Science.gov

Sample records for mediates tumor necrosis

  1. Capacity of tumor necrosis factor to augment lymphocyte-mediated tumor cell lysis of malignant mesothelioma

    SciTech Connect

    Bowman, R.V.; Manning, L.S.; Davis, M.R.; Robinson, B.W. )

    1991-01-01

    Recombinant human tumor necrosis factor (rHuTNF) was evaluated both for direct anti-tumor action against human malignant mesothelioma and for its capacity to augment the generation and lytic phases of lymphocyte-mediated cytotoxicity against this tumor. rHuTNF was directly toxic by MTT assay to one of two mesothelioma cell lines evaluated, but had no effect on susceptibility to subsequent lymphocyte-mediated lysis of either line. TNF alone was incapable of generating anti-mesothelioma lymphokine-activated killer cell (LAK) activity. Furthermore, it did not augment the degree or LAK activity produced by submaximal interleukin-2 (IL-2) concentrations nor did it augment lysis of mesothelioma cells by natural killer (NK) or LAK effector cells during the 4-hr 51chromium release cytolytic reaction. The studies also suggest that mesothelioma targets are less responsive to TNF plus submaximal IL-2 concentrations than the standard LAK sensitive target Daudi, raising the possibility that intermediate LAK sensitive tumors such as mesothelioma may require separate and specific evaluation in immunomodulation studies. This in vitro study indicates that use of low-dose rHuTNF and IL-2 is unlikely to be an effective substitute for high-dose IL-2 in generation and maintenance of LAK activity in adoptive immunotherapy for mesothelioma.

  2. Differences and Similarities in TRAIL- and Tumor Necrosis Factor-Mediated Necroptotic Signaling in Cancer Cells.

    PubMed

    Sosna, Justyna; Philipp, Stephan; Fuchslocher Chico, Johaiber; Saggau, Carina; Fritsch, Jürgen; Föll, Alexandra; Plenge, Johannes; Arenz, Christoph; Pinkert, Thomas; Kalthoff, Holger; Trauzold, Anna; Schmitz, Ingo; Schütze, Stefan; Adam, Dieter

    2016-10-15

    Recently, a type of regulated necrosis (RN) called necroptosis was identified to be involved in many pathophysiological processes and emerged as an alternative method to eliminate cancer cells. However, only a few studies have elucidated components of TRAIL-mediated necroptosis useful for anticancer therapy. Therefore, we have compared this type of cell death to tumor necrosis factor (TNF)-mediated necroptosis and found similar signaling through acid and neutral sphingomyelinases, the mitochondrial serine protease HtrA2/Omi, Atg5, and vacuolar H(+)-ATPase. Notably, executive mechanisms of both TRAIL- and TNF-mediated necroptosis are independent of poly(ADP-ribose) polymerase 1 (PARP-1), and depletion of p38α increases the levels of both types of cell death. Moreover, we found differences in signaling between TNF- and TRAIL-mediated necroptosis, e.g., a lack of involvement of ubiquitin carboxyl hydrolase L1 (UCH-L1) and Atg16L1 in executive mechanisms of TRAIL-mediated necroptosis. Furthermore, we discovered indications of an altered involvement of mitochondrial components, since overexpression of the mitochondrial protein Bcl-2 protected Jurkat cells from TRAIL- and TNF-mediated necroptosis, and overexpression of Bcl-XL diminished only TRAIL-induced necroptosis in Colo357 cells. Furthermore, TRAIL does not require receptor internalization and endosome-lysosome acidification to mediate necroptosis. Taken together, pathways described for TRAIL-mediated necroptosis and differences from those for TNF-mediated necroptosis might be unique targets to increase or modify necroptotic signaling and eliminate tumor cells more specifically in future anticancer approaches. PMID:27528614

  3. Tumor necrosis factor and interleukin 1 as mediators of endotoxin-induced beneficial effects

    SciTech Connect

    Urbaschek, R.; Urbaschek, B.

    1987-09-01

    Bacterial lipopolysaccharides or endotoxins are known to induce tumor necrosis; enhanced nonspecific resistance to bacterial, viral, and parasitic infections and to radiation sickness; and tolerance to lethal doses of endotoxin. These beneficial effects are achieved by pretreatment with minute amounts of endotoxin. Recombinant tumor necrosis factor (TNF) and interleukin 1 (IL-1) are among the mediators capable of invoking radioprotection or resistance to the consequences of cecal ligation and puncture. Both cytokines are potent inducers of serum colony-stimulating factor (CSF) in C3H/HeJ mice (low responders to endotoxin). The number of splenic granulocyte-macrophage precursors was found to increase 5 days after injection of TNF in these mice. Although with IL-1 no increase in the number of granulocyte-macrophage colonies occurred in culture in the presence of serum CSF, a marked stimulation was observed when TNF was added. This stimulation of myelopoiesis observed in vivo and in vitro may be related to the radioprotective effect of TNF. The data presented suggest that TNF and IL-1 released after injection of endotoxin participate in the mediation of endotoxin-induced enhancement of nonspecific resistance and stimulation of hematopoiesis. 76 references.

  4. Tumor necrosis factor gene expression is mediated by protein kinase C following activation by ionizing radiation.

    SciTech Connect

    Hallahan, D. E.; Virudachalam, S.; Sherman, M. L.; Huberman, E.; Kufe, D. W.; Weichselbaum, R. R.; Univ. of Chicago; Dana-Farber Cancer Inst.; Univ. of Chicago

    1991-01-01

    Tumor necrosis factor (TNF) production following X-irradiation has been implicated in the biological response to ionizing radiation. Protein kinase C (PKC) is suggested to participate in TNF transcriptional induction and X-ray-mediated gene expression. We therefore studied radiation-mediated TNF expression in HL-60 cells with diminished PKC activity produced by either pretreatment with protein kinase inhibitors or prolonged 12-O-tetradecanoylphorbol-13-acetate treatment. Both treatments resulted in attenuation of radiation-mediated TNF induction. Consistent with these results, we found no detectable induction of TNF expression following X-irradiation in the HL-60 variant deficient in PKC-mediated signal transduction. The rapid activation of PKC following {gamma}-irradiation was established using an in vitro assay measuring phosphorylation of a PKC specific substrate. A 4.5-fold increase in PKC activity occurred 15 to 30 s following irradiation, which declined to baseline at 60 s. Two-dimensional gel electrophoresis of phosphoproteins extracted from irradiated cells demonstrated in vivo phosphorylation of the PKC specific substrate Mr 80,000 protein at 45 s following X-irradiation. These findings indicate that signal transduction via the PKC pathway is required for the induction of TNF gene expression by ionizing radiation.

  5. Mitochondria mediate tumor necrosis factor-alpha/NF-kappaB signaling in skeletal muscle myotubes

    NASA Technical Reports Server (NTRS)

    Li, Y. P.; Atkins, C. M.; Sweatt, J. D.; Reid, M. B.; Hamilton, S. L. (Principal Investigator)

    1999-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is implicated in muscle atrophy and weakness associated with a variety of chronic diseases. Recently, we reported that TNF-alpha directly induces muscle protein degradation in differentiated skeletal muscle myotubes, where it rapidly activates nuclear factor kappaB (NF-kappaB). We also have found that protein loss induced by TNF-alpha is NF-kappaB dependent. In the present study, we analyzed the signaling pathway by which TNF-alpha activates NF-kappaB in myotubes differentiated from C2C12 and rat primary myoblasts. We found that activation of NF-kappaB by TNF-alpha was blocked by rotenone or amytal, inhibitors of complex I of the mitochondrial respiratory chain. On the other hand, antimycin A, an inhibitor of complex III, enhanced TNF-alpha activation of NK-kappaB. These results suggest a key role of mitochondria-derived reactive oxygen species (ROS) in mediating NF-kappaB activation in muscle. In addition, we found that TNF-alpha stimulated protein kinase C (PKC) activity. However, other signal transduction mediators including ceramide, Ca2+, phospholipase A2 (PLA2), and nitric oxide (NO) do not appear to be involved in the activation of NF-kappaB.

  6. Tumor necrosis factor regulates NMDA receptor-mediated airway smooth muscle contractile function and airway responsiveness.

    PubMed

    Anaparti, Vidyanand; Pascoe, Christopher D; Jha, Aruni; Mahood, Thomas H; Ilarraza, Ramses; Unruh, Helmut; Moqbel, Redwan; Halayko, Andrew J

    2016-08-01

    We have shown that N-methyl-d-aspartate receptors (NMDA-Rs) are receptor-operated calcium entry channels in human airway smooth muscle (HASM) during contraction. Tumor necrosis factor (TNF) augments smooth muscle contractility by influencing pathways that regulate intracellular calcium flux and can alter NMDA-R expression and activity in cortical neurons and glial cells. We hypothesized that NMDA-R-mediated Ca(2+) and contractile responses of ASM can be altered by inflammatory mediators, including TNF. In cultured HASM cells, we assessed TNF (10 ng/ml, 48 h) effect on NMDA-R subunit abundance by quantitative PCR, confocal imaging, and immunoblotting. We observed dose- and time-dependent changes in NMDA-R composition: increased obligatory NR1 subunit expression and altered regulatory NR2 and inhibitory NR3 subunits. Measuring intracellular Ca(2+) flux in Fura-2-loaded HASM cultures, we observed that TNF exposure enhanced cytosolic Ca(2+) mobilization and changed the temporal pattern of Ca(2+) flux in individual myocytes induced by NMDA, an NMDA-R selective analog of glutamate. We measured airway responses to NMDA in murine thin-cut lung slices (TCLS) from allergen-naive animals and observed significant airway contraction. However, NMDA acted as a bronchodilator in TCLS from house dust mice-challenged mice and in allergen-naive TCLS subjected to TNF exposure. All contractile or bronchodilator responses were blocked by a selective NMDA-R antagonist, (2R)-amino-5-phosphonopentanoate, and bronchodilator responses were prevented by N(G)-nitro-l-arginine methyl ester (nitric oxide synthase inhibitor) or indomethacin (cyclooxygenase inhibitor). Collectively, we show that TNF augments NMDA-R-mediated Ca(2+) mobilization in HASM cells, whereas in multicellular TCLSs allergic inflammation and TNF exposure leads to NMDA-R-mediated bronchodilation. These findings reveal the unique contribution of ionotrophic NMDA-R to airway hyperreactivity.

  7. Tumor necrosis factor amplifies measles virus-mediated Ia induction on astrocytes.

    PubMed Central

    Massa, P T; Schimpl, A; Wecker, E; ter Meulen, V

    1987-01-01

    We describe the induction of Ia on cultured astrocytes by measles virus and the amplification of this induction by tumor necrosis factor (TNF). Measles virus induces Ia on rat astrocytes by direct interaction with these cells. TNF does not induce significant levels of Ia at any dose from 1 to 10,000 units/ml. As little as 10 units of TNF per ml, however, amplifies Ia-inducing signals generated by measles virus in astrocytes. In contrast, TNF and measles virus induce class I major histocompatibility complex (MHC) antigens, when applied individually, and TNF amplification of measles virus class I MHC induction is not apparent. The induction of either Ia or class I MHC antigens on rat astrocytes by measles virus does not depend on glial-derived soluble factors generated during infection. Since brain cells are normally lacking MHC antigens upon which T cells depend for interaction with antigen presenting cells, these data indicate that the ability of measles virus to directly stimulate MHC antigen expression and the ability of TNF to amplify Ia expression locally in the brain may be important in initiating cell-mediated immune response to viral infection. PMID:3118363

  8. Disturbance of Tumor Necrosis Factor Alpha-Mediated Beta Interferon Signaling in Cervical Carcinoma Cells

    PubMed Central

    Bachmann, Anastasia; Hanke, Brigitte; Zawatzky, Rainer; Soto, Ubaldo; van Riggelen, Jan; zur Hausen, Harald; Rösl, Frank

    2002-01-01

    In the present study we show that malignant human papillomavirus (HPV)-positive cells lost their ability to synthesize endogenous beta interferon (IFN-β) upon tumor necrosis factor alpha (TNF-α) treatment. IFN-β transcription, however, was reinducible in nonmalignant HPV-positive cells, which was confirmed in functional protection assays against encephalomyocarditis virus or vesicular stomatitis virus infections. Addition of neutralizing antibodies against IFN-β blocked the antiviral effect, excluding the possibility that other IFN types were involved. Conversely, both malignant and immortalized cells could be protected against viral cytolysis when either IFN-β, IFN-α, or IFN-γ was added exogenously. This indicates that only the cross talk between TNF-α and the IFN-β pathways, and not IFN-α/β and IFN-γ signaling in general, is perturbed in cervical carcinoma cells. Notably, full virus protection was restricted exclusively to nonmalignant cells, indicating that the antiviral effect correlates with the growth-inhibitory and virus-suppressive properties of TNF-α. The IFN-regulatory factors IRF-1 and p48 (ISGF3γ) emerged as key regulatory molecules in the differential IFN-β response, since their transcription was either absent or only inefficiently enhanced in tumorigenic cells upon treatment with TNF-α. Inducibility of both genes, however, became reestablished in cervical carcinoma cells, which were complemented to nontumorigenicity after somatic cell hybridization. Complementation was paralleled by the entire reconstitution of cytokine-mediated IFN-β expression and the ability of TNF-α to exert an antiviral state. In contrast, under conditions where tumor suppression was not accomplished upon somatic cell hybridization, neither expression of IRF-1, p48, and IFN-β nor antiviral activity could be restored. PMID:11739693

  9. Tumor necrosis factor-alpha mediates changes in tissue protein turnover in a rat cancer cachexia model.

    PubMed Central

    Costelli, P; Carbó, N; Tessitore, L; Bagby, G J; Lopez-Soriano, F J; Argilés, J M; Baccino, F M

    1993-01-01

    Rats bearing the Yoshida AH-130 ascites hepatoma showed enhanced fractional rates of protein degradation in gastrocnemius muscle, heart, and liver, while fractional synthesis rates were similar to those in non-tumor bearing rats. This hypercatabolic pattern was associated with marked perturbations of the hormonal homeostasis and presence of tumor necrosis factor in the circulation. The daily administration of a goat anti-murine TNF IgG to tumor-bearing rats decreased protein degradation rates in skeletal muscle, heart, and liver as compared with tumor-bearing rats receiving a nonimmune goat IgG. The anti-TNF treatment was also effective in attenuating early perturbations in insulin and corticosterone homeostasis. Although these results suggest that tumor necrosis factor plays a significant role in mediating the changes in protein turnover and hormone levels elicited by tumor growth, the inability of such treatment to prevent a reduction in body weight implies that other mediators or tumor-related events were also involved. PMID:8254032

  10. Imaging Tumor Necrosis with Ferumoxytol

    PubMed Central

    Aghighi, Maryam; Golovko, Daniel; Ansari, Celina; Marina, Neyssa M.; Pisani, Laura; Kurlander, Lonnie; Klenk, Christopher; Bhaumik, Srabani; Wendland, Michael; Daldrup-Link, Heike E.

    2015-01-01

    Objective Ultra-small superparamagnetic iron oxide nanoparticles (USPIO) are promising contrast agents for magnetic resonance imaging (MRI). USPIO mediated proton relaxation rate enhancement is strongly dependent on compartmentalization of the agent and can vary depending on their intracellular or extracellular location in the tumor microenvironment. We compared the T1- and T2-enhancement pattern of intracellular and extracellular USPIO in mouse models of cancer and pilot data from patients. A better understanding of these MR signal effects will enable non-invasive characterizations of the composition of the tumor microenvironment. Materials and Methods Six 4T1 and six MMTV-PyMT mammary tumors were grown in mice and imaged with ferumoxytol-enhanced MRI. R1 relaxation rates were calculated for different tumor types and different tumor areas and compared with histology. The transendothelial leakage rate of ferumoxytol was obtained by our measured relaxivity of ferumoxytol and compared between different tumor types, using a t-test. Additionally, 3 patients with malignant sarcomas were imaged with ferumoxytol-enhanced MRI. T1- and T2-enhancement patterns were compared with histopathology in a descriptive manner as a proof of concept for clinical translation of our observations. Results 4T1 tumors showed central areas of high signal on T1 and low signal on T2 weighted MR images, which corresponded to extracellular nanoparticles in a necrotic core on histopathology. MMTV-PyMT tumors showed little change on T1 but decreased signal on T2 weighted images, which correlated to compartmentalized nanoparticles in tumor associated macrophages. Only 4T1 tumors demonstrated significantly increased R1 relaxation rates of the tumor core compared to the tumor periphery (p<0.001). Transendothelial USPIO leakage was significantly higher for 4T1 tumors (3.4±0.9x10-3 mL/min/100cm3) compared to MMTV-PyMT tumors (1.0±0.9x10-3 mL/min/100 cm3). Likewise, ferumoxytol imaging in patients

  11. Tumor-necrosis factor impairs CD4(+) T cell-mediated immunological control in chronic viral infection.

    PubMed

    Beyer, Marc; Abdullah, Zeinab; Chemnitz, Jens M; Maisel, Daniela; Sander, Jil; Lehmann, Clara; Thabet, Yasser; Shinde, Prashant V; Schmidleithner, Lisa; Köhne, Maren; Trebicka, Jonel; Schierwagen, Robert; Hofmann, Andrea; Popov, Alexey; Lang, Karl S; Oxenius, Annette; Buch, Thorsten; Kurts, Christian; Heikenwalder, Mathias; Fätkenheuer, Gerd; Lang, Philipp A; Hartmann, Pia; Knolle, Percy A; Schultze, Joachim L

    2016-05-01

    Persistent viral infections are characterized by the simultaneous presence of chronic inflammation and T cell dysfunction. In prototypic models of chronicity--infection with human immunodeficiency virus (HIV) or lymphocytic choriomeningitis virus (LCMV)--we used transcriptome-based modeling to reveal that CD4(+) T cells were co-exposed not only to multiple inhibitory signals but also to tumor-necrosis factor (TNF). Blockade of TNF during chronic infection with LCMV abrogated the inhibitory gene-expression signature in CD4(+) T cells, including reduced expression of the inhibitory receptor PD-1, and reconstituted virus-specific immunity, which led to control of infection. Preventing signaling via the TNF receptor selectively in T cells sufficed to induce these effects. Targeted immunological interventions to disrupt the TNF-mediated link between chronic inflammation and T cell dysfunction might therefore lead to therapies to overcome persistent viral infection.

  12. Dichotomy between RIP1- and RIP3-Mediated Necroptosis in Tumor Necrosis Factor-α–Induced Shock

    PubMed Central

    Linkermann, Andreas; Bräsen, Jan H; De Zen, Federica; Weinlich, Ricardo; Schwendener, Reto A; Green, Douglas R; Kunzendorf, Ulrich; Krautwald, Stefan

    2012-01-01

    Tumor necrosis factor receptor (TNFR) signaling may result in survival, apoptosis or programmed necrosis. The latter is called necroptosis if the receptor-interacting protein 1 (RIP1) inhibitor necrostatin-1 (Nec-1) or genetic knockout of RIP3 prevents it. In the lethal mouse model of TNFα-mediated shock, addition of the pan-caspase inhibitor zVAD-fmk (zVAD) accelerates time to death. Here, we demonstrate that RIP3-deficient mice are protected markedly from TNFα-mediated shock in the presence and absence of caspase inhibition. We further show that the fusion protein TAT-crmA, previously demonstrated to inhibit apoptosis, also prevents necroptosis in L929, HT29 and FADD-deficient Jurkat cells. In contrast to RIP3-deficient mice, blocking necroptosis by Nec-1 or TAT-crmA did not protect from TNFα/zVAD-mediated shock, but further accelerated time to death. Even in the absence of caspase inhibition, Nec-1 application led to similar kinetics. Depletion of macrophages, natural killer (NK) cells, granulocytes or genetic deficiency for T lymphocytes did not influence this model. Because RIP3-deficient mice are known to be protected from cerulein-induced pancreatitis (CIP), we applied Nec-1 and TAT-crmA in this model and demonstrated the deterioration of pancreatic damage upon addition of these substances. These data highlight the importance of separating genetic RIP3 deficiency from RIP1 inhibition by Nec-1 application in vivo and challenge the current definition of necroptosis. PMID:22371307

  13. Dichotomy between RIP1- and RIP3-mediated necroptosis in tumor necrosis factor-α-induced shock.

    PubMed

    Linkermann, Andreas; Bräsen, Jan H; De Zen, Federica; Weinlich, Ricardo; Schwendener, Reto A; Green, Douglas R; Kunzendorf, Ulrich; Krautwald, Stefan

    2012-01-01

    Tumor necrosis factor receptor (TNFR) signaling may result in survival, apoptosis or programmed necrosis. The latter is called necroptosis if the receptor-interacting protein 1 (RIP1) inhibitor necrostatin-1 (Nec-1) or genetic knockout of RIP3 prevents it. In the lethal mouse model of TNFα-mediated shock, addition of the pan-caspase inhibitor zVAD-fmk (zVAD) accelerates time to death. Here, we demonstrate that RIP3-deficient mice are protected markedly from TNFα-mediated shock in the presence and absence of caspase inhibition. We further show that the fusion protein TAT-crmA, previously demonstrated to inhibit apoptosis, also prevents necroptosis in L929, HT29 and FADD-deficient Jurkat cells. In contrast to RIP3-deficient mice, blocking necroptosis by Nec-1 or TAT-crmA did not protect from TNFα/zVAD-mediated shock, but further accelerated time to death. Even in the absence of caspase inhibition, Nec-1 application led to similar kinetics. Depletion of macrophages, natural killer (NK) cells, granulocytes or genetic deficiency for T lymphocytes did not influence this model. Because RIP3-deficient mice are known to be protected from cerulein-induced pancreatitis (CIP), we applied Nec-1 and TAT-crmA in this model and demonstrated the deterioration of pancreatic damage upon addition of these substances. These data highlight the importance of separating genetic RIP3 deficiency from RIP1 inhibition by Nec-1 application in vivo and challenge the current definition of necroptosis. PMID:22371307

  14. Participation of tumor necrosis factor in the mediation of gram negative bacterial lipopolysaccharide-induced injury in rabbits.

    PubMed Central

    Mathison, J C; Wolfson, E; Ulevitch, R J

    1988-01-01

    Macrophages are induced by LPS to release a number of products that determine the host response during gram negative sepsis. To examine the role of one such substance, tumor necrosis factor (TNF), in mediating LPS-induced injury, we employed a rabbit model of endotoxic shock to (a) determine the kinetics and extent of release of TNF into plasma after injection of LPS, and (b) to evaluate the protective effect of in vivo neutralization of LPS-induced TNF by prior infusion of anti-TNF antibody. TNF was maximally induced 45-100 min after injection of 10 micrograms i.v. parent Salmonella minnesota Re595 LPS or 250 micrograms Re595 LPS-HDL complexes. Maximal induction of TNF by LPS was associated with development of hypotension, focal hepatic necrosis, intravascular fibrin deposition and lethality. Based on (a) the peak levels of TNF observed in serum, 2.5 X 10(3) U/ml, (b) the specific activity of purified rabbit macrophage-derived TNF, 1 X 10(8) U/mg, and (c) the biphasic disappearance of intravenously injected purified TNF (t1/2 = 0.5 min, 11 min) we constructed a kinetic model showing that at least 130 micrograms of TNF (1.3 X 10(7) U) was released into plasma 30-200 min postinjection of LPS. Prior infusion of anti-TNF antibody (30-45 min before LPS injection) resulted in neutralization of the LPS-induced serum TNF activity and provided significant protection from the development of hypotension, fibrin deposition, and lethality. Thus, these results provide further evidence that TNF plays a central role mediating the pathophysiologic changes that occur during gram negative endotoxic shock. Images PMID:3384955

  15. Function of the p55 tumor necrosis factor receptor "death domain" mediated by phosphatidylcholine-specific phospholipase C

    PubMed Central

    1996-01-01

    Tumor necrosis factor (TNF) is a pleiotropic mediator of inflammation that has been implicated in the pathogenesis of devastating clinical syndromes including septic shock. We have investigated the role of a TNF-responsive phosphatidylcholine-specific phospholipase C (PC-PLC) for the cytotoxic and proinflammatory activity of TNF. We show here that the cytotoxicity signaled for by the so-called "death domain" of the p55 TNF receptor is associated with the activation of PC-PLC. The xanthogenate tricyclodecan-9-yl (D609), a specific and selective inhibitor of PC-PLC, blocked the cytotoxic action of TNF on L929 and Wehi164 cells. In vivo, D609 prevented both adhesion molecule expression in the pulmonary vasculature and the accompanying leukocyte infiltration in TNF-treated mice. More strikingly, D609 protects BALB/c mice from lethal shock induced either by TNF, lipopolysaccharide, or staphylococcal enterotoxin B. Together these findings imply PC-PLC as an important mediator of the pathogenic action of TNF, suggesting that PC-PLC may serve as a novel target for anti-inflammatory TNF antagonists. PMID:8760826

  16. Nitric oxide mediates angiogenesis induced in vivo by platelet-activating factor and tumor necrosis factor-alpha.

    PubMed Central

    Montrucchio, G.; Lupia, E.; de Martino, A.; Battaglia, E.; Arese, M.; Tizzani, A.; Bussolino, F.; Camussi, G.

    1997-01-01

    We evaluated the role of an endogenous production of nitric oxide (NO) in the in vitro migration of endothelial cells and in the in vivo angiogenic response elicited by platelet-activating factor (PAF), tumor necrosis factor-alpha (TNF), and basic fibroblast growth factor (bFGF). The NO synthase inhibitor, N omega-nitro-L-arginine-methyl ester (L-NAME), but not its enantiomer D-NAME, prevented chemotaxis of endothelial cells induced in vitro by PAF and by TNF. The motogenic activity of TNF was also inhibited by WEB 2170, a specific PAF-receptor antagonist. In contrast, chemotaxis induced by bFGF was not prevented by L-NAME or by WEB 2170. Angiogenesis was studied in vivo in a murine model in which Matrigel was used as a vehicle for the delivery of mediators. In this model, the angiogenesis induced by PAF and TNF was inhibited by WEB 2170 and L-NAME but not by D-NAME. In contrast, angiogenesis induced by bFGF was not affected by L-NAME or by WEB 2170. TNF, but not bFGF, induced PAF synthesis within Matrigel. These results suggest that NO mediates the angiogenesis induced by PAF as well as that induced by TNF, which is dependent on the production of PAF. In contrast, the angiogenic effect of bFGF appears to be both PAF and NO independent. Images Figure 3 Figure 4 PMID:9250168

  17. Glycyrrhizin Protects against Acetaminophen-Induced Acute Liver Injury via Alleviating Tumor Necrosis Factor α–Mediated Apoptosis

    PubMed Central

    Yan, Tingting; Wang, Hong; Zhao, Min; Yagai, Tomoki; Chai, Yingying; Krausz, Kristopher W.; Xie, Cen; Cheng, Xuefang; Zhang, Jun; Che, Yuan; Li, Feiyan; Wu, Yuzheng; Brocker, Chad N.; Gonzalez, Frank J.

    2016-01-01

    Acetaminophen (APAP) overdose is the leading cause of drug-induced acute liver failure in Western countries. Glycyrrhizin (GL), a potent hepatoprotective constituent extracted from the traditional Chinese medicine liquorice, has potential clinical use in treating APAP-induced liver failure. The present study determined the hepatoprotective effects and underlying mechanisms of action of GL and its active metabolite glycyrrhetinic acid (GA). Various administration routes and pharmacokinetics–pharmacodynamics analyses were used to differentiate the effects of GL and GA on APAP toxicity in mice. Mice deficient in cytochrome P450 2E1 enzyme (CYP2E1) or receptor interacting protein 3 (RIPK3) and their relative wild-type littermates were subjected to histologic and biochemical analyses to determine the potential mechanisms. Hepatocyte death mediated by tumor necrosis factor α (TNFα)/caspase was analyzed by use of human liver-derived LO2 cells. The pharmacokinetics–pharmacodynamics analysis using various administration routes revealed that GL but not GA potently attenuated APAP-induced liver injury. The protective effect of GL was found only with intraperitoneal and intravenous administration and not with gastric administration. CYP2E1-mediated metabolic activation and RIPK3-mediated necroptosis were unrelated to GL’s protective effect. However, GL inhibited hepatocyte apoptosis via interference with TNFα-induced apoptotic hepatocyte death. These results demonstrate that GL rapidly attenuates APAP-induced liver injury by directly inhibiting TNFα-induced hepatocyte apoptosis. The protective effect against APAP-induced liver toxicity by GL in mice suggests the therapeutic potential of GL for the treatment of APAP overdose. PMID:26965985

  18. Glycyrrhizin Protects against Acetaminophen-Induced Acute Liver Injury via Alleviating Tumor Necrosis Factor α-Mediated Apoptosis.

    PubMed

    Yan, Tingting; Wang, Hong; Zhao, Min; Yagai, Tomoki; Chai, Yingying; Krausz, Kristopher W; Xie, Cen; Cheng, Xuefang; Zhang, Jun; Che, Yuan; Li, Feiyan; Wu, Yuzheng; Brocker, Chad N; Gonzalez, Frank J; Wang, Guangji; Hao, Haiping

    2016-05-01

    Acetaminophen (APAP) overdose is the leading cause of drug-induced acute liver failure in Western countries. Glycyrrhizin (GL), a potent hepatoprotective constituent extracted from the traditional Chinese medicine liquorice, has potential clinical use in treating APAP-induced liver failure. The present study determined the hepatoprotective effects and underlying mechanisms of action of GL and its active metabolite glycyrrhetinic acid (GA). Various administration routes and pharmacokinetics-pharmacodynamics analyses were used to differentiate the effects of GL and GA on APAP toxicity in mice. Mice deficient in cytochrome P450 2E1 enzyme (CYP2E1) or receptor interacting protein 3 (RIPK3) and their relative wild-type littermates were subjected to histologic and biochemical analyses to determine the potential mechanisms. Hepatocyte death mediated by tumor necrosis factorα(TNFα)/caspase was analyzed by use of human liver-derived LO2 cells. The pharmacokinetics-pharmacodynamics analysis using various administration routes revealed that GL but not GA potently attenuated APAP-induced liver injury. The protective effect of GL was found only with intraperitoneal and intravenous administration and not with gastric administration. CYP2E1-mediated metabolic activation and RIPK3-mediated necroptosis were unrelated to GL's protective effect. However, GL inhibited hepatocyte apoptosis via interference with TNFα-induced apoptotic hepatocyte death. These results demonstrate that GL rapidly attenuates APAP-induced liver injury by directly inhibiting TNFα-induced hepatocyte apoptosis. The protective effect against APAP-induced liver toxicity by GL in mice suggests the therapeutic potential of GL for the treatment of APAP overdose. PMID:26965985

  19. Lipopolysaccharide-stimulated osteoclastogenesis is mediated by tumor necrosis factor via its P55 receptor.

    PubMed Central

    Abu-Amer, Y; Ross, F P; Edwards, J; Teitelbaum, S L

    1997-01-01

    Chronic bone infection, as attends periodontitis, is often complicated by severe osteolysis. While LPS is believed to be central to the pathogenesis of the osteolytic lesion, the mechanisms by which this bacteria-derived molecule promotes bone resorption are unknown. We find that LPS induces bone marrow macrophages (BMMs) to express c-src, a protooncogene product that we demonstrate is a specific marker of commitment to the osteoclast phenotype. We next turned to possible soluble mediators of LPS-induced c-src. Of a number of osteoclastogenic cytokines tested, only TNF-alpha mirrors the c-src-enhancing effect of LPS. Suggesting that LPS augmentation of c-src is TNF-mediated, endotoxin sequentially induces BMM expression of TNF, followed by c-src. TNF and c-src expression, by cultured BMMs derived from LPS-injected mice, reflects duration of exposure to circulating endotoxin, intimating that endotoxin's effect in vivo is also mediated by TNF. Consistent with these findings, thalidomide (which antagonizes TNF action) attenuates c-src induction by LPS. An anti-TNF antibody blocks LPS enhancement of c-src mRNA, validating the cytokine's modulating role in vitro. Using BMMs of TNF receptor-deleted mice, we demonstrate that TNF induction of c-src is transmitted through the cytokine's p55, but not p75, receptor. Most importantly, LPS administered to wild-type mice prompts osteoclast precursor differentiation, manifest by profound osteoclastogenesis in marrow cultured ex vivo, and by a profusion of marrow-residing cells expressing the osteoclast marker tartrate resistant acid phosphatase, in vivo. In contrast, LPS does not substantially enhance osteoclast proliferation in mice lacking the p55TNF receptor, confirming that LPS-induced osteoclastogenesis is mediated by TNF in vivo via this receptor. Thus, therapy targeting TNF and/or its p55 receptor presents itself as a means of preventing the osteolysis of chronic bacterial infection. PMID:9294124

  20. Inflammatory cytokine tumor necrosis factor α suppresses neuroprotective endogenous erythropoietin from astrocytes mediated by hypoxia-inducible factor-2α.

    PubMed

    Nagaya, Yoshiaki; Aoyama, Mineyoshi; Tamura, Tetsuya; Kakita, Hiroki; Kato, Shin; Hida, Hideki; Saitoh, Shinji; Asai, Kiyofumi

    2014-12-01

    Interest in erythropoietin (EPO) as a neuroprotective mediator has grown since it was found that systemically administered EPO is protective in several animal models of disease. However, given that the blood-brain barrier limits EPO entry into the brain, alternative approaches that induce endogenous EPO production in the brain may be more effective clinically and associated with fewer untoward side-effects. Astrocytes are the main source of EPO in the central nervous system. In the present study we investigated the effect of the inflammatory cytokine tumor necrosis factor α (TNFα) on hypoxia-induced upregulation of EPO in rat brain. Hypoxia significantly increased EPO mRNA expression in the brain and kidney, and this increase was suppressed by TNFα in vivo. In cultured astrocytes exposed to hypoxic conditions for 6 and 12 h, TNFα suppressed the hypoxia-induced increase in EPO mRNA expression in a concentration-dependent manner. TNFα inhibition of hypoxia-induced EPO expression was mediated primarily by hypoxia-inducible factor (HIF)-2α rather than HIF-1α. The effects of TNFα in reducing hypoxia-induced upregulation of EPO mRNA expression probably involve destabilization of HIF-2α, which is regulated by the nuclear factor (NF)-κB signaling pathway. TNFα treatment attenuated the protective effects of astrocytes on neurons under hypoxic conditions via EPO signaling. The effective blockade of TNFα signaling may contribute to the maintenance of the neuroprotective effects of EPO even under hypoxic conditions with an inflammatory response. PMID:25283246

  1. Borage oil reduction of rheumatoid arthritis activity may be mediated by increased cAMP that suppresses tumor necrosis factor-alpha.

    PubMed

    Kast, R E

    2001-11-01

    Recent double blind studies have shown some benefit of borage oil in treatment of rheumatoid arthritis. Tumor necrosis factor-alpha has been shown to be a central mediator of inflammatory and joint destructive processes in rheumatoid arthritis. In this paper, evidence from published research is reviewed that indicates gamma linolenic acid component of borage oil increases prostaglandin E levels that increase cAMP levels that in turn suppress tumor necrosis factor-alpha synthesis. If this biochemical path of borage oil is correct then (1) concomitant non-steroidal anti-inflammatory drug use would tend to undermine borage oil effects, and (2) borage oil would be contraindicated in pregnancy given the teratogenic and labor inducing effects of prostaglandin E agonists. PMID:11710548

  2. Borage oil reduction of rheumatoid arthritis activity may be mediated by increased cAMP that suppresses tumor necrosis factor-alpha.

    PubMed

    Kast, R E

    2001-11-01

    Recent double blind studies have shown some benefit of borage oil in treatment of rheumatoid arthritis. Tumor necrosis factor-alpha has been shown to be a central mediator of inflammatory and joint destructive processes in rheumatoid arthritis. In this paper, evidence from published research is reviewed that indicates gamma linolenic acid component of borage oil increases prostaglandin E levels that increase cAMP levels that in turn suppress tumor necrosis factor-alpha synthesis. If this biochemical path of borage oil is correct then (1) concomitant non-steroidal anti-inflammatory drug use would tend to undermine borage oil effects, and (2) borage oil would be contraindicated in pregnancy given the teratogenic and labor inducing effects of prostaglandin E agonists.

  3. Lysosomal serine protease CLN2 regulates tumor necrosis factor-alpha-mediated apoptosis in a Bid-dependent manner.

    PubMed

    Autefage, Hélène; Albinet, Virginie; Garcia, Virginie; Berges, Hortense; Nicolau, Marie-Laure; Therville, Nicole; Altié, Marie-Françoise; Caillaud, Catherine; Levade, Thierry; Andrieu-Abadie, Nathalie

    2009-04-24

    Apoptosis is a highly organized, energy-dependent program by which multicellular organisms eliminate damaged, superfluous, and potentially harmful cells. Although caspases are the most prominent group of proteases involved in the apoptotic process, the role of lysosomes has only recently been unmasked. This study investigated the role of the lysosomal serine protease CLN2 in apoptosis. We report that cells isolated from patients affected with late infantile neuronal ceroid lipofuscinosis (LINCL) having a deficient activity of CLN2 are resistant to the toxic effect of death ligands such as tumor necrosis factor (TNF), CD95 ligand, or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) but not to receptor-independent stress agents. CLN2-deficient cells exhibited a defect in TNF-induced Bid cleavage, release of cytochrome c, and caspase-9 and -3 activation. Moreover, extracts from CLN2-overexpressing cells or a CLN2 recombinant protein were able to catalyze the in vitro cleavage of Bid. Noteworthy, correction of the lysosomal enzyme defect of LINCL fibroblasts using a medium enriched in CLN2 protein enabled restoration of TNF-induced Bid and caspase-3 processing and toxicity. Conversely, transfection of CLN2-corrected cells with small interfering RNA targeting Bid abrogated TNF-induced cell death. Altogether, our study demonstrates that genetic deletion of the lysosomal serine protease CLN2 and the subsequent loss of its catalytic function confer resistance to TNF in non-neuronal somatic cells, indicating that CLN2 plays a yet unsuspected role in TNF-induced cell death. PMID:19246452

  4. Fas- and tumor necrosis factor-mediated apoptosis uses the same binding surface of FADD to trigger signal transduction. A typical model for convergent signal transduction.

    PubMed

    Bang, S; Jeong, E J; Kim, I K; Jung, Y K; Kim, K S

    2000-11-17

    FADD is known to function as a common signaling conduit in Fas- and tumor necrosis factor (TNF)-mediated apoptosis. The convergent death signals from the Fas receptor and TNF receptor 1 are transferred to FADD by death domain interactions triggering the same cellular event, caspase-8 activation. In this work, we investigated whether the same binding surface of FADD is used for both signaling pathways by using FADD death domain mutants. Mutations in helices alpha2 and alpha3 of the FADD death domain, the interacting surface with the Fas death domain, affected TNF-mediated apoptosis to various extents. This indicated that TNF-mediated apoptosis uses the same binding surface of the FADD death domain as Fas-mediated apoptosis. The binding specificity is not the same, however. Some mutations affected the binding affinity of the Fas death domain for the FADD death domain, but did not influence TNF-mediated apoptosis and vice versa. Interestingly, all mutants tested that affected TNF-mediated apoptosis have structural perturbations, implying that the structural integrity, involving helices alpha2 and alpha3 in particular, is critical in TNF-mediated apoptosis. Our results suggest that different signaling molecules use a similar structural interaction to trigger the same cellular event, such as caspase-8 recruitment, which could be typical in convergent signal transduction.

  5. Canarypox Virus-Induced Maturation of Dendritic Cells Is Mediated by Apoptotic Cell Death and Tumor Necrosis Factor Alpha Secretion

    PubMed Central

    Ignatius, Ralf; Marovich, Mary; Mehlhop, Erin; Villamide, Loreley; Mahnke, Karsten; Cox, William I.; Isdell, Frank; Frankel, Sarah S.; Mascola, John R.; Steinman, Ralph M.; Pope, Melissa

    2000-01-01

    Recombinant avipox viruses are being widely evaluated as vaccines. To address how these viruses, which replicate poorly in mammalian cells, might be immunogenic, we studied how canarypox virus (ALVAC) interacts with primate antigen-presenting dendritic cells (DCs). When human and rhesus macaque monocyte-derived DCs were exposed to recombinant ALVAC, immature DCs were most susceptible to infection. However, many of the infected cells underwent apoptotic cell death, and dying infected cells were engulfed by uninfected DCs. Furthermore, a subset of DCs matured in the ALVAC-exposed DC cultures. DC maturation coincided with tumor necrosis factor alpha (TNF-α) secretion and was significantly blocked in the presence of anti-TNF-α antibodies. Interestingly, inhibition of apoptosis with a caspase 3 inhibitor also reduced some of the maturation induced by exposure to ALVAC. This indicates that both TNF-α and the presence of primarily apoptotic cells contributed to DC maturation. Therefore, infection of immature primate DCs with ALVAC results in apoptotic death of infected cells, which can be internalized by noninfected DCs driving DC maturation in the presence of the TNF-α secreted concomitantly by exposed cells. This suggests an important mechanism that may influence the immunogenicity of avipox virus vectors. PMID:11070033

  6. Loss of Tumor Necrosis Factor α Potentiates Transforming Growth Factor β-mediated Pathogenic Tissue Response during Wound Healing

    PubMed Central

    Saika, Shizuya; Ikeda, Kazuo; Yamanaka, Osamu; Flanders, Kathleen C.; Okada, Yuka; Miyamoto, Takeshi; Kitano, Ai; Ooshima, Akira; Nakajima, Yuji; Ohnishi, Yoshitaka; Kao, Winston W.-Y.

    2006-01-01

    Animal cornea is an avascular transparent tissue that is suitable for research on wound healing-related scarring and neovascularization. Here we show that loss of tumor necrosis factor α (TNFα) potentiates the undesirable, pathogenic response of wound healing in an alkali-burned cornea in mice. Excessive invasion of macrophages and subsequent formation of a vascularized scar tissue were much more marked in TNFα-null knockout (KO) mice than in wild-type mice. Such an unfavorable outcome in KO mice was abolished by Smad7 gene introduction, indicating the involvement of transforming growth factor β or activin/Smad signaling. Bone marrow transplantation from wild-type mice normalized healing of the KO mice, suggesting the involvement of bone marrow-derived inflammatory cells in this phenomenon. Co-culture experiments showed that loss of TNFα in macrophages, but not in fibroblasts, augmented the fibroblast activation as determined by detection of α-smooth muscle actin, the hallmark of myofibroblast generation, mRNA expression of collagen Iα2 and connective tissue growth factor, and detection of collagen protein. TNFα in macrophages may be required to suppress undesirable excessive inflammation and scarring, both of which are promoted by transforming growth factor β, and for restoration of tissue architecture in a healing alkali-burned cornea in mice. PMID:16723700

  7. Tumor necrosis factor alpha and toxicology.

    PubMed

    Luster, M I; Simeonova, P P; Gallucci, R; Matheson, J

    1999-09-01

    The molecular cloning of a group of proteins, collectively referred to as cytokines, and including interleukins, chemokines, growth factors, colony stimulating factors, and tumor necrosis factors, has allowed for the increased understanding of the mechanisms for many disease processes as well as provided strategies for the development of novel therapies. Conceptually similar to hormones and peptides, this group of phylogenetically related molecules are also involved in various toxicological processes, including apoptosis, cell repair, and in particular inflammation. In this review, we offer a description of what many believe represents the primary regulatory cytokine, tumor necrosis factor (TNF)alpha and its role in toxicological processes. For over a decade it has been suspected that this molecule helps mediate the shock state induced by bacterial endotoxin and the wasting diathesis that typifies chronic diseases. Advances in molecular biology that have provided tools to modulate TNFalpha regulation and synthesis have allowed for the identification of additional roles for TNFalpha in homeostasis, cellular damage, and repair. This review provides a brief summary of our understanding of TNFalpha biology followed by a discussion of its role in toxicological responses. This is followed by specific examples of organ-specific and tissue-specific responses to chemical damage where TNFalpha has been implicated. The review concludes with a review of its implication in human risk assessment, particularly as it relates to genetic polymorphisms of TNFalpha expression and disease susceptibility.

  8. Targeting tumor-necrosis factor receptor pathways for tumor immunotherapy.

    PubMed

    Schaer, David A; Hirschhorn-Cymerman, Daniel; Wolchok, Jedd D

    2014-01-01

    With the success of ipilimumab and promise of programmed death-1 pathway-targeted agents, the field of tumor immunotherapy is expanding rapidly. Newer targets for clinical development include select members of the tumor necrosis factor receptor (TNFR) family. Agonist antibodies to these co-stimulatory molecules target both T and B cells, modulating T-cell activation and enhancing immune responses. In vitro and in vivo preclinical data have provided the basis for continued development of 4-1BB, OX40, glucocorticoid-induced TNFR-related gene, herpes virus entry mediator, and CD27 as potential therapies for patients with cancer. In this review, we summarize the immune response to tumors, consider preclinical and early clinical data on select TNFR family members, discuss potential translational challenges and suggest possible combination therapies with the aim of inducing durable antitumor responses. PMID:24855562

  9. Genetic ablation of soluble tumor necrosis factor with preservation of membrane tumor necrosis factor is associated with neuroprotection after focal cerebral ischemia.

    PubMed

    Madsen, Pernille M; Clausen, Bettina H; Degn, Matilda; Thyssen, Stine; Kristensen, Lotte K; Svensson, Martina; Ditzel, Nicholas; Finsen, Bente; Deierborg, Tomas; Brambilla, Roberta; Lambertsen, Kate L

    2016-09-01

    Microglia respond to focal cerebral ischemia by increasing their production of the neuromodulatory cytokine tumor necrosis factor, which exists both as membrane-anchored tumor necrosis factor and as cleaved soluble tumor necrosis factor forms. We previously demonstrated that tumor necrosis factor knockout mice display increased lesion volume after focal cerebral ischemia, suggesting that tumor necrosis factor is neuroprotective in experimental stroke. Here, we extend our studies to show that mice with intact membrane-anchored tumor necrosis factor, but no soluble tumor necrosis factor, display reduced infarct volumes at one and five days after stroke. This was associated with improved functional outcome after experimental stroke. No changes were found in the mRNA levels of tumor necrosis factor and tumor necrosis factor-related genes (TNFR1, TNFR2, TACE), pro-inflammatory cytokines (IL-1β, IL-6) or chemokines (CXCL1, CXCL10, CCL2); however, protein expression of TNF, IL-1β, IL-6 and CXCL1 was reduced in membrane-anchored tumor necrosis factor(Δ/Δ) compared to membrane-anchored tumor necrosis factor(wt/wt) mice one day after experimental stroke. This was paralleled by reduced MHCII expression and a reduction in macrophage infiltration in the ipsilateral cortex of membrane-anchored tumor necrosis factor(Δ/Δ) mice. Collectively, these findings indicate that membrane-anchored tumor necrosis factor mediates the protective effects of tumor necrosis factor signaling in experimental stroke, and therapeutic strategies specifically targeting soluble tumor necrosis factor could be beneficial in clinical stroke therapy. PMID:26661199

  10. RNAseq Analyses Identify Tumor Necrosis Factor-Mediated Inflammation as a Major Abnormality in ALS Spinal Cord.

    PubMed

    Brohawn, David G; O'Brien, Laura C; Bennett, James P

    2016-01-01

    ALS is a rapidly progressive, devastating neurodegenerative illness of adults that produces disabling weakness and spasticity arising from death of lower and upper motor neurons. No meaningful therapies exist to slow ALS progression, and molecular insights into pathogenesis and progression are sorely needed. In that context, we used high-depth, next generation RNA sequencing (RNAseq, Illumina) to define gene network abnormalities in RNA samples depleted of rRNA and isolated from cervical spinal cord sections of 7 ALS and 8 CTL samples. We aligned >50 million 2X150 bp paired-end sequences/sample to the hg19 human genome and applied three different algorithms (Cuffdiff2, DEseq2, EdgeR) for identification of differentially expressed genes (DEG's). Ingenuity Pathways Analysis (IPA) and Weighted Gene Co-expression Network Analysis (WGCNA) identified inflammatory processes as significantly elevated in our ALS samples, with tumor necrosis factor (TNF) found to be a major pathway regulator (IPA) and TNFα-induced protein 2 (TNFAIP2) as a major network "hub" gene (WGCNA). Using the oPOSSUM algorithm, we analyzed transcription factors (TF) controlling expression of the nine DEG/hub genes in the ALS samples and identified TF's involved in inflammation (NFkB, REL, NFkB1) and macrophage function (NR1H2::RXRA heterodimer). Transient expression in human iPSC-derived motor neurons of TNFAIP2 (also a DEG identified by all three algorithms) reduced cell viability and induced caspase 3/7 activation. Using high-density RNAseq, multiple algorithms for DEG identification, and an unsupervised gene co-expression network approach, we identified significant elevation of inflammatory processes in ALS spinal cord with TNF as a major regulatory molecule. Overexpression of the DEG TNFAIP2 in human motor neurons, the population most vulnerable to die in ALS, increased cell death and caspase 3/7 activation. We propose that therapies targeted to reduce inflammatory TNFα signaling may be helpful

  11. Tumor necrosis factor alpha production from CD8+ T cells mediates oviduct pathological sequelae following primary genital Chlamydia muridarum infection.

    PubMed

    Murthy, Ashlesh K; Li, Weidang; Chaganty, Bharat K R; Kamalakaran, Sangamithra; Guentzel, M Neal; Seshu, J; Forsthuber, Thomas G; Zhong, Guangming; Arulanandam, Bernard P

    2011-07-01

    The immunopathogenesis of Chlamydia trachomatis-induced oviduct pathological sequelae is not well understood. Mice genetically deficient in perforin (perforin(-/-) mice) or tumor necrosis factor alpha (TNF-α) production (TNF-α(-/-) mice) displayed comparable vaginal chlamydial clearance rates but significantly reduced oviduct pathology (hydrosalpinx) compared to that of wild-type mice. Since both perforin and TNF-α are effector mechanisms of CD8(+) T cells, we evaluated the role of CD8(+) T cells during genital Chlamydia muridarum infection and oviduct sequelae. Following vaginal chlamydial challenge, (i) mice deficient in TAP I (and therefore the major histocompatibility complex [MHC] I pathway and CD8(+) T cells), (ii) wild-type mice depleted of CD8(+) T cells, and (iii) mice genetically deficient in CD8 (CD8(-/-) mice) all displayed similar levels of vaginal chlamydial clearance but significantly reduced hydrosalpinx, compared to those of wild-type C57BL/6 mice, suggesting a role for CD8(+) T cells in chlamydial pathogenesis. Repletion of CD8(-/-) mice with wild-type or perforin(-/-), but not TNF-α(-/-), CD8(+) T cells at the time of challenge restored hydrosalpinx to levels observed in wild-type C57BL/6 mice, suggesting that TNF-α production from CD8(+) T cells is important for pathogenesis. Additionally, repletion of TNF-α(-/-) mice with TNF-α(+/+) CD8(+) T cells significantly enhanced the incidence of hydrosalpinx and oviduct dilatation compared to those of TNF-α(-/-) mice but not to the levels found in wild-type mice, suggesting that TNF-α production from CD8(+) T cells and non-CD8(+) cells cooperates to induce optimal oviduct pathology following genital chlamydial infection. These results provide compelling new evidence supporting the contribution of CD8(+) T cells and TNF-α production to Chlamydia-induced reproductive tract sequelae.

  12. Trichostatin A modulates thiazolidinedione-mediated suppression of tumor necrosis factor α-induced lipolysis in 3T3-L1 adipocytes.

    PubMed

    Lu, Juu-Chin; Chang, Yu-Tzu; Wang, Chih-Tien; Lin, Yu-Chun; Lin, Chun-Ken; Wu, Zhong-Sheng

    2013-01-01

    In obesity, high levels of tumor necrosis factor α (TNFα) stimulate lipolysis in adipocytes, leading to hyperlipidemia and insulin resistance. Thiazolidinediones (TZDs), the insulin-sensitizing drugs, antagonize TNFα-induced lipolysis in adipocytes, thereby increasing insulin sensitivity in diabetes patients. The cellular target of TZDs is peroxisome proliferator-activated receptor γ (PPARγ), a nuclear receptor that controls many adipocyte functions. As a transcription factor, PPARγ is closely modulated by coregulators, which include coactivators and corepressors. Previous studies have revealed that in macrophages, the insulin-sensitizing effect of PPARγ may involve suppression of proinflammatory gene expression by recruiting the corepressor complex that contains corepressors and histone deacetylases (HDACs). Therefore, we investigated whether the corepressor complex is involved in TZD-mediated suppression of TNFα-induced lipolysis in 3T3-L1 adipocytes. Trichostatin A (TSA), a pan HDAC inhibitor (HDACI) that inhibits class I and II HDACs, was used to examine the involvement of HDACs in the actions of TZDs. TSA alone increased basal lipolysis and attenuated TZD-mediated suppression of TNFα-induced lipolysis. Increased basal lipolysis may in part result from class I HDAC inhibition because selective class I HDACI treatment had similar results. However, attenuation of TZD-mediated TNFα antagonism may be specific to TSA and related hydroxamate-based HDACI rather than to HDAC inhibition. Consistently, corepressor depletion did not affect TZD-mediated suppression. Interestingly, TSA treatment greatly reduced PPARγ levels in differentiated adipocytes. Finally, extracellular signal-related kinase 1/2 (ERK1/2) mediated TNFα-induced lipolysis, and TZDs suppressed TNFα-induced ERK phosphorylation. We determined that TSA increased basal ERK phosphorylation, and attenuated TZD-mediated suppression of TNFα-induced ERK phosphorylation, consistent with TSA's effects

  13. RNAseq Analyses Identify Tumor Necrosis Factor-Mediated Inflammation as a Major Abnormality in ALS Spinal Cord

    PubMed Central

    Brohawn, David G.; O’Brien, Laura C.; Bennett, James P.

    2016-01-01

    ALS is a rapidly progressive, devastating neurodegenerative illness of adults that produces disabling weakness and spasticity arising from death of lower and upper motor neurons. No meaningful therapies exist to slow ALS progression, and molecular insights into pathogenesis and progression are sorely needed. In that context, we used high-depth, next generation RNA sequencing (RNAseq, Illumina) to define gene network abnormalities in RNA samples depleted of rRNA and isolated from cervical spinal cord sections of 7 ALS and 8 CTL samples. We aligned >50 million 2X150 bp paired-end sequences/sample to the hg19 human genome and applied three different algorithms (Cuffdiff2, DEseq2, EdgeR) for identification of differentially expressed genes (DEG’s). Ingenuity Pathways Analysis (IPA) and Weighted Gene Co-expression Network Analysis (WGCNA) identified inflammatory processes as significantly elevated in our ALS samples, with tumor necrosis factor (TNF) found to be a major pathway regulator (IPA) and TNFα-induced protein 2 (TNFAIP2) as a major network “hub” gene (WGCNA). Using the oPOSSUM algorithm, we analyzed transcription factors (TF) controlling expression of the nine DEG/hub genes in the ALS samples and identified TF’s involved in inflammation (NFkB, REL, NFkB1) and macrophage function (NR1H2::RXRA heterodimer). Transient expression in human iPSC-derived motor neurons of TNFAIP2 (also a DEG identified by all three algorithms) reduced cell viability and induced caspase 3/7 activation. Using high-density RNAseq, multiple algorithms for DEG identification, and an unsupervised gene co-expression network approach, we identified significant elevation of inflammatory processes in ALS spinal cord with TNF as a major regulatory molecule. Overexpression of the DEG TNFAIP2 in human motor neurons, the population most vulnerable to die in ALS, increased cell death and caspase 3/7 activation. We propose that therapies targeted to reduce inflammatory TNFα signaling may be

  14. Unimpaired Autoreactive T-Cell Traffic Within the Central Nervous System During Tumor Necrosis Factor Receptor-Mediated inhibition of Experimental Autoimmune Encephalomyelitis

    NASA Astrophysics Data System (ADS)

    Korner, Heinrich; Goodsall, Anna L.; Lemckert, Frances A.; Scallon, Bernard J.; Ghrayeb, John; Ford, Andrew L.; Sedgwick, Jonathon D.

    1995-11-01

    The critical role of tumor necrosis factor (TNF) as a mediator in autoimmune inflammatory processes is evident from in vivo studies with TNF-blocking agents. However, the mechanisms by which TNF, and possibly also its homologue lymphotoxin α, contributes to development of pathology in rheumatoid arthritis and Crohn disease and in animal models like experimental autoimmune encephalomyelitis is unclear. Possibilities include regulation of vascular adhesion molecules enabling leukocyte movement into tissues or direct cytokine-mediated effector functions such as mediation of tissue damage. Here we show that administration of a TNF receptor (55 kDa)-IgG fusion protein prevented clinical signs of actively induced experimental autoimmune encephalomyelitis. Significantly, the total number of CD4^+ T lymphocytes isolated from the central nervous system of clinically healthy treated versus diseased control animals was comparable. By using a CD45 congenic model of passively transferred experimental autoimmune encephalomyelitis to enable tracking of myelin basic protein-specific effector T lymphocytes, prevention of clinical signs of disease was again demonstrated in treated animals but without quantitative or qualitative impediment to the movement of autoreactive T lymphocytes to and within the central nervous system. Thus, despite the uninterrupted movement of specific T lymphocytes into the target tissue, subsequent disease development was blocked. This provides compelling evidence for a direct effector role of TNF/lymphotoxin α in autoimmune tissue damage.

  15. T cell-mediated lethal shock triggered in mice by the superantigen staphylococcal enterotoxin B: critical role of tumor necrosis factor

    PubMed Central

    1992-01-01

    Because mice are more resistant than humans to the pathogenic effects of bacterial toxins, we used D-Galactosamine- (D-Gal) sensitized mice as a model system to evaluate potential toxic shock symptoms triggered by the superantigen staphylococcal enterotoxin B (SEB). We show that similar to endotoxin (lipopolysaccharide) [LPS], the exotoxin SEB causes lethal shock within 8 h in D-Gal-sensitized mice, inducing 100% and about 50% lethality with 20 and 2 micrograms SEB, respectively. The lethal shock triggered by the superantigen SEB is mediated by T cells, a conclusion based on the observation that T cell repopulation of SCID mice conferred sensitivity to SEB. Since CSA also conferred protection, the role of T cell-derived lymphokines in mediating lethal shock was evaluated. Within 30-60 min after SEB injection, serum tumor necrosis factor (TNF) levels peaked, followed immediately by interleukin-2 (IL- 2). Serum-borne lymphokines were detected well in advance of signs of T cell activation, as assessed by IL-2 receptor expression of SEB- reactive V beta 8+ T cells. Passive immunization with anti-TNF- alpha/beta-neutralizing monoclonal antibody also conferred protection, indicating that it is TNF which is critical for initiating toxic shock symptoms. Taken together, this study defines basic differences between endotoxin (LPS)- and exotoxin (SEB)-mediated lethal shock, in that the former is mediated by macrophages and the latter by T cells. Yet the pathogenesis distal to the lymphokine/cytokine-producing cells appears surprisingly similar in that TNF represents a key mediator in inducing shock. PMID:1730929

  16. Loss of ADAM17-Mediated Tumor Necrosis Factor Alpha Signaling in Intestinal Cells Attenuates Mucosal Atrophy in a Mouse Model of Parenteral Nutrition.

    PubMed

    Feng, Yongjia; Tsai, Yu-Hwai; Xiao, Weidong; Ralls, Matthew W; Stoeck, Alex; Wilson, Carole L; Raines, Elaine W; Teitelbaum, Daniel H; Dempsey, Peter J

    2015-11-01

    Total parenteral nutrition (TPN) is commonly used clinically to sustain patients; however, TPN is associated with profound mucosal atrophy, which may adversely affect clinical outcomes. Using a mouse TPN model, removing enteral nutrition leads to decreased crypt proliferation, increased intestinal epithelial cell (IEC) apoptosis and increased mucosal tumor necrosis factor alpha (TNF-α) expression that ultimately produces mucosal atrophy. Upregulation of TNF-α signaling plays a central role in mediating TPN-induced mucosal atrophy without intact epidermal growth factor receptor (EGFR) signaling. Currently, the mechanism and the tissue-specific contributions of TNF-α signaling to TPN-induced mucosal atrophy remain unclear. ADAM17 is an ectodomain sheddase that can modulate the signaling activity of several cytokine/growth factor receptor families, including the TNF-α/TNF receptor and ErbB ligand/EGFR pathways. Using TPN-treated IEC-specific ADAM17-deficient mice, the present study demonstrates that a loss of soluble TNF-α signaling from IECs attenuates TPN-induced mucosal atrophy. Importantly, this response remains dependent on the maintenance of functional EGFR signaling in IECs. TNF-α blockade in wild-type mice receiving TPN confirmed that soluble TNF-α signaling is responsible for downregulation of EGFR signaling in IECs. These results demonstrate that ADAM17-mediated TNF-α signaling from IECs has a significant role in the development of the proinflammatory state and mucosal atrophy observed in TPN-treated mice.

  17. Loss of ADAM17-Mediated Tumor Necrosis Factor Alpha Signaling in Intestinal Cells Attenuates Mucosal Atrophy in a Mouse Model of Parenteral Nutrition

    PubMed Central

    Feng, Yongjia; Tsai, Yu-Hwai; Xiao, Weidong; Ralls, Matthew W.; Stoeck, Alex; Wilson, Carole L.; Raines, Elaine W.

    2015-01-01

    Total parenteral nutrition (TPN) is commonly used clinically to sustain patients; however, TPN is associated with profound mucosal atrophy, which may adversely affect clinical outcomes. Using a mouse TPN model, removing enteral nutrition leads to decreased crypt proliferation, increased intestinal epithelial cell (IEC) apoptosis and increased mucosal tumor necrosis factor alpha (TNF-α) expression that ultimately produces mucosal atrophy. Upregulation of TNF-α signaling plays a central role in mediating TPN-induced mucosal atrophy without intact epidermal growth factor receptor (EGFR) signaling. Currently, the mechanism and the tissue-specific contributions of TNF-α signaling to TPN-induced mucosal atrophy remain unclear. ADAM17 is an ectodomain sheddase that can modulate the signaling activity of several cytokine/growth factor receptor families, including the TNF-α/TNF receptor and ErbB ligand/EGFR pathways. Using TPN-treated IEC-specific ADAM17-deficient mice, the present study demonstrates that a loss of soluble TNF-α signaling from IECs attenuates TPN-induced mucosal atrophy. Importantly, this response remains dependent on the maintenance of functional EGFR signaling in IECs. TNF-α blockade in wild-type mice receiving TPN confirmed that soluble TNF-α signaling is responsible for downregulation of EGFR signaling in IECs. These results demonstrate that ADAM17-mediated TNF-α signaling from IECs has a significant role in the development of the proinflammatory state and mucosal atrophy observed in TPN-treated mice. PMID:26283731

  18. Granulocyte-Macrophage Colony-Stimulating Factor- and Tumor Necrosis Factor Alpha-Mediated Matrix Metalloproteinase Production by Human Osteoblasts and Monocytes after Infection with Brucella abortus ▿

    PubMed Central

    Scian, Romina; Barrionuevo, Paula; Giambartolomei, Guillermo H.; Fossati, Carlos A.; Baldi, Pablo C.; Delpino, M. Victoria

    2011-01-01

    Osteoarticular complications are common in human brucellosis, but the pathogenic mechanisms involved are largely unknown. Since matrix metalloproteinases (MMPs) are involved in joint and bone damage in inflammatory and infectious diseases, we investigated the production of MMPs by human osteoblasts and monocytes, either upon Brucella abortus infection or upon reciprocal stimulation with factors produced by each infected cell type. B. abortus infection of the normal human osteoblastic cell line hFOB 1.19 triggered a significant release of MMP-2, which was mediated in part by granulocyte-macrophage colony-stimulating factor (GM-CSF) acting on these same cells. Supernatants from infected osteoblasts exhibited increased levels of monocyte chemoattractant protein 1 and induced the migration of human monocytes (THP-1 cell line). Infection with B. abortus induced a high MMP-9 secretion in monocytes, which was also induced by heat-killed B. abortus and by the Omp19 lipoprotein from B. abortus. These effects were mediated by Toll-like receptor 2 and by the action of tumor necrosis factor alpha (TNF-α) produced by these same cells. Supernatants from B. abortus-infected monocytes induced MMP-2 secretion in uninfected osteoblasts, and this effect was mediated by TNF-α. Similarly, supernatants from infected osteoblasts induced MMP-9 secretion in uninfected monocytes. This effect was mediated by GM-CSF, which induced TNF-α production by monocytes, which in turn induced MMP-9 in these cells. These results suggest that MMPs could be potentially involved in the tissue damage observed in osteoarticular brucellosis. PMID:20956574

  19. Tumor necrosis factor-alpha mediates activation of NF-κB and JNK signaling cascades in retinal ganglion cells and astrocytes in opposite ways

    PubMed Central

    Dvoriantchikova, Galina; Ivanov, Dmitry

    2014-01-01

    Tumor necrosis factor-alpha (TNF) is an important mediator of the innate immune response in the retina. TNF can activate various signaling cascades, including NF-κB, nuclear factor kappa B (NF-κB) and c-Jun N-terminal kinase (JNK) pathways. The harmful role of these pathways, as well as of TNF, has previously been shown in several retinal neurodegenerative conditions including glaucoma and retinal ischemia. However, TNF and TNF-regulated signaling cascades are capable not only of mediating neurotoxicity, but of being protective. We performed this study to delineate the beneficial and detrimental effects of TNF signaling in the retina. To this end, we used TNF-treated primary retinal ganglion cell (RGC) and astrocyte cultures. Levels of expression of NF-κB subunits in RGCs and astrocytes were evaluated by quantitative RT-PCR (qRT-PCR) and Western blot (WB) analysis. NF-κB and JNK activity in TNF-treated cells was determined in a time-dependent manner using ELISA and WB. Gene expression in TNF-treated astrocytes was measured by qRT-PCR. We found that NF-κB family members were present in RGCs and astrocytes at the mRNA and protein levels. RGCs failed to activate NF-κB in the presence of TNF, a phenomenon that was associated with sustained JNK activation and RGC death. However, TNF initiated the activation of NF-κB and mediated transient JNK activation in astrocytes. These events were associated with glial survival and increased expression of neurotoxic pro-inflammatory factors. Our findings suggest that, in the presence of TNF, NF-κB and JNK signaling cascades are activated in opposite ways in RGCs and astrocytes. These events can directly and indirectly facilitate RGC death. PMID:25160799

  20. Tumor necrosis by controlled ebullism.

    PubMed

    Babich, A

    2005-01-01

    In the early days of manned space flight, experiments were done in which dogs and chimpanzees were exposed to near vacuum in anticipation of possible manned space flight accidents. These specimens experienced what was termed "ebullism". This syndrome involved boiling of body fluids resulting in extreme dehydration and circulatory failure. Whereas malignant tumors are typically warmer than normal tissue, it should be possible to destroy them while sparing normal tissue through this phenomenon by subjecting patients to low pressure slightly greater than that which would produce systemic ebullism.

  1. RAC1 regulate tumor necrosis factor-α-mediated impaired osteogenic differentiation of dental pulp stem cells.

    PubMed

    Feng, Guijuan; Shen, Qijie; Lian, Min; Gu, Zhifeng; Xing, Jing; Lu, Xiaohui; Huang, Dan; Li, Liren; Huang, Shen; Wang, Yi; Zhang, Jinlong; Shi, Jiahai; Zhang, Dongmei; Feng, Xingmei

    2015-09-01

    Human dental pulp contains a rapidly proliferative subpopulation of precursor cells termed dental pulp stem cells (DPSCs) that show self-renewal and multilineage differentiation, including neurogenic, chondrogenic, osteogenic and adipogenic. We previously reported that tomuor necrosis factor-α (TNF-α) (10 ng/mL) triggered osteogenic differentiation of human DPSCs via the nuclear factor-κB (NF-κB) signaling pathway. While previous studies showed that cells treated with TNF-α at higher concentrations showed decreased osteogenic differentiation capability. In this study we analyze the function of TNF-α (100 ng/mL) on osteogenic differentiation of human DPSCs for the first time and identify the underlying molecule mechanisms. Our data revealed that TNF-α with higher concentration significantly reduced mineralization and the expression of bone morphogenetic protein 2 (BMP2), alkaline phosphatase (ALP) and runt-related transcription factor 2 (RUNX2). Further, we revealed that TNF-α could suppress the osteogenic differentiation of DPSCs via increasing the expression of RAC1, which could activate the Wnt/β-catenin signaling pathway and liberate β-catenin to translocate into the nucleus. Genetic silencing of RAC1 expression using siRNA restored osteogenic differentiation of DPSCs. Our findings may provide a potential approach to bone regeneration in inflammatory microenvironments.

  2. NF-κB Protects Human Papillomavirus Type 38 E6/E7-Immortalized Human Keratinocytes against Tumor Necrosis Factor Alpha and UV-Mediated Apoptosis▿

    PubMed Central

    Hussain, Ishraq; Fathallah, Ikbal; Accardi, Rosita; Yue, Jiping; Saidj, Djamel; Shukla, Ruchi; Hasan, Uzma; Gheit, Tarik; Niu, Yamei; Tommasino, Massimo; Sylla, Bakary S.

    2011-01-01

    Constitutive activation of NF-κB signaling is a key event in virus- and non-virus-induced carcinogenesis. We have previously reported that cutaneous human papillomavirus type 38 (HPV38) displays transforming properties in in vitro and in vivo experimental models. However, the involvement of NF-κB signaling in HPV38-induced cell growth transformation remains to be determined. In this study, we showed that HPV38 E6 and E7 activate NF-κB and that inhibition of the pathway with the IκBα superrepressor sensitizes HPV38E6E7-immortalized human keratinocytes to tumor necrosis factor alpha (TNF-α)- and UVB radiation-mediated apoptosis. Accordingly, inhibition of NF-κB signaling resulted in the downregulation of NF-κB-regulated antiapoptotic genes, including cIAP1, cIAP2, and xIAP genes. These findings demonstrate a critical role of NF-κB activity in the survival of HPV38E6E7-immortalized human keratinocytes exposed to cytokine or UV radiation. Our data provide additional evidence for cooperation between beta HPV infection and UV irradiation in skin carcinogenesis. PMID:21715489

  3. Tumor necrosis factor α induces epithelial-mesenchymal transition and promotes metastasis via NF-κB signaling pathway-mediated TWIST expression in hypopharyngeal cancer.

    PubMed

    Yu, Liang; Mu, Yakui; Sa, Na; Wang, Haibo; Xu, Wei

    2014-01-01

    Epithelial-mesenchymal transition (EMT) is an important mechanism in cancer metastasis. Tumor necrosis factor α (TNFα) can induce cancer invasion and metastasis associated with EMT. However, the underlying mechanisms are not entirely clear. Therefore, we investigated whether TNFα has an effect on EMT and invasion and metastasis in human hypopharyngeal cancer FaDu cells, and further explored the potential mechanisms. In the present study, we demonstrated that TNFα induced EMT in FaDu cells and promoted FaDu cell migration and invasion. TNFα-induced EMT was characterized by a change from well organized cell-cell adhesion and cell polarity to loss of cell-cell contacts, cell scattering and increased expression of vimentin and N-cadherin accompanied by a decrease in E-cadherin. Furthermore, we found that p65 translocated to the nucleus after TNFα stimulation and increased the nuclear expression of TWIST. We demonstrated that TNFα treatment also increased the expression of TWIST by activating the NF-κB signaling pathway. While p65 was inhibited by siRNA-65 or BAY11-7082 (inhibitor of NF-κB), TWIST expression was also decreased. Therefore, we conclude that TNFα induces EMT and promotes metastasis via NF-κB signaling pathway-mediated TWIST expression in hypopharyngeal cancer. PMID:24220622

  4. Tumor necrosis factor α induces epithelial-mesenchymal transition and promotes metastasis via NF-κB signaling pathway-mediated TWIST expression in hypopharyngeal cancer.

    PubMed

    Yu, Liang; Mu, Yakui; Sa, Na; Wang, Haibo; Xu, Wei

    2014-01-01

    Epithelial-mesenchymal transition (EMT) is an important mechanism in cancer metastasis. Tumor necrosis factor α (TNFα) can induce cancer invasion and metastasis associated with EMT. However, the underlying mechanisms are not entirely clear. Therefore, we investigated whether TNFα has an effect on EMT and invasion and metastasis in human hypopharyngeal cancer FaDu cells, and further explored the potential mechanisms. In the present study, we demonstrated that TNFα induced EMT in FaDu cells and promoted FaDu cell migration and invasion. TNFα-induced EMT was characterized by a change from well organized cell-cell adhesion and cell polarity to loss of cell-cell contacts, cell scattering and increased expression of vimentin and N-cadherin accompanied by a decrease in E-cadherin. Furthermore, we found that p65 translocated to the nucleus after TNFα stimulation and increased the nuclear expression of TWIST. We demonstrated that TNFα treatment also increased the expression of TWIST by activating the NF-κB signaling pathway. While p65 was inhibited by siRNA-65 or BAY11-7082 (inhibitor of NF-κB), TWIST expression was also decreased. Therefore, we conclude that TNFα induces EMT and promotes metastasis via NF-κB signaling pathway-mediated TWIST expression in hypopharyngeal cancer.

  5. Mechanisms for virus-induced liver disease: tumor necrosis factor-mediated pathology independent of natural killer and T cells during murine cytomegalovirus infection.

    PubMed Central

    Orange, J S; Salazar-Mather, T P; Opal, S M; Biron, C A

    1997-01-01

    The contribution of endogenous NK cells and cytokines to virus-induced liver pathology was evaluated during murine cytomegalovirus infections of mice. In immunocompetent C57BL/6 mice, the virus induced a self-limited liver disease characterized by hepatitis, with focal inflammation, and large grossly visible subcapsular necrotic foci. The inflammatory foci were most numerous and contained the greatest number of cells 3 days after infection; they colocalized with areas of viral antigen expression. The largest number of necrotic foci was found 2 days after infection. Overall hepatic damage, assessed as increased expression of liver enzymes in serum, accompanied the development of inflammatory and necrotic foci. Experiments with neutralizing antibodies demonstrated that although virus-induced tumor necrosis factor (TNF) can have antiviral effects, it also mediated significant liver pathology. TNF was required for development of hepatic necrotic foci and increased levels of liver enzymes in serum but not for increased numbers of inflammatory foci. The necrotic foci and liver enzyme indications of pathology occurred independently of NK and T cells, because mice rendered NK-cell deficient by treatment with antibodies, T- and B-cell-deficient Rag-/- mice, and NK- and T-cell-deficient E26 mice all manifested both parameters of disease. Development of necrotic foci and maximally increased levels of liver enzymes in serum also were TNF dependent in NK-cell-deficient mice. Moreover, in the immunodeficient E26 mice, virus-induced liver disease was progressive, with eventual death of the host, and neutralization of TNF significantly increased longevity. These results establish conditions separating hepatitis from significant liver damage and demonstrate a cytokine-mediated component to viral pathogenesis. PMID:9371583

  6. Macrophage-T Cell Interactions Mediate Neuropathic Pain through the Glucocorticoid-induced Tumor Necrosis Factor Ligand System*

    PubMed Central

    Kobayashi, Yuka; Kiguchi, Norikazu; Fukazawa, Yohji; Saika, Fumihiro; Maeda, Takehiko; Kishioka, Shiroh

    2015-01-01

    Peripheral neuroinflammation caused by activated immune cells can provoke neuropathic pain. Herein, we investigate the actions of macrophages and T cells through glucocorticoid-induced tumor neurosis factor receptor ligand (GITRL) and its receptor (GITR) in neuropathic pain. After partial sciatic nerve ligation (PSL) in enhanced green fluorescent protein (eGFP) chimeric mice generated by the transplantation of eGFP+ bone marrow cells, eGFP+ macrophages, and T cells markedly migrated to the injured site after PSL. Administration of agents to deplete macrophages (liposome-clodronate and Clophosome-ATM) or T cells (anti-CD4 antibody and FTY720) could suppress PSL-induced thermal hyperalgesia and tactile allodynia. The expression levels of co-stimulatory molecules GITRL and GITR were increased on infiltrating macrophages and T cells, respectively. The perineural injection of a GITRL neutralizing antibody that could inhibit the function of the GITRL-GITR pathway attenuated PSL-induced neuropathic pain. Additionally, the induction of inflammatory cytokines and the accumulation of GITR+ T cells in the injured SCN were abrogated after macrophage depletion by Clophosome-ATM. In conclusion, GITRL expressed on macrophages drives cytokine release and T cell activation, resulting in neuropathic pain via GITR-dependent actions. The GITRL-GITR pathway might represent a novel target for the treatment of neuropathic pain. PMID:25787078

  7. Infliximab ameliorating depression-like behavior through inhibiting the activation of the IDO-HAAO pathway mediated by tumor necrosis factor-α in a rat model.

    PubMed

    Fu, Xiao-Yan; Li, Hai-Yan; Jiang, Qing-Song; Cui, Ting; Jiang, Xin-Hui; Zhou, Qi-Xin; Qiu, Hong-Mei

    2016-09-01

    In recent years, some studies have suggested that the activation of inflammatory system plays a role in the occurrence of depression. Tumor necrosis factor-α (TNF-α), as one of the preinflammatory cytokines, has been reported to be involved in the occurrence of various diseases including depression. Infliximab, an antagonist of TNF-α, is usually used to treat some autoimmune diseases such as Crohn's disease and can perhaps be used to treat other diseases. In this study, the antidepressant effect and a possible mechanism of infliximab were investigated by studying the depression-like behavior and expression of TNF-α, indoleamine 2, 3-dioxygenase (IDO), and 3-hydroxyl amino acid oxygenase (HAAO) from the cortex and hippocampus in rat exposed to chronic unpredicted stress. Forty male Sprague-Dawley rats were divided into a control group (CG), an infliximab-treated control group, a model group (MG), and an infliximab-treated model group (IFXM). Infliximab (5 mg/kg once week) was administered to the infliximab-treated control group and IFXM rats by an intraperitoneal injection, whereas an equivalent volume of vehicle was administered to CG and MG rats. Rat behaviors and the expression of TNF-α, IDO, and HAAO in the cortex and hippocampus were determined. It was found that a significant relief in depression-like behaviors was observed with a downregulation of TNF-α, IDO, and HAAO expression in the IFXM rats compared with MG rats. The results show the antidepressant effect of infliximab and suggest that its mechanism is partly related to inhibition of IDO-HAAO pathway activation mediated by TNF-α in rat brain.

  8. Matrix metalloproteinase 9-mediated shedding of syndecan 4 in response to tumor necrosis factor α: a contributor to endothelial cell glycocalyx dysfunction.

    PubMed

    Ramnath, Raina; Foster, Rebecca R; Qiu, Yan; Cope, George; Butler, Matthew J; Salmon, Andrew H; Mathieson, Peter W; Coward, Richard J; Welsh, Gavin I; Satchell, Simon C

    2014-11-01

    The endothelial surface glycocalyx is a hydrated mesh in which proteoglycans are prominent. It is damaged in diseases associated with elevated levels of tumor necrosis factor α (TNF-α). We investigated the mechanism of TNF-α-induced disruption of the glomerular endothelial glycocalyx. We used conditionally immortalized human glomerular endothelial cells (GEnCs), quantitative PCR arrays, Western blotting, immunoprecipitation, immunofluorescence, and dot blots to examine the effects of TNF-α. TNF-α induced syndecan 4 (SDC4) mRNA up-regulation by 2.5-fold, whereas cell surface SDC4 and heparan sulfate (HS) were reduced by 36 and 30%, respectively, and SDC4 and sulfated glycosaminoglycan in the culture medium were increased by 52 and 65%, respectively, indicating TNF-α-induced shedding. Small interfering (siRNA) knockdown of SDC4 (by 52%) caused a corresponding loss of cell surface HS of similar magnitude (38%), and immunoprecipitation demonstrated that SDC4 and HS are shed as intact proteoglycan ectodomains. All of the effects of TNF-α on SDC4 and HS were abrogated by the metalloproteinase (MMP) inhibitor batimastat. Also abrogated was the associated 37% increase in albumin passage across GEnC monolayers. Specific MMP9 knockdown by siRNA similarly blocked TNF-α effects. SDC4 is the predominant HS proteoglycan in the GEnC glycocalyx. TNF-α-induced MMP9-mediated shedding of SDC4 is likely to contribute to the endothelial glycocalyx disruption observed in diabetes and inflammatory states.

  9. Ketoconazole attenuates radiation-induction of tumor necrosis factor

    SciTech Connect

    Hallahan, D.E.; Virudachalam, S.; Kufe, D.W.; Weichselbaum, R.R.

    1994-07-01

    Previous work has demonstrated that inhibitors of phospholipase A2 attenuate ionizing radiation-induced arachidonic acid production, protein kinase C activation, and prevent subsequent induction of the tumor necrosis factor gene. Because arachidonic acid contributes to radiation-induced tumor necrosis factor expression, the authors analyzed the effects of agents which alter arachidonate metabolism on the regulation of this gene. Phospholipase A2 inhibitors quinicrine, bromphenyl bromide, and pentoxyfylline or the inhibitor of lipoxygenase (ketoconazole) or the inhibitor of cycloxygenase (indomethacine) were added to cell culture 1 h prior to irradiation. Radiation-induced tumor necrosis factor gene expression was attenuated by each of the phospholipase A2 inhibitors (quinicrine, bromphenylbromide, and pentoxyfylline). Furthermore, ketoconazole attenuated X ray induced tumor necrosis factor gene expression. Conversely, indomethacin enhanced tumor necrosis factor expression following irradiation. The finding that radiation-induced tumor necrosis factor gene expression was attenuated by ketoconazole suggests that the lipoxygenase pathway participates in signal transduction preceding tumor necrosis factor induction. Enhancement of tumor necrosis factor expression by indomethacin following irradiation suggests that prostaglandins produced by cyclooxygenase act as negative regulators of tumor necrosis factor expression. Inhibitors of tumor necrosis factor induction ameliorate acute and subacute sequelae of radiotherapy. The authors propose therefore, that ketoconazole may reduce acute radiation sequelae such as mucositis and esophagitis through a reduction in tumor necrosis factor induction or inhibition of phospholipase A2 in addition to its antifungal activity. 25 refs., 2 figs.

  10. Phytochemicals of Aristolochia tagala and Curcuma caesia exert anticancer effect by tumor necrosis factor-α-mediated decrease in nuclear factor kappaB binding activity

    PubMed Central

    Hadem, Khetbadei Lysinia Hynniewta; Sharan, Rajeshwar Nath; Kma, Lakhan

    2015-01-01

    Rationale: The active compounds or metabolites of herbal plants exert a definite physiological action on the human body and thus are widely used in human therapy for various diseases including cancer. Previous studies by our group have reported the anticarcinogenic properties of the two herbal plants extracts (HPE) of Aristolochia tagala (AT) Cham. and Curcuma caesia (CC) Roxb. in diethylnitrosamine-induced mouse liver cancer in vivo. The anticarcinogenic properties of these extracts may be due to the active compounds present in them. Objectives: Our objective was to analyze the phytochemical constituents present in AT and CC, to assay their antioxidant properties and to determine their role in a possible intervention on tumor progression. Materials and Methods: Qualitative and quantitative analysis of constituent with anticancer properties present in the crude methanol extract of the two plants CC and AT was carried out following standard methods. Separation of the phytochemical compounds was done by open column chromatography. The extracts were eluted out with gradients of chloroform-methanol solvents. Ultraviolet-visible spectra of individual fractions were recorded, and the fractions were combined based on their λmax. The free radical scavenging activity of crude extracts and fractions obtained was also determined; the radical scavenging activity was expressed as IC50. High-performance thin layer chromatography (HPTLC) analysis of fractionated compounds was carried out to identify partially the phytochemical compounds. The anti-inflammatory and anticancer activity of AT and CC extracts was studied in DEN induced BALB/c mice by analyzing the tumor necrosis factor-α (TNF-α) levels in serum and the nuclear factor kappaB (NF-κB) binding activity in nuclear extracts of the liver. Results: It was observed that both AT and CC contained compounds such as phenolics, tannins, flavonoids, terpenoids, etc., and both extracts exhibited antioxidant capacity. HPTLC

  11. Anti-tumor necrosis factor-α therapy and changes of flow-mediated vasodilatation in psoriatic and rheumatoid arthritis patients.

    PubMed

    Mazzoccoli, Gianluigi; Notarsanto, Incoronata; de Pinto, Gennaro Davide; Dagostino, Mariangela Pia; De Cata, Angelo; D'Alessandro, Giuseppe; Tarquini, Roberto; Vendemiale, Gianluigi

    2010-12-01

    For a long time, the endothelial covering of the vessels has been considered an inert surface. On the contrary, the endothelial cells are active and dynamic elements in the interaction between blood and tissues. The control of the vessel basal tone is obtained by the complex balance between the relaxing and contracting endothelial factors. Previous clinical studies show that patients suffering from rheumatoid arthritis and other autoimmune rheumatologic pathologies are at high risk of death being prematurely affected by atherosclerosis and cardiovascular diseases. Blocking tumor necrosis factor (TNF)-α by biological drugs improves the endothelial function. The aim of our study was to evaluate the effects of two anti-TNF-α drugs (infliximab and etanercept) on the endothelial function by evaluating the flow-mediated dilatation (FMD), which was measured in the brachial artery before and after treatment and after 8-12 weeks. We enrolled 36 patients (average age 52 ± 9.8 years, 12 men and 24 women), 25 of them were affected by rheumatoid arthritis (RA) and 11 were affected by psoriatic arthritis (PsA) and they were divided into three groups: 10 patients were treated with etanercept, 13 patients were treated with infliximab, 13 patients were treated with DMARDs. We measured the common carotid intimal-medial thickness (ccIMT) and the endothelial function was evaluated by FMD measurement in the brachial artery, before treatment, 1 h after the beginning of treatment and after 8-12 weeks. No statistically significant difference between the three groups was found for the ultrasonographic evaluation of the carotid IMT. On the contrary, the differences between FMD values before and after the treatment in the patients treated with etanercept (13.1 ± 0.01 vs. 18.8 ± 0.01%, p < 0.01) and in the patients treated with infliximab (11.8 ± 0.09 vs. 16.7 ± 0.09%, p < 0.01) were statistically significant. Long-term evaluation for infliximab and etanercept was

  12. Stimulation of neutrophils by tumor necrosis factor

    SciTech Connect

    Klebanoff, S.J.; Vadas, M.A.; Harlan, J.M.; Sparks, L.H.; Gamble, J.R.; Agosti, J.M.; Waltersdorph, A.M.

    1986-06-01

    Human recombinant tumor necrosis factor (TNF) was shown to be a weak direct stimulus of the neutrophil respiratory burst and degranulation. The stimulation, as measured by iodination, H/sub 2/O/sub 2/ production, and lysozyme release, was considerably increased by the presence of unopsonized zymosan in the reaction mixture, an effect which was associated with the increased ingestion of the zymosan. TNF does not act as an opsonin but, rather, reacts with the neutrophil to increase its phagocytic activity. TNF-dependent phagocytosis, as measured indirectly by iodination, is inhibited by monoclonal antibodies (Mab) 60.1 and 60.3, which recognize different epitopes on the C3bi receptor/adherence-promoting surface glycoprotein of neutrophils. Other neutrophil stimulants, namely N-formyl-methionyl-leucyl-phenylalanine, the Ca2+ ionophore A23187, and phorbol myristic acetate, also increase iodination in the presence of zymosan; as with TNF, the effect of these stimulants is inhibited by Mab 60.1 and 60.3, whereas, in contrast to that of TNF, their stimulation of iodination is unaffected by an Mab directed against TNF. TNF may be a natural stimulant of neutrophils which promotes adherence to endothelial cells and to particles, leading to increased phagocytosis, respiratory burst activity, and degranulation.

  13. Augmentation of GG2EE macrophage cell line-mediated anti-Candida activity by gamma interferon, tumor necrosis factor, and interleukin-1.

    PubMed Central

    Blasi, E; Farinelli, S; Varesio, L; Bistoni, F

    1990-01-01

    The expression of anti-Candida activity in the GG2EE macrophage cell line, generated by immortalization of fresh bone marrow with v-raf and v-myc oncogenes, was studied. GG2EE cells spontaneously inhibited the growth of an agerminative mutant of Candida albicans in vitro. The anti-Candida activity was maximal after 8 h of coculture and was proportional to the effector-to-target ratio. Gamma interferon (IFN-gamma), interleukin-1 (IL-1), and tumor necrosis factor (TNF) all significantly enhanced the anti-Candida activity of GG2EE cells. In contrast, IL-3, IL-4, and colony-stimulating factor 1 were ineffective. The augmentation of anti-Candida activity was not always concomitant with enhancement of phagocytosis, since IFN-gamma and colony-stimulating factor 1, but not IL-1 or TNF, augmented the phagocytic ability of GG2EE cells. Furthermore, the augmentation of anti-Candida activity in GG2EE cells did not correlate with the acquisition of antitumor activity. In fact, none of the cytokines alone were able to induce antitumor activity in GG2EE cells, which, however, could be activated to a tumoricidal stage by IFN-gamma plus heat-killed Listeria monocytogenes. These findings demonstrate that GG2EE cells exhibit spontaneous anti-Candida activity and that such activity is enhanced by TNF, IL-1, and IFN-gamma. PMID:2108087

  14. Analysis of Subcellular RNA Fractions Revealed a Transcription-Independent Effect of Tumor Necrosis Factor Alpha on Splicing, Mediated by Spt5.

    PubMed

    Diamant, Gil; Eisenbaum, Tal; Leshkowitz, Dena; Dikstein, Rivka

    2016-05-01

    The proinflammatory cytokine tumor necrosis factor alpha (TNF-α) modulates the expression of many genes, primarily through activation of NF-κB. Here, we examined the global effects of the elongation factor Spt5 on nascent and mature mRNAs of TNF-α-induced cells using chromatin and cytosolic subcellular fractions. We identified several classes of TNF-α-induced genes controlled at the level of transcription, splicing, and chromatin retention. Spt5 was found to facilitate splicing and chromatin release in genes displaying high induction rates. Further analysis revealed striking effects of TNF-α on the splicing of 25% of expressed genes; the vast majority were not transcriptionally induced. Splicing enhancement of noninduced genes by TNF-α was transient and independent of NF-κB. Investigating the underlying basis, we found that Spt5 is required for the splicing facilitation of the noninduced genes. In line with this, Spt5 interacts with Sm core protein splicing factors. Furthermore, following TNF-α treatment, levels of RNA polymerase II (Pol II) but not Spt5 are reduced from the splicing-induced genes, suggesting that these genes become enriched with a Pol II-Spt5 form. Our findings revealed the Pol II-Spt5 complex as a highly competent coordinator of cotranscriptional splicing.

  15. Tumor necrosis factor interaction with gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Tsai, De-Hao; Elzey, Sherrie; Delrio, Frank W.; Keene, Athena M.; Tyner, Katherine M.; Clogston, Jeffrey D.; Maccuspie, Robert I.; Guha, Suvajyoti; Zachariah, Michael R.; Hackley, Vincent A.

    2012-05-01

    We report on a systematic investigation of molecular conjugation of tumor necrosis factor-α (TNF) protein onto gold nanoparticles (AuNPs) and the subsequent binding behavior to its antibody (anti-TNF). We employ a combination of physical and spectroscopic characterization methods, including electrospray-differential mobility analysis, dynamic light scattering, polyacrylamide gel electrophoresis, attenuated total reflectance-Fourier transform infrared spectroscopy, fluorescence assay, and enzyme-linked immunosorbent assay. The native TNF used in this study exists in the active homotrimer configuration prior to conjugation. After binding to AuNPs, the maximum surface density of TNF is (0.09 +/- 0.02) nm-2 with a binding constant of 3 × 106 (mol L-1)-1. Dodecyl sulfate ions induce desorption of monomeric TNF from the AuNP surface, indicating a relatively weak intermolecular binding within the AuNP-bound TNF trimers. Anti-TNF binds to both TNF-conjugated and citrate-stabilized AuNPs, showing that non-specific binding is significant. Based on the number of anti-TNF molecules adsorbed, a substantially higher binding affinity was observed for the TNF-conjugated surface. The inclusion of thiolated polyethylene glycol (SH-PEG) on the AuNPs inhibits the binding of anti-TNF, and the amount of inhibition is related to the number ratio of surface bound SH-PEG to TNF and the way in which the ligands are introduced. This study highlights the challenges in quantitatively characterizing complex hybrid nanoscale conjugates, and provides insight on TNF-AuNP formation and activity.We report on a systematic investigation of molecular conjugation of tumor necrosis factor-α (TNF) protein onto gold nanoparticles (AuNPs) and the subsequent binding behavior to its antibody (anti-TNF). We employ a combination of physical and spectroscopic characterization methods, including electrospray-differential mobility analysis, dynamic light scattering, polyacrylamide gel electrophoresis

  16. Molecular biology and immunology for clinicians 23: autoimmunity and the superfamilies of tumor necrosis factor and tumor necrosis factor receptor.

    PubMed

    Sigal, Leonard H

    2003-04-01

    The parsimony of nature can be stated as "if its not broke don't fix it, just tweak it and reuse it again and again." Nature recycles: once a motif is demonstrably useful it shows up again, often in unexpected places. Tumor necrosis factor and its receptor(s) are examples of this. At least 20 molecules have now been identified as being 25% homologous or more identical with tumor necrosis factor and being involved in a variety of immune and nonimmune functions. Members of the receptor superfamily have shared structural motifs and trigger shared intracellular signaling pathways. Rather than having been implicated in arcane and rare syndromes, some of these activities are pivotal in immune function and, when perturbed, some predispose to known immunodeficiency and autoimmune disease. Not surprisingly, some of these are becoming targets for immunomodulation. New members of these 2 superfamilies are currently being described and the newcomers and the "original stock" will show up in the clinic before you know it! Part of the confusion has always been that each laboratory describing a new biologic principle names the mediating compound. Thus, multiple labs, multiple names for the same protein (recall Ro/SS-A, La/SS-B). Thus, special attention is paid below to acronyms and their synonyms.

  17. Voluntary Exercise Protects Hippocampal Neurons from Trimethyltin Injury: Possible Role of Interleukin-6 to Modulate Tumor Necrosis Factor Receptor-Mediated Neurotoxicity

    PubMed Central

    Funk, Jason A.; Gohlke, Julia; Kraft, Andrew D.; McPherson, Christopher A.; Collins, Jennifer B.; Harry, G. Jean

    2011-01-01

    In the periphery, exercise induces interleukin (IL)-6 to downregulate tumor necrosis factor (TNF), elevate interleukin-1 receptor antagonist (IL-1RA), decreasing inflammation. Exercise also offers neuroprotection and facilitates brain repair. IL-6 production in the hippocampus following exercise suggests the potential of a similar protective role as in the periphery to down-regulate TNFα and inflammation. Using a chemical-induced model of hippocampal dentate granule cell death (trimethyltin, TMT 2.4 mg/kg, ip) dependent upon TNF receptor signaling, we demonstrate neuroprotection in mice with 2wks access to running wheel. Exercise attenuated neuronal death and diminished elevations in TNFα, TNF receptor 1, myeloid differentiation primary response gene (MyD) 88, transforming growth factor β, chemokine (C-C motif) ligand 2 (CCL2), and CCL3. Elevated mRNA levels for IL-1α, IL-1RA, occurred with injury and protection. mRNA and protein levels of IL-6 and neuronal expression of IL-6 receptor α, were elevated with injury and protection. Microarray pathway analysis supported an up-regulation of TNFα cell death signaling pathways with TMT and inhibition by exercise. IL-6 pathway recruitment occurred in both conditions. IL-6 downstream signal events differed in the level of STAT3 activation. Exercise did not increase mRNA levels of brain derived neurotrophic factor, nerve growth factor, or glial derived neurotrophic factor. In IL-6 deficient mice, exercise did not attenuate TMT-induced tremor and a diminished level of neuroprotection was observed. These data suggest a contributory role for IL-6 induced by exercise for neuroprotection in the CNS similar to that seen in the periphery. PMID:21435392

  18. Regulatory roles of tumor necrosis factor-alpha and interleukin-1 beta in monocyte chemoattractant protein-1-mediated pulmonary granuloma formation in the rat.

    PubMed Central

    Flory, C. M.; Jones, M. L.; Miller, B. F.; Warren, J. S.

    1995-01-01

    Intravenous infusion of particulate yeast cell wall glucan into rats results in the synchronous development of angiocentric pulmonary granulomas that are composed almost entirely of monocytes and macrophages. Previous studies indicate that locally produced monocyte chemoattractant protein-1 (MCP-1) is required for full granuloma development. Because tumor necrosis factor-alpha (TNF-alpha) and interleukin 1 (IL-1) can induce MCP-1 production in a variety of cell types, we sought to determine their potential regulatory roles in this model. A single infusion of anti-TNF-alpha antibody at the time of glucan infusion (time 0) markedly reduced MCP-1 mRNA levels at 1 and 6 hours but not at later time points; there was no effect on granuloma size or number measured at 48 hours. When multiple infusions of anti-TNF-alpha antibody were administered over a 23-hour period (0 to 23 hours), MCP-1 mRNA was reduced through 24 hours, there was a significant reduction in peak bronchoalveolar lavage fluid MCP-1 activity at 48 hours, and there were marked reductions in granuloma size and number at 48 hours. Similar results were observed in animals that received infusions of anti-IL-1 beta. Infusion of anti-IL-1 beta at time 0 resulted in moderate reductions in MCP-1 mRNA at 1 and 6 hours and had no effect on granuloma size or number measured at 48 hours. When multiple infusions of anti-IL-1 beta were administered over a 23-hour period (0 to 23 hours), MCP-1 mRNA was reduced through 24 hours, there was a moderate reduction in peak bronchoalveolar lavage fluid MCP-1 activity at 48 hours, and there were marked reductions in granuloma size and number at 48 hours. A single infusion of anti-TNF-alpha and anti-IL-1 beta together at time 0 resulted in marked reductions in whole lung MCP-1 and mRNA at 1 and 6 hours, but not at 24 hours. Multiple combined infusions of anti-TNF-alpha and anti-IL-1 beta over a 23-hour period resulted in additive reductions in MCP-1 mRNA through 24 hours

  19. Direct evidence for rapid and selective induction of tumor neovascular permeability by tumor necrosis factor and a novel derivative, colloidal gold bound tumor necrosis factor.

    PubMed

    Farma, Jeffrey M; Puhlmann, Markus; Soriano, Perry A; Cox, Derrick; Paciotti, Giulio F; Tamarkin, Lawrence; Alexander, H Richard

    2007-06-01

    Tumor necrosis factor (TNF) causes regression of advanced cancers when used in isolation perfusion with melphalan; evidence suggests these effects are mediated via selective yet uncharacterized actions on tumor neovasculature. A novel derivative, colloidal gold bound TNF (cAu-TNF) has been shown to have similar antitumor effects as native TNF with less systemic toxicity in mice. These studies were done to determine their effects on tumor neovasculature, using in vivo video microscopy. Female C57BL/6 mice bearing 20 mm(2) MC38 or LLC tumors that are TNF sensitive and resistant tumors, respectively, had dorsal skinfold chambers implanted. The rate of interstitial accumulation of Texas red fluorescently labeled albumin in tumor and normal vasculature was measured after intravenous TNF, cAu-TNF or PBS. Changes in interstitial fluorescent intensity over time were quantified as a reflection of alterations in vascular permeability. MC38 bearing mice treated with TNF or cAu-TNF demonstrated a rapid, selective and significant increase in tracer accumulation in areas of neovasculature compared to those of normal vasculature. Experiments in LLC tumor bearing mice showed similar results. Monoclonal antibody against tissue factor partially abrogated the effects of TNF on MC38 neovasculature. These data provide direct evidence that TNF and cAu-TNF selectively and rapidly alter permeability in tumor neovasculature; a phenomenon that may be exploited to enhance selective delivery of chemotherapeutics to tumor.

  20. Modulation of topoisomerase activities by tumor necrosis factor.

    PubMed

    Baloch, Z; Cohen, S; Fresa, K; Coffman, F D

    1995-01-01

    A number of chemotherapeutic agents which inhibit the DNA topoisomerases markedly potentiate cell death mediated by tumor necrosis factor, suggesting a role for these enzymes in the TNF cytotoxic mechanism. To investigate this possibility, topoisomerase I and II activities were assayed following TNF addition to murine L929 cells. Topoisomerase I and II activities increased within 15 min of TNF addition and returned to baseline levels within 1 and 2 hr, respectively. The increases in both topoisomerase activities were blocked by H-7 (but not H-8) and similar increases were seen following PMA addition. However, concentrations of H-7 which blocked the increased topoisomerase activities had no effect on TNF cytotoxicity nor on the enhancement of TNF cytotoxicity by topoisomerase inhibitors. Thus, in these cells topoisomerase activities are directly modified by TNF during the initial phases of a cytotoxic response. However, neither TNF cytotoxicity nor the enhancement of TNF cytotoxicity by topoisomerase inhibitors appears to require the TNF-mediated increases in topoisomerase activities. PMID:7842491

  1. Smad7 protein induces interferon regulatory factor 1-dependent transcriptional activation of caspase 8 to restore tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis.

    PubMed

    Hong, Suntaek; Kim, Hye-Youn; Kim, Jooyoung; Ha, Huyen Trang; Kim, Young-Mi; Bae, Eunjin; Kim, Tae Hyung; Lee, Kang Choon; Kim, Seong-Jin

    2013-02-01

    Smad7 has been known as a negative regulator for the transforming growth factor-β (TGF-β) signaling pathway through feedback regulation. However, Smad7 has been suspected to have other biological roles through the regulation of gene transcription. By screening differentially regulated genes, we found that the caspase 8 gene was highly up-regulated in Smad7-expressing cells. Smad7 was able to activate the caspase 8 promoter through recruitment of the interferon regulatory factor 1 (IRF1) transcription factor to the interferon-stimulated response element (ISRE) site. Interaction of Smad7 on the caspase 8 promoter was confirmed with electrophoretic mobility shift assay and chromatin immunoprecipitation experiment. Interestingly, Smad7 did not directly interact with the ISRE site, but it increased the binding activity of IRF1 with ISRE. These results support that Smad7 recruits IRF1 protein on the caspase 8 promoter and functions as a transcriptional coactivator. To confirm the biological significance of caspase 8 up-regulation, we tested tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-mediated cell death assay in breast cancer cells. Smad7 in apoptosis-resistant MCF7 cells markedly sensitized the cells to TRAIL-induced cell death by restoring the caspase cascade. Furthermore, restoration of caspase 8-mediated apoptosis pathway repressed the tumor growth in the xenograft model. In conclusion, we suggest a novel role for Smad7 as a transcriptional coactivator for caspase 8 through the interaction with IRF1 in regulation of the cell death pathway. PMID:23255602

  2. Tumor Necrosis Factor-α-induced Proteolytic Activation of Pro-matrix Metalloproteinase-9 by Human Skin Is Controlled by Down-regulating Tissue Inhibitor of Metalloproteinase-1 and Mediated by Tissue-associated Chymotrypsin-like Proteinase*

    PubMed Central

    Han, Yuan-Ping; Nien, Yih-Dar; Garner, Warren L.

    2008-01-01

    The proteolytic activation of pro-matrix metalloproteinase (MMP)-9 by conversion of the 92-kDa precursor into an 82-kDa active form has been observed in chronic wounds, tumor metastasis, and many inflammation-associated diseases, yet the mechanistic pathway to control this process has not been identified. In this report, we show that the massive expression and activation of MMP-9 in skin tissue from patients with chronically unhealed wounds could be reconstituted in vitro with cultured normal human skin by stimulation with transforming growth factor-β and tumor necrosis factor (TNF)-α. We dissected the mechanistic pathway for TNF-α induced activation of pro-MMP-9 in human skin. We found that proteolytic activation of pro-MMP-9 was mediated by a tissue-associated chymotrypsin-like proteinase, designated here as pro-MMP-9 activator (pM9A). This unidentified activator specifically converted pro-MMP-9 but not pro-MMP-2, another member of the gelatinase family. The tissue-bound pM9A was steadily expressed and not regulated by TNF-α, which indicated that the cytokine-mediated activation of pro-MMP-9 might be regulated at the inhibitor level. Indeed, the skin constantly secreted tissue inhibitor of metalloproteinase-1 at the basal state. TNF-α, but not transforming growth factor-β, down-regulated this inhibitor. The TNF-α-mediated activation of pro-MMP-9 was tightly associated with down-regulation of tissue inhibitor of metalloproteinase-1 in a dose-dependent manner. To establish this linkage, we demonstrate that the recombinant tissue inhibitor of metalloproteinase-1 could block the activation of pro-MMP-9 by either the intact skin or skin fractions. Thus, these studies suggest a novel regulation for the proteolytic activation of MMP-9 in human tissue, which is mediated by tissue-bound activator and controlled by down-regulation of a specific inhibitor. PMID:12004062

  3. Tumor Necrosis Factor Superfamily in Innate Immunity and Inflammation

    PubMed Central

    Šedý, John; Bekiaris, Vasileios; Ware, Carl F.

    2015-01-01

    The tumor necrosis factor superfamily (TNFSF) and its corresponding receptor superfamily (TNFRSF) form communication pathways required for developmental, homeostatic, and stimulus-responsive processes in vivo. Although this receptor–ligand system operates between many different cell types and organ systems, many of these proteins play specific roles in immune system function. The TNFSF and TNFRSF proteins lymphotoxins, LIGHT (homologous to lymphotoxins, exhibits inducible expression, and competes with HSV glycoprotein D for herpes virus entry mediator [HVEM], a receptor expressed by T lymphocytes), lymphotoxin-β receptor (LT-βR), and HVEM are used by embryonic and adult innate lymphocytes to promote the development and homeostasis of lymphoid organs. Lymphotoxin-expressing innate-acting B cells construct microenvironments in lymphoid organs that restrict pathogen spread and initiate interferon defenses. Recent results illustrate how the communication networks formed among these cytokines and the coreceptors B and T lymphocyte attenuator (BTLA) and CD160 both inhibit and activate innate lymphoid cells (ILCs), innate γδ T cells, and natural killer (NK) cells. Understanding the role of TNFSF/TNFRSF and interacting proteins in innate cells will likely reveal avenues for future therapeutics for human disease. PMID:25524549

  4. Tumor necrosis factor alpha-induced pulmonary vascular endothelial injury.

    PubMed Central

    Goldblum, S E; Hennig, B; Jay, M; Yoneda, K; McClain, C J

    1989-01-01

    Tumor necrosis factor alpha (TNF-alpha) mediates components of the acute-phase response, stimulates granulocyte metabolism, and induces endothelial cell surface changes. We studied whether human recombinant TNF-alpha (rTNF-alpha) could increase pulmonary edema formation and pulmonary vascular permeability. Rabbits preinfused with 125I-albumin were administered rTNF-alpha or saline. Animals were sacrificed, and lung wet/dry weight ratios as well as bronchoalveolar lavage fluid and plasma 125I activities were determined. rTNF-alpha increased lung wet/dry weight ratios by 151% (P less than 0.02) and bronchoalveolar lavage fluid/plasma 125I activity ratios by 376% (P less than 0.01) compared with values for saline controls. Electron microscopy of lung sections demonstrated endothelial injury, perivascular edema, and extravasation of an ultrastructural permeability tracer. To demonstrate that rTNF-alpha could directly increase pulmonary vascular endothelial permeability in vitro, we studied albumin transfer across cultured porcine pulmonary artery endothelial cell monolayers. rTNF-alpha induced time-dependent dose-response increments in transendothelial albumin flux in the absence of granulocyte effector cells. These observations suggest that rTNF-alpha can provoke acute pulmonary vascular endothelial injury in vivo as well as in vitro. Images PMID:2925247

  5. Low-molecular-weight fractions of Alcalase hydrolyzed egg ovomucin extract exert anti-inflammatory activity in human dermal fibroblasts through the inhibition of tumor necrosis factor-mediated nuclear factor κB pathway.

    PubMed

    Sun, Xiaohong; Chakrabarti, Subhadeep; Fang, Jun; Yin, Yulong; Wu, Jianping

    2016-07-01

    Ovomucin is a mucin-like protein from egg white with a variety of biological functions. We hypothesized that ovomucin-derived peptides might exert anti-inflammatory activity. The specific objectives were to test the anti-inflammatory activities of different ovomucin hydrolysates and its various fractions in human dermal fibroblasts, and to understand the possible molecular mechanisms. Three ovomucin hydrolysates were prepared and desalted; only the desalted Alcalase hydrolysate showed anti-inflammatory activity. Desalting of ovomucin hydrolysate enriched the proportion of low-molecular-weight (MW) peptides. Indeed, ultrafiltration of this hydrolysate displayed comparable anti-inflammatory activity in dermal fibroblasts, indicating the responsible role of low-MW bioactive peptides in exerting the beneficial biological function. The anti-inflammatory activity of low-MW peptides was regulated through the inhibition of tumor necrosis factor-mediated nuclear factor κ-light-chain-enhancer of activated B cells activity. Our study demonstrated that both peptide composition and MW distribution play important roles in anti-inflammatory activity. The low-MW fractions prepared from ovomucin Alcalase hydrolysate may have potential applications for maintenance of dermal health and treatment of skin diseases. PMID:27333955

  6. Sphingosine kinase 1 regulates tumor necrosis factor-mediated RANTES induction through p38 mitogen-activated protein kinase but independently of nuclear factor κB activation.

    PubMed

    Adada, Mohamad M; Orr-Gandy, K Alexa; Snider, Ashley J; Canals, Daniel; Hannun, Yusuf A; Obeid, Lina M; Clarke, Christopher J

    2013-09-20

    Sphingosine kinase 1 (SK1) produces the pro-survival sphingolipid sphingosine 1-phosphate and has been implicated in inflammation, proliferation, and angiogenesis. Recent studies identified TRAF2 as a sphingosine 1-phosphate target, implicating SK1 in activation of the NF-κB pathway, but the functional consequences of this connection on gene expression are unknown. Here, we find that loss of SK1 potentiates induction of the chemokine RANTES (regulated on activation, normal T cell expressed and secreted; also known as CCL5) in HeLa cells stimulated with TNF-α despite RANTES induction being highly dependent on the NF-κB pathway. Additionally, we find that SK1 is not required for TNF-induced IKK phosphorylation, IκB degradation, nuclear translocation of NF-κB subunits, and transcriptional NF-κB activity. In contrast, loss of SK1 prevented TNF-induced phosphorylation of p38 MAPK, and inhibition of p38 MAPK, like SK1 knockdown, also potentiates RANTES induction. Finally, in addition to RANTES, loss of SK1 also potentiated the induction of multiple chemokines and cytokines in the TNF response. Taken together, these data identify a potential and novel anti-inflammatory function of SK1 in which chemokine levels are suppressed through SK1-mediated activation of p38 MAPK. Furthermore, in this system, activation of NF-κB is dissociated from SK1, suggesting that the interaction between these pathways may be more complex than currently thought.

  7. Human interleukin-1 receptor-associated kinase-2 is essential for Toll-like receptor-mediated transcriptional and post-transcriptional regulation of tumor necrosis factor alpha.

    PubMed

    Flannery, Sinead M; Keating, Sinead E; Szymak, Joanna; Bowie, Andrew G

    2011-07-01

    Toll-like receptors (TLRs) are pattern-recognition receptors that recognize microbial ligands and subsequently trigger intracellular signaling pathways involving transcription factors such as NFκB and MAPKs such as p38. TLR signaling can regulate both transcriptional and post-transcriptional events leading to altered gene expression and thus appropriate immune responses. The interleukin-1 receptor-associated kinase (IRAK) family comprises four kinases that regulate TLR signaling. However, the role of IRAK-2 has remained unclear, especially in human cells. Recent studies using cells from in-bred Irak2(-/-) mice showed that murine IRAK-2 was not required for early TLR signaling events but had a role in delayed NFκB activation and in cytokine production. IRAK-2 in mice has four splice variants, two of which are inhibitory, whereas human IRAK-2 has no splice variants. Thus IRAK-2 in mice and humans may function differently, and therefore we analyzed the role of IRAK-2 in TLR responses in primary human cells. siRNA knockdown of IRAK-2 expression in human peripheral blood mononuclear cells showed a role for human IRAK-2 in both TLR4- and TLR8-mediated early NFκB and p38 MAPK activation and in induction of TNF mRNA. These data conflict with findings from the in-bred Irak2(-/-) mice but concur with what has been seen in wild-derived mice for TLR2. Moreover, human IRAK-2 was required for regulating MyD88-dependent TNFα mRNA stability via the TNF 3'UTR. Collectively, these data demonstrate for the first time an essential role for IRAK-2 in primary human cells for both transcriptional and post-transcriptional TLR responses.

  8. Human Interleukin-1 Receptor-associated Kinase-2 Is Essential for Toll-like Receptor-mediated Transcriptional and Post-transcriptional Regulation of Tumor Necrosis Factor α*

    PubMed Central

    Flannery, Sinead M.; Keating, Sinead E.; Szymak, Joanna; Bowie, Andrew G.

    2011-01-01

    Toll-like receptors (TLRs) are pattern-recognition receptors that recognize microbial ligands and subsequently trigger intracellular signaling pathways involving transcription factors such as NFκB and MAPKs such as p38. TLR signaling can regulate both transcriptional and post-transcriptional events leading to altered gene expression and thus appropriate immune responses. The interleukin-1 receptor-associated kinase (IRAK) family comprises four kinases that regulate TLR signaling. However, the role of IRAK-2 has remained unclear, especially in human cells. Recent studies using cells from in-bred Irak2−/− mice showed that murine IRAK-2 was not required for early TLR signaling events but had a role in delayed NFκB activation and in cytokine production. IRAK-2 in mice has four splice variants, two of which are inhibitory, whereas human IRAK-2 has no splice variants. Thus IRAK-2 in mice and humans may function differently, and therefore we analyzed the role of IRAK-2 in TLR responses in primary human cells. siRNA knockdown of IRAK-2 expression in human peripheral blood mononuclear cells showed a role for human IRAK-2 in both TLR4- and TLR8-mediated early NFκB and p38 MAPK activation and in induction of TNF mRNA. These data conflict with findings from the in-bred Irak2−/− mice but concur with what has been seen in wild-derived mice for TLR2. Moreover, human IRAK-2 was required for regulating MyD88-dependent TNFα mRNA stability via the TNF 3′UTR. Collectively, these data demonstrate for the first time an essential role for IRAK-2 in primary human cells for both transcriptional and post-transcriptional TLR responses. PMID:21606490

  9. Mechanisms of tumor necrosis in photodynamic therapy with a chlorine photosensitizer: experimental studies

    NASA Astrophysics Data System (ADS)

    Privalov, Valeriy A.; Lappa, Alexander V.; Bigbov, Elmir N.

    2011-02-01

    A photodynamic therapy experiment on 118 inbred white mice with transplanted Ehrlich's tumor (mouse mammary gland adenocarcinoma) is performed to reveal mechanisms of necrosis formation. In 7-10 days the tumor of 1-1.5 cm diameter is formed under skin at the injection point, and PDT procedure is applied. There were used a chlorine type photosensitizer RadachlorineTM and 662 nm wavelength diode laser. The drug is injected by intravenously at the dose of 40 mg/kg; the irradiation is executed in 2-2.5 hours at the surface dose of about 200 J/cm2. Each of the mice had a photochemical reaction in form of destructive changes at the irradiation region with subsequent development of dry coagulation necrosis. After rejection of the necrosis there occurred epithelization of defect tissues in a tumor place. Histological investigations were conducted in different follow-up periods, in 5 and 30 min, 1, 3, 6, and 12 hours, 1, 3, 7 and 28 days after irradiation. They included optical microscopy, immune marker analysis, morphometry with measurements of volume density of epithelium, tumor stroma and necroses, vascular bed. The investigations showed that an important role in damaging mechanisms of photodynamic action belongs to hypoxic injuries of tumor mediated by micro vascular disorders and blood circulatory disturbances. The injuries are formed in a few stages: microcirculation angiospasm causing vessel paresis, irreversible stases in capillaries, diapedetic hemorrhages, thromboses, and thrombovasculitis. It is marked mucoid swelling and fibrinoid necrosis of vascular tissue. Progressive vasculitises result in total vessel obliteration and tumor necrosis.

  10. Immunological effects of a tumor necrosis factor alpha-armed oncolytic adenovirus.

    PubMed

    Hirvinen, Mari; Rajecki, Maria; Kapanen, Mika; Parviainen, Suvi; Rouvinen-Lagerström, Noora; Diaconu, Iulia; Nokisalmi, Petri; Tenhunen, Mikko; Hemminki, Akseli; Cerullo, Vincenzo

    2015-03-01

    For long it has been recognized that tumor necrosis factor alpha (TNFa) has anticancer characteristics, and its use as a cancer therapeutic was proposed already in the 1980s. However, its systemic toxicity has limited its usability. Oncolytic viruses, selectively cancer-killing viruses, have shown great potency, and one of their most useful aspects is their ability to produce high amounts of transgene products locally, resulting in high local versus systemic concentrations. Therefore, the overall magnitude of tumor cell killing results from the combination of oncolysis, transgene-mediated direct effect such as TNFa-mediated apoptosis, and, perhaps most significantly, from activation of the host immune system against the tumor. We generated a novel chimeric oncolytic adenovirus expressing human TNFa, Ad5/3-D24-hTNFa, whose efficacy and immunogenicity were tested in vitro and in vivo. The hTNFa-expressing adenovirus showed increased cancer-eradicating potency, which was shown to be because of elevated apoptosis and necrosis rates and induction of various immune responses. Interestingly, we saw increase in immunogenic cell death markers in Ad5/3-d24-hTNFa-treated cells. Moreover, tumors treated with Ad5/3-D24-hTNFa displayed enhanced presence of OVA-specific cytotoxic T cells. We thus can conclude that tumor eradication and antitumor immune responses mediated by Ad5/3-d24-hTNFa offer a new potential drug candidate for cancer therapy.

  11. Interferon-gamma and tumor necrosis factor-alpha mediate the upregulation of indoleamine 2,3-dioxygenase and the induction of depressive-like behavior in mice in response to bacillus Calmette-Guerin.

    PubMed

    O'Connor, Jason C; André, Caroline; Wang, Yunxia; Lawson, Marcus A; Szegedi, Sandra S; Lestage, Jacques; Castanon, Nathalie; Kelley, Keith W; Dantzer, Robert

    2009-04-01

    Although the tryptophan-degrading enzyme, indoleamine 2,3-dioxygenase (IDO), is a pivotal mediator of inflammation-induced depression, its mechanism of regulation has not yet been investigated in this context. Here, we demonstrate an essential role for interferon (IFN)gamma and tumor necrosis factor (TNF)alpha in the induction of IDO and depressive-like behaviors in response to chronic immune activation. Wild-type (WT) control mice and IFNgammaR(-/-) mice were inoculated with an attenuated form of Mycobacterium bovis, bacille Calmette-Guérin (BCG). Infection with BCG induced an acute episode of sickness that was similar in WT and IFNgammaR(-/-) mice. Increased immobility during the forced swim and tail suspension tests occurred in WT mice 7 d after BCG inoculation but was entirely absent in IFNgammaR(-/-) mice. In WT mice, these indices of depressive-like behavior were associated with chronic upregulation of IFNgamma, interleukin(IL)-1beta, TNFalpha, and IDO. Proinflammatory cytokine expression was elevated in BCG-infected IFNgammaR(-/-) mice as well, but upregulation of lung and brain IDO mRNA was completely abolished. This was accompanied by an attenuation of BCG-induced TNFalpha mRNA and the lack of an increase in plasma kynurenine/tryptophan ratio in the BCG-inoculated IFNgammaR(-/-) mice compared with WT controls. Pretreatment of mice with the TNFalpha antagonist, etanercept, partially blunted BCG-induced IDO activation and depressive-like behavior. In accordance with these in vivo data, IFNgamma and TNFalpha synergized to induce IDO in primary microglia. Together, these data demonstrate that IFNgamma, with TNFalpha, is necessary for induction of IDO and depressive-like behavior in mice after BCG infection. PMID:19339614

  12. Characterization of tumor necrosis factor-deficient mice.

    PubMed

    Marino, M W; Dunn, A; Grail, D; Inglese, M; Noguchi, Y; Richards, E; Jungbluth, A; Wada, H; Moore, M; Williamson, B; Basu, S; Old, L J

    1997-07-22

    Although tumor necrosis factor (TNF) initially came to prominence because of its anti-tumor activity, most attention is now focused on its proinflammatory actions. TNF appears to play a critical role in both early and late events involved in inflammation, from localizing the noxious agent and amplifying the cellular and mediator responses at the local site and systemically, to editing (e.g., apoptosis) injured cells or effete immune cells and repairing inflammatory damage. We have generated mice deficient in TNF (TNF-/- mice) and have begun to examine the multiple functions attributed to TNF. TNF-/- mice develop normally and have no gross structural or morphological abnormalities. As predicted, they are highly susceptible to challenge with an infectious agent (Candida albicans), are resistant to the lethality of minute doses of lipopolysaccharide (LPS) following D-galactosamine treatment, have a deficiency in granuloma development, and do not form germinal centers after immunization. Phagocytic activity of macrophages appears relatively normal, as do T cell functions, as measured by proliferation, cytokine release, and cytotoxicity. B cell response to thymus-independent antigens is normal, but the Ig response to thymus-dependent antigen is reduced. Surprisingly, cytokine production induced by LPS appears essentially intact, with the exception of reduced colony-stimulating factor activity. Other unexpected findings coming from our initial analysis are as follows. (i) TNF has low toxicity in TNF-/- mice. (ii) TNF-/- mice show an anomalous late response to heat-killed Corynebacterium parvum. In contrast to the prompt response (granuloma formation, hepatosplenomegaly) and subsequent resolution phase in C. parvum-injected TNF+/+ mice, similarly treated TNF-/- mice show little or no initial response, but then develop a vigorous, disorganized inflammatory response leading to death. These results suggest that TNF has an essential homeostatic role in limiting the extent and

  13. Tumor necrosis factor-alpha and ceramides in insulin resistance.

    PubMed

    Brindley, D N; Wang, C N; Mei, J; Xu, J; Hanna, A N

    1999-01-01

    The present studies tested the hypothesis that some effects of tumor necrosis factor-alpha (TNF-alpha) are mediated by activation of sphingomyelinases and the production of ceramides. Differentiated 3T3-L1 adipocytes were incubated with short-chain ceramide analogs, (C2- and C6-ceramides: N-acetyl- and N-hexanoyl-sphingosines, respectively), and this treatment increased 2-deoxyglucose uptake in the absence of insulin progressively from 2-24 h. This effect was inhibited by blocking the activations of mitogen-activated protein kinase, phosphatidylinositol 3-kinase (PI 3-kinase), and ribosomal S6 kinase which mediated an increase in GLUT1 concentrations. Long-term increases in PI 3-kinase activity associated with insulin receptor substrate-1 (IRS-1) increased the proportion of GLUT1 and GLUT4 in plasma membranes. These events explain the increases in noninsulin-dependent glucose uptake and incorporation of this glucose into the fatty acid and glycerol moieties of triacylglycerol. The mechanisms by which TNF-alpha and ceramides increase PI 3-kinase activity were investigated further by using rat2 fibroblasts. Incubation for 20 min with TNF-alpha, bacterial sphingomyelinase, or C2-ceramides increased PI 3-kinase activity by about fivefold, and this effect depended upon a stimulation of tyrosine kinase activity and an increase in Ras-GTP. This demonstrates the existence of a novel signaling pathway for TNF-alpha that could contribute to the effects of this cytokine in stimulating basal glucose uptake. By contrast, treating the 3T3-L1 adipocytes for 2-24 h with C2-ceramide diminished insulin-stimulated glucose uptake by decreasing the insulin-induced translocation of GLUT1 and GLUT4 to plasma membranes. This inhibition was observed when there was no increase in basal glucose uptake, and it occurred downstream of PI 3-kinase. Our work provides further mechanisms whereby TNF-alpha and ceramides produce insulin resistance and decrease the effectiveness of insulin in

  14. Tumor Necrosis Factor Receptor 2: Its Contribution to Acute Cellular Rejection and Clear Cell Renal Carcinoma

    PubMed Central

    Wang, Jun; Al-Lamki, Rafia S.

    2013-01-01

    Tumor necrosis factor receptor 2 (TNFR2) is a type I transmembrane glycoprotein and one of the two receptors that orchestrate the complex biological functions of tumor necrosis factor (TNF, also designed TNF-α). Accumulating experimental evidence suggests that TNFR2 plays an important role in renal disorders associated with acute cellular rejection and clear cell renal carcinoma but its exact role in these settings is still not completely understood. This papers reviews the factors that may mediate TNFR2 induction in acute cellular rejection and clear cell renal carcinoma and its contribution to these conditions and discusses its therapeutic implications. A greater understanding of the function of TNFR2 may lead to the development of new anti-TNF drugs. PMID:24350291

  15. Induction of inflammatory cell infiltration and necrosis in normal mouse skin by the combined treatment of tumor necrosis factor and lithium chloride.

    PubMed Central

    Beyaert, R.; De Potter, C.; Vanhaesebroeck, B.; Van Roy, F.; Fiers, W.

    1991-01-01

    Previously we reported that lithium chloride (LiCl) potentiates tumor necrosis factor (TNF)-mediated cytotoxicity in vitro and in vivo. Here, using a murine normal skin model, it is shown that a subcutaneous injection of TNF plus LiCl induces acute dermal and subcutaneous inflammation and necrosis. Histology showed a marked initial dermal and subcutaneous neutrophil infiltrate by approximately 2 hours, followed by a predominantly mononuclear infiltrate by 24 hours, which remained present for several days. Tumor necrosis factor or LiCl alone induced negligible inflammation, disappearing after 6 hours; furthermore there was never necrosis or ulceration of the overlying skin in case of single-agent application. In vitro studies showed that the combination of TNF and LiCl, but not either agent alone, was directly cytotoxic to fibroblastic cells of murine skin. No inflammatory infiltration was visible in tumors treated intratumorally or perilesionally with TNF plus LiCl, although the latter treatment resulted in a perilesional leukocyte infiltration. Furthermore the combination of TNF and LiCl had no effect on macrophage cytotoxicity to L929 tumors. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 PMID:1848044

  16. Ketamine inhibits tumor necrosis factor-{alpha} and interleukin-6 gene expressions in lipopolysaccharide-stimulated macrophages through suppression of toll-like receptor 4-mediated c-Jun N-terminal kinase phosphorylation and activator protein-1 activation

    SciTech Connect

    Wu, G.-J.; Chen, T.-L.; Ueng, Y.-F.; Chen, R.-M.

    2008-04-01

    Our previous study showed that ketamine, an intravenous anesthetic agent, has anti-inflammatory effects. In this study, we further evaluated the effects of ketamine on the regulation of tumor necrosis factor-{alpha} (TNF-{alpha}) and interlukin-6 (IL-6) gene expressions and its possible signal-transducing mechanisms in lipopolysaccharide (LPS)-activated macrophages. Exposure of macrophages to 1, 10, and 100 {mu}M ketamine, 100 ng/ml LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. A concentration of 1000 {mu}M of ketamine alone or in combined treatment with LPS caused significant cell death. Administration of LPS increased cellular TNF-{alpha} and IL-6 protein levels in concentration- and time-dependent manners. Meanwhile, treatment with ketamine concentration- and time-dependently alleviated the enhanced effects. LPS induced TNF-{alpha} and IL-6 mRNA syntheses. Administration of ketamine at a therapeutic concentration (100 {mu}M) significantly inhibited LPS-induced TNF-{alpha} and IL-6 mRNA expressions. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA into macrophages decreased cellular TLR4 levels. Co-treatment of macrophages with ketamine and TLR4 siRNA decreased the LPS-induced TNF-{alpha} and IL-6 productions more than alone administration of TLR4 siRNA. LPS stimulated phosphorylation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos from the cytoplasm to nuclei. However, administration of ketamine significantly decreased LPS-induced activation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos. LPS increased the binding of nuclear extracts to activator protein-1 consensus DNA oligonucleotides. Administration of ketamine significantly ameliorated LPS-induced DNA binding activity of activator protein-1. Therefore, a clinically relevant concentration of ketamine can inhibit TNF-{alpha} and IL-6 gene expressions in LPS-activated macrophages. The suppressive mechanisms

  17. Tumor necrosis factor-alpha antagonist-induced sarcoidosis.

    PubMed

    Clementine, Rochelle Robicheaux; Lyman, Justin; Zakem, Jerald; Mallepalli, Jyothi; Lindsey, Stephen; Quinet, Robert

    2010-09-01

    Sarcoidosis is a multisystem granulomatous disease of unknown etiology. Tumor necrosis factor (TNF)-alpha is an important player in granuloma formation, and recent clinical trials have investigated the efficacy of TNF-alpha inhibitors in sarcoidosis. Paradoxically, there are several case reports in the medical literature describing the development of sarcoidosis in patients treated with TNF-alpha inhibitors. We describe 3 cases of TNF-alpha antagonist-induced sarcoidosis: 1 case of pulmonary, ocular and cutaneous sarcoidosis developing in a patient receiving infliximab for erosive rheumatoid arthritis, 1 case of etanercept-induced sarcoidosis in a patient with seronegative rheumatoid arthritis, and 1 case of sarcoidosis developing in a patient receiving etanercept for erosive rheumatoid arthritis. We also provide a brief discussion on the role of TNF alpha in granuloma formation and implications in the use of TNF-alpha antagonists in autoimmune disease.

  18. Tumor necrosis factor alpha polymorphism in heart failure/cardiomyopathy.

    PubMed

    Vadlamani, Lou; Iyengar, Srinivas

    2004-01-01

    Tumor necrosis factor a (TNF-alpha) is a proinflammatory cytokine that is produced by activated macrophages. It has been shown to stimulate the release of endothelial cytokines and NO, increase vascular permeability, decrease contractility, and induce a prothrombotic state. The most studied TNF-a gene mutation in heart disease is a gamma to alpha substitution, which occurs when 308 nucleotides move upstream from the transcription initiation site in the TNF promoter and has been associated with elevated levels of TNF-alpha. The TNF1 allele (wild type) contains gamma at this site, while the TNF2 allele has an alpha substitution at the site. The TNF2 allele is a more powerful transcriptional activator, therefore leading to higher TNF-alpha levels. Most of the studies to date have failed to conclusively show any link between the polymorphism and heart disease, both coronary artery disease and cardiomyopathy/heart failure. PMID:15591843

  19. Role of Tumor Necrosis Factor Superfamily in Neuroinflammation and Autoimmunity.

    PubMed

    Sonar, Sandip; Lal, Girdhari

    2015-01-01

    Tumor necrosis factor superfamily (TNFSF) molecules play an important role in the activation, proliferation, differentiation, and migration of immune cells into the central nervous system (CNS). Several TNF superfamily molecules are known to control alloimmunity, autoimmunity, and immunity. Development of transgenic and gene knockout animals, and monoclonal antibodies against TNFSF molecules have increased our understanding of individual receptor-ligand interactions, and their intracellular signaling during homeostasis and neuroinflammation. A strong clinical association has been observed between TNFSF members and CNS autoimmunity such as multiple sclerosis and also in its animal model experimental autoimmune encephalomyelitis. Therefore, they are promising targets for alternative therapeutic options to control autoimmunity. Although, TNFSF ligands are widely distributed and have diverse functions, we have restricted the discussions in this review to TNFSF receptor-ligand interactions and their role in the pathogenesis of neuroinflammation and CNS autoimmunity.

  20. Targeted lipid-coated nanoparticles: delivery of tumor necrosis factor-functionalized particles to tumor cells.

    PubMed

    Messerschmidt, Sylvia K E; Musyanovych, Anna; Altvater, Martin; Scheurich, Peter; Pfizenmaier, Klaus; Landfester, Katharina; Kontermann, Roland E

    2009-07-01

    Polymeric nanoparticles displaying tumor necrosis factor on their surface (TNF nanocytes) are useful carrier systems capable of mimicking the bioactivity of membrane-bound TNF. Thus, TNF nanocytes are potent activators of TNF receptor 1 and 2 leading to a striking enhancement of apoptosis. However, in vivo applications are hampered by potential systemic toxicity. Here, using TNF nanocytes as a model system, we developed a procedure to generate targeted lipid-coated particles (TLP) in which TNF activity is shielded. The TLPs generated here are composed of an inner single-chain TNF (scTNF)-functionalized, polymeric nanoparticle core surrounded by a lipid coat endowed with polyethylene glycol (PEG) for sterical stabilization and a single-chain Fv (scFv) fragment for targeting. Using a scFv directed against the tumor stroma marker fibroblast activation protein (FAP) we show that TLP and scTNF-TLP specifically bind to FAP-expressing, but not to FAP-negative cells. Lipid coating strongly reduced nonspecific binding of particles and scTNF-mediated cytotoxicity towards FAP-negative cells. In contrast, an increased cytotoxicity of TLP was observed for FAP-positive cells. Thus, through liposome encapsulation, nanoparticles carrying bioactive molecules, which are subject to nonselective uptake and activity towards various cells and tissues, can be converted into target cell-specific composite particles exhibiting a selective activity towards antigen-positive target cells. Besides safe and targeted delivery of death ligands such as TNF, TLP should be suitable for various diagnostic and therapeutic applications, which benefit from a targeted delivery of reagents embedded into the particle core or displayed on the core particle surface.

  1. Tumor Necrosis Factor-α -and Interleukin-1-Induced Cellular Responses: Coupling Proteomic and Genomic Information

    PubMed Central

    Ott, Lee W.; Resing, Katheryn A.; Sizemore, Alecia W.; Heyen, Joshua W.; Cocklin, Ross R.; Pedrick, Nathan M.; Woods, H. Cary; Chen, Jake Y.; Goebl, Mark G.; Witzmann, Frank A.; Harrington, Maureen A.

    2010-01-01

    The pro-inflammatory cytokines, Tumor Necrosis Factor-alpha (TNFα) and Interleukin-1 (IL-1) mediate the innate immune response. Dysregulation of the innate immune response contributes to the pathogenesis of cancer, arthritis, and congestive heart failure. TNFα- and IL-1-induced changes in gene expression are mediated by similar transcription factors; however, TNFα and IL-1 receptor knock-out mice differ in their sensitivities to a known initiator (lipopolysaccharide, LPS) of the innate immune response. The contrasting responses to LPS indicate that TNFα and IL-1 regulate different processes. A large-scale proteomic analysis of TNFα- and IL-1-induced responses was undertaken to identify processes uniquely regulated by TNFα and IL-1. When combined with genomic studies, our results indicate that TNFα, but not IL-1, mediates cell cycle arrest. PMID:17503796

  2. Necrosis and apoptosis in Trichinella spiralis-mediated tumour reduction

    PubMed Central

    Vasilev, Sasa; Ilic, Natasa; Gruden-Movsesijan, Alisa; Vasilijic, Sasa; Bosic, Martina

    2015-01-01

    It is known that infection with different pathogens, including helminths, can alter the progression of malignant or other diseases. We studied the effect of chronic Trichinella spiralis infection or muscle larvae excretory-secretory (ES L1) antigens on the malignant tumour growth in the mouse melanoma model system in vivo and in vitro. Our results confirmed that chronic infection with T. spiralis possesses the capacity to slow down the progression of tumour growth, resulting in an impressive reduction in tumour size. We found that the phenomenon could, at least partially, be related to a lower level of tumour necrosis compared to necrosis present in control animals with progressive malignancy course. An increased apoptotic potential among the low percentage of cells within the total tumour cell number in vivo was also observed. ES L1 antigen, as a parasitic product that is released during the chronic phase of infection, reduced the survival and slightly, but significantly increased the apoptosis level of melanoma cells in vitro. Our results imply that powerful Trichinella anti-malignance capacity does not rely only on necrosis and apoptosis but other mechanisms through which infection or parasite products manipulate the tumor establishment and expansion should be considered. PMID:26155183

  3. Necrosis and apoptosis in Trichinella spiralis-mediated tumour reduction.

    PubMed

    Vasilev, Sasa; Ilic, Natasa; Gruden-Movsesijan, Alisa; Vasilijic, Sasa; Bosic, Martina; Sofronic-Milosavljevic, Ljiljana

    2015-01-01

    It is known that infection with different pathogens, including helminths, can alter the progression of malignant or other diseases. We studied the effect of chronic Trichinella spiralis infection or muscle larvae excretory-secretory (ES L1) antigens on the malignant tumour growth in the mouse melanoma model system in vivo and in vitro. Our results confirmed that chronic infection with T. spiralis possesses the capacity to slow down the progression of tumour growth, resulting in an impressive reduction in tumour size. We found that the phenomenon could, at least partially, be related to a lower level of tumour necrosis compared to necrosis present in control animals with progressive malignancy course. An increased apoptotic potential among the low percentage of cells within the total tumour cell number in vivo was also observed. ES L1 antigen, as a parasitic product that is released during the chronic phase of infection, reduced the survival and slightly, but significantly increased the apoptosis level of melanoma cells in vitro. Our results imply that powerful Trichinella anti-malignance capacity does not rely only on necrosis and apoptosis but other mechanisms through which infection or parasite products manipulate the tumor establishment and expansion should be considered. PMID:26155183

  4. Tumor vascular targeting with tumor necrosis factor alpha and chemotherapeutic drugs.

    PubMed

    Corti, Angelo; Ponzoni, Mirco

    2004-12-01

    The poor selectivity of chemotherapeutic drugs for neoplastic cells may lead to dose-limiting side effects that compromise clinical outcomes. Moreover, heterogeneous tumor perfusion and vascular permeability, and increased interstitial pressure, could represent critical barriers that limit the penetration of drugs into neoplastic cells distant from tumor vessels and, consequently, the effectiveness of chemotherapy. We have recently developed two strategies for increasing the local concentration of chemotherapeutic drugs in tumors and their therapeutic index, based on tumor vascular targeting. First, we have found that vascular targeting with minute amounts of tumor necrosis factor alpha (TNF-alpha), an inflammatory cytokine able to increase vascular permeability, alters tumor barriers and increases the penetration of chemotherapeutic drugs in subcutaneous tumors in mouse models. Targeted delivery of TNF-alpha to tumor vessels was achieved by coupling this cytokine with cyclic CNGRC peptide, an aminopeptidase N (CD13) ligand that targets the tumor neovasculature. Second, we have observed that encapsulation of doxorubicin into liposomes able to home to tumor vessels markedly improves drug uptake by neuroblastoma tumors, in an orthotopic xenograft model, and its therapeutic index. Targeted delivery of liposomes was achieved by coupling linear GNGRG peptide to the surface of liposomal doxorubicin. Vascular targeting, either indirectly with NGR-TNF-alpha or directly with NGR-targeted liposomes, could be a novel strategy for increasing the therapeutic index of chemotherapeutic drugs.

  5. Targeted Cancer Therapy with Tumor Necrosis Factor-Alpha

    PubMed Central

    Cai, Weibo; Kerner, Zachary J.; Hong, Hao; Sun, Jiangtao

    2013-01-01

    Tumor necrosis factor-alpha (TNF-α), a member of the TNF superfamily, was the first cytokine to be evaluated for cancer biotherapy. However, the clinical use of TNF-α is severely limited by its toxicity. Currently, TNF-α is administered only through locoregional drug delivery systems such as isolated limb perfusion and isolated hepatic perfusion. To reduce the systemic toxicity of TNF-α, various strategies have been explored over the last several decades. This review summarizes current state-of-the-art targeted cancer therapy using TNF-α. Passive targeting, cell-based therapy, gene therapy with inducible or tissue-specific promoters, targeted polymer-DNA complexes, tumor pre-targeting, antibody-TNF-α conjugate, scFv/TNF-α fusion proteins, and peptide/TNF-α fusion proteins have all been investigated to combat cancer. Many of these agents are already in advanced clinical trials. Molecular imaging, which can significantly speed up the drug development process, and nanomedicine, which can integrate both imaging and therapeutic components, has the potential to revolutionize future cancer patient management. Cooperative efforts from scientists within multiple disciplines, as well as close partnerships among many organizations/entities, are needed to quickly translate novel TNF-α-based therapeutics into clinical investigation. PMID:24115841

  6. Inverse regulation of human ERBB2 and epidermal growth factor receptors by tumor necrosis factor alpha.

    PubMed

    Kalthoff, H; Roeder, C; Gieseking, J; Humburg, I; Schmiegel, W

    1993-10-01

    Recombinant human tumor necrosis factor (TNF) alpha decreased the expression of ERBB2 mRNA by stimulating p55 TNF receptors of pancreatic tumor cells. This decrease contrasts with an increase in epidermal growth factor receptor (EGFR) mRNA. Both effects were selectively achieved by TNF-alpha or -beta, whereas interferon alpha or gamma or transforming growth factor beta showed no such effects. The inverse regulatory effects of TNF on ERBB2 and EGFR mRNA levels were evoked by different signaling pathways of p55 TNF receptors. The TNF-mediated ERBB2 mRNA decrease was followed by a reduction in protein. Four of five pancreatic tumor cell lines exhibited this down-regulation. This decrease of ERBB2 is a singular example of a modulation of this growth factor receptor by TNF. Overexpression of ERBB2 has been reported to cause resistance to TNF and other cytotoxic cytokines. In our study we show that the TNF-mediated down-regulation of ERBB2 in pancreatic tumor cells is accompanied by an increase in growth inhibition at low doses of TNF. The simultaneous alteration of the ERBB2/EGFR balance by TNF represents a striking model of cytokine receptor transregulation in the growth control of malignant pancreatic epithelial cells.

  7. Inverse regulation of human ERBB2 and epidermal growth factor receptors by tumor necrosis factor alpha.

    PubMed Central

    Kalthoff, H; Roeder, C; Gieseking, J; Humburg, I; Schmiegel, W

    1993-01-01

    Recombinant human tumor necrosis factor (TNF) alpha decreased the expression of ERBB2 mRNA by stimulating p55 TNF receptors of pancreatic tumor cells. This decrease contrasts with an increase in epidermal growth factor receptor (EGFR) mRNA. Both effects were selectively achieved by TNF-alpha or -beta, whereas interferon alpha or gamma or transforming growth factor beta showed no such effects. The inverse regulatory effects of TNF on ERBB2 and EGFR mRNA levels were evoked by different signaling pathways of p55 TNF receptors. The TNF-mediated ERBB2 mRNA decrease was followed by a reduction in protein. Four of five pancreatic tumor cell lines exhibited this down-regulation. This decrease of ERBB2 is a singular example of a modulation of this growth factor receptor by TNF. Overexpression of ERBB2 has been reported to cause resistance to TNF and other cytotoxic cytokines. In our study we show that the TNF-mediated down-regulation of ERBB2 in pancreatic tumor cells is accompanied by an increase in growth inhibition at low doses of TNF. The simultaneous alteration of the ERBB2/EGFR balance by TNF represents a striking model of cytokine receptor transregulation in the growth control of malignant pancreatic epithelial cells. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8105469

  8. Tumor necrosis factor-α: regulation of renal function and blood pressure

    PubMed Central

    Garvin, Jeffrey L.

    2013-01-01

    Tumor necrosis factor-α (TNF-α) is a pleiotropic cytokine that becomes elevated in chronic inflammatory states such as hypertension and diabetes and has been found to mediate both increases and decreases in blood pressure. High levels of TNF-α decrease blood pressure, whereas moderate increases in TNF-α have been associated with increased NaCl retention and hypertension. The explanation for these disparate effects is not clear but could simply be due to different concentrations of TNF-α within the kidney, the physiological status of the subject, or the type of stimulus initiating the inflammatory response. TNF-α alters renal hemodynamics and nephron transport, affecting both activity and expression of transporters. It also mediates organ damage by stimulating immune cell infiltration and cell death. Here we will summarize the available findings and attempt to provide plausible explanations for such discrepancies. PMID:23515717

  9. Membrane Tumor Necrosis Factor Confers Partial Protection to Listeria Infection

    PubMed Central

    Torres, David; Janot, Laure; Quesniaux, Valerie F.J.; Grivennikov, Sergei I.; Maillet, Isabelle; Sedgwick, Jonathon D.; Ryffel, Bernhard; Erard, Francois

    2005-01-01

    Tumor necrosis factor (TNF) plays a critical role in the host response to the intracellular pathogen Listeria monocytogenes (LM). TNF exists in soluble and membrane-bound forms and exhibits both unique and overlapping activities. We examined the role of membrane TNF in the absence of secreted TNF for host resistance in knockin mice in which the endogenous TNF was replaced by a regulated, noncleavable allele (mem-TNF). Macrophages expressing mem-TNF produced nitric oxide and displayed normal bactericidal activity. Although mice completely deficient in TNF (TNF−/−) succumbed to LM infection within 4 days, mem-TNF mice controlled LM infection at a low dose (104 CFU) but succumbed at a higher dose of infection (105 CFU). In contrast to complete TNF deficiency, mem-TNF mice developed confined microabscesses that expressed inducible nitric oxide synthase. The transfer of lymphocytes from immunized mem-TNF, but not TNF−/−, mice protected TNF−/− mice from fatal infection. Taken together the data suggest that in the absence of soluble TNF, the presence of membrane-expressed TNF on phagocytes and lymphocytes partially restores host defense to LM infection. PMID:16314479

  10. Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors: PET and neuropathologic studies

    SciTech Connect

    Di Chiro, G.; Oldfield, E.; Wright, D.C.; De Michele, D.; Katz, D.A.; Patronas, N.J.; Doppman, J.L.; Larson, S.M.; Ito, M.; Kufta, C.V.

    1988-01-01

    Cerebral necrosis after radiotherapy for brain tumors is being recognized as a problem more common than previously estimated. Distinction between this iatrogenic complication and tumor recurrence cannot be made by either CT or MR imaging. By using positron emission tomography (PET) with /sup 18/F-deoxyglucose (FDG) we were able to reach a diagnosis of radiation necrosis, later verified, in 10 of 95 patients referred for the purpose of differentiating tumor recurrence from necrosis. The critical PET-FDG feature was focal hypometabolism in the area of necrosis, which contrasted with the hypermetabolism associated with the residual/recurrent tumor. In addition, four cases of cerebral necrosis after supraophthalmic, intraarterial chemotherapy (BCNU) were studied with the PET-FDG method. The area of chemotherapy damage was also characterized by marked hypometabolism. Histology revealed both similarities and differences between radio- and chemonecrosis.

  11. Direct adenovirus-mediated gene transfer of interleukin 1 and tumor necrosis factor α soluble receptors to rabbit knees with experimental arthritis has local and distal anti-arthritic effects

    PubMed Central

    Ghivizzani, Steven C.; Lechman, Eric R.; Kang, Richard; Tio, Caroline; Kolls, Jay; Evans, Christopher H.; Robbins, Paul D.

    1998-01-01

    Adenoviral vectors were used to deliver genes encoding a soluble interleukin 1 (IL-1)-type I receptor-IgG fusion protein and/or a soluble type I tumor necrosis factor α (TNFα) receptor-IgG fusion protein directly to the knees of rabbits with antigen-induced arthritis. When tested individually, knees receiving the soluble IL-1 receptor had significantly reduced cartilage matrix degradation and white blood cell infiltration into the joint space. Delivery of the soluble TNFα receptor was less effective, having only a moderate effect on white blood cell infiltration and no effect on cartilage breakdown. When both soluble receptors were used together, there was a greater inhibition of white blood cell infiltration and cartilage breakdown with a considerable reduction of synovitis. Interestingly, anti-arthritic effects were also seen in contralateral control knees receiving only a marker gene, suggesting that sustained local inhibition of disease activity in one joint may confer an anti-arthritic effect on other joints. These results suggest that local intra-articular gene transfer could be used to treat systemic polyarticular arthritides. PMID:9539786

  12. Autocrine Tumor Necrosis Factor Alpha Links Endoplasmic Reticulum Stress to the Membrane Death Receptor Pathway through IRE1α-Mediated NF-κB Activation and Down-Regulation of TRAF2 Expression

    PubMed Central

    Hu, Ping; Han, Zhang; Couvillon, Anthony D.; Kaufman, Randal J.; Exton, John H.

    2006-01-01

    NF-κB is critical for determining cellular sensitivity to apoptotic stimuli by regulating both mitochondrial and death receptor apoptotic pathways. The endoplasmic reticulum (ER) emerges as a new apoptotic signaling initiator. However, the mechanism by which ER stress activates NF-κB and its role in regulation of ER stress-induced cell death are largely unclear. Here, we report that, in response to ER stress, IKK forms a complex with IRE1α through the adapter protein TRAF2. ER stress-induced NF-κB activation is impaired in IRE1α knockdown cells and IRE1α−/− MEFs. We found, however, that inhibiting NF-κB significantly decreased ER stress-induced cell death in a caspase-8-dependent manner. Gene expression analysis revealed that ER stress-induced expression of tumor necrosis factor alpha (TNF-α) was IRE1α and NF-κB dependent. Blocking TNF receptor 1 signaling significantly inhibited ER stress-induced cell death. Further studies suggest that ER stress induces down-regulation of TRAF2 expression, which impairs TNF-α-induced activation of NF-κB and c-Jun N-terminal kinase and turns TNF-α from a weak to a powerful apoptosis inducer. Thus, ER stress induces two signals, namely TNF-α induction and TRAF2 down-regulation. They work in concert to amplify ER-initiated apoptotic signaling through the membrane death receptor. PMID:16581782

  13. Percentage tumor necrosis following chemotherapy in neuroblastoma correlates with MYCN status but not survival.

    PubMed

    Bomken, Simon; Davies, Beverley; Chong, Leeai; Cole, Michael; Wood, Katrina M; McDermott, Michael; Tweddle, Deborah A

    2011-03-01

    The percentage of chemotherapy-induced necrosis in primary tumors corresponds with outcome in several childhood malignancies, including high-risk metastatic diseases. In this retrospective pilot study, the authors assessed the importance of postchemotherapy necrosis in high-risk neuroblastoma with a histological and case notes review of surgically resected specimens. The authors reviewed all available histology of 31 high-risk neuroblastoma cases treated with COJEC (dose intensive etoposide and vincristine with either cyclophosphamide, cisplatin or carboplatin) or OPEC/OJEC (etoposide, vincristine and cyclophosphamide with alternating cisplatin [OPEC] or carboplatin [OJEC]) induction chemotherapy in 2 Children's Cancer & Leukaemia Group (CCLG) pediatric oncology centers. The percentage of postchemotherapy necrosis was assessed and compared with MYCN amplification status and overall survival. The median percentage of postchemotherapy tumor necrosis was 60%. MYCN status was available for 28 cases, of which 12 were amplified (43%). Survival in cases with ≥ 60% necrosis or ≥ 90% necrosis was not better than those with less necrosis, nor was percentage necrosis associated with survival using Cox regression. However, MYCN-amplified tumors showed a higher percentage of necrosis than non-MYCN-amplified tumors, 71.3% versus 37.2% (P = .006). This effect was not related to prechemotherapy necrosis and did not confer improved overall survival. Postchemotherapy tumor necrosis is higher in patients with MYCN amplification. In this study, postchemotherapy necrosis did not correlate with overall survival and should not lead to modification of postoperative treatment. However, these findings need to be confirmed in a larger prospective study of children with high-risk neuroblastoma. PMID:21214410

  14. Interleukin 1 and Tumor Necrosis Factor Inhibit Cardiac Myocyte β -adrenergic Responsiveness

    NASA Astrophysics Data System (ADS)

    Gulick, Tod; Chung, Mina K.; Pieper, Stephen J.; Lange, Louis G.; Schreiner, George F.

    1989-09-01

    Reversible congestive heart failure can accompany cardiac allograft rejection and inflammatory myocarditis, conditions associated with an immune cell infiltrate of the myocardium. To determine whether immune cell secretory products alter cardiac muscle metabolism without cytotoxicity, we cultured cardiac myocytes in the presence of culture supernatants from activated immune cells. We observed that these culture supernatants inhibit β -adrenergic agonist-mediated increases in cultured cardiac myocyte contractility and intracellular cAMP accumulation. The myocyte contractile response to increased extracellular Ca2+ concentration is unaltered by prior exposure to these culture supernatants, as is the increase in myocyte intracellular cAMP concentration in response to stimulation with forskolin, a direct adenyl cyclase activator. Inhibition occurs in the absence of alteration in β -adrenergic receptor density or ligand binding affinity. Suppressive activity is attributable to the macrophage-derived cytokines interleukin 1 and tumor necrosis factor. Thus, these observations describe a role for defined cytokines in regulating the hormonal responsiveness and function of contractile cells. The effects of interleukin 1 and tumor necrosis factor on intracellular cAMP accumulation may be a model for immune modulation of other cellular functions dependent upon cyclic nucleotide metabolism. The uncoupling of agonist-occupied receptors from adenyl cyclase suggests that β -receptor or guanine nucleotide binding protein function is altered by the direct or indirect action of cytokines on cardiac muscle cells.

  15. Haplotypes of tumor necrosis factor gene and tracheal aspirate fluid levels of tumor necrosis factor-alpha in preterm infants.

    PubMed

    Kazzi, S Nadya J; Tromp, Gerard; Quasney, Michael W; Buhimschi, Irina A

    2008-08-01

    Individual variability in the production of tumor necrosis factor-alpha (TNF-alpha) has been attributed to genetic factors. We examined whether alleles of TNF gene (lymphotoxin-alpha+250, TNF-alpha-308, and TNF-alpha-238) affect tracheal aspirate fluid (TAF) levels of TNF-alpha among preterm infants at risk of bronchopulmonary dysplasia. TAF samples were collected within 48 h of birth and 7, 14, 21, and 28 d later. Haplotypes [designated using the nucleotide bases in the chromosome order (lymphotoxin-alpha+250, TNF-alpha-308, TNF-alpha-238)] of TNF were correlated with levels of TNF-alpha. Diplotypes of TNF (genotypes of haplotypes) classified as high, intermediate, or low based on their relation to TAF TNF-alpha levels were also correlated with TNF-alpha levels. The most frequent (and reference haplotype) was AGG. The GGG haplotype was associated with the lowest TAF TNF-alpha levels on day 7 among African American infants (p < 0.008). Sequential changes in levels of TNF-alpha correlated with infants' diplotype status [high (HH), intermediate (HL), low (LL)]. Fetal chorioamnionitis but not bronchopulmonary dysplasia was associated with infants' diplotypes (p < 0.005). Haplotypes of the TNF gene influence TAF levels of TNF-alpha. Diplotypes of TNF are associated with fetal chorioamnionitis.

  16. Use of tumor necrosis factor (TNF) inhibitors in patients with HIV/AIDS.

    PubMed

    Gallitano, Stephanie M; McDermott, Laura; Brar, Kanwaljit; Lowenstein, Eve

    2016-05-01

    Patients with HIV and AIDS are living longer because of advancements in antiretroviral therapy. These patients are often susceptible to debilitating inflammatory disorders that are refractory to standard treatment. We discuss the relationship of tumor necrosis factor-alpha and HIV and then review 27 published cases of patients with HIV being treated with tumor necrosis factor-alpha inhibitors. This review is limited because no randomized controlled trials have been performed with this patient population. Regardless, we propose that reliable seropositive patients, who are adherent to medication regimens and frequent monitoring and have failed other treatment modalities, should be considered for treatment with tumor necrosis factor-alpha inhibitors.

  17. Expression of tumor necrosis factor alpha converting enzyme in endocrine cancers.

    PubMed

    Kirkegaard, Tove; Naresh, Anjali; Sabine, Vicky S; Tovey, Sian M; Edwards, Joanne; Dunne, Barbara; Cooke, Timothy G; Jones, Frank E; Bartlett, John M S

    2008-05-01

    Tumor necrosis factor alpha converting enzyme (TACE) mediates shedding of human epidermal growth factor receptor-4 (HER4). Recent data suggest that released HER4 intracellular domain (4ICD) induces apoptosis in breast cancer. TACE expression, as measured by immunohistochemical analysis, was observed in 183 of 383 breast carcinomas, 39 of 217 ovarian carcinomas, and 16 of 24 and 17 of 24 hormonesensitive and hormone-insensitive prostate carcinomas, respectively. HER4 expression was detected in breast carcinomas by using 2 antibodies recognizing an extracellular or intracellular epitope. TACE expression was predominantly seen in tumors with high levels of 4ICD and membranous HER4. Apoptotic activity was measured by the terminal deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL) assay and cleaved caspase-3 staining in breast carcinomas. There was no significant association between cleaved caspase-3 or TUNEL positivity and 4ICD, whereas TUNEL positivity was seen predominantly in tumors with high levels of internalized HER4. The data presented herein show TACE expression in endocrine cancers and further support a role for TACE in breast cancer apoptosis.

  18. Regulation of bitter taste responses by tumor necrosis factor

    PubMed Central

    Feng, Pu; Jyotaki, Masafumi; Kim, Agnes; Chai, Jinghua; Simon, Nirvine; Zhou, Minliang; Bachmanov, Alexander A.; Huang, Liquan; Wang, Hong

    2015-01-01

    Inflammatory cytokines are important regulators of metabolism and food intake. Over production of inflammatory cytokines during bacterial and viral infections leads to anorexia and reduced food intake. However, it remains unclear whether any inflammatory cytokines are involved in the regulation of taste reception, the sensory mechanism governing food intake. Previously, we showed that tumor necrosis factor (TNF), a potent proinflammatory cytokine, is preferentially expressed in a subset of taste bud cells. The level of TNF in taste cells can be further induced by inflammatory stimuli. To investigate whether TNF plays a role in regulating taste responses, in this study, we performed taste behavioral tests and gustatory nerve recordings in TNF knockout mice. Behavioral tests showed that TNF-deficient mice are significantly less sensitive to the bitter compound quinine than wild-type mice, while their responses to sweet, umami, salty, and sour compounds are comparable to those of wild-type controls. Furthermore, nerve recording experiments showed that the chorda tympani nerve in TNF knockout mice is much less responsive to bitter compounds than that in wild-type mice. Chorda tympani nerve responses to sweet, umami, salty, and sour compounds are similar between TNF knockout and wild-type mice, consistent with the results from behavioral tests. We further showed that taste bud cells express the two known TNF receptors TNFR1 and TNFR2 and, therefore, are potential targets of TNF. Together, our results suggest that TNF signaling preferentially modulates bitter taste responses. This mechanism may contribute to taste dysfunction, particularly taste distortion, associated with infections and some chronic inflammatory diseases. PMID:25911043

  19. Fibrinolytic response to tumor necrosis factor in healthy subjects.

    PubMed

    van der Poll, T; Levi, M; Büller, H R; van Deventer, S J; de Boer, J P; Hack, C E; ten Cate, J W

    1991-09-01

    Tumor necrosis factor (TNF) may be involved in the disturbance of the procoagulant-fibrinolytic balance in septicemia, leading to microvascular thrombosis. To assess the dynamics of the fibrinolytic response to TNF in humans, we performed a crossover saline-controlled study in six healthy men, investigating the effects of a bolus intravenous injection of recombinant human TNF (50 micrograms/m2) on the stimulation and inhibition of plasminogen activation as well as on plasmin activity and inhibition. TNF induced a brief fourfold increase in the overall plasma plasminogen activator (PA) activity peaking after 1 h (p less than 0.0001), which was associated with rises in the antigenic levels of urokinase-type plasminogen activator (p less than 0.0001) and tissue-type plasminogen activator (p less than 0.0001). Plasminogen activator inhibitor type I antigen remained unchanged in the first hour, but showed a rapid eightfold increase thereafter (p less than 0.0001), which coincided with the decrease in PA activity. Generation of plasmin activity in the first hour was signified by an 11-fold rise in D-dimer levels (p less than 0.0001); inhibition of plasmin was reflected by a 36-fold rise in plasmin-alpha 2 antiplasmin complexes (p less than 0.0001), as well as by a transient 16% decrease in alpha 2-antiplasmin activity (p less than 0.01). In conclusion, TNF induced an early activation of the fibrinolytic system becoming maximal in 1 h, with a rapid inhibition thereafter. Earlier observations in the same subjects showed sustained coagulation activation for 6-12 h. The observed disbalance between the procoagulant and fibrinolytic mechanisms after TNF injection confirms the in vivo relevance of the effects of TNF on vascular endothelium in vitro and may explain the tendency towards microvascular thrombosis in septicemia.

  20. Regulation of bitter taste responses by tumor necrosis factor.

    PubMed

    Feng, Pu; Jyotaki, Masafumi; Kim, Agnes; Chai, Jinghua; Simon, Nirvine; Zhou, Minliang; Bachmanov, Alexander A; Huang, Liquan; Wang, Hong

    2015-10-01

    Inflammatory cytokines are important regulators of metabolism and food intake. Over production of inflammatory cytokines during bacterial and viral infections leads to anorexia and reduced food intake. However, it remains unclear whether any inflammatory cytokines are involved in the regulation of taste reception, the sensory mechanism governing food intake. Previously, we showed that tumor necrosis factor (TNF), a potent proinflammatory cytokine, is preferentially expressed in a subset of taste bud cells. The level of TNF in taste cells can be further induced by inflammatory stimuli. To investigate whether TNF plays a role in regulating taste responses, in this study, we performed taste behavioral tests and gustatory nerve recordings in TNF knockout mice. Behavioral tests showed that TNF-deficient mice are significantly less sensitive to the bitter compound quinine than wild-type mice, while their responses to sweet, umami, salty, and sour compounds are comparable to those of wild-type controls. Furthermore, nerve recording experiments showed that the chorda tympani nerve in TNF knockout mice is much less responsive to bitter compounds than that in wild-type mice. Chorda tympani nerve responses to sweet, umami, salty, and sour compounds are similar between TNF knockout and wild-type mice, consistent with the results from behavioral tests. We further showed that taste bud cells express the two known TNF receptors TNFR1 and TNFR2 and, therefore, are potential targets of TNF. Together, our results suggest that TNF signaling preferentially modulates bitter taste responses. This mechanism may contribute to taste dysfunction, particularly taste distortion, associated with infections and some chronic inflammatory diseases. PMID:25911043

  1. Regulation of bitter taste responses by tumor necrosis factor.

    PubMed

    Feng, Pu; Jyotaki, Masafumi; Kim, Agnes; Chai, Jinghua; Simon, Nirvine; Zhou, Minliang; Bachmanov, Alexander A; Huang, Liquan; Wang, Hong

    2015-10-01

    Inflammatory cytokines are important regulators of metabolism and food intake. Over production of inflammatory cytokines during bacterial and viral infections leads to anorexia and reduced food intake. However, it remains unclear whether any inflammatory cytokines are involved in the regulation of taste reception, the sensory mechanism governing food intake. Previously, we showed that tumor necrosis factor (TNF), a potent proinflammatory cytokine, is preferentially expressed in a subset of taste bud cells. The level of TNF in taste cells can be further induced by inflammatory stimuli. To investigate whether TNF plays a role in regulating taste responses, in this study, we performed taste behavioral tests and gustatory nerve recordings in TNF knockout mice. Behavioral tests showed that TNF-deficient mice are significantly less sensitive to the bitter compound quinine than wild-type mice, while their responses to sweet, umami, salty, and sour compounds are comparable to those of wild-type controls. Furthermore, nerve recording experiments showed that the chorda tympani nerve in TNF knockout mice is much less responsive to bitter compounds than that in wild-type mice. Chorda tympani nerve responses to sweet, umami, salty, and sour compounds are similar between TNF knockout and wild-type mice, consistent with the results from behavioral tests. We further showed that taste bud cells express the two known TNF receptors TNFR1 and TNFR2 and, therefore, are potential targets of TNF. Together, our results suggest that TNF signaling preferentially modulates bitter taste responses. This mechanism may contribute to taste dysfunction, particularly taste distortion, associated with infections and some chronic inflammatory diseases.

  2. Tumor necrosis factor-inducing activities of Cryptococcus neoformans components.

    PubMed Central

    Delfino, D; Cianci, L; Migliardo, M; Mancuso, G; Cusumano, V; Corradini, C; Teti, G

    1996-01-01

    Cryptococcus neoformans-induced tumor necrosis factor alpha (TNF-alpha) production may lead to increased human immunodeficiency virus replication in patients with AIDS. In order to identify cryptococcal components that are predominantly responsible for stimulating TNF production, various concentrations of glucuronoxylomannan (GXM), galactoxylomannan (GalXM), mannoproteins (MP), and alpha(1-3) [corrected] glucan were added to whole-blood cultures. All of the cryptococcal components tested, as well as whole heat-killed cryptococci, were capable of inducing TNF-alpha release in a dose-dependent manner. MP were significantly more potent than any of the other cryptococcal components tested or heat-killed cryptococci in stimulating TNF-alpha production (P < 0.05). GXM, in contrast, was significantly less potent in this activity than either GalXM or MP (P < 0.05). As little as 0.5 microg of MP per ml was sufficient to produce moderate but significant elevations of TNF-alpha release. Maximal MP-induced TNF-alpha levels were similar to those induced by Salmonella enteritidis lipopolysaccharide, our positive control. Further experiments using isolated leukocytes suggested that monocytes were the cell population mainly responsible for TNF-alpha production, although the participation of other cell types could not be excluded. The presence of complement-sufficient plasma was a necessary requirement for TNF-alpha induction by GXM, GalXM, and low doses of MP. High MP concentrations (100 microg/ml) were also capable of stimulating TNF-alpha production in the absence of plasma. These data indicate that soluble products released by C. neoformans are capable of inducing TNF-alpha secretion in human leukocytes. This may be clinically relevant, since high concentrations of such products are frequently found in the body fluids of AIDS patients infected with C. neoformans. PMID:8945566

  3. Tumor Necrosis Factor-stimulated Gene-6 (TSG-6) Is Constitutively Expressed in Adult Central Nervous System (CNS) and Associated with Astrocyte-mediated Glial Scar Formation following Spinal Cord Injury*

    PubMed Central

    Coulson-Thomas, Vivien J.; Lauer, Mark E.; Soleman, Sara; Zhao, Chao; Hascall, Vincent C.; Day, Anthony J.; Fawcett, James W.

    2016-01-01

    Tumor necrosis factor (TNF)-stimulated gene-6 (TSG-6) binds to hyaluronan and can reorganize/stabilize its structure, also enhancing the binding of this glycosaminoglycan to its cell surface receptor, CD44. TSG-6 is rapidly up-regulated in response to inflammatory cytokines protecting tissues from the damaging effects of inflammation. Despite TSG-6 treatment having been shown to improve outcomes in an experimental model of traumatic brain injury, TSG-6 expression has not been extensively studied in the central nervous system (CNS). We hereby analyzed the expression profile of TSG-6 in the developing CNS and following injury. We show that TSG-6 is expressed in the rat CNS by GFAP+ and CD44+ astrocytes, solely in the mature brain and spinal cord, and is not present during the development of the CNS. TSG-6−/− mice present a reduced number of GFAP+ astrocytes when compared with the littermate TSG-6+/− mice. TSG-6 expression is drastically up-regulated after injury, and the TSG-6 protein is present within the glial scar, potentially coordinating and stabilizing the formation of this hyaluronan-rich matrix. This study shows that TSG-6 is expressed in the CNS, suggesting a role for TSG-6 in astrocyte activation and tissue repair. We hypothesize that within this context TSG-6 could participate in the formation of the glial scar and confer anti-inflammatory properties. Further studies are required to elucidate the therapeutic potential of targeting TSG-6 after CNS injury to promote its protective effects while reducing the inhibitory properties of the glial scar in axon regeneration. PMID:27435674

  4. Upregulation of tumor necrosis factor alpha and interleukin-1 beta in Q fever endocarditis.

    PubMed Central

    Capo, C; Zugun, F; Stein, A; Tardei, G; Lepidi, H; Raoult, D; Mege, J L

    1996-01-01

    The occurrence of Q fever endocarditis likely involves some alterations in the responses of monocytes, the in vivo targets of Coxiella burnetii. To test this hypothesis, the production of the inflammatory cytokines tumor necrosis factor alpha, interleukin-1 beta, and interleukin-6 was assessed in monocytes from patients with Q fever endocarditis. Spontaneous transcription and secretion of tumor necrosis factor and interleukin-1 were significantly higher in patient monocytes than in healthy controls. The interleukin-6 transcripts were also upregulated in patient cells. Moreover, in patients with recent endocarditis exhibiting high titers of immunoglobulin G directed to C. burnetii in phase I, monocytes released significantly higher levels of tumor necrosis factor and interleukin-1 than in patients with stabilized endocarditis. Immunoglobulin G titers and the overproduction of tumor necrosis factor and interleukin-1 were significantly correlated. Hence, the overproduction of inflammatory cytokines might be a marker of disease activity. PMID:8613372

  5. The role of tumor necrosis factor receptor superfamily members in mammalian brain development, function and homeostasis

    PubMed Central

    Twohig, Jason P.; Cuff, Simone M.; Yong, Audrey A.; Wang, Eddie C.Y.

    2012-01-01

    Tumor necrosis factor receptor superfamily (TNFRSF) members were initially identified as immunological mediators, and are still commonly perceived as immunological molecules. However, our understanding of the diversity of TNFRSF members’ roles in mammalian physiology has grown significantly since the first discovery of TNFRp55 (TNFRSF1) in 1975. In particular, the last decade has provided evidence for important roles in brain development, function and the emergent field of neuronal homeostasis. Recent evidence suggests that TNFRSF members are expressed in an overlapping regulated pattern during neuronal development, participating in the regulation of neuronal expansion, growth, differentiation and regional pattern development. This review examines evidence for non-immunological roles of TNFRSF members in brain development, function and maintenance under normal physiological conditions. In addition, several aspects of brain function during inflammation will also be described, when illuminating and relevant to the non-immunological role of TNFRSF members. Finally, key questions in the field will be outlined. PMID:21861782

  6. Endotoxin and tumor necrosis factor-alpha-induced interleukin-8 release in humans.

    PubMed

    van Deventer, S J; Hart, M; van der Poll, T; Hack, C E; Aarden, L A

    1993-02-01

    Neutrophil recruitment and activation are thought to play an important role in tissue damage observed in septicemia. Interleukin-8 (IL-8) is a small cytokine with important neutrophil-activating and chemoattractant properties. IL-8 release was studied after injection of human volunteers with low doses of either endotoxin (2 ng/kg of body weight) or tumor necrosis factor-alpha (TNF alpha) (50 micrograms/m2). After TNF-alpha injection, IL-8 appeared at 30 min, whereas increased levels were first observed after 90 min in endotoxin-challenged volunteers. Peak levels were measured at 120 min after both endotoxin (192 +/- 193 ng/L) and TNF alpha (500 +/- 236 ng/L) injection. These data indicate that IL-8 is released in humans after injection of endotoxin and TNF alpha and suggest that endotoxin-induced IL-8 release is mediated by TNF alpha.

  7. Inherited variability of tumor necrosis factor production and susceptibility to infectious disease.

    PubMed

    Knight, J C; Kwiatkowski, D

    1999-01-01

    Tumor necrosis factor (TNF) is a critical mediator of host defense against infection but may cause severe pathology when produced in excess. Individuals vary in the amount of TNF produced when their peripheral blood mononuclear cells are stimulated in vitro, and family studies indicate that much of this variability is genetically determined. Since the TNF response to infection is partly regulated at the transcriptional level, TNF promoter polymorphisms have been the subject of intense interest as potential determinants of disease susceptibility. A single nucleotide polymorphism at nucleotide -308 relative to the transcriptional start site has been associated with susceptibility to severe malaria, leishmaniasis, scarring trachoma, and lepromatous leprosy. Some experimental data indicate that this polymorphism acts to upregulate TNF transcription, but this remains controversial. Detailed analysis of multiple genetic markers at this locus and more sophisticated investigations of TNF transcriptional regulation, in different cell types and with a wide range of stimuli, are required to understand the molecular basis of these disease associations.

  8. Tungsten treatment prevents tumor necrosis factor-induced injury of brain endothelial cells.

    PubMed

    Terada, L S; Willingham, I R; Guidot, D M; Shibao, G N; Kindt, G W; Repine, J E

    1992-02-01

    Exposure to recombinant human tumor necrosis factor-alpha (TNF-alpha) or calcium ionophore (A23187) for 4 h increased (P less than 0.05) lactate dehydrogenase (LDH) release from cultured bovine brain endothelial cells (EC). In contrast, treatment with endotoxin or interleukin-1 did not increase (P greater than 0.05). LDH release from brain EC. Pretreatment with tungsten decreased (P less than 0.05) xanthine oxidase activity in brain EC and decreased (P less than 0.05) LDH release from brain EC following exposure to TNF. Our results suggest that TNF-alpha injures brain microvascular EC and that this effect may be mediated by xanthine oxidase.

  9. Phosphorylation of tumor necrosis factor receptor 1 (p55) protects macrophages from silica-induced apoptosis.

    PubMed

    Gambelli, Federica; Di, Peter; Niu, Xiaomei; Friedman, Mitchell; Hammond, Timothy; Riches, David W H; Ortiz, Luis A

    2004-01-16

    Macrophages play a fundamental role in silicosis in part by removing silica particles and producing inflammatory mediators in response to silica. Tumor necrosis factor alpha (TNFalpha) is a prominent mediator in silicosis. Silica induction of apoptosis in macrophages might be mediated by TNFalpha. However, TNFalpha also activates signal transduction pathways (NF-kappaB and AP-1) that rescue cells from apoptosis. Therefore, we studied the TNFalpha-mediated mechanisms that confer macrophage protection against the pro-apoptotic effects of silica. We will show that exposure to silica induced TNFalpha production by RAW 264.7 cells, but not by IC-21. Silica-induced activation of NF-kappaB and AP-1 was only observed in RAW 264.7 macrophages. ERK activation in response to silica exposure was only observed in RAW 264.7 macrophages, whereas activation of p38 phosphorylation was predominantly observed in IC-21 macrophages. No changes in JNK activity were observed in either cell line in response to silica exposure. Silica induced apoptosis in both macrophage cell lines, but the induction of apoptosis was significantly larger in IC-21 cells. Protection against apoptosis in RAW 264.7 cells in response to silica was mediated by enhanced NF-kappaB activation and ERK-mediated phosphorylation of the p55 TNFalpha receptor. Inhibition of these two protective mechanisms by specific pharmacological inhibitors or transfection of dominant negative mutants that inhibit IkappaBalpha or ERK phosphorylation significantly increased silica-induced apoptosis in RAW 264.7 macrophages. These data suggest that NF-kappaB activation and ERK-mediated phosphorylation of the p55 TNF receptor are important cell survival mechanisms in the macrophage response to silica exposure. PMID:14570868

  10. Shedding of Tumor Necrosis Factor Receptor 1 Induced by Protein A Decreases Tumor Necrosis Factor Alpha Availability and Inflammation during Systemic Staphylococcus aureus Infection

    PubMed Central

    Giai, Constanza; Gonzalez, Cintia; Ledo, Camila; Garofalo, Ailin; Di Genaro, María Silvia; Sordelli, Daniel O.

    2013-01-01

    Staphylococcus aureus infections are an important public health concern due to their increasing incidence and high rates of mortality. The success of S. aureus as a pathogen is highly related to its enormous capacity to evade the host immune response. The critical role of tumor necrosis factor alpha (TNF-α) in the initial host defense against systemic staphylococcal infection has been demonstrated in experimental models and may partially explain the lack of significant benefits observed in clinical trials attempting to neutralize this cytokine in septic patients. S. aureus protein A plays a key role in regulating inflammation through its ability to bind and signal through the TNF-α receptor 1 (TNFR1). In this study, we demonstrate that S. aureus, via protein A-mediated signaling, induces early shedding of TNFR1, which precedes the secretion of TNF-α in vitro and in vivo. The results obtained using a protein A-deficient mutant and tnfr1−/− mice strongly suggest that the increased levels of soluble TNFR1 present during experimental S. aureus infection may neutralize circulating TNF-α and impair the host inflammatory response. Early shedding of TNFR1 induced by protein A may constitute a novel mechanism by which S. aureus subverts the host immune response. PMID:24002060

  11. Tumor necrosis factor soluble receptors circulate during experimental and clinical inflammation and can protect against excessive tumor necrosis factor alpha in vitro and in vivo.

    PubMed Central

    Van Zee, K J; Kohno, T; Fischer, E; Rock, C S; Moldawer, L L; Lowry, S F

    1992-01-01

    Tumor necrosis factor alpha (TNF alpha), a primary mediator of systemic responses to sepsis and infection, can be injurious to the organism when present in excessive quantities. Here we report that two types of naturally occurring soluble TNF receptors (sTNFR-I and sTNFR-II) circulate in human experimental endotoxemia and in critically ill patients and demonstrate that they neutralize TNF alpha-induced cytotoxicity and immunoreactivity in vitro. Utilizing immunoassays that discriminate between total sTNFR-I and sTNFR-I not bound to TNF alpha, we show that sTNFR-I-TNF alpha complexes may circulate even in the absence of detectable free TNF alpha. To investigate the therapeutic possibilities of sTNFR-I, recombinant protein was administered to nonhuman primates with lethal bacteremia and found to attenuate hemodynamic collapse and cytokine induction. We conclude that soluble receptors for TNF alpha are inducible in inflammation and circulate at levels sufficient to block the in vitro cytotoxicity associated with TNF alpha levels observed in nonlethal infection. Administration of sTNFR-I can prevent the adverse pathologic sequelae caused by the exaggerated TNF alpha production observed in lethal sepsis. Images PMID:1317575

  12. Quiescent interplay between inducible nitric oxide synthase and tumor necrosis factor-alpha: influence on transplant graft vasculopathy in renal allograft dysfunction.

    PubMed

    Elahi, Maqsood M; Matata, Bashir M; Hakim, Nadey S

    2006-06-01

    A healthy endothelium is essential for vascular homeostasis, and preservation of endothelial cell function is critical for maintaining transplant allograft function. Damage to the microvascular endothelial cells is now regarded as a characteristic feature of acute vascular rejection, an important predictor of graft loss. It is also linked with transplant vasculopathy, often associated with chronic allograft nephropathy. Large bursts of nitric oxide in infiltrating monocytes/macrophages modulated by inducible nitric oxide synthase are considered pivotal in driving this mechanism. Indeed, it has been shown recently that increased circulating levels of tumor necrosis factor-alpha in the rejecting kidneys are largely responsible for triggering inducible nitric oxide synthase expression. This in turn suggests that several structural and functional features of graft rejection could be mediated by tumor necrosis factor-alpha. Despite the large body of evidence that supports immunologic involvement, knowledge concerning the cellular and biochemical mechanisms for nephritic cell dysfunction and death is incomplete. The role of tumor necrosis factor-alpha in mediating pathophysiological activity of inducible nitric oxide synthase during transplant vasculopathy remains contentious. Here, we discuss the effect of inducible nitric oxide synthase and tumor necrosis factor-alpha interaction on progressive damage to glomerular and vascular structures during renal allograft rejection. Selective inhibition of inducible nitrous oxide synthase and tumor necrosis factor-alpha as a potential therapy for ameliorating endothelial dysfunction and transplant graft vasculopathy is also discussed.

  13. Tumor necrosis factor alpha-induced angiogenesis depends on in situ platelet-activating factor biosynthesis

    PubMed Central

    1994-01-01

    Tumor necrosis factor (TNF) alpha, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo. Therefore, it was suggested that the angiogenic properties of this agent might be consequent to the production of secondary mediators. Since TNF-alpha stimulates the synthesis of platelet-activating factor (PAF) by monocytes and endothelial cells, we investigated the possible involvement of PAF in the angiogenic effect of TNF-alpha. Angiogenesis was studied in a murine model in which Matrigel was used as a vehicle for the delivery of mediators. In this model the angiogenesis induced by TNF-alpha was shown to be inhibited by WEB 2170, a specific PAF receptor antagonist. Moreover, in mice injected with TNF-alpha, PAF was detected within the Matrigel, 6 and 24 h after TNF-alpha injection. The synthesis of PAF within the Matrigel was concomitant with the early migration of endothelial cells and infiltration of monocytes. No infiltration of lymphocytes or polymorphonuclear leukocytes was observed. Synthetic PAF as well as PAF extracted and purified from mice challenged with TNF-alpha induced a rapid angiogenic response, inhibited by WEB 2170. These results suggest that the angiogenic effect of TNF-alpha is, at least in part, mediated by PAF synthesized from monocytes and/or endothelial cells infiltrating the Matrigel plug. PMID:7516414

  14. Activation of coagulation after administration of tumor necrosis factor to normal subjects.

    PubMed

    van der Poll, T; Büller, H R; ten Cate, H; Wortel, C H; Bauer, K A; van Deventer, S J; Hack, C E; Sauerwein, H P; Rosenberg, R D; ten Cate, J W

    1990-06-01

    Tumor necrosis factor has been implicated in the activation of blood coagulation in septicemia, a condition commonly associated with intravascular coagulation and disturbances of hemostasis. To evaluate the early dynamics and the route of the in vivo coagulative response to tumor necrosis factor, we performed a controlled study in six healthy men, monitoring the activation of the common and intrinsic pathways of coagulation with highly sensitive and specific radioimmunoassays. Recombinant human tumor necrosis factor, administered as an intravenous bolus injection (50 micrograms per square meter of body-surface area), induced an early and short-lived rise in circulating levels of the activation peptide of factor X, reaching maximal values after 30 to 45 minutes (mean +/- SEM increase after 45 minutes, 34.2 +/- 18.2 percent; tumor necrosis factor vs. saline, P = 0.015). This was followed by a gradual and prolonged increase in the plasma concentration of the prothrombin fragment F1+2, peaking after four to five hours (mean increase after five hours, 348.0 +/- 144.8 percent; tumor necrosis factor vs. saline, P less than 0.0001). These findings signify the formation of factor Xa (activated factor X) and the activation of prothrombin. Activation of the intrinsic pathway could not be detected by a series of measurements of the plasma levels of factor XII, prekallikrein, factor XIIa-C1 inhibitor complexes, kallikrein-C1 inhibitor complexes, and the activation peptide of factor IX. The delay between the maximal activation of factor X and that of prothrombin amounted to several hours, indicating that neutralization of factor Xa activity was slow. We conclude that a single injection of tumor necrosis factor elicits a rapid and sustained activation of the common pathway of coagulation, probably induced through the extrinsic route. Our results suggest that tumor necrosis factor could play an important part in the early activation of the hemostatic mechanism in septicemia.

  15. Stem and progenitor cell-mediated tumor selective gene therapy.

    PubMed

    Aboody, K S; Najbauer, J; Danks, M K

    2008-05-01

    The poor prognosis for patients with aggressive or metastatic tumors and the toxic side effects of currently available treatments necessitate the development of more effective tumor-selective therapies. Stem/progenitor cells display inherent tumor-tropic properties that can be exploited for targeted delivery of anticancer genes to invasive and metastatic tumors. Therapeutic genes that have been inserted into stem cells and delivered to tumors with high selectivity include prodrug-activating enzymes (cytosine deaminase, carboxylesterase, thymidine kinase), interleukins (IL-2, IL-4, IL-12, IL-23), interferon-beta, apoptosis-promoting genes (tumor necrosis factor-related apoptosis-inducing ligand) and metalloproteinases (PEX). We and others have demonstrated that neural and mesenchymal stem cells can deliver therapeutic genes to elicit a significant antitumor response in animal models of intracranial glioma, medulloblastoma, melanoma brain metastasis, disseminated neuroblastoma and breast cancer lung metastasis. Most studies reported reduction in tumor volume (up to 90%) and increased survival of tumor-bearing animals. Complete cures have also been achieved (90% disease-free survival for >1 year of mice bearing disseminated neuroblastoma tumors). As we learn more about the biology of stem cells and the molecular mechanisms that mediate their tumor-tropism and we identify efficacious gene products for specific tumor types, the clinical utility of cell-based delivery strategies becomes increasingly evident.

  16. K1 and K3 capsular antigens of Klebsiella induce tumor necrosis factor activities.

    PubMed

    Choy, Y M; Tsang, S F; Kong, S K; Leung, K N; Parolis, H; Lee, C Y; Fung, K P

    1996-01-01

    Capsular polysaccharide antigens isolated from Klebsiella pneumoniae sero-type 1 (K1) and sero-type 3 (K3) could induce tumor necrosis factor-alpha in ICR mice. K1 and K3 capsular antigens were found to be non-toxic by brine shrimp bioassay. When injected into Ehrlich ascites tumor-bearing mice, both K1 and K3 capsular antigens exhibited significant suppression in the growth of tumor cells. The significance of these observations is discussed.

  17. Enhancement of tumor necrosis factor-induced endothelial cell injury by cycloheximide

    SciTech Connect

    Nolop, K.B.; Ryan, U.S. )

    1990-08-01

    Tumor necrosis factor (TNF), a potent polypeptide mediator released by activated monocytes and macrophages, has a number of proinflammatory effects on endothelial cells. TNF is cytotoxic to tumor cells in vivo and in vitro, but TNF-induced toxicity to endothelial cells is less well established. We now report that cycloheximide (CHX), an inhibitor of protein synthesis, renders endothelial cells highly susceptible to TNF-induced lysis. TNF alone did not change the overall rate of protein synthesis by endothelial cells, whereas the addition of CHX completely abolished protein synthesis. Endothelial cells incubated in TNF alone in high concentrations (up to 1,000 U/ml) showed minimal rounding up and release of 51Cr. Likewise, CHX alone (5 micrograms/ml) had no significant effect on endothelial cell morphology and release of 51Cr. However, incubation of endothelial cells in both CHX and TNF caused injury in a dose-dependent manner. Morphological evidence of cell retraction, rounding, and detachment began within 2 h, but specific 51Cr release did not begin to rise until after 4 h. These changes were not observed when endothelial cells were incubated with TNF/CHX at 4 degrees C. The combination of TNF/CHX was lethal to all endothelial cells tested (bovine pulmonary artery, human umbilical vein, and human aorta), with human aortic cells showing the most pronounced changes. We conclude that healthy endothelial cells are resistant to TNF-induced lysis, but inhibition of their ability to make protein renders them highly susceptible.

  18. Paradoxical role of tumor necrosis factor alpha in fumonisin-induced hepatotoxicity in mice.

    PubMed

    Sharma, Raghubir P; He, Quanren; Meredith, Filmore I; Riley, Ronald T; Voss, Kenneth A

    2002-12-01

    Tumor necrosis factor alpha (TNFalpha) is involved in fumonisin-induced hepatotoxic effects in mice. The hepatic response to fumonisin B(1) (FB(1)) was reduced in transgenic animals lacking either of the two TNFalpha receptors. In the present study, we hypothesized that the effect of a similar fumonisin treatment in animals lacking either TNFalpha or both TNFalpha receptors would be considerably less than their wild type (WT) counterparts. The FB(1)-induced increase in circulating liver enzymes was enhanced by deletion of TNFalpha or unchanged in mice lacking both TNFalpha receptors. These findings corresponded with the degree of toxicity as established by microscopic examination of liver. FB(1) induced the expression of TNFalpha in the liver of all strains, except the animals with a deleted TNFalpha gene. The FB(1)-mediated increases in liver sphingosine or sphinganine paralleled the hepatotoxic responses. It is apparent that the presence of TNFalpha is not necessary for FB(1)-induced hepatotoxicity in mice and a lack of the function of this cytokine may aggravate the hepatotoxic responses to fumonisins, perhaps by preventing repair mechanisms or by expression of other signaling molecules. These observations were in accordance with our previous finding where over-expression of TNFalpha also protected against FB(1)-mediated hepatotoxicity, and with the reported beneficial functions of low-level TNFalpha in tissue regeneration.

  19. Psoriasis Induced by Anti-Tumor Necrosis Factor Alpha Agents: A Comprehensive Review of the Literature.

    PubMed

    Ciccarelli, Fedra; De Martinis, Massimo; Sirufo, Maria Maddalena; Ginaldi, Lia

    2016-08-01

    Tumor necrosis factor alpha (TNF-α) inhibitors revolutionized the management of patients affected by autoimmune diseases such as inflammatory bowel diseases, rheumatoid arthritis, ankylosing spondylitis, psoriatic arthritis, and psoriasis. The biologic agents targeted to block TNF-α such as infliximab, adalimumab, certulizumab pegol, etanercept, and golimumab, have a good safety profile; however, with increasing, broader, and prolonged use, patients could be exposed to an increased risk of adverse reactions including a wide spectrum of dermatological conditions of different etiology and morphology. Among these, of particular interest is the development of skin immune-mediated diseases that seem to be the consequence of the paradoxical inflammation induced by anti-TNF-α therapy. The majority of these lesions are identified as psoriasiform with three main morphologies and different frequency: pustular psoriasis, signs of psoriasis, and guttate; although erythrodermic or inverted psoriasis, among others, may be observed with less frequency. The increased incidence of these dermatological immune-mediated lesions highlight the importance of the skin as a main target of the side effect of anti-TNF-α agents, while the immunopathogenetic hypothesis of these paradoxical effects are quite intriguing. The aim of this review is to collect and to analyze existing knowledge to better understand the pathogenetic mechanism of these complications and suggest new fields of investigation, improve therapeutic strategies of autoimmune diseases, and prevent and/or better address such complications. PMID:27663916

  20. Dehydroepiandrosterone protects mice from endotoxin toxicity and reduces tumor necrosis factor production.

    PubMed Central

    Danenberg, H D; Alpert, G; Lustig, S; Ben-Nathan, D

    1992-01-01

    Recent reports have demonstrated an immunomodulating activity of dehydroepiandrosterone (DHEA) different from that described for glucocorticoids. The present study was designed to test DHEA's activity in endotoxic shock and to investigate its effect on endotoxin-induced production of tumor necrosis factor (TNF). Mortality of CD-1 mice exposed to a lethal dose of lipopolysaccharide (LPS; 800 micrograms per mouse) was reduced from 95 to 24% by treatment with a single dose of DHEA, given 5 min before LPS. LPS administration resulted in high levels of TNF, a response that was significantly blocked by DHEA, both in vivo and in vitro. DHEA treatment also reduced LPS-induced increments in serum corticosterone levels, a parameter considered not to be mediated by TNF. In another experimental model, mice sensitized with D-galactosamine, followed by administration of recombinant human TNF, were subjected to 89% mortality rate, which was reduced to 55% in DHEA-treated mice. These data show that DHEA protects mice from endotoxin lethality. The protective effect is probably mediated by reduction of TNF production as well as by effecting both TNF-induced and non-TNF-induced phenomena. PMID:1444309

  1. Are circulating cytokines interleukin-6 and tumor necrosis factor alpha involved in chlorpyrifos-induced fever?

    PubMed

    Gordon, C J; Rowsey, P J

    1999-05-01

    Oral exposure to chlorpyrifos (CHP) in the rat results in an initial hypothermic response followed by a delayed fever. Fever from infection is mediated by the release of cytokines, including interleukin-6 (IL-6) and tumor necrosis factor (TNF alpha). This study determined if the CHP-induced fever involves cytokine-mediated mechanisms similar to that of infectious fevers. Long-Evans rats were gavaged with the corn oil vehicle or CHP (10-50 mg/kg). The rats were euthanized and blood collected at various times that corresponded with the hypothermic and febrile effects of CHP. Plasma IL-6, TNF alpha, cholinesterase activity (ChE), total iron, unsaturated iron binding capacity (UIBC), and zinc were measured. ChE activity was reduced by approximately 50% 4 h after CHP. There was no effect of CHP on IL-6 when measured during the period of CHP-induced hypothermia or fever. TNF alpha levels nearly doubled in female rats 48 h after 25 mg/kg CHP. The changes in plasma cytokine levels following CHP were relatively small when compared to > 1000-fold increase in IL-6 and > 10-fold rise in TNF alpha following lipopolysaccharide (E. coli; 50 microg/kg; i.p.)-induced fever. This does not preclude a role of cytokines in CHP-induced fever. Nonetheless, the data suggest that the delayed fever from CHP is unique, involving mechanisms other than TNF alpha and IL-6 release into the circulation characteristic of infectious fevers. PMID:10413184

  2. Downregulation of tumor necrosis factor and other proinflammatory biomarkers by polyphenols.

    PubMed

    Gupta, Subash C; Tyagi, Amit K; Deshmukh-Taskar, Priya; Hinojosa, Myriam; Prasad, Sahdeo; Aggarwal, Bharat B

    2014-10-01

    Human tumor necrosis factor (TNF), first isolated by our group as an anticancer agent, has been now shown to be a primary mediator of inflammation. Till today 19 different members of the TNF superfamily which interact with 29 different receptors, have been identified. Most members of this family exhibit pro-inflammatory activities, in part through the activation of the transcription factor, nuclear factor-kappaB (NF-κB). Thus TNF and the related pro-inflammatory cytokines have been shown to play a key role in most chronic diseases such as cancer, rheumatoid arthritis, cardiovascular diseases, psoriasis, neurologic diseases, Crohn's disease, and metabolic diseases. Therefore, agents that can modulate the TNF-mediated inflammatory pathways may have potential against these pro-inflammatory diseases. Although blockers of TNF-α, such as infliximab (antibody against TNF-α), adalimumab (humanized antibody against TNF-α), and etanercept (soluble form of TNFR2) have been approved for human use, these blockers exhibit numerous side effects. In this review, we describe various plant-derived polyphenols that can suppress TNF-α activated inflammatory pathways both in vitro and in vivo. These polyphenols include curcumin, resveratrol, genistein, epigallocatechin gallate, flavopiridol, silymarin, emodin, morin isoliquiritigenin, naringenin, ellagic acid, apigenin, kaempferol, catechins, myricetin, xanthohumol, fisetin, vitexin, escin, mangostin and others. Thus these polyphenols are likely to have potential against various pro-inflammatory diseases. PMID:24946050

  3. Leptin is an endogenous protective protein against the toxicity exerted by tumor necrosis factor.

    PubMed

    Takahashi, N; Waelput, W; Guisez, Y

    1999-01-01

    Tumor necrosis factor (TNF) is a central mediator of a number of important pathologies such as the systemic inflammatory response syndrome. Administration of high TNF doses induces acute anorexia, metabolic derangement, inflammation, and eventually shock and death. The in vivo effects of TNF are largely mediated by a complex network of TNF-induced cytokines and hormones acting together or antagonistically. Since TNF also induces leptin, a hormone secreted by adipocytes that modulates food intake and metabolism, we questioned the role of leptin in TNF-induced pathology. To address this question, we tested mouse strains that were defective either in leptin gene (ob/ob) or in functional leptin receptor gene (db/db), and made use of a receptor antagonist of leptin. Ob/ob and db/db mice, as well as normal mice treated with antagonist, exhibited increased sensitivity to the lethal effect of TNF. Exogenous leptin afforded protection to TNF in ob/ob mice, but failed to enhance the protective effect of endogenous leptin in normal mice. We conclude that leptin is involved in the protective mechanisms that allow an organism to cope with the potentially autoaggressive effects of its immune system.

  4. MRI brain tumor segmentation and necrosis detection using adaptive Sobolev snakes

    NASA Astrophysics Data System (ADS)

    Nakhmani, Arie; Kikinis, Ron; Tannenbaum, Allen

    2014-03-01

    Brain tumor segmentation in brain MRI volumes is used in neurosurgical planning and illness staging. It is important to explore the tumor shape and necrosis regions at di erent points of time to evaluate the disease progression. We propose an algorithm for semi-automatic tumor segmentation and necrosis detection. Our algorithm consists of three parts: conversion of MRI volume to a probability space based on the on-line learned model, tumor probability density estimation, and adaptive segmentation in the probability space. We use manually selected acceptance and rejection classes on a single MRI slice to learn the background and foreground statistical models. Then, we propagate this model to all MRI slices to compute the most probable regions of the tumor. Anisotropic 3D di usion is used to estimate the probability density. Finally, the estimated density is segmented by the Sobolev active contour (snake) algorithm to select smoothed regions of the maximum tumor probability. The segmentation approach is robust to noise and not very sensitive to the manual initialization in the volumes tested. Also, it is appropriate for low contrast imagery. The irregular necrosis regions are detected by using the outliers of the probability distribution inside the segmented region. The necrosis regions of small width are removed due to a high probability of noisy measurements. The MRI volume segmentation results obtained by our algorithm are very similar to expert manual segmentation.

  5. Enhancement of glioblastoma radioresponse by a selective COX-2 inhibitor celecoxib: Inhibition of tumor angiogenesis with extensive tumor necrosis

    SciTech Connect

    Kang, Khong Bee . E-mail: dmskkb@nccs.com.sg; Wang, Ting Ting; Woon, Chow Thai; Cheah, Elizabeth S.; Moore, Xiao Lei; Zhu Congju; Wong, Meng Cheong

    2007-03-01

    Purpose: Toward improved glioblastoma multiforme treatment, we determined whether celecoxib, a selective cyclooxygenase (COX)-2 inhibitor, could enhance glioblastoma radiosensitivity by inducing tumor necrosis and inhibiting tumor angiogenesis. Methods and Materials: U-87MG cells treated with celecoxib, irradiation, or both were assayed for clonogenic survival and angiogenic factor protein analysis (angiopoietin-1, angiopoietin-2, and vascular endothelial growth factor [VEGF]). In vivo, survival of mice intracranially implanted with U-87MG cells and treated with celecoxib and/or irradiation was monitored. Isolated tumors were assessed for tumor necrosis and tumor microvascular density by von Williebrand's factor (vWF) immunohistochemical staining. Results: Celecoxib (4 and 30 {mu}M; 24, 48, and 72 h) enhanced U-87MG cell radiosensitivity by significantly reducing clonogenic survival of irradiated cells. Angiopoietin-1 and VEGF proteins were decreased, whereas angiopoietin-2 expression increased after 72 h of celecoxib alone and when combined with irradiation. In vivo, median survival of control mice intracranially implanted with U-87MG cells was 18 days. Celecoxib (100 mg/kg/day, 2 weeks) significantly extended median survival of irradiated mice (24 Gy total) from 34 to 41 days, with extensive tumor necrosis [24.5 {+-} 8.6% of tumor region, compared with irradiation alone (2.7 {+-} 1.8%)]. Tumor microvascular density was significantly reduced in combined celecoxib and irradiated tumors (52.5 {+-} 2.9 microvessels per mm{sup 2} tumor region), compared with irradiated tumors alone (65.4 {+-} 4.0 microvessels per mm{sup 2}). Conclusion: Celecoxib significantly enhanced glioblastoma radiosensitivity, reduced clonogenic survival, and prolonged survival of glioblastoma-implanted mice by inhibition of tumor angiogenesis with extensive tumor necr0010os.

  6. Dissecting Cellulitis of the Scalp Responding to Intravenous Tumor Necrosis Factor-alpha Antagonist.

    PubMed

    Wollina, Uwe; Gemmeke, Astrid; Koch, André

    2012-04-01

    The authors present the case of a 30-year-old male patient with a severe and long-standing dissecting cellulitis of the scalp. The disease did not respond to conventional treatment, including oral antibiotics, isotretinoin, and prednisolone. Quality of life was significantly impaired. After introduction of anti-tumor necrosis factor-alpha treatment (infliximab), the malodorous discharge stopped, inflammation was reduced significantly, nodules became flat, and pain decreased. The treatment was well tolerated although he developed a temporary psoriasiform rash after the second intravenous infusion. In conclusion, anti-tumor necrosis factor-alpha treatment is a new therapeutic option in this severe and recalcitrant disorder. PMID:22708007

  7. Dissecting Cellulitis of the Scalp Responding to Intravenous Tumor Necrosis Factor-alpha Antagonist

    PubMed Central

    Wollina, Uwe; Gemmeke, Astrid; Koch, André

    2012-01-01

    The authors present the case of a 30-year-old male patient with a severe and long-standing dissecting cellulitis of the scalp. The disease did not respond to conventional treatment, including oral antibiotics, isotretinoin, and prednisolone. Quality of life was significantly impaired. After introduction of anti-tumor necrosis factor-alpha treatment (infliximab), the malodorous discharge stopped, inflammation was reduced significantly, nodules became flat, and pain decreased. The treatment was well tolerated although he developed a temporary psoriasiform rash after the second intravenous infusion. In conclusion, anti-tumor necrosis factor-alpha treatment is a new therapeutic option in this severe and recalcitrant disorder. PMID:22708007

  8. Prognostic and Therapeutic Values of Tumor Necrosis Factor-Alpha in Hepatocellular Carcinoma

    PubMed Central

    Wang, Hongmei; Liu, Jianmin; Hu, Xuemei; Liu, Shanshan; He, Baojun

    2016-01-01

    Background Hepatocellular carcinoma (HCC) causes many deaths worldwide every year, especially in Asia. It is characterized by high malignancy, recurrence, and short survival time. Inflammation is closely related to the initiation and development of HCC. Tumor necrosis factor-α (TNF-α), an essential inflammatory mediator, has been studied as a potential therapy target in many cancers. However, its potential role in HCC diagnosis and therapy is still unclear. Material/Methods In our study, we detected the TNF-α expression in both human HCC tumor tissue and HCC cell lines HepG2 and HuH7. Then, we detected the effect of anti-TNF-α treatment and it synergistic function with 5-FU in an HCC xenograft mouse model and in HCC cell lines. Results Survival analysis and Cox regression analysis based on 97 HCC patients indicated that a high level of TNF-α is an independent predictor of poor survival in HCC patients. Anti-TNF-α treatment by infliximab synergizes with Fluorouracil (5-FU) by promoting apoptosis of HCC tumor cells through complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC) effects. Conclusions Based on these data, we conclude that anti-TNF-α treatment could be a good way to increase the effect of classic chemotherapy of HCC patients, especially for the patients who have modest response to classic chemotherapy, such as 5-FU. TNF-α could also be used as a biomarker to help in early diagnosis of HCC. PMID:27739418

  9. Until Death Do Us Part: Necrosis and Oxidation Promote the Tumor Microenvironment

    PubMed Central

    Lotfi, Ramin; Kaltenmeier, Christof; Lotze, Michael T.; Bergmann, Christoph

    2016-01-01

    Summary Tumor proliferation is concomitant with autophagy, limited apoptosis, and resultant necrosis. Necrosis is associated with the release of damage-associated molecular pattern molecules (DAMPs), which act as ‘danger signals’, recruiting inflammatory cells, inducing immune responses, and promoting wound healing. Most of the current treatment strategies for cancer (chemotherapy, radiation therapy, hormonal therapy) promote DAMP release following therapy-induced tumor death by necroptosis and necrosis. Myeloid cells (monocytes, dendritic cells (DCs), and granulocytes), as well as mesenchymal stromal cells (MSCs) belong to the early immigrants in response to unscheduled cell death, initiating and modulating the subsequent inflammatory response. Responding to DAMPs, MSCs, and DCs promote an immunosuppressive milieu, while eosinophils induce oxidative conditions limiting the biologic activity of DAMPs over time and distance. Regulatory T cells are strongly affected by pattern recognition receptor signaling in the tumor microenvironment and limit immune reactivity coordinately with myeloid-derived suppressor cells. Means to ‘aerobically’ oxidize DAMPs provide a novel strategy for limiting tumor progression. The present article summarizes our current understanding of the impact of necrosis on the tumor microenvironment and the influence of oxidative conditions found within this setting. PMID:27226794

  10. Brefeldin A reduces tumor necrosis factor-α-stimulated production of inflammatory mediators by suppressing the Akt, mTOR, and NF-κB pathways in human keratinocytes.

    PubMed

    Nam, Yoon Jeong; Lee, Chung Soo

    2016-09-01

    Keratinocytes may play an important role in the pathogenesis of inflammatory skin diseases. Brefeldin A has been shown to attenuate the production and secretion of chemical mediators involved in inflammation and immune responses. However, the effect of brefeldin A on the TNF-α-stimulated production of inflammatory mediators in keratinocytes has not been studied. We investigated the effect of brefeldin A on the TNF-α-stimulated production of inflammatory mediators using HaCaT cells and primary keratinocytes in relation to the Akt, mTOR, and NF-κB pathways, which regulates the transcription genes involved in immune and inflammatory responses. Brefeldin A, Akt inhibitor, Bay 11-7085 (an inhibitor of NF-κB activation), and rapamycin (mTOR inhibitor) inhibited the TNF-α-stimulated productions of inflammatory mediators, and activations of Akt, mTOR, and NF-κB in keratinocytes. The results show that brefeldin A appears to attenuate TNF-α-stimulated inflammatory mediator production in keratinocytes by suppressing the activation of the Akt, mTOR, and NF-κB pathways. PMID:27198515

  11. Structural Biology of Tumor Necrosis Factor Demonstrated for Undergraduates Instruction by Computer Simulation

    ERIC Educational Resources Information Center

    Roy, Urmi

    2016-01-01

    This work presents a three-dimensional (3D) modeling exercise for undergraduate students in chemistry and health sciences disciplines, focusing on a protein-group linked to immune system regulation. Specifically, the exercise involves molecular modeling and structural analysis of tumor necrosis factor (TNF) proteins, both wild type and mutant. The…

  12. Genetics Home Reference: tumor necrosis factor receptor-associated periodic syndrome

    MedlinePlus

    ... Tumor necrosis factor receptor-associated periodic syndrome (TRAPS): definition, semiology, prognosis, pathogenesis, treatment, and place relative to other periodic joint diseases. Joint Bone Spine. 2004 Jul;71(4):284-90. Review. Citation on PubMed Pettersson T, Kantonen J, Matikainen S, ...

  13. Early Diversification of the Tumor Necrosis Superfamily in Teleosts: Genomic Characterization and Expression Analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The tumor necrosis factor superfamily (TNFSF) of proteins are cytokines involved in diverse immunological and developmental pathways. Little is known about their evolution or expression in lower vertebrate species. Bioinformatic searches of Zebrafish, Tetraodon, and Fugu genome and other teleost E...

  14. Tumor necrosis factor alpha gene -376 polymorphism and susceptibility to multiple sclerosis: an Egyptian study.

    PubMed

    Nada, Mona Abd el Fattah; Labib, Dalia Ahmed

    2011-03-01

    Tumor necrosis factor alpha, a proinflammatory cytokine, plays an important role in the clinical activity of relapsing-remitting multiple sclerosis and the development of progression. Dysregulation in the expression of tumor necrosis factor gene had been suggested in the pathogenesis of multiple sclerosis. Our aim was to investigate the relationship between tumor necrosis factor α-376 polymorphism with disease susceptibility and course of multiple sclerosis in Egyptian patients. Polymerase chain reaction and restriction fragment length polymorphism were carried out on 36 primary progressive multiple sclerosis patients, 36 age- and sex-matched remitting relapsing multiple sclerosis patients (diagnosed according to McDonald's Diagnostic criteria) and 30 age- and sex-matched healthy controls. The GG genotype and the guanine allele (G) were detected significantly more often in the primary progressive (p = 0.02; p = 0.004, respectively) and remitting relapsing (p = 0.015; p = 0.024, respectively) multiple sclerosis groups as compared with the healthy control group. The G allele in the examined position in tumor necrosis factor alpha might have a role as regards susceptibility in both remitting relapsing and primary progressive multiple sclerosis.

  15. Interleukin 1 or tumor necrosis factor-alpha: which is the real target in rheumatoid arthritis?

    PubMed

    Dayer, Jean-Michel

    2002-09-01

    Much debate has focused on the relative importance of interleukin 1 (IL-1) and tumor necrosis factor-alpha (TNF-alpha) in the pathophysiology of rheumatoid arthritis (RA). The production of these cytokines by synovial macrophages is tightly regulated by cell-cell contact with T cells. During this contact, several surface molecules are implicated in contact mediated cytokine production, including CD40 ligand, CD11b/c, and CD69. Apolipoprotein A-I, an acute phase reactant (APR) that declines during systemic inflammation (reverse APR), inhibits cytokine production by interfering in the T cell-monocyte interaction. Although the effects of IL-1 and TNF-alpha overlap, they have somewhat differing roles in RA on the basis of evidence from several animal models. TNF-alpha appears to play a more important role in triggering events leading to inflammation both locally and systemically, whereas IL-1 is more involved at the local level in processes leading to cartilage and bone destruction and in impeding cartilage repair. However, IL-1 and TNF-alpha strongly synergize in numerous biological functions, both in vitro and in vivo. Blockade of IL-1 and TNF-alpha simultaneously provides favorable effects in collagen and adjuvant induced arthritis, illustrating the importance of both cytokines.

  16. Effects on leukocytes after injection of tumor necrosis factor into healthy humans.

    PubMed

    van der Poll, T; van Deventer, S J; Hack, C E; Wolbink, G J; Aarden, L A; Büller, H R; ten Cate, J W

    1992-02-01

    Tumor necrosis factor (TNF) has been implicated as a proximal mediator of the septic syndrome. To evaluate the possible role of TNF in leukocyte activation in septicemia, we performed a cross-over saline-controlled study in six healthy men who were intravenously injected with recombinant human TNF (50 micrograms/m2), and analyzed changes in circulating white blood cells and parameters for neutrophil and monocyte activation. TNF elicited a very rapid neutropenia, reaching a nadir after 15 minutes, followed by a neutrophilia. Lymphocytes showed a sustained decrease, whereas monocytes declined transiently. TNF injection was also associated with neutrophil activation, as reflected by a mean fivefold increase in the plasma concentrations of elastase-alpha 1-antitrypsin complexes and a mean sevenfold increase in plasma lactoferrin levels. Serum neopterin, a marker of monocyte activation, was significantly increased 24 hours after the administration of TNF. These changes occurred in the absence of detectable complement activation, as indicated by unchanged C3a-desarg plasma values. Serum interleukin-6 showed a nearly 40-fold increase after TNF injection, whereas interleukin-1 remained undetectable throughout. We conclude that the systemic release of TNF, triggered early after invasive infection, may be involved in the alterations in circulating leukocyte numbers and in the activation of leukocytes, during the development of the septic syndrome.

  17. Tumor necrosis factor unresponsiveness after surgery in bile duct-ligated rats.

    PubMed

    Houdijk, A P; Boermeester, M A; Wesdorp, R I; Hack, C E; Van Leeuwen, P A

    1996-12-01

    In obstructive jaundice, postoperative complications are related to gut-derived endotoxemia and possibly mediated by cytokines such as tumor necrosis factor (TNF) and interleukin-6 (IL-6). This study investigated the course of IL-6 and TNF after surgery in bile duct-ligated rats (BDL) treated with and without an enteral endotoxin binder (cholestyramine). Endotoxin in rat plasma was determined by blocking cytokine production in whole blood cell cultures stimulated by rat plasma using antibodies directed against the endotoxin (CD14) receptor. Surgery elicited a significant IL-6 response in saline-treated BDL rats (BDL-SAL). TNF, however, remained at its low preoperative levels. Cholestyramine treatment resulted in undetectable preoperative TNF and IL-6 levels, but levels of both cytokines were significantly raised after surgery. Endotoxin, as determined by the CD14 blockade test, was identified in the BDL-SAL group, before (time 0) and after surgery (2 and 4 h), whereas in the cholestyramine group endotoxin was only present at 2 h after surgery. The lack of a postoperative plasma TNF response in the BDL-SAL group in the continuous presence of endotoxin suggests endotoxin tolerance for TNF production in obstructive jaundice.

  18. Microglial derived tumor necrosis factor-α drives Alzheimer's disease-related neuronal cell cycle events.

    PubMed

    Bhaskar, Kiran; Maphis, Nicole; Xu, Guixiang; Varvel, Nicholas H; Kokiko-Cochran, Olga N; Weick, Jason P; Staugaitis, Susan M; Cardona, Astrid; Ransohoff, Richard M; Herrup, Karl; Lamb, Bruce T

    2014-02-01

    Massive neuronal loss is a key pathological hallmark of Alzheimer's disease (AD). However, the mechanisms are still unclear. Here we demonstrate that neuroinflammation, cell autonomous to microglia, is capable of inducing neuronal cell cycle events (CCEs), which are toxic for terminally differentiated neurons. First, oligomeric amyloid-beta peptide (AβO)-mediated microglial activation induced neuronal CCEs via the tumor-necrosis factor-α (TNFα) and the c-Jun Kinase (JNK) signaling pathway. Second, adoptive transfer of CD11b+ microglia from AD transgenic mice (R1.40) induced neuronal cyclin D1 expression via TNFα signaling pathway. Third, genetic deficiency of TNFα in R1.40 mice (R1.40-Tnfα(-/-)) failed to induce neuronal CCEs. Finally, the mitotically active neurons spatially co-exist with F4/80+ activated microglia in the human AD brain and that a portion of these neurons are apoptotic. Together our data suggest a cell-autonomous role of microglia, and identify TNFα as the responsible cytokine, in promoting neuronal CCEs in the pathogenesis of AD.

  19. Quantitative Proteomics Reveals the Induction of Mitophagy in Tumor Necrosis Factor-α-activated (TNFα) Macrophages*

    PubMed Central

    Bell, Christina; English, Luc; Boulais, Jonathan; Chemali, Magali; Caron-Lizotte, Olivier; Desjardins, Michel; Thibault, Pierre

    2013-01-01

    Macrophages play an important role in innate and adaptive immunity as professional phagocytes capable of internalizing and degrading pathogens to derive antigens for presentation to T cells. They also produce pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) that mediate local and systemic responses and direct the development of adaptive immunity. The present work describes the use of label-free quantitative proteomics to profile the dynamic changes of proteins from resting and TNF-α-activated mouse macrophages. These analyses revealed that TNF-α activation of macrophages led to the down-regulation of mitochondrial proteins and the differential regulation of several proteins involved in vesicle trafficking and immune response. Importantly, we found that the down-regulation of mitochondria proteins occurred through mitophagy and was specific to TNF-α, as other cytokines such as IL-1β and IFN-γ had no effect on mitochondria degradation. Furthermore, using a novel antigen presentation system, we observed that the induction of mitophagy by TNF-α enabled the processing and presentation of mitochondrial antigens at the cell surface by MHC class I molecules. These findings highlight an unsuspected role of TNF-α in mitophagy and expanded our understanding of the mechanisms responsible for MHC presentation of self-antigens. PMID:23674617

  20. Effects of tumor necrosis factor on the hypothalamic-pituitary-testicular axis in healthy men.

    PubMed

    van der Poll, T; Romijn, J A; Endert, E; Sauerwein, H P

    1993-03-01

    Tumor necrosis factor (TNF) has been implicated as a mediator of many diseases associated with alterations in hypothalamic-pituitary-testicular (HPT) function. To assess the effects of TNF on the HPT axis, we performed a saline-controlled cross-over study in six healthy men, sequentially measuring serum concentrations of gonadotropins, testosterone, and sex hormone-binding globulin (SHBG) after a bolus intravenous injection of recombinant human TNF (50 micrograms/m2). TNF induced an early and transient increase in serum luteinizing hormone (LH) levels from 6.0 +/- 1.0 to a maximum of 8.0 +/- 1.0 U/L after 30 minutes (P < .005), whereas the concentrations of follicle-stimulating hormone (FSH) remained unchanged. The increase in LH concentrations was followed by a transient decrease in serum testosterone levels from 18.2 +/- 0.3 to 9.1 +/- 1.2 nmol/L after 4 hours (P < .0001). Remarkably, LH levels had returned to control values when the testosterone level reached its nadir. SHBG levels were not affected by TNF. Our results suggest that TNF affects the HPT axis at multiple levels and may be involved either directly or indirectly in the decrease in circulating testosterone concentrations in systemic illnesses.

  1. Essential protective role of tumor necrosis factor receptor 2 in neurodegeneration

    PubMed Central

    Dong, Yun; Fischer, Roman; Naudé, Petrus J. W.; Maier, Olaf; Nyakas, Csaba; Duffey, Maëlle; Van der Zee, Eddy A.; Dekens, Doortje; Douwenga, Wanda; Herrmann, Andreas; Guenzi, Eric; Kontermann, Roland E.; Pfizenmaier, Klaus; Eisel, Ulrich L. M.

    2016-01-01

    Despite the recognized role of tumor necrosis factor (TNF) in inflammation and neuronal degeneration, anti-TNF therapeutics failed to treat neurodegenerative diseases. Animal disease models had revealed the antithetic effects of the two TNF receptors (TNFR) in the central nervous system, whereby TNFR1 has been associated with inflammatory degeneration and TNFR2 with neuroprotection. We here show the therapeutic potential of selective inhibition of TNFR1 and activation of TNFR2 by ATROSAB, a TNFR1-selective antagonistic antibody, and EHD2-scTNFR2, an agonistic TNFR2-selective TNF, respectively, in a mouse model of NMDA-induced acute neurodegeneration. Coadministration of either ATROSAB or EHD2-scTNFR2 into the magnocellular nucleus basalis significantly protected cholinergic neurons and their cortical projections against cell death, and reverted the neurodegeneration-associated memory impairment in a passive avoidance paradigm. Simultaneous blocking of TNFR1 and TNFR2 signaling, however, abrogated the therapeutic effect. Our results uncover an essential role of TNFR2 in neuroprotection. Accordingly, the therapeutic activity of ATROSAB is mediated by shifting the balance of the antithetic activity of endogenous TNF toward TNFR2, which appears essential for neuroprotection. Our data also explain earlier results showing that complete blocking of TNF activity by anti-TNF drugs was detrimental rather than protective and argue for the use of next-generation TNFR-selective TNF therapeutics as an effective approach in treating neurodegenerative diseases. PMID:27791020

  2. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus.

    PubMed

    Alejo, Alí; Ruiz-Argüello, M Begoña; Ho, Yin; Smith, Vincent P; Saraiva, Margarida; Alcami, Antonio

    2006-04-11

    Variola virus (VaV) is the causative agent of smallpox, one of the most devastating diseases encountered by man, that was eradicated in 1980. The deliberate release of VaV would have catastrophic consequences on global public health. However, the mechanisms that contribute to smallpox pathogenesis are poorly understood at the molecular level. The ability of viruses to evade the host defense mechanisms is an important determinant of viral pathogenesis. Here we show that the tumor necrosis factor receptor (TNFR) homologue CrmB encoded by VaV functions not only as a soluble decoy TNFR but also as a highly specific binding protein for several chemokines that mediate recruitment of immune cells to mucosal surfaces and the skin, sites of virus entry and viral replication at late stages of smallpox. CrmB binds chemokines through its C-terminal domain, which is unrelated to TNFRs, was named smallpox virus-encoded chemokine receptor (SECRET) domain and uncovers a family of poxvirus chemokine inhibitors. An active SECRET domain was found in another viral TNFR (CrmD) and three secreted proteins encoded by orthopoxviruses. These findings identify a previously undescribed chemokine-binding and inhibitory domain unrelated to host chemokine receptors and a mechanism of immune modulation in VaV that may influence smallpox pathogenesis.

  3. Functional identification of the alveolar edema reabsorption activity of murine tumor necrosis factor-alpha.

    PubMed

    Elia, Nadia; Tapponnier, Maxime; Matthay, Michael A; Hamacher, Jurg; Pache, Jean-Claude; Brundler, Marie-Anne; Totsch, Martin; De Baetselier, Patrick; Fransen, Lucie; Fukuda, Norimasa; Morel, Denis R; Lucas, Rudolf

    2003-11-01

    Tumor necrosis factor-alpha (TNF-alpha) activates sodium channels in Type II alveolar epithelial cells, an important mechanism for the reported fluid resorption capacity of the cytokine. Both TNF-alpha receptor-dependent and -independent effects were proposed for this activity in vitro, the latter mechanism mediated by the lectin-like domain of the molecule. In this study, the relative contribution of the receptor-dependent versus receptor-independent activities was investigated in an in situ mouse lung model and an ex vivo rat lung model. Fluid resorption due to murine TNF-alpha (mTNF-alpha) was functional in mice that were genetically deficient in both types of mTNF-alpha receptor, establishing the importance of mTNF-alpha receptor-independent effects in this species. In addition, we assessed the capacity of an mTNF-alpha-derived peptide (mLtip), which activates sodium transport by a receptor-independent mechanism, to reduce lung water content in an isolated, ventilated, autologous blood-perfused rat lung model. The results show that in this model, mLtip, in contrast to mTNF-alpha, produced a progressive recovery of dynamic lung compliance and airway resistance after alveolar flooding. There was also a significant reduction in lung water. These results indicate that the receptor-independent lectin-like domain of mTNF-alpha has a potential physiological role in the resolution of alveolar edema in rats and mice.

  4. Synthesis and Characterization of a Thermally Responsive Tumor Necrosis Factor Antagonist

    PubMed Central

    Shamji, Mohammed F.; Chen, Jun; Friedman, Allan H.; Richardson, William J.; Chilkoti, Ashutosh; Setton, Lori A.

    2008-01-01

    Numerous antagonists of tumor necrosis factor alpha (TNFα) have been developed to attenuate inflammation and accompanying pain in many disease processes. Soluble TNF receptor type II (sTNFRII) is one such antagonist that sequesters TNFα away from target receptors and attenuates its activity. Systemic delivery of soluble TNF receptors or other antagonists may have deleterious side effects associated with immune suppression, so that strategies for locally targeted drug delivery are of interest. Elastin-like polypeptides (ELPs) are biopolymers capable of in situ drug depot formation through thermally-driven supramolecular complexes at physiological temperatures. A recombinant fusion protein between ELP and sTNFRII was designed and evaluated for retention of bivalent functionality. Thermal sensitivity was observed by formation of supramolecular submicron-sized particles at 32°C, with gradual resolubilization from the depot observed at physiological temperatures. In vitro refolding of the sTNFRII domain was required and the purified product exhibited an equilibrium dissociation constant for interacting with TNFα that was seven-fold higher than free sTNFRII. Furthermore, anti-TNF activity was observed in inhibiting TNFα-mediated cytotoxicity in the murine L929 fibrosarcoma assay. Potential advantages of this ELP-sTNFRII fusion protein as an anti-TNFa drug depot include facility of injection, in situ depot formation, low endotoxin content, and functionality against TNFα. PMID:18547669

  5. Down-regulation of tumor necrosis factor expression by pentoxifylline in cancer patients: a pilot study.

    PubMed

    Dezube, B J; Sherman, M L; Fridovich-Keil, J L; Allen-Ryan, J; Pardee, A B

    1993-01-01

    The wasting syndrome (cachexia) characterized by anorexia, malaise, and weight loss is observed in many patients with cancer or chronic infection. The excessive levels of tumor necrosis factor-alpha (TNF)/cachectin reported in 50% of cancer patients exhibiting clinically active disease may therefore mediate, at least in part, the cachexia associated with malignancy. Pentoxifylline, a substituted methylxanthine approved for treatment of intermittent claudication, has been shown in preclinical studies to down-regulate TNF RNA expression as well as TNF activity. We report that pentoxifylline suppressed TNF RNA levels on all three occasions in patients with initially elevated levels of TNF RNA. Pentoxifylline did not suppress TNF RNA to subnormal levels in all five patients with initially normal TNF RNA levels. Four patients reported an increased sense of well-being, improved appetite and ability to perform the activities of daily living. Two of these five patients with normal TNF levels each had a weight gain of more than 5% after 3 weeks of pentoxifylline therapy suggesting that, although TNF may be important in the pathogenesis of cancer cachexia, other anorexia-producing cytokines that are potentially affected by pentoxifylline may also be involved. No severe adverse effects were observed. Taken together these findings suggest that pentoxifylline can down-regulate TNF expression and improve the sense of well-being in cancer patients. A larger study with a randomized, double-blind, placebo-controlled design and more sophisticated estimates of quality of life will be needed to confirm these observations.

  6. Prostaglandin E2 inhibits tumor necrosis factor-alpha RNA through PKA type I.

    PubMed

    Stafford, Jennifer B; Marnett, Lawrence J

    2008-02-01

    Tumor necrosis factor-alpha (TNF-alpha) is a cytokine that may contribute to the pathogenesis of septic shock, rheumatoid arthritis, cancer, and diabetes. Prostaglandins endogenously produced by macrophages act in an autocrine fashion to limit TNF-alpha production. We investigated the timing and signaling pathway of prostaglandin-mediated inhibition of TNF-alpha production in Raw 264.7 and J774 macrophages. TNF-alpha mRNA levels were rapidly modulated by PGE(2) or carbaprostacylin. PGE(2) or carbaprostacyclin prevented and rapidly terminated on-going TNF-alpha gene transcription within 15 min of prostaglandin treatment. Selective activation of PKA type I, but not PKA type II or Epac, with chemical analogs of cAMP was sufficient to inhibit LPS-induced TNF-alpha mRNA levels. The mechanisms by which prostaglandins limit TNF-alpha mRNA levels may underlie endogenous regulatory mechanisms that limit inflammation, and may have important implications for understanding chronic inflammatory disease pathogenesis. PMID:18060853

  7. Erythropoietin protects myocardin-expressing cardiac stem cells against cytotoxicity of tumor necrosis factor-{alpha}

    SciTech Connect

    Madonna, Rosalinda; Shelat, Harnath; Xue, Qun; Willerson, James T.; De Caterina, Raffaele; Geng, Yong-Jian

    2009-10-15

    Cardiac stem cells are vulnerable to inflammation caused by infarction or ischemic injury. The growth factor, erythropoietin (Epo), ameliorates the inflammatory response of the myocardium to ischemic injury. This study was designed to assess the role of Epo in regulation of expression and activation of the cell death-associated intracellular signaling components in cardiac myoblasts stimulated with the proinflammatory cytokine tumor necrosis factor (TNF)-{alpha}. Cardiac myoblasts isolated from canine embryonic hearts characterized by expression of myocardin A, a promyogenic transcription factor for cardiovascular muscle development were pretreated with Epo and then exposed to TNF-{alpha}. Compared to untreated cells, the Epo-treated cardiac myoblasts exhibited better morphology and viability. Immunoblotting revealed lower levels of active caspase-3 and reductions in iNOS expression and NO production in Epo-treated cells. Furthermore, Epo pretreatment reduced nuclear translocation of NF-{kappa}B and inhibited phosphorylation of inhibitor of kappa B (I{kappa}B) in TNF-{alpha}-stimulated cardiac myoblasts. Thus, Epo protects cardiac myocyte progenitors or myoblasts against the cytotoxic effects of TNF-{alpha} by inhibiting NF-{kappa}B-mediated iNOS expression and NO production and by preventing caspase-3 activation.

  8. In vitro and in vivo induction of tumor necrosis factor alpha by Borrelia burgdorferi.

    PubMed Central

    Defosse, D L; Johnson, R C

    1992-01-01

    Tumor necrosis factor alpha (TNF-alpha) is an immunoregulatory cytokine with many biological activities including the mediation of inflammation. We examined sera and synovial fluids from patients seropositive for infection with Borrelia burgdorferi using a radioimmunoassay specific for TNF-alpha. Significant elevation of TNF-alpha was found in the sera and synovial fluids of patients examined, while controls showed no elevation. Sera of mice infected with B. burgdorferi contained elevated levels of TNF-alpha which varied during the course of a 24-day infection. To determine whether B. burgdorferi is capable of inducing TNF-alpha production, spirochetes were added to adherent human peripheral blood mononuclear cells or mouse peritoneal exudate cells and 24 h later supernatants were assayed. TNF-alpha induction occurred in a dose-dependent manner. The maximum stimulation occurred when a ratio of 1 to 10 spirochetes per mononuclear cell was used. At optimal concentrations, induction was not diminished by inactivation of spirochetes or pretreatment with polymyxin B. These results suggest that an increase in TNF-alpha production may occur as a result of infection with B. burgdorferi. PMID:1541526

  9. Perirenal fat promotes renal arterial endothelial dysfunction in obese swine through tumor necrosis factor-α

    PubMed Central

    Ma, Shuangtao; Zhu, Xiang-Yang; Eirin, Alfonso; Woollard, John R.; Jordan, Kyra L.; Tang, Hui; Lerman, Amir; Lerman, Lilach O.

    2015-01-01

    Purpose Perirenal fat is associated with poor blood pressure control and chronic kidney disease, but the underlying mechanisms remain elusive. We tested the hypothesis that perirenal fat impairs renal arterial endothelial function in pigs with obesity-metabolic derangements (ObM). Material and Methods Fourteen domestic pigs were studied after 16 weeks of a high-fat/high-fructose diet (ObM) or standard chow (Lean). Renal blood flow (RBF), glomerular filtration rate (GFR), and visceral fat volumes were studied in-vivo with CT. Renal arterial endothelial function was also studied ex-vivo in the organ bath. Results ObM pigs demonstrated increased body weight, blood pressure, cholesterol, and intra-abdominal fat compared to lean pigs, and perirenal fat volume was significantly larger. RBF and GFR were markedly elevated, while urinary protein level was preserved. Ex-vivo acetylcholine-induced endothelium-dependent vasodilation of renal artery rings was substantially impaired in ObM compared to Lean. Endothelial function was further blunted in both ObM and Lean arterial rings by incubation with perirenal fat harvested from ObM, but not from Lean pigs, and was restored by inhibition of tumor necrosis factor (TNF)-α. ObM perirenal fat also showed increased pro-inflammatory macrophage infiltration and TNF-α expression. Conclusions ObM perirenal fat directly causes renal artery endothelial dysfunction, partly mediated by TNF-α. PMID:26417644

  10. Endotoxin and tumor necrosis factor induce interleukin-1 gene expression in adult human vascular endothelial cells.

    PubMed

    Libby, P; Ordovas, J M; Auger, K R; Robbins, A H; Birinyi, L K; Dinarello, C A

    1986-08-01

    Interleukin 1 (IL-1) can induce potentially pathogenic functions of vascular endothelial cells. This mediator was formerly thought to be produced primarily by activated macrophages. We report here that bacterial endotoxin and recombinant human tumor necrosis factor cause accumulation of IL-1 beta mRNA in adult human vascular endothelial cells. IL-1 alpha mRNA was also detected when endothelial cells were exposed to endotoxin under "superinduction" conditions in the presence of cycloheximide. Metabolic labeling of these cells during endotoxin stimulation demonstrated increased synthesis and secretion of immunoprecipitable IL-1 protein that comigrated electrophoretically with the predominant monocyte species. In parallel with increased IL-1 mRNA and protein, endothelial cells exposed to endotoxin also release biologically active IL-1 that was neutralized by anti-IL-1-antibody. Because bloodborne agents must traverse the endothelium before entering tissues, endothelial IL-1 production induced by microbial products or other injurious stimuli could initiate local responses to invasion. Endothelial cells are both a source of and target for IL-1; accordingly, this novel autocrine mechanism might play an early role in the pathogenesis of vasculitis, allograft rejection, and arteriosclerosis.

  11. Role of Reactive Oxygen Species in Tumor Necrosis Factor-alpha Induced Endothelial Dysfunction

    PubMed Central

    Chen, Xiuping; Andresen1, Bradley T.; Hill, Michael; Zhang, Jing; Booth, Frank; Zhang, Cuihua

    2010-01-01

    Endothelial cell injury and dysfunction are the major triggers of pathophysiological processes leading to cardiovascular disease. Endothelial dysfunction (ED) has been implicated in atherosclerosis, hypertension, coronary artery disease, vascular complications of diabetes, chronic renal failure, insulin resistance and hypercholesterolemia. Although now recognized as a class of physiological second messengers, reactive oxygen species (ROS) are important mediators in cellular injury, specifically, as a factor in endothelial cell damage. Uncontrolled ROS production and/or decreased antioxidant activity results in a deleterious state referred to as ‘oxidative stress’. A candidate factor in causing ROS production in endothelial cells is tumor necrosis factor alpha (TNF-α), a pleiotropic inflammatory cytokine. TNF-α has been shown to both be secreted by endothelial cells and to induce intracellular ROS formation. These observations provide a potential mechanism by which TNF-α may activate and injure endothelial cells resulting in ED. In this review, we focus on the relationship between intracellular ROS formation and ED in endothelial cells or blood vessels exposed to TNF-α to provide insight into the role of this important cytokine in cardiovascular disease. PMID:20559453

  12. Leukotriene B4 and tumor necrosis factor release from leukocytes: effect of peritoneal dialysate.

    PubMed

    Jörres, A; Jörres, D; Gahl, G M; Kessel, M; Müller, C; Köttgen, E; Serke, S; Schulz, E; Mahiout, A

    1991-01-01

    The effect of peritoneal dialysate on the capacity of peripheral blood polymorphonuclear (PMNL) and mononuclear leukocytes (MNC) to release leukotriene B4 (LTB4) and tumor necrosis factor alpha (TNF alpha) was investigated in vitro. Following density gradient separation, aliquots of 5 x 10(6) PMNL or MNC were incubated in peritoneal dialysis fluid containing 1.5% glucose or Hanks' buffer (= control) for 1-2 h at 37 degrees C. TNF alpha and LTB4 production was stimulated with Escherichia coli lipopolysaccharide (LPS) and calcium ionophore A23187, respectively. MNC incubated in buffer and LPS produced (mean +/- SD) 1,006 +/- 522 pg TNF alpha/5 x 10(6) cells; no significant amounts of TNF alpha were detectable in the presence of dialysate. An inhibition of TNF alpha release was also observed in MNC exposed to bicarbonate-buffered dialysates (pH 7.40) and 4.25% and 1.5% glucose solution with physiologic osmolality. Incubation of PMNL in Hanks' buffer followed by A23187 stimulation led to production of 29.1 +/- 19.2 ng LTB4/5 x 10(6) cells, whereas glucose-incubated cells were refractory to ionophore stimulation (less than 0.1 ng LTB4/5 x 10(6) cells). The failure of dialysate-exposed leukocytes to release inflammatory mediators in response to adequate stimuli may contribute to the impairment of cellular host defense in the setting of continuous ambulatory peritoneal dialysis.

  13. AMPK dependent protective effects of metformin on tumor necrosis factor-induced apoptotic liver injury.

    PubMed

    Cai, Lu; Hu, Kai; Lin, Ling; Ai, Qing; Ge, Pu; Liu, Yiqing; Dai, Jie; Ye, Bin; Zhang, Li

    2015-09-25

    Tumor necrosis factor α (TNF-α)-induced cellular apoptosis represents a common pathological mechanism underlying the progression of various liver disorders. Recently studies revealed that the anti-diabetic metformin provided protective benefits in several animal models of liver injury. In the present study, the potential modulatory effects of metformin on TNF-α-dependent apoptotic liver damage was investigated in mice with TNF-α/d-galactosamine (D-Gal)-induced liver injury. The results indicated that treatment with metformin significantly suppressed the elevation of plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST), the activation of caspase cascade and the induction of cleaved caspase-3. Morphological analysis showed that metformin alleviated histopathological abnormalities and reduced TUNEL-positive apoptotic cells. Co-administration of the AMPK inhibitor compound C completely abolished the inhibitory effects of metformin on caspase cascade activation, significantly reversed the beneficial effects of metformin on histopathological abnormalities and hepatocytes apoptosis, and partially abolished the suppressive effects of metformin on plasma ALT elevation. These data indicated that metformin effectively alleviated TNF-α/D-Gal-induced apoptotic liver injury and these beneficial effects were at least partially mediated by AMPK.

  14. Adenoviral Delivery of Tumor Necrosis Factor-α and Interleukin-2 Enables Successful Adoptive Cell Therapy of Immunosuppressive Melanoma.

    PubMed

    Siurala, Mikko; Havunen, Riikka; Saha, Dipongkor; Lumen, Dave; Airaksinen, Anu J; Tähtinen, Siri; Cervera-Carrascon, Víctor; Bramante, Simona; Parviainen, Suvi; Vähä-Koskela, Markus; Kanerva, Anna; Hemminki, Akseli

    2016-08-01

    Adoptive T-cell transfer is a promising treatment approach for metastatic cancer, but efficacy in solid tumors has only been achieved with toxic pre- and postconditioning regimens. Thus, adoptive T-cell therapies would benefit from complementary modalities that enable their full potential without excessive toxicity. We aimed to improve the efficacy and safety of adoptive T-cell transfer by using adenoviral vectors for direct delivery of immunomodulatory murine cytokines into B16.OVA melanoma tumors with concomitant T-cell receptor transgenic OT-I T-cell transfer. Armed adenoviruses expressed high local and low systemic levels of cytokine when injected into B16.OVA tumors, suggesting safety of virus-mediated cytokine delivery. Antitumor efficacy was significantly enhanced with adenoviruses coding for murine interleukin-2 (mIL-2) and tumor necrosis factor-α (mTNFα) when compared with T-cell transfer alone or viruses alone. Further improvement in efficacy was achieved with a triple combination of mIL-2, mTNFα, and OT-I T-cells. Mechanistic studies suggest that mIL-2 has an important role in activating T-cells at the tumor, while mTNFα induces chemokine expression. Furthermore, adenovirus treatments enhanced tumor-infiltration of OT-I T-cells as demonstrated by SPECT/CT imaging of (111)In-labeled cells. Our results suggest the utility of cytokine-coding adenoviruses for improving the efficacy of adoptive T-cell therapies.

  15. Receptor-interacting protein kinase 3-mediated programmed cell necrosis in rats subjected to focal cerebral ischemia-reperfusion injury

    PubMed Central

    DONG, YANRU; BAO, CUIFEN; YU, JINGWEI; LIU, XIA

    2016-01-01

    In the current study, the activation of tumor necrosis factor-α receptor 1 (TNFR1) and receptor-interacting protein kinase 3 (RIP3) were investigated following cerebral ischemia-reperfusion injury (CIRI). Healthy SD rats were randomly divided into 3 groups: Sham operation group, model group and inhibitor group. The model group and inhibitor group were further divided into 4 subgroups of 6, 12, 24 and 72 h following CIRI. Using right middle cerebral artery embolization, the CIRI model was generated. To confirm that the CIRI model was established, neurological scores, TTC staining and brain water content measurements were conducted. Immunohistochemistry and western blotting were conducted to investigate the expression of TNFR1 and RIP3 in the cerebral cortex. It was observed that nerve cell necrosis occurred following 6 h of CIRI. The appearance of necrotic cells was gradually increased with increasing CIRI duration. TNFR1 and RIP3 were positively expressed following 6 h of CIRI. With increasing durations of CIRI, the protein expression levels of TNFR1 and RIP3 were significantly increased. Pre-administration with Z-VAD-FMK (zVAD) significantly increased the protein level of RIP3, however, had no effect on the levels of TNFR1, and was accompanied by a reduction in necrosis. In conclusion, RIP3-mediated cell necrosis was enhanced by caspase blockade zVAD and the function of zVAD was independent of TNFR1 signaling following IR. PMID:27220678

  16. Attenuation of tumor necrosis factor-induced endothelial cell cytotoxicity and neutrophil chemiluminescence

    SciTech Connect

    Zheng, H.; Crowley, J.J.; Chan, J.C.; Hoffmann, H.; Hatherill, J.R.; Ishizaka, A.; Raffin, T.A. )

    1990-11-01

    Our laboratory has previously shown that the administration of tumor necrosis factor (TNF), a cytokine produced by activated mononuclear cells, to guinea pigs produces a syndrome similar to gram-negative sepsis or ARDS. Pentoxifylline (PTX), a methylxanthine, protects against TNF-induced and sepsis-induced acute lung injury in vivo. We now report on in vitro cellular studies of PMN-mediated cellular injury and its attenuation. We studied TNF-induced bovine pulmonary artery endothelial cell (EC) cytotoxicity both with and without PMN. A 51Cr release assay was used to measure EC damage. Further, we investigated PMN function in response to TNF by measuring chemiluminescence. Agents that attenuate EC damage and PMN activation were evaluated in the above assays. Results revealed that TNF causes EC injury (p less than 0.05) and PMN increase TNF-induced EC injury. Furthermore, PTX, aminophylline (AMPH), caffeine, and forskolin attenuate TNF-induced EC cytotoxicity only in the presence of PMN (p less than 0.05). Of interest, dibutyryl cAMP (DBcAMP) protects EC from TNF-induced injury both with and without PMN. Agents that may increase cAMP levels in PMN (PTX, DBcAMP, forskolin, isobutyl methylxanthine, and terbutaline) significantly attenuate TNF-induced PMN chemiluminescence (p less than 0.05). We conclude that TNF causes EC damage and PMN increase this damage. Furthermore, PTX, AMPH, caffeine, and forskolin can attenuate TNF-induced EC injury in the presence of PMN, whereas DBcAMP attenuates TNF-induced EC injury with and without PMN. In addition, agents that may increase intracellular cAMP levels in PMN can attenuate TNF-induced PMN chemiluminescence. Thus, these agents likely attenuate TNF-induced PMN-mediated EC injury through their inhibitory effects on PMN.

  17. Selection of novel analogs of thalidomide with enhanced tumor necrosis factor alpha inhibitory activity.

    PubMed Central

    Corral, L. G.; Muller, G. W.; Moreira, A. L.; Chen, Y.; Wu, M.; Stirling, D.; Kaplan, G.

    1996-01-01

    BACKGROUND: Tumor necrosis factor alpha (TNF alpha) is thought to mediate both protective and detrimental manifestations of the inflammatory response. Recently, thalidomide (alpha-N-phthalimidoglutarimide) was shown to partially inhibit monocyte TNF alpha production (by 50-70%) both in vivo and in vitro. More efficient inhibition of TNF alpha may, however, be necessary to rescue the host from more acute and extensive toxicities of TNF alpha-mediated inflammation. MATERIALS AND METHODS: Three structural analogues of thalidomide were selected for study based on increased activity against TNF alpha production. The parent drug and the analogs were tested in vitro in human peripheral blood mononuclear cell cultures for their effects on lipopolysaccharide (LPS) induced cytokine protein and mRNA production using ELISAs and Northern blot hybridization. The in vitro effects of the drugs were then confirmed in vivo in a mouse model of LPS induced lethality. RESULTS: The new compounds (two esters and one amide) showed increased inhibition of TNF alpha production by LPS-stimulated human monocytes, relative to the parent drug thalidomide. The analogs and the parent drug enhanced the production of interleukin 10 (IL-10), but had little effect on IL-6 and IL-1 beta protein and mRNA production. When tested in vivo, the amide analog protected 80% of LPS-treated mice against death from endotoxin induced shock. CONCLUSIONS: Analogs of thalidomide designed to better inhibit TNF alpha production in vitro have correspondingly greater efficacy in vivo. These finding may have therapeutic implication for the treatment of human diseases characterized by acute and extensive TNF alpha production such as tuberculous meningitis or toxic shock. Images FIG. 3 FIG. 4 PMID:8827720

  18. Regulatory mechanisms underlying sepsis progression in patients with tumor necrosis factor-α genetic variations

    PubMed Central

    LIU, YANGZHOU; HAN, NING; LI, QINCHUAN; LI, ZENGCHUN

    2016-01-01

    The present study aimed to investigate the regulatory mechanisms underlying sepsis progression in patients with tumor necrosis factor (TNF)-α genetic variations. The GSE5760 expression profile data, which was downloaded from the Gene Expression Omnibus database, contained 30 wild-type (WT) and 28 mutation (MUT) samples. Differentially expressed genes (DEGs) between the two types of samples were identified using the Student's t-test, and the corresponding microRNAs (miRNAs) were screened using WebGestalt software. An integrated miRNA-DEG network was constructed using the Cytoscape software, based on the interactions between the DEGs, as identified using the Search Tool for the Retrieval of Interacting Genes/Proteins database, and the correlation between miRNAs and their target genes. Furthermore, Gene Ontology and pathway enrichment analyses were conducted for the DEGs using the Database for Annotation, Visualization and Integrated Discovery and the KEGG Orthology Based Annotation System, respectively. A total of 390 DEGS between the WT and MUT samples, along with 11 -associated miRNAs, were identified. The integrated miRNA-DEG network consisted of 38 DEGs and 11 miRNAs. Within this network, COPS2 was found to be associated with transcriptional functions, while FUS was found to be involved in mRNA metabolic processes. Other DEGs, including FBXW7 and CUL3, were enriched in the ubiquitin-mediated proteolysis pathway. In addition, miR-15 was predicted to target COPS2 and CUL3. The results of the present study suggested that COPS2, FUS, FBXW7 and CUL3 may be associated with sepsis in patients with TNF-α genetic variations. In the progression of sepsis, FBXW7 and CUL3 may participate in the ubiquitin-mediated proteolysis pathway, whereas COPS2 may regulate the phosphorylation and ubiquitination of the FUS protein. Furthermore, COPS2 and CUL3 may be novel targets of miR-15. PMID:27347057

  19. Bacterial Delivery of Staphylococcus aureus α-Hemolysin Causes Regression and Necrosis in Murine Tumors

    PubMed Central

    St. Jean, Adam T; Swofford, Charles A; Panteli, Jan T; Brentzel, Zachary J; Forbes, Neil S

    2014-01-01

    Bacterial therapies, designed to manufacture therapeutic proteins directly within tumors, could eliminate cancers that are resistant to other therapies. To be effective, a payload protein must be secreted, diffuse through tissue, and efficiently kill cancer cells. To date, these properties have not been shown for a single protein. The gene for Staphylococcus aureus α-hemolysin (SAH), a pore-forming protein, was cloned into Escherichia coli. These bacteria were injected into tumor-bearing mice and volume was measured over time. The location of SAH relative to necrosis and bacterial colonies was determined by immunohistochemistry. In culture, SAH was released and killed 93% of cancer cells in 24 hours. Injection of SAH-producing bacteria reduced viable tissue to 9% of the original tumor volume. By inducing cell death, SAH moved the boundary of necrosis toward the tumor edge. SAH diffused 6.8 ± 0.3 µm into tissue, which increased the volume of affected tissue from 48.6 to 3,120 µm3. A mathematical model of molecular transport predicted that SAH efficacy is primarily dependent on colony size and the rate of protein production. As a payload protein, SAH will enable effective bacterial therapy because of its ability to diffuse in tissue, kill cells, and expand tumor necrosis. PMID:24590046

  20. Binding Mode Analysis of Zerumbone to Key Signal Proteins in the Tumor Necrosis Factor Pathway

    PubMed Central

    Fatima, Ayesha; Abdul, Ahmad Bustamam Hj.; Abdullah, Rasedee; Karjiban, Roghayeh Abedi; Lee, Vannajan Sanghiran

    2015-01-01

    Breast cancer is the second most common cancer among women worldwide. Several signaling pathways have been implicated as causative and progression agents. The tumor necrosis factor (TNF) α protein plays a dual role in promoting and inhibiting cancer depending largely on the pathway initiated by the binding of the protein to its receptor. Zerumbone, an active constituent of Zingiber zerumbet, Smith, is known to act on the tumor necrosis factor pathway upregulating tumour necrosis factor related apoptosis inducing ligand (TRAIL) death receptors and inducing apoptosis in cancer cells. Zerumbone is a sesquiterpene that is able to penetrate into the hydrophobic pockets of proteins to exert its inhibiting activity with several proteins. We found a good binding with the tumor necrosis factor, kinase κB (IKKβ) and the Nuclear factor κB (NF-κB) component proteins along the TNF pathway. Our results suggest that zerumbone can exert its apoptotic activities by inhibiting the cytoplasmic proteins. It inhibits the IKKβ kinase that activates the NF-κB and also binds to the NF-κB complex in the TNF pathway. Blocking both proteins can lead to inhibition of cell proliferating proteins to be downregulated and possibly ultimate induction of apoptosis. PMID:25629232

  1. The liver-enriched inhibitory protein isoform of CCAAT/enhancer-binding protein beta, but not nuclear factor-kappaB, mediates the transcriptional inhibition of beta-casein by tumor necrosis factor-alpha.

    PubMed

    Zhang, Haitao; Zhang, Haiwei; Lee, Laura; Ip, Margot M

    2004-06-01

    TNF-alpha is a physiological regulator of mammary gland development that stimulates the growth of both normal and malignant mammary epithelial cells in primary culture and inhibits functional differentiation. To understand how TNF exerts its effects, the current study examined the mechanism by which TNF down-regulates expression of the beta-casein and whey acidic protein (WAP) genes. TNF treatment markedly decreased activity of the beta-casein and WAP promoters in transiently transfected HC11 mammary epithelial cells. Overexpression of the nuclear factor-kappaB (NFkappaB) p50 and/or p65 proteins increased the transcriptional activity of the beta-casein and WAP promoters in HC11 cells, suggesting that the inhibitory effect of TNF on transcription of these genes is not mediated by NFkappaB. This was further confirmed in experiments in which an NFkappaB super-repressor was overexpressed, and by deletion of an NFkappaB binding site in the beta-casein promoter. In contrast, we found that TNF induced both nuclear expression and the DNA-binding activity of liver-enriched inhibitory protein (LIP) isoform of CCAAT/enhancer-binding protein beta. Moreover, cotransfection of LIP and beta-casein expression vectors showed that LIP suppressed the transcriptional activity of the beta-casein promoter. Together, these results suggest that LIP plays a critical role in mediating TNF-induced down-regulation of the beta-casein gene.

  2. The Mitogenic Potential of Heparin-Binding Epidermal Growth Factor in the Human Endometrium Is Mediated by the Epidermal Growth Factor Receptor and Is Modulated by Tumor Necrosis Factor-α

    PubMed Central

    CHOBOTOVA, KATYA; MUCHMORE, MARY-ELIZABETH; CARVER, JANET; YOO, HYUNG-J; MANEK, SANJIV; GULLICK, WILLIAM J.; BARLOW, DAVID H.; MARDON, HELEN J.

    2006-01-01

    Heparin-binding epidermal growth factor (HB-EGF), a member of the epidermal growth factor (EGF) family, is implicated in a variety of biological processes, including reproduction. Previous studies describe increased levels of HB-EGF in the human endometrium during the midsecretory stage of the menstrual cycle, suggesting a function for HB-EGF in implantation of the human blastocyst. Here we have investigated the expression and function of the soluble and transmembrane forms of HB-EGF in the human endometrium. We show that the expression of the transmembrane form of HB-EGF in the human endometrium is modulated according to the stage of the menstrual cycle. We present data demonstrating that both the soluble and transmembrane forms of HB-EGF induce DNA synthesis in human endometrial stromal cells. Furthermore, TNFα has a cooperative effect on HB-EGF, EGF, TGFα, and betacellulin-induced DNA synthesis in stromal cells, suggesting roles for the EGF family and TNFα in regeneration and maturation of human endometrium. Induction of DNA synthesis by HB-EGF and its modulation by TNFα in endometrial stromal cells are mediated by the EGF receptor and not the HB-EGF receptor ErbB4. Our data suggest key functions for HB-EGF, TNFα, and the EGF receptor in endometrial maturation, via autocrine/paracrine and juxtacrine pathways, in preparation for embryo implantation. PMID:12466384

  3. Tumor necrosis factor alpha gene expression in human monocytic THP-1 cells exposed to beryllium.

    PubMed

    Galbraith, G M; Pandey, J P; Schmidt, M G; Arnaud, P; Goust, J M

    1996-01-01

    Chronic beryllium disease, which results from occupational exposure to particulate beryllium, is characterized by the development of lung granulomas and progressive pulmonary fibrosis. Increased production of proinflammatory cytokines (e.g., tumor necrosis factor alpha and interleukin-1 beta) by pulmonary alveolar macrophages occurs in many chronic fibrotic lung diseases and is thought to contribute to the disease process. The purpose of the present study was to investigate cytokine production by human monocytic cells exposed to beryllium in vitro. The results indicated that such cells respond to beryllium ions in the presence of fluoride by accumulation of messenger ribonucleic acid for both tumor necrosis factor alpha and interleukin-1 beta. These findings suggest that inhaled beryllium may directly stimulate the production of these cytokines by alveolar macrophages in vitro. PMID:8629860

  4. Regulation of human lung fibroblast glycosaminoglycan production by recombinant interferons, tumor necrosis factor, and lymphotoxin.

    PubMed Central

    Elias, J A; Krol, R C; Freundlich, B; Sampson, P M

    1988-01-01

    Mononuclear cells may be important regulators of fibroblast glycosaminoglycan (GAG) biosynthesis. However, the soluble factors mediating these effects, the importance of intercytokine interactions in this regulation and the mechanisms of these alterations remain poorly understood. We analyzed the effect of recombinant (r) tumor necrosis factor (TNF), lymphotoxin (LT), and gamma, alpha, and beta 1 interferons (INF-gamma, -alpha and -beta 1), alone and in combination, on GAG production by normal human lung fibroblasts. rTNF, rLT, and rINF-gamma each stimulated fibroblast GAG production. In addition, rIFN-gamma synergized with rTNF and rLT to further augment GAG biosynthesis. In contrast, IFN-alpha A, -alpha D, and -beta 1 neither stimulated fibroblast GAG production nor interacted with rTNF or rLT to regulate GAG biosynthesis. The effects of the stimulatory cytokines and cytokine combinations were dose dependent and were abrogated by the respective monoclonal antibodies. In addition, these cytokines did not cause an alteration in the distribution of GAG between the fibroblast cell layer and supernatant. However, the stimulation was at least partially specific for particular GAG moieties with hyaluronic acid biosynthesis being markedly augmented without a comparable increase in the production of sulfated GAGs. Fibroblast prostaglandin production did not mediate these alterations since indomethacin did not decrease the stimulatory effects of the cytokines. In contrast, protein and mRNA synthesis appeared to play a role since the stimulatory effects of the cytokines were abrogated by cyclohexamide and actinomycin D, respectively. In addition, the cytokines and cytokine combinations increased cellular hyaluronate synthetase activity in proportion to their effects on hyaluronic acid suggesting that induction of this enzyme(s) is important in this stimulatory process. These studies demonstrate that IFN-gamma, TNF, and LT are important stimulators of fibroblast GAG

  5. Successful treatment of tumor necrosis factor receptor-associated periodic syndrome (TRAPS) with tocilizumab: A case report

    PubMed Central

    Akasbi, Nessrine; Soyfoo, Muhammad S.

    2015-01-01

    Tumor necrosis factor receptor-associated periodic syndrome (TRAPS) is an autosomal dominant autoinflammatory disease linked to chromosome 12p13 and, more specifically, with mutations within the tumor necrosis factor receptor superfamily, member 1A gene (TNFRSF1A gene). It is characterized by the presence of fever, abdominal pain, myalgia, arthralgia or arthritis, and skin rash. In this report, we describe the case of a patient with tumor necrosis factor receptor-associated periodic syndrome (TRAPS) treated successfully with the anti-interleukin-6 (anti-IL-6) receptor monoclonal antibody tocilizumab, while treatment with anti-TNF α etanercept and infliximab had both failed.

  6. Gemella morbillorum Bacteremia after Anti-Tumor Necrosis Factor Alpha as Acne Inversa Therapy

    PubMed Central

    Vossen, Matthias G.; Gattringer, Klaus B.; Khalifeh, Neda; Koreny, Maria; Spertini, Verena; Mallouhi, Ammar; Willeit, Markus; Volc-Platzer, Beatrix; Asboth, Friederike; Graninger, Wolfgang; Thalhammer, Florian

    2012-01-01

    We present a case of fever, brain abscesses, and Gemella morbillorum bacteremia after anti-tumor necrosis factor alpha (TNF-α) therapy in a 21-year-old acne inversa patient currently taking long-term dapsone. To the best of our knowledge, this is the first report describing such a case. During antimicrobial therapy, the patient developed systemic varicella infection with severe thrombocytopenia. PMID:22189120

  7. Transfection of influenza A virus nuclear export protein induces the expression of tumor necrosis factor alpha.

    PubMed

    Lara-Sampablo, Alejandra; Flores-Alonso, Juan Carlos; De Jesús-Ortega, Nereyda; Santos-López, Gerardo; Vallejo-Ruiz, Verónica; Rosas-Murrieta, Nora; Reyes-Carmona, Sandra; Herrera-Camacho, Irma; Reyes-Leyva, Julio

    2014-06-24

    Influenza A virus genomic segments eight codes for non-structural 1 (NS1) protein that is involved in evasion of innate antiviral response, and nuclear export protein (NEP) that participates in the export of viral ribonucleoprotein (RNP) complexes, transcription and replication. Tumor necrosis factor alpha (TNF-α) is highly expressed during influenza virus infections and is considered an anti-infective cytokine. NS1 and NEP proteins were overexpressed and their role on TNF-α expression was evaluated. Both TNF-α mRNA and protein increased in cells transfected with NEP but not with NS1. We further investigate if NS1 or NEP regulates the activity of TNF-α promoter. In the presence of NEP the activity of TNF-α promoter increased significantly compared with the control (83.5±2.9 vs. 30.9±2.8, respectively; p=0.001). This effect decreased 15-fold when the TNF-α promoter distal region was deleted, suggesting the involvement of mitogen-activated protein kinases (MAPK) and NF-kB response elements. This was corroborated by testing the effect produced on TNF-α promoter by the treatment with Raf/MEK/ERK (U0126), NF-kB (Bay-11-7082) and PI3K (Ly294-002) cell signaling inhibitors. Treatment with U0126 and Bay-117082 reduced the activity of TNF-α promoter mediated by NEP (41.5±3.2, 70% inhibition; and 80.6±7.4, 35% inhibition, respectively) compared to mock-treated control. The results suggest a new role for NEP protein that participates in the transcriptional regulation of human TNF-α expression.

  8. Tumor Necrosis Factor α and Interleukin 1β Enhance the Cortisone/Cortisol Shuttle

    PubMed Central

    Escher, Geneviève; Galli, Ivo; Vishwanath, Bannikuppe S.; Frey, Brigitte M.; Frey, Felix J.

    1997-01-01

    Endogenously released or exogenously administered glucocorticosteroids are relevant hormones for controlling inflammation. Only 11β-hydroxy glucocorticosteroids, but not 11-keto glucocorticosteroids, activate glucocorticoid receptors. Since we found that glomerular mesangial cells (GMC) express 11β-hydroxysteroid dehydrogenase 1 (11β-OHSD1), which interconverts 11-keto glucocorticosteroids into 11β-hydroxy glucocorticosteroids (cortisone/cortisol shuttle), we explored whether 11β-OHSD1 determines the antiinflammatory effect of glucocorticosteroids. GMC exposed to interleukin (IL)-1β or tumor necrosis factor α (TNF-α) release group II phospholipase A2 (PLA2), a key enzyme producing inflammatory mediators. 11β-hydroxy glucocorticosteroids inhibited cytokine-induced transcription and release of PLA2 through a glucocorticoid receptor–dependent mechanism. This inhibition was enhanced by inhibiting 11β-OHSD1. Interestingly, 11-keto glucocorticosteroids decreased cytokine-induced PLA2 release as well, a finding abrogated by inhibiting 11β-OHSD1. Stimulating GMC with IL-1β or TNF-α increased expression and reductase activity of 11β-OHSD1. Similarly, this IL-1β– and TNF-α–induced formation of active 11β-hydroxy glucocorticosteroids from inert 11-keto glucocorticosteroids by the 11β-OHSD1 was shown in the Kiki cell line that expresses the stably transfected bacterial β-galactosidase gene under the control of a glucocorticosteroids response element. Thus, we conclude that 11β-OHSD1 controls access of 11β-hydroxy glucocorticosteroids and 11-keto glucocorticosteroids to glucocorticoid receptors and thus determines the anti-inflammatory effect of glucocorticosteroids. IL-1β and TNF-α upregulate specifically the reductase activity of 11β-OHSD1 and counterbalance by that mechanism their own proinflammatory effect. PMID:9221748

  9. Tumor Necrosis Factor: A Mechanistic Link between Angiotensin-II-Induced Cardiac Inflammation and Fibrosis

    PubMed Central

    Duerrschmid, Clemens; Trial, JoAnn; Wang, Yanlin; Entman, Mark L.; Haudek, Sandra B.

    2015-01-01

    Background Continuous angiotensin-II (Ang-II) infusion induced the uptake of monocytic fibroblast precursors that initiated the development of cardiac fibrosis; these cells and concurrent fibrosis were absent in mice lacking tumor necrosis factor-alpha receptor 1 (TNFR1). We now investigated their cellular origin and temporal uptake, and the involvement of TNFR1 in monocyte-to-fibroblast differentiation. Methods and Results Within a day, Ang-II induced a pro-inflammatory environment characterized by production of inflammatory chemokines, cytokines, and TH1-interleukins and uptake of bone marrow-derived M1-cells. After a week, the cardiac environment changed to profibrotic with growth-factor and TH2-interleukin synthesis, uptake of bone marrow-derived M2-cells, and presence of M2-related fibroblasts. TNFR1 signaling was not necessary for early M1 uptake, but its absence diminished the amount of M2-cells. TNFR1-KO hearts also showed reduced levels of cytokine expression, but not of TH-related lymphokines. Reconstitution of wild-type bone marrow into TNFR1-KO mice was sufficient to restore M2 uptake, upregulation of pro-inflammatory and pro-fibrotic genes, and development of fibrosis in response to Ang-II. We also developed an in vitro mouse monocyte-to-fibroblast-maturation assay that confirmed the essential role of TNFR1 in the sequential progression of monocyte activation and fibroblast formation. Conclusions Development of cardiac fibrosis in response to Ang-II was mediated by myeloid precursors and consisted of two stages. A primary M1 inflammatory response was followed by a subsequent M2 fibrotic response. While the first phase appeared to be independent of TNFR1 signaling, the later phase (and development of fibrosis) was abrogated by deletion of TNFR1. PMID:25550440

  10. Targeting Tumor Necrosis Factor-α with Adalimumab: Effects on Endothelial Activation and Monocyte Adhesion

    PubMed Central

    Oberoi, Raghav; Schuett, Jutta; Schuett, Harald; Koch, Ann-Kathrin; Luchtefeld, Maren

    2016-01-01

    Objective It is well known that atherosclerotic inflammatory vascular disease is critically driven by oxidized lipids and cytokines. In this regard, tumor necrosis factor (TNF)-α is known as a crucial mediator of early pro-atherosclerotic events. Epidemiologic data suggest that blockade of TNF-α has beneficial effects on vascular outcomes in patients with rheumatoid arthritis, however, detailed mechanistic studies are still lacking. This study aims to elucidate effects of TNF-α blockade by adalimumab–which is approved for several inflammatory disorders–on endothelial activation and monocyte adhesion under pro-atherosclerotic conditions. Methods and Results Phorbol myristate acetate (PMA) differentiated THP-1 macrophages were stimulated with oxidized low density lipoprotein and subsequent analysis of this conditioned media (oxLDL CM) revealed a strong release of TNF-α. The TNF-α rich supernatant led to activation of human umbilical vein endothelial cells (HUVEC) as shown by enhanced expression of major adhesion molecules, such as vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1) and E-selectin which was suppressed by the TNF-α inhibitor adalimumab. Accordingly, adalimumab effectively prevented THP-1 monocyte adhesion to endothelial cells under static as well as under flow conditions. Furthermore, adalimumab suppressed endothelial leakage as shown by Evan's blue diffusion across a confluent endothelial monolayer. Of note, after intraperitoneal injection we detected abundant deposition of fluorophore-labelled adalimumab in atherosclerotic plaques of hypercholesterolemic mice. Conclusion Our results show that adalimumab prevents major inflammatory effects of TNF-α on endothelial activation, endothelial monocyte adhesion, endothelial leakage and therefore extends the therapeutic options of adalimumab to limit vascular inflammation. PMID:27467817

  11. Immunolocalization of tumor necrosis factor alpha in turbot (Scophthalmus maximus, L.) tissues.

    PubMed

    Ronza, Paolo; Losada, Ana Paula; Villamarín, Antonio; Bermúdez, Roberto; Quiroga, María Isabel

    2015-08-01

    Tumor necrosis factor alpha (TNFα) is a cytokine involved in a broad spectrum of cellular and organismal responses. Its main function, as a potent pro-inflammatory mediator, has been demonstrated in numerous teleost species and there are many reports on the modulation of TNFα gene expression under pathological conditions. Nevertheless, there is still scarce knowledge about the tissue distribution and type of cells that express this cytokine in fish species, which would help to further investigate its biological activities. These studies are hampered by the lack of molecular markers for teleost that hinder the development of morphological techniques, like immunohistochemistry. The aim of this work was to develop an immunohistochemical technique for the detection of TNFα in paraffin-embedded organs from healthy turbot (Scophthalmus maximus), an economically-important marine fish species. A commercial anti-human TNFα antibody, whose specificity was confirmed by western blot analysis, was used. Immunoreactive cells were observed in higher numbers in the lymphohematopoietic organs, kidney, spleen and thymus, although TNFα-positive cells were also present in the digestive tract, liver, heart, gills and skin. Similarly to non-fish species, monocytes/macrophages appeared to be the main producers of this cytokine; nevertheless, the presence of immunoreactive rodlet cells in different tissues was also reported. The nature and distribution of the labeled cells appeared to be related with a strategic localization for defense response to antigenic challenge. The relative abundance of TNFα-positive cells in the lymphohematopoietic organs also suggests that this cytokine may have a broader role in the normal physiology of those organs. The immunohistochemical technique allowed the in-situ characterization of TNFα expression, representing a valid tool to investigate the immune response of turbot.

  12. Predictors of response to anti-tumor necrosis factor therapy in ulcerative colitis

    PubMed Central

    Zampeli, Evanthia; Gizis, Michalis; Siakavellas, Spyros I; Bamias, Giorgos

    2014-01-01

    Ulcerative colitis (UC) is an immune-mediated, chronic inflammatory disease of the large intestine. Its course is characterized by flares of acute inflammation and periods of low-grade chronic inflammatory activity or remission. Monoclonal antibodies against tumor necrosis factor (anti-TNF) are part of the therapeutic armamentarium and are used in cases of moderate to severe UC that is refractory to conventional treatment with corticosteroids and/or immunosuppressants. Therapeutic response to these agents is not uniform and a large percentage of patients either fail to improve (primary non-response) or lose response after a period of improvement (secondary non-response/loss of response). In addition, the use of anti-TNF agents has been related to uncommon but potentially serious adverse effects that preclude their administration or lead to their discontinuation. Finally, use of these medications is associated with a considerable cost for the health system. The identification of parameters that may predict response to anti-TNF drugs in UC would help to better select for patients with a high probability to respond and minimize risk and costs for those who will not respond. Analysis of the major clinical trials and the accumulated experience with the use of anti-TNF drugs in UC has resulted to the report of such prognostic factors. Included are clinical and epidemiological characteristics, laboratory markers, endoscopic indicators and molecular (immunological/genetic) signatures. Such predictive parameters of long-term outcomes may either be present at the commencement of treatment or determined during the early period of therapy. Validation of these prognostic markers in large cohorts of patients with variable characteristics will facilitate their introduction into clinical practice and the best selection of UC patients who will benefit from anti-TNF therapy. PMID:25133030

  13. A diverse family of proteins containing tumor necrosis factor receptor-associated factor domains.

    PubMed

    Zapata, J M; Pawlowski, K; Haas, E; Ware, C F; Godzik, A; Reed, J C

    2001-06-29

    We have identified three new tumor necrosis factor-receptor associated factor (TRAF) domain-containing proteins in humans using bioinformatics approaches, including: MUL, the product of the causative gene in Mulibrey Nanism syndrome; USP7 (HAUSP), an ubiquitin protease; and SPOP, a POZ domain-containing protein. Unlike classical TRAF family proteins involved in TNF family receptor (TNFR) signaling, the TRAF domains (TDs) of MUL, USP7, and SPOP are located near the NH(2) termini or central region of these proteins, rather than carboxyl end. MUL and USP7 are capable of binding in vitro via their TDs to all of the previously identified TRAF family proteins (TRAF1, TRAF2, TRAF3, TRAF4, TRAF5, and TRAF6), whereas the TD of SPOP interacts weakly with TRAF1 and TRAF6 only. The TD of MUL also interacted with itself, whereas the TDs of USP7 and SPOP did not self-associate. Analysis of various MUL and USP7 mutants by transient transfection assays indicated that the TDs of these proteins are necessary and sufficient for suppressing NF-kappaB induction by TRAF2 and TRAF6 as well as certain TRAF-binding TNF family receptors. In contrast, the TD of SPOP did not inhibit NF-kappaB induction. Immunofluorescence confocal microscopy indicated that MUL localizes to cytosolic bodies, with targeting to these structures mediated by a RBCC tripartite domain within the MUL protein. USP7 localized predominantly to the nucleus, in a TD-dependent manner. Data base searches revealed multiple proteins containing TDs homologous to those found in MUL, USP7, and SPOP throughout eukaryotes, including yeast, protists, plants, invertebrates, and mammals, suggesting that this branch of the TD family arose from an ancient gene. We propose the moniker TEFs (TD-encompassing factors) for this large family of proteins.

  14. Glia-pinealocyte network: the paracrine modulation of melatonin synthesis by tumor necrosis factor (TNF).

    PubMed

    da Silveira Cruz-Machado, Sanseray; Pinato, Luciana; Tamura, Eduardo Koji; Carvalho-Sousa, Cláudia Emanuele; Markus, Regina P

    2012-01-01

    The pineal gland, a circumventricular organ, plays an integrative role in defense responses. The injury-induced suppression of the pineal gland hormone, melatonin, which is triggered by darkness, allows the mounting of innate immune responses. We have previously shown that cultured pineal glands, which express toll-like receptor 4 (TLR4) and tumor necrosis factor receptor 1 (TNFR1), produce TNF when challenged with lipopolysaccharide (LPS). Here our aim was to evaluate which cells present in the pineal gland, astrocytes, microglia or pinealocytes produced TNF, in order to understand the interaction between pineal activity, melatonin production and immune function. Cultured pineal glands or pinealocytes were stimulated with LPS. TNF content was measured using an enzyme-linked immunosorbent assay. TLR4 and TNFR1 expression were analyzed by confocal microscopy. Microglial morphology was analyzed by immunohistochemistry. In the present study, we show that although the main cell types of the pineal gland (pinealocytes, astrocytes and microglia) express TLR4, the production of TNF induced by LPS is mediated by microglia. This effect is due to activation of the nuclear factor kappa B (NF-kB) pathway. In addition, we observed that LPS activates microglia and modulates the expression of TNFR1 in pinealocytes. As TNF has been shown to amplify and prolong inflammatory responses, its production by pineal microglia suggests a glia-pinealocyte network that regulates melatonin output. The current study demonstrates the molecular and cellular basis for understanding how melatonin synthesis is regulated during an innate immune response, thus our results reinforce the role of the pineal gland as sensor of immune status.

  15. The role of tumor necrosis factor in increased airspace epithelial permeability in acute lung inflammation.

    PubMed

    Li, X Y; Donaldson, K; Brown, D; MacNee, W

    1995-08-01

    Increased airspace epithelial permeability is an early event in lung inflammation and injury. In this study, we have developed a rat model to study the mechanisms of the epithelial permeability to 125iodine-labeled bovine serum albumin (125I-BSA), instilled intratracheally during acute lung inflammation. Epithelial permeability was measured as the percentage of instilled 125I-BSA appearing in the blood. The increase in epithelial permeability induced by intratracheal instillation of heat-killed Corynebacterium parvum produced a peak influx of neutrophils into the bronchoalveolar space at 16 h, which occurred after the peak increase in epithelial permeability (8 h). The increased epithelial permeability induced by C. parvum did not appear to be protease- or oxidant-mediated. Depletion of peripheral blood neutrophils was achieved by an intravenous injection of anti-neutrophil polyclonal antibody. The consequent profound reduction in neutrophil and macrophage influx into the airspaces 8 h after instillation of C. parvum reduced the epithelial permeability to control values. Bronchoalveolar lavage (BAL) leukocytes from rats 8 h, but not 16 h, after treatment with C. parvum caused a modest increase in epithelial permeability when re-instilled intratracheally into control rat lungs. Separation of the leukocytes before re-instillation indicated that macrophages rather than neutrophils were predominantly responsible for the increased epithelial permeability. The presence of dramatically increased levels of tumor necrosis factor (TNF) in BAL 8 h in contrast to a slight increase in BAL 16 h after C. parvum, the release of TNF from 8 h macrophages, the increased epithelial permeability induced by TNF in epithelial monolayers in vitro, and the inhibition of C. parvum-induced epithelial permeability by TNF antibody support the premise that TNF is a major player in the increased epithelial permeability that occurs during C. parvum-induced acute alveolitis. PMID:7626286

  16. Trypanosoma cruzi Infection in Tumor Necrosis Factor Receptor p55-Deficient Mice

    PubMed Central

    Castaños-Velez, Esmeralda; Maerlan, Stephanie; Osorio, Lyda M.; Åberg, Frederik; Biberfeld, Peter; Örn, Anders; Rottenberg, Martín E.

    1998-01-01

    Tumor necrosis factor receptor p55 (TNFRp55) mediates host resistance to several pathogens by allowing microbicidal activities of phagocytes. In the studies reported here, TNFRp55−/− mice infected with the intracellular parasite Trypanosoma cruzi showed clearly higher parasitemia and cumulative mortality than wild-type (WT) controls did. However, gamma interferon (IFN-γ)-activated macrophages from TNFRp55−/− mice produced control levels of nitric oxide and killed the parasite efficiently in vitro. Trypanocidal mechanisms of nonphagocytic cells (myocardial fibroblasts) from both TNFRp55−/− and WT mice were also activated by IFN-γ in a dose-dependent way. However, IFN-γ-activated TNFRp55−/− nonphagocytes showed less effective killing of T. cruzi than WT control nonphagocytes, even when interleukin 1β (IL-1β) was added as a costimulator. In vivo, T. cruzi-infected TNFRp55−/− mice and WT mice released similar levels of NO and showed similar levels of IFN-γ mRNA and inducible nitric oxide synthase mRNA in their tissues. Instead, increased susceptibility to T. cruzi of TNFRp55−/− mice was associated with reduced levels of parasite-specific immunoglobulin G (IgG) (but not IgM) antibodies during infection, which is probably linked to abnormal B-cell differentiation in secondary lymphoid tissues of the mutant mice. Surprisingly, T. cruzi-infected TNFRp55−/− mice showed increased inflammatory and necrotic lesions in several tissues, especially in skeletal muscles, indicating that TNFRp55 plays an important role in controlling the inflammatory process. Accordingly, levels of Mn2+ superoxide dismutase mRNA, a TNF-induced enzyme which protects the cell from the toxic effects of superoxide, were lower in mutant than in WT infected mice. PMID:9596773

  17. Model-Based Radiation Dose Correction for Yttrium-90 Microsphere Treatment of Liver Tumors With Central Necrosis

    SciTech Connect

    Liu, Ching-Sheng; Lin, Ko-Han; Lee, Rheun-Chuan; Tseng, Hsiou-Shan; Wang, Ling-Wei; Huang, Pin-I; Chao, Liung-Sheau; Chang, Cheng-Yen; Yen, Sang-Hue; Tung, Chuan-Jong; Wang, Syh-Jen; Oliver Wong, Ching-yee

    2011-11-01

    Purpose: The objectives of this study were to model and calculate the absorbed fraction {phi} of energy emitted from yttrium-90 ({sup 90}Y) microsphere treatment of necrotic liver tumors. Methods and Materials: The tumor necrosis model was proposed for the calculation of {phi} over the spherical shell region. Two approaches, the semianalytic method and the probabilistic method, were adopted. In the former method, the range--energy relationship and the sampling of electron paths were applied to calculate the energy deposition within the target region, using the straight-ahead and continuous-slowing-down approximation (CSDA) method. In the latter method, the Monte Carlo PENELOPE code was used to verify results from the first method. Results: The fraction of energy, {phi}, absorbed from {sup 90}Y by 1-cm thickness of tumor shell from microsphere distribution by CSDA with complete beta spectrum was 0.832 {+-} 0.001 and 0.833 {+-} 0.001 for smaller (r{sub T} = 5 cm) and larger (r{sub T} = 10 cm) tumors (where r is the radii of the tumor [T] and necrosis [N]). The fraction absorbed depended mainly on the thickness of the tumor necrosis configuration, rather than on tumor necrosis size. The maximal absorbed fraction {phi} that occurred in tumors without central necrosis for each size of tumor was different: 0.950 {+-} 0.000, and 0.975 {+-} 0.000 for smaller (r{sub T} = 5 cm) and larger (r{sub T} = 10 cm) tumors, respectively (p < 0.0001). Conclusions: The tumor necrosis model was developed for dose calculation of {sup 90}Y microsphere treatment of hepatic tumors with central necrosis. With this model, important information is provided regarding the absorbed fraction applicable to clinical {sup 90}Y microsphere treatment.

  18. Increased tumor necrosis factor alpha mRNA after cellular exposure to ionizing radiation.

    PubMed Central

    Hallahan, D E; Spriggs, D R; Beckett, M A; Kufe, D W; Weichselbaum, R R

    1989-01-01

    We report that tumor necrosis factor alpha (TNF-alpha) mRNA is increased after treatment with x-rays in certain human sarcoma cells. An increase in TNF-alpha mRNA is accompanied by the increased production of TNF-alpha protein. TNF-alpha enhances radiation lethality in both TNF-alpha-producing and -nonproducing tumor cells. These data suggest that, in addition to the direct cytotoxic effects of x-rays, production of TNF-alpha may add to radiation lethality through autocrine and paracrine mechanisms. Combinations of TNF-alpha and therapeutic radiation may be useful in clinical cancer therapy. Images PMID:2602359

  19. Fundamental principals of tumor necrosis factor-alpha gene therapy approach and implications for patients with lung carcinoma.

    PubMed

    Sanlioglu, Ahter D; Aydin, Cigdem; Bozcuk, Hakan; Terzioglu, Ender; Sanlioglu, Salih

    2004-05-01

    Apoptosis, known as programmed cell death, is defined as a cell's preferred form of death under hectic conditions through genetically conserved and complex pathways. There is a decisive balance between stimulatory and inhibitory signaling pathways to maintain homeostasis in cells. In order to shift the balance towards apoptosis, the modulation of both apoptotic and anti-apoptotic pathways represents an attractive target for cancer therapeutics. Currently, chemotherapy and radiotherapy are among the most commonly used treatment modalities against lung cancer. Tumor suppressor gene, p53, is required in order for both of these treatment methods to work as anti-tumor agents. As a result, tumors lacking p53 display resistance to both chemotherapy and radiotherapy. However, death ligands induce apoptosis regardless of p53 status of cells. Thus, these methods constitute a complementary therapeutic approach to currently employed conventional treatment modalities. At present, death ligands are being evaluated as potential cancer therapeutic agents. Since resistance to tumor necrosis factor (TNF)-alpha-mediated apoptosis represented an obstacle for the treatment of patients with lung carcinoma in the earlier attempts, an extensive research was recently initiated to understand molecular mechanism of TNF-alpha signaling. NF-kappaB transcription factors have been demonstrated to modulate the apoptotic program, mostly as blockers of apoptosis in different cell types. In this review, we concentrate on the current progress in the understanding of TNF-alpha-mediated apoptosis for lung carcinoma. Representative models of NF-kappaB-inhibiting gene therapy strategies from various labs including ours are also provided as examples of up-to-date approaches to defeat TNF resistance. In order to give the reader better understanding and appreciation of such approaches, previously unpublished in vivo assays are also incorporated into this review. Current progress in clinical trials using

  20. Tumor necrosis is associated with increased alphavbeta3 integrin expression and poor prognosis in nodular cutaneous melanomas

    PubMed Central

    Bachmann, Ingeborg M; Ladstein, Rita G; Straume, Oddbjørn; Naumov, George N; Akslen, Lars A

    2008-01-01

    Background Tumor necrosis and apoptotic activity are considered important in cancer progression, but these features have not been much studied in melanomas. Our hypothesis was that rapid growth in cutaneous melanomas of the vertical growth phase might lead to tissue hypoxia, alterations in apoptotic activity and tumor necrosis. We proposed that these tumor characteristics might be associated with changes in expression of cell adhesion proteins leading to increased invasive capacity and reduced patient survival. Methods A well characterized series of nodular melanoma (originally 202 cases) and other benign and malignant melanocytic tumors (109 cases) were examined for the presence of necrosis, apoptotic activity (TUNEL assay), immunohistochemical expression of hypoxia markers (HIF-1 α, CAIX, TNF-α, Apaf-1) and cell adhesion proteins (αvβ3 integrin, CD44/HCAM and osteopontin). We hypothesized that tumor hypoxia and necrosis might be associated with increased invasiveness in melanoma through alterations of tumor cell adhesion proteins. Results Necrosis was present in 29% of nodular melanomas and was associated with increased tumor thickness, tumor ulceration, vascular invasion, higher tumor proliferation and apoptotic index, increased expression of αvβ3 integrin and poor patient outcome by multivariate analysis. Tumor cell apoptosis did also correlate with reduced patient survival. Expression of TNF-α and Apaf-1 was significantly associated with tumor thickness, and osteopontin expression correlated with increased tumor cell proliferation (Ki-67). Conclusion Tumor necrosis and apoptotic activity are important features of melanoma progression and prognosis, at least partly through alterations in cell adhesion molecules such as increased αvβ3 integrin expression, revealing potentially important targets for new therapeutic approaches to be further explored. PMID:19061491

  1. Full-length membrane-bound tumor necrosis factor-α acts through tumor necrosis factor receptor 2 to modify phenotype of sensory neurons.

    PubMed

    Wu, Zetang; Wang, Shiyong; Gruber, Sandy; Mata, Marina; Fink, David J

    2013-09-01

    Neuropathic pain resulting from spinal hemisection or selective spinal nerve ligation is characterized by an increase in membrane-bound tumor necrosis factor-alpha (mTNFα) in spinal microglia without detectable release of soluble TNFα (sTNFα). In tissue culture, we showed that a full-length transmembrane cleavage-resistant TNFα (CRTNFα) construct can act through cell-cell contact to activate neighboring microglia. We undertook the current study to test the hypothesis that mTNFα expressed in microglia might also affect the phenotype of primary sensory afferents, by determining the effect of CRTNFα expressed from COS-7 cells on gene expression in primary dorsal root ganglia (DRG) neurons. Co-culture of DRG neurons with CRTNFα-expressing COS-7 cells resulted in a significant increase in the expression of voltage-gated sodium channel isoforms NaV1.7 and NaV1.8, and voltage-gated calcium channel subunit CaV3.2 at both mRNA and protein levels, and enhanced CCL2 expression and release from the DRG neurons. Exposure to sTNFα produced an increase only in CCL2 expression and release. Treatment of the cells with an siRNA against tumor necrosis factor receptor 2 (TNFR2) significantly reduced CRTNFα-induced gene expression changes in DRG neurons, whereas administration of CCR2 inhibitor had no significant effect on CRTNFα-induced increase in gene expression and CCL2 release in DRG neurons. Taken together, the results of this study suggest that mTNFα expressed in spinal microglia can facilitate pain signaling by up-regulating the expression of cation channels and CCL2 in DRG neurons in a TNFR2-dependent manner. PMID:23711481

  2. A Nonpolar Blueberry Fraction Blunts NADPH Oxidase Activation in Neuronal Cells Exposed to Tumor Necrosis Factor-α

    PubMed Central

    Gustafson, Sally J.; Dunlap, Kriya L.; McGill, Colin M.; Kuhn, Thomas B.

    2012-01-01

    Inflammation and oxidative stress are key to the progressive neuronal degeneration common to chronic pathologies, traumatic injuries, and aging processes in the CNS. The proinflammatory cytokine tumor necrosis factor-alpha (TNF-α) orchestrates cellular stress by stimulating the production and release of neurotoxic mediators including reactive oxygen species (ROS). NADPH oxidases (NOX), ubiquitously expressed in all cells, have recently emerged as pivotal ROS sources in aging and disease. We demonstrated the presence of potent NOX inhibitors in wild Alaska bog blueberries partitioning discretely into a nonpolar fraction with minimal antioxidant capacity and largely devoid of polyphenols. Incubation of SH-SY5Y human neuroblastoma cells with nonpolar blueberry fractions obstructed the coalescing of lipid rafts into large domains disrupting NOX assembly therein and abolishing ROS production characteristic for TNF-α exposure. These findings illuminate nutrition-derived lipid raft modulation as a novel therapeutic approach to blunt inflammatory and oxidative stress in the aging or diseased CNS. PMID:22530077

  3. A Novel Small-molecule Tumor Necrosis Factor α Inhibitor Attenuates Inflammation in a Hepatitis Mouse Model*

    PubMed Central

    Ma, Li; Gong, Haiyan; Zhu, Haiyan; Ji, Qing; Su, Pei; Liu, Peng; Cao, Shannan; Yao, Jianfeng; Jiang, Linlin; Han, Mingzhe; Ma, Xiaotong; Xiong, Dongsheng; Luo, Hongbo R.; Wang, Fei; Zhou, Jiaxi; Xu, Yuanfu

    2014-01-01

    Overexpression of tumor necrosis factor α (TNFα) is a hallmark of many inflammatory diseases, including rheumatoid arthritis, inflammatory bowel disease, and septic shock and hepatitis, making it a potential therapeutic target for clinical interventions. To explore chemical inhibitors against TNFα activity, we applied computer-aided drug design combined with in vitro and cell-based assays and identified a lead chemical compound, (E)-4-(2-(4-chloro-3-nitrophenyl) (named as C87 thereafter), which directly binds to TNFα, potently inhibits TNFα-induced cytotoxicity (IC50 = 8.73 μm) and effectively blocks TNFα-triggered signaling activities. Furthermore, by using a murine acute hepatitis model, we showed that C87 attenuates TNFα-induced inflammation, thereby markedly reducing injuries to the liver and improving animal survival. Thus, our results lead to a novel and highly specific small-molecule TNFα inhibitor, which can be potentially used to treat TNFα-mediated inflammatory diseases. PMID:24634219

  4. Tumor necrosis factor α is associated with viral control and early disease progression in patients with HIV type 1 infection.

    PubMed

    Vaidya, Sagar A; Korner, Christian; Sirignano, Michael N; Amero, Molly; Bazner, Sue; Rychert, Jenna; Allen, Todd M; Rosenberg, Eric S; Bosch, Ronald J; Altfeld, Marcus

    2014-10-01

    Inflammation in early human immunodeficiency virus type 1 (HIV-1) disease progression is not well characterized. Ninety patients with untreated primary HIV-1 infection were studied to determine associations of inflammatory proteins with early disease progression. High plasma tumor necrosis factor α (TNF-α) levels (≥8.5 pg/mL) were significantly associated with an increased viral load set point and shorter times to reaching a CD4(+) T-cell count of <500 cells/mm(3) and initiating antiretroviral therapy. The increased risk of reaching a CD4(+) T-cell count of <500 cells/mm(3) in the group with high TNF-α levels was driven by viral load but was independent of concurrent CD4(+) T-cell count. Thus, TNF-α appears to be an important mediator of inflammation in patients with poor viral control and early HIV-1 disease progression.

  5. Prolactin increases tumor necrosis factor alpha expression in peripheral CD14 monocytes of patients with rheumatoid arthritis.

    PubMed

    Tang, Chun; Li, Yun; Lin, Xiaojun; Ye, Jinghua; Li, Weinian; He, Zhixiang; Li, Fangfei; Cai, Xiaoyan

    2014-07-01

    Tumor necrosis factor (TNF)-α is one of the major proinflammatory mediators of rheumatic arthritis (RA); the regulatory factors for TNF-α release is not fully understood. This study aims to investigate the role of prolactin receptor (PRLR) activation in regulating the expression and release of TNF-α from CD14(+) monocytes. The results showed that the expression of PRLR was detectable in CD14(+) monocytes of healthy subjects, which was markedly increased in RA patients. Exposure to PRL in the culture increased the expression and release of TNF-α from CD14(+) monocytes, which was abolished by the PRLR gene silencing or blocking the mitogen activated protein (MAPK) pathway. We conclude that exposure to PRL increases TNF-α release from CD14(+) monocytes of RA patients, which can be abolished by PRLR gene silencing or treating with MAPK inhibitor.

  6. RIP Kinase-Mediated Necrosis as an Alternative Mechanism of Photoreceptor Death

    PubMed Central

    Murakami, Yusuke; Miller, Joan W.; Vavvas, Demetrios G.

    2011-01-01

    Photoreceptor cell death is the terminal event in a variety of retinal disorders including age-related macular degeneration, retinitis pigmentosa, and retinal detachment. Apoptosis has been thought to be the major form of cell death in these diseases, however accumulating evidence suggests that another pathway, programmed necrosis is also important. Recent studies have shown that, when caspase pathways are blocked, receptor interacting protein (RIP) kinases promote necrosis and overcome apoptosis inhibition. Therefore, targeting of both caspase and RIP kinase pathways are required for effective photoreceptor protection. Here, we summarize the current knowledge of RIP kinase-mediated necrotic signaling and its contribution to photoreceptor death. PMID:21670490

  7. Tumor necrosis factor and its receptors in human ovarian cancer. Potential role in disease progression.

    PubMed Central

    Naylor, M S; Stamp, G W; Foulkes, W D; Eccles, D; Balkwill, F R

    1993-01-01

    The gene for tumor necrosis factor, TNF, was expressed in 45 out of 63 biopsies of human epithelial ovarian cancer. In serous tumors, there was a positive correlation between level of TNF expression and tumor grade. TNF mRNA was found in epithelial tumor cells and infiltrating macrophages, whereas TNF protein localized primarily to a subpopulation of macrophages within and in close proximity to tumor areas. mRNA and protein for the p55 TNF receptor gene localized to the tumor epithelium and tumor, but not to stromal macrophages. The p75 TNF receptor was confined to infiltrating cells. Cells expressing TNF mRNA were also found in ovarian cancer ascites and TNF protein was detected in some ascitic fluids. In 2 out of 12 biopsies of normal ovary, TNF mRNA was detected in a minority of cells in the thecal layer of the corpus luteum. Serum levels of TNF and its soluble receptor did not correlate with extent of TNF expression in matched biopsies. Northern and Southern analysis revealed no gross abnormality of the TNF gene. The coexpression of TNF and its receptor in ovarian cancer biopsies suggests the capacity for autocrine/paracrine action. TNF antagonists may have therapeutic potential in this malignancy. Images PMID:8387543

  8. Blockade of inhibitors of apoptosis (IAPs) in combination with tumor-targeted delivery of tumor necrosis factor-α leads to synergistic antitumor activity.

    PubMed

    Yuan, Z; Syrkin, G; Adem, A; Geha, R; Pastoriza, J; Vrikshajanani, C; Smith, T; Quinn, T J; Alemu, G; Cho, H; Barrett, C J; Arap, W; Pasqualini, R; Libutti, S K

    2013-01-01

    In the current study, we examined whether the combination of tumor vasculature-targeted gene therapy with adeno-associated virus bacteriophage-tumor necrosis factor-α (AAVP-TNF-α) and/or the orally administered LCL161, an antagonist of inhibitors of apoptosis proteins (IAPs), enhanced antitumor efficacy without systemic toxicity. M21 human melanoma xenografts were grown subcutaneously in nude mice. Mice were treated according to one of four treatment regimens: AAVP-TNF-α alone (AAVP-TNF-α plus sodium acetate-acetic acid (NaAc) buffer) via tail vein injection; LCL161 alone (phosphate-buffered saline (PBS) plus LCL161) via oral gavage; AAVP-TNF-α plus LCL161; and PBS plus NaAc Buffer as a control group. Tumor volume, survival and toxicity were analyzed. AAVP trafficking and TNF-α production in vivo were detected on days 7 and 21 by real-time PCR, enzyme-linked immunosorbent assay and immunofluorescence. The levels of apoptosis and activation of caspases were assessed on days 7 and 21 by TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling) and immunofluorescence assays. Our results showed that the combination of AAVP-TNF-α and LCL161 significantly inhibited tumor growth and prolonged survival in mice with melanoma xenografts. The combination of AAVP-TNF-α and LCL161 was also significantly more effective than either agent alone, showing a synergistic effect without systemic toxicity.

  9. Multiple roles of tumor necrosis factor-alpha in fracture healing.

    PubMed

    Karnes, Jonathan M; Daffner, Scott D; Watkins, Colleen M

    2015-09-01

    This review presents a summary of basic science evidence examining the influence of tumor necrosis factor-alpha (TNF-α) on secondary fracture healing. Multiple studies suggest that TNF-α, in combination with the host reservoir of peri-fracture mesenchymal stem cells, is a main determinant in the success of bone healing. Disease states associated with poor bone healing commonly have inappropriate TNF-α responses, which likely contributes to the higher incidence of delayed and nonunions in these patient populations. Appreciation of TNF-α in fracture healing may lead to new therapies to augment recovery and reduce the incidence of complications.

  10. Effects of interferon-gamma and tumor necrosis factor-alpha on macrophage enzyme levels

    NASA Technical Reports Server (NTRS)

    Pierangeli, Silvia S.; Sonnenfeld, Gerald

    1989-01-01

    Murine peritoneal macrophages were treated with interferon-gamma (IFN-gamma) or tumor necrosis factor-alpha (TNF). Measurements of changes in acid phosphatase and beta-glucuronidase levels were made as an indication of activation by cytokine treatment. IFN-gamma or TNF-gamma treatment resulted in a significant increase in the activities of both enzymes measured in the cell lysates. This increase was observable after 6 h of incubation, but reached its maximum level after 24 h of incubation. The effect of the treatment of the cell with both cytokines together was additive. No synergistic effect of addition of both cytokines on the enzyme levels was observed.

  11. An aptasensor for electrochemical detection of tumor necrosis factor in human blood.

    PubMed

    Liu, Ying; Zhou, Qing; Revzin, Alexander

    2013-08-01

    Electrochemical aptasensors can detect disease markers such as cytokines to provide point-of-care diagnosis that is low-cost, rapid, specific and sensitive. Herein, we describe the development of an aptamer-based electrochemical sensor for detection and analysis of tumor necrosis factor-alpha (TNF-α) - a key inflammatory cytokine - in whole human blood. When testing spiked blood, a TNF-α detection limit of 58 pM (10 ng mL(-1)) and a linear range of 6 nM (100 ng mL(-1)) could be achieved. Furthermore, detection of TNF-α in mitogen stimulated whole blood was demonstrated.

  12. Adipose Expression of Tumor Necrosis Factor-α: Direct Role in Obesity-Linked Insulin Resistance

    NASA Astrophysics Data System (ADS)

    Hotamisligil, Gokhan S.; Shargill, Narinder S.; Spiegelman, Bruce M.

    1993-01-01

    Tumor necrosis factor-α (TNF-α) has been shown to have certain catabolic effects on fat cells and whole animals. An induction of TNF-α messenger RNA expression was observed in adipose tissue from four different rodent models of obesity and diabetes. TNF-α protein was also elevated locally and systemically. Neutralization of TNF-α in obese fa/fa rats caused a significant increase in the peripheral uptake of glucose in response to insulin. These results indicate a role for TNF-α in obesity and particularly in the insulin resistance and diabetes that often accompany obesity.

  13. Effects of Tumor Necrosis Factor Alpha on Sin Nombre Virus Infection In Vitro

    PubMed Central

    Khaiboullina, Svetlana F.; Netski, Dale M.; Krumpe, Peter; St. Jeor, Stephen C.

    2000-01-01

    Previous data indicate that immune mechanisms may be involved in developing capillary leakage during Sin Nombre virus (SNV) infection. Therefore, we investigated production of tumor necrosis factor alpha (TNF-α) by human alveolar macrophages and human umbilical vein endothelial cells (HUVEC) after infection with SNV. In addition, we examined the effect of TNF-α on HUVEC monolayer leakage. Our results reveal that although TNF-α decreases accumulation of viral nucleoproteins, TNF-α levels do not change in SNV-infected cells. In addition, supernatants from SNV-infected human alveolar macrophages did not cause a significant increase in endothelial monolayer permeability. PMID:11090198

  14. Neutrophil Recruitment by Tumor Necrosis Factor from Mast Cells in Immune Complex Peritonitis

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Ramos, Bernard F.; Jakschik, Barbara A.

    1992-12-01

    During generalized immune complex-induced inflammation of the peritoneal cavity, two peaks of tumor necrosis factor (TNF) were observed in the peritoneal exudate of normal mice. In mast cell-deficient mice, the first peak was undetected, and the second peak of TNF and neutrophil influx were significantly reduced. Antibody to TNF significantly inhibited neutrophil infiltration in normal but not in mast cell-deficient mice. Mast cell repletion of the latter normalized TNF, neutrophil mobilization, and the effect of the antibody to TNF. Thus, in vivo, mast cells produce the TNF that augments neutrophil emigration.

  15. Inhibitory effect of tetrahydroswertianolin on tumor necrosis factor-alpha-dependent hepatic apoptosis in mice.

    PubMed

    Hase, K; Xiong, Q; Basnet, P; Namba, T; Kadota, S

    1999-06-15

    We investigated the effect of tetrahydroswertianolin (THS), a hepatoprotective agent from Swertia japonica, on tumor necrosis factor-alpha (TNF-alpha)-dependent hepatic apoptosis induced by D-galactosamine (D-GalN) (700 mg/kg, i.p.) and lipopolysaccharide (LPS) (10 microg/kg, i.p.) in mice. Apoptotic symptoms were observed at the initial stage of liver damage. By 5 hr after intoxication, hepatic DNA fragmentation had risen to 2123%, with the value in untreated mice set at 100%, without a significant elevation of serum alanine transaminase (ALT) activity. There was a parallel increase in hepatocytes undergoing chromatin condensation and apoptotic body formation. By 8 hr after intoxication, serum ALT activity had risen to 3707 U/L. Pretreatment with THS (50 mg/kg, p.o.) at 18 and 2 hr before intoxication significantly reduced DNA fragmentation to 821% of that in untreated mice and prevented the emergence of chromatin condensation and apoptotic body formation. A significant and dose-dependent reduction in serum ALT activity at 8 hr also was observed with THS pretreatment. These effects of THS were different from those observed from pretreatment with glycyrrhizin (GCR), which is a clinically used hepatoprotective agent with membrane-stabilizing activity. GCR pretreatment (100 mg/kg, p.o.) did not inhibit hepatic DNA fragmentation (1588% of untreated mice), although this compound significantly protected against serum ALT elevation (1463 U/L). These data suggest that an inhibitory effect on the progression of hepatic apoptosis prior to liver injury may be involved in the hepatoprotective mechanisms of THS, whereas it appears that GCR affects the processes after apoptosis. In a separate experiment, we found that the concentration of serum TNF-alpha rose to 2016 pg/mL at 1 hr after intoxication of mice with D-GalN and LPS, but this increase was suppressed by THS pretreatment (10, 50, or 200 mg/kg, p.o.) to 716, 454, or 406 pg/mL, respectively. Further study with a reverse

  16. Tumor necrosis factor alpha has a protective role in a murine model of systemic candidiasis.

    PubMed Central

    Louie, A; Baltch, A L; Smith, R P; Franke, M A; Ritz, W J; Singh, J K; Gordon, M A

    1994-01-01

    The role of tumor necrosis factor alpha (TNF-alpha) in host defense against systemic Candida albicans infection was evaluated in a murine model of systemic candidiasis in which uniform death occurred between 5 and 6 days after infection. TNF-alpha was first detected at 16 h postinfection and progressively increased thereafter. Peak levels (700 to 900 pg/ml) were measured in mice near death. Administration of 0.5 to 1.0 mg of polyclonal immunoglobulin G (IgG) TNF-alpha antibody (TNF-alpha Ab) to mice 2 h preinfection neutralized serum TNF-alpha for up to 30 h. However, this regimen shortened survival from a mean of 5.5 days for IgG controls to 3.4 days (P = 1.9 x 10(-12)). Semiquantitative cultures of spleen, lung, liver, and kidney conducted at 1, 2, and 3 days postinfection found colony counts of spleen and kidney to be significantly higher for TNF-alpha Ab recipients but only for the first 48 h. Administration of 1.5 and 1.0 mg of TNF-alpha Ab at 2 h before and 48 h after fungal injection, respectively, shortened the mean survival from 4.9 to 2.3 days (P = 5.2 x 10(-8)). This regimen neutralized serum TNF-alpha throughout infection. With this regimen, colony counts of all organs were significantly higher in TNF-alpha Ab recipients at 1, 2, and 3 days postinfection. Histopathologic studies showed an increase in the number and size of C. albicans foci in tissues. Peripheral leukocyte counts and inflammatory response in tissue were similar for TNF-alpha Ab and IgG sham recipients. In vitro, incubation of C. albicans with four to eight times the peak serum levels of TNF-alpha for up to 24 h did not inhibit the rate of germ tube or pseudohypha formation. Thus, TNF-alpha that was produced during infection with C. albicans augmented host resistance against this organism and prolonged survival. The protective effect of TNF-alpha was not mediated by increased leukocytes in blood or tissues nor by a direct anticandidal effect of TNF-alpha. This study suggests that the

  17. Tumor necrosis factor-alpha-induced changes in insulin-producing beta-cells.

    PubMed

    Parkash, Jai; Chaudhry, Muhammad A; Rhoten, William B

    2005-10-01

    The migration of macrophages and lymphocytes that produce cytokines such as tumor necrosis factor-alpha (TNF-alpha) causes beta-cell death, leading to type 1 diabetes. Similarly, in type 2 diabetes, the adipocyte-derived cytokines including TNF-alpha are elevated in the circulation, causing inflammation and insulin resistance. Thus, the studies described in this article using TNF-alpha are relevant to furthering our understanding of the pathogenesis of diabetes mellitus. We used RINr1046-38 (RIN) insulin-producing beta-cells, which constitutively express calbindin-D(28k), to characterize the effect of TNF-alpha on apoptosis, replication, insulin release, and gene and protein expression. Western blots of TNF-alpha-treated RIN cells revealed a decrease in calbindin-D(28k). By ELISA, TNF-alpha-treated beta-cells had 47% less calbindin-D(28k) than controls. In association with the decline in calbindin-D(28k), TNF-alpha treatment of RIN cells led to a 73% greater increase in changes in intracellular calcium concentration (Delta[Ca(2+)](i)) in TNF-alpha-treated cells as compared to that in control RIN cells upon treatment with 50 mM KCl; caused a greater increase in the [Ca(2+)](i) following the addition of 5.5 microM ionomycin; increased by more than threefold the apoptotic rate, expressed as the percentage of TUNEL-positive nuclei to total nuclei; decreased the rate of cell replication by 36%; and increased and decreased selectively the expression of specific genes as determined by microarray analysis. The subcellular localizations of Bcl-2, an antiapoptotic protein, and Bax, a proapoptotic protein, within RIN cells were altered with TNF-alpha treatment such that the two were colocalized with mitochondria in the perinuclear region. We conclude that the proapoptotic action of TNF-alpha on beta-cells is manifested via decreased expression of calbindin-D(28k) and is mediated at least in part by [Ca(2+)](i). PMID:16114068

  18. The effect of chronic periodontitis on serum levels of tumor necrosis factor-alpha in Alzheimer disease

    PubMed Central

    Farhad, Shirin Zahra; Amini, Shahram; Khalilian, Amir; Barekatain, Majid; Mafi, Morvarid; Barekatain, Mehrdad; Rafei, Ehsan

    2014-01-01

    Background: Despite the outbreak in dental science, oral and dental complications in Alzheimer are of the unsolved problems. It is assumed that tumor necrosis factor-α, which is a key factor in Alzheimer, has a relation with periodontal complications in patients with Alzheimer disease. The present study evaluated the effect of chronic periodontitis on serum levels of tumor necrosis factor-α in Alzheimer disease. Materials and Methods: This case-control study was performed on 80 patients with Alzheimer disease seeking medical care at Nour Hospital, Isfahan, Iran. Eighty patients with Alzheimer disease between 40 and 70 years old attended this study. Forty had chronic periodontitis (case group), and 40 patients had healthy periodontium (control group). Blood sample was taken, and serum levels of tumor necrosis factor-α were measured by means of an ELISA Reader device. Independent T-Test was used to analyze data, and P < 0.05 was considered significant. Results: The mean of tumor necrosis factor-α was 749.1 ng/μL in case group and 286.8 ng/μL in control group. Independent t-test showed that the mean of tumor necrosis factor-α in patients with Alzheimer and periodontitis was approximately three folds higher than the patients only with Alzheimer, and this difference was statistically significant (P < 0.001). Conclusion: According to the results of this study, it seems that there is a difference between serum levels of tumor necrosis factor-α in patient with Alzheimer and chronic periodontitis and patients with Alzheimer disease and healthy periodontium. Tumor necrosis factor-α level in serum may act as a diagnostic marker of periodontal disease in patients with Alzheimer disease PMID:25426144

  19. Serotonin 5-hydroxytryptamine(2A) receptor activation suppresses tumor necrosis factor-alpha-induced inflammation with extraordinary potency.

    PubMed

    Yu, Bangning; Becnel, Jaime; Zerfaoui, Mourad; Rohatgi, Rasika; Boulares, A Hamid; Nichols, Charles D

    2008-11-01

    The G protein-coupled serotonin 5-hydroxytryptamine (5-HT)(2A) receptor is primarily recognized for its role in brain neurotransmission, where it mediates a wide variety of functions, including certain aspects of cognition. However, there is significant expression of this receptor in peripheral tissues, where its importance is largely unknown. We have now discovered that activation of 5-HT(2A) receptors in primary aortic smooth muscle cells provides a previously unknown and extremely potent inhibition of tumor necrosis factor (TNF)-alpha-mediated inflammation. 5-HT(2A) receptor stimulation with the agonist (R)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane [(R)-DOI] rapidly inhibits a variety of TNF-alpha-mediated proinflammatory markers, including intracellular adhesion molecule 1 (ICAM-1), vascular adhesion molecule 1 (VCAM-1), and interleukin (IL)-6 gene expression, nitric-oxide synthase activity, and nuclear translocation of nuclear factor kappaB, with IC(50) values of only 10 to 20 pM. It is significant that proinflammatory markers can also be inhibited by (R)-DOI hours after treatment with TNF-alpha. With the exception of a few natural toxins, no current drugs or small molecule therapeutics demonstrate a comparable potency for any physiological effect. TNF-alpha-mediated inflammatory pathways have been strongly implicated in a number of diseases, including atherosclerosis, rheumatoid arthritis, psoriasis, type II diabetes, depression, schizophrenia, and Alzheimer's disease. Our results indicate that activation of 5-HT(2A) receptors represents a novel, and extraordinarily potent, potential therapeutic avenue for the treatment of disorders involving TNF-alpha-mediated inflammation. Note that because (R)-DOI can significantly inhibit the effects of TNF-alpha many hours after the administration of TNF-alpha, potential therapies could be aimed not only at preventing inflammation but also treating inflammatory injury that has already occurred or is ongoing. PMID

  20. Polymer-conjugated inhibitors of tumor necrosis factor-α for local control of inflammation

    PubMed Central

    Washburn, Newell R.; Prata, Joseph E.; Friedrich, Emily E.; Ramadan, Mohamed H.; Elder, Allison N.; Sun, Liang Tso

    2013-01-01

    Burns, chronic wounds, osteoarthritis, and uveitis are examples of conditions characterized by local, intense inflammatory responses that can impede healing or even further tissue degradation. The most powerful anti-inflammatory drugs available are often administered systemically, but these carry significant side effects and are not compatible for patients that have underlying complications associated with their condition. Conjugation of monoclonal antibodies that neutralize pro-inflammatory cytokines to high molecular weight hydrophilic polymers has been shown to be an effective strategy for local control of inflammation. Lead formulations are based on antibody inhibitors of tumor necrosis factor-α conjugated to hyaluronic acid having molecular weight greater than 1 MDa. This review will discuss fundamental aspects of medical conditions that could be treated with these conjugates and design principles for preparing these cytokine-neutralizing polymer conjugates. Results demonstrating that infliximab, an approved inhibitor of tumor necrosis factor-α, can be incorporated into the conjugates using a broad range of water-soluble polymers are also presented, along with a prospectus for clinical translation. PMID:23903893

  1. Computational modeling of tuberculous meningitis reveals an important role for tumor necrosis factor-α

    PubMed Central

    El-Kebir, M.; van der Kuip, M.; van Furth, A.M.; Kirschner, D.E.

    2013-01-01

    Tuberculosis is a global health issue with annually about 1.5 million deaths and 2 billion infected people worldwide. Extra pulmonary tuberculosis comprises 13% of all cases of which tuberculous meningitis is the most severe. It has a high mortality and is often diagnosed once irreversible neurological damage has already occurred. Development of diagnostic and treatment strategies requires a thorough understanding of the pathogenesis of tuberculous meningitis. This disease is characterized by the formation of a cerebral granuloma, which is a collection of immune cells that attempt to immunologically restrain, and physically contain bacteria. The cytokine tumor necrosis factor-α is known for its important role in granuloma formation. Because traditional experimental animal studies exploring tuberculous meningitis are difficult and expensive, another approach is needed to begin to address this important and significant disease outcome. Here, we present an in silico model capturing the unique immunological environment of the brain that allows us to study the key mechanisms driving granuloma formation in time. Uncertainty and sensitivity analysis reveal a dose-dependent effect of tumor necrosis factor-α on bacterial load and immune cell numbers thereby influencing the onset of tuberculous meningitis. Insufficient levels result in bacterial overgrowth, whereas high levels lead to uncontrolled inflammation being detrimental to the host. These findings have important implications for the development of immuno-modulating treatment strategies for tuberculous meningitis. PMID:23542051

  2. Interleukin-8 is a major neutrophil chemotactic factor derived from cultured human gingival fibroblasts stimulated with interleukin-1 beta or tumor necrosis factor alpha.

    PubMed Central

    Takashiba, S; Takigawa, M; Takahashi, K; Myokai, F; Nishimura, F; Chihara, T; Kurihara, H; Nomura, Y; Murayama, Y

    1992-01-01

    Inflammatory mediators produced by cells in the gingiva have been implicated in the initiation and progression of periodontal disease, a common infectious disease. In this study, we examined the biological activity of neutrophil chemotactic factors and the kinetics of expression of interleukin-8 (IL-8) mRNA derived from normal gingival fibroblasts in response to inflammatory mediators in an in vitro model. Gingival fibroblasts stimulated by either recombinant human interleukin-1 beta or recombinant human tumor necrosis factor alpha produced neutrophil chemotactic factors after 4 h, whereas expression of cell-derived IL-8 mRNA was detected within 1 h after stimulation. Furthermore, in a neutralization assay, rabbit anti-recombinant human IL-8 antiserum inhibited neutrophil chemotactic activity to basal levels. These results provide evidence that gingival fibroblasts synthesize potent chemotactic factors such as IL-8 in the presence of the inflammatory mediators interleukin-1 beta and tumor necrosis factor alpha. The activity of these factors may contribute to neutrophil-mediated processes in the pathogenesis of periodontal disease. Images PMID:1452358

  3. Semiquantitative Analysis Using Thallium-201 SPECT for Differential Diagnosis Between Tumor Recurrence and Radiation Necrosis After Gamma Knife Surgery for Malignant Brain Tumors

    SciTech Connect

    Matsunaga, Shigeo; Shuto, Takashi; Takase, Hajime; Ohtake, Makoto; Tomura, Nagatsuki; Tanaka, Takahiro; Sonoda, Masaki

    2013-01-01

    Purpose: Semiquantitative analysis of thallium-201 chloride single photon emission computed tomography ({sup 201}Tl SPECT) was evaluated for the discrimination between recurrent brain tumor and delayed radiation necrosis after gamma knife surgery (GKS) for metastatic brain tumors and high-grade gliomas. Methods and Materials: The medical records were reviewed of 75 patients, including 48 patients with metastatic brain tumor and 27 patients with high-grade glioma who underwent GKS in our institution, and had suspected tumor recurrence or radiation necrosis on follow-up neuroimaging and deteriorating clinical status after GKS. Analysis of {sup 201}Tl SPECT data used the early ratio (ER) and the delayed ratio (DR) calculated as tumor/normal average counts on the early and delayed images, and the retention index (RI) as the ratio of DR to ER. Results: A total of 107 tumors were analyzed with {sup 201}Tl SPECT. Nineteen lesions were removed surgically and histological diagnoses established, and the other lesions were evaluated with follow-up clinical and neuroimaging examinations after GKS. The final diagnosis was considered to be recurrent tumor in 65 lesions and radiation necrosis in 42 lesions. Semiquantitative analysis demonstrated significant differences in DR (P=.002) and RI (P<.0001), but not in ER (P=.372), between the tumor recurrence and radiation necrosis groups, and no significant differences between metastatic brain tumors and high-grade gliomas in all indices (P=.926 for ER, P=.263 for DR, and P=.826 for RI). Receiver operating characteristics analysis indicated that RI was the most informative index with the optimum threshold of 0.775, which provided 82.8% sensitivity, 83.7% specificity, and 82.8% accuracy. Conclusions: Semiquantitative analysis of {sup 201}Tl SPECT provides useful information for the differentiation between tumor recurrence and radiation necrosis in metastatic brain tumors and high-grade gliomas after GKS, and the RI may be the most

  4. A disaccharide that inhibits tumor necrosis factor alpha is formed from the extracellular matrix by the enzyme heparanase.

    PubMed

    Lider, O; Cahalon, L; Gilat, D; Hershkoviz, R; Siegel, D; Margalit, R; Shoseyov, O; Cohen, I R

    1995-05-23

    The activation of T cells by antigens or mitogens leads to the secretion of cytokines and enzymes that shape the inflammatory response. Among these molecular mediators of inflammation is a heparanase enzyme that degrades the heparan sulfate scaffold of the extracellular matrix (ECM). Activated T cells use heparanase to penetrate the ECM and gain access to the tissues. We now report that among the breakdown products of the ECM generated by heparanase is a trisulfated disaccharide that can inhibit delayed-type hypersensitivity (DTH) in mice. This inhibition of T-cell mediated inflammation in vivo was associated with an inhibitory effect of the disaccharide on the production of biologically active tumor necrosis factor alpha (TNF-alpha) by activated T cells in vitro; the trisulfated disaccharide did not affect T-cell viability or responsiveness generally. Both the in vivo and in vitro effects of the disaccharide manifested a bell-shaped dose-response curve. The inhibitory effects of the trisulfated disaccharide were lost if the sulfate groups were removed. Thus, the disaccharide, which may be a natural product of inflammation, can regulate the functional nature of the response by the T cell to activation. Such a feedback control mechanism could enable the T cell to assess the extent of tissue degradation and adjust its behavior accordingly. PMID:7761444

  5. Tumor Necrosis Factor Alpha and Interleukin 1β Up-Regulate Gastric Mucosal Fas Antigen Expression in Helicobacter pylori Infection

    PubMed Central

    Houghton, JeanMarie; Macera-Bloch, Lisa S.; Harrison, Lawrence; Kim, Kyung H.; Korah, Reju M.

    2000-01-01

    Fas-mediated gastric mucosal apoptosis is gaining attention as a cause of tissue damage due to Helicobacter pylori infection. We explored the effects of H. pylori directly, and the effects of the inflammatory environment established subsequent to H. pylori infection, on Fas-mediated apoptosis in a nontransformed gastric mucosal cell line (RGM-1). Exposure to H. pylori-activated peripheral blood mononuclear cells (PBMCs), but not H. pylori itself, induced Fas antigen (Fas Ag) expression, indicating a Fas-regulatory role for inflammatory cytokines in this system. Of various inflammatory cytokines tested, only interleukin 1β and tumor necrosis factor alpha induced Fas Ag expression, and removal of either of these from the conditioned medium abrogated the response. When exposed to Fas ligand, RGM-1 cells treated with PBMC-conditioned medium underwent massive and rapid cell death, interestingly, with a minimal effect on total cell numbers early on. Cell cycle analysis revealed a substantial increase in S phase cells among cells exposed to Fas ligand, suggesting an increase in their proliferative response. Taken together, these data indicate that the immune environment secondary to H. pylori infection plays a critical role in priming gastric mucosal cells to undergo apoptosis or to proliferate based upon their Fas Ag status. PMID:10678925

  6. Epidermal Platelet-activating Factor Receptor Activation and Ultraviolet B Radiation Result in Synergistic Tumor Necrosis Factor-alpha Production

    PubMed Central

    Wolverton, Jay E.; Al-Hassani, Mohammed; Yao, Yongxue; Zhang, Qiwei; Travers, Jeffrey B.

    2010-01-01

    Ultraviolet B radiation (UVB) is a potent stimulator of epidermal cytokine production which has been implicated in photoaggravated dermatoses. In addition to cytokines such as tumor necrosis factor-α (TNF-α), UVB generates bioactive lipids including platelet-activating factor (PAF). Our previous studies have demonstrated that UVB-mediated production of keratinocyte TNF-α is in part due to PAF. The current studies use a human PAF-receptor (PAF-R) negative epithelial cell line transduced with PAF-Rs and PAF–R-deficient mice to demonstrate that activation of the epidermal PAF-R along with UVB irradiation results in a synergistic production of TNF-α. It should be noted that PAF-R effects are mimicked by the protein kinase C (PKC) agonist phorbol myristic acetate, and are inhibited by pharmacological antagonists of the PKC gamma isoenzyme. These studies suggest that concomitant PAF-R activation and UVB irradiation results in a synergistic production of the cytokine TNF-α which is mediated in part via PKC. These studies provide a novel potential mechanism for photosensitivity responses. PMID:19769579

  7. A disaccharide that inhibits tumor necrosis factor alpha is formed from the extracellular matrix by the enzyme heparanase.

    PubMed Central

    Lider, O; Cahalon, L; Gilat, D; Hershkoviz, R; Siegel, D; Margalit, R; Shoseyov, O; Cohen, I R

    1995-01-01

    The activation of T cells by antigens or mitogens leads to the secretion of cytokines and enzymes that shape the inflammatory response. Among these molecular mediators of inflammation is a heparanase enzyme that degrades the heparan sulfate scaffold of the extracellular matrix (ECM). Activated T cells use heparanase to penetrate the ECM and gain access to the tissues. We now report that among the breakdown products of the ECM generated by heparanase is a trisulfated disaccharide that can inhibit delayed-type hypersensitivity (DTH) in mice. This inhibition of T-cell mediated inflammation in vivo was associated with an inhibitory effect of the disaccharide on the production of biologically active tumor necrosis factor alpha (TNF-alpha) by activated T cells in vitro; the trisulfated disaccharide did not affect T-cell viability or responsiveness generally. Both the in vivo and in vitro effects of the disaccharide manifested a bell-shaped dose-response curve. The inhibitory effects of the trisulfated disaccharide were lost if the sulfate groups were removed. Thus, the disaccharide, which may be a natural product of inflammation, can regulate the functional nature of the response by the T cell to activation. Such a feedback control mechanism could enable the T cell to assess the extent of tissue degradation and adjust its behavior accordingly. PMID:7761444

  8. Melatonin reversed tumor necrosis factor-alpha-inhibited osteogenesis of human mesenchymal stem cells by stabilizing SMAD1 protein.

    PubMed

    Lian, Chengjie; Wu, Zizhao; Gao, Bo; Peng, Yan; Liang, Anjing; Xu, Caixia; Liu, Lei; Qiu, Xianjian; Huang, Junjun; Zhou, Hang; Cai, Yifeng; Su, Peiqiang; Huang, Dongsheng

    2016-10-01

    Tumor necrosis factor-alpha (TNFα) plays a pivotal role in inflammation-related osteoporosis through the promotion of bone resorption and suppression of bone formation. Numerous drugs have been produced to treat osteoporosis by inhibiting bone resorption, but they offer few benefits to bone formation, which is what is needed by patients with severe bone loss. Melatonin, which can exert both anti-inflammatory and pro-osteogenic effects, shows promise in overcoming TNFα-inhibited osteogenesis and deserves further research. This study demonstrated that melatonin rescued TNFα-inhibited osteogenesis of human mesenchymal stem cells and that the interactions between SMURF1 and SMAD1 mediated the crosstalk between melatonin signaling and TNFα signaling. Additionally, melatonin treatment was found to downregulate TNFα-induced SMURF1 expression and then decrease SMURF1-mediated ubiquitination and degradation of SMAD1 protein, leading to steady bone morphogenetic protein-SMAD1 signaling activity and restoration of TNFα-impaired osteogenesis. Thus, melatonin has prospects for treating osteoporosis caused by inflammatory factors due to its multifaceted functions on regulation of bone formation, bone resorption, and inflammation. Further studies will focus on unveiling the specific mechanisms by which melatonin downregulates SMURF1 expression and confirming the clinical therapeutic value of melatonin in the prevention and therapy of bone loss associated with inflammation. PMID:27265199

  9. Use of the tumor necrosis factor-blockers for Crohn's disease

    PubMed Central

    Thomson, Alan BR; Gupta, Milli; Freeman, Hugh J

    2012-01-01

    The use of anti-tumor necrosis factor-α therapy for inflammatory bowel disease represents the most important advance in the care of these patients since the publication of the National Co-operative Crohn’s disease study thirty years ago. The recommendations of numerous consensus groups worldwide are now supported by a wealth of clinical trials and several meta-analyses. In general, it is suggested that tumor necrosis factor-α blockers (TNFBs) are indicated (1) for persons with moderately-severe Crohn’s disease or ulcerative colitis (UC) who have failed two or more causes of glucocorticosteroids and an acceptably long cause (8 wk to 12 wk) of an immune modulator such as azathioprine or methotrexate; (2) non-responsive perianal disease; and (3) severe UC not responding to a 3-d to 5-d course of steroids. Once TNFBs have been introduced and the patient is responsive, therapy given by the IV and SC rate must be continued. It remains open to definitive evidence if concomitant immune modulators are required with TNFB maintenance therapy, and when or if TNFB may be weaned and discontinued. The supportive evidence from a single study on the role of early versus later introduction of TNFB in the course of a patient’s illness needs to be confirmed. The risk/benefit profile of TNFB appears to be acceptable as long as the patient is immunized and tested for tuberculosis and viral hepatitis before the initiation of TNFB, and as long as the long-term adverse effects on the development of lymphoma and other tumors do not prone to be problematic. Because the rates of benefits to TNFB are modest from a population perspective and the cost of therapy is very high, the ultimate application of use of TNFBs will likely be established by cost/benefit studies. PMID:23002356

  10. Detection of red-spotted grouper nervous necrosis virus by loop-mediated isothermal amplification.

    PubMed

    Xu, Hai-Dong; Feng, Juan; Guo, Zhi-Xun; Ou, You-Jun; Wang, Jiang-Yong

    2010-01-01

    Red-spotted grouper nervous necrosis virus (RGNNV) causes high mortality in marine fish larvae cultured in China. To control better an outbreak of this virus, a rapid, specific and sensitive detection method based on loop-mediated isothermal amplification (LAMP) was developed. A set of four primers, two outer and two inner, was designed from RGNNV genome RNA. The LAMP reaction mix was optimized. The method was specific as no cross-reaction was observed between white spot syndrome virus, koi herpesvirus, infectious spleen and kidney necrosis virus, mud crab reovirus, and grass carp hemorrhage virus. The sensitivity of LAMP was 100-fold higher than the nested PCR in detecting the presence of RGNNV. RGNNV was detected in the brain of Trachinotus ovatus that showed typical symptoms of NNV infection, with the standardized LAMP procedure.

  11. Tumor necrosis factor receptor 2-signaling in CD133-expressing cells in renal clear cell carcinoma

    PubMed Central

    Al-Lamki, Rafia S; Wang, Jun; Yang, Jun; Burrows, Natalie; Maxwell, Patrick H; Eisen, Timothy; Warren, Anne Y; Vanharanta, Sakari; Pacey, Simon; Vandenabeele, Peter; Pober, Jordan S; Bradley, John R

    2016-01-01

    Compared to normal kidney, renal clear cell carcinomas (ccRCC) contain increased numbers of interstitial, non-hematopoietic CD133+cells that express stem cell markers and exhibit low rates of proliferation. These cells fail to form tumors upon transplantation but support tumor formation by differentiated malignant cells. We hypothesized that killing of ccRCC CD133+ (RCCCD133+) cells by cytotoxic agents might be enhanced by inducing them to divide. Since tumor necrosis factor-alpha (TNF), signalling through TNFR2, induces proliferation of malignant renal tubular epithelial cells, we investigated whether TNFR2 might similarly affect RCCCD133+cells. We compared treating organ cultures of ccRCC vs adjacent nontumour kidney (NK) and RCCCD133+ vs NK CD133+ (NKCD133+) cell cultures with wild-type TNF (wtTNF) or TNF muteins selective for TNFR1 (R1TNF) or TNFR2 (R2TNF). In organ cultures, R2TNF increased expression of TNFR2 and promoted cell cycle entry of both RCCCD133+ and NKCD133+ but effects were greater in RCCCD133+. In contrast, R1TNF increased TNFR1 expression and promoted cell death. Importantly, cyclophosphamide triggered much more cell death in RCCCD133+ and NKCD133+cells pre-treated with R2TNF as compared to untreated controls. We conclude that selective engagement of TNFR2 by TNF can drives RCCCD133+ proliferation and thereby increase sensitivity to cell cycle-dependent cytotoxicity. PMID:26992212

  12. The Possible Role of Tumor Necrosis Factor-α in Diabetic Polyneuropathy

    PubMed Central

    Yagihashi, Soroku; Toyota, Takayoshi

    2003-01-01

    In this review, the authors provide evidences that imply the role of tumor necrosis factor-α (TNF-α) in the pathogenesis of diabetic complications, especially diabetic polyneuropathy. Under chronic hyperglycemia, endogenous TNF-α production is accelerated in microvascular and neural tissues, which may undergo an increased microvascular permeability, hypercoagulability, and nerve damage, thus initiating and promoting the development of characteristic lesions of diabetic microangiopathy and polyneuropathy. Enhanced TNF-α production may also promote atherosclerosis due to increased insulin resistance and the expression of adhesion molecules. Clinical application of specific agents that suppress production and/or activity of TNF-α may inhibit the development and exacerbation of chronic diabetic complications. PMID:14630568

  13. Production of tumor necrosis factor alpha, interleukin-1 alpha, and interleukin-6 during murine coccidioidomycosis.

    PubMed Central

    Cox, R A; Magee, D M

    1995-01-01

    The proinflammatory cytokines tumor necrosis factor alpha (TNF-alpha), interleukin-1 alpha (IL-1 alpha), and interleukin-6 (IL-6) were induced in mice infected with Coccidioides immitis. Analyses of the cytokine profiles of two inbred mouse strains which differ in their susceptibility to pulmonary challenge with C. immitis revealed higher levels of IL-6 in lungs from DBA/2 mice (resistant strain) than in those from BALB/c mice (susceptible strain) beginning at day 6 and continuing through day 15 postinfection. Spleen cells from both mouse strains secreted TNF-alpha, IL-1 alpha, and IL-6 in vitro in response to stimulation with killed spherules but differed in that spleen cells from the resistant strain produced increased levels of these cytokines earlier after pulmonary challenge and at increased levels throughout the course of the disease. PMID:7558338

  14. Tumor necrosis factor antagonists in the treatment of multicentric reticulohistiocytosis: Current clinical evidence

    PubMed Central

    ZHAO, HONGJUN; WU, CHUNMEI; WU, MENGYUN; ZHOU, YAOU; ZHU, HONGLIN; LI, YISHA; YOU, YUNHUI; LUO, HUI; WANG, LIJING; ZUO, XIAOXIA

    2016-01-01

    Multicentric reticulohistiocytosis (MRH) is a rare and debilitating systemic disorder characterized by cutaneous nodules and destructive polyarthritis. Due to its unknown etiology, the treatment of MRH varies with different rates of success, which causes treatment options to be rather independent and empirical. In the present study, a case of a 48-year-old woman with a 12-month history of polyarthralgia and skin nodules was reported. Biopsy samples, which were obtained from her skin eruption exhibited dermal infiltration with histiocytes and multinucleated giant cells. Immunohistochemical staining indicated positivity for CD68. The patient was diagnosed with MRH and treated with a combination therapy of infliximab, prednisolone and methotrexate. Her symptoms improved markedly within 2 weeks. Following the results of this case study, a systematic review of 17 cases of MRH treated with tumor necrosis factor (TNF) antagonists was performed, and the efficacy of anti-TNF treatment in MRH was analyzed. PMID:27175854

  15. A simple assay for tumor necrosis factor using HEp-2 target cells.

    PubMed

    Müzes, G; Vien, C V; Gonzalez-Cabello, R; Gergely, P; Feher, J

    1989-09-01

    We developed a sensitive bioassay system for the determination of tumor necrosis factor-alpha (TNF) using HEp-2 adherent human epipharynx carcinoma cells as targets. TNF from separated human monocytes was triggered by lipopolysaccharide (LPS). In a 24 hr 3H-thymidine incorporation assay, TNF-like activity was seen to reproducibly destroy radiolabeled target cells, i.e., inhibits thymidine incorporation and causes detachment of adherent HEp-2 cells. HEp-2 cells were insensitive to human interleukin-1 (IL-1) and interleukin-2 (IL-2). In contrast, human interferon-alpha and gamma were also cytotoxic for target cells. Monocyte supernatants stimulated by LPS, however, failed to contain detectable amounts of interferons. PMID:2484315

  16. Hard metal pneumoconiosis and the association of tumor necrosis factor-alpha.

    PubMed

    Rolfe, M W; Paine, R; Davenport, R B; Strieter, R M

    1992-12-01

    Hard metal pneumoconiosis is a recently recognized occupational lung disease associated with the exposure to cobalt fumes in the workplace. Chronic exposure in susceptible individuals results in interstitial lung disease histopathologically manifested as interstitial fibrosis with an associated mononuclear cell infiltrate and the presence of "cannibalistic" multinucleated giant cells in the alveolar airspaces. The majority of patients present with symptoms of chronic cough and dyspnea. Interestingly, in addition, patients uniformly report significant weight loss out of proportion to their degree of respiratory impairment. In this case report we demonstrate the association of tumor necrosis factor-alpha (TNF) and hard metal (cobalt) pneumoconiosis and suggest that TNF may have a potential role in the etiology of the constitutional symptoms and the pathogenesis of interstitial lung disease.

  17. Linkage map of the human major histocompatibility complex including the tumor necrosis factor genes

    SciTech Connect

    Carroll, M.C.; Katzman, P.; Alicot, E.M.; Koller, B.H.; Geraghty, D.E.; Orr, H.T.; Strominger, J.L.; Spies, T.

    1987-12-01

    The tumor necrosis factor (TNF) ..cap alpha.. and ..beta.. gene pair has been linked in the human major histocompatibility complex to HLA-B, HLA-C, and, tentatively, HLA-E and HLA-A on one side and to the class III complement/steroid 21-hydroxylase gene cluster on the other by pulsed-field gel electrophoresis. The TNF genes are located 200 kilobases (kb) centromeric of HLA-B and about 350 kb telomeric of the class III cluster. Together with previous data on the linkage and structures of the class II and class III regions, a restriction map of the entire human major histocompatibility complex of about 3500 kb has been prepared.

  18. Successful treatment of childhood onset refractory polyarteritis nodosa with tumor necrosis factor alpha blockade.

    PubMed

    Feinstein, Jeffrey; Arroyo, Ramon

    2005-08-01

    Polyarteritis nodosa is a rare systemic necrotizing vasculitis of small- and medium-sized arteries that affects patients of all ages. Its incidence ranges from 2 to 9 per million people. The 5-year survival rate is 13% in untreated patients and 77.6% with modern therapy. Standard treatment includes corticosteroids and cyclophosphamide. Despite aggressive medical management, 22.4% of patients die within 5 years, and of the survivors, medication-induced morbidity is frequent. There is great need for better treatment modalities in terms of safety and efficacy. We report the case of a 5-year-old boy with polyarteritis nodosa refractory to all known standard treatments. After 9 years of persistently active disease, at the age of 14, he was successfully managed with the tumor necrosis factor alpha antagonist, etanercept.

  19. Modulation of Endogenous Hormone Action by Recombinant Human Tumor Necrosis Factor

    NASA Astrophysics Data System (ADS)

    Warren, Robert S.; Donner, David B.; Fletcher Starnes, H.; Brennan, Murray F.

    1987-12-01

    Tumor necrosis factor (TNF) has been implicated in the toxic manifestations of overwhelming bacterial infection and in the tissue wasting that often accompanies prolonged infections and malignancy. We have examined a possible role of TNF in the early metabolic alterations following acute tissue injury or sepsis. Recombinant human TNF stimulated rat liver amino acid uptake up to 5-fold in vivo and there was a concomitant increase in plasma glucagon. In vitro TNF had no direct effect on hepatocyte amino acid uptake, but it markedly enhanced the stimulation of amino acid transport by glucagon, without an alteration in binding of glucagon to hepatocytes. This permissive effect of TNF on glucagon action represents an interrelationship between the immune and endocrine systems, and it may help to explain the mechanism of hormonal regulation of both the anabolic and catabolic responses to acute injury.

  20. Progress with anti-tumor necrosis factor therapeutics for the treatment of inflammatory bowel disease.

    PubMed

    Fernandes, Carlos; Allocca, Mariangela; Danese, Silvio; Fiorino, Gionata

    2015-01-01

    Anti-tumor necrosis factor (TNF) therapy is a valid, effective and increasingly used option in inflammatory bowel disease management. Nevertheless, further knowledge and therapeutic indications regarding these drugs are still evolving. Anti-TNF therapy may be essential to achieve recently proposed end points, namely mucosal healing, prevention of bowel damage and prevention of patient's disability. Anti-TNF drugs are also suggested to be more effective in early disease, particularly in early Crohn's disease. Moreover, its efficacy for prevention of postoperative recurrence in Crohn's disease is still debated. Costs and adverse effects, the relevance of drug monitoring and the possibility of anti-TNF therapy withdrawal in selected patients are still debated issues. This review aimed to describe and discuss the most relevant data about the progress with anti-TNF therapy for the management of inflammatory bowel disease.

  1. Role of Agents other than Tumor Necrosis Factor Blockers in the Treatment of Psoriatic Arthritis.

    PubMed

    Atzeni, Fabiola; Costa, Luisa; Caso, Francesco; Scarpa, Raffaele; Sarzi-Puttini, Piercarlo

    2015-11-01

    Psoriatic arthritis (PsA) is a systemic inflammatory disease characterized by possible peripheral and axial joint involvement, enthesitis, dactylitis, and skin and nail disease. It affects up to one-third of psoriatic patients, and may be associated with comorbidities such as cardiovascular and metabolic diseases. The usually prescribed initial treatment of moderate-severe PsA is methotrexate, which may be accompanied or replaced by a tumor necrosis factor (TNF) inhibitor such as etanercept, infliximab, or adalimumab. However, some patients may become unresponsive (or have contraindications) to available anti-TNF agents and require alternative treatment. The aim of this review is to describe the potential role of some new immunomodulatory agents.

  2. New Approaches in Tumor Necrosis Factor Antagonism for the Treatment of Psoriatic Arthritis: Certolizumab Pegol.

    PubMed

    Cauli, Alberto; Piga, Matteo; Lubrano, Ennio; Marchesoni, Antonio; Floris, Alberto; Mathieu, Alessandro

    2015-11-01

    The pathogenesis of psoriatic arthritis (PsA) is still under discussion but great advances have been made in the last 2 decades that confirm the central role of tumor necrosis factor-α (TNF-α) in its inflammatory milieu. New therapeutic approaches have been proposed, and new molecules with anti-TNF-α activity have been chemically altered to improve their pharmacological properties. Certolizumab pegol (CZP) is a PEGylated Fc-free anti-TNF that has been shown clinically to be effective in the treatment of rheumatoid arthritis (RA), skin psoriasis, and PsA. This article summarizes available data on its clinical efficacy and safety profile in the treatment of patients with PsA.

  3. Leonurus sibiricus induces nitric oxide and tumor necrosis factor-alpha in mouse peritoneal macrophages.

    PubMed

    An, Hyo-Jin; Rim, Hong-Kun; Lee, Jong-Hyun; Suh, Se-Eun; Lee, Ji-Hyun; Kim, Na-Hyung; Choi, In-Young; Jeong, Hyun-Ja; Kim, Il Kwang; Lee, Ju-Young; An, Nyeon-Hyoung; Kim, Hyung-Ryong; Um, Jae-Young; Kim, Hyung-Min; Hong, Seung-Heon

    2008-10-01

    Using mouse peritoneal macrophages, we have examined the mechanism by which Leonurus sibiricus (LS) regulates nitric oxide (NO) production. When LS was used in combination with recombinant interferon-gamma (rIFN-gamma), there was a marked cooperative induction of NO production; however, LS by itself had no effect on NO production. The increased production of NO from rIFN-gamma plus LS-stimulated cells was almost completely inhibited by pretreatment with pyrrolidine dithiocarbamate (PDTC), an inhibitor of nuclear factor kappaB. Furthermore, treatment of peritoneal macrophages with rIFN-gamma plus LS caused a significant increase in tumor necrosis factor-alpha (TNF-alpha) production. PDTC also decreased the effect of LS on TNF-alpha production significantly. Because NO and TNF-alpha play an important role in immune function and host defense, LS treatment could modulate several aspects of host defense mechanisms as a result of stimulation of the inducible nitric oxide synthase.

  4. Mechanism of inhibition of HSV-1 replication by tumor necrosis factor and interferon gamma.

    PubMed

    Feduchi, E; Carrasco, L

    1991-02-01

    Tumor necrosis factor (TNF) synergizes with interferon (IFN gamma) in the blockade of HSV-1 replication. Antibodies against IFN beta block this synergism, implying a role of IFN beta in the antiviral activity of TNF plus IFN gamma. IFN beta 1 added exogenously to Hep-2 cells shows antiviral activity against HSV-1 only at high concentrations, whereas IFN beta 2 (also known as IL-6) alone has no effect on the replication of VSV or HSV-1 even when 1,000 U/ml are present. Our results are in accordance with the idea that TNF induces IFN beta 1 and that both cytokines must be present in the culture medium to synergize with IFN gamma in order to inhibit HSV-1 replication.

  5. Fatigue mechanisms in patients with cancer: effects of tumor necrosis factor and exercise on skeletal muscle

    NASA Technical Reports Server (NTRS)

    St Pierre, B. A.; Kasper, C. E.; Lindsey, A. M.

    1992-01-01

    Fatigue is a common adverse effect of cancer and its therapy. However, the specific mechanisms underlying cancer fatigue are unclear. One physiologic mechanism may involve changes in skeletal muscle protein stores or metabolite concentration. A reduction in skeletal muscle protein stores may result from endogenous tumor necrosis factor (TNF) or from TNF administered as antineoplastic therapy. This muscle wasting would require patients to exert an unusually high amount of effort to generate adequate contractile force during exercise performance or during extended periods of sitting or standing. This additional effort could result in the onset of fatigue. Additionally, cancer fatigue may develop or become exacerbated during exercise as a consequence of changes in the concentration of skeletal muscle metabolites. These biochemical alterations may interfere with force that is produced by the muscle contractile proteins. These physiologic changes may play a role in the decision to include exercise in the rehabilitation plans of patients with cancer. They also may affect ideas about fatigue.

  6. Potentiated antibodies to tumor necrosis factor-alpha in the therapy of patients with rheumatoid arthritis.

    PubMed

    Kozlovskaya, L V; Mukhin, N A; Rameev, V V; Sarkisova, I A; Epstein, O I

    2003-01-01

    We studied the efficiency and safety of a new homeopathic preparation Artrofoon containing affinely purified antibodies to tumor necrosis factor-alpha in the therapy of patients with rheumatoid arthritis. Artrofoon produced a positive antiinflammatory effect on the course of rheumatoid arthritis. This preparation reduced the severity of arthralgia (indexes of Li and Ritchie) and morning stiffness and decreased the erythrocyte sedimentation rate and contents of rheumatoid factor and C-reactive protein. One-month therapy improved the state of patients. Artrofoon was well tolerable. The preparation did not cause the ulcerogenic and nephrotoxic effects. Artrofoon holds much promise for combination therapy of patients with rheumatoid arthritis (including severe articular-and-visceral forms) and complications after treatment with nonsteroid antiinflammatory preparations.

  7. Extensive genetic polymorphism in the human tumor necrosis factor region and relation to extended HLA haplotypes.

    PubMed Central

    Jongeneel, C V; Briant, L; Udalova, I A; Sevin, A; Nedospasov, S A; Cambon-Thomsen, A

    1991-01-01

    We have identified three polymorphic microsatellites (which we call TNFa, TNFb, and TNFc) within a 12-kilobase region of the human major histocompatibility complex (MHC) that includes the tumor necrosis factor (TNF) locus. TNFc is located within the first intron of the TNF-beta gene and has only 2 alleles. TNFa and TNFb are 3.5 kilobases upstream (telomeric) of the TNF-beta gene and have at least 13 and 7 alleles, respectively. TNFa, -b, and -c alleles are in linkage disequilibrium with alleles at other loci within the MHC, including class I, class II, and class III. TNFa, -b, and -c alleles are also associated with extended HLA haplotypes. These TNF polymorphisms will allow a thorough genetic analysis of the involvement of TNF in MHC-linked pathologies. Images PMID:1946393

  8. Update on intravitreal anti-tumor necrosis factor alpha therapies for ocular disorders

    PubMed Central

    2014-01-01

    Tumor necrosis factor alpha (TNF-?) is an important pro-inflammatory cytokine associated with a variety of ocular diseases. The currently available TNF-? inhibitors are etanercept, infliximab, adalimumab, golimumab, and certolizumab. Experimental and clinical studies on the intravitreal use of these agents have been reported with etanercept, infliximab, and adalimumab: etanercept has shown limited efficacy in scarce reports; infliximab has been associated with local safety concerns but appears to benefit certain cases; adalimumab has shown no efficacy in cases of age-related macular degeneration (AMD) or diabetic macular edema (DME), but the combination with bevacizumab may be effective in refractory cases of macular diseases. Further preclinical and clinical studies are warranted in order to be able to obtain a more robust conclusion on the use of intravitreal TNF-? inhibitors. PMID:25825604

  9. Tumour necrosis factor (TNF alpha) in leishmaniasis. I. TNF alpha mediates host protection against cutaneous leishmaniasis.

    PubMed Central

    Liew, F Y; Parkinson, C; Millott, S; Severn, A; Carrier, M

    1990-01-01

    Genetically resistant CBA mice developed significantly larger lesions to Leishmania major infection when they were injected with rabbit anti-tumour necrosis factor (TNF)-specific antibodies compared to control mice injected with normal rabbit immunoglobulin. BALB/c mice recovered from a previous infection following prophylactic sublethal irradiation also developed exacerbated lesions when treated with the anti-TNF antibody. Injection of TNF into the lesion of infected CBA mice significantly reduced the lesion development. Furthermore, TNF activates macrophages to kill Leishmania in vitro. These data demonstrate that TNF plays an important role in mediating host-protection against cutaneous leishmaniasis. PMID:2335376

  10. Upregulated RIP3 Expression Potentiates MLKL Phosphorylation-Mediated Programmed Necrosis in Toxic Epidermal Necrolysis.

    PubMed

    Kim, Sue Kyung; Kim, Woo-Jung; Yoon, Jung-Ho; Ji, Jae-Hoon; Morgan, Michael J; Cho, Hyeseong; Kim, You Chan; Kim, You-Sun

    2015-08-01

    Toxic epidermal necrolysis (TEN) is a severe adverse drug reaction involving extensive keratinocyte death in the epidermis. Histologically, the skin from TEN patients exhibits separation at the dermo-epidermal junction and accompanying necrosis of epidermal keratinocytes. Receptor-interacting protein kinase-3 (RIP3 or RIPK3) is an essential part of the cellular machinery that executes "programmed", or "regulated", necrosis and has a key role in spontaneous cell death and inflammation in keratinocytes under certain conditions. Here we show that RIP3 expression is highly upregulated in skin sections from TEN patients and may therefore contribute to the pathological damage in TEN through activation of programmed necrotic cell death. The expression level of mixed lineage kinase domain-like protein (MLKL), a key downstream component of RIP3, was not significantly different in skin lesions of TEN. However, elevated MLKL phosphorylation was observed in the skin from TEN patients, indicating the presence of RIP3-dependent programmed necrosis. Importantly, in an in vitro model of TEN, dabrafenib, an inhibitor of RIP3, prevented RIP3-mediated MLKL phosphorylation and decreased cell death. Results from this study suggest that the high expression of RIP3 in keratinocytes from TEN patients potentiates MLKL phosphorylation/activation and necrotic cell death. Thus, RIP3 represents a potential target for treatment of TEN. PMID:25748555

  11. Percutaneous tumor ablation: microencapsulated echo-guided interstitial chemotherapy combined with cryosurgery increases necrosis in prostate cancer.

    PubMed

    Le Pivert, P J; Morrison, D R; Haddad, R S; Renard, M; Aller, A; Titus, K; Doulat, J

    2009-06-01

    This study aimed at confirming the increased growth inhibition (GI) of human prostate tumors produced by a intentionally palliative combination treatment of cryochemotherapy, i.e., partial cryoablation (CA) followed by intratumor partial chemotherapy with injection of microencapsulated 5-fluorouracil (MCC/5FU) at the ice ball (IB) periphery. We report the local effectiveness of cryochemotherapy compared to chemotherapy only with using multiple injections of MCC/5FU spaced out to maximize cumulative effect of sustained release of 5-fluorouracil (5FU) during a 21-day period. Prostate bioluminescent tumor cells - DU145 Luc+ - were implanted sub-cutaneously and bilaterally in each flank of nude mice. Tumors were treated with: (i) cryoablation alone (CA), causing necrosis in approximately 45% of the tumor volume; (ii) cryo-chemotherapy (CA+MCC/5FU), a combined regimen consisting of partial CA followed immediately and on day 14 by ultrasound assisted, intra-tumor injections (40 mul) of MCC/5FU( 0.81 ng/mm3 of tumor) containing Ethiodol (IPO) an imaging contrast agent, on two opposite sides of the unfrozen part of tumor; (iii) intratumor chemotherapy (MCC/5FU), consisting of three successive intra-tumor injections of microencapsulated 5FU on two opposite sides on Day 0, 4, and 11, and (iv) control series (MM), consisting of a single injection of echogenic microcapsules (mucaps) containing IPO but no 5FU. Tumor growth and viability were followed during a 21-day period with using biometric measurements, bioluminescent imaging (BLI) and ultrasonography (US), and then animals were sacrificed. CA, spared 54.4% of the tumor volume and the IB kill ratio was 0.4 +/-0.9. The maximum tumor volume reduction observed by Day 3 was short-lived as re-growth became significant by Day 6. CA+ MCC/5FU spared 55.6% of the tumor volume and the IB kill ratio was 0.54 +/- 0.12. The viable tumor cells, as measured by BLI remained at preoperative levels. After 11 days CA+ MCC/5FU limited the

  12. Automated ensemble segmentation of epithelial proliferation, necrosis, and fibrosis using scatter tumor imaging

    NASA Astrophysics Data System (ADS)

    Garcia-Allende, P. Beatriz; Conde, Olga M.; Krishnaswamy, Venkataramanan; Hoopes, P. Jack; Pogue, Brian W.; Mirapeix, Jesus; Lopez-Higuera, Jose M.

    2010-04-01

    Conventional imaging systems used today in surgical settings rely on contrast enhancement based on color and intensity and they are not sensitive to morphology changes at the microscopic level. Elastic light scattering spectroscopy has been shown to distinguish ultra-structural changes in tissue. Therefore, it could provide this intrinsic contrast being enormously useful in guiding complex surgical interventions. Scatter parameters associated with epithelial proliferation, necrosis and fibrosis in pancreatic tumors were previously estimated in a quantitative manner. Subtle variations were encountered across the distinct diagnostic categories. This work proposes an automated methodology to correlate these variations with their corresponding tumor morphologies. A new approach based on the aggregation of the predictions of K-nearest neighbors (kNN) algorithm and Artificial Neural Networks (ANNs) has been developed. The major benefit obtained from the combination of the distinct classifiers is a significant increase in the number of pixel localizations whose corresponding tissue type is reliably assured. Pseudo-color diagnosis images are provided showing a strong correlation with sample segmentations performed by a veterinary pathologist.

  13. A comparison of the intoxication pathways of tumor necrosis factor and diphtheria toxin

    SciTech Connect

    Chang, M.P.

    1988-01-01

    The mechanism by which tumor necrosis factor-alpha (TNF) initiates tumor cell destruction is unknown. We have approached this problem by comparing the biological properties of TNF with diphtheria toxin (DTx), a well-characterized cytotoxin. Initial studies with human U937 cells revealed that a transient exposure to low pH enhances the cytotoxic activity of TNF. Detailed studies on the interaction of TNF with pure lipid vesicles revealed that the acid-enhanced cytolytic activity of this cytokine is correlated with the acquisition of membrane binding and insertion properties. Significantly, an increase in target membrane stabilization was observed in the presence of TNF; hence, TNF is not directly lytic for membranes. In susceptible target cells, DTx induces the release of {sup 51}Cr- and {sup 75}Se-labeled proteins within 7 h. Although DTx-triggered cell death has generally been accepted as a straightforward effect of translation inhibition, little or no cell lysis was observed over a 20-30 h period when target cells were exposed to cycloheximide, amino acid deficient medium or metabolic poisons even though protein synthesis was inhibited to levels observed with DTx. The protein synthesis inhibition and cytolytic activities of DTx showed similar dose-dependencies, target cell specificities, and sensitivities to NH{sub 4}Cl inhibition. DTx-induced DNA fragmentation preceded cells lysis and did not occur in cells that were treated with the other protein synthesis inhibitors.

  14. Two sides of one coin: massive hepatic necrosis and progenitor cell-mediated regeneration in acute liver failure.

    PubMed

    Weng, Hong-Lei; Cai, Xiaobo; Yuan, Xiaodong; Liebe, Roman; Dooley, Steven; Li, Hai; Wang, Tai-Ling

    2015-01-01

    Massive hepatic necrosis is a key event underlying acute liver failure, a serious clinical syndrome with high mortality. Massive hepatic necrosis in acute liver failure has unique pathophysiological characteristics including extremely rapid parenchymal cell death and removal. On the other hand, massive necrosis rapidly induces the activation of liver progenitor cells, the so-called "second pathway of liver regeneration." The final clinical outcome of acute liver failure depends on whether liver progenitor cell-mediated regeneration can efficiently restore parenchymal mass and function within a short time. This review summarizes the current knowledge regarding massive hepatic necrosis and liver progenitor cell-mediated regeneration in patients with acute liver failure, the two sides of one coin.

  15. Two sides of one coin: massive hepatic necrosis and progenitor cell-mediated regeneration in acute liver failure

    PubMed Central

    Weng, Hong-Lei; Cai, Xiaobo; Yuan, Xiaodong; Liebe, Roman; Dooley, Steven; Li, Hai; Wang, Tai-Ling

    2015-01-01

    Massive hepatic necrosis is a key event underlying acute liver failure, a serious clinical syndrome with high mortality. Massive hepatic necrosis in acute liver failure has unique pathophysiological characteristics including extremely rapid parenchymal cell death and removal. On the other hand, massive necrosis rapidly induces the activation of liver progenitor cells, the so-called “second pathway of liver regeneration.” The final clinical outcome of acute liver failure depends on whether liver progenitor cell-mediated regeneration can efficiently restore parenchymal mass and function within a short time. This review summarizes the current knowledge regarding massive hepatic necrosis and liver progenitor cell-mediated regeneration in patients with acute liver failure, the two sides of one coin. PMID:26136687

  16. Molecular characterization and functional analysis of tumor necrosis factor receptor-associated factor 2 in the Pacific oyster.

    PubMed

    Huang, Baoyu; Zhang, Linlin; Du, Yishuai; Li, Li; Tang, Xueying; Zhang, Guofan

    2016-01-01

    Tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) are a family of crucial adaptors, playing vital roles in mediating signal transduction in immune signaling pathways, including RIG-I-like receptor (RLR) signaling pathway. In the present study, a new TRAF family member (CgTRAF2) was identified in the Pacific oyster, Crassostrea gigas. Comparison and phylogenetic analysis revealed that CgTRAF2 could be a new member of the invertebrate TRAF2 family. Quantitative real-time PCR revealed that CgTRAF2 mRNA was highly expressed in the digestive gland, gills, and hemocytes, and it was significantly up-regulated after Vibrio alginolyticus and ostreid herpesvirus 1 (OsHV-1) challenge. The CgTRAF2 mRNA expression profile in different developmental stages of oyster larvae suggested that CgTRAF2 could function in early larval development. CgTRAF2 mRNA expression pattern, after the silence of CgMAVS (Mitochondrial Antiviral Signaling) -like, indicated that CgTRAF2 might function downstream of CgMAVS-like. Moreover, the subcellular localization analysis revealed that CgTRAF2 was localized in cytoplasm, and it may play predominately important roles in signal transduction. Collectively, these results demonstrated that CgTRAF2 might play important roles in the innate immunity and larval development of the Pacific oyster.

  17. Attenuation of Nitrogen Mustard-Induced Pulmonary Injury and Fibrosis by Anti-Tumor Necrosis Factor-α Antibody.

    PubMed

    Malaviya, Rama; Sunil, Vasanthi R; Venosa, Alessandro; Verissimo, Vivianne L; Cervelli, Jessica A; Vayas, Kinal N; Hall, LeRoy; Laskin, Jeffrey D; Laskin, Debra L

    2015-11-01

    Nitrogen mustard (NM) is a bifunctional alkylating agent that causes acute injury to the lung that progresses to fibrosis. This is accompanied by a prominent infiltration of macrophages into the lung and upregulation of proinflammatory/profibrotic cytokines including tumor necrosis factor (TNF)α. In these studies, we analyzed the ability of anti-TNFα antibody to mitigate NM-induced lung injury, inflammation, and fibrosis. Treatment of rats with anti-TNFα antibody (15 mg/kg, iv, every 9 days) beginning 30 min after intratracheal administration of NM (0.125 mg/kg) reduced progressive histopathologic alterations in the lung including perivascular and peribronchial edema, macrophage/monocyte infiltration, interstitial thickening, bronchiolization of alveolar walls, fibrin deposition, emphysema, and fibrosis. NM-induced damage to the alveolar-epithelial barrier, measured by bronchoalveolar lavage (BAL) protein and cell content, was also reduced by anti-TNFα antibody, along with expression of the oxidative stress marker, heme oxygenase-1. Whereas the accumulation of proinflammatory/cytotoxic M1 macrophages in the lung in response to NM was suppressed by anti-TNFα antibody, anti-inflammatory/profibrotic M2 macrophages were increased or unchanged. Treatment of rats with anti-TNFα antibody also reduced NM-induced increases in expression of the profibrotic mediator, transforming growth factor-β. This was associated with a reduction in NM-induced collagen deposition in the lung. These data suggest that inhibiting TNFα may represent an efficacious approach to mitigating lung injury induced by mustards.

  18. Spontaneous and stimulated release of tumor necrosis factor-alpha (TNF) from blood monocytes of miners with coal workers' pneumoconiosis

    SciTech Connect

    Borm, P.J.; Palmen, N.; Engelen, J.J.; Buurman, W.A.

    1988-12-01

    It is generally accepted that fibrotic lung diseases are mediated by macrophage-derived cytokines. We investigated the release of the monokine tumor necrosis factor-alpha (TNF) from blood monocytes in a group of 66 coal miners and 12 non-dust-exposed individuals. Twenty-seven miners had simple Coal Workers' Pneumoconiosis (CWP). Control miners (n = 39) were matched with respect to age, years underground, and smoking. Monocytes were assayed for TNF release, spontaneously or in response to soluble (endotoxin) or particulate (coal mine dust, silica) stimulation. TNF was measured with a TNF-specific ELISA. Monocytes of all subjects responded to stimulants by the release of TNF. Dust-exposed controls' monocytes revealed higher TNF release as compared to normal controls. The greatest discriminator between control miners and cases (CWP) was coal mine dust-induced TNF release. Interestingly, the largest difference was observed between controls and those cases with a small number of opacities (0/1, 1/0, 1/1, and 1/2), giving an odds ratio of 6.3 to find an individual with a high dust-induced TNF release in the patient group.

  19. Prophylactic and therapeutic effects of a monoclonal antibody to tumor necrosis factor-alpha in experimental gram-negative shock.

    PubMed

    Silva, A T; Bayston, K F; Cohen, J

    1990-08-01

    A monoclonal antibody to recombinant murine tumor necrosis factor-alpha (TNF alpha), TN3-19.12, was used to explore pathogenetic mechanisms and therapeutic strategies in gram-negative shock. In mice receiving an LD90 dose of Escherichia coli O111, TN3-19.12 prevented death if given 1.5 h before or 30 min after challenge. Less protection was conferred if the antibody was given 2.5 h after challenge. In control mice receiving an irrelevant antibody, L2-3D9, TNF alpha levels rose (less than or equal to 185.1 +/- 26.1 ng/ml) by 90 min and had returned to baseline by 5 h. Mice receiving TN3-19.12 did not have this response. TN3-19.12 was of limited benefit in mice receiving Pseudomonas aeruginosa but had no protective effect in cyclophosphamide-treated mice receiving Klebsiella pneumoniae. In L2-3D9-treated mice, TNF alpha levels were elevated to 61.8 +/- 27.9 and 49.7 +/- 5.1 ng/ml by 90 min in the two models, respectively. TNF alpha levels in TN3-19.12-treated mice in these two models were very low (3.9-5.5 ng/ml). TNF alpha is a mediator in gram-negative shock; antibody to TNF alpha can be of value in prophylaxis and treatment, but its clinical use remains to be established.

  20. Vascular endothelial growth factor promotes macrophage apoptosis through stimulation of tumor necrosis factor superfamily member 14 (TNFSF14/LIGHT).

    PubMed

    Petreaca, Melissa L; Yao, Min; Ware, Carl; Martins-Green, Manuela M

    2008-01-01

    Resolution of inflammation is critical for normal wound healing. Inflammation is prolonged and fails to resolve properly in chronic wounds. We used in vivo and in vitro approaches to show that vascular endothelial growth factor (VEGF) induces macrophage apoptosis and to delineate mechanisms involved in this process. VEGF inhibition during wound healing leads to an increased number of macrophages remaining in wounds, suggesting the involvement of VEGF in removal of these cells from the wound. If this effect has physiological relevance, it likely occurs via apoptosis. We show that VEGF increases apoptosis of macrophages in vitro using Annexin V-FITC staining and caspase activation. Microarray analysis, reverse transcription-polymerase chain reaction, and immunoblotting showed that VEGF increases the expression of tumor necrosis factor superfamily member 14 (TNFSF14/LIGHT) in macrophages. We also show that in macrophages LIGHT promotes apoptosis through the lymphotoxin beta receptor. Moreover, inhibition of LIGHT prevents VEGF-induced death, suggesting that LIGHT mediates VEGF-induced macrophage apoptosis. Taken together, our results identify a novel role for VEGF and for LIGHT in macrophage apoptosis during wound healing, an event critical in the resolution of inflammation. This finding may lead to the development of new strategies to improve resolution of inflammation in problematic wounds. PMID:19128255

  1. Heparin disaccharides inhibit tumor necrosis factor-alpha production by macrophages and arrest immune inflammation in rodents.

    PubMed

    Cahalon, L; Lider, O; Schor, H; Avron, A; Gilat, D; Hershkoviz, R; Margalit, R; Eshel, A; Shoseyev, O; Cohen, I R

    1997-10-01

    Inflammation is the clinical expression of chemical mediators such as the pro-inflammatory cytokine tumor necrosis factor (TNF-)-alpha produced by macrophages and other cells activated in the immune response. Hence, agents that can inhibit TNF-alpha may be useful in treating arthritis and other diseases resulting from uncontrolled inflammation. We now report that the cleavage of heparin by the enzyme heparinase I generates sulfated disaccharide (DS) molecules that can inhibit the production of TNF-alpha. Administration of nanogram amounts of the sulfated DS molecules to experimental animals inhibited delayed-type hypersensitivity to a skin sensitizer and arrested the joint swelling of immunologically induced adjuvant arthritis. Notably, the sulfated DS molecules showed a bell-shaped dose-response curve in vitro and in vivo: decreased effects were seen using amounts of the DS molecules higher than optimal. Thus, molecular regulators of inflammation can be released from the natural molecule heparin by the action of an enzyme. PMID:9352356

  2. Pathophysiological roles of microvascular alterations in pulmonary inflammatory diseases: possible implications of tumor necrosis factor-alpha and CXC chemokines

    PubMed Central

    Orihara, Kanami; Matsuda, Akio

    2008-01-01

    Chronic obstructive pulmonary disease (COPD) and bronchial asthma are common respiratory diseases that are caused by chronic inflammation of the airways. Although these diseases are mediated by substantially distinct immunological reactions, especially in mild cases, they both show increased numbers of neutrophils, increased production of tumor necrosis factor-alpha (TNF-α) and poor responses to corticosteroids, particularly in patients with severe diseases. These immunological alterations may contribute strongly to airway structural changes, commonly referred to as airway remodeling. Microvascular alterations, a component of airway remodeling and caused by chronic inflammation, are observed and appear to be clinically involved in both diseases. It has been well established that vascular endothelial growth factor (VEGF) plays important roles in the airway microvascular alterations in mild and moderate cases of both diseases, but any role that VEGF might play in severe cases of these diseases remains unclear. Here, we review recent research findings, including our own data, and discuss the possibility that TNF-α and its associated CXC chemokines play roles in microvascular alterations that are even more crucial than those of VEGF in patients with severe COPD or asthma. PMID:19281078

  3. Identification of a novel cyclosporin-sensitive element in the human tumor necrosis factor alpha gene promoter

    PubMed Central

    1993-01-01

    Tumor necrosis factor alpha (TNF-alpha), a cytokine with pleiotropic biological effects, is produced by a variety of cell types in response to induction by diverse stimuli. In this paper, TNF-alpha mRNA is shown to be highly induced in a murine T cell clone by stimulation with T cell receptor (TCR) ligands or by calcium ionophores alone. Induction is rapid, does not require de novo protein synthesis, and is completely blocked by the immunosuppressant cyclosporin A (CsA). We have identified a human TNF-alpha promoter element, kappa 3, which plays a key role in the calcium-mediated inducibility and CsA sensitivity of the gene. In electrophoretic mobility shift assays, an oligonucleotide containing kappa 3 forms two DNA protein complexes with proteins that are present in extracts from unstimulated T cells. These complexes appear in nuclear extracts only after T cell stimulation. Induction of the inducible nuclear complexes is rapid, independent of protein synthesis, and blocked by CsA, and thus, exactly parallels the induction of TNF-alpha mRNA by TCR ligands or by calcium ionophore. Our studies indicate that the kappa 3 binding factor resembles the preexisting component of nuclear factor of activated T cells. Thus, the TNF-alpha gene is an immediate early gene in activated T cells and provides a new model system in which to study CsA-sensitive gene induction in activated T cells. PMID:8376940

  4. Local Overexpression of V1a-Vasopressin Receptor Enhances Regeneration in Tumor Necrosis Factor-Induced Muscle Atrophy

    PubMed Central

    Costa, Alessandra; Toschi, Angelica; Murfuni, Ivana; Pelosi, Laura; Sica, Gigliola; Adamo, Sergio; Scicchitano, Bianca Maria

    2014-01-01

    Skeletal muscle atrophy occurs during disuse and aging, or as a consequence of chronic diseases such as cancer and diabetes. It is characterized by progressive loss of muscle tissue due to hypotrophic changes, degeneration, and an inability of the regeneration machinery to replace damaged myofibers. Tumor necrosis factor (TNF) is a proinflammatory cytokine known to mediate muscle atrophy in many chronic diseases and to inhibit skeletal muscle regeneration. In this study, we investigated the role of Arg-vasopressin-(AVP-)dependent pathways in muscles in which atrophy was induced by local overexpression of TNF. AVP is a potent myogenesis-promoting factor and is able to enhance skeletal muscle regeneration by stimulating Ca2+/calmodulin-dependent kinase and calcineurin signaling. We performed morphological and molecular analyses and demonstrated that local over-expression of the AVP receptor V1a enhances regeneration of atrophic muscle. By upregulating the regeneration/differentiation markers, modulating the inflammatory response, and attenuating fibrogenesis, the stimulation of AVP-dependent pathways creates a favourable environment for efficient and sustained muscle regeneration and repair even in the presence of elevated levels of TNF. This study highlights a novel in vivo role for AVP-dependent pathways, which may represent an interesting strategy to counteract muscle decline in aging or in muscular pathologies. PMID:24971321

  5. Ultrastructural studies on the effect of tumor necrosis factor on the interaction of neutrophils and Naegleria fowleri.

    PubMed

    Michelson, M K; Henderson, W R; Chi, E Y; Fritsche, T R; Klebanoff, S J

    1990-03-01

    Naegleria fowleri is the common etiologic agent of primary amebic meningoencephalitis (PAM). We investigated the interaction of human neutrophils with Naegleria trophozoites and examined the effect of neutrophil stimulation by the recombinant human tumor necrosis factor (TNF) on this interaction. As indicated by scanning and transmission electron microscopy, TNF stimulated the adherence of neutrophils to N. fowleri with destruction of the ameba. Neutrophil iodination, an indirect measure of stimulation, increased from 0.81 +/- 0.23 nmol/10(7) cells/hr to 2.41 +/- 0.62 nmol/10(7) cells/hr following the addition of TNF to the neutrophil-N. fowleri mixture (P less than 0.05). This was independent of complement or specific immunoglobulin. Ingestion of neutrophils by Naegleria trophozoites was observed following more prolonged incubation, particularly in the absence of TNF. These findings suggest a role for TNF-mediated destruction of Naegleria trophozoites by neutrophils in host defense, and that ingestion of host neutrophils by Naegleria trophozoites may represent a virulence factor.

  6. Multiorgan chronic inflammatory hepatobiliary pancreatic murine model deficient in tumor necrosis factor receptors 1 and 2

    PubMed Central

    Oz, Helieh S

    2016-01-01

    AIM: To provoke persistent/chronic multiorgan inflammatory response and to contribute to stones formation followed by fibrosis in hepatobiliary and pancreatic tissues. METHODS: Tumor necrosis factor receptors 1 and 2 (TNFR1/R2) deficient mice reared in-house were given dibutyltin dichloride (DBTC) twice within 10 d by oral gavage delivery. Sham control animals received vehicle treatment and naïve animals remained untreated throughout the study. Animals were monitored daily for symptoms of pain and discomfort. The abdominal and hindpaw hypersensitivity were assessed with von Frey microfilaments. Exploratory behaviors were recorded at the baseline, after initiation of treatment, and before study termination. Histopathological changes were examined postmortem in tissues. Collagen accumulation and fibrosis were confirmed with Sirius Red staining. RESULTS: Animals lost weight after oral administration of DBTC and developed persistent inflammatory abdominal and hindpaw hypersensitivity compared to sham-treated controls (P < 0.0001). These pain related secondary mechanical hypersensitivity responses increased more than 2-fold in DBTC-treated animals. The drastically diminished rearing and grooming rates persisted after DBTC administration throughout the study. Gross as well as micropathology at one month confirmed that animals treated with DBTC developed chronic hepatobiliary injuries evidenced with activation of stellate cells, multifocal necrosis, fatty degeneration of hepatocytes, periportal infiltration of inflammatory cells, and prominent biliary ductal dilation. The severity of hepatitis was scored 3.7 ± 0.2 (severe) in DBTC-treated animals vs score 0 (normal) in sham-treated animals. Fibrotic thickening was extensive around portal ducts, in hepatic parenchyma as well as in lobular pancreatic structures and confirmed with Sirius Red histopathology. In addition, pancreatic microarchitecture was presented with distortion of islets, and parenchyma, infiltration of

  7. Two independent pathways of regulated necrosis mediate ischemia–reperfusion injury

    PubMed Central

    Linkermann, Andreas; Bräsen, Jan Hinrich; Darding, Maurice; Jin, Mi Kyung; Sanz, Ana B.; Heller, Jan-Ole; De Zen, Federica; Weinlich, Ricardo; Ortiz, Alberto; Walczak, Henning; Weinberg, Joel M.; Green, Douglas R.; Kunzendorf, Ulrich

    2013-01-01

    Regulated necrosis (RN) may result from cyclophilin (Cyp)D-mediated mitochondrial permeability transition (MPT) and receptor-interacting protein kinase (RIPK)1-mediated necroptosis, but it is currently unclear whether there is one common pathway in which CypD and RIPK1 act in or whether separate RN pathways exist. Here, we demonstrate that necroptosis in ischemia–reperfusion injury (IRI) in mice occurs as primary organ damage, independent of the immune system, and that mice deficient for RIPK3, the essential downstream partner of RIPK1 in necroptosis, are protected from IRI. Protection of RIPK3-knockout mice was significantly stronger than of CypD-deficient mice. Mechanistically, in vivo analysis of cisplatin-induced acute kidney injury and hyperacute TNF-shock models in mice suggested the distinctness of CypD-mediated MPT from RIPK1/RIPK3-mediated necroptosis. We, therefore, generated CypD-RIPK3 double-deficient mice that are viable and fertile without an overt phenotype and that survived prolonged IRI, which was lethal to each single knockout. Combined application of the RIPK1 inhibitor necrostatin-1 and the MPT inhibitor sanglifehrin A confirmed the results with mutant mice. The data demonstrate the pathophysiological coexistence and corelevance of two separate pathways of RN in IRI and suggest that combination therapy targeting distinct RN pathways can be beneficial in the treatment of ischemic injury. PMID:23818611

  8. Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury.

    PubMed

    Linkermann, Andreas; Bräsen, Jan Hinrich; Darding, Maurice; Jin, Mi Kyung; Sanz, Ana B; Heller, Jan-Ole; De Zen, Federica; Weinlich, Ricardo; Ortiz, Alberto; Walczak, Henning; Weinberg, Joel M; Green, Douglas R; Kunzendorf, Ulrich; Krautwald, Stefan

    2013-07-16

    Regulated necrosis (RN) may result from cyclophilin (Cyp)D-mediated mitochondrial permeability transition (MPT) and receptor-interacting protein kinase (RIPK)1-mediated necroptosis, but it is currently unclear whether there is one common pathway in which CypD and RIPK1 act in or whether separate RN pathways exist. Here, we demonstrate that necroptosis in ischemia-reperfusion injury (IRI) in mice occurs as primary organ damage, independent of the immune system, and that mice deficient for RIPK3, the essential downstream partner of RIPK1 in necroptosis, are protected from IRI. Protection of RIPK3-knockout mice was significantly stronger than of CypD-deficient mice. Mechanistically, in vivo analysis of cisplatin-induced acute kidney injury and hyperacute TNF-shock models in mice suggested the distinctness of CypD-mediated MPT from RIPK1/RIPK3-mediated necroptosis. We, therefore, generated CypD-RIPK3 double-deficient mice that are viable and fertile without an overt phenotype and that survived prolonged IRI, which was lethal to each single knockout. Combined application of the RIPK1 inhibitor necrostatin-1 and the MPT inhibitor sanglifehrin A confirmed the results with mutant mice. The data demonstrate the pathophysiological coexistence and corelevance of two separate pathways of RN in IRI and suggest that combination therapy targeting distinct RN pathways can be beneficial in the treatment of ischemic injury. PMID:23818611

  9. Differential effects of anti-tumor necrosis factor monoclonal antibodies on systemic inflammatory responses in experimental endotoxemia in chimpanzees.

    PubMed

    van der Poll, T; Levi, M; van Deventer, S J; ten Cate, H; Haagmans, B L; Biemond, B J; Büller, H R; Hack, C E; ten Cate, J W

    1994-01-15

    Tumor necrosis factor (TNF) is considered to be a pivotal mediator of endotoxin-induced lethality. To assess the intermediate role of TNF in specific systemic inflammatory responses known to contribute to tissue injury in endotoxemia, eight healthy adult chimpanzees were intravenously injected with Escherichia coli endotoxin (4 ng/kg). In four of these animals the administration of endotoxin was followed immediately by a bolus intravenous injection of an anti-TNF monoclonal antibody (15 mg/kg). Treatment with anti-TNF completely prevented the endotoxin-induced increase in serum TNF activity, and profoundly reduced the appearance of interleukin-6 and -8 (both P < .05). Neutrophilia and lymphopenia were not affected by anti-TNF, whereas neutrophil degranulation, as measured by the plasma concentrations of elastase-alpha 1-antitrypsin complexes, was only slightly reduced (peak levels after endotoxin alone 31.0 +/- 3.4 ng/mL, versus 25.5 +/- 3.4 ng/mL after endotoxin with anti-TNF; P < .05). Anti-TNF did not influence endotoxin-induced activation of the coagulation system, as reflected by unchanged increases in the plasma concentrations of the prothrombin fragment F1 + 2 and thrombin-antithrombin III complexes. In contrast, anti-TNF strongly attenuated the activation of the fibrinolytic system, ie, peak plasma levels of plasmin-alpha 2-antiplasmin were 33.8 +/- 11.1 nmol/L after endotoxin alone and 17.0 +/- 2.9 nmol/L after endotoxin with anti-TNF (P < .05). These results suggest that TNF is not the common mediator of systemic inflammatory changes in low-grade endotoxemia. Moreover, the finding that in this mild model anti-TNF specifically inhibited fibrinolysis suggests that treatment with anti-TNF potentially may enhance the tendency towards microvascular thrombosis in sepsis.

  10. Oligodeoxynucleotides enhance lipopolysaccharide-stimulated synthesis of tumor necrosis factor: dependence on phosphorothioate modification and reversal by heparin.

    PubMed Central

    Hartmann, G.; Krug, A.; Waller-Fontaine, K.; Endres, S.

    1996-01-01

    BACKGROUND: Specific inhibition of target proteins by antisense oligodeoxynucleotides is an extensively studied experimental approach. This technique is currently being tested in clinical trials applying phosphorothioate-modified oligonucleotides as therapeutic agents. These polyanionic molecules, however, may also exert non-antisense-mediated effects. MATERIALS AND METHODS: We examined the influence of oligonucleotides on lipopolysaccharide (LPS)-stimulated tumor necrosis factor alpha (TNF alpha) synthesis in freshly isolated human peripheral blood mononuclear cells. Oligonucleotides (18 mer) with different degrees of phosphorothioate modification were studied. RESULTS: The addition of phosphorothioate oligonucleotides (5 microM) caused amplification of TNF synthesis of up to 410% compared with the control with LPS alone. Without LPS stimulation, phosphorothioate oligonucleotides did not induce TNF production. We demonstrate that the enhancement of LPS-stimulated TNF production by phosphorothioate oligonucleotides does not rely on the intracellular presence of oligonucleotides and is not mediated by LPS contamination. Partially phosphorothioate-modified oligonucleotides and unmodified oligonucleotides did not increase TNF synthesis. High concentrations of the polyanion heparin reversed the oligonucleotide-induced enhancement of TNF synthesis. CONCLUSIONS: The data suggest that amplification of TNF synthesis may be caused by binding of the polyanionic phosphorothioate oligonucleotide to cationic sites on the cell surface. Such binding sites have been proposed for polyanionic glycoaminoglycans of the extracellular matrix, which have also been described to augment LPS-stimulated TNF synthesis. The present results are relevant to all in vitro studies attempting to influence protein synthesis in monocytes by using phosphorothioate oligonucleotides. The significance of our findings for in vivo applications of phosphorothioates in situations where there is a stimulus for

  11. Infection of human fallopian tube epithelial cells with Neisseria gonorrhoeae protects cells from tumor necrosis factor alpha-induced apoptosis.

    PubMed

    Morales, Priscilla; Reyes, Paz; Vargas, Macarena; Rios, Miguel; Imarai, Mónica; Cardenas, Hugo; Croxatto, Horacio; Orihuela, Pedro; Vargas, Renato; Fuhrer, Juan; Heckels, John E; Christodoulides, Myron; Velasquez, Luis

    2006-06-01

    Following infection with Neisseria gonorrhoeae, bacteria may ascend into the Fallopian tubes (FT) and induce salpingitis, a major cause of infertility. In the FT, interactions between mucosal epithelial cells and gonococci are pivotal events in the pathogen's infection cycle and the inflammatory response. In the current study, primary FT epithelial cells were infected in vitro with different multiplicities of infection (MOI) of Pil+ Opa+ gonococci. Bacteria showed a dose-dependent association with cells and induced the secretion of tumor necrosis factor alpha (TNF-alpha). A significant finding was that gonococcal infection (MOI = 1) induced apoptosis in approximately 30% of cells, whereas increasing numbers of bacteria (MOI = 10 to 100) did not induce apoptosis. Apoptosis was observed in only 11% of cells with associated bacteria, whereas >84% of cells with no adherent bacteria were apoptotic. TNF-alpha was a key contributor to apoptosis, since (i) culture supernatants from cells infected with gonococci (MOI = 1) induced apoptosis in naïve cultures, suggesting that a soluble factor was responsible; (ii) gonococcal infection-induced apoptosis was inhibited with anti-TNF-alpha antibodies; and (iii) the addition of exogenous TNF-alpha induced apoptosis, which was inhibited by the presence of increasing numbers of bacteria (MOI = 10 to 100). These data suggest that TNF-alpha-mediated apoptosis of FT epithelial cells is likely a primary host defense mechanism to prevent pathogen colonization. However, epithelial cell-associated gonococci have evolved a mechanism to protect the cells from undergoing TNF-alpha-mediated apoptosis, and this modulation of the host innate response may contribute to establishment of infection. Understanding the antiapoptotic mechanisms used by Neisseria gonorrhoeae will inform the pathogenesis of salpingitis and could suggest new intervention strategies for prevention and treatment of the disease. PMID:16714596

  12. Infection of Human Fallopian Tube Epithelial Cells with Neisseria gonorrhoeae Protects Cells from Tumor Necrosis Factor Alpha-Induced Apoptosis

    PubMed Central

    Morales, Priscilla; Reyes, Paz; Vargas, Macarena; Rios, Miguel; Imarai, Mónica; Cardenas, Hugo; Croxatto, Horacio; Orihuela, Pedro; Vargas, Renato; Fuhrer, Juan; Heckels, John E.; Christodoulides, Myron; Velasquez, Luis

    2006-01-01

    Following infection with Neisseria gonorrhoeae, bacteria may ascend into the Fallopian tubes (FT) and induce salpingitis, a major cause of infertility. In the FT, interactions between mucosal epithelial cells and gonococci are pivotal events in the pathogen's infection cycle and the inflammatory response. In the current study, primary FT epithelial cells were infected in vitro with different multiplicities of infection (MOI) of Pil+ Opa+ gonococci. Bacteria showed a dose-dependent association with cells and induced the secretion of tumor necrosis factor alpha (TNF-α). A significant finding was that gonococcal infection (MOI = 1) induced apoptosis in approximately 30% of cells, whereas increasing numbers of bacteria (MOI = 10 to 100) did not induce apoptosis. Apoptosis was observed in only 11% of cells with associated bacteria, whereas >84% of cells with no adherent bacteria were apoptotic. TNF-α was a key contributor to apoptosis, since (i) culture supernatants from cells infected with gonococci (MOI = 1) induced apoptosis in naïve cultures, suggesting that a soluble factor was responsible; (ii) gonococcal infection-induced apoptosis was inhibited with anti-TNF-α antibodies; and (iii) the addition of exogenous TNF-α induced apoptosis, which was inhibited by the presence of increasing numbers of bacteria (MOI = 10 to 100). These data suggest that TNF-α-mediated apoptosis of FT epithelial cells is likely a primary host defense mechanism to prevent pathogen colonization. However, epithelial cell-associated gonococci have evolved a mechanism to protect the cells from undergoing TNF-α-mediated apoptosis, and this modulation of the host innate response may contribute to establishment of infection. Understanding the antiapoptotic mechanisms used by Neisseria gonorrhoeae will inform the pathogenesis of salpingitis and could suggest new intervention strategies for prevention and treatment of the disease. PMID:16714596

  13. p16 expression predicts neoadjuvant tumor necrosis in osteosarcomas: reappraisal with a larger series using whole sections.

    PubMed

    Kosemehmetoglu, Kemal; Ardic, Fisun; Karslioglu, Yildirim; Kandemir, Olcay; Ozcan, Ayhan

    2016-04-01

    The presence of greater than or equal to 90% necrosis after neoadjuvant chemotherapy is a favorable prognostic factor in osteosarcomas. A recent study using tissue microarrays of 40 conventional osteosarcomas showed that p16 expression independently predicted the necrotic response to neoadjuvant chemotherapy. In this study, we investigated this finding using whole sections in a larger group of osteosarcomas. Cases of 83 patients who had pretreatment biopsies and received neoadjuvant chemotherapy and surgical resection were collected from 3 reference hospital archives. Age, sex, tumor size, tumor subtype, location, and percentage of tumor necrosis were recorded; 4-μm sections from pretreatment biopsies were stained for p16. More than 30% strong nuclear staining was regarded as positive. The median age was 17 years (5-68 years), and male/female ratio was 2.3. The mean tumor diameter was 9.9 cm (2-30 cm). Tumors were most commonly of the osteoblastic type (60%) and located at the femur (47%). p16 positivity was seen in 66% of the patients. The median pathologic necrosis was 65%, and 39% of the patients responded favorably (≥%90 necrosis) to neoadjuvant therapy. In univariate analysis, p16 expression significantly correlated with greater than or equal to 90% response (P = .022). On multivariate analysis, p16 expression (odds ratio [OR], 7.71; P = .008), female sex (OR, 8.62; P = .006), and smaller tumor size (OR, 0.86; P = .023) were independent predictors of favorable response to neoadjuvant chemotherapy. We confirmed the finding that p16 expression predicts postchemotherapy necrotic response in conventional osteosarcomas. PMID:26997452

  14. Modulation of in vivo tumor radiation response via gold nanoshell-mediated vascular-focused hyperthermia: characterizing an integrated antihypoxic and localized vascular disrupting targeting strategy.

    PubMed

    Diagaradjane, Parmeswaran; Shetty, Anil; Wang, James C; Elliott, Andrew M; Schwartz, Jon; Shentu, Shujun; Park, Hee C; Deorukhkar, Amit; Stafford, R Jason; Cho, Sang H; Tunnell, James W; Hazle, John D; Krishnan, Sunil

    2008-05-01

    We report noninvasive modulation of in vivo tumor radiation response using gold nanoshells. Mild-temperature hyperthermia generated by near-infrared illumination of gold nanoshell-laden tumors, noninvasively quantified by magnetic resonance temperature imaging, causes an early increase in tumor perfusion that reduces the hypoxic fraction of tumors. A subsequent radiation dose induces vascular disruption with extensive tumor necrosis. Gold nanoshells sequestered in the perivascular space mediate these two tumor vasculature-focused effects to improve radiation response of tumors. This novel integrated antihypoxic and localized vascular disrupting therapy can potentially be combined with other conventional antitumor therapies. PMID:18412402

  15. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey

    PubMed Central

    Gupta, Subash C.; Kim, Ji Hye

    2012-01-01

    Although activity that induced tumor regression was observed and termed tumor necrosis factor (TNF) as early as the 1960s, the true identity of TNF was not clear until 1984, when Aggarwal and coworkers reported, for the first time, the isolation of 2 cytotoxic factors: one, derived from macrophages (molecular mass 17 kDa), was named TNF, and the second, derived from lymphocytes (20 kDa), was named lymphotoxin. Because the 2 cytotoxic factors exhibited 50% amino acid sequence homology and bound to the same receptor, they came to be called TNF-α and TNF-β. Identification of the protein sequences led to cloning of their cDNA. Based on sequence homology to TNF-α, now a total of 19 members of the TNF superfamily have been identified, along with 29 interacting receptors, and several molecules that interact with the cytoplasmic domain of these receptors. The roles of the TNF superfamily in inflammation, apoptosis, proliferation, invasion, angiogenesis, metastasis, and morphogenesis have been documented. Their roles in immunologic, cardiovascular, neurologic, pulmonary, and metabolic diseases are becoming apparent. TNF superfamily members are active targets for drug development, as indicated by the recent approval and expanding market of TNF blockers used to treat rheumatoid arthritis, psoriasis, Crohns disease, and osteoporosis, with a total market of more than US $20 billion. As we learn more about this family, more therapeutics will probably emerge. In this review, we summarize the initial discovery of TNF-α, and the insights gained regarding the roles of this molecule and its related family members in normal physiology and disease. PMID:22053109

  16. Dengue haemorrhagic fever and dengue shock syndrome: are they tumour necrosis factor-mediated disorders?

    PubMed

    Yadav, M; Kamath, K R; Iyngkaran, N; Sinniah, M

    1991-12-01

    A consecutive series of 24 patients with clinical features of primary dengue infection and 22 controls (14 patients with viral fever of unknown origin and 8 healthy subjects) were assayed for serum levels of tumour necrosis factor (TNF). The acute sera of the 24 patients with clinical dengue infection were positive for dengue virus-specific IgM antibody. Clinically, 8 had dengue fever (DF), 14 dengue haemorrhagic fever (DHF) and 2 dengue shock syndrome (DSS). All 16 patients with DHF/DSS had significantly elevated serum TNF levels but the 8 DF patients had TNF levels equivalent to that in the 22 controls. A case is made for augmented TNF production having a role for the pathophysiological changes observed in DHF/DSS and mediator modulation as a possible therapeutic approach to treatment.

  17. Crocin suppresses tumor necrosis factor-alpha-induced cell death of neuronally differentiated PC-12 cells.

    PubMed

    Soeda, S; Ochiai, T; Paopong, L; Tanaka, H; Shoyama, Y; Shimeno, H

    2001-11-01

    Crocus sativus L. is used in Chinese traditional medicine to treat some disorders of the central nervous system. Crocin is an ethanol-extractable component of Crocus sativus L.; it is reported to prevent ethanol-induced impairment of learning and memory in mice. In this study, we demonstrate that crocin suppresses the effect of tumor necrosis factor (TNF)-alpha on neuronally differentiated PC-12 cells. PC-12 cells dead from exposure to TNF-alpha show apoptotic morphological changes and DNA fragmentation. These hallmark features of cell death did not appear in cells treated in the co-presence of 10 microM crocin. Moreover, crocin suppressed the TNF-alpha-induced expression of Bcl-Xs and LICE mRNAs and simultaneously restored the cytokine-induced reduction of Bcl-X(L) mRNA expression. The modulating effects of crocin on the expression of Bcl-2 family proteins led to a marked reduction of a TNF-alpha-induced release of cytochrome c from the mitochondria. Crocin also blocked the cytochrome c-induced activation of caspase-3. To learn how crocin exhibits these anti-apoptotic actions in PC-12 cells, we tested the effect of crocin on PC-12 cell death induced by daunorubicin. We found that crocin inhibited the effect of daunorubicin as well. Our findings suggest that crocin inhibits neuronal cell death induced by both internal and external apoptotic stimuli.

  18. Critical role of tumor necrosis factor receptor 1 in the pathogenesis of pulmonary emphysema in mice.

    PubMed

    Fujita, Masaki; Ouchi, Hiroshi; Ikegame, Satoshi; Harada, Eiji; Matsumoto, Takemasa; Uchino, Junji; Nakanishi, Yoichi; Watanabe, Kentaro

    2016-01-01

    COPD is a major cause of chronic morbidity and mortality throughout the world. Although tumor necrosis factor-α (TNF-α) has a critical role in the development of COPD, the role of different TNF receptors (TNFRs) in pulmonary emphysema has not been resolved. We aimed to clarify the role of TNFRs in the development of pulmonary emphysema. TNF-α transgenic mice, a murine model of COPD in which the mice spontaneously develop emphysema with a large increase in lung volume and pulmonary hypertension, were crossed with either TNFR1-deficient mice or TNFR2-deficient mice. After 6 months, the gross appearance of the lung, lung histology, and pulmonary and cardiac physiology were determined. In addition, the relationship between apoptosis and emphysema was investigated. Pulmonary emphysema-like changes disappeared with deletion of TNFR1. However, slight improvements were attained with deletion of TNFR2. Apoptotic cells in the interstitium of the lung were observed in TNF-α transgenic mice. The apoptotic signals through TNFR1 appear critical for the pathogenesis of pulmonary emphysema. In contrast, the inflammatory process has a less important role for the development of emphysema.

  19. Critical Roles for Interleukin 1 and Tumor Necrosis Factor α in Antibody-induced Arthritis

    PubMed Central

    Ji, Hong; Pettit, Allison; Ohmura, Koichiro; Ortiz-Lopez, Adriana; Duchatelle, Veronique; Degott, Claude; Gravallese, Ellen; Mathis, Diane; Benoist, Christophe

    2002-01-01

    In spontaneous inflammatory arthritis of K/BxN T cell receptor transgenic mice, the effector phase of the disease is provoked by binding of immunoglobulins (Igs) to joint surfaces. Inflammatory cytokines are known to be involved in human inflammatory arthritis, in particular rheumatoid arthritis, although, overall, the pathogenetic mechanisms of the human affliction remain unclear. To explore the analogy between the K/BxN model and human patients, we assessed the role and relative importance of inflammatory cytokines in K/BxN joint inflammation by transferring arthritogenic serum into a panel of genetically deficient recipients. Interleukin (IL)-1 proved absolutely necessary. Tumor necrosis factor (TNF)–α was also required, although seemingly less critically than IL-1, because a proportion of TNF-α–deficient mice developed robust disease. There was no evidence for an important role for IL-6. Bone destruction and reconstruction were also examined. We found that all mice with strong inflammation exhibited the bone erosion and reconstruction phenomena typical of K/BxN arthritis, with no evidence of any particular requirement for TNFα for bone destruction. The variability in the requirement for TNF-α, reminiscent of that observed in treated rheumatoid arthritis patients, did not appear genetically programmed but related instead to subtle environmental changes. PMID:12093872

  20. Critical roles for interleukin 1 and tumor necrosis factor alpha in antibody-induced arthritis.

    PubMed

    Ji, Hong; Pettit, Allison; Ohmura, Koichiro; Ortiz-Lopez, Adriana; Duchatelle, Veronique; Degott, Claude; Gravallese, Ellen; Mathis, Diane; Benoist, Christophe

    2002-07-01

    In spontaneous inflammatory arthritis of K/BxN T cell receptor transgenic mice, the effector phase of the disease is provoked by binding of immunoglobulins (Igs) to joint surfaces. Inflammatory cytokines are known to be involved in human inflammatory arthritis, in particular rheumatoid arthritis, although, overall, the pathogenetic mechanisms of the human affliction remain unclear. To explore the analogy between the K/BxN model and human patients, we assessed the role and relative importance of inflammatory cytokines in K/BxN joint inflammation by transferring arthritogenic serum into a panel of genetically deficient recipients. Interleukin (IL)-1 proved absolutely necessary. Tumor necrosis factor (TNF)-alpha was also required, although seemingly less critically than IL-1, because a proportion of TNF-alpha-deficient mice developed robust disease. There was no evidence for an important role for IL-6. Bone destruction and reconstruction were also examined. We found that all mice with strong inflammation exhibited the bone erosion and reconstruction phenomena typical of K/BxN arthritis, with no evidence of any particular requirement for TNFalpha for bone destruction. The variability in the requirement for TNF-alpha, reminiscent of that observed in treated rheumatoid arthritis patients, did not appear genetically programmed but related instead to subtle environmental changes.

  1. Induction of release of tumor necrosis factor from human monocytes by staphylococci and staphylococcal peptidoglycans.

    PubMed Central

    Timmerman, C P; Mattsson, E; Martinez-Martinez, L; De Graaf, L; Van Strijp, J A; Verbrugh, H A; Verhoef, J; Fleer, A

    1993-01-01

    The role of cytokines in gram-positive infections is still relatively poorly defined. The purpose of this study was to establish whether or not intact staphylococci and purified peptidoglycans and peptidoglycan components derived from staphylococci are capable of stimulating the release of tumor necrosis factor (TNF) by human monocytes. We show here that intact staphylococci and purified peptidoglycans, isolated from three Staphylococcus epidermidis and three S. aureus strains, were indeed able to induce secretion of TNF by human monocytes in a concentration-dependent fashion. TNF release was detected by both enzyme immunoassay and the L929 fibroblast bioassay. In the enzyme immunoassay, a minimal concentration of peptidoglycan of 1 micrograms/ml was required to detect TNF release by monocytes, whereas in the bioassay a peptidoglycan concentration of 10 micrograms/ml was needed to detect a similar amount of TNF release. Peptidoglycan components such as the stem peptide, tetra- and pentaglycine, and muramyl dipeptide were unable to induce TNF release from human monocytes. PMID:8406805

  2. Tumor Necrosis Factor/Sphingosine-1-Phosphate Signaling Augments Resistance Artery Myogenic Tone in Diabetes.

    PubMed

    Sauvé, Meghan; Hui, Sonya K; Dinh, Danny D; Foltz, Warren D; Momen, Abdul; Nedospasov, Sergei A; Offermanns, Stefan; Husain, Mansoor; Kroetsch, Jeffrey T; Lidington, Darcy; Bolz, Steffen-Sebastian

    2016-07-01

    Diabetes strongly associates with microvascular complications that ultimately promote multiorgan failure. Altered myogenic responsiveness compromises tissue perfusion, aggravates hypertension, and sets the stage for later permanent structural changes to the microcirculation. We demonstrate that skeletal muscle resistance arteries isolated from patients with diabetes have augmented myogenic tone, despite reasonable blood glucose control. To understand the mechanisms, we titrated a standard diabetes mouse model (high-fat diet plus streptozotocin [HFD/STZ]) to induce a mild increase in blood glucose levels. HFD/STZ treatment induced a progressive myogenic tone augmentation in mesenteric and olfactory cerebral arteries; neither HFD nor STZ alone had an effect on blood glucose or resistance artery myogenic tone. Using gene deletion models that eliminate tumor necrosis factor (TNF) or sphingosine kinase 1, we demonstrate that vascular smooth muscle cell TNF drives the elevation of myogenic tone via enhanced sphingosine-1-phosphate (S1P) signaling. Therapeutically antagonizing TNF (etanercept) or S1P (JTE013) signaling corrects this defect. Our investigation concludes that vascular smooth muscle cell TNF augments resistance artery myogenic vasoconstriction in a diabetes model that induces a small elevation of blood glucose. Our data demonstrate that microvascular reactivity is an early disease marker and advocate establishing therapies that strategically target the microcirculation. PMID:27207546

  3. Critical role of tumor necrosis factor receptor 1 in the pathogenesis of pulmonary emphysema in mice

    PubMed Central

    Fujita, Masaki; Ouchi, Hiroshi; Ikegame, Satoshi; Harada, Eiji; Matsumoto, Takemasa; Uchino, Junji; Nakanishi, Yoichi; Watanabe, Kentaro

    2016-01-01

    COPD is a major cause of chronic morbidity and mortality throughout the world. Although tumor necrosis factor-α (TNF-α) has a critical role in the development of COPD, the role of different TNF receptors (TNFRs) in pulmonary emphysema has not been resolved. We aimed to clarify the role of TNFRs in the development of pulmonary emphysema. TNF-α transgenic mice, a murine model of COPD in which the mice spontaneously develop emphysema with a large increase in lung volume and pulmonary hypertension, were crossed with either TNFR1-deficient mice or TNFR2-deficient mice. After 6 months, the gross appearance of the lung, lung histology, and pulmonary and cardiac physiology were determined. In addition, the relationship between apoptosis and emphysema was investigated. Pulmonary emphysema-like changes disappeared with deletion of TNFR1. However, slight improvements were attained with deletion of TNFR2. Apoptotic cells in the interstitium of the lung were observed in TNF-α transgenic mice. The apoptotic signals through TNFR1 appear critical for the pathogenesis of pulmonary emphysema. In contrast, the inflammatory process has a less important role for the development of emphysema. PMID:27555760

  4. Personalized medicine: theranostics (therapeutics diagnostics) essential for rational use of tumor necrosis factor-alpha antagonists.

    PubMed

    Bendtzen, Klaus

    2013-04-01

    With the discovery of the central pathogenic role of tumor necrosis factor (TNF)-alpha in many immunoinflammatory diseases, specific inhibition of this pleiotropic cytokine has revolutionized the treatment of patients with several non-infectious inflammatory disorders. As a result, genetically engineered anti-TNF-alpha antibody constructs now constitute one of the heaviest medicinal expenditures in many countries. All currently used TNF antagonists may dramatically lower disease activity and, in some patients, induce remission. Unfortunately, however, not all patients respond favorably, and safety can be severely impaired by immunogenicity, i.e., the ability of a drug to induce anti-drug antibodies (ADA). Assessment of ADA is therefore an important component of the evaluation of drug safety in both pre-clinical and clinical studies and in the process of developing less immunogenic and safer biopharmaceuticals. Therapeutics diagnostics, also called theranostics, i.e., monitoring functional drug levels and neutralizing ADA in the circulation, is central to more effective use of biopharmaceuticals. Hence, testing-based strategies rather than empirical dose-escalation may provide more cost-effective use of TNF antagonists as this allows therapies tailored according to individual requirements rather than the current universal approach to diagnosis. The objective of the present review is to discuss the reasons for recommending theranostics to implement an individualized use of TNF antagonists and to highlight some of the methodological obstacles that have obscured cost-effective ways of using these therapies.

  5. Fullerenes and their derivatives as inhibitors of tumor necrosis factor-α with highly promoted affinities.

    PubMed

    Wu, Gaoyin; Gao, Xuejiao J; Jang, Joonkyung; Gao, Xingfa

    2016-07-01

    Tumor necrosis factor-α (TNF-α) is a cell signalling protein involved in systemic inflammation in infectious and other malignant diseases. Physiologically, it plays an important role in regulating host defence, but its overexpression can lead to serious illnesses including cancer, autoimmune disease and inflammatory disease. Gadolinium-based metallofullerenols, e.g., Gd@C82(OH) x (x ≈ 22), are well known for their abundant biological activities with low toxicity experimentally and theoretically; however, their activity in direct TNF-α inhibition has not been explored. In this work, we investigated the inhibiting effects of four types of fullerene-based ligands: fullerenes, fullerenols, metallofullerenes, and metallofullerenols. We reported previously that fullerenes, metallofullerenes and their hydroxylated derivatives (fullerenols) can reside in the same pocket of the TNF-α dimer as that of SPD304-a known inhibitor of TNF-α [He et al. (2005) Science 310:1022, 18]. Ligand docking and binding free energy calculations suggest that, with a similar nonpolar interaction dominated binding pattern, the fullerene-based ligands, C60, C60(OH)12, Gd@C60, C82, C82(OH)12, Gd@C82, Gd@C82(OH)13 and Gd@C82(OH)21, have larger affinity than currently known inhibitors, and could be used to design novel inhibitors of TNF-α in the future. Graphical Abstract Fullerene-material/TNF-α.

  6. Genetically engineered bacteriophage delivers a tumor necrosis factor alpha antagonist coating on neural electrodes.

    PubMed

    Kim, Young Jun; Jin, Young-Hyun; Salieb-Beugelaar, Georgette B; Nam, Chang-Hoon; Stieglitz, Thomas

    2014-02-01

    This paper reports a novel approach for the formation of anti-inflammatory surface coating on a neural electrode. The surface coating is realized using a recombinant f88 filamentous bacteriophage, which displays a short platinum binding motif and a tumor necrosis factor alpha antagonist (TNF-α antagonist) on p3 and p8 proteins, respectively. The recombinant bacteriophages are immobilized on the platinum surface by a simple dip coating process. The selective and stable immobilization of bacteriophages on a platinum electrode is confirmed by quartz crystal microbalance with dissipation monitoring, atomic force microscope and fluorescence microscope. From the in vitro cell viability test, the inflammatory cytokine (TNF-α) induced cell death was prevented by presenting recombinant bacteriophage coating, albeit with no significant cytotoxic effect. It is also observed that the bacteriophage coating does not have critical effects on the electrochemical properties such as impedance and charge storage capacities. Thus, this approach demonstrates a promising anti-apoptotic as well as anti-inflammatory surface coating for neural implant applications. PMID:24448635

  7. A Case of Sarcoidosis Associated With Anti–Tumor Necrosis Factor Treatment

    PubMed Central

    Hanazay, Cigdem; Kokturk, Nurdan; Turktas, Haluk

    2015-01-01

    Sarcoidosis is a systemic chronic granulomatous disease of unknown etiology. It predominantly involves the lungs but can affect many organs or tissues in the body, such as the lymphatic system, skin, eyes, and liver. Typical histopathological lesions are noncaseating granulomas in the affected organ or tissue. Indications, type of treatment, and duration of sarcoidosis treatment is currently debated. Despite studies showing that anti–tumor necrosis factor-α (TNF-α) treatment can successfully be used in refractory sarcoidosis, there are some case reports regarding the development of sarcoidosis with these agents. There have been reports of 47 anti-TNF-associated cases of sarcoidosis until 2012. The patient is a 54-year-old Caucasian male. During routine examinations of the patient who had been followed for psoriasis vulgaris for 20 years and who had been on several anti-TNF regimens thereafter, new pulmonary pathologies due to sarcoidosis were detected. We present here a case of sarcoidosis that developed after infliximab treatment and showed obvious radiologic regression with discontinuation of treatment. During anti-TNF treatment, it should be kept in mind that autoimmune and granulomatous diseases may develop and particular care should be given to patient follow-ups. PMID:26425632

  8. LARP4 Is Regulated by Tumor Necrosis Factor Alpha in a Tristetraprolin-Dependent Manner

    PubMed Central

    Mattijssen, Sandy

    2015-01-01

    LARP4 is a protein with unknown function that independently binds to poly(A) RNA, RACK1, and the poly(A)-binding protein (PABPC1). Here, we report on its regulation. We found a conserved AU-rich element (ARE) in the human LARP4 mRNA 3′ untranslated region (UTR). This ARE, but not its antisense version or a point-mutated version, significantly decreased the stability of β-globin reporter mRNA. We found that overexpression of tristetraprolin (TTP), but not its RNA binding mutant or the other ARE-binding proteins tested, decreased cellular LARP4 levels. RNA coimmunoprecipitation showed that TTP specifically associated with LARP4 mRNA in vivo. Consistent with this, mouse LARP4 accumulated to higher levels in TTP gene knockout (KO) cells than in control cells. Stimulation of WT cells with tumor necrosis factor alpha (TNF-α), which rapidly induces TTP, robustly decreased LARP4 with a coincident time course but had no such effect on LARP4B or La protein or on LARP4 in the TTP KO cells. The TNF-α-induced TTP pulse was followed by a transient decrease in LARP4 mRNA that was quickly followed by a subsequent transient decrease in LARP4 protein. Involvement of LARP4 as a target of TNF-α–TTP regulation provides a clue as to how its functional activity may be used in a physiologic pathway. PMID:26644407

  9. Genetically engineered bacteriophage delivers a tumor necrosis factor alpha antagonist coating on neural electrodes.

    PubMed

    Kim, Young Jun; Jin, Young-Hyun; Salieb-Beugelaar, Georgette B; Nam, Chang-Hoon; Stieglitz, Thomas

    2014-02-01

    This paper reports a novel approach for the formation of anti-inflammatory surface coating on a neural electrode. The surface coating is realized using a recombinant f88 filamentous bacteriophage, which displays a short platinum binding motif and a tumor necrosis factor alpha antagonist (TNF-α antagonist) on p3 and p8 proteins, respectively. The recombinant bacteriophages are immobilized on the platinum surface by a simple dip coating process. The selective and stable immobilization of bacteriophages on a platinum electrode is confirmed by quartz crystal microbalance with dissipation monitoring, atomic force microscope and fluorescence microscope. From the in vitro cell viability test, the inflammatory cytokine (TNF-α) induced cell death was prevented by presenting recombinant bacteriophage coating, albeit with no significant cytotoxic effect. It is also observed that the bacteriophage coating does not have critical effects on the electrochemical properties such as impedance and charge storage capacities. Thus, this approach demonstrates a promising anti-apoptotic as well as anti-inflammatory surface coating for neural implant applications.

  10. Tumor necrosis factor alpha regulates in vivo intrapulmonary expression of ICAM-1.

    PubMed Central

    Mulligan, M. S.; Vaporciyan, A. A.; Miyasaka, M.; Tamatani, T.; Ward, P. A.

    1993-01-01

    Lung injury following deposition of IgG immune complexes is neutrophil-dependent and requires both tumor necrosis factor alpha (TNF alpha) and CD18. In the current studies, we have evaluated the relationship between TNF alpha and expression of intracellular adhesion molecule-1 (ICAM-1) in vitro and in vivo. In both rat pulmonary artery endothelial cells and human umbilical vein endothelial cells, TNF alpha induced an early (within 60 minutes) increase in ICAM-1 expression, followed by a peak at 6 to 8 hours, with relatively stable expression at 24 hours. Expression of E-selectin did not show the early phase (within 60 minutes) of up-regulation, peaked at 4 hours, and then declined thereafter. Using a radioimmunochemical assay in vivo, it was demonstrated that intrapulmonary deposition of IgG immune complexes caused a progressive increase in ICAM-1 expression in lung over an 8-hour period. In animals pretreated with antibody to TNF alpha, the intrapulmonary expression of ICAM-1 was significantly reduced. These results were confirmed by immunoperoxidase analysis of lung tissue. It was also shown that airway instillation of TNF alpha caused up-regulation of ICAM-1 in lung. These data support the concept that deposition of IgG immune complexes in lung induces intrapulmonary up-regulation of ICAM-1 in a manner that is TNF alpha-dependent. Images Figure 2 Figure 7 PMID:7685152

  11. Curcumin half analog modulates interleukin-6 and tumor necrosis factor-alpha in inflammatory bowel disease

    PubMed Central

    Kondamudi, Phani Krishna; Kovelamudi, Hemalatha; Nayak, Pawan G.; Rao, Mallikarjuna Chamallamudi; Shenoy, Rekha Raghuveer

    2015-01-01

    Background: The present study was aimed at examining the effect of dehydrozingerone (DHZ), half analogue of curcumin which is the active constituent of turmeric (Curcuma longa) in the di-nitrochlorobenzene (DNCB) induced model for inflammatory bowel disease (IBD). Materials and Methods: Male Wistar rats (200–220 g) were divided into four groups (n = 6). Chemical induction of IBD was done by sensitizing with 300 µL of 20 g/L of DNCB (in acetone) onto the nape of rats for 14 days followed by intra-colonic instillation of 250 µL of DNCB (0.1% DNCB in 50% alcohol) solution on day 15. Rats in Group 1 (normal control) and Group 2 (DNCB control) were treated with vehicle. Rats in Group 3 were treated with DHZ (100 mg/kg, p.o.; 8 days) and Group 4 animals were treated with sulfasalazine (SS) (100 mg/kg, p.o.; 8 days). On 24th day, the rats were killed, colon removed and the macroscopic, biochemical, and histopathological evaluations were performed. Results: The levels of myeloperoxidase, thiobarbituric acid reactive substrate, and nitrite increased significantly (P < 0.05) in the DNCB group whereas reduced significantly in the DHZ and SS treated groups. Serum nitrite levels were found to be insignificant between the different groups. Interleukin-6, tumor necrosis factor-alpha level was significantly high in the DNCB group. Conclusion: These findings show that DHZ can be a promising molecule for the treatment of IBD. PMID:26664018

  12. Identification and characterization of a tumor necrosis factor receptor like protein encoded by Singapore grouper iridovirus.

    PubMed

    Huang, Xiaohong; Huang, Youhua; Cai, Jia; Wei, Shina; Gao, Ren; Qin, Qiwei

    2013-12-26

    Virus encoded tumor necrosis factor receptors (TNFRs) have been demonstrated to facilitate virus to escape from apoptosis or other host immune response for viral replication. Singapore grouper iridovirus (SGIV), a large DNA virus which belongs to genus Ranavirus, is a major pathogen resulting in heavy economic losses to grouper aquaculture. Here, SGIV ORF096 (VP96) encoding a putative homolog of TNFR was identified and characterized. Multiple sequence alignment indicated that SGIV-VP96 contained two extracellular cysteine-rich domains (CRDs) with conserved four or six cysteine residues, but lacked the transmembrane domain at the C-terminus. SGIV-VP96 was identified as an early (E) gene and localized in the cytoplasm in transfected or infected cells. Overexpression of SGIV-VP96 in vitro enhanced cell proliferation, and improved cell survival against SGIV infection. Furthermore, virus infection induced apoptosis and caspase-3 activity were inhibited in SGIV-VP96 expressing FHM cells compared to the control cells. Taken together, our results suggested that SGIV might utilize virus encoded TNFR like genes to modulate the host apoptotic response for effective virus replication.

  13. Control of Mycobacterial Infections in Mice Expressing Human Tumor Necrosis Factor (TNF) but Not Mouse TNF.

    PubMed

    Olleros, Maria L; Chavez-Galan, Leslie; Segueni, Noria; Bourigault, Marie L; Vesin, Dominique; Kruglov, Andrey A; Drutskaya, Marina S; Bisig, Ruth; Ehlers, Stefan; Aly, Sahar; Walter, Kerstin; Kuprash, Dmitry V; Chouchkova, Miliana; Kozlov, Sergei V; Erard, François; Ryffel, Bernard; Quesniaux, Valérie F J; Nedospasov, Sergei A; Garcia, Irene

    2015-09-01

    Tumor necrosis factor (TNF) is an important cytokine for host defense against pathogens but is also associated with the development of human immunopathologies. TNF blockade effectively ameliorates many chronic inflammatory conditions but compromises host immunity to tuberculosis. The search for novel, more specific human TNF blockers requires the development of a reliable animal model. We used a novel mouse model with complete replacement of the mouse TNF gene by its human ortholog (human TNF [huTNF] knock-in [KI] mice) to determine resistance to Mycobacterium bovis BCG and M. tuberculosis infections and to investigate whether TNF inhibitors in clinical use reduce host immunity. Our results show that macrophages from huTNF KI mice responded to BCG and lipopolysaccharide similarly to wild-type macrophages by NF-κB activation and cytokine production. While TNF-deficient mice rapidly succumbed to mycobacterial infection, huTNF KI mice survived, controlling the bacterial burden and activating bactericidal mechanisms. Administration of TNF-neutralizing biologics disrupted the control of mycobacterial infection in huTNF KI mice, leading to an increased bacterial burden and hyperinflammation. Thus, our findings demonstrate that human TNF can functionally replace murine TNF in vivo, providing mycobacterial resistance that could be compromised by TNF neutralization. This new animal model will be helpful for the testing of specific biologics neutralizing human TNF.

  14. Two soluble antigens of Plasmodium falciparum induce tumor necrosis factor release from macrophages.

    PubMed Central

    Taverne, J; Bate, C A; Kwiatkowski, D; Jakobsen, P H; Playfair, J H

    1990-01-01

    The production of cytokines such as tumor necrosis factor (TNF) may contribute to the pathology of malaria. We showed previously that crude preparations of heat-stable exoantigens from parasite cultures induce the release of TNF in vitro and in vivo. When separated from the culture medium by affinity chromatography, in which immune immunoglobulin G was used as ligand, the mixture of exoantigens of Plasmodium falciparum retained the capacity to induce the secretion of TNF, both by human monocytes from Gambian children and by mouse macrophages. Two individual antigens, Ag1 and Ag7, further purified by affinity chromatography and identified by crossed immunoelectrophoresis, also stimulated TNF production by both types of cell but differed in other functional properties. Thus, the activity of Ag7, but not that of Ag1, was inhibited by polymyxin B, and antisera made against boiled exoantigens of the rodent parasite Plasmodium yoelii which blocked the ability of these antigens to induce the production of TNF also inhibited the activity of Ag7 without affecting Ag1. Since the prevalence of antibody against Ag7 in sera from children in endemic areas appears to correlate with the development of immunity against the manifestations of the disease, this antigen may be one cause of pathology, perhaps through its ability to induce the production of TNF. Its serological relationship with rodent exoantigens suggests that it might be a candidate for an anti-disease vaccine which has the advantage that its active moiety is not subject to significant antigen polymorphism. PMID:2201638

  15. Renal Tumor Necrosis Factor α Contributes to Hypertension in Dahl Salt-Sensitive Rats

    PubMed Central

    Huang, Baorui; Cheng, Yuan; Usa, Kristie; Liu, Yong; Baker, Maria Angeles; Mattson, David L.; He, Yongcheng; Wang, Niansong; Liang, Mingyu

    2016-01-01

    Tumor necrosis factor α (TNFα) is a major proinflammatory cytokine and its level is elevated in hypertensive states. Inflammation occurs in the kidneys during the development of hypertension. We hypothesized that TNFα specifically in the kidney contributes to the development of hypertension and renal injury in Dahl salt-sensitive (SS) rats, a widely used model of human salt-sensitive hypertension and renal injury. SS rats were chronically instrumented for renal interstitial infusion and blood pressure measurement in conscious, freely moving state. Gene expression was measured using real-time PCR and renal injury assessed with histological analysis. The abundance of TNFα in the renal medulla of SS rats, but not the salt-insensitive congenic SS.13BN26 rats, was significantly increased when rats had been fed a high-salt diet for 7 days (n = 6 or 9, p < 0.01). The abundance of TNFα receptors in the renal medulla was significantly higher in SS rats than SS.13BN26 rats. Renal interstitial administration of Etanercept, an inhibitor of TNFα, significantly attenuated the development of hypertension in SS rats on a high-salt diet (n = 7–8, p < 0.05). Glomerulosclerosis and interstitial fibrosis were also significantly ameliorated. These findings indicate intrarenal TNFα contributes to the development of hypertension and renal injury in SS rats. PMID:26916681

  16. Renal Tumor Necrosis Factor α Contributes to Hypertension in Dahl Salt-Sensitive Rats.

    PubMed

    Huang, Baorui; Cheng, Yuan; Usa, Kristie; Liu, Yong; Baker, Maria Angeles; Mattson, David L; He, Yongcheng; Wang, Niansong; Liang, Mingyu

    2016-01-01

    Tumor necrosis factor α (TNFα) is a major proinflammatory cytokine and its level is elevated in hypertensive states. Inflammation occurs in the kidneys during the development of hypertension. We hypothesized that TNFα specifically in the kidney contributes to the development of hypertension and renal injury in Dahl salt-sensitive (SS) rats, a widely used model of human salt-sensitive hypertension and renal injury. SS rats were chronically instrumented for renal interstitial infusion and blood pressure measurement in conscious, freely moving state. Gene expression was measured using real-time PCR and renal injury assessed with histological analysis. The abundance of TNFα in the renal medulla of SS rats, but not the salt-insensitive congenic SS.13(BN26) rats, was significantly increased when rats had been fed a high-salt diet for 7 days (n = 6 or 9, p < 0.01). The abundance of TNFα receptors in the renal medulla was significantly higher in SS rats than SS.13(BN26) rats. Renal interstitial administration of Etanercept, an inhibitor of TNFα, significantly attenuated the development of hypertension in SS rats on a high-salt diet (n = 7-8, p < 0.05). Glomerulosclerosis and interstitial fibrosis were also significantly ameliorated. These findings indicate intrarenal TNFα contributes to the development of hypertension and renal injury in SS rats. PMID:26916681

  17. Demyelinizing Neurological Disease after Treatment with Tumor Necrosis Factor-α Antagonists

    PubMed Central

    Bruè, Claudia; Mariotti, Cesare; Rossiello, Ilaria; Saitta, Andrea; Giovannini, Alfonso

    2016-01-01

    Purpose Demyelinizing neurological disease is a rare complication after treatment with tumor necrosis factor (TNF)α antagonists. We report on a case of multiple sclerosis after TNFα antagonist treatment and discuss its differential diagnosis. Methods This is an observational case study. Results A 48-year-old male was referred to Ophthalmology in January 2015 for an absolute scotoma in the superior quadrant of the visual field in his right eye. Visual acuity was 20/50 in the right eye and 20/20 in the left. Fundus examination was unremarkable bilaterally. Spectral domain optical coherence tomography revealed a normal macular retina structure. Visual field examination revealed a superior hemianopsia in the right eye. Head magnetic resonance imaging showed findings compatible with optic neuritis. The visual evoked potentials confirmed the presence of optic neuritis. The patient had been under therapy with adalimumab since January 2014, for Crohn's disease. Suspension of adalimumab was recommended, and it was substituted with tapered deltacortene, from 1 mg/kg/day. After 1 month, the scotoma was resolved completely. Conclusions TNFα antagonists can provide benefit to patients with inflammatory autoimmune diseases. However, they can also be associated with severe adverse effects. Therefore, adequate attention should be paid to neurological abnormalities in patients treated with TNFα antagonists. PMID:27504093

  18. Tumor necrosis factor-alpha genetic predisposing factors can influence clinical severity in nephropathia epidemica.

    PubMed

    Maes, Piet; Clement, Jan; Groeneveld, Paul H P; Colson, Paul; Huizinga, Tom W J; Van Ranst, Marc

    2006-01-01

    Severe human infection with Hantavirus is characterized by high fever, cold chills, thrombocytopenia, arterial hypotension, acute renal failure, and/or adult respiratory distress syndrome (ARDS)-like pulmonary involvement, but the clinical course varies greatly between individuals. We investigated whether genetically determined differences in tumor necrosis factor (TNF)-alpha production can influence the severity of Hantavirus disease. We studied a TNF-alpha single-nucleotide promoter polymorphism (SNP) at position -238 (a guanine [G]-to-adenine [A] transition) and ex vivo TNF-alpha production in a recall study of 36 Belgian patients who had a serologically proven form of Puumala virus-induced Hantavirus infection with the kidney as main target organ. In our study, the highest creatinine levels were found in patients with the lowest ex vivo TNF-alpha production. Creatinine levels correlated inversely with TNF-alpha production (R = -0.35, p < 0.05). The number of thrombocytes was significantly lower in patients with the GA-238 genotype (low TNF-alpha producers) compared with patients with the GG-238 genotype. In our study, genetically determined low production of TNF-alpha was associated with some parameters indicating a more severe clinical course of Puumala Hantavirus infection in humans, possibly by impaired activation of TNF-alpha-dependent antiviral mechanisms, which could in turn result in decreased clearance of Hantavirus. PMID:16987073

  19. Noise and fidelity of information transmission through the Tumor Necrosis Factor signaling circuit

    NASA Astrophysics Data System (ADS)

    Levchenko, Andre

    2013-03-01

    Molecular noise restricts the ability of an individual cell to resolve input signals of different strengths and gather information about the external environment. We developed an integrative theoretical and experimental framework, based on the formalism of information theory, to quantitatively predict and measure the amount of information transduced by molecular and cellular networks. Analyzing tumor necrosis factor (TNF) signaling revealed that individual TNF signaling pathways transduce information sufficient for accurate binary decisions, and an upstream bottleneck limits the information gained via multiple integrated pathways. Negative feedback to this bottleneck could both alleviate and enhance its limiting effect, despite decreasing noise. Bottlenecks likewise constrain information attained by networks signaling through multiple genes or cells. We further use this new analysis formalism to ``map'' the noise amplitude across different parts of the network. Finally, we show that the redundancy in signaling due to the existence of parallel pathways is not absolute, and that parallel pathways can transmit different types of information about the input, i.e., the duration vs. amplitude.

  20. Wound healing potential of pterospermum acerifolium wild. With induction of tumor necrosis factor - α

    PubMed Central

    Senapati, Aswini Kumar; Giri, Ranjan Kumar; Panda, Dibya Sundar; Satyanarayan, Sremantula

    2011-01-01

    Pterospermum acerifolium, a well-known plant in Indian medicine possesses various therapeutic properties including healing properties and cytokine induction. Wound healing activity of ethanolic extract of P. acerifolium flower along with its effect on tumor necrosis factor-α (TNF-α) was assessed using excision model of wound repair in Wistar albino rats. After application of the P. acerifolium extract, rate of epithelization with an increase in wound contraction was observed. Animals tropically treated with 10% P. acerifolium extract in petroleum jelly, the wound healing process was observed faster as compared to control group which were treated with petroleum jelly alone. A significant accelerated healing was noticed in animals which were additionally prefed with 250mg/kg body weight of ethanolic P. acerifolium extract daily for 20 consecutive days along with the topical application 10% P. acerifolium extract. During wound healing phase TNF-α level was found to be up regulated by P. acerifolium treatment. Early wound healing may be pronounced due to P. acerifolium extract elevating TNF−α production PMID:24826024

  1. Retrospective cohort study of anti-tumor necrosis factor agent use in a veteran population

    PubMed Central

    Madkour, Nermeen; Kazerooni, Rashid

    2014-01-01

    Introduction. Anti-tumor necrosis factor (TNF) agents are effective for several immunologic conditions (rheumatoid arthritis (RA), Crohn’s disease (CD), and psoriasis). The purpose of this study was to evaluate the efficacy and safety of anti-TNF agents via chart review. Methods. Single-site, retrospective cohort study that evaluated the efficacy and safety of anti-TNF agents in veterans initiated between 2010 and 2011. Primary aim evaluated response at 12 months post-index date. Secondary aims evaluated initial response prior to 12 months post-index date and infection events. Results. A majority of patients were prescribed anti-TNF agents for CD (27%) and RA (24%). Patients were initiated on etanercept (41%), adalimumab (40%), and infliximab (18%) between 2010 and 2011. No differences in patient demographics were reported. Response rates were high overall. Sixty-five percent of etanercept patients, 82% of adalimumab patients, and 59% of infliximab patients were either partial or full responders, respectively. Approximately 16%, 11%, and 12% of etanercept, adalimumab, and infliximab were non-responders, respectively. Infections between the groups were non-significant. Etanercept and adalimumab patients had higher but non-significant odds of being a responder relative to infliximab. Conclusions. Most patients initiated with anti-TNF agent were responders at 12 months follow-up for all indications in a veteran population. PMID:24883246

  2. Tumor necrosis factor-{alpha} enhances IL-15-induced natural killer cell differentiation

    SciTech Connect

    Lee, Jiwon; Lee, Suk Hyung; Shin, Nara; Jeong, Mira; Kim, Mi Sun; Kim, Mi Jeong; Yoon, Suk Ran; Chung, Jin Woong; Kim, Tae-Don; Choi, Inpyo

    2009-09-04

    The differentiation of natural killer (NK) cells is regulated by various factors including soluble growth factors and transcription factors. Here, we have demonstrated that tumor necrosis factor-{alpha} (TNF-{alpha}) is a positive regulator of NK cell differentiation. TNF-{alpha} augmented the IL-15-induced expression of NK1.1 and CD122 in mature NK cells, and TNF-{alpha} alone also induced NK cell maturation as well as IL-15. TNF-{alpha} also increased IFN-{gamma} production in NK cells in the presence of IL-15. Meanwhile, mRNA expression of several transcription factors, including T-bet and GATA-3, was increased by the addition of TNF-{alpha} and IL-15. In addition, TNF-{alpha} increased nuclear factor-kappa B (NF-{kappa}B) activity in NK cells and inhibition of NF-{kappa}B impeded TNF-{alpha}-enhanced NK cell maturation. Overall, these data suggest that TNF-{alpha} significantly increased IL-15-driven NK cell differentiation by increasing the expression of transcription factors that play crucial roles in NK cell maturation and inducing the NF-{kappa}B activity.

  3. Fullerenes and their derivatives as inhibitors of tumor necrosis factor-α with highly promoted affinities.

    PubMed

    Wu, Gaoyin; Gao, Xuejiao J; Jang, Joonkyung; Gao, Xingfa

    2016-07-01

    Tumor necrosis factor-α (TNF-α) is a cell signalling protein involved in systemic inflammation in infectious and other malignant diseases. Physiologically, it plays an important role in regulating host defence, but its overexpression can lead to serious illnesses including cancer, autoimmune disease and inflammatory disease. Gadolinium-based metallofullerenols, e.g., Gd@C82(OH) x (x ≈ 22), are well known for their abundant biological activities with low toxicity experimentally and theoretically; however, their activity in direct TNF-α inhibition has not been explored. In this work, we investigated the inhibiting effects of four types of fullerene-based ligands: fullerenes, fullerenols, metallofullerenes, and metallofullerenols. We reported previously that fullerenes, metallofullerenes and their hydroxylated derivatives (fullerenols) can reside in the same pocket of the TNF-α dimer as that of SPD304-a known inhibitor of TNF-α [He et al. (2005) Science 310:1022, 18]. Ligand docking and binding free energy calculations suggest that, with a similar nonpolar interaction dominated binding pattern, the fullerene-based ligands, C60, C60(OH)12, Gd@C60, C82, C82(OH)12, Gd@C82, Gd@C82(OH)13 and Gd@C82(OH)21, have larger affinity than currently known inhibitors, and could be used to design novel inhibitors of TNF-α in the future. Graphical Abstract Fullerene-material/TNF-α. PMID:27316702

  4. Polysaccharide peptide induces a tumor necrosis factor-α-dependent drop of body temperature in rats.

    PubMed

    Jedrzejewski, Tomasz; Piotrowski, Jakub; Wrotek, Sylwia; Kozak, Wieslaw

    2014-08-01

    Polysaccharide peptide (PSP) extracted from the Coriolus versicolor mushroom is frequently suggested as an adjunct to the chemo- or radiotherapy in cancer patients. It improves quality of the patients' life by decreasing pain, fatigue, loss of appetite, nausea, and vomiting. However, the effect of PSP on body temperature has not thus far been studied, although it is well known that treatment with other polysaccharide adjuvants, such as lipopolysaccharides, may induce fever. The aim of the present study, therefore, was to investigate the influence of PSP on temperature regulation in rats. We report that intraperitoneal injection of PSP provoked a dose-dependent decrease of temperature in male Wistar rats equipped with biotelemetry devices to monitor deep body temperature (Tb). The response was rapid (i.e., with latency of 15-20min), transient (lasting up to 5h post-injection), and accompanied by a significant elevation of the blood tumor necrosis factor-α (TNF-α) level. Pretreatment of the rats with anti-TNF-α antibody prevented the PSP-induced drop in Tb. Based on these data, we conclude that rats may develop an anapyrexia-like response to the injection of peptidopolysaccharide rather than fever, and the response was TNF-α-dependent.

  5. Augmentation of the neutrophil response to Naegleria fowleri by tumor necrosis factor alpha.

    PubMed Central

    Ferrante, A

    1989-01-01

    Conditioned medium from phytohemagglutinin-stimulated human mononuclear leukocytes, previously shown to activate neutrophils for amoeba killing, was found to contain high levels of tumor necrosis factor alpha (TNF-alpha) by an enzyme-linked immunosorbent assay. The effects of human recombinant TNF-alpha on the response of human neutrophils to the pathogenic free-living amoeba Naegleria fowleri was studied in vitro. The data showed that recombinant human TNF-alpha augmented the neutrophil respiratory burst (assessed by the cytochrome c reduction assay and lucigenin-dependent chemiluminescence assay) in response to amoebae opsonized with human serum. The priming effects of TNF-alpha were transient; marked enhancement was found with short 5- to 30-min preincubations of neutrophils with the cytokine. The enhancement of oxygen radical production was evident with 20 U of TNF-alpha per 10(6) neutrophils and continued to increase with up to 100 U. TNF-alpha also augmented the neutrophil lysosomal enzyme release in response to N. fowleri. The results support previous reports suggesting an important role of neutrophil cytokine activation for effective immunity against free-living amoebae. PMID:2777375

  6. Cytokine expression in mice exposed to diesel exhaust particles by inhalation. Role of tumor necrosis factor

    PubMed Central

    Saber, Anne T; Jacobsen, Nicklas R; Bornholdt, Jette; Kjær, Sanna L; Dybdahl, Marianne; Risom, Lotte; Loft, Steffen; Vogel, Ulla; Wallin, Håkan

    2006-01-01

    Background Particulate air pollution has been associated with lung and cardiovascular disease, for which lung inflammation may be a driving mechanism. The pro-inflammatory cytokine, tumor necrosis factor (TNF) has been suggested to have a key-role in particle-induced inflammation. We studied the time course of gene expression of inflammatory markers in the lungs of wild type mice and Tnf-/- mice after exposure to diesel exhaust particles (DEPs). Mice were exposed to either a single or multiple doses of DEP by inhalation. We measured the mRNA level of the cytokines Tnf and interleukin-6 (Il-6) and the chemokines, monocyte chemoattractant protein (Mcp-1), macrophage inflammatory protein-2 (Mip-2) and keratinocyte derived chemokine (Kc) in the lung tissue at different time points after exposure. Results Tnf mRNA expression levels increased late after DEP-inhalation, whereas the expression levels of Il-6, Mcp-1 and Kc increased early. The expression of Mip-2 was independent of TNF if the dose was above a certain level. The expression levels of the cytokines Kc, Mcp-1 and Il-6, were increased in the absence of TNF. Conclusion Our data demonstrate that Tnf is not important in early DEP induced inflammation and rather exerts negative influence on Mcp-1 and Kc mRNA levels. This suggests that other signalling pathways are important, a candidate being one involving Mcp-1. PMID:16504008

  7. Tumor necrosis factor alpha and glutathione interplay in chronic heart failure.

    PubMed

    Adamy, C; Le Corvoisier, P; Candiani, G; Kirsch, M; Pavoine, C; Defer, N; Bourin, M C; Su, J B; Vermes, E; Hittinger, L; Pecker, E

    2005-09-01

    The pro-inflammatory cytokine, tumor necrosis factor alpha (TNF alpha), in concert with neurohormones, contributes to chronic heart failure (CHF) progression. This implies that TNF a antagonism may constitute an important target for CHF therapy. However, clinical trials in CHF patients using compounds that trap TNF alpha, comprising infliximab, an antibody directed to TNF alpha, and etanercept, a soluble recombinant receptor of TNF alpha, gave disappointing results bringing back to light the dual, short-term beneficial and long-term harmful effect of TNF alpha. This review focuses on the dual, concentration- and time-related effects of TNF alpha, the yin and yang action of TNF alpha in cardiac ischemia/reperfusion and contraction. Importantly, the harmful effects of TNF a are related to glutathione deficiency, a common hallmark to several other chronic inflammatory diseases. Recently, in rat models of CHF, oral administration of the glutathione precursor, N-acetylcysteine (NAC), was shown to hinder pathways of TNF alpha harmful signalling and to rescue cardiac structure and function. These results suggest that glutathione deficiency in association with TNF alpha activation may play a role in the pathophysiology of CHF and that NAC may represent a potential therapy in CHF.

  8. Interleukin-6 and tumor necrosis factor-alpha values in elk neonates

    USGS Publications Warehouse

    Barber-Meyer, S. M.; Johnson, C.R.; Murtaugh, M.P.; Mech, L.D.; White, P.J.

    2007-01-01

    Serological indicators of general condition would be helpful for monitoring or assessing ungulate wildlife. Toward that end, we report the 1st reference values for 2 cytokines, interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-??), in neonatal elk (Cervus elaphus). We obtained blood samples from 140 calves ??? 6 days old in Yellowstone National Park during summer 2003-2005. TL-6 values ranged from 0 to 1.21 pg/ml with a median of 0.03 pg/ml. TNF-?? values ranged from 0 to 225.43 pg/ml with a median of 1.85 pg/ml. IL-6 and TNF-?? concentrations were not significant predictors of elk calf survival through 21 days. Development of ungulate-based IL-6 and TNF-?? assays that provide greater sensitivity than cross-reacting human-based assays could be helpful in monitoring ungulate condition and health status comparisons among herds. Such information could provide indirect assessments of range quality or environmental influences among herds. ?? 2007 American Society of Mammalogists.

  9. Inositol lipid metabolism in vasopressin stimulated hepatocytes from rats infused with tumor necrosis factor

    SciTech Connect

    Spitzer, J.A.; Rodriguez de Turco, E.B. )

    1989-05-30

    We studied the effect of i.v. infusion of human recombinant tumor necrosis factor alpha (rHuTNF alpha, Cetus, 15 micrograms/100 g bw over 3 h) on vasopressin (VP)-stimulated {sup 32}P-inositol lipid turnover and the release of {sup 3}H-inositol phosphates in isolated rat hepatocytes. The early VP-induced decrease (within 30 s) in {sup 32}P-phosphatidylinositol 4-phosphate and {sup 32}P-phosphatidylinositol 4,5-bisphosphate labeling was significantly reduced (-40%) and at the same time the uptake of {sup 32}P into phosphatidic acid was 50% lower than in saline-infused (matched control) rats. Within 5 min of VP-stimulation, lower {sup 32}P phosphatidylinositol (-40%) and higher {sup 32}P-phosphatidic acid (+30%) labeling were observed in rHuTNF alpha-infused rats. Infusion of rHuTNF alpha also affected the VP-induced release of {sup 3}H-inositol phosphates. The accumulation of {sup 3}H-inositol-labeled water soluble products was decreased by 25% and 17% at 30 s and 10 min, respectively. These data show that rHuTNF alpha mimics early perturbations induced by Escherichia coli endotoxin infusion in VP-stimulated inositol lipid metabolism in rat hepatocytes.

  10. Processing of newly synthesized cachectin/tumor necrosis factor in endotoxin-stimulate macrophages

    SciTech Connect

    Jue, Dae-Myung; Sherry, B.; Luedke, C.; Manogue, K.R.; Cerami, A. )

    1990-09-11

    The biosynthesis and processing of cachetin/tumor necrosis factor (TNF) were examined in the murine macrophage-like cell line RAW 264.7. Lipipolysaccharide-stimulated cells secreted both glycosylated and nonglycosylated 17-kilodalton (kDa) mature cachectin/TNF into the culture medium. Secreted cachectin/TNF was derived from membrane-associated precursors that were precipitated by polyclonal antisera raised against either the mature protein or synthetic peptide fragments of the 79 amino acid cachectin/TNF prohormone sequence. About half of the precursors were N-glycosylated, apparently cotranslationally. The cachectin/TNF precursors were then proteolytically cleaved to release soluble mature cytokine into the medium, while the membrane-bound 14-kDa prosequence remained cell associated. During the period of LPS stimulation, the amount of macrophage cell surface cachectin/TNF remained at a low level, suggesting that both nonglycosylated and glycosylated precursors of cachectin/TNF are efficiently cleaved by these cells. These findings suggest the presence of a unique mechanism for the secretion of cachectin/TNF.

  11. Critical role of tumor necrosis factor receptor 1 in the pathogenesis of pulmonary emphysema in mice.

    PubMed

    Fujita, Masaki; Ouchi, Hiroshi; Ikegame, Satoshi; Harada, Eiji; Matsumoto, Takemasa; Uchino, Junji; Nakanishi, Yoichi; Watanabe, Kentaro

    2016-01-01

    COPD is a major cause of chronic morbidity and mortality throughout the world. Although tumor necrosis factor-α (TNF-α) has a critical role in the development of COPD, the role of different TNF receptors (TNFRs) in pulmonary emphysema has not been resolved. We aimed to clarify the role of TNFRs in the development of pulmonary emphysema. TNF-α transgenic mice, a murine model of COPD in which the mice spontaneously develop emphysema with a large increase in lung volume and pulmonary hypertension, were crossed with either TNFR1-deficient mice or TNFR2-deficient mice. After 6 months, the gross appearance of the lung, lung histology, and pulmonary and cardiac physiology were determined. In addition, the relationship between apoptosis and emphysema was investigated. Pulmonary emphysema-like changes disappeared with deletion of TNFR1. However, slight improvements were attained with deletion of TNFR2. Apoptotic cells in the interstitium of the lung were observed in TNF-α transgenic mice. The apoptotic signals through TNFR1 appear critical for the pathogenesis of pulmonary emphysema. In contrast, the inflammatory process has a less important role for the development of emphysema. PMID:27555760

  12. Varicella zoster meningitis complicating combined anti-tumor necrosis factor and corticosteroid therapy in Crohn's disease.

    PubMed

    Ma, Christopher; Walters, Brennan; Fedorak, Richard N

    2013-06-01

    Opportunistic viral infections are a well-recognized complication of anti-tumor necrosis factor (TNF) therapy for inflammatory bowel disease (IBD). Cases of severe or atypical varicella zoster virus infection, both primary and latent reactivation, have been described in association with immunosuppression of Crohn's disease (CD) patients. However, central nervous system varicella zoster virus infections have been rarely described, and there are no previous reports of varicella zoster virus meningitis associated with anti-TNF therapy among the CD population. Here, we present the case of a 40-year-old male with severe ileocecal-CD who developed a reactivation of dermatomal herpes zoster after treatment with prednisone and adalimumab. The reactivation presented as debilitating varicella zoster virus meningitis, which was not completely resolved despite aggressive antiviral therapy with prolonged intravenous acyclovir and subsequent oral valacyclovir. This is the first reported case of opportunistic central nervous system varicella zoster infection complicating anti-TNF therapy in the CD population. This paper also reviews the literature on varicella zoster virus infections of immunosuppressed IBD patients and the importance of vaccination prior to initiation of anti-TNF therapy.

  13. Imbalance of tumor necrosis factor receptors during progression in bovine leukemia virus infection

    SciTech Connect

    Konnai, Satoru . E-mail: konnai@vetmed.hokudai.ac.jp; Usui, Tatsufumi; Ikeda, Manabu; Kohara, Junko; Hirata, Toh-ichi; Okada, Kosuke; Ohashi, Kazuhiko; Onuma, Misao

    2005-09-01

    Previously, we found an up-regulation of tumor necrosis factor alpha (TNF)-{alpha} and an imbalance of TNF receptors in sheep experimentally infected with bovine leukemia virus (BLV). In order to investigate the different TNF-{alpha}-induced responses, in this study we examined the TNF-{alpha}-induced proliferative response and the expression levels of two distinct TNF receptors on peripheral blood mononuclear cells (PBMC) derived from BLV-uninfected cattle and BLV-infected cattle that were aleukemic (AL) or had persistent lymphocytosis (PL). The proliferative response of PBMC isolated from those cattle with PL in the presence of recombinant bovine TNF-{alpha} (rTNF-{alpha}) was significantly higher than those from AL cattle and uninfected cattle and the cells from PL cattle expressed significantly higher mRNA levels of TNF receptor type II (TNF-RII) than those from AL and BLV-uninfected cattle. No difference was found in TNF-RI mRNA levels. Most cells expressing TNF-RII in PL cattle were CD5{sup +} or sIgM{sup +} cells and these cells showed resistance to TNF-{alpha}-induced apoptosis. Additionally, there were significant positive correlations between the changes in provirus load and TNF-RII mRNA levels, and TNF-{alpha}-induced proliferation and TNF-RII mRNA levels. These data suggest that imbalance in the expression of TNF receptors could at least in part contribute to the progression of lymphocytosis in BLV infection.

  14. Tumor necrosis factor alpha promoter polymorphisms in Mexican patients with dengue fever.

    PubMed

    García-Trejo, Alma Rosa; Falcón-Lezama, Jorge A; Juárez-Palma, Lilia; Granados, Julio; Zúñiga-Ramos, Joaquín; Rangel, Hilda; Barquera, Rodrigo; Vargas-Alarcón, Gilberto; Ramos, Celso

    2011-01-01

    Increased levels of tumor necrosis factor alpha (TNF-α) in patients with dengue have been reported. Various polymorphisms have been identified in the promoter region of the TNF-α gene that may affect its transcription. The purpose of the present study was to evaluate the relationship between polymorphisms of TNF-α gene and the genetic susceptibility to dengue fever in a group of patients from Morelos State, Mexico. The TNF-α polymorphisms (positions -238 and -308) were determined by PCR-RFLP technique in 130 patients with dengue (85 with dengue fever and 45 with dengue hemorrhagic fever) and 169 healthy controls. The patients were selected from cases reported in Morelos State from 1997 to 2003. The whole group of dengue patients showed a decreased frequency of TNF-α -238 A allele when compared to healthy controls (p = 0.01, OR = 0.19, 95%CI = 0.02-0.78). When the analysis was made separately in dengue fever and dengue hemorrhagic fever patients, the decreased frequency of TNF-α -238 A allele only remained significant in patients with DHF when compared to healthy controls (p = 0.034). This work suggests a possible association of TNF-α -238 A allele with protection to develop symptomatic disease.

  15. Tumor necrosis factor haplotype diversity in Mestizo and native populations of Mexico.

    PubMed

    Castro-Martínez, X H; Leal-Cortés, C; Flores-Martínez, S E; García-Zapién, A G; Sánchez-Corona, J; Portilla-de Buen, E; Gómez-Espinel, I; Zamora-Ginez, I; Pérez-Fuentes, R; Islas-Andrade, S; Revilla-Monsalve, C; Guerrero-Romero, F; Rodríguez-Morán, M; Mendoza-Carrera, F

    2014-04-01

    The so-called tumor necrosis factor (TNF) block includes the TNFA, lymphotoxin alpha and beta (LTA and LTB) genes with single-nucleotide polymorphisms (SNP) and microsatellites with an allele frequency that exhibits interpopulation variability. To date, no reports have included both SNPs and microsatellites at the TNF block to study Mestizo or Amerindian populations from Mexico. In this study, samples of five Mexican Mestizo populations (Durango, Guadalajara, Monterrey, Puebla, and Tierra Blanca) and four native-Mexican populations (North Lacandonians, South Lacandonians, Tepehuanos, and Yaquis) were genotyped for two SNPs (LTA+252A>G and TNFA-308G>A) and four microsatellites (TNFa, d, e, and f), to analyze the genetic substructure of the Mexican population. Allele and haplotype frequencies, linkage disequilibrium (LD), and interpopulation genetic relationships were calculated. There was significant LD along almost all of the TNF block but the lowest D' values were observed for the TNFf-TNFd pair. Mestizos showed higher allele and haplotype diversity than did natives. The genetic differentiation level was reduced among Mestizos; however, a slightly, but significant genetic substructure was observed between northern and southern Mexican Mestizos. Among the Amerindian populations, the genetic differentiation level was significantly elevated, particularly in both North and South Lacandonians. Furthermore, among Southern Lacandonians, inhabitants of Lacanja town were the most differentiated from all the Mexicans analyzed. The data presented here will serve as a reference for further population and epidemiological studies including these TNF polymorphisms in the Mexican population.

  16. Endotoxin, interleukin-1, and tumor necrosis factor cause neutrophil-dependent microvascular leakage in postcapillary venules.

    PubMed Central

    Yi, E. S.; Ulich, T. R.

    1992-01-01

    Acute inflammation is characterized mainly by the egress of neutrophils from postcapillary venules and by increased vascular permeability leading to the formation of edema. The microvascular site of increased vascular permeability in local acute inflammatory lesions was investigated after the injection of endotoxin (LPS), interleukin-1 (IL-1), and tumor necrosis factor (TNF) into the dermis overlying the cremasteric and rectus abdominis muscles of rats. LPS caused leakage of colloidal carbon peaking at 3 to 4 hours at the level of the postcapillary venules and capillary leak was variably observed at later time points. IL-1 and TNF also caused postcapillary venular leakage. IL-1 was as potent as LPS and more so than TNF. The microvascular leak caused by LPS, IL-1, and TNF was accompanied by the tissue accumulation of neutrophils, and was neutrophil-dependent because LPS, IL-1, and TNF did not cause vascular labelling in neutropenic rats. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:1546745

  17. The therapeutic potential of tumor necrosis factor for autoimmune disease: a mechanistically based hypothesis.

    PubMed

    Kodama, S; Davis, M; Faustman, D L

    2005-08-01

    Excess levels of tumor necrosis factor-alpha (TNF-alpha) have been associated with certain autoimmune diseases. Under the rationale that elevated TNF-alpha levels are deleterious, several anti-TNF-alpha therapies are now available to block the action of TNF-alpha in patients with autoimmune diseases with a chronic inflammatory component to the destructive process. TNF-alpha antagonists have provided clinical benefit to many patients, but their use also is accompanied by new or aggravated forms of autoimmunity. Here we propose a mechanistically based hypothesis for the adverse events observed with TNF-alpha antagonists, and argue for the opposite therapeutic strategy: to boost or restore TNF-alpha activity as a treatment for some forms of autoimmunity. Activation defects in the transcription factor nuclear factor kappaB leave autoreactive T cells sensitive to TNF-alpha-induced apoptosis. Treatment with TNF-alpha, by destroying autoreactive T cells, appears to be a highly targeted strategy to interrupt the pathogenesis of type 1 diabetes, lupus and certain forms of autoimmunity.

  18. Interleukin 10 and Tumor Necrosis Factor-Alpha in Pregnancy: Aspects of Interest in Clinical Obstetrics

    PubMed Central

    Brogin Moreli, Jusciele; Cirino Ruocco, Ana Maria; Vernini, Joice Monaliza; Rudge, Marilza Vieira Cunha; Calderon, Iracema Mattos Paranhos

    2012-01-01

    The purpose of this study was to review the literature regarding the action of the cytokines interleukin 10 (IL-10) and tumor necrosis factor-alpha (TNF-α) in pregnancy and to emphasize the factors that are of interest to clinical obstetrics. The literature highlights several actions of IL-10 and TNF-α during pregnancy. The actions of these cytokines seem to be antagonistic and dependent on the balance between them, which is orchestrated by the specific immunosuppressive action of IL-10. TNF-α has a characteristic inflammatory action, and it is an additional diabetogenic factor in pregnancy. The loss of the control of the production of these cytokines, with increase of TNF-α, is related to the risk for developing obstetric complications, particularly recurrent fetal loss, gestational diabetes mellitus, hypertensive syndromes, and fetal growth restriction. However, study results are controversial and are not clearly defined. These issues are attributed to the heterogeneity of the studies, particularly regarding their sample sizes and sources, the evaluation methods, and the multiplicity of factors and conditions that influence cytokine production. These questions are fundamental and should be addressed in future investigations to obtain more consistent results that can be applied to obstetric practice. PMID:22462002

  19. Necrosis After Craniospinal Irradiation: Results From a Prospective Series of Children With Central Nervous System Embryonal Tumors

    SciTech Connect

    Murphy, Erin S.; Merchant, Thomas E.; Wu Shengjie; Xiong Xiaoping; Lukose, Renin; Wright, Karen D.; Qaddoumi, Ibrahim; Armstrong, Gregory T.; Broniscer, Alberto; Gajjar, Amar

    2012-08-01

    Purpose: Necrosis of the central nervous system (CNS) is a known complication of craniospinal irradiation (CSI) in children with medulloblastoma and similar tumors. We reviewed the incidence of necrosis in our prospective treatment series. Patients and Methods: Between 1996 and 2009, 236 children with medulloblastoma (n = 185) or other CNS embryonal tumors (n = 51) received postoperative CSI followed by dose-intense cyclophosphamide, vincristine, and cisplatin. Average risk cases (n = 148) received 23.4 Gy CSI, 36 Gy to the posterior fossa, and 55.8 Gy to the primary; after 2003, the treatment was 23.4 Gy CSI and 55.8 Gy to the primary. All high-risk cases (n = 88) received 36-39.6 Gy CSI and 55.8 Gy primary. The primary site clinical target volume margin was 2 cm (pre-2003) or 1 cm (post-2003). With competing risk of death by any cause, we determined the cumulative incidence of necrosis. Results: With a median follow-up of 52 months (range, 4-163 months), eight cases of necrosis were documented. One death was attributed. The median time to the imaging evidence was 4.8 months and to symptoms 6.0 months. The cumulative incidence at 5 years was 3.7% {+-} 1.3% (n = 236) for the entire cohort and 4.4% {+-} 1.5% (n = 196) for infratentorial tumor location. The mean relative volume of infratentorial brain receiving high-dose irradiation was significantly greater for patients with necrosis than for those without: {>=}50 Gy (92.12% {+-} 4.58% vs 72.89% {+-} 1.96%; P=.0337), {>=}52 Gy (88.95% {+-} 5.50% vs 69.16% {+-} 1.97%; P=.0275), and {>=}54 Gy (82.28% {+-} 7.06% vs 63.37% {+-} 1.96%; P=.0488), respectively. Conclusions: Necrosis in patients with CNS embryonal tumors is uncommon. When competing risks are considered, the incidence is 3.7% at 5 years. The volume of infratentorial brain receiving greater than 50, 52, and 54 Gy, respectively, is predictive for necrosis.

  20. A threshold hazard model for estimating serious infection risk following anti-tumor necrosis factor therapy in rheumatoid arthritis patients.

    PubMed

    Fu, Bo; Lunt, Mark; Galloway, James; Dixon, Will; Hyrich, Kimme; Symmons, Deborah

    2013-03-11

    Over recent years novel biologic agents have been developed for the treatment of rheumatoid arthritis. The most common type of biologic agent in use in the United Kingdom is the anti-tumor necrosis factor inhibitor class. To fully appreciate the potential risks of anti-tumor necrosis factor therapy in patients, knowledge about the baseline hazard (risk pattern) and the characteristics of patients associated with serious infection is important. We propose a nonproportional hazard model for estimating the infection risk, by including the drug exposure history information into the baseline hazard. We found that the infection risk reaches a peak within 1 month after drug exposure starts and then declines steadily for nearly 2 years before stabilizing out.

  1. KSHV-Mediated Angiogenesis in Tumor Progression

    PubMed Central

    Purushothaman, Pravinkumar; Uppal, Timsy; Sarkar, Roni; Verma, Subhash C.

    2016-01-01

    Human herpesvirus 8 (HHV-8), also known as Kaposi’s sarcoma-associated herpesvirus (KSHV), is a malignant human oncovirus belonging to the gamma herpesvirus family. HHV-8 is closely linked to the pathogenesis of Kaposi’s sarcoma (KS) and two other B-cell lymphoproliferative diseases: primary effusion lymphoma (PEL) and a plasmablastic variant of multicentric Castleman’s disease (MCD). KS is an invasive tumor of endothelial cells most commonly found in untreated HIV-AIDS or immuno-compromised individuals. KS tumors are highly vascularized and have abnormal, excessive neo-angiogenesis, inflammation, and proliferation of infected endothelial cells. KSHV directly induces angiogenesis in an autocrine and paracrine fashion through a complex interplay of various viral and cellular pro-angiogenic and inflammatory factors. KS is believed to originate due to a combination of KSHV’s efficient strategies for evading host immune systems and several pro-angiogenic and pro-inflammatory stimuli. In addition, KSHV infection of endothelial cells produces a wide array of viral oncoproteins with transforming capabilities that regulate multiple host-signaling pathways involved in the activation of angiogenesis. It is likely that the cellular-signaling pathways of angiogenesis and lymph-angiogenesis modulate the rate of tumorigenesis induction by KSHV. This review summarizes the current knowledge on regulating KSHV-mediated angiogenesis by integrating the findings reported thus far on the roles of host and viral genes in oncogenesis, recent developments in cell-culture/animal-model systems, and various anti-angiogenic therapies for treating KSHV-related lymphoproliferative disorders. PMID:27447661

  2. Lichenoid Reactions in Association with Tumor Necrosis Factor Alpha Inhibitors: A Review of the Literature and Addition of a Fourth Lichenoid Reaction.

    PubMed

    McCarty, Morgan; Basile, Amy; Bair, Brooke; Fivenson, David

    2015-06-01

    In this manuscript, a clinical case of a patient treated with adalimumab for Behcet's disease develops lichen planopilaris. A variety of mucocutaneous lichenoid eruptions have recently been described in association with tumor necrosis factor alpha inhibitors. The authors briefly discuss the clinical and pathological presentation of lichen planopilaris as well as a potential pathogenesis of cutaneous adverse effects seen as the result of tumor necrosis factor alpha inhibitor therapy. They review all case reports of lichen planopilaris occurring on tumor necrosis factor alpha inhibitors and suggest its classification as a fourth recognized pattern on this therapy.

  3. The development of novel inhibitors of tumor necrosis factor-alpha production based on substituted [5,5]-bicyclic pyrozolones

    SciTech Connect

    Laufersweiler, Matthew; Brugel, Todd; Clark, Michael; Golebiowski, Adam; Bookland, Roger; Laughlin, Steven; Sabat, Mark; Townes, Jennifer; VanRens, John; De, Biswanath; Hsieh, Lily; Heitmeyer, Sandra; Juergens, Karen; Brown, Kimberly; Mekel, Marlene; Walter, Richard; Janusz, Michael

    2010-11-16

    Novel substituted [5,5]-bicyclic pyrzazolones are presented as inhibitors of tumor necrosis factor-{alpha} (TNF-{alpha}) production. Many of these compounds show low nanomolar activity against lipopolysaccaride (LPS)-induced TNF-{alpha} production in THP-1 cells. This class of molecules was co-crystallized with mutated p38, and several analogs showed good oral bioavailability in the rat. Oral activity of these compounds in the rat iodoacetate model for osteoarthritis is discussed.

  4. A constitutive decay element promotes tumor necrosis factor alpha mRNA degradation via an AU-rich element-independent pathway.

    PubMed

    Stoecklin, Georg; Lu, Min; Rattenbacher, Bernd; Moroni, Christoph

    2003-05-01

    Tumor necrosis factor alpha (TNF-alpha) expression is regulated by transcriptional as well as posttranscriptional mechanisms, the latter including the control of mRNA decay through an AU-rich element (ARE) in the 3' untranslated region (UTR). Using two mutant cell lines deficient for ARE-mediated mRNA decay, we provide evidence for a second element, the constitutive decay element (CDE), which is also located in the 3' UTR of TNF-alpha. In stably transfected RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS), the CDE continues to target a reporter transcript for rapid decay, whereas ARE-mediated decay is blocked. Similarly, the activation of p38 kinase and phosphatidylinositol 3-kinase in NIH 3T3 cells inhibits ARE-mediated but not CDE-mediated mRNA decay. The CDE was mapped to an 80-nucleotide (nt) segment downstream of the ARE, and point mutation analysis identified within the CDE a conserved sequence of 15 nt that is required for decay activity. We propose that the CDE represses TNF-alpha expression by maintaining the mRNA short-lived, thereby preventing excessive induction of TNF-alpha after LPS stimulation. Thus, CDE-mediated mRNA decay is likely to be an important mechanism limiting LPS-induced pathologic processes.

  5. Effects of Polysaccharide Fucoidin on Cerebrospinal Fluid Interleukin-1 and Tumor Necrosis Factor Alpha in Pneumococcal Meningitis in the Rabbit

    PubMed Central

    Granert, Carl; Raud, Johan; Waage, Anders; Lindquist, Lars

    1999-01-01

    The inflammatory response in bacterial meningitis is mediated by cytokines, such as tumor necrosis factor alpha (TNF-α) and interleukin-1 (IL-1), which are produced in the subarachnoid space by different cells, e.g., leukocytes, astrocytes, and microglia. The recruitment of leukocytes into the cerebrospinal fluid (CSF) has been shown to contribute to the neurological damage in this disease, a process which could be enhanced by treatment with antibiotics. In this study, we have used a rabbit meningitis model for two sets of experiments with intracisternal (i.c.) injections of Streptococcus pneumoniae. First, pneumococcal cell wall (PCW) components were injected i.c., inducing an inflammatory response with pleocytosis and increased levels of CSF TNF-α) and IL-1 at 6 and 12 h after PCW injection. Treatment with fucoidin, known to inhibit leukocyte rolling, abolished pleocytosis and inhibited the release of TNF-α and IL-1. In the second experiment, live pneumococcal bacteria were injected i.c. and treatment with one dose of ampicillin (40 mg/kg of body weight intravenously) was given 16 h after induction of meningitis, causing a sevenfold increase in CSF leukocytes over a 4-h period. CSF IL-1 levels at 16 h were high but did not increase further at 20 h. Also, CSF TNF-α levels were high at 16 h and tended to increase at 20 h. Fucoidin treatment prevented the antibiotic-induced increase of CSF leukocytes but had no effect on the TNF-α and IL-1 levels. Taken together, fucoidin reduced CSF TNF-α and IL-1 levels in acute bacterial meningitis induced by PCW fragments but had no effect later in the course of the disease, when live bacteria were used and an inflammatory increase was caused by a dose of antibiotics. PMID:10225856

  6. Regulation of arterial-venous differences in tumor necrosis factor responsiveness of endothelial cells by anatomic context.

    PubMed

    Liu, Meng; Kluger, Martin S; D'Alessio, Alessio; García-Cardeña, Guillermo; Pober, Jordan S

    2008-04-01

    We analyzed tumor necrosis factor (TNF) responses of human umbilical artery and vein endothelial cells (HUAECs and HUVECs) in organ and cell culture. In organ culture, TNF induced expression of E-selectin, VCAM-1, and ICAM-1 on HUVECs but only ICAM-1 on HUAECs. Activation of nuclear factor-kappaB, c-jun, and ATF2 by TNF was comparable in HUAECs and HUVECs, whereas binding of transcription factors and p300 co-activator to the E-selectin enhancer was lower in HUAECs compared to HUVECs. In cell culture, HUAECs rapidly acquired inducible E-selectin and VCAM-1 whereas ICAM-1 inducibility decreased. Culture of HUVECs rapidly decreased TNF responses of all three genes. By 72 hours in cell culture, TNF-treated HUVECs and HUAECs showed comparable adhesion molecule induction and transcription factor binding to the E-selectin enhancer. Freshly isolated HUAECs expressed higher levels of Kruppel-like factor 2 (KLF2) than HUVECs, consistent with greater KLF2 induction by arterial levels of shear stress in vitro. KLF2 expression decreased rapidly in both cell types during culture. Transduction of HUVECs with KLF2 reduced TNF-mediated induction of E-selectin and VCAM-1 while increasing ICAM-1 induction and reduced transcription factor/co-activator binding to the E-selectin enhancer. In conclusion, the differential responses of HUAECs and HUVECs to TNF in organ culture correlate with transcription factor/co-activator binding to DNA and converge during cell culture. Flow-induced expression of KLF2 contributes to the in situ responses of HUAECs but not of HUVECs. PMID:18292233

  7. Tumor Necrosis Factor-alpha Induced Protein 3 Interacting Protein 1 Gene Polymorphisms and Pustular Psoriasis in Chinese Han Population

    PubMed Central

    Han, Jian-Wen; Wang, Yong; Alateng, Chulu; Li, Hong-Bin; Bai, Yun-Hua; Lyu, Xin-Xiang; Wu, Rina

    2016-01-01

    Background: Psoriasis is a common immune-mediated inflammatory dermatosis. Generalized pustular psoriasis (GPP) is the severe and rare type of psoriasis. The association between tumor necrosis factor-alpha induced protein 3 interacting protein 1 (TNIP1) gene and psoriasis was confirmed in people with multiple ethnicities. This study was to investigate the association between TNIP1 gene polymorphisms and pustular psoriasis in Chinese Han population. Methods: Seventy-three patients with GPP, 67 patients with palmoplantar pustulosis (PPP), and 476 healthy controls were collected from Chinese Han population. Six single nucleotide polymorphisms (SNPs) of the TNIP1 gene, namely rs3805435, rs3792798, rs3792797, rs869976, rs17728338, and rs999011 were genotyped by using polymerase chain reaction-ligase detection reaction. Statistical analyses were performed using the PLINK 1.07 package. Allele frequencies and genotyping frequencies for six SNPs were compared by using Chi-square test, odd ratio (OR) (including 95% confidence interval) were calculated. The haplotype analysis was conducted by Haploview software. Results: The frequencies of alleles of five SNPs were significantly different between the GPP group and the control group (P ≤ 7.22 × 10−3), especially in the GPP patients without psoriasis vulgaris (PsV). In the haplotype analysis, the most significantly different haplotype was H4: ACGAAC, with 13.1% frequency in the GPP group but only 3.4% in the control group (OR = 4.16, P = 4.459 × 10−7). However, no significant difference in the allele frequencies was found between the PPP group and control group for each of the six SNPs (P > 0.05). Conclusions: Polymorphisms in TNIP1 are associated with GPP in Chinese Han population. However, no association with PPP was found. These findings suggest that TNIP1 might be a susceptibility gene for GPP. PMID:27364786

  8. (+)-Nootkatone inhibits tumor necrosis factor α/interferon γ-induced production of chemokines in HaCaT cells.

    PubMed

    Choi, Hyeon-Jae; Lee, Jin-Hwee; Jung, Yi-Sook

    2014-05-01

    Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). (+)-Nootkatone is the major component of Cyperus rotundus. (+)-Nootkatone has antiallergic, anti-inflammatory, and antiplatelet activities. The purpose of this study was to investigate the effect of (+)-nootkatone on tumor necrosis factor α (TNF-α)/interferon γ (IFN-γ)-induced expression of Th2 chemokines in HaCaT cells. We found that (+)-nootkatone inhibited the TNF-α/IFN-γ-induced expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells. It also significantly inhibited TNF-α/IFN-γ-induced activation of nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), and protein kinase Cζ (PKCζ). Furthermore, we showed that PKCζ and p38 MAPK contributed to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression by blocking IκBα degradation in HaCaT cells. Taken together, these results suggest that (+)-nootkatone may suppress TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression in HaCaT cells by inhibiting of PKCζ and p38 MAPK signaling pathways that lead to activation of NF-κB. We propose that (+)-nootkatone may be a useful therapeutic candidate for inflammatory skin diseases such as AD. PMID:24704449

  9. Association between tumor necrosis factor-alpha G-308A polymorphism and dental peri-implant disease risk

    PubMed Central

    Mo, Yuan-Yuan; Zeng, Xian-Tao; Weng, Hong; Cen, Ying; Zhao, Qian; Wen, Xiujie

    2016-01-01

    Abstract Background: Tumor necrosis factor-alpha (TNF-α) is a potent immune-inflammatory mediator involved in the regulation of bone resorption. The single nucleotide polymorphism G-308A in the TNF-α gene increases the level of this cytokine. This phenomenon is also related to several diseases. Although the association between TNF-α (G-308A) polymorphism and dental peri-implant disease has been investigated, results have remained controversial. Hence, we performed this meta-analysis to provide a comprehensive and systematic conclusion on this topic. Methods: We performed a systematic literature search in PubMed, Embase, ISI Web of Science, Cochrane Library, and Chinese National Knowledge Infrastructure until July 2015. A fixed-effect model was established to calculate pooled odds ratios (ORs) and 95% confidence intervals (CIs). The calculated values were then used to assess the strength of the association between the TNF-α (G-308A) polymorphism and the dental peri-implant disease risk. The heterogeneity between included studies was evaluated with Cochran Q and I2 statistics. Interstudy publication bias was investigated with a funnel plot. Results: Six eligible studies were included in this meta-analysis. The pooled ORs did not reveal a significant relationship between the TNF-α (G-308A) polymorphism and the disease susceptibility. Subgroup analyses in terms of ethnicity and disease type yielded similar results. Conclusion: Our meta-analysis revealed that TNF-α (G-308A) polymorphism was not significantly associated with the risk of dental peri-implant disease. However, further studies with large sample sizes should be performed to verify these results. PMID:27583850

  10. Tumor Necrosis Factor Improves Vascularization in Osteogenic Grafts Engineered with Human Adipose-Derived Stem/Stromal Cells

    PubMed Central

    Hutton, Daphne L.; Kondragunta, Renu; Moore, Erika M.; Hung, Ben P.; Jia, Xiaofeng; Grayson, Warren L.

    2014-01-01

    The innate immune response following bone injury plays an important role in promoting cellular recruitment, revascularization, and other repair mechanisms. Tumor necrosis factor-α (TNF) is a prominent pro-inflammatory cytokine in this cascade, and has been previously shown to improve bone formation and angiogenesis in a dose- and timing-dependent manner. This ability to positively impact both osteogenesis and vascular growth may benefit bone tissue engineering, as vasculature is essential to maintaining cell viability in large grafts after implantation. Here, we investigated the effects of exogenous TNF on the induction of adipose-derived stem/stromal cells (ASCs) to engineer pre-vascularized osteogenic tissue in vitro with respect to dose, timing, and co-stimulation with other inflammatory mediators. We found that acute (2-day), low-dose exposure to TNF promoted vascularization, whereas higher doses and continuous exposure inhibited vascular growth. Co-stimulation with platelet-derived growth factor (PDGF), another key factor released following bone injury, increased vascular network formation synergistically with TNF. ASC-seeded grafts were then cultured within polycaprolactone-fibrin composite scaffolds and implanted in nude rats for 2 weeks, resulting in further tissue maturation and increased angiogenic ingrowth in TNF-treated grafts. VEGF-A expression levels were significantly higher in TNF-treated grafts immediately prior to implantation, indicating a long-term pro-angiogenic effect. These findings demonstrate that TNF has the potential to promote vasculogenesis in engineered osteogenic grafts both in vitro and in vivo. Thus, modulation and/or recapitulation of the immune response following bone injury may be a beneficial strategy for bone tissue engineering. PMID:25248109

  11. Tumor Necrosis Factor Receptor Associated Factor 2 Signaling Provokes Adverse Cardiac Remodeling in the Adult Mammalian Heart

    PubMed Central

    Divakaran, Vijay G.; Evans, Sarah; Topkara, Veli K.; Diwan, Abhinav; Burchfield, Jana; Gao, Feng; Dong, Jianwen; Tzeng, Huei-Ping; Sivasubramanian, Natarajan; Barger, Philip M.; Mann, Douglas L.

    2013-01-01

    Background Tumor necrosis factor (TNF) superfamily ligands that provoke a dilated cardiac phenotype signal through a common scaffolding protein termed TNF receptor associated factor 2 (TRAF2); however, virtually nothing is known with regard to TRAF2 signaling in the adult mammalian heart. Methods and Results We generated multiple founder lines of mice with cardiac restricted overexpression of TRAF2 and characterized the phenotype of mice with higher expression levels of TRAF2 (MHC-TRAF2HC). MHC-TRAF2HC transgenic mice developed a time-dependent increase in cardiac hypertrophy, LV dilation and adverse LV remodeling, and a significant decrease in LV +dP/dt and −dP/dt when compared to littermate (LM) controls (p < 0.05 compared to LM). During the early phases of LV remodeling there was a significant increase in total matrix metalloproteinase (MMP) activity that corresponded with a decrease in total myocardial fibrillar collagen content. As the MHC-TRAF2HC mice aged, there was a significant decrease in total MMP activity accompanied by an increase in total fibrillar collagen content and an increase in myocardial tissue inhibitor of metalloproteinase-1 levels. There was a significant increase in NF-κB activation at 4 – 12 weeks and JNK activation at 4 weeks in the MHCs TRAF2HC mice. Transciptional profiling revealed that > 95% of the hypertrophic/dilated cardiomyopathy-related genes that were significantly upregulated genes in the MHC-TRAF2HC hearts contained κB elements in their promoters. Conclusions These results show for the first time that targeted overexpression of TRAF2 is sufficient to mediate adverse cardiac remodeling in the heart. PMID:23493088

  12. Quantitative Imaging of Scattering Changes Associated With Epithelial Proliferation, Necrosis and Fibrosis in Tumors Using Microsampling Reflectance Spectroscopy

    PubMed Central

    Krishnaswamy, Venkataramanan; Hoopes, P. Jack; Samkoe, Kimberley S.; O'Hara, Julia A.; Hasan, Tayyaba; Pogue, Brian W.

    2010-01-01

    Highly localized reflectance measurements can be used to directly quantify scatter changes in tissues. This study presents a microsampling approach that is used to raster scan tumors to extract parameters believed to be related to the tissue ultra-structure. A confocal reflectance imager was developed to examine scatter changes across pathologically distinct regions within tumor tissues. Tissue sections from two murine tumors, AsPC-1 pancreas tumor and the Mat-LyLu Dunning prostate tumor, were imaged. After imaging, histopathology-guided region-of-interest studies of the images allowed analysis of the variations in scattering resulting from differences in tissue ultra-structure. On average, the median scatter power of tumor cells with high proliferation index was about 26% less compared to tumor cells with low proliferation index (LPI). Necrosis exhibited the lowest scatter power signature across all the tissue types considered, with about 55% lower median scatter power than LPI tumor cells. Additionally, the level and maturity of the tumor's fibroplastic response was found to influence the scatter signal. This approach to scatter visualization of tissue ultra-structure in situ could provide a unique tool for guiding surgical resection, but this kind of interpretation into what the signal means relative to the pathology is required before proceeding to clinical studies. PMID:19256692

  13. Texture descriptors to distinguish radiation necrosis from recurrent brain tumors on multi-parametric MRI

    NASA Astrophysics Data System (ADS)

    Tiwari, Pallavi; Prasanna, Prateek; Rogers, Lisa; Wolansky, Leo; Badve, Chaitra; Sloan, Andrew; Cohen, Mark; Madabhushi, Anant

    2014-03-01

    Di erentiating radiation necrosis (a radiation induced treatment e ect) from recurrent brain tumors (rBT) is currently one of the most clinically challenging problems in care and management of brain tumor (BT) patients. Both radiation necrosis (RN), and rBT exhibit similar morphological appearance on standard MRI making non-invasive diagnosis extremely challenging for clinicians, with surgical intervention being the only course for obtaining de nitive ground truth". Recent studies have reported that the underlying biological pathways de n- ing RN and rBT are fundamentally di erent. This strongly suggests that there might be phenotypic di erences and hence cues on multi-parametric MRI, that can distinguish between the two pathologies. One challenge is that these di erences, if they exist, might be too subtle to distinguish by the human observer. In this work, we explore the utility of computer extracted texture descriptors on multi-parametric MRI (MP-MRI) to provide alternate representations of MRI that may be capable of accentuating subtle micro-architectural di erences between RN and rBT for primary and metastatic (MET) BT patients. We further explore the utility of texture descriptors in identifying the MRI protocol (from amongst T1-w, T2-w and FLAIR) that best distinguishes RN and rBT across two independent cohorts of primary and MET patients. A set of 119 texture descriptors (co-occurrence matrix homogeneity, neighboring gray-level dependence matrix, multi-scale Gaussian derivatives, Law features, and histogram of gradient orientations (HoG)) for modeling di erent macro and micro-scale morphologic changes within the treated lesion area for each MRI protocol were extracted. Principal component analysis based variable importance projection (PCA-VIP), a feature selection method previously developed in our group, was employed to identify the importance of every texture descriptor in distinguishing RN and rBT on MP-MRI. PCA-VIP employs regression analysis to provide

  14. Effect of Tumor Necrosis Factor Inhibitor Therapy on Osteoclasts Precursors in Ankylosing Spondylitis

    PubMed Central

    Caetano-Lopes, Joana; Vieira-Sousa, Elsa; Campanilho-Marques, Raquel; Ponte, Cristina; Canhão, Helena; Ainola, Mari; Fonseca, João E.

    2015-01-01

    Introduction Ankylosing Spondylitis (AS) is characterized by excessive local bone formation and concomitant systemic bone loss. Tumor necrosis factor (TNF) plays a central role in the inflammation of axial skeleton and enthesis of AS patients. Despite reduction of inflammation and systemic bone loss, AS patients treated with TNF inhibitors (TNFi) have ongoing local bone formation. The aim of this study was to assess the effect of TNFi in the differentiation and activity of osteoclasts (OC) in AS patients. Methods 13 AS patients treated with TNFi were analyzed at baseline and after a minimum follow-up period of 6 months. 25 healthy donors were recruited as controls. Blood samples were collected to assess receptor activator of nuclear factor kappa-B ligand (RANKL) surface expression on circulating leukocytes and frequency and phenotype of monocyte subpopulations. Quantification of serum levels of bone turnover markers and cytokines, in vitro OC differentiation assay and qRT-PCR for OC specific genes were performed. Results RANKL+ circulating lymphocytes (B and T cells) and IL-17A, IL-23 and TGF-β levels were decreased after TNFi treatment. We found no differences in the frequency of the different monocyte subpopulations, however, we found decreased expression of CCR2 and increased expression of CD62L after TNFi treatment. OC number was reduced in patients at baseline when compared to controls. OC specific gene expression was reduced in circulating OC precursors after TNFi treatment. However, when cultured in OC differentiating conditions, OC precursors from AS TNFi-treated patients showed increased activity as compared to baseline. Conclusion In AS patients, TNFi treatment reduces systemic pro osteoclastogenic stimuli. However, OC precursors from AS patients exposed to TNFi therapy have increased in vitro activity in response to osteoclastogenic stimuli. PMID:26674064

  15. Tumor Necrosis Factor, but Not Neutrophils, Alters the Metabolic Profile in Acute Experimental Arthritis.

    PubMed

    Oliveira, Marina C; Tavares, Luciana P; Vago, Juliana P; Batista, Nathália V; Queiroz-Junior, Celso M; Vieira, Angelica T; Menezes, Gustavo B; Sousa, Lirlândia P; van de Loo, Fons A J; Teixeira, Mauro M; Amaral, Flávio A; Ferreira, Adaliene V M

    2016-01-01

    Metabolic alterations are associated with arthritis apart from obesity. However, it is still unclear which is the underlying process behind these metabolic changes. Here, we investigate the role of tumor necrosis factor (TNF) in this process in an acute model of antigen-induced arthritis (AIA). Immunized male BALB/c mice received an intra-articular injection of PBS (control) or methylated bovine serum albumin (mBSA) into their knees, and were also pre-treated with different drugs: Etanercept, an anti-TNF drug, DF2156A, a CXCR1/2 receptor antagonist, or a monoclonal antibody RB6-8C5 to deplete neutrophils. Local challenge with mBSA evoked an acute neutrophil influx into the knee joint, and enhanced the joint nociception, along with a transient systemic metabolic alteration (higher levels of glucose and lipids, and altered adipocytokines). Pre-treatment with the conventional biological Etanercept, an inhibitor of TNF action, ameliorated the nociception and the acute joint inflammation dominated by neutrophils, and markedly improved many of the altered systemic metabolites (glucose and lipids), adipocytokines and PTX3. However, the lessening of metabolic changes was not due to diminished accumulation of neutrophils in the joint by Etanercept. Reduction of neutrophil recruitment by pre-treating AIA mice with DF2156A, or even the depletion of these cells by using RB6-8C5 reduced all of the inflammatory parameters and hypernociception developed after AIA challenge, but could not prevent the metabolic changes. Therefore, the induction of joint inflammation provoked acute metabolic alterations which were involved with TNF. We suggest that the role of TNF in arthritis-associated metabolic changes is not due to local neutrophils, which are the major cells present in this model, but rather due to cytokines. PMID:26742100

  16. Interleukin-1 and tumor necrosis factor alpha inhibit repair of the porcine meniscus in vitro

    PubMed Central

    Hennerbichler, Alfred; Moutos, Franklin T.; Hennerbichler, Diana; Weinberg, J. Brice; Guilak, Farshid

    2011-01-01

    OBJECTIVE Injury or removal of the knee meniscus leads to progressive joint degeneration, and current surgical therapies for meniscal tears seek to maximally preserve meniscal structure and function. However, the factors that influence intrinsic repair of the meniscus are not well understood. The goal of this study was to investigate the capacity of meniscus tissue to repair a simulated defect in vitro and to examine the effect of pro-inflammatory cytokines on this process. METHODS Cylindrical explants were harvested from the outer one-third of medial porcine menisci. To simulate a full-thickness defect, a central core was removed and reinserted immediately into the defect. Explants were cultured for 2, 4, or 6 weeks in serum-containing media in the presence or absence of interleukin-1 (IL-1) or tumor necrosis factor alpha (TNF-alpha), and meniscal repair was investigated using mechanical testing and fluorescence confocal microscopy. RESULTS Meniscal lesions in untreated samples showed a significant capacity for intrinsic repair in vitro, with increasing cell accumulation and repair strength over time in culture. In the presence of IL-1 or TNF-alpha, no repair was observed despite the presence of abundant viable cells. CONCLUSIONS This study demonstrates that the meniscus exhibits an intrinsic repair response in vitro. However, the presence of pro-inflammatory cytokines completely inhibited repair. These findings suggest that increased levels of pro-inflammatory cytokines post-injury or under arthritic conditions may inhibit meniscal repair. Therefore, inhibition of these cytokines may provide a means of accelerating repair of damaged or injured menisci in vivo. PMID:17448702

  17. Streptococcal Histone Induces Murine Macrophages To Produce Interleukin-1 and Tumor Necrosis Factor Alpha

    PubMed Central

    Zhang, Liping; Ignatowski, Tracey A.; Spengler, Robert N.; Noble, Bernice; Stinson, Murray W.

    1999-01-01

    The histone-like protein (HlpA) is highly conserved among streptococci. After lysis of streptococci in infected tissues, HlpA can enter the bloodstream and bind to proteoglycans in the glomerular capillaries of kidneys, where it can react with antibodies or stimulate host cell receptors. Deposits of streptococcal antigens in tissues have been associated with localized acute inflammation. In this study, we measured the ability of purified HlpA (5 to 100 μg/ml), from Streptococcus mitis, to induce the production of proinflammatory cytokines by cultured, murine peritoneal macrophages. The release of tumor necrosis factor alpha (TNF-α) and interleukin-1 (IL-1) was time and concentration dependent and was not diminished by the presence of polymyxin B. Exposure of macrophages to a mixture of HlpA and lipoteichoic acid resulted in a synergistic response in the production of both TNF-α and IL-1. Stimulation with a mixture of HlpA and heparin resulted in reduced cytokine production (50% less IL-1 and 76% less TNF-α) compared to that by cells incubated with HlpA alone. The inclusion of antibodies specific to HlpA in macrophage cultures during stimulation with HlpA did not affect the quantity of TNF-α or IL-1 produced. These observations suggest that streptococcal histone may contribute to tissue injury at infection sites by promoting monocytes/macrophages to synthesize and release cytokines that initiate and exacerbate inflammation. Streptococcus pyogenes, which can infect tissues in enormous numbers, may release sufficient amounts of HlpA to reach the kidneys and cause acute poststreptococcal glomerulonephritis. PMID:10569765

  18. Effect of particle size on hydroxyapatite crystal-induced tumor necrosis factor alpha secretion by macrophages.

    PubMed

    Nadra, Imad; Boccaccini, Aldo R; Philippidis, Pandelis; Whelan, Linda C; McCarthy, Geraldine M; Haskard, Dorian O; Landis, R Clive

    2008-01-01

    Macrophages may promote a vicious cycle of inflammation and calcification in the vessel wall by ingesting neointimal calcific deposits (predominantly hydroxyapatite) and secreting tumor necrosis factor (TNF)alpha, itself a vascular calcifying agent. Here we have investigated whether particle size affects the proinflammatory potential of hydroxyapatite crystals in vitro and whether the nuclear factor (NF)-kappaB pathway plays a role in the macrophage TNFalpha response. The particle size and nano-topography of nine different crystal preparations was analyzed by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and gas sorbtion analysis. Macrophage TNFalpha secretion was inversely related to hydroxyapatite particle size (P=0.011, Spearman rank correlation test) and surface pore size (P=0.014). A necessary role for the NF-kappaB pathway was demonstrated by time-dependent I kappaB alpha degradation and sensitivity to inhibitors of I kappaB alpha degradation. To test whether smaller particles were intrinsically more bioactive, their mitogenic activity on fibroblast proliferation was examined. This showed close correlation between TNFalpha secretion and crystal-induced fibroblast proliferation (P=0.007). In conclusion, the ability of hydroxyapatite crystals to stimulate macrophage TNFalpha secretion depends on NF-kappaB activation and is inversely related to particle and pore size, with crystals of 1-2 microm diameter and pore size of 10-50 A the most bioactive. Microscopic calcific deposits in early stages of atherosclerosis may therefore pose a greater inflammatory risk to the plaque than macroscopically or radiologically visible deposits in more advanced lesions.

  19. Role of tumor necrosis factor-alpha in zebrafish retinal neurogenesis and myelination

    PubMed Central

    Lei, Xu-Dan; Sun, Yan; Cai, Shi-Jiao; Fang, Yang-Wu; Cui, Jian-Lin; Li, Yu-Hao

    2016-01-01

    AIM To investigate the role of tumor necrosis factor-alpha (TNF-α) in zebrafish retinal development and myelination. METHODS Morpholino oligonucleotides (MO), which are complementary to the translation start site of the wild-type embryonic zebrafish TNF-α mRNA sequence, were synthesized and injected into one- to four-cell embryos. The translation blocking specificity was verified by Western blotting using an anti-TNF-α antibody, whole-mount in situ hybridization using a hepatocyte-specific mRNA probe ceruloplasmin (cp), and co-injection of TNF-α MO and TNF-α mRNA. An atonal homolog 7 (atoh7) mRNA probe was used to detect neurogenesis onset. The retinal neurodifferentiation was analyzed by immunohistochemistry using antibodies Zn12, Zpr1, and Zpr3 to label ganglion cells, cones, and rods, respectively. Myelin basic protein (mbp) was used as a marker to track and observe the myelination using whole-mount in situ hybridization. RESULTS Targeted knockdown of TNF-α resulted in specific suppression of TNF-α expression and a severely underdeveloped liver. The co-injection of TNF-α MO and mRNA rescued the liver development. Retinal neurogenesis in TNF-α morphants was initiated on time. The retina was fully laminated, while ganglion cells, cones, and rods were well differentiated at 72 hours post-fertilization (hpf). mbp was expressed in Schwann cells in the lateral line nerves and cranial nerves from 3 days post-fertilization (dpf) as well as in oligodendrocytes linearly along the hindbrain bundles and the spinal cord from 4 dpf, which closely resembled its endogenous profile. CONCLUSION TNF-α is not an essential regulator for retinal neurogenesis and optic myelination. PMID:27366683

  20. Association of Tumor Necrosis Factor Alpha Gene Polymorphisms with Inflammatory Bowel Disease in Iran

    PubMed Central

    NADERI, Nosratollah; FARNOOD, Alma; DADAEI, Tahereh; HABIBI, Manijeh; BALAII, Hedie; FIROUZI, Farzad; MAHBAN, Aydin; SOLTANI, Masoumeh; ZALI, Mohammadreza

    2014-01-01

    Abstract Background Inflammatory bowel disease (IBD) is a chronic disease of unknown etiology, in which genetic factors, seem to play an important role in the disease predisposition and course. Assessment of tumor necrosis factor (TNF-α) gene polymorphisms in many populations showed a possible association with IBD. Considering the genetic variety in different ethnic groups, the aim of the present study was to investigate the association of five important single nucleo-tide polymorphisms (SNPs) in the promoter region of (TNF-α) gene with IBD in Iran. Methods In this case-control study, 156 Ulcerative colitis (UC) patients, 50 Crohn’s disease (CD) patients and 200 sex and age matched healthy controls of Iranian origin were enrolled. The study was performed during a two year period (2008–2010) at Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran. DNA samples were evaluated for (TNF-α) gene polymorphisms (including -1031, -863, -857, -308 and -238) by PCR and RFLP methods. Results The frequency of the mutant allele of -1031 polymorphism was significantly higher in Iranian patients with Crohn’s disease compared to healthy controls (P=0.01, OR=1.92; 95% CI: 1.14-3.23). None of the other evaluated polymorphisms demonstrated a significant higher frequency of mutant alleles in Iranian IBD patients compared to controls. Conclusion Among the five assessed (SNPs), only -1031 polymorphism of (TNF-α) gene may play a role in disease susceptibility for Crohn’s disease in Iran. This pattern of distribution of (TNF-α) gene polymorphisms could be specific in this population. PMID:26060764

  1. Comparison of drug survival rates for tumor necrosis factor antagonists in rheumatoid arthritis

    PubMed Central

    Martínez-Santana, Virginia; González-Sarmiento, E; Calleja-Hernández, MA; Sánchez-Sánchez, T

    2013-01-01

    Background Persistence of anti-tumor necrosis factor (TNF) therapy in rheumatoid arthritis (RA) is an overall marker of treatment success. Objective To assess the survival of anti-TNF treatment and to define the potential predictors of drug discontinuation in RA, in order to verify the adequacy of current practices. Design An observational, descriptive, longitudinal, retrospective study. Setting The Hospital Clínico Universitario de Valladolid, Valladolid, Spain. Patients RA patients treated with anti-TNF therapy between January 2011 and January 2012. Measurements Demographic information and therapy assessments were gathered from medical and pharmaceutical records. Data is expressed as means (standard deviations) for quantitative variables and frequency distribution for qualitative variables. Kaplan–Meier survival analysis was used to assess persistence, and Cox multivariate regression models were used to assess potential predictors of treatment discontinuation. Results In total, 126 treatment series with infliximab (n = 53), etanercept (n = 51) or adalimumab (n = 22) were administered to 91 patients. Infliximab has mostly been used as a first-line treatment, but it was the drug with the shortest time until a change of treatment. Significant predictors of drug survival were: age; the anti-TNF agent; and the previous response to an anti-TNF drug. Limitation The small sample size. Conclusion The overall efficacy of anti-TNF drugs diminishes with time, with infliximab having the shortest time until a change of treatment. The management of biologic therapy in patients with RA should be reconsidered in order to achieve disease control with a reduction in costs. PMID:24023512

  2. Tumor necrosis factor beta and ultraviolet radiation are potent regulators of human keratinocyte ICAM-1 expression

    SciTech Connect

    Krutmann, J.; Koeck, A.S.; Schauer, E.; Parlow, F.; Moeller, A.K.; Kapp, A.; Foerster, E.S.; Schoepf, E.L.; Luger, T.A. )

    1990-08-01

    Intercellular adhesion molecule-1 (ICAM-1) functions as a ligand of leukocyte function-associated antigen-1 (LFA-1), as well as a receptor for human picorna virus, and its regulation thus affects various immunologic and inflammatory reactions. The weak, constitutive ICAM-1 expression on human keratinocytes (KC) can be up-regulated by cytokines such as interferon-gamma (IFN gamma) and tumor necrosis factor alpha (TNF alpha). In order to further examine the regulation of KC ICAM-1 expression, normal human KC or epidermoid carcinoma cells (KB) were incubated with different cytokines and/or exposed to ultraviolet (UV) radiation. Subsequently, ICAM-1 expression was monitored cytofluorometrically using a monoclonal anti-ICAM-1 antibody. Stimulation of cells with recombinant human (rh) interleukin (IL) 1 alpha, rhIL-4, rhIL-5, rhIL-6, rh granulocyte/macrophage colony-stimulating factor (GM-CSF), rh interferon alpha (rhIFN alpha), and rh transforming growth factor beta (TGF beta) did not increase ICAM-1 surface expression. In contrast, rhTNF beta significantly up-regulated ICAM-1 expression in a time- and dose-dependent manner. Moreover, the combination of rhTNF beta with rhIFN gamma increased the percentage of ICAM-1-positive KC synergistically. This stimulatory effect of rhTNF beta was further confirmed by the demonstration that rhTNF beta was capable of markedly enhancing ICAM-1 mRNA expression in KC. Finally, exposure of KC in vitro to sublethal doses of UV radiation (0-100 J/m2) prior to cytokine (rhIFN tau, rhTNF alpha, rhTNF beta) stimulation inhibited ICAM-1 up-regulation in a dose-dependent fashion. These studies identify TNF beta and UV light as potent regulators of KC ICAM-1 expression, which may influence both attachment and detachment of leukocytes and possibly viruses to KC.

  3. Somatostatin and macrophage function: modulation of hydrogen peroxide, nitric oxide and tumor necrosis factor release.

    PubMed

    Chao, T C; Cheng, H P; Walter, R J

    1995-07-21

    Recent studies have shown that somatostatin modulates lymphocyte function, but the effects of somatostatin on macrophage function are not clearly defined. In the present study, peritoneal macrophages (Mluminal diameter) obtained from male rats were treated in vitro with somatostatin or octreotide and their effects on the release of hydrogen peroxide (H2O2), nitrite, and tumor necrosis factor (TNF) determined. Macrophages treated with somatostatin (10(-9) M to 10(-7) M) or octreotide (10(-8) M and 10(-7) M) released significantly greater amounts of PMA-stimulated H2O2 than did the untreated controls. In addition, 10(-9) M of somatostatin significantly enhanced PMA-stimulated H2O2 release by LPS-treated Mluminal diameter. Octreotide had no effect on H2O2 release by LPS-treated Mluminal diameter. At concentrations of 10(-14) M, 10(-13) M, or greater than 10(-8) M, somatostatin or octreotide suppressed nitrite release by Mluminal diameter. Somatostatin or octreotide did not affect nitrite release by LPS-treated Mluminal diameter. On the other hand, Mluminal diameter treated with 10(-11) M of somatostatin or octreotide released greater amounts of TNF than did the untreated controls. In contrast, TNF release by Mluminal diameter treated with 10(-9) M to 10(-5) M of somatostatin or 10(-7) M to 10(-5) M of octreotide was less than that of the controls. Anti-TNF antibody (1:1000) caused a reduction in the release of H2O2 and nitrite. These findings demonstrate that somatostatin and octreotide modulate the release of H2O2, nitric oxide, and TNF by Mluminal diameter depending on the concentration of hormones used.

  4. Role of interleukin 1 and tumor necrosis factor on energy metabolism in rabbits

    SciTech Connect

    Tredget, E.E.; Yu, Y.M.; Zhong, S.; Burini, R.; Okusawa, S.; Gelfand, J.A.; Dinarello, C.A.; Young, V.R.; Burke, J.F.

    1988-12-01

    A study of the combined effects of intravenous infusion of the recombinant cytokines beta-interleukin 1 (IL-1) and alpha-tumor necrosis factor (TNF) on energy substrate metabolism in awake, conditioned, adult rabbits was performed. After a 2-h basal or control period, 48-h fasted rabbits were administered TNF and IL-1 as a bolus (5 micrograms/kg) followed by a continuous intravenous infusion (25 ng.kg-1.min-1) for 3 h. Significant increases in plasma lactate (P less than 0.01), glucose (P less than 0.01), and triglycerides (P less than 0.05) occurred during the combined infusion of IL-1 and TNF, whereas neither cytokine alone had no effect. There was a 33% increase in the rate of glucose appearance (P less than 0.05), but glucose clearance was not altered compared with the control period. Glucose oxidation increased during the combined cytokine infusion period and glucose recycling increased by 600% (P less than 0.002). Lactic acidosis and decreased oxygen consumption, as a result of the cytokine infusions, indicated development of anaerobic glycolytic metabolism. A reduction in the activity state of hepatic mitochondrial pyruvate dehydrogenase (65 vs. 82% in control animals, P less than 0.05) was consistent with the observed increase in anaerobic glycolysis. Thus the combined infusion of IL-1 and TNF in rabbits produces metabolic manifestations seen in severe injury and sepsis in human patients and, as such, may account for the profound alterations of energy metabolism seen in these conditions.

  5. Genetic variability in the tumor necrosis factor-lymphotoxin region influences susceptibility to rheumatoid arthritis

    SciTech Connect

    Mulcahy, B.; Waldron-Lynch, F.; Adams, C.; O`Gara, F.

    1996-09-01

    The major histocompatibility complex class H1 tumor necrosis factor-tymphotoxin (TNF-LT) region (6p21.3) was investigated as a possible susceptibility locus for rheumatoid arthritis (RA). Inheritance of five TNF microsatellite markers was determined in 50 multiplex families. Overall, 47 different haplotypes were observed. One of these, the TNF a6, b5, c1, d3, e3 (H1) haplotype, was present in 35.3% of affected, but in only 20.5% of unaffected, individuals (P < .005). This haplotype accounted for 21.5% of the parental haplotypes transmitted to affected offspring and only 7.3 % not transmitted to affected offspring (P = .0003). The TNF a6 and TNF c1 alleles were individually associated with RA (P = .0005 and .0008, respectively), as were the HLA-DRB1 {open_quotes}shared epitope{close_quotes} (SE) (P = .0001) and HLA-DRB1*0401 (P = .0018). Both univariate and bivariate conditional logistic regression analysis showed significant effects of TNF c1 and SE in increasing risk to RA (P < .001). Stratification by the presence of SE indicated an independent effect of the TNFc1 allele (P = .0003) and the HLA A1, BS, DR3 extended haplotype (always TNFa2, b3, c1, d1, e3) (P = .0027) in SE heterozygotes, while the H1 haplotype was associated with RA in SE homozygotes (P = .0018). The TNF-LT region appears to influence susceptibility to RA, distinct from HLA-DR. 50 refs., 1 fig., 1 tab.

  6. Tumor necrosis factor-α produced in the kidney contributes to angiotensin II-dependent hypertension.

    PubMed

    Zhang, Jiandong; Patel, Mehul B; Griffiths, Robert; Mao, Alice; Song, Young-soo; Karlovich, Norah S; Sparks, Matthew A; Jin, Huixia; Wu, Min; Lin, Eugene E; Crowley, Steven D

    2014-12-01

    Immune system activation contributes to the pathogenesis of hypertension and the resulting progression of chronic kidney disease. In this regard, we recently identified a role for proinflammatory Th1 T-lymphocyte responses in hypertensive kidney injury. Because Th1 cells generate interferon-γ and tumor necrosis factor-α (TNF-α), we hypothesized that interferon-γ and TNF-α propagate renal damage during hypertension induced by activation of the renin-angiotensin system. Therefore, after confirming that mice genetically deficient of Th1 immunity were protected from kidney glomerular injury despite a preserved hypertensive response, we subjected mice lacking interferon-γ or TNF-α to our model of hypertensive chronic kidney disease. Interferon deficiency had no impact on blood pressure elevation or urinary albumin excretion during chronic angiotensin II infusion. By contrast, TNF-deficient (knockout) mice had blunted hypertensive responses and reduced end-organ damage in our model. As angiotensin II-infused TNF knockout mice had exaggerated endothelial nitric oxide synthase expression in the kidney and enhanced nitric oxide bioavailability, we examined the actions of TNF-α generated from renal parenchymal cells in hypertension by transplanting wild-type or TNF knockout kidneys into wild-type recipients before the induction of hypertension. Transplant recipients lacking TNF solely in the kidney had blunted hypertensive responses to angiotensin II and augmented renal endothelial nitric oxide synthase expression, confirming a role for kidney-derived TNF-α to promote angiotensin II-induced blood pressure elevation by limiting renal nitric oxide generation.

  7. Characterization of golimumab, a human monoclonal antibody specific for human tumor necrosis factor α.

    PubMed

    Shealy, David J; Cai, Ann; Staquet, Kim; Baker, Audrey; Lacy, Eilyn R; Johns, Laura; Vafa, Omid; Gunn, George; Tam, Susan; Sague, Sarah; Wang, Dana; Brigham-Burke, Mike; Dalmonte, Paul; Emmell, Eva; Pikounis, Bill; Bugelski, Peter J; Zhou, Honghui; Scallon, Bernard J; Giles-Komar, Jill

    2010-01-01

    We prepared and characterized golimumab (CNTO148), a human IgG1 tumor necrosis factor alpha (TNFα) antagonist monoclonal antibody chosen for clinical development based on its molecular properties. Golimumab was compared with infliximab, adalimumab and etanercept for affinity and in vitro TNFα neutralization. The affinity of golimumab for soluble human TNFα, as determined by surface plasmon resonance, was similar to that of etanercept (18 pM versus 11 pM), greater than that of infliximab (44 pM) and significantly greater than that of adalimumab (127 pM, p=0.018).  The concentration of golimumab necessary to neutralize TNFα-induced E-selectin expression on human endothelial cells by 50% was significantly less than those for infliximab (3.2 fold; p=0.017) and adalimumab (3.3-fold; p=0.008) and comparable to that for etanercept. The conformational stability of golimumab was greater than that of infliximab (primary melting temperature [Tm] 74.8 °C vs. 69.5 °C) as assessed by differential scanning calorimetry.  In addition, golimumab showed minimal aggregation over the intended shelf life when formulated as a high concentration liquid product (100 mg/mL) for subcutaneous administration.  In vivo, golimumab at doses of 1 and 10 mg/kg significantly delayed disease progression in a mouse model of human TNFα-induced arthritis when compared with untreated mice, while infliximab was effective only at 10 mg/kg. Golimumab also significantly reduced histological scores for arthritis severity and cartilage damage, as well as serum levels of pro-inflammatory cytokines and chemokines associated with arthritis. Thus, we have demonstrated that golimumab is a highly stable human monoclonal antibody with high affinity and capacity to neutralize human TNFα in vitro and in vivo.

  8. Tumor necrosis factor alpha signaling in the development of experimental murine pre-hepatic portal hypertension

    PubMed Central

    Theodorakis, Nicholas G; Wang, Yining N; Wu, Jianmin; Maluccio, Mary A; Skill, Nicholas J

    2010-01-01

    The cytokine tumor necrosis factor alpha (TNFa) has previously been identified in the development of portal hypertension (PHT) by facilitating portal venous and systemic hyperemia. TNFa is reported to contribute to hyperemia via endothelial nitric oxide synthase (eNOS) induction and nitric oxide (NO) production. This study examines this hypothesis by utilizing TNFa receptor knockout mice and a murine model of pre-hepatic PHT. Plasma TNFa and NOx and tissue TNFa mRNA levels were determined in wild-type mice 0-7d post induction of pre-hepatic PHT by partial portal vein ligation (PVL). TNFa receptor knockout mice also received PVL or sham surgery and splenic pulp pressure, abdominal aortic flow and portal-systemic shunting were recorded 7d following. Portal pressure and systemic hyperemia developed rapidly following PVL. Plasma NOx was increased temporarily 2-3 days following PVL and returned to baseline by day 7. Circulating TNFa was below detectable limits of the ELISA used, as such no increase was observed. Hepatic and vascular TNFa mRNA levels were transiently changed after PVL otherwise there was no significant change. TNFa receptor targeted gene deletion did not ameliorate plasma NOx following PVL and had no effect on the development of PHT. TNFa receptor signaling plays no detectable role in the development of systemic hyperemia in the murine model of pre-hepatic PHT. Consequently, increased TNFa observed in intra-hepatic inflammatory models (CCl4) and in patients is probably related to inflammation associated with intra-hepatic pathology. Alternatively, TNFa may be signaling via a TNFa receptor independent mechanism. PMID:21383890

  9. Wnt3a regulates tumor necrosis factor-α-stimulated interleukin-6 release in osteoblasts.

    PubMed

    Natsume, Hideo; Tokuda, Haruhiko; Adachi, Seiji; Matsushima-Nishiwaki, Rie; Kato, Kenji; Minamitani, Chiho; Otsuka, Takanobu; Kozawa, Osamu

    2011-01-01

    It is recognized that Wnt pathways regulate bone metabolism. We have previously shown that tumor necrosis factor-α (TNF-α) stimulates synthesis of interleukin-6 (IL-6), a potent bone resorptive agent, via p44/p42 mitogen-activated protein (MAP) kinase and phosphatidylinositol 3-kinase (PI3-kinase)/Akt in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effect of Wnt3a on TNF-α-stimulated IL-6 synthesis in these cells. Wnt3a, which alone did not affect the IL-6 levels, significantly suppressed the TNF-α-stimulated IL-6 release. Lithium Chloride (LiCl), which is an inhibitor of GSK3β, markedly reduced the TNF-α-stimulated IL-6 release, similar to the results with Wnt3a. The suppression by Wnt3a or LiCl was also observed in the intracellular protein levels of IL-6 elicited by TNF-α. Wnt3a failed to affect the TNF-α-induced phosphorylation of p44/p42 MAP kinase, Akt, IκB or NFκB. Either Wnt3a or LiCl failed to reduce, rather increased the IL-6 mRNA expression stimulated by TNF-α. Lactacystin, a proteasome inhibitor, and bafilomycin A1, a lysosomal protease inhibitor, significantly restored the suppressive effect of Wnt3a on TNF-α-stimulated IL-6 release. Taken together, our results strongly suggest that Wnt3a regulates IL-6 release stimulated by TNF-α at post-transcriptional level in osteoblasts.

  10. Structural changes of tumor necrosis factor alpha associated with membrane insertion and channel formation.

    PubMed Central

    Baldwin, R L; Stolowitz, M L; Hood, L; Wisnieski, B J

    1996-01-01

    Low pH enhances tumor necrosis factor alpha (TNF)-induced cytolysis of cancer cells and TNF-membrane interactions that include binding, insertion, and ion-channel formation. We have also found that TNF increases Na+ influx in cells. Here, we examined the structural features of the TNF-membrane interaction pathway that lead to channel formation. Fluorometric studies link TNF's acid-enhanced membrane interactions to rapid but reversible acquisition of hydrophobic surface properties. Intramembranous photolabeling shows that (i) protonation of TNF promotes membrane insertion, (ii) the physical state of the target bilayer affects the kinetics and efficiency of TNF insertion, and (iii) binding and insertion of TNF are two distinct events. Acidification relaxes the trimeric structure of soluble TNF so that the cryptic carboxyl termini, centrally located at the base of the trimer cone, become susceptible to carboxypeptidase Y. After membrane insertion, TNF exhibits a trimeric configuration in which the carboxyl termini are no longer exposed; however, the proximal salt-bridged Lys-11 residues as well as regional surface amino acids (Glu-23, Arg-32, and Arg-44) are notably more accessible to proteases. The sequenced cleavage products bear the membrane-restricted photoreactive probe, proof that surface-cleaved TNF has an intramembranous disposition. In summary, the trimer's structural plasticity is a major determinant of its channel-forming ability. Channel formation occurs when cracked or partially splayed trimers bind and penetrate the bilayer. Reannealing leads to a slightly relaxed trimeric structure. The directionality of bilayer penetration conforms with x-ray data showing that receptor binding to the monomer interfaces of TNF poises the tip of the trimeric cone directly above the target cell membrane. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8577707

  11. Vpr Enhances Tumor Necrosis Factor Production by HIV-1-Infected T Cells

    PubMed Central

    Roesch, Ferdinand; Richard, Léa; Rua, Réjane; Porrot, Françoise; Casartelli, Nicoletta

    2015-01-01

    ABSTRACT The HIV-1 accessory protein Vpr displays different activities potentially impacting viral replication, including the arrest of the cell cycle in the G2 phase and the stimulation of apoptosis and DNA damage response pathways. Vpr also modulates cytokine production by infected cells, but this property remains partly characterized. Here, we investigated the effect of Vpr on the production of the proinflammatory cytokine tumor necrosis factor (TNF). We report that Vpr significantly increases TNF secretion by infected lymphocytes. De novo production of Vpr is required for this effect. Vpr mutants known to be defective for G2 cell cycle arrest induce lower levels of TNF secretion, suggesting a link between these two functions. Silencing experiments and the use of chemical inhibitors further implicated the cellular proteins DDB1 and TAK1 in this activity of Vpr. TNF secreted by HIV-1-infected cells triggers NF-κB activity in bystander cells and allows viral reactivation in a model of latently infected cells. Thus, the stimulation of the proinflammatory pathway by Vpr may impact HIV-1 replication in vivo. IMPORTANCE The role of the HIV-1 accessory protein Vpr remains only partially characterized. This protein is important for viral pathogenesis in infected individuals but is dispensable for viral replication in most cell culture systems. Some of the functions described for Vpr remain controversial. In particular, it remains unclear whether Vpr promotes or instead prevents proinflammatory and antiviral immune responses. In this report, we show that Vpr promotes the release of TNF, a proinflammatory cytokine associated with rapid disease progression. Using Vpr mutants or inhibiting selected cellular genes, we show that the cellular proteins DDB1 and TAK1 are involved in the release of TNF by HIV-infected cells. This report provides novel insights into how Vpr manipulates TNF production and helps clarify the role of Vpr in innate immune responses and inflammation

  12. Tumor necrosis factor: receptor binding and expression of receptors in cultured mouse hepatocytes.

    PubMed

    Adamson, G M; Billings, R E

    1994-04-01

    Recombinant murine tumor necrosis factor (TNF-alpha) was labeled with 125I and used to determine the binding characteristics, internalization and intracellular degradation in cultured mouse hepatocytes. [125I]TNF-alpha bound specifically to hepatocytes and Scatchard analysis of the data indicated binding to both a low-affinity (Kd = 20 nM) high capacity (51225 sites/cell) component and high-affinity component (Kd = 4 pM), with low capacity (290 sites/cell). The extent of TNF-alpha binding to hepatocytes correlated closely with its biological activity in hepatocytes, as indexed by depletion of intracellular ATP. At concentrations lower than 0.06 nM there was minimal binding and no effect on cellular ATP, whereas maximal binding at concentrations greater than 45 nM caused 80% depletion (in comparison to controls) of hepatocyte ATP. Incubation at 37 degrees C resulted in rapid uptake, internalization and degradation of [125I]TNF-alpha. This was followed by release of degraded material from hepatocytes. Examination, by reverse transcriptase/polymerase chain reaction technology, of hepatocyte RNA extracted after the 4-hr adherence period revealed that mouse hepatocytes expressed mRNA for both TNF-alpha receptor 1 and TNF-alpha receptor 2, and that the relative abundance of TNF-alpha receptor 1 was approximately 7-fold greater than that for TNF-alpha receptor 2. Because it has been shown that these receptors have different affinities for TNF-alpha, this may explain the high- and low-affinity binding sites present on cultured mouse hepatocytes.

  13. Tumor necrosis factor α is a risk factor for infection in peritoneal dialysis patients

    PubMed Central

    Kang, Eunjung; Kim, Seihran; Lee, Hwa Jung; Park, Inhwee; Kim, Heungsoo; Shin, Gyu-Tae

    2016-01-01

    Background/Aims: It has been shown that circulating tumor necrosis factor α (TNF-α) is elevated in end stage renal disease patients; however, the relationship between TNF-α and the development of infection in these patients is unknown. In this study, we investigated the association of plasma TNF-α and interleukin 6 (IL-6) with infection in peritoneal dialysis (PD) patients. We also evaluated the association of their plasma levels with the production by peripheral blood mononuclear cells (PBMC), and with various clinical parameters. Methods: We enrolled 32 patients on maintenance PD and 10 healthy controls. Plasma and PBMC were isolated from blood. PBMC were stimulated with lipopolysaccharide in vitro. Results: Mean follow-up duration was 775 days. Six patients developed organ infections (five pneumonia and one liver abscess), and six patients developed PD peritonitis and eight developed exit site infection. Plasma TNF-α and IL-6 levels were significantly elevated in organ infections but not in peritonitis or in exit site infection. Plasma TNF-α was the only significant risk factor for organ infections and pneumonia in multivariate regression analysis. Patients with high plasma TNF-α levels showed a significantly greater cumulative hazard rate for organ infections compared to those with low TNF-α levels. Plasma TNF-α levels correlated with TNF-α production by PBMC and showed an inverse association with Kt/V. Conclusions: This is the first study showing that plasma TNF-α is a significant risk factor for infection in PD patients. PMID:27000486

  14. Safety and tolerability of tumor necrosis factor-α inhibitors in psoriasis: a narrative review.

    PubMed

    Semble, Ashley L; Davis, Scott A; Feldman, Steven R

    2014-02-01

    Tumor necrosis factor (TNF)-α inhibitors are an alternative to oral systemic therapies for psoriasis. Data regarding the safety of TNF-α inhibitors from randomized clinical trials may not fully reflect the effects on the clinic patient population receiving the therapy, but other sources of information are available. We performed a literature review to assess the safety and tolerability of the treatment of moderate-to-severe plaque psoriasis with TNF-α inhibitors. A literature search was conducted using PubMed for articles dating from January 2000 to October 2013. Randomized controlled, cohort, open-label, and observational studies were included, as well as case reports and letters to the editor. Articles found on PubMed describing the safety of anti-TNF-α therapy in psoriasis patients were included, while studies highlighting interleukin (IL)-12 and IL-23 inhibitors were excluded, as were non-English articles. In total, 58 articles were included in the review. TNF-α inhibitors exhibit both efficacy and tolerability in patients with moderate-to-severe plaque psoriasis. Adverse effects associated with these medications are not common and can be minimized with routine clinical monitoring and patient education. While the risk of severe adverse events is low, the lack of very large, long-term, randomized safety trials limits the ability to fully define the safety of these agents. TNF-α inhibitors have a good efficacy/safety ratio for use in patients with moderate-to-severe psoriasis. Serious adverse effects are not common, and common injection-site reactions are usually manageable. The benefits of TNF-α inhibitors outweigh the risks for moderate-to-severe psoriasis; however, there are potential adverse effects and the patient populations at highest risk include the elderly and those with a history of malignancy.

  15. Development of a mouse-feline chimeric antibody against feline tumor necrosis factor-alpha

    PubMed Central

    DOKI, Tomoyoshi; TAKANO, Tomomi; HOHDATSU, Tsutomu

    2016-01-01

    Feline infectious peritonitis (FIP) is a fatal inflammatory disease caused by FIP virus infection. Feline tumor necrosis factor (fTNF)-alpha is closely involved in the aggravation of FIP pathology. We previously described the preparation of neutralizing mouse anti-fTNF-alpha monoclonal antibody (mAb 2–4) and clarified its role in the clinical condition of cats with FIP using in vitro systems. However, administration of mouse mAb 2–4 to cat may lead to a production of feline anti-mouse antibodies. In the present study, we prepared a mouse-feline chimeric mAb (chimeric mAb 2–4) by fusing the variable region of mouse mAb 2–4 to the constant region of feline antibody. The chimeric mAb 2–4 was confirmed to have fTNF-alpha neutralization activity. Purified mouse mAb 2–4 and chimeric mAb 2–4 were repeatedly administered to cats, and the changes in the ability to induce feline anti-mouse antibody response were investigated. In the serum of cats treated with mouse mAb 2–4, feline anti-mouse antibody production was induced, and the fTNF-alpha neutralization effect of mouse mAb 2–4 was reduced. In contrast, in cats treated with chimeric mAb 2–4, the feline anti-mouse antibody response was decreased compared to that of mouse mAb 2–4-treated cats. PMID:27264736

  16. Effect of anti-tumor necrosis factor alpha antibodies on histopathology of primary Salmonella infections.

    PubMed

    Mastroeni, P; Skepper, J N; Hormaeche, C E

    1995-09-01

    We reported that administration of anti-tumor necrosis factor alpha (anti-TNF-alpha) antibodies exacerbates the course of a Salmonella infection in both susceptible and resistant mice by preventing the suppression of bacterial growth in the reticuloendothelial system. In the present study, we evaluated the effect of in vivo neutralization of TNF-alpha on the histopathology of primary Salmonella infections. We show that in primary infections, the suppression of bacterial growth in the reticuloendothelial system coincides with granuloma formation in the spleen and liver. Administration of anti-TNF-alpha globulins on day -1 of salmonellosis affected neither the histological picture nor the course of the infection in the early stages of the disease (days 1 to 3), with splenic and hepatic lesions consisting mainly of polymorphonuclear leukocytes (PMNs); conversely, later in infection (days 3 to 7), the treatment inhibited the formation of granulomas. When the anti-TNF-alpha treatment was started well after the suppression of bacterial growth in the reticuloendothelial system and the formation of granulomatous lesions in the spleen and liver, a prompt relapse of the infection and regression of already established granulomas were seen. In anti-TNF-alpha-treated mice, salmonellae were found inside macrophages and PMNs and extracellularly in the necrotic tissue of the spleen, while in the liver the organisms were seen mainly in inflammatory mononuclear cells, resident Kupffer cells, and hepatocytes and occasionally in the extracellular compartment within necrotic lesions. The bacteria appeared most often in clusters, being morphologically intact when in the extracellular space or within hepatocytes, while undergoing various degrees of degeneration when inside phagocytes. The results suggest that TNF-alpha is required for granuloma formation in salmonellosis and that its neutralization does not completely abrogate the bactericidal activity of macrophages and PMNs

  17. Tumor Necrosis Factor, but Not Neutrophils, Alters the Metabolic Profile in Acute Experimental Arthritis

    PubMed Central

    Oliveira, Marina C.; Tavares, Luciana P.; Vago, Juliana P.; Batista, Nathália V.; Queiroz-Junior, Celso M.; Vieira, Angelica T.; Menezes, Gustavo B.; Sousa, Lirlândia P.; van de Loo, Fons A. J.; Teixeira, Mauro M.; Amaral, Flávio A.; Ferreira, Adaliene V. M.

    2016-01-01

    Metabolic alterations are associated with arthritis apart from obesity. However, it is still unclear which is the underlying process behind these metabolic changes. Here, we investigate the role of tumor necrosis factor (TNF) in this process in an acute model of antigen-induced arthritis (AIA). Immunized male BALB/c mice received an intra-articular injection of PBS (control) or methylated bovine serum albumin (mBSA) into their knees, and were also pre-treated with different drugs: Etanercept, an anti-TNF drug, DF2156A, a CXCR1/2 receptor antagonist, or a monoclonal antibody RB6-8C5 to deplete neutrophils. Local challenge with mBSA evoked an acute neutrophil influx into the knee joint, and enhanced the joint nociception, along with a transient systemic metabolic alteration (higher levels of glucose and lipids, and altered adipocytokines). Pre-treatment with the conventional biological Etanercept, an inhibitor of TNF action, ameliorated the nociception and the acute joint inflammation dominated by neutrophils, and markedly improved many of the altered systemic metabolites (glucose and lipids), adipocytokines and PTX3. However, the lessening of metabolic changes was not due to diminished accumulation of neutrophils in the joint by Etanercept. Reduction of neutrophil recruitment by pre-treating AIA mice with DF2156A, or even the depletion of these cells by using RB6-8C5 reduced all of the inflammatory parameters and hypernociception developed after AIA challenge, but could not prevent the metabolic changes. Therefore, the induction of joint inflammation provoked acute metabolic alterations which were involved with TNF. We suggest that the role of TNF in arthritis-associated metabolic changes is not due to local neutrophils, which are the major cells present in this model, but rather due to cytokines. PMID:26742100

  18. Targeting Mycobacterium tuberculosis Tumor Necrosis Factor Alpha-Downregulating Genes for the Development of Antituberculous Vaccines

    PubMed Central

    Olsen, Aaron; Chen, Yong; Ji, Qingzhou; Zhu, Guofeng; De Silva, Aruna Dharshan; Vilchèze, Catherine; Weisbrod, Torin; Li, Weimin; Xu, Jiayong; Larsen, Michelle; Zhang, Jinghang; Porcelli, Steven A.; Jacobs, William R.

    2016-01-01

    ABSTRACT Tumor necrosis factor alpha (TNF) plays a critical role in the control of Mycobacterium tuberculosis, in part by augmenting T cell responses through promoting macrophage phagolysosomal fusion (thereby optimizing CD4+ T cell immunity by enhancing antigen presentation) and apoptosis (a process that can lead to cross-priming of CD8+ T cells). M. tuberculosis can evade antituberculosis (anti-TB) immunity by inhibiting host cell TNF production via expression of specific mycobacterial components. We hypothesized that M. tuberculosis mutants with an increased capacity to induce host cell TNF production (TNF-enhancing mutants) and thus with enhanced immunogenicity can be useful for vaccine development. To identify mycobacterial genes that regulate host cell TNF production, we used a TNF reporter macrophage clone to screen an H37Rv M. tuberculosis cosmid library constructed in M. smegmatis. The screen has identified a set of TNF-downregulating mycobacterial genes that, when deleted in H37Rv, generate TNF-enhancing mutants. Analysis of mutants disrupted for a subset of TNF-downregulating genes, annotated to code for triacylglycerol synthases and fatty acyl-coenzyme A (acyl-CoA) synthetase, enzymes that concern lipid biosynthesis and metabolism, has revealed that these strains can promote macrophage phagolysosomal fusion and apoptosis better than wild-type (WT) bacilli. Immunization of mice with the TNF-enhancing M. tuberculosis mutants elicits CD4+ and CD8+ T cell responses that are superior to those engendered by WT H37Rv. The results suggest that TNF-upregulating M. tuberculosis genes can be targeted to enhance the immunogenicity of mycobacterial strains that can serve as the substrates for the development of novel anti-TB vaccines. PMID:27247233

  19. Effects of botulinum toxin type D on secretion of tumor necrosis factor from human monocytes

    SciTech Connect

    Imamura, K.; Spriggs, D.; Ohno, T.; Kufe, D.

    1989-05-01

    Botulinum toxins are potent neurotoxins which block the release of neurotransmitters. The effects of these toxins on hematopoietic cells, however, are unknown. Monocytes secrete a variety of polypeptide growth factors, including tumor necrosis factor (TNF). In the study reported here, the effects of botulinum toxin type D on the secretion of TNF from human monocytes were examined. The results demonstrate that biotulinum toxin type D inhibits the release of TNF from monocytes activated by lipopolysaccharide (LPS) but not by 12-O-tetradecanoylphorbol-13-acetate. Botulinum toxin type D had no detectable effect on intracellular TNF levels in LPS-treated monocytes, indicating that the effects of this toxin involve the secretory process. This inhibitory effect of botulinum toxin type D on TNF secretion from LPS-treated monocytes was partially reversed by treatment with 12-O-tetradecanoylphorbol-13-acetate or introduction of guanosine 5'-(/gamma/-thio)t-riphosphate into these cells. The results demonstrate that TNF secretion is regulated by at least two distinct guanine nucleotide-binding proteins, one responsible for the activation of phospholiphase C and another which acts as a substrate for botulinum toxin type D. ADP-ribosylation of monocyte membranes by botulinum toxin type D demonstrated the presence of three substrates with M/sub r/s of 45,000, 21,000, and 17,000. While the role of these substrates in exocytosis is unknown, the results suggest that the M/sub r/ 21,000 substrate is involved in a process other than TNF secretion.

  20. 12 Gy gamma knife radiosurgical volume is a predictor for radiation necrosis in non-AVM intracranial tumors

    SciTech Connect

    Korytko, Timothy; Radivoyevitch, Tomas; Colussi, Valdir; Wessels, Barry W.; Pillai, Kunjan; Maciunas, Robert J.; Einstein, Douglas B. . E-mail: Douglas.Einstein@uhhs.com

    2006-02-01

    Purpose: To determine whether the 12-Gy radiosurgical volume (12-GyV) correlates with the development of postradiosurgical imaging changes suggestive of radiation necrosis in patients treated for non-arteriovenous malformation (non-AVM) intracranial tumors with gamma knife stereotactic radiosurgery (GKSRS). Methods and Materials: A retrospective single-institution review of 129 patients with 198 separate non-AVM tumors was performed. Patients were followed with magnetic resonance imaging (MRI) and physical examinations at 3- to 6-month intervals. Patients who developed postradiosurgical MRI changes suggestive of radiation necrosis were labeled as having either symptomatic radiation necrosis (S-NEC) if they experienced any decline in neurologic examination associated with the imaging changes, or asymptomatic radiation necrosis (A-NEC) if they had a stable or improving neurologic examination. Results: 12-GyV correlated with risk of S-NEC, which was 23% (for 12-GyV of 0-5 cc), 20% (5-10 cc), 54% (10-15 cc), and 57% (>15 cc). The risk of A-NEC did not significantly change with 12-GyV. Logistic regression analyses showed that the following factors were associated with the development of S-NEC: 12-GyV (p < 0.01), occipital and temporal lesions (p < 0.01), previous whole-brain radiotherapy (p = 0.03), and male sex (p 0.03). Radiosurgical plan conformality did not correlate with the development of S-NEC. Conclusion: The risk of S-NEC, but not A-NEC after GKSRS for non-AVM tumors correlates with 12-GyV, and increases significantly for 12-GyV >10 cc.

  1. (+)-Nootkatone inhibits tumor necrosis factor α/interferon γ-induced production of chemokines in HaCaT cells

    SciTech Connect

    Choi, Hyeon-Jae; Lee, Jin-Hwee; Jung, Yi-Sook

    2014-05-02

    Highlights: • (+)-Nootkatone inhibits TNF-α/IFN-γ-induced TARC and MDC expression in HaCaT cells. • PKCζ, p38 MAPK, or NF-κB mediate TNF-α/IFN-γ-induced TARC and MDC expression. • (+)-Nootkatone inhibits TNF-α/IFN-γ-induced activation of PKCζ, p38 MAPK, or NF-κB. • (+)-Nootkatone suppresses chemokine expression by inhibiting of PKCζ and p38 pathways. - Abstract: Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). (+)-Nootkatone is the major component of Cyperus rotundus. (+)-Nootkatone has antiallergic, anti-inflammatory, and antiplatelet activities. The purpose of this study was to investigate the effect of (+)-nootkatone on tumor necrosis factor α (TNF-α)/interferon γ (IFN-γ)-induced expression of Th2 chemokines in HaCaT cells. We found that (+)-nootkatone inhibited the TNF-α/IFN-γ-induced expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells. It also significantly inhibited TNF-α/IFN-γ-induced activation of nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), and protein kinase Cζ (PKCζ). Furthermore, we showed that PKCζ and p38 MAPK contributed to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression by blocking IκBα degradation in HaCaT cells. Taken together, these results suggest that (+)-nootkatone may suppress TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression in HaCaT cells by inhibiting of PKCζ and p38 MAPK signaling pathways that lead to activation of NF-κB. We propose that (+)-nootkatone may be a useful therapeutic candidate for inflammatory skin diseases such as AD.

  2. Prolonged waking reduces human immunodeficiency virus glycoprotein 120- or tumor necrosis factor alpha-induced apoptosis in the cerebral cortex of rats.

    PubMed

    Montes-Rodríguez, Corinne J; Alavez, Silvestre; Elder, John H; Haro, Reyes; Morán, Julio; Prospéro-García, Oscar

    2004-04-29

    The human immunodeficiency virus (HIV) induces neuronal death, presumably by apoptosis. This effect may be triggered by the glycoprotein 120 (HIVgp120) released by HIV when infecting a cell, and mediated by tumor necrosis factor alpha (TNFalpha), a pro-inflammatory cytokine. Both molecules, HIVgp120 and TNFalpha, increase sleep when administered acutely in the brain. On the other hand, sleep deprivation increases the levels of several growth factors. In this context, we challenged rats with HIVgp120 or TNFalpha simultaneously with sleep deprivation. Our results indicate that both HIVgp120 and TNFalpha increase neuronal death in the rat cerebral cortex, but not hippocampus, and that this effect is completely prevented by total deprivation of sleep. These results suggest that acute total deprivation of sleep protects against the HIVgp120 and TNFalpha deleterious effects.

  3. Mycobacterial lipoarabinomannan induces nitric oxide and tumor necrosis factor alpha production in a macrophage cell line: down regulation by taurine chloramine.

    PubMed Central

    Schuller-Levis, G B; Levis, W R; Ammazzalorso, M; Nosrati, A; Park, E

    1994-01-01

    Avirulent mycobacterium H37Ra lipoarabinomannan (LAM) elicited nitric oxide (NO) and tumor necrosis factor alpha in a dose-dependent manner in a murine macrophage cell line, RAW 264.7 cells. H37Ra LAM and recombinant gamma interferon were highly synergistic for NO production. The production of NO and the release of tumor necrosis factor alpha stimulated by H37Ra LAM plus recombinant gamma interferon in RAW 264.7 cells are inhibited by taurine chloramine. PMID:7927739

  4. Tumour necrosis factor (TNF) as a mediator of macrophage helminthotoxic activity.

    PubMed

    James, S L; Glaven, J; Goldenberg, S; Meltzer, M S; Pearce, E

    1990-01-01

    Lymphokine-activated macrophages are cytotoxic for larvae of the helminth parasite Schistosoma mansoni. That soluble secreted factors may mediate this cytotoxicity was suggested by the observation that culture supernatant fluids from stimulated macrophages also exhibited larvacidal activity. These fluids contain the monokine tumour necrosis factor (TNF). Several observations indicated that TNF is directly toxic to schistosome larvae. Cytotoxic sera taken from BCG- or S. mansoni-immunized mice after endotoxin challenge killed schistosomula in vitro, and upon gel filtration the larvacidal factor(s) in the sera co-eluted with the tumoricidal activity defined as TNF. Recombinant-derived TNF exhibited direct toxicity to schistosomula at high concentrations, or at lower concentrations in the presence of IFN gamma. The larvacidal activity of macrophage supernatant fluids was abrogated by addition of either anti-TNF antisera or Zn+2, which has been shown to inhibit TNF-induced damage of tumour cells. Anti-TNF and Zn+2 likewise suppressed schistosomulum killing by lymphokine-activated peritoneal macrophages or the IC-21 macrophage line, indicating that TNF also plays a role in the effector mechanism of larval killing by whole cells. PMID:2314921

  5. Proliferative and antiproliferative effects of interferon-gamma and tumor necrosis factor-alpha on cell lines derived from cervical and ovarian malignancies

    SciTech Connect

    Mutch, D.G.; Massad, L.S.; Kao, M.S.; Collins, J.L. )

    1990-12-01

    Four human cell lines derived from cervical carcinomas (ME-180, SiHa, HT-3, and MS751) and three human cell lines derived from ovarian carcinomas (SK-OV-3, Caov-3, and NIH:OVCAR-3) were analyzed in vitro to determine the effect of recombinant interferon-gamma and recombinant human tumor necrosis factor-alpha on cell growth and survival. The effects of interferon-gamma, tumor necrosis factor-alpha, and both interferon-gamma and tumor necrosis factor-alpha on cell growth were measured after 24 and 72 hours of incubation by the incorporation of chromium 51. The results of this analysis showed that all seven cell lines were resistant to the antiproliferative action of tumor necrosis factor-alpha, that the growth of most cell lines was inhibited by interferon-gamma by 72 hours of incubation, and that after 72 hours of incubation all cell lines demonstrated a synergistic antiproliferative response to the combination of interferon-gamma and tumor necrosis factor-alpha. However, the effects of these cytokines on cell growth were found to differ among cell lines and varied with the concentration and the duration of incubation. The growth of one cell line (Caov-3) was stimulated by both tumor necrosis factor-alpha and interferon-gamma. These results suggest that the clinical effects of these cytokines on the growth of gynecologic cancers may be more complex than previously supposed.

  6. Tumor Therapy Mediated by Lentiviral Expression of shBcl-2 and S-TRAIL1

    PubMed Central

    Kock, Norman; Kasmieh, Randa; Weissleder, Ralph; Shah, Khalid

    2007-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can selectively kill tumor cells and, in combination with other agents, could enhance tumor therapy. We explored the combined therapeutic effects of a secretable form of (S) TRAIL-induced apoptosis and the downregulation of Bcl-2 in human gliomas. We constructed a lentiviral delivery system: 1) for the expression of short hairpin (sh) RNA to downregulate Bcl-2 and for the expression of S-TRAIL to induce apoptosis in glioma cells; and 2) to follow delivery in vitro and the fate of tumors in real time in vivo. We demonstrate that lentiviral-mediated simultaneous downregulation of Bcl-2 and S-TRAIL-induced apoptosis leads to an increased expression of activated caspase-3 and caspase-7, thus resulting in accelerated S-TRAIL-mediated apoptosis in glioma cells in vitro. Using a highly malignant human glioma model expressing EGFRvIII and firefly luciferase, we show that the combined effect of Bcl-2 downregulation and S-TRAIL-induced apoptosis results in complete eradication of gliomas compared to S-TRAIL monotherapy. These results show that simultaneous triggering of TRAIL-mediated death receptor pathway and downregulation of Bcl-2 by shRNA leads to enhanced eradication of gliomas and serves as a template in developing and monitoring combination therapies for the treatment of drug-resistant cancers. PMID:17534449

  7. Tumor Necrosis Factor Inhibition and Head and Neck Cancer Recurrence and Death in Rheumatoid Arthritis

    PubMed Central

    Phillips, Christopher; Zeringue, Angelique L.; McDonald, Jay R.; Eisen, Seth A.; Ranganathan, Prabha

    2015-01-01

    The objective of this retrospective cohort study was to determine the effect of tumor necrosis factor inhibitor (TNFi) therapy on the risk of head and neck cancer (HNC) recurrence or HNC-attributable death in patients with rheumatoid arthritis (RA). RA patients with HNC were assembled from the US national Veterans’ Affairs (VA) administrative databases, and diagnoses confirmed and data collected by electronic medical record review. The cohort was divided into those treated with non-biologic disease-modifying anti-rheumatic drugs (nbDMARDs) versus TNF inhibitors (TNFi) after a diagnosis of HNC. Likelihood of a composite endpoint of recurrence or HNC-attributable death was determined by Cox proportional hazards regression. Of 180 patients with RA and HNC, 31 were treated with TNFi and 149 with nbDMARDs after the diagnosis of HNC. Recurrence or HNC-attributable death occurred in 5/31 (16.1%) patients in the TNFi group and 44/149 (29.5%) patients in the nbDMARD group (p = 0.17); it occurred in 2/16 (13%) patients who received TNFi in the year prior to HNC diagnosis but not after. Overall stage at diagnosis (p = 0.03) and stage 4 HNC (HR 2.49 [CI 1.06–5.89]; p = 0.04) were risk factors for recurrence or HNC-attributable death; treatment with radiation or surgery was associated with a lower risk (HR 0.35 [CI 0.17–0.74]; p = 0.01 and HR 0.39 [CI 0.20–0.76]; p = 0.01 respectively). Treatment with TNFi was not a risk factor for recurrence or HNC-attributable death (HR 0.75; CI 0.31–1.85; p = 0.54). We conclude that treatment with TNFi may be safe in patients with RA and HNC, especially as the time interval between HNC treatment and non-recurrence increases. In this study, TNF inhibition was not associated with an increase in recurrence or HNC-attributable death. PMID:26599370

  8. Association Between Ischemic Stroke and Tumor Necrosis Factor Inhibitor Therapy in Patients With Rheumatoid Arthritis

    PubMed Central

    Low, Audrey S. L.; Lunt, Mark; Mercer, Louise K.; Watson, Kath D.; Dixon, William G.; Symmons, Deborah P. M.

    2016-01-01

    Objective Patients with rheumatoid arthritis (RA) are at an increased risk of ischemic stroke. Tumor necrosis factor inhibitors (TNFi) may influence risk and mortality after ischemic stroke by reducing inflammation. This study was undertaken to examine the association of TNFi with the risk of incident ischemic stroke and with 30‐day and 1‐year mortality after ischemic stroke. Methods Patients with RA starting therapy with TNFi and a biologics‐naive comparator group treated with synthetic disease‐modifying antirheumatic drugs (DMARDs) only were recruited to the British Society for Rheumatology Biologics Register for Rheumatoid Arthritis from 2001 to 2009. Patients were followed up via clinical and patient questionnaires as well as the national death register. Incident strokes were classified as ischemic if brain imaging reports suggested ischemia or if ischemic stroke was reported as the underlying cause of death on a death certificate. Patients with a previous stroke were excluded. Risk of ischemic stroke was compared between patients receiving synthetic DMARDs only and those ever‐exposed to TNFi using a Cox proportional hazards regression model adjusted for potential confounders. Mortality after ischemic stroke was compared between synthetic DMARD–treated patients and TNFi‐treated patients using logistic regression, adjusted for age and sex. Results To April 2010, 127 verified incident ischemic strokes (21 in 3,271 synthetic DMARD–treated patients and 106 in 11,642 TNFi‐treated patients) occurred during 11,973 and 61,226 person‐years of observation, respectively (incidence rate 175 versus 173 per 100,000 person‐years). After adjustment for confounders, there was no association between ever‐exposure to TNFi and ischemic stroke (hazard ratio 0.99 [95% confidence interval (95% CI) 0.54–1.81]). Mortality 30 days or 1 year after ischemic stroke was not associated with concurrent TNFi exposure (odds ratio 0.18 [95% CI 0.03–1.21] and 0.60 [95

  9. Association of tumor necrosis factor-α and -β gene polymorphisms in inflammatory bowel disease

    PubMed Central

    Al-Meghaiseeb, Ebtissam Saleh; Al-Robayan, Abdulrahman A; Al-Otaibi, Mulfi Mubarak; Arfin, Misbahul; Al-Asmari, Abdulrahman K

    2016-01-01

    Inflammatory bowel disease (IBD) is a complex, multifactorial, chronic inflammatory disorder of the gastrointestinal tract in which immune dysregulation caused by genetic and/or environmental factors plays an important role. The aim of this case–control study was to evaluate the association of tumor necrosis factor-alpha (TNF-α) (308) and -β (+252) polymorphisms with susceptibility of IBD. A total of 379 Saudi subjects including 179 IBD patients (ulcerative colitis (UC) =84 and Crohn’s disease (CD) =95) and 200 age- and sex-matched healthy controls were recruited. TNF-α and TNF-β genes were amplified using an amplification refractory mutation systems polymerase chain reaction methodology to detect TNF-α (−308) and -β (+252) polymorphisms. The frequency of the GA genotype of TNF-α (−308G/A) was higher, and the frequencies of the GG and AA genotypes were significantly lower in IBD patients compared with those in controls, indicating that genotype GA-positive individuals are susceptible to IBD and that the GG and AA genotypes exert a protective effect. The frequency of allele A of TNF-α (−308G/A) was significantly higher and that of allele G was lower in IBD patients compared with those in controls, indicating an association of allele A with IBD risk in Saudi patients. On stratification of IBD patients into UC and CD, an almost similar pattern was noticed in both the groups. The results of TNF-β (+252A/G) polymorphisms showed a significant increase in the frequency of the GG genotype in IBD patients, suggesting a positive association of GG genotype with IBD risk. On stratification of IBD patients into UC and CD, the genotype GG of TNF-β was associated with susceptibility risk to UC but not CD. The frequencies of alleles and genotypes of both TNF-α and-β polymorphisms are not affected by sex or type of IBD (familial or sporadic). TNF-α (−308G/A) and TNF-β (+252A/G) polymorphisms are associated with risk of developing IBD in Saudi population

  10. Predisposing Factors of Liver Necrosis after Transcatheter Arterial Chemoembolization in Liver Metastases from Neuroendocrine Tumor

    SciTech Connect

    Joskin, Julien Baere, Thierry de; Auperin, Anne; Tselikas, Lambros Guiu, Boris Farouil, Geoffroy; Boige, Valérie Malka, David; Leboulleux, Sophie; Ducreux, Michel; Baudin, Eric; Deschamps, Frédéric

    2015-04-15

    PurposeTo investigate predictive factors for liver necrosis after transcatheter arterial chemoembolization (TACE) of neuroendocrine liver metastases.MethodsA total of 164 patients receiving 374 TACE were reviewed retrospectively to analyze predictive factors of liver necrosis. We analyzed patient age and sex; metastasis number and location; percentage of liver involvement; baseline liver function test; and pretreatment imaging abnormalities such as bile duct dilatation (BDD), portal vein narrowing (PVN), and portal vein thrombosis (PVT). We analyzed TACE technique such as Lipiodol or drug-eluting beads (DEB) as the drug’s vector; dose of chemotherapy; diameter of DEB; and number, frequency, and selectivity of TACE.ResultsLiver necrosis developed after 23 (6.1 %) of 374 TACE. In multivariate analysis, DEB > 300 μm in size induced more liver necrosis compared to Lipiodol (odds ratio [OR] 35.20; p < 0.0001) or with DEB < 300 μm in size (OR 19.95; p < 0.010). Pretreatment BDD (OR 119.64; p < 0.0001) and PVT (OR 9.83; p = 0.030) were predictive of liver necrosis. BDD or PVT responsible for liver necrosis were present before TACE in 59 % (13 of 22) and were induced by a previous TACE in 41 % (9 of 22) of cases.ConclusionDEB > 300 μm in size, BDD, and PVT are responsible for increased rate of liver necrosis after TACE. Careful analysis of BDD or PVT on pretreatment images as well as images taken between two courses can help avoid TACE complications.

  11. Salivary gland anlage tumor. A case with widespread necrosis and large cyst formation.

    PubMed

    Michal, M; Sokol, L; Mukensnabl, P

    1996-05-01

    We describe a case of the salivary gland anlage tumor (congenital pleomorphic adenoma). The tumor arose in the nasopharynx as a pedunculated mass. Microscopically most of the tumor contained large necrotic areas which revealed squamous cell metaplasia resulting in the formation of large cysts. This feature has never been described previously in this tumor and might lead to an erroneous diagnosis.

  12. Ubiquitination of Tumor Necrosis Factor Receptor-associated Factor 4 (TRAF4) by Smad Ubiquitination Regulatory Factor 1 (Smurf1) Regulates Motility of Breast Epithelial and Cancer Cells*

    PubMed Central

    Wang, Xiangchun; Jin, Chaoyang; Tang, Yi; Tang, Liu-Ya; Zhang, Ying E.

    2013-01-01

    Smad ubiquitin regulatory factors (Smurfs) are HECT-domain ubiquitin E3 ligases that regulate diverse cellular processes, including normal and tumor cell migration. However, the underlying mechanism of the Smurfs' role in cell migration is not fully understood. Here we show that Smurf1 induces ubiquitination of tumor necrosis factor receptor-associated factor 4 (TRAF4) at K190. Using the K190R mutant of TRAF4, we demonstrate that Smurf1-induced ubiquitination is required for proper localization of TRAF4 to tight junctions in confluent epithelial cells. We further show that TRAF4 is essential for the migration of both normal mammary epithelial and breast cancer cells. The ability of TRAF4 to promote cell migration is also dependent on Smurf1-mediated ubiquitination, which is associated with Rac1 activation by TRAF4. These results reveal a new regulatory circuit for cell migration, consisting of Smurf1-mediated ubiquitination of TRAF4 and Rac1 activation. PMID:23760265

  13. Fat Necrosis and Oil Cysts

    MedlinePlus

    ... Previous Topic Granular cell tumors Next Topic Mastitis Fat necrosis and oil cysts Fat necrosis happens when ... lumpy area if it becomes bothersome. How do fat necrosis and oil cysts affect your risk for ...

  14. Regulation of tumor necrosis factor gene expression in colorectal adenocarcinoma: In vivo analysis by in situ hybridization

    SciTech Connect

    Beissert, S.; Bergholz, M.; Waase, I.; Lepsien, G.; Schauer, A.; Pfizenmaier, K.; Kroenke, M. )

    1989-07-01

    Tumor necrosis factor (TNF) produced by macrophages is though to contribute to the host defense against development of cancer. However, since tumor cells themselves are able to produce TNF, it is conceivable that TNF may also play an adverse pathological role in carcinogenesis. To better understand the functional significance of TNF in neoplastic disease, they authors have determined the cellular source of TNF activity produced in 10 patients with colorectal cancer. Northern blot analysis of RNAs extracted from fresh biopsy specimens revealed detectable TNF mRNA levels in all instances. By using in situ hybridization of frozen sections, scattered cells expressing TNF mRNA could be discerned. Based on morphological criteria, these TNF-positive cells most likely belong to the macrophage lineage. Macrophages in normal tissue surrounding the tumor did not express TNF mRNA, suggesting that macrophage activation occurs locally at the site of neoplastic transformation. Immunohistochemistry using anti-TNF monoclonal antibodies revealed that less than 1% of tumor-infiltrating macrophages synthesize TNF protein. Thus they present evidence that in colorectal cancer only a small proportion of tumor-infiltrating macrophages produces TNF, indicating that the microenvironment of the tumor provides adequate, yet suboptimal, conditions for macrophage activation.

  15. Regulation of Tumor Necrosis Factor Gene Expression in Colorectal Adenocarcinoma: In vivo Analysis by in situ Hybridization

    NASA Astrophysics Data System (ADS)

    Beissert, Stefan; Bergholz, Michael; Waase, Inge; Lepsien, Gerd; Schauer, Alfred; Pfizenmaier, Klaus; Kronke, Martin

    1989-07-01

    Tumor necrosis factor (TNF) produced by macrophages is thought to contribute to the host defense against development of cancer. However, since tumor cells themselves are able to produce TNF, it is conceivable that TNF may also play an adverse pathological role in carcinogenesis. To better understand the functional significance of TNF in neoplastic disease, we have determined the cellular source of TNF activity produced in 10 patients with colorectal cancer. Northern blot analysis of RNAs extracted from fresh biopsy specimens revealed detectable TNF mRNA levels in all instances. By using in situ hybridization of frozen sections, scattered cells expressing TNF mRNA could be discerned. Based on morphological criteria, these TNF-positive cells most likely belong to the macrophage lineage. Macrophages in normal tissue surrounding the tumor did not express TNF mRNA, suggesting that macrophage activation occurs locally at the site of neoplastic transformation. Immunohistochemistry using anti-TNF monoclonal antibodies revealed that less than 1% of tumor-infiltrating macrophages synthesize TNF protein. Thus we present evidence that in colorectal cancer only a small proportion of tumor-infiltrating macrophages produces TNF, indicating that the microenvironment of the tumor provides adequate, yet suboptimal, conditions for macrophage activation.

  16. Necrosis avid near infrared fluorescent cyanines for imaging cell death and their use to monitor therapeutic efficacy in mouse tumor models

    PubMed Central

    Xie, Bangwen; Stammes, Marieke A.; van Driel, Pieter B.A.A.; Cruz, Luis J.; Knol-Blankevoort, Vicky T.; Löwik, Martijn A.M.; Mezzanotte, Laura; Que, Ivo; Chan, Alan; van den Wijngaard, Jeroen P.H.M.; Siebes, Maria; Gottschalk, Sven; Razansky, Daniel; Ntziachristos, Vasilis; Keereweer, Stijn; Horobin, Richard W.; Hoehn, Mathias; Kaijzel, Eric L.; van Beek, Ermond R.; Snoeks, Thomas J.A.; Löwik, Clemens W.G.M.

    2015-01-01

    Quantification of tumor necrosis in cancer patients is of diagnostic value as the amount of necrosis is correlated with disease prognosis and it could also be used to predict early efficacy of anti-cancer treatments. In the present study, we identified two near infrared fluorescent (NIRF) carboxylated cyanines, HQ5 and IRDye 800CW (800CW), which possess strong necrosis avidity. In vitro studies showed that both dyes selectively bind to cytoplasmic proteins of dead cells that have lost membrane integrity. Affinity for cytoplasmic proteins was confirmed using quantitative structure activity relations modeling. In vivo results, using NIRF and optoacoustic imaging, confirmed the necrosis avid properties of HQ5 and 800CW in a mouse 4T1 breast cancer tumor model of spontaneous necrosis. Finally, in a mouse EL4 lymphoma tumor model, already 24 h post chemotherapy, a significant increase in 800CW fluorescence intensity was observed in treated compared to untreated tumors. In conclusion, we show, for the first time, that the NIRF carboxylated cyanines HQ5 and 800CW possess strong necrosis avid properties in vitro and in vivo. When translated to the clinic, these dyes may be used for diagnostic or prognostic purposes and for monitoring in vivo tumor response early after the start of treatment. PMID:26472022

  17. Primary Tumor Necrosis Predicts Distant Control in Locally Advanced Soft-Tissue Sarcomas After Preoperative Concurrent Chemoradiotherapy

    SciTech Connect

    MacDermed, Dhara M.; Miller, Luke L.; Peabody, Terrance D.; Simon, Michael A.; Luu, Hue H.; Haydon, Rex C.; Montag, Anthony G.; Undevia, Samir D.

    2010-03-15

    Purpose: Various neoadjuvant approaches have been evaluated for the treatment of locally advanced soft-tissue sarcomas. This retrospective study describes a uniquely modified version of the Eilber regimen developed at the University of Chicago. Methods and Materials: We treated 34 patients (28 Stage III and 6 Stage IV) with locally advanced soft-tissue sarcomas of an extremity between 1995 and 2008. All patients received preoperative therapy including ifosfamide (2.5 g/m2 per day for 5 days) with concurrent radiation (28 Gy in 3.5-Gy daily fractions), sandwiched between various chemotherapy regimens. Postoperatively, 47% received further adjuvant chemotherapy. Results: Most tumors (94%) were Grade 3, and all were T2b, with a median size of 10.3 cm. Wide excision was performed in 29 patients (85%), and 5 required amputation. Of the resected tumor specimens, 50% exhibited high (>=90%) treatment-induced necrosis and 11.8% had a complete pathologic response. Surgical margins were negative in all patients. The 5-year survival rate was 42.3% for all patients and 45.2% for Stage III patients. For limb-preservation patients, the 5-year local control rate was 89.0% and reoperation was required for wound complications in 17.2%. The 5-year freedom-from-distant metastasis rate was 53.4% (Stage IV patients excluded), and freedom from distant metastasis was superior if treatment-induced tumor necrosis was 90% or greater (84.6% vs. 19.9%, p = 0.02). Conclusions: This well-tolerated concurrent chemoradiotherapy approach yields excellent rates of limb preservation and local control. The resulting treatment-induced necrosis rates are predictive of subsequent metastatic risk, and this information may provide an opportunity to guide postoperative systemic therapies.

  18. Pyoderma gangrenosum, acne conglobata, suppurative hidradenitis, and axial spondyloarthritis: efficacy of anti-tumor necrosis factor α therapy.

    PubMed

    Bruzzese, Vincenzo

    2012-12-01

    We report the case of a patient with a simultaneous presence of pyoderma gangrenosum, acne conglobata, suppurative hidradenitis, and axial spondyloarthritis. This condition differs from both the PASH (pyoderma gangrenosum, acne, and suppurative hidradenitis) syndrome, in which arthritis is absent, and the PAPA (pyogenic arthritis, pyoderma gangrenosum, and acne) syndrome, in which suppurative hidradenitis is lacking. Our patient failed to respond to etanercept therapy, whereas all dermatologic and rheumatic manifestations completely regressed following infliximab infusion. We therefore propose that simultaneous presence of pyoderma gangrenosum, acne conglobata, suppurative hidradenitis, and seronegative spondyloarthritis might represent a distinct syndrome that could be termed the PASS syndrome. Tumor necrosis factor α therapies seem to play selective roles.

  19. Transforming growth factor-beta suppresses tumor necrosis factor alpha-induced matrix metalloproteinase-9 expression in monocytes.

    PubMed

    Vaday, G G; Schor, H; Rahat, M A; Lahat, N; Lider, O

    2001-04-01

    The inflammatory response is marked by the release of several cytokines with multiple roles in regulating leukocyte activities, including the secretion of matrix metalloproteinases (MMPs). Although the effects of individual cytokines on monocyte MMP expression have been studied extensively, few studies have examined the influence of combinations of cytokines, which are likely present at inflammatory sites. Herein, we report our investigation of the combinatorial effects of tumor necrosis factor (TNF)-alpha and transforming growth factor (TGF)-beta on MMP-9 synthesis. We found that TGF-beta suppressed TNF-alpha-induced MMP-9 secretion by MonoMac-6 monocytic cells in a dose-dependent manner, with a maximal effect of TGF-beta observed at 1 ng/ml. Such suppression was likely regulated at the pretranslational level, because steady-state mRNA levels of TNF-alpha-induced MMP-9 were reduced by TGF-beta, and pulse-chase radiolabeling also showed a decrease in new MMP-9 protein synthesis. The suppressive effects of TGF-beta were time dependent, because short exposures to TNF-alpha before TGF-beta or simultaneous exposure to both cytokines efficiently reduced MMP-9 secretion. Expression of the tissue inhibitor of metalloproteinases (TIMP)-1 and TNF-alpha receptors was unaffected by either cytokine individually or in combination. Affinity binding with radiolabeled TGF-beta demonstrated that levels of TGF-beta receptors were not increased after preincubation with TGF-beta. Suppression of TNFalpha-induced MMP-9 secretion by TGF-beta correlated with a reduction in prostaglandin E2 (PGE2) secretion. Furthermore, the effect of TGF-beta or indomethacin on blockage of TNF-alpha-stimulated MMP-9 production was reversed by the addition of either exogenous PGE2 or the cyclic AMP (cAMP) analogue Bt2cAMP. Thus, we concluded that TGF-beta acts as a potent suppressor of TNF-alpha-induced monocyte MMP-9 synthesis via a PGE2- and cAMP-dependent mechanism. These results suggest that various

  20. Adenovirus-mediated gene transfer to tumor cells.

    PubMed

    Cascalló, Manel; Alemany, Ramon

    2004-01-01

    Cell transduction in vitro is only the first step toward proving that a genetherapy vector can be useful to treat tumors. However, tumor targeting in vivo is now the milestone for gene therapy to succeed against disseminated cancer. Therefore, most valuable information is obtained from studies of vector biodistribution. Owing to the hepatotropism of adenoviral vectors, a particularly important parameter is the tumor/liver ratio. This ratio can be given at the level of gene expression if the amount of transgene expression is measured. To optimize the targeting, however, the levels of viral particles that reach the tumor compared to other organs must be studied. Most of this chapter deals with methods to quantify the virus fate in tumor-bearing animals. We present a radioactive labeling method that can be used to study biodistribution. After a small section dealing with tumor models, we describe methods to quantify different parameters related to adenovirus-mediated tumor targeting. PMID:14970588

  1. The ecology and evolutionary biology of cancer: a review of mathematical models of necrosis and tumor cell diversity.

    PubMed

    Nagy, John D

    2005-04-01

    Recent evidence elucidating the relationship between parenchyma cells and otherwise "healthy" cells in malignant neoplasms is forcing cancer biologists to expand beyond the genome-centered, "one-renegade-cell" theory of cancer. As it becomes more and more clear that malignant transformation is context dependent, the usefulness of an evolutionary ecology-based theory of malignant neoplasia becomes increasingly clear. This review attempts to synthesize various theoretical structures built by mathematical oncologists into potential explanations of necrosis and cellular diversity, including both total cell diversity within a tumor and cellular pleomorphism within the parenchyma. The role of natural selection in necrosis and pleomorphism is also examined. The major hypotheses suggested as explanations of these phenomena are outlined in the conclusions section of this review. In every case, mathematical oncologists have built potentially valuable models that yield insight into the causes of necrosis, cell diversity, and nearly every other aspect of malignancy; most make predictions ultimately testable in the lab or clinic. Unfortunately, these advances have gone largely unexploited by the empirical community. Possible reasons why are considered.

  2. Interferon-γ and Tumor Necrosis Factor-α Polarize Bone Marrow Stromal Cells Uniformly to a Th1 Phenotype

    PubMed Central

    Jin, Ping; Zhao, Yuanlong; Liu, Hui; Chen, Jinguo; Ren, Jiaqiang; Jin, Jianjian; Bedognetti, Davide; Liu, Shutong; Wang, Ena; Marincola, Francesco; Stroncek, David

    2016-01-01

    Activated T cells polarize mesenchymal stromal cells (MSCs) to a proinflammatory Th1 phenotype which likely has an important role in amplifying the immune response in the tumor microenvironment. We investigated the role of interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α), two factors produced by activated T cells, in MSC polarization. Gene expression and culture supernatant analysis showed that TNF-α and IFN-γ stimulated MSCs expressed distinct sets of proinflammatory factors. The combination of IFN-γ and TNF-α was synergistic and induced a transcriptome most similar to that found in MSCs stimulated with activated T cells and similar to that found in the inflamed tumor microenvironment; a Th1 phenotype with the expression of the immunosuppressive factors IL-4, IL-10, CD274/PD-L1 and indoleamine 2,3 dioxygenase (IDO). Single cell qRT-PCR analysis showed that the combination of IFN-γ and TNF-α polarized uniformly to this phenotype. The combination of IFN-γ and TNF-α results in the synergist uniform polarization of MSCs toward a primarily Th1 phenotype. The stimulation of MSCs by IFN-γ and TNF-α released from activated tumor infiltrating T cells is likely responsible for the production of many factors that characterize the tumor microenvironment. PMID:27211104

  3. Effect of Melilotus extract on lung injury via the upregulation of tumor necrosis factor-α-induced protein-8-like 2 in septic mice

    PubMed Central

    LIU, MING-WEI; SU, MEI-XIAN; WANG, YUN-HUI; QIAN, CHUAN-YUN

    2015-01-01

    As a Traditional Chinese Medicine, Melilotus extracts have been reported to function as an anti-inflammatory agent, antioxidant and inhibitor of capillary permeability. The present study aimed to identify the mechanisms by which Melilotus interferes with inflammation-associated and oxidative stress pathways during sepsis. An animal model of cecal ligation-perforation (CLP)-induced sepsis was established. Two hours prior to surgery, animals in the treatment group were administered 25 mg/kg Melilotus extract tablets and subsequently every 8 h. At 24 h post-administration, pathological modifications in lung tissue and expression levels of tumor necrosis factor-α-induced protein-8-like 2 (TIPE2) expression, nuclear factor (NF)-κB, toll-like receptor 4 (TLR4), heme oxygenase-1 (HO-1), inhibitor of κB kinase (IκB), pro-inflammatory mediators (interleukin-6 and tumor necrosis factor-α), myeloperoxidase (MPO), malondialdehyde (MDA) and superoxide dismutase (SOD), were examined. The results showed that Melilotus extract had a marked effect on the pathological manifestation of lung tissue and lung inflammatory response, the upregulation of TIPE2, HO-1 and IκB expression, and the inhibition of TLR4 and NF-κB activities. In addition, following treatment with Melilotus extract, the model animals demonstrated decreased levels of MPO and MDA as well as increased levels of SOD. In conclusion, these results indicated that Melilotus extract may be a potential therapeutic agent for the treatment of CLP-induced lung injury, the mechanism of which proceeded via inflammation- and oxidation-associated pathways by increasing TIPE2 expression. PMID:25405912

  4. First description and expression analysis of tumor necrosis factor receptor-associated factor 6 (TRAF6) from the swimming crab, Portunus trituberculatus.

    PubMed

    Zhou, Su-Ming; Li, Meng; Yang, Ning; Liu, Shun; Yuan, Xue-Mei; Tao, Zhen; Wang, Guo-Liang

    2015-08-01

    Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a cytoplasmic adapter protein that mediates signals induced by the tumor necrosis factor receptor (TNFR) superfamily and the interleukin-1 receptor (IL-1R). In the present study, the full-length cDNA of TRAF6 (Pt-TRAF6) was identified in a marine crab, Portunus trituberculatus. Pt-TRAF6 ORF is predicted to encode a 599-amino acid protein, including a RING type zinc finger, two TRAF-type zinc fingers, and a meprin and TRAF homology (MATH) domain. The overall amino acid sequence identity between Pt-TRAF6 and other TRAF6s ranged from 50.9 to 51.3% for shrimp and from 16.1 to 19.4% for insects. The Pt-TRAF6 gene contains six exons and five introns, which is different from the organization of the insect TRAF6 gene. Pt-TRAF6 transcripts were broadly expressed in all tissues tested, and their expression was higher in hemocytes, gills, the intestine, and heart than in muscle. Interestingly, the level of Pt-TRAF6 transcript differed between male and female crabs. After Vibrio alginolyticus or lipopolysaccharide (LPS) challenge, the Pt-TRAF6 transcript was down-regulated in hemocytes and up-regulated in gills. Moreover, Pt-TRAF6 expression was altered sooner in the LPS challenge group than in the V. alginolyticus challenge group. These results indicate that Pt-TRAF6 may respond to Gram-negative bacterial infections.

  5. Tumor necrosis factor-alpha processing inhibitor-1 inhibits skin fibrosis in a bleomycin-induced murine model of scleroderma.

    PubMed

    Terao, Mika; Murota, Hiroyuki; Kitaba, Shun; Katayama, Ichiro

    2010-01-01

    Elevated serum concentration of soluble tumor necrosis factor receptor p55 (sTNFRp55) is known to correlate with the severity of systemic sclerosis (SSc). However, it has not been verified whether this increase contributes to the pathogenesis of SSc. In this study, we found that sTNFRp55 also is increased in the bleomycin (BLM)-induced murine model of SSc. Therefore, we examined the effect of tumor necrosis factor-alpha processing inhibitor-1 (TAPI-1), the inhibitor of TNFRp55 sheddase, in this model. TAPI-1 was administered weekly to mice with skin fibrosis induced by daily BLM injections. TAPI-1 significantly suppressed BLM-induced skin thickness and the number of myofibroblasts. It also inhibited the increase of serum sTNFRp55 after 3 weeks of BLM injections. The mRNA expression of collagen type I alpha1, transforming growth factor-beta1 and alpha smooth muscle actin were decreased by TAPI-1 administration. Taken together, these findings indicate that targeting the TNFalpha converting enzyme might be a new type of therapy for patients with SSc. PMID:19758314

  6. ADAM17 in tumor associated leukocytes regulates inflammatory mediators and promotes mammary tumor formation

    PubMed Central

    Chuntova, Pavlina; Brady, Nicholas J.; Witschen, Patrice M.; Kemp, Sarah E.; Nelson, Andrew C.; Walcheck, Bruce; Schwertfeger, Kathryn L.

    2016-01-01

    The presence of inflammatory cells within the tumor microenvironment has been tightly linked to mammary tumor formation and progression. Specifically, interactions between tumor cells and infiltrating macrophages can contribute to the generation of a pro-tumorigenic microenvironment. Understanding the complex mechanisms that drive tumor cell-macrophage cross-talk will ultimately lead to the development of approaches to prevent or treat early stage breast cancers. As described here, we demonstrate that the cell surface protease a disintegrin and metalloproteinase 17 (ADAM17) is expressed by macrophages in mammary tumors and contributes to regulating the expression of pro-inflammatory mediators, including inflammatory cytokines and the inflammatory mediator cyclooxygenase-2 (Cox-2). Furthermore, we demonstrate that ADAM17 is expressed on leukocytes, including macrophages, within polyoma middle T (PyMT)-derived mammary tumors. Genetic deletion of ADAM17 in leukocytes resulted in decreased onset of mammary tumor growth, which was associated with reduced expression of the Cox-2 within the tumor. These findings demonstrate that ADAM17 regulates key inflammatory mediators in macrophages and that leukocyte-specific ADAM17 is an important promoter of mammary tumor initiation. Understanding the mechanisms associated with early stage tumorigenesis has implications for the development of preventive and/or treatment strategies for early stage breast cancers.

  7. Pretreatment serum interleukin-1β, interleukin-6, and tumor necrosis factor-α levels predict the progression of colorectal cancer.

    PubMed

    Chang, Pei-Hung; Pan, Yi-Ping; Fan, Chung-Wei; Tseng, Wen-Ko; Huang, Jen-Seng; Wu, Tsung-Han; Chou, Wen-Chi; Wang, Cheng-Hsu; Yeh, Kun-Yun

    2016-03-01

    The correlations of pretreatment serum concentrations of proinflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNFα) with the clinicopathologic features and progression of colorectal cancer (CRC) were investigated. The pretreatment serum levels of IL-1β, IL-6, and TNFα were measured in 164 CRC patients before treatment. The relationships between changes in proinflammatory cytokine and C-reactive protein (CRP) levels and both clinicopathologic variables and disease progression were examined by univariate and multivariate analysis. Advanced tumor stage was associated with a poorer histologic differentiation, higher CRP level, lower albumin level, and inferior progression-free survival rate (PFSR). Furthermore, high levels of CRP (>5 mg/L) were associated with proinflammatory cytokine intensity, defined according to the number of proinflammatory cytokines with levels above the median level (IL-1β ≥10 pg/mL; IL-6 ≥ 10 pg/mL; and TNFα ≥55 pg/mL). Under different inflammation states, proinflammatory cytokine intensity, in addition to tumor stage, independently predicted PFSR in patients with CRP <5 mg/L, whereas tumor stage was the only independent predictor of PFSR in patients with CRP ≥5 mg/L. Proinflammatory cytokine intensity and the CRP level are clinically relevant for CRC progression. Measurement of IL-1β, IL-6, and TNFα serum levels may help identify early cancer progression among patients with CRP <5 mg/L in routine practice. PMID:26799163

  8. Suppression of tumor necrosis factor receptor-associated protein 1 expression induces inhibition of cell proliferation and tumor growth in human esophageal cancer cells.

    PubMed

    Tian, Xin; Ma, Ping; Sui, Cheng-Guang; Meng, Fan-Dong; Li, Yan; Fu, Li-Ye; Jiang, Tao; Wang, Yang; Jiang, You-Hong

    2014-06-01

    Tumor necrosis factor receptor-associated protein 1 (TRAP1) is a molecular chaperone involved in multidrug resistance and antiapoptosis in some human tumors, but its regulatory mechanisms have not been revealed in esophageal squamous cell carcinoma (ESCC). In this study, 138 specimens of ESCC were analyzed. TRAP1 was overexpressed in ESCC, particularly in poorly differentiated tumors. To further explore the molecular regulatory mechanism, we constructed specific small interfering RNA-expressing vectors targeting Trap1, and knocked down Trap1 expression in the esophageal cancer cell lines ECA109 and EC9706. Knockdown of Trap1 induced increases in reactive oxygen species and mitochondrial depolarization, which have been proposed as critical regulators of apoptosis. The cell cycle was arrested in G2/M phase, and in vitro inhibition of cell proliferation was confirmed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide and bromodeoxyuridine assays. Furthermore, re-expression of TRAP1 in Trap1 small interfering RNA-transfected ESCC cells restored cell proliferation and cell apoptosis. Bioluminescence of subcutaneously xenografted ESCC tumor cells demonstrated significant inhibition of in vivo tumor growth by Trap1 knockdown. This study shows that TRAP1 was overexpressed in most patients with ESCC, and caused an increase in antiapoptosis potency. TRAP1 may be regarded as a target in ESCC biotherapy.

  9. The NADase-Negative Variant of the Streptococcus pyogenes Toxin NAD+ Glycohydrolase Induces JNK1-Mediated Programmed Cellular Necrosis

    PubMed Central

    Chandrasekaran, Sukantha

    2016-01-01

    ABSTRACT Virulence factors are often multifunctional and contribute to pathogenesis through synergistic mechanisms. For the human pathogen Streptococcus pyogenes, two factors that act synergistically are the S. pyogenes NAD+ glycohydrolase (SPN) and streptolysin O (SLO). Through distinct mechanisms, SLO forms pores in host cell membranes and translocates SPN into the host cell cytosol. Two natural variants of SPN exist, one that exhibits NADase activity and one that lacks this function, and both versions are translocated and act in concert with SLO to cause an accelerated death response in epithelial cells. While NADase+ SPN is known to trigger a metabolic form of necrosis through the depletion of NAD+, the mechanism by which NADase− SPN induces cell death was unknown. In the studies described here, we examined the pathway of NADase− cell death through analysis of activation patterns of mitogen-activated protein kinases (MAPKs). S. pyogenes infection resulted in activation of members of three MAPK subfamilies (p38, ERK, and JNK). However, only JNK was activated in an SLO-specific manner. NADase− SPN induced necrosis in HeLa epithelial cells associated with depolarization of mitochondrial membranes, activation of NF-κB, and the generation of reactive oxygen species. Remarkably, RNA interference (RNAi) silencing of JNK protected cells from NADase−-SPN-mediated necrosis, suggesting that NADase− SPN triggers a form of programmed necrosis dependent on JNK signaling. Taken together, these data demonstrate that SPN acts with SLO to elicit necrosis through two different mechanisms depending on its NADase activity, i.e., metabolic (NADase+) or programmed (NADase−), leading to distinct inflammatory profiles. PMID:26838722

  10. Changes in gene expression of tumor necrosis factor alpha and interleukin 6 in a canine model of caerulein-induced pancreatitis.

    PubMed

    Song, Ruhui; Yu, Dohyeon; Park, Jinho

    2016-07-01

    Acute pancreatitis is an inflammatory process that frequently involves peripancreatic tissues and remote organ systems. It has high morbidity and mortality rates in both human and veterinary patients. The severity of pancreatitis is generally determined by events that occur after acinar cell injury in the pancreas, resulting in elevated levels of various proinflammatory mediators, such as interleukin (IL) 1β and 6, as well as tumor necrosis factor alpha (TNF-α). When these mediators are excessively released into the systemic circulation, severe pancreatitis occurs with systemic complications. This pathophysiological process is similar to that of sepsis; thus, there are many striking clinical similarities between patients with septic shock and those with severe acute pancreatitis. We induced acute pancreatitis using caerulein in dogs and measured the change in the gene expression of proinflammatory cytokines. The levels of TNF-α and IL-6 mRNA peaked at 3 h, at twice the baseline levels, and the serum concentrations of amylase and lipase also increased. Histopathological examination revealed severe hyperemia of the pancreas and hyperemia in the duodenal villi and the hepatic sinusoid. Thus, pancreatitis can be considered an appropriate model to better understand the development of naturally occurring sepsis and to assist in the effective treatment and management of septic patients.

  11. Tumor necrosis factor-alpha triggers mucus production in airway epithelium through an IkappaB kinase beta-dependent mechanism.

    PubMed

    Lora, José M; Zhang, Dong Mei; Liao, Sha Mei; Burwell, Timothy; King, Anne Marie; Barker, Philip A; Singh, Latika; Keaveney, Marie; Morgenstern, Jay; Gutiérrez-Ramos, José Carlos; Coyle, Anthony J; Fraser, Christopher C

    2005-10-28

    Excessive mucus production by airway epithelium is a major characteristic of a number of respiratory diseases, including asthma, chronic bronchitis, and cystic fibrosis. However, the signal transduction pathways leading to mucus production are poorly understood. Here we examined the potential role of IkappaB kinase beta (IKKbeta) in mucus synthesis in vitro and in vivo. Tumor necrosis factor-alpha (TNF-alpha) or transforming growth factor-alpha stimulation of human epithelial cells resulted in mucus secretion as measured by MUC5AC mRNA and protein. TNF-alpha stimulation induced IKKbeta-dependent p65 nuclear translocation, mucus synthesis, and production of cytokines from epithelial cells. TNF-alpha, but not transforming growth factor-alpha, induced mucus production dependent on IKKbeta-mediated NF-kappaB activation. In vivo, TNF-alpha induced NF-kappaB as determined by whole mouse body bioluminescence. This activation was localized to the epithelium as revealed by LacZ staining in NF-kappaB-LacZ transgenic mice. TNF-alpha-induced mucus production in vivo could also be inhibited by administration into the epithelium of an IKKbeta dominant negative adenovirus. Taken together, our results demonstrated the important role of IKKbeta in TNF-alpha-mediated mucus production in airway epithelium in vitro and in vivo. PMID:16123045

  12. N sup G -methyl-L-arginine inhibits tumor necrosis factor-induced hypotension: Implications for the involvement of nitric oxide

    SciTech Connect

    Kilbourn, R.G.; Adams, J. ); Gross, S.S.; Griffith, O.W.; Levi, R. ); Jubran, A.; Lodato, R.F. )

    1990-05-01

    Clinical assessment of the activity of tumor necrosis factor (TNF) against human cancer has been limited by a dose-dependent cardiovascular toxicity, most frequently hypotension. TNF is also thought to mediate the vascular collapse resulting from bacterial endotoxin. The present studies address the mechanism by which TNF causes hypotension and provide evidence for elevated production of nitric oxide, a potent vasodilator initially characterized as endothelium-derived relaxing factor. Nitric oxide is synthesized by several cell types, including endothelial cells and macrophages, from the guanidino nitrogen of L-arginine; the enzymatic pathway is competitively inhibited by N{sup G}-methyl-L-arginine. The authors found that hypotension induced in pentobarbital-anesthetized dogs by TNF was completely reversed within 2 min following administration of N{sup G}-methyl-L-arginine. In contrast, N{sup G}-methyl-L-arginine failed to reverse the hypotensive response to an equivalent depressor dose of nitroglycerin, a compound that acts by forming nitric oxide by a monenzymatic, arginine-independent mechanism. The effect of N{sup G}-methyl-L-arginine on TNF-induced hypotension was antagonized, and the hypotension restored, by administration of excess L-arginine findings suggest that excessive nitric oxide production mediates the hypotensive effect of TNF.

  13. Transcriptional inhibition of interleukin-8 expression in tumor necrosis factor-tolerant cells: evidence for involvement of C/EBP beta.

    PubMed

    Weber, Marion; Sydlik, Carmen; Quirling, Martina; Nothdurfter, Caroline; Zwergal, Andreas; Heiss, Peter; Bell, Susanne; Neumeier, Dieter; Ziegler-Heitbrock, H W Loms; Brand, Korbinian

    2003-06-27

    There is some evidence that the potent cytokine tumor necrosis factor (TNF) is able to induce tolerance after repeated stimulation of cells. To investigate the molecular mechanisms mediating this phenomenon, the expression of interleukin-8 (IL-8), which is regulated by transcription factors NF-kappaB and C/EBPbeta, was monitored under TNF tolerance conditions. Pretreatment of monocytic cells for 72 h with low TNF doses inhibited TNF-induced (restimulation with a high dose) IL-8 promoter-dependent transcription as well as IL-8 production. Under these conditions neither activation of NF-kappaB nor IkappaB proteolysis was affected after TNF re-stimulation, albeit a slightly reduced IkappaB-alpha level was found in the TNF pretreated but not re-stimulated sample. Remarkably, in tolerant cells an increased binding of C/EBPbeta to its IL-8 promoter-specific DNA motif as well as an elevated association of C/EBPbeta protein with p65-containing NF-kappaB complexes was observed. Finally, overexpression of C/EBPbeta, but not p65 or Oct-1, markedly prevented TNF-induced IL-8 promoter-dependent transcription. Taken together, these data indicate that the expression of IL-8 is inhibited at the transcriptional level in TNF-tolerant cells and C/EBPbeta is involved under these conditions in mediating the negative-regulatory effects, a mechanism that may play a role in inflammatory processes such as sepsis.

  14. Marine Drugs Regulating Apoptosis Induced by Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL)

    PubMed Central

    Elmallah, Mohammed I. Y.; Micheau, Olivier

    2015-01-01

    Marine biomass diversity is a tremendous source of potential anticancer compounds. Several natural marine products have been described to restore tumor cell sensitivity to TNF-related apoptosis inducing ligand (TRAIL)-induced cell death. TRAIL is involved during tumor immune surveillance. Its selectivity for cancer cells has attracted much attention in oncology. This review aims at discussing the main mechanisms by which TRAIL signaling is regulated and presenting how marine bioactive compounds have been found, so far, to overcome TRAIL resistance in tumor cells. PMID:26580630

  15. Tumor necrosis factor and immune interferon synergistically increase transcription of HLA class I heavy- and light-chain genes in vascular endothelium

    SciTech Connect

    Johnson, D.R.; Pober, J.S. )

    1990-07-01

    Tumor necrosis factor and immune interferon synergistically increase cell-surface expression of class I major histocompatibility complex molecules in cultured human endothelial cells. The authors report that tumor necrosis factor and interferon {gamma} each independently increase mRNA levels and together cause a greater-than-additive (i.e., synergistic) increase in steady-state mRNA levels and transcriptional rates of the class I heavy- and light-chain genes. HLA heavy-chain mRNA is equally stable in cytokine-treated and -untreated endothelial cells. Interferon {gamma} does not increase tumor necrosis factor receptor number or affinity on human endothelial cells. They conclude that the synergistic increase in class I major histocompatibility complex cell-surface expression results principally from the synergistic increase in transcriptional rates. They propose that this increase is caused by the cooperative binding of independently activated transcription factors to the promoter/enhancer sequences of class I genes.

  16. Penfluridol suppresses pancreatic tumor growth by autophagy-mediated apoptosis

    PubMed Central

    Ranjan, Alok; Srivastava, Sanjay K.

    2016-01-01

    Pancreatic tumors exhibit enhanced autophagy as compared to any other cancer, making it resistant to chemotherapy. We evaluated the effect of penfluridol against pancreatic cancer. Penfluridol treatment induced apoptosis and inhibited the growth of Panc-1, BxPC-3 and AsPC-1, pancreatic cancer cells with IC50 ranging between 6–7 μM after 24 h of treatment. Significant autophagy was induced by penfluridol treatment in pancreatic cancer cells. Punctate LC3B and autophagosomes staining confirmed autophagy. Inhibiting autophagy by chloroquine, bafilomycin, 3-methyladenine or LC3BsiRNA, significantly blocked penfluridol-induced apoptosis, suggesting that autophagy lead to apoptosis in our model. Penfluridol treatment suppressed the growth of BxPC-3 tumor xenografts by 48% as compared to 17% when treated in combination with chloroquine. Similarly, penfluridol suppressed the growth of AsPC-1 tumors by 40% versus 16% when given in combination with chloroquine. TUNEL staining and caspase-3 cleavage revealed less apoptosis in the tumors from mice treated with penfluridol and chloroquine as compared to penfluridol alone. Penfluridol treatment also suppressed the growth of orthotopically implanted Panc-1 tumors by 80% by inducing autophagy-mediated apoptosis in the tumors. These studies established that penfluridol inhibits pancreatic tumor growth by autophagy-mediated apoptosis. Since penfluridol is already in clinic, positive findings from our study will accelerate its clinical development. PMID:27189859

  17. Glioma-secreted soluble factors stimulate microglial activation: The role of interleukin-1β and tumor necrosis factor-α.

    PubMed

    Hwang, Ji-Sun; Jung, Eun-Hye; Kwon, Mi-Youn; Han, Inn-Oc

    2016-09-15

    We aimed to elucidate the effect of soluble factors secreted by glioma on microglial activation. Conditioned medium (CM) from glioma cells, CRT-MG and C6, significantly induced nitric oxide (NO) production and stimulated the mRNA expression of inducible NO synthase (iNOS), interleukin (IL)-1beta, IL-6, tumor necrosis factor-alpha (TNF-α) and cyclooxygenase 2 (COX-2) in BV2 cells. Glioma CM stimulated p38 mitogen-activated protein kinase (MAPK) phosphorylation, and a p38 MAPK inhibitor, SB203580, suppressed CM-induced NO production in BV2 cells. In addition, CM stimulated nuclear factor-kappaB (NF-κB) DNA binding and transcriptional activity, which was repressed by SB203580. Gliomas displayed higher mRNA expression and release of TNF-α and IL-1β than primary astrocyte cells. Neutralization of TNF-α and IL-1β in C6-CM using a neutralizing antibody inhibited NO/iNOS expression in BV-2 cells. These results indicate potential contribution of diffusible tumor-derived factors to regulate microglial activation and subsequent tumor microenvironment. PMID:27609291

  18. Caspase-1 Protein Induces Apoptosis-associated Speck-like Protein Containing a Caspase Recruitment Domain (ASC)-mediated Necrosis Independently of Its Catalytic Activity*

    PubMed Central

    Motani, Kou; Kushiyama, Hiroko; Imamura, Ryu; Kinoshita, Takeshi; Nishiuchi, Takumi; Suda, Takashi

    2011-01-01

    The adaptor protein, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), connects pathogen/danger sensors such as NLRP3 and NLRC4 with caspases and is involved in inflammation and cell death. We have found that ASC activation induced caspase-8-dependent apoptosis or CA-074Me (cathepsin B inhibitor)-inhibitable necrosis depending on the cell type. Unlike necroptosis, another necrotic cell death, ASC-mediated necrosis, was neither RIP3-dependent nor necrostatin-1-inhibitable. Although acetyl–YVAD–chloromethylketone (Ac-YVAD-CMK) (caspase-1 inhibitor) did not inhibit ASC-mediated necrosis, comprehensive gene expression analyses indicated that caspase-1 expression coincided with the necrosis type. Furthermore, caspase-1 knockdown converted necrosis-type cells to apoptosis-type cells, whereas exogenous expression of either wild-type or catalytically inactive caspase-1 did the opposite. Knockdown of caspase-1, but not Ac-YVAD-CMK, suppressed the monocyte necrosis induced by Staphylococcus and Pseudomonas infection. Thus, the catalytic activity of caspase-1 is dispensable for necrosis induction. Intriguingly, a short period of caspase-1 knockdown inhibited IL-1β production but not necrosis, although longer knockdown suppressed both responses. Possible explanations of this phenomenon are discussed. PMID:21832064

  19. CYLD Promotes TNF-α-Induced Cell Necrosis Mediated by RIP-1 in Human Lung Cancer Cells

    PubMed Central

    Lin, Xing; Chen, Qianshun; Huang, Chen

    2016-01-01

    Lung cancer is one of the most common cancers in the world. Cylindromatosis (CYLD) is a deubiquitination enzyme and contributes to the degradation of ubiquitin chains on RIP1. The aim of the present study is to investigate the levels of CYLD in lung cancer patients and explore the molecular mechanism of CYLD in the lung cancer pathogenesis. The levels of CYLD were detected in human lung cancer tissues and the paired paracarcinoma tissues by real-time PCR and western blotting analysis. The proliferation of human lung cancer cells was determined by MTT assay. Cell apoptosis and necrosis were determined by FACS assay. The results demonstrated that low levels of CYLD were detected in clinical lung carcinoma specimens. Three pairs of siRNA were used to knock down the endogenous CYLD in lung cancer cells. Knockdown of CYLD promoted cell proliferation of lung cancer cells. Otherwise overexpression of CYLD induced TNF-α-induced cell death in A549 cells and H460 cells. Moreover, CYLD-overexpressed lung cancer cells were treated with 10 μM of z-VAD-fmk for 12 hours and the result revealed that TNF-α-induced cell necrosis was significantly enhanced. Additionally, TNF-α-induced cell necrosis in CYLD-overexpressed H460 cells was mediated by receptor-interacting protein 1 (RIP-1) kinase. Our findings suggested that CYLD was a potential target for the therapy of human lung cancers. PMID:27738385

  20. A novel tumor necrosis factor-responsive transcription factor which recognizes a regulatory element in hemopoietic growth factor genes

    SciTech Connect

    Shannon, M.F.; Pell, L.M.; Kuczek, E.S.; Occhiodoro, F.S.; Dunn, S.M.; Vadas, M.A. ); Lenardo, M.J. )

    1990-06-01

    A conserved DNA sequence element, termed cytokine 1 (CK-1), is found in the promoter regions of many hemopoietic growth factor (HGF) genes. Mutational analyses and modification interference experiments show that this sequence specifically binds a nuclear transcription factor, NF-GMa, which is a protein with a molecular mass of 43 kilodaltons. It interacts with different affinities with the CK-1-like sequence from a number of HGF genes, including granulocyte macrophage colony-stimulating factor (GM-CSF), granulocyte (G)-CSF, interleukin 3 (IL-3), and IL-5. The authors show that the level of NF-GMa binding is induced in embryonic fibroblasts by tumor necrosis factor {alpha} (TNF-{alpha}) treatment and that the CK-1 sequence from the G-CSF gene is a TNF-{alpha}-responsive enhancer in these cells.

  1. Tumor Necrosis Factor Related Apoptosis Inducing Ligand (Trail) in endothelial response to biomechanical and biochemical stresses in arteries.

    PubMed

    D'Auria, F; Centurione, L; Centurione, M A; Angelini, A; Di Pietro, R

    2015-11-01

    Shear stress is determined by three physical components described in a famous triad: blood flow, blood viscosity and vessel geometry. Through the direct action on endothelium, shear stress is able to radically interfere with endothelial properties and the physiology of the vascular wall. Endothelial cells (ECs) have also to sustain biochemical stresses represented by chemokines, growth factors, cytokines, complement, hormones, nitric oxide (NO), oxygen and reactive oxygen species (ROS). Many growth factors, cytokines, chemokines, hormones, and chemical substances, like NO, act and regulate endothelium functions and homeostasis. Among these cytokines Tumor Necrosis Factor Related Apoptosis Inducing Ligand (TRAIL) has been assigned a regulatory role in ECs physiology and physiopathology. Thus, the aim of this review is to provide a general overview of the endothelial response pathways after different types of biomechanical and biochemical stress in in vitro models and to analyze the crucial role of TRAIL under pathological conditions of the cardiocirculatory system like atherosclerosis, coronary artery disease, and diabetes.

  2. Media effects in modulating the conformational equilibrium of a model compound for tumor necrosis factor converting enzyme inhibition

    NASA Astrophysics Data System (ADS)

    Banchelli, Martina; Guardiani, Carlo; Sandberg, Robert B.; Menichetti, Stefano; Procacci, Piero; Caminati, Gabriella

    2015-07-01

    Small-molecule inhibitors of Tumor Necrosis Factor α Converting Enzyme (TACE) are a promising therapeutic tool for Rheumatoid Arthritis, Multiple Sclerosis and other autoimmune diseases. Here we report on an extensive chemical-physical analysis of the media effects in modulating the conformational landscape of MBET306, the common scaffold and a synthetic precursor of a family of recently discovered tartrate-based TACE inhibitors. The structural features of this molecule with potential pharmaceutical applications have been disclosed by interpreting extensive photophysical measurements in various solvents with the aid of enhanced sampling molecular dynamics simulations and time dependent density functional calculations. Using a combination of experimental and computational techniques, the paper provides a general protocol for studying the structure in solution of molecular systems characterized by the existence of conformational metastable states.

  3. Increased liver apoptosis and tumor necrosis factor expression in Atlantic bluefin tuna (Thunnus thynnus) reared in the northern Adriatic Sea.

    PubMed

    Corriero, Aldo; Zupa, Rosa; Pousis, Chrysovalentinos; Santamaria, Nicoletta; Bello, Giambattista; Jirillo, Emilio; Carrassi, Michele; De Giorgi, Carla; Passantino, Letizia

    2013-06-15

    The Atlantic bluefin tuna Thunnus thynnus (ABFT) is intensely fished in the Mediterranean Sea to supply a prosperous capture-based mariculture industry. Liver apoptotic structures and tumor necrosis factor (TNF) gene expression were determined in: wild ABFT caught in the eastern Atlantic; juvenile ABFT reared in the central Adriatic Sea; juvenile ABFT reared in the northern Adriatic Sea; adult ABFT reared in the western Mediterranean. The highest density of liver apoptotic structures was found in the juveniles from the northern Adriatic. Two partial TNF cDNAs (TNF1 and TNF2) were cloned and sequenced. TNF1 gene expression was higher in juveniles than in adults. The highest expression of TNF2 was found in the juveniles from the northern Adriatic. These findings might be related to the juvenile exposure to environmental pollutants.

  4. Synergistic effects of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha: central monoamine, corticosterone, and behavioral variations.

    PubMed

    Brebner, K; Hayley, S; Zacharko, R; Merali, Z; Anisman, H

    2000-06-01

    The proinflammatory cytokines interleukin-1beta (IL-1beta), IL-6, and tumor necrosis factor-alpha (TNF-alpha) influence neuroendocrine activity, promote central neurotransmitter alterations, and induce a constellation of symptoms collectively referred to as sickness behaviors. These cytokines may also elicit anxiety and anhedonia, and have been associated with psychological disturbances in humans. In the present investigation, systemic IL-1beta and TNF-alpha dose-dependently and synergistically disrupted consumption of a highly palatable food source (chocolate milk), possibly reflecting anorexia or anhedonia engendered by the treatments. As well, these cytokines synergistically increased plasma corticosterone levels. Although IL-1beta and TNF-alpha provoked variations of amine turnover in the hypothalamus, locus coeruleus, and central amygdala, synergistic effects were not evident in this respect. Nevertheless, in view of the central amine variations induced by the cytokines, it is suggested that immune activation may come to influence complex behavioral processes, as well as affective state. PMID:10788757

  5. Association study of the interleukin-1 gene complex and tumor necrosis factor alpha gene with suicide attempts.

    PubMed

    Sáiz, Pilar A; García-Portilla, Paz; Paredes, Begoña; Arango, Celso; Morales, Blanca; Alvarez, Victoria; Coto, Eliécer; Bascarán, María-Teresa; Bousoño, Manuel; Bobes, Julio

    2008-06-01

    To investigate the association between four functional polymorphisms in interleukin-1 (IL-1) [IL-1 alpha -889 C/T, IL-1 beta +3953 C/T, IL-1RA (86 bp)n] and tumor necrosis factor alpha (TNFalpha) (-308A/G) genes and suicide attempts. Distribution of the aforesaid polymorphisms was analyzed in 193 suicide attempters compared with 420 unrelated healthy controls from Asturias (Northern Spain). Genotypes were determined using standard methods. No significant differences were found in genotype or in allelic distribution of IL-1 alpha, IL-1 beta, IL-1RA, or TNFalpha gene polymorphisms. No relationship was found between genotypes and the impulsivity of the suicide attempt. Estimated IL-1 haplotype frequencies were similar in both groups (likelihood ratio test=13.26, df=14, P=0.506). Our data do not suggest that genetically determined changes in the IL-1 or TNFalpha genes confer increased susceptibility to suicidal behavior.

  6. Tumor necrosis factor-alpha and nerve growth factor synergistically induce iNOS in pheochromocytoma cells.

    PubMed

    Macdonald, N J; Taglialatela, G

    2000-11-01

    Inducible nitric oxide synthase (iNOS) has been reported in tangle-bearing neurons of patients with Alzheimer's disease (AD), and can be induced by tumor necrosis factor-alpha (TNFalpha). High CNS levels of TNFalpha are associated with neurodegenerative diseases such as AD, where neurons dependent on neurotrophins such as nerve growth factor (NGF) are particularly affected. In this study we determined the effect of TNFalpha on iNOS in NGF-responsive pheochromocytoma (PC12) cells. We found that while TNFalpha and NGF alone were unable to induce iNOS, their simultaneous addition resulted in iNOS induction and the release of nitric oxide. Our results suggest that synergistic iNOS induction by TNFalpha and NGF may occur in selective population of NGF-responsive neurons in the presence of elevated CNS levels of TNFalpha.

  7. Hepatitis B and C reactivation with tumor necrosis factor inhibitors: synopsis and interpretation of screening and prophylaxis recommendations.

    PubMed

    Fuchs, Inbal; Abu-Shakra, Mahmoud; Sikuler, Emanuel

    2013-06-01

    Information on reactivation of chronic viral hepatitis infection in patients who are candidates for tumor necrosis factor alpha inhibitors (TNFi) is in a constant state of flux. We retrieved the most updated guidelines (in English) of prominent rheumatological and gastroenterological professional socienties for the mangement of chronic hepatitis B (HBV) and hepatitis C virus (HCV) infection in the context of treatment with TNFi. Subsequently, the major areas of uncertainty and absence of consensus in the guidelines were located and a secondary search for additional studies addressing those areas was performed. Based on our search we formulated a personal interpretation applicable to health care settings with virological laboratories capable of performing viral load measurements, and health systems that can support use of potent nucleoside/tide analogues in well-defined patient populations. PMID:23882898

  8. Tumor necrosis factor-{alpha} enhanced fusions between oral squamous cell carcinoma cells and endothelial cells via VCAM-1/VLA-4 pathway

    SciTech Connect

    Song, Kai; Zhu, Fei; Zhang, Han-zhong; Shang, Zheng-jun

    2012-08-15

    Fusion between cancer cells and host cells, including endothelial cells, may strongly modulate the biological behavior of tumors. However, no one is sure about the driving factors and underlying mechanism involved in such fusion. We hypothesized in this study that inflammation, one of the main characteristics in tumor microenvironment, serves as a prominent catalyst for fusion events. Our results showed that oral cancer cells can fuse spontaneously with endothelial cells in co-culture and inflammatory cytokine tumor necrosis factor-{alpha} (TNF-{alpha}) increased fusion of human umbilical vein endothelium cells and oral cancer cells by up to 3-fold in vitro. Additionally, human oral squamous cell carcinoma cell lines and 35 out of 50 (70%) oral squamous carcinoma specimens express VLA-4, an integrin, previously implicated in fusions between human peripheral blood CD34-positive cells and murine cardiomyocytes. Expression of VCAM-1, a ligand for VLA-4, was evident on vascular endothelium of oral squamous cell carcinoma. Moreover, immunocytochemistry and flow cytometry analysis revealed that expression of VCAM-1 increased obviously in TNF-{alpha}-stimulated endothelial cells. Anti-VLA-4 or anti-VCAM-1 treatment can decrease significantly cancer-endothelial adhesion and block such fusion. Collectively, our results suggested that TNF-{alpha} could enhance cancer-endothelial cell adhesion and fusion through VCAM-1/VLA-4 pathway. This study provides insights into regulatory mechanism of cancer-endothelial cell fusion, and has important implications for the development of novel therapeutic strategies for prevention of metastasis. -- Highlights: Black-Right-Pointing-Pointer Spontaneous oral cancer-endothelial cell fusion. Black-Right-Pointing-Pointer TNF-{alpha} enhanced cell fusions. Black-Right-Pointing-Pointer VCAM-1/VLA-4 expressed in oral cancer. Black-Right-Pointing-Pointer TNF-{alpha} increased expression of VCAM-1 on endothelial cells. Black

  9. The role IL-1 in tumor-mediated angiogenesis

    PubMed Central

    Voronov, Elena; Carmi, Yaron; Apte, Ron N.

    2014-01-01

    Tumor angiogenesis is one of the hallmarks of tumor progression and is essential for invasiveness and metastasis. Myeloid inflammatory cells, such as immature myeloid precursor cells, also termed myeloid-derived suppressor cells (MDSCs), neutrophils, and monocytes/macrophages, are recruited to the tumor microenvironment by factors released by the malignant cells that are subsequently “educated” in situ to acquire a pro-invasive, pro-angiogenic, and immunosuppressive phenotype. The proximity of myeloid cells to endothelial cells (ECs) lining blood vessels suggests that they play an important role in the angiogenic response, possibly by secreting a network of cytokines/chemokines and inflammatory mediators, as well as via activation of ECs for proliferation and secretion of pro-angiogenic factors. Interleukin-1 (IL-1) is an “alarm,” upstream, pro-inflammatory cytokine that is generated primarily by myeloid cells. IL-1 initiates and propagates inflammation, mainly by inducing a local cytokine network and enhancing inflammatory cell infiltration to affected sites and by augmenting adhesion molecule expression on ECs and leukocytes. Pro-inflammatory mediators were recently shown to play an important role in tumor-mediated angiogenesis and blocking their function may suppress tumor progression. In this review, we summarize the interactions between IL-1 and other pro-angiogenic factors during normal and pathological conditions. In addition, the feasibility of IL-1 neutralization approaches for anti-cancer therapy is discussed. PMID:24734023

  10. Contrast-Enhanced Ultrasonography of Hepatocellular Carcinoma After Chemoembolisation Using Drug-Eluting Beads: A Pilot Study Focused on Sustained Tumor Necrosis

    SciTech Connect

    Moschouris, Hippocrates; Malagari, Katerina; Papadaki, Marina Georgiou; Kornezos, Ioannis Matsaidonis, Dimitrios

    2010-10-15

    The purpose of this study was to assess the use of contrast-enhanced ultrasonography (CEUS) and the sustained antitumor effect of drug-eluting beads used for transarterial chemoembolisation (TACE) of unresectable hepatocellular carcinoma (HCC). Ten patients with solitary, unresectable HCC underwent CEUS before, 2 days after, and 35 to 40 days after TACE using a standard dose (4 ml) of drug-eluting beads (DC Beads; Biocompatibles, Surrey, UK) preloaded with doxorubicin (25 mg doxorubicin/ml hydrated beads). For CEUS, a second-generation contrast agent (SonoVue, Bracco, Milan, Italy) and a low mechanical-index technique were used. A part of the tumor was characterized as necrotic if it showed complete lack of enhancement. The percentage of necrosis was calculated at the sonographic section that depicted the largest diameter of the tumor. Differences in the extent of early (2 days after TACE) and delayed (35 to 40 days after TACE) necrosis were quantitatively and subjectively assessed. Early post-TACE tumor necrosis ranged from 21% to 70% (mean 43.5% {+-} 19%). There was a statistically significant (p = 0.0012, paired Student t test) higher percentage of delayed tumor necrosis, which ranged from 24% to 88% (mean 52.3% {+-} 20.3%). Subjective evaluation showed a delayed obvious increase of the necrotic areas in 5 patients. In 2 patients, tumor vessels that initially remained patent disappeared on the delayed follow-up. A part of tumor necrosis after chemoembolisation of HCC with DEB seems to take place later than 2 days after TACE. CEUS may provide evidence for the sustained antitumor effect of DEB-TACE. Nevertheless, the ideal time for the imaging evaluation of tumor response remains to be defined.

  11. Time courses of PIVKA-II and AFP levels after hepatic artery embolization and hepatic artery infusion against hepatocellular carcinoma: relation between the time course and tumor necrosis.

    PubMed

    Kishi, K; Sonomura, T; Mitsuzane, K; Nishida, N; Kimura, M; Satoh, M; Yamada, R; Kodama, N; Kinoshita, M; Tanaka, H

    1992-01-01

    We examined 35 untreated patients with unresectable hepatocellular carcinoma who exhibited positivity for both plasma PIVKA-II and serum AFP, and studied the weekly course of these markers from the pre-TAE or -HAI period to the third week of treatment. We correlated changes in these markers with the tumor necrosis rate and the time course on X-ray CT images. One week after TAE, the tumor necrosis rate and the time course of PIVKA-II showed a significant correlation (r = 0.7), while the correlation was between the time course of AFP and the tumor necrosis rate was insignificant (r = 0.2). At two and three weeks after TAE, both the time course of AFP and PIVKA-II showed significant correlations with the tumor necrosis rate. In 16 patients with tumor necrosis rates of not less than 90%, the mean of the actual half-life (AHL) of PIVKA-II was 3.2 days, the shortest was 1.83 days, and 75% of all AHLs clustered from two days to four days, while the mean and shortest AHLs of AFP were six days and 2.98 days, respectively, exhibiting a broader distribution. On the other hand, in three out of the nine cases of hepatocellular carcinoma complicated with portal tumor thrombi, PIVKA-II increased after HAI in spite of a reduction in tumor size. It was suggested that the PIVKA-II level requires careful interpretation in cases of portal vein obstruction after intensive hepatic arterial infusion of anticancer agents.

  12. T Cell Cancer Therapy Requires CD40-CD40L Activation of Tumor Necrosis Factor and Inducible Nitric-Oxide-Synthase-Producing Dendritic Cells.

    PubMed

    Marigo, Ilaria; Zilio, Serena; Desantis, Giacomo; Mlecnik, Bernhard; Agnellini, Andrielly H R; Ugel, Stefano; Sasso, Maria Stella; Qualls, Joseph E; Kratochvill, Franz; Zanovello, Paola; Molon, Barbara; Ries, Carola H; Runza, Valeria; Hoves, Sabine; Bilocq, Amélie M; Bindea, Gabriela; Mazza, Emilia M C; Bicciato, Silvio; Galon, Jérôme; Murray, Peter J; Bronte, Vincenzo

    2016-09-12

    Effective cancer immunotherapy requires overcoming immunosuppressive tumor microenvironments. We found that local nitric oxide (NO) production by tumor-infiltrating myeloid cells is important for adoptively transferred CD8(+) cytotoxic T cells to destroy tumors. These myeloid cells are phenotypically similar to inducible nitric oxide synthase (NOS2)- and tumor necrosis factor (TNF)-producing dendritic cells (DC), or Tip-DCs. Depletion of immunosuppressive, colony stimulating factor 1 receptor (CSF-1R)-dependent arginase 1(+) myeloid cells enhanced NO-dependent tumor killing. Tumor elimination via NOS2 required the CD40-CD40L pathway. We also uncovered a strong correlation between survival of colorectal cancer patients and NOS2, CD40, and TNF expression in their tumors. Our results identify a network of pro-tumor factors that can be targeted to boost cancer immunotherapies.

  13. T Cell Cancer Therapy Requires CD40-CD40L Activation of Tumor Necrosis Factor and Inducible Nitric-Oxide-Synthase-Producing Dendritic Cells.

    PubMed

    Marigo, Ilaria; Zilio, Serena; Desantis, Giacomo; Mlecnik, Bernhard; Agnellini, Andrielly H R; Ugel, Stefano; Sasso, Maria Stella; Qualls, Joseph E; Kratochvill, Franz; Zanovello, Paola; Molon, Barbara; Ries, Carola H; Runza, Valeria; Hoves, Sabine; Bilocq, Amélie M; Bindea, Gabriela; Mazza, Emilia M C; Bicciato, Silvio; Galon, Jérôme; Murray, Peter J; Bronte, Vincenzo

    2016-09-12

    Effective cancer immunotherapy requires overcoming immunosuppressive tumor microenvironments. We found that local nitric oxide (NO) production by tumor-infiltrating myeloid cells is important for adoptively transferred CD8(+) cytotoxic T cells to destroy tumors. These myeloid cells are phenotypically similar to inducible nitric oxide synthase (NOS2)- and tumor necrosis factor (TNF)-producing dendritic cells (DC), or Tip-DCs. Depletion of immunosuppressive, colony stimulating factor 1 receptor (CSF-1R)-dependent arginase 1(+) myeloid cells enhanced NO-dependent tumor killing. Tumor elimination via NOS2 required the CD40-CD40L pathway. We also uncovered a strong correlation between survival of colorectal cancer patients and NOS2, CD40, and TNF expression in their tumors. Our results identify a network of pro-tumor factors that can be targeted to boost cancer immunotherapies. PMID:27622331

  14. Elevated CO2 selectively inhibits interleukin-6 and tumor necrosis factor expression and decreases phagocytosis in the macrophage

    PubMed Central

    Wang, Naizhen; Gates, Khalilah L.; Trejo, Humberto; Favoreto, Silvio; Schleimer, Robert P.; Sznajder, Jacob I.; Beitel, Greg J.; Sporn, Peter H. S.

    2010-01-01

    Elevated blood and tissue CO2, or hypercapnia, is common in severe lung disease. Patients with hypercapnia often develop lung infections and have an increased risk of death following pneumonia. To explore whether hypercapnia interferes with host defense, we studied the effects of elevated PCO2 on macrophage innate immune responses. In differentiated human THP-1 macrophages and human and mouse alveolar macrophages stimulated with lipopolysaccharide (LPS) and other Toll-like receptor ligands, hypercapnia inhibited expression of tumor necrosis factor and interleukin (IL)-6, nuclear factor (NF)-κB-dependent cytokines critical for antimicrobial host defense. Inhibition of IL-6 expression by hypercapnia was concentration dependent, rapid, reversible, and independent of extracellular and intracellular acidosis. In contrast, hypercapnia did not down-regulate IL-10 or interferon-β, which do not require NF-κB. Notably, hypercapnia did not affect LPS-induced degradation of IκBα, nuclear translocation of RelA/p65, or activation of mitogen-activated protein kinases, but it did block IL-6 promoter-driven luciferase activity in mouse RAW 264.7 macrophages. Elevated PCO2 also decreased phagocytosis of opsonized polystyrene beads and heat-killed bacteria in THP-1 and human alveolar macrophages. By interfering with essential innate immune functions in the macrophage, hypercapnia may cause a previously unrecognized defect in resistance to pulmonary infection in patients with advanced lung disease.—Wang, N., Gates, K. L., Trejo, H., Favoreto, Jr., S., Schleimer, R. P., Sznajder, J. I., Beitel, G. J., Sporn, P. H. S. Elevated CO2 selectively inhibits interleukin-6 and tumor necrosis factor expression and decreases phagocytosis in the macrophage. PMID:20181940

  15. Molecular characterization of tumor necrosis factor receptor-associated factor 6 (TRAF6) in pearl oyster Pinctada martensii.

    PubMed

    Jiao, Y; Tian, Q L; Du, X D; Wang, Q H; Huang, R L; Deng, Y W; Shi, S L

    2014-01-01

    Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a key signaling adaptor molecule for tumor necrosis factor receptor superfamily and Toll-like receptor/interleukin-1 receptor family members. It signals the upstream receptors and is involved in a wide range of biological functions, such as immunity and bone metabolism. In this report, the TRAF6 gene from the pearl oyster Pinctada martensii (designated as PmTRAF6) was identified and characterized. The obtained full-length PmTRAF6 cDNA was 2273 bp, containing a 5'-untranslated region (UTR) of 297 bp, a 3'-UTR of 128 bp with a 42-bp poly (A) tail, and an open reading frame of 1848 bp that encoded 616-amino acid residues. The deduced protein sequence of PmTRAF6 contained a conserved TRAF family motif including a RING-type zinc finger, two TRAF-type zinc fingers, and a coiled-coil region followed by one meprin and TRAF homology domain. Multiple-sequence alignment indicated that TRAF6 was highly conserved among species, and PmTRAF6 showed 53% sequence identity to Azumapecten farreri and Mizuhopecten yessoensis. Furthermore, an amino acid sequence containing a low-complexity region was inserted in the TRAF6s from mollusk. Quantitative real-time polymerase chain reaction analysis demonstrated that PmTRAF6 was constitutively expressed in all tissues studied, with the most abundant mRNA expression in hepatopancreas and gill in P. martensii. After lipopolysaccharide stimulation, the expression of PmTRAF6 mRNA was dramatically upregulated. These results suggested that the obtained PmTRAF6 was a member of the TRAF6 family and perhaps involved in the innate immune response of pearl oyster. PMID:25511039

  16. Tumor necrosis factor α-induced protein-3 protects zinc transporter 8 against proinflammatory cytokine-induced downregulation

    PubMed Central

    Cheng, Liqing; Zhang, Dongmei; Chen, Bing

    2016-01-01

    Zinc transporter 8 (ZnT8) is exclusively expressed in the pancreatic islet and is essential for insulin crystallization, hexamerization and secretion. Tumor necrosis factor α-induced protein-3 (TNFAIP3) is a zinc finger protein that serves a major role in the negative feedback regulation of NF-κB signaling in response to multiple stimuli, and is a central regulator of immunopathology. Although the role of TNFAIP3 in diabetes has been extensively studied, its effect on ZnT8 has not been fully elucidated. The present study aimed to verify whether proinflammatory cytokines, tumor necrosis factor α (TNF-α) and interleukin-1β (IL-1β), are able to affect ZnT8 expression in islet cells. In addition, the study aimed to determine the effect of TNFAIP3 overexpression on cytokine-altered ZnT8 activity, considering its effect on NF-κB signaling. Cell-based studies using NIT-1 cells overexpressing TNFAIP3 were used to assess the effect of cytokines on ZnT8 and NF-κB activation, as well as the effect of TNFAIP3 on ZnT8 expression. Western blot analysis and immunofluorescence staining were employed to determine the protein expression and NF-κB activation, respectively. The results indicated that cytokine stimulation led to TNFAIP3 upregulation, ZnT8 downregulation and NF-κB activation. Furthermore, TNFAIP3 overexpression protected ZnT8 from cytokine-induced downregulation. In conclusion, the current results suggest that inflammation or TNFAIP3 dysfunction may be involved in the pathogenesis of diabetes via ZnT8 expression, besides from islet cell apoptosis. In addition, restricting inflammation and enhancing TNFAIP3 expression may exert a positive effect in diabetes prevention, treatment and pancreatic cell transplantation. PMID:27588072

  17. Taci Is a Traf-Interacting Receptor for Tall-1, a Tumor Necrosis Factor Family Member Involved in B Cell Regulation

    PubMed Central

    Xia, Xing-Zhong; Treanor, James; Senaldi, Giorgio; Khare, Sanjay D.; Boone, Tom; Kelley, Michael; Theill, Lars E.; Colombero, Anne; Solovyev, Irina; Lee, Frances; McCabe, Susan; Elliott, Robin; Miner, Kent; Hawkins, Nessa; Guo, Jane; Stolina, Marina; Yu, Gang; Wang, Judy; Delaney, John; Meng, Shi-Yuan; Boyle, William J.; Hsu, Hailing

    2000-01-01

    We and others recently reported tumor necrosis factor (TNF) and apoptosis ligand–related leukocyte-expressed ligand 1 (TALL-1) as a novel member of the TNF ligand family that is functionally involved in B cell proliferation. Transgenic mice overexpressing TALL-1 have severe B cell hyperplasia and lupus-like autoimmune disease. Here, we describe expression cloning of a cell surface receptor for TALL-1 from a human Burkitt's lymphoma RAJI cell library. The cloned receptor is identical to the previously reported TNF receptor (TNFR) homologue transmembrane activator and calcium modulator and cyclophilin ligand (CAML) interactor (TACI). Murine TACI was subsequently isolated from the mouse B lymphoma A20 cells. Human and murine TACI share 54% identity overall. Human TACI exhibits high binding affinities to both human and murine TALL-1. Soluble TACI extracellular domain protein specifically blocks TALL-1–mediated B cell proliferation without affecting CD40- or lipopolysaccharide-mediated B cell proliferation in vitro. In addition, when injected into mice, soluble TACI inhibits antibody production to both T cell–dependent and –independent antigens. By yeast two-hybrid screening of a B cell library with TACI intracellular domain, we identified that, like many other TNFR family members, TACI intracellular domain interacts with TNFR-associated factor (TRAF)2, 5, and 6. Correspondingly, TACI activation in a B cell line results in nuclear factor κB and c-Jun NH2-terminal kinase activation. The identification and characterization of the receptor for TALL-1 provides useful information for the development of a treatment for B cell–mediated autoimmune diseases such as systemic lupus erythematosus. PMID:10880535

  18. Interleukin-1 and tumor necrosis factor-α inhibit chondrogenesis by human mesenchymal stem cells through NF-κB dependent pathways

    PubMed Central

    Wehling, N.; Palmer, G.D.; Pilapil, C.; Liu, F.; Wells, J.W.; Müller, P.E.; Evans, C.H.; Porter, R.M.

    2009-01-01

    Objective The differentiation of mesenchymal stem cells (MSCs) into chondrocytes provides an attractive basis for the repair and regeneration of articular cartilage. Under clinical conditions, chondrogenesis will often need to occur in the presence of inflammatory mediators produced in response to injury or disease. Here we examine the effect of two important inflammatory cytokines, interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), on the chondrogenic behavior of human MSCs. Methods Aggregate cultures of MSCs recovered from the femoral intermedullary canal were used. Chondrogenesis was assessed by the expression of relevant transcripts by quantitative RT-PCR and examination of aggregates by histology and immunohistochemistry. The possible involvement of NF-κB in mediating the effects of IL-1β was examined by delivering a luciferase reporter construct and a dominant negative inhibitor of NF-κB (srIκB), with adenovirus vectors. Results Both IL-1β and TNF-α inhibited chondrogenesis in a dose-dependent manner. This was associated with a marked activation of NF-κB. Delivery of srIκB abrogated the activation of NF-κB and rescued the chondrogenic response. Although expression of type X collagen followed this pattern, other markers of hypertrophic differentiation responded differently. Matrix metalloproteinase-13 was induced by IL-1β in a NF-κB dependent fashion. Alkaline phosphatase activity, in contrast, was inhibited by IL-1β regardless of srIκB delivery. Conclusions Cell-based repair of lesions in articular cartilage will be compromised in inflamed joints. Strategies for enabling repair under these conditions include the use of specific antagonists of individual pyrogens, such as IL-1 and TNF, or the targeting of important intracellular mediators, such as NF-κB. PMID:19248089

  19. Induction of sensitivity to the cytotoxic action of tumor necrosis factor alpha by adenovirus E1A is independent of transformation and transcriptional activation.

    PubMed

    Ames, R S; Holskin, B; Mitcho, M; Shalloway, D; Chen, M J

    1990-09-01

    We have previously shown that expression of the adenovirus E1A 12S or 13S products in NIH 3T3 fibroblasts induces susceptibility to the cytotoxic actions of tumor necrosis factor alpha (TNF alpha). A large number of studies have mapped the multiple biological functions of the 12S and 13S products to three highly conserved regions (CR) within the E1A sequence. Here we used plasmids coding for E1A deletion and point mutants in these regions to generate target cell lines for TNF alpha cytotoxicity assays to determine which regions and functions are necessary for the induction of TNF alpha sensitivity. Expression of CR1 was required for the induction of TNF alpha sensitivity. This finding did not reflect a requirement for transforming or transcriptional repression activity, since some mutants that were defective in both of these properties were able to induce TNF alpha sensitivity. CR2 transformation-defective point mutants, but not a CR2/3 region deletion mutant, were also able to induce sensitivity. In addition, NIH 3T3 cells expressing the retroviral transcription activators tat from human immunodeficiency virus type 1 and tax from human T-lymphotropic virus type I were not sensitive to TNF alpha. However, the possibility that E1A-mediated transcriptional activation can augment the induction of TNF alpha sensitivity is not excluded. Comparison of data from previous biological studies with the TNF alpha cytotoxicity assays presented here suggested that the mechanism by which E1A induces sensitivity to TNF alpha in NIH 3T3 cells is independent of many of the known E1A biological functions, including transformation in cooperation with ras, immortalization, induction of DNA synthesis in quiescent cells, and transcriptional repression. A novel E1A-mediated effect may be involved, although our data do not exclude the possibility that sensitization to TNF alpha is mediated through E1A binding to cellular proteins. PMID:2143540

  20. Induction of sensitivity to the cytotoxic action of tumor necrosis factor alpha by adenovirus E1A is independent of transformation and transcriptional activation.

    PubMed Central

    Ames, R S; Holskin, B; Mitcho, M; Shalloway, D; Chen, M J

    1990-01-01

    We have previously shown that expression of the adenovirus E1A 12S or 13S products in NIH 3T3 fibroblasts induces susceptibility to the cytotoxic actions of tumor necrosis factor alpha (TNF alpha). A large number of studies have mapped the multiple biological functions of the 12S and 13S products to three highly conserved regions (CR) within the E1A sequence. Here we used plasmids coding for E1A deletion and point mutants in these regions to generate target cell lines for TNF alpha cytotoxicity assays to determine which regions and functions are necessary for the induction of TNF alpha sensitivity. Expression of CR1 was required for the induction of TNF alpha sensitivity. This finding did not reflect a requirement for transforming or transcriptional repression activity, since some mutants that were defective in both of these properties were able to induce TNF alpha sensitivity. CR2 transformation-defective point mutants, but not a CR2/3 region deletion mutant, were also able to induce sensitivity. In addition, NIH 3T3 cells expressing the retroviral transcription activators tat from human immunodeficiency virus type 1 and tax from human T-lymphotropic virus type I were not sensitive to TNF alpha. However, the possibility that E1A-mediated transcriptional activation can augment the induction of TNF alpha sensitivity is not excluded. Comparison of data from previous biological studies with the TNF alpha cytotoxicity assays presented here suggested that the mechanism by which E1A induces sensitivity to TNF alpha in NIH 3T3 cells is independent of many of the known E1A biological functions, including transformation in cooperation with ras, immortalization, induction of DNA synthesis in quiescent cells, and transcriptional repression. A novel E1A-mediated effect may be involved, although our data do not exclude the possibility that sensitization to TNF alpha is mediated through E1A binding to cellular proteins. Images PMID:2143540

  1. Association of the tumor necrosis factor-alpha -308G>A polymorphism with breast cancer in Mexican women.

    PubMed

    Gómez Flores-Ramos, L; Escoto-De Dios, A; Puebla-Pérez, A M; Figuera-Villanueva, L E; Ramos-Silva, A; Ramírez-Patiño, R; Delgado-Saucedo, J I; Salas-González, E; Zúñiga-González, G M; Alonzo-Rojo, A; Gutiérrez-Hurtado, I; Gallegos-Arreola, M P

    2013-11-18

    The tumor necrosis factor-alpha (TNF-α) gene plays an important role in cell proliferation, differentiation, apoptosis, lipid metabolism, coagulation, insulin resistance, and endothelial function. Polymorphisms of TNF-α have been associated with cancer. We examined the role of the -308G>A polymorphism in this gene by comparing the genotypes of 294 healthy Mexican women with those of 465 Mexican women with breast cancer. The observed genotype frequencies for controls and breast cancer patients were 1 and 14% for AA, 13 and 21% for GA, and 86 and 65% for GG, respectively. We found that the odds ratio (OR) for AA genotype was 2.4, with a 95% confidence interval (95%CI) of 5.9-101.1 (P = 0.0001). The association was also evident when comparing the distribution of the AA-GA genotype in patients in the following categories: 1) premenopause and obesity I (OR = 3.5, 95%CI = 1.3-9.3, P = 0.008), 2) Her-2 neu and tumor stage I-II (OR = 2.5, 95%CI = 1.31-4.8, P = 0.004), 3) premenopause and tumor stage III-IV (OR = 1.7, 95%CI = 1.0-2.9, P = 0.034), 4) chemotherapy non-response and abnormal hematocrit (OR = 2.4, 95%CI = 1.2-4.8, P = 0.015), 5) body mass index and Her-2 neu and III-IV tumor stage (OR = 2.8, 95%CI = 1.2- 6.6, P = 0.016), and 6) nodule metastasis and K-I67 (OR = 4.0, 95%CI = 1.01-15.7, P = 0.038). We concluded that the genotypes AA-GA of the -308G>A polymorphism in TNF-α significantly contribute to breast cancer susceptibility in the analyzed sample from the Mexican population.

  2. TWEAK mediates anti-tumor effect of tumor-infiltrating macrophage

    SciTech Connect

    Kaduka, Yuki; Takeda, Kazuyoshi . E-mail: ktakeda@med.juntendo.ac.jp; Nakayama, Masafumi; Kinoshita, Katsuyuki; Yagita, Hideo; Okumura, Ko

    2005-06-03

    TWEAK induces diverse cellular responses, including pro-inflammatory chemokine production, migration, proliferation, and cell death through the TWEAK receptor, Fn14. In the present study, we examined the effect of TWEAK or Fn14 expression in tumor cells on tumor outgrowth in vivo. Administration of neutralizing anti-TWEAK mAb significantly reduced the frequency of tumor rejection and shortened the survival of mice intraperitoneally inoculated with TWEAK-sensitive Fn14-expressing tumor cells. Moreover, anti-TWEAK mAb treatment promoted the subcutaneous growth of TWEAK-sensitive Fn14-expressing tumor cells, and this promotion was abolished by the inhibition of macrophage infiltration but not NK cell depletion. In contrast, administration of anti-TWEAK mAb had no apparent effect on the growth of TWEAK-resistant tumor cells, even if tumor cells expressed Fn14. On the other hand, TWEAK expression in tumor cells had no significant effect on subcutaneous tumor growth. These results indicate that TWEAK mediates anti-tumor effect of macrophages in vivo.

  3. The Transcription Factor Wilms Tumor 1 Confers Resistance in Myeloid Leukemia Cells against the Proapoptotic Therapeutic Agent TRAIL (Tumor Necrosis Factor α-related Apoptosis-inducing Ligand) by Regulating the Antiapoptotic Protein Bcl-xL*

    PubMed Central

    Bansal, Hima; Seifert, Theresea; Bachier, Carlos; Rao, Manjeet; Tomlinson, Gail; Iyer, Swaminathan Padmanabhan; Bansal, Sanjay

    2012-01-01

    Tumor necrosis factor α-related apoptosis-inducing ligand (TRAIL) is considered a promising cancer therapeutic agent due to its ability to induce apoptosis in a variety of cancer cells, while sparing normal cells. However, many human tumors including acute myeloid leukemia (AML) are partially or completely resistant to monotherapy with TRAIL, limiting its therapeutic utility. Therefore, identification of factors that contribute to TRAIL resistance may facilitate future development of more effective TRAIL-based cancer therapies. Here, we report a previously unknown role for WT1 in mediating TRAIL resistance in leukemia. Knockdown of WT1 with shRNA rendered TRAIL-resistant myeloid leukemia cells sensitive to TRAIL-induced cell death, and re-expression of shRNA-resistant WT1 restored TRAIL resistance. Notably, TRAIL-mediated apoptosis in WT1-silenced cells was largely due to down-regulation of the antiapoptotic protein Bcl-xL. Moreover, WT1 expression strongly correlated with overexpression of Bcl-xL in AML cell lines and blasts from AML patients. Furthermore, we found that WT1 transactivates Bcl-xL by directly binding to its promoter. We previously showed that WT1 is a novel client protein of heat shock protein 90 (Hsp90). Consistent with this, pharmacological inhibition of Hsp90 resulted in reduced WT1 and Bcl-xL expression leading to increased sensitivity of leukemia cells to TRAIL-mediated apoptosis. Collectively, our results suggest that WT1-dependent Bcl-xL overexpression contributes to TRAIL resistance in myeloid leukemias. PMID:22898820

  4. Effects of tumor necrosis factor α on leptin-sensitive intestinal vagal mechanoreceptors in the cat.

    PubMed

    Quinson, Nathalie; Vitton, Véronique; Bouvier, Michel; Grimaud, Jean-Charles; Abysique, Anne

    2013-11-01

    The involvement of tumour necrosis factor α (TNF-α) in inflammatory bowel disease (IBD) has been established, and anti-TNF-α has been suggested as a therapeutic approach for the treatment of these pathologies. We studied the effects of TNF-α on leptin-sensitive intestinal vagal units to determine whether TNF-α exerts its effects through the intestinal vagal mechanoreceptors and to investigate its interactions with substances regulating food intake. The activity of intestinal vagal mechanoreceptors was recorded via microelectrodes implanted into the nodose ganglion in anesthetized cats. TNF-α (1 μg, i.a.) increased the discharge frequency of leptin-activated units (type 1 units; P < 0.05) and had no effect on the discharge frequency of leptin-inhibited units (type 2 units). When TNF-α was administered 20 min after sulfated cholecystokinin-8 (CCK), its excitatory effects on type 1 units were significantly enhanced (P < 0.0001) and type 2 units were significantly (P < 0.05) activated. Pre-treatment with Il-1ra (250 μg, i.a.) blocked the excitatory effects of TNF-α on type 1 units whereas the excitatory effects of TNF-α administration after CCK treatment on type 2 units were not modified. The activation of leptin-sensitive units by TNF-α may explain, at least in part, the weight loss observed in IBD.

  5. Interleukin-6 and Tumor Necrosis Factor-α Are Associated with Quality of Life–Related Symptoms in Pulmonary Arterial Hypertension

    PubMed Central

    Ventetuolo, Corey E.; Palevsky, Harold I.; Lederer, David J.; Horn, Evelyn M.; Mathai, Stephen C.; Pinder, Diane; Archer-Chicko, Christine; Bagiella, Emilia; Roberts, Kari E.; Tracy, Russell P.; Hassoun, Paul M.; Girgis, Reda E.; Kawut, Steven M.

    2015-01-01

    Rationale: Inflammation is associated with symptoms in many chronic illnesses; however, this link has not been established in pulmonary arterial hypertension. Objectives: The objective of this study was to investigate the association between inflammatory markers and quality of life–related symptoms in patients with pulmonary arterial hypertension. We hypothesized that higher circulating IL-6 and tumor necrosis factor-α levels would be associated with worse quality of life–related symptoms. Methods: We performed a secondary analysis using baseline and 3-month assessments of 62 subjects in a clinical trial of aspirin and simvastatin to determine the association between plasma IL-6 and tumor necrosis factor-α levels and the Medical Outcomes Study Short Form-36 subscales (pain, vitality, mental health). Measurements and Main Results: The mean age was 49.7 ± 13.4 years; 87% were female. Higher IL-6 levels were significantly associated with lower Medical Outcomes Study Short Form-36 subscale scores, indicating worse bodily pain, vitality, and mental health (all P < 0.01). Higher tumor necrosis factor-α levels were significantly associated with increased bodily pain, but better mental health scores. Conclusions: IL-6 and tumor necrosis factor-α levels are associated with certain quality of life domains in patients with pulmonary arterial hypertension. Clinical trial registered with www.clinicaltrials.gov (NCT00384865). PMID:25615959

  6. CD8+ T Cells Specific to Apoptosis-Associated Antigens Predict the Response to Tumor Necrosis Factor Inhibitor Therapy in Rheumatoid Arthritis

    PubMed Central

    Citro, Alessandra; Scrivo, Rossana; Martini, Helene; Martire, Carmela; De Marzio, Paolo; Vestri, Anna Rita; Sidney, John; Sette, Alessandro; Barnaba, Vincenzo; Valesini, Guido

    2015-01-01

    CD8+ T cells specific to caspase-cleaved antigens derived from apoptotic T cells (apoptotic epitopes) represent a principal player in chronic immune activation, which is known to amplify immunopathology in various inflammatory diseases. The purpose of the present study was to investigate the relationship involving these autoreactive T cells, the rheumatoid arthritis immunopathology, and the response to tumor necrosis factor-α inhibitor therapy. The frequency of autoreactive CD8+ T cells specific to various apoptotic epitopes, as detected by both enzyme-linked immunospot assay and dextramers of major histocompatibility complex class I molecules complexed with relevant apoptotic epitopes, was longitudinally analyzed in the peripheral blood of rheumatoid arthritis patients who were submitted to etanercept treatment (or other tumor necrosis factor inhibitors as a control). The percentage of apoptotic epitope-specific CD8+ T cells was significantly higher in rheumatoid arthritis patients than in healthy donors, and correlated with the disease activity. More important, it was significantly more elevated in responders to tumor necrosis factor-α inhibitor therapy than in non-responders before the start of therapy; it significantly dropped only in the former following therapy. These data indicate that apoptotic epitope-specific CD8+ T cells may be involved in rheumatoid arthritis immunopathology through the production of inflammatory cytokines and that they may potentially represent a predictive biomarker of response to tumor necrosis factor-α inhibitor therapy to validate in a larger cohort of patients. PMID:26061065

  7. Radiocurability by Targeting Tumor Necrosis Factor-{alpha} Using a Bispecific Antibody in Carcinoembryonic Antigen Transgenic Mice

    SciTech Connect

    Larbouret, Christel; Robert, Bruno; Linard, Christine; Teulon, Isabelle; Gourgou, Sophie M.Sc.; Bibeau, Frederic; Martineau, Pierre; Santoro, Lore; Pouget, Jean-Pierre; Pelegrin, Andre; Azria, David

    2007-11-15

    Purpose: Tumor necrosis factor-{alpha} (TNF-{alpha}) enhances radiotherapy (RT) killing of tumor cells in vitro and in vivo. To overcome systemic side effects, we used a bispecific antibody (BsAb) directed against carcinoembryonic antigen (CEA) and TNF-{alpha} to target this cytokine in a CEA-expressing colon carcinoma. We report the evaluation of this strategy in immunocompetent CEA-transgenic mice. Methods and Materials: The murine CEA-transfected colon carcinoma MC-38 was used for all experiments. In vitro, clonogenic assays were performed after RT alone, TNF-{alpha} alone, and RT plus TNF-{alpha}. In vivo, the mice were randomly assigned to treatment groups: control, TNF-{alpha}, BsAb, BsAb plus TNF-{alpha}, RT, RT plus TNF-{alpha}, and RT plus BsAb plus TNF-{alpha}. Measurements of endogenous TNF-{alpha} mRNA levels and evaluation of necrosis (histologic evaluation) were assessed per treatment group. Results: In vitro, combined RT plus TNF-{alpha} resulted in a significant decrease in the survival fraction at 2 Gy compared with RT alone (p < 0.00001). In vivo, we observed a complete response in 5 (50%) of 10, 2 (20%) of 10, 2 (18.2%) of 11, and 0 (0%) of 12 treated mice in the RT plus BsAb plus TNF-{alpha}, RT plus TNF-{alpha}, RT alone, and control groups, respectively. This difference was statistically significant when TNF-{alpha} was targeted with the BsAb (p = 0.03). The addition of exogenous TNF-{alpha} to RT significantly increased the endogenous TNF-{alpha} mRNA level, particularly when TNF-{alpha} was targeted with BsAb (p < 0.01). The percentages of necrotic area were significantly augmented in the RT plus BsAb plus TNF-{alpha} group. Conclusion: These results suggest that targeting TNF-{alpha} with the BsAb provokes RT curability in a CEA-expressing digestive tumor syngenic model and could be considered as a solid rationale for clinical trials.

  8. Interleukin-1 beta, interferon-gamma, and tumor necrosis factor-alpha gene expression in peripheral blood mononuclear cells of patients with coronary artery disease

    PubMed Central

    Enayati, Samaneh; Seifirad, Soroush; Amiri, Parvin; Abolhalaj, Milad; Mohammad -Amoli, Mahsa

    2015-01-01

    BACKGROUND Several inflammatory mediators have been proposed to contribute to the pathogenesis of atherosclerosis. The aim of this study was to evaluate the quantitative expression of pro-inflammatory cytokines in un-stimulated peripheral blood mononuclear cell of patients with coronary artery disease (CAD). METHODS Interleukin-1 beta (IL-1β), tumor necrosis factor-alpha, and interferon-gamma (IFN-γ) gene expression were evaluated in angiography confirmed patients with and without CAD in a case-control study using quantitative real-time polymerase chain reaction. RESULTS A significant increase (P = 0.030) in IL-1β gene expression was found in patients with CAD [median interquartile range (IQR) = 4.890 (6.084)] compared to patients without CAD [median (IQR) = 1.792 (3.172)]. Despite the increase in IFN-γ gene expression in patients with CAD [median (IQR) = 1.298 (3.896)] versus patients without CAD [median (IQR) = 0.841 (2.79)], there was not statistically significant difference (P = 0.990). CONCLUSION Our results provide evidence for possible association between IL-1β and development of atherosclerosis as a crucial cytokine that induce a network of signaling pathways. This finding if proved in future would suggest IL-1β as a potent therapeutic target in CAD. PMID:26715931

  9. In vitro investigation of the roles of the proinflammatory cytokines tumor necrosis factor-α and interleukin-1 in murine osteoclastogenesis.

    PubMed

    Jules, Joel; Feng, Xu

    2014-01-01

    Whereas the monocyte/macrophage-colony stimulating factor (M-CSF) and the receptor activator of NF-кB ligand (RANKL) are essential and sufficient for osteoclastogenesis, a number of other cytokines including two proinflammatory cytokines, tumor necrosis factor-α (TNF-α), and interleukin-1 (IL-1), can exert profound effects on the osteoclastogenic process. However, the precise mode of action of TNF-α and IL-1 in osteoclastogenesis remains controversial. While some groups demonstrated that these two cytokines can promote murine osteoclastogenesis in vitro in the presence of M-CSF only, we and others showed that TNF-α-/IL-1-mediated osteoclastogenesis requires permissive levels of RANKL. This chapter describes the method that we have used to investigate the effects of TNF-α and IL-1 on osteoclast formation in in vitro osteoclastogenesis assays using primary murine bone marrow macrophages (BMMs). Detailed experimental conditions are provided and critical points are discussed to help the reader use the method to independently evaluate the roles of TNF-α and IL-1 in osteoclastogenesis in vitro. Moreover, this method can be used to further elucidate the signaling mechanisms by which these two cytokines act in concert with RANKL or with each other to modulate osteoclastogenesis.

  10. Heightened expression of tumor necrosis factor alpha, interleukin 1 alpha, and glial fibrillary acidic protein in experimental Creutzfeldt-Jakob disease in mice.

    PubMed Central

    Kordek, R; Nerurkar, V R; Liberski, P P; Isaacson, S; Yanagihara, R; Gajdusek, D C

    1996-01-01

    The ultrastructural pathology of myelinated axons in mice infected experimentally with the Fujisaki strain of Creutzfeldt-Jakob disease (CJD) virus is characterized by myelin sheath vacuolation that closely resembles that induced in murine spinal cord organotypic cultures by tumor necrosis factor alpha (TNF-alpha), a cytokine produced by astrocytes and macrophages. To clarify the role of TNF-alpha in experimental CJD, we investigated the expression of TNF-alpha in brain tissues from CJD virus-infected mice at weekly intervals after inoculation by reverse transcription-coupled PCR, Northern and Western blot analyses, and immunocytochemical staining. Neuropathological findings by electron microscopy, as well as expression of interleukin 1 alpha and glial fibrillary acidic protein, were concurrently monitored. As determined by reverse transcription-coupled PCR, the expression of TNF-alpha, interleukin 1 alpha, and glial fibrillary acidic protein was increased by approximately 200-fold in the brains of CJD virus-inoculated mice during the course of disease. By contrast, beta-actin expression remained unchanged. Progressively increased expression of TNF-alpha in CJD virus-infected brain tissues was verified by Northern and Western blot analyses, and astrocytes in areas with striking myelin sheath vacuolation were intensely stained with an antibody against murine TNF-alpha. The collective findings of TNF-alpha overexpression during the course of clinical disease suggest that TNF-alpha may mediate the myelin sheath vacuolation observed in experimental CJD. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8790403

  11. Tumor necrosis factor alpha neutralization has no direct effect on parasite burden, but causes impaired IFN-γ production by spleen cells from human visceral leishmaniasis patients.

    PubMed

    Singh, Neetu; Kumar, Rajiv; Engwerda, Christian; Sacks, David; Nylen, Susanne; Sundar, Shyam

    2016-09-01

    The pro-inflammatory cytokine tumor necrosis factor (TNF)-α has an important role in control of experimental Leishmania donovani infection. Less is known about the role of TNF-α in human visceral leishmaniasis (VL). Evidence for a protective role is primarily based on case reports of VL development in individuals treated with TNF-α neutralizing antibody. In this study, we have evaluated how TNF-α neutralization affects parasite replication and cytokine production in ex vivo splenic aspirates (SA) from active VL patients. The effect of TNF-α neutralization on cell mediated antigen specific responses were also evaluated using whole blood cultures. Neutralization of TNF-α did not affect parasite numbers in SA cultures. Interferon (IFN)-γ levels were significantly reduced, but interleukin (IL)-10 levels were unchanged in these cultures. Leishmania antigen stimulated SA produced significant TNF-α which suggests that TNF-α is actively produced in VL spleen. Further it stimulates IFN-γ production, but no direct effect on parasite replication.

  12. Tumor necrosis factor-alpha induces activation of coagulation and fibrinolysis in baboons through an exclusive effect on the p55 receptor.

    PubMed

    van der Poll, T; Jansen, P M; Van Zee, K J; Welborn, M B; de Jong, I; Hack, C E; Loetscher, H; Lesslauer, W; Lowry, S F; Moldawer, L L

    1996-08-01

    Tumor necrosis factor-alpha (TNF-alpha) can bind to two distinct transmembrane receptors, the p55 and p75 TNF receptors. We compared the capability of two mutant TNF proteins with exclusive affinity for the p55 or p75 TNF receptor with that of wild type TNF, to activate the hemostatic mechanism in baboons. Both activation of the coagulation system, monitored by the plasma levels of thrombin-antithrombin III complexes, and activation of the fibrinolytic system (plasma levels of tissue-type plasminogen activator, and plasminogen activator inhibitor type I), were of similar magnitude after intravenous injection of wild type TNF or the TNF mutant with affinity only for the p55 receptor. Likewise, wild type TNF and the TNF p55 specific mutant were equally potent in inducing neutrophil degranulation (plasma levels of elastase-alpha 1-antitrypsin complexes). Wild type TNF tended to be a more potent inducer of secretory phospholipase A2 release than the p55 specific TNF mutant. Administration of the TNF mutant binding only to the p75 receptor did not induce any of these responses. We conclude that TNF-Induced stimulation of coagulation, fibrinolysis, neutrophil degranulation, and release of secretory phospholipase A2 are predominantly mediated by the p55 TNF receptor.

  13. Tumor necrosis factor alpha-induced apoptosis in human neuronal cells: protection by the antioxidant N-acetylcysteine and the genes bcl-2 and crmA.

    PubMed Central

    Talley, A K; Dewhurst, S; Perry, S W; Dollard, S C; Gummuluru, S; Fine, S M; New, D; Epstein, L G; Gendelman, H E; Gelbard, H A

    1995-01-01

    Tumor necrosis factor alpha (TNF-alpha) is a candidate human immunodeficiency virus type 1-induced neurotoxin that contributes to the pathogenesis of AIDS dementia complex. We report here on the effects of exogenous TNF-alpha on SK-N-MC human neuroblastoma cells differentiated to a neuronal phenotype with retinoic acid, TNF-alpha caused a dose-dependent loss of viability and a corresponding increase in apoptosis in differentiated SK-N-MC cells but not in undifferentiated cultures. Importantly, intracellular signalling via TNF receptors, as measured by activation of the transcription factor NF-kappa B, was unaltered by retinoic acid treatment. Finally, overexpression of bcl-2 or crmA conferred resistance to apoptosis mediated by TNF-alpha, as did the addition of the antioxidant N-acetylcysteine. These results suggest that TNF-alpha induces apoptosis in neuronal cells by a pathway that involves formation of reactive oxygen intermediates and which can be blocked by specific genetic interventions. PMID:7739519

  14. Overexpression of BAD potentiates sensitivity to tumor necrosis factor-related apoptosis-inducing ligand treatment in the prostatic carcinoma cell line LNCaP.

    PubMed

    Taghiyev, Agshin F; Guseva, Natalya V; Harada, Hisashi; Knudson, C Michael; Rokhlin, Oskar W; Cohen, Michael B

    2003-05-01

    Here we show that LNCaP, which is resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, becomes sensitive to TRAIL after overexpression of full-length, wild-type BAD (BAD WT). TRAIL induces caspase-dependent cleavage of BAD WT that results in generation of a M(r) 15,000 protein. LNCaP stably expressing truncated BAD (tBAD) and cells expressing mutated BAD at the caspase cleavage site were less sensitive to TRAIL treatment when compared to LNCaP expressing BAD WT. Cytochrome c and Smac/DIABLO release from mitochondria into cytosol was found after TRAIL treatment only in cells overexpressing BAD WT. Furthermore, differences in phosphorylation of serine residues for BAD WT and tBAD were identified. BAD WT was phosphorylated at positions S136 and S155, whereas tBAD was phosphorylated at positions S112, S136, and S155. LNCaP stably expressing BAD mutated at serine 112 to alanine was less sensitive to TRAIL treatment when compared to LNCaP expressing BAD WT. Lastly, recombinant BAD cleaved by caspase-3 is a more potent inducer of cytochrome c and Smac/DIABLO release than BAD WT. In summary, BAD-mediated sensitivity of LNCaP to TRAIL depends on the phosphorylation status of BAD WT and tBAD.

  15. Tumor Necrosis Factor-Alpha and the ERK Pathway Drive Chemerin Expression in Response to Hypoxia in Cultured Human Coronary Artery Endothelial Cells

    PubMed Central

    Chua, Su-Kiat; Shyu, Kou-Gi; Lin, Yuh-Feng; Lo, Huey-Ming; Wang, Bao-Wei

    2016-01-01

    Background Chemerin, a novel adipokine, plays a role in the inflammation status of vascular endothelial cells. Hypoxia causes endothelial-cell proliferation, migration, and angiogenesis. This study was aimed at evaluating the protein and mRNA expression of chemerin after exposure of human coronary artery endothelial cells (HCAECs) to hypoxia. Methods and Results Cultured HCAECs underwent hypoxia for different time points. Chemerin protein levels increased after 4 h of hypoxia at 2.5% O2, with a peak of expression of tumor necrosis factor-alpha (TNF-alpha) at 1 h. Both hypoxia and exogenously added TNF-alpha during normoxia stimulated chemerin expression, whereas an ERK inhibitor (PD98059), ERK small interfering RNA (siRNA), or an anti-TNF-alpha antibody attenuated the chemerin upregulation induced by hypoxia. A gel shift assay indicated that hypoxia induced an increase in DNA-protein binding between the chemerin promoter and transcription factor SP1. A luciferase assay confirmed an increase in transcriptional activity of SP1 on the chemerin promoter during hypoxia. Hypoxia significantly increased the tube formation and migration of HCAECs, whereas PD98059, the anti-TNF-alpha antibody, and chemerin siRNA each attenuated these effects. Conclusion Hypoxia activates chemerin expression in cultured HCAECs. Hypoxia-induced chemerin expression is mediated by TNF-alpha and at least in part by the ERK pathway. Chemerin increases early processes of angiogenesis by HCAECs after hypoxic treatment. PMID:27792771

  16. Tumor necrosis factor alpha represses bone morphogenetic protein (BMP) signaling by interfering with the DNA binding of Smads through the activation of NF-kappaB.

    PubMed

    Yamazaki, Masato; Fukushima, Hidefumi; Shin, Masashi; Katagiri, Takenobu; Doi, Takahiro; Takahashi, Tetsu; Jimi, Eijiro

    2009-12-18

    Bone morphogenetic proteins (BMPs) induce not only bone formation in vivo but also osteoblast differentiation of mesenchymal cells in vitro. Tumor necrosis factor alpha (TNFalpha) inhibits both osteoblast differentiation and bone formation induced by BMPs. However, the molecular mechanisms of these inhibitions remain unknown. In this study, we found that TNFalpha inhibited the alkaline phosphatase activity and markedly reduced BMP2- and Smad-induced reporter activity in MC3T3-E1 cells. TNFalpha had no effect on the phosphorylation of Smad1, Smad5, and Smad8 or on the nuclear translocation of the Smad1-Smad4 complex. In p65-deficient mouse embryonic fibroblasts, overexpression of p65, a subunit of NF-kappaB, inhibited BMP2- and Smad-induced reporter activity in a dose-dependent manner. Furthermore, this p65-mediated inhibition of BMP2- and Smad-responsive promoter activity was restored after inhibition of NF-kappaB by the overexpression of the dominant negative IkappaBalpha. Although TNFalpha failed to affect receptor-dependent formation of the Smad1-Smad4 complex, p65 associated with the complex. Chromatin immunoprecipitation and electrophoresis mobility shift assays revealed that TNFalpha suppressed the DNA binding of Smad proteins to the target gene. Importantly, the specific NF-kappaB inhibitor, BAY11-7082, abolished these phenomena. These results suggest that TNFalpha inhibits BMP signaling by interfering with the DNA binding of Smads through the activation of NF-kappaB.

  17. Differential induction of tumor necrosis factor alpha in ovine pulmonary alveolar macrophages following infection with Corynebacterium pseudotuberculosis, Pasteurella haemolytica, or lentiviruses.

    PubMed Central

    Ellis, J A; Lairmore, M D; O'Toole, D T; Campos, M

    1991-01-01

    Soluble mediators such as tumor necrosis factor alpha (TNF-alpha) may be important in the pathogenesis of many chronic pulmonary infections. We examined the ability of Corynebacterium pseudotuberculosis, Pasteurella haemolytica, and ovine lentiviruses (OvLV) to induce TNF-alpha secretion by pulmonary alveolar macrophages (PAM). Bronchoalveolar lavage cells, composed of greater than 90% PAM, were obtained from normal sheep. Bronchoalveolar lavage cells were cultured for 2, 24, 48, 72, or 168 h in endotoxin-free RPMI medium (with 10% autologous serum) or in medium containing one of the following additives: lipopolysaccharide, 1-micron polystyrene beads, C. pseudotuberculosis, P. haemolytica, or one of two plaque-cloned OvLV, 85/28 or 85/34. Lipopolysaccharide, C. pseudotuberculosis, and P. haemolytica induced TNF-alpha activity in PAM cultures as early as 2 h after inoculation, as assessed by a colorimetric cytotoxicity assay. This activity could be blocked by rabbit anti-recombinant bovine TNF-alpha serum. In contrast, medium alone, polystyrene beads, and productive infection by OvLV did not induce TNF-alpha activity in PAM cultures. Bacterial pathogens which infect pulmonary macrophages may elicit the secretion of TNF-alpha within the lungs and lead to the cachectic state associated with chronic pneumonia. Images PMID:1652561

  18. Simvastatin Inhibits Toll-like Receptor 8 (TLR8) Signaling in Primary Human Monocytes and Spontaneous Tumor Necrosis Factor Production from Rheumatoid Synovial Membrane Cultures

    PubMed Central

    Mullen, Lisa; Ferdjani, Jason; Sacre, Sandra

    2015-01-01

    Simvastatin has been shown to have antiinflammatory effects that are independent of its serum cholesterol lowering action, but the mechanisms by which these antiinflammatory effects are mediated have not been elucidated. To explore the mechanism involved, the effect of simvastatin on toll-like receptor (TLR) signaling in primary human monocytes was investigated. A short pretreatment with simvastatin dose-dependently inhibited the production of tumor necrosis factor (TNF)-α in response to TLR8 activation (but not TLR2, -4 or -5). Statins are known inhibitors of the cholesterol biosynthetic pathway, but, intriguingly, TLR8 inhibition could not be reversed by addition of mevalonate or geranylgeranyl pyrophosphate, downstream products of cholesterol biosynthesis. TLR8 signaling was examined in HEK 293 cells stably expressing TLR8, where simvastatin inhibited I kappa B kinase (IKK)α/β phosphorylation and subsequent nuclear factor (NF)-κB activation without affecting the pathway to activating protein-1 (AP-1). Because simvastatin has been reported to have antiinflammatory effects in RA patients and TLR8 signaling contributes to TNF production in human RA synovial tissue in culture, simvastatin was tested in these cultures. Simvastatin significantly inhibited the spontaneous release of TNF in this model, which was not reversed by mevalonate. Together, these results demonstrate a hitherto unrecognized mechanism of simvastatin inhibition of TLR8 signaling that may in part explain its beneficial antiinflammatory effects. PMID:26322850

  19. The use of synthetic analogues of Arg-Gly-Asp (RGD) and soluble receptor of tumor necrosis factor to prevent acute and chronic experimental liver injury.

    PubMed

    Bruck, R; Hershkoviz, R; Lider, O; Shirin, H; Aeed, H; Halpern, Z

    1997-01-01

    In chronic viral hepatitis, autoimmune hepatitis, and some chronic cholestatic liver diseases, T-lymphocytes serve as effector cells of the immunostimulatory processes. Cellular interactions of immune cells with extracellular matrix (ECM) components are regulated primarily via the beta 1 subfamily of integrin receptors. The target epitope of several such integrin receptors is the Arg-Gly-Asp (RGD) sequence, a cell adhesion motif shared by several matrix-associated adhesive glycoproteins. We review the use of synthetic nonpeptidic analogues of RGD and of soluble receptor of tumor necrosis factor (TNF)-alpha in the prevention of immune-mediated, concanavalin A-induced liver damage in mice and of RGD analogues in inhibiting the development of liver cirrhosis in rats. The concanavalin A-induced elevation of serum transaminases and TNF-alpha, and the infiltration of liver tissue by inflammatory cells, were inhibited by pretreatment of the mice with the synthetic RGD mimetics and soluble TNF receptor. In rats, the progression of thioacetamide-induced liver cirrhosis was markedly inhibited by the coadministration of the RGD mimetic SF-6,5. The compounds described here may be examined therapeutically for pathological conditions in the liver, manifested as necroinflammation, cholestasis and fibrosis. PMID:9626759

  20. Effect of tumor necrosis factor-α induced protein 8 like-2 on immune function of dendritic cells in mice following acute insults

    PubMed Central

    Tong, Sen; Dong, Ning; Sheng, Zhi-yong; Yao, Yong-ming

    2016-01-01

    Tumor necrosis factor-α induced protein 8 like-2 (TNFAIP8L2, TIPE2) is a lately discovered negative regulator of innate immunity and cellular immunity. The present study was designed to investigate whether naturally occurring dendritic cells (DCs) could express TIPE2 mRNA/protein and its potential significance. Expressions of co-stimulatory molecules on DC surface and cytokines were analyzed to assess the functional role of TIPE2 in controlling DC maturation as well as activation. The activated DCs were assessed for their capacity to stimulate the proliferation and differentiation of T cells. It was found that TIPE2 was a cytoplasmic protein expressed in DCs, and the percentage of DCs which expressed co-stimulatory molecules and cytokines were obviously up-regulated when TIPE2 gene silenced by siRNA in vitro and in vivo. DCs undergone TIPE2 knockdown were found to promote the maturation of DCs, T-cell proliferation as well as differentiation, and they were significantly elevated IL-2 level and intranuclear NF-AT activation. Conversely, in over-expressing TIPE2 DC cells, it could inhibit T-cell proliferation and differentiation, and markedly down-regulate IL-2 expression and intranuclear NF-AT activation after scald injury. The results suggested that TIPE2 appeared to be a critical immunoregulatory molecule which affected DC maturation and subsequent T-cell mediated immunity. PMID:27029075

  1. Doxorubicin-induced necrosis is mediated by poly-(ADP-ribose) polymerase 1 (PARP1) but is independent of p53

    PubMed Central

    Shin, Hyeon-Jun; Kwon, Hyuk-Kwon; Lee, Jae-Hyeok; Gui, Xiangai; Achek, Asma; Kim, Jae-Ho; Choi, Sangdun

    2015-01-01

    Necrosis, unregulated cell death, is characterized by plasma membrane rupture as well as nuclear and cellular swelling. However, it has recently been reported that necrosis is a regulated form of cell death mediated by poly-(ADP-ribose) polymerase 1 (PARP1). PARP1 is thought to mediate necrosis by inducing DNA damage, although this remains unconfirmed. In this study, we examined the mechanisms of PARP1-mediated necrosis following doxorubicin (DOX)-induced DNA damage in human kidney proximal tubular (HK-2) cells. DOX initiated DNA damage response (DDR) and upregulated PARP1 and p53 expression, resulting in morphological changes similar to those observed during necrosis. Additionally, DOX induced mitochondrial hyper-activation, as evidenced by increased mitochondrial respiration and cytosolic ATP (cATP) production. However, DOX affected mitochondrial mass. DOX-induced DNA damage, cytosolic reactive oxygen species (cROS) generation, and mitochondrial hyper-activation decreased in cells with inhibited PARP1 expression, while generation of nitric oxide (NO) and mitochondrial ROS (mROS) remained unaffected. Moreover, DOX-induced DNA damage, cell cycle changes, and oxidative stress were not affected by p53 inhibition. These findings suggest that DNA damage induced necrosis through a PARP1-dependent and p53-independent pathway. PMID:26522181

  2. Isolation and characterization of tumor necrosis factor receptor-associated factor 6 (TRAF6) from grouper, Epinephelus tauvina.

    PubMed

    Wei, Jingguang; Guo, Minglan; Gao, Pin; Ji, Huasong; Li, Pengfei; Yan, Yang; Qin, Qiwei

    2014-07-01

    Tumor necrosis factor receptor-associated factor 6 (TRAF6) is one of the key adapter molecules in Toll-like receptor signal transduction that triggers downstream cascades involved in innate immunity. In the present study, a TRAF6 (named as Et-TRAF6) was identified from the marine fish grouper, Epinephelus tauvina by RACE PCR. The full-length cDNA of Et-TRAF6 comprised 1949 bp with a 1713 bp open reading frame (ORF) that encodes a putative protein of 570 amino acids. Similar to most TRAF6s, Et-TRAF6 includes one N-terminal RING domain (78aa-116aa), two zinc fingers of TRAF-type (159aa-210aa and 212aa-269aa), one coiled-coil region (370aa-394aa), and one conserved C-terminal meprin and TRAF homology (MATH) domain (401aa-526aa). Quantitative real-time PCR analysis revealed that Et-TRAF6 mRNA is expressed in all tested tissues, with the predominant expression in the stomach and intestine. The expression of Et-TRAF6 was up-regulated in the liver after challenge with Lipoteichoic acid (LTA), Peptidoglycan (PGN), Zymosan, polyinosine-polycytidylic acid [Poly(I:C)] and Polydeoxyadenylic acid · Polythymidylic acid sodium salt [Poly(dA:dT)]. The expression of Et-TRAF6 was also up-regulated in the liver after infection with Vibrio alginolyticus, Singapore grouper iridovirus (SGIV) and grouper nervous necrosis virus (GNNV). Recombinant Et-TRAF6 (rEt-TRAF6) was expressed in Escherichia BL21 (DE3) and purified for mouse anti-Et-TRAF6 serum preparation. Intracellular localization revealed that Et-TRAF6 is distributed in both cytoplasm and nucleus, and predominantly in the cytoplasm. These results together indicated that Et-TRAF6 might be involved in immune responses toward bacterial and virus challenges.

  3. Tumor necrosis factor-α induces epithelial-mesenchymal transition of renal cell carcinoma cells via a nuclear factor kappa B-independent mechanism.

    PubMed

    Wu, Sheng-Tang; Sun, Guang-Huan; Hsu, Chih-Ying; Huang, Chang-Shuo; Wu, Yu-Hsin; Wang, Hsiao-Hsien; Sun, Kuang-Hui

    2011-09-01

    Chronic low dose of tumor necrosis factor-α (TNF-α) stimulation promotes tumorigenesis by facilitating tumor proliferation and metastasis. The plasma levels of TNF-α are increased in patients with renal cell carcinoma (RCC). Furthermore, high-grade clear cell RCC cell lines secrete more TNF-α than low-grade ones, and allow low-grade cell lines' gain of invasive ability. However, the molecular mechanism of TNF-α in mediating progression of RCC cells remains unclear. In the present study, TNF-α induced epithelial-mesenchymal transition (EMT) of RCC cells by repressing E-cadherin, promoting invasiveness and activating matrix metalloproteinase (MMP) 9 activity. RCC cells underwent promoted growth in vivo following stimulation with TNF-α. In addition, TNF-α induced phosphorylation of extracellular signal-regulated kinase, nuclear factor kappa B (NF-κB) and Akt in a time-dependent manner, and increased nuclear translocation and promoter activity of NF-κB. To investigate the role of NF-κB activation in TNF-α-induced EMT of RCC, we employed chemical inhibitors (NF-κB activation inhibitor and Bay 11-7082) and transfected dominant-negative (pCMV-IκBαM) and overexpressive (pFLAG-p65) vectors of NF-κB. While overexpression of NF-κB p65 alone could induce E-cadherin loss in RCC, EMT phenotypes and MMP9 expressions induced by TNF-α were not reversed by the inhibitors of NF-κB activation. These results suggest that the TNF-α signaling pathway is involved in the tumorigenesis of RCC. However, NF-κB activation is not crucial for invasion and EMT enhanced by TNF-α in RCC cells.

  4. Human keratinocytes are a source for tumor necrosis factor alpha: Evidence for synthesis and release upon stimulation with endotoxin or ultraviolet light

    SciTech Connect

    Koeck, A.S.; Schwarz, T.; Kirnbauer, R.; Urbanski, A.; Perry, P.; Ansel, J.C.; Luger, T.A. )

    1990-12-01

    Tumor necrosis factor alpha (TNF-alpha), in addition to being cytotoxic for certain tumor cells, has turned out as a multifunctional cytokine that is involved in the regulation of immunity and inflammation. Since human keratinocytes have been demonstrated to be a potent source of various cytokines, it was investigated whether epidermal cells synthesize and release TNF-alpha. Supernatants derived from normal human keratinocytes (HNK) and human epidermoid carcinoma cell lines (KB, A431) were tested both in a TNF-alpha-specific ELISA and a bioassay. In supernatants of untreated epidermal cells, no or minimal TNF-alpha activity was found, while after stimulation with lipopolysaccharide (LPS) or ultraviolet (UV) light, significant amounts were detected. Western blot analysis using an antibody directed against human TNF-alpha revealed a molecular mass of 17 kD for keratinocyte-derived TNF-alpha. These biological and biochemical data were also confirmed by Northern blot analysis revealing mRNA specific for TNF-alpha in LPS- or ultraviolet B (UVB)-treated HNK and KB cells. In addition, increased TNF-alpha levels were detected in the serum obtained from human volunteers 12 and 24 h after a single total body UVB exposure, which caused a severe sunburn reaction. These findings indicate that keratinocytes upon stimulation are able to synthesize and release TNF-alpha, which may gain access to the circulation. Thus, TNF-alpha in concert with other epidermal cell-derived cytokines may mediate local and systemic inflammatory reactions during host defense against injurious events caused by microbial agents or UV irradiation.

  5. Tumor Necrosis Factor alpha (TNF{alpha}) regulates CD40 expression through SMAR1 phosphorylation

    SciTech Connect

    Singh, Kamini; Sinha, Surajit; Malonia, Sunil Kumar; Chattopadhyay, Samit

    2010-01-08

    CD40 plays an important role in mediating inflammatory response and is mainly induced by JAK/STAT phosphorylation cascade. TNF{alpha} is the key cytokine that activates CD40 during inflammation and tumorigenesis. We have earlier shown that SMAR1 can repress the transcription of Cyclin D1 promoter by forming a HDAC1 dependent repressor complex. In this study, we show that SMAR1 regulates the transcription of NF-{kappa}B target gene CD40. SMAR1 recruits HDAC1 and forms a repressor complex on CD40 promoter and keeps its basal transcription in check. Further, we show that TNF{alpha} stimulation induces SMAR1 phosphorylation at Ser-347 and promotes its cytoplasmic translocation, thus releasing its negative effect. Concomitantly, TNF{alpha} induced phosphorylation of STAT1 at Tyr-701 by JAK1 facilitates its nuclear translocation and activation of CD40 through p300 recruitment and core Histone-3 acetylation. Thus, TNF{alpha} mediated regulation of CD40 expression occurs by dual phosphorylation of SMAR1 and STAT1.

  6. Human cytomegalovirus infection inhibits tumor necrosis factor alpha (TNF-alpha) signaling by targeting the 55-kilodalton TNF-alpha receptor.

    PubMed

    Baillie, J; Sahlender, D A; Sinclair, J H

    2003-06-01

    Infection with human cytomegalovirus (HCMV) results in complex interactions between viral and cellular factors which perturb many cellular functions. HCMV is known to target the cell cycle, cellular transcription, and immunoregulation, and it is believed that this optimizes the cellular environment for viral DNA replication during productive infection or during carriage in the latently infected host. Here, we show that HCMV infection also prevents external signaling to the cell by disrupting the function of TNFRI, the 55-kDa receptor for tumor necrosis factor alpha (TNF-alpha), one of the receptors for a potent cytokine involved in eliciting a wide spectrum of cellular responses, including antiviral responses. HCMV infection of fully permissive differentiated monocytic cell lines and U373 cells resulted in a reduction in cell surface expression of TNFRI. The reduction appeared to be due to relocalization of TNFRI from the cell surface and was reflected in the elimination of TNF-alpha-induced Jun kinase activity. Analysis of specific phases of infection suggested that viral early gene products were responsible for this relocalization. However, a mutant HCMV in which all viral gene products known to be involved in down-regulation of major histocompatibility complex (MHC) class I were deleted still resulted in relocalization of TNFRI. Consequently, TNFRI relocalization by HCMV appears to be mediated by a novel viral early function not involved in down-regulation of cell surface MHC class I expression. We suggest that upon infection, HCMV isolates the cell from host-mediated signals, forcing the cell to respond only to virus-specific signals which optimize the cell for virus production and effect proviral responses from bystander cells.

  7. Soluble Tumor Necrosis Factor Receptor 1 Released by Skin-Derived Mesenchymal Stem Cells Is Critical for Inhibiting Th17 Cell Differentiation.

    PubMed

    Ke, Fang; Zhang, Lingyun; Liu, Zhaoyuan; Yan, Sha; Xu, Zhenyao; Bai, Jing; Zhu, Huiyuan; Lou, Fangzhou; Cai, Wei; Sun, Yang; Gao, Yuanyuan; Wang, Hong; Wang, Honglin

    2016-03-01

    T helper 17 (Th17) cells play an important role in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Th17 cell differentiation from naïve T cells can be induced in vitro by the cytokines transforming growth factor β1 and interleukin-6. However, it remains unclear whether other regulatory factors control the differentiation of Th17 cells. Mesenchymal stem cells (MSCs) have emerged as a promising candidate for inhibiting Th17 cell differentiation and autoimmune diseases. Despite the fact that several molecules have been linked to the immunomodulatory function of MSCs, many other key MSC-secreted regulators that are involved in inhibiting Th17 cell polarization are ill-defined. In this study, we demonstrated that the intraperitoneal administration of skin-derived MSCs (S-MSCs) substantially ameliorated the development of EAE in mice. We found that the proinflammatory cytokine tumor necrosis factor (TNF)-α, a key mediator in the pathophysiology of MS and EAE, was capable of promoting Th17 cell differentiation. Moreover, under inflammatory conditions, we demonstrated that S-MSCs produced high amounts of soluble TNF receptor 1 (sTNFR1), which binds TNF-α and antagonizes its function. Knockdown of sTNFR1 in S-MSCs decreased their inhibitory effect on Th17 cell differentiation ex vivo and in vivo. Thus, our data identified sTNFR1 and its target TNF-α as critical regulators for Th17 cell differentiation, suggesting a previously unrecognized mechanism for MSC therapy in Th17-mediated autoimmune diseases.

  8. A Novel Carboline Derivative Inhibits Nitric Oxide Formation in Macrophages Independent of Effects on Tumor Necrosis Factor α and Interleukin-1β Expression

    PubMed Central

    Poola, Bhaskar; Pasupuleti, Nagarekha; Nantz, Michael H.; Lein, Pamela J.; Gorin, Fredric

    2015-01-01

    Neuropathic pain is a maladaptive immune response to peripheral nerve injury that causes a chronic painful condition refractory to most analgesics. Nitric oxide (NO), which is produced by nitric oxide synthases (NOSs), has been implicated as a key factor in the pathogenesis of neuropathic pain. β-Carbolines are a large group of natural and synthetic indole alkaloids, some of which block activation of nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB), a predominant transcriptional regulator of NOS expression. Here, we characterize the inhibitory effects of a novel 6-chloro-8-(glycinyl)-amino-β-carboline (8-Gly carb) on NO formation and NF-κB activation in macrophages. 8-Gly carb was significantly more potent than the NOS inhibitor NG-nitro-l-arginine methyl ester in inhibiting constitutive and inducible NO formation in primary rat macrophages. 8-Gly carb interfered with NF-κB–mediated gene expression in differentiated THP1-XBlue cells, a human NF-κB reporter macrophage cell line, but only at concentrations severalfold higher than needed to significantly inhibit NO production. 8-Gly carb also had no effect on tumor necrosis factor α (TNFα)–induced phosphorylation of the p38 mitogen-activated protein kinase in differentiated THP1 cells, and did not inhibit lipopolysaccharide- or TNFα-stimulated expression of TNFα and interleukin-1β. These data demonstrate that relative to other carbolines and pharmacologic inhibitors of NOS, 8-Gly carb exhibits a unique pharmacological profile by inhibiting constitutive and inducible NO formation independent of NF-κB activation and cytokine expression. Thus, this novel carboline derivative holds promise as a parent compound, leading to therapeutic agents that prevent the development of neuropathic pain mediated by macrophage-derived NO without interfering with cytokine expression required for neural recovery following peripheral nerve injury. PMID:25538105

  9. Two monokines, interleukin 1 and tumor necrosis factor, render cultured vascular endothelial cells susceptible to lysis by antibodies circulating during Kawasaki syndrome

    PubMed Central

    1986-01-01

    Kawasaki syndrome (KS) is an acute febrile illness of early childhood characterized by diffuse vasculitis and marked immune activation. The present study was undertaken to determine whether the acute phase of KS is associated with circulating cytotoxic antibodies directed to target antigens induced on vascular endothelium by the monokines, IL-1, or tumor necrosis factor (TNF). Sera from 20 patients with acute KS, 11 patients in the convalescent phase of KS, and 17 age-matched controls were assessed for complement-dependent cytotoxic activity against 111In- labeled human endothelial cells (HEC), dermal fibroblasts, and vascular smooth muscle cells. Sera from patients with acute KS but not the other subject groups caused significant (p less than 0.01) complement- mediated killing of IL-1- or TNF-stimulated HEC. None of the sera tested had cytotoxicity against control HEC cultures or the other target cell types, with or without IL-1 or TNF pretreatment. Expression of the IL-1- or TNF-inducible target antigens on endothelial cells was rapid and transient, peaking at 4 h and disappearing after 24 h despite continued incubation with monokine. In contrast, we have previously shown that IFN-gamma requires 72 h to render HEC susceptible to lysis with acute KS sera. Serum adsorption studies demonstrated that IL-1- and TNF-inducible endothelial target antigens are distinct from IFN- gamma-inducible antigens. These observations suggest that mediator secretion by activated monocyte/macrophages could be a predisposing factor to the development of vascular injury in acute KS. Although our present observations have been restricted to KS, the development of cytotoxic antibodies directed to monokine-inducible endothelial cell antigens may also be found in other vasculitides accompanied by immune activation. PMID:3491174

  10. Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor alpha-dependent angiogenesis.

    PubMed Central

    Yoshida, S; Ono, M; Shono, T; Izumi, H; Ishibashi, T; Suzuki, H; Kuwano, M

    1997-01-01

    Tumor necrosis factor alpha (TNF-alpha) is a macrophage/monocyte-derived polypeptide which modulates the expression of various genes in vascular endothelial cells and induces angiogenesis. However, the underlying mechanism by which TNF-alpha mediates angiogenesis is not completely understood. In this study, we assessed whether TNF-alpha-induced angiogenesis is mediated through TNF-alpha itself or indirectly through other TNF-alpha-induced angiogenesis-promoting factors. Cellular mRNA levels of interleukin-8 (IL-8), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and their receptors were increased after the treatment of human microvascular endothelial cells with TNF-alpha (100 U/ml). TNF-alpha-dependent tubular morphogenesis in vascular endothelial cells was inhibited by the administration of anti-IL-8, anti-VEGF, and anti-bFGF antibodies, and coadministration of all three antibodies almost completely abrogated tubular formation. Moreover, treatment with Sp1, NF-kappaB, and c-Jun antisense oligonucleotides inhibited TNF-alpha-dependent tubular morphogenesis by microvascular endothelial cells. Administration of a NF-kappaB antisense oligonucleotide almost completely inhibited TNF-alpha-dependent IL-8 production and partially abrogated TNF-alpha-dependent VEGF production, and an Sp1 antisense sequence partially inhibited TNF-alpha-dependent production of VEGF. A c-Jun antisense oligonucleotide significantly inhibited TNF-alpha-dependent bFGF production but did not affect the production of IL-8 and VEGF. Administration of an anti-IL-8 or anti-VEGF antibody also blocked TNF-alpha-induced neovascularization in the rabbit cornea in vivo. Thus, angiogenesis by TNF-alpha appears to be modulated through various angiogenic factors, both in vitro and in vivo, and this pathway is controlled through paracrine and/or autocrine mechanisms. PMID:9199336

  11. Evaluation of serum level of tumor necrosis factor-alpha and interleukin-6 in patients with congenital heart disease

    PubMed Central

    Noori, Noor Mohammad; Moghaddam, Maryam Nakhaee; Teimouri, Alireza; Shahramian, Iraj; Keyvani, Behrooz

    2016-01-01

    Background: The objective of the study is to assess the levels of tumor necrosis factor-alpha (TNF-α) and interleukin-10 (IL-10) in patients with congenital heart diseases (CHDs) and control. Patients and Methods: In this case-control study, sixty patients with CHD with ages of 1 month to 15 years and thirty healthy subjects were assessed. All objects measured in height, weight, age, sex, and body mass index (BMI). Patients diagnosed by echocardiography and patients’ blood samples were 3 ml and taken in the catheterization laboratory through catheter and kept for 60 min at a room with normal temperature and separated serum has been held. All samples in compliance with the cold chain carried out to biochemistry laboratory and finally the levels of serum TNF-α and IL-6 were measured by Elisa Kit. Data were analyzed with Statistical Package for Social Sciences version 20. Nonparametric tests by considering 95% confidence interval were applied. Results: The mean of age in cyanotic patients was 4.28 ΁ 3.44 years, a cyanotic was 3.12 ΁ 3.87 years and for the control group was 3.30 ΁ 3.61 years. Comparison of TNF-α (Mann-Whitney U-test = 56.62, P < 0.001), IL-6 (Mann-Whitney U-test = 313.5, P < 0.001), right ventricular (RV) pressure (Mann-Whitney U-test = 27, P < 0.001), pulmonary artery (PA) pressure (Mann-Whitney U-test = 618, P = 0.015), and BMI (Mann-Whitney U-test = 214.5, P < 0.001) in the case and control groups resulted in significant differences. To compare TNF-α (Chi-square = 57.82, P < 0.001), IL-6 (Chi-square = 54.70, P < 0.001), RV pressure (Chi-square = 71.35, P < 0.001), PA pressure (Chi-square = 5.92, P = 00.052), oxygen saturation (Chi-square = 74.70, P < 0.001), and BMI (Chi-square = 34.90, P < 0.001) in cyanotic, acyanotic, and control groups resulted that there were significant differences between these three groups except PA pressure. Conclusion: The findings of this study showed that in patients with CHD, serum levels of TNF-α increased

  12. Evaluation of serum level of tumor necrosis factor-alpha and interleukin-6 in patients with congenital heart disease

    PubMed Central

    Noori, Noor Mohammad; Moghaddam, Maryam Nakhaee; Teimouri, Alireza; Shahramian, Iraj; Keyvani, Behrooz

    2016-01-01

    Background: The objective of the study is to assess the levels of tumor necrosis factor-alpha (TNF-α) and interleukin-10 (IL-10) in patients with congenital heart diseases (CHDs) and control. Patients and Methods: In this case-control study, sixty patients with CHD with ages of 1 month to 15 years and thirty healthy subjects were assessed. All objects measured in height, weight, age, sex, and body mass index (BMI). Patients diagnosed by echocardiography and patients’ blood samples were 3 ml and taken in the catheterization laboratory through catheter and kept for 60 min at a room with normal temperature and separated serum has been held. All samples in compliance with the cold chain carried out to biochemistry laboratory and finally the levels of serum TNF-α and IL-6 were measured by Elisa Kit. Data were analyzed with Statistical Package for Social Sciences version 20. Nonparametric tests by considering 95% confidence interval were applied. Results: The mean of age in cyanotic patients was 4.28 ΁ 3.44 years, a cyanotic was 3.12 ΁ 3.87 years and for the control group was 3.30 ΁ 3.61 years. Comparison of TNF-α (Mann-Whitney U-test = 56.62, P < 0.001), IL-6 (Mann-Whitney U-test = 313.5, P < 0.001), right ventricular (RV) pressure (Mann-Whitney U-test = 27, P < 0.001), pulmonary artery (PA) pressure (Mann-Whitney U-test = 618, P = 0.015), and BMI (Mann-Whitney U-test = 214.5, P < 0.001) in the case and control groups resulted in significant differences. To compare TNF-α (Chi-square = 57.82, P < 0.001), IL-6 (Chi-square = 54.70, P < 0.001), RV pressure (Chi-square = 71.35, P < 0.001), PA pressure (Chi-square = 5.92, P = 00.052), oxygen saturation (Chi-square = 74.70, P < 0.001), and BMI (Chi-square = 34.90, P < 0.001) in cyanotic, acyanotic, and control groups resulted that there were significant differences between these three groups except PA pressure. Conclusion: The findings of this study showed that in patients with CHD, serum levels of TNF-α increased

  13. Phospholipase C-{delta}{sub 1} regulates interleukin-1{beta} and tumor necrosis factor-{alpha} mRNA expression

    SciTech Connect

    Chung, Eric; Jakinovich, Paul; Bae, Aekyung; Rebecchi, Mario

    2012-10-01

    Phospholipase C-{delta}{sub 1} (PLC{delta}{sub 1}) is a widely expressed highly active PLC isoform, modulated by Ca{sup 2+} that appears to operate downstream from receptor signaling and has been linked to regulation of cytokine production. Here we investigated whether PLC{delta}{sub 1} modulated expression of the pro-inflammatory cytokines interleukin-1{beta} (IL-1{beta}), tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6 (IL-6) in rat C6 glioma cells. Expression of PLC{delta}{sub 1} was specifically suppressed by small interfering RNA (siRNA) and the effects on cytokine mRNA expression, stimulated by the Toll-like receptor (TLR) agonist, lipopolysaccharide (LPS), were examined. Real-time polymerase chain reaction (RT-PCR) results showed that PLC{delta}{sub 1} knockdown enhanced expression IL-1{beta} and tumor necrosis factor-{alpha} (TNF-{alpha}) mRNA by at least 100 fold after 4 h of LPS stimulation compared to control siRNA treatment. PLC{delta}{sub 1} knock down caused persistently high Nf{kappa}b levels at 4 h of LPS stimulation compared to control siRNA-treated cells. PLC{delta}{sub 1} knockdown was also associated with elevated nuclear levels of c-Jun after 30 min of LPS stimulation, but did not affect LPS-stimulated p38 or p42/44 MAPK phosphorylation, normally associated with TLR activation of cytokine gene expression; rather, enhanced protein kinase C (PKC) phosphorylation of cellular proteins was observed in the absence of LPS stimulation. An inhibitor of PKC, bisindolylmaleimide II (BIM), reversed phosphorylation, prevented elevation of nuclear c-Jun levels, and inhibited LPS-induced increases of IL-1{beta} and TNF-{alpha} mRNA's induced by PLC{delta}{sub 1} knockdown. Our results show that loss of PLC{delta}{sub 1} enhances PKC/c-Jun signaling and up-modulates pro-inflammatory cytokine gene transcription in concert with the TLR-stimulated p38MAPK/Nf{kappa}b pathway. Our findings are consistent with the idea that PLC{delta}{sub 1} is a

  14. Tumor necrosis factor-α attenuates starvation-induced apoptosis through upregulation of ferritin heavy chain in hepatocellular carcinoma cells

    PubMed Central

    2013-01-01

    Background Tumor microenviroment is characteristic of inflammation, ischemia and starvation of nutrient. TNF-α, which is an extraordinarily pleiotropic cytokine, could be an endogenous tumor promoter in some tumor types. The basic objective of this study was to investigate the effects of TNF-α on the cell viability and apoptosis of hepatocellular carcinoma cells under serum starvation, and to identify the molecular mechanisms involved. Methods For this purpose, five different concentrations of TNF-α and two different serum settings (serum-cultured and serum-deprived) were used to investigate the effects of TNF-α on the cell viability and apoptosis of Hep3B and SMMC-7721 cells. Results TNF-α (10 ng/ml) attenuated serum starvation-induced apoptosis of hepatocellular carcinoma cells, and autophagy conferred this process. BAY11-7082, a specific inhibitor of NF-κB, reversed the suppression of serum starvation-induced apoptosis by TNF-α. Moreover, TNF-α-induced NF-κB transactivation was suppressed by autophagy inhibitor 3-MA. In addition, TNF-α up-regulated Ferritin heavy chain (FHC) transiently by NF-κB activation and FHC levels were correlated with the TNF-α-induced protection against serum starvation-mediated apoptosis of hepatocellular carcinoma cells. Furthermore, FHC-mediated inhibition of apoptosis depended on suppressing ROS accumulation. Conclusions Our findings suggested that autophagy conferred the TNF-α protection against serum starvation-mediated apoptosis of hepatocellular carcinoma cells, the mechanism involved with the activation of the TNF-α/ NF-κB /FHC signaling pathway. PMID:24066693

  15. Multiple organ damage caused by tumor necrosis factor and prevented by prior neutrophil depletion

    SciTech Connect

    Mallick, A.A.; Ishizaka, A.; Stephens, K.E.; Hatherill, J.R.; Tazelaar, H.D.; Raffin, T.A. )

    1989-05-01

    The effect of TNF on nonpulmonary multiple organ damage (MOD) was studied. Since polymorphonuclear leukocytes (PMN) are thought to play an important role in septic or TNF-induced MOD, we investigated both neutrophil sufficient (PMN+) and neutropenic (PMN-) guinea pigs. Sepsis was induced by Escherichia coli administration (2 x 10(9)/kg) or recombinant human TNF (1.4 x 10(6) U/kg) was infused into PMN+ and PMN- guinea pigs. During necropsy, the PMN+/TNF and PMN+/E coli animals exhibited marked damage in the adrenal glands, kidneys and liver as evidenced by hemorrhage, congestion, and PMN sequestration on histopathologic examination. There was also increased tissue albumin accumulation in the adrenal glands, kidneys, spleen, heart, and liver as demonstrated by {sup 125}I-labeled albumin determinations. In contrast, the PMN-/TNF group did not reveal histopathologic damage in any organ system and there was no abnormal organ accumulation of {sup 125}I-albumin. However, in PMN-/E coli animals, marked histopathologic damage in the adrenal glands and liver was evident. Furthermore, there were marked accumulations of {sup 125}I-albumin in the adrenals, heart, kidneys, liver, and spleen. Moreover, the PMN-/E coli guinea pigs had a much greater accumulation (p less than 0.01) of {sup 125}I-albumin in the kidneys than any other group including the PMN+/E coli group. Thus, nonpulmonary MOD in guinea pigs is caused by TNF administration and can be prevented by PMN depletion. However, while E coli administration also caused marked nonpulmonary MOD in neutrophil sufficient guinea pigs, equivalent or greater damage was produced in neutropenic animals. This suggests that while TNF-induced MOD may be primarily mediated by PMN, E coli-induced MOD seems to be mediated by more than PMN.

  16. Tailor-made designer helical peptides that induce mitochondrion-mediated cell death without necrosis.

    PubMed

    Nogami, Kagayaki; Takahama, Kentaro; Okushima, Ayako; Oyoshi, Takanori; Fujimoto, Kazuhisa; Inouye, Masahiko

    2014-11-24

    Managing protein-protein interactions is essential for resolving unknown biological events at the molecular level and developing drugs. We have designed and synthesized a side-chain-crosslinked helical peptides based on the binding domain of a pro-apoptotic protein (Bad) that induces programmed cell death. The peptide showed high helical content and bound to its target, Bcl-XL, more strongly than its non-crosslinked counterparts. When HeLa cells were incubated with the crosslinked peptide, the peptide entered the cytosol across the plasma membrane. The peptide formed a stable complex with Bcl-XL localized at the outer mitochondrial membrane, and this binding event caused the release of cytochrome c from the intermembrane space of mitochondria into the cytosol. This activated the caspase cascade: 70% of HeLa cells died by the apoptosis pathway (without evidence of necrosis).

  17. Thiazolidinediones block tumor necrosis factor-alpha-induced inhibition of insulin signaling.

    PubMed Central

    Peraldi, P; Xu, M; Spiegelman, B M

    1997-01-01

    TNF-alpha has been shown to be an important mediator of insulin resistance linked to obesity. This cytokine induces insulin resistance, at least in part, through inhibition of the tyrosine kinase activity of the insulin receptor. Recently, a new class of compounds, the antidiabetic thiazolidinediones (TZDs), has been shown to improve insulin resistance in obesity and non-insulin-dependent diabetes mellitus in both rodents and man. Here we show that TZDs have powerful effects on the ability of TNF-alpha to alter the most proximal steps of insulin signaling, including tyrosine phosphorylation of the insulin receptor and its major substrate, IRS-1, and activation of PI3-kinase. Troglitazone or pioglitazone essentially eliminate the reduction in tyrosine phosphorylation of IR and IRS-1 caused by TNF-alpha in fat cells, even at relatively high doses (25 ng/ml). That this effect of TZDs operates through activation of the nuclear receptor PPARgamma/ RXR complex is shown by the fact that similar effects are observed with other PPARgamma/RXR ligands such as 15 deoxy Delta12,14PGJ2 and LG268. The TZDs do not inhibit all TNF-alpha signaling in that the transcription factor NF-kB is still induced well. These data indicate that TZDs can specifically block certain actions of TNF-alpha related to insulin resistance, suggesting that this block may contribute to their antidiabetic actions. PMID:9312188

  18. Protective effects of BMP-7 against tumor necrosis factor α-induced oligodendrocyte apoptosis.

    PubMed

    Wang, Xin; Xu, Jun-Mei; Wang, Ya-Ping; Yang, Lin; Li, Zhi-Jian

    2016-10-01

    Bone morphogenic protein-7 (BMP7) is a multifunctional cytokine with demonstrated neurogenic potential. Oligodendrocytes (OLs) death after spinal cord injury (SCI) contributes to demyelination of spared axons, even leading to a permanent neurological deficit. Therefore, therapeutic approaches to prevent OLs death after SCI should be considered. Since the effects of BMP7 on OLs after injury are largely unknown, we demonstrated the effects of BMP7 on TNF-α-induced OLs apoptosis in vitro. The effects of BMP7 on TNF-α-induced OLs apoptosis were verified by flow cytometry, spectrophotometry and western blotting on primary cultures from spinal cord of postnatal day 1 (P1) to P2 rats. As shown by flow cytometry, apoptosis rate was 25.6% for the control group, 59.0% for the TNF-α group, and 33.5% for the BMP7+TNF-α group; spectrophotometry showed caspase-3 and caspase-8 activity were significantly increased in the TNF-α group than in the control group, and BMP7 could reverse the increase. The involvement of cIAP1 in the protection of BMP7 was determined by western blotting and silencing cIAP1. In summary, our results demonstrated that BMP7 could potently inhibite TNF-α-induced OLs apoptosis and identified the cIAP1 expression level, the activity of caspase-3 and caspase-8 as important mediators of OLs survival after cellular stress and cytokine challenge. PMID:27224662

  19. Ovarian cancer-induced immunosuppression: relationship to tumor necrosis factor-alpha (TNF-alpha) release from ovarian tissue.

    PubMed

    Hassan, M I; Kassim, S K; Saeda, L; Laban, M; Khalifa, A

    1999-01-01

    Cytokines have been reported to be potential biological markers of, disease status in cancer patients. Tumor necrosis factor-alpha (TNF-alpha) is a key cytokine released from monocytes and macrophages. TNF-alpha is involved in essential biological functions such as immunoregulation, modulation of cell growth and differentiation. In this work, the role of TNF-alpha release in ovarian cancer patients was investigated. Fifty-five patients with ovarian cancer and 20 controls of matched age and parity were included in this study. TNF-alpha concentrations were measured in sera and cytosolic fractions of both groups. The results demonstrated a significant increase in TNF-alpha concentrations among patients compared to the control subjects (P < 0.001). Furthermore, a non-significant increase (P = 0.05, was observed between the different types (serous, Mucinous, and endometrioid) of epithelial ovarian cancers. Also TNF-alpha concentrations did not correlate with the disease stage. Moreover, immunohistochemical analysis of tissue specimens stained for TNF-alpha was positive in malignant lesions and negative for the normal ovarian tissue. These findings confirmed the TNF-alpha kinetics obtained by ELISA assays. Interestingly, TNF-alpha levels were also elevated in culture supernatants of PBMC stimulated by cytosolic fractions from malignant ovarian tissues. Blastogenic assays using cytosolic fractions from malignant ovarian specimens to stimulate healthy donor peripheral blood mononuclear cells (PBMC) showed a marked decrease in 3H-thymidine uptake compared to the cells stimulated by normal cytosols. To establish a cause-effect relationship between TNF-alpha release and inhibition of cell proliferation, the experiments showed that 3H-thymidine uptake by PBMC was markedly inhibited by recombinant human TNF-alpha (rh TNF-alpha) and that inhibition was significantly reversed when TNF-alpha monoclonal antibody was added to the cells. The data presented in this work indicate that

  20. Inhibitory effects of bisbenzylisoquinoline alkaloids on induction of proinflammatory cytokines, interleukin-1 and tumor necrosis factor-alpha.

    PubMed

    Onai, N; Tsunokawa, Y; Suda, M; Watanabe, N; Nakamura, K; Sugimoto, Y; Kobayashi, Y

    1995-12-01

    Bisbenzylisoquinoline alkaloids are known to affect immune responses as well as inflammatory responses, and have been used for the treatment of inflammatory symptoms in China. This study is aimed at elucidating the inhibitory effects of two alkaloids, fangchinoline and isotetrandrine, on the induction of the proinflammatory cytokines, interleukin-1 (IL-1), and tumor necrosis factor-alpha (TNF-alpha), by Staphylococcus aureus Cowan 1 (SAC)-stimulated human peripheral blood mononuclear cells. These two alkaloids inhibited cytokine production in a dose-dependent manner, and they inhibited it by more than 90% at 10 micrograms/ml at every time point examined. Of note was that these two alkaloids appeared to inhibit IL-1 beta production more effectively than IL-1 alpha production. When the levels of cytokine mRNA were measured by semiquantitative RT-PCR, these alkaloids reduced the levels of the mRNAs of IL-1 beta and TNF-alpha, but not that of beta 2-microglobulin, suggesting that these alkaloids may suppress cytokine transcription selectively. PMID:8824940

  1. Study on energy density of gold-vapor laser and necrosis depth of mouse malignant tumor (S180)

    NASA Astrophysics Data System (ADS)

    Guo, Yong; Wang, Ze-shi; Yang, Yonghua; Wang, Yongjiang

    1993-03-01

    Gold-vapor laser glass type is a new laser for photodynamic therapy (PDT). Its chief characteristics are pulse type, 6000 - 7000 Hz of frequency, 627.8 nm in wavelength, 3 - 4 watts output, etc. By changing laser energy density, we noticed changes of necrosis depth and surface temperature. The results show that the depth of groups of 500, 1000, 1500, and 2000 Jol/cm2 were 0.62 +/- 0.21, 0.72 +/- 0.05, 0.97 +/- 0.10, and 1.56 +/- 0.13 cm (p < 0.05), respectively. This study indicates that the pulse laser energy density should be larger than that of a continuant one in PDT, thus photodynamic effect may be improved in the clinic. The surface tumor temperature was changed during the treatment, reaching as high as 39.13 degree(s)C, 43.78 degree(s)C, 44.16 degree(s)C, and 43.5 degree(s)C in different groups. This paper also discusses the coordinated effects of hyperthermia and photodynamic therapy.

  2. Sensitivity enhancement of capacitive tumor necrosis factor-α detection by deposition of nanoparticles on interdigitated electrode

    NASA Astrophysics Data System (ADS)

    Yagati, Ajay Kumar; Park, Jinsoo; Kim, Jungsuk; Ju, Heongkyu; Chang, Keun-A.; Cho, Sungbo

    2016-06-01

    An interdigitated electrodes (IDE) modified with gold nanoparticles (AuNPs) was fabricated to enhance the capacitive detection of tumor necrosis factor-α (TNF-α) and compared with a bare IDE. A TNF-α immunosensor was developed by covalently conjugating TNF-α antibodies with 3-mercaptopropionic acid by a carbodiimide/N-hydroxysuccinimide reaction on the AuNP/IDE. After the application of human serum samples containing various concentrations of TNF-α to the sensing electrode, changes in both the impedance spectrum and the electrode interfacial capacitance were measured. The capacitance changes were dependent on the TNF-α concentration in the range of 1 pg ml-1 to 10 ng ml-1, and the device had the calculated detection limit of 0.83 pg ml-1. The developed AuNP/IDE-based immunosensor was successfully used for the capacitive detection of the binding of TNF-α to its antibody, and was found to be feasible for the analysis of TNF-α in human blood serum.

  3. Pathogenetic and Therapeutic Applications of Tumor Necrosis Factor-α (TNF-α) in Major Depressive Disorder: A Systematic Review.

    PubMed

    Ma, Ke; Zhang, Hongxiu; Baloch, Zulqarnain

    2016-01-01

    Major depressive disorder (MDD) is characterized by mood, vegetative, cognitive, and even psychotic symptoms and signs that can cause substantial impairments in quality of life and functioning. Up to now, the exact pathogenesis of MDD remains poorly understood. Recent research has begun to reveal that the pro-inflammatory cytokines, particularly, tumor necrosis factor-α (TNF-α), play an integral role in the pathophysiology of depressive disorders and the mechanism of antidepressant treatment. On the base of several observations: it is found that subsets of MDD patients have enhanced plasma levels TNF-α; antidepressant treatments had linked with the decline of TNF-α; central administration of TNF-α gives rise to sickness behavior which shares features with depression; and a blockade of it can ameliorate depressive symptomatology in animal models and clinical trials. In this review article, we focus on recent evidence linking TNF-α and MDD looking at data from animal and clinical studies, illustrating the pathophysiological role, susceptibility and its therapeutic application in depression. We conclude by discussing future directions for research, in particular the opportunities for the development of novel therapeutics that target TNF-α. This will be very important for designing preventative strategies and for the identification of new drug targets and preventative strategies. PMID:27187381

  4. Cloning of Human Tumor Necrosis Factor (TNF) Receptor cDNA and Expression of Recombinant Soluble TNF-Binding Protein

    NASA Astrophysics Data System (ADS)

    Gray, Patrick W.; Barrett, Kathy; Chantry, David; Turner, Martin; Feldmann, Marc

    1990-10-01

    The cDNA for one of the receptors for human tumor necrosis factor (TNF) has been isolated. This cDNA encodes a protein of 455 amino acids that is divided into an extracellular domain of 171 residues and a cytoplasmic domain of 221 residues. The extracellular domain has been engineered for expression in mammalian cells, and this recombinant derivative binds TNFα with high affinity and inhibits its cytotoxic activity in vitro. The TNF receptor exhibits similarity with a family of cell surface proteins that includes the nerve growth factor receptor, the human B-cell surface antigen CD40, and the rat T-cell surface antigen OX40. The TNF receptor contains four cysteine-rich subdomains in the extra-cellular portion. Mammalian cells transfected with the entire TNF receptor cDNA bind radiolabeled TNFα with an affinity of 2.5 x 10-9 M. This binding can be competitively inhibited with unlabeled TNFα or lymphotoxin (TNFβ).

  5. Downregulation by cryptococcal polysaccharide of tumor necrosis factor alpha and interleukin-1 beta secretion from human monocytes.

    PubMed Central

    Vecchiarelli, A; Retini, C; Pietrella, D; Monari, C; Tascini, C; Beccari, T; Kozel, T R

    1995-01-01

    The regulation by Cryptococcus neoformans encapsulation of interleukin 1 beta (IL-1 beta) and tumor necrosis factor alpha (TNF-alpha) production by human monocytes was investigated. By using encapsulated and acapsular C. neoformans, we demonstrated that both strains induce cytokine production, although the acapsular strain was a better stimulator than the thinly encapsulated strain. The cytokine levels produced by cells stimulated by the two strains were lower and followed a different kinetic than those stimulated by lipopolysaccharide (LPS). Purified capsular polysaccharide inhibits TNF-alpha secretion induced by LPS or acapsular C. neoformans. In contrast, no regulator effect on IL-1 beta was observed when LPS was used. The secretory response of these cytokines follows different pathways of macrophage activation; in fact, complete inhibition of TNF-alpha does not affect IL-1 beta production and vice versa. These data indicate that purified capsular polysaccharide of C. neoformans could contribute to the in vivo progress of cryptococcosis by suppressing cytokine production of macrophages and suggest that a therapeutic approach to address the suppressive effect of cryptococal polysaccharide could be devised. PMID:7622213

  6. Salivary and serum interleukin 1 beta, interleukin 6 and tumor necrosis factor alpha in patients with leukoplakia and oral cancer

    PubMed Central

    Vucicevic-Boras, Vanja; Lukac, Josip; Biocina-Lukenda, Dolores; Zilic-Alajbeg, Iva; Milenovic, Aleksandar; Balija, Melita

    2012-01-01

    Objectives: The aim of study was to compare salivary and serum concentrations of interleukin 1 beta (IL-1β), interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) in patients with oral leukoplakia, oral cancer and healthy controls. Study design: Eighty eight patients (28 with oral cancer, 29 leukoplakia, and 31 healthy controls) were included in this study. Cytokine concentrations were measured by commercial enzyme linked immunoassay. Results: Salivary IL-1β and IL-6 were significantly higher in oral cancer patients than in patients with leukoplakia and control group (p<0.05). No differences in concentrations of salivary TNF-α between either of the groups were observed. Serum concentrations of IL-1β were below level of detection in all but two participants. No significant differences between the groups were observed in serum concentrations of IL-6. Serum TNF-α was significantly higher in control subjects than in oral cancer patients. Conclusions: Patients with oral cancer have elevated levels of inflammatory cytokines in their saliva. Whether this elevation can be used for monitoring the malignant transformation of oral leukoplakia remains to be answered by further follow up studies. Key words: Cytokines, oral, leukoplakia, cancer. PMID:21743397

  7. Association between genetic variations in tumor necrosis factor receptor genes and survival of patients with T-cell lymphoma

    PubMed Central

    Zhai, Kan; Chang, Jiang; Wu, Chen; Lu, Ning; Huang, Li-Ming; Zhang, Tong-Wen; Yu, Dian-Ke; Tan, Wen; Lin, Dong-Xin

    2012-01-01

    The prognosis of T-cell lymphoma (TCL) has been shown to be associated with the clinical characteristics of patients. However, there is little knowledge of whether genetic variations also affect the prognosis of TCL. This study investigated the associations between single nucleotide polymorphisms (SNPs) in tumor necrosis factor receptor superfamily (TNFRSF) genes and the survival of patients with TCL. A total of 38 tag SNPs in 18 TNFRSF genes were genotyped using Sequenom platform in 150 patients with TCL. Kaplan-Meier survival estimates were plotted and significance was assessed using log-rank tests. Cox proportional hazard models were used to analyze each of these 38 SNPs with adjustment for covariates that might influence patient survival, including sex and international prognostic Index score. Hazard ratios (HRs) and their 95% confidence intervals (CIs) were calculated. Among the 38 SNPs tested, 3 were significantly associated with the survival of patients with TCL. These SNPs were located at LTβR (rs3759333C>T) and TNFRSF17 (rs2017662C>T and rs2071336C>T). The 5-year survival rates were significantly different among patients carrying different genotypes and the HRs for death between the different genotypes ranged from 0.45 to 2.46. These findings suggest that the SNPs in TNFRSF genes might be important determinants for the survival of TCL patients. PMID:22640629

  8. Pancreatic acinar cells produce, release, and respond to tumor necrosis factor-alpha. Role in regulating cell death and pancreatitis.

    PubMed Central

    Gukovskaya, A S; Gukovsky, I; Zaninovic, V; Song, M; Sandoval, D; Gukovsky, S; Pandol, S J

    1997-01-01

    The aim of this study was to determine whether tumor necrosis factor-alpha (TNFalpha) and receptors for TNFalpha are expressed in the exocrine pancreas, and whether pancreatic acinar cells release and respond to TNFalpha. Reverse transcription PCR, immunoprecipitation, and Western blot analysis demonstrated the presence of TNFalpha and 55- and 75-kD TNFalpha receptors in pancreas from control rats, rats with experimental pancreatitis induced by supramaximal doses of cerulein, and in isolated pancreatic acini. Immunohistochemistry showed TNFalpha presence in pancreatic acinar cells. ELISA and bioassay measurements of TNFalpha indicated its release from pancreatic acinar cells during incubation in primary culture. Acinar cells responded to TNFalpha. TNFalpha potentiated NF-kappaB translocation into the nucleus and stimulated apoptosis in isolated acini while not affecting LDH release. In vivo studies demonstrated that neutralization of TNFalpha with an antibody produced a mild improvement in the parameters of cerulein-induced pancreatitis. However, TNFalpha neutralization greatly inhibited apoptosis in a modification of the cerulein model of pancreatitis which is associated with a high percentage of apoptotic cell death. The results indicate that pancreatic acinar cells produce, release, and respond to TNFalpha. This cytokine regulates apoptosis in both isolated pancreatic acini and experimental pancreatitis. PMID:9312187

  9. Tumor necrosis factor-α -308G/A gene polymorphism in Egyptian children with immune thrombocytopenic purpura.

    PubMed

    El Sissy, Maha H; El Sissy, A H; Elanwary, Sherif

    2014-07-01

    Immune thrombocytopenic purpura (ITP) is an autoimmune disease characterized by increased platelet destruction. Although the cause of ITP remains unclear, it is accepted that both environmental and genetic factors play an important role in the development of the disease. Children with ITP have a T-helper 1-type cytokine pattern with elevated levels of tumor necrosis factor-alpha (TNF-α) as in most autoimmune diseases. Researchers have shown that polymorphism in the TNF-α gene at position -308 affects gene transcriptions with increased TNF-α production. The current case-control study aimed at detecting the frequency of TNF-α -308G/A gene polymorphism as genetic markers in Egyptian children with ITP, and to clear out their possible role in choosing the treatment protocols of therapy, using PCR restriction fragment length polymorphism assay. Ninety-two ITP patients and 100 age and sex-matched healthy controls were recruited in the study. The results obtained revealed that the frequency of TNF-α -308A/A homotype in ITP patients was significantly higher than that of the controls, and conferred almost six-fold increased risk of ITP acquisition. The polymorphic A allele frequency was significantly higher in ITP patients than in the controls, conferring almost two-fold increased ITP risk. In conclusion, our study suggests the possibility that TNF-α -308 gene polymorphism may contribute to the susceptibility of childhood ITP in Egyptian children.

  10. Calcitriol inhibits tumor necrosis factor alpha and macrophage inflammatory protein-2 during lipopolysaccharide-induced acute lung injury in mice.

    PubMed

    Tan, Zhu-Xia; Chen, Yuan-Hua; Xu, Shen; Qin, Hou-Ying; Wang, Hua; Zhang, Cheng; Xu, De-Xiang; Zhao, Hui

    2016-08-01

    Acute lung injury is a common complication of sepsis in intensive care unit patients with an extremely high mortality. The present study investigated the effects of calcitriol, the active form of vitamin D, on tumor necrosis factor alpha (TNF-α) and macrophage inflammatory protein-2 (MIP-2) in sepsis-induced acute lung injury. Mice were intraperitoneally (i.p.) injected with lipopolysaccharide (LPS, 1.0mg/kg) to establish the animal model of sepsis-induced acute lung injury. Some mice were i.p. injected with calcitriol (1.0μg/kg) before LPS injection. An obvious infiltration of inflammatory cells in the lungs was observed beginning at 1h after LPS injection. Correspondingly, TNF-α and MIP-2 in sera and lung homogenates were markedly elevated in LPS-treated mice. Interestingly, calcitriol obviously alleviated LPS-induced infiltration of inflammatory cells in the lungs. Moreover, calcitriol markedly attenuated LPS-induced elevation of TNF-α and MIP-2 in sera and lung homogenates. Further analysis showed that calcitriol repressed LPS-induced p38 mitogen-activated protein kinase (MAPK) and protein kinase B (Akt) phosphorylation. In addition, calcitriol blocked LPS-induced nuclear translocation of nuclear factor kappa B (NF-κB) p65 and p50 subunit in the lungs. Taken together, these results suggest that calcitriol inhibits inflammatory cytokines production in LPS-induced acute lung injury.

  11. Tumor necrosis factor alpha protects heart cultures against hypoxic damage via activation of PKA and phospholamban to prevent calcium overload.

    PubMed

    El-Ani, Dalia; Philipchik, Irena; Stav, Hagit; Levi, Moran; Zerbib, Jordana; Shainberg, Asher

    2014-11-01

    This study aims to elucidate the mechanisms by which tumor necrosis factor alpha (TNFα) provides protection from hypoxic damage to neonatal rat cardiomyocyte cultures. We show that when intracellular Ca(2+) ([Ca(2+)]i) levels are elevated by extracellular Ca(2+) ([Ca(2+)]o) or by hypoxia, then TNFα decreased [Ca(2+)]i in individual cardiomyocytes. However, TNFα did not reduce [Ca(2+)]i after its increase by thapsigargin, (a SERCA2a inhibitor), indicating that TNFα attenuates Ca(2+) overload through Ca(2+) uptake by SERCA2a. TNFα did not reduce [Ca(2+)]i, following its elevation when [Ca(2+)]o levels were elevated in TNFα receptor knock-out mice. H-89, a protein kinase A (PKA) inhibitor, attenuated the protective effect of TNFα when the cardiomyoctyes were subjected to hypoxia, as determined by lactate dehydrogenase (LDH) and creatine kinase (CK) released and from the cardiomyocytes. Moreover, when the levels of [Ca(2+)]i were increased by hypoxia, H-89, but not KN93, (a calmodulin kinase II inhibitor), prevented the reduction in [Ca(2+)]i by TNFα. TNFα increased the phosphorylation of PKA in normoxic and hypoxic cardiomyoctes, indicating that the cardioprotective effect of TNFα against hypoxic damage was via PKA activation. Hypoxia decreased phosphorylated phospholamban levels; however, TNFα attenuated this decrease following hypoxia. It is suggested that TNFα activates phospholamban phosphorylation in hypoxic heart cultures via PKA to stimulate SERCA2a activity to limit Ca(2+) overload.

  12. Tumor necrosis factor-α and interleukin-6 gene polymorphism association with susceptibility to celiac disease in Italian patients.

    PubMed

    de Albuquerque Maranhão, R M; Martins Esteves, F A; Crovella, S; Segat, L; Eleutério Souza, P R

    2015-12-09

    The aim of this research was to study polymorphisms in the genes encoding cytokines interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) in patients with celiac disease (CD) antigens DQ2 (DQ2-positive) or DQ8 (DQ8-positive). We compared the results with healthy controls to determine whether any of the polymorphisms have a role in susceptibility to CD. A case-control of 192 patients with CD (96 DQ2-positive and 96 DQ8-positive) and 96 healthy controls from northeast Italy were included in the study. Analysis of single nucleotide polymorphisms (SNPs) was carried out using the polymerase chain reaction-restriction fragment length polymorphism method. Significant differences for the TNF-α(-308 G>A) polymorphism were observed when we compared the flowing groups: DQ2-positive with controls [odds ratio (OR) = 0.45, P = 0.0002]; DQ8-positive with controls (OR = 3.55, P < 0.0001); and DQ2-positive with DQ8-positive (OR = 0.12, P < 0.0001). We did not observe a statistically significant association between IL-6 (-174 G>C) polymorphism and CD (P > 0.05). Our results suggest that TNF-α(-308 G>A) polymorphism may play a role in susceptibility to CD in Italian patients.

  13. Garlic (Allium sativum) stimulates lipopolysaccharide-induced tumor necrosis factor-alpha production from J774A.1 murine macrophages.

    PubMed

    Sung, Jessica; Harfouche, Youssef; De La Cruz, Melissa; Zamora, Martha P; Liu, Yan; Rego, James A; Buckley, Nancy E

    2015-02-01

    Garlic (Allium sativum) is known to have many beneficial attributes such as antimicrobial, antiatherosclerotic, antitumorigenetic, and immunomodulatory properties. In the present study, we investigated the effects of an aqueous garlic extract on macrophage cytokine production by challenging the macrophage J774A.1 cell line with the garlic extract in the absence or presence of lipopolysaccharide (LPS) under different conditions. The effect of allicin, the major component of crushed garlic, was also investigated. Using enzyme-linked immunosorbent assay and reverse transcriptase-quantitative polymerase chain reaction, it was found that garlic and synthetic allicin greatly stimulated tumor necrosis factor-alpha (TNF-α) production in macrophages treated with LPS. The TNF-α secretion levels peaked earlier and were sustained for a longer time in cells treated with garlic and LPS compared with cells treated with LPS alone. Garlic acted in a time-dependent manner. We suggest that garlic, at least partially via its allicin component, acts downstream from LPS to stimulate macrophage TNF-α secretion. PMID:25366263

  14. Varicella zoster meningitis complicating combined anti-tumor necrosis factor and corticosteroid therapy in Crohn’s disease

    PubMed Central

    Ma, Christopher; Walters, Brennan; Fedorak, Richard N

    2013-01-01

    Opportunistic viral infections are a well-recognized complication of anti-tumor necrosis factor (TNF) therapy for inflammatory bowel disease (IBD). Cases of severe or atypical varicella zoster virus infection, both primary and latent reactivation, have been described in association with immunosuppression of Crohn’s disease (CD) patients. However, central nervous system varicella zoster virus infections have been rarely described, and there are no previous reports of varicella zoster virus meningitis associated with anti-TNF therapy among the CD population. Here, we present the case of a 40-year-old male with severe ileocecal-CD who developed a reactivation of dermatomal herpes zoster after treatment with prednisone and adalimumab. The reactivation presented as debilitating varicella zoster virus meningitis, which was not completely resolved despite aggressive antiviral therapy with prolonged intravenous acyclovir and subsequent oral valacyclovir. This is the first reported case of opportunistic central nervous system varicella zoster infection complicating anti-TNF therapy in the CD population. This paper also reviews the literature on varicella zoster virus infections of immunosuppressed IBD patients and the importance of vaccination prior to initiation of anti-TNF therapy. PMID:23745038

  15. Pathogenetic and Therapeutic Applications of Tumor Necrosis Factor-α (TNF-α) in Major Depressive Disorder: A Systematic Review

    PubMed Central

    Ma, Ke; Zhang, Hongxiu; Baloch, Zulqarnain

    2016-01-01

    Major depressive disorder (MDD) is characterized by mood, vegetative, cognitive, and even psychotic symptoms and signs that can cause substantial impairments in quality of life and functioning. Up to now, the exact pathogenesis of MDD remains poorly understood. Recent research has begun to reveal that the pro-inflammatory cytokines, particularly, tumor necrosis factor-α (TNF-α), play an integral role in the pathophysiology of depressive disorders and the mechanism of antidepressant treatment. On the base of several observations: it is found that subsets of MDD patients have enhanced plasma levels TNF-α; antidepressant treatments had linked with the decline of TNF-α; central administration of TNF-α gives rise to sickness behavior which shares features with depression; and a blockade of it can ameliorate depressive symptomatology in animal models and clinical trials. In this review article, we focus on recent evidence linking TNF-α and MDD looking at data from animal and clinical studies, illustrating the pathophysiological role, susceptibility and its therapeutic application in depression. We conclude by discussing future directions for research, in particular the opportunities for the development of novel therapeutics that target TNF-α. This will be very important for designing preventative strategies and for the identification of new drug targets and preventative strategies. PMID:27187381

  16. Distinct roles for lymphotoxin-alpha and tumor necrosis factor in the control of Leishmania donovani infection.

    PubMed

    Engwerda, Christian R; Ato, Manabu; Stäger, Simona; Alexander, Clare E; Stanley, Amanda C; Kaye, Paul M

    2004-12-01

    Tumor necrosis factor (TNF) is critical for the control of visceral leishmaniasis caused by Leishmania donovani. However, the role of the related cytokine lymphotoxin (LT) alpha in this infection is unknown. Here we report that C57BL/6 mice deficient in TNF (B6.TNF(-/-)) or LT alpha (B6.LT alpha(-/-)) have increased susceptibility to hepatic L. donovani infection. Furthermore, the outcome of infection in bone marrow chimeric mice is dependent on donor hematopoietic cells, indicating that developmental defects in lymphoid organs were not responsible for increased susceptibility to L. donovani. Although both LT alpha and TNF regulated the migration of leukocytes into the sinusoidal area of the infected liver, their roles were distinct. LT alpha was essential for migration of leukocytes from periportal areas, an event consistent with LT alpha-dependent up-regulation of VCAM-1 on liver sinusoid lining cells, whereas TNF was essential for leukocyte recruitment to the liver. During visceral leishmaniasis, both cytokines were produced by radio-resistant cells and by CD4(+) T cells. LT alpha and TNF production by the former was required for granuloma assembly, while production of these cytokines by CD4(+) T cells was necessary to control parasite growth. The production of inducible nitric oxide synthase was also found to be deficient in TNF- and LT alpha-deficient infected mice. These results demonstrate that both LT alpha and TNF are required for control of L. donovani infection in noncompensatory ways. PMID:15579454

  17. -383 A/C tumor necrosis factor receptor 1 polymorphism and ankylosing spondylitis in Mexicans: a preliminary study.

    PubMed

    Corona-Sanchez, Esther Guadalupe; Muñoz-Valle, José Francisco; Gonzalez-Lopez, Laura; Sanchez-Hernandez, Julia Dolores; Vazquez-Del Mercado, Monica; Ontiveros-Mercado, Heriberto; Huerta, Miguel; Trujillo, Xochitl; Rocha-Muñoz, Alberto Daniel; Celis, Alfredo; Ortega-Flores, Ricardo; Gamez-Nava, Jorge Ivan

    2012-08-01

    The objective of this study was to evaluate the differences in allele and genotype frequencies of -383 tumor necrosis factor receptor 1 (TNFR1) polymorphism between ankylosing spondylitis (AS) and controls. Mexican Mestizos with AS were matched by gender, age, and ethnicity with healthy controls and compared in allele and genotype frequencies of the -383 TNFR1 polymorphism. Polymorphisms were genotyped using PCR-RFLP. The AA genotype occurred at a higher frequency in the AS group (92%) compared with controls (79%, P = 0.03). A allele was increased in AS (96% vs. 88%, P = 0.015) and was associated with genetic susceptibility for AS (odds ratio = 3.48, 95% CI = 1.23-10.61). This preliminary study is the first assessing the association of the -383 A/C TNFR1 polymorphism with AS, although it has the limitation of a small sample size. These data are of interest for the genetic epidemiology of AS in the Mexican population, requiring further investigation in other countries.

  18. Erythropoietin Levels Increase during Cerebral Malaria and Correlate with Heme, Interleukin-10 and Tumor Necrosis Factor-Alpha in India.

    PubMed

    Dalko, Esther; Tchitchek, Nicolas; Pays, Laurent; Herbert, Fabien; Cazenave, Pierre-André; Ravindran, Balachandran; Sharma, Shobhona; Nataf, Serge; Das, Bidyut; Pied, Sylviane

    2016-01-01

    Cerebral malaria (CM) caused by Plasmodium falciparum parasites often leads to the death of infected patients or to persisting neurological sequelae despite anti-parasitic treatments. Erythropoietin (EPO) was recently suggested as a potential adjunctive treatment for CM. However diverging results were obtained in patients from Sub-Saharan countries infected with P. falciparum. In this study, we measured EPO levels in the plasma of well-defined groups of P. falciparum-infected patients, from the state of Odisha in India, with mild malaria (MM), CM, or severe non-CM (NCM). EPO levels were then correlated with biological parameters, including parasite biomass, heme, tumor necrosis factor (TNF)-α, interleukin (IL)-10, interferon gamma-induced protein (IP)-10, and monocyte chemoattractant protein (MCP)-1 plasma concentrations by Spearman's rank and multiple correlation analyses. We found a significant increase in EPO levels with malaria severity degree, and more specifically during fatal CM. In addition, EPO levels were also found correlated positively with heme, TNF-α, IL-10, IP-10 and MCP-1 during CM. We also found a significant multivariate correlation between EPO, TNF-α, IL-10, IP-10 MCP-1 and heme, suggesting an association of EPO with a network of immune factors in CM patients. The contradictory levels of circulating EPO reported in CM patients in India when compared to Africa highlights the need for the optimization of adjunctive treatments according to the targeted population. PMID:27441662

  19. Pathogenetic and Therapeutic Applications of Tumor Necrosis Factor-α (TNF-α) in Major Depressive Disorder: A Systematic Review.

    PubMed

    Ma, Ke; Zhang, Hongxiu; Baloch, Zulqarnain

    2016-05-14

    Major depressive disorder (MDD) is characterized by mood, vegetative, cognitive, and even psychotic symptoms and signs that can cause substantial impairments in quality of life and functioning. Up to now, the exact pathogenesis of MDD remains poorly understood. Recent research has begu