in human pulmonary fibroblasts. Primary human pulmonary fibroblasts were cultured and treated with TGF-β and different blockers under various conditions. Cells were then loaded with the Ca(2+) indicator dye Oregon green, and Ca(2+) waves were monitored by confocal [Ca(2+)](i) fluorimetry. Real-time PCR was used to probe gene expression. TGF-β (1 nM) evoked recurring Ca(2+) waves. A 30-minute pretreatment of SD 208, a TGF-β receptor-1 kinase inhibitor, prevented Ca(2+) waves from being evoked by TGF-β. The removal of external Ca(2+) completely occluded TGF-β-evoked Ca(2+) waves. Cyclopiazonic acid, an inhibitor of the internal Ca(2+) pump, evoked a relatively slowly developing rise in Ca(2+) waves compared with the rapid changes evoked by TGF-β, but the baseline fluorescence was increased. Ryanodine (10(-5) M) also blocked TGF-β-mediated Ca(2+) wave activity. Real-time PCR showed that TGF-β rapidly and dramatically increased the gene expression of collagen A1 and fibronectin. This increase was blocked by ryanodine treatment and cyclopiazonic acid. We conclude that, in human pulmonary fibroblasts, TGF-β acts on ryanodine-sensitive channels, leading to Ca(2+) wave activity, which in turn amplifies extracellular matrix gene expression.

  4. Agrobacterium tumefaciens-mediated transformation as an efficient tool for insertional mutagenesis of Cercospora zeae-maydis.

    PubMed

    Lu, Yuanyuan; Xiao, Shuqin; Wang, Fen; Sun, Jiaying; Zhao, Likun; Yan, Libin; Xue, Chunsheng

    2017-02-01

    An efficient Agrobacterium tumefaciens-mediated transformation (ATMT) approach was developed for the plant pathogenic fungus, Cercospora zeae-maydis, which is the causative agent of gray leaf spot in maize. The transformation was evaluated with five parameters to test the efficiencies of transformation. Results showed that spore germination time, co-cultivation temperature and time were the significant influencing factors in all parameters. Randomly selected transformants were confirmed and the transformants were found to be mitotically stable, with single-copy T-DNA integration in the genome. T-DNA flanking sequences were cloned by thermal asymmetric interlaced PCR. Thus, the ATMT approach is an efficient tool for insertional mutagenesis of C. zeae-maydis.

  5. USP17 is required for clathrin mediated endocytosis of epidermal growth factor receptor

    PubMed Central

    Jaworski, Jakub; de la Vega, Michelle; Fletcher, Sarah J.; McFarlane, Cheryl; Greene, Michelle K.; Smyth, Andrew W.; Van Schaeybroeck, Sandra; Johnston, James A.; Scott, Christopher J.; Rappoport, Joshua Z.; Burrows, James F.

    2014-01-01

    Previously we have shown that expression of the deubiquitinating enzyme USP17 is required for cell proliferation and motility. More recently we reported that USP17 deubiquitinates RCE1 isoform 2 and thus regulates the processing of ‘CaaX’ motif proteins. Here we now show that USP17 expression is induced by epidermal growth factor and that USP17 expression is required for clathrin mediated endocytosis of epidermal growth factor receptor. In addition, we show that USP17 is required for the endocytosis of transferrin, an archetypal substrate for clathrin mediated endocytosis, and that USP17 depletion impedes plasma membrane recruitment of the machinery required for clathrin mediated endocytosis. Thus, our data reveal that USP17 is necessary for epidermal growth factor receptor and transferrin endocytosis via clathrin coated pits, indicate this is mediated via the regulation of the recruitment of the components of the endocytosis machinery and suggest USP17 may play a general role in receptor endocytosis. PMID:25026282

  6. The transcriptional regulator BZR1 mediates trade-off between plant innate immunity and growth

    PubMed Central

    Lozano-Durán, Rosa; Macho, Alberto P; Boutrot, Freddy; Segonzac, Cécile; Somssich, Imre E; Zipfel, Cyril

    2013-01-01

    The molecular mechanisms underlying the trade-off between plant innate immunity and steroid-mediated growth are controversial. Here, we report that activation of the transcription factor BZR1 is required and sufficient for suppression of immune signaling by brassinosteroids (BR). BZR1 induces the expression of several WRKY transcription factors that negatively control early immune responses. In addition, BZR1 associates with WRKY40 to mediate the antagonism between BR and immune signaling. We reveal that BZR1-mediated inhibition of immunity is particularly relevant when plant fast growth is required, such as during etiolation. Thus, BZR1 acts as an important regulator mediating the trade-off between growth and immunity upon integration of environmental cues. DOI: http://dx.doi.org/10.7554/eLife.00983.001 PMID:24381244

  7. The transcriptional regulator BZR1 mediates trade-off between plant innate immunity and growth.

    PubMed

    Lozano-Durán, Rosa; Macho, Alberto P; Boutrot, Freddy; Segonzac, Cécile; Somssich, Imre E; Zipfel, Cyril

    2013-12-31

    The molecular mechanisms underlying the trade-off between plant innate immunity and steroid-mediated growth are controversial. Here, we report that activation of the transcription factor BZR1 is required and sufficient for suppression of immune signaling by brassinosteroids (BR). BZR1 induces the expression of several WRKY transcription factors that negatively control early immune responses. In addition, BZR1 associates with WRKY40 to mediate the antagonism between BR and immune signaling. We reveal that BZR1-mediated inhibition of immunity is particularly relevant when plant fast growth is required, such as during etiolation. Thus, BZR1 acts as an important regulator mediating the trade-off between growth and immunity upon integration of environmental cues. DOI: http://dx.doi.org/10.7554/eLife.00983.001.

  8. TRANSFORMATION

    SciTech Connect

    LACKS,S.A.

    2003-10-09

    Transformation, which alters the genetic makeup of an individual, is a concept that intrigues the human imagination. In Streptococcus pneumoniae such transformation was first demonstrated. Perhaps our fascination with genetics derived from our ancestors observing their own progeny, with its retention and assortment of parental traits, but such interest must have been accelerated after the dawn of agriculture. It was in pea plants that Gregor Mendel in the late 1800s examined inherited traits and found them to be determined by physical elements, or genes, passed from parents to progeny. In our day, the material basis of these genetic determinants was revealed to be DNA by the lowly bacteria, in particular, the pneumococcus. For this species, transformation by free DNA is a sexual process that enables cells to sport new combinations of genes and traits. Genetic transformation of the type found in S. pneumoniae occurs naturally in many species of bacteria (70), but, initially only a few other transformable species were found, namely, Haemophilus influenzae, Neisseria meningitides, Neisseria gonorrheae, and Bacillus subtilis (96). Natural transformation, which requires a set of genes evolved for the purpose, contrasts with artificial transformation, which is accomplished by shocking cells either electrically, as in electroporation, or by ionic and temperature shifts. Although such artificial treatments can introduce very small amounts of DNA into virtually any type of cell, the amounts introduced by natural transformation are a million-fold greater, and S. pneumoniae can take up as much as 10% of its cellular DNA content (40).

  9. Underpotential deposition-mediated layer-by-layer growth of thin films

    DOEpatents

    Wang, Jia Xu; Adzic, Radoslav R.

    2015-05-19

    A method of depositing contiguous, conformal submonolayer-to-multilayer thin films with atomic-level control is described. The process involves the use of underpotential deposition of a first element to mediate the growth of a second material by overpotential deposition. Deposition occurs between a potential positive to the bulk deposition potential for the mediating element where a full monolayer of mediating element forms, and a potential which is less than, or only slightly greater than, the bulk deposition potential of the material to be deposited. By cycling the applied voltage between the bulk deposition potential for the mediating element and the material to be deposited, repeated desorption/adsorption of the mediating element during each potential cycle can be used to precisely control film growth on a layer-by-layer basis. This process is especially suitable for the formation of a catalytically active layer on core-shell particles for use in energy conversion devices such as fuel cells.

  10. Protein kinase A modulates transforming growth factor-β signaling through a direct interaction with Smad4 protein.

    PubMed

    Yang, Huibin; Li, Gangyong; Wu, Jing-Jiang; Wang, Lidong; Uhler, Michael; Simeone, Diane M

    2013-03-22

    Transforming growth factor β (TGFβ) signaling normally functions to regulate embryonic development and cellular homeostasis. It is increasingly recognized that TGFβ signaling is regulated by cross-talk with other signaling pathways. We previously reported that TGFβ activates protein kinase A (PKA) independent of cAMP through an interaction of an activated Smad3-Smad4 complex and the regulatory subunit of the PKA holoenzyme (PKA-R). Here we define the interaction domains of Smad4 and PKA-R and the functional consequences of this interaction. Using a series of Smad4 and PKA-R truncation mutants, we identified amino acids 290-300 of the Smad4 linker region as critical for the specific interaction of Smad4 and PKA-R. Co-immunoprecipitation assays showed that the B cAMP binding domain of PKA-R was sufficient for interaction with Smad4. Targeting of B domain regions conserved among all PKA-R isoforms and exposed on the molecular surface demonstrated that amino acids 281-285 and 320-329 were required for complex formation with Smad4. Interactions of these specific regions of Smad4 and PKA-R were necessary for TGFβ-mediated increases in PKA activity, CREB (cAMP-response element-binding protein) phosphorylation, induction of p21, and growth inhibition. Moreover, this Smad4-PKA interaction was required for TGFβ-induced epithelial mesenchymal transition, invasion of pancreatic tumor cells, and regulation of tumor growth in vivo.

  11. Handling Arabidopsis plants: growth, preservation of seeds, transformation, and genetic crosses.

    PubMed

    Rivero, Luz; Scholl, Randy; Holomuzki, Nicholas; Crist, Deborah; Grotewold, Erich; Brkljacic, Jelena

    2014-01-01

    Growing healthy plants is essential for the advancement of Arabidopsis thaliana (Arabidopsis) research. Over the last 20 years, the Arabidopsis Biological Resource Center (ABRC) has collected and developed a series of best-practice protocols, some of which are presented in this chapter. Arabidopsis can be grown in a variety of locations, growth media, and environmental conditions. Most laboratory accessions and their mutant or transgenic derivatives flower after 4-5 weeks and set seeds after 7-8 weeks, under standard growth conditions (soil, long day, 23 ºC). Some mutant genotypes, natural accessions, and Arabidopsis relatives require strict control of growth conditions best provided by growth rooms, chambers, or incubators. Other lines can be grown in less-controlled greenhouse settings. Although the majority of lines can be grown in soil, certain experimental purposes require utilization of sterile solid or liquid growth media. These include the selection of primary transformants, identification of homozygous lethal individuals in a segregating population, or bulking of a large amount of plant material. The importance of controlling, observing, and recording growth conditions is emphasized and appropriate equipment required to perform monitoring of these conditions is listed. Proper conditions for seed harvesting and preservation, as well as seed quality control, are also described. Plant transformation and genetic crosses, two of the methods that revolutionized Arabidopsis genetics, are introduced as well.

  12. Transforming growth factor-β1 and cigarette smoke inhibit the ability of β2-agonists to enhance epithelial permeability.

    PubMed

    Unwalla, Hoshang J; Ivonnet, Pedro; Dennis, John S; Conner, Gregory E; Salathe, Matthias

    2015-01-01

    Chronic bronchitis, caused by cigarette smoke exposure, is characterized by mucus hypersecretion and reduced mucociliary clearance (MCC). Effective MCC depends, in part, on adequate airway surface liquid. Cystic fibrosis transmembrane conductance regulator (CFTR) provides the necessary osmotic gradient for serosal to mucosal fluid transport through its ability to both secrete Cl(-) and regulate paracellular permeability, but CFTR activity is attenuated in chronic bronchitis and in smokers. β2-adrenergic receptor (β2-AR) agonists are widely used for managing chronic obstructive pulmonary disease, and can activate CFTR, stimulate ciliary beat frequency, and increase epithelial permeability, thereby stimulating MCC. Patients with chronic airway diseases and cigarette smokers demonstrate increased transforming growth factor (TGF)-β1 signaling, which suppresses β2-agonist-mediated CFTR activation and epithelial permeability increases. Restoring CFTR function in these diseases can restore the ability of β2-agonists to enhance epithelial permeability. Human bronchial epithelial cells, fully redifferentiated at the air-liquid interface, were used for (14)C mannitol flux measurements, Ussing chamber experiments, and quantitative RT-PCR. β2-agonists enhance epithelial permeability by activating CFTR via the β2-AR/adenylyl cyclase/cAMP/protein kinase A pathway. TGF-β1 inhibits β2-agonist-mediated CFTR activation and epithelial permeability enhancement. Although TGF-β1 down-regulates both β2-AR and CFTR mRNA, functionally it only decreases CFTR activity. Cigarette smoke exposure inhibits β2-agonist-mediated epithelial permeability increases, an effect reversed by blocking TGF-β signaling. β2-agonists enhance epithelial permeability via CFTR activation. TGF-β1 signaling inhibits β2-agonist-mediated CFTR activation and subsequent increased epithelial permeability, potentially limiting the ability of β2-agonists to facilitate paracellular transport in disease

  13. Orphan nuclear receptor small heterodimer partner inhibits transforming growth factor-beta signaling by repressing SMAD3 transactivation.

    PubMed

    Suh, Ji Ho; Huang, Jiansheng; Park, Yun-Yong; Seong, Hyun-A; Kim, Dongwook; Shong, Minho; Ha, Hyunjung; Lee, In-Kyu; Lee, Keesook; Wang, Li; Choi, Hueng-Sik

    2006-12-22

    Orphan nuclear receptor small heterodimer partner (SHP) is an atypical member of the nuclear receptor superfamily; SHP regulates the nuclear receptor-mediated transcription of target genes but lacks a conventional DNA binding domain. In this study, we demonstrate that SHP represses transforming growth factor-beta (TGF-beta)-induced gene expression through a direct interaction with Smad, a transducer of TGF-beta signaling. Transient transfection studies demonstrate that SHP represses Smad3-induced transcription. In vivo and in vitro protein interaction assays revealed that SHP directly interacts with Smad2 and Smad3 but not with Smad4. Mapping of domains mediating the interaction between SHP and Smad3 showed that the entire N-terminal domain (1-159 amino acids) of SHP and the linker domain of Smad3 are involved in this interaction. In vitro glutathione S-transferase pulldown competition experiments revealed the SHP-mediated repression of Smad3 transactivation through competition with its co-activator p300. SHP also inhibits the activation of endogenous TGF-beta-responsive gene promoters, the p21, Smad7, and plasminogen activator inhibitor-1 (PAI-1) promoters. Moreover, adenovirus-mediated overexpression of SHP decreases PAI-1 mRNA levels, and down-regulation of SHP by a small interfering RNA increases both the transactivation of Smad3 and the PAI-1 mRNA levels. Finally, the PAI-1 gene is expressed in SHP(-/-) mouse hepatocytes at a higher level than in normal hepatocytes. Taken together, these data indicate that SHP is a novel co-regulator of Smad3, and this study provides new insights into regulation of TGF-beta signaling.

  14. Transforming Growth Factor-β1 and Cigarette Smoke Inhibit the Ability of β2-Agonists to Enhance Epithelial Permeability

    PubMed Central

    Ivonnet, Pedro; Dennis, John S.; Conner, Gregory E.; Salathe, Matthias

    2015-01-01

    Chronic bronchitis, caused by cigarette smoke exposure, is characterized by mucus hypersecretion and reduced mucociliary clearance (MCC). Effective MCC depends, in part, on adequate airway surface liquid. Cystic fibrosis transmembrane conductance regulator (CFTR) provides the necessary osmotic gradient for serosal to mucosal fluid transport through its ability to both secrete Cl− and regulate paracellular permeability, but CFTR activity is attenuated in chronic bronchitis and in smokers. β2-adrenergic receptor (β2-AR) agonists are widely used for managing chronic obstructive pulmonary disease, and can activate CFTR, stimulate ciliary beat frequency, and increase epithelial permeability, thereby stimulating MCC. Patients with chronic airway diseases and cigarette smokers demonstrate increased transforming growth factor (TGF)-β1 signaling, which suppresses β2-agonist–mediated CFTR activation and epithelial permeability increases. Restoring CFTR function in these diseases can restore the ability of β2-agonists to enhance epithelial permeability. Human bronchial epithelial cells, fully redifferentiated at the air–liquid interface, were used for 14C mannitol flux measurements, Ussing chamber experiments, and quantitative RT-PCR. β2-agonists enhance epithelial permeability by activating CFTR via the β2-AR/adenylyl cyclase/cAMP/protein kinase A pathway. TGF-β1 inhibits β2-agonist–mediated CFTR activation and epithelial permeability enhancement. Although TGF-β1 down-regulates both β2-AR and CFTR mRNA, functionally it only decreases CFTR activity. Cigarette smoke exposure inhibits β2-agonist–mediated epithelial permeability increases, an effect reversed by blocking TGF-β signaling. β2-agonists enhance epithelial permeability via CFTR activation. TGF-β1 signaling inhibits β2-agonist–mediated CFTR activation and subsequent increased epithelial permeability, potentially limiting the ability of β2-agonists to facilitate paracellular transport in

  15. Industry growth, work role characteristics, and job satisfaction: a cross-level mediation model.

    PubMed

    Ford, Michael T; Wooldridge, Jessica D

    2012-10-01

    The associations between industry revenue growth, individual work role characteristics, and job satisfaction were examined in this cross-level mediation analysis. Work roles were expected to be more autonomous, involve greater skill variety, and offer more opportunities for growth and development for workers in growing industries than for workers in declining industries. Supervisor support was also hypothesized to be stronger for workers in high-growth industries. Results from a nationally representative (U.S.) sample of service industry workers, using multilevel modeling, supported these propositions and suggest that job enrichment mediates relations between industry growth and job satisfaction. Associations between industry growth and autonomy were also stronger among workers in occupations that are less normatively autonomous, suggesting that industry growth fosters a weakening, and industry decline a strengthening, of traditional differences in autonomy across work roles. These results contribute to a multilevel perspective on organizational environments, individual work roles, and worker attitudes and well-being.

  16. Epigenetic mediated transcriptional activation of WNT5A participates in arsenical-associated malignant transformation

    SciTech Connect

    Jensen, Taylor J.; Wozniak, Ryan J.; Eblin, Kylee E.; Wnek, Sean M.; Gandolfi, A. Jay; Futscher, Bernard W.

    2009-02-15

    Arsenic is a human carcinogen with exposure associated with cancer of the lung, skin, and bladder. Many potential mechanisms have been implicated as playing a role in the process of arsenical-induced malignancy including the perturbation of signaling pathways and aberrant epigenetic regulation. We initiated studies to examine the role of a member of the non-canonical WNT signaling pathway, WNT5A, in UROtsa cells and arsenite [URO-ASSC] and monomethylarsonous acid [URO-MSC] malignantly transformed variants. We present data herein that suggest that WNT5A is transcriptionally activated during arsenical-induced malignant transformation. This WNT5A transcriptional activation is correlated with the enrichment of permissive histone modifications and the reduction of repressive modifications in the WNT5A promoter region. The epigenetic activation of WNT5A expression and acetylation of its promoter remain after the removal of the arsenical, consistent with the maintenance of an anchorage independent growth phenotype in these cells. Additionally, treatment with epigenetic modifying drugs supports a functional role for these epigenetic marks in controlling gene expression. Reduction of WNT5A using lentiviral shRNA greatly attenuated the ability of these cells to grow in an anchorage independent fashion. Extension of our model into human bladder cancer cell lines indicates that each of the cell lines examined also express WNT5A. Taken together, these data suggest that the epigenetic remodeling of the WNT5A promoter is correlated with its transcriptional activation and this upregulation likely participates in arsenical-induced malignant transformation.

  17. Epigenetic Mediated Transcriptional Activation of WNT5A Participates in Arsenical-Associated Malignant Transformation

    PubMed Central

    Jensen, Taylor J.; Wozniak, Ryan J.; Eblin, Kylee E.; Wnek, Sean M.; Gandolfi, A. Jay; Futscher, Bernard W.

    2015-01-01

    Arsenic is a human carcinogen with exposure associated with cancer of the lung, skin, and bladder. Many potential mechanisms have been implicated as playing a role in the process of arsenical-induced malignancy including the perturbation of signaling pathways and aberrant epigenetic regulation. We initiated studies to examine the role of a member of the non-canonical WNT signaling pathway, WNT5A, in UROtsa cells and arsenite [URO-ASSC] and monomethylarsonous acid [URO-MSC] malignantly transformed variants. We present data herein that suggests that WNT5A is transcriptionally activated during arsenical-induced malignant transformation. This WNT5A transcriptional activation is correlated with the enrichment of permissive histone modifications and the reduction of repressive modifications in the WNT5A promoter region. The epigenetic activation of WNT5A expression and acetylation of its promoter remain after the removal of the arsenical, consistent with the maintenance of an anchorage independent growth phenotype in these cells. Additionally, treatment with epigenetic modifying drugs supports a functional role for these epigenetic marks in controlling gene expression. Reduction of WNT5A using lentiviral shRNA greatly attenuated the ability of these cells to grow in an anchorage independent fashion. Extension of our model into human bladder cancer cell lines indicate that each of the cell lines examined also express WNT5A. Taken together, these data suggest that the epigenetic remodeling of the WNT5A promoter is correlated with its transcriptional activation and this upregulation likely participates in arsenical-induced malignant transformation. PMID:19061910

  18. Epigenetic mediated transcriptional activation of WNT5A participates in arsenical-associated malignant transformation.

    PubMed

    Jensen, Taylor J; Wozniak, Ryan J; Eblin, Kylee E; Wnek, Sean M; Gandolfi, A Jay; Futscher, Bernard W

    2009-02-15

    Arsenic is a human carcinogen with exposure associated with cancer of the lung, skin, and bladder. Many potential mechanisms have been implicated as playing a role in the process of arsenical-induced malignancy including the perturbation of signaling pathways and aberrant epigenetic regulation. We initiated studies to examine the role of a member of the non-canonical WNT signaling pathway, WNT5A, in UROtsa cells and arsenite [URO-ASSC] and monomethylarsonous acid [URO-MSC] malignantly transformed variants. We present data herein that suggest that WNT5A is transcriptionally activated during arsenical-induced malignant transformation. This WNT5A transcriptional activation is correlated with the enrichment of permissive histone modifications and the reduction of repressive modifications in the WNT5A promoter region. The epigenetic activation of WNT5A expression and acetylation of its promoter remain after the removal of the arsenical, consistent with the maintenance of an anchorage independent growth phenotype in these cells. Additionally, treatment with epigenetic modifying drugs supports a functional role for these epigenetic marks in controlling gene expression. Reduction of WNT5A using lentiviral shRNA greatly attenuated the ability of these cells to grow in an anchorage independent fashion. Extension of our model into human bladder cancer cell lines indicates that each of the cell lines examined also express WNT5A. Taken together, these data suggest that the epigenetic remodeling of the WNT5A promoter is correlated with its transcriptional activation and this upregulation likely participates in arsenical-induced malignant transformation.

  19. Onset and progression of pathological lesions in transforming growth factor-beta 1-deficient mice.

    PubMed Central

    Boivin, G. P.; O'Toole, B. A.; Orsmby, I. E.; Diebold, R. J.; Eis, M. J.; Doetschman, T.; Kier, A. B.

    1995-01-01

    Null-mutant (knockout) mice were obtained through disruption of the sixth exon of the endogenous transforming growth factor-beta 1 allele in murine embryonic stem cells via homologous recombination. Mice lacking transforming growth factor-beta 1 (mutants) were born grossly indistinguishable from wild-type littermates. With time, mutant mice exhibited a wasting phenotype that manifested itself in severe weight loss and dishevelled appearance (between 15 and 36 days of age). Examination of these moribund mice histologically revealed that transforming growth factor-beta 1-deficient mice exhibit a moderate to severe, multifocal, organ-dependent, mixed inflammatory cell response adversely affecting the heart, stomach, diaphragm, liver, lung, salivary gland, and pancreas. Because of the known multifunctional nature of transforming growth factor-beta 1 on the control of growth and differentiation of many different cell types, it is important to determine the degree to which the inflammatory response interacts with or masks other deficiencies that are present. To this end, we examined the extent and nature of the inflammatory lesions in different ages of neonatal knockout mice (5, 7, 10, and 14 days of age) and older moribund mice (> 15 days of age) and compared them with the histology seen in wild-type normal animals. Mild inflammatory infiltrates were first observed in 5-day mutant mice in the heart, by day 7 in the lung, salivary gland, and pancreas, and by day 14 inflammatory lesions were found in almost all organs examined. Moderate to severe inflammation was not present until the mice were 10 to 14 days old. In the older animals, there was a slight increase in the severity of the inflammatory lesions as the mice aged. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:7856734

  20. T-cell growth transformation by herpesvirus saimiri is independent of STAT3 activation.

    PubMed

    Heck, Elke; Lengenfelder, Doris; Schmidt, Monika; Müller-Fleckenstein, Ingrid; Fleckenstein, Bernhard; Biesinger, Brigitte; Ensser, Armin

    2005-05-01

    Herpesvirus saimiri (saimirine herpesvirus 2) (HVS), a T-lymphotropic tumor virus, induces lymphoproliferative disease in several species of New World primates. In addition, strains of HVS subgroup C are able to transform T cells of Old World primates, including humans, to permanently growing T-cell lines. In concert with the Stp oncoprotein, the tyrosine kinase-interacting protein (Tip) of HVS C488 is required for T-cell transformation in vitro and lymphoma induction in vivo. Tip was previously shown to interact with the protein tyrosine kinase Lck. Constitutive activation of signal transducers and activators of transcription (STATs) has been associated with oncogenesis and has also been detected in HVS-transformed T-cell lines. Furthermore, Tip contains a putative consensus YXPQ binding motif for the SH2 (src homology 2) domains of STAT1 and STAT3. Tip tyrosine phosphorylation at this site was required for binding of STATs and induction of STAT-dependent transcription. Here we sought to address the relevance of STAT activation for transformation of human T cells by introducing a tyrosine-to-phenylalanine mutation in the YXPQ motif of Tip of HVS C488. Unexpectedly, the recombinant virus was still able to transform human T lymphocytes, but it had lost its capability to activate STAT3 as well as STAT1. This demonstrates that growth transformation by HVS is independent of STAT3 activation.

  1. Necdin, a p53-Target Gene, Is an Inhibitor of p53-Mediated Growth Arrest

    PubMed Central

    Lafontaine, Julie; Rodier, Francis; Ouellet, Véronique; Mes-Masson, Anne-Marie

    2012-01-01

    In vitro, cellular immortalization and transformation define a model for multistep carcinogenesis and current ongoing challenges include the identification of specific molecular events associated with steps along this oncogenic pathway. Here, using NIH3T3 cells, we identified transcriptionally related events associated with the expression of Polyomavirus Large-T antigen (PyLT), a potent viral oncogene. We propose that a subset of these alterations in gene expression may be related to the early events that contribute to carcinogenesis. The proposed tumor suppressor Necdin, known to be regulated by p53, was within a group of genes that was consistently upregulated in the presence of PyLT. While Necdin is induced following p53 activation with different genotoxic stresses, Necdin induction by PyLT did not involve p53 activation or the Rb-binding site of PyLT. Necdin depletion by shRNA conferred a proliferative advantage to NIH3T3 and PyLT-expressing NIH3T3 (NIHLT) cells. In contrast, our results demonstrate that although overexpression of Necdin induced a growth arrest in NIH3T3 and NIHLT cells, a growing population rapidly emerged from these arrested cells. This population no longer showed significant proliferation defects despite high Necdin expression. Moreover, we established that Necdin is a negative regulator of p53-mediated growth arrest induced by nutlin-3, suggesting that Necdin upregulation could contribute to the bypass of a p53-response in p53 wild type tumors. To support this, we characterized Necdin expression in low malignant potential ovarian cancer (LMP) where p53 mutations rarely occur. Elevated levels of Necdin expression were observed in LMP when compared to aggressive serous ovarian cancers. We propose that in some contexts, the constitutive expression of Necdin could contribute to cancer promotion by delaying appropriate p53 responses and potentially promote genomic instability. PMID:22355404

  2. Promoting safety voice with safety-specific transformational leadership: the mediating role of two dimensions of trust.

    PubMed

    Conchie, Stacey M; Taylor, Paul J; Donald, Ian J

    2012-01-01

    Although safety-specific transformational leadership is known to encourage employee safety voice behaviors, less is known about what makes this style of leadership effective. We tested a model that links safety-specific transformational leadership to safety voice through various dimensions of trust. Data from 150 supervisor-employee dyads from the United Kingdom oil industry supported our predictions that the effects of safety-specific transformational leadership are sequentially mediated by affect-based trust beliefs and disclosure trust intentions. Moreover, we found that reliance trust intentions moderated the effect of disclosure: employees' disclosure intentions mediated the effects of affect-based trust on safety voice behaviors only when employees' intention to rely on their leader was moderate to high. These findings suggest that leaders seeking to encourage safety voice behaviors should go beyond "good reason" arguments and develop affective bonds with their employees.

  3. TRANSFORMER

    DOEpatents

    Baker, W.R.

    1959-08-25

    Transformers of a type adapted for use with extreme high power vacuum tubes where current requirements may be of the order of 2,000 to 200,000 amperes are described. The transformer casing has the form of a re-entrant section being extended through an opening in one end of the cylinder to form a coaxial terminal arrangement. A toroidal multi-turn primary winding is disposed within the casing in coaxial relationship therein. In a second embodiment, means are provided for forming the casing as a multi-turn secondary. The transformer is characterized by minimized resistance heating, minimized external magnetic flux, and an economical construction.

  4. Cloning and targeted disruption, via Agrobacterium tumefaciens-mediated transformation, of a trypsin protease gene from the vascular wilt fungus Verticillium dahliae.

    PubMed

    Dobinson, Katherine F; Grant, Sandra J; Kang, Seogchan

    2004-02-01

    A gene encoding a trypsin protease was isolated from a tomato isolate of Verticillium dahliae. The gene, designated VTP1, contains two introns and is predicted to encode a protein of 256 amino acids. The gene is present in V. dahliae isolates from different host plants and in V. albo-atrum; weakly hybridizing sequences are present in V. tricorpus. VTP1 cDNA sequences were identified in a sequence tag analysis of genes expressed under growth conditions that promote microsclerotia development. Replacement of the gene, by Agrobacterium tumefaciens-mediated transformation (ATMT), with a mutant allele construct did not noticeably alter either pathogenicity or growth in culture. Searches of expressed sequence tag databases showed that, in addition to the VTP1 gene, V. dahliae contains two genes encoding subtilisin-like proteases similar to those produced by pathogenic Aspergillus spp. This is the first description of the application of ATMT to the molecular analysis of phytopathogenic Verticillium spp.

  5. Long- and short-term temperature responses of microbially-mediated boreal soil organic matter transformations

    NASA Astrophysics Data System (ADS)

    Min, K.; Buckeridge, K. M.; Edwards, K. A.; Ziegler, S. E.; Billings, S. A.

    2015-12-01

    Microorganisms use exoenzymes to decay soil organic matter into assimilable substrates, some of which are transformed into CO2. Microbial CO2 efflux contributes up to 60% of soil respiration, a feature that can change with temperature due to altered exoenzyme activities (short-term) and microbial communities producing different exoenzymes (longer-term). Often, however, microbial temperature responses are masked by factors that also change with temperature in soil, making accurate projections of microbial CO2 efflux with warming challenging. Using soils along a natural climate gradient similar in most respects except for temperature regime (Newfoundland Labrador Boreal Ecosystem Latitudinal Transect), we investigated short-vs. long-term temperature responses of microbially-mediated organic matter transformations. While incubating soils at 5, 15, and 25°C for 84 days, we measured exoenzyme activities, CO2 efflux rates and biomass, and extracted DNA at multiple times. We hypothesized that short-term, temperature-induced increases in exoenzyme activities and CO2 losses would be smaller in soils from warmer regions, because microbes presumably adapted to warmer regions should use assimilable substrates more efficiently and thus produce exoenzymes at a lower rate. While incubation temperature generally induced greater exoenzyme activities (p<0.001), exoenzymes' temperature responses depended on enzymes and regions (p<0.001). Rate of CO2 efflux was affected by incubation temperature (P<0.001), but not by region. Microbial biomass and DNA sequencing will reveal how microbial community abundance and composition change with short-vs. longer-term temperature change. Though short-term microbial responses to temperature suggest higher CO2 efflux and thus lower efficiency of resource use with warming, longer-term adaptations of microbial communities to warmer climates remain unknown; this work helps fill that knowledge gap.

  6. Transforming growth factor-α induces human ovarian cancer cell invasion by down-regulating E-cadherin in a Snail-independent manner.

    PubMed

    Qiu, Xin; Cheng, Jung-Chien; Klausen, Christian; Fan, Qianlan; Chang, Hsun-Ming; So, Wai-Kin; Leung, Peter C K

    2015-05-22

    Transforming growth factor-α (TGF-α), like epidermal growth factor (EGF) and amphiregulin (AREG) binds exclusively to EGF receptor (EGFR). We have previously demonstrated that EGF, AREG and TGF-α down-regulate E-cadherin and induce ovarian cancer cell invasion, though whether these ligands use the same molecular mediators remains unknown. We now show that, like EGF, TGF-α- and AREG-induced E-cadherin down-regulation involves both EGFR and HER2. However, in contrast to EGF and AREG, the transcription factor Snail is not required for TGF-α-induced E-cadherin down-regulation. This study shows that TGF-α uses common and divergent molecular mediators to regulate E-cadherin expression and cell invasion.

  7. RGS6 Suppresses Ras-induced Cellular Transformation by Facilitating Tip60-mediated Dnmt1 Degradation and Promoting Apoptosis

    PubMed Central

    Huang, Jie; Stewart, Adele; Maity, Biswanath; Hagen, Jussara; Fagan, Rebecca L.; Yang, Jianqi; Quelle, Dawn E.; Brenner, Charles; Fisher, Rory A.

    2014-01-01

    The RAS protooncogene plays a central role in regulation of cell proliferation, and point mutations leading to oncogenic activation of Ras occur in a large number of human cancers. Silencing of tumor suppressor genes by DNA methyltransferase 1 (Dnmt1) is essential for oncogenic cellular transformation by Ras, and Dnmt1 is over-expressed in numerous human cancers. Here we provide new evidence that the pleiotropic Regulator of G protein Signaling (RGS) family member RGS6 suppresses Ras-induced cellular transformation by facilitating Tip60-mediated degradation of Dmnt1 and promoting apoptosis. Employing mouse embryonic fibroblasts (MEFs) from wild type (WT) and RGS6−/− mice, we found that oncogenic Ras induced up-regulation of RGS6, which in turn blocked Ras-induced cellular transformation. RGS6 functions to suppress cellular transformation in response to oncogenic Ras by down regulating Dnmt1 protein expression leading to inhibition of Dnmt1-mediated anti-apoptotic activity. Further experiments showed that RGS6 functions as a scaffolding protein for both Dnmt1 and Tip60 and is required for Tip60-mediated acetylation of Dnmt1 and subsequent Dnmt1 ubiquitylation and degradation. The RGS domain of RGS6, known only for its GAP activity toward Gα subunits, was sufficient to mediate Tip60 association with RGS6. This work demonstrates a novel signaling action for RGS6 in negative regulation of oncogene-induced transformation and provides new insights into our understanding of the mechanisms underlying Ras-induced oncogenic transformation and regulation of Dnmt1 expression. Importantly, these findings identify RGS6 as an essential cellular defender against oncogenic stress and a potential therapeutic target for developing new cancer treatments. PMID:23995786

  8. Early growth response 3 (Egr-3) is induced by transforming growth factor-β and regulates fibrogenic responses.

    PubMed

    Fang, Feng; Shangguan, Anna J; Kelly, Kathleen; Wei, Jun; Gruner, Katherine; Ye, Boping; Wang, Wenxia; Bhattacharyya, Swati; Hinchcliff, Monique E; Tourtellotte, Warren G; Varga, John

    2013-10-01

    Members of the early growth response (Egr) gene family of transcription factors have nonredundant biological functions. Although Egr-3 is implicated primarily in neuromuscular development and immunity, its regulation and role in tissue repair and fibrosis has not been studied. We now show that in normal skin fibroblasts, Egr-3 was potently induced by transforming growth factor-β via canonical Smad3. Moreover, transient Egr-3 overexpression was sufficient to stimulate fibrotic gene expression, whereas deletion of Egr-3 resulted in substantially attenuated transforming growth factor-β responses. Genome-wide expression profiling in fibroblasts showed that genes associated with tissue remodeling and wound healing were prominently up-regulated by Egr-3. Notably, <5% of fibroblast genes regulated by Egr-1 or Egr-2 were found to be coregulated by Egr-3, revealing substantial functional divergence among these Egr family members. In a mouse model of scleroderma, development of dermal fibrosis was accompanied by accumulation of Egr-3-positive myofibroblasts in the lesional tissue. Moreover, skin biopsy samples from patients with scleroderma showed elevated Egr-3 levels in the dermis, and Egr-3 mRNA levels correlated with the extent of skin involvement. These results provide the first evidence that Egr-3, a functionally distinct member of the Egr family with potent effects on inflammation and immunity, is up-regulated in scleroderma and is necessary and sufficient for profibrotic responses, suggesting important and distinct roles in the pathogenesis of fibrosis.

  9. Theory of surfactant-mediated growth on semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Kaxiras, Efthimios; Kandel, Daniel

    1996-08-01

    The surfactant effect, first demonstrated by Copel et al. [Phys. Rev. Lett. 63 (1989) 632] by using As to promote epitaxial growth of Ge on Si(100), has now been studied in a wide variety of systems, thus making systematic studies possible. We present theoretical models that account for the observed behavior of various surfactants on semiconductor surfaces, including homo-epitaxial and hetero-epitaxial growth. The theoretical models include first-principles calculations of the relative energy of different structures associated with surfactant layers and the activation energies for diffusion and exchange mechanisms, as well as solid-on-solid Monte Carlo simulations.

  10. Growth factor expression in degenerated intervertebral disc tissue. An immunohistochemical analysis of transforming growth factor beta, fibroblast growth factor and platelet-derived growth factor.

    PubMed

    Tolonen, Jukka; Grönblad, Mats; Vanharanta, Heikki; Virri, Johanna; Guyer, Richard D; Rytömaa, Tapio; Karaharju, Erkki O

    2006-05-01

    Degenerated intervertebral disc has lost its normal architecture, and there are changes both in the nuclear and annular parts of the disc. Changes in cell shape, especially in the annulus fibrosus, have been reported. During degeneration the cells become more rounded, chondrocyte-like, whereas in the normal condition annular cells are more spindle shaped. These chondrocyte-like cells, often forming clusters, affect extracellular matrix turnover. In previous studies transforming growth factor beta (TGFbeta) -1 and -2, basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) have been highlighted in herniated intervertebral disc tissue. In the present study the same growth factors are analysed immunohistochemically in degenerated intervertebral disc tissue. Disc material was obtained from 16 discs operated for painful degenerative disc disease. Discs were classified according to the Dallas Discogram Description. Different disc regions were analysed in parallel. As normal control disc tissue material from eight organ donors was used. Polyclonal antibodies against different growth factors and TGFbeta receptor type II were used, and the immunoreaction was detected by the avidin biotin complex method. All studied degenerated discs showed immunoreactivity for TGFbeta receptor type II and bFGF. Fifteen of 16 discs were immunopositive for TGFbeta-1 and -2, respectively, and none showed immunoreaction for PDGF. Immunopositivity was located in blood vessels and in disc cells. In the nucleus pulposus the immunoreaction was located almost exclusively in chondrocyte-like disc cells, whereas in the annular region this reaction was either in chondrocyte-like disc cells, often forming clusters, or in fibroblast-like disc cells. Chondrocyte-like disc cells were especially prevalent in the posterior disrupted area. In the anterior area of the annulus fibrosus the distribution was more even between these two cell types. bFGF was expressed in the anterior annulus

  11. [THE ROLE OF TRANSFORMING GROWTH FACTOR-B IN IMMUNOPATHOGENESIS OF DISEASES OF CONNECTIVE TISSUE].

    PubMed

    Rudoi, A S; Moskalev, A V; Sboitchakov, V B

    2016-02-01

    The recent studies of molecular physiology of fibrillin and pathophysiology of inherent disorders of structure and function of connective tissue such as dissection and aneurysm of aorta, myxomatously altered cusps and prolapses of mitral valve, syndrome of hyper-mobility of joints, demonstrated that important role in development of these malformations play alterations of transfer of signals by growth factors and matrix cellular interaction. These conditions under manifesting Marfan's syndrome can be a consequence of anomalies of fibrillin-1 which deficiency unbrakes process of activation of transforming growth factor-β (TGFβ). The involvement of TGFβ in pathogenesis of Marfan's syndrome permits consider antagonists of angiotensin-transforming enzymes as potential pharmaceuticals in therapy of this disease. The article presents analysis of publications' data related to this problem.

  12. Emerging Roles of Transforming Growth Factor β Signaling in Diabetic Retinopathy.

    PubMed

    Wheeler, Sarah E; Lee, Nam Y

    2017-03-01

    Diabetic retinopathy (DR) is a serious complication of diabetes mellitus affecting about one third of diabetic adults. Despite its prevalence, treatment options are limited and often implemented only in the later stages of the disease. To date, the pathogenesis of DR has been extensively characterized in the context of elevated glucose, insulin, and VEGF signaling, although a growing number of other growth factors and molecules, including transforming growth factor β (TGF-β) are being recognized as important contributors and/or therapeutic targets. Here, we review the complex roles of TGF-β signaling in DR pathogenesis and progression. J. Cell. Physiol. 232: 486-489, 2017. © 2016 Wiley Periodicals, Inc.

  13. Insights into the Transforming Growth Factor-β Signaling Pathway in Cutaneous Melanoma

    PubMed Central

    Perrot, Carole Yolande; Javelaud, Delphine

    2013-01-01

    Transforming growth factor-β (TGF-β) is a pleiotropic growth factor with broad tissue distribution that plays critical roles during embryonic development, normal tissue homeostasis, and cancer. While its cytostatic activity on normal epithelial cells initially defined TGF-β signaling as a tumor suppressor pathway, there is ample evidence indicating that TGF-β is a potent pro-tumorigenic agent, acting via autocrine and paracrine mechanisms to promote peri-tumoral angiogenesis, together with tumor cell migration, immune escape, and dissemination to metastatic sites. This review summarizes the current knowledge on the implication of TGF-β signaling in melanoma. PMID:23717002

  14. [Effects of nitrogen regulators on fertilizer nitrogen transformation in meadow cinnamon soil and on pakchoi growth].

    PubMed

    Sun, Zhi-Mei; Zhang, Kuo; Liu, Jian-Tao; Si, Huan-Sen; Wang, Yan-Qun

    2012-09-01

    Soil incubation test and pot experiment were conducted to investigate the effects of dicyandiamide (DCD) and its combination with nano-carbon on the transformation of fertilizers (urea and ammonium bicarbonate) nitrogen (N) in meadow cinnamon soil, a typical soil type in North China Plain, and on the growth of pakchoi (Brassica chinensis). In the first two weeks after applying urea and ammonium bicarbonate, the soil NH4+-N and NO3(-)-N contents varied greatly, but little variation was observed since then. The effects of the applied fertilizer N on the pakchoi growth and its N use efficiency differed significantly at early growth stages, but had little difference at harvesting stage. The DCD inhibited the transformation of the fertilizer N (especially ammonium bicarbonate N) into nitrate markedly, and this effect increased with increasing DCD dose. Under the conditions of our experiment, the optimal application rate of DCD was 1.0-1.5% of applied fertilize N, which could increase the pakchoi yield significantly, improve the leaf color, decrease the plant nitrate contents, and increase the fertilizer N use efficiency. The combination of DCD and nano-carbon exerted a synergistic effect on inhibiting soil ammonium oxidation, and also, promoted the pakchoi growth and N utilization at early growth stages significantly and decreased the plant nitrate level at harvesting stage.

  15. Transcriptional Regulation of Human Transforming Growth Factor-α in Astrocytes.

    PubMed

    Karki, Pratap; Johnson, James; Son, Deok-Soo; Aschner, Michael; Lee, Eunsook

    2017-03-01

    Transforming growth factor-alpha (TGF-α) is known to play multifunctional roles in the central nervous system (CNS), including the provision of neurotropic properties that protect neurons against various neurotoxic insults. Previously, we reported that TGF-α mediates estrogen-induced enhancement of glutamate transporter GLT-1 function in astrocytes. However, the regulatory mechanism of TGF-α at the transcriptional level remains to be established. Our findings revealed that the human TGF-α promoter contains consensus sites for several transcription factors, such as NF-κB and yin yang 1 (YY1). NF-κB served as a positive regulator of TGF-α promoter activity, corroborated by observations that overexpression of NF-κB p65 increased, while mutation in the NF-κB binding sites in the TGF-α promoter reduced the promoter activity in rat primary astrocytes. Pharmacological inhibition of NF-κB with pyrrolidine dithiocarbamate (PDTC; 50 μM) or quinazoline (QNZ; 10 μM) also abolished TGF-α promoter activity, and NF-κB directly bound to its consensus site in the TGF-α promoter as evidenced by electrophoretic mobility shift assay (EMSA). Dexamethasone (DX) increased TGF-α promoter activity by activation of NF-κB. Treatment of astrocytes with 100 nM of DX for 24 h activated its glucocorticoid receptor and signaling proteins, including MAPK, PI3K/Akt, and PKA, via non-genomic pathways, to enhance TGF-α promoter activity and expression. YY1 served as a critical negative regulator of the TGF-α promoter as overexpression of YY1 decreased, while mutation of YY1 binding site in the promoter increased TGF-α promoter activity. Treatment for 3 h with 250 μM of manganese (Mn), an environmental neurotoxin, decreased astrocytic TGF-α expression by activation of YY1. Taken together, our results suggest that NF-κB is a critical positive regulator, whereas YY1 is a negative regulator of the TGF-α promoter. These findings identify potential molecular targets for

  16. Epithelium-dependent extracellular matrix synthesis in transforming growth factor-beta 1-growth-inhibited mouse mammary gland.

    PubMed

    Silberstein, G B; Strickland, P; Coleman, S; Daniel, C W

    1990-06-01

    Exogenous transforming growth factor beta (TGF-beta 1) was shown in earlier studies to reversibly inhibit mouse mammary ductal growth. Using small plastic implants to treat regions of developing mammary glands in situ, we now report that TGF-beta 1 growth inhibition is associated with an ectopic accumulation of type I collagen messenger RNA and protein, as well as the glycosaminoglycan, chondroitin sulfate. Both macromolecules are normal components of the ductal extracellular matrix, which, under the influence of exogenous TGF-beta 1, became unusually concentrated immediately adjacent to the epithelial cells at the tip of the ductal growth points, the end buds. Stimulation of extracellular matrix was confined to aggregations of connective tissue cells around affected end buds and was not present around the TGF-beta 1 implants themselves, indicating that the matrix effect was epithelium dependent. Ectopic matrix synthesis was specific for TGF-beta 1 insofar as it was absent at ducts treated with other growth inhibitors, or at ducts undergoing normal involution in response to endogenous regulatory processes. These findings are consistent with the matrix-stimulating properties of TGF-beta 1 reported for other systems, but differ in their strict dependence upon epithelium. A possible role for endogenous TGF-beta 1 in modulating a mammary epithelium-stroma interaction is suggested.

  17. Angiopoietin-like protein 2 increases renal fibrosis by accelerating transforming growth factor-β signaling in chronic kidney disease.

    PubMed

    Morinaga, Jun; Kadomatsu, Tsuyoshi; Miyata, Keishi; Endo, Motoyoshi; Terada, Kazutoyo; Tian, Zhe; Sugizaki, Taichi; Tanigawa, Hiroki; Zhao, Jiabin; Zhu, Shunshun; Sato, Michio; Araki, Kimi; Iyama, Ken-ichi; Tomita, Kengo; Mukoyama, Masashi; Tomita, Kimio; Kitamura, Kenichiro; Oike, Yuichi

    2016-02-01

    Renal fibrosis is a common pathological consequence of chronic kidney disease (CKD) with tissue fibrosis closely associated with chronic inflammation in numerous pathologies. However, molecular mechanisms underlying that association, particularly in the kidney, remain unclear. Here, we determine whether there is a molecular link between chronic inflammation and tissue fibrosis in CKD progression. Histological analysis of human kidneys indicated abundant expression of angiopoietin-like protein 2 (ANGPTL2) in renal tubule epithelial cells during progression of renal fibrosis. Numerous ANGPTL2-positive renal tubule epithelial cells colocalized with cells positive for transforming growth factor (TGF)-β1, a critical mediator of tissue fibrosis. Analysis of M1 collecting duct cells in culture showed that TGF-β1 increases ANGPTL2 expression by attenuating its repression through microRNA-221. Conversely, ANGPTL2 increased TGF-β1 expression through α5β1 integrin-mediated activation of extracellular signal-regulated kinase. Furthermore, ANGPTL2 deficiency in a mouse unilateral ureteral obstruction model significantly reduced renal fibrosis by decreasing TGF-β1 signal amplification in kidney. Thus, ANGPTL2 and TGF-β1 positively regulate each other as renal fibrosis progresses. Our study provides insight into molecular mechanisms underlying chronic inflammation and tissue fibrosis and identifies potential therapeutic targets for CKD treatment.

  18. Identification of a mutation in the human raloxifene response element of the transforming growth factor-beta 3 gene.

    PubMed Central

    Han, K. O.; Kang, Y. S.; Hwang, C. S.; Moon, I. G.; Yim, C. H.; Chung, H. Y.; Jang, H. C.; Yoon, H. K.; Han, I. K.; Choi, Y. K.

    2001-01-01

    The human transforming growth factor-beta 3 (TGF-beta 3) is an important cytokine to maintain bone mass by inhibiting osteoclast differentiation. Recently raloxifene response element (RRE), a new enhancer with a polypurine sequence for estrogen receptor (ER)-mediated gene activation, was identified on the TGF-beta 3 gene. Functional analysis of the RRE-mediated pathway has shown that this would be an important pathway for bone preserving effect. We found a novel mutation in the RRE sequence by single-strand conformational polymorphism analysis in one of 200 Korean women. Cloning and sequencing revealed a heterozygote in which one allele had an insertion of 20 nucleotides (AGAGAGGGAGAGGGAGA GGG) between nucleotide +71 and +72 and a point mutation at nucleotide +75 (G-A transition), and the other allele had normal sequence. The insertion was a nearly perfect tandem duplication of the wild type DNA sequence. The bone mineral density of the affected woman was not much lower than that of age-matched controls. Transient transfection of the mutant allele showed no significantly different activity compared with that of the wild type allele. These observations suggest that the heterozygote variation of the RRE sequence seems not to be operative in determination of bone mass. PMID:11641521

  19. Pin1 down-regulates transforming growth factor-beta (TGF-beta) signaling by inducing degradation of Smad proteins.

    PubMed

    Nakano, Ayako; Koinuma, Daizo; Miyazawa, Keiji; Uchida, Takafumi; Saitoh, Masao; Kawabata, Masahiro; Hanai, Jun-ichi; Akiyama, Hirotada; Abe, Masahiro; Miyazono, Kohei; Matsumoto, Toshio; Imamura, Takeshi

    2009-03-06

    Transforming growth factor-beta (TGF-beta) is crucial in numerous cellular processes, such as proliferation, differentiation, migration, and apoptosis. TGF-beta signaling is transduced by intracellular Smad proteins that are regulated by the ubiquitin-proteasome system. Smad ubiquitin regulatory factor 2 (Smurf2) prevents TGF-beta and bone morphogenetic protein signaling by interacting with Smads and inducing their ubiquitin-mediated degradation. Here we identified Pin1, a peptidylprolyl cis-trans isomerase, as a novel protein binding Smads. Pin1 interacted with Smad2 and Smad3 but not Smad4; this interaction was enhanced by the phosphorylation of (S/T)P motifs in the Smad linker region. (S/T)P motif phosphorylation also enhanced the interaction of Smad2/3 with Smurf2. Pin1 reduced Smad2/3 protein levels in a manner dependent on its peptidyl-prolyl cis-trans isomerase activity. Knockdown of Pin1 increased the protein levels of endogenous Smad2/3. In addition, Pin1 both enhanced the interaction of Smurf2 with Smads and enhanced Smad ubiquitination. Pin1 inhibited TGF-beta-induced transcription and gene expression, suggesting that Pin1 negatively regulates TGF-beta signaling by down-regulating Smad2/3 protein levels via induction of Smurf2-mediated ubiquitin-proteasomal degradation.

  20. Extended Squire's transformation and its consequences for transient growth in a confined shear flow

    NASA Astrophysics Data System (ADS)

    John Soundar Jerome, J.; Chomaz, Jean-Marc

    2014-04-01

    The classical Squire transformation is extended to the entire eigenfunction structure of both Orr-Sommerfeld and Squire modes. For arbitrary Reynolds numbers Re, this transformation allows the solution of the initial-value problem for an arbitrary three-dimensional (3D) disturbance via a two-dimensional (2D) initial-value problem at a smaller Reynolds number Re2D. Its implications for the transient growth of arbitrary 3D disturbances is studied. Using the Squire transformation, the general solution of the initial-value problem is shown to predict large-Reynolds-number scaling for the optimal gain at all optimization times t with t/Re finite or large. This result is an extension of the well-known scaling laws first obtained by Gustavsson (J. Fluid Mech., vol. 224, 1991, pp. 241-260) and Reddy & Henningson (J. Fluid Mech., vol. 252, 1993, pp. 209-238) for arbitrary \\alpha Re, where \\alpha is the streamwise wavenumber. The Squire transformation is also extended to the adjoint problem and, hence, the adjoint Orr-Sommerfeld and Squire modes. It is, thus, demonstrated that the long-time optimal growth of 3D perturbations as given by the exponential growth (or decay) of the leading eigenmode times an extra gain representing its receptivity, may be decomposed as a product of the gains arising from purely 2D mechanisms and an analytical contribution representing 3D growth mechanisms equal to 1+(\\beta Re/Re2D)2G, where \\beta is the spanwise wavenumber and G is a known expression. For example, when the leading eigenmode is an Orr-Sommerfeld mode, it is given by the product of respective gains from the 2D Orr mechanism and an analytical expression representing the 3D lift-up mechanism. Whereas if the leading eigenmode is a Squire mode, the extra gain is shown to be solely due to the 3D lift-up mechanism.

  1. VEGF and colon cancer growth beyond angiogenesis: does VEGF directly mediate colon cancer growth via a non-angiogenic mechanism?

    PubMed

    Ahluwalia, Amrita; Jones, Michael K; Matysiak-Budnik, Tamara; Tarnawski, Andrzej S

    2014-01-01

    In this article we review the role of vascular endothelial growth factor (VEGF) in colon cancer growth and the underlying mechanisms. Angiogenesis, the growth of new capillary blood vessels in the body, is critical for tissue injury healing and cancer growth. In 1971, Judah Folkman proposed the concept that tumor growth beyond 2 mm is critically dependent on angiogenesis. Tumors including colon cancers release angiogenic growth factors that stimulate blood vessels to grow into the tumors thus providing oxygen and nutrients that enable exponential growth. VEGF is the most potent angiogenic growth factor. Several studies have highlighted the role of VEGF in colon cancer, specifically in the stimulation of angiogenesis. This role of VEGF is strongly supported by studies showing that inhibition of VEGF using the blocking antibody, bevacizumab, results in decreased angiogenesis and abrogation of cancer growth. In the United States, bevacizumab in combination with chemotherapy is FDA approved for the treatment of metastatic colon cancer. However, the source of VEGF in colon cancer tissue, the mechanisms of VEGF generation in colon cancer cells and the molecular pathways involved in VEGF mediated angiogenesis in colon cancer are not fully known. The possibility that VEGF directly stimulates cancer cell growth in an autocrine manner has not been explored in depth.

  2. Adaptation or Malignant Transformation: The Two Faces of Epigenetically Mediated Response to Stress

    PubMed Central

    Zoldoš, Vlatka

    2013-01-01

    Adaptive response to stress is a fundamental property of living systems. At the cellular level, many different types of stress elicit an essentially limited repertoire of adaptive responses. Epigenetic changes are the main mechanism for medium- to long-term adaptation to accumulated (intense, long-term, or repeated) stress. We propose the adaptive deregulation of the epigenome in response to stress (ADERS) hypothesis which assumes that the unspecific adaptive stress response grows stronger with the increasing stress level, epigenetically activating response gene clusters while progressively deregulating other cellular processes. The balance between the unspecific adaptive response and the general epigenetic deregulation is critical because a strong response can lead to pathology, particularly to malignant transformation. The main idea of our hypothesis is the continuum traversed by a cell subjected to accumulated stress, which lies between an unspecific adaptive response and pathological deregulation—the two extremes sharing the same underlying cause, which is a manifestation of a unified epigenetically mediated adaptive response to stress. The evolutionary potential of epigenetic regulation in multigenerational adaptation is speculatively discussed in the light of neo-Lamarckism. Finally, an approach to testing the proposed hypothesis is presented, relying on either the publicly available datasets or on conducting new experiments. PMID:24187667

  3. Adaptation or malignant transformation: the two faces of epigenetically mediated response to stress.

    PubMed

    Vojta, Aleksandar; Zoldoš, Vlatka

    2013-01-01

    Adaptive response to stress is a fundamental property of living systems. At the cellular level, many different types of stress elicit an essentially limited repertoire of adaptive responses. Epigenetic changes are the main mechanism for medium- to long-term adaptation to accumulated (intense, long-term, or repeated) stress. We propose the adaptive deregulation of the epigenome in response to stress (ADERS) hypothesis which assumes that the unspecific adaptive stress response grows stronger with the increasing stress level, epigenetically activating response gene clusters while progressively deregulating other cellular processes. The balance between the unspecific adaptive response and the general epigenetic deregulation is critical because a strong response can lead to pathology, particularly to malignant transformation. The main idea of our hypothesis is the continuum traversed by a cell subjected to accumulated stress, which lies between an unspecific adaptive response and pathological deregulation--the two extremes sharing the same underlying cause, which is a manifestation of a unified epigenetically mediated adaptive response to stress. The evolutionary potential of epigenetic regulation in multigenerational adaptation is speculatively discussed in the light of neo-Lamarckism. Finally, an approach to testing the proposed hypothesis is presented, relying on either the publicly available datasets or on conducting new experiments.

  4. Effects of transforming growth factor beta-1 on growth-regulatory genes in tumour-derived human oral keratinocytes.

    PubMed Central

    Paterson, I. C.; Patel, V.; Sandy, J. R.; Prime, S. S.; Yeudall, W. A.

    1995-01-01

    This study examined the effect of transforming growth factor beta-1 (TGF-beta 1) on c-myc, RB1, junB and p53 expression together with pRb phosphorylation, in carcinoma-derived and normal human oral keratinocytes with a range of inhibitory responses to this ligand. Amplification of c-myc was observed in eight of eight tumour-derived cell lines and resulted in corresponding mRNA expression. The down-regulation of c-myc expression by TGF-beta 1 predominantly reflected growth inhibition by TGF-beta 1, but in two of eight tumour-derived cell lines which were partially responsive to TGF-beta 1 c-myc expression was unaltered by this ligand. While RB1 mRNA levels were unaltered by TGF-beta 1, the ligand caused the accumulation of the underphosphorylated form of the Rb protein in all cells irrespective of TGF-beta 1-induced growth arrest. junB expression was up-regulated by TGF-beta 1 in cells with a range of growth inhibitory responses. All cells contained mutant p53. TGF-beta 1 did not affect p53 mRNA expression in both tumour-derived and normal keratinocytes and there was no alteration in p53 protein levels in keratinocytes expressing stable p53 protein following TGF-beta 1 treatment. The data indicate that TGF-beta-induced growth control can exist independently of the presence of mutant p53 and the control of Rb phosphorylation and c-myc down-regulation. It may be that TGF-beta growth inhibition occurs via multiple mechanisms and that the loss of one pathway during tumour progression does not necessarily result in the abrogation of TGF-beta-induced growth control. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7547241

  5. Phase transformation process and step growth mechanism of hydroxyapatite whiskers under constant impulsion system

    NASA Astrophysics Data System (ADS)

    Chen, Changlian; Li, Jianqiu; Huang, Zhiliang; Cheng, Xiaokun; Yu, Jun; Wang, Han; Chi, Ru-an; Hu, Yuehua

    2011-07-01

    Hydroxyapatite (HAP) whiskers were synthesized using urea as the precipitator by a phase transformation method, and their phase transformation process and growth mechanism were investigated. The results showed that with the decomposition of urea and the corresponding increase of pH value of the reaction system, dicalcium phosphate anhydrous (DCPA) and octacalcium phosphate (OCP) were precipitated at pH of 3.3-4.3; then Ca 2+ and HPO42- ions began to be released from DCPA at pH values greater than 4.5. Finally HAP whiskers heterogeneously nucleated and grew up into short column crystals along the surface of the OCP flakes. In the absence of the ionic resources, DCPA gradually dissolved and the OCP flakes transformed into HAP continuously and the short columnar HAP whiskers grew up. The aspect ratio of the HAP whiskers with length of 20-100 μm and diameter of 1-2 μm was about 25. The HRTEM and AFM images showed that HAP whiskers grew along the c-axis direction, the (1 0 0) steps were clearly observed at their heads and the straight step lines instead of helical Frank ones were present on the side face of the (1 0 0) steps. The calculation on the basis of the surface energy of the HAP crystal showed that the growth rate of the (0 0 1) plane was the fastest, the growth rate at the homogeneous twist sites was the second and that at heterogeneous twist sites could be the slowest, which were the main factors finally leading to the preferential growth of HAP whiskers along the c-axis direction as well as the formation of the growth steps.

  6. Does human-induced habitat transformation modify pollinator-mediated selection? A case study in Viola portalesia (Violaceae).

    PubMed

    Murúa, Maureen; Espinoza, Claudia; Bustamante, Ramiro; Marín, Víctor H; Medel, Rodrigo

    2010-05-01

    Pollinator-mediated selection is one of the most important factors driving adaptation in flowering plants. However, as ecological conditions change through habitat loss and fragmentation, the interactions among species may evolve in new and unexpected directions. Human-induced environmental variation is likely to affect selection regimes, but as yet no empirical examples have been reported. In the study reported here, we examined the influence of human-induced habitat transformation on the composition of pollinator assemblages and, hence, pollinator-mediated selection on the flower phenotype of Viola portalesia (Violaceae). Our results indicate that pollinator assemblages differed substantially in terms of species composition and visitation rate between nearby native and transformed habitats. Similarly, the insect species that contributed most to visitation rates differed between plant populations. While the magnitude and sign of pollinator-mediated selection on flower length and width did not differ between sites, selection for flower number lost significance in the transformed habitat, and a significant pattern of disruptive selection for flower shape, undetected in the native habitat, was present in the transformed one. Overall, the results of this study suggest that human-induced habitat change may not only modify the species composition of pollinator assemblages, relaxing the selection process on some flower characters, but they may also create new opportunities for fitness-trait covariation not present in pristine conditions.

  7. GAGE12 mediates human gastric carcinoma growth and metastasis.

    PubMed

    Lee, Eun Kyung; Song, Kyung-A; Chae, Ji-Hye; Kim, Kyoung-Mee; Kim, Seok-Hyung; Kang, Myung-Soo

    2015-05-15

    The spontaneous metastasis from human gastric carcinoma (GC) remains poorly reproduced in animal models. Here, we established an experimental mouse model in which GC progressively developed in the orthotopic stomach wall and metastasized to multiple organs; the tumors colonized in the ovary exhibited typical characteristics of Krukenberg tumor. The expression of mesenchymal markers was low in primary tumors and high in those in intravasating and extravasating veins. However, the expression of epithelial markers did not differ, indicating that the acquisition of mesenchymal markers without a concordant loss of typical epithelial markers was associated with metastasis. We identified 35 differentially expressed genes (DEGs) in GC cells metastasized to ovary, among which overexpression of GAGE12 family genes, the top-ranked DEGs, were validated. In addition, knockdown of the GAGE12 gene family affected transcription of many of the aforementioned 35 DEGs and inhibited trans-well migration, tumor sphere formation in vitro and tumor growth in vivo. In accordance, GAGE12 overexpression augmented migration, tumor sphere formation and sustained in vivo tumor growth. Taken together, the GAGE12 gene family promotes GC growth and metastasis by modulating the expression of GC metastasis-related genes.

  8. Transforming growth factor-β1 up-regulates connexin43 expression in human granulosa cells

    PubMed Central

    Chen, Yu-Ching; Chang, Hsun-Ming; Cheng, Jung-Chien; Tsai, Horng-Der; Wu, Cheng-Hsuan; Leung, Peter C.K.

    2015-01-01

    STUDY QUESTION Does transforming growth factor-β1 (TGF-β1) up-regulate connexin43 (Cx43) to promote cell–cell communication in human granulosa cells? SUMMARY ANSWER TGF-β1 up-regulates Cx43 and increases gap junction intercellular communication activities (GJIC) in human granulosa cells, and this effect occurs via the activin receptor-like kinase (ALK)5-mediated Sma- and Mad-related protein (SMAD)2/3-SMAD4-dependent pathway. WHAT IS KNOWN ALREADY TGF-β1 and its receptors are expressed in human granulosa cells, and follicular fluid contains TGF-β1 protein. In human granulosa cells, Cx43 gap junctions play an important role in the development of follicles and oocytes. STUDY DESIGN, SIZE, DURATION This is an experimental study which was performed over a 1-year period. PARTICIPANTS/MATERIALS, SETTING, METHODS Immortalized human granulosa cells (SVOG cells) and primary human granulosa-lutein cells obtained from women undergoing IVF in an academic research center were used as the study models. Cx43 mRNA and protein expression levels were examined after exposure of SVOG cells to recombinant human TGF-β1. An activin/TGF-β type I receptor inhibitor, SB431542, and small interfering RNAs targeting ALK4, ALK5, SMAD2, SMAD3 and SMAD4 were used to verify the specificity of the effects and to investigate the molecular mechanisms. Real-time-quantitative PCR and western blot analysis were used to detect the specific mRNA and protein levels, respectively. GJIC between SVOG cells were evaluated using a scrape loading and dye transfer assay. Results were analyzed by one-way analysis of variance. MAIN RESULTS AND THE ROLE OF CHANCE TGF-β1 treatment increased phosphorylation of SMAD2/3 (P < 0.0001) and up-regulated Cx43 mRNA and protein levels (P < 0.001) in SVOG cells and these stimulatory effects were abolished by the TGF-β type I receptor inhibitor SB431542. In addition, the up-regulatory effect of TGF-β1 on Cx43 expression (mRNA and protein) was confirmed in primary

  9. Epithelial-mesenchymal interactions and lung branching morphogenesis. Role of polyamines and transforming growth factor beta1.

    PubMed

    Stabellini, G; Locci, P; Calvitti, M; Evangelisti, R; Marinucci, L; Bodo, M; Caruso, A; Canaider, S; Carinci, P

    2001-01-01

    Lung branching morphogenesis is a result of epithelial-mesenchymal interactions, which are in turn dependent on extracellular matrix composition and cytokine regulation. Polyamines have recently been demonstrated as able to modify chick embryo skin differentiation. In this work we have examined the effects of putrescine and spermidine during chick embryo lung morphogenesis in organotypic cultures by morphological, histochemical and biochemical examination. To verify the role of polyamines, we used specific inhibitors, such as bis-cyclohexylammonium sulphate and alfa-difluoromethylornithine, and transforming growth factor beta1, an ornithine decarboxylase and polyamine stimulator. Our data show that lung morphogenesis is significantly altered following the induced mesenchymal glycosaminoglycan changes. The increase of mesenchymal glycosaminoglycans is correlated with a stimulation of lung development in the presence of polyamines, and with its inhibition when transforming growth factor beta1 is added to the culture medium. The morphometric data show a uniform increase of both the mesenchyme and epithelial branching with spermidine and putrescine stimulus, whereas the mesenchymal substance alone is significantly increased in apical-median lung sections with transforming growth factor beta1 and transforming growth factor beta1 + spermidine lung cultures. Transforming growth factor beta1 and transforming growth factor beta1 + spermidine confirm the blocking of epithelial branching formations and fibroblast activation, and show that polyamines are unable to prevent the blocking of epithelial cells due to the inhibitory effect of transforming growth factor beta1.

  10. Transforming growth factor beta-induced (TGFBI) is an anti-adhesive protein regulating the invasive growth of melanoma cells.

    PubMed

    Nummela, Pirjo; Lammi, Johanna; Soikkeli, Johanna; Saksela, Olli; Laakkonen, Pirjo; Hölttä, Erkki

    2012-04-01

    Melanoma is a malignancy characterized by high invasive/metastatic potential, with no efficient therapy after metastasis. Understanding the molecular mechanisms underlying the invasive/metastatic tendency is therefore important. Our genome-wide gene expression analyses revealed that human melanoma cell lines WM793 and especially WM239 (vertical growth phase and metastatic cells, respectively) overexpress the extracellular matrix (ECM) protein transforming growth factor β induced (TGFBI). In adhesion assays, recombinant TGFBI was strongly anti-adhesive for both melanoma cells and skin fibroblasts. TGFBI further impaired the adhesion of melanoma cells to the adhesive ECM proteins fibronectin, collagen-I, and laminin, known to interact with it. Unexpectedly, WM239 cells migrated/invaded more effectively in three-dimensional collagen-I and Matrigel cultures after knockdown of TGFBI by shRNA expression. However, in the physiological subcutaneous microenvironment in nude mice, after TGFBI knockdown, these cells showed markedly impaired tumor growth and invasive capability; the initially formed small tumors later underwent myxoid degeneration and completely regressed. By contrast, the expanding control tumors showed intense TGFBI staining at the tumor edges, co-localizing with the fibrillar fibronectin/tenascin-C/periostin structures that characteristically surround melanoma cells at invasion fronts. Furthermore, TGFBI was found in similar fibrillar structures in clinical human melanoma metastases as well, co-localizing with fibronectin. These data imply an important role for TGFBI in the ECM deposition and invasive growth of melanoma cells, rendering TGFBI a potential target for therapeutic interventions.

  11. Impact of epidermal growth factor receptor and transforming growth factor-α on hepatitis C virus-induced hepatocarcinogenesis.

    PubMed

    Badawy, Afkar Abdel-Ghany; El-Hindawi, Ali; Hammam, Olfat; Moussa, Mona; Gabal, Samia; Said, Noha

    2015-10-01

    Epidermal growth factor receptor system plays a central hepato-protective and pro-regenerative role in liver. Transforming growth factor-α (TGF-α) is an important autocrine growth regulator of hepatocytes that plays a role in development of hepatocellular carcinoma (HCC) among patients with chronic hepatitis C (CHC). This study was done on 40 core liver biopsies from patients with CHC, 20 liver specimens from HCC cases on top of CHC as well as five normal controls. All were immunohistochemically stained with epidermal growth factor receptor (EGFR) and TGF-α antibodies. Some selected HCC cases were submitted for FISH technique to detect EGFR gene alteration. By immunohistochemistry EGFR and TGF-α were overexpressed in HCC and cirrhotic cases compared to CHC cases without cirrhosis. Also, their expression was stronger in CHC cases with higher grades of activity and stages of fibrosis compared to lower ones. FISH positive results for EGFR were detected in 33.3% of the examined HCC cases. EGFR and TGF-α can be used as predictive markers for activity, fibrosis, and carcinogenesis in CHC patients. Overexpression of EGFR in HCC patients can be promising in selecting those who can get benefit from anti-EGFR target therapy.

  12. Glucocorticoid Insensitivity in Virally Infected Airway Epithelial Cells Is Dependent on Transforming Growth Factor-β Activity

    PubMed Central

    Radwan, Asmaa; Keenan, Christine R.; Langenbach, Shenna Y.; Li, Meina; Londrigan, Sarah L.; Gualano, Rosa C.; Stewart, Alastair G.

    2017-01-01

    Asthma and chronic obstructive pulmonary disease (COPD) exacerbations are commonly associated with respiratory syncytial virus (RSV), rhinovirus (RV) and influenza A virus (IAV) infection. The ensuing airway inflammation is resistant to the anti-inflammatory actions of glucocorticoids (GCs). Viral infection elicits transforming growth factor-β (TGF-β) activity, a growth factor we have previously shown to impair GC action in human airway epithelial cells through the activation of activin-like kinase 5 (ALK5), the type 1 receptor of TGF-β. In the current study, we examine the contribution of TGF-β activity to the GC-resistance caused by viral infection. We demonstrate that viral infection of human bronchial epithelial cells with RSV, RV or IAV impairs GC anti-inflammatory action. Poly(I:C), a synthetic analog of double-stranded RNA, also impairs GC activity. Both viral infection and poly(I:C) increase TGF-β expression and activity. Importantly, the GC impairment was attenuated by the selective ALK5 (TGFβRI) inhibitor, SB431542 and prevented by the therapeutic agent, tranilast, which reduced TGF-β activity associated with viral infection. This study shows for the first time that viral-induced glucocorticoid-insensitivity is partially mediated by activation of endogenous TGF-β. PMID:28046097

  13. Transforming growth factor β recruits persistent MAPK signaling to regulate long-term memory consolidation in Aplysia californica.

    PubMed

    Shobe, Justin; Philips, Gary T; Carew, Thomas J

    2016-05-01

    In this study, we explore the mechanistic relationship between growth factor signaling and kinase activity that supports the protein synthesis-dependent phase of long-term memory (LTM) consolidation for sensitization ofAplysia Specifically, we examine LTM for tail shock-induced sensitization of the tail-elicited siphon withdrawal (T-SW) reflex, a form of memory that requires both (i) extracellular signal-regulated kinase (ERK1/2; MAPK) activity within identified sensory neurons (SNs) that mediate the T-SW and (ii) the activation of transforming growth factor β (TGFβ) signaling. We now report that repeated tail shocks that induce intermediate-term (ITM) and LTM for sensitization, also induce a sustained post-training phase of MAPK activity in SNs (lasting at least 1 h). We identified two mechanistically distinct phases of post-training MAPK: (i) an immediate phase that does not require ongoing protein synthesis or TGFβ signaling, and (ii) a sustained phase that requires both protein synthesis and extracellular TGFβ signaling. We find that LTM consolidation requires sustained MAPK, and is disrupted by inhibitors of protein synthesis and TGFβ signaling during the consolidation window. These results provide strong evidence that TGFβ signaling sustains MAPK activity as an essential mechanistic step for LTM consolidation.

  14. Transforming growth factor alpha promotes osteosarcoma metastasis by ICAM-1 and PI3K/Akt signaling pathway.

    PubMed

    Hou, Chun-Han; Lin, Feng-Ling; Tong, Kai-Biao; Hou, Sheng-Mon; Liu, Ju-Fang

    2014-06-15

    Osteosarcoma is the most common primary malignancy of bone and is characterized by a high malignant and metastatic potential. Transforming growth factor alpha (TGF-α) is classified as the EGF (epidermal growth factor)-like family, which is involved in cancer cellular activities such as proliferation, motility, migration, adhesion and invasion abilities. However, the effect of TGF-α on human osteosarcoma is largely unknown. We found that TGF-α increased the cell migration and expression of intercellular adhesion molecule-1 (ICAM-1) in human osteosarcoma cells. Transfection of cells with ICAM-1 siRNA reduced TGF-α-mediated cell migration. We also found that the phosphatidylinositol 3'-kinase (PI3K)/Akt/NF-κB pathway was activated after TGF-α treatment, and TGF-α-induced expression of ICAM-1 and cell migration was inhibited by the specific inhibitors and siRNAs of PI3K, Akt, and NF-κB cascades. In addition, knockdown of TGF-α expression markedly decreased cell metastasis in vitro and in vivo. Our results indicate that TGF-α/EGFR interaction elicits PI3K and Akt activation, which in turn activates NF-κB, resulting in the expression of ICAM-1 and contributing the migration of human osteosarcoma cells.

  15. High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda)

    NASA Technical Reports Server (NTRS)

    Wenck, A. R.; Quinn, M.; Whetten, R. W.; Pullman, G.; Sederoff, R.; Brown, C. S. (Principal Investigator)

    1999-01-01

    Agrobacterium-mediated gene transfer is the method of choice for many plant biotechnology laboratories; however, large-scale use of this organism in conifer transformation has been limited by difficult propagation of explant material, selection efficiencies and low transformation frequency. We have analyzed co-cultivation conditions and different disarmed strains of Agrobacterium to improve transformation. Additional copies of virulence genes were added to three common disarmed strains. These extra virulence genes included either a constitutively active virG or extra copies of virG and virB, both from pTiBo542. In experiments with Norway spruce, we increased transformation efficiencies 1000-fold from initial experiments where little or no transient expression was detected. Over 100 transformed lines expressing the marker gene beta-glucuronidase (GUS) were generated from rapidly dividing embryogenic suspension-cultured cells co-cultivated with Agrobacterium. GUS activity was used to monitor transient expression and to further test lines selected on kanamycin-containing medium. In loblolly pine, transient expression increased 10-fold utilizing modified Agrobacterium strains. Agrobacterium-mediated gene transfer is a useful technique for large-scale generation of transgenic Norway spruce and may prove useful for other conifer species.

  16. [Agrobacterium tumefaciens-mediated transformation of Aureobasidium pullulans and high-efficient screening for polymalic acid producing strain].

    PubMed

    Tu, Guangwei; Wang, Yongkang; Feng, Jun; Li, Xiaorong; Guo, Meijin; Zou, Xiang

    2015-07-01

    To develop a genetic transformation method of Aureobasidium pullulans and T-DNA insertion for high-efficient screening of polymalic acid (PMA) producing strain. Agrobacterium tumefaciens-AGL1, containing the selection genes encoding hygromycin B phosphotase or phosphinothricin acetyltranferase, was used to transform Aureobasidium pullulans CCTCC M2012223 and transformants were confirmed by colony PCR method. Transferred DNA (T-DNA) insertional mutants were cultured in microwell plate, and screened for high-titer PMA producing strain according to the pH response model. DNA walking was used to detect the insertion sites in the mutant. Results show that the selection markers could stably generated in the transformants, and 80 to 120 transformants could be found per 10(7) single cells. A high-titer PMA mutant H27 was obtained, giving a good PMA production caused by the disruption of phosphoglycerate mutase, that increased by 24.5% compared with the control. Agrobacterium tumefaciens-mediated transformation and high-efficient screening method were successfully developed, which will be helpful for genetic transformation of Aureobasidium pullulans and its functional genes discovery.

  17. Critical role of retinoid/rexinoid signaling in mediating transformation and therapeutic response of NUP98-RARG leukemia.

    PubMed

    Qiu, J J; Zeisig, B B; Li, S; Liu, W; Chu, H; Song, Y; Giordano, A; Schwaller, J; Gronemeyer, H; Dong, S; So, C W E

    2015-05-01

    While the nucleoporin 98-retinoic acid receptor gamma (NUP98-RARG) is the first RARG fusion protein found in acute leukemia, its roles and the molecular basis in oncogenic transformation are currently unknown. Here, we showed that homodimeric NUP98-RARG not only acquired unique nuclear localization pattern and ability of recruiting both RXRA and wild-type NUP98, but also exhibited similar transcriptional properties as RARA fusions found in acute promyelocytic leukemia (APL). Using murine bone marrow retroviral transduction/transformation assay, we further demonstrated that NUP98-RARG fusion protein had gained transformation ability of primary hematopoietic stem/progenitor cells, which was critically dependent on the C-terminal GLFG domain of NUP98 and the DNA binding domain (DBD) of RARG. In contrast to other NUP98 fusions, cells transformed by the NUP98-RARG fusion were extremely sensitive to all-trans retinoic acid (ATRA) treatment. Interestingly, while pan-RXR agonists, SR11237 and LGD1069 could specifically inhibit NUP98-RARG transformed cells, mutation of the RXR interaction domain in NUP98-RARG had little effect on its transformation, revealing that therapeutic functions of rexinoid can be independent of the direct biochemical interaction between RXR and the fusion. Together, these results indicate that deregulation of the retinoid/rexinoid signaling pathway has a major role and may represent a potential therapeutic target for NUP98-RARG-mediated transformation.

  18. HB-EGF release mediates glucose-induced activation of the epidermal growth factor receptor in mesangial cells.

    PubMed

    Uttarwar, L; Peng, F; Wu, D; Kumar, S; Gao, B; Ingram, A J; Krepinsky, J C

    2011-04-01

    Glomerular matrix accumulation is a hallmark of diabetic nephropathy. We showed that transactivation of the epidermal growth factor receptor (EGFR) is an important mediator of matrix upregulation in mesangial cells (MC) in response to high glucose (HG). Here, we study the mechanism of EGFR transactivation. In primary MC, EGFR transactivation by 1 h of HG (30 mM) was unaffected by inhibitors of protein kinase C, reactive oxygen species, or the angiotensin II AT1 receptor. However, general metalloprotease inhibition, as well as specific inhibitors of heparin-binding EGF-like growth factor (HB-EGF), prevented both EGFR and downstream Akt activation. HB-EGF was released into the medium by 30 min of HG, and this depended on metalloprotease activity. One of the metalloproteases shown to cleave proHB-EGF is ADAM17 (TACE). HG, but not an osmotic control, activated ADAM17, and its inhibition prevented EGFR and Akt activation and HB-EGF release into the medium. siRNA to either ADAM17 or HB-EGF prevented HG-induced EGFR transactivation. We previously showed that EGFR/Akt signaling increases transforming growth factor (TGF)-β1 transcription through the transcription factor activator protein (AP)-1. HG-induced AP-1 activation, as assessed by EMSA, was abrogated by inhibitors of metalloproteases, HB-EGF and ADAM17. HB-EGF and ADAM17 siRNA also prevented AP-1 activation. Finally, these inhibitors and siRNA prevented TGF-β1 upregulation by HG. Thus, HG-induced EGFR transactivation in MC is mediated by the release of HB-EGF, which requires activity of the metalloprotease ADAM17. The mechanism of ADAM17 activation awaits identification. Targeting upstream mediators of EGFR transactivation including HB-EGF or ADAM17 provides novel therapeutic targets for the treatment of diabetic nephropathy.

  19. Dynamic designing of microstructures by chemical gradient-mediated growth

    PubMed Central

    Shim, Tae Soup; Yang, Seung-Man; Kim, Shin-Hyun

    2015-01-01

    Shape is one of the most important determinants of the properties of microstructures. Despite of a recent progress on microfabrication techniques, production of three-dimensional micro-objects are yet to be fully achieved. Nature uses reaction–diffusion process during bottom-up self-assembly to create functional shapes and patterns with high complexity. Here we report a method to produce polymeric microstructures by using a dynamic reaction–diffusion process during top-down photolithography, providing unprecedented control over shape and composition. In radical polymerization, oxygen inhibits reaction, and therefore diffusion of oxygen significantly alters spatial distribution of growth rate. Therefore, growth pathways of the microstructures can be controlled by engineering a concentration gradient of oxygen. Moreover, stepwise control of chemical gradients enables the creation of highly complex microstructures. The ease of use and high controllability of this technology provide new opportunities for microfabrication and for fundamental studies on the relationships between shape and function for the materials. PMID:25766762

  20. Autophagy is required for IL-2-mediated fibroblast growth

    SciTech Connect

    Kang, Rui; Tang, Daolin; Lotze, Michael T.; Zeh III, Herbert J.

    2013-02-15

    Autophagy is an evolutionarily conserved pathway responsible for delivery of cytoplasmic material into the lysosomal degradation pathway to enable vesicular exocytosis. Interleukin (IL)-2 is produced by T-cells and its activity is important for immunoregulation. Fibroblasts are an immune competent cell type, playing a critical role in wound healing, chronic inflammation, and tumor development. Although autophagy plays an important role in each of these processes, whether it regulates IL-2 activity in fibroblasts is unknown. Here, we show that autophagy is required for IL-2-induced cell growth in fibroblasts. IL-2 significantly induced autophagy in mouse embryonic fibroblasts (MEFs) and primary lung fibroblasts. Autophagy inhibitors (e.g., 3-methylamphetamine and bafilomycin A1) or knockdown of ATG5 and beclin 1 blocked clinical grade IL-2-induced autophagy. Moreover, IL-2 induced HMGB1 cytoplasmic translocation in MEFs and promoted interaction between HMGB1 and beclin1, which is required for autophagy induction. Pharmacological and genetic inhibition of autophagy inhibited IL-2-induced cell proliferation and enhanced IL-2-induced apoptosis. These findings suggest that autophagy is an important pro-survival regulator for IL-2-induced cell growth in fibroblasts.

  1. A Type IV Pilus Mediates DNA Binding during Natural Transformation in Streptococcus pneumoniae

    PubMed Central

    Laurenceau, Raphaël; Péhau-Arnaudet, Gérard; Baconnais, Sonia; Gault, Joseph; Malosse, Christian; Dujeancourt, Annick; Campo, Nathalie; Chamot-Rooke, Julia; Le Cam, Eric; Claverys, Jean-Pierre; Fronzes, Rémi

    2013-01-01

    Natural genetic transformation is widely distributed in bacteria and generally occurs during a genetically programmed differentiated state called competence. This process promotes genome plasticity and adaptability in Gram-negative and Gram-positive bacteria. Transformation requires the binding and internalization of exogenous DNA, the mechanisms of which are unclear. Here, we report the discovery of a transformation pilus at the surface of competent Streptococcus pneumoniae cells. This Type IV-like pilus, which is primarily composed of the ComGC pilin, is required for transformation. We provide evidence that it directly binds DNA and propose that the transformation pilus is the primary DNA receptor on the bacterial cell during transformation in S. pneumoniae. Being a central component of the transformation apparatus, the transformation pilus enables S. pneumoniae, a major Gram-positive human pathogen, to acquire resistance to antibiotics and to escape vaccines through the binding and incorporation of new genetic material. PMID:23825953

  2. Mediating role of coping in the dispositional optimism-posttraumatic growth relation in breast cancer patients.

    PubMed

    Büyükaşik-Colak, Canan; Gündoğdu-Aktürk, Elçin; Bozo, Ozlem

    2012-01-01

    The aim of the present study was to examine if coping strategies mediate dispositional optimism-posttraumatic growth relation in postoperative breast cancer patients. The data were collected from 90 patients in two hospitals. Regression analyses revealed that problem-focused coping fully mediated dispositional optimism-posttraumatic growth relation, but emotion-focused coping did not. That is, postoperative breast cancer patients who were optimistic were more likely to use problem-focused coping strategies that, in turn, led to the development of posttraumatic growth. The findings were congruent with the literature in which problem-focused coping was mostly highlighted as compared to emotion-focused coping, and in which optimism and problem-focused coping relationship was emphasized in the path of posttraumatic growth.

  3. Transcriptional pathways associated with the slow growth phenotype of transformed Anaplasma marginale

    PubMed Central

    2013-01-01

    Background The ability to genetically manipulate bacteria has been fundamentally important for both basic biological discovery and translational research to develop new vaccines and antibiotics. Experimental alteration of the genetic content of prokaryotic pathogens has revealed both expected functional relationships and unexpected phenotypic consequences. Slow growth phenotypes have been reported for multiple transformed bacterial species, including extracellular and intracellular pathogens. Understanding the genes and pathways responsible for the slow growth phenotype provides the opportunity to develop attenuated vaccines as well as bacteriostatic antibiotics. Transformed Anaplasma marginale, a rickettsial pathogen, exhibits slow growth in vitro and in vivo as compared to the parent wild type strain, providing the opportunity to identify the underlying genes and pathways associated with this phenotype. Results Whole genome transcriptional profiling allowed for identification of specific genes and pathways altered in transformed A. marginale. Genes found immediately upstream and downstream of the insertion site, including a four gene operon encoding key outer membrane proteins, were not differentially transcribed between wild type and transformed A. marginale. This lack of significant difference in transcription of flanking genes and the large size of the insert relative to the genome were consistent with a trans rather than a cis effect. Transcriptional profiling across the complete genome identified the most differentially transcribed genes, including an iron transporter, an RNA cleaving enzyme and several genes involved in translation. In order to confirm the trend seen in translation-related genes, K-means clustering and Gene Set Enrichment Analysis (GSEA) were applied. These algorithms allowed evaluation of the behavior of genes as groups that share transcriptional status or biological function. Clustering and GSEA confirmed the initial observations and

  4. STAT3-Mediated Metabolic Reprograming in Cellular Transformation and Implications for Drug Resistance

    PubMed Central

    Poli, Valeria; Camporeale, Annalisa

    2015-01-01

    Signal transducer and activator of transcription (STAT)3 mediates the signaling downstream of cytokine and growth factor receptors, regulating the expression of target genes. It is constitutively phosphorylated on tyrosine (Y-P) in many tumors, where its transcriptional activity can induce a metabolic switch toward aerobic glycolysis and down-regulate mitochondrial activity, a prominent metabolic feature of most cancer cells, correlating with reduced production of ROS, delayed senescence, and protection from apoptosis. STAT3 can, however, also localize to mitochondria, where its serine-phosphorylated (S-P) form preserves mitochondrial oxidative phosphorylation and controls the opening of the mitochondrial permeability transition pore, also promoting survival and resistance to apoptosis in response to specific signals/oncogenes such as RAS. Thus, downstream of different signals, both nuclear, Y-P STAT3, and mitochondrial, S-P STAT3, can act by promoting cell survival and reducing ROS production. Here, we discuss these properties in the light of potential connections between STAT3-driven alterations of mitochondrial metabolism and the development of drug resistance in cancer patients. PMID:26106584

  5. Engineering island-chain silicon nanowires via a droplet mediated Plateau-Rayleigh transformation

    NASA Astrophysics Data System (ADS)

    Xue, Zhaoguo; Xu, Mingkun; Zhao, Yaolong; Wang, Jimmy; Jiang, Xiaofan; Yu, Linwei; Wang, Junzhuan; Xu, Jun; Shi, Yi; Chen, Kunji; Roca I Cabarrocas, Pere

    2016-09-01

    The ability to program highly modulated morphology upon silicon nanowires (SiNWs) has been fundamental to explore new phononic and electronic functionalities. We here exploit a nanoscale locomotion of metal droplets to demonstrate a large and readily controllable morphology engineering of crystalline SiNWs, from straight ones into continuous or discrete island-chains, at temperature <350 °C. This has been accomplished via a tin (Sn) droplet mediated in-plane growth where amorphous Si thin film is consumed as precursor to produce crystalline SiNWs. Thanks to a significant interface-stretching effect, a periodic Plateau-Rayleigh instability oscillation can be stimulated in the liquid Sn droplet, and the temporal oscillation of the Sn droplets is translated faithfully, via the deformable liquid/solid deposition interface, into regular spatial modulation upon the SiNWs. Combined with a unique self-alignment and positioning capability, this new strategy could enable a rational design and single-run fabrication of a wide variety of nanowire-based optoelectronic devices.

  6. Engineering island-chain silicon nanowires via a droplet mediated Plateau-Rayleigh transformation

    PubMed Central

    Xue, Zhaoguo; Xu, Mingkun; Zhao, Yaolong; Wang, Jimmy; Jiang, Xiaofan; Yu, Linwei; Wang, Junzhuan; Xu, Jun; Shi, Yi; Chen, Kunji; Roca i Cabarrocas, Pere

    2016-01-01

    The ability to program highly modulated morphology upon silicon nanowires (SiNWs) has been fundamental to explore new phononic and electronic functionalities. We here exploit a nanoscale locomotion of metal droplets to demonstrate a large and readily controllable morphology engineering of crystalline SiNWs, from straight ones into continuous or discrete island-chains, at temperature <350 °C. This has been accomplished via a tin (Sn) droplet mediated in-plane growth where amorphous Si thin film is consumed as precursor to produce crystalline SiNWs. Thanks to a significant interface-stretching effect, a periodic Plateau-Rayleigh instability oscillation can be stimulated in the liquid Sn droplet, and the temporal oscillation of the Sn droplets is translated faithfully, via the deformable liquid/solid deposition interface, into regular spatial modulation upon the SiNWs. Combined with a unique self-alignment and positioning capability, this new strategy could enable a rational design and single-run fabrication of a wide variety of nanowire-based optoelectronic devices. PMID:27682161

  7. Mammalian mediator 19 mediates H1299 lung adenocarcinoma cell clone conformation, growth, and metastasis.

    PubMed

    Xu, Lu-Lu; Guo, Shu-Liang; Ma, Su-Ren; Luo, Yong-Ai

    2012-01-01

    Mammalian mediator (MED) is a multi-protein coactivator that has been identified by several research groups. The involvement of the MED complex subunit 19 (MED 19) in the metastasis of lung adenocarcinoma cell line (H1299), which expresses the MED 19 subunit, was here investigated. When MED 19 expression was decreased by RNA interference H1299 cells demonstrated reduced clone formation, arrest in the S phase of the cell cycle, and lowered metastatic capacity. Thus, MED 19 appears to play important roles in the biological behavior of non-small cell lung carcinoma cells. These findings may be important for the development of novel lung carcinoma treatments.

  8. A high-throughput Agrobacterium-mediated transformation system for the grass model species Brachypodium distachyon L.

    PubMed

    Păcurar, Daniel Ioan; Thordal-Christensen, Hans; Nielsen, Klaus Kristian; Lenk, Ingo

    2008-10-01

    In the ongoing process of developing Brachypodium distachyon as a model plant for temperate cereals and forage grasses, we have developed a high-throughput Agrobacterium-mediated transformation system for a diploid accession. Embryogenic callus, derived from immature embryos of the accession BDR018, were transformed with Agrobacterium tumefaciens strain AGL1 carrying two T-DNA plasmids, pDM805 and pWBV-Ds-Ubi-bar-Ds. Transient and stable transformation efficiencies were optimised by varying the pre-cultivation period, which had a strong effect on stable transformation efficiency. On average 55% of 17-day-old calli co-inoculated with Agrobacterium regenerated stable transgenic plants. Stable transformation frequencies of up to 80%, which to our knowledge is the highest transformation efficiency reported in graminaceous species, were observed. In a study of 177 transgenic lines transformed with pDM805, all of the regenerated transgenic lines were resistant to BASTA, while the gusA gene was expressed in 88% of the transgenic lines. Southern blot analysis revealed that 35% of the tested plants had a single T-DNA integration. Segregation analysis performed on progenies of ten selected T(0) plants indicated simple Mendelian inheritance of the two transgenes. Furthermore, the presence of two selection marker genes, bar and hpt, on the T-DNA of pWBV-Ds-Ubi-bar-Ds allowed us to characterize the developed transformation protocol with respect to full-length integration rate. Even when not selected for, full-length integration occurred in 97% of the transformants when using bialaphos as selection agent.

  9. Expression of transforming growth factor-beta 1 in normal and dyschondroplastic articular growth cartilage of the young horse.

    PubMed

    Henson, F M; Schofield, P N; Jeffcott, L B

    1997-11-01

    This study describes the distribution pattern of transforming growth factor-beta 1 (TGF-beta 1) mRNA and protein in normal pre- and post natal growth cartilage and alterations present in lesions of dyschondroplasia (osteochondrosis). TGF-beta 1 expression and immunoreactivity have been investigated by in situ hybridisation and immunolocalisation in the articular/epiphyseal growth cartilage of the lateral trochlear ridge of the distal femur. Cartilage was obtained from 19 normal Thoroughbred horses (5 prenatal and 14 post natal horses) and 15 post natal horses with dyschondroplasia (DCP). TGF-beta 1 mRNA expression and immunoreactivity were detected in the proliferative and upper hypertrophic zones in both pre- and post natal normal articular/epiphyseal cartilage. However, mRNA itself was only detected in the mid- and lower hypertrophic zones. Immunoreactivity was identified intracellularly with some nuclear staining observed. In focal lesions of DCP mRNA expression and immunoreactivity were reduced compared to normal cartilage, but strong mRNA expression was observed in the chondrocyte clusters immediately surrounding a lesion of DCP. The results described in this study demonstrate alterations in TGF-beta 1 dyschondroplastic lesions and indicate that it could be involved in the pathogenesis of this condition in the horse.

  10. Control of human glioma cell growth, migration and invasion in vitro by transforming growth factor beta 1.

    PubMed Central

    Merzak, A.; McCrea, S.; Koocheckpour, S.; Pilkington, G. J.

    1994-01-01

    Factors involved in the control of the biological properties of gliomas, the major form of brain tumour in man, are poorly documented. We investigated the role of transforming growth factor beta 1 (TGF-beta 1) in the control of proliferation of human glioma cell lines as well as normal human fetal brain cells. The data presented show that TGF-beta 1 exerts a growth-inhibitory action on both human fetal brain cells and three cell lines derived from human glioma of different grades of malignancy. In addition, this growth-inhibitory effect is dose dependent and serum independent. Since TGF-beta 1 is known to be involved in the control of cell migration during ontogenesis and oncogenesis, we investigated the role of this factor in the motile and invasive behaviour that characterises human gliomas in vivo. TGF-beta 1 was found to elicit a strong stimulation of migration and invasiveness of glioma cells in vitro. In combination with recent data showing an inverse correlation between TGF-beta 1 expression in human gliomas and survival, these findings may suggest that TGF-beta 1 plays an important role in the malignant progression of gliomas in man. A study of the molecular mechanisms involved in the antiproliferative action and the invasion-promoting action of TGF-beta 1 may help to identify new targets in therapy for brain tumours. A combined antiproliferative and anti-invasive therapy could be envisaged. Images Figure 3 PMID:8054266

  11. Genetic transformation of Fusarium avenaceum by Agrobacterium tumefaciens mediated transformation and the development of a USER-Brick vector construction system

    PubMed Central

    2014-01-01

    Background The plant pathogenic and saprophytic fungus Fusarium avenaceum causes considerable in-field and post-field losses worldwide due to its infections of a wide range of different crops. Despite its significant impact on the profitability of agriculture production and a desire to characterize the infection process at the molecular biological level, no genetic transformation protocol has yet been established for F. avenaceum. In the current study, it is shown that F. avenaceum can be efficiently transformed by Agrobacterium tumefaciens mediated transformation. In addition, an efficient and versatile single step vector construction strategy relying on Uracil Specific Excision Reagent (USER) Fusion cloning, is developed. Results The new vector construction system, termed USER-Brick, is based on a limited number of PCR amplified vector fragments (core USER-Bricks) which are combined with PCR generated fragments from the gene of interest. The system was found to have an assembly efficiency of 97% with up to six DNA fragments, based on the construction of 55 vectors targeting different polyketide synthase (PKS) and PKS associated transcription factor encoding genes in F. avenaceum. Subsequently, the ΔFaPKS3 vector was used for optimizing A. tumefaciens mediated transformation (ATMT) of F. avenaceum with respect to six variables. Acetosyringone concentration, co-culturing time, co-culturing temperature and fungal inoculum were found to significantly impact the transformation frequency. Following optimization, an average of 140 transformants per 106 macroconidia was obtained in experiments aimed at introducing targeted genome modifications. Targeted deletion of FaPKS6 (FA08709.2) in F. avenaceum showed that this gene is essential for biosynthesis of the polyketide/nonribosomal compound fusaristatin A. Conclusion The new USER-Brick system is highly versatile by allowing for the reuse of a common set of building blocks to accommodate seven different types of genome

  12. Six1 overexpression at early stages of HPV16-mediated transformation of human keratinocytes promotes differentiation resistance and EMT

    SciTech Connect

    Xu, Hanwen; Pirisi, Lucia; Creek, Kim E.

    2015-01-01

    Previous studies in our laboratory discovered that SIX1 mRNA expression increased during in vitro progression of HPV16-immortalized human keratinocytes (HKc/HPV16) toward a differentiation-resistant (HKc/DR) phenotype. In this study, we explored the role of Six1 at early stages of HPV16-mediated transformation by overexpressing Six1 in HKc/HPV16. We found that Six1 overexpression in HKc/HPV16 increased cell proliferation and promoted cell migration and invasion by inducing epithelial–mesenchymal transition (EMT). Moreover, the overexpression of Six1 in HKc/HPV16 resulted in resistance to serum and calcium-induced differentiation, which is the hallmark of the HKc/DR phenotype. Activation of MAPK in HKc/HPV16 overexpressing Six1 is linked to resistance to calcium-induced differentiation. In conclusion, this study determined that Six1 overexpression resulted in differentiation resistance and promoted EMT at early stages of HPV16-mediated transformation of human keratinocytes. - Highlights: • Six1 expression increases during HPV16-mediated transformation. • Six1 overexpression causes differentiation resistance in HPV16-immortalized cells. • Six1 overexpression in HPV16-immortalized keratinocytes activates MAPK. • Activation of MAPK promotes EMT and differentiation resistance. • Six1 overexpression reduces Smad-dependent TGF-β signaling.

  13. The evidence for the role of transforming growth factor-beta in the formation of abnormal scarring.

    PubMed

    Chalmers, Richard L

    2011-06-01

    The complex biological and physiological mechanisms that result in poor quality scarring are still not fully understood. This review looks at current evidence of the role of transforming growth factor-beta (TGFβ) in this pathological process.

  14. Ag nanoparticle mediated growth of CdS nanobelts

    NASA Astrophysics Data System (ADS)

    Sreejith, K.; Nuwad, J.; Thinaharan, C.; Dey, G. K.; Pillai, C. G. S.

    2007-06-01

    Catalytic growth of CdS have been carried out on large scale by evaporation of bulk CdS on Ag deposited Si (1 1 1) at atmospheric pressure. The as prepared CdS had wurtzite structure as evidenced by X-ray diffraction. The nanostructures were beltlike with several tens of micrometers length, several micrometers width and few nanometers to tens of nanometers thick as seen by scanning electron microscope and confirmed by TEM studies. The nanobelts were single crystalline in nature and showed reflection corresponding to (1 1 2) and (0 0 2) planes in SAED. The PL studies revealed the green band due to band gap emission and red band due to emission from the surface states. The higher intensity of the defect emission indicated the presence of considerable concentration of surface defects in the as prepared sample. The deposition of CdS could be explained on the basis of catalyst assisted vapor-liquid-solid and vapor-solid mechanism.

  15. Herpesvirus-mediated systemic delivery of nerve growth factor.

    PubMed

    Wolfe, D; Goins, W F; Kaplan, T J; Capuano, S V; Fradette, J; Murphey-Corb, M; Robbins, P D; Cohen, J B; Glorioso, J C

    2001-01-01

    Sustained systemic dissemination of therapeutic proteins from peripheral sites is an attractive prospect for gene therapy applications. Replication-defective genomic herpes simplex virus type 1 (HSV-1) vectors were evaluated for their ability to express nerve growth factor (NGF) as a model gene product both locally and systemically. Intra-articular inoculation of NGF expression vectors in rabbits resulted in significant increases in joint lavage and blood plasma NGF that persisted for 1 year. A rhesus macaque injected intra-articularly displayed a comparable increase in plasma NGF for at least 6 months, at which time the serum NGF levels of this animal were sufficient to cause differentiation of PC12 cells in culture, but not to increase footpad epidermis innervation. Long-term reporter transgene expression was observed primarily in ligaments, a finding confirmed by direct inoculation of patellar ligament. Patellar ligament inoculation with a NGF vector resulted in elevated levels of circulating NGF similar to those observed following intra-articular vector delivery. These results represent the first demonstration of sustained systemic release of a transgene product using HSV vectors, raising the prospect of new applications for HSV-1 vectors in the treatment of systemic disease.

  16. A stable and efficient Agrobacterium tumefaciens-mediated genetic transformation of the medicinal plant Digitalis purpurea L.

    PubMed

    Li, Ying; Gao, Zhenrui; Piao, Chunlan; Lu, Kaiwen; Wang, Zhiping; Cui, Min-Long

    2014-02-01

    In this study, we developed a rapid and efficient method for in vitro propagation and Agrobacterium tumefaciens-mediated transformation of Digitalis purpurea L. (syn. foxglove), an important medicinal plant. Mature leaf explants of D. purpurea were used for 100 % adventitious shoot regeneration on Murashige and Skoog (MS) medium supplemented with 1 mg L(-1) thidiazuron (TDZ) (a cytokine) and 0.1 mg L(-1) 1-naphthaleneacetic acid (NAA) (an auxin). Transformation was achieved by inoculating leaf explants with the A. tumefaciens strains GV2260/pBI121 or GV3101/pBI121. The binary vector pBI121 contained the reporter β-glucuronidase gene (GUS) and kanamycin selection marker nptII. Kanamycin-resistant shoots were regenerated directly on the selection medium 4-6 weeks after co-cultivation. Approximately, 52.2 and 60 % of kanamycin-resistant shoots transformed with Agrobacterium strains GV2260 and GV3101, respectively, showed strong GUS staining by histochemical assay. Furthermore, PCR and Southern blot analysis confirmed the presence of nptII and GUS on the chromosome of the transformed D. purpurea plants, and stable GUS expression was detected in the transformants by RT-PCR analysis. This efficient method of shoot regeneration and genetic transformation of D. purpurea will provide a powerful tool to increase and produce valuable components such as digitoxin, digoxin, and digoxigenin in D. purpurea through improved secondary metabolic pathways via a biotechnological approach.

  17. Efficient synthesis of human type alpha transforming growth factor: its physical and biological characterization.

    PubMed Central

    Tam, J P; Sheikh, M A; Solomon, D S; Ossowski, L

    1986-01-01

    Human transforming growth factor type alpha (TGF-alpha) was synthesized by a stepwise solid-phase method with an overall yield of 26%. Synthetic TGF-alpha, consisting of 50 amino acid residues deduced from a cDNA precursor sequence, was purified in a single HPLC step. The homogeneity and primary structure were confirmed by several criteria including Edman degradation and mass spectrometry. Synthetic TGF-alpha was as active as murine epidermal growth factor in binding to the epidermal growth factor receptor and in stimulation of anchorage-dependent and of anchorage-independent growth of normal indicator cells in culture. Synthetic TGF-alpha stimulated plasminogen activator production in A 431 and HeLa cells; the stimulation was similar to that induced by epidermal growth factor. Furthermore, synthetic human TGF-alpha showed similar immunoreactivity when compared with rat TGF-alpha. Thus, the 50-amino acid TGF-alpha is likely to be the bioactive principle produced and secreted by tumor cell lines. PMID:3490662

  18. Investigation of Mediational Processes Using Parallel Process Latent Growth Curve Modeling.

    ERIC Educational Resources Information Center

    Cheong, JeeWon; MacKinnon, David P.; Khoo, Siek Toon

    2003-01-01

    Investigated a method to evaluate mediational processes using latent growth curve modeling and tested it with empirical data from a longitudinal steroid use prevention program focusing on 1,506 high school football players over 4 years. Findings suggest the usefulness of the approach. (SLD)

  19. Factors influencing Agrobacterium-mediated embryogenic callus transformation of Valencia sweet orange (Citrus sinensis) containing the pTA29-barnase gene.

    PubMed

    Li, D D; Shi, W; Deng, X X

    2003-12-01

    Valencia sweet orange (Citrus sinensis (L.) Osbeck) calluses were used as explants to develop a new transformation system for citrus mediated by Agrobacterium tumefaciens. Factors affecting Agrobacterium-mediated transformation efficiency included mode of pre-cultivation, temperature of cocultivation and presence of acetosyringone (AS). The highest transformation efficiency was obtained with a 4-day pre-cultivation period in liquid medium. Transformation efficiency was higher when cocultivation was performed for 3 days at 19 degrees C than at 23 or 28 degrees C. Almost no resistant callus was obtained if the cocultivation medium lacked AS. The transformation procedure yielded transgenic Valencia plants containing the pTA29-barnase gene, as verified by PCR amplification and confirmed by Southern blotting. Because male sterility is a common factor leading to seedlessness in citrus cultivars with parthenocarpic characteristics, production of seedless citrus genotypes by Agrobacterium-mediated genetic transformation is a promising alternative to conventional breeding methods.

  20. Agrobacterium tumefaciens-mediated transformation of Lasiodiplodia theobromae, the causal agent of gummosis in cashew nut plants.

    PubMed

    Muniz, C R; da Silva, G F; Souza, M T; Freire, F C O; Kema, G H J; Guedes, M I F

    2014-02-21

    Lasiodiplodia theobromae is a major pathogen of many different crop cultures, including cashew nut plants. This paper describes an efficient Agrobacterium tumefaciens-mediated transformation (ATMT) system for the successful delivery of T-DNA, transferring the genes of green fluorescent protein (gfp) and hygromycin B phosphotransferase (hph) to L. theobromae. When the fungal pycnidiospores were co-cultured with A. tumefaciens harboring the binary vector with hph-gfp gene, hygromycin-resistant fungus only developed with acetosyringone supplementation. The cashew plants inoculated with the fungus expressing GFP revealed characteristic pathogen colonization by epifluorescence microscopy. Intense and bright green hyphae were observed for transformants in all extensions of mycelium cultures. The penetration of parenchyma cells near to the inoculation site, beneath the epicuticle surface, was observed prior to 25 dpi. Penetration was followed by the development of hyphae within invaded host cells. These findings provide a rapid and reproducible ATMT method for L. theobromae transformation.

  1. Expression of transforming growth factor-β2in vitreous body and adjacent tissues during prenatal development of human eye.

    PubMed

    Sukhikh, G T; Panova, I G; Smirnova, Yu A; Milyushina, L A; Firsova, N V; Markitantova, Yu V; Poltavtseva, R A; Zinov'eva, R D

    2010-12-01

    Expression of transforming growth factor-β2 was detected by PCR in the vitreous body, lens, retina, and ciliary-iris complex of human eye at early stages of fetal development. Immunochemical assay of the corresponding protein in eye tissues revealed a correlation between the localization of transforming growth factor-β2 and the development of intraocular hyaloid vascular network, its regression, formation of the vitreous body, and development of definite retinal vessels.

  2. MICAL-like1 mediates epidermal growth factor receptor endocytosis

    PubMed Central

    Abou-Zeid, Nancy; Pandjaitan, Rudy; Sengmanivong, Lucie; David, Violaine; Le Pavec, Gwenaelle; Salamero, Jean; Zahraoui, Ahmed

    2011-01-01

    Small GTPase Rabs are required for membrane protein sorting/delivery to precise membrane domains. Rab13 regulates epithelial tight junction assembly and polarized membrane transport. Here we report that Molecule Interacting with CasL (MICAL)-like1 (MICAL-L1) interacts with GTP-Rab13 and shares a similar domain organization with MICAL. MICAL-L1 has a calponin homology (CH), LIM, proline rich and coiled-coil domains. It is associated with late endosomes. Time-lapse video microscopy shows that green fluorescent protein–Rab7 and mcherry-MICAL-L1 are present within vesicles that move rapidly in the cytoplasm. Depletion of MICAL-L1 by short hairpin RNA does not alter the distribution of a late endosome/lysosome-associated protein but affects the trafficking of epidermal growth factor receptor (EGFR). Overexpression of MICAL-L1 leads to the accumulation of EGFR in the late endosomal compartment. In contrast, knocking down MICAL-L1 results in the distribution of internalized EGFR in vesicles spread throughout the cytoplasm and promotes its degradation. Our data suggest that the N-terminal CH domain associates with the C-terminal Rab13 binding domain (RBD) of MICAL-L1. The binding of Rab13 to RBD disrupts the CH/RBD interaction, and may induce a conformational change in MICAL-L1, promoting its activation. Our results provide novel insights into the MICAL-L1/Rab protein complex that can regulate EGFR trafficking at late endocytic pathways. PMID:21795389

  3. An efficient method for Agrobacterium-mediated genetic transformation and plant regeneration in cumin (Cuminum cyminum L.).

    PubMed

    Pandey, Sonika; Mishra, Avinash; Patel, Manish Kumar; Jha, Bhavanath

    2013-09-01

    Cumin is an annual herbaceous medicinally important plant having diverse applications. An efficient and reproducible method of Agrobacterium-mediated genetic transformation was herein established for the first time. A direct regeneration method without callus induction was optimised using embryos as explant material in Gamborg's B5 medium supplemented with 0.5-μM 6-benzyladenine and 2.0-μM α-naphthalene acetic acid. About 1,020 embryos (a mean of 255 embryos per batch) were used for the optimisation of transformation conditions. These conditions were an Agrobacterium cell suspension of 0.6 OD600, a co-cultivation time of 72 h, 300-μM acetosyringone and wounding of explants using a razor blade. Pre-cultured elongated embryos were treated using optimised conditions. About 720 embryos (a mean of 180 embryos per batch) were used for transformation and 95 % embryos showed transient β-glucuronidase expression after co-cultivation. Putative transformed embryos were cultured on B5 medium for shoot proliferation and 21 regenerated plants were obtained after selection and allowed to root. T0 plantlets showed β-glucuronidase expression and gene integration was confirmed via PCR amplification of 0.96 and 1.28 kb fragments of the hygromycin-phosphotransferase II and β-glucuronidase genes, respectively. In this study, a transformation efficiency of 1.5 % was demonstrated and a total of 11 transgenic plants were obtained at the hardening stage, however, only four plants acclimatised during hardening. Gene copy number was analysed by Southern blot analysis of hardened plants and single-copy gene integration was observed. This is the first successful attempt of Agrobacterium-mediated genetic transformation of cumin.

  4. Phase transformations during the growth of paracetamol crystals from the vapor phase

    NASA Astrophysics Data System (ADS)

    Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.; Bordei, N. S.

    2014-07-01

    Phase transformations during the growth of paracetamol crystals from the vapor phase are studied by differential scanning calorimetry. It is found that the vapor-crystal phase transition is actually a superposition of two phase transitions: a first-order phase transition with variable density and a second-order phase transition with variable ordering. The latter, being a diffuse phase transition, results in the formation of a new, "pretransition," phase irreversibly spent in the course of the transition, which ends in the appearance of orthorhombic crystals. X-ray diffraction data and micrograph are presented.

  5. Regulation of Transforming Growth Factor–Beta in Diabetic Nephropathy: Implications for Treatment

    PubMed Central

    Zhu, Yanqing; Kataoka Usui, Hitomi; Sharma, Kumar

    2007-01-01

    The recognition of the drivers of matrix accumulation as a therapeutic target for diabetic nephropathy is accepted by the Nephrology and pharmaceutical community. Interventions focused around Transforming Growth Factor–beta (TGF–β) will likely be an important area of clinical investigation in the near future. Understanding the various pathways involved in stimulating TGF–β in the diabetic kidney is of paramount importance in devising strategies to combat the development and progression of diabetic nephropathy. In this review we highlight the major pathways involved in stimulating TGF–β production by elevated glucose and discuss the therapeutic implications. PMID:17418684

  6. Transforming growth factor-β in breast cancer: too much, too late

    PubMed Central

    Barcellos-Hoff, Mary Helen; Akhurst, Rosemary J

    2009-01-01

    The contribution of transforming growth factor (TGF)β to breast cancer has been studied from a myriad perspectives since seminal studies more than two decades ago. Although the action of TGFβ as a canonical tumor suppressor in breast is without a doubt, there is compelling evidence that TGFβ is frequently subverted in a malignant plexus that drives breast cancer. New knowledge that TGFβ regulates the DNA damage response, which underlies cancer therapy, reveals another facet of TGFβ biology that impedes cancer control. Too much TGFβ, too late in cancer progression is the fundamental motivation for pharmaceutical inhibition. PMID:19291273

  7. Immunocytochemical study of transforming growth factor expression in benign and malignant gliomas.

    PubMed Central

    Samuels, V.; Barrett, J. M.; Bockman, S.; Pantazis, C. G.; Allen, M. B.

    1989-01-01

    Immunocytochemical studies using polyclonal antibodies to epidermal growth factor (EGF) and transforming growth factor (TGF) alpha and beta were performed on 20 cases of human gliomas. EGF immunoreactive material was detected in both benign and malignant glial tumors. In addition, EGF immunoreactive material was detected in normal brain. TGF-beta was detected in both benign and malignant tumors, but was not detected in normal brain. In contrast, TGF-alpha was highly conserved in its expression, occurring predominantly in malignant compared with benign or normal brain tissue (P less than 0.0001). In malignant gliomas, glioblastomas contained 76% TGF-alpha reactivity (immunoreactive product), and anaplastic types contained 85% reactivity. Benign gliomas contained only 13% TGF-alpha reactivity. These findings support the role of TGF-alpha as an oncoprotein marker in brain neoplasms. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:2705509

  8. Highly Efficient Agrobacterium-Mediated Transformation of Wheat Via In Planta Inoculation

    NASA Astrophysics Data System (ADS)

    Risacher, Thierry; Craze, Melanie; Bowden, Sarah; Paul, Wyatt; Barsby, Tina

    This chapter details a reproducible method for the transformation of spring wheat using Agrobacterium tumefaciens via the direct inoculation of bacteria into immature seeds in planta as described in patent WO 00/63398(1. Transformation efficiencies from 1 to 30% have been obtained and average efficiencies of at least 5% are routinely achieved. Regenerated plants are phenotypically normal with 30-50% of transformation events carrying introduced genes at single insertion sites, a higher rate than is typically reported for transgenic plants produced using biolistic transformation methods.

  9. Endocrine mediators of seasonal growth in gilthead sea bream (Sparus aurata): the growth hormone and somatolactin paradigm.

    PubMed

    Mingarro, Mónica; Vega-Rubín de Celis, Silvia; Astola, Antonio; Pendón, Carlos; Valdivia, Manuel Martínez; Pérez-Sánchez, Jaume

    2002-09-01

    Regulation of somatolactin (SL) and the somatotropic axis was examined year-around at three different stocking times (spring, summer, and autumn) in a Mediterranean fish, the gilthead sea bream (Sparus aurata). The overall timing of plasma growth hormone (GH) increase was similar among trials (late spring-early summer), but the range of variation year-around was different and followed changes in food intake. Total plasma insulin-like growth factor-I primarily followed changes on growth rates, and a close positive correlation between IGF-I and thermal-unit growth coefficient (TGC) was found irrespective of fish stocking time. Thus, the activation of the somatotropic axis preceded always warm growth spurts, whereas the rise of SL in concurrence with low plasma cortisol levels was found at late autumn. This up-regulation of circulating SL titres preceded the winter inhibition of feeding, and it was more severe in big fish (spring and summer stocking times) than in small fish (autumn stocking time), growing with a relative high efficiency during the cold season despite of a severe hypertriglyceridemia and a high hepatosomatic index. These new insights provide good evidence for a different timing of GH and SL increases, and it is likely that the dominant role of SL in energy homeostasis is to be a mediator of the adaptation to fasting after replenishment of body fat stores, whereas GH and IGF-I are perceived as growth-promoting signals in times of food intake and increasing temperature and day-length.

  10. A comparison of Agrobacterium-mediated transformation and protoplast-mediated transformation with CRISPR-Cas9 and bipartite gene targeting substrates, as effective gene targeting tools for Aspergillus carbonarius.

    PubMed

    Weyda, István; Yang, Lei; Vang, Jesper; Ahring, Birgitte K; Lübeck, Mette; Lübeck, Peter S

    2017-04-01

    In recent years, versatile genetic tools have been developed and applied to a number of filamentous fungi of industrial importance. However, the existing techniques have limitations when it comes to achieve the desired genetic modifications, especially for efficient gene targeting. In this study, we used Aspergillus carbonarius as a host strain due to its potential as a cell factory, and compared three gene targeting techniques by disrupting the ayg1 gene involved in the biosynthesis of conidial pigment in A. carbonarius. The absence of the ayg1 gene leads to phenotypic change in conidia color, which facilitated the analysis on the gene targeting frequency. The examined transformation techniques included Agrobacterium-mediated transformation (AMT) and protoplast-mediated transformation (PMT). Furthermore, the PMT for the disruption of the ayg1 gene was carried out with bipartite gene targeting fragments and the recently adapted CRISPR-Cas9 system. All three techniques were successful in generating Δayg1 mutants, but showed different efficiencies. The most efficient method for gene targeting was AMT, but further it was shown to be dependent on the choice of Agrobacterium strain. However, there are different advantages and disadvantages of all three gene targeting methods which are discussed, in order to facilitate future approaches for fungal strain improvements.

  11. Hormone-Mediated Pattern Formation in Seedling of Plants: a Competitive Growth Dynamics Model

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Satoshi; Mimura, Masayasu; Ohya, Tomoyuki; Oikawa, Noriko; Okabe, Hirotaka; Kai, Shoichi

    2001-10-01

    An ecologically relevant pattern formation process mediated by hormonal interactions among growing seedlings is modeled based on the experimental observations on the effects of indole acetic acid, which can act as an inhibitor and activator of root growth depending on its concentration. In the absence of any lateral root with constant hormone-sensitivity, the edge effect phenomenon is obtained depending on the secretion rate of hormone from the main root. Introduction of growth-stage-dependent hormone-sensitivity drastically amplifies the initial randomness, resulting in spatially irregular macroscopic patterns. When the lateral root growth is introduced, periodic patterns are obtained whose periodicity depends on the length of lateral roots. The growth-stage-dependent hormone-sensitivity and the lateral root growth are crucial for macroscopic periodic-pattern formation.

  12. Cripto Binds Transforming Growth Factor β (TGF-β) and Inhibits TGF-β Signaling▿

    PubMed Central

    Gray, Peter C.; Shani, Gidi; Aung, Kevin; Kelber, Jonathan; Vale, Wylie

    2006-01-01

    Cripto is a developmental oncoprotein and a member of the epidermal growth factor-Cripto, FRL-1, Cryptic family of extracellular signaling molecules. In addition to having essential functions during embryogenesis, Cripto is highly expressed in tumors and promotes tumorigenesis. During development, Cripto acts as an obligate coreceptor for transforming growth factor β (TGF-β) ligands, including nodals, growth and differentiation factor 1 (GDF1), and GDF3. As an oncogene, Cripto is thought to promote tumor growth via mechanisms including activation of mitogenic signaling pathways and antagonism of activin signaling. Here, we provide evidence supporting a novel mechanism in which Cripto inhibits the tumor suppressor function of TGF-β. Cripto bound TGF-β and reduced the association of TGF-β with its type I receptor, TβRI. Consistent with its ability to block receptor assembly, Cripto suppressed TGF-β signaling in multiple cell types and diminished the cytostatic effects of TGF-β in mammary epithelial cells. Furthermore, targeted disruption of Cripto expression by use of small inhibitory RNA enhanced TGF-β signaling, indicating that endogenous Cripto plays a role in restraining TGF-β responses. PMID:17030617

  13. Involvement of HIF-2α-mediated inflammation in arsenite-induced transformation of human bronchial epithelial cells

    SciTech Connect

    Xu, Yuan; Zhao, Yue; Xu, Wenchao; Luo, Fei; Wang, Bairu; Li, Yuan; Pang, Ying; Liu, Qizhan

    2013-10-15

    Arsenic is a well established human carcinogen that causes diseases of the lung. Some studies have suggested a link between inflammation and lung cancer; however, it is unknown if arsenite-induced inflammation causally contributes to arsenite-caused malignant transformation of cells. In this study, we investigated the molecular mechanisms underlying inflammation during neoplastic transformation induced in human bronchial epithelial (HBE) cells by chronic exposure to arsenite. The results showed that, on acute or chronic exposure to arsenite, HBE cells over-expressed the pro-inflammatory cytokines, interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-1β (IL-1β). The data also indicated that HIF-2α was involved in arsenite-induced inflammation. Moreover, IL-6 and IL-8 were essential for the malignant progression of arsenite-transformed HBE cells. Thus, these experiments show that HIF-2α mediates arsenite-induced inflammation and that such inflammation is involved in arsenite-induced malignant transformation of HBE cells. The results provide a link between the inflammatory response and the acquisition of a malignant transformed phenotype by cells chronically exposed to arsenite and thus establish a previously unknown mechanism for arsenite-induced carcinogenesis. - Highlights: • Arsenite induces inflammation. • Arsenite-induced the increases of IL-6 and IL-8 via HIF-2α. • Inflammation is involved in arsenite-induced carcinogenesis.

  14. Retinoic acid modulates rat Ito cell proliferation, collagen, and transforming growth factor beta production.

    PubMed Central

    Davis, B H; Kramer, R T; Davidson, N O

    1990-01-01

    Recent studies suggest that vitamin A plays an inhibitory role with respect to "activation" of the hepatic Ito cell, a likely effector of hepatic fibrogenesis. Ito cell "activation" during fibrogenesis is characterized by a decrease in intracellular vitamin A and an increase in cellular proliferation and collagen production. To explore the hypothesis that retinoids have the capacity to diminish Ito cell activation, cultured Ito cells were exposed to retinoic acid and its effects assessed on three key features: cell proliferation, collagen protein production and mRNA abundance, and transforming growth factor beta protein production. Retinoic acid was 100-1,000X more potent than retinol with respect to inhibition of Ito cell proliferation. Interstitial collagen and transforming growth factor beta production were also reduced by 10(-6) M retinoic acid. The relative abundance of type I collagen mRNA however, was not significantly altered. By contrast, retinoic acid administration to rats caused a marked reduction in the abundance of type I collagen mRNA in both total hepatic and purified Ito cell RNA. The relative abundance of rat hepatic fibronectin or apolipoprotein E mRNA was not significantly altered. These studies demonstrate that retinoic acid can differentially modulate several key features of hepatic fibrogenesis in vitro and in vivo. Images PMID:2254460

  15. Strong magnetic field-assisted growth of carbon nanofibers and its microstructural transformation mechanism

    NASA Astrophysics Data System (ADS)

    Luo, Chengzhi; Fu, Qiang; Pan, Chunxu

    2015-03-01

    It is well-known that electric and magnetic fields can control the growth direction, morphology and microstructure of one-dimensional carbon nanomaterials (1-DCNMs), which plays a key role for its potential applications in micro-nano-electrics and devices. In this paper, we introduce a novel process for controlling growth of carbon nanofibers (CNFs) with assistance of a strong magnetic field (up to 0.5 T in the center) in a chemical vapor deposition (CVD) system. The results reveal that: 1) The CNFs get bundled when grown in the presence of a strong magnetic field and slightly get aligned parallel to the direction of the magnetic field; 2) The CNFs diameter become narrowed and homogenized with increase of the magnetic field; 3) With the increase of the magnetic field, the microstructure of CNFs is gradually changed, i.e., the strong magnetic field makes the disordered ``solid-cored'' CNFs transform into a kind of bamboo-liked carbon nanotubes; 4) We propose a mechanism that the reason for these variations and transformation is due to diamagnetic property of carbon atoms, so that it has direction selectivity in the precipitation process.

  16. Strong magnetic field-assisted growth of carbon nanofibers and its microstructural transformation mechanism

    PubMed Central

    Luo, Chengzhi; Fu, Qiang; Pan, Chunxu

    2015-01-01

    It is well-known that electric and magnetic fields can control the growth direction, morphology and microstructure of one-dimensional carbon nanomaterials (1-DCNMs), which plays a key role for its potential applications in micro-nano-electrics and devices. In this paper, we introduce a novel process for controlling growth of carbon nanofibers (CNFs) with assistance of a strong magnetic field (up to 0.5 T in the center) in a chemical vapor deposition (CVD) system. The results reveal that: 1) The CNFs get bundled when grown in the presence of a strong magnetic field and slightly get aligned parallel to the direction of the magnetic field; 2) The CNFs diameter become narrowed and homogenized with increase of the magnetic field; 3) With the increase of the magnetic field, the microstructure of CNFs is gradually changed, i.e., the strong magnetic field makes the disordered “solid-cored” CNFs transform into a kind of bamboo-liked carbon nanotubes; 4) We propose a mechanism that the reason for these variations and transformation is due to diamagnetic property of carbon atoms, so that it has direction selectivity in the precipitation process. PMID:25761381

  17. Genetic Analysis of Connective Tissue Growth Factor as an Effector of Transforming Growth Factor β Signaling and Cardiac Remodeling

    PubMed Central

    Accornero, Federica; van Berlo, Jop H.; Correll, Robert N.; Elrod, John W.; Sargent, Michelle A.; York, Allen; Rabinowitz, Joseph E.; Leask, Andrew

    2015-01-01

    The matricellular secreted protein connective tissue growth factor (CTGF) is upregulated in response to cardiac injury or with transforming growth factor β (TGF-β) stimulation, where it has been suggested to function as a fibrotic effector. Here we generated transgenic mice with inducible heart-specific CTGF overexpression, mice with heart-specific expression of an activated TGF-β mutant protein, mice with heart-specific deletion of Ctgf, and mice in which Ctgf was also deleted from fibroblasts in the heart. Remarkably, neither gain nor loss of CTGF in the heart affected cardiac pathology and propensity toward early lethality due to TGF-β overactivation in the heart. Also, neither heart-specific Ctgf deletion nor CTGF overexpression altered cardiac remodeling and function with aging or after multiple acute stress stimuli. Cardiac fibrosis was also unchanged by modulation of CTGF levels in the heart with aging, pressure overload, agonist infusion, or TGF-β overexpression. However, CTGF mildly altered the overall cardiac response to TGF-β when pressure overload stimulation was applied. CTGF has been proposed to function as a critical TGF-β effector in underlying tissue remodeling and fibrosis throughout the body, although our results suggest that CTGF is of minimal importance and is an unlikely therapeutic vantage point for the heart. PMID:25870108

  18. Growth Hormone Induces Transforming Growth Factor-Beta-Induced Protein in Podocytes: Implications for Podocyte Depletion and Proteinuria.

    PubMed

    Chitra, P Swathi; Swathi, T; Sahay, Rakesh; Reddy, G Bhanuprakash; Menon, Ram K; Kumar, P Anil

    2015-09-01

    The glomerular podocytes form a major size selective barrier for the filtration of serum proteins and reduced podocyte number is a critical event in the pathogenesis of proteinuria during diabetic nephropathy (DN). An elevated level of growth hormone (GH) is implicated as a causative factor in the development of nephropathy in patients with type 1 diabetes mellitus. We have previously shown that podocytes express GH receptor and are a target for GH action. To elucidate the molecular basis for the effects of GH on podocyte depletion, we conducted PCR-array analyses for extracellular matrix and adhesion molecules in podocytes. Our studies reveal that GH increases expression of a gene that encodes transforming growth factor-beta-induced protein (TGFBIp) expression. Similarly, microarray data retrieved from the Nephromine database revealed elevation of TGFBIp in patients with DN. Treatment with GH results in increased secretion of extracellular TGFBIp by podocytes. Both GH and TGFBIp induced apoptosis and epithelial mesenchymal transition (EMT) of podocytes. Exposure of podocytes to GH and TGFBIp resulted in increased migration of cells and altered podocyte permeability to albumin across podocyte monolayer. Administration of GH to rats induced EMT and apoptosis in the glomerular fraction of the kidney. Therefore, we conclude that the GH-dependent increase in TGFBIp in the podocyte is one of the mechanisms responsible for podocyte depletion in DN.

  19. Ionizing radiation predisposes nonmalignant human mammary epithelial cells to undergo transforming growth factor beta induced epithelial to mesenchymal transition.

    PubMed

    Andarawewa, Kumari L; Erickson, Anna C; Chou, William S; Costes, Sylvain V; Gascard, Philippe; Mott, Joni D; Bissell, Mina J; Barcellos-Hoff, Mary Helen

    2007-09-15

    Transforming growth factor beta1 (TGFbeta) is a tumor suppressor during the initial stage of tumorigenesis, but it can switch to a tumor promoter during neoplastic progression. Ionizing radiation (IR), both a carcinogen and a therapeutic agent, induces TGFbeta activation in vivo. We now show that IR sensitizes human mammary epithelial cells (HMEC) to undergo TGFbeta-mediated epithelial to mesenchymal transition (EMT). Nonmalignant HMEC (MCF10A, HMT3522 S1, and 184v) were irradiated with 2 Gy shortly after attachment in monolayer culture or treated with a low concentration of TGFbeta (0.4 ng/mL) or double treated. All double-treated (IR + TGFbeta) HMEC underwent a morphologic shift from cuboidal to spindle shaped. This phenotype was accompanied by a decreased expression of epithelial markers E-cadherin, beta-catenin, and ZO-1, remodeling of the actin cytoskeleton, and increased expression of mesenchymal markers N-cadherin, fibronectin, and vimentin. Furthermore, double treatment increased cell motility, promoted invasion, and disrupted acinar morphogenesis of cells subsequently plated in Matrigel. Neither radiation nor TGFbeta alone elicited EMT, although IR increased chronic TGFbeta signaling and activity. Gene expression profiling revealed that double-treated cells exhibit a specific 10-gene signature associated with Erk/mitogen-activated protein kinase (MAPK) signaling. We hypothesized that IR-induced MAPK activation primes nonmalignant HMEC to undergo TGFbeta-mediated EMT. Consistent with this, Erk phosphorylation was transiently induced by irradiation and persisted in irradiated cells treated with TGFbeta, and treatment with U0126, a MAP/Erk kinase (MEK) inhibitor, blocked the EMT phenotype. Together, these data show that the interactions between radiation-induced signaling pathways elicit heritable phenotypes that could contribute to neoplastic progression.

  20. GSK3 inactivation is involved in mitochondrial complex IV defect in transforming growth factor (TGF) {beta}1-induced senescence

    SciTech Connect

    Byun, Hae-Ok; Jung, Hyun-Jung; Seo, Yong-Hak; Lee, Young-Kyoung; Hwang, Sung-Chul; Seong Hwang, Eun; Yoon, Gyesoon

    2012-09-10

    Transforming growth factor {beta}1 (TGF {beta}1) induces Mv1Lu cell senescence by persistently producing mitochondrial reactive oxygen species (ROS) through decreased complex IV activity. Here, we investigated the molecular mechanism underlying the effect of TGF {beta}1 on mitochondrial complex IV activity. TGF {beta}1 progressively phosphorylated the negative regulatory sites of both glycogen synthase kinase 3 (GSK3) {alpha} and {beta}, corresponding well to the intracellular ROS generation profile. Pre-treatment of N-acetyl cysteine, an antioxidant, did not alter this GSK3 phosphorylation (inactivation), whereas pharmacological inhibition of GSK3 by SB415286 significantly increased mitochondrial ROS, implying that GSK3 phosphorylation is an upstream event of the ROS generation. GSK3 inhibition by SB415286 decreased complex IV activity and cellular O{sub 2} consumption rate and eventually induced senescence of Mv1Lu cell. Similar results were obtained with siRNA-mediated knockdown of GSK3. Moreover, we found that GSK3 not only exists in cytosol but also in mitochondria of Mv1Lu cell and the mitochondrial GSK3 binds complex IV subunit 6b which has no electron carrier and is topologically located in the mitochondrial intermembrane space. Involvement of subunit 6b in controlling complex IV activity and overall respiration rate was proved with siRNA-mediated knockdown of subunit 6b. Finally, TGF {beta}1 treatment decreased the binding of the subunit 6b to GSK3 and subunit 6b phosphorylation. Taken together, our results suggest that GSK3 inactivation is importantly involved in TGF {beta}1-induced complex IV defects through decreasing phosphorylation of the subunit 6b, thereby contributing to senescence-associated mitochondrial ROS generation.

  1. Transformational Leadership and Creative Problem-Solving: The Mediating Role of Psychological Safety and Reflexivity

    ERIC Educational Resources Information Center

    Carmeli, Abraham; Sheaffer, Zachary; Binyamin, Galy; Reiter-Palmon, Roni; Shimoni, Tali

    2014-01-01

    Previous research has pointed to the importance of transformational leadership in facilitating employees' creative outcomes. However, the mechanism by which transformational leadership cultivates employees' creative problem-solving capacity is not well understood. Drawing on theories of leadership, information processing and creativity,…

  2. Ultrasound-mediated interferon {beta} gene transfection inhibits growth of malignant melanoma

    SciTech Connect

    Yamaguchi, Kazuki; Feril, Loreto B.; Tachibana, Katsuro; Takahashi, Akira; Matsuo, Miki; Endo, Hitomi; Harada, Yoshimi; Nakayama, Juichiro

    2011-07-22

    Highlights: {yields} Successful ultrasound-mediated transfection of melanoma (C32) cells with IFN-{beta} genes both in vitro and in vivo. {yields} Ultrasound-mediated IFN-{beta} transfection inhibited proliferation of melanoma cells in vitro. {yields} Ultrasound-mediated IFN-{beta} transfection inhibited melanoma tumor growth in vivo. -- Abstract: We investigated the effects of ultrasound-mediated transfection (sonotransfection) of interferon {beta} (IFN-{beta}) gene on melanoma (C32) both in vitro and in vivo. C32 cells were sonotransfected with IFN-{beta} in vitro. Subcutaneous C32 tumors in mice were sonicated weekly immediately after intra-tumor injection with IFN-{beta} genes mixed with microbubbles. Successful sonotransfection with IFN-{beta} gene in vitro was confirmed by ELISA, which resulted in C32 growth inhibition. In vivo, the growth ratio of tumors transfected with IFN-{beta} gene was significantly lower than the other experimental groups. These results may lead to a new method of treatment against melanoma and other hard-to-treat cancers.

  3. Transforming Environmental Knowledge into Behavior: The Mediating Role of Environmental Emotions

    ERIC Educational Resources Information Center

    Carmi, Nurit; Arnon, Sara; Orion, Nir

    2015-01-01

    The present study was based on the premise that environmental knowledge can drive environmental behavior only if it arouses environmental emotions. Using a structural equations modeling approach, we tested the direct, as well as the indirect (mediated) effects of knowledge on behavior and assessed the mediating role of environmental emotions. We…

  4. Refined glufosinate selection in Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill].

    PubMed

    Zeng, P; Vadnais, D A; Zhang, Z; Polacco, J C

    2004-02-01

    Modern genetic analysis and manipulation of soybean ( Glycine max) depend heavily on an efficient and dependable transformation process, especially in public genotypes from which expressed sequence tag (EST), bacterial artificial chromosome and microarray data have been derived. Williams 82 is the subject of EST and functional genomics analyses. However, it has not previously been transformed successfully using either somatic embryogenesis-based or cotyledonary-node transformation methods, the two predominant soybean transformation systems. An advance has recently been made in using antioxidants to enhance Agrobacterium infection of soybean. Nonetheless, an undesirable effect of using these antioxidants is the compromised recovery of transgenic soybean when combined with the use of the herbicide glufosinate as a selective agent. Therefore, we optimized both Agrobacterium infection and glufosinate selection in the presence of L-cysteine for Williams 82. We have recovered transgenic lines of this genotype with an enhanced transformation efficiency using this herbicide selection system.

  5. Transforming Growth Factor-β1 Downregulates Vascular Endothelial Growth Factor-D Expression in Human Lung Fibroblasts via the Jun NH2-Terminal Kinase Signaling Pathway

    PubMed Central

    Cui, Ye; Osorio, Juan C; Risquez, Cristobal; Wang, Hao; Shi, Ying; Gochuico, Bernadette R; Morse, Danielle; Rosas, Ivan O; El-Chemaly, Souheil

    2014-01-01

    Vascular endothelial growth factor (VEGF)-D, a member of the VEGF family, induces both angiogenesis and lymphangiogenesis by activating VEGF receptor-2 (VEGFR-2) and VEGFR-3 on the surface of endothelial cells. Transforming growth factor (TGF)-β1 has been shown to stimulate VEGF-A expression in human lung fibroblast via the Smad3 signaling pathway and to induce VEGF-C in human proximal tubular epithelial cells. However, the effects of TGF-β1 on VEGF-D regulation are unknown. To investigate the regulation of VEGF-D, human lung fibroblasts were studied under pro-fibrotic conditions in vitro and in idiopathic pulmonary fibrosis (IPF) lung tissue. We demonstrate that TGF-β1 downregulates VEGF-D expression in a dose- and time-dependent manner in human lung fibroblasts. This TGF-β1 effect can be abolished by inhibitors of TGF-β type I receptor kinase and Jun NH2-terminal kinase (JNK), but not by Smad3 knockdown. In addition, VEGF-D knockdown in human lung fibroblasts induces G1/S transition and promotes cell proliferation. Importantly, VEGF-D protein expression is decreased in lung homogenates from IPF patients compared with control lung. In IPF lung sections, fibroblastic foci show very weak VEGF-D immunoreactivity, whereas VEGF-D is abundantly expressed within alveolar interstitial cells in control lung. Taken together, our data identify a novel mechanism for downstream signal transduction induced by TGF-β1 in lung fibroblasts, through which they may mediate tissue remodeling in IPF. PMID:24515257

  6. Sequential analysis of myofibroblast differentiation and transforming growth factor-β1/Smad pathway activation in murine pulmonary fibrosis.

    PubMed

    Usuki, Jiro; Matsuda, Kuniko; Azuma, Arata; Kudoh, Shoji; Gemma, Akihiko

    2012-01-01

    Myofibroblasts play a critical role in tissue fibrosis. However, the intracellular signaling pathways in myofibroblast differentiation are poorly understood. Here, we studied the relationship between transforming growth factor-β (TGF-β)/Smad pathway activation and myofibroblast differentiation in both in vivo and in vitro experiments. In murine bleomycin-induced pulmonary fibrosis, nuclear localization of phosphorylated Smad2/3 (p-Smad2/3) was observed in pulmonary fibrotic lesions 7 days after bleomycin injection, whereas α-smooth muscle actin (ASMA)-positive myofibroblasts appeared in the lesions at 14 days, when the cytoplasmic localization of p-Smad2/3 was observed. We also compared the effects of TGF-β1 on myofibroblast differentiation and on type I collagen expression in a murine lung fibroblast cell line (MLg2908). TGF-β1 induced rapid expression of p-Smad2/3 in nuclei, after which ASMA organization in the cytoplasm of fibroblasts was observed. However, TGF-β1 produced no effect on the quantity of ASMA, either in mRNA levels or protein levels, even after the phosphorylation of Smad2/3. In contrast, TGF-β1 upregulated the expression of type I collagen mRNA. These findings suggest that in pulmonary fibrosis the molecular mechanism of myofibroblast differentiation is complex and that the difference between ASMA expression and type I collagen expression is mediated by the TGF-β/Smad pathway.

  7. Transforming growth factor alpha protection against drug-induced injury to the rat gastric mucosa in vivo.

    PubMed Central

    Romano, M; Polk, W H; Awad, J A; Arteaga, C L; Nanney, L B; Wargovich, M J; Kraus, E R; Boland, C R; Coffey, R J

    1992-01-01

    This study was designed to determine whether transforming growth factor alpha (TGF alpha) protects rat gastric mucosa against ethanol- and aspirin-induced injury. Systemic administration of TGF alpha dose-dependently decreased 100% ethanol-induced gastric mucosal injury; a dose of 50 micrograms/kg delivered intraperitoneally 15 min before ethanol decreased macroscopic mucosal injury by > 90%. At the microscopic level, TGF alpha prevented deep gastric necrotic lesions and reduced disruption of surface epithelium. Pretreatment with orogastric TGF alpha (200 micrograms/kg) only partially (40%) decreased macroscopic ethanol damage. Intraperitoneal administration of TGF alpha at a dose of 10 micrograms/kg, which does not significantly inhibit gastric acid secretion, decreased aspirin-induced macroscopic damage by > 80%. TGF alpha protection does not seem to be mediated by prostaglandin, glutathione, or ornithine decarboxylase-related events, as evidenced by lack of influence of the inhibition of their production. Pretreatment with the sulfhydryl blocking agent N-ethylmaleimide partially abolished (40%) the protective effect of TGF alpha. In addition, systemic administration of TGF alpha resulted in a two-fold increase in tyrosine phosphorylation of phospholipase C-gamma 1 and in a time- and dose-dependent increase in levels of immunoreactive insoluble gastric mucin; these events occurred in a time frame consistent with their participation in the protective effect of TGF alpha. Images PMID:1281834

  8. Accumulation of Extracellular Matrix and Developmental Dysregulation in the Pancreas by Transgenic Production of Transforming Growth Factor-β1

    PubMed Central

    Lee, Myung-Shik; Gu, Danling; Feng, Lili; Curriden, Scott; Arnush, Marc; Krahl, Troy; Gurushanthaiah, Deepak; Wilson, Curtis; Loskutoff, David L.; Fox, Howard; Sarvetnick, Nora

    1995-01-01

    Transgenic mice expressing transforming growth factor-β1 (TGF-β1) in the pancreatic β-islet cells directed by human insulin promoter were produced to study in vivo effects of TGF-β1. Fibroblast proliferation and abnormal deposition of extracellular matrix were observed from birth onward, finally replacing almost all the exocrine pancreas. Cellular infiltrates comprising macrophages and neutrophils were also observed. Plasminogen activator inhibitor was induced in the transgenic pancreas as well as fibronectin and laminin, partly explaining accumulation of extracellular matrix. TGF-β1 inhibited proliferation of acinar cells in vivo as evidenced by decreased bromodeoxyuridine incorporation. Development of pancreatic islets was dysregulated, resulting in small islet cell clusters without formation of normal adult islets; however, the overall islet cell mass was not signfifcantly diminished. Additional transgenic lines with less pronounced phenotypes had less expression of TGF-β1 transgene. These findings suggest that TGF-β1 might be a mediator of diseases associated with extracellular matrix deposition such as chronic pancreatitis, and this mouse model will be useful for further analysis of the in vivo effects of TGF-β1, including its potential for immunosuppression. Imagesp43-aFigure 2Figure 3Figure 4Figure 5Figure 6 PMID:7604884

  9. Parabens enable suspension growth of MCF-10A immortalized, non-transformed human breast epithelial cells.

    PubMed

    Khanna, Sugandha; Darbre, Philippa D

    2013-05-01

    Parabens (alkyl esters of p-hydroxybenzoic acid) are used extensively as preservatives in consumer products, and intact esters have been measured in several human tissues. Concerns of a potential link between parabens and breast cancer have been raised, but mechanistic studies have centred on their oestrogenic activity and little attention has been paid to any carcinogenic properties. In the present study, we report that parabens can induce anchorage-independent growth of MCF-10A immortalized but non-transformed human breast epithelial cells, a property closely related to transformation and a predictor of tumour growth in vivo. In semi-solid methocel suspension culture, MCF-10A cells produced very few colonies and only of a small size but the addition of 5 × 10(-4) M methylparaben, 10(-5) M n-propylparaben or 10(-5) M n-butylparaben resulted in a greater number of colonies per dish (P < 0.05 in each case) and an increased average colony size (P < 0.001 in each case). Dose-responses showed that concentrations as low as 10(-6) M methylparaben, 10(-7) M n-propylparaben and 10(-7) M n-butylparaben could increase colony numbers (P = 0.016, P = 0.010, P = 0.008, respectively): comparison with a recent measurement of paraben concentrations in human breast tissue samples from 40 mastectomies (Barr et al., 2012) showed that 22/40 of the patients had at least one of the parabens at the site of the primary tumour at or above these concentrations. To our knowledge, this is the first study to report that parabens can induce a transformed phenotype in human breast epithelial cells in vitro, and further investigation is now justified into a potential link between parabens and breast carcinogenesis.

  10. Parasite-mediated growth patterns and nutritional constraints in a cavity-nesting bird.

    PubMed

    O'Brien, Erin L; Dawson, Russell D

    2008-01-01

    1. Trade-offs between growth and immunity of nestling birds can be influenced by parasites, but the magnitude of these effects may depend on availability of critical dietary nutrients. Owing to their importance for both immune system function and growth, dietary carotenoids have the potential to mediate parasite-induced developmental strategies of avian hosts. 2. The effects of ectoparasitic blow flies Protocalliphora spp. and dietary carotenoids (lutein and zeaxanthin) on immune function and patterns of growth in nestling mountain bluebirds Sialia currucoides were investigated by combining parasite removal and carotenoid supplementation treatments in a 2 x 2 design. 3. Supplemental carotenoids enhanced nestlings' T-cell-mediated immune response following intradermal injection of phytohaemagglutinin. 4. The effect of carotenoid supplementation on rate of mass gain depended on whether broods were exposed to parasites: among parasitized broods, those receiving supplemental carotenoids gained mass more rapidly than nonsupplemented broods, whereas there was no effect of supplemental carotenoids on growth of mass in broods that had parasites removed. This suggests that additional dietary carotenoids allowed nestlings to compensate for the otherwise detrimental effects of parasites on mass gain. For length of the eighth primary feather at fledging, early and late broods differed in their response to parasitism: early broods showed an increase in feather length when parasites were removed, while nestlings in late broods had shorter feathers in the absence of parasites. We suggest that this may reflect within-season variation in parasite-mediated growth strategies of nestlings. 5. Maternal condition was positively associated with mass, condition and rate of feather growth of offspring under all conditions, and also influenced nestling immunocompetence, but only in the absence of parasites. 6. We conclude that dietary carotenoids alleviate some of the detrimental effects of

  11. Oncogene N-ras mediates selective inhibition of c-fos induction by nerve growth factor and basic fibroblast growth factor in a PC12 cell line.

    PubMed Central

    Thomson, T M; Green, S H; Trotta, R J; Burstein, D E; Pellicer, A

    1990-01-01

    A cell line was generated from U7 cells (a subline of PC12 rat pheochromocytoma cells) that contains a stably integrated transforming mouse N-ras (Lys-61) gene under the control of the long terminal repeat from mouse mammary tumor virus. Such cells, designated UR61, undergo neuronal differentiation upon exposure to nanomolar concentrations of dexamethasone, as a consequence of expression of the activated N-ras gene (I. Guerrero, A. Pellicer, and D.E. Burstein, Biochem, Biophys. Res. Commun. 150:1185-1192, 1988). Exposure of UR61 cells to either nerve growth factor (NGF) or basic fibroblast growth factor (bFGF) results in a marked induction of c-fos RNA, with kinetics paralleling those of NGF- or bFGF-induced expression of c-fos RNA in PC12 cells. Dexamethasone-induced expression of activated N-ras p21 results in blocking of c-fos RNA induction by NGF or bFGF in a time-dependent manner. Activated N-ras p21-mediated inhibition of c-fos RNA induction in UR61 cells is selective for NGF and bFGF and is not due to selective degradation of c-fos RNA. Normal and transforming N-ras can trans activate the chloramphenicol acetyltransferase gene linked to mouse c-fos regulatory sequences when transient expression assays are performed. Our observations suggest that N-ras p21 selectively interacts with pathways involved in induction of c-fos expression which initiate at the receptors for NGF and bFGF. Images PMID:2108319

  12. Parameters influencing Agrobacterium-mediated transformation system in safflower genotypes AKS-207 and PKV Pink.

    PubMed

    Dhumale, Dipti Raghunath; Shingote, Prashant Raghunath; Dudhare, Mahendra Shankarrao; Jadhav, Pravin Vishwanath; Kale, Prashant Bhaskar

    2016-12-01

    Shoot regeneration in safflower (Carthamus tinctorius 'AKS 207' and 'PKV Pink') genetically transformed using Agrobacterium was used for assessing various constraints to the efficiency of transformation including infection period, virulence induction medium, co-cultivation period, bacterial titre, selection regime, and the natural phenolic compound acetosyringone. Transformation frequency was promising with 8-10-day-old cotyledonary leaf explants. Therefore, explants of that age cultured on Agrobacterium minimal medium (AB) containing 100 µM acetosyringone were infected with Agrobacterium (cell titre 0.5 OD600nm) for 15 min followed by 48 h of co-cultivation on kanamycin-enriched medium (50 mg/L). Transformation of the shoots was confirmed using β-glucuronidase (GUS) histochemical assay and polymerase chain reaction (PCR). With the transformation protocol thus optimized, the transformation frequency as determined using GUS assays was 54.0 % for AKS 207 and 47.6 % for PKV Pink. The corresponding figures using PCR were 27.0 and 33.3 %. The transformed shoots required 10-14 weeks of culture initiation but produced very few roots.

  13. Genetic transformation of Metroxylon sagu (Rottb.) cultures via Agrobacterium-mediated and particle bombardment.

    PubMed

    Ibrahim, Evra Raunie; Hossain, Md Anowar; Roslan, Hairul Azman

    2014-01-01

    Sago palm (Metroxylon sagu) is a perennial plant native to Southeast Asia and exploited mainly for the starch content in its trunk. Genetic improvement of sago palm is extremely slow when compared to other annual starch crops. Urgent attention is needed to improve the sago palm planting material and can be achieved through nonconventional methods. We have previously developed a tissue culture method for sago palm, which is used to provide the planting materials and to develop a genetic transformation procedure. Here, we report the genetic transformation of sago embryonic callus derived from suspension culture using Agrobacterium tumefaciens and gene gun systems. The transformed embryoids cells were selected against Basta (concentration 10 to 30 mg/L). Evidence of foreign genes integration and function of the bar and gus genes were verified via gene specific PCR amplification, gus staining, and dot blot analysis. This study showed that the embryogenic callus was the most suitable material for transformation as compared to the fine callus, embryoid stage, and initiated shoots. The gene gun transformation showed higher transformation efficiency than the ones transformed using Agrobacterium when targets were bombarded once or twice using 280 psi of helium pressure at 6 to 8 cm distance.

  14. Genetic Transformation of Metroxylon sagu (Rottb.) Cultures via Agrobacterium-Mediated and Particle Bombardment

    PubMed Central

    Ibrahim, Evra Raunie

    2014-01-01

    Sago palm (Metroxylon sagu) is a perennial plant native to Southeast Asia and exploited mainly for the starch content in its trunk. Genetic improvement of sago palm is extremely slow when compared to other annual starch crops. Urgent attention is needed to improve the sago palm planting material and can be achieved through nonconventional methods. We have previously developed a tissue culture method for sago palm, which is used to provide the planting materials and to develop a genetic transformation procedure. Here, we report the genetic transformation of sago embryonic callus derived from suspension culture using Agrobacterium tumefaciens and gene gun systems. The transformed embryoids cells were selected against Basta (concentration 10 to 30 mg/L). Evidence of foreign genes integration and function of the bar and gus genes were verified via gene specific PCR amplification, gus staining, and dot blot analysis. This study showed that the embryogenic callus was the most suitable material for transformation as compared to the fine callus, embryoid stage, and initiated shoots. The gene gun transformation showed higher transformation efficiency than the ones transformed using Agrobacterium when targets were bombarded once or twice using 280 psi of helium pressure at 6 to 8 cm distance. PMID:25295258

  15. Transforming growth factor-beta as a differentiating factor for cultured smooth muscle cells.

    PubMed

    Gawaziuk, J P; X; Sheikh, F; Cheng, Z-Q; Cattini, P A; Stephens, N L

    2007-10-01

    The aim of the present study was to determine whether the development of supercontractile smooth muscle cells, contributing to the nonspecific hyperreactivity of airways in asthmatic patients, is due to transforming growth factor (TGF)-beta. In cultured smooth muscle cells starved by removal of 10% foetal bovine serum for 7 days, growth arrest was seen; 30% became elongated and demonstrated super contractility. Study of conditioned medium suggested that the differentiating factor was TGF-beta. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) was carried out on conditioned medium from the arrested cells. Two protein bands were identified as matrix metalloproteinase (MMP)-2 and TGF-beta1. To determine second messenger signalling by SMAD2, Western blotting and confocal microscopy were employed. Conditioned medium from arrested cultures showed the presence of MMP-2 and TGF-beta1, as revealed by SDS-PAGE; 68- and 25-kDa bands were seen. Differentiation was confirmed by upregulation of marker proteins, smooth muscle type myosin heavy chain and myosin light chain kinase. Confirmation was obtained by downregulating these proteins with decorin treatment, which reduces the levels of active TGF-beta and an adenoviral dominant-negative vector coding for a mutated type II TGF-beta-receptor. Activation of second messenger signalling was demonstrated immunocytochemically by the presence of phosphorylated SMAD2 and SMAD4. Transforming growth factor-beta is likely to be the differentiating factor responsible for the development of these supercontractile smooth muscle cells. The development of such cells in vivo after cessation of an asthmatic attack could contribute to the nonspecific hyperreactivity of airways seen in patients.

  16. Growth-Phase Sterigmatocystin Formation on Lactose Is Mediated via Low Specific Growth Rates in Aspergillus nidulans

    PubMed Central

    Németh, Zoltán; Molnár, Ákos P.; Fejes, Balázs; Novák, Levente; Karaffa, Levente; Keller, Nancy P.; Fekete, Erzsébet

    2016-01-01

    Seed contamination with polyketide mycotoxins such as sterigmatocystin (ST) produced by Aspergilli is a worldwide issue. The ST biosynthetic pathway is well-characterized in A. nidulans, but regulatory aspects related to the carbon source are still enigmatic. This is particularly true for lactose, inasmuch as some ST production mutant strains still synthesize ST on lactose but not on other carbon substrates. Here, kinetic data revealed that on d-glucose, ST forms only after the sugar is depleted from the medium, while on lactose, ST appears when most of the carbon source is still available. Biomass-specified ST production on lactose was significantly higher than on d-glucose, suggesting that ST formation may either be mediated by a carbon catabolite regulatory mechanism, or induced by low specific growth rates attainable on lactose. These hypotheses were tested by d-glucose limited chemostat-type continuous fermentations. No ST formed at a high growth rate, while a low growth rate led to the formation of 0.4 mg·L−1 ST. Similar results were obtained with a CreA mutant strain. We concluded that low specific growth rates may be the primary cause of mid-growth ST formation on lactose in A. nidulans, and that carbon utilization rates likely play a general regulatory role during biosynthesis. PMID:27916804

  17. Water mediated alterations in gravity signal transform phytofilertation capability in hydroponic plants

    NASA Astrophysics Data System (ADS)

    Singh, Yogranjan; Singh Marabi, Rakesh; Satpute, Gyanesh Kumar; Mishra, Stuti

    2012-07-01

    An exorbitant sum of different synthetic molecules of chemicals including dyes and pigments are discharged into the environment, mainly via industrial effluents every year worldwide. The physical-chemical treatments for remediation viz adsorption, precipitation, ion exchange or filtration have proved to be disadvantageous because of high cost, low efficiency and inapplicability to a wide variety of dyes, or the formation of by-products and thereby creating waste disposal problems. Similarly the limited ability of micro-organisms to degrade xenobiotic especially sulphonoaromatic compounds, limits the efficiency and, therefore, the use of conventional wastewater treatment plants. In this context, the development of alternative biological treatments to eliminate these pollutants from industrial effluents is an important requirement. Plant metabolism, is extremely diverse and can be exploited to treat recalcitrant pollutants, not degradable by bacteria or fungi and can act as an important global sink for environmental pollutants. The presence of putative metabolites, in leaves of hydrophytes has been observed, indicating the transformation of several xenobiotics. A diverse range of the enzymes involved in the early stages of the detoxification process are closely associated with the redox biochemistry of the cell. The activities of enzymes such as glutathione transferases, peroxidases and cytochrome P450 monooxygenases and its multigenic family have implications with respect to the maintenance of redox homeostasis. Besides activating xenobiotics, cytochromes P450 is involved vitally in cell signaling for counteracting buoyant balance. Signal transduction cascades, including the role of cytochrome P450 monooxygenases in responding to gravitational cues, appear to be affected by buoyancy as well. Gravitropism is the orientation of growth in response to gravity and involves the perception of the gravitational force in the columella cells of the root cap where the primary

  18. Transforming growth factor-beta, transforming growth factor-beta receptor II, and p27Kip1 expression in nontumorous and neoplastic human pituitaries.

    PubMed Central

    Jin, L.; Qian, X.; Kulig, E.; Sanno, N.; Scheithauer, B. W.; Kovacs, K.; Young, W. F.; Lloyd, R. V.

    1997-01-01

    Transforming growth factor (TGF)-beta has been implicated in the regulation of normal and neoplastic anterior pituitary cell function. TGF-beta regulates the expression of various proteins, including p27Kip1 (p27), a cell cycle inhibitory protein. We examined TGF-beta, TGF-beta type II receptor (TGF-beta-RII), and p27 expression in normal pituitaries, pituitary adenomas, and carcinomas to analyze the possible roles of these proteins in pituitary tumorigenesis. Normal pituitary, pituitary adenomas, and pituitary carcinomas all expressed TGF-beta and TGF-beta-RII immunoreactivity. Reverse transcription polymerase chain reaction analysis showed TGF-beta 1, -beta 2, and -beta 3 isoforms and TGF-beta-RII in normal pituitaries and pituitary adenomas. Pituitary adenomas cells cultured for 7 days in defined media showed a biphasic response to TGF-beta with significant inhibition of follicle-stimulating hormone secretion at higher concentrations (10(-9) mol/L) and stimulation of follicle-stimulating hormone secretion at lower concentrations (10(-13) mol/L) of TGF-beta 1 in gonadotroph adenomas. Immunohistochemical analysis for p27 protein expression showed the highest levels in nontumorous pituitaries with decreased immunoreactivity in adenomas and carcinomas. When nontumorous pituitaries and various adenomas were analyzed for p27 and specific hormone production, growth hormone, luteinizing hormone, and thyroid-stimulating hormone cells and tumors had the highest percentages of cells expressing p27, whereas adrenocorticotrophic hormone cells and tumors had the lowest percentages. Immunoblotting analysis showed that adrenocorticotrophic hormone adenomas also had the lowest levels of p27 protein. Semiquantitative reverse transcription polymerase chain reaction and Northern hybridization analysis did not show significant differences in p27 mRNA expression in the various types of adenomas or in nontumorous pituitaries. In situ hybridization for p27 mRNA showed similar

  19. The pathogenic role of transforming growth factor-β2 in glaucomatous damage to the optic nerve head.

    PubMed

    Fuchshofer, Rudolf

    2011-08-01

    In patients with primary open angle glaucoma (POAG), the optic nerve head (ONH) shows characteristic cupping correlated with visual field defects. The progressive optic neuropathy is characterized by irreversible loss of retinal ganglion cells (RGC). The critical risk factor for axonal damage at the ONH is an elevated intraocular pressure (IOP). The increase in IOP correlates with axonal loss in the ONH, which might be due to an impaired axoplasmatic flow leading to the loss of RGCs. Damage to the optic nerve is thought to occur in the lamina cribrosa (LC) region of the ONH, which is composed of characteristic sieve-like connective tissue cribriform plates through which RGC axons exit the eye. The cupping of the optic disc, and the compression and excavation of LC are characteristic signs of glaucomatous ONH remodelling. In ONH of POAG patients a disorganized distribution and deposition of elastic fibers and a typical pronounced thickening of the connective tissue septae surrounding the optic nerve fibers is found. Transforming growth factor (TGF)-β2 could be one of the pathogenic factors responsible for the structural alterations in POAG patients as the TGF-β2 levels in the ONH of glaucomatous eyes are elevated as well as in the aqueous homour. TGF-β2 leads to an increased synthesis of extracellular matrix (ECM) molecules mediated by connective tissue growth factor and to an impaired ECM degradation in cultured ONH astrocytes. Bone morphogenetic protein (BMP)-4 effectively antagonizes the effects of TGF-β2 on matrix deposition. The BMP antagonist gremlin blocks this inhibition, allowing TGF-β2 stimulation of ECM synthesis. Overall, the ECM in the ONH is kept in balance in the OHN by factors that augment or block the activity of TGF-β2.

  20. Early stage reversed crystal growth of zeolite A and its phase transformation to sodalite.

    PubMed

    Greer, Heather; Wheatley, Paul S; Ashbrook, Sharon E; Morris, Russell E; Zhou, Wuzong

    2009-12-16

    Microstructural analysis of the early stage crystal growth of zeolite A in hydrothermal synthetic conditions revealed a revised crystal growth route from surface to core in the presence of the biopolymer chitosan. The mechanism of this extraordinary crystal growth route is discussed. In the first stage, the precursor and biopolymer aggregated into amorphous spherical particles. Crystallization occurred on the surface of these spheres, forming the typical cubic morphology associated with zeolite A with a very thin crystalline cubic shell and an amorphous core. With a surface-to-core extension of crystallization, sodalite nanoplates were crystallized within the amorphous cores of these zeolite A cubes, most likely due to an increase of pressure. These sodalite nanoplates increased in size, breaking the cubic shells of zeolite A in the process, leading to the phase transformation from zeolite A to sodalite via an Ostwald ripening process. Characterization of specimens was performed using scanning electron microscopy and transmission electron microscopy, supported by other techniques including X-ray diffraction, solid-state NMR, and N(2) adsorption/desorption.

  1. Agrobacterium-mediated transformation of safflower and the efficient recovery of transgenic plants via grafting

    PubMed Central

    2011-01-01

    Background Safflower (Carthamus tinctorius L.) is a difficult crop to genetically transform being susceptible to hyperhydration and poor in vitro root formation. In addition to traditional uses safflower has recently emerged as a broadacre platform for the production of transgenic products including modified oils and pharmaceutically active proteins. Despite commercial activities based on the genetic modification of safflower, there is no method available in the public domain describing the transformation of safflower that generates transformed T1 progeny. Results An efficient and reproducible protocol has been developed with a transformation efficiency of 4.8% and 3.1% for S-317 (high oleic acid content) and WT (high linoleic acid content) genotypes respectively. An improved safflower transformation T-DNA vector was developed, including a secreted GFP to allow non-destructive assessment of transgenic shoots. Hyperhydration and necrosis of Agrobacterium-infected cotyledons was effectively controlled by using iota-carrageenan, L-cysteine and ascorbic acid. To overcome poor in vitro root formation for the first time a grafting method was developed for safflower in which ~50% of transgenic shoots develop into mature plants bearing viable transgenic T1 seed. The integration and expression of secreted GFP and hygromycin genes were confirmed by PCR, Southern and Western blot analysis. Southern blot analysis in nine independent lines indicated that 1-7 transgenes were inserted per line and T1 progeny displayed Mendelian inheritance. Conclusions This protocol demonstrates significant improvements in both the efficiency and ease of use over existing safflower transformation protocols. This is the first complete method of genetic transformation of safflower that generates stably-transformed plants and progeny, allowing this crop to benefit from modern molecular applications. PMID:21595986

  2. Composition-Mediated Order-Disorder Transformation in FePt Nanoparticles

    SciTech Connect

    Johnston-Peck, Aaron C.; Cullen, David A.; Tracy, Joseph B.

    2013-07-08

    Thumbnail image of graphical abstract Heat-treated alloy FePt nanoparticles transform into L10 FePt and mixed L10/L12 FePt3 intermetallic phases. Enrichment in Pt in some nanoparticles, rather than intrinsic thermodynamic effects, drives phase segregation. FePt nanoparticles of uniform, equimolar composition are expected to transform into phase-pure, highly ordered L10 FePt nanoparticles.

  3. Establishment of a high efficiency Agrobacterium-mediated transformation system of rice (Oryza sativa L.).

    PubMed

    Ozawa, Kenjirou

    2009-04-01

    Technologies for transformation of rice have been developed to meet the requirements of functional genomics in order to enable the production of transgenic rice plants with useful agricultural characters. However, many rice varieties are not efficiently transformed by Agrobacterium. We have succeeded in establishing a highly efficient transformation system in rice by co-cultivating rice calli with Agrobacterium on three filter papers moistened with enriched N6 or DKN media instead of using solid media. Rice calli immersed in Agrobacterium suspension (EHA101, Agrobacterium concentration of OD600=0.04) were co-cultured on three pieces of filter paper (9cm in diameter) moistened with 5.5mL of N6 or DKN liquid co-cultivation medium supplemented with 2,4-d (2mg/L), proline (10mM), casein hydrolysate (300mg/L), sucrose (30g/L), glucose (5g/L), l-cysteine (100mg/L) and acetosyringone (15mg/L) at 25°C for 3 days in the dark. Compared with the transformation efficiency of calli co-cultivated on solid media, transformation efficiency was increased by about fivefold by using the filter paper method for many varieties of rice, including those that previously yielded much poor transformation rates.

  4. Vibration and glycerol-mediated plasmid DNA transformation for Escherichia coli.

    PubMed

    Shanehbandi, Dariush; Saei, Amir A; Zarredar, Habib; Barzegari, Abolfazl

    2013-11-01

    Escherichia coli transformation is an essential step in many molecular biology experiments. Despite earlier advances in the field, many studies including shotgun cloning still require more efficient transformation protocols. Chemical transformation has been the most popular method, in which competent cells are transformed following a brief period of heat shock. Here, we report a novel protocol with higher efficiency, in which competent E. coli cells (treated with CaCl2 ) grown in media containing glycerol experience a gentle vibration. Three E. coli strains DH5α, Jm107 and BL21 (DE3) and three plasmids pGEM-T, pET-28a and pCAMBIA with different sizes (3000, 5369 and 8428 bp, respectively) were used to test the protocol. The results indicated a significant increase in number of transformed colonies compared with heat-shock method. Our findings also demonstrated the favourable impacts of glycerol on transformation of E. coli.

  5. Scaling of submonolayer island growth with reversible adatom exchange in surfactant-mediated epitaxy

    NASA Astrophysics Data System (ADS)

    Wang, Daimu; Wang, Zhuping; Zhu, Hui

    2007-08-01

    Surfactant-mediated epitaxial growth is studied with a realistic model, which includes three main kinetic processes: diffusion of adatoms on the surfactant terrace, exchange of adatoms with their underneath surfactant atoms, and reexchange in which an exchanged adatom resurfaces to the top of the surfactant layer. The scaling behavior of nucleus density and island size distributions in the initial stage of growth is investigated by using kinetic Monte Carlo simulations. The results show that the temperature dependence of nucleus density and island size distributions governed by the reexchanging-controlled nucleation at high temperatures exhibits similar scaling behavior to that obtained by the standard diffusion-mediated nucleation at low temperatures. However, at intermediate temperatures, the exchanging-controlled nucleation leads to an increase of nucleus density with temperature, while the island size distribution scales to a monotonically decreasing function, showing nonstandard scaling behavior.

  6. Nucleation Behaviour in the Initial Stage of Surfactant-Mediated Epitaxial Growth

    NASA Astrophysics Data System (ADS)

    Wang, Dai-Mu; Sun, Xia; Ding, Ze-Jun; Wu, Zi-Qin

    2004-10-01

    The nucleation kinetics in the early stage of epitaxial growth mediated by a monolayer of surfactant is studied by using kinetic Monte Carlo simulations. Our simulation model includes three main kinetic parameters: a small barrier for adatom diffusion on the surfactant terrace, a higher barrier for the exchange of adatoms with their underneath surfactant atoms, and a highest barrier for the recovery exchange in which an exchanged adatom resurfaces to the top of the surfactant layer. The simulations reveal a distinct transition of nucleation behaviour as the different atomic processes are activated successively with increasing temperature. The total nucleus density as a function of temperature exhibits a complex N-shape with a minimum and a maximum, which define the transition temperatures. The characteristic behaviour of nucleation density is helpful to rationalize the experimental observations on the temperature dependence of growth mode in some surfactant-mediated epitaxial systems.

  7. Isoform-specific regulation of transforming growth factor-β mRNA expression in macrophages in response to adrenoceptor stimulation.

    PubMed

    Yanagawa, Yoshiki; Hiraide, Sachiko; Iizuka, Kenji

    2016-01-01

    Transforming growth factor-beta (TGF-β) is a multifunctional cytokine responsible for both immune regulation and tissue repair. Although TGF-β consists of TGF-β1, -β2, and -β3 in mammals, isoform-selective transcriptional regulation is less well documented in myeloid linage cells such as macrophages. In the present study, the effect of the stress-related catecholamine adrenaline on the expression of TGF-β isoforms in RAW264.7 macrophages and murine bone marrow-derived macrophages was examined. Treatment with adrenaline markedly increased the mRNA expression of TGF-β3 but not of TGF-β1 and -β2. Agonist and antagonist studies indicated that adrenaline-induced TGF-β3 mRNA expression is mediated via β2 -adrenoceptor. Protein kinase A (PKA) inhibitor H89 was found to block an increase in adrenoceptor-mediated TGF-β3 mRNA expression. The membrane-permeable cAMP analog 8-Br-cAMP increased the mRNA expression of TGF-β3 but not of TGF-β1 and -β2. Thus, the β2 -adrenoceptor-mediated cAMP-PKA pathway appears to enhance TGF-β3 mRNA expression in macrophages. Adrenoceptor-mediated TGF-β3 expression by macrophages may influence immune regulation and tissue repair in conditions of stress, during which the sympathetic-nervous system releases catecholamines.

  8. The relationship between transformational teaching and adolescent physical activity: the mediating roles of personal and relational efficacy beliefs.

    PubMed

    Bourne, Jessica; Liu, Yan; Shields, Christopher A; Jackson, Ben; Zumbo, Bruno D; Beauchamp, Mark R

    2015-02-01

    The purpose of this study was to examine the extent to which transformational teaching, exhibited by secondary school physical education teachers, predicts within-class physical activity and leisure-time physical activity among adolescents. The study used a prospective observational design and involved data collected from 874 Grade 10 adolescents (M age = 15.41, (SD) = .61). Through use of structural equation modeling, the results revealed that adolescents' perceptions of transformational teaching were positively related to within-class physical activity and leisure-time physical activity, and these effects were mediated by adolescents' estimation of their teacher's confidence in their abilities (i.e. relation-inferred self-efficacy) and self-efficacy beliefs.

  9. Formation of a new crystalline form of anhydrous β-maltose by ethanol-mediated crystal transformation.

    PubMed

    Verhoeven, Nicolas; Neoh, Tze Loon; Ohashi, Tetsuya; Furuta, Takeshi; Kurozumi, Sayaka; Yoshii, Hidefumi

    2012-04-01

    β-Maltose monohydrate was transformed into an anhydrous form by ethanol-mediated method under several temperatures with agitation. A new stable anhydrous form of β-maltose (Mβ(s)) was obtained, as substantiated by the X-ray diffraction patterns. Mβ(s) obtained by this method presented a fine porous structure, resulting in greater specific surface area compared to those of β-maltose monohydrate and anhydrous β-maltose obtained by vacuum drying (Mβ(h)). The crystal transformation presumably consisted of two steps: dehydration reaction from the hydrous to amorphous forms and crystal formation from the amorphous forms to the noble anhydrous form. The kinetics of these reactions were determined by thermal analysis using Jander's equation and Arrhenius plots. The overall activation energies of the dehydration reaction and the formation of anhydrous maltose were evaluated to be 100 and 90 kJ/mol, respectively.

  10. Development of a phosphomannose isomerase-based Agrobacterium-mediated transformation system for chickpea (Cicer arietinum L.).

    PubMed

    Patil, Gunvant; Deokar, Amit; Jain, P K; Thengane, R J; Srinivasan, R

    2009-11-01

    To develop an alternative genetic transformation system that is not dependent on an antibiotic selection strategy, the phosphomannose isomerase gene (pmi) system was evaluated for producing transgenic plants of chickpea (Cicer arietinum L.). A shoot morphogenesis protocol based on the thidiazuron (TDZ)-induced shoot morphogenesis system was combined with Agrobacterium-mediated transformation of the pmi gene and selection of transgenic plants on mannose. Embryo axis explants of chickpea cv. C-235 were grown on a TDZ-supplemented medium for shoot proliferation. Embryo axis explants from which the first and second flush of shoots were removed were transformed using Agrobacterium carrying the pmi gene, and emerging shoots were allowed to regenerate on a zeatin-supplemented medium with an initial selection pressure of 20 g l(-1) mannose. Rooting was induced in the selected shoots on an indole-3-butyric acid (IBA)-supplemented medium with a selection pressure of 15 g l(-1) mannose. PCR with marker gene-specific primers and chlorophenol red (CPR) assay of the shoots indicated that shoots had been transformed. RT-PCR and Southern analysis of selected regenerated plants further confirmed integration of the transgene into the chickpea genome. These positive results suggest that the pmi/mannose selection system can be used to produce transgenic plants of chickpea that are free from antibiotic resistance marker genes.

  11. Connexin-43 expression in oral-derived human osteoblasts after transforming growth factor-beta and prostaglandin E2 exposure.

    PubMed

    Adamo, C T; Mailhot, J M; Smith, A K; Borke, J L

    2001-01-01

    Dental implant placement stimulates a response in the supporting tissue; the response involves bone remodeling and release of wound-healing factors, including cytokines. Important factors such as transforming growth factor-beta (TGF-beta), which promotes matrix synthesis, and prostaglandin E2 (PGE2), a mediator of inflammation, have the potential to alter the communication between bone cells and interfere with implant site healing. Cells responsible for the formation of bone are interconnected to form a multicellular network. Cell-to-cell communication in this network occurs in part via gap junctions. In bone cells, the predominant gap junction protein is connexin-43. TGF-beta is a growth modulator produced by osteoblasts and released from the matrix in response to resorption and may influence the progression of periodontal disease. TGF-beta also promotes the synthesis of extracellular matrix proteins such as collagen, fibronectin, and adhesion molecules. PGE2 is a mediator of inflammation produced in response to periodontal pathogens. PGE2 levels in the gingival sulcular fluid have been correlated with attachment loss and bone resorption. The relationship between these factors and connexin-43 is unclear. Oral-derived (alveolar) bone was used because the phenotype of bone can differ between species and between different sites in the body. For our studies, explants of human osteoblasts were cultured on eight well plates and characterized by their expression of osteocalcin, osteonectin, alkaline phosphatase, type 1 collagen, and connexin-43. Cells were grown to near confluence on 12 well plates in 20% fetal bovine serum (FBS) Dulbecco modified Eagle medium (DMEM) and then cultured for 24 hours in 0.5% FBS DMEM before exposure to either 1, 5, or 10 ng/mL of TGF-beta in serum-free DMEM for 12 or 24 hours or to 20, 80, or 300 ng/mL of PGE2 in serum-free DMEM for 12 or 24 hours. After incubation, cells were removed from plates by scraping and assayed for connexin-43

  12. Temperature-mediated phase transformation, pore geometry and pore hysteresis transformation of borohydride derived in-born porous zirconium hydroxide nanopowders

    PubMed Central

    Nayak, Nadiya B.; Nayak, Bibhuti B.

    2016-01-01

    Development of in-born porous nature of zirconium hydroxide nanopowders through a facile hydrogen (H2) gas-bubbles assisted borohydride synthesis route using sodium borohydride (NaBH4) and novel information on the temperature-mediated phase transformation, pore geometry as well as pore hysteresis transformation of in-born porous zirconium hydroxide nanopowders with the help of X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) isotherm and Transmission Electron Microscopy (TEM) images are the main theme of this research work. Without any surfactants or pore forming agents, the borohydride derived amorphous nature of porous powders was stable up to 500 °C and then the seed crystals start to develop within the loose amorphous matrix and trapping the inter-particulate voids, which led to develop the porous nature of tetragonal zirconium oxide at 600 °C and further sustain this porous nature as well as tetragonal phase of zirconium oxide up to 800 °C. The novel hydrogen (H2) gas-bubbles assisted borohydride synthesis route led to develop thermally stable porous zirconium hydroxide/oxide nanopowders with an adequate pore size, pore volume, and surface area and thus these porous materials are further suggested for promising use in different areas of applications. PMID:27198738

  13. Disruption of thioredoxin metabolism enhances the toxicity of transforming growth factor β-activated kinase 1 (TAK1) inhibition in KRAS-mutated colon cancer cells

    PubMed Central

    Hrabe, Jennifer E.; O’Leary, Brianne R.; Fath, Melissa A.; Rodman, Samuel N.; Button, Anna M.; Domann, Frederick E.; Spitz, Douglas R.; Mezhir, James J.

    2015-01-01

    Transforming growth factor β-activated kinase 1 (TAK1) is critical for survival of many KRAS mutated colorectal cancer cells, and TAK1 inhibition with 5Z-7-oxozeaenol has been associated with oxidative stress leading to tumor cell killing. When SW 620 and HCT 116 human colon cancer cells were treated with 5 µM 5Z-7-oxozeaenol, cell viability, growth, and clonogenic survival were significantly decreased. Consistent with TAK1 inhibition being causally related to thiol-mediated oxidative stress, 10 mM N-acetylcysteine (NAC) partially reversed the growth inhibitory effects of 5Z-7-oxozeaenol. In addition, 5Z-7-oxozeaenol also increased steady-state levels of H2DCFDA oxidation as well as increased levels of total glutathione (GSH) and glutathione disulfide (GSSG). Interestingly, depletion of GSH using buthionine sulfoximine did not significantly potentiate 5Z-7-oxozeaenol toxicity in either cell line. In contrast, pre-treatment of cells with auranofin (Au) to inhibit thioredoxin reductase activity significantly increased levels of oxidized thioredoxin as well as sensitized cells to 5Z-7-oxozeaenol-induced growth inhibition and clonogenic cell killing. These results were confirmed in SW 620 murine xenografts, where treatment with 5Z-7-oxozeaenol or with Au plus 5Z-7-oxozeaenol significantly inhibited growth, with Au plus 5Z-7-oxozeaenol trending toward greater growth inhibition compared to 5Z-7-oxozeaenol alone. These results support the hypothesis that thiol-mediated oxidative stress is causally related to TAK1-induced colon cancer cell killing. In addition, these results support the hypothesis that thioredoxin metabolism is a critical target for enhancing colon cancer cell killing via TAK1 inhibition and could represent an effective therapeutic strategy in patients with these highly resistant tumors. PMID:26114584

  14. uPAR induces expression of transforming growth factor β and interleukin-4 in cancer cells to promote tumor-permissive conditioning of macrophages.

    PubMed

    Hu, Jingjing; Jo, Minji; Eastman, Boryana M; Gilder, Andrew S; Bui, Jack D; Gonias, Steven L

    2014-12-01

    Cancer cells condition macrophages and other inflammatory cells in the tumor microenvironment so that these cells are more permissive for cancer growth and metastasis. Conditioning of inflammatory cells reflects, at least in part, soluble mediators (such as transforming growth factor β and IL-4) that are released by cancer cells and alter the phenotype of cells of the innate immune system. Signaling pathways in cancer cells that potentiate this activity are incompletely understood. The urokinase receptor (uPAR) is a cell-signaling receptor known to promote cancer cell survival, proliferation, metastasis, and cancer stem cell-like properties. The present findings show that uPAR expression in diverse cancer cells, including breast cancer, pancreatic cancer, and glioblastoma cells, promotes the ability of these cells to condition co-cultured bone marrow-derived macrophages so that the macrophages express significantly increased levels of arginase 1, a biomarker of the alternatively activated M2 macrophage phenotype. Expression of transforming growth factor β was substantially increased in uPAR-expressing cancer cells via a mechanism that requires uPA-initiated cell signaling. uPAR also controlled expression of IL-4 in cancer cells via a mechanism that involves activation of ERK1/2. The ability of uPAR to induce expression of factors that condition macrophages in the tumor microenvironment may constitute an important mechanism by which uPAR promotes cancer progression.

  15. Enhancers of Agrobacterium-mediated Transformation of Tibouchina semidecandra Selected on the Basis of GFP Expression.

    PubMed

    Yong, Wilson Thau Lym; Henry, Erle Stanley; Abdullah, Janna Ong

    2010-12-01

    Genetic engineering is a powerful tool for the improvement of plant traits. Despite reported successes in the plant kingdom, this technology has barely scratched the surface of the Melastomataceae family. Limited studies have led to some optimisation of parameters known to affect the transformation efficiency of these plants. The major finding of this study was to optimise the presence of selected enhancers [e.g., monosaccharides (D-glucose, D-galactose and D-fructose), tyrosine, aluminium chloride (AICI3) and ascorbic acid] to improve the transformation efficiency of Tibouchina semidecandra. Agrobacterium tumefaciens strain LBA4404 harbouring the disarmed plasmid pCAMBIA1304 was used to transform shoots and nodes of T. semidecandra. Different concentrations of the transformation enhancers were tested by using green fluorescent protein (GFP) as a reporter. The results obtained were based on the percentage of GFP expression, which was observed 14 days post-transformation. A combination of 120 μM galactose and 100 μM tyrosine supplemented with 600 μM AICI3 in the presence of 15 mg/l ascorbic acid gave the highest percentage of positive transformants for T. semidecandra shoots. Whereas 60 μM galactose and 50 μM tyrosine with 200 μM AICI3 in the presence of 15 mg/l ascorbic acid was optimum for T. semidecandra nodes. The presence of the hygromycin phosphotransferase II (hptII) transgene in the genomic DNA of putative T. semidecandra transformants was verified by PCR amplification with specific primers.

  16. Transgenic grasspea (Lathyrus sativus L.): factors influencing agrobacterium-mediated transformation and regeneration.

    PubMed

    Barik, D P; Mohapatra, U; Chand, P K

    2005-11-01

    A reproducible procedure was developed for genetic transformation of grasspea using epicotyl segment co-cultivation with Agrobacterium. Two disarmed Agrobacterium tumefaciens strains, EHA 105 and LBA 4404, both carrying the binary plasmid p35SGUSINT with the neomycin phosphotransferase II (nptII) gene and the beta-glucuronidase (gus)-intron, were studied as vector systems. The latter was found to have a higher transforming ability. Several key factors modifying the transformation rate were optimized. The highest transformation rate was achieved using hand-pricked explants for infection with an Agrobacterium culture corresponding to OD(600) congruent with 0.6 and diluted to a cell density of 10(9) cells ml(-1) for 10 min, followed by co-cultivation for 4 days in a medium maintained at pH 5.6. Putative transformed explants capable of forming shoots were selected on regeneration medium containing kanamycin (100 mug ml(-1)). We achieved up to 36% transient expression based on the GUS histochemical assay. Southern hybridization of genomic DNA of the kanamycin-resistant GUS-expressive shoots to a gus-intron probe substantiated the integration of the transgene. Transformed shoots were rooted on half-strength MS containing 0.5 mg l(-1) indole-3-acetic acid, acclimated in vermi-compost and established in the experimental field. Germ-line transformation was evident through progeny analysis. Among T(1) seedlings of most transgenic plant lines, kanamycin-resistant and -sensitive plants segregated in a ratio close to 3:1.

  17. The Phosphatidylinositol 3-Kinase/Akt Pathway Regulates Transforming Growth Factor-β Signaling by Destabilizing Ski and Inducing Smad7*

    PubMed Central

    Band, Arja M.; Björklund, Mia; Laiho, Marikki

    2009-01-01

    Ski is an oncoprotein that negatively regulates transforming growth factor (TGF)-β signaling. It acts as a transcriptional co-repressor by binding to TGF-β signaling molecules, Smads. Efficient TGF-β signaling is facilitated by rapid proteasome-mediated degradation of Ski by TGF-β. Here we report that Ski is phosphorylated by Akt/PKB kinase. Akt phosphorylates Ski on a highly conserved Akt motif at threonine 458 both in vitro and in vivo. The phosphorylation of Ski at threonine 458 is induced by Akt pathway activators including insulin, insulin-like growth factor-1, and hepatocyte growth factor. The phosphorylation of Ski causes its destabilization and reduces Ski-mediated inhibition of expression of another negative regulator of TGF-β, Smad7. Induction of Smad7 levels leads to inactivation of TGF-β receptors and TGF-β signaling cascade, as indicated by reduced induction of TGF-β target p15. Therefore, Akt modulates TGF-β signaling by temporarily adjusting the levels of two TGF-β pathway negative regulators, Ski and Smad7. These novel findings demonstrate that Akt pathway activation directly impacts TGF-β pathway. PMID:19875456

  18. Targeting ASCT2-mediated glutamine uptake blocks prostate cancer growth and tumour development.

    PubMed

    Wang, Qian; Hardie, Rae-Anne; Hoy, Andrew J; van Geldermalsen, Michelle; Gao, Dadi; Fazli, Ladan; Sadowski, Martin C; Balaban, Seher; Schreuder, Mark; Nagarajah, Rajini; Wong, Justin J-L; Metierre, Cynthia; Pinello, Natalia; Otte, Nicholas J; Lehman, Melanie L; Gleave, Martin; Nelson, Colleen C; Bailey, Charles G; Ritchie, William; Rasko, John E J; Holst, Jeff

    2015-07-01

    Glutamine is conditionally essential in cancer cells, being utilized as a carbon and nitrogen source for macromolecule production, as well as for anaplerotic reactions fuelling the tricarboxylic acid (TCA) cycle. In this study, we demonstrated that the glutamine transporter ASCT2 (SLC1A5) is highly expressed in prostate cancer patient samples. Using LNCaP and PC-3 prostate cancer cell lines, we showed that chemical or shRNA-mediated inhibition of ASCT2 function in vitro decreases glutamine uptake, cell cycle progression through E2F transcription factors, mTORC1 pathway activation and cell growth. Chemical inhibition also reduces basal oxygen consumption and fatty acid synthesis, showing that downstream metabolic function is reliant on ASCT2-mediated glutamine uptake. Furthermore, shRNA knockdown of ASCT2 in PC-3 cell xenografts significantly inhibits tumour growth and metastasis in vivo, associated with the down-regulation of E2F cell cycle pathway proteins. In conclusion, ASCT2-mediated glutamine uptake is essential for multiple pathways regulating the cell cycle and cell growth, and is therefore a putative therapeutic target in prostate cancer.

  19. TOC1–PIF4 interaction mediates the circadian gating of thermoresponsive growth in Arabidopsis

    PubMed Central

    Zhu, Jia-Ying; Oh, Eunkyoo; Wang, Tina; Wang, Zhi-Yong

    2016-01-01

    Arabidopsis adapts to elevated temperature by promoting stem elongation and hyponastic growth through a temperature-responsive transcription factor PIF4. Here we show that the evening-expressed clock component TOC1 interacts with and inactivates PIF4, thereby suppressing thermoresponsive growth in the evening. We find that the expression of PIF4 target genes show circadian rhythms of thermosensitivity, with minimum responsiveness in the evening when TOC1 level is high. Loss of function of TOC1 and its close homologue PRR5 restores thermosensitivity in the evening, whereas TOC1 overexpression causes thermo insensitivity, demonstrating that TOC1 mediates the evening-specific inhibition of thermoresponses. We further show that PIF4 is required for thermoadaptation mediated by moderately elevated temperature. Our results demonstrate that the interaction between TOC1 and PIF4 mediates the circadian gating of thermoresponsive growth, which may serve to increase fitness by matching thermoresponsiveness with the day–night cycles of fluctuating temperature and light conditions. PMID:27966533

  20. Different receptors mediate the electrophysiological and growth cone responses of an identified neuron to applied dopamine.

    PubMed

    Dobson, K S; Dmetrichuk, J M; Spencer, G E

    2006-09-15

    Neurotransmitters are among the many cues that may guide developing axons toward appropriate targets in the developing nervous system. We have previously shown in the mollusk Lymnaea stagnalis that dopamine, released from an identified pre-synaptic cell, differentially affects growth cone behavior of its target and non-target cells in vitro. Here, we describe a group of non-target cells that also produce an inhibitory electrophysiological response to applied dopamine. We first determined, using pharmacological blockers, which receptors mediate this physiological response. We demonstrated that the dopaminergic electrophysiological responses of non-target cells were sensitive to a D2 receptor antagonist, as are known target cell responses. However, the non-target cell receptors were linked to different G-proteins and intracellular signaling pathways than the target cell receptors. Despite the presence of a D2-like receptor at the soma, the growth cone collapse of these non-target cells was mediated by D1-like receptors. This study shows that different dopamine receptor sub-types mediated the inhibitory physiological and growth cone responses of an identified cell type. We therefore not only provide further evidence that D2- and D1-like receptors can be present on the same neuron in invertebrates, but also show that these receptors are likely involved in very different cellular functions.

  1. New perspectives in cyclic AMP-mediated axon growth and guidance: The emerging epoch of Epac.

    PubMed

    Peace, Andrew G; Shewan, Derryck A

    2011-03-10

    In the search for a cure to brain and spinal cord injury much has been learned about the inhibitory environment of the central nervous system (CNS), and yet a clinical therapy remains elusive. In recent years great advances have been made in understanding intracellular molecular mechanisms that transduce cell surface receptor-mediated signals that neurons receive from their environment. Many of these signalling pathways share common mechanisms, which presents the possibility that manipulating activities of key cell signalling molecules such as those regulated by 3'-5'-cyclic adenosine monophosphate (cAMP) might allow axons to simultaneously overcome the inhibitory effects of a number of extracellular ligands. The identification of Epac, a novel direct intracellular target for cAMP, has opened up a new avenue of research that is beginning to explain how cAMP can mediate a range of neuronal functions including distinct axon growth and guidance decisions. With current research tools that allow more specific activation of proteins or knock-down of their expression, as well as quantitation of protein activities in live cells, it is already becoming clear that Epac plays highly important roles in the development and function of the nervous system. Here, we focus on emerging evidence that Epac mediates cAMP-regulated axon growth and chemoattraction, and thus represents a novel target for overcoming axon growth inhibition and promoting CNS regeneration.

  2. Carbonylation and disassembly of the F-actin cytoskeleton in oxidant induced barrier dysfunction and its prevention by epidermal growth factor and transforming growth factor α in a human colonic cell line

    PubMed Central

    Banan, A; Zhang, Y; Losurdo, J; Keshavarzian, A

    2000-01-01

    BACKGROUND—Intestinal barrier dysfunction concomitant with high levels of reactive oxygen metabolites (ROM) in the inflamed mucosa have been observed in inflammatory bowel disease (IBD). The cytoskeletal network has been suggested to be involved in the regulation of barrier function. Growth factors (epidermal growth factor (EGF) and transforming growth factor α (TGF-α)) protect gastrointestinal barrier integrity against a variety of noxious agents. However, the underlying mechanisms of oxidant induced disruption and growth factor mediated protection remain elusive.
AIMS—To determine: (1) if oxidation and disassembly of actin (a key cytoskeletal component) plays a major role in ROM induced epithelial monolayer barrier dysfunction; and (2) if growth factor mediated protection involves prevention of theses alterations.
METHODS—Caco-2 monolayers were preincubated with EGF, TGF-α, or vehicle before incubation with ROM (H2O2 or HOCl). Effects on cell integrity, barrier function, and G- and F-actin (oxidation, disassembly, and assembly) were determined.
RESULTS—ROM dose dependently and significantly increased F- and G-actin oxidation (carbonylation), decreased the stable F-actin fraction (index of stability), and increased the monomeric G-actin fraction (index of disassembly). Concomitant with these changes were disruption of the actin cytoskeleton and loss of the monolayer barrier function. In contrast, growth factor pretreatment decreased actin oxidation and enhanced the stable F-actin, while in concert prevented actin disruption and restored normal barrier function of monolayers exposed to ROM. Cytochalasin-D, an inhibitor of actin assembly, not only caused actin disassembly and barrier dysfunction but also abolished the protective action of growth factors. Moreover, an actin stabilising agent, phalloidin, mimicked the protective actions of the growth factors.
CONCLUSIONS—Oxidation, disassembly, and instability of the actin cytoskeleton appears to

  3. Role of transforming growth factor-beta (TGF) beta in the physiopathology of rheumatoid arthritis.

    PubMed

    Gonzalo-Gil, Elena; Galindo-Izquierdo, María

    2014-01-01

    Transforming growth factor-beta (TGF-β) is a cytokine with pleiotropic functions in hematopoiesis, angiogenesis, cell proliferation, differentiation, migration and apoptosis. Although its role in rheumatoid arthritis is not well defined, TGF-β activation leads to functional immunomodulatory effects according to environmental conditions. The function of TGF-β in the development of arthritis in murine models has been extensively studied with controversial results. Recent findings point to a non-relevant role for TGF-β in a mice model of collagen-induced arthritis. The study of TGF-β on T-cell responses has shown controversial results as an inhibitor or promoter of the inflammatory response. This paper presents a review of the role of TGF-β in animal models of arthritis.

  4. Pleiotropic effects of transforming growth factor-β in hematopoietic stem-cell transplantation.

    PubMed

    Coomes, Stephanie M; Moore, Bethany B

    2010-12-15

    Transforming growth factor (TGF)-β is a pleiotropic cytokine with beneficial and detrimental effects posthematopoietic stem-cell transplantation. TGF-β is increased in specific sites postengraftment and can suppress immune responses and maintain peripheral tolerance. Thus, TGF-β may promote allograft acceptance. However, TGF-β is also the central pathogenic cytokine in fibrotic disease and likely promotes pneumonitis. Although TGF-β can enhance leukocyte recruitment and IgA production, it inhibits both innate and adaptive immune cell function and antiviral host defense posthematopoietic stem-cell transplantation. This review will focus on the current understanding of TGF-β biology and the numerous ways it can impact outcomes posttransplant.

  5. Connective Tissue Disorders and Cardiovascular Complications: The indomitable role of Transforming Growth Factor-beta signaling

    PubMed Central

    Wheeler, Jason B.; Ikonomidis, John S.; Jones, Jeffrey A.

    2015-01-01

    Marfan Syndrome (MFS) and Loeys-Dietz Syndrome (LDS) represent heritable connective tissue disorders that cosegregate with a similar pattern of cardiovascular defects (thoracic aortic aneurysm, mitral valve prolapse/regurgitation, and aortic dilatation with regurgitation). This pattern of cardiovascular defects appears to be expressed along a spectrum of severity in many heritable connective tissue disorders and raises suspicion of a relationship between the normal development of connective tissues and the cardiovascular system. Given the evidence of increased transforming growth factor-beta (TGF-β) signaling in MFS and LDS, this signaling pathway may represent the common link in this relationship. To further explore this hypothetical link, this chapter will review the TGF-β signaling pathway, heritable connective tissue syndromes related to TGF-β receptor (TGFBR) mutations, and discuss the pathogenic contribution of TGF-β to these syndromes with a primary focus on the cardiovascular system. PMID:24443024

  6. Transforming growth factor Beta-releasing scaffolds for cartilage tissue engineering.

    PubMed

    Madry, Henning; Rey-Rico, Ana; Venkatesan, Jagadeesh K; Johnstone, Brian; Cucchiarini, Magali

    2014-04-01

    The maintenance of a critical threshold concentration of transforming growth factor beta (TGF-β) for a given period of time is crucial for the onset and maintenance of chondrogenesis. Thus, the development of scaffolds that provide temporal and/or spatial control of TGF-β bioavailability has appeal as a mechanism to induce the chondrogenesis of stem cells in vitro and in vivo for articular cartilage repair. In the past decade, many types of scaffolds have been designed to advance this goal: hydrogels based on polysaccharides, hyaluronic acid, and alginate; protein-based hydrogels such as fibrin, gelatin, and collagens; biopolymeric gels and synthetic polymers; and solid and hybrid composite (hydrogel/solid) scaffolds. In this study, we review the progress in developing strategies to deliver TGF-β from scaffolds with the aim of enhancing chondrogenesis. In the future, such scaffolds could prove critical for tissue engineering cartilage, both in vitro and in vivo.

  7. Effect of transforming growth factor-alpha on inositol phospholipid metabolism in human epidermoid carcinoma cells

    SciTech Connect

    Kato, M.; Takenawa, T.; Twardzik, D.R.

    1988-08-01

    Transforming growth factor-alpha (TGF-alpha) stimulates (in a dose-dependent manner) the incorporation of (/sup 32/P)Pi into phosphatidylinositol (PI), phosphatidylinositol 4-phosphate (PIP), phosphatidylinositol 4,5-bisphosphate (PIP2), and phosphatidic acid (PA) in the human epidermoid carcinoma cell line (A431). The effect of TGF-alpha on the incorporation was found to be similar to that of EGF. On the other hand, a striking difference in the activation of diacylglycerol (DG) kinase activity was seen between TGF-alpha and EGF. At least 100 times more TGF-alpha was required to achieve maximal stimulation of DG kinase activity relative to EGF. These results suggest that the activation of DG kinase by TGF-alpha may involve a mechanism independent from or subsequent to activation of the EGF receptor.

  8. MicroRNAs, transforming growth factor beta-1, and tissue fibrosis.

    PubMed

    Bowen, Timothy; Jenkins, Robert H; Fraser, Donald J

    2013-01-01

    MicroRNAs are short noncoding RNA regulators that repress synthesis of their targets post-transcriptionally. On average, each microRNA is estimated to regulate several hundred protein-coding genes, and about 60% of proteins are thought to be regulated by microRNAs in total. A subset of these genes, including the key profibrotic cytokine transforming growth factor beta-1 (TGF-β1), exhibits particularly strong levels of post-transcriptional control of protein synthesis, involving microRNAs and other mechanisms. Changes in microRNA expression pattern are linked to profound effects on cell phenotype, and microRNAs have an emerging role in diverse physiological and pathological processes. In this review, we provide an overview of microRNA biology with a focus on their emerging role in diseases typified by organ fibrosis.

  9. Transforming growth factor-β1 in the cerebrospinal fluid of patients with distinct neurodegenerative diseases.

    PubMed

    Masuda, Tomoyuki; Itoh, Junko; Koide, Takuya; Tomidokoro, Yasushi; Takei, Yosuke; Ishii, Kazuhiro; Tamaoka, Akira

    2017-01-01

    A chronic inflammatory condition may underlie neurodegenerative disorders, including Parkinson's disease (PD) and Alzheimer's disease (AD). For example, both PD and AD patients show an increase in transforming growth factor-β1 (TGF-β1) levels in their cerebrospinal fluid (CSF). TGF-β1 is a cytokine that inhibits inflammation. In the present study, using an enzyme-linked immunosorbent assay, we tested the hypothesis that the level of TGF-β1 in the CSF of patients with amyotrophic lateral sclerosis (ALS), spinocerebellar degeneration (SCD), or multiple system atrophy-cerebellar subtype (MSA-C) would be elevated compared with that of normal controls. We found that TGF-β1 levels in the CSF were not significantly different between these patients and normal controls. Our data suggest that the level of TGF-β1 in the CSF is an unreliable biomarker of ALS, SCD, and MSA-C.

  10. The Role of Transforming Growth Factor β1 in the Regulation of Blood Pressure

    PubMed Central

    Matsuki, Kota; Hathaway, Catherine K.; Lawrence, Marlon G.; Smithies, Oliver; Kakoki, Masao

    2016-01-01

    Although human association studies suggest a link between polymorphisms in the gene encoding transforming growth factor (TGF) β1 and differing blood pressure levels, a causative mechanism for this correlation remains elusive. Recently we have generated a series of mice with graded expression of TGFβ1, ranging from approximately 10% to 300% compared to normal. We have found that blood pressure and plasma volume are negatively regulated by TGFβ1. Of note, the 10% hypomorph exhibits primary aldosteronism and markedly impaired urinary excretion of water and electrolytes. We here review previous literature highlighting the importance of TGFβ signaling as a natriuretic system, which we postulate is a causative mechanism explaining how polymorphisms in TGFβ1 could influence blood pressure levels. PMID:25801626

  11. Effect of Cellulose Acetate Beads on the Release of Transforming Growth Factor-β.

    PubMed

    Nishise, Shoichi; Abe, Yasuhiko; Nomura, Eiki; Sato, Takeshi; Sasaki, Yu; Iwano, Daisuke; Yagi, Makoto; Sakuta, Kazuhiro; Shibuya, Rika; Mizumoto, Naoko; Kanno, Nana; Ueno, Yoshiyuki

    2015-08-01

    Transforming growth factor-β (TGF-β) is released by activated platelets and induces the differentiation of T-helper 17 from naïve T cells. Contact between blood and cellulose acetate (CA) beads induces cytokine release, although their inflammatory effects on TGF-β release are unclear. We aimed to clarify the effect of CA beads on the release of TGF-β in vitro. We incubated peripheral blood with and without CA beads and measured platelets and TGF-β. Compared with blood samples incubated without beads, the platelet count and amount of TGF-β significantly decreased in blood samples incubated with CA beads. In conclusion, CA beads inhibited the release of TGF-β from adsorbed platelets. The biological effects of this reduction of TGF-β release during platelet adsorption to CA beads need further clarification.

  12. Phosphorylation of the human-transforming-growth-factor-beta-binding protein endoglin.

    PubMed Central

    Lastres, P; Martín-Perez, J; Langa, C; Bernabéu, C

    1994-01-01

    Endoglin is an homodimeric membrane antigen with capacity to bind transforming growth factor-beta (TGF-beta). Phosphorylation of human endoglin was demonstrated in endothelial cells as well as in mouse fibroblast transfectants expressing two isoforms, L-endoglin or S-endoglin, with distinct cytoplasmic domains. The extent of L-endoglin phosphorylation was found to be 8-fold higher than that of S-endoglin, and phosphopeptide analyses revealed at least three different phosphorylation sites for L-endoglin, whereas S-endoglin produces only one phosphopeptide. The immunoprecipitated L-endoglin was found to be phosphorylated mainly on serine, and, to a minor extent, on threonine, residues. Treatment of the cells with TGF-beta 1 or the protein kinase C inhibitor H-7 resulted in a reduction of the levels of endoglin phosphorylation. Images Figure 1 Figure 2 PMID:8053900

  13. Effect of transforming growth factor-beta1 on embryonic and posthatch muscle growth and development in normal and low score normal chicken.

    PubMed

    Li, X; Velleman, S G

    2009-02-01

    During skeletal muscle development, transforming growth factor-beta1 (TGF-beta1) is a potent inhibitor of muscle cell proliferation and differentiation. The TGF-beta1 signal is carried by Smad proteins into the cell nucleus, inhibiting the expression of key myogenic regulatory factors including MyoD and myogenin. However, the molecular mechanism by which TGF-beta1 inhibits muscle cell proliferation and differentiation has not been well documented in vivo. The present study investigated the effect of TGF-beta1 on in vivo skeletal muscle growth and development. A chicken line, Low Score Normal (LSN) with reduced muscling and upregulated TGF-beta1 expression, was used and compared to a normal chicken line. The injection of TGF-beta1 at embryonic day (ED) 3 significantly reduced the pectoralis major (p. major) muscle weight in the normal birds at 1 wk posthatch, whereas no significant difference was observed in the LSN birds. The difference between normal and LSN birds in response to TGF-beta1 is likely due to different levels of endogenous TGF-beta1 where the LSN birds have increased TGF-beta1 expression in their p. major muscle at both 17 ED and 6 wk posthatch. Smad3 expression was reduced by TGF-beta1 from 10 ED to 1 wk posthatch in normal p. major muscle. Unlike Smad3, Smad7 expression was not significantly affected by TGF-beta1 until posthatch in both normal and LSN p. major muscle. Expression of MyoD was reduced 35% by TGF-beta1 during embryonic development in normal p. major muscle, whereas LSN p. major muscle showed a delayed decrease at 1 d posthatch in MyoD expression in response to the TGF-beta1 treatment. Myogenin expression was reduced 29% by TGF-beta1 after hatch in normal p. major muscle. In LSN p. major muscle, TGF-beta1 treatment significantly decreased myogenin expression by 43% at 1 d posthatch and 32% at 1 wk posthatch. These data suggested that TGF-beta1 reduced p. major muscle growth by inhibiting MyoD and myogenin expression during both embryonic

  14. Dissolution and transformation of cerium oxide nanoparticles in plant growth media

    NASA Astrophysics Data System (ADS)

    Schwabe, Franziska; Schulin, Rainer; Rupper, Patrick; Rotzetter, Aline; Stark, Wendelin; Nowack, Bernd

    2014-10-01

    From environmental modeling of engineered nanomaterial (ENM) release, it is clear that ENMs will enter soils, where they interact with soil compounds as well as plant roots. We analyzed three different size groups of cerium dioxide nanoparticles (CeO2-NPs) in respect to chemical changes in the most common plant growth medium, Hoagland solution. We created a simple environmental model using liquid dispersions of 9-, 23-, and 64-nm-uncoated CeO2-NPs. We found that CeO2-NPs release dissolved Ce when the pH of the medium is below 4.6 and in the presence of strong chelating agents even at pH of 8. In addition, we found that in reaction with Fe2+-ions, equimolar amounts of Ce were released from NPs. We could elucidate the involvement of the CeO2-NPs surface redox cycle between Ce3+ and Ce4+ to explain particle transformation. The chemical transformation of CeO2-NPs was summarized in four probable reactions: dissolution, surface reduction, complexation, and precipitation on the NP surface. The results show that CeO2-NPs are clearly not insoluble as often stated but can release significant amounts of Ce depending on the composition of the surrounding medium.

  15. Transforming growth factor beta is a potent inhibitor of interleukin 1 (IL-1) receptor expression: proposed mechanism of inhibition of IL-1 action

    PubMed Central

    1990-01-01

    Transforming growth factor beta (TGF-beta) acts as a potent inhibitor of the growth and functions of lymphoid and hemopoietic progenitor cells. Cell proliferation depends not only on the presence of growth factors, but also on the development of specific receptor-signal transducing complexes. We therefore investigated whether the inhibitory actions of TGF-beta could be mediated by inhibition of growth factor receptors. TGF-beta inhibited the constitutive level of interleukin 1 receptor (IL-1R) expression on several murine lymphoid and myeloid progenitor cell lines, as well as IL-1R expression induced by interleukin 3 (IL-3) on normal murine and human bone marrow cells. Furthermore, treatment of bone marrow progenitor cells with TGF-beta concomitantly inhibited the ability of IL-1 to promote high proliferative potential (HPP) colony formation as well as blocked IL-1- induced IL-2 production by EL-4 6.1 cells. These findin