Science.gov

Sample records for medical diagnostic ultrasound

  1. Ultrasound Metrology in Mexico: a round robin test for medical diagnostics

    NASA Astrophysics Data System (ADS)

    Amezola Luna, R.; López Sánchez, A. L.; Elías Juárez, A. A.

    2011-02-01

    This paper presents preliminary statistical results from an on-going imaging medical ultrasound study, of particular relevance for gynecology and obstetrics areas. Its scope is twofold, firstly to compile the medical ultrasound infrastructure available in cities of Queretaro-Mexico, and second to promote the use of traceable measurement standards as a key aspect to assure quality of ultrasound examinations performed by medical specialists. The experimental methodology is based on a round robin test using an ultrasound phantom for medical imaging. The physician, using its own ultrasound machine, couplant and facilities, measures the size and depth of a set of pre-defined reflecting and absorbing targets of the reference phantom, which simulate human illnesses. Measurements performed give the medical specialist an objective feedback regarding some performance characteristics of their ultrasound examination systems, such as measurement system accuracy, dead zone, axial resolution, depth of penetration and anechoic targets detection. By the end of March 2010, 66 entities with medical ultrasound facilities, from both public and private institutions, have performed measurements. A network of medical ultrasound calibration laboratories in Mexico, with traceability to The International System of Units via national measurement standards, may indeed contribute to reduce measurement deviations and thus attain better diagnostics.

  2. Source Book of Educational Materials for Diagnostic Medical Ultrasound. Radiological Health Series.

    ERIC Educational Resources Information Center

    Pijar, Mary Lou, Comp; And Others

    This report is a compilation of educational materials that are available in the field of diagnostic medical ultrasound. Materials, which include publications, audiovisual aids, and teaching aids, are listed under the following categories: abdominal imaging; anatomy and physiology; anatomy and embryology; bioeffects; cardiology and vasculature;…

  3. Visualizing and measuring the temperature field produced by medical diagnostic ultrasound using thermography

    NASA Astrophysics Data System (ADS)

    Vachutka, J.; Grec, P.; Mornstein, V.; Caruana, C. J.

    2008-11-01

    The heating of tissues by diagnostic ultrasound can pose a significant hazard particularly in the imaging of the unborn child. The demonstration of the temperature field in tissue is therefore an important objective in the teaching of biomedical physics to healthcare professionals. The temperature field in a soft tissue model was made visible and measured using thermography. Temperature data from the images were used to investigate the dependence of temperature increase within the model on ultrasound exposure time and distance from the transducer. The experiment will be used within a multi-professional biomedical physics teaching laboratory for enhancing learning regarding the principles of thermography and the thermal effects of ultrasound to medical and healthcare students and also for demonstrating the quantitative use of thermographic imaging to students of biophysics, medical physics and medical technology.

  4. Visualizing and Measuring the Temperature Field Produced by Medical Diagnostic Ultrasound Using Thermography

    ERIC Educational Resources Information Center

    Vachutka, J.; Grec, P.; Mornstein, V.; Caruana, C. J.

    2008-01-01

    The heating of tissues by diagnostic ultrasound can pose a significant hazard particularly in the imaging of the unborn child. The demonstration of the temperature field in tissue is therefore an important objective in the teaching of biomedical physics to healthcare professionals. The temperature field in a soft tissue model was made visible and…

  5. The effects of transducer geometry on artifacts common to diagnostic bone imaging with conventional medical ultrasound.

    PubMed

    Mauldin, F William; Owen, Kevin; Tiouririne, Mohamed; Hossack, John A

    2012-06-01

    The portability, low cost, and non-ionizing radiation associated with medical ultrasound suggest that it has potential as a superior alternative to X-ray for bone imaging. However, when conventional ultrasound imaging systems are used for bone imaging, clinical acceptance is frequently limited by artifacts derived from reflections occurring away from the main axis of the acoustic beam. In this paper, the physical source of off-axis artifacts and the effect of transducer geometry on these artifacts are investigated in simulation and experimental studies. In agreement with diffraction theory, the sampled linear-array geometry possessed increased off-axis energy compared with single-element piston geometry, and therefore, exhibited greater levels of artifact signal. Simulation and experimental results demonstrated that the linear-array geometry exhibited increased artifact signal when the center frequency increased, when energy off-axis to the main acoustic beam (i.e., grating lobes) was perpendicularly incident upon off-axis surfaces, and when off-axis surfaces were specular rather than diffusive. The simulation model used to simulate specular reflections was validated experimentally and a correlation coefficient of 0.97 between experimental and simulated peak reflection contrast was observed. In ex vivo experiments, the piston geometry yielded 4 and 6.2 dB average contrast improvement compared with the linear array when imaging the spinous process and interlaminar space of an animal spine, respectively. This work indicates that off-axis reflections are a major source of ultrasound image artifacts, particularly in environments comprising specular reflecting (i.e., bone or bone-like) objects. Transducer geometries with reduced sensitivity to off-axis surface reflections, such as a piston transducer geometry, yield significant reductions in image artifact.

  6. Ultrasound introscopic image quantitative characteristics for medical diagnostics and refinements of physical noise rise reasons

    NASA Astrophysics Data System (ADS)

    Novoselets, Mikhail K.; Radchenko, Sergiy P.; Tsubin, Vitaliy A.; Gridko, Alexander N.

    1994-05-01

    Ultrasound images obtained with a simple sector scan show a granular appearance, called `speckle'. The speckle is the useless property of the ultrasound introskopic images as it mask all small differences of the images. The possibility of the speckle noise reduction by special created filter is analyzed. The computer processing results of ultrasound introskopic thyroid gland images by such filter are presented.

  7. Quo vadis medical ultrasound?

    PubMed

    Lewin, Peter A

    2004-04-01

    The last three decades of development in diagnostic ultrasound imaging and technology are briefly reviewed and the impact of the crucial link between the two apparently independent research efforts, which eventually facilitated implementation of harmonic imaging modality is explored. These two efforts included the experiments with piezoelectric PVDF polymer material and studies of the interaction between ultrasound energy and biological tissue. Harmonic imaging and its subsequent improvements revolutionized the diagnostic power of clinical ultrasound and brought along images of unparalleled resolution, close to that of magnetic resonance imaging (MRI) quality. The nonlinear propagation effects and their implications for both diagnostic and therapeutic applications of ultrasound are also briefly addressed. In diagnostic applications, the impact of these effects on image resolution and tissue characterization is reviewed; in therapeutic applications, the influence of nonlinear propagation effects on highly localized tissue ablation and cauterization is examined. Next, the most likely developments and future trends in clinical ultrasound technology, including 3D and 4D imaging, distant palpation, image enhancement using contrast agents, monitoring, and merger of diagnostic and therapeutic applications by e.g. introducing ultrasonically controlled targeted drug delivery are reviewed. Finally, a possible competition from other imaging modalities is discussed.

  8. Medical ultrasound systems.

    PubMed

    Powers, Jeff; Kremkau, Frederick

    2011-08-06

    Medical ultrasound imaging has advanced dramatically since its introduction only a few decades ago. This paper provides a short historical background, and then briefly describes many of the system features and concepts required in a modern commercial ultrasound system. The topics addressed include array beam formation, steering and focusing; array and matrix transducers; echo image formation; tissue harmonic imaging; speckle reduction through frequency and spatial compounding, and image processing; tissue aberration; Doppler flow detection; and system architectures. It then describes some of the more practical aspects of ultrasound system design necessary to be taken into account for today's marketplace. It finally discusses the recent explosion of portable and handheld devices and their potential to expand the clinical footprint of ultrasound into regions of the world where medical care is practically non-existent. Throughout the article reference is made to ways in which ultrasound imaging has benefited from advances in the commercial electronics industry. It is meant to be an overview of the field as an introduction to other more detailed papers in this special issue.

  9. Ultrasound microscope: the new field in ultrasound diagnostics

    NASA Astrophysics Data System (ADS)

    Novyc'kyy, Victor V.; Lushchyk, Ulyana B.

    2001-06-01

    A device which is a new stage in the development of medical equipment has been developed. The device works as an ultrasound microscope in vivo and provides 4 up to 32 colored histological image. It gives possibility to estimate tissue acoustic density with the help of 4 up to 32 gradation coloring different tissues and enables tissue microcirculation visualization. With the help of the device a doctor can objectify fatty hepatitis and cirrhosis, edema of different organs and tissues as well as microcirculation in organs and tissues (e.g. muscles, myocard and bone system). New promising applications of ultrasound systems in diagnostics and for choosing individual treatment tactics, with pathogenesis being taken into account, may be developed with the help of the device.

  10. Integrated photoacoustic, ultrasound and fluorescence platform for diagnostic medical imaging-proof of concept study with a tissue mimicking phantom

    PubMed Central

    James, Joseph; Murukeshan, Vadakke Matham; Woh, Lye Sun

    2014-01-01

    The structural and molecular heterogeneities of biological tissues demand the interrogation of the samples with multiple energy sources and provide visualization capabilities at varying spatial resolution and depth scales for obtaining complementary diagnostic information. A novel multi-modal imaging approach that uses optical and acoustic energies to perform photoacoustic, ultrasound and fluorescence imaging at multiple resolution scales from the tissue surface and depth is proposed in this paper. The system comprises of two distinct forms of hardware level integration so as to have an integrated imaging system under a single instrumentation set-up. The experimental studies show that the system is capable of mapping high resolution fluorescence signatures from the surface, optical absorption and acoustic heterogeneities along the depth (>2cm) of the tissue at multi-scale resolution (<1µm to <0.5mm). PMID:25071954

  11. Medical Ultrasound Imaging.

    ERIC Educational Resources Information Center

    Hughes, Stephen

    2001-01-01

    Explains the basic principles of ultrasound using everyday physics. Topics include the generation of ultrasound, basic interactions with material, and the measurement of blood flow using the Doppler effect. (Author/MM)

  12. WE-AB-206-01: Diagnostic Ultrasound Imaging Quality Assurance.

    PubMed

    Zagzebski, J

    2016-06-01

    The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. The goal of this ultrasound hands-on workshop is to demonstrate quality control (QC) testing in diagnostic ultrasound and to provide updates in ACR ultrasound accreditation requirements. The first half of this workshop will include two presentations reviewing diagnostic ultrasound QA/QC and ACR ultrasound accreditation requirements. The second half of the workshop will include live demonstrations of basic QC tests. An array of ultrasound testing phantoms and ultrasound scanners will be available for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations and on-site instructors. The targeted attendees are medical physicists in diagnostic imaging.

  13. Medical diagnostic applications and sources.

    PubMed

    Whittingham, T A

    2007-01-01

    The ways in which ultrasound is used in medical diagnosis are reviewed, with particular emphasis on the ultrasound source (probe) and implications for acoustic exposure. A brief discussion of the choice of optimum frequency for various target depths is followed by a description of the general features of diagnostic ultrasound probes, including endo-probes. The different modes of diagnostic scanning are then discussed in turn: A-mode, M-mode, B-mode, three-dimensional (3D) and 4D scanning, continuous wave (CW) Doppler, pulse-wave spectral Doppler and Doppler imaging. Under the general heading of B-mode imaging, there are individual descriptions of the principles of chirps and binary codes, B-flow, tissue harmonic imaging and ultrasound contrast agent-specific techniques. Techniques for improving image quality within the constraints of real-time operation are discussed, including write zoom, parallel beam forming, spatial compounding and multiple zone transmission focusing, along with methods for reducing slice thickness. At the end of each section there is a summarising comment on the basic features of the acoustic output and its consequences for patient safety.

  14. WE-A-210-00: Educational: Diagnostic Ultrasound QA

    SciTech Connect

    2015-06-15

    This presentation will focus on the present role of ultrasound medical physics in clinical practices. The first part of the presentation will provide an overview of ultrasound QC methodologies and testing procedures. A brief review of ultrasound phantoms utilized in these testing procedures will be presented. The second part of the presentation will summarize ultrasound imaging technical standards and professional guidelines by American College of Radiology (ACR), American Institute of Ultrasound in Medicine (AIUM), American Association of Physicists in Medicine (AAPM) and International Electrotechnical Commission (IEC). The current accreditation requirements by ACR and AIUM for ultrasound practices will be described and the practical aspects of implementing QC programs to be compliant with these requirements will be discussed. Learning Objectives: Achieve familiarity with common ultrasound QC test methods and ultrasound phantoms. Understand the coverage of the existing testing standards and professional guidelines on diagnostic ultrasound imaging. Learn what a medical physicist needs to know about ultrasound program accreditation and be able to implement ultrasound QC programs accordingly.

  15. National ultrasound curriculum for medical students.

    PubMed

    Baltarowich, Oksana H; Di Salvo, Donald N; Scoutt, Leslie M; Brown, Douglas L; Cox, Christian W; DiPietro, Michael A; Glazer, Daniel I; Hamper, Ulrike M; Manning, Maria A; Nazarian, Levon N; Neutze, Janet A; Romero, Miriam; Stephenson, Jason W; Dubinsky, Theodore J

    2014-03-01

    Ultrasound (US) is an extremely useful diagnostic imaging modality because of its real-time capability, noninvasiveness, portability, and relatively low cost. It carries none of the potential risks of ionizing radiation exposure or intravenous contrast administration. For these reasons, numerous medical specialties now rely on US not only for diagnosis and guidance for procedures, but also as an extension of the physical examination. In addition, many medical school educators recognize the usefulness of this technique as an aid to teaching anatomy, physiology, pathology, and physical diagnosis. Radiologists are especially interested in teaching medical students the appropriate use of US in clinical practice. Educators who recognize the power of this tool have sought to incorporate it into the medical school curriculum. The basic question that educators should ask themselves is: "What should a student graduating from medical school know about US?" To aid them in answering this question, US specialists from the Society of Radiologists in Ultrasound and the Alliance of Medical School Educators in Radiology have collaborated in the design of a US curriculum for medical students. The implementation of such a curriculum will vary from institution to institution, depending on the resources of the medical school and space in the overall curriculum. Two different examples of how US can be incorporated vertically or horizontally into a curriculum are described, along with an explanation as to how this curriculum satisfies the Accreditation Council for Graduate Medical Education competencies, modified for the education of our future physicians.

  16. [Ultrasound diagnostics of diffuse liver diseases].

    PubMed

    Jung, E M; Wiggermann, P; Stroszczynski, C; Reiser, M F; Clevert, D-A

    2012-08-01

    The current improvements in modern high resolution ultrasound technology, like Tissue Harmonic Imaging (THI), Speckle Reduction Imaging (SRI), partial color coding of B-mode (Color Coded Imaging), and also the advent of ultrasound based elastography as well as contrast-enhanced ultrasound (CEUS) offer fundamentally new ways to characterize diffuse alterations of the liver parenchyma. Besides metabolic disease, disorders of liver fat distribution, infectious and malignant diseases can cause diffuse alterations of the liver parenchyma. In case of liver fibrosis, only a combination of different ultrasound techniques including CEUS, allows the differentiation between benign dysplastic and malignant lesions. Ultrasound elastography allows assessing the extent of the fibrosis. This article focuses on the different ultrasound based diagnostic possibilities in case of diffuse liver disease.

  17. External Diagnostic Ultrasound Capabilities, Limitations, And Future Trends

    NASA Astrophysics Data System (ADS)

    Von Behren, Patrick L.; Lee, Richard M.; Milburn, Donald T.

    1989-08-01

    External ultrasound has achieved an important niche in the spectrum of diagnostic imaging modalities. Its real-time capability, ease of use, and relative low cost have brought it to prominence as an important diagnostic tool. Medical ultrasound imaging, driven by advances in technology and by clinical needs, continues to improve its diagnostic capabilities. Key technologies for ultrasound development are new transducers, advances in signal processing algorithms, and increased computer power. Although external ultrasound image quality continues to steadily improve, certain clinical limitations such as organ access and tissue attenuation have spurred the development of more invasive scanning techniques. Endorectal, endovaginal, and transesophageal probes provide better access to--and provide superior images for--the prostate, uterus and heart. Intraluminal ultrasound is an emerging field of imaging, employing miniature, high-frequency probes which can be inserted into arteries to monitor interventional procedures. To put these developments into perspective, this manuscript reviews the capabilities and limitations of existing ultrasound technology and discusses the impetus for future developments.

  18. MO-AB-210-00: Diagnostic Ultrasound Imaging Quality Control and High Intensity Focused Ultrasound Therapy Hands-On Workshop

    SciTech Connect

    2015-06-15

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  19. Virtual Guidance Ultrasound: A Tool to Obtain Diagnostic Ultrasound for Remote Environments

    NASA Technical Reports Server (NTRS)

    Caine,Timothy L.; Martin David S.; Matz, Timothy; Lee, Stuart M. C.; Stenger, Michael B.; Platts, Steven H.

    2012-01-01

    Astronauts currently acquire ultrasound images on the International Space Station with the assistance of real-time remote guidance from an ultrasound expert in Mission Control. Remote guidance will not be feasible when significant communication delays exist during exploration missions beyond low-Earth orbit. For example, there may be as much as a 20- minute delay in communications between the Earth and Mars. Virtual-guidance, a pre-recorded audio-visual tutorial viewed in real-time, is a viable modality for minimally trained scanners to obtain diagnostically-adequate images of clinically relevant anatomical structures in an autonomous manner. METHODS: Inexperienced ultrasound operators were recruited to perform carotid artery (n = 10) and ophthalmic (n = 9) ultrasound examinations using virtual guidance as their only instructional tool. In the carotid group, each each untrained operator acquired two-dimensional, pulsed, and color Doppler of the carotid artery. In the ophthalmic group, operators acquired representative images of the anterior chamber of the eye, retina, optic nerve, and nerve sheath. Ultrasound image quality was evaluated by independent imaging experts. RESULTS: Eight of the 10 carotid studies were judged to be diagnostically adequate. With one exception the quality of all the ophthalmic images were adequate to excellent. CONCLUSION: Diagnostically-adequate carotid and ophthalmic ultrasound examinations can be obtained by untrained operators with instruction only from an audio/video tutorial viewed in real time while scanning. This form of quick-response-guidance, can be developed for other ultrasound examinations, represents an opportunity to acquire important medical and scientific information for NASA flight surgeons and researchers when trained medical personnel are not present. Further, virtual guidance will allow untrained personnel to autonomously obtain important medical information in remote locations on Earth where communication is

  20. Medical Imaging with Ultrasound: Some Basic Physics.

    ERIC Educational Resources Information Center

    Gosling, R.

    1989-01-01

    Discussed are medical applications of ultrasound. The physics of the wave nature of ultrasound including its propagation and production, return by the body, spatial and contrast resolution, attenuation, image formation using pulsed echo ultrasound techniques, measurement of velocity and duplex scanning are described. (YP)

  1. Review of Quantitative Ultrasound: Envelope Statistics and Backscatter Coefficient Imaging and Contributions to Diagnostic Ultrasound.

    PubMed

    Oelze, Michael L; Mamou, Jonathan

    2016-02-01

    Conventional medical imaging technologies, including ultrasound, have continued to improve over the years. For example, in oncology, medical imaging is characterized by high sensitivity, i.e., the ability to detect anomalous tissue features, but the ability to classify these tissue features from images often lacks specificity. As a result, a large number of biopsies of tissues with suspicious image findings are performed each year with a vast majority of these biopsies resulting in a negative finding. To improve specificity of cancer imaging, quantitative imaging techniques can play an important role. Conventional ultrasound B-mode imaging is mainly qualitative in nature. However, quantitative ultrasound (QUS) imaging can provide specific numbers related to tissue features that can increase the specificity of image findings leading to improvements in diagnostic ultrasound. QUS imaging can encompass a wide variety of techniques including spectral-based parameterization, elastography, shear wave imaging, flow estimation, and envelope statistics. Currently, spectral-based parameterization and envelope statistics are not available on most conventional clinical ultrasound machines. However, in recent years, QUS techniques involving spectral-based parameterization and envelope statistics have demonstrated success in many applications, providing additional diagnostic capabilities. Spectral-based techniques include the estimation of the backscatter coefficient (BSC), estimation of attenuation, and estimation of scatterer properties such as the correlation length associated with an effective scatterer diameter (ESD) and the effective acoustic concentration (EAC) of scatterers. Envelope statistics include the estimation of the number density of scatterers and quantification of coherent to incoherent signals produced from the tissue. Challenges for clinical application include correctly accounting for attenuation effects and transmission losses and implementation of QUS on

  2. Fetal thermal effects of diagnostic ultrasound.

    PubMed

    Abramowicz, Jacques S; Barnett, Stanley B; Duck, Francis A; Edmonds, Peter D; Hynynen, Kullervo H; Ziskin, Marvin C

    2008-04-01

    Processes that can produce a biological effect with some degree of heating (ie, about 1 degrees C above the physiologic temperature) act via a thermal mechanism. Investigations with laboratory animals have documented that pulsed ultrasound can produce elevations of temperature and damage in biological tissues in vivo, particularly in the presence of bone (intracranial temperature elevation). Acoustic outputs used to induce these adverse bioeffects are within the diagnostic range, although exposure times are usually considerably longer than in clinical practice. Conditions present in early pregnancy, such as lack of perfusion, may favor bioeffects. Thermally induced teratogenesis has been shown in many animal studies, as well as several controlled human studies; however, human studies have not shown a causal relationship between diagnostic ultrasound exposure during pregnancy and adverse biological effects to the fetus. All human epidemiologic studies, however, were conducted with commercially available devices predating 1992, that is, with acoustic outputs not exceeding a spatial-peak temporal-average intensity of 94 mW/cm2. Current limits in the United States allow a spatial-peak temporal-average intensity of 720 mW/cm2 for fetal applications. The synergistic effect of a raised body temperature (febrile status) and ultrasound insonation has not been examined in depth. Available evidence, experimental or epidemiologic, is insufficient to conclude that there is a causal relationship between obstetric diagnostic ultrasound exposure and obvious adverse thermal effects to the fetus. However, very subtle effects cannot be ruled out and indicate a need for further research, although research in humans may be extremely difficult to realize.

  3. The Evolution of Diagnostic and Interventional Ultrasound in Sports Medicine.

    PubMed

    Finnoff, Jonathan T

    2016-03-01

    Diagnostic and interventional ultrasound is a rapidly evolving field in sports medicine. The use of ultrasound has increased exponentially during the past decades. This imaging modality is appealing to sports medicine physicians because of its broad diagnostic and interventional capabilities. In sports medicine, the indications for diagnostic ultrasound extend well beyond the musculoskeletal realm to include other conditions such as ocular trauma, thoracoabdominal trauma, and cardiac morphology. Thus, the term "sports ultrasound" has been adopted as a more accurate representation of the broad and unique applications of ultrasound in this specialty. Ultrasound-guided procedures also have evolved from the commonly performed joint and tendon sheath injections to include ultrasound-guided surgical procedures. This article will discuss the evolution of diagnostic and interventional ultrasound in sports medicine using a case-based approach to highlight its many new applications.

  4. Recent advances in medical ultrasound

    NASA Astrophysics Data System (ADS)

    Crum, Lawrence

    2014-03-01

    Ultrasound has become one of the most widely used imaging modalities in medicine; yet, before ultrasound-imaging systems became available, high intensity ultrasound was used as early as the 1950s to ablate regions in the brains of human patients. Recently, a variety of novel applications of ultrasound have been developed that include site-specific and ultrasound-mediated drug delivery, acoustocautery, lipoplasty, histotripsy, tissue regeneration, and bloodless surgery, among many others. This lecture will review several new applications of therapeutic ultrasound and address some of the basic scientific questions and future challenges in developing these methods and technologies for general use in our society. We shall particularly emphasize the use of High Intensity Focused Ultrasound (HIFU) in the treatment of benign and malignant tumors.

  5. Signal processing in ultrasound. [for diagnostic medicine

    NASA Technical Reports Server (NTRS)

    Le Croissette, D. H.; Gammell, P. M.

    1978-01-01

    Signal is the term used to denote the characteristic in the time or frequency domain of the probing energy of the system. Processing of this signal in diagnostic ultrasound occurs as the signal travels through the ultrasonic and electrical sections of the apparatus. The paper discusses current signal processing methods, postreception processing, display devices, real-time imaging, and quantitative measurements in noninvasive cardiology. The possibility of using deconvolution in a single transducer system is examined, and some future developments using digital techniques are outlined.

  6. Diagnostic Flow Metering using Ultrasound Tomography

    NASA Astrophysics Data System (ADS)

    Chun, Sejong; Yoon, Byung-Ro; Lee, Kwang-Bock; Paik, Jong-Seung

    2010-06-01

    Flow meters, which are used for transferring water or crude oil through pipelines, require well-defined flow conditions for accurate flow rate monitoring. Even though all the installation conditions for the flow meters are satisfied, there could be unexpected flow disturbances, such as abrupt increase of upstream pressure, affecting on the performance of flow meters. To investigate any differences between measured and actual flow rates, flow velocity profiles inside the pipeline must be known. Ultrasound tomography is a means of reconstructing flow profiles from line-averaged velocities by Radon transformation. Diagnostic parameters are then extracted from the reconstructed flow profiles to give information whether the flow conditions are appropriate for accurate flow metering. In the present study, flow profiles downstream of a mass flow meter and a butterfly valve are reconstructed. Flow diagnostic parameters are defined using statistical moments such as mean value, standard deviation, skewness and kurtosis. The measured diagnostic parameters in the above-mentioned flow conditions are compared with those of fully-developed laminar and turbulent flow profiles to validate their usefulness.

  7. Enhanced ultrasound for advanced diagnostics, ultrasound tomography for volume limb imaging and prosthetic fitting

    NASA Astrophysics Data System (ADS)

    Anthony, Brian W.

    2016-04-01

    Ultrasound imaging methods hold the potential to deliver low-cost, high-resolution, operator-independent and nonionizing imaging systems - such systems couple appropriate algorithms with imaging devices and techniques. The increasing demands on general practitioners motivate us to develop more usable and productive diagnostic imaging equipment. Ultrasound, specifically freehand ultrasound, is a low cost and safe medical imaging technique. It doesn't expose a patient to ionizing radiation. Its safety and versatility make it very well suited for the increasing demands on general practitioners, or for providing improved medical care in rural regions or the developing world. However it typically suffers from sonographer variability; we will discuss techniques to address user variability. We also discuss our work to combine cylindrical scanning systems with state of the art inversion algorithms to deliver ultrasound systems for imaging and quantifying limbs in 3-D in vivo. Such systems have the potential to track the progression of limb health at a low cost and without radiation exposure, as well as, improve prosthetic socket fitting. Current methods of prosthetic socket fabrication remain subjective and ineffective at creating an interface to the human body that is both comfortable and functional. Though there has been recent success using methods like magnetic resonance imaging and biomechanical modeling, a low-cost, streamlined, and quantitative process for prosthetic cup design and fabrication has not been fully demonstrated. Medical ultrasonography may inform the design process of prosthetic sockets in a more objective manner. This keynote talk presents the results of progress in this area.

  8. Medical ultrasound education for bioengineers

    NASA Astrophysics Data System (ADS)

    Vaezy, Shahram

    2005-04-01

    The widespread adoption of ultrasound technologies in medicine has necessitated the development of educational programs to address the growing demand for trained expertise in both academia and industry. The demand has been especially great in the field of therapeutic ultrasound that has experienced a significant level of research and development activities in the past decade. The applications cover a wide range including cancer treatment, hemorrhage control, cardiac ablation, gene therapy, and cosmetic surgery. A comprehensive educational program in ultrasound is well suited for bioengineering departments at colleges and universities. Our educational program for students in Bioengineering at the University of Washington includes a year-long coursework covering theory and practice of ultrasound, conducting research projects, attending and presenting at weekly seminars on literature survey, presentations at scientific meetings, and attending specialized workshops offered by various institutions for specific topics. An important aspect of this training is its multi-disciplinary approach, encompassing science, engineering, and medicine. The students are required to build teams with expertise in these disciplines. Our experience shows that these students are well prepared for careers in academia, conducting cutting edge research, as well as industry, being involved in the transformation of research end-products to commercially viable technology.

  9. Diagnostic Emergency Ultrasound: Assessment Techniques In The Pediatric Patient.

    PubMed

    Guttman, Joshua; Nelson, Bret P

    2016-01-01

    Emergency ultrasound is performed at the point of care to answer focused clinical questions in a rapid manner. Over the last 20 years, the use of this technique has grown rapidly, and it has become a core requirement in many emergency medicine residencies and in some pediatric emergency medicine fellowships. The use of emergency ultrasound in the pediatric setting is increasing due to the lack of ionizing radiation with these studies, as compared to computed tomography. Utilizing diagnostic ultrasound in the emergency department can allow clinicians to arrive at a diagnosis at the bedside rather than sending the patient out of the department for another study. This issue focuses on common indications for diagnostic ultrasound, as found in the pediatric literature or extrapolated from adult literature where pediatric evidence is scarce. Limitations, current trends, controversies, and future directions of diagnostic ultrasound in the emergency department are also discussed.

  10. Diagnostic ultrasound and telemedicine utilization in the international space station

    NASA Astrophysics Data System (ADS)

    Carter, Stephen J.; Stewart, Brent K.; Kushmerick, Martin J.; Langer, Steve G.; Schmiedl, Udo P.; Winter, Thomas C.; Conley, Kevin E.; Jubrias, Sharon A.

    1999-01-01

    Clinical diagnostic ultrasound (US) is experiencing an expanding role that is well suited to application on the International Space Station (ISS). Diagnostic US can be used to reduce the risks associated with long duration human space flight by providing a non-invasive tool with head-to-toe diagnostic capability in both biomedical research and crew health care. General health care of the astronauts will be diagnosed with US, e.g., kidney stones, gall bladder disease, appendicitis, etc. Initial studies will focus on detection of ``ureteral jets'' in the bladder. This is a non-invasive test to rule out obstructive uropathy from kidney stones with minimal requirements for crew training. Biomedical research experiments, focusing on the effects of the microgravity environment, will be performed using both the HHU and the HDI 5000. US will be used to evaluate bone density and muscle mass in this environment. Prolonged or emergency EVAs may occur with the ISS. The hand-held ultrasound unit (HHU) and its telemedicine capability will be used in EVA settings to monitor events such as decompression sickness (DCS) microbubble formation in the cardiovascular system. There will be telemetry links between the HHU and the ATL/Lockheed Martin rack mounted HDI 5000 in the ISS Human Research Facility (HRF), as well as between the HRF and medical expertise on the ground. These links will provide the ISS with both real-time and store-and-forward telemedicine capabilities. The HHU can also be used with the existing telemedicine instrument pack (TIP).

  11. Diagnostic ultrasound in sports medicine: current concepts and advances.

    PubMed

    Nofsinger, Charles; Konin, Jeff G

    2009-03-01

    Diagnostic ultrasound is a valuable imaging tool that is slowly gaining in popularity among sports medicine clinicians. Commonly referred to as "musculoskeletal ultrasound," its valuable role in assisting with sports medicine diagnoses has been to date underused for a variety of reasons. Effective clinical usage for sports medicine diagnoses includes commonly seen conditions such as rotator cuff disease, ulnar collateral ligament of the elbow injury, and internal derangement of the knee, among many others. Limitation of clinical usage has been deterred by the cost of the unit, perception of time associated with assessment procedures, and the lack of formal training associated with diagnostic implementation. However, when properly used, musculoskeletal ultrasound can increase the accuracy of diagnosis and treatment, improve time to treatment intervention, and improve patient satisfaction. The purpose of this paper is to review the fundamentals of musculoskeletal ultrasound and present its specific diagnostic uses.

  12. Optoelectronic tweezers for medical diagnostics

    NASA Astrophysics Data System (ADS)

    Kremer, Clemens; Neale, Steven; Menachery, Anoop; Barrett, Mike; Cooper, Jonathan M.

    2012-01-01

    Optoelectronic tweezers (OET) allows the spatial patterning of electric fields through selected illumination of a photoconductive surface. This enables the manipulation of micro particles and cells by creating non-uniform electrical fields that then produce dielectrophoretic (DEP) forces. The DEP responses of cells differ and can produce negative or positive (repelled or attracted to areas of high electric field) forces. Therefore OET can be used to manipulate individual cells and separate different cell types from each other. Thus OET has many applications for medical diagnostics, demonstrated here with work towards diagnosing Human African Trypanosomiasis, also known as sleeping sickness.

  13. Using Ultrasound to Teach Medical Students Cardiac Physiology

    ERIC Educational Resources Information Center

    Bell, Floyd E., III; Wilson, L. Britt; Hoppmann, Richard A.

    2015-01-01

    Ultrasound is being incorporated more into undergraduate medical education. Studies have shown that medical students have positive perceptions about the value of ultrasound in teaching courses like anatomy and physiology. The purpose of the present study was to provide objective evidence of whether ultrasound helps students learn cardiac…

  14. Diagnostic ultrasound at MACH 20: retroperitoneal and pelvic imaging in space.

    PubMed

    Jones, J A; Sargsyan, A E; Barr, Y R; Melton, S; Hamilton, D R; Dulchavsky, S A; Whitson, P A

    2009-07-01

    An operationally available diagnostic imaging capability augments spaceflight medical support by facilitating the diagnosis, monitoring and treatment of medical or surgical conditions, by improving medical outcomes and, thereby, by lowering medical mission impacts and the probability of crew evacuation due to medical causes. Microgravity-related physiological changes occurring during spaceflight can affect the genitourinary system and potentially cause conditions such as urinary retention or nephrolithiasis for which ultrasonography (U/S) would be a useful diagnostic tool. This study describes the first genitourinary ultrasound examination conducted in space, and evaluates image quality, frame rate, resolution requirements, real-time remote guidance of nonphysician crew medical officers and evaluation of on-orbit tools that can augment image acquisition. A nonphysician crew medical officer (CMO) astronaut, with minimal training in U/S, performed a self-examination of the genitourinary system onboard the International Space Station, using a Philips/ATL Model HDI-5000 ultrasound imaging unit located in the International Space Station Human Research Facility. The CMO was remotely guided by voice commands from experienced, earth-based sonographers stationed in Mission Control Center in Houston. The crewmember, with guidance, was able to acquire all of the target images. Real-time and still U/S images received at Mission Control Center in Houston were of sufficient quality for the images to be diagnostic for multiple potential genitourinary applications. Microgravity-based ultrasound imaging can provide diagnostic quality images of the retroperitoneum and pelvis, offering improved diagnosis and treatment for onboard medical contingencies. Successful completion of complex sonographic examinations can be obtained even with minimally trained nonphysician ultrasound operators, with the assistance of ground-based real-time guidance.

  15. Wireless medical ultrasound video transmission through noisy channels.

    PubMed

    Panayides, A; Pattichis, M S; Pattichis, C S

    2008-01-01

    Recent advances in video compression such as the current state-of-the-art H.264/AVC standard in conjunction with increasingly available bitrate through new technologies like 3G, and WiMax have brought mobile health (m-Health) healthcare systems and services closer to reality. Despite this momentum towards m-Health systems and especially e-Emergency systems, wireless channels remain error prone, while the absence of objective quality metrics limits the ability of providing medical video of adequate diagnostic quality at a required bitrate. In this paper we investigate different encoding schemes and loss rates in medical ultrasound video transmission and come to conclusions involving efficiency, the trade-off between bitrate and quality, while we highlight the relationship linking video quality and the error ratio of corrupted P and B frames. More specifically, we investigate IPPP, IBPBP and IBBPBBP coding structures under packet loss rates of 2%, 5%, 8% and 10% and derive that the latter attains higher SNR ratings in all tested cases. A preliminary clinical evaluation shows that for SNR ratings higher than 30 db, video diagnostic quality may be adequate, while above 30.5 db the diagnostic information available in the reconstructed ultrasound video is close to that of the original.

  16. Phased-array ultrasound technology enhances accuracy of dual frequency ultrasound measurements - towards improved ultrasound bone diagnostics.

    PubMed

    Linder, Hans; Malo, Markus K H; Liukkonen, Jukka; Jurvelin, Jukka S; Töyräs, Juha

    2016-08-01

    Overlying soft tissues attenuate ultrasound backscattered from bone, complicating diagnostics of osteoporosis at the most important fracture sites. Dual-frequency ultrasound technique (DFUS) has been proposed to solve this problem through determination of thickness and composition of overlying soft tissue. This study applies DFUS technique for the first time with a phased-array transducer to investigate if the thickness of two interfering layers (oil and water) can be accurately determined in a variety of configurations. Results indicate that DFUS may be used with phased-array ultrasound systems, making them a suitable combination to consider in future development of clinical in vivo ultrasound methodologies.

  17. Dependence of thresholds for pulmonary capillary hemorrhage on diagnostic ultrasound frequency.

    PubMed

    Miller, Douglas L; Dou, Chunyan; Raghavendran, Krishnan

    2015-06-01

    Pulmonary ultrasound examination has become routine for diagnosis in many clinical and point-of-care medical settings. However, the phenomenon of pulmonary capillary hemorrhage (PCH) induction during diagnostic ultrasound imaging presents a poorly understood risk factor. PCH was observed in anesthetized rats exposed to 1.5-, 4.5- and 12.0-MHz diagnostic ultrasound to investigate the frequency dependence of PCH thresholds. PCH was detected in the ultrasound images as growing comet tail artifacts and was assessed using photographs of the surface of excised lungs. Previous photographs acquired after exposure to 7.6-MHz diagnostic ultrasound were included for analysis. In addition, at each frequency we measured dosimetric parameters, including peak rarefactional pressure amplitude and spatial peak, pulse average intensity attenuated by rat chest wall samples. Peak rarefactional pressure amplitude thresholds determined at each frequency, based on the proportion of PCH in groups of five rats, were 1.03 ± 0.02, 1.28 ± 0.14, 1.18 ± 0.12 and 1.36 ± 0.15 MPa at 1.5, 4.5, 7.6 and 12.0 MHz, respectively. Although the PCH lesions decreased in size with increasing ultrasonic frequency, owing to the smaller beam widths and scan lengths, the peak rarefactional pressure amplitude thresholds remained approximately constant. This dependence was different from that of the mechanical index, which indicates a need for a specific dosimetric parameter for safety guidance in pulmonary ultrasound.

  18. Assessing the Risks for Modern Diagnostic Ultrasound Imaging

    NASA Astrophysics Data System (ADS)

    William, Jr.

    1998-05-01

    Some 35 years after Paul-Jacques and Pierre Curie discovered piezoelectricity, ultrasonic imaging was developed by Paul Langevin. During this work, ultrasonic energy was observed to have a detrimental biological effect. These observations were confirmed a decade later by R. W. Wood and A. L. Loomis. It was not until the early 1950s that ultrasonic exposure conditions were controlled and specified so that studies could focus on the mechanisms by which ultrasound influenced biological materials. In the late 1940s, pioneering work was initiated to image the human body by ultrasonic techniques. These engineers and physicians were aware of the deleterious ultrasound effects at sufficiently high levels; this endeavored them to keep the exposure levels reasonably low. Over the past three decades, diagnostic ultrasound has become a sophisticated technology. Yet, our understanding of the potential risks has not changed appreciably. It is very encouraging that human injury has never been attributed to clinical practice of diagnostic ultrasound.

  19. Resolution enhancement in medical ultrasound imaging

    PubMed Central

    Ploquin, Marie; Basarab, Adrian; Kouamé, Denis

    2015-01-01

    Abstract. Image resolution enhancement is a problem of considerable interest in all medical imaging modalities. Unlike general purpose imaging or video processing, for a very long time, medical image resolution enhancement has been based on optimization of the imaging devices. Although some recent works purport to deal with image postprocessing, much remains to be done regarding medical image enhancement via postprocessing, especially in ultrasound imaging. We face a resolution improvement issue in the case of medical ultrasound imaging. We propose to investigate this problem using multidimensional autoregressive (AR) models. Noting that the estimation of the envelope of an ultrasound radio frequency (RF) signal is very similar to the estimation of classical Fourier-based power spectrum estimation, we theoretically show that a domain change and a multidimensional AR model can be used to achieve super-resolution in ultrasound imaging provided the order is estimated correctly. Here, this is done by means of a technique that simultaneously estimates the order and the parameters of a multidimensional model using relevant regression matrix factorization. Doing so, the proposed method specifically fits ultrasound imaging and provides an estimated envelope. Moreover, an expression that links the theoretical image resolution to both the image acquisition features (such as the point spread function) and a postprocessing feature (the AR model) order is derived. The overall contribution of this work is threefold. First, it allows for automatic resolution improvement. Through a simple model and without any specific manual algorithmic parameter tuning, as is used in common methods, the proposed technique simply and exclusively uses the ultrasound RF signal as input and provides the improved B-mode as output. Second, it allows for the a priori prediction of the improvement in resolution via the knowledge of the parametric model order before actual processing. Finally, to achieve

  20. Resolution enhancement in medical ultrasound imaging.

    PubMed

    Ploquin, Marie; Basarab, Adrian; Kouamé, Denis

    2015-01-01

    Image resolution enhancement is a problem of considerable interest in all medical imaging modalities. Unlike general purpose imaging or video processing, for a very long time, medical image resolution enhancement has been based on optimization of the imaging devices. Although some recent works purport to deal with image postprocessing, much remains to be done regarding medical image enhancement via postprocessing, especially in ultrasound imaging. We face a resolution improvement issue in the case of medical ultrasound imaging. We propose to investigate this problem using multidimensional autoregressive (AR) models. Noting that the estimation of the envelope of an ultrasound radio frequency (RF) signal is very similar to the estimation of classical Fourier-based power spectrum estimation, we theoretically show that a domain change and a multidimensional AR model can be used to achieve super-resolution in ultrasound imaging provided the order is estimated correctly. Here, this is done by means of a technique that simultaneously estimates the order and the parameters of a multidimensional model using relevant regression matrix factorization. Doing so, the proposed method specifically fits ultrasound imaging and provides an estimated envelope. Moreover, an expression that links the theoretical image resolution to both the image acquisition features (such as the point spread function) and a postprocessing feature (the AR model) order is derived. The overall contribution of this work is threefold. First, it allows for automatic resolution improvement. Through a simple model and without any specific manual algorithmic parameter tuning, as is used in common methods, the proposed technique simply and exclusively uses the ultrasound RF signal as input and provides the improved B-mode as output. Second, it allows for the a priori prediction of the improvement in resolution via the knowledge of the parametric model order before actual processing. Finally, to achieve the

  1. Statistical Characterization of the Medical Ultrasound Echo Signals

    NASA Astrophysics Data System (ADS)

    Cai, Runqiu

    2016-12-01

    Medical ultrasound echo signals provide the basic information for obtaining the ultrasonic image in medical ultrasound technology. The statistics of the ultrasound echo signals reveals the systematic structure of the medical ultrasonic image via analyzing the corresponding statistical distributions. A novel statistical distribution, the ascending order K distribution, was proposed here to model the medical ultrasound echo signals. The ascending order K distribution was developed in light of the statistical analysis of the sequential waveforms in the echo signals. Comparison with the previous statistical distributions was made to verify the superiority of the ascending order K distribution. Further discussion showed the determination of the statistical principles for the ultrasound signals can enhance our understanding of the statistical principles of the ultrasound imaging, and thus, facilitate the optimization of the ultrasound image and the tissue identification in the ultrasound diagnosis.

  2. Statistical Characterization of the Medical Ultrasound Echo Signals

    PubMed Central

    Cai, Runqiu

    2016-01-01

    Medical ultrasound echo signals provide the basic information for obtaining the ultrasonic image in medical ultrasound technology. The statistics of the ultrasound echo signals reveals the systematic structure of the medical ultrasonic image via analyzing the corresponding statistical distributions. A novel statistical distribution, the ascending order K distribution, was proposed here to model the medical ultrasound echo signals. The ascending order K distribution was developed in light of the statistical analysis of the sequential waveforms in the echo signals. Comparison with the previous statistical distributions was made to verify the superiority of the ascending order K distribution. Further discussion showed the determination of the statistical principles for the ultrasound signals can enhance our understanding of the statistical principles of the ultrasound imaging, and thus, facilitate the optimization of the ultrasound image and the tissue identification in the ultrasound diagnosis. PMID:27991564

  3. Role of diagnostic ultrasound in the assessment of musculoskeletal diseases

    PubMed Central

    Patil, Pravin

    2012-01-01

    The wide availability and recent improvement in technology coupled with portability, low cost and safety makes ultrasound the first choice imaging investigation for the evaluation of musculoskeletal diseases. Diagnostic use of ultrasound findings is greatly enhanced by knowledge of the clinical presentation. Conversely, ultrasound skills with its prerequisite anatomical knowledge make the clinical diagnosis more precise and reduce uncertainty in the choice of therapy. Therefore, it is essential for rheumatologists to acquire ultrasonography skills in order to improve patient care. Ultrasound examination provides an excellent opportunity for patient education and to explain the rationale for therapy. This review summarizes the indications for musculoskeletal ultrasound and describes its role in diagnosis, monitoring and prognosis. PMID:23024711

  4. Uncertainty evaluation of dead zone of diagnostic ultrasound equipment

    NASA Astrophysics Data System (ADS)

    Souza, R. M.; Alvarenga, A. V.; Braz, D. S.; Petrella, L. I.; Costa-Felix, R. P. B.

    2016-07-01

    This paper presents a model for evaluating measurement uncertainty of a feature used in the assessment of ultrasound images: dead zone. The dead zone was measured by two technicians of the INMETRO's Laboratory of Ultrasound using a phantom and following the standard IEC/TS 61390. The uncertainty model was proposed based on the Guide to the Expression of Uncertainty in Measurement. For the tested equipment, results indicate a dead zone of 1.01 mm, and based on the proposed model, the expanded uncertainty was 0.17 mm. The proposed uncertainty model contributes as a novel way for metrological evaluation of diagnostic imaging by ultrasound.

  5. American Medical Society for Sports Medicine recommended sports ultrasound curriculum for sports medicine fellowships.

    PubMed

    Finnoff, Jonathan T; Berkoff, David; Brennan, Fred; DiFiori, John; Hall, Mederic M; Harmon, Kimberly; Lavallee, Mark; Martin, Sean; Smith, Jay; Stovak, Mark

    2015-02-01

    The American Medical Society for Sports Medicine (AMSSM) developed a musculoskeletal ultrasound curriculum for sports medicine fellowships in 2010. As the use of diagnostic and interventional ultrasound in sports medicine has evolved, it became clear that the curriculum needed to be updated. Furthermore, the name 'musculoskeletal ultrasound' was changed to 'sports ultrasound' (SPORTS US) to reflect the broad range of diagnostic and interventional applications of ultrasound in sports medicine. This document was created to outline the core competencies of SPORTS US and to provide sports medicine fellowship directors and others interested in SPORTS US education with a guide to create a SPORTS US curriculum. By completing this SPORTS US curriculum, sports medicine fellows and physicians can attain proficiency in the core competencies of SPORTS US required for the practice of sports medicine.

  6. The prudent use of diagnostic ultrasound. British Institute of Radiology presidential address 1986.

    PubMed

    Wells, P N

    1986-12-01

    Progress in diagnostic ultrasound is driven by the development of new technology. The place of new techniques in diagnostic algorithms has to be determined jointly by radiologists and clinicians and appropriate arrangements have to be made for training. About 30 million pounds per year is currently spent on diagnostic ultrasound in the UK. Diagnostic ultrasound depends on the information obtained as a result of ultrasonic irradiation of the patient. Biological effects, some of which are undesirable, can be produced by ultrasound but there is no evidence that the exposures used in diagnosis carry any risk. In judging whether ultrasonic scanning is appropriate in any particular situation, it is necessary to consider benefits, costs and available resources. The costs include not only the costs of the test but also the cost of any hypothetical ultrasonic hazard and the cost of misdiagnosis. The most prudent use of ultrasound is that which maximises the benefit-total-cost ratio and although this cannot presently be quantified, some of the concepts involved can be understood in terms of the health increment and the health decrement, the latter apparently being equal to zero when the diagnosis is correctly made using contemporary equipment. This approach can be extended to introduce the idea of profit arising from the test. As an example, obstetric ultrasound is considered to be appropriate when there is a medical indication for it. Although routine scanning at 16 weeks of pregnancy has been shown to result in a very large profit, there is still conflicting guidance about its advisability on the grounds of safety and existing accounting systems may restrict access to the profit. In discussing the desirability of ultrasonic scanning, patients can be informed that there is no reason to believe that there are any risks related to ultrasonic exposure. The imminent availability of inexpensive ultrasonic scanners for the layman is a worrying prospect to which the medical

  7. The value of diagnostic medical imaging.

    PubMed

    Bradley, Don; Bradley, Kendall E

    2014-01-01

    Diagnostic medical imaging has clear clinical utility, but it also imposes significant costs on the health care system. This commentary reviews the factors that drive the cost of medical imaging, discusses current interventions, and suggests possible future courses of action.

  8. Unilateral Opening of Rat Blood-Brain Barrier Assisted by Diagnostic Ultrasound Targeted Microbubbles Destruction

    PubMed Central

    Cui, Hai; Zhu, Qiong; Hua, Xing; Xia, Hongmei; Tan, Kaibin; Gao, Yunhua; Zhao, Jing

    2016-01-01

    Objective. Blood-brain barrier (BBB) is a key obstacle that prevents the medication from blood to the brain. Microbubble-enhanced cavitation by focused ultrasound can open the BBB and proves to be valuable in the brain drug delivery. The study aimed to explore the feasibility, efficacy, and safety of unilateral opening of BBB using diagnostic ultrasound targeted microbubbles destruction in rats. Methods. A transtemporal bone irradiation of diagnostic ultrasound and intravenous injection of lipid-coated microbubbles were performed at unilateral hemisphere. Pathological changes were monitored. Evans Blue extravasation grades, extraction from brain tissue, and fluorescence optical density were quantified. Lanthanum nitrate was traced by transmission electron microscopy. Results. After diagnostic ultrasound mediated microbubbles destruction, Evans Blue extravasation and fluorescence integrated optical density were significantly higher in the irradiated hemisphere than the contralateral side (all p < 0.01). Erythrocytes extravasations were demonstrated in the ultrasound-exposed hemisphere (4 ± 1, grade 2) while being invisible in the control side. Lanthanum nitrate tracers leaked through interendothelial cleft and spread to the nerve fiber existed in the irradiation side. Conclusions. Transtemporal bone irradiation under DUS mediated microbubble destruction provides us with a more accessible, safer, and higher selective BBB opening approach in rats, which is advantageous in brain targeted drugs delivery. PMID:27579317

  9. Unilateral Opening of Rat Blood-Brain Barrier Assisted by Diagnostic Ultrasound Targeted Microbubbles Destruction.

    PubMed

    Xu, Yali; Cui, Hai; Zhu, Qiong; Hua, Xing; Xia, Hongmei; Tan, Kaibin; Gao, Yunhua; Zhao, Jing; Liu, Zheng

    2016-01-01

    Objective. Blood-brain barrier (BBB) is a key obstacle that prevents the medication from blood to the brain. Microbubble-enhanced cavitation by focused ultrasound can open the BBB and proves to be valuable in the brain drug delivery. The study aimed to explore the feasibility, efficacy, and safety of unilateral opening of BBB using diagnostic ultrasound targeted microbubbles destruction in rats. Methods. A transtemporal bone irradiation of diagnostic ultrasound and intravenous injection of lipid-coated microbubbles were performed at unilateral hemisphere. Pathological changes were monitored. Evans Blue extravasation grades, extraction from brain tissue, and fluorescence optical density were quantified. Lanthanum nitrate was traced by transmission electron microscopy. Results. After diagnostic ultrasound mediated microbubbles destruction, Evans Blue extravasation and fluorescence integrated optical density were significantly higher in the irradiated hemisphere than the contralateral side (all p < 0.01). Erythrocytes extravasations were demonstrated in the ultrasound-exposed hemisphere (4 ± 1, grade 2) while being invisible in the control side. Lanthanum nitrate tracers leaked through interendothelial cleft and spread to the nerve fiber existed in the irradiation side. Conclusions. Transtemporal bone irradiation under DUS mediated microbubble destruction provides us with a more accessible, safer, and higher selective BBB opening approach in rats, which is advantageous in brain targeted drugs delivery.

  10. High-Accuracy Ultrasound Contrast Agent Detection Method for Diagnostic Ultrasound Imaging Systems.

    PubMed

    Ito, Koichi; Noro, Kazumasa; Yanagisawa, Yukari; Sakamoto, Maya; Mori, Shiro; Shiga, Kiyoto; Kodama, Tetsuya; Aoki, Takafumi

    2015-12-01

    An accurate method for detecting contrast agents using diagnostic ultrasound imaging systems is proposed. Contrast agents, such as microbubbles, passing through a blood vessel during ultrasound imaging are detected as blinking signals in the temporal axis, because their intensity value is constantly in motion. Ultrasound contrast agents are detected by evaluating the intensity variation of a pixel in the temporal axis. Conventional methods are based on simple subtraction of ultrasound images to detect ultrasound contrast agents. Even if the subject moves only slightly, a conventional detection method will introduce significant error. In contrast, the proposed technique employs spatiotemporal analysis of the pixel intensity variation over several frames. Experiments visualizing blood vessels in the mouse tail illustrated that the proposed method performs efficiently compared with conventional approaches. We also report that the new technique is useful for observing temporal changes in microvessel density in subiliac lymph nodes containing tumors. The results are compared with those of contrast-enhanced computed tomography.

  11. Heating of fetal bone by diagnostic ultrasound

    NASA Astrophysics Data System (ADS)

    Doody, Claire

    Most pregnant women in the Western world undergo an ultrasound examination and so it is important to ensure that exposure of the embryo or fetus does not produce unwanted effects. It is known that ultrasound can heat tissue, especially bone, and so this thesis explores the degree to which fetal bone might be heated during a pulsed Doppler examination. This is done both by carrying out measurements and by developing computer models. Thermal measurements on human fetal thoracic vertebrae of gestational age ranging from 14 to 39 weeks are reported. The bone samples were insonated in vitro with an ultrasound beam which had power and intensity values typical of those from a clinical scanner operating in pulsed Doppler mode. Temperature rises ranging from 0.6°C to 1.8°C were observed after five minutes, with approximately 75% of the temperature rise occurring in the first minute. Two approaches to computer modelling are described. These are the heated disc technique, which is commonly used to model the temperature rise generated by an ultrasound beam, and finite element modelling, a more general approach used to obtain solutions to differential equations. The degree to which our limited knowledge of the properties of fetal tissue affect our ability to make accurate predictions of in vivo heating is explored. It is shown that the present uncertainty in the value of the thermal conductivity and attenuation coefficient of fetal bone can lead to significant uncertainty in predictions of heating. The degree to which the simplifications inherent in the heated disc model affect the results will also be discussed. The results from the models are compared with the experimental measurements in order to estimate the attenuation coefficient of the bone.

  12. Errors and mistakes in ultrasound diagnostics of the thyroid gland.

    PubMed

    Dobruch-Sobczak, Katarzyna; Jędrzejowski, Maciej; Jakubowski, Wiesław; Trzebińska, Anna

    2014-03-01

    Ultrasound examination of the thyroid gland permits to evaluate its size, echogenicity, margins, and stroma. An abnormal ultrasound image of the thyroid, accompanied by other diagnostic investigations, facilitates therapeutic decision-making. The ultrasound image of a normal thyroid gland does not change substantially with patient's age. Nevertheless, erroneous impressions in thyroid imaging reports are sometimes encountered. These are due to diagnostic pitfalls which cannot be prevented by either the continuing development of the imaging equipment, or the growing experience and skill of the practitioners. Our article discusses the most common mistakes encountered in US diagnostics of the thyroid, the elimination of which should improve the quality of both the ultrasound examination itself and its interpretation. We have outlined errors resulting from a faulty examination technique, the similarity of the neighboring anatomical structures, and anomalies present in the proximity of the thyroid gland. We have also pointed out the reasons for inaccurate assessment of a thyroid lesion image, such as having no access to clinical data or not taking them into account, as well as faulty qualification for a fine needle aspiration biopsy. We have presented guidelines aimed at limiting the number of misdiagnoses in thyroid diseases, and provided sonograms exemplifying diagnostic mistakes.

  13. Advanced ultrasound probes for medical imaging

    NASA Astrophysics Data System (ADS)

    Wildes, Douglas G.; Smith, L. Scott

    2012-05-01

    New medical ultrasound probe architectures and materials build upon established 1D phased array technology and provide improved imaging performance and clinical value. Technologies reviewed include 1.25D and 1.5D arrays for elevation slice thickness control; electro-mechanical and 2D array probes for real-time 3D imaging; catheter probes for imaging during minimally-invasive procedures; single-crystal piezoelectric materials for greater frequency bandwidth; and cMUT arrays using silicon MEMS in place of piezo materials.

  14. Characterization of various tissue mimicking materials for medical ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Thouvenot, Audrey; Poepping, Tamie; Peters, Terry M.; Chen, Elvis C. S.

    2016-04-01

    Tissue mimicking materials are physical constructs exhibiting certain desired properties, which are used in machine calibration, medical imaging research, surgical planning, training, and simulation. For medical ultrasound, those specific properties include acoustic propagation speed and attenuation coefficient over the diagnostic frequency range. We investigated the acoustic characteristics of polyvinyl chloride (PVC) plastisol, polydimethylsiloxane (PDMS), and isopropanol using a time-of-light technique, where a pulse was passed through a sample of known thickness contained in a water bath. The propagation speed in PVC is approximately 1400ms-1 depending on the exact chemical composition, with the attenuation coefficient ranging from 0:35 dB cm-1 at 1MHz to 10:57 dB cm-1 at 9 MHz. The propagation speed in PDMS is in the range of 1100ms-1, with an attenuation coefficient of 1:28 dB cm-1 at 1MHz to 21:22 dB cm-1 at 9 MHz. At room temperature (22 °C), a mixture of water-isopropanol (7:25% isopropanol by volume) exhibits a propagation speed of 1540ms-1, making it an excellent and inexpensive tissue-mimicking liquid for medical ultrasound imaging.

  15. Diagnostic Imaging in the Medical Support of the Future Missions to the Moon

    NASA Technical Reports Server (NTRS)

    Sargsyan, Ashot E.; Jones, Jeffrey A.; Hamilton, Douglas R.; Dulchavsky, Scott A.; Duncan, J. Michael

    2007-01-01

    This viewgraph presentation is a course that reviews the diagnostic imaging techniques available for medical support on the future moon missions. The educational objectives of the course are to: 1) Update the audience on the curreultrasound imaging in space flight; 2) Discuss the unique aspects of conducting ultrasound imaging on ISS, interplanetary transit, ultrasound imaging on ISS, interplanetary transit, and lunar surface operations; and 3) Review preliminary data obtained in simulations of medical imaging in lunar surface operations.

  16. High definition ultrasound imaging for battlefield medical applications

    SciTech Connect

    Kwok, K.S.; Morimoto, A.K.; Kozlowski, D.M.; Krumm, J.C.; Dickey, F.M.; Rogers, B; Walsh, N.

    1996-06-23

    A team has developed an improved resolution ultrasound system for low cost diagnostics. This paper describes the development of an ultrasound based imaging system capable of generating 3D images showing surface and subsurface tissue and bone structures. We include results of a comparative study between images obtained from X-Ray Computed Tomography (CT) and ultrasound. We found that the quality of ultrasound images compares favorably with those from CT. Volumetric and surface data extracted from these images were within 7% of the range between ultrasound and CT scans. We also include images of porcine abdominal scans from two different sets of animal trials.

  17. Sialoendoscopy, sialography, and ultrasound: a comparison of diagnostic methods

    PubMed Central

    Pniak, Tomáš; Štrympl, Pavel; Staníková, Lucia; Zeleník, Karol; Matoušek, Petr

    2016-01-01

    Abstract Objective To compare the accuracy of ultrasound, sialography, and sialendoscopy for examining benign salivary gland obstructions. Methods In this prospective study, patients with symptoms of obstruction of the major salivary gland duct system presenting at the ENT Clinic University Hospital, Ostrava, from June 2010 to December 2013 were included. All patients (n=76) underwent ultrasound, sialography, and sialoendoscopy. The signs of sialolithiasis, ductal stenosis, or normal findings were recorded after the examinations. Statistical analysis of the sensitivity and specificity of all the methods was performed, as well as a comparison of the accuracy of each method for different kinds of pathology (sialolithiasis or stenosis). Results The sensitivity of ultrasound, sialography, and sialoendoscopy for sialolithiasis findings were 71.9%, 86.7 %, and 100%, respectively. The sensitivity of sialography and sialoendoscopy for stenosis of the duct was 69.0%, and 100%, respectively. The study showed impossibility of ultrasonic diagnostics of ductal stenosis. The sensitivity of sialoendoscopy for both pathologies was significantly higher than that from ultrasound or sialography (p<0.05). The specificity of sialoendoscopy was significantly higher than that from by ultrasound or sialography (p<0.05). Conclusion Sialoendoscopy was the most accurate method for examination ductal pathology, with significantly higher sensitivity and specificity than by ultrasound or sialography. PMID:28352836

  18. Ethical analysis of non-medical fetal ultrasound.

    PubMed

    Leung, John Lai Yin; Pang, Samantha Mei Che

    2009-09-01

    Obstetric ultrasound is the well-recognized prenatal test used to visualize and determine the condition of a pregnant woman and her fetus. Apart from the clinical application, some businesses have started promoting the use of fetal ultrasound machines for nonmedical reasons. Non-medical fetal ultrasound (also known as 'keepsake' ultrasound) is defined as using ultrasound to view, take a picture, or determine the sex of a fetus without a medical indication. Notwithstanding the guidelines and warnings regarding ultrasound safety issued by governments and professional bodies, the absence of scientifically proven physical harm to fetuses from this procedure seems to provide these businesses with grounds for rapid expansion. However, this argument is too simplistic because current epidemiological evidence is not synchronous with advancing ultrasound technology. As non-medical fetal ultrasound has aroused very significant public attention, a thorough ethical analysis of this topic is essential. Using a multifaceted approach, we analyse the ethical perspective of non-medical fetal ultrasound in terms of the expectant mother, the fetus and health professionals. After applying four major theories of ethics and principles (the precautionary principle; theories of consequentialism and impartiality; duty-based theory; and rights-based theories), we conclude that obstetric ultrasound practice is ethically justifiable only if the indication for its use is based on medical evidence. Non-medical fetal ultrasound can be considered ethically unjustifiable. Nevertheless, the ethical analysis of this issue is time dependent owing to rapid advancements in ultrasound technology and the safety issue. The role of health professionals in ensuring that obstetric ultrasound is an ethically justifiable practice is also discussed.

  19. Chest Ultrasound Integrated Teaching of Respiratory System Physiology to Medical Students: A First Experience

    ERIC Educational Resources Information Center

    Paganini, M.; Rubini, A.

    2015-01-01

    Ultrasound imaging is a useful diagnostic technique that has spread among several different medical specialties within the last few years. Initially restricted to radiology, cardiology, obstetrics, and gynecology, today it is widely used by many specialists, especially in critical care. New graduate physicians will need to be comfortable with…

  20. American Medical Society for Sports Medicine (AMSSM) position statement: interventional musculoskeletal ultrasound in sports medicine.

    PubMed

    Finnoff, Jonathan T; Hall, Mederic M; Adams, Erik; Berkoff, David; Concoff, Andrew L; Dexter, William; Smith, Jay

    2015-02-01

    The use of diagnostic and interventional ultrasound has significantly increased over the past decade. A majority of the increased utilization is by nonradiologists. In sports medicine, ultrasound is often used to guide interventions such as aspirations, diagnostic or therapeutic injections, tenotomies, releases, and hydrodissections. This American Medical Society for Sports Medicine (AMSSM) position statement critically reviews the literature and evaluates the accuracy, efficacy, and cost-effectiveness of ultrasound-guided injections in major, intermediate, and small joints, and soft tissues, all of which are commonly performed in sports medicine. New ultrasound-guided procedures and future trends are also briefly discussed. Based upon the evidence, the official AMSSM position relevant to each subject is made.

  1. American Medical Society for Sports Medicine position statement: interventional musculoskeletal ultrasound in sports medicine.

    PubMed

    Finnoff, Jonathan T; Hall, Mederic M; Adams, Erik; Berkoff, David; Concoff, Andrew L; Dexter, William; Smith, Jay

    2015-01-01

    The use of diagnostic and interventional ultrasound has significantly increased over the past decade. A majority of the increased utilization is by nonradiologists. In sports medicine, ultrasound is often used to guide interventions such as aspirations, diagnostic or therapeutic injections, tenotomies, releases, and hydrodissections. This American Medical Society for Sports Medicine (AMSSM) position statement critically reviews the literature and evaluates the accuracy, efficacy, and cost-effectiveness of ultrasound-guided injections in major, intermediate, and small joints, and soft tissues, all of which are commonly performed in sports medicine. New ultrasound-guided procedures and future trends are also briefly discussed. Based on the evidence, the official AMSSM position relevant to each subject is made.

  2. Introduction of Basic Dermatologic Ultrasound in Undergraduate Medical Education

    PubMed Central

    Alfageme, F.; Cerezo, E.; Fernandez, I. S.; Aguilo, R.; Vilas-Sueiro, A.; Roustan, G.

    2016-01-01

    Purpose: Teaching ultrasound procedures to undergraduates has recently been proposed to improve the quality of medical education. We address the impact of applying standardized dermatologic ultrasound teaching to our undergraduates. Materials and Methods: Medical students were offered an additional theoretical and practical seminar involving hands-on ultrasound dermatologic ultrasound during their mandatory dermatology practical training. The students’ theoretical knowledge and dermatologic ultrasoud skills were tested with a multiple choice questionnaire extracted from Level 1 Spanish Society of Ultrasound Dermatologic Ultrasound accreditation exam before and after the course. After the course, the students were asked to answer a course evaluation questionnaire Results: The multiple-choice question scores after the course showed statistically significant improvement (5.82 vs. 8.71%; P<0.001). The questionnaire revealed that students were satisfied with the course, felt that it increased both their dermatologic and ultrasound knowledge, and indicated that they wanted more sonographic hands-on training in both dermatologic ultrasound and other medical fields. Conclusion: Using both objective and subjective methods, we showed that the introduction of standardized ultrasound training programs in undergraduate medical education can improve both students’ understanding of the technique and the quality of medical education in dermatology. PMID:27933321

  3. Bone Composition Diagnostics: Photoacoustics Versus Ultrasound

    NASA Astrophysics Data System (ADS)

    Yang, Lifeng; Lashkari, Bahman; Mandelis, Andreas; Tan, Joel W. Y.

    2015-06-01

    Ultrasound (US) backscatter from bones depends on the mechanical properties and the microstructure of the interrogated bone. On the other hand, photoacoustics (PA) is sensitive to optical properties of tissue and can detect composition variation. Therefore, PA can provide complementary information about bone health and integrity. In this work, a comparative study of US backscattering and PA back-propagating signals from animal trabecular bones was performed. Both methods were applied using a linear frequency modulation chirp and matched filtering. A 2.2 MHz ultrasonic transducer was employed to detect both signals. The use of the frequency domain facilitates spectral analysis. The variation of signals shows that in addition to sensitivity to mineral changes, PA exhibits sensitivity to changes in the organic part of the bone. It is, therefore, concluded that the combination of both modalities can provide complementary detailed information on bone health than either method separately. In addition, comparison of PA and US depthwise images shows the higher penetration of US. Surface scan images exhibit very weak correlation between US and PA which could be caused by the different signal generation origins in mechanical versus optical properties, respectively.

  4. Transient Cavitation Induced by High Amplitude Diagnostic Ultrasound.

    NASA Astrophysics Data System (ADS)

    Ayme, Eveline J.

    1988-07-01

    Study of the response of gaseous microbubbles to medical ultrasound is essential to apprehend the potentially dangerous effects of transient cavitation on living tissues. However, the prediction of such response is complicated by the finite -amplitude distortion associated with high amplitude acoustic fields. Through a combination of theoretical developments, computer simulations, and experiments, this dissertation investigates the consequences of the interaction between finite-amplitude distortion and transient cavitation, in the context of a diagnostic ultrasonic field. The theoretical approach is to synthesize the asymmetry between compression and rarefaction half-cycles which characterizes a typical nonlinearly distorted pulse obtained at the focus of a diagnostic transducer immersed in water. The synthetic pulse is used to drive a theoretical model for nonlinear bubble dynamics. Comparison with sinusoidal pulses "equivalent" to the distorted pulse as measured by a selection of descriptive parameters shows that: (i) the peak-positive pressure (P_{+} ) in the distorted pulse is a very poor predictor of transient cavitation, (ii) the peak-negative pressure (P_{-}) is a better indicator but underestimates the actual bubble response, (iii) the best predictor is the pressure amplitude of the fundamental (P_{F}) in a Fourier series representation of the distorted pulse. These predictions are tested experimentally on Drosophila larvae. The larvae are exposed to pulsed, symmetric, sinusoidal fields and to pulsed, asymmetric, distorted fields. The killing ratio of the larvae is plotted as a function of the same selection of descriptive parameters, namely P_{+}, P_{ -}, and P_{F}. The resulting curves are compared with the killing ratio plotted against the peak pressure in the sinusoidal, undistorted pulse (P_{A}). If the distorted pulse is described in terms of P_ {-} or P_{+} , the killing ratios are significantly different; if the distorted pulse is described in terms

  5. 78 FR 32612 - Medical Diagnostic Equipment Accessibility Standards Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-31

    ... TRANSPORTATION BARRIERS COMPLIANCE BOARD 36 CFR Part 1195 RIN 3014-AA40 Medical Diagnostic Equipment.... ACTION: Notice of advisory committee meeting. SUMMARY: The Medical Diagnostic Equipment Accessibility... previously published Notice of Proposed Rulemaking (NPRM) on Medical Diagnostic Equipment...

  6. 78 FR 16448 - Medical Diagnostic Equipment Accessibility Standards Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-15

    ... TRANSPORTATION BARRIERS COMPLIANCE BOARD 36 CFR Part 1195 RIN 3014-AA40 Medical Diagnostic Equipment.... ACTION: Notice of advisory committee meeting. SUMMARY: The Medical Diagnostic Equipment Accessibility... previously published Notice of Proposed Rulemaking (NPRM) on Medical Diagnostic Equipment...

  7. 77 FR 67595 - Medical Diagnostic Equipment Accessibility Standards Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-13

    ... TRANSPORTATION BARRIERS COMPLIANCE BOARD 36 CFR Part 1195 RIN 3014-AA40 Medical Diagnostic Equipment.... ACTION: Notice of advisory committee meeting. SUMMARY: The Medical Diagnostic Equipment Accessibility... Rulemaking (NPRM) on Medical Diagnostic Equipment Accessibility Standards. DATES: The Committee will meet...

  8. 78 FR 23872 - Medical Diagnostic Equipment Accessibility Standards Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-23

    ... TRANSPORTATION BARRIERS COMPLIANCE BOARD 36 CFR Part 1195 RIN 3014-AA40 Medical Diagnostic Equipment.... ACTION: Notice of advisory committee meeting. SUMMARY: The Medical Diagnostic Equipment Accessibility... previously published Notice of Proposed Rulemaking (NPRM) on Medical Diagnostic Equipment...

  9. 78 FR 1166 - Medical Diagnostic Equipment Accessibility Standards Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... TRANSPORTATION BARRIERS COMPLIANCE BOARD 36 CFR Part 1195 RIN 3014-AA40 Medical Diagnostic Equipment.... ACTION: Notice of advisory committee meeting. SUMMARY: The Medical Diagnostic Equipment Accessibility... previously published Notice of Proposed Rulemaking (NPRM) on Medical Diagnostic Equipment...

  10. 78 FR 10582 - Medical Diagnostic Equipment Accessibility Standards Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-14

    ... TRANSPORTATION BARRIERS COMPLIANCE BOARD 36 CFR Part 1195 RIN 3014-AA40 Medical Diagnostic Equipment.... ACTION: Notice of advisory committee meeting. SUMMARY: The Medical Diagnostic Equipment Accessibility... previously published Notice of Proposed Rulemaking (NPRM) on Medical Diagnostic Equipment...

  11. Direct effect of diagnostic ultrasound on genetically interesting molecules

    SciTech Connect

    Ciatti, S.; Domokos, G.; Koevesi-Domokos, S.; Milano, F.

    1981-01-01

    Ultrasound is a non-ionizing radiation and at typical intensities used in diagnostic sonography, macroscopic damage to tissues is negligible. Some recent experiments, however, provided evidence for possible genetic damage caused by relatively low-intensity ultrasound irradiation. Although the implications of such experiments concerning possible genetic damage caused by low intensity ultrasound irradiation are not yet completely understood, the very existence of such results raises an important theoretical question. Is it possible that a non-ionizing radiation can cause significant changes in the structure of a typical DNA molecule. Several mechanisms exist which are responsible for such changes including: (1) structural changes in the molecule due to sound absorption from a high harmonic of the repetition frequency of a pulsed ultrasound radiation; (2) structural changes due to multi-phonon absorption from low harmonics of the repetition frequency; and (3) break-up of the molecule as a consequence of the excitation of collective vibrations. The calculations presented suggest that, should damage to DNA in vitro caused by low-intensity ultrasound be confirmed beyond reasonable doubt, such catastrophic changes in the structure of DNA molecules are more likely to arise as a result of their collective modes rather than from a localizable breakup of some hydrogen bonds. (ERB)

  12. Noninvasive Medical Diagnostics & Treatment Using Ultrasonics

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Siegel, R.; Grandia, W.

    1998-01-01

    In parallel to the industrial application of NDE to flaw detection and material property determination, the medical community has succesfully adapted such methods to the noninvasaive diagnostics and treatment of many conditions and disorders of the human body.

  13. Diagnostic Medical Sonographers: Seeing with Sound.

    ERIC Educational Resources Information Center

    Lacey, Alan

    2001-01-01

    Explains how diagnostic medical sonographers use special equipment to direct high frequency sound waves into areas of a patient's body. Describes specialties within the occupation, working conditions, employment and outlook, earnings, and necessary training and qualifications. (JOW)

  14. EFSUMB Statement on Medical Student Education in Ultrasound [long version

    PubMed Central

    Cantisani, V.; Dietrich, C. F.; Badea, R.; Dudea, S.; Prosch, H.; Cerezo, E.; Nuernberg, D.; Serra, A. L.; Sidhu, P. S.; Radzina, M.; Piscaglia, F.; Bachmann Nielsen, M.; Ewertsen, C.; Săftoiu, A.; Calliada, F.; Gilja, O. H.

    2016-01-01

    The European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) recommends that ultrasound should be used systematically as an easy accessible and instructive educational tool in the curriculum of modern medical schools. Medical students should acquire theoretical knowledge of the modality and hands-on training should be implemented and adhere to evidence-based principles. In this paper we report EFSUMB policy statements on medical student education in ultrasound that in a short version is already published in Ultraschall in der Medizin 1. PMID:27689163

  15. Biological Signals In Medical Diagnostics

    NASA Astrophysics Data System (ADS)

    Kozlíková, Katarína

    2010-01-01

    Biological signals—biosignals are material carriers of the information about the state of the biological system of interest. They are the basis of all diagnostic methods. This paper gives an overview of biosignals used in medicine, their classification and processing.

  16. Focused Acute Medicine Ultrasound (FAMUS) - point of care ultrasound for the Acute Medical Unit.

    PubMed

    Smallwood, Nicholas; Dachsel, Martin; Matsa, Ramprasad; Tabiowo, Eugene; Walden, Andrew

    2016-01-01

    Point of care ultrasound (POCU) is becoming increasingly popular as an extension to clinical examination techniques. Specific POCU training pathways have been developed in specialties such as Emergency and Intensive Care Medicine (CORE Emergency Ultrasound and Core UltraSound Intensive Care, for example), but until this time there has not been a curriculum for the acutely unwell medical patient outside of Critical Care. We describe the development of Focused Acute Medicine Ultrasound (FAMUS), a curriculum designed specifically for the Acute Physician to learn ultrasound techniques to aid in the management of the unwell adult patient. We detail both the outline of the curriculum and the process involved for a candidate to achieve FAMUS accreditation. It is anticipated this will appeal to both Acute Medical Unit (AMU) clinicians and general physicians who deal with the unwell or deteriorating medical or surgical patient. In time, the aspiration is for FAMUS to become a core part of the AIM curriculum.

  17. Watermarking of ultrasound medical images in teleradiology using compressed watermark

    PubMed Central

    Badshah, Gran; Liew, Siau-Chuin; Zain, Jasni Mohamad; Ali, Mushtaq

    2016-01-01

    Abstract. The open accessibility of Internet-based medical images in teleradialogy face security threats due to the nonsecured communication media. This paper discusses the spatial domain watermarking of ultrasound medical images for content authentication, tamper detection, and lossless recovery. For this purpose, the image is divided into two main parts, the region of interest (ROI) and region of noninterest (RONI). The defined ROI and its hash value are combined as watermark, lossless compressed, and embedded into the RONI part of images at pixel’s least significant bits (LSBs). The watermark lossless compression and embedding at pixel’s LSBs preserve image diagnostic and perceptual qualities. Different lossless compression techniques including Lempel-Ziv-Welch (LZW) were tested for watermark compression. The performances of these techniques were compared based on more bit reduction and compression ratio. LZW was found better than others and used in tamper detection and recovery watermarking of medical images (TDARWMI) scheme development to be used for ROI authentication, tamper detection, localization, and lossless recovery. TDARWMI performance was compared and found to be better than other watermarking schemes. PMID:26839914

  18. How 3D immersive visualization is changing medical diagnostics

    NASA Astrophysics Data System (ADS)

    Koning, Anton H. J.

    2011-03-01

    Originally the only way to look inside the human body without opening it up was by means of two dimensional (2D) images obtained using X-ray equipment. The fact that human anatomy is inherently three dimensional leads to ambiguities in interpretation and problems of occlusion. Three dimensional (3D) imaging modalities such as CT, MRI and 3D ultrasound remove these drawbacks and are now part of routine medical care. While most hospitals 'have gone digital', meaning that the images are no longer printed on film, they are still being viewed on 2D screens. However, this way valuable depth information is lost, and some interactions become unnecessarily complex or even unfeasible. Using a virtual reality (VR) system to present volumetric data means that depth information is presented to the viewer and 3D interaction is made possible. At the Erasmus MC we have developed V-Scope, an immersive volume visualization system for visualizing a variety of (bio-)medical volumetric datasets, ranging from 3D ultrasound, via CT and MRI, to confocal microscopy, OPT and 3D electron-microscopy data. In this talk we will address the advantages of such a system for both medical diagnostics as well as for (bio)medical research.

  19. Using ultrasound to teach medical students cardiac physiology.

    PubMed

    Bell, Floyd E; Wilson, L Britt; Hoppmann, Richard A

    2015-12-01

    Ultrasound is being incorporated more into undergraduate medical education. Studies have shown that medical students have positive perceptions about the value of ultrasound in teaching courses like anatomy and physiology. The purpose of the present study was to provide objective evidence of whether ultrasound helps students learn cardiac physiology. In this study, 20 medical students took a pretest to assess their background knowledge of cardiac physiology. Next, they acquired ultrasound video loops of the heart. Faculty members taught them nonelectrical aspects of cardiac physiology using those loops. Finally, students took a posttest to evaluate for improvements in their knowledge. Students also completed an anonymous questionnaire about their experience. The mean pretest score was 4.8 of 9 (53.3%). The mean posttest score was 7.35 of 9 (81.7%). The mean difference was significant at P < 0.0001. Student feedback was very positive about the ultrasound laboratory. Ninety-five percent of the students agreed or strongly agreed that the ultrasound laboratory was a valuable teaching tool and that it improved their understanding of cardiac physiology. All students agreed or strongly agreed the laboratory was helpful from a visual learning standpoint. A hands-on ultrasound laboratory can indeed help medical students learn the nonelectrical components of cardiac physiology.

  20. Photoacoustic sensor for medical diagnostics

    NASA Astrophysics Data System (ADS)

    Wolff, Marcus; Groninga, Hinrich G.; Harde, Hermann

    2004-03-01

    The development of new optical sensor technologies has a major impact on the progress of diagnostic methods. Of the permanently increasing number of non-invasive breath tests, the 13C-Urea Breath Test (UBT) for the detection of Helicobacter pylori is the most prominent. However, many recent developments, like the detection of cancer by breath test, go beyond gastroenterological applications. We present a new detection scheme for breath analysis that employs an especially compact and simple set-up. Photoacoustic Spectroscopy (PAS) represents an offset-free technique that allows for short absorption paths and small sample cells. Using a single-frequency diode laser and taking advantage of acoustical resonances of the sample cell, we performed extremely sensitive and selective measurements. The smart data processing method contributes to the extraordinary sensitivity and selectivity as well. Also, the reasonable acquisition cost and low operational cost make this detection scheme attractive for many biomedical applications. The experimental set-up and data processing method, together with exemplary isotope-selective measurements on carbon dioxide, are presented.

  1. The diagnostic validity of musculoskeletal ultrasound in lateral epicondylalgia: a systematic review

    PubMed Central

    2014-01-01

    Background Ultrasound is considered a reliable, widely available, non-invasive and inexpensive imaging technique for assessing soft tissue involvement in Lateral epicondylalgia. Despite the number of diagnostic studies for Lateral Epicondylalgia, there is no consensus in the current literature on the best abnormal ultrasound findings that confirm lateral epicondylalgia. Methods Eligible studies identified by searching electronic databases, scanning reference lists of articles and chapters on ultrasound in reference books, and consultation of experts in sonography. Three reviewers (VCDIII, KP, KW) independently searched the databases using the agreed search strategy, and independently conducted all stages of article selection. Two reviewers (VCDIII, KP) then screened titles and abstracts to remove obvious irrelevance. Potentially relevant full text publications which met the inclusion criteria were reviewed by the primary investigator (VCDIII) and another reviewer (CGS). Results Among the 15 included diagnostic studies in this review, seven were Level II diagnostic accuracy studies for chronic lateral epicondylalgia based on the National Health and Medical Research Council Hierarchy of Evidence. Based from the pooled sensitivity of abnormal ultrasound findings with homogenous results (p > 0.05), the hypoechogenicity of the common extensor origin has the best combination of diagnostic sensitivity and specificity. It is moderately sensitive [Sensitivity: 0.64 (0.56-0.72)] and highly specific [Specificity: 0.82 (0.72-0.90)] in determining elbows with lateral epicondylalgia. Additionally, bone changes on the lateral epicondyle [Sensitivity: 0.56 (0.50-0.62)] were moderately sensitive to chronic LE. Conversely, neovascularity [Specificity: 1.00 (0.97-1.00)], calcifications [Specificity: 0.97 (0.94-0.99)] and cortical irregularities [Specificity: 0.96 (0.88-0.99)] have strong specificity for chronic lateral epicondylalgia. There is insufficient evidence supporting the

  2. Congenital anomalies of the uterus, and ultrasound diagnostics.

    PubMed

    Miseljic, Nenad; Izetbegovic, Sebija; Mehmedbasic, Senad; Miseljic, Sanja

    2010-01-01

    Sonographic detection and evaluation of congenital anomalies of the uterus represent an important segment in the additional therapeutic procedure, that is, treatment of patients with congenital anomalies of the uterus. Besides the primary reason that is manifested in the total cure of the patients, the secondary reason represents the decrease of costs of treatment of congenital anomalies of the uterus. Both descriptive and analytical methods were used in this paper. In 1997 Kurjak and Kupesic compared the sensitivity and specificity of transvaginal ultra sound, color Doppler, hysterosonography and three-dimensional ultrasound during diagnosis of the uterus septum. Representation of pathological findings in our paper in comparison to the examined group is: uterus subseptus = 15.38%, double horned uterus = 10.25%. The examined group includes intrauterine abnormalities of the uterus, analyzing, in that process, individual, pathological entities of intrauterine abnormalities. The research is a prospective, target, clinical study. In the examined group, due to the clinical suspicion of intrauterine abnormalities, 78 patients were examined in the following manner: two-dimensional transabdominal and transvaginal black-and-white and color Doppler ultrasound examinations were made and then three-dimensional transabdominal black-and-white and color Doppler ultrasound examinations. This means that in the detection of congenital anomalies of the uterus, the same sonographic techniques were first applied on the conventional and then also on the multidimensional base. Our research showed that three-dimensional technique is a more reliable diagnostic tool than two-dimensional technique. Sensitivity and specificity rate as well as positive predictive value show that this technique is an extraordinary one for assessing the volume, and position of congenital abnormalities.

  3. Robert Apfel's contribution to clinical diagnostic ultrasound: The mechanical index

    NASA Astrophysics Data System (ADS)

    Holland, Christy K.

    2004-05-01

    The mechanical index, MI, resulted from theoretical considerations of the short-pulse acoustic threshold for inertial cavitation in water populated with microbubbles of all sizes [R. E. Apfel and C. K. Holland, Ultrasound Med Biol. 17, 179-185 (1991)]. In this review, the onset of cavitation will be discussed with reference to Robert Apfel's legacy of theoretical and experimental data. The questions arise: Can the utility of the MI be extended to situations in which the threshold MI is exceeded, thereby allowing for some estimate of the quantification of a potential bioeffect due to microcavitation? Also, can the MI be extended to situations in which pulses are, unlike the original formulation, not short? Is there a theoretical or semi-empirical basis for the MI threshold below which cavitation is unlikely? Can the MI be used to predict gas contrast agent destruction? The possible consequences of gas body activation associated with aerated lung tissue, intestinal gas pockets or encapsulated gas contrast agents represent specific instances of cavitation considerations relevant to clinical practice. Monitoring the real-time display of the MI (mandated by the FDA) helps clinicians evaluate and minimize the potential risks in the use of diagnostic ultrasound instrumentation. [Research supported by National Institutes of Health Grant R29 HL58761.

  4. Boosting medical diagnostics by pooling independent judgments

    PubMed Central

    Kurvers, Ralf H. J. M.; Herzog, Stefan M.; Hertwig, Ralph; Krause, Jens; Carney, Patricia A.; Bogart, Andy; Argenziano, Giuseppe; Zalaudek, Iris; Wolf, Max

    2016-01-01

    Collective intelligence refers to the ability of groups to outperform individual decision makers when solving complex cognitive problems. Despite its potential to revolutionize decision making in a wide range of domains, including medical, economic, and political decision making, at present, little is known about the conditions underlying collective intelligence in real-world contexts. We here focus on two key areas of medical diagnostics, breast and skin cancer detection. Using a simulation study that draws on large real-world datasets, involving more than 140 doctors making more than 20,000 diagnoses, we investigate when combining the independent judgments of multiple doctors outperforms the best doctor in a group. We find that similarity in diagnostic accuracy is a key condition for collective intelligence: Aggregating the independent judgments of doctors outperforms the best doctor in a group whenever the diagnostic accuracy of doctors is relatively similar, but not when doctors’ diagnostic accuracy differs too much. This intriguingly simple result is highly robust and holds across different group sizes, performance levels of the best doctor, and collective intelligence rules. The enabling role of similarity, in turn, is explained by its systematic effects on the number of correct and incorrect decisions of the best doctor that are overruled by the collective. By identifying a key factor underlying collective intelligence in two important real-world contexts, our findings pave the way for innovative and more effective approaches to complex real-world decision making, and to the scientific analyses of those approaches. PMID:27432950

  5. American Medical Society for Sports Medicine recommended sports ultrasound curriculum for sports medicine fellowships.

    PubMed

    Finnoff, Jonathan T; Berkoff, David; Brennan, Fred; DiFiori, John; Hall, Mederic M; Harmon, Kimberly; Lavallee, Mark; Martin, Sean; Smith, Jay; Stovak, Mark

    2015-01-01

    The following sports ultrasound (SPORTS US) curriculum is a revision of the curriculum developed by the American Medical Society for Sports Medicine (AMSSM) in 2010. Several changes have been made to the curriculum with the primary aim of providing a pathway by which a sports medicine fellow can obtain sufficient SPORTS US training to become proficient in the core competencies of SPORTS US. The core competencies of SPORTS US are outlined in the learning objectives section of this document. The term "SPORTS US" was purposefully chosen rather than "musculoskeletal ultrasound" (MSK US) because it was recognized by the panel that the evolving field of SPORTS US encompasses non-MSK applications of ultrasound such as the FAST examination (focused assessment with sonography for trauma). Although the SPORTS US core competencies in this curriculum are all MSK in nature, they represent the minimum SPORTS US knowledge a sports medicine fellow should acquire during fellowship. However, additional training in more advanced MSK and non-MSK applications of ultrasound can be provided at the fellowship director's discretion. Completion of this SPORTS US curriculum fulfills the American Institute of Ultrasound in Medicine's (AIUM) requirements to perform an MSK US examination and the prerequisites for the American Registry for Diagnostic Medical Sonography's (ARDMS) MSK sonography certification examination.

  6. Ultrasound imaging in medical student education: Impact on learning anatomy and physical diagnosis.

    PubMed

    So, Sokpoleak; Patel, Rita M; Orebaugh, Steven L

    2017-03-01

    Ultrasound use has expanded dramatically among the medical specialties for diagnostic and interventional purposes, due to its affordability, portability, and practicality. This imaging modality, which permits real-time visualization of anatomic structures and relationships in vivo, holds potential for pre-clinical instruction of students in anatomy and physical diagnosis, as well as providing a bridge to the eventual use of bedside ultrasound by clinicians to assess patients and guide invasive procedures. In many studies, but not all, improved understanding of anatomy has been demonstrated, and in others, improved accuracy in selected aspects of physical diagnosis is evident. Most students have expressed a highly favorable impression of this technology for anatomy education when surveyed. Logistic issues or obstacles to the integration of ultrasound imaging into anatomy teaching appear to be readily overcome. The enthusiasm of students and anatomists for teaching with ultrasound has led to widespread implementation of ultrasound-based teaching initiatives in medical schools the world over, including some with integration throughout the entire curriculum; a trend that likely will continue to grow. Anat Sci Educ 10: 176-189. © 2016 American Association of Anatomists.

  7. 75 FR 35439 - Medical Diagnostic Equipment Accessibility Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-22

    ... TRANSPORTATION BARRIERS COMPLIANCE BOARD Medical Diagnostic Equipment Accessibility Standards AGENCY... equipment to ensure that such equipment is accessible to, and usable by, individuals with disabilities to... accessibility needs of individuals with disabilities with respect to medical diagnostic equipment and...

  8. 77 FR 53163 - Medical Diagnostic Equipment Accessibility Standards Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-31

    ... TRANSPORTATION BARRIERS COMPLIANCE BOARD 36 CFR Part 1195 RIN 3014-AA40 Medical Diagnostic Equipment.... ACTION: Notice of advisory committee meeting. SUMMARY: The Medical Diagnostic Equipment Accessibility...) on Medical Diagnostic Equipment Accessibility Standards. See 77 FR 6916 (February 9, 2012). The...

  9. 77 FR 39656 - Medical Diagnostic Equipment Accessibility Standards Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... CFR Part 1195 [Docket No. ATBCB-2012-0003] RIN 3014-AA40 Medical Diagnostic Equipment Accessibility... Proposed Rulemaking on Medical Diagnostic Equipment Accessibility Standards. DATES: The first meeting of... Proposed Rulemaking (NPRM) on Medical Diagnostic Equipment Accessibility Standards. See 77 FR 14706...

  10. Acoustic waves in medical imaging and diagnostics.

    PubMed

    Sarvazyan, Armen P; Urban, Matthew W; Greenleaf, James F

    2013-07-01

    Up until about two decades ago acoustic imaging and ultrasound imaging were synonymous. The term ultrasonography, or its abbreviated version sonography, meant an imaging modality based on the use of ultrasonic compressional bulk waves. Beginning in the 1990s, there started to emerge numerous acoustic imaging modalities based on the use of a different mode of acoustic wave: shear waves. Imaging with these waves was shown to provide very useful and very different information about the biological tissue being examined. We discuss the physical basis for the differences between these two basic modes of acoustic waves used in medical imaging and analyze the advantages associated with shear acoustic imaging. A comprehensive analysis of the range of acoustic wavelengths, velocities and frequencies that have been used in different imaging applications is presented. We discuss the potential for future shear wave imaging applications.

  11. Ultrasound in Space Medicine

    NASA Technical Reports Server (NTRS)

    Dulchavsky, Scott A.; Sargsyan, A.E.

    2009-01-01

    This slide presentation reviews the use of ultrasound as a diagnostic tool in microgravity environments. The goals of research in ultrasound usage in space environments are: (1) Determine accuracy of ultrasound in novel clinical conditions. (2) Determine optimal training methodologies, (3) Determine microgravity associated changes and (4) Develop intuitive ultrasound catalog to enhance autonomous medical care. Also uses of Ultrasound technology in terrestrial applications are reviewed.

  12. A fully programmable computing architecture for medical ultrasound machines.

    PubMed

    Schneider, Fabio Kurt; Agarwal, Anup; Yoo, Yang Mo; Fukuoka, Tetsuya; Kim, Yongmin

    2010-03-01

    Application-specific ICs have been traditionally used to support the high computational and data rate requirements in medical ultrasound systems, particularly in receive beamforming. Utilizing the previously developed efficient front-end algorithms, in this paper, we present a simple programmable computing architecture, consisting of a field-programmable gate array (FPGA) and a digital signal processor (DSP), to support core ultrasound signal processing. It was found that 97.3% and 51.8% of the FPGA and DSP resources are, respectively, needed to support all the front-end and back-end processing for B-mode imaging with 64 channels and 120 scanlines per frame at 30 frames/s. These results indicate that this programmable architecture can meet the requirements of low- and medium-level ultrasound machines while providing a flexible platform for supporting the development and deployment of new algorithms and emerging clinical applications.

  13. Medical diagnostics for indoor mold exposure.

    PubMed

    Hurraß, Julia; Heinzow, Birger; Aurbach, Ute; Bergmann, Karl-Christian; Bufe, Albrecht; Buzina, Walter; Cornely, Oliver A; Engelhart, Steffen; Fischer, Guido; Gabrio, Thomas; Heinz, Werner; Herr, Caroline E W; Kleine-Tebbe, Jörg; Klimek, Ludger; Köberle, Martin; Lichtnecker, Herbert; Lob-Corzilius, Thomas; Merget, Rolf; Mülleneisen, Norbert; Nowak, Dennis; Rabe, Uta; Raulf, Monika; Seidl, Hans Peter; Steiß, Jens-Oliver; Szewszyk, Regine; Thomas, Peter; Valtanen, Kerttu; Wiesmüller, Gerhard A

    2017-04-01

    In April 2016, the German Society of Hygiene, Environmental Medicine and Preventative Medicine (Gesellschaft für Hygiene, Umweltmedizin und Präventivmedizin (GHUP)) together with other scientific medical societies, German and Austrian medical societies, physician unions and experts has provided an AWMF (Association of the Scientific Medical Societies) guideline 'Medical diagnostics for indoor mold exposure'. This guideline shall help physicians to advise and treat patients exposed indoors to mold. Indoor mold growth is a potential health risk, even without a quantitative and/or causal association between the occurrence of individual mold species and health effects. Apart from the allergic bronchopulmonary aspergillosis (ABPA) and the mycoses caused by mold, there is only sufficient evidence for the following associations between moisture/mold damages and different health effects: Allergic respiratory diseases, asthma (manifestation, progression, exacerbation), allergic rhinitis, exogenous allergic alveolitis and respiratory tract infections/bronchitis. In comparison to other environmental allergens, the sensitizing potential of molds is estimated to be low. Recent studies show a prevalence of sensitization of 3-10% in the total population of Europe. The evidence for associations to mucous membrane irritation and atopic eczema (manifestation, progression, exacerbation) is classified as limited or suspected. Inadequate or insufficient evidence for an association is given for COPD, acute idiopathic pulmonary hemorrhage in children, rheumatism/arthritis, sarcoidosis, and cancer. The risk of infections from indoor molds is low for healthy individuals. Only molds that are capable to form toxins can cause intoxications. The environmental and growth conditions and especially the substrate determine whether toxin formation occurs, but indoor air concentrations are always very low. In the case of indoor moisture/mold damages, everyone can be affected by odor effects and

  14. Ultrasound-based lectures on cardiovascular physiology and reflexes for medical students.

    PubMed

    Paganini, M; Rubini, A

    2016-06-01

    Ultrasound has become a widely used diagnostic technique. While its role in patient evaluation is well known, its utility during preclinical courses such as anatomy and physiology is becoming increasingly recognized. The aim of the present study was to assess the feasibility/utility of integrating ultrasound-based sessions into conventional undergraduate medical school programs of physiology of the cardiovascular system and cardiovascular reflexes and to evaluate student perceptions of an ultrasound-based didactic session. Second-year medical students enrolled in the University of Padova attended a didactic session during which basic concepts regarding ultrasound instrumentation, image production, and spatial orientation were presented. Five anatomic sectors (the heart, aorta, neck vessels, inferior vena cava, and femoral veins) were then examined on a volunteer. Student perceptions of the images that were projected, the usefulness of the presentation, and the reproducibility of the experience were assessed at the end of the lecture with an anonymous questionnaire consisting of positive and negative items that were rated using a 5-point Likert scale and with two questions. One hundred eleven students attended the lecture; 99% of them found it very interesting, and none considered it boring or a waste of time. More than 96% thought it helped them to gain a better comprehension of the subject and would recommend it to a colleague. In conclusion, as ultrasound has been found to be a valuable resource for the teaching of physiology of the cardiovascular system and cardiovascular reflexes, efforts should be made to integrate ultrasound sessions into the traditional human physiology curriculum.

  15. Diagnostic value of contrast-enhanced ultrasound in thyroid nodules with calcification.

    PubMed

    Jiang, Jue; Shang, Xu; Wang, Hua; Xu, Yong-Bo; Gao, Ya; Zhou, Qi

    2015-03-01

    The aim of this study was to investigate the diagnostic values of conventional ultrasound and contrast-enhanced ultrasound (CEUS) in benign and malignant thyroid nodules with calcification. Conventional ultrasound and CEUS were performed in 122 patients with thyroid nodules with calcification. The thyroid nodules were characterized as benign or malignant by pathological diagnosis. The sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accordance rate of the two imaging methods were determined. The area under the receiver operating characteristics curve (AUC) was used to assess the diagnostic values of the two imaging methods. In 122 cases of thyroid nodules with calcification, 73 benign nodules and 49 malignant nodules were verified by pathological diagnosis. The sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accordance rate of conventional ultrasound were 50%, 77%, 59%, 69%, and 66%, respectively, and those of CEUS were 90%, 92%, 88%, 93%, and 91%, respectively. There were significant differences between the two imaging methods. AUCs of conventional ultrasound and CEUS were 0.628 ± 0.052 and 0.908 ± 0.031, suggesting low and high diagnostic values, respectively. CEUS has high diagnostic values, being significantly greater than those of conventional ultrasound, in differential diagnosis of benign and malignant thyroid nodules with calcification.

  16. Combined Application of Ultrasound and CT Increased Diagnostic Value in Female Patients with Pelvic Masses

    PubMed Central

    Liu, Yan; Zhang, Hui; Li, Xiaoqian

    2016-01-01

    Purpose. The current study aimed to evaluate whether combined application of ultrasound and CT had increased Diagnostic Value in Female Patients with Pelvic Masses over either method alone. Patients and Methods. 240 female patients with pelvic masses were detected preoperatively with ultrasound and CT prior to surgery. The sensitivity, specificity, and accuracy of ultrasound, CT, and combined ultrasound/CT application were evaluated, respectively. Results. The sensitivity, specificity, and accuracy of ultrasound were 52.8%, 86.7%, and 68.75%, respectively. The sensitivity, specificity, and accuracy of CT were 80.3%, 90.3%, and 85%, respectively. The sensitivity, specificity, and accuracy of combined application of ultrasound and CT were 89%, 94.7%, and 91.7%. The sensitivity, specificity, and accuracy of combined application of ultrasound and CT were higher than those of either ultrasound or CT. Conclusions. The combined application of ultrasound and CT had higher Diagnostic Value in Female Patients with Pelvic Masses than either method alone. PMID:27867419

  17. Combined Application of Ultrasound and CT Increased Diagnostic Value in Female Patients with Pelvic Masses.

    PubMed

    Liu, Yan; Zhang, Hui; Li, Xiaoqian; Qi, Guiqin

    2016-01-01

    Purpose. The current study aimed to evaluate whether combined application of ultrasound and CT had increased Diagnostic Value in Female Patients with Pelvic Masses over either method alone. Patients and Methods. 240 female patients with pelvic masses were detected preoperatively with ultrasound and CT prior to surgery. The sensitivity, specificity, and accuracy of ultrasound, CT, and combined ultrasound/CT application were evaluated, respectively. Results. The sensitivity, specificity, and accuracy of ultrasound were 52.8%, 86.7%, and 68.75%, respectively. The sensitivity, specificity, and accuracy of CT were 80.3%, 90.3%, and 85%, respectively. The sensitivity, specificity, and accuracy of combined application of ultrasound and CT were 89%, 94.7%, and 91.7%. The sensitivity, specificity, and accuracy of combined application of ultrasound and CT were higher than those of either ultrasound or CT. Conclusions. The combined application of ultrasound and CT had higher Diagnostic Value in Female Patients with Pelvic Masses than either method alone.

  18. Diagnostic Accuracy of Secondary Ultrasound Exam in Blunt Abdominal Trauma

    PubMed Central

    Rajabzadeh Kanafi, Alireza; Giti, Masoumeh; Gharavi, Mohammad Hossein; Alizadeh, Ahmad; Pourghorban, Ramin; Shekarchi, Babak

    2014-01-01

    Background: In stable patients with blunt abdominal trauma, accurate diagnosis of visceral injuries is crucial. Objectives: To determine whether repeating ultrasound exam will increase the sensitivity of focused abdominal sonography for trauma (FAST) through revealing additional free intraperitoneal fluid in patients with blunt abdominal trauma. Patients and Methods: We performed a prospective observational study by performing primary and secondary ultrasound exams in blunt abdominal trauma patients. All ultrasound exams were performed by four radiology residents who had the experience of more than 400 FAST exams. Five routine intraperitoneal spaces as well as the interloop space were examined by ultrasound in order to find free fluid. All patients who expired or were transferred to the operating room before the second exam were excluded from the study. All positive ultrasound results were compared with intra-operative and computed tomography (CT) findings and/or the clinical status of the patients. Results: Primary ultrasound was performed in 372 patients; 61 of them did not undergo secondary ultrasound exam; thus, were excluded from the study.Three hundred eleven patients underwent both primary and secondary ultrasound exams. One hundred and two of all patients were evaluated by contrast enhanced CT scan and 31 underwent laparotomy. The sensitivity of ultrasound exam in detecting intraperitoneal fluid significantly increased from 70.7% for the primary exam to 92.7% for the secondary exam. Examining the interloop space significantly improved the sensitivity of ultrasonography in both primary (from 36.6% to 70.7%) and secondary (from 65.9% to 92.7%) exams. Conclusions: Performing a secondary ultrasound exam in stable blunt abdominal trauma patients and adding interloop space scan to the routine FAST exam significantly increases the sensitivity of ultrasound in detecting intraperitoneal free fluid. PMID:25763079

  19. Lung ultrasound in critically ill patients: a new diagnostic tool.

    PubMed

    Dexheimer Neto, Felippe Leopoldo; Dalcin, Paulo de Tarso Roth; Teixeira, Cassiano; Beltrami, Flávia Gabe

    2012-01-01

    The evaluation of critically ill patients using lung ultrasound, even if performed by nonspecialists, has recently garnered greater interest. Because lung ultrasound is based on the fact that every acute illness reduces lung aeration, it can provide information that complements the physical examination and clinical impression, the main advantage being that it is a bedside tool. The objective of this review was to evaluate the clinical applications of lung ultrasound by searching the PubMed and the Brazilian Virtual Library of Health databases. We used the following search terms (in Portuguese and English): ultrasound; lung; and critical care. In addition to the most relevant articles, we also reviewed specialized textbooks. The data show that lung ultrasound is useful in the differential diagnosis of pulmonary infiltrates, having good accuracy in identifying consolidations and interstitial syndrome. In addition, lung ultrasound has been widely used in the evaluation and treatment of pleural effusions, as well as in the identification of pneumothorax. This technique can also be useful in the immediate evaluation of patients with dyspnea or acute respiratory failure. Other described applications include monitoring treatment response and increasing the safety of invasive procedures. Although specific criteria regarding training and certification are still lacking, lung ultrasound is a fast, inexpensive, and widely available tool. This technique should progressively come to be more widely incorporated into the care of critically ill patients.

  20. Enhanced cytotoxic effect of cisplatin using diagnostic ultrasound and microbubbles in vitro

    NASA Astrophysics Data System (ADS)

    Sasaki, Noboru; Nakamura, Kensuke; Murakami, Masahiro; Lim, Sue Yee; Ohta, Hiroshi; Yamasaki, Masahiro; Takiguchi, Mitsuyoshi

    2012-10-01

    Diagnostic ultrasound has accomplished drug and gene delivery by ultrasound targeted microbubble destruction (UTMD). However, the efficacy of delivery is still relatively low. Therefore, we optimized conditions of UTMD using diagnostic ultrasound and ultrasound contrast agent microbubbles. Canine thyroid adenocarcinoma cells were cultured in a 96-well plate. After addition of cisplatin and Sonazoid®, the plate was inverted to raise microbubbles near cells and incubated. Cells were exposed to diagnostic ultrasound using a linear probe operated in the contrast harmonic imaging mode. The center frequency was 2.5 MHz with a mechanical index of 1.33 and a frame rate of 48 frames/sec. Cytotoxic effect of cisplatin was evaluated 24h after exposure using trypan blue dye exclusion test. We optimized incubation duration, cisplatin concentration, and the relationship between microbubble concentration and exposure duration. The optimum enhancement was observed at incubation duration of 5min, cisplatin concentration of 1 μg/ml, and microbubble concentration of 2.4 × 105 microbubbles/ml. Exposure duration did not influence the enhancement at the microbubble concentration of 2.4 × 105 microbubbles/ml. Our results suggest that relative low concentrations of drug and microbubbles with short exposure duration might be sufficient for drug delivery by UTMD using diagnostic ultrasound.

  1. Wideband optical detector of ultrasound for medical imaging applications.

    PubMed

    Rosenthal, Amir; Kellnberger, Stephan; Omar, Murad; Razansky, Daniel; Ntziachristos, Vasilis

    2014-05-11

    Optical sensors of ultrasound are a promising alternative to piezoelectric techniques, as has been recently demonstrated in the field of optoacoustic imaging. In medical applications, one of the major limitations of optical sensing technology is its susceptibility to environmental conditions, e.g. changes in pressure and temperature, which may saturate the detection. Additionally, the clinical environment often imposes stringent limits on the size and robustness of the sensor. In this work, the combination of pulse interferometry and fiber-based optical sensing is demonstrated for ultrasound detection. Pulse interferometry enables robust performance of the readout system in the presence of rapid variations in the environmental conditions, whereas the use of all-fiber technology leads to a mechanically flexible sensing element compatible with highly demanding medical applications such as intravascular imaging. In order to achieve a short sensor length, a pi-phase-shifted fiber Bragg grating is used, which acts as a resonator trapping light over an effective length of 350 µm. To enable high bandwidth, the sensor is used for sideway detection of ultrasound, which is highly beneficial in circumferential imaging geometries such as intravascular imaging. An optoacoustic imaging setup is used to determine the response of the sensor for acoustic point sources at different positions.

  2. Medical Acoustics

    NASA Astrophysics Data System (ADS)

    Beach, Kirk W.; Dunmire, Barbrina

    Medical acoustics can be subdivided into diagnostics and therapy. Diagnostics are further separated into auditory and ultrasonic methods, and both employ low amplitudes. Therapy (excluding medical advice) uses ultrasound for heating, cooking, permeablizing, activating and fracturing tissues and structures within the body, usually at much higher amplitudes than in diagnostics. Because ultrasound is a wave, linear wave physics are generally applicable, but recently nonlinear effects have become more important, even in low-intensity diagnostic applications.

  3. [Different educational programs on medical ultrasound examination for radiological technologists and medical technologists].

    PubMed

    Ganjitsuda, Kazunori; Tagawa, Masami; Ikeda, Kenichi; Fukushi, Masahiro; Kameoka, Junichi

    2012-01-01

    Radiological technologists (RTs) and medical technologists (MTs) are legally allowed to work as sonographers performing medical ultrasound examination. Despite the total number, much fewer RTs work as sonographers than MTs. To explore the reason, we investigated educational programs, universities, and colleges for both specialties. First, we established five categories of sonographers' competency: 1) Anatomy for imaging diagnosis, 2) Diseases and diagnosis, 3) Imaging, 4) Structure and principle of the equipment, and 5) Evaluation of image quality, using competence reported by the International Society of Radiographers and Radiological Technologists (ISRRT) and diagnostic competency required of sonographers in Japan. Using these categories, we analyzed the content and total instruction time by lectures and seminars based on information written in the syllabi, and explored the differences in education related to sonographers' competency in both programs. "Anatomy for imaging diagnosis" was taught in 15 RT programs (93.8%), and 6 MT programs (31.6%). "Diseases and diagnosis" was taught in 13 RT programs (86.7%), and 8 MT programs (53.3%). "Imaging" was taught in 14 RT programs (100%), and 13 MT programs (76.5%). "Structure and principle of the equipment" was taught in 12 RT programs (85.7%), and 6 MT programs (31.6%). "Evaluation of image quality" was taught in 11 RT programs (84.6%), and 3 MT programs (15.0%). The average instruction time for RT was longer than for MT programs in all categories. RTs are educated and have a foundation to be sonographers at graduation, and may have the possibility to expand their career in this field.

  4. 77 FR 14706 - Medical Diagnostic Equipment Accessibility Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-13

    ... TRANSPORTATION BARRIERS COMPLIANCE BOARD 36 CFR Part 1195 RIN 3014-AA40 Medical Diagnostic Equipment... the Federal Register, 77 FR 6916, on accessibility standards for medical diagnostic equipment and... equipment, in consultation with the Commissioner of the Food and Drug Administration. The Access...

  5. 77 FR 6915 - Medical Diagnostic Equipment Accessibility Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ...The Architectural and Transportation Barriers Compliance Board (Access Board) is proposing accessibility standards for medical diagnostic equipment. The proposed standards contain minimum technical criteria to ensure that medical diagnostic equipment, including examination tables, examination chairs, weight scales, mammography equipment, and other imaging equipment used by health care......

  6. Diagnostic Criteria and Accuracy of Categorizing Malignant Thyroid Nodules by Ultrasonography and Ultrasound Elastography with Pathologic Correlation.

    PubMed

    Elsayed, Naglaa Mostafa; Elkhatib, Yasser Atta

    2016-03-01

    Thyroid nodules are a common medical and surgical concern. Thyroid ultrasound (US) is the primary imaging modality used for initial evaluation and assortment of nodules for fine needle aspiration (FNA) cytology/biopsy. Ultrasound elastography (USE) is believed to improve the diagnostic accuracy of US in distinguishing benign from malignant nodules. The aim of the work described here is to evaluate the diagnostic criteria and accuracy of US and USE in the diagnosis of malignant thyroid nodules. A prospective study of 88 patients who have thyroid nodules was performed. US, color Doppler, and USE were evaluated using a Philips iU22 equipped with a 5 to 12 MHz, linear transducer, followed by FNA of the each scanned nodule. The most sensitive US criteria for malignant nodules were a height-to-width ratio greater than one and the absence of a halo sign (sensitivity 0.875% and 1.000%, respectively). The most specific criteria for malignancy were a spiculated/blurred margin and the presence of microcalcifications (specificity 0.968% and 0.888%, respectively). The receiver operating characteristic curve showed that the cutoff diagnostic criteria of malignancy are two US characteristics and an elastography score of 4. The diagnostic accuracy of US for malignant thyroid nodules increases by combining US and USE.

  7. Acoustic radiation force elasticity imaging in diagnostic ultrasound.

    PubMed

    Doherty, Joshua R; Trahey, Gregg E; Nightingale, Kathryn R; Palmeri, Mark L

    2013-04-01

    The development of ultrasound-based elasticity imaging methods has been the focus of intense research activity since the mid-1990s. In characterizing the mechanical properties of soft tissues, these techniques image an entirely new subset of tissue properties that cannot be derived with conventional ultrasound techniques. Clinically, tissue elasticity is known to be associated with pathological condition and with the ability to image these features in vivo; elasticity imaging methods may prove to be invaluable tools for the diagnosis and/or monitoring of disease. This review focuses on ultrasound-based elasticity imaging methods that generate an acoustic radiation force to induce tissue displacements. These methods can be performed noninvasively during routine exams to provide either qualitative or quantitative metrics of tissue elasticity. A brief overview of soft tissue mechanics relevant to elasticity imaging is provided, including a derivation of acoustic radiation force, and an overview of the various acoustic radiation force elasticity imaging methods.

  8. Ultrasound introscopic image quantitative characteristics for medical diagnosis

    NASA Astrophysics Data System (ADS)

    Novoselets, Mikhail K.; Sarkisov, Sergey S.; Gridko, Alexander N.; Tcheban, Anatoliy K.

    1993-09-01

    The results on computer aided extraction of quantitative characteristics (QC) of ultrasound introscopic images for medical diagnosis are presented. Thyroid gland (TG) images of Chernobil Accident sufferers are considered. It is shown that TG diseases can be associated with some values of selected QCs of random echo distribution in the image. The possibility of these QCs usage for TG diseases recognition in accordance with calculated values is analyzed. The role of speckle noise elimination in the solution of the problem on TG diagnosis is considered too.

  9. [Digital scanning converter for medical endoscopic ultrasound imaging].

    PubMed

    Chen, Xiaodong; Zhang, Hongxu; Zhou, Peifan; Wen, Shijie; Yu, Daoyin

    2009-02-01

    This paper mainly introduces the design of digital scanning converter (DSC) for medical endoscopic ultrasound imaging. Fast modified vector totational CORDIC (FMVR-CORDIC) arithmetic complete coordinate conversion is used to increase the speed of ultrasonic scanning imaging. FPGA is used as the kernel module to control data transferring, related circuits and relevant chips' working, and to accomplish data preprocessing. With the advantages of simple structure, nice flexibility and convenience, it satisfies the demand for real-time displaying in this system. Finally, the original polar coordinate image is transformed to rectangular coordinate grey image through coordinate transformation. The system performances have been validated by the experimental result.

  10. What they mean by "good science': the medical community's response to boutique fetal ultrasounds.

    PubMed

    Raucher, Michal S

    2009-10-01

    Since 1994, when the first fetal imaging boutique appeared in Texas, many sites have been established around the country for parents to receive nonmedical fetal imaging using three- and four-dimensional ultrasound machines. These businesses boast the benefits they offer to parental-fetal bonding, but the medical community objects to the use of ultrasound machines for nonmedical purposes. In this article, I present the statements released by the medical community, highlighting the alarmist strategies used to paint boutique ultrasounds as bad science and elevate the medical use of ultrasounds. Through a close reading of the statements, it is shown that the medical community's primary concern is not the health of the fetus or the woman but rather their place as the sole users of fetal ultrasounds. This detailed analysis reveals a medical community fearful that its authority is being usurped and is therefore responding with statements meant to denigrate boutique fetal ultrasounds.

  11. Geometric distortion of area in medical ultrasound images

    NASA Astrophysics Data System (ADS)

    Bland, T.; Tong, J.; Ward, B.; Parker, N. G.

    2017-01-01

    Medical ultrasound scanners are typically calibrated to a speed of sound corresponding to the soft tissue average of 1540 m s-1. In regions of different sound speed, for example, organs and tumours, the B-mode image becomes geometrically distorted from the true tissue cross-section, due to refraction and the misrepresentation of length. A ray model is developed to predict this distortion for a generalized two-dimensional object with atypical speed of sound, and verified against ultrasound images of a test object. We quantify the areal image distortion as a function of the key dependencies, including the speed of sound mismatch, the scanning format, the object size and its elongation. Our findings show that the distortion of area can be significant, even for relatively small speed of sound mismatches. For example, a 5% speed mismatch typically leads to a 10 - 20% distortion in area. These findings have implications for the accuracy of ultrasound-based evaluation of area and volume.

  12. Training in Diagnostic Ultrasound: Essentials, Principles, and Standards. Report of a WHO Study Group. Technical Report Series 875.

    ERIC Educational Resources Information Center

    World Health Organization, Geneva (Switzerland).

    This report defines the essential training and skills necessary for the effective employment of diagnostic ultrasound in different health care settings. It reviews the present situation in ultrasonography and the trends in the utilization of diagnostic ultrasound in clinical practice. The report also examines worldwide practice with respect to…

  13. High-resolution, low-delay, and error-resilient medical ultrasound video communication using H.264/AVC over mobile WiMAX networks.

    PubMed

    Panayides, Andreas; Antoniou, Zinonas C; Mylonas, Yiannos; Pattichis, Marios S; Pitsillides, Andreas; Pattichis, Constantinos S

    2013-05-01

    In this study, we describe an effective video communication framework for the wireless transmission of H.264/AVC medical ultrasound video over mobile WiMAX networks. Medical ultrasound video is encoded using diagnostically-driven, error resilient encoding, where quantization levels are varied as a function of the diagnostic significance of each image region. We demonstrate how our proposed system allows for the transmission of high-resolution clinical video that is encoded at the clinical acquisition resolution and can then be decoded with low-delay. To validate performance, we perform OPNET simulations of mobile WiMAX Medium Access Control (MAC) and Physical (PHY) layers characteristics that include service prioritization classes, different modulation and coding schemes, fading channels conditions, and mobility. We encode the medical ultrasound videos at the 4CIF (704 × 576) resolution that can accommodate clinical acquisition that is typically performed at lower resolutions. Video quality assessment is based on both clinical (subjective) and objective evaluations.

  14. 3D ultrasound imaging for prosthesis fabrication and diagnostic imaging

    SciTech Connect

    Morimoto, A.K.; Bow, W.J.; Strong, D.S.

    1995-06-01

    The fabrication of a prosthetic socket for a below-the-knee amputee requires knowledge of the underlying bone structure in order to provide pressure relief for sensitive areas and support for load bearing areas. The goal is to enable the residual limb to bear pressure with greater ease and utility. Conventional methods of prosthesis fabrication are based on limited knowledge about the patient`s underlying bone structure. A 3D ultrasound imaging system was developed at Sandia National Laboratories. The imaging system provides information about the location of the bones in the residual limb along with the shape of the skin surface. Computer assisted design (CAD) software can use this data to design prosthetic sockets for amputees. Ultrasound was selected as the imaging modality. A computer model was developed to analyze the effect of the various scanning parameters and to assist in the design of the overall system. The 3D ultrasound imaging system combines off-the-shelf technology for image capturing, custom hardware, and control and image processing software to generate two types of image data -- volumetric and planar. Both volumetric and planar images reveal definition of skin and bone geometry with planar images providing details on muscle fascial planes, muscle/fat interfaces, and blood vessel definition. The 3D ultrasound imaging system was tested on 9 unilateral below-the- knee amputees. Image data was acquired from both the sound limb and the residual limb. The imaging system was operated in both volumetric and planar formats. An x-ray CT (Computed Tomography) scan was performed on each amputee for comparison. Results of the test indicate beneficial use of ultrasound to generate databases for fabrication of prostheses at a lower cost and with better initial fit as compared to manually fabricated prostheses.

  15. The evolution of an integrated ultrasound curriculum (iUSC) for medical students: 9-year experience.

    PubMed

    Hoppmann, Richard A; Rao, Victor V; Bell, Floyd; Poston, Mary Beth; Howe, Duncan B; Riffle, Shaun; Harris, Stephen; Riley, Ruth; McMahon, Carol; Wilson, L Britt; Blanck, Erika; Richeson, Nancy A; Thomas, Lynn K; Hartman, Celia; Neuffer, Francis H; Keisler, Brian D; Sims, Kerry M; Garber, Matthew D; Shuler, C Osborne; Blaivas, Michael; Chillag, Shawn A; Wagner, Michael; Barron, Keith; Davis, Danielle; Wells, James R; Kenney, Donald J; Hall, Jeffrey W; Bornemann, Paul H; Schrift, David; Hunt, Patrick S; Owens, William B; Smith, R Stephen; Jackson, Allison G; Hagon, Kelsey; Wilson, Steven P; Fowler, Stanley D; Catroppo, James F; Rizvi, Ali A; Powell, Caroline K; Cook, Thomas; Brown, Eric; Navarro, Fernando A; Thornhill, Joshua; Burgis, Judith; Jennings, William R; McCallum, James B; Nottingham, James M; Kreiner, James; Haddad, Robert; Augustine, James R; Pedigo, Norman W; Catalana, Paul V

    2015-12-01

    Interest in ultrasound education in medical schools has increased dramatically in recent years as reflected in a marked increase in publications on the topic and growing attendance at international meetings on ultrasound education. In 2006, the University of South Carolina School of Medicine introduced an integrated ultrasound curriculum (iUSC) across all years of medical school. That curriculum has evolved significantly over the 9 years. A review of the curriculum is presented, including curricular content, methods of delivery of the content, student assessment, and program assessment. Lessons learned in implementing and expanding an integrated ultrasound curriculum are also presented as are thoughts on future directions of undergraduate ultrasound education. Ultrasound has proven to be a valuable active learning tool that can serve as a platform for integrating the medical student curriculum across many disciplines and clinical settings. It is also well-suited for a competency-based model of medical education. Students learn ultrasound well and have embraced it as an important component of their education and future practice of medicine. An international consensus conference on ultrasound education is recommended to help define the essential elements of ultrasound education globally to ensure ultrasound is taught and ultimately practiced to its full potential. Ultrasound has the potential to fundamentally change how we teach and practice medicine to the benefit of learners and patients across the globe.

  16. Diagnostic image quality in gynaecological ultrasound: Who should measure it, what should we measure and how?

    PubMed

    Cantin, Peter; Knapp, Karen

    2014-02-01

    Assessment of diagnostic image quality in gynaecological ultrasound is an important aspect of imaging department quality assurance. This may be addressed through audit, but who should undertake the audit, what should be measured and how, remains contentious. The aim of this study was to identify whether peer audit is a suitable method of assessing the diagnostic quality of gynaecological ultrasound images. Nineteen gynaecological ultrasound studies were independently assessed by six sonographers utilising a pilot version of an audit tool. Outcome measures were levels of inter-rater agreement using different data collection methods (binary scores, Likert scale, continuous scale), effect of ultrasound study difficulty on study score and whether systematic differences were present between reviewers of different clinical grades and length of experience. Inter-rater agreement ranged from moderate to good depending on the data collection method. A continuous scale gave the highest level of inter-rater agreement with an intra-class correlation coefficient of 0.73. A strong correlation (r = 0.89) between study difficulty and study score was yielded. Length of clinical experience between reviewers had no effect on the audit scores, but individuals of a higher clinical grade gave significantly lower scores than those of a lower grade (p = 0.04). Peer audit is a promising tool in the assessment of ultrasound image quality. Continuous scales seem to be the best method of data collection implying a strong element of heuristically driven decision making by reviewing ultrasound practitioners.

  17. [How should anesthesiologists perform ultrasound examinations? Diagnostic use of ultrasound in emergency and intensive care and medicine].

    PubMed

    Maecken, T; Zinke, H; Zenz, M; Grau, T

    2011-03-01

    Ultrasound imaging has attained great significance as a tool for diagnostics in emergency and intensive care medicine. The major advantages of this technique are its instantaneous bedside availability and the possibility to perform repeatable examinations. These advantages are based on recent developments, such as portable ultrasound devices offering excellent imaging quality as well as a quick-start-function. Ultrasound imaging in critically ill patients is frequently performed under pressure of time depending on the current acute physical state. All standard examinations in echocardiography, vascular, abdominal and thoracic ultrasound scanning can be applied in these patients. Based on the clinical scenario the duration of examinations may vary from seconds during cardiopulmonary resuscitations to time-consuming repeated scanning. The transition from basic to subject-specific detailed examinations is flowing and has to be adjusted to local conditions. In the field of emergency and intensive care medicine the technique used is whole-body sonography. The goal is to classify the patient's present physical state and to define a targeted therapeutic approach. The characteristics of whole-body sonography are similar to the field of anesthesiology which is an interdisciplinary one. Currently, these characteristics deserve more attention in training in sonography.

  18. Prenatal Sex Selection and Missing Girls in China: Evidence from the Diffusion of Diagnostic Ultrasound

    ERIC Educational Resources Information Center

    Chen, Yuyu; Li, Hongbin; Meng, Lingsheng

    2013-01-01

    How much of the increase in sex ratio (male to female) at birth since the early 1980s in China is attributed to increased prenatal sex selection? This question is addressed by exploiting the differential introduction of diagnostic ultrasound in the country during the 1980s, which significantly reduced the cost of prenatal sex selection. We…

  19. 77 FR 62479 - Medical Diagnostic Equipment Accessibility Standards Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-15

    ... TRANSPORTATION BARRIERS COMPLIANCE BOARD 36 CFR Part 1195 RIN 3014-AA40 Medical Diagnostic Equipment Accessibility Standards Advisory Committee AGENCY: Architectural and Transportation Barriers Compliance Board... and Transportation Barriers Compliance Board (Access Board) established an advisory committee to...

  20. [EXPERIENCE OF DIAGNOSTICS AND MEDICAL TREATMENT OF THE DIEULAFOYS DISEASE].

    PubMed

    P'iatykop, H I; Kravets', O V; Moskalenko, R A; Bratushka, V O

    2014-01-01

    The article is dedicated to the features of diagnostics and medical treatment of the Dieulafoys disease. Clinical description of six cases of foregoing pathology is resulted. The morphological features ulcers Dieulafoy are described. One fatal outcome of disease is analysed.

  1. Objective performance testing and quality assurance of medical ultrasound equipment.

    PubMed

    Thijssen, Johan M; Weijers, Gert; de Korte, Chris L

    2007-03-01

    There is an urgent need for a measurement protocol and software analysis for objective testing of the imaging performance of medical ultrasound equipment from a user's point of view. Methods for testing of imaging performance were developed. Simple test objects were used, which have a long life expectancy. First, the elevational focus (slice thickness) of the transducer was estimated and the in-plane transmit focus was positioned at the same depth. Next, the postprocessing look-up-table (LUT) was measured and linearized. The tests performed were echo level dynamic range (dB), contrast resolution (i.e., gamma of display, number of gray levels/dB) and sensitivity, overall system sensitivity, lateral sensitivity profile, dead zone, spatial resolution and geometric conformity of display. The concept of a computational observer was used to define the lesion signal-to-noise ratio, SNR(L) (or Mahalanobis distance), as a measure for contrast sensitivity. All the measurements were made using digitized images and quantified by objective means, i.e., by image analysis. The whole performance measurement protocol, as well as the quantitative measurements, have been implemented in software. An extensive data-base browser was implemented from which analysis of the images can be started and reports generated. These reports contain all the information about the measurements, such as graphs, images and numbers. The approach of calibrating the gamma by using a linearized LUT was validated by processing simultaneously acquired rf data. The contrast resolution and echo level of the rf data had to be compressed by a factor of two and amplified by a gain factor corresponding to 12 dB. This resulted in contrast curves that were practically identical to those obtained from DICOM image data. The effects of changing the transducer center frequency on the spatial resolution and contrast sensitivity were estimated to illustrate the practical usefulness of the developed approach of quality

  2. Errors made in the ultrasound diagnostics of the spleen.

    PubMed

    Walczyk, Joanna; Walas, Maria Krystyna

    2013-03-01

    Ultrasonography, like any imaging method, entails the risk of errors. From among all means of imaging, it is the most subjective and dependent on the examiner's knowledge and experience. This paper presents the causes of examiner-dependent errors as well as those which result from technical settings and preparation of the patient for the examination. Moreover, the authors discuss the most frequent errors in the diagnosis of splenic conditions, which result from insufficient knowledge concerning anatomical variants of this organ, wrong measurements and incorrect examination technique. The mistakes made in the differentiation of focal lesions of the spleen and its hilum are also discussed. Additionally, the differentiation of collateral circulation, lymph nodes and accessory spleens is mentioned. The authors also draw attention to erroneous interpretation of the left liver lobe as a fragment of the spleen as well as the prominent tail of the pancreas filled with gastric contents and intestinal loops as abnormal masses or fluid cisterns in the area of the splenic hilum. Furthermore, the pathologies of the hilum are discussed such as tumors of the splenic flexure of the colon, lesions arising from the left kidney or the left adrenal gland. The authors list characteristic imaging features of the most common focal lesions visualized in a standard ultrasound scan as well as enhancement patterns appearing in contrast-enhanced examinations. The article discusses the features and differentiation of, among others, infarction, splenic cysts including hydatid ones, abscesses and angiomas. The ultrasound appearance of lymphoma and secondary involvement of the spleen by other malignant neoplasms is also mentioned. Moreover, the authors provide useful tips connected with imaging techniques and interpretation of the findings. The ultrasound examination carried out in compliance with current standards allows for an optimal assessment of the organ and reduction of the error

  3. Medical Ultrasound Video Coding with H.265/HEVC Based on ROI Extraction.

    PubMed

    Wu, Yueying; Liu, Pengyu; Gao, Yuan; Jia, Kebin

    2016-01-01

    High-efficiency video compression technology is of primary importance to the storage and transmission of digital medical video in modern medical communication systems. To further improve the compression performance of medical ultrasound video, two innovative technologies based on diagnostic region-of-interest (ROI) extraction using the high efficiency video coding (H.265/HEVC) standard are presented in this paper. First, an effective ROI extraction algorithm based on image textural features is proposed to strengthen the applicability of ROI detection results in the H.265/HEVC quad-tree coding structure. Second, a hierarchical coding method based on transform coefficient adjustment and a quantization parameter (QP) selection process is designed to implement the otherness encoding for ROIs and non-ROIs. Experimental results demonstrate that the proposed optimization strategy significantly improves the coding performance by achieving a BD-BR reduction of 13.52% and a BD-PSNR gain of 1.16 dB on average compared to H.265/HEVC (HM15.0). The proposed medical video coding algorithm is expected to satisfy low bit-rate compression requirements for modern medical communication systems.

  4. Medical Ultrasound Video Coding with H.265/HEVC Based on ROI Extraction

    PubMed Central

    Wu, Yueying; Liu, Pengyu; Gao, Yuan; Jia, Kebin

    2016-01-01

    High-efficiency video compression technology is of primary importance to the storage and transmission of digital medical video in modern medical communication systems. To further improve the compression performance of medical ultrasound video, two innovative technologies based on diagnostic region-of-interest (ROI) extraction using the high efficiency video coding (H.265/HEVC) standard are presented in this paper. First, an effective ROI extraction algorithm based on image textural features is proposed to strengthen the applicability of ROI detection results in the H.265/HEVC quad-tree coding structure. Second, a hierarchical coding method based on transform coefficient adjustment and a quantization parameter (QP) selection process is designed to implement the otherness encoding for ROIs and non-ROIs. Experimental results demonstrate that the proposed optimization strategy significantly improves the coding performance by achieving a BD-BR reduction of 13.52% and a BD-PSNR gain of 1.16 dB on average compared to H.265/HEVC (HM15.0). The proposed medical video coding algorithm is expected to satisfy low bit-rate compression requirements for modern medical communication systems. PMID:27814367

  5. Investigating a unilateral pleural effusion: A tale of a medical error and diagnostic delays

    PubMed Central

    Welagedara, Suminda; Swe, Tokyo Moe; Sriram, Krishna Bajee

    2017-01-01

    We report the case of an elderly Asian man where a medical error and diagnostic delays obscured the diagnosis of pleural tuberculosis (TB). The patient was hospitalized for evaluation of a unilateral pleural effusion. Initially, the patient was subjected to a pleural aspiration on the wrong side due to a lack of bedside ultrasound guidance. Subsequently, the patient underwent several investigations but not a blind closed pleural biopsy (BCPB) due to a lack of equipment. Furthermore, the patient was deemed to be too sick to undergo a thoracoscopic pleural procedure. Eventually, a bronchoscopy was performed, and washings from the right upper lobe were cultured, which established the diagnosis of TB. This case highlights the need to use bedside ultrasound in the investigation of pleural effusions, the role of BCPB especially in frail patients and finally the utility of bronchoscopy in establishing a diagnosis of pleural TB. PMID:28144068

  6. Transport and use of point-of-care ultrasound by a disaster medical assistance team.

    PubMed

    Mazur, Stefan M; Rippey, James

    2009-01-01

    The role of ultrasound in disaster medicine has not been not well established. This report describes the transport and use of point-of-care ultrasound by a Disaster Medical Assistance Team (DMAT) responding to a mass-casualty incident due to a cyclone. Ultrasound-competent physicians on the team were able to use portable ultrasound on cyclone casualties to exclude intra-abdominal hemorrhage, pericardial fluid, pneumothoraces, and hemothoraces. Information obtained using ultrasound made initial patient management, and subsequent decisions regarding triage for transport safer and based on more detailed clinical information.

  7. Handheld Diagnostic Device Delivers Quick Medical Readings

    NASA Technical Reports Server (NTRS)

    2014-01-01

    To monitor astronauts' health remotely, Glenn Research Center awarded SBIR funding to Cambridge, Massachusetts-based DNA Medical Institute, which developed a device capable of analyzing blood cell counts and a variety of medical biomarkers. The technology will prove especially useful in rural areas without easy access to labs.

  8. The diagnostic value of ultrasound in cystic kidney diseases.

    PubMed

    Vester, Udo; Kranz, Birgitta; Hoyer, Peter F

    2010-02-01

    Renal cysts in childhood can be found in a variety of diseases, which can be congenital or acquired, or renal cysts may be part of a multiorgan disease or restricted to the kidneys only. Ultrasonography is the first-line diagnostic tool and is informative in many cases. However, there is a broad spectrum in the sonographic appearance of renal cysts, and family or genetic studies, a search for extrarenal organ involvement, or additional imaging modalities may be required to make a definitive diagnosis. The aim of this article is to summarize the diagnostic potential and limitations of ultrasonography and depict typical examples of the most important cystic entities.

  9. Sherlock Holmes's Methods of Deductive Reasoning Applied to Medical Diagnostics

    PubMed Central

    Miller, Larry

    1985-01-01

    Having patterned the character of Sherlock Holmes after one of his professors, Sir Arthur Conan Doyle, himself a physician, incorporated many of the didactic qualities of the 19th century medical diagnostician into the character of Holmes. In this paper I explore Holmes's techniques of deductive reasoning and their basis in 19th and 20th century medical diagnostics. PMID:3887762

  10. Sherlock Holmes' methods of deductive reasoning applied to medical diagnostics.

    PubMed

    Miller, L

    1985-03-01

    Having patterned the character of Sherlock Holmes after one of his professors, Sir Arthur Conan Doyle, himself a physician, incorporated many of the didactic qualities of the 19th century medical diagnostician into the character of Holmes. In this paper I explore Holmes's techniques of deductive reasoning and their basis in 19th and 20th century medical diagnostics.

  11. Psychomotor skills in medical ultrasound imaging: an analysis of the core skill set.

    PubMed

    Nicholls, Delwyn; Sweet, Linda; Hyett, Jon

    2014-08-01

    Sonographers use psychomotor skills to perform medical ultrasound examinations. Psychomotor skills describe voluntary movements of the limb, joints, and muscles in response to sensory stimuli and are regulated by the motor neural cortex in the brain. We define a psychomotor skill in relation to medical ultrasound imaging as "the unique mental and motor activities required to execute a manual task safely and efficiently for each clinical situation." Skills in clinical ultrasound practice may be open or closed; most skills used in medical ultrasound imaging are open. Open skills are both complex and multidimensional. Visuomotor and visuospatial psychomotor skills are central components of medical ultrasound imaging. Both types of skills rely on learners having a visual exemplar or standard of performance with which to reference their skill performance and evaluate anatomic structures. These are imperative instructional design principles when teaching psychomotor skills.

  12. A survey of medical diagnostic imaging technologies

    SciTech Connect

    Heese, V.; Gmuer, N.; Thomlinson, W.

    1991-10-01

    The fields of medical imaging and medical imaging instrumentation are increasingly important. The state-of-the-art continues to advance at a very rapid pace. In fact, various medical imaging modalities are under development at the National Synchrotron Light Source (such as MECT and Transvenous Angiography.) It is important to understand how these techniques compare with today`s more conventional imaging modalities. The purpose of this report is to provide some basic information about the various medical imaging technologies currently in use and their potential developments as a basis for this comparison. This report is by no means an in-depth study of the physics and instrumentation of the various imaging modalities; instead, it is an attempt to provide an explanation of the physical bases of these techniques and their principal clinical and research capabilities.

  13. A survey of medical diagnostic imaging technologies

    SciTech Connect

    Heese, V.; Gmuer, N.; Thomlinson, W.

    1991-10-01

    The fields of medical imaging and medical imaging instrumentation are increasingly important. The state-of-the-art continues to advance at a very rapid pace. In fact, various medical imaging modalities are under development at the National Synchrotron Light Source (such as MECT and Transvenous Angiography.) It is important to understand how these techniques compare with today's more conventional imaging modalities. The purpose of this report is to provide some basic information about the various medical imaging technologies currently in use and their potential developments as a basis for this comparison. This report is by no means an in-depth study of the physics and instrumentation of the various imaging modalities; instead, it is an attempt to provide an explanation of the physical bases of these techniques and their principal clinical and research capabilities.

  14. A Methodology for Anatomic Ultrasound Image Diagnostic Quality Assessment.

    PubMed

    Hemmsen, Martin Christian; Lange, Theis; Brandt, Andreas Hjelm; Nielsen, Michael Bachmann; Jensen, Jorgen Arendt

    2017-01-01

    This paper discusses the methods for the assessment of ultrasound image quality based on our experiences with evaluating new methods for anatomic imaging. It presents a methodology to ensure a fair assessment between competing imaging methods using clinically relevant evaluations. The methodology is valuable in the continuing process of method optimization and guided development of new imaging methods. It includes a three phased study plan covering from initial prototype development to clinical assessment. Recommendations to the clinical assessment protocol, software, and statistical analysis are presented. Earlier uses of the methodology has shown that it ensures validity of the assessment, as it separates the influences between developer, investigator, and assessor once a research protocol has been established. This separation reduces confounding influences on the result from the developer to properly reveal the clinical value. This paper exemplifies the methodology using recent studies of synthetic aperture sequential beamforming tissue harmonic imaging.

  15. New real-time strain imaging concepts using diagnostic ultrasound.

    PubMed

    Pesavento, A; Lorenz, A; Siebers, S; Ermert, H

    2000-06-01

    Two real-time strain imaging concepts and systems are presented. Both systems are based on a conventional ultrasound scanner that is connected to a PC with an A/D converter card for real-time data acquisition of rf data. Differential strain between successively acquired rf frames are estimated using phase root seeking. The first concept uses a special real-time implementation of manual elastography. In the second concept, denoted 'vibrography', the static compression is replaced by low-frequency axial vibration of the probe, still operating in quasistatic acquisition mode. The properties of both concepts are discussed with regard to noise and motion artefacts, and it is shown, using simulations and phantom experiments, that both imaging concepts yield the same kind of strain images. Vibrography has the advantage that no manual compression has to be applied, total compression can be very low and some motion artefacts are better suppressed.

  16. New real-time strain imaging concepts using diagnostic ultrasound

    NASA Astrophysics Data System (ADS)

    Pesavento, A.; Lorenz, A.; Siebers, S.; Ermert, H.

    2000-06-01

    Two real-time strain imaging concepts and systems are presented. Both systems are based on a conventional ultrasound scanner that is connected to a PC with an A/D converter card for real-time data acquisition of rf data. Differential strain between successively acquired rf frames are estimated using phase root seeking. The first concept uses a special real-time implementation of manual elastography. In the second concept, denoted `vibrography', the static compression is replaced by low-frequency axial vibration of the probe, still operating in quasistatic acquisition mode. The properties of both concepts are discussed with regard to noise and motion artefacts, and it is shown, using simulations and phantom experiments, that both imaging concepts yield the same kind of strain images. Vibrography has the advantage that no manual compression has to be applied, total compression can be very low and some motion artefacts are better suppressed.

  17. The future of medical diagnostics: review paper

    PubMed Central

    2011-01-01

    While histopathology of excised tissue remains the gold standard for diagnosis, several new, non-invasive diagnostic techniques are being developed. They rely on physical and biochemical changes that precede and mirror malignant change within tissue. The basic principle involves simple optical techniques of tissue interrogation. Their accuracy, expressed as sensitivity and specificity, are reported in a number of studies suggests that they have a potential for cost effective, real-time, in situ diagnosis. We review the Third Scientific Meeting of the Head and Neck Optical Diagnostics Society held in Congress Innsbruck, Innsbruck, Austria on the 11th May 2011. For the first time the HNODS Annual Scientific Meeting was held in association with the International Photodynamic Association (IPA) and the European Platform for Photodynamic Medicine (EPPM). The aim was to enhance the interdisciplinary aspects of optical diagnostics and other photodynamic applications. The meeting included 2 sections: oral communication sessions running in parallel to the IPA programme and poster presentation sessions combined with the IPA and EPPM posters sessions. PMID:21861912

  18. Simulation of diagnostic ultrasound image pulse sequences in cavitation bioeffects research.

    PubMed

    Miller, Douglas L; Dou, Chunyan; Wiggins, Roger C

    2007-10-01

    Research on cavitational bioeffects of diagnostic ultrasound (DUS) typically involves a diagnostic scanner as the exposure source. However, this can limit the ranges of exposure parameters for experimentation. Anesthetized hairless rats were mounted in a water bath and their right kidneys were exposed to ultrasound. Amplitude modulation with Gaussian envelopes simulated the image pulse sequences (IPSs) produced by diagnostic scanning. A 10 mulkgmin IV dose of Definity((R)) contrast agent was given during 1-5 min exposures. Glomerular capillary hemorrhage was assessed by histology. A stationary exposure approximated the bioeffects induced by DUS within the beam area. However, the use of five closely spaced exposures more faithfully reproduced the total effect produced within a DUS scan plane. Single pulses delivered at 1 s intervals induced the same effect as the simulated DUS. Use of 100 ms triangle-wave modulations for ramp-up or ramp-down of the IPS gave no effect or a large effect, respectively. Finally, an air-backed transducer simulating DUS without contrast agent showed a zero effect even operating at twice the present DUS guideline upper limit. Relatively simple single-element laboratory exposure systems can simulate diagnostic ultrasound exposure and allow exploration of parameter ranges beyond those available on present clinical systems.

  19. Managing waiting times in diagnostic medical imaging

    PubMed Central

    Nuti, Sabina; Vainieri, Milena

    2012-01-01

    Objective This paper aims to analyse the variation in the delivery of diagnostic imaging services in order to suggest possible solutions for the reduction of waiting times, increase the quality of services and reduce financial costs. Design This study provides a logic model to manage waiting times in a regional context. Waiting times measured per day were compared on the basis of the variability in the use rates of CT and MRI examinations in Tuscany for the population, as well as on the basis of the capacity offered with respect to the number of radiologists available. The analysis was performed at the local health authority level to support the decision-making process of local managers. Setting Diagnostic imaging services, in particular the CT and MRI examinations. The study involved all the 12 local health authorities that provide services for 3.7 million inhabitants of the Italian Tuscany Region. Primary and secondary outcome measures Participants: the study uses regional administrative data on outpatients and survey data on inpatient diagnostic examinations in order to measure productivity. Primary and secondary outcome measures The study uses the volumes per 1000 inhabitants, the days of waiting times and the number of examinations per radiologist. Variability was measured using the traditional SD measures. Results A significant variation in areas considered homogeneous in terms of age, gender or mortality may indicate that the use of radiological services is not optimal and underuse or overuse occurs and that there is room for improvement in the service organisation. Conclusions Considering that there is a high level of variability among district use rates and waiting times, this study provides managers with a specific tool to find the cause of the problem, identify a possible solution, assess the financial impact and initiate the eventual reduction of waste. PMID:23242480

  20. Correlation of diagnostic ultrasound and radionuclide imaging in scrotal disease

    SciTech Connect

    Chen, D.C.P.; Holder, L.E.; Kaplan, G.N.

    1984-01-01

    A retrospective study was performed to evaluate the usefulness of scrotal ultrasound imaging (SU) and radionuclide scrotal imaging (RSI) in 43 patients (pts), age: 16-75. Twenty-two of them complained of scrotal pain; 18 had a scrotal mass; and 4 had a history of trauma. The final diagnoses were conformed by surgery (n = 21) and long-term follow-up (n = 22) and included 4 late phase and 1 early testicular torsion (TT), 11 acute epididymitis (AE), 4 subacute epididymitis (SE), 5 malignant tumors, 3 testicular atrophy, 2 intratesticular hematomas, 10 hydroceles or other cystic lesions, and miscellaneous. In pts with scrotal pain, 3/4 with late phase TT were correctly diagnosed, while one pt with early TT and 11/15 with AE or SE were not diagnosed by SU. All of them were correctly diagnosed with RSI except one with scrotal cyst. SU was able to separate cystic masses (n = 10) from solid masses (n = 6), but cannot separate malignant from benign lesions. SU was excellent in detecting 19 hydroceles and 2 intratesticular hematomas, while 3 lesions < 1 cm. were not seen in RSI. The authors concluded that SU is useful in pts with scrotal mass to separate solid from cystic lesions. However, SU is unable to differentiate the acute epididymitis from early testicular torsion. In pts with acute scrotal pain, SU is not helpful and RSI should still be the first study performed.

  1. Thoracic ultrasound: A complementary diagnostic tool in cardiology

    PubMed Central

    Trovato, Guglielmo M

    2016-01-01

    Clinical assessment and workup of patients referred to cardiologists may need an extension to chest disease. This requires more in-depth examination of respiratory co-morbidities due to uncertainty or severity of the clinical presentation. The filter and integration of ecg and echocardiographic information, addressing to the clues of right ventricular impairment, pulmonary embolism and pulmonary hypertension, and other less frequent conditions, such as congenital, inherited and systemic disease, usually allow more timely diagnosis and therapeutic choice. The concurrent use of thoracic ultrasound (TUS) is important, because, despite the evidence of the strict links between cardiac and respiratory medicine, heart and chest US imaging approaches are still separated. Actually, available expertise, knowledge, skills and training and equipment’s suitability are not equally fitting for heart or lung examination and not always already accessible in the same room or facility. Echocardiography is useful for study and monitoring of several respiratory conditions and even detection, so that this is nowadays an established functional complementary tool in pulmonary fibrosis and diffuse interstitial disease diagnosis and monitoring. Extending the approach of the cardiologist to lung and pleura will allow the achievement of information on pleural effusion, even minimal, lung consolidation and pneumothorax. Electrocardiography, pulse oximetry and US equipment are the friendly extension of the physical examination, if their use relies on adequate knowledge and training and on appropriate setting of efficient and working machines. Lacking these premises, overshadowing or misleading artefacts may impair the usefulness of TUS as an imaging procedure. PMID:27847557

  2. Automated assessment of joint synovitis activity from medical ultrasound and power doppler examinations using image processing and machine learning methods

    PubMed Central

    Ziębiński, Adam

    2016-01-01

    Objectives Rheumatoid arthritis is the most common rheumatic disease with arthritis, and causes substantial functional disability in approximately 50% patients after 10 years. Accurate measurement of the disease activity is crucial to provide an adequate treatment and care to the patients. The aim of this study is focused on a computer aided diagnostic system that supports an assessment of synovitis severity. Material and methods This paper focus on a computer aided diagnostic system that was developed within joint Polish–Norwegian research project related to the automated assessment of the severity of synovitis. Semiquantitative ultrasound with power Doppler is a reliable and widely used method of assessing synovitis. Synovitis is estimated by ultrasound examiner using the scoring system graded from 0 to 3. Activity score is estimated on the basis of the examiner’s experience or standardized ultrasound atlases. The method needs trained medical personnel and the result can be affected by a human error. Results The porotype of a computer-aided diagnostic system and algorithms essential for an analysis of ultrasonic images of finger joints are main scientific output of the MEDUSA project. Medusa Evaluation System prototype uses bone, skin, joint and synovitis area detectors for mutual structural model based evaluation of synovitis. Finally, several algorithms that support the semi-automatic or automatic detection of the bone region were prepared as well as a system that uses the statistical data processing approach in order to automatically localize the regions of interest. Conclusions Semiquantitative ultrasound with power Doppler is a reliable and widely used method of assessing synovitis. Activity score is estimated on the basis of the examiner’s experience and the result can be affected by a human error. In this paper we presented the MEDUSA project which is focused on a computer aided diagnostic system that supports an assessment of synovitis severity

  3. The Diagnostic Value of Pelvic Ultrasound in Girls with Central Precocious Puberty.

    PubMed

    Lee, Sang Heon; Joo, Eun Young; Lee, Ji-Eun; Jun, Yong-Hoon; Kim, Mi-Young

    2016-01-01

    The gonadotropin-releasing hormone (GnRH) stimulation test is the gold standard for differentiating central precocious puberty (CPP) from exaggerated thelarche (ET). Because of this test's limitations, previous studies have clarified the clinical and laboratory factors that predict CPP. The present study investigated the early diagnostic significance of pelvic ultrasound in girls with CPP. The GnRH stimulation test and pelvic ultrasound were performed between March 2007 and February 2015 in 192 girls (aged <8 years) with signs of early puberty and advanced bone age. Ninety-three of 192 patients (48.4%) were diagnosed as having CPP and the others (51.6%) as having ET. The CPP group had higher uterine volumes (4.31±2.79 mL) than did the ET group (3.05±1.97 mL, p=0.03). No significant differences were found in other ultrasonographic parameters. By use of receiver operating characteristic curve analysis, the most predictive parameter for CPP was a uterine volume of least 3.30 mL, with an area under the curve of 0.659 (95% confidence interval: 0.576-0.736). The CPP group had significantly higher uterine volumes than did the ET group, but there were no reliable cutoff values in pelvic ultrasound for differentiating between CPP and ET. Pelvic ultrasound should be combined with clinical and laboratory tests to maximize its diagnostic value for CPP.

  4. Plasmonic nanoprobes: from chemical sensing to medical diagnostics and therapy

    NASA Astrophysics Data System (ADS)

    Vo-Dinh, Tuan; Fales, Andrew M.; Griffin, Guy D.; Khoury, Christopher G.; Liu, Yang; Ngo, Hoan; Norton, Stephen J.; Register, Janna K.; Wang, Hsin-Neng; Yuan, Hsiangkuo

    2013-10-01

    This article provides an overview of the development and applications of plasmonics-active nanoprobes in our laboratory for chemical sensing, medical diagnostics and therapy. Molecular Sentinel nanoprobes provide a unique tool for DNA/RNA biomarker detection both in a homogeneous solution or on a chip platform for medical diagnostics. The possibility of combining spectral selectivity and high sensitivity of the surface-enhanced Raman scattering (SERS) process with the inherent molecular specificity of nanoprobes provides an important multiplex diagnostic modality. Gold nanostars can provide an excellent multi-modality platform, combining two-photon luminescence with photothermal therapy as well as Raman imaging with photodynamic therapy. Several examples of optical detection using SERS and photonics-based treatments are presented to illustrate the usefulness and potential of the plasmonic nanoprobes for theranostics, which seamlessly combines diagnostics and therapy.

  5. SMPTE Test Pattern For Certification Of Medical Diagnostic Display Devices

    NASA Astrophysics Data System (ADS)

    Lisk, Kenneth G.

    1984-08-01

    Since the invention of x-rays by Wilhelm Conrad Roentgen, rapid advances have been made in the radiological detection of body abnormalities. This was very evident in the 1960's and 70's when the marriage of computers to radiology gave birth to a new generation of imaging modalities such as computerized tomography, ultrasound, digital radiographic imaging, nuclear medicine, and nuclear magnetic resonance. Many of these devices employ digital computer techniques for signal manipulation, and the resultant analog diagnostic images are displayed on television monitors for viewing and on imaging cathode-ray tubes for a photographic hard copy.

  6. Ultrasound

    MedlinePlus

    ... your test will be done. Alternative Names Sonogram Images Abdominal ultrasound Ultrasound in pregnancy 17 week ultrasound ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  7. Ultrasound

    MedlinePlus

    Ultrasound is a type of imaging. It uses high-frequency sound waves to look at organs and ... liver, and other organs. During pregnancy, doctors use ultrasound to view the fetus. Unlike x-rays, ultrasound ...

  8. Porphyria or Catatonia: Diagnostic Dilemma on the Medical Wards.

    PubMed

    Kurkjian, Natalie; Tucker, Phebe

    2016-01-01

    A 24-year-old Caucasian female, DD, was admitted to the medical service at an academic hospital with symptoms of weakness in bilateral lower extremities, falls, headaches, and altered mental status. Psychiatry was consulted to evaluate for psychiatric causes of her symptoms. This case presented a diagnostic challenge as the patient's identified symptoms changed almost daily, depending on what practitioner or medical service she encountered. In this study, we discuss the differential diagnoses, tests and treatments the patient received, with a review of literature helping differentiate between diagnostic parameters.

  9. Integration of Medical Imaging Including Ultrasound into a New Clinical Anatomy Curriculum

    ERIC Educational Resources Information Center

    Moscova, Michelle; Bryce, Deborah A.; Sindhusake, Doungkamol; Young, Noel

    2015-01-01

    In 2008 a new clinical anatomy curriculum with integrated medical imaging component was introduced into the University of Sydney Medical Program. Medical imaging used for teaching the new curriculum included normal radiography, MRI, CT scans, and ultrasound imaging. These techniques were incorporated into teaching over the first two years of the…

  10. Medical ultrasound: imaging of soft tissue strain and elasticity

    PubMed Central

    Wells, Peter N. T.; Liang, Hai-Dong

    2011-01-01

    After X-radiography, ultrasound is now the most common of all the medical imaging technologies. For millennia, manual palpation has been used to assist in diagnosis, but it is subjective and restricted to larger and more superficial structures. Following an introduction to the subject of elasticity, the elasticity of biological soft tissues is discussed and published data are presented. The basic physical principles of pulse-echo and Doppler ultrasonic techniques are explained. The history of ultrasonic imaging of soft tissue strain and elasticity is summarized, together with a brief critique of previously published reviews. The relevant techniques—low-frequency vibration, step, freehand and physiological displacement, and radiation force (displacement, impulse, shear wave and acoustic emission)—are described. Tissue-mimicking materials are indispensible for the assessment of these techniques and their characteristics are reported. Emerging clinical applications in breast disease, cardiology, dermatology, gastroenterology, gynaecology, minimally invasive surgery, musculoskeletal studies, radiotherapy, tissue engineering, urology and vascular disease are critically discussed. It is concluded that ultrasonic imaging of soft tissue strain and elasticity is now sufficiently well developed to have clinical utility. The potential for further research is examined and it is anticipated that the technology will become a powerful mainstream investigative tool. PMID:21680780

  11. Medical ultrasound: imaging of soft tissue strain and elasticity.

    PubMed

    Wells, Peter N T; Liang, Hai-Dong

    2011-11-07

    After X-radiography, ultrasound is now the most common of all the medical imaging technologies. For millennia, manual palpation has been used to assist in diagnosis, but it is subjective and restricted to larger and more superficial structures. Following an introduction to the subject of elasticity, the elasticity of biological soft tissues is discussed and published data are presented. The basic physical principles of pulse-echo and Doppler ultrasonic techniques are explained. The history of ultrasonic imaging of soft tissue strain and elasticity is summarized, together with a brief critique of previously published reviews. The relevant techniques-low-frequency vibration, step, freehand and physiological displacement, and radiation force (displacement, impulse, shear wave and acoustic emission)-are described. Tissue-mimicking materials are indispensible for the assessment of these techniques and their characteristics are reported. Emerging clinical applications in breast disease, cardiology, dermatology, gastroenterology, gynaecology, minimally invasive surgery, musculoskeletal studies, radiotherapy, tissue engineering, urology and vascular disease are critically discussed. It is concluded that ultrasonic imaging of soft tissue strain and elasticity is now sufficiently well developed to have clinical utility. The potential for further research is examined and it is anticipated that the technology will become a powerful mainstream investigative tool.

  12. The impact of sound speed errors on medical ultrasound imaging.

    PubMed

    Anderson, M E; McKeag, M S; Trahey, G E

    2000-06-01

    The results of a quantitative study of the impact of sound speed errors on the spatial resolution and amplitude sensitivity of a commercial medical ultrasound scanner are presented in the context of their clinical significance. The beamforming parameters of the scanner were manipulated to produce sound speed errors ranging over +/-8% while imaging a wire target and an attenuating, speckle-generating phantom. For the wire target, these errors produced increases in lateral beam width of up to 320% and reductions in peak echo amplitude of up to 10.5 dB. In the speckle-generating phantom, these errors produced increases in speckle intensity correlation cell area of up to 92% and reductions in mean speckle brightness of up to 5.6 dB. These results are applied in statistical analyses of two detection tasks of clinical relevance. The first is of low contrast lesion detectability, predicting the changes in the correct decision probability as a function of lesion size, contrast, and sound speed error. The second is of point target detectability, predicting the changes in the correct decision probability as function of point target reflectivity and sound speed error. Representative results of these analyses are presented and their implications for clinical imaging are discussed. In general, sound speed errors have a more significant impact on point target detectability over lesion detectability by these analyses, producing up to a 22% reduction in correct decisions for a typical error.

  13. Theme-based teaching of point-of-care ultrasound in undergraduate medical education.

    PubMed

    Amini, Richard; Stolz, Lori Ann; Gross, Austin; O'Brien, Kathleen; Panchal, Ashish Raman; Reilly, Kevin; Chan, Lisa; Drummond, Brian Scott; Sanders, Arthur; Adhikari, Srikar

    2015-08-01

    A handful of medical schools have developed formal curricula to teach medical students point-of-care ultrasound; however, no ideal method has been proposed. The purpose of this study was to assess an innovative theme-based ultrasound educational model for undergraduate medical education. This was a single-center cross-sectional study conducted at an academic medical center. The study participants were 95 medical students with minimal or no ultrasound experience during their third year of training. The educational theme for the ultrasound session was "The evaluation of patients involved in motor vehicle collisions." This educational theme was carried out during all components of the 1-day event called SonoCamp: asynchronous learning, the didactic lecture, the skills stations, the team case challenge and the individual challenge stations. Assessment consisted of a questionnaire, team case challenge, and individual challenges. A total of 89 of 95 (94 %) students who participated in SonoCamp responded, and 92 % (87 of 95) completed the entire questionnaire before and after the completion of SonoCamp. Ninety-nine percent (95 % CI, 97-100 %) agreed that training at skill stations helped solidify understanding of point-of-care ultrasound. Ninety-two percent (95 % CI, 86-98 %) agreed that theme-based learning is an engaging learning style for point-of-care ultrasound. All students agreed that having a team exercise is an engaging way to learn point-of-care ultrasound; and of the 16 groups, the average score on the case-based questions was 82 % (SD + 28). The 1-day, theme-based ultrasound educational event was an engaging learning technique at our institution which lacks undergraduate medical education ultrasound curriculum.

  14. Diagnostic yield of endobronchial ultrasound-guided transbronchial needle aspiration for mediastinal staging in lung cancer*

    PubMed Central

    Fernández-Bussy, Sebastián; Labarca, Gonzalo; Canals, Sofia; Caviedes, Iván; Folch, Erik; Majid, Adnan

    2015-01-01

    OBJECTIVE: Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is a minimally invasive diagnostic test with a high diagnostic yield for suspicious central pulmonary lesions and for mediastinal lymph node staging. The main objective of this study was to describe the diagnostic yield of EBUS-TBNA for mediastinal lymph node staging in patients with suspected lung cancer. METHODS: Prospective study of patients undergoing EBUS-TBNA for diagnosis. Patients ≥ 18 years of age were recruited between July of 2010 and August of 2013. We recorded demographic variables, radiological characteristics provided by axial CT of the chest, location of the lesion in the mediastinum as per the International Association for the Study of Lung Cancer classification, and definitive diagnostic result (EBUS with a diagnostic biopsy or a definitive diagnostic method). RESULTS: Our analysis included 354 biopsies, from 145 patients. Of those 145 patients, 54.48% were male. The mean age was 63.75 years. The mean lymph node size was 15.03 mm, and 90 lymph nodes were smaller than 10.0 mm. The EBUS-TBNA method showed a sensitivity of 91.17%, a specificity of 100.0%, and a negative predictive value of 92.9%. The most common histological diagnosis was adenocarcinoma. CONCLUSIONS: EBUS-TBNA is a diagnostic tool that yields satisfactory results in the staging of neoplastic mediastinal lesions. PMID:26176519

  15. Alteration of Bacterial Antibiotic Sensitivity After Short-Term Exposure to Diagnostic Ultrasound

    PubMed Central

    Mortazavi, Seyed Mohammad Javad; Darvish, Leili; Abounajmi, Mohammad; Zarei, Samira; Zare, Tahereh; Taheri, Mohammad; Nematollahi, Samaneh

    2015-01-01

    Background Many pathogenic bacteria show different levels of antibiotic resistance. Furthermore, a lot of hospital-acquired infections are caused by highly resistant or multidrug-resistant Gram-negative bacteria. According to WHO, patients with drug-resistant infections have higher morbidity and mortality. Moreover, patients infected with bacteria that are resistant to antibiotics considerably consume more healthcare resources. Objectives In this study, we explored a physical method of converting drug-resistant bacteria to drug-sensitive ones. Materials and Methods This is an in vitro case-control study, performed at the Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences (SUMS), Shiraz, Iran in 2014. All experiments were carried out using Gram-negative bacteria Klebsiella pneumonia and E. coli and Gram-positive Staphylococcus aureus and Streptococcus group A, isolated from hospitalized patients. The bacterial strains were obtained from the Persian Type Culture Collection, IROST, Iran (Klebsiella pneumonia PTCC 1290) and Bacteriology Department of Shahid Faghihi Teaching Hospital, Shiraz, Iran (E. coli, Staphylococcus aureus, and Streptococcus group A). The bacteria in culture plates were exposed to diagnostic ultrasound using a MyLab70XVG sonography system for 5 minutes. Then, the bacteria were cultured on Mueller-Hinton agar and incubated at 35°C for 18 hours. Finally, antibiotic susceptibility test was performed and the inhibition zone in both control and exposed groups were measured. Three replicate agar plates were used for each test and the inhibition zones of the plates were recorded. Results Compared with the results obtained from unexposed bacteria, statistically significant variations of sensitivity to antibiotics were found in some strains after short-term exposure. In particular, we found major differences (making antibiotic-resistant bacteria susceptible or vice versa) in the diameters of

  16. An Interview with Medical Diagnostics Scientist Bernhard Weigl

    ERIC Educational Resources Information Center

    Sullivan, Megan

    2010-01-01

    Medical diagnostics help us evaluate a range of disorders, such as cancer and infectious diseases. In the United States and other developed countries, doctors have access to advanced equipment and laboratories that provide reliable diagnoses. As a result, when we are sick, we feel confident that we will get the treatment we need. Unfortunately,…

  17. Diagnostic ultrasound estimates of muscle mass and muscle quality discriminate between women with and without sarcopenia

    PubMed Central

    Ismail, Catheeja; Zabal, Johannah; Hernandez, Haniel J.; Woletz, Paula; Manning, Heather; Teixeira, Carla; DiPietro, Loretta; Blackman, Marc R.; Harris-Love, Michael O.

    2015-01-01

    Introduction: Age-related changes in muscle mass and muscle tissue composition contribute to diminished strength in older adults. The objectives of this study are to examine if an assessment method using mobile diagnostic ultrasound augments well-known determinants of lean body mass (LBM) to aid sarcopenia staging, and if a sonographic measure of muscle quality is associated with muscle performance. Methods: Twenty community-dwelling female subjects participated in the study (age = 43.4 ± 20.9 years; BMI: 23.8, interquartile range: 8.5). Dual energy X-ray absorptiometry (DXA) and diagnostic ultrasound morphometry were used to estimate LBM. Muscle tissue quality was estimated via the echogenicity using grayscale histogram analysis. Peak force was measured with grip dynamometry and scaled for body size. Bivariate and multiple regression analyses were used to determine the association of the predictor variables with appendicular lean mass (aLM/ht2), and examine the relationship between scaled peak force values and muscle echogenicity. The sarcopenia LBM cut point value of 6.75 kg/m2 determined participant assignment into the Normal LBM and Low LBM subgroups. Results: The selected LBM predictor variables were body mass index (BMI), ultrasound morphometry, and age. Although BMI exhibited a significant positive relationship with aLM/ht2 (adj. R2 = 0.61, p < 0.001), the strength of association improved with the addition of ultrasound morphometry and age as predictor variables (adj. R2 = 0.85, p < 0.001). Scaled peak force was associated with age and echogenicity (adj. R2 = 0.53, p < 0.001), but not LBM. The Low LBM subgroup of women (n = 10) had higher scaled peak force, lower BMI, and lower echogenicity values in comparison to the Normal LBM subgroup (n = 10; p < 0.05). Conclusions: Diagnostic ultrasound morphometry values are associated with LBM, and improve the BMI predictive model for aLM/ht2 in women. In addition, ultrasound proxy measures of muscle quality are more

  18. Clinical benefits of combined diagnostic three-dimensional digital breast tomosynthesis and ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Varjonen, Mari; Pamilo, Martti; Raulisto, Leena

    2005-04-01

    Our goal is to evaluate diagnostic digital breast tomosynthesis and ultrasound imaging clinical value in detecting and diagnosing early stage breast cancers. Determine if fusion imaging would decrease the number of biopsies and reduce further patient workup otherwise required to establish a definitive diagnosis. This paper presents the clinical results based on the study conducted at Helsinki University Central Hospital. Presentation demonstrates clinical dual modality images and results. Tomosynthesis of amorphous selenium based full field digital mammography system will be also presented. Forty asymptomatic women enrolled in the study based on prior identification of suspicious findings on screening mammograms where the possibility of breast cancer could not be excluded. Abnormal screening mammogram findings included tumor-like densities, parenchymal asymmetries and architectural distortions. Eight women were operated and 32 were not referred for surgery. Those cases, which were operated, three lesions represented ductal carcinoma in situ, two ductal carcinomas, one atypical ductal hyperplasia, one fibroadenoma and one radial scar. The 32 not operated cases revealed to be benign or superimposition of normal parenchymal breast tissue. The cases were returned to biennial screening. Ultrasound did not show clearly any lesions, but using tomosynthesis and ultrasound together we were able to analyze and locate the lesions exactly. Special tomosynthesis improves overall lesion detection and analysis. The value of tomosynthesis and ultrasound fusion imaging will be to provide additional clinical information in order to improve decision making accuracy to either confirm or exclude a suspected abnormality and in particular detect small breast cancers.

  19. Diagnostic sensitivity of ultrasound, radiography and computed tomography for gender determination in four species of lizards.

    PubMed

    Di Ianni, Francesco; Volta, Antonella; Pelizzone, Igor; Manfredi, Sabrina; Gnudi, Giacomo; Parmigiani, Enrico

    2015-01-01

    Gender determination is frequently requested by reptile breeders, especially for species with poor or absent sexual dimorphism. The aims of the current study were to describe techniques and diagnostic sensitivities of ultrasound, radiography, and computed tomography for gender determination (identification of hemipenes) in four species of lizards. Nineteen lizards of known sex, belonging to four different species (Pogona vitticeps, Uromastyx aegyptia, Tiliqua scincoides, Gerrhosaurus major) were prospectively enrolled. With informed owner consent, ultrasound, noncontrast CT, contrast radiography, and contrast CT (with contrast medium administered into the cloaca) were performed in conscious animals. Imaging studies were reviewed by three different operators, each unaware of the gender of the animals and of the results of the other techniques. The lizard was classified as a male when hemipenes were identified. Nineteen lizards were included in the study, 10 females and nine males. The hemipenes were seen on ultrasound in only two male lizards, and appeared as oval hypoechoic structures. Radiographically, hemipenes filled with contrast medium appeared as spindle-shaped opacities. Noncontrast CT identified hemipenes in only two lizards, and these appeared as spindle-shaped kinked structures with hyperattenuating content consistent with smegma. Hemipenes were correctly identified in all nine males using contrast CT (accuracy of 100%). Accuracy of contrast radiography was excellent (94.7%). Accuracy of ultrasound and of noncontrast CT was poor (64.3% and 63.1%, respectively). Findings from the current study supported the use of contrast CT or contrast radiography for gender determination in lizards.

  20. Non-invasive estimation of temperature using diagnostic ultrasound during HIFU therapy

    NASA Astrophysics Data System (ADS)

    Georg, O.; Wilkens, V.

    2017-03-01

    The use of HIFU for thermal ablation of human tissues requires safe real-time monitoring of the lesion formation during the treatment to avoid damage of the surrounding healthy tissues and to control temperature rise. Besides MR imaging, several methods have been proposed for temperature imaging using diagnostic ultrasound, and echoshift estimation (using speckle tracking) is the most promising and commonly used technique. It is based on the thermal dependence of the ultrasound echo that accounts for two different physical phenomena: local change in speed of sound and thermal expansion of the propagating medium due to changes in temperature. In our experiments we have used two separate transducers: HIFU exposure was performed using a 1.06 MHz single element focusing transducer of 64 mm aperture and 63.2 mm focal length; the ultrasound diagnostic probe of 11 MHz operated in B-mode for image guidance. The temperature measurements were performed in an agar-based tissue-mimicking phantom. To verify the obtained results, numerical modeling of the acoustic and temperature fields was carried out using KZK and Pennes Bioheat equations, as well as measurements with thermocouples were performed.

  1. Using ultrasound to teach anatomy in the undergraduate medical curriculum: an evaluation of the experiences of tutors and medical students.

    PubMed

    Patten, Debra

    2015-02-01

    This paper describes the experiences of staff and students at two UK medical schools, who introduced portable ultrasound (PU) as an imaging technology to deliver clinical anatomy teaching and to aid skill development in interpretation of cross-sectional anatomy (CSA). A sonographer contributed to curriculum design and teaching, but mostly anatomy tutors delivered the teaching. This case study method evaluates staff and student perspectives on the ultrasound-based anatomy teaching. Quantitative data and qualitative data were collected and analysed. Staff were positive about the experience. They described their expectations for students and solutions for practical issues regarding the teaching, but were concerned about their competency in scanning and wanted bespoke training for sonoanatomy teaching. Curriculum development was accelerated through engagement with a sonographer and an ultrasound champion. Students were extremely positive about their experience; they valued the expertise of a sonographer who taught more challenging sonoanatomy, but were equally positive regarding teaching sessions led by well-trained anatomy tutors who taught more simple sonoanatomy. Students affirmed most tutors' expectations that ultrasound could reinforce existing anatomical knowledge, added clinical contextualisation, but not that use of ultrasound (US) assisted in interpreting CSA. Students valued the introduction to the technology and found sonoimage interpretation challenging, but not insurmountable. Students wanted more instruction on ultrasound physics, an expansion of ultrasound curriculum, with smaller groups and opportunities to scan volunteers. These data support the case for the use of PU to deliver anatomy teaching and to prime medical students for later clinical encounters with PU.

  2. Diagnostic imaging over the last 50 years: research and development in medical imaging science and technology.

    PubMed

    Doi, Kunio

    2006-07-07

    Over the last 50 years, diagnostic imaging has grown from a state of infancy to a high level of maturity. Many new imaging modalities have been developed. However, modern medical imaging includes not only image production but also image processing, computer-aided diagnosis (CAD), image recording and storage, and image transmission, most of which are included in a picture archiving and communication system (PACS). The content of this paper includes a short review of research and development in medical imaging science and technology, which covers (a) diagnostic imaging in the 1950s, (b) the importance of image quality and diagnostic performance, (c) MTF, Wiener spectrum, NEQ and DQE, (d) ROC analysis, (e) analogue imaging systems, (f) digital imaging systems, (g) image processing, (h) computer-aided diagnosis, (i) PACS, (j) 3D imaging and (k) future directions. Although some of the modalities are already very sophisticated, further improvements will be made in image quality for MRI, ultrasound and molecular imaging. The infrastructure of PACS is likely to be improved further in terms of its reliability, speed and capacity. However, CAD is currently still in its infancy, and is likely to be a subject of research for a long time.

  3. Low complex subspace minimum variance beamformer for medical ultrasound imaging.

    PubMed

    Deylami, Ali Mohades; Asl, Babak Mohammadzadeh

    2016-03-01

    Minimum variance (MV) beamformer enhances the resolution and contrast in the medical ultrasound imaging at the expense of higher computational complexity with respect to the non-adaptive delay-and-sum beamformer. The major complexity arises from the estimation of the L×L array covariance matrix using spatial averaging, which is required to more accurate estimation of the covariance matrix of correlated signals, and inversion of it, which is required for calculating the MV weight vector which are as high as O(L(2)) and O(L(3)), respectively. Reducing the number of array elements decreases the computational complexity but degrades the imaging resolution. In this paper, we propose a subspace MV beamformer which preserves the advantages of the MV beamformer with lower complexity. The subspace MV neglects some rows of the array covariance matrix instead of reducing the array size. If we keep η rows of the array covariance matrix which leads to a thin non-square matrix, the weight vector of the subspace beamformer can be achieved in the same way as the MV obtains its weight vector with lower complexity as high as O(η(2)L). More calculations would be saved because an η×L covariance matrix must be estimated instead of a L×L. We simulated a wire targets phantom and a cyst phantom to evaluate the performance of the proposed beamformer. The results indicate that we can keep about 16 from 43 rows of the array covariance matrix which reduces the order of complexity to 14% while the image resolution is still comparable to that of the standard MV beamformer. We also applied the proposed method to an experimental RF data and showed that the subspace MV beamformer performs like the standard MV with lower computational complexity.

  4. The role of ultrasound and nuclear medicine methods in the preoperative diagnostics of primary hyperparathyroidism

    PubMed Central

    Cacko, Marek; Królicki, Leszek

    2015-01-01

    Primary hyperparathyroidism (PH) represents one of the most common endocrine diseases. In most cases, the disorder is caused by parathyroid adenomas. Bilateral neck exploration has been a widely used treatment method for adenomas since the 20's of the twentieth century. In the last decade, however, it has been increasingly replaced by a minimally invasive surgical treatment. Smaller extent, shorter duration and lower complication rate of such a procedure are emphasized. Its efficacy depends on a precise location of parathyroid tissue during the preoperative imaging. Scintigraphy and ultrasound play a major role in the diagnostic algorithms. The efficacy of both methods has been repeatedly verified and compared. The still-current guidelines of the European Association of Nuclear Medicine (2009) emphasize the complementary role of scintigraphy and ultrasonography in the preoperative diagnostics in patients with primary hyperparathyroidism. At the same time, attempts are made to improve both these techniques by implementing new study protocols or innovative technologies. Publications have emerged in the recent years in the field of ultrasonography, whose authors pointed out the usefulness of elastography and contrast media. Nuclear medicine studies, on the other hand, focus mainly on the assessment of new radiotracers used in the positron emission tomography (PET). The aim of this article is to present, based on literature data, the possibilities of ultrasound and scintigraphy in the preoperative diagnostics in patients with primary hyperparathyroidism. Furthermore, the main directions in the development of imaging techniques in PH patients were evaluated. PMID:26807297

  5. Computational Diagnostic: A Novel Approach to View Medical Data.

    SciTech Connect

    Mane, K. K.; Börner, K.

    2007-01-01

    A transition from traditional paper-based medical records to electronic health record is largely underway. The use of electronic records offers tremendous potential to personalize patient diagnosis and treatment. In this paper, we discuss a computational diagnostic tool that uses digital medical records to help doctors gain better insight about a patient's medical condition. The paper details different interactive features of the tool which offer potential to practice evidence-based medicine and advance patient diagnosis practices. The healthcare industry is a constantly evolving domain. Research from this domain is often translated into better understanding of different medical conditions. This new knowledge often contributes towards improved diagnosis and treatment solutions for patients. But the healthcare industry lags behind to seek immediate benefits of the new knowledge as it still adheres to the traditional paper-based approach to keep track of medical records. However recently we notice a drive that promotes a transition towards electronic health record (EHR). An EHR stores patient medical records in digital format and offers potential to replace the paper health records. Earlier attempts of an EHR replicated the paper layout on the screen, representation of medical history of a patient in a graphical time-series format, interactive visualization with 2D/3D generated images from an imaging device. But an EHR can be much more than just an 'electronic view' of the paper record or a collection of images from an imaging device. In this paper, we present an EHR called 'Computational Diagnostic Tool', that provides a novel computational approach to look at patient medical data. The developed EHR system is knowledge driven and acts as clinical decision support tool. The EHR tool provides two visual views of the medical data. Dynamic interaction with data is supported to help doctors practice evidence-based decisions and make judicious choices about patient

  6. Linear tracking for 3-D medical ultrasound imaging.

    PubMed

    Huang, Qing-Hua; Yang, Zhao; Hu, Wei; Jin, Lian-Wen; Wei, Gang; Li, Xuelong

    2013-12-01

    As the clinical application grows, there is a rapid technical development of 3-D ultrasound imaging. Compared with 2-D ultrasound imaging, 3-D ultrasound imaging can provide improved qualitative and quantitative information for various clinical applications. In this paper, we proposed a novel tracking method for a freehand 3-D ultrasound imaging system with improved portability, reduced degree of freedom, and cost. We designed a sliding track with a linear position sensor attached, and it transmitted positional data via a wireless communication module based on Bluetooth, resulting in a wireless spatial tracking modality. A traditional 2-D ultrasound probe fixed to the position sensor on the sliding track was used to obtain real-time B-scans, and the positions of the B-scans were simultaneously acquired when moving the probe along the track in a freehand manner. In the experiments, the proposed method was applied to ultrasound phantoms and real human tissues. The results demonstrated that the new system outperformed a previously developed freehand system based on a traditional six-degree-of-freedom spatial sensor in phantom and in vivo studies, indicating its merit in clinical applications for human tissues and organs.

  7. Conditionally Increased Acoustic Pressures in Nonfetal Diagnostic Ultrasound Examinations Without Contrast Agents: A Preliminary Assessment.

    PubMed

    Nightingale, Kathryn R; Church, Charles C; Harris, Gerald; Wear, Keith A; Bailey, Michael R; Carson, Paul L; Jiang, Hui; Sandstrom, Kurt L; Szabo, Thomas L; Ziskin, Marvin C

    2015-07-01

    The mechanical index (MI) has been used by the US Food and Drug Administration (FDA) since 1992 for regulatory decisions regarding the acoustic output of diagnostic ultrasound equipment. Its formula is based on predictions of acoustic cavitation under specific conditions. Since its implementation over 2 decades ago, new imaging modes have been developed that employ unique beam sequences exploiting higher-order acoustic phenomena, and, concurrently, studies of the bioeffects of ultrasound under a range of imaging scenarios have been conducted. In 2012, the American Institute of Ultrasound in Medicine Technical Standards Committee convened a working group of its Output Standards Subcommittee to examine and report on the potential risks and benefits of the use of conditionally increased acoustic pressures (CIP) under specific diagnostic imaging scenarios. The term "conditionally" is included to indicate that CIP would be considered on a per-patient basis for the duration required to obtain the necessary diagnostic information. This document is a result of that effort. In summary, a fundamental assumption in the MI calculation is the presence of a preexisting gas body. For tissues not known to contain preexisting gas bodies, based on theoretical predications and experimentally reported cavitation thresholds, we find this assumption to be invalid. We thus conclude that exceeding the recommended maximum MI level given in the FDA guidance could be warranted without concern for increased risk of cavitation in these tissues. However, there is limited literature assessing the potential clinical benefit of exceeding the MI guidelines in these tissues. The report proposes a 3-tiered approach for CIP that follows the model for employing elevated output in magnetic resonance imaging and concludes with summary recommendations to facilitate Institutional Review Board (IRB)-monitored clinical studies investigating CIP in specific tissues.

  8. Conditionally Increased Acoustic Pressures in Nonfetal Diagnostic Ultrasound Examinations Without Contrast Agents: A Preliminary Assessment

    PubMed Central

    Nightingale, Kathryn R.; Church, Charles C.; Harris, Gerald; Wear, Keith A.; Bailey, Michael R.; Carson, Paul L.; Jiang, Hui; Sandstrom, Kurt L.; Szabo, Thomas L.; Ziskin, Marvin C.

    2016-01-01

    The mechanical index (MI) has been used by the US Food and Drug Administration (FDA) since 1992 for regulatory decisions regarding the acoustic output of diagnostic ultrasound equipment. Its formula is based on predictions of acoustic cavitation under specific conditions. Since its implementation over 2 decades ago, new imaging modes have been developed that employ unique beam sequences exploiting higher-order acoustic phenomena, and, concurrently, studies of the bioeffects of ultrasound under a range of imaging scenarios have been conducted. In 2012, the American Institute of Ultrasound in Medicine Technical Standards Committee convened a working group of its Output Standards Subcommittee to examine and report on the potential risks and benefits of the use of conditionally increased acoustic pressures (CIP) under specific diagnostic imaging scenarios. The term “conditionally” is included to indicate that CIP would be considered on a per-patient basis for the duration required to obtain the necessary diagnostic information. This document is a result of that effort. In summary, a fundamental assumption in the MI calculation is the presence of a preexisting gas body. For tissues not known to contain preexisting gas bodies, based on theoretical predications and experimentally reported cavitation thresholds, we find this assumption to be invalid. We thus conclude that exceeding the recommended maximum MI level given in the FDA guidance could be warranted without concern for increased risk of cavitation in these tissues. However, there is limited literature assessing the potential clinical benefit of exceeding the MI guidelines in these tissues. The report proposes a 3-tiered approach for CIP that follows the model for employing elevated output in magnetic resonance imaging and concludes with summary recommendations to facilitate Institutional Review Board (IRB)-monitored clinical studies investigating CIP in specific tissues. PMID:26112617

  9. Nonlinear elastic wave NDE I : nonlinear resonant ultrasound spectroscopy (NRUS) and slow dynamics diagnostics (SDD)

    SciTech Connect

    Johnson, Paul; Sutin, A.

    2004-01-01

    The nonlinear elastic response of materials (e.g., wave mixing, harmonic generation) is much more sensitive to the presence of damage than the linear response (e.g., wavespeed, dissipation). An overview of the four primary Nonlinear Elastic Wave Spectroscopy (NEWS) methods used in nonlinear damage detection are presented in this and the following paper. Those presented in this paper are Nonlinear Resonant Ultrasound Spectroscopy (NRUS), based on measurement of the nonlinear response of one or more resonant modes in a test sample, and Slow Dynamics Diagnostics (SDD), manifest by an alteration in the material dissipation and elastic modulus after application of relatively high-amplitude wave that slowly recovers in time.

  10. A nondestructive diagnostic method based on swept-frequency ultrasound transmission-reflection measurements

    NASA Astrophysics Data System (ADS)

    Bramanti, Mauro

    1992-08-01

    A nondestructive diagnostic technique is proposed to measure depth and thickness of unwanted inclusions inside laminate-type materials (gaps, delaminations, and cracks, for example). The method is based on the frequency-domain analysis of transmission and reflection coefficient measured on the material under test when it is irradiated by a CW ultrasound beam whose frequency varies over a suitable frequency range. By measuring the frequency distance between two adjacent minima in the attenuation and reflection coefficients the thickness and depth of the inclusion can be obtained. A practical implementation of the technique is suggested, and the first experimental results obtained by a laboratory setup are reported.

  11. Finite difference modelling of the temperature rise in non-linear medical ultrasound fields.

    PubMed

    Divall, S A; Humphrey, V F

    2000-03-01

    Non-linear propagation of ultrasound can lead to increased heat generation in medical diagnostic imaging due to the preferential absorption of harmonics of the original frequency. A numerical model has been developed and tested that is capable of predicting the temperature rise due to a high amplitude ultrasound field. The acoustic field is modelled using a numerical solution to the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, known as the Bergen Code, which is implemented in cylindrical symmetric form. A finite difference representation of the thermal equations is used to calculate the resulting temperature rises. The model allows for the inclusion of a number of layers of tissue with different acoustic and thermal properties and accounts for the effects of non-linear propagation, direct heating by the transducer, thermal diffusion and perfusion in different tissues. The effect of temperature-dependent skin perfusion and variation in background temperature between the skin and deeper layers of the body are included. The model has been tested against analytic solutions for simple configurations and then used to estimate temperature rises in realistic obstetric situations. A pulsed 3 MHz transducer operating with an average acoustic power of 200 mW leads to a maximum steady state temperature rise inside the foetus of 1.25 degrees C compared with a 0.6 degree C rise for the same transmitted power under linear propagation conditions. The largest temperature rise occurs at the skin surface, with the temperature rise at the foetus limited to less than 2 degrees C for the range of conditions considered.

  12. Development of distance accuracy measurement program for quality control of diagnostic ultrasound system

    NASA Astrophysics Data System (ADS)

    Kim, Yon-Min; Kim, Moon-Chan; Han, Dong-Kyoon; Cho, Jae-Hwan; Kim, Sang-Hyun

    2013-12-01

    Evaluating the performance of a diagnostic ultrasound system is important. Above all, establishing standards for such evaluations in an objective and systematic way is critical. However, quality control is currently measured based on subjective judgment of an observer. Against this background, this study intended to suggest quantified and objective data that would enable inter-observer variation to be overcome. Five radiological technologists used an ATS-539 multi-purpose ultrasound phantom to conduct measurements in the predetermined method. A digital imaging and communications in medicine (DICOM) standard image was obtained in an ultrasound system by using a self-developed software to measure the accuracy of the distance before the 95% confidence interval was calculated. In order to examine the accuracy of the distance in longitudinal and transverse measurements, we conducted t-tests to evaluate the significance for the results of quality control that was performed manually for the past one year and for the results of quality control that was performed by using software with the same equipment. For the longitudinal and the transverse measurements, the 95% confidence intervals were 100.96-101.29 mm and 83.18-84.26 mm, respectively. The computerized longitudinal measurement showed no significant difference from the manual measurement ( p > 0.05). The results of measurements using of software showed a higher reproducibility.

  13. Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: the key role of perfluorochemicals.

    PubMed

    Schutt, Ernest G; Klein, David H; Mattrey, Robert M; Riess, Jean G

    2003-07-21

    Ultrasonography has, until recently, lacked effective contrast-enhancing agents. Micrometer-sized gas bubbles that resonate at a diagnostic frequency are ideal reflectors for ultrasound. However, simple air bubbles, when injected into the blood stream, disappear within seconds through the combined effects of Laplace pressure, blood pressure, and exposure to ultrasound energy. Use of fluorocarbon vapor, by extending the persistence of microbubbles in vivo from seconds to minutes, propelled contrast ultrasonography into clinical practice. Imaging techniques that selectively suppress tissue, but not microbubble signal, further increase image contrast. Approved products consist of C3F8 or SF6 microbubbles, and N2 microbubbles osmotically stabilized with C6F14. These agents allow the detection and characterization of cardiovascular abnormalities and solid organ lesions, such as tumors. By providing higher quality images, they improve the accuracy and confidence of disease diagnosis, and can play a decisive role in clinical decision making. New objectives include agents that target specific cells for the molecular imaging of disease, and drug and gene delivery, including ultrasound-triggered delivery.

  14. Comparison of Diagnostic Performance of Semi-Quantitative Knee Ultrasound and Knee Radiography with MRI: Oulu Knee Osteoarthritis Study.

    PubMed

    Podlipská, Jana; Guermazi, Ali; Lehenkari, Petri; Niinimäki, Jaakko; Roemer, Frank W; Arokoski, Jari P; Kaukinen, Päivi; Liukkonen, Esa; Lammentausta, Eveliina; Nieminen, Miika T; Tervonen, Osmo; Koski, Juhani M; Saarakkala, Simo

    2016-03-01

    Osteoarthritis (OA) is a common degenerative musculoskeletal disease highly prevalent in aging societies worldwide. Traditionally, knee OA is diagnosed using conventional radiography. However, structural changes of articular cartilage or menisci cannot be directly evaluated using this method. On the other hand, ultrasound is a promising tool able to provide direct information on soft tissue degeneration. The aim of our study was to systematically determine the site-specific diagnostic performance of semi-quantitative ultrasound grading of knee femoral articular cartilage, osteophytes and meniscal extrusion, and of radiographic assessment of joint space narrowing and osteophytes, using MRI as a reference standard. Eighty asymptomatic and 79 symptomatic subjects with mean age of 57.7 years were included in the study. Ultrasound performed best in the assessment of femoral medial and lateral osteophytes, and medial meniscal extrusion. In comparison to radiography, ultrasound performed better or at least equally well in identification of tibio-femoral osteophytes, medial meniscal extrusion and medial femoral cartilage morphological degeneration. Ultrasound provides relevant additional diagnostic information on tissue-specific morphological changes not depicted by conventional radiography. Consequently, the use of ultrasound as a complementary imaging tool along with radiography may enable more accurate and cost-effective diagnostics of knee osteoarthritis at the primary healthcare level.

  15. The importance of infection prevention and control in medical ultrasound

    PubMed Central

    Moshkanbaryans, Lia; Meyers, Craig; Ngu, Andrew

    2015-01-01

    Abstract Infection control and prevention is critical to delivering safe and high‐quality care to patients undergoing sonographic procedures. In Australia comprehensive standards for reprocessing of ultrasound probes are based on the AS/NZS, TGA and ASUM recommendations. These standards align with the US Centers for Disease Control and Prevention recommendations. However compliance to these guidelines is not ideal and there exists an unmet need for refinement of the guidelines relating to specific factors in clinical sonography. Significant microbiological evidence exists reflecting the increased risk of infection transmission specifically through inadequately reprocessed ultrasound probes. Studies have reported > 80% of transvaginal ultrasound probe handles are contaminated with disease causing pathogens since handle disinfection is omitted from standard reprocessing protocols. Significantly, it was recently discovered that widely‐used high level disinfectants referred to in guidelines are unable to kill HPV while it is becoming increasingly apparent that attention must be paid to the clinical sonography environment as a potential source of nosocomial pathogens. Ultrasound probe reprocessing guidelines and standards are comprehensive however the challenge is in general awareness and effective implementation into practice. As future research in this area is performed, guidelines will need to be amenable to revision to provide patients with the best standard of care. PMID:28191249

  16. Enzyme immunoassays and related procedures in diagnostic medical virology

    PubMed Central

    Kurstak, Edouard; Tijssen, Peter; Kurstak, Christine; Morisset, Richard

    1986-01-01

    This review article describes several applications of the widely used enzyme immunoassay (EIA) procedure. EIA methods have been adapted to solve problems in diagnostic virology where sensitivity, specificity, or practicability is required. Concurrent developments in hybridoma and conjugation methods have increased significantly the use of these assays. A general overview of EIA methods is given together with typical examples of their use in diagnostic medical virology; attention is drawn to possible pitfalls. Recent advances in recombinant DNA technology have made it possible to produce highly specific nucleic acid probes that have a sensitivity approximately 100 times greater than that of EIA. Some applications of these probes are described. Although the non-labelled nucleic acid probes for use in the field are not as refined as non-labelled immunoassays, their range of applications is expected to expand rapidly in the near future. ImagesFig. 4 PMID:3533302

  17. Ultrasound and stethoscope as tools in medical education and practice: considerations for the archives

    PubMed Central

    Fakoya, Francis A; du Plessis, Maira; Gbenimacho, Ikechi B

    2016-01-01

    Objectives In recent years, the use and portability of ultrasound has threatened the utility of the stethoscope, with many debating and even advocating its replacement. The authors set out to assess opinions in this regard among faculty within a medical school and specifically within an anatomy department where ultrasound is incorporated into the curriculum from the first term. Methods A debate was elicited during a biweekly Anatomy Journal Club session and was centered on three published papers presented. Several questions were raised regarding the possible replacement of stethoscope – the value of early exposure to students as well as how ultrasound and stethoscope should be considered by physicians, students, and teachers. Results The general consensus was that the stethoscope should not be replaced but should be used in conjunction with emerging portable ultrasound. Caution was given that technology could “overcomplicate” diagnosis and lead to increased tests resulting in increased cost of care. In terms of exposing students to ultrasound, just as the stethoscope requires practice to use effectively, so does the ultrasound and should be introduced as early on as possible. As is the case with the stethoscope, students may not initially appreciate all the finer details on ultrasound; however, continual use would improve skill. Conclusion The stethoscope should always remain part of the physical examination and ultrasound should be used in addition to, not replacement of. As technology advances the need for apprenticeship, training increases and students of the medical profession should be exposed to these technologies as early as possible. Hence, it is not yet time to archive the stethoscope. Perhaps never. PMID:27471420

  18. Thyroid nodule sizes influence the diagnostic performance of TIRADS and ultrasound patterns of 2015 ATA guidelines: a multicenter retrospective study

    PubMed Central

    Xu, Ting; Gu, Jing-yu; Ye, Xin-hua; Xu, Shu-hang; Wu, Yang; Shao, Xin-yu; Liu, De-zhen; Lu, Wei-ping; Hua, Fei; Shi, Bi-min; Liang, Jun; Xu, Lan; Tang, Wei; Liu, Chao; Wu, Xiao-hong

    2017-01-01

    To evaluate the impact of thyroid nodule sizes on the diagnostic performance of thyroid imaging reporting and data system (TIRADS) and ultrasound patterns of 2015 American Thyroid Association (ATA) guidelines. Total 734 patients with 962 thyroid nodules were recruited in this retrospective study. All nodules were divided into three groups according to the maximal diameter (d < 10 mm, d = 10–20 mm and d > 20 mm). The ultrasound images were categorized based on TIRADS and ATA ultrasound patterns, respectively. A total of 931 (96.8%) and 906 (94.2%) patterns met the criteria for TIRADS and ATA ultrasound patterns. The AUC (0.849) and sensitivity (85.3%) of TIRADS were highest in d = 10–20 mm group. However, ATA had highest AUC (0.839) and specificity (89.8%) in d > 20 mm group. ATA ultrasound patterns had higher specificity (P = 0.04), while TI-RADS had higher sensitivity (P = 0.02). In nodules d > 20 mm, the specificity of ATA patterns was higher than TIRADS (P = 0.003). Our results indicated that nodule sizes may influence the diagnostic performance of TIRADS and ATA ultrasound patterns. The ATA patterns may yield higher specificity than TIRADS, especially in nodules larger than 20 mm. PMID:28233806

  19. Diagnostic value of FASH ultrasound and chest X-ray in HIV-co-infected patients with abdominal tuberculosis.

    PubMed

    Heller, T; Goblirsch, S; Bahlas, S; Ahmed, M; Giordani, M-T; Wallrauch, C; Brunetti, E

    2013-03-01

    In human immunodeficiency virus (HIV) co-infected tuberculosis (TB) patients with negative acid-fast bacilli smears, chest radiography (CXR) is usually the first imaging step in the diagnostic work-up. Ultrasound, also in the form of focused assessment with sonography for TB-HIV (FASH), is an additional imaging modality used to diagnose extra-pulmonary TB (EPTB). Findings from 82 patients with abdominal TB diagnosed by ultrasound were analysed and compared with CXR results. Enlarged abdominal lymph nodes were seen in 75.6% of the patients, spleen abscesses in 41.2% and liver lesions in 30.6%. CXR showed a miliary pattern in 21.9% of the patients; 26.8% of the CXR had no radiological changes suggestive of pulmonary TB. This patient group would benefit from ultrasound in diagnostic algorithms for HIV-associated EPTB.

  20. The Role of Anthropomorphic Phantoms in Diagnostic Ultrasound Imaging for Disease Characterization (abstract)

    NASA Astrophysics Data System (ADS)

    Cannon, L. M.; King, D. M.; Browne, J. E.

    2009-04-01

    An anthropomorhic phantom is an object that can mimic a region of the human anatomy. Anthropomorphic phantoms have a variety of roles in diagnostic ultrasound. These roles include quality assurance testing of ultrasound machines, calibration and testing of new imaging techniques, training of sonographers, and-most importantly-use as a tool to obtain a better understanding of disease progression in the relevant anatomy. To be anthropomorphic a phantom must accurately mimic the body in terms of its ultrasonic and mechanical properties, as well as anatomically. The acoustic properties are speed of sound, attenuation, and backscatter. The mechanical properties are elasticity and density. Phantoms are constructed from tissue-mimicking materials (TMMs). TMMs are prepared from a variety of ingredients, such as gelatine, agar, safflower oil, and glass beads. These ingredients are then boiled and cooled under controlled conditions to produce a solid TMM. To determine if the TMM has the correct acoustic properties, acoustic measurements are performed using a scanning acoustic macroscope. Mechanical measurements are also performed to test the elasticity and density properties. TMMs with the correct properties are subsequently put through a series of moulding procedures to produce the anthropomorphic phantom.

  1. Multifeature analysis of an ultrasound quantitative diagnostic index for classifying nonalcoholic fatty liver disease

    PubMed Central

    Liao, Yin-Yin; Yang, Kuen-Cheh; Lee, Ming-Ju; Huang, Kuo-Chin; Chen, Jin-De; Yeh, Chih-Kuang

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease related to metabolic syndrome. This study applied an integrated analysis based on texture, backscattering, and attenuation features in ultrasound imaging with the aim of assessing the severity of NAFLD. Ultrasound radiofrequency data obtained from 394 clinical cases were analyzed to extract three texture features (autocorrelation, sum average, and sum variance), the signal-to-noise ratio (SNR), and the slope of the center-frequency downshift (CFDS slope). The texture, SNR, and CFDS slope were combined to produce a quantitative diagnostic index (QDI) that ranged from 0 to 6. We trained the QDI using training data and then applied it to test data to assess its utility. In training data, the areas (AUCs) under the receiver operating characteristic curves for NAFLD and severe NAFLD were 0.81 and 0.84, respectively. In test data, the AUCs were 0.73 and 0.81 for NAFLD and severe NAFLD, respectively. The QDI was able to distinguish severe NAFLD and a normal liver from mild NAFLD, and it was significantly correlated with metabolic factors. This study explored the potential of using the QDI to supply information on different physical characteristics of liver tissues for advancing the ability to grade NAFLD. PMID:27734972

  2. The Role of Anthropomorphic Phantoms in Diagnostic Ultrasound Imaging for Disease Characterization

    SciTech Connect

    Cannon, L. M.; King, D. M.; Browne, J. E.

    2009-04-19

    An anthropomorhic phantom is an object that can mimic a region of the human anatomy. Anthropomorphic phantoms have a variety of roles in diagnostic ultrasound. These roles include quality assurance testing of ultrasound machines, calibration and testing of new imaging techniques, training of sonographers, and--most importantly--use as a tool to obtain a better understanding of disease progression in the relevant anatomy. To be anthropomorphic a phantom must accurately mimic the body in terms of its ultrasonic and mechanical properties, as well as anatomically. The acoustic properties are speed of sound, attenuation, and backscatter. The mechanical properties are elasticity and density. Phantoms are constructed from tissue-mimicking materials (TMMs). TMMs are prepared from a variety of ingredients, such as gelatine, agar, safflower oil, and glass beads. These ingredients are then boiled and cooled under controlled conditions to produce a solid TMM. To determine if the TMM has the correct acoustic properties, acoustic measurements are performed using a scanning acoustic macroscope. Mechanical measurements are also performed to test the elasticity and density properties. TMMs with the correct properties are subsequently put through a series of moulding procedures to produce the anthropomorphic phantom.

  3. Diagnostic ultrasound is unable to enhance the rate of neoplastic transformation in cultured mammalian cells.

    PubMed

    Tolsma, S S; Madsen, E L; Chmiel, J; Martin, A O; Bouck, N P

    1991-11-01

    The ability of diagnostic pulsed ultrasound to induce heritable genetic damage of the type that could result in neoplasia was assayed using BHK21/cl 13 hamster cells or normal human fibroblasts as targets. Using an exposure apparatus carefully designed to minimize beam attenuation and reflection, cavitation, and heating, cells were exposed from 20 seconds to 40 minutes either to clinical machines operating at maximum power, or to a highly focused nonclinical transducer at 2900 W/cm2, or to 200 shocks from a lithotripter. No evidence of an increase in the frequency of neoplastically transformed BHK cells or in the frequency of mutant human cells was seen over those found in matched sham-exposed controls.

  4. Diagnostic yield of endoscopic ultrasound in patients with hypoglicemia and insulinoma suspected

    PubMed Central

    Téllez-Ávila, Félix Ignacio; Acosta-Villavicencio, Gladys Yolanda; Chan, Carlos; Hernández-Calleros, Jorge; Uscanga, Luis; Valdovinos-Andraca, Francisco; Ramírez-Luna, Miguel Ángel

    2015-01-01

    Background and Objectives: Noninvasive imaging techniques have shown limitations to identify insulinomas. In few studies reported so far, endoscopic ultrasound (EUS) has proven to be able to locate lesions. The aim of this study was to compare the performance of computed tomography versus EUS for the detection of insulinomas. Materials and Methods: In a retrospective manner prospectively collected data were analyzed. Patients with hypoglucemia and hyperinsulinemia were included. Diagnostic yield was measured in relationship to sensitivity, specificity, positive predictive value, negative predictive value and accuracy. Surgical specimens were considered the gold standard. Results: Sensitivity, positive predictive value, and accuracy of EUS was 100%, 95.4% and 95.4%, respectively. In the case of CT the sensitivity was 60%, specificity 100%, positive predictive value 100%, negative predictive value 7%, and accuracy were 68%. Conclusions: EUS is useful in the preoperative assessment of patients with hypoglycemia and serum hyperinsulinemia. PMID:25789285

  5. Diagnostic and prognostic values of contrast-enhanced ultrasound in breast cancer: a retrospective study

    PubMed Central

    Zhao, Yi-Xuan; Liu, Shuang; Hu, Yan-Bing; Ge, Yan-Yan; Lv, Dong-Mei

    2017-01-01

    This study aimed to explore the diagnostic and prognostic values of contrast-enhanced ultrasound (CEUS) in breast cancer. Between September 2009 and October 2011, a total of 143 breast cancer patients and 161 healthy people were selected as case group and control group, respectively. After the identification of lesions by conventional ultrasound, all patients underwent CEUS. The CEUS images were analyzed, and time–intensity curves (TICs) were obtained. Hematoxylin–eosin and immunohistochemistry staining was performed on tissue specimens, according to which the expressions of estrogen receptor (ER), c-erb-B2, p53, and Ki-67 were measured. Multivariate logistic regression analysis was used to compare CEUS and TIC parameters between the two groups. Compared with the control group, cancer patients showed high enhancement, heterogeneous enhancement or defects in the central region, expansion of lesion diameter after enhancement and crab-like blur lesion edges. The peak intensity (PI), relative start time of enhancement, relative PI, and relative area under the curve in the case group were significantly higher than those in the control group. Logistic analysis showed that the uniformity of enhancement, expansion of lesion diameter, and relative PI were significant diagnostic parameters of breast cancer, with area under the curve being 0.798, 0.776, and 0.919, respectively. There were strong associations between CEUS characteristics and expressions of prognostic factors in breast cancer: the heterogeneous enhancement was common in c-erb-B2-positive tumors; the centripetal enhancement occurred more in ER-negative tumors; perforator vessels were often seen in tumors at high histological grade; perfusion defects were common in ER-negative, c-erb-B2-positive, and Ki-67-positive tumors. CEUS is a useful tool for the early diagnosis and prognosis of breast cancer. PMID:28260926

  6. Diagnostic value of endobronchial ultrasound-guided transbronchial needle aspiration in various lung diseases

    PubMed Central

    Ortakoylu, Mediha Gonenc; Iliaz, Sinem; Bahadir, Ayse; Aslan, Asuman; Iliaz, Raim; Ozgul, Mehmet Akif; Urer, Halide Nur

    2015-01-01

    Objective: Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is a new method for the diagnosis and staging of lung disease, and its use is increasing worldwide. It has been used as a means of diagnosing lung cancer in its initial stages, and there are data supporting its use for the diagnosis of benign lung disease. The aim of this study was to share our experience with EBUS-TBNA and discuss its diagnostic value. Methods: We retrospectively analyzed the results related to 159 patients who underwent EBUS-TBNA at our pulmonary medicine clinic between 2010 and 2013. We recorded the location and size of lymph nodes seen during EBUS. Lymph nodes that appeared to be affected on EBUS were sampled at least twice. We recorded the diagnostic results of EBUS-TBNA and (for cases in which EBUS-TBNA yielded an inconclusive diagnosis) the final diagnoses after further investigation and follow-up. Results: We evaluated 159 patients, of whom 89 (56%) were male and 70 (44%) were female. The mean age was 54.6 ± 14.2 years among the male patients and 51.9 ± 11.3 years among the female patients. Of the 159 patients evaluated, 115 (84%) were correctly diagnosed by EBUS. The diagnostic accuracy of EBUS-TBNA was 83% for benign granulomatous diseases and 77% for malignant diseases. Conclusions: The diagnostic value of EBUS-TBNA is also high for benign pathologies, such as sarcoidosis and tuberculosis. In patients with mediastinal disorders, the use of EBUS-TBNA should be encouraged, primarily because it markedly reduces the need for mediastinoscopy. PMID:26578131

  7. Beamforming through regularized inverse problems in ultrasound medical imaging.

    PubMed

    Szasz, Teodora; Basarab, Adrian; Kouame, Denis

    2016-09-13

    Beamforming in ultrasound imaging has significant impact on the quality of the final image, controlling its resolution and contrast. Despite its low spatial resolution and contrast, delay-and-sum is still extensively used nowadays in clinical applications, due to its real-time capabilities. The most common alternatives are minimum variance method and its variants, which overcome the drawbacks of delay-and-sum, at the cost of higher computational complexity that limits its utilization in real-time applications. In this paper, we propose to perform beamforming in ultrasound imaging through a regularized inverse problem based on a linear model relating the reflected echoes to the signal to be recovered. Our approach presents two major advantages: i) its flexibility in the choice of statistical assumptions on the signal to be beamformed (Laplacian and Gaussian statistics are tested herein) and ii) its robustness to a reduced number of pulse emissions. The proposed framework is flexible and allows for choosing the right trade-off between noise suppression and sharpness of the resulted image. We illustrate the performance of our approach on both simulated and experimental data, with in vivo examples of carotid and thyroid. Compared to delay-and-sum, minimimum variance and two other recently published beamforming techniques, our method offers better spatial resolution, respectively contrast, when using Laplacian and Gaussian priors.

  8. Biorisk Assessment of Medical Diagnostic Laboratories in Nigeria

    PubMed Central

    Oladeinde, Bankole Henry; Omoregie, Richard; Odia, Ikponmwonsa; Osakue, Eguagie Osareniro; Imade, Odaro Stanley

    2013-01-01

    Background The aim of this study was to assess public and private medical diagnostic laboratories in Nigeria for the presence of biosafety equipment, devices, and measures. Methods A total of 80 diagnostic laboratories in biosafety level 3 were assessed for the presence of biosafety equipment, devices, and compliance rate with biosafety practices. A detailed questionnaire and checklist was used to obtain the relevant information from enlisted laboratories. Results The results showed the presence of an isolated unit for microbiological work, leak-proof working benches, self-closing doors, emergency exits, fire extinguisher(s), autoclaves, and hand washing sinks in 21.3%, 71.3%, 15.0%, 1.3%, 11.3%, 82.5%, and 67.5%, respectively, of all laboratories surveyed. It was observed that public diagnostic laboratories were significantly more likely to have an isolated unit for microbiological work (p = 0.001), hand washing sink (p = 0.003), and an autoclave (p ≤ 0.001) than private ones. Routine use of hand gloves, biosafety cabinet, and a first aid box was observed in 35.0%, 20.0%, and 2.5%, respectively, of all laboratories examined. Written standard operating procedures, biosafety manuals, and biohazard signs on door entrances were observed in 6.3%, 1.3%, and 3.8%, respectively, of all audited laboratories. No biosafety officer(s) or records of previous spills, or injuries and accidents, were observed in all diagnostic laboratories studied. Conclusion In all laboratories (public and private) surveyed, marked deficiencies were observed in the area of administrative control responsible for implementing biosafety. Increased emphasis on provision of biosafety devices and compliance with standard codes of practices issued by relevant authorities is strongly advocated. PMID:23961333

  9. Do Anesthetic Techniques Influence the Threshold for Glomerular Capillary Hemorrhage induced in Rats by Contrast Enhanced Diagnostic Ultrasound?

    PubMed Central

    Miller, Douglas L.; Lu, Xiaofang; Fabiilli, Mario; Dou, Chunyan

    2016-01-01

    Objectives Glomerular capillary hemorrhage (GCH) can be induced by ultrasonic cavitation during contrast enhanced diagnostic ultrasound (CEDUS), an important nonthermal ultrasound bioeffect. Recent studies of pulmonary ultrasound exposure have shown that thresholds for another nonthermal bioeffect of ultrasound, pulmonary capillary hemorrhage, is strongly influenced by whether or not xylazine is included in the specific anesthetic technique. Methods In this study, anesthesia with ketamine only was compared to ketamine plus xylazine for the induction of GCH in rats by 1.6 MHz intermittent diagnostic ultrasound with contrast agent (similar to Definity). GCH was measured as a percentage of glomeruli with hemorrhage found in histological sections for groups of rats scanned at different peak rarefactional pressure amplitudes. Results There was a significant difference between the magnitude of the GCH between the two anesthetics at 2.3 MPa with 45.6 % GCH for ketamine only, increasing to 63.2 % GCH for ketamine plus xylazine anesthesia (P<0.001). However, the thresholds for the two anesthesia methods were virtually identical at 1.0 MPa, based on linear regression of the exposure response data. Conclusions Therefore, thresholds for CEDUS induced injury of the microvasculature appears to be minimally affected by anesthesia methods. PMID:26764276

  10. Mechanisms for Induction of Pulmonary Capillary Hemorrhage by Diagnostic Ultrasound: Review and Consideration of Acoustical Radiation Surface Pressure.

    PubMed

    Miller, Douglas L

    2016-12-01

    Diagnostic ultrasound can induce pulmonary capillary hemorrhage (PCH) in rats and other mammals. This phenomenon represents the only clearly demonstrated biological effect of (non-contrast enhanced) diagnostic ultrasound and thus presents a uniquely important safety issue. However, the physical mechanism responsible for PCH remains uncertain more than 25 y after its discovery. Experimental research has indicated that neither heating nor acoustic cavitation, the predominant mechanisms for bioeffects of ultrasound, is responsible for PCH. Furthermore, proposed theoretical mechanisms based on gas-body activation, on alveolar resonance and on impulsive generation of liquid droplets all appear unlikely to be responsible for PCH, owing to unrealistic model assumptions. Here, a simple model based on the acoustical radiation surface pressure (ARSP) at a tissue-air interface is hypothesized as the mechanism for PCH. The ARSP model seems to explain some features of PCH, including the approximate frequency independence of PCH thresholds and the dependence of thresholds on biological factors. However, ARSP evaluated for experimental threshold conditions appear to be too weak to fully account for stress failure of pulmonary capillaries, gauging by known stresses for injurious physiologic conditions. Furthermore, consideration of bulk properties of lung tissue suggests substantial transmission of ultrasound through the pleura, with reduced ARSP and potential involvement of additional mechanisms within the pulmonary interior. Although these recent findings advance our knowledge, only a full understanding of PCH mechanisms will allow development of science-based safety assurance for pulmonary ultrasound.

  11. Ultrasound

    MedlinePlus

    ... called multiples) To screen for birth defects, like spina bifida or heart defects . Screening means seeing if your ... example, if the ultrasound shows your baby has spina bifida, she may be treated in the womb before ...

  12. Ultrasound

    MedlinePlus Videos and Cool Tools

    ... baby's development in the uterus. Ultrasound uses inaudible sound waves to produce a two-dimensional image of the baby while inside the mother's uterus. The sound waves bounce off solid structures in the body ...

  13. Forward-backward generalized sidelobe canceler beamforming applied to medical ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Li, Jiake; Chen, Xiaodong; Wang, Yi; Chen, Xiaoshuai; Yu, Daoyin

    2017-01-01

    For adaptive ultrasound imaging, accurate estimation of the covariance matrix is of great importance, and it has a fundamental influence on the performance of the adaptive beamformer. In this paper, a new forward-backward generalized sidelobe canceler (FBGSC) approach is proposed for medical ultrasound imaging, which uses forward and backward subaperture averaging to accurate estimate the covariance matrix. And resulted from accurate estimating of covariance matrix, FBGSC can achieve better lateral resolution and contrast without preprocessing algorithms. Field II is applied to obtain the simulated echo data of scattering points and a circular cyst. Beamforming responses of scattering points show that FBGSC can improve the lateral resolution by 55.7% and 66.6% compared with synthetic aperture (SA) and delay-and-sum (DS), respectively. Similarly, the simulated results of circular cyst show that FBGSC can obtain better beamforming responses than traditional adaptive beamformers. Finally, an experiment is conducted based on the real echo data of a medical ultrasound system. Results demonstrate that the FBGSC can improve the imaging quality of medical ultrasound imaging system, with lower computational demand and higher reliability.

  14. MO-AB-210-03: Workshop [Advancements in high intensity focused ultrasound

    SciTech Connect

    Lu, Z.

    2015-06-15

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  15. MO-AB-210-01: Ultrasound Imaging and Therapy-Hands On Workshop

    SciTech Connect

    Lu, Z.

    2015-06-15

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  16. MO-AB-210-02: Ultrasound Imaging and Therapy-Hands On Workshop

    SciTech Connect

    Sammet, S.

    2015-06-15

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  17. Applications of ultrasound to veterinary diagnostics in a veterinary teaching hospital.

    PubMed

    Miller, C W; Wingfield, W E; Boon, J A

    1982-01-01

    Animal patients at Colorado State University's Veterinary Teaching Hospital as well as beagles at the Collaborative Radiological Health Laboratory (CRHL) have been routinely evaluated using a variety of ultrasonic procedures that are commonplace in human medicine. The results from these clinical investigations have provided diagnostic information which in many cases has not been available using other clinical testing methods. Dogs, cats, horses, and cattle have been the primary animals evaluated, but more exotic subjects such as rabbits, ferrets, goats, and armadillos have also been examined. Standard M mode echocardiographic and classic contact scanning have been used to evaluate the heart and abdominal-pelvic areas respectively. Recently, real time scanning has been added to our capabilities for evaluating animal subjects. These clinical studies, while obviously adding to veterinary diagnostics have also become an exciting new area in the veterinary teaching program. Ultrasound has shown potential in a variety of studies employing animal models, i.e., aging effects on the heart in beagles and anthracycline-induced myocardial dysfunction in rabbits.

  18. Distributed network, wireless and cloud computing enabled 3-D ultrasound; a new medical technology paradigm.

    PubMed

    Meir, Arie; Rubinsky, Boris

    2009-11-19

    Medical technologies are indispensable to modern medicine. However, they have become exceedingly expensive and complex and are not available to the economically disadvantaged majority of the world population in underdeveloped as well as developed parts of the world. For example, according to the World Health Organization about two thirds of the world population does not have access to medical imaging. In this paper we introduce a new medical technology paradigm centered on wireless technology and cloud computing that was designed to overcome the problems of increasing health technology costs. We demonstrate the value of the concept with an example; the design of a wireless, distributed network and central (cloud) computing enabled three-dimensional (3-D) ultrasound system. Specifically, we demonstrate the feasibility of producing a 3-D high end ultrasound scan at a central computing facility using the raw data acquired at the remote patient site with an inexpensive low end ultrasound transducer designed for 2-D, through a mobile device and wireless connection link between them. Producing high-end 3D ultrasound images with simple low-end transducers reduces the cost of imaging by orders of magnitude. It also removes the requirement of having a highly trained imaging expert at the patient site, since the need for hand-eye coordination and the ability to reconstruct a 3-D mental image from 2-D scans, which is a necessity for high quality ultrasound imaging, is eliminated. This could enable relatively untrained medical workers in developing nations to administer imaging and a more accurate diagnosis, effectively saving the lives of people.

  19. Ultrasound criteria and guided fine-needle aspiration diagnostic yields in small animal peritoneal, mesenteric and omental disease.

    PubMed

    Feeney, Daniel A; Ober, Christopher P; Snyder, Laura A; Hill, Sara A; Jessen, Carl R

    2013-01-01

    Peritoneal, mesenteric, and omental diseases are important causes of morbidity and mortality in humans and animals, although information in the veterinary literature is limited. The purposes of this retrospective study were to determine whether objectively applied ultrasound interpretive criteria are statistically useful in differentiating among cytologically defined normal, inflammatory, and neoplastic peritoneal conditions in dogs and cats. A second goal was to determine the cytologically interpretable yield on ultrasound-guided, fine-needle sampling of peritoneal, mesenteric, or omental structures. Sonographic criteria agreed upon by the authors were retrospectively and independently applied by two radiologists to the available ultrasound images without knowledge of the cytologic diagnosis and statistically compared to the ultrasound-guided, fine-needle aspiration cytologic interpretations. A total of 72 dogs and 49 cats with abdominal peritoneal, mesenteric, or omental (peritoneal) surface or effusive disease and 17 dogs and 3 cats with no cytologic evidence of inflammation or neoplasia were included. The optimized, ultrasound criteria-based statistical model created independently for each radiologist yielded an equation-based diagnostic category placement accuracy of 63.2-69.9% across the two involved radiologists. Regional organ-associated masses or nodules as well as aggregated bowel and peritoneal thickening were more associated with peritoneal neoplasia whereas localized, severely complex fluid collections were more associated with inflammatory peritoneal disease. The cytologically interpretable yield for ultrasound-guided fine-needle sampling was 72.3% with no difference between species, making this a worthwhile clinical procedure.

  20. Acoustic holography as a metrological tool for characterizing medical ultrasound sources and fields

    PubMed Central

    Sapozhnikov, Oleg A.; Tsysar, Sergey A.; Khokhlova, Vera A.; Kreider, Wayne

    2015-01-01

    Acoustic holography is a powerful technique for characterizing ultrasound sources and the fields they radiate, with the ability to quantify source vibrations and reduce the number of required measurements. These capabilities are increasingly appealing for meeting measurement standards in medical ultrasound; however, associated uncertainties have not been investigated systematically. Here errors associated with holographic representations of a linear, continuous-wave ultrasound field are studied. To facilitate the analysis, error metrics are defined explicitly, and a detailed description of a holography formulation based on the Rayleigh integral is provided. Errors are evaluated both for simulations of a typical therapeutic ultrasound source and for physical experiments with three different ultrasound sources. Simulated experiments explore sampling errors introduced by the use of a finite number of measurements, geometric uncertainties in the actual positions of acquired measurements, and uncertainties in the properties of the propagation medium. Results demonstrate the theoretical feasibility of keeping errors less than about 1%. Typical errors in physical experiments were somewhat larger, on the order of a few percent; comparison with simulations provides specific guidelines for improving the experimental implementation to reduce these errors. Overall, results suggest that holography can be implemented successfully as a metrological tool with small, quantifiable errors. PMID:26428789

  1. Acoustic holography as a metrological tool for characterizing medical ultrasound sources and fields.

    PubMed

    Sapozhnikov, Oleg A; Tsysar, Sergey A; Khokhlova, Vera A; Kreider, Wayne

    2015-09-01

    Acoustic holography is a powerful technique for characterizing ultrasound sources and the fields they radiate, with the ability to quantify source vibrations and reduce the number of required measurements. These capabilities are increasingly appealing for meeting measurement standards in medical ultrasound; however, associated uncertainties have not been investigated systematically. Here errors associated with holographic representations of a linear, continuous-wave ultrasound field are studied. To facilitate the analysis, error metrics are defined explicitly, and a detailed description of a holography formulation based on the Rayleigh integral is provided. Errors are evaluated both for simulations of a typical therapeutic ultrasound source and for physical experiments with three different ultrasound sources. Simulated experiments explore sampling errors introduced by the use of a finite number of measurements, geometric uncertainties in the actual positions of acquired measurements, and uncertainties in the properties of the propagation medium. Results demonstrate the theoretical feasibility of keeping errors less than about 1%. Typical errors in physical experiments were somewhat larger, on the order of a few percent; comparison with simulations provides specific guidelines for improving the experimental implementation to reduce these errors. Overall, results suggest that holography can be implemented successfully as a metrological tool with small, quantifiable errors.

  2. Diagnostic Accuracy of Contrast-Enhanced Ultrasound Enhancement Patterns for Thyroid Nodules

    PubMed Central

    Zhang, Yan; Luo, Yu-kun; Zhang, Ming-bo; Li, Jie; Li, Junlai; Tang, Jie

    2016-01-01

    Background The aim of this study was to investigate the accuracy of contrast-enhanced ultrasound (CEUS) enhancement patterns in the assessment of thyroid nodules. Material/Methods A total of 158 patients with suspected thyroid cancer underwent conventional ultrasound (US) and CEUS examinations. The contrast enhancement patterns of the lesions, including the peripheries of the lesions, were assessed by CEUS scans. The relationship between the size of the lesions and the degree of enhancement was also studied. US- and/or CEUS-guided biopsy was used to obtain specimens for histopathological diagnosis. Results The final data included 148 patients with 157 lesions. Seventy-five patients had 82 malignant lesions and 73 patients had 75 benign lesions. Peripheral ring enhancement was seen in 40 lesions. The differences of enhancement patterns and peripheral rings between benign and malignant nodules were significant (p=0.000, 0.000). The diagnostic sensitivity, specificity, and accuracy for malignant were 88%, 65.33%, and 88.32%, respectively, for CEUS, whereas they were 98.33%, 42.67%, and 71.97%, respectively, for TC by conventional US. The misdiagnosis rate by conventional US was 57.33% and 34.67% by CEUS (p=0.005). With regard to the size of lesions, a significant difference was found between low-enhancement, iso-enhancement, high-enhancement, iso-enhancement with no-enhancement area and no-enhancement (p=0.000). Conclusions In patients with suspicious US characteristics, CEUS had high specificity and contributed to establishing the diagnosis. Therefore, CEUS could avoid unnecessary biopsy. PMID:27916971

  3. A new method for tracking organ motion on diagnostic ultrasound images

    SciTech Connect

    Kubota, Yoshiki Matsumura, Akihiko; Fukahori, Mai; Minohara, Shin-ichi; Yasuda, Shigeo; Nagahashi, Hiroshi

    2014-09-15

    Purpose: Respiratory-gated irradiation is effective in reducing the margins of a target in the case of abdominal organs, such as the liver, that change their position as a result of respiratory motion. However, existing technologies are incapable of directly measuring organ motion in real-time during radiation beam delivery. Hence, the authors proposed a novel quantitative organ motion tracking method involving the use of diagnostic ultrasound images; it is noninvasive and does not entail radiation exposure. In the present study, the authors have prospectively evaluated this proposed method. Methods: The method involved real-time processing of clinical ultrasound imaging data rather than organ monitoring; it comprised a three-dimensional ultrasound device, a respiratory sensing system, and two PCs for data storage and analysis. The study was designed to evaluate the effectiveness of the proposed method by tracking the gallbladder in one subject and a liver vein in another subject. To track a moving target organ, the method involved the control of a region of interest (ROI) that delineated the target. A tracking algorithm was used to control the ROI, and a large number of feature points and an error correction algorithm were used to achieve long-term tracking of the target. Tracking accuracy was assessed in terms of how well the ROI matched the center of the target. Results: The effectiveness of using a large number of feature points and the error correction algorithm in the proposed method was verified by comparing it with two simple tracking methods. The ROI could capture the center of the target for about 5 min in a cross-sectional image with changing position. Indeed, using the proposed method, it was possible to accurately track a target with a center deviation of 1.54 ± 0.9 mm. The computing time for one frame image using our proposed method was 8 ms. It is expected that it would be possible to track any soft-tissue organ or tumor with large deformations and

  4. A perspective on high-frequency ultrasound for medical applications

    NASA Astrophysics Data System (ADS)

    Mamou, Jonathan; Aristizába, Orlando; Silverman, Ronald H.; Ketterling, Jeffrey A.

    2010-01-01

    High-frequency ultrasound (HFU, >15 MHz) is a rapidly developing field. HFU is currently used and investigated for ophthalmologic, dermatologic, intravascular, and small-animal imaging. HFU offers a non-invasive means to investigate tissue at the microscopic level with resolutions often better than 100 μm. However, fine resolution is only obtained over the limited depth-of-field (˜1 mm) of single-element spherically-focused transducers typically used for HFU applications. Another limitation is penetration depth because most biological tissues have large attenuation at high frequencies. In this study, two 5-element annular arrays with center frequencies of 17 and 34 MHz were fabricated and methods were developed to obtain images with increased penetration depth and depth-of-field. These methods were used in ophthalmologic and small-animal imaging studies. Improved blood sensitivity was obtained when a phantom mimicking a vitreous hemorrhage was imaged. Central-nervous systems of 12.5-day-old mouse embryos were imaged in utero and in three dimensions for the first time.

  5. Strong reflector-based beamforming in ultrasound medical imaging.

    PubMed

    Szasz, Teodora; Basarab, Adrian; Kouamé, Denis

    2016-03-01

    This paper investigates the use of sparse priors in creating original two-dimensional beamforming methods for ultrasound imaging. The proposed approaches detect the strong reflectors from the scanned medium based on the well known Bayesian Information Criteria used in statistical modeling. Moreover, they allow a parametric selection of the level of speckle in the final beamformed image. These methods are applied on simulated data and on recorded experimental data. Their performance is evaluated considering the standard image quality metrics: contrast ratio (CR), contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR). A comparison is made with the classical delay-and-sum and minimum variance beamforming methods to confirm the ability of the proposed methods to precisely detect the number and the position of the strong reflectors in a sparse medium and to accurately reduce the speckle and highly enhance the contrast in a non-sparse medium. We confirm that our methods improve the contrast of the final image for both simulated and experimental data. In all experiments, the proposed approaches tend to preserve the speckle, which can be of major interest in clinical examinations, as it can contain useful information. In sparse mediums we achieve a highly improvement in contrast compared with the classical methods.

  6. Photoionization sensors for non-invasive medical diagnostics

    NASA Astrophysics Data System (ADS)

    Mustafaev, Aleksandr; Rastvorova, Iuliia; Khobnya, Kristina; Podenko, Sofia

    2016-09-01

    The analysis of biomarkers can help to identify the significant number of diseases: lung cancer, tuberculosis, diabetes, high levels of stress, psychosomatic disorders etc. To implement continuous monitoring of the state of human health, compact VUV photoionization detector with current-voltage measurement is designed by Saint-Petersburg Mining University Plasma Research Group. This sensor is based on the patented method of stabilization of electric parameters - CES (Collisional Electron Spectroscopy). During the operation at atmospheric pressure VUV photoionization sensor measures the energy of electrons, produced in the ionization with the resonance photons, whose wavelength situated in the vacuum ultraviolet (VUV). A special software was developed to obtain the second-order derivative of the I-U characteristics, taken by the VUV sensor, to construct the energy spectra of the characteristic electrons. VUV photoionization detector has an unique set of parameters: small size (10*10*1 mm), low cost, wide range of recognizable molecules, as well as accuracy, sufficient for using this instrument for the medical purposes. This device can be used for non-invasive medical diagnostics without compromising the quality of life, for control of environment and human life. Work supported by Foundation for Assistance to Small Innovative Enterprises in Science and Technology.

  7. Novel x-ray optics for medical diagnostic techniques

    NASA Astrophysics Data System (ADS)

    Kuyumchyan, A.; Arvanian, V.; Kuyumchyan, D.; Aristov, V.; Shulakov, E.

    2009-08-01

    A new hard X - ray hologram with using crystal Fresnel zone plates (ZP) has been described. An image of Fourier hologram for hard X- ray is presented. X-ray phase contrast methods for medical diagnostics techniques are presented. We have developed an X-ray microscope, based on micro focus source which is capable of high resolution phasecontrast imaging and holograms. We propose a new imaging technique with the x-ray energy 8 keV. The method is expected to have wide applications in imaging of low absorbing samples such as biological and medical tissue. We used FIB to reproduction three dimension structures of damaged spinal cord of rat before and after combined treatment with NT3 and NR2D. PUBLISHER'S NOTE 12/16/09: This SPIE Proceedings paper has been updated with an erratum correcting several issues throughout the paper. The corrected paper was published in place of the earlier version on 9/1/2009. If you purchased the original version of the paper and no longer have access, please contact SPIE Digital Library Customer Service at CustomerService@SPIEDigitalLibrary.org for assistance.

  8. In-vitro comparison of time-domain, frequency-domain and wavelet ultrasound parameters in diagnostics of cartilage degeneration.

    PubMed

    Kaleva, E; Saarakkala, S; Töyräs, J; Nieminen, H J; Jurvelin, J S

    2008-01-01

    Quantitative ultrasound imaging (QUI) is a promising preclinical method for detecting early osteoarthrotic (OA) changes in articular cartilage. The aim of this study was to compare time-domain, frequency-domain and wavelet transform (WT) QUI parameters in terms of their performance in revealing degenerative changes in cartilage in vitro. Mankin score and Cartilage Quality Index (CQI) were used as a reference for quantifying cartilage degeneration. Intact (n = 11, Mankin score = 0) and spontaneously degenerated (n = 21, Mankin score = 1-10, mean = 4) osteochondral samples (diameter 19 mm) from bovine patellae, prepared and scanned with an ultrasound instrument in our earlier study, were further analyzed. Ultrasound reflection coefficient (R), integrated reflection coefficient (IRC) and ultrasound roughness index (URI) for cartilage surfaces were obtained from our earlier study. In the present study, maximum magnitude (MM) and echo duration (ED) for the cartilage surface were determined from the WT analysis. All ultrasound (US) parameters were capable of distinguishing intact and degenerated cartilage groups (p < 0.01, Mann-Whitney U test). Significant correlations were established between all QUI parameters and CQI or Mankin score (p < 0.01, Spearman's correlation test). The receiver operating characteristic (ROC) analysis indicated that the simple time-domain parameters (R and URI) were diagnostically as sensitive and specific as the more complex frequency-domain (IRC) or WT (MM, ED) parameters. Although QUI shows significant potential for OA diagnostics, complex signal processing techniques may provide only limited additional benefits for diagnostic performance compared with simple time-domain methods. However, certain technical challenges must be met before any of these methods can be used clinically.

  9. Fetal evaluation for transport by ultrasound performed by air medical teams: A case series.

    PubMed

    Polk, James D; Merlino, James I; Kovach, Betty L; Mancuso, Charlene; Fallon, William F

    2004-01-01

    The air medical team has limited options when evaluating the obstetrical patient and assessing fetal health during air transport to a high-risk obstetrical unit. Traditionally, physical examination and a Doppler stethoscope have been used to determine fetal heart rates and movement. However, with the advent of portable ultrasound technology, new information about the mother and child are available to the air medical crew. The Fetal Evaluation for Transport with Ultrasound (FETUS) is a screening examination that consists of an evaluation of the fetal heart rate, position, and movement and general condition of the placenta. The examination can be repeated in flight with no acoustic distortion from rotor noise. The additional information can be advantageous when transport decisions need to be made or when conditions do not allow Doppler stethoscope use.

  10. Preoperative Ultrasound Guided Fine Needle Aspiration Cytology of Ovarian Lesions- Is It a Rapid and Effective Diagnostic Modality?

    PubMed Central

    Datta, Saikat; Chaudhuri, Snehamay; Paul, Prabir Chandra; Khandakar, Binny; Mandal, Sonali

    2016-01-01

    Introduction The deep seated ovarian lesions unapproachable by unguided aspiration cytology were easily done under ultrasound guidance. It gave a before hand cytological diagnosis of the lesion to the surgeon determining the modality of treatment for the patient. Aim To find the diagnostic accuracy of the method of ultrasound guided cytological assessment of ovarian lesion. Materials and Methods The study was conducted as a prospective observational study over a period of one year, in hospital setting, where ultrasound guided fine needle aspiration had been used to aspirate ovarian lesions, giving a rapid cytological diagnosis. In 43 sample cases, aspiration of fluid done from ovarian lesions were followed by cyto-centrifugation and staining by May-Grunwald-Giemsa (MGG) and Papanicolaou (Pap) stain providing a cytological opinion regarding benign/malignant nature of the lesion and further categorization. Later the cytological diagnosis was compared with final histopathological diagnosis, taking it as a gold standard. Results The overall sensitivity, specificity, and diagnostic accuracy of ultrasound guided aspiration and cytological analysis were high, 96%, 76.92% and 89.47% respectively as calculated by comparing the cytological diagnosis with histological diagnosis, taking it as gold standard. Conclusion This method has evolved as a highly sensitive, rapid, simple and effective modality for screening and as well as accurate preoperative diagnosis of ovarian lesions. PMID:27134878

  11. Design strategy and implementation of the medical diagnostic image support system at two large military medical centers

    NASA Astrophysics Data System (ADS)

    Smith, Donald V.; Smith, Stan M.; Sauls, F.; Cawthon, Michael A.; Telepak, Robert J.

    1992-07-01

    The Medical Diagnostic Imaging Support (MDIS) system contract for federal medical treatment facilities was awarded to Loral/Siemens in the Fall of 1991. This contract places ''filmless'' imaging in a variety of situations from small clients to large medical centers. The MDIS system approach is a ''turn-key'', performance based specification driven by clinical requirements.

  12. Development of polymer 'chips' used in medical diagnostics

    SciTech Connect

    Brush, Zachary G; Schultz, Laura M; Vanness, Justin W; Farinholt, Kevin M; Sarles, Stephen; Leo, Donald

    2010-11-03

    In recent years, there has been growing interest in creating bio-inspired devices that feature artificial bilayer lipid membranes (BLM), or lipid bilayers. These membranes can be tailored to mimic the structure and transport properties of cellular walls and can be used to selectively transport ions and other species between aqueous volumes. One application of this research is the formation of a standardized BLM contained within a portable and disposable housing for use in medical diagnostics. This concept utilizes a flexible polymer 'chip' that has internal compartments for housing both an organic solvent and an aqueous solution, which contains phospholipid molecules, proteins, and specific analyte molecules. The formation of a BLM within the chip enables integration of the chip into an electronic reader to perform diagnostic measurements of the sample. A key element of the bilayer formation process requires a single aqueous volume to first be separated into multiple volumes such that it can then be reattached to form a bilayer at the interface. This process, called the regulated attachment method, relies on the geometry of the deformable 'chip' to separate and reattach the aqueous contents held inside by opening and closing an aperture that divides adjacent compartments through the application of mechanical force. The purpose of this research is to develop an optimized chip that provides a controllable method for initially separating the aqueous phase via dynamic excitation. This study focuses on two specific aspects: designing an efficient excitation method for separating the aqueous volume, and optimizing the geometry of the chip to decrease the required input energy and better target the location and duration of the separation. Finite Element (FE) models are used to optimize the chip geometry and to identify suitable excitation signals. A series of experimental studies are also presented to validate the FE models.

  13. Development of polymer 'chips' used in medical diagnostics

    SciTech Connect

    Brush, Zachary G; Schultz, Laura M; Vanness, Justin W; Farinholt, Kevin M; Sarles, Stephen; Leo, Donald

    2011-01-26

    In recent years, there has been growing interest in creating bio-inspired devices that feature artificial bilayer lipid membranes (BLM), or lipid bilayers. These membranes can be tailored to mimic the structure and transport properties of cellular walls and can be used to selectively transport ions and other species between aqueous volumes. One application of this research is the formation of a standardized BLM contained within a portable and disposable housing for use in medical diagnostics. This concept utilizes a flexible polymer 'chip' that has internal compartments for housing both an organic solvent and an aqueous solution, which contains phospholipid molecules, proteins, and specific analyte molecules. The formation of a BLM within the chip enables integration of the chip into an electronic reader to perform diagnostic measurements of the sample. A key element of the bilayer formation process requires a single aqueous volume to first be separated into multiple volumes such that it can then be reattached to form a bilayer at the interface. This process, called the regulated attachment method, relies on the geometry of the deformable 'chip' to separate and reattach the aqueous contents held inside by opening and closing an aperture that divides adjacent compartments through the application of mechanical force. The purpose of this research is to develop an optimized chip that provides a controllable method for initially separating the aqueous phase via dynamic excitation. This study focuses on two specific aspects: designing an efficient excitation method for separating the aqueous volume, and optimizing the geometry of the chip to decrease the required input energy and better target the location and duration of the separation. Finite Element (FE) models are used to optimize the chip geometry and to identify suitable excitation signals. A series of experimental studies are also presented to validate the FE models.

  14. Diagnostic Value of Ultrasound in Detection of Biliary Tract Complications After Liver Transplantation

    PubMed Central

    Potthoff, Andrej; Hahn, Anreas; Kubicka, Stefan; Schneider, Andrea; Wedemeyer, Jochen; Klempnauer, Juergen; Manns, Michael; Gebel, Michael; Boozari, Bita

    2013-01-01

    Background Biliary complications are significant source of morbidity after liver transplantation (LT). Cholangiography is the gold standard for diagnosis and specification of biliary complications. Objectives Detailed analyses of ultrasound (US) as a safe imaging method in this regard are still lacking. Therefore we analyzed systematically the diagnostic value of US in these patients. Patients and Methods Retrospectively, 128 liver graft recipients and their clinical data were analyzed. All patients had a standardized US examination. The findings of US were compared to cholangiographic results in 42 patients. Following statistical analyses were performed: descriptive statistics, sensitivity, specificity, positive and negative predictive values (PPV, NPV). Results 42 patients had 54 different biliary complications (Anastomotic stenosis (AS) n = 33, ischemic type biliary lesions (ITBL) n = 18 and leakage n = 3). US detected n = 22/42 (52%) patients with biliary complications. The sensitivity, specificity, PPV and NPV of US were: 61%, 100%, 100%, 79% (95CI, 36-86%) for ITBL and 24%, 100, 100%, 31% (95CI, 9-46 %) for AS, respectively. Conclusions US examination had no false positive rate. Therefore, it may be helpful as a first screening modality. But for the direct diagnosis of the biliary complication US is not sensitive enough. PMID:23483295

  15. Analysis of flash echo from contrast agent for designing optimal ultrasound diagnostic systems.

    PubMed

    Kamiyama, N; Moriyasu, F; Mine, Y; Goto, Y

    1999-03-01

    Microbubble-based contrast agents can enhance echoes in areas of low blood flow, but the bubbles are extremely sensitive and collapse easily when exposed to ultrasound (US) irradiation. An experimental study of bubble collapse was carried out to design new functions for US diagnostic systems to detect echoes from microbubbles more efficiently. For contrast agent (Levovist) solution, a high-intensity, but momentary, echo (flash echo), was observed in the first frame image after a several-second suspension of transmission, but was not seen in the second frame image. These "flash echo" signals were analyzed and categorized based on microscopic observation, and the results showed that the longevity of the microbubbles was reduced by conditions such as B-mode imaging. Next, a numerical simulation of the bubbles in liquid was performed under the same conditions as in the in vitro experiment. The results showed that even bubbles less than 1 microm in diameter expand and collapse within one pulse drive, which would generate flash echoes. The flash echo imaging system described here permits flexible intermittent scanning with variable intervals, with a variable number of frames at the trigger, and with simultaneous monitoring at low power output. Animal experiments were also conducted to evaluate the system. As the interval between frames was increased, the flash echoes gradually increased, and perfusion in the parenchyma was clearly observed with an interval of 4 s.

  16. A comparison of medical record with billing diagnostic information associated with ambulatory medical care.

    PubMed Central

    Studney, D R; Hakstian, A R

    1981-01-01

    The degree of similarity between diagnostic information furnished with claims and that simultaneously entered into the medical record was estimated for 1,215 private office visits in British Columbia, Canada. For each visit, claim card and chart diagnoses were compared by having three independent internists (blinded to source and type of the data) make judgments about each diagnostic pair. The judges were highly consistent internally and their judgments were stable over time. In 40 per cent of cases chart and claims data were judged dissimilar, and in 38 per cent of cases claims data were judged more valuable as a reflection of the primary problem treated. The degree of judged similarity of chart and claims data correlated significantly and negatively with physician workload, income, and judges' preference for the billing card diagnosis. We conclude that in using claims data to determine the content of ambulatory visits, independent validation of such data may be important. PMID:7457683

  17. Targeted diagnostic magnetic nanoparticles for medical imaging of pancreatic cancer.

    PubMed

    Rosenberger, I; Strauss, A; Dobiasch, S; Weis, C; Szanyi, S; Gil-Iceta, L; Alonso, E; González Esparza, M; Gómez-Vallejo, V; Szczupak, B; Plaza-García, S; Mirzaei, S; Israel, L L; Bianchessi, S; Scanziani, E; Lellouche, J-P; Knoll, P; Werner, J; Felix, K; Grenacher, L; Reese, T; Kreuter, J; Jiménez-González, M

    2015-09-28

    Highly aggressive cancer types such as pancreatic cancer possess a mortality rate of up to 80% within the first 6months after diagnosis. To reduce this high mortality rate, more sensitive diagnostic tools allowing an early stage medical imaging of even very small tumours are needed. For this purpose, magnetic, biodegradable nanoparticles prepared using recombinant human serum albumin (rHSA) and incorporated iron oxide (maghemite, γ-Fe2O3) nanoparticles were developed. Galectin-1 has been chosen as target receptor as this protein is upregulated in pancreatic cancer and its precursor lesions but not in healthy pancreatic tissue nor in pancreatitis. Tissue plasminogen activator derived peptides (t-PA-ligands), that have a high affinity to galectin-1 have been chosen as target moieties and were covalently attached onto the nanoparticle surface. Improved targeting and imaging properties were shown in mice using single photon emission computed tomography-computer tomography (SPECT-CT), a handheld gamma camera, and magnetic resonance imaging (MRI).

  18. Towards the unification of inference structures in medical diagnostic tasks.

    PubMed

    Mira, J; Rives, J; Delgado, A E; Martínez, R

    1998-01-01

    The central purpose of artificial intelligence applied to medicine is to develop models for diagnosis and therapy planning at the knowledge level, in the Newell sense, and software environments to facilitate the reduction of these models to the symbol level. The usual methodology (KADS, Common-KADS, GAMES, HELIOS, Protégé, etc) has been to develop libraries of generic tasks and reusable problem-solving methods with explicit ontologies. The principal problem which clinicians have with these methodological developments concerns the diversity and complexity of new terms whose meaning is not sufficiently clear, precise, unambiguous and consensual for them to be accessible in the daily clinical environment. As a contribution to the solution of this problem, we develop in this article the conjecture that one inference structure is enough to describe the set of analysis tasks associated with medical diagnoses. To this end, we first propose a modification of the systematic diagnostic inference scheme to obtain an analysis generic task and then compare it with the monitoring and the heuristic classification task inference schemes using as comparison criteria the compatibility of domain roles (data structures), the similarity in the inferences, and the commonality in the set of assumptions which underlie the functionally equivalent models. The equivalences proposed are illustrated with several examples. Note that though our ongoing work aims to simplify the methodology and to increase the precision of the terms used, the proposal presented here should be viewed more in the nature of a conjecture.

  19. Medical diagnostics with mobile devices: Comparison of intrinsic and extrinsic sensing.

    PubMed

    Kwon, L; Long, K D; Wan, Y; Yu, H; Cunningham, B T

    2016-01-01

    We review the recent development of mobile detection instruments used for medical diagnostics, and consider the relative advantages of approaches that utilize the internal sensing capabilities of commercially available mobile communication devices (such as smartphones and tablet computers) compared to those that utilize a custom external sensor module. In this review, we focus specifically upon mobile medical diagnostic platforms that are being developed to serve the need in global health, personalized medicine, and point-of-care diagnostics.

  20. A Tactile Sensor for Ultrasound Imaging Systems.

    PubMed

    Peng, Yiyan; Shkel, Yuri M; Hall, Timothy J

    2016-02-15

    Medical ultrasound systems are capable of monitoring a variety of health conditions while avoiding invasive procedures. However this function is complicated by ultrasound contrast of the tissue varying with contact pressure exerted by the probe. The knowledge of the contact pressure is beneficial for a variety of screening and diagnostic procedures involving ultrasound. This paper introduces a solid-state sensor array which measures the contact pressure distribution between the probe and the tissue marginally affecting the ultrasound imaging capabilities. The probe design utilizes the dielectrostriction mechanism which relates the change in dielectric properties of the sensing layer to deformation. The concept, structure, fabrication, and performance of this sensor array are discussed. The prototype device is highly tolerant to overloads (>1 MPa tested) and provides stress measurements in the range of 0.14 to 10 kPa. Its loss of ultrasound transmissivity is less 3dB at 9 MHz ultrasound frequency. This performance is satisfactory for clinical and biomedical research in ultrasound image formation and interpretation, however for commercial product, a higher ultrasound transmissivity is desired. Directions for improving the sensor ultrasound transparency and electrical performance are discussed. The sensor array described in this paper has been developed specifically for ultrasound diagnosis during breast cancer screening. However, the same sensing mechanism, similar configuration and sensor array structure can be applied to other applications involving ultrasound tools for medical diagnostics.

  1. A Tactile Sensor for Ultrasound Imaging Systems

    PubMed Central

    Peng, Yiyan; Shkel, Yuri M.; Hall, Timothy J.

    2015-01-01

    Medical ultrasound systems are capable of monitoring a variety of health conditions while avoiding invasive procedures. However this function is complicated by ultrasound contrast of the tissue varying with contact pressure exerted by the probe. The knowledge of the contact pressure is beneficial for a variety of screening and diagnostic procedures involving ultrasound. This paper introduces a solid-state sensor array which measures the contact pressure distribution between the probe and the tissue marginally affecting the ultrasound imaging capabilities. The probe design utilizes the dielectrostriction mechanism which relates the change in dielectric properties of the sensing layer to deformation. The concept, structure, fabrication, and performance of this sensor array are discussed. The prototype device is highly tolerant to overloads (>1 MPa tested) and provides stress measurements in the range of 0.14 to 10 kPa. Its loss of ultrasound transmissivity is less 3dB at 9 MHz ultrasound frequency. This performance is satisfactory for clinical and biomedical research in ultrasound image formation and interpretation, however for commercial product, a higher ultrasound transmissivity is desired. Directions for improving the sensor ultrasound transparency and electrical performance are discussed. The sensor array described in this paper has been developed specifically for ultrasound diagnosis during breast cancer screening. However, the same sensing mechanism, similar configuration and sensor array structure can be applied to other applications involving ultrasound tools for medical diagnostics. PMID:26880870

  2. Time efficiency and diagnostic agreement of 2-D versus 3-D ultrasound acquisition of the neonatal brain.

    PubMed

    Romero, Javier M; Madan, Neil; Betancur, Ilda; Ciobanu, Adrian; Murphy, Erin; McCullough, Danielle; Grant, P Ellen

    2014-08-01

    The purpose of this study was to compare acquisition time efficiency and diagnostic agreement of neonatal brain ultrasound (US) scans obtained with a 3-D volume US acquisition protocol and the conventional 2-D acquisition protocol. Ninety-one consecutive premature neonatal brain ultrasound scans were prospectively performed on 59 neonates with the conventional 2-D acquisition protocol. Immediately after the 2-D study, a coronal 3-D ultrasound volume was acquired and later reconstructed into axial and sagittal planes. All 59 neonates were imaged in the neonatal intensive care unit to rule out intracranial hemorrhage. Total time for 2-D and 3-D acquisition protocols was recorded, and a two-tailed t-test was used to determine if study durations differed significantly. One pediatric neuroradiologist reviewed the reformatted 3-D images, tomographic ultrasound images. Results were compared with the clinical interpretation of the 2-D conventional study. The mean scanning time for the 2-D US acquisition protocol was 10.56 min (standard deviation [SD] = 7.11), and that for the 3-D volume US acquisition protocol was 1.48 min (SD = 0.59) (p ≤ 0.001). Inter-observer agreement revealed k values of 0.84 for hydrocephalus, 0.80 for germinal matrix hemorrhage/intraventricular hemorrhage, 0.74 for periventricular leukomalacia and 0.91 for subdural collection, hence near-perfect to substantial agreement between imaging protocols. There was a significant decrease in acquisition time for the 3-D volume ultrasound acquisition protocol compared with the conventional 2-D US protocol (p = <0.001), without compromising the diagnostic quality compared with a conventional 2-D US imaging protocol.

  3. Multi-line transmission combined with minimum variance beamforming in medical ultrasound imaging.

    PubMed

    Rabinovich, Adi; Feuer, Arie; Friedman, Zvi

    2015-05-01

    Increasing medical ultrasound imaging frame rate is important in several applications such as cardiac diagnostic imaging, where it is desirable to be able to examine the temporal behavior of fast phases in the cardiac cycle. This is particularly true in 3-D imaging, where current frame rate is still much slower than standard 2-D, B-mode imaging. Recently, a method that increases frame rate, labeled multi-line transmission (MLT), was reintroduced and analyzed. In MLT scanning, the transmission is simultaneously focused at several directions. This scan mode introduces artifacts that stem from the overlaps of the receive main lobe with the transmit side lobes of additional transmit directions besides the one of interest. Similar overlaps occur between the transmit main lobe with receive side lobes. These artifacts are known in the signal processing community as cross-talk. Previous studies have concentrated on proper transmit and receive apodization, as well as transmit directions arrangement in the transmit event, to reduce the cross-talk artifacts. This study examines the possibility of using adaptive beamforming, specifically, minimum variance (MV) and linearly constrained minimum variance (LCMV) beamforming, to reduce the cross-talk artifacts, and maintain or even improve image quality characteristics. Simulation results, as well as experimental phantom and in vivo cardiac data, demonstrate the feasibility of reducing cross-talk artifacts with MV beamforming. The MV and LCMV results achieve superior spatial resolution, not only over other MLT methods with data-independent apodization, but even over that of single-line transmission (SLT) without receive apodization. The MV beamformer is shown to be less sensitive to wider transmit profiles required to reduce the transmit crosstalk artifacts. MV beamforming, combined with the wider transmit profiles, can provide a good approach for MLT scanning with reduced cross-talk artifacts, without compromising spatial

  4. Gaussian wavelet based dynamic filtering (GWDF) method for medical ultrasound systems.

    PubMed

    Wang, Peidong; Shen, Yi; Wang, Qiang

    2007-05-01

    In this paper, a novel dynamic filtering method using Gaussian wavelet filters is proposed to remove noise from ultrasound echo signal. In the proposed method, a mother wavelet is first selected with its central frequency (CF) and frequency bandwidth (FB) equal to those of the transmitted signal. The actual frequency of the received signal at a given depth is estimated through the autocorrelation technique. Then the mother wavelet is dilated using the ratio between the transmitted central frequency and the actual frequency as the scale factor. The generated daughter wavelet is finally used as the dynamic filter at this depth. Frequency-demodulated Gaussian wavelet is chosen in this paper because its power spectrum is well-matched with that of the transmitted ultrasound signal. The proposed method is evaluated by simulations using Field II program. Experiments are also conducted out on a standard ultrasound phantom using a 192-element transducer with the center frequency of 5 MHz. The phantom contains five point targets, five circular high scattering regions with diameters of 2, 3, 4, 5, 6 mm respectively, and five cysts with diameters of 6, 5, 4, 3, 2 mm respectively. Both simulation and experimental results show that optimal signal-to-noise ratio (SNR) can be obtained and useful information can be extracted along the depth direction irrespective of the diagnostic objects.

  5. Spatial Prediction Filtering of Acoustic Clutter and Random Noise in Medical Ultrasound Imaging.

    PubMed

    Shin, Junseob; Huang, Lianjie

    2017-02-01

    One of the major challenges in array-based medical ultrasound imaging is the image quality degradation caused by sidelobes and off-axis clutter, which is an inherent limitation of the conventional delay-and-sum (DAS) beamforming operating on a finite aperture. Ultrasound image quality is further degraded in imaging applications involving strong tissue attenuation and/or low transmit power. In order to effectively suppress acoustic clutter from off-axis targets and random noise in a robust manner, we introduce in this paper a new adaptive filtering technique called frequency-space (F-X) prediction filtering or FXPF, which was first developed in seismic imaging for random noise attenuation. Seismologists developed FXPF based on the fact that linear and quasilinear events or wavefronts in the time-space (T-X) domain are manifested as a superposition of harmonics in the frequency-space (F-X) domain, which can be predicted using an auto-regressive (AR) model. We describe the FXPF technique as a spectral estimation or a direction-of-arrival problem, and explain why adaptation of this technique into medical ultrasound imaging is beneficial. We apply our new technique to simulated and tissue-mimicking phantom data. Our results demonstrate that FXPF achieves CNR improvements of 26% in simulated noise-free anechoic cyst, 109% in simulated anechoic cyst contaminated with random noise of 15 dB SNR, and 93% for experimental anechoic cyst from a custom-made tissue-mimicking phantom. Our findings suggest that FXPF is an effective technique to enhance ultrasound image contrast and has potential to improve the visualization of clinically important anatomical structures and diagnosis of diseased conditions.

  6. The role of ultrasound-guided triamcinolone injection in the treatment of de Quervain's disease: treatment and a diagnostic tool?

    PubMed

    Hajder, E; de Jonge, M C; van der Horst, C M A M; Obdeijn, M C

    2013-12-01

    The purpose of this study was to describe the technique and usefulness of ultrasound-guided intrasheath injection of triamcinolone in the treatment of de Quervain's disease (dQD). Our study was retrospective in design. Seventy-one wrists of 62 patients who were treated with an ultrasound-guided triamcinolone injection for dQD were included. A literature search was performed to compare our results. In the literature we found supportive evidence that accurate injection of triamcinolone in the first dorsal compartment of the wrist is important for a good outcome. In this retrospective study we found that treatment with ultrasound-guided injections of triamcinolone is both safe and effective. After two injections, 91% of the patients had good long-term results, which is a higher cure rate than found in most other studies. Furthermore, we found that Finkelstein's test can give a false positive result. Therefore, ultrasound should not only be considered to improve the treatment outcome, but can also be useful as a diagnostic tool in the management of de Quervain's disease.

  7. Non-invasive assessment of negative pressure wound therapy using high frequency diagnostic ultrasound: oedema reduction and new tissue accumulation.

    PubMed

    Young, Stephen R; Hampton, Sylvie; Martin, Robin

    2013-08-01

    Tissue oedema plays an important role in the pathology of chronic and traumatic wounds. Negative pressure wound therapy (NPWT) is thought to contribute to active oedema reduction, yet few studies have showed this effect. In this study, high frequency diagnostic ultrasound at 20 MHz with an axial resolution of 60 µm was used to assess the effect of NPWT at - 80 mmHg on pressure ulcers and the surrounding tissue. Wounds were monitored in four patients over a 3-month period during which changes in oedema and wound bed thickness (granulation tissue) were measured non-invasively. The results showed a rapid reduction of periwound tissue oedema in all patients with levels falling by a mean of 43% after 4 days of therapy. A 20% increase in the thickness of the wound bed was observed after 7 days due to new granulation tissue formation. Ultrasound scans through the in situ gauze NPWT filler also revealed the existence of macrodeformation in the tissue produced by the negative pressure. These preliminary studies suggest that non-invasive assessment using high frequency diagnostic ultrasound could be a valuable tool in clinical studies of NPWT.

  8. Contrast-enhanced ultrasound in ovarian tumors – diagnostic parameters: method presentation and initial experience

    PubMed Central

    MAXIM, ANITA-ROXANA; BADEA, RADU; TAMAS, ATILLA; TRAILA, ALEXANDRU

    2013-01-01

    The aim of this paper is to discuss and illustrate the use of contrast-enhanced ultrasound in evaluating ovarian tumors compared to conventional ultrasound, Doppler ultrasound and the histopathological analysis and suggest how this technique may best be used to distinguish benign from malignant ovarian masses. We present the method and initial experience of our center by analyzing the parameters used in contrast-enhanced ultrasound in 6 patients with ovarian tumors of uncertain etiology. For examination we used a Siemens ultrasound machine with dedicated contrast software and the contrast agent SonoVue, Bracco. The patients underwent conventional ultrasound, Doppler ultrasound and i.v. administration of the contrast agent. The parameters studied were: inflow of contrast (rise time), time to peak enhancement, mean transit time. The series of patients is part of an extensive prospective PhD study aimed at elaborating a differential diagnosis protocol for benign versus malignant ovarian tumors, by validating specific parameters for contrast-enhanced ultrasound. Although the method is currently used with great success in gastroenterology, urology and senology, its validation in gynecology is still in the early phases. Taking into consideration that the method is minimally invasive and much less costly that CT/MRI imaging, demonstrating its utility in oncologic gynecology would be a big step in preoperative evaluation of these cases. PMID:26527912

  9. Thyroid ultrasound

    PubMed Central

    Chaudhary, Vikas; Bano, Shahina

    2013-01-01

    Thyroid ultrasonography has established itself as a popular and useful tool in the evaluation and management of thyroid disorders. Advanced ultrasound techniques in thyroid imaging have not only fascinated the radiologists but also attracted the surgeons and endocrinologists who are using these techniques in their daily clinical and operative practice. This review provides an overview of indications for ultrasound in various thyroid diseases, describes characteristic ultrasound findings in these diseases, and illustrates major diagnostic pitfalls of thyroid ultrasound. PMID:23776892

  10. Mapping the different methods adopted for diagnostic imaging instruction at medical schools in Brazil

    PubMed Central

    Chojniak, Rubens; Carneiro, Dominique Piacenti; Moterani, Gustavo Simonetto Peres; Duarte, Ivone da Silva; Bitencourt, Almir Galvão Vieira; Muglia, Valdair Francisco; D'Ippolito, Giuseppe

    2017-01-01

    Objective To map the different methods for diagnostic imaging instruction at medical schools in Brazil. Materials and Methods In this cross-sectional study, a questionnaire was sent to each of the coordinators of 178 Brazilian medical schools. The following characteristics were assessed: teaching model; total course hours; infrastructure; numbers of students and professionals involved; themes addressed; diagnostic imaging modalities covered; and education policies related to diagnostic imaging. Results Of the 178 questionnaires sent, 45 (25.3%) were completed and returned. Of those 45 responses, 17 (37.8%) were from public medical schools, whereas 28 (62.2%) were from private medical schools. Among the 45 medical schools evaluated, the method of diagnostic imaging instruction was modular at 21 (46.7%), classic (independent discipline) at 13 (28.9%), hybrid (classical and modular) at 9 (20.0%), and none of the preceding at 3 (6.7%). Diagnostic imaging is part of the formal curriculum at 36 (80.0%) of the schools, an elective course at 3 (6.7%), and included within another modality at 6 (13.3%). Professors involved in diagnostic imaging teaching are radiologists at 43 (95.5%) of the institutions. Conclusion The survey showed that medical courses in Brazil tend to offer diagnostic imaging instruction in courses that include other content and at different time points during the course. Radiologists are extensively involved in undergraduate medical education, regardless of the teaching methodology employed at the institution. PMID:28298730

  11. Conformal drug delivery and instantaneous monitoring based on an inverse synthesis method at a diagnostic ultrasound platform

    NASA Astrophysics Data System (ADS)

    Xu, Shanshan; Zong, Yujin; Liu, Xiaodong; Lu, Mingzhu; Wan, Mingxi

    2017-03-01

    In this paper, based on a programmable diagnostic ultrasound scanner, a combined approach was proposed, in which a variable-sized focal region wherein the acoustic pressure is above the ultrasound contrast agents (UCA) fragmentation threshold is synthesized by reasonably matching the excitation voltage and the transmit aperture of the linear array at 5MHz, the UCAs' temporal and spatial distribution before and after the microbubbles fragmentation is monitored using the plane-wave transmission and reception at 400Hz and, simultaneously, the broadband noise emission during the microbubbles fragmentation is extracted using the backscattering of focused release bursts (destruction pulse) themselves on the linear array. Then, acquired radio frequency (RF) data are processed to draw parameters which can be correlated with the indicator of broadband noise emission level, namely inertial cavitation dose (ICD) and microbubble fragmentation efficiency, namely decay rate of microbubbles.

  12. Molecular diagnostics: the changing culture of medical microbiology.

    PubMed

    Bullman, Susan; Lucey, Brigid; Sleator, Roy D

    2012-01-01

    Diagnostic molecular biology is arguably the fastest growing area in current laboratory-based medicine. Growth of the so called 'omics' technologies has, over the last decade, led to a gradual migration away from the 'one test, one pathogen' paradigm, toward multiplex approaches to infectious disease diagnosis, which have led to significant improvements in clinical diagnostics and ultimately improved patient care.

  13. Introducing First-Year Medical Students to Early Diagnostic Hypotheses

    ERIC Educational Resources Information Center

    Taylor, P. J.; And Others

    1978-01-01

    A method of instruction in gynecology is described that encouraged the formulation of early diagnostic hypotheses, an important part of clinical problem-solving. Students were given a set of clinical clues to help them make broad diagnostic hypotheses. Student ability, results, and student perceptions of the course are provided. (Author/LBH)

  14. A 10.5 cm ultrasound link for deep implanted medical devices.

    PubMed

    Mazzilli, Francesco; Lafon, Cyril; Dehollain, Catherine

    2014-10-01

    A study on ultrasound link for wireless energy transmission dedicated to deeply implanted medical devices is presented. The selection of the frequency to avoid biological side effects (e.g., cavitations), the choice of the power amplifier to drive the external transducers and the design of the rectifier to maximize the energy extraction from the implanted transducer are described in details. The link efficiency is characterized in water using a phantom material for a transmitter-receiver distance of 105 mm, transducers active area of 30 mm × 96 mm and 5 mm × 10 mm, respectively, and a system efficiency of 1.6% is measured.

  15. Exploring the Case for a Global Alliance for Medical Diagnostics Initiative.

    PubMed

    Mugambi, Melissa L; Palamountain, Kara M; Gallarda, Jim; Drain, Paul K

    2017-01-26

    In recent years, the private and public sectors have increased investments in medical diagnostics for low- and middle-income countries (LMICs). Despite these investments, numerous barriers prevent the adoption of existing diagnostics and discourage the development and introduction of new diagnostics in LMICs. In the late 1990s, the global vaccine community had similar challenges, as vaccine coverage rates stagnated and the introduction of new vaccines was viewed as a distraction to delivering existing vaccines. To address these challenges, the international community came together and formed the Global Alliance for Vaccines Initiative (GAVI). Sixteen years after the formation of GAVI, we see evidence of a healthier global vaccine landscape. We discuss how GAVI's four guiding principles (product, health systems strengthening, financing and market shaping) might apply to the advancement of medical diagnostics in LMICs. We present arguments for the international community and existing organizations to establish a Global Alliance for Medical Diagnostics Initiative (GAMDI).

  16. Exploring the Case for a Global Alliance for Medical Diagnostics Initiative

    PubMed Central

    Mugambi, Melissa L.; Palamountain, Kara M.; Gallarda, Jim; Drain, Paul K.

    2017-01-01

    In recent years, the private and public sectors have increased investments in medical diagnostics for low- and middle-income countries (LMICs). Despite these investments, numerous barriers prevent the adoption of existing diagnostics and discourage the development and introduction of new diagnostics in LMICs. In the late 1990s, the global vaccine community had similar challenges, as vaccine coverage rates stagnated and the introduction of new vaccines was viewed as a distraction to delivering existing vaccines. To address these challenges, the international community came together and formed the Global Alliance for Vaccines Initiative (GAVI). Sixteen years after the formation of GAVI, we see evidence of a healthier global vaccine landscape. We discuss how GAVI’s four guiding principles (product, health systems strengthening, financing and market shaping) might apply to the advancement of medical diagnostics in LMICs. We present arguments for the international community and existing organizations to establish a Global Alliance for Medical Diagnostics Initiative (GAMDI). PMID:28134750

  17. [Value of ultrasound in diagnostic and follow-up of chronic inflammatory bowel diseases].

    PubMed

    Kinkel, Horst; Michels, Guido; Jaspers, Natalie

    2015-01-01

    Transabdominal ultrasound as an easy to use, accurate, cost-effective and pleasant method has emerged as one of the most important imaging techniques in daily routine. Ultrasound is efficient for the diagnosis and differentiation of chronic inflammatory bowel diseases (IBD). For monitoring disease activity and severity as well as identifying complications (stenosis, abscess and fistula) high-resolution ultrasonography with Doppler techniques and contrast-enhanced ultrasonography (CEUS) is well suited. Perineal ultrasound and extravascular CEUS can give important information for clinical management of patients with IBD. The aim of this article is to give an updated overview about the clinical applications of ultrasound in the diagnosis and followup of patients with IBD.

  18. [Role of ultrasound diagnostics in evaluating of adaptational changes in heart in miners].

    PubMed

    Ibraev, S A; Koĭgel'dinova, Sh S

    2003-01-01

    Ultrasound examination of cardiovascular system covered apparently healthy coal miners with consideration of service under exposure to coal rock dust. Findings are increased blood velocity, higher pressure gradient and average pulmonary artery pressure, thicker front wall of right ventricle.

  19. The nonlinear dynamics of microbubble contrast agents used in medical ultrasound

    NASA Astrophysics Data System (ADS)

    Reddy, Anil J.

    Microbubbles are used as contrast agents in diagnostic ultrasound, and as transport agents or to engender physical effects in therapeutic ultrasound. The distinguishing characteristic of bubbles is their small size, on the order of microns, which allows them to traverse the smallest capillaries in the human body. Furthermore, when subject to acoustic forcing (ultrasound), the oscillations of bubbles become highly nonlinear, leading to a unique echo characteristic. Bubble echo improves the clinician's ability to distinguish between blood carrying contrast agent from the surrounding tissue. Present ultrasound techniques, however, do not take full advantage of the nonlinear properties of oscillating microbubbles. In this work, a novel method to maximize the bubble echo, thereby improving image quality, is suggested. Pulse-inversion imaging is utilized as a means of filtering out the linear echo of surrounding tissue. A norm is defined for the nonlinear bubble echo and it is shown how the norm may be maximized, given a limit on ultrasound intensity, by optimizing the acoustic pulse shape using optimal control theory. The optimization is performed for a single bubble of a particular size. The optimal pulse yields a several-fold increase in the echo norm over conventional pulse driving. It is also shown that the optimal pulse effectively maximizes the echo of a bubble cloud with mean size equal to that of the single bubble. Increased bubble response comes as a result of severe radial collapse, which in turn drives the translation dynamics of the bubble. These motions have been observed by others in experiment, but have, up this point, been inadequately explained. The erratic translation of a bubble is found to be intimately coupled to the radial dynamics, especially in the case of violent oscillations. The assumption of spherical symmetry is relaxed and it is considered how bubble translation can be a mechanism for shape instability, thereby leading to bubble destruction

  20. Pilot Point-of-Care Ultrasound Curriculum at Harvard Medical School: Early Experience

    PubMed Central

    Rempell, Joshua S.; Saldana, Fidencio; DiSalvo, Donald; Kumar, Navin; Stone, Michael B.; Chan, Wilma; Luz, Jennifer; Noble, Vicki E.; Liteplo, Andrew; Kimberly, Heidi; Kohler, Minna J.

    2016-01-01

    Introduction Point-of-care ultrasound (POCUS) is expanding across all medical specialties. As the benefits of US technology are becoming apparent, efforts to integrate US into pre-clinical medical education are growing. Our objective was to describe our process of integrating POCUS as an educational tool into the medical school curriculum and how such efforts are perceived by students. Methods This was a pilot study to introduce ultrasonography into the Harvard Medical School curriculum to first- and second-year medical students. Didactic and hands-on sessions were introduced to first-year students during gross anatomy and to second-year students in the physical exam course. Student-perceived attitudes, understanding, and knowledge of US, and its applications to learning the physical exam, were measured by a post-assessment survey. Results All first-year anatomy students (n=176) participated in small group hands-on US sessions. In the second-year physical diagnosis course, 38 students participated in four sessions. All students (91%) agreed or strongly agreed that additional US teaching should be incorporated throughout the four-year medical school curriculum. Conclusion POCUS can effectively be integrated into the existing medical school curriculum by using didactic and small group hands-on sessions. Medical students perceived US training as valuable in understanding human anatomy and in learning physical exam skills. This innovative program demonstrates US as an additional learning modality. Future goals include expanding on this work to incorporate US education into all four years of medical school. PMID:27833681

  1. [Evaluation of medical diagnostic tests: application of Bayes theorem, ROC-curve and Kappa-test] .

    PubMed

    Lugosi, L; Molnár, I

    2000-07-30

    With the technical improvement of the sensitivity and specificity of the medical diagnostic tests the principles and methods of statistical analysis of the tests are in developing too. The technical development of the diagnostic tests and the exact statistical evaluation of the data will improve the reliability and effectiveness of the decisions for medical interventions. Application, statistical evaluation and interpretation of the Bayes theorem, ROC curve and Kappa test are presented.

  2. Doppler diagnostics of laser-ablated biotissues: fundamentals, equipment, and medical testing

    NASA Astrophysics Data System (ADS)

    Ul'yanov, V. A.; Panchenko, V. Ya.; Geinitz, A. V.; Reshetov, I. V.; Varev, G. A.

    2006-09-01

    New method of Doppler diagnostics based on autodyne effect for diagnostics and control of laser-tissue evaporation by radiation of high-frequency pumped waveguide CO II laser is developed. This method is used for creation of feed-back for smart CO II laser surgical system of "Lancet" series. The results of medical testing of the smart laser surgical system are presented.

  3. The delay multiply and sum beamforming algorithm in ultrasound B-mode medical imaging.

    PubMed

    Matrone, Giulia; Savoia, Alessandro Stuart; Caliano, Giosue; Magenes, Giovanni

    2015-04-01

    Most of ultrasound medical imaging systems currently on the market implement standard Delay and Sum (DAS) beamforming to form B-mode images. However, image resolution and contrast achievable with DAS are limited by the aperture size and by the operating frequency. For this reason, different beamformers have been presented in the literature that are mainly based on adaptive algorithms, which allow achieving higher performance at the cost of an increased computational complexity. In this paper, we propose the use of an alternative nonlinear beamforming algorithm for medical ultrasound imaging, which is called Delay Multiply and Sum (DMAS) and that was originally conceived for a RADAR microwave system for breast cancer detection. We modify the DMAS beamformer and test its performance on both simulated and experimentally collected linear-scan data, by comparing the Point Spread Functions, beampatterns, synthetic phantom and in vivo carotid artery images obtained with standard DAS and with the proposed algorithm. Results show that the DMAS beamformer outperforms DAS in both simulated and experimental trials and that the main improvement brought about by this new method is a significantly higher contrast resolution (i.e., narrower main lobe and lower side lobes), which turns out into an increased dynamic range and better quality of B-mode images.

  4. The Maastricht Ultrasound Shoulder pain trial (MUST): Ultrasound imaging as a diagnostic triage tool to improve management of patients with non-chronic shoulder pain in primary care

    PubMed Central

    2011-01-01

    Background Subacromial disorders are considered to be one of the most common pathologies affecting the shoulder. Optimal therapy for shoulder pain (SP) in primary care is yet unknown, since clinical history and physical examination do not provide decisive evidence as to the patho-anatomical origin of the symptoms. Optimal decision strategies can be furthered by applying ultrasound imaging (US), an accurate method in diagnosing SP, demonstrating a clear relationship between diagnosis and available therapies. Yet, the clinical cost-effectiveness of applying US in the management of SP in primary care has not been studied. The aim of this paper is to describe the design and methods of a trial assessing the cost-effectiveness of ultrasound imaging as a diagnostic triage tool to improve management of primary care patients with non-chronic shoulder pain. Methods/Design This randomised controlled trial (RCT) will involve 226 adult patients with suspected subacromial disorders recruited by general practitioners. During a Qualification period of two weeks, patients receive care as usual as advised by the Dutch College of General Practitioners, and patients are referred for US. Patients with insufficient improvement qualify for the RCT. These patients are then randomly assigned to the intervention or the control group. The therapies used in both groups are the same (corticosteroid injections, referral to a physiotherapist or orthopedic surgeon) except that therapies used in the intervention group will be tailored based on the US results. Ultrasound diagnosed disorders include tendinopathy, calcific tendinitis, partial and full thickness tears, and subacromial bursitis. The primary outcome is patient-perceived recovery at 52 weeks, using the Global Perceived Effect questionnaire. Secondary outcomes are disease specific and generic quality of life, cost-effectiveness, and the adherence to the initial applied treatment. Outcome measures will be assessed at baseline, 13, 26, 39

  5. A sequential decision-theoretic model for medical diagnostic system.

    PubMed

    Li, Aiping; Jin, Songchang; Zhang, Lumin; Jia, Yan

    2015-01-01

    Although diagnostic expert systems using a knowledge base which models decision-making of traditional experts can provide important information to non-experts, they tend to duplicate the errors made by experts. Decision-Theoretic Model (DTM) is therefore very useful in expert system since they prevent experts from incorrect reasoning under uncertainty. For the diagnostic expert system, corresponding DTM and arithmetic are studied and a sequential diagnostic decision-theoretic model based on Bayesian Network is given. In the model, the alternative features are categorized into two classes (including diseases features and test features), then an arithmetic for prior of test is provided. The different features affect other features weights are also discussed. Bayesian Network is adopted to solve uncertainty presentation and propagation. The model can help knowledge engineers model the knowledge involved in sequential diagnosis and decide evidence alternative priority. A practical example of the models is also presented: at any time of the diagnostic process the expert is provided with a dynamically updated list of suggested tests in order to support him in the decision-making problem about which test to execute next. The results show it is better than the traditional diagnostic model which is based on experience.

  6. Molecular diagnostics in medical microbiology: yesterday, today and tomorrow.

    PubMed

    van Belkum, Alex

    2003-10-01

    Clinical microbiology is clearly on the move, and various new diagnostic technologies have been introduced into laboratory practice over the past few decades. However, Henri D Isenberg recently stated that molecular biology techniques promised to revolutionise the diagnosis of infectious disease, but that, to date, this promise is still in its infancy. Molecular diagnostics have now surpassed these early stages and have definitely reached puberty. Currently, a second generation of automated molecular approaches is already within the microbiologists' reach. Quantitative amplification tests in combination with genomics, transcriptomics, proteomics and related methodologies will pave the way to further enhancement of innovative microbial detection and identification.

  7. Diagnostic Error in Medical Education: Where Wrongs Can Make Rights

    ERIC Educational Resources Information Center

    Eva, Kevin W.

    2009-01-01

    This paper examines diagnostic error from an educational perspective. Rather than addressing the question of how educators in the health professions can help learners avoid error, however, the literature reviewed leads to the conclusion that educators should be working to induce error in learners, leading them to short term pain for long term…

  8. Diagnostic Yield of Medical Thoracoscopy in Undiagnosed Pleural Effusion

    PubMed Central

    Kiani, Arda; Karimi, Mahmoud; Samadi, Katayoun; Sheikhy, Kambiz; Farzanegan, Behrooz; Pour Abdollah, Mihan; Jamaati, Hamidreza; Jabardarjani, Hamid Reza; Masjedi, Mohammad Reza

    2015-01-01

    Background: One of the most common indications for pleuroscopy is undiagnosed pleural effusion, which comprises about 25% of all cases of pleural effusions, which remain undiagnosed despite primary tests. Pleuroscopy was performed for the first time in Iran in Masih Daneshvari hospital located in Tehran. The aim of this study was to assess the diagnostic yield of pleuroscopy performed in this center in Iran. Materials and Methods: Three-hundred patients with undiagnosed pleural effusions were enrolled in this study. For all patients, primary tests including pleural effusion analysis, cytology and closed pleural biopsy (if needed) were conducted and all of them were inconclusive. The semirigid thoracoscopy (pleuroscopy) was performed for all patients for diagnostic purposes. Results: Eighty-seven percent of the peluroscopies were diagnostic and 67% of them were diagnosed as malignancy while the rest were diagnosed as tuberculosis. Only 11 patients developed minor complications. Conclusion: In conclusion, pleuroscopy is a safe procedure when performed by a skilled and experienced practitioner; it has a high diagnostic yield and results in only minor complications. PMID:27114723

  9. Simple fractal method of assessment of histological images for application in medical diagnostics

    PubMed Central

    2010-01-01

    We propose new method of assessment of histological images for medical diagnostics. 2-D image is preprocessed to form 1-D landscapes or 1-D signature of the image contour and then their complexity is analyzed using Higuchi's fractal dimension method. The method may have broad medical application, from choosing implant materials to differentiation between benign masses and malignant breast tumors. PMID:21134258

  10. Goal-Directed Ultrasound for the Diagnosis of Long-Bone Fractures by Crew Medical Officer Analogs

    NASA Technical Reports Server (NTRS)

    Marshburn, Thomas H.; Legome, Eric; Li, James; Melton, Shannon; Sargsyan, Ashot; Noble, Vickie; Sims, Carrie; Thomsen, Todd; Peralta, Ruben; Briggs, Sue

    2002-01-01

    Current construction activities on-board the International space Station (ISS) may increase fracture incidence in space, and ultrasound (US) is the only tm-board diagnostic imaging capability. The clinical utility of US in identifying long-bone fractures is un1aowe, particularly using non-radiologist operators. We sought to determine the accuracy of US in identifying fractures of the humerus and femur, as performed by emergency medicine physicians and surgeons with minimal experience in ultrasound image acquisition and interpretation, after a standardized taming session.

  11. Eigenspace-Based Generalized Sidelobe Canceler Beamforming Applied to Medical Ultrasound Imaging

    PubMed Central

    Li, Jiake; Chen, Xiaodong; Wang, Yi; Li, Wei; Yu, Daoyin

    2016-01-01

    The use of a generalized sidelobe canceler (GSC) can significantly improve the lateral resolution of medical ultrasound systems, but the contrast improvement isn’t satisfactory. Thus a new Eigenspace-based generalized sidelobe canceler (EBGSC) approach is proposed for medical ultrasound imaging, which can improve both the lateral resolution and contrast of the system. The weight vector of the EBGSC is obtained by projecting the GSC weight vector onto a vector subspace constructed from the eigenstructure of the covariance matrix, and using the new weight vector instead of the GSC ones leads to reduced sidelobe level and improved contrast. Simulated and experimental data are used to evaluate the performance of the proposed method. The Field II software is applied to obtain the simulated echo data of scattering points and circular cysts. Imaging of scattering points show that EBGSC has the same full width at half maximum (FWHM) as GSC, while the lateral resolution improves by 35.3% and 52.7% compared with synthetic aperture (SA) and delay-and-sum (DS), respectively. Compared with GSC, SA and DS, EBGSC improves the peak sidelobe level (PSL) by 23.55, 33.11 and 50.38 dB, respectively. Also the cyst contrast increase by EBGSC was calculated as 16.77, 12.43 and 26.73 dB, when compared with GSC, SA and DS, respectively. Finally, an experiment is conducted on the basis of the complete echo data collected by a medical ultrasonic imaging system. Results show that the proposed method can produce better lateral resolution and contrast than non-adaptive beamformers. PMID:27483272

  12. Eigenspace-Based Generalized Sidelobe Canceler Beamforming Applied to Medical Ultrasound Imaging.

    PubMed

    Li, Jiake; Chen, Xiaodong; Wang, Yi; Li, Wei; Yu, Daoyin

    2016-07-28

    The use of a generalized sidelobe canceler (GSC) can significantly improve the lateral resolution of medical ultrasound systems, but the contrast improvement isn't satisfactory. Thus a new Eigenspace-based generalized sidelobe canceler (EBGSC) approach is proposed for medical ultrasound imaging, which can improve both the lateral resolution and contrast of the system. The weight vector of the EBGSC is obtained by projecting the GSC weight vector onto a vector subspace constructed from the eigenstructure of the covariance matrix, and using the new weight vector instead of the GSC ones leads to reduced sidelobe level and improved contrast. Simulated and experimental data are used to evaluate the performance of the proposed method. The Field II software is applied to obtain the simulated echo data of scattering points and circular cysts. Imaging of scattering points show that EBGSC has the same full width at half maximum (FWHM) as GSC, while the lateral resolution improves by 35.3% and 52.7% compared with synthetic aperture (SA) and delay-and-sum (DS), respectively. Compared with GSC, SA and DS, EBGSC improves the peak sidelobe level (PSL) by 23.55, 33.11 and 50.38 dB, respectively. Also the cyst contrast increase by EBGSC was calculated as 16.77, 12.43 and 26.73 dB, when compared with GSC, SA and DS, respectively. Finally, an experiment is conducted on the basis of the complete echo data collected by a medical ultrasonic imaging system. Results show that the proposed method can produce better lateral resolution and contrast than non-adaptive beamformers.

  13. A De-Identification Pipeline for Ultrasound Medical Images in DICOM Format.

    PubMed

    Monteiro, Eriksson; Costa, Carlos; Oliveira, José Luís

    2017-05-01

    Clinical data sharing between healthcare institutions, and between practitioners is often hindered by privacy protection requirements. This problem is critical in collaborative scenarios where data sharing is fundamental for establishing a workflow among parties. The anonymization of patient information burned in DICOM images requires elaborate processes somewhat more complex than simple de-identification of textual information. Usually, before sharing, there is a need for manual removal of specific areas containing sensitive information in the images. In this paper, we present a pipeline for ultrasound medical image de-identification, provided as a free anonymization REST service for medical image applications, and a Software-as-a-Service to streamline automatic de-identification of medical images, which is freely available for end-users. The proposed approach applies image processing functions and machine-learning models to bring about an automatic system to anonymize medical images. To perform character recognition, we evaluated several machine-learning models, being Convolutional Neural Networks (CNN) selected as the best approach. For accessing the system quality, 500 processed images were manually inspected showing an anonymization rate of 89.2%. The tool can be accessed at https://bioinformatics.ua.pt/dicom/anonymizer and it is available with the most recent version of Google Chrome, Mozilla Firefox and Safari. A Docker image containing the proposed service is also publicly available for the community.

  14. [Abdominal ultrasound course an introduction to the ultrasound technique. Physical basis. Ultrasound language].

    PubMed

    Segura-Grau, A; Sáez-Fernández, A; Rodríguez-Lorenzo, A; Díaz-Rodríguez, N

    2014-01-01

    Ultrasound is a non-invasive, accessible, and versatile diagnostic technique that uses high frequency ultrasound waves to define outline the organs of the human body, with no ionising radiation, in real time and with the capacity to visual several planes. The high diagnostic yield of the technique, together with its ease of uses plus the previously mentioned characteristics, has currently made it a routine method in daily medical practice. It is for this reason that the multidisciplinary character of this technique is being strengthened every day. To be able to perform the technique correctly requires knowledge of the physical basis of ultrasound, the method and the equipment, as well as of the human anatomy, in order to have the maximum information possible to avoid diagnostic errors due to poor interpretation or lack of information.

  15. Implementation of a versatile research data acquisition system using a commercially available medical ultrasound scanner.

    PubMed

    Hemmsen, Martin Christian; Nikolov, Svetoslav Ivanov; Pedersen, Mads Møller; Pihl, Michael Johannes; Enevoldsen, Marie Sand; Hansen, Jens Munk; Jensen, Jørgen Arendt

    2012-07-01

    This paper describes the design and implementation of a versatile, open-architecture research data acquisition system using a commercially available medical ultrasound scanner. The open architecture will allow researchers and clinicians to rapidly develop applications and move them relatively easy to the clinic. The system consists of a standard PC equipped with a camera link and an ultrasound scanner equipped with a research interface. The ultrasound scanner is an easy-to-use imaging device that is capable of generating high-quality images. In addition to supporting the acquisition of multiple data types, such as B-mode, M-mode, pulsed Doppler, and color flow imaging, the machine provides users with full control over imaging parameters such as transmit level, excitation waveform, beam angle, and focal depth. Beamformed RF data can be acquired from regions of interest throughout the image plane and stored to a file with a simple button press. For clinical trials and investigational purposes, when an identical image plane is desired for both an experimental and a reference data set, interleaved data can be captured. This form of data acquisition allows switching between multiple setups while maintaining identical transducer, scanner, region of interest, and recording time. Data acquisition is controlled through a graphical user interface running on the PC. This program implements an interface for third-party software to interact with the application. A software development toolkit is developed to give researchers and clinicians the ability to utilize third-party software for data analysis and flexible manipulation of control parameters. Because of the advantages of speed of acquisition and clinical benefit, research projects have successfully used the system to test and implement their customized solutions for different applications. Three examples of system use are presented in this paper: evaluation of synthetic aperture sequential beamformation, transverse

  16. The Future of Medical Diagnostics: Large Digitized Databases

    PubMed Central

    Kerr, Wesley T.; Lau, Edward P.; Owens, Gwen E.; Trefler, Aaron

    2012-01-01

    The electronic health record mandate within the American Recovery and Reinvestment Act of 2009 will have a far-reaching affect on medicine. In this article, we provide an in-depth analysis of how this mandate is expected to stimulate the production of large-scale, digitized databases of patient information. There is evidence to suggest that millions of patients and the National Institutes of Health will fully support the mining of such databases to better understand the process of diagnosing patients. This data mining likely will reaffirm and quantify known risk factors for many diagnoses. This quantification may be leveraged to further develop computer-aided diagnostic tools that weigh risk factors and provide decision support for health care providers. We expect that creation of these databases will stimulate the development of computer-aided diagnostic support tools that will become an integral part of modern medicine. PMID:23012584

  17. Fluorocarbon compounds in MRI diagnostics and medical therapy

    NASA Astrophysics Data System (ADS)

    Pirogov, Yu

    2016-02-01

    The lecture describes the application of fluorocarbon compounds as blood substitutes and contrasting preparations in MRI diagnostics. A blood substitute product fluorocarbon Perfluorane® has shown effectiveness in oxygen delivery to the tissues of living organisms, and cardioprotective effect which does not depend on the patient's blood group. Inclusion of paramagnetic atoms (gadolinium, iron, etc.) to the Perfluorane® chemical formula creates a new compound with high MRI contrast efficiencies at Larmor frequencies of protons so and fluorine-19 nuclei.

  18. Diagnostic algorithm: how to make use of new 2D, 3D and 4D ultrasound technologies in breast imaging.

    PubMed

    Weismann, C F; Datz, L

    2007-11-01

    The aim of this publication is to present a time saving diagnostic algorithm consisting of two-dimensional (2D), three-dimensional (3D) and four-dimensional (4D) ultrasound (US) technologies. This algorithm of eight steps combines different imaging modalities and render modes which allow a step by step analysis of 2D, 3D and 4D diagnostic criteria. Advanced breast US systems with broadband high frequency linear transducers, full digital data management and high resolution are the actual basis for two-dimensional breast US studies in order to detect early breast cancer (step 1). The continuous developments of 2D US technologies including contrast resolution imaging (CRI) and speckle reduction imaging (SRI) have a direct influence on the high quality of three-dimensional and four-dimensional presentation of anatomical breast structures and pathological details. The diagnostic options provided by static 3D volume datasets according to US BI-RADS analogue assessment, concerning lesion shape, orientation, margin, echogenic rim sign, lesion echogenicity, acoustic transmission, associated calcifications, 3D criteria of the coronal plane, surrounding tissue composition (step 2) and lesion vascularity (step 6) are discussed. Static 3D datasets offer the combination of long axes distance measurements and volume calculations, which are the basis for an accurate follow-up in BI-RADS II and BI-RADS III lesions (step 3). Real time 4D volume contrast imaging (VCI) is able to demonstrate tissue elasticity (step 5). Glass body rendering is a static 3D tool which presents greyscale and colour information to study the vascularity and the vascular architecture of a lesion (step 6). Tomographic ultrasound imaging (TUI) is used for a slice by slice documentation in different investigation planes (A-,B- or C-plane) (steps 4 and 7). The final step 8 uses the panoramic view technique (XTD-View) to document the localisation within the breast and to make the position of a lesion simply

  19. Early life exposure to diagnostic radiation and ultrasound scans and risk of childhood cancer: case-control study

    PubMed Central

    Simpson, Jill; Neta, Gila; Berrington de Gonzalez, Amy; Ansell, Pat; Linet, Martha S; Ron, Elaine; Roman, Eve

    2011-01-01

    Objective To examine childhood cancer risks associated with exposure to diagnostic radiation and ultrasound scans in utero and in early infancy (age 0-100 days). Design Case-control study. Setting England and Wales. Participants 2690 childhood cancer cases and 4858 age, sex, and region matched controls from the United Kingdom Childhood Cancer Study (UKCCS), born 1976-96. Main outcome measures Risk of all childhood cancer, leukaemia, lymphoma, and central nervous system tumours, measured by odds ratios. Results Logistic regression models conditioned on matching factors, with adjustment for maternal age and child’s birth weight, showed no evidence of increased risk of childhood cancer with in utero exposure to ultrasound scans. Some indication existed of a slight increase in risk after in utero exposure to x rays for all cancers (odds ratio 1.l4, 95% confidence interval 0.90 to 1.45) and leukaemia (1.36, 0.91 to 2.02), but this was not statistically significant. Exposure to diagnostic x rays in early infancy (0-100 days) was associated with small, non-significant excess risks for all cancers and leukaemia, as well as increased risk of lymphoma (odds ratio 5.14, 1.27 to 20.78) on the basis of small numbers. Conclusions Although the results for lymphoma need to be replicated, all of the findings indicate possible risks of cancer from radiation at doses lower than those associated with commonly used procedures such as computed tomography scans, suggesting the need for cautious use of diagnostic radiation imaging procedures to the abdomen/pelvis of the mother during pregnancy and in children at very young ages. PMID:21310791

  20. [Modern ultrasound methods of examination in clinical ophthalmology. Background problems and future prospects].

    PubMed

    Kharlap, S I

    2003-01-01

    Historic aspects of ultrasound diagnostics in ophthalmology are described. The technological development of ultrasound diagnostic systems and the clinical application of different ultrasound modes in examining the eye and its choroids are traced back. The efficiency of Doppler mapping in the mode of three-dimension reconstruction at examining the orbital vascular system is evaluated. An experience obtained at the Research Institute for Eye Disease of the Russian Academy of Medical Sciences and outlooks for the diagnostic usage of computer ultrasound in clinical ophthalmology and angiologia are presented.

  1. Solid hypo-echoic thyroid nodules on ultrasound: the diagnostic value of acoustic radiation force impulse elastography.

    PubMed

    Xu, Jun-Mei; Xu, Hui-Xiong; Xu, Xiao-Hong; Liu, Chang; Zhang, Yi-Feng; Guo, Le-Hang; Liu, Lin-Na; Zhang, Jin

    2014-09-01

    The aim of the study described here was to evaluate the diagnostic performance of acoustic radiation force impulse (ARFI) elastography in the differential diagnosis between benign and malignant solid hypo-echoic thyroid nodules (SHTNs) on ultrasound. In this retrospective study, 183 histologically proven SHTNs in 159 patients were enrolled. Conventional US, as well as Virtual Touch tissue imaging (VTI) and Virtual Touch tissue quantification (VTQ) of ARFI elastography, was performed on each nodule. The VTI features of SHTNs were divided into six grades, where higher grades represent harder tissue. VTQ was expressed as shear wave velocity, where higher shear wave velocity values indicate stiffer tissue. The sensitivity, specificity, accuracy, positive predictive value, negative predictive value and Youden index for ultrasound and ARFI were assessed. The 183 pathologically proven SHTNs included 117 benign and 66 malignant lesions. Nodules classified as VTI grades IV to VI were more frequently malignant (49/66, 74.2%) than benign (10/117, 8.5%) (p < 0.001). The mean shear wave velocity of VTQ for malignant SHTNs (mean ± standard deviation, 4.65 ± 2.68 m/s; range, 1.36-9 m/s) was significantly higher than that for benign SHTNs (2.34 ± 0.85 m/s, 0-5.7 m/s) (p < 0.001). The sensitivity, specificity, accuracy, positive predictive value, negative predictive value and Youden index were 27.3%-84.8%, 13.7%-89.7%, 39.3%-69.4%, 35.7%-60%, 61.5%-78.5%, and -0.015 to 0.37 for ultrasound; 68.2%, 76.9%, 73.8%, 62.5%, 81.1% and 0.451 for VTQ; and 74.2%, 91.5%, 85.2%, 83.1%, 86.3% and 0.657 for VTI, respectively. ARFI elastography performed at a superior level, compared with conventional ultrasound, in the differential diagnosis between malignant and benign SHTNs. The diagnostic performance of VTI is higher than that of VTQ.

  2. Contrast-enhanced ultrasound in combination with color Doppler ultrasound can improve the diagnostic performance of focal nodular hyperplasia and hepatocellular adenoma.

    PubMed

    Kong, Wen-Tao; Wang, Wen-Ping; Huang, Bei-Jian; Ding, Hong; Mao, Feng; Si, Qin

    2015-04-01

    The aim of our study was to evaluate the value of combining color Doppler ultrasound (CDUS) with contrast-enhanced ultrasound (CEUS) in identifying and comparing features of focal nodular hyperplasia (FNH) and hepatocellular adenoma (HCA). Thirty-eight patients with FNH (n = 28) or HCA (n = 10), whose diagnoses were later confirmed by pathology, were examined with conventional ultrasonography and CEUS between 2010 and 2013. Two doctors blinded to the pathology results independently reviewed the conventional ultrasound and CEUS images and then reached a consensus through discussion. The following parameters evaluated for all lesions included vascularity pattern on CDUS or CEUS, enhancement characteristics on CEUS and the presence of a central scar. Statistical analysis was performed with the independent sample t-test and Fisher exact test. On CDUS, FNH was characterized by the presence of abundant blood flow signals exhibiting dendritic (53.6%, 15/28) and spoke-wheel (28.6%, 8/28) patterns, whereas blood flow signal of HCA was slightly less than FNH and often showed subcapsular short rod-like (50%, 5/10) appearance. On CEUS, the most common arterial enhancement pattern was centrifugal or homogeneous enhancement in FNH (both, 12/28, 42.9%) and homogeneous enhancement in HCA (6/10, 60%). Spoke-wheel arteries, feeding artery and central scar were detected in 5 (17.9%), 8 (28.6%) and 5 (17.9%) of 28 FNHs. Hypo-echogenic pattern during delayed phase was more common in HCA (60%, 6/10) than in FNH (3/28, 10.7%) (p = 0.010). A total of 25 (25/38, 65.8%) lesions were correctly assessed using CDUS in combination with CEUS, whereas the number decreased to 15 (15/38, 39.5%) when CDUS was used alone (p = 0.038). The areas under the ROC curves before and after CEUS administration were 0.768 and 0.879, respectively. In conclusion, CEUS in combination with CDUS improve the diagnostic performance of FNH and HCA. Blood signal of HCA was less than FNH on CDUS. The differences of

  3. Medical diagnostic decision support systems--past, present, and future: a threaded bibliography and brief commentary.

    PubMed Central

    Miller, R A

    1994-01-01

    Articles about medical diagnostic decision support (MDDS) systems often begin with a disclaimer such as, "despite many years of research and millions of dollars of expenditures on medical diagnostic systems, none is in widespread use at the present time." While this statement remains true in the sense that no single diagnostic system is in widespread use, it is misleading with regard to the state of the art of these systems. Diagnostic systems, many simple and some complex, are now ubiquitous, and research on MDDS systems is growing. The nature of MDDS systems has diversified over time. The prospects for adoption of large-scale diagnostic systems are better now than ever before, due to enthusiasm for implementation of the electronic medical record in academic, commercial, and primary care settings. Diagnostic decision support systems have become an established component of medical technology. This paper provides a review and a threaded bibliography for some of the important work on MDDS systems over the years from 1954 to 1993. PMID:7719792

  4. Embedded System for Real-Time Digital Processing of Medical Ultrasound Doppler Signals

    NASA Astrophysics Data System (ADS)

    Ricci, S.; Dallai, A.; Boni, E.; Bassi, L.; Guidi, F.; Cellai, A.; Tortoli, P.

    2008-12-01

    Ultrasound (US) Doppler systems are routinely used for the diagnosis of cardiovascular diseases. Depending on the application, either single tone bursts or more complex waveforms are periodically transmitted throughout a piezoelectric transducer towards the region of interest. Extraction of Doppler information from echoes backscattered from moving blood cells typically involves coherent demodulation and matched filtering of the received signal, followed by a suitable processing module. In this paper, we present an embedded Doppler US system which has been designed as open research platform, programmable according to a variety of strategies in both transmission and reception. By suitably sharing the processing tasks between a state-of-the-art FGPA and a DSP, the system can be used in several medical US applications. As reference examples, the detection of microemboli in cerebral circulation and the measurement of wall _distension_ in carotid arteries are finally presented.

  5. Ultrasound physics.

    PubMed

    Shriki, Jesse

    2014-01-01

    Bedside ultrasound has become an important modality for obtaining critical information in the acute care of patients. It is important to understand the physics of ultrasound in order to perform and interpret images at the bedside. The physics of both continuous wave and pulsed wave sound underlies diagnostic ultrasound. The instrumentation, including transducers and image processing, is important in the acquisition of appropriate sonographic images. Understanding how these concepts interplay with each other enables practitioners to obtain the best possible images.

  6. The Relationship between Diagnostic Accuracy and Confidence in Medical Students.

    ERIC Educational Resources Information Center

    Mann, Doug

    Studies in psychology and clinical decision making have shown that research subjects and physicians are often overconfident in the accuracy of their judgments. In these studies, groups of 20 first-year and 27 third-year osteopathic medical students at the Ohio University College of Osteopathic Medicine (Athens) were slightly underconfident in…

  7. Medical Student Assessment of Videotape for Teaching in Diagnostic Radiology

    ERIC Educational Resources Information Center

    Moss, J. R.; McLachlan, M. S. F.

    1976-01-01

    A series of six recordings that describe some aspects of the radiology of the chest, using only radiographs, were viewed by a small group of final year medical students. Their scores for factual questions immediately afterwards were compared with their attitudes to the learning experience; higher scores correlated with positive attitudes. (LBH)

  8. In vivo demonstration of ultrasound power delivery to charge implanted medical devices via acute and survival porcine studies.

    PubMed

    Radziemski, Leon; Makin, Inder Raj S

    2016-01-01

    Animal studies are an important step in proving the utility and safety of an ultrasound based implanted battery recharging system. To this end an Ultrasound Electrical Recharging System (USER™) was developed and tested. Experiments in vitro demonstrated power deliveries at the battery of up to 600 mW through 10-15 mm of tissue, 50 mW of power available at tissue depths of up to 50 mm, and the feasibility of using transducers bonded to titanium as used in medical implants. Acute in vivo studies in a porcine model were used to test reliability of power delivery, temperature excursions, and cooling techniques. The culminating five-week survival study involved repeated battery charging, a total of 10.5h of ultrasound exposure of the intervening living tissue, with an average RF input to electrical charging efficiency of 20%. This study was potentially the first long term cumulative living-tissue exposure using transcutaneous ultrasound power transmission to an implanted receiver in situ. Histology of the exposed tissue showed changes attributable primarily due to surgical implantation of the prototype device, and no damage due to the ultrasound exposure. The in vivo results are indicative of the potential safe delivery of ultrasound energy for a defined set of source conditions for charging batteries within implants.

  9. Do we need a critical care ultrasound certification program? Implications from an Australian medical-legal perspective.

    PubMed

    Huang, Stephen J; McLean, Anthony S

    2010-01-01

    Medical practitioners have a duty to maintain a certain standard of care in providing their services. With critical care ultrasound gaining popularity in the ICU, it is envisaged that more intensivists will use the tool in managing their patients. Ultrasound, especially echocardiography, can be an 'easy to learn, difficult to manage' skill, and the competency in performing the procedure varies greatly. In view of this, several recommendations for competency statements have been published in recent years to advocate the need for a unified approach to training and certification. In this paper, we take a slightly different perspective, from an Australian medical-legal viewpoint, to argue for the need to implement a critical care ultrasound certification program. We examine various issues that can potentially lead to a breach of the standard of care, hence exposing the practitioners and/or the healthcare institutions to lawsuits in professional negligence or breach of contract. These issues, among others, include the failure to use ultrasound in appropriate situations, the failure of hospitals to ensure practitioners are properly trained in the skills, the failure of practitioners to perform an ultrasound study that is of a reasonable standard, and the failure of practitioners to keep themselves abreast of the latest developments in treatment and management. The implications of these issues and the importance of having a certification process are discussed.

  10. Nonlinear effects in ultrasound fields of diagnostic-type transducers used for kidney stone propulsion: Characterization in water

    SciTech Connect

    Karzova, M.; Cunitz, B.; Kreider, W.; Bailey, M.; Yuldashev, P.; Andriyakhina, Y.; Sapozhnikov, O.; Khokhlova, V.

    2015-10-28

    Newer imaging and therapeutic ultrasound technologies require higher in situ pressure levels compared to conventional diagnostic values. One example is the recently developed use of focused ultrasonic radiation force to move kidney stones and residual fragments out of the urinary collecting system. A commercial diagnostic 2.3 MHz C5-2 array probe is used to deliver the acoustic pushing pulses. The probe comprises 128 elements equally spaced at the 55 mm long convex cylindrical surface with 38 mm radius of curvature. The efficacy of the treatment can be increased by using higher intensity at the focus to provide stronger pushing force; however, nonlinear acoustic saturation can be a limiting factor. In this work nonlinear propagation effects were analyzed for the C5-2 transducer using a combined measurement and modeling approach. Simulations were based on the 3D Westervelt equation; the boundary condition was set to match the focal geometry of the beam as measured at a low power output. Focal waveforms simulated for increased output power levels were compared with the fiber-optic hydrophone measurements and were found in good agreement. It was shown that saturation effects do limit the acoustic pressure in the focal region of the transducer. This work has application to standard diagnostic probes and imaging.

  11. Nonlinear effects in ultrasound fields of diagnostic-type transducers used for kidney stone propulsion: Characterization in water

    NASA Astrophysics Data System (ADS)

    Karzova, M.; Cunitz, B.; Yuldashev, P.; Andriyakhina, Y.; Kreider, W.; Sapozhnikov, O.; Bailey, M.; Khokhlova, V.

    2015-10-01

    Newer imaging and therapeutic ultrasound technologies require higher in situ pressure levels compared to conventional diagnostic values. One example is the recently developed use of focused ultrasonic radiation force to move kidney stones and residual fragments out of the urinary collecting system. A commercial diagnostic 2.3 MHz C5-2 array probe is used to deliver the acoustic pushing pulses. The probe comprises 128 elements equally spaced at the 55 mm long convex cylindrical surface with 38 mm radius of curvature. The efficacy of the treatment can be increased by using higher intensity at the focus to provide stronger pushing force; however, nonlinear acoustic saturation can be a limiting factor. In this work nonlinear propagation effects were analyzed for the C5-2 transducer using a combined measurement and modeling approach. Simulations were based on the 3D Westervelt equation; the boundary condition was set to match the focal geometry of the beam as measured at a low power output. Focal waveforms simulated for increased output power levels were compared with the fiber-optic hydrophone measurements and were found in good agreement. It was shown that saturation effects do limit the acoustic pressure in the focal region of the transducer. This work has application to standard diagnostic probes and imaging.

  12. 21 CFR 1000.50 - Recommendation for the use of specific area gonad shielding on patients during medical diagnostic...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... shielding on patients during medical diagnostic x-ray procedures. 1000.50 Section 1000.50 Food and Drugs... shielding on patients during medical diagnostic x-ray procedures. Specific area gonad shielding covers an... that may cause genetic mutations during many medical x-ray procedures in which the gonads lie within...

  13. 21 CFR 1000.50 - Recommendation for the use of specific area gonad shielding on patients during medical diagnostic...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... shielding on patients during medical diagnostic x-ray procedures. 1000.50 Section 1000.50 Food and Drugs... shielding on patients during medical diagnostic x-ray procedures. Specific area gonad shielding covers an... that may cause genetic mutations during many medical x-ray procedures in which the gonads lie within...

  14. 21 CFR 1000.50 - Recommendation for the use of specific area gonad shielding on patients during medical diagnostic...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... shielding on patients during medical diagnostic x-ray procedures. 1000.50 Section 1000.50 Food and Drugs... shielding on patients during medical diagnostic x-ray procedures. Specific area gonad shielding covers an... that may cause genetic mutations during many medical x-ray procedures in which the gonads lie within...

  15. 21 CFR 1000.50 - Recommendation for the use of specific area gonad shielding on patients during medical diagnostic...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... shielding on patients during medical diagnostic x-ray procedures. 1000.50 Section 1000.50 Food and Drugs... shielding on patients during medical diagnostic x-ray procedures. Specific area gonad shielding covers an... that may cause genetic mutations during many medical x-ray procedures in which the gonads lie within...

  16. Engineering considerations for integrating laser angioplasty with ultrasound diagnostics in a single device

    NASA Astrophysics Data System (ADS)

    Passafaro, James D.; Zalesky, Paul J.

    1990-07-01

    The application of direct laser energy for the ablation of atherosclerotic plaque has been investigated extensively. It has been recognized that the need for an onboard guidance capability which can direct the laser energy is essential for controlled plaque removal. Intravascular ultrasound represents one approach for identifying diseased tissue and directing laser therapy. The design of a catheter with combined laser and ultrasound capabilities is discussed. The design considers the optical and acoustical requirements. In addition, vascular anatomical constraints and their impact on the mechanical aspects of the device configuration are considered. The optical considerations dictate safe and predictable high energy laser transmission. The acoustic requirements consider material properties and ultrasonic beam resolution. The vascular anatomy imposes constraints on maximum catheter size and it requires a means for conventional delivery of the device to the targeted lesion.

  17. WE-D-18C-01: Art of Imaging: Diagnostic Ultrasound Image Artifacts

    SciTech Connect

    Zagzebski, J; Lu, Z

    2014-06-15

    Assumptions followed during construction of B-mode and color flow images are that the pulse-echo transit time can be converted to reflector depth through uniform tissue models, echoes originate only from locations along the transmit-receive axes of pulse propagation, and first order correction schemes adequately account for acoustic wave attenuation and absorption. The latter allows the display brightness to encode tissue echogenicity. This course will challenge participants to identify imaging artifacts whose origins stem from the more complex and realistic propagating and scattering conditions common in clinical ultrasound. Speckle, a very common artifact but a clinically employed feature, originates from simultaneous echoes from diffuse scatterers and is a result of coherent detection of signals. One of the most bothersome artifacts are those due to reverberations especially that originating from superficial tissue interfaces. Methods to overcome these will be discussed. This presentation also will describe and illustrate speed of sound, refraction, enhancement, shadowing, mirroring, beam width, beam-forming, and slice thickness artifacts. All are useful examples of limitations introduced by acoustic waves propagating through complex tissue paths. New formats for physician board certification exams are demanding the inclusion of image-based examples of ultrasound physics. Instructors' knowledge of, and access to examples of ultrasound artifacts are important in this effort. The presentation will incorporate an audience response system to challenge participants in correct identification of some of these artifacts. Learning Objectives: Review basic mechanisms for producing ultrasound images. Identify the etiology of speckle, reverberation noise, beam width and slice thickness artifacts, and artifacts associated with pulse propagation. Discuss methods that reduce the impact of artifacts OR employ artifacts effectively to facilitate clinical diagnosis.

  18. Target detection in diagnostic ultrasound: Evaluation of a method based on the CLEAN algorithm.

    PubMed

    Masoom, Hassan; Adve, Raviraj S; Cobbold, Richard S C

    2013-02-01

    A technique is proposed for the detection of abnormalities (targets) in ultrasound images using little or no a priori information and requiring little operator intervention. The scheme is a combination of the CLEAN algorithm, originally proposed for radio astronomy, and constant false alarm rate (CFAR) processing, as developed for use in radar systems. The CLEAN algorithm identifies areas in the ultrasound image that stand out above a threshold in relation to the background; CFAR techniques allow for an adaptive, semi-automated, selection of the threshold. Neither appears to have been previously used for target detection in ultrasound images and never together in any context. As a first step towards assessing the potential of this method we used a widely used method of simulating B-mode images (Field II). We assumed the use of a 256 element linear array operating at 3.0MHz into a water-like medium containing a density of point scatterers sufficient to simulate a background of fully developed speckle. Spherical targets with diameters ranging from 0.25 to 6.0mm and contrasts ranging from 0 to 12dB relative to the background were used as test objects. Using a contrast-detail analysis, the probability of detection curves indicate these targets can be consistently detected within a speckle background. Our results indicate that the method has considerable promise for the semi-automated detection of abnormalities with diameters greater than a few millimeters, depending on the contrast.

  19. Hypnosis before diagnostic or therapeutic medical procedures: a systematic review.

    PubMed

    Cheseaux, Nicole; de Saint Lager, Alix Juillet; Walder, Bernhard

    2014-01-01

    The aim of this systematic review was to estimate the efficiency of hypnosis prior to medical procedures. Different databases were analyzed to identify randomized controlled trials (RCTs) comparing hypnosis to control interventions. All RCTs had to report pain or anxiety. Eighteen RCTs with a total of 968 patients were included; study size was from 20 to 200 patients (14 RCTs ≤ 60 patients). Fourteen RCTs included 830 adults and 4 RCTs included 138 children. Twelve of 18 RCTs had major quality limitations related to unclear allocation concealments, provider's experience in hypnosis, patient's adherence to hypnotic procedures, and intention-to-treat design. This systematic review observed major methodological limitations in RCTs on hypnosis prior to medical procedures.

  20. [Internet- and mobile-based approaches : Psycho-social diagnostics and treatment in medical rehabilitation].

    PubMed

    Baumeister, Harald; Lin, Jiaxi; Ebert, David Daniel

    2017-02-21

    Technology-based approaches for psychosocial diagnostics and interventions provide an attractive opportunity to optimize medical rehabilitation. Based on an Internet- and mobile-based assessment of existing functional health impairments, appropriate planning, implementation of corresponding courses of action as well as outcome assessment can take place. This can be implemented in the form of Internet- and mobile-based interventions (IMI).The present article provides an overview of the basic knowledge of IMI and their evidence base both in general and in particular for their use in medical rehabilitation. Important aspects of internet and mobile-based psycho-social diagnostics are discussed subsequently. Finally, an outlook for the use of Internet- and mobile-based diagnostics and interventions in medical rehabilitation is given.

  1. Multispectral fluorescence lifetime imaging system for intravascular diagnostics with ultrasound guidance: in vivo validation in swine arteries.

    PubMed

    Bec, Julien; Ma, Dinglong M; Yankelevich, Diego R; Liu, Jing; Ferrier, William T; Southard, Jeffrey; Marcu, Laura

    2014-05-01

    Fluorescence lifetime technique has demonstrated potential for analysis of atherosclerotic lesions and for complementing existing intravascular imaging modalities such as intravascular ultrasound (IVUS) in identifying lesions at high risk of rupture. This study presents a multimodal catheter system integrating a 40 MHz commercial IVUS and fluorescence lifetime imaging (FLIm) using fast helical motion scanning (400 rpm, 0.75 mm/s), able to acquire in vivo in pulsatile blood flow the autofluorescence emission of arterial vessels with high precision (5.08 ± 0.26 ns mean average lifetime over 13 scans). Co-registered FLIm and IVUS data allowed 3D visualization of both biochemical and morphological vessel properties. Current study supports the development of clinically compatible intravascular diagnostic system integrating FLIm and demonstrates, to our knowledge, the first in vivo intravascular application of a fluorescence lifetime imaging technique.

  2. Advanced synchronous luminescence imaging for chemical and medical diagnostics

    DOEpatents

    Vo-Dinh, Tuan

    2006-09-05

    A diagnostic method and associated system includes the steps of exposing at least one sample location with excitation radiation through a single optical waveguide or a single optical waveguide bundle, wherein the sample emits emission radiation in response to the excitation radiation. The same single optical waveguide or the single optical waveguide bundle receives at least a portion of the emission radiation from the sample, thus providing co-registration of the excitation radiation and the emission radiation. The wavelength of the excitation radiation and emission radiation is synchronously scanned to produce a spectrum upon which an image can be formed. An increased emission signal is generated by the enhanced overlap of the excitation and emission focal volumes provided by co-registration of the excitation and emission signals thus increasing the sensitivity as well as decreasing the exposure time necessary to obtain an image.

  3. Isotope-selective sensor for medical diagnostics based on PAS

    NASA Astrophysics Data System (ADS)

    Wolff, M.; Groninga, H. G.; Harde, H.

    2005-06-01

    Development of new optical sensor technologies has a major impact on the progression of diagnostic methods. Of the permanently increasing number of non-invasive 13C-breath tests, the Urea Breath Test for detection of Helicobacter pylori is the most prominent. However, many recent developments go beyond gastroenterological applications. We present a new detection scheme for breath analysis that employs an especially compact and simple set-up based on Photoacoustic Spectroscopy. Using a wavelength-modulated DFB-diode laser and taking advantage of acoustical resonances of the sample cell, we performed very sensitive isotope-selective measurements on CO2. Detection limits for 13CO2 of a few ppm and for the variation of the 13CO2 concentration of approximately 1% were achieved.

  4. Towards real-time medical diagnostics using hyperspectral imaging technology

    NASA Astrophysics Data System (ADS)

    Bjorgan, Asgeir; Randeberg, Lise L.

    2015-07-01

    Hyperspectral imaging provides non-contact, high resolution spectral images which has a substantial diagnostic potential. This can be used for e.g. diagnosis and early detection of arthritis in finger joints. Processing speed is currently a limitation for clinical use of the technique. A real-time system for analysis and visualization using GPU processing and threaded CPU processing is presented. Images showing blood oxygenation, blood volume fraction and vessel enhanced images are among the data calculated in real-time. This study shows the potential of real-time processing in this context. A combination of the processing modules will be used in detection of arthritic finger joints from hyperspectral reflectance and transmittance data.

  5. General Principles of Radiation Protection in Fields of Diagnostic Medical Exposure

    PubMed Central

    2016-01-01

    After the rapid development of medical equipment including CT or PET-CT, radiation doses from medical exposure are now the largest source of man-made radiation exposure. General principles of radiation protection from the hazard of ionizing radiation are summarized as three key words; justification, optimization, and dose limit. Because medical exposure of radiation has unique considerations, diagnostic reference level is generally used as a reference value, instead of dose limits. In Korea, medical radiation exposure has increased rapidly. For medical radiation exposure control, Korea has two separate control systems. Regulation is essential to control medical radiation exposure. Physicians and radiologists must be aware of the radiation risks and benefits associated with medical exposure, and understand and implement the principles of radiation protection for patients. The education of the referring physicians and radiologists is also important. PMID:26908991

  6. Making sure. A comparative micro-analysis of diagnostic instruments in medical practice.

    PubMed

    Schubert, Cornelius

    2011-09-01

    This article conceptualises diagnosis as ongoing practical judgement in medical care. Based on pragmatist and phenomenological considerations of tools in use, it uses a comparative approach to analyse similarities and differences in the use of diagnostic technologies. In the first part of the paper, a historical perspective on the innovation of the stethoscope is used to highlight the transformations in diagnostic practices occasioned by novel diagnostic instruments. In the second part of the paper, ethnographic accounts of contemporary anaesthesia are presented in order to sketch out the manifold variations of using diagnostic instruments in daily practice. Both cases are analysed on a micro-analytical level, emphasising the interrelations of bodies, tools and knowledge in concrete situations. The analysis shows how diagnostic instruments become embodied in the perceptual habits of physicians and how diagnosing becomes an ongoing activity in the course of managing an illness trajectory.

  7. New diagnostic and information technology for mobile medical care.

    PubMed

    Bayne, C Gresham; Boling, Peter A

    2009-02-01

    Medicare reimbursement for home visits average around $100 without ancillaries, so making 10 home visits to prevent even a single $1,000 ambulance ride is cost-neutral for Medicare. Home medical care is only an added cost if it fails to offset acute care use. The government's demographic and financial pressure suggests a need to press ahead with the enhanced mobile care model, so the explosion in point-of-care devices should continue. The main challenge is to decide which ones provide dispositive value to patients.

  8. [Ultrasound in emergency medicine].

    PubMed

    Lapostolle, F; Deltour, S; Petrovic, T

    2015-12-01

    Ultrasound has revolutionized the practice of emergency medicine, particularly in prehospital setting. About a patient with dyspnea, we present the role of ultrasound in the diagnosis and emergency treatment. Echocardiography, but also hemodynamic ultrasound (vena cava) and lung exam are valuable tools. Achieving lung ultrasound and diagnostic value of B lines B are detailed.

  9. Ultrasound annual, 1986

    SciTech Connect

    Sanders, R.C.; Hill, M.C.

    1986-01-01

    This book provides an analyses of developments in the field of diagnostic ultrasound. Endoscopic ultrasound and ultrasound-guided aspiration of ovarian follicles for in vitro fertilization are addressed. The use of Doppler ultrasound to measure blood flow in obstetrics is also examined.

  10. Low Temperature Atmospheric Argon Plasma: Diagnostics and Medical Applications

    NASA Astrophysics Data System (ADS)

    Ermolaeva, Svetlana; Petrov, Oleg; Zigangirova, Nailya; Vasiliev, Mikhail; Sysolyatina, Elena; Antipov, Sergei; Alyapyshev, Maxim; Kolkova, Natalia; Mukhachev, Andrei; Naroditsky, Boris; Shimizu, Tetsuji; Grigoriev, Anatoly; Morfill, Gregor; Fortov, Vladimir; Gintsburg, Alexander

    This study was devoted to diagnostic of low temperature plasma produced by microwave generator and investigation of its bactericidal effect against bacteria in biofilms and within eukaryotic cells. The profile of gas temperature near the torch outlet was measured. The spectrum in a wide range of wavelengths was derived by the method of optical emission spec-troscopy. Probe measurements of the floating potential of plasma were car-ried out. The estimation and adaptation of parameters of plasma flow (tem-perature, velocity, ion number density) according to medico-technical requirements were produced. The model of immersed surface-associated biofilms formed by Gram-negative bacteria, Pseudomonas aeruginosa and Burkholderia cenocepacia, and Gram-positive bacteria, Staphylococcus aureus, was used to assess bactericidal effects of plasma treatment. Reduction in the concentration of live bacteria in biofilms treated with plasma for 5 min was demonstrated by measuring Live/Dead fluorescent labeling and using direct plating. The intracellular infection model with the pathogenic bacterium, Chlamydia trachomatis, was used to study the efficacy of microwave argon plasma against intracellular parasites. A 2 min plasma treatment of mouse cells infected with C. trachomatis reduced infectious bacteria by a factor of 2×106. Plasma treatment diminished the number of viable host cells by about 20%. When the samples were covered with MgF2 glass to obstruct active particles and UV alone was applied, the bactericidal effect was re-duced by 5×104 fold compared to the whole plasma.

  11. Speckle reduction in medical ultrasound: a novel scatterer density weighted nonlinear diffusion algorithm implemented as a neural-network filter.

    PubMed

    Badawi, Ahmed M; Rushdi, Muhammad A

    2006-01-01

    This paper proposes a novel algorithm for speckle reduction in medical ultrasound imaging while preserving the edges with the added advantages of adaptive noise filtering and speed. We propose a nonlinear image diffusion algorithm that incorporates two local parameters of image quality, namely, scatterer density and texture-based contrast in addition to gradient, to weight the nonlinear diffusion process. The scatterer density is proposed to replace the existing traditional measures of quality of the ultrasound diffusion process such as MSE, RMSE, SNR, and PSNR. This novel diffusion filter was then implemented using back propagation neural network for fast parallel processing of volumetric images. The experimental results show that weighting the image diffusion with these parameters produces better noise reduction and produces a better edge detection quality with reasonable computational cost. The proposed filter can be used as a preprocessing phase before applying any ultrasound segmentation or active contour model processes.

  12. Application of the local similarity filter for the suppression of multiplicative noise in medical ultrasound images

    NASA Astrophysics Data System (ADS)

    Kusnik, Damian; Smolka, Bogdan; Cyganek, Boguslaw

    2016-04-01

    In this paper we address the problem of the reduction of multiplicative noise in digital images. This kind of image distortion, also known as speckle noise, severely decreases the quality of medical ultrasound images and therefore their effective enhancement and restoration is of vital importance for proper visual inspection and quantitative measurements. The structure of the proposed Pixel-Patch Similarity Filter (PPSF) is a weighted average of pixels in a processing block and the weights are determined calculating the sum of squared differences between the mean of a patch and the intensities of pixels of the local window at the block center. The structure of the proposed design is similar to the bilateral and non-local means filters, however we neglect the topographic distance between pixels, which decreases substantially its computational complexity. The new technique was evaluated on standard gray scale test images contaminated with multiplicative noise modelled using Gaussian and uniform distribution. Its efficiency was also assessed utilizing a set of simulated ultrasonographic images distorted by means of the Field II simulation software and real ultrasound images of a finger joint. The comparison with the state-of-the-art techniques revealed very high efficiency of the proposed filtering framework, especially for strongly degraded images. Visually, the homogeneous areas are smoother, while image edges and small details are better preserved. The experiments have shown that satisfactory results were obtained with patches consisting of only 9 samples belonging to a relatively small processing block of 7x7 pixels, which ensures low computational complexity of the proposed denoising scheme and allows its application in real-time image processing scenarios.

  13. Adaptive field-of-view imaging for efficient receive beamforming in medical ultrasound imaging systems.

    PubMed

    Agarwal, Anup; Yoo, Yang Mo; Schneider, Fabio Kurt; Kim, Yongmin

    2008-09-01

    Quadrature demodulation-based phase rotation beamforming (QD-PRBF) is commonly used to support dynamic receive focusing in medical ultrasound systems. However, it is computationally demanding since it requires two demodulation filters for each receive channel. To reduce the computational requirements of QD-PRBF, we have previously developed two-stage demodulation (TSD), which reduces the number of lowpass filters by performing demodulation filtering on summation signals. However, it suffers from image quality degradation due to aliasing at lower beamforming frequencies. To improve the performance of TSD-PRBF with reduced number of beamforming points, we propose a new adaptive field-of-view (AFOV) imaging method. In AFOV imaging, the beamforming frequency is adjusted depending on displayed FOV size and the center frequency of received signals. To study its impact on image quality, simulation was conducted using Field II, phantom data were acquired from a commercial ultrasound machine, and the image quality was quantified using spatial (i.e., axial and lateral) and contrast resolution. The developed beamformer (i.e., TSD-AFOV-PRBF) with 1024 beamforming points provided comparable image resolution to QD-PRBF for typical FOV sizes (e.g., 4.6% and 1.3% degradation in contrast resolution for 160 mm and 112 mm, respectively for a 3.5 MHz transducer). Furthermore, it reduced the number of operations by 86.8% compared to QD-PRBF. These results indicate that the developed TSD-AFOV-PRBF can lower the computational requirement for receive beamforming without significant image quality degradation.

  14. A New Era in Diagnostic Ultrasound, Superb Microvascular Imaging: Preliminary Results in Pediatric Hepato-Gastrointestinal Disorders.

    PubMed

    Ohno, Yasuharu; Fujimoto, Tamotsu; Shibata, Yukari

    2017-02-01

    Introduction Superb microvascular imaging is a new ultrasound image processing technique that uses advanced clutter suppression to extract flow signals from vessels and which helps us visualize very small vascular structures that were not previously visible without the use of a contrast agent. We herein analyzed the usefulness of superb microvascular imaging in the diagnosis of hepato-gastrointestinal disorders in pediatric patients. Materials and Methods Fifty-six pediatric patients who underwent a total of 81 superb microvascular imaging examinations with an Aplio 300 ultrasound system (Toshiba Medical Systems, Tokyo, Japan) were enrolled in this study. The subjects underwent conventional ultrasound examinations, including Doppler imaging followed by superb microvascular imaging. The superb microvascular imaging findings and standard imaging were compared. All of the examinations were performed without sedation. Results The average age of the patients (male, n = 38; female, n = 18) was 4 years. The clinical diagnoses included hepatobiliary disorders (n = 29), acute appendicitis (n = 10), and other intestinal disorders (n = 17). The target organs for superb microvascular imaging were the liver, appendix, rectum, intestine, gallbladder, and lymph node. In most of the patients, superb microvascular imaging achieved the excellent visualization of microvascular structures, revealing abnormal vasculature in 21 out of 46 (45.7%) examinations of the liver, 9/9 (100%) examinations of the appendix, 0/11 (0%) examinations of the rectum, 9/11 (81.8%) examinations of the intestine, 0/1 (0%) examinations of the gallbladder, and 3/3 (100%) examinations of the lymph nodes. Superb microvascular imaging was superior to Doppler imaging for depicting the microvascular structures. Conclusions Superb microvascular imaging is especially useful for depicting the microvascular flow and can aid in the diagnosis and treatment planning for pediatric patients with

  15. On-line integration of computer controlled diagnostic devices and medical information systems in undergraduate medical physics education for physicians.

    PubMed

    Hanus, Josef; Nosek, Tomas; Zahora, Jiri; Bezrouk, Ales; Masin, Vladimir

    2013-01-01

    We designed and evaluated an innovative computer-aided-learning environment based on the on-line integration of computer controlled medical diagnostic devices and a medical information system for use in the preclinical medical physics education of medical students. Our learning system simulates the actual clinical environment in a hospital or primary care unit. It uses a commercial medical information system for on-line storage and processing of clinical type data acquired during physics laboratory classes. Every student adopts two roles, the role of 'patient' and the role of 'physician'. As a 'physician' the student operates the medical devices to clinically assess 'patient' colleagues and records all results in an electronic 'patient' record. We also introduced an innovative approach to the use of supportive education materials, based on the methods of adaptive e-learning. A survey of student feedback is included and statistically evaluated. The results from the student feedback confirm the positive response of the latter to this novel implementation of medical physics and informatics in preclinical education. This approach not only significantly improves learning of medical physics and informatics skills but has the added advantage that it facilitates students' transition from preclinical to clinical subjects.

  16. The diagnostic value of contrast-enhanced ultrasound in differentiating small renal carcinoma and angiomyolipoma.

    PubMed

    Chen, Lin; Wang, Ling; Diao, Xuehong; Qian, Weiqing; Fang, Liang; Pang, Yun; Zhan, Jia; Chen, Yue

    2015-08-01

    The aim of this study was to explore the value of contrast-enhanced ultrasound (CEUS) in differentiating small renal masses. A total of 102 small renal masses (≤ 3 cm) in 99 patients were examined using conventional ultrasound (CUS) and CEUS, and the findings were reviewed and evaluated in comparison to pathology. Significant differences between renal cell carcinomas (RCCs) and angiomyolipomas (AMLs) were noted in terms of the orientation and echogenicity on CUS (p < 0.05 for both), but the location, shape, margins, homogeneity, and blood flow signals of RCCs on color Doppler flow imaging (CDFI) were similar to those of AMLs (p > 0.05 for all). On CEUS, however, the enhancement intensity, washout in the late phase, and perilesional rim-like enhancement differed significantly for RCCs and AMLs (p = 0.000 for all). Significant differences between CEUS and CUS in terms of sensitivity (88.9% vs. 55.6%), the negative predictive value (68.0% vs. 29.5%), the false negative rate (9.9% vs. 44.5%), and accuracy (88.3% vs. 58.9%) were noted (p < 0.05 for all). CEUS, with its unique features, has value in diagnosing small RCCs and AMLs and outperforms CUS in differentiation of small RCCs and AMLs.

  17. Diagnostic Laparoscopy with Ultrasound Still Has a Role in the Staging of Pancreatic Cancer: A Systematic Review of the Literature

    PubMed Central

    Levy, Jordan; Tahiri, Mehdi; Vanounou, Tsafrir; Maimon, Geva; Bergman, Simon

    2016-01-01

    Background. The reported incidence of noncurative laparotomies for pancreatic cancer using standard imaging (SI) techniques for staging remains high. The objectives of this study are to determine the diagnostic accuracy of diagnostic laparoscopy with ultrasound (DLUS) in assessing resectability of pancreatic tumors. Study Design. We systematically searched the literature for prospective studies investigating the accuracy of DLUS in determining resectability of pancreatic tumors. Results. 104 studies were initially identified and 19 prospective studies (1,573 patients) were included. DLUS correctly predicted resectability in 79% compared to 55% for SI. DLUS prevented noncurative laparotomies in 33%. Of those, the most frequent DLUS findings precluding resection were liver metastases, vascular involvement, and peritoneal metastases. DLUS had a morbidity rate of 0.8% with no mortalities. DLUS remained superior to SI when analyzing studies published only in the last five years (100% versus 81%), enrolling patients after the year 2000 (74% versus 58%), or comparing DLUS to modern multidimensional CT (100% versus 78%). Conclusion. DLUS seems to still have a role in the preoperative staging of pancreatic cancer. With its ability to detect liver metastases, vascular involvement, and peritoneal metastases, the use of DLUS leads to less noncurative laparotomies. PMID:27122655

  18. Diagnostic accuracy of integrated intravascular ultrasound and optical coherence tomography (IVUS-OCT) system for coronary plaque characterization

    NASA Astrophysics Data System (ADS)

    Li, Jiawen; Ma, Teng; Mohar, Dilbahar; Correa, Adrian; Minami, Hataka; Jing, Joseph; Zhou, Qifa; Patel, Pranav M.; Chen, Zhongping

    2014-03-01

    Intravascular ultrasound (IVUS) imaging and optical coherence tomography (OCT), two commonly used intracoronary imaging modalities, play important roles in plaque evaluation. The combined use of IVUS (to visualize the entire plaque volume) and OCT (to quantify the thickness of the plaque cap, if any) is hypothesized to increase plaque diagnostic accuracy. Our group has developed a fully-integrated dual-modality IVUS-OCT imaging system and 3.6F catheter for simultaneous IVUS-OCT imaging with a high resolution and deep penetration depth. However, the diagnostic accuracy of an integrated IVUS-OCT system has not been investigated. In this study, we imaged 175 coronary artery sites (241 regions of interest) from 20 cadavers using our previous reported integrated IVUS-OCT system. IVUS-OCT images were read by two skilled interventional cardiologists. Each region of interest was classified as either calcification, lipid pool or fibrosis. Comparing the diagnosis by cardiologists using IVUSOCT images with the diagnosis by the pathologist, we calculated the sensitivity and specificity for characterization of calcification, lipid pool or fibrosis with this integrated system. In vitro imaging of cadaver coronary specimens demonstrated the complementary nature of these two modalities for plaques classification. A higher accuracy was shown than using a single modality alone.

  19. Ultrasound pregnancy

    MedlinePlus

    Pregnancy sonogram; Obstetric ultrasonography; Obstetric sonogram; Ultrasound - pregnancy; IUGR - ultrasound; Intrauterine growth - ultrasound; Polyhydramnios - ultrasound; Oligohydramnios - ultrasound; ...

  20. Transvaginal ultrasound

    MedlinePlus

    ... Uterine bleeding - transvaginal ultrasound; Menstrual bleeding - transvaginal ultrasound; Infertility - transvaginal ultrasound; Ovarian - transvaginal ultrasound; Abscess - transvaginal ultrasound

  1. Medical Diagnostic Breath Analysis by Cavity Ring Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Guss, Joseph S.; Metsälä, Markus; Halonen, Lauri

    2009-06-01

    Certain medical conditions give rise to the presence of chemicals in the bloodstream. These chemicals - known as biomarkers - may also be present in low concentrations in human breath. Cavity ring down spectroscopy possesses the requisite selectivity and sensitivity to detect such biomarkers in the congested spectrum of a breath sample. The ulcer-causing bacterium, Helicobacter pylori, is a prolific producer of the enzyme urease, which catalyses the breakdown of urea ((NH_2)_2CO) in the stomach as follows: (NH_2)_2CO + H_2O ⟶ CO_2 + 2NH_3 Currently, breath tests seeking altered carbon-isotope ratios in exhaled CO_2 after the ingestion of ^{13}C- or ^{14}C-labeled urea are used to diagnose H. pylori infection. We present recent results from an ongoing collaboration with Tampere Area University Hospital. The study involves 100 patients (both infected and uninfected) and concerns the possible correlation between the bacterial infection and breath ammonia. D. Y. Graham, P. D. Klein, D. J. Evans, Jr, D. G. Evans, L. C. Alpert, A. R. Opekun, T. W. Boutton, Lancet 1(8543), 1174-7 March 1987.

  2. Photoionization sensor CES for non-invasive medical diagnostics

    NASA Astrophysics Data System (ADS)

    Mustafaev, Aleksandr; Rastvorova, Iuliia; Khobnya, Kristina; Podenko, Sofia

    2016-10-01

    Method CES (collisional electron spectroscopy), patented in Russia, the USA, Japan, China, Germany and Britain, allows to analyze the gaseous mixtures using electron spectroscopy under high pressures up to atmospheric without using vacuum. The design of VUV photoionization detector was developed based on this method. Such detector is used as a portable gas analyzer for continuous personal bio-medical monitoring. This detector measures energy of electrons produced in ionization with resonance photons, whose wavelength situated in the vacuum ultraviolet (VUV). Nowadays, micro plasma source of such photons on resonant line of Kr with energy of 10,6 eV is developed. Only impurities are ionized and detected by the VUV-emission, meanwhile the main components of air stay neutral that reduces background signal and increases the sensibility along with accuracy. The experimental facilities with VUV photoionization sensors CES are constructed with the overall sizes about 10*10*1 mm. The watt consumption may comprise less than 1W. Increase of electrometer amplifier's sensibility and more high-aperture construction are used today to increase the sensibility of CES-detectors. The wide range of detectable molecules and high sensitivity allow the development of portable device, which can become the base of the future preventive medicine. Work supported by Foundation for Assistance to Small Innovative Enterprises in Science and Technology.

  3. Crossing the Great Divide: Adoption of New Technologies, Therapeutics and Diagnostics at Academic Medical Centers

    ERIC Educational Resources Information Center

    DeMonaco, Harold J.; Koski, Greg

    2007-01-01

    The role of new technology in healthcare continues to expand from both the clinical and financial perspectives. Despite the importance of innovation, most academic medical centers do not have a clearly defined process for technology assessment. Recognizing the importance of new drugs, diagnostics and procedures in the care of patients and in the…

  4. Principles for new optical techniques in medical diagnostics for mHealth applications

    NASA Astrophysics Data System (ADS)

    Balsam, Joshua Michael

    Medical diagnostics is a critical element of effective medical treatment. However, many modern and emerging diagnostic technologies are not affordable or compatible with the needs and conditions found in low-income and middle-income countries and regions. Resource-poor areas require low-cost, robust, easy-to-use, and portable diagnostics devices compatible with telemedicine (i.e. mHealth) that can be adapted to meet diverse medical needs. Many suitable devices will need to be based on optical technologies, which are used for many types of biological analyses. This dissertation describes the fabrication and detection principles for several low-cost optical technologies for mHealth applications including: (1) a webcam based multi-wavelength fluorescence plate reader, (2) a lens-free optical detector used for the detection of Botulinum A neurotoxin activity, (3) a low cost micro-array reader that allows the performance of typical fluorescence based assays demonstrated for the detection of the toxin staphylococcal enterotoxin (SEB), and (4) a wide-field flow cytometer for high throughput detection of fluorescently labeled rare cells. This dissertation discusses how these technologies can be harnessed using readily available consumer electronics components such as webcams, cell phones, CCD cameras, LEDs, and laser diodes. There are challenges in developing devices with sufficient sensitivity and specificity, and approaches are presented to overcoming these challenges to create optical detectors that can serve as low cost medical diagnostics in resource-poor settings for mHealth.

  5. Predictive Modeling of Student Performances for Retention and Academic Support in a Diagnostic Medical Sonography Program

    ERIC Educational Resources Information Center

    Borghese, Peter; Lacey, Sandi

    2014-01-01

    As part of a retention and academic support program, data was collected to develop a predictive model of student performances in core classes in a Diagnostic Medical Sonography (DMS) program. The research goal was to identify students likely to have difficulty with coursework and provide supplemental tutorial support. The focus was on the…

  6. Correlation of acoustic emissions associated with effects from diagnostic and therapeutic ultrasound

    NASA Astrophysics Data System (ADS)

    Samuel, Stanley

    2007-12-01

    This research has investigated the correlation of acoustic emissions with associated contrast-mediated ultrasound bio-effects. The hypothesis that motivated this study was that during exposure with ultrasound, the cavitation occurring in tissue emits acoustical signals, which if correlated with specific bio-effects, could provide a way to monitor the potential bio-effects of exposure. A good bio-effects indicator would find immediate use in research on drug and gene delivery, and could have clinical application in avoiding bio-effects in diagnosis. Studies conducted to test the hypothesis involved investigation of (i) the influence of pulse repetition frequency (PRF) and number of exposures on cell damage, (ii) the effect of total exposure duration and pulse-to-pulse bubble distribution on acoustic emissions and corresponding cell damage, and (iii) the translation of in vitro effects to an in situ environment. Exposures were primarily conducted at a peak rarefactional pressure of 2 MPa, 2.25 MHz insonating frequency and pulse length of 46 cycles. PRFs of 1-, 10-, 100-, 500-, and 1000 Hz were compared. High speed photography (2000 fps) was employed for the investigation of pulse-to-pulse bubble distribution while intravital microscopy was used for in situ studies. A strong correlation was observed between acoustic emissions and bio-effects with the availability of bubbles of resonant size serving as a key link between the two. It was observed that total exposure duration may play an important role in cell damage. Damage increased with increasing total exposure duration from 0 ms to 100 ms with a plateau at above 100 ms. These results were consistent for all studies. There is, therefore, an implication that manipulating these parameters may allow for measurement and control of the extent of bioeffects. Moreover, the correlation of acoustic emission and extravasation observed in in situ studies reveals that cumulative function of the relative integrated power spectrum

  7. Development and characterization of hollow polymeric microcapsules for use as contrast agents for diagnostic ultrasound

    NASA Astrophysics Data System (ADS)

    Narayan, Padma Jyothi

    1999-09-01

    This thesis concerns the development and characterization of a new type of rigid-shelled ultrasound contrast agent. A novel method was devised for producing hollow, gas- filled, polymer microcapsules, sized to less than 10 μm in diameter for contrast imaging. This method involved the encapsulation of a solid, volatile core material, and its subsequent evacuation by sublimation. The biodegradable polymer, 50/50 poly(D,L-lactide-co- glycolide), was the main focus of this study. Polymer- based contrast agents have many advantages, such as their applicability for concomitant imaging and drug delivery. Three encapsulation techniques were evaluated: solvent evaporation, coacervation, and spray drying. The polymer molecular weight and polydispersity in the solvent evaporation and coacervation techniques strongly affected microcapsule size and morphology. Efficient mechanical agitation and shear were crucial for obtaining high yields in the desired size range (less than 6 μm). In spray drying, a factorial design approach was used to optimize conditions to produce microcapsules. The main factors affecting spray drying were found to be the temperature driving force for drying and initial polymer concentration. The smallest microcapsule mean diameters were produced by spray drying (3-4 μm) and solvent evaporation (5-6 μm). Zeta potential (ζ) studies for all microcapsule types indicated that the encapsulation technique affected their surface properties due to the orientation of the polymer chains within nascent polymer droplets. Microcapsules with the most hydrophilic tendency were produced with solvent evaporation (ζ ~ -50 mV). In vitro acoustic testing revealed that the 20-41 μm size fractions of coacervate microcapsules were the most echogenic. In vivo ultrasound studies with both solvent evaporation and coacervate microcapsules showed visible enhancement of the color Doppler image in the rabbit kidney for the samples less than 10 μm in diameter. A mathematical

  8. Implementing RECONSIDER, a diagnostic prompting computer system, at the Georgetown University Medical Center.

    PubMed

    Broering, N C; Corn, M; Ayers, W R; Mistry, P

    1988-04-01

    RECONSIDER, a computer program for diagnostic prompting developed at the University of California, San Francisco, has been implemented at the Georgetown University Medical Center as part of the Integrated Academic Information Management System Model Development grant project supported by the National Library of Medicine. The system is available for student use in the Biomedical Information Resources Center of the Dahlgren Memorial Library. Instruction on use of the computer system is provided by the library and instruction on medical use of the knowledge base is directed by the faculty. The implementation, capabilities, enhancements such as the addition of Current Medical Information and Terminology (5th ed.), and evaluation of the system are reported.

  9. Introducing a Fresh Cadaver Model for Ultrasound-guided Central Venous Access Training in Undergraduate Medical Education

    PubMed Central

    Miller, Ryan; Ho, Hang; Ng, Vivienne; Tran, Melissa; Rappaport, Douglas; Rappaport, William J.A.; Dandorf, Stewart J.; Dunleavy, James; Viscusi, Rebecca; Amini, Richard

    2016-01-01

    Introduction Over the past decade, medical students have witnessed a decline in the opportunities to perform technical skills during their clinical years. Ultrasound-guided central venous access (USG-CVA) is a critical procedure commonly performed by emergency medicine, anesthesia, and general surgery residents, often during their first month of residency. However, the acquisition of skills required to safely perform this procedure is often deficient upon graduation from medical school. To ameliorate this lack of technical proficiency, ultrasound simulation models have been introduced into undergraduate medical education to train venous access skills. Criticisms of simulation models are the innate lack of realistic tactile qualities, as well as the lack of anatomical variances when compared to living patients. The purpose of our investigation was to design and evaluate a life-like and reproducible training model for USG-CVA using a fresh cadaver. Methods This was a cross-sectional study at an urban academic medical center. An 18-point procedural knowledge tool and an 18-point procedural skill evaluation tool were administered during a cadaver lab at the beginning and end of the surgical clerkship. During the fresh cadaver lab, procedure naïve third-year medical students were trained on how to perform ultrasound-guided central venous access of the femoral and internal jugular vessels. Preparation of the fresh cadaver model involved placement of a thin-walled latex tubing in the anatomic location of the femoral and internal jugular vein respectively. Results Fifty-six third-year medical students participated in this study during their surgical clerkship. The fresh cadaver model provided high quality and lifelike ultrasound images despite numerous cannulation attempts. Technical skill scores improved from an average score of 3 to 12 (p<0.001) and procedural knowledge scores improved from an average score of 4 to 8 (p<0.001). Conclusion The use of this novel cadaver

  10. Formal Art Observation Training Improves Medical Students’ Visual Diagnostic Skills

    PubMed Central

    Naghshineh, Sheila; Hafler, Janet P.; Miller, Alexa R.; Blanco, Maria A.; Lipsitz, Stuart R.; Dubroff, Rachel P.; Khoshbin, Shahram

    2008-01-01

    Background Despite evidence of inadequate physical examination skills among medical students, teaching these skills has declined. One method of enhancing inspection skills is teaching “visual literacy,” the ability to reason physiology and pathophysiology from careful and unbiased observation. Objective To improve students’ visual acumen through structured observation of artworks, understanding of fine arts concepts and applying these skills to patient care. Design Prospective, partially randomized pre- vs. post-course evaluation using mixed-methods data analysis. Participants Twenty-four pre-clinical student participants were compared to 34 classmates at a similar stage of training. Intervention Training the Eye: Improving the Art of Physical Diagnosis consists of eight paired sessions of art observation exercises with didactics that integrate fine arts concepts with physical diagnosis topics and an elective life drawing session. Measurements The frequency of accurate observations on a 1-h visual skills examination was used to evaluate pre- vs. post-course descriptions of patient photographs and art imagery. Content analysis was used to identify thematic categories. All assessments were blinded to study group and pre- vs. post-course evaluation. Results Following the course, class participants increased their total mean number of observations compared to controls (5.41 ± 0.63 vs. 0.36 ± 0.53, p < 0.0001) and had increased sophistication in their descriptions of artistic and clinical imagery. A ‘dose-response’ was found for those who attended eight or more sessions, compared to participants who attended seven or fewer sessions (6.31 + 0.81 and 2.76 + 1.2, respectively, p = 0.03). Conclusions This interdisciplinary course improved participants’ capacity to make accurate observations of art and physical findings. Electronic supplementary material The online version of this article (doi:10.1007/s11606-008-0667-0) contains

  11. Abdominal ultrasound (image)

    MedlinePlus

    Abdominal ultrasound is a scanning technique used to image the interior of the abdomen. Like the X-ray, MRI, ... it has its place as a diagnostic tool. Ultrasound scans use high frequency sound waves to produce ...

  12. Smart Ultrasound Remote Guidance Experiment (SURGE) Preliminary Findings

    NASA Technical Reports Server (NTRS)

    Hurst, Victor; Dulchavsky, Scott; Garcia, Kathleen; Sargsyan, Ashot; Ebert, Doug

    2009-01-01

    To date, diagnostic quality ultrasound images were obtained aboard the International Space Station (ISS) using the ultrasound of the Human Research Facility (HRF) rack in the Laboratory module. Through the Advanced Diagnostic Ultrasound in Microgravity (ADUM) and the Braslet-M Occlusion Cuffs (BRASLET SDTO) studies, non-expert ultrasound operators aboard the ISS have performed cardiac, thoracic, abdominal, vascular, ocular, and musculoskeletal ultrasound assessments using remote guidance from ground-based ultrasound experts. With exploration class missions to the lunar and Martian surfaces on the horizon, crew medical officers will necessarily need to operate with greater autonomy given communication delays (round trip times of up to 5 seconds for the Moon and 90 minutes for Mars) and longer periods of communication blackouts (due to orbital constraints of communication assets). The SURGE project explored the feasibility and training requirements of having non-expert ultrasound operators perform autonomous ultrasound assessments in a simulated exploration mission outpost. The project aimed to identify experience, training, and human factors requirements for crew medical officers to perform autonomous ultrasonography. All of these aims pertained to the following risks from the NASA Bioastronautics Road Map: 1) Risk 18: Major Illness and Trauna; 2) Risk 20) Ambulatory Care; 3) Risk 22: Medical Informatics, Technologies, and Support Systems; and 4) Risk 23: Medical Skill Training and Maintenance.

  13. SMS-Based Medical Diagnostic Telemetry Data Transmission Protocol for Medical Sensors

    PubMed Central

    Townsend, Ben; Abawajy, Jemal; Kim, Tai-Hoon

    2011-01-01

    People with special medical monitoring needs can, these days, be sent home and remotely monitored through the use of data logging medical sensors and a transmission base-station. While this can improve quality of life by allowing the patient to spend most of their time at home, most current technologies rely on hardwired landline technology or expensive mobile data transmissions to transmit data to a medical facility. The aim of this paper is to investigate and develop an approach to increase the freedom of a monitored patient and decrease costs by utilising mobile technologies and SMS messaging to transmit data from patient to medico. To this end, we evaluated the capabilities of SMS and propose a generic communications protocol which can work within the constraints of the SMS format, but provide the necessary redundancy and robustness to be used for the transmission of non-critical medical telemetry from data logging medical sensors. PMID:22163845

  14. Speckle reduction in ultrasound medical images using adaptive filter based on second order statistics.

    PubMed

    Thakur, A; Anand, R S

    2007-01-01

    This article discusses an adaptive filtering technique for reducing speckle using second order statistics of the speckle pattern in ultrasound medical images. Several region-based adaptive filter techniques have been developed for speckle noise suppression, but there are no specific criteria for selecting the region growing size in the post processing of the filter. The size appropriate for one local region may not be appropriate for other regions. Selection of the correct region size involves a trade-off between speckle reduction and edge preservation. Generally, a large region size is used to smooth speckle and a small size to preserve the edges into an image. In this paper, a smoothing procedure combines the first order statistics of speckle for the homogeneity test and second order statistics for selection of filters and desired region growth. Grey level co-occurrence matrix (GLCM) is calculated for every region during the region contraction and region growing for second order statistics. Further, these GLCM features determine the appropriate filter for the region smoothing. The performance of this approach is compared with the aggressive region-growing filter (ARGF) using edge preservation and speckle reduction tests. The processed image results show that the proposed method effectively reduces speckle noise and preserves edge details.

  15. Eigenfunction analysis of stochastic backscatter for characterization of acoustic aberration in medical ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Varslot, Trond; Krogstad, Harald; Mo, Eirik; Angelsen, Bjørn A.

    2004-06-01

    Presented here is a characterization of aberration in medical ultrasound imaging. The characterization is optimal in the sense of maximizing the expected energy in a modified beamformer output of the received acoustic backscatter. Aberration correction based on this characterization takes the form of an aberration correction filter. The situation considered is frequently found in applications when imaging organs through a body wall: aberration is introduced in a layer close to the transducer, and acoustic backscatter from a scattering region behind the body wall is measured at the transducer surface. The scattering region consists of scatterers randomly distributed with very short correlation length compared to the acoustic wavelength of the transmit pulse. The scatterer distribution is therefore assumed to be δ correlated. This paper shows how maximizing the expected energy in a modified beamformer output signal naturally leads to eigenfunctions of a Fredholm integral operator, where the associated kernel function is a spatial correlation function of the received stochastic signal. Aberration characterization and aberration correction are presented for simulated data constructed to mimic aberration introduced by the abdominal wall. The results compare well with what is obtainable using data from a simulated point source.

  16. Eigenfunction analysis of stochastic backscatter for aberration correction in medical ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Varslot, Trond; Mo, Eirik; Krogstad, Harald; Angelsen, Bjørn

    2004-05-01

    A filter for aberration correction in medical ultrasound imaging is presented. The filter is optimal in the sense of maximizing the expected energy in a modified beamformer output of the received acoustic backscatter. The situation considered is frequently found in applications when imaging organs through a body wall: aberration is introduced in a layer close to the transducer, and acoustic backscatter from a scattering region behind the body wall is measured at the transducer surface. The scattering region consists of scatterers randomly distributed with very short correlation length compared to the acoustic wave length of the transmit pulse. The scatterer distribution is therefore assumed to be δ-correlated. Theoretical considerations imply that maximizing the expected energy in a modified beamformer output signal naturally leads to eigenfunctions of a Fredholm integral operator, where the associated kernel function is a spatial correlation function of the received stochastic signal. Aberration characterization and aberration correction have been studied for simulated data constructed to mimic aberration introduced by the abdominal wall. The results compare well with what is obtained using a diffraction limited time-reversal filter based on simulated point source data.

  17. High-contrast and low-computational complexity medical ultrasound imaging using beamspace capon method.

    PubMed

    Okumura, Shigeaki; Taki, Hirofumi; Sato, Toru

    2015-01-01

    Several adaptive beamforming techniques have been proposed to improve the quality of medical ultrasound images. The beamspace (BS) Capon method is one common method used to depict high-resolution images with low computational complexity. However, the complexity is not low enough for real-time imaging in clinical situations because the conventional BS Capon method employs a time-delay process and a transition process from elementspace signal processing to BS signal processing at all points of interest. Thus, we propose a technique that replaces the time-delay process using a steering vector. In addition, the Capon method employs a spatial averaging (SA) technique to stabilize the estimation in intensity. However, when the averaging size is not adequate, the estimated intensity might be smaller than that given by the delay-and-sum (DAS) method. Because most medical diagnoses are presented based on the estimation of intensity acquired by the DAS beamformer, accurate estimation of intensity is also required. Therefore, we propose a compensation technique that uses both small and large sizes for SA. In an experiment, the -6 dB beam width, sidelobe level, and estimation error in the intensity of the proposed method were 0.17 mm, -27 dB, and 0.92 dB, respectively, where those of the conventional BS Capon method were 0.29 mm, -22 dB, and 8.1 dB. The complexity of the proposed method is one-fourteenth that of the conventional method. Compared with conventional methods, the proposed method succeeded in depicting a higher-contrast image with accurate intensity estimation and lower computational complexity.

  18. Children’s Exposure to Diagnostic Medical Radiation and Cancer Risk: Epidemiologic and Dosimetric Considerations

    PubMed Central

    Linet, Martha S.; Kim, Kwang pyo; Rajaraman, Preetha

    2009-01-01

    While the etiology of most childhood cancers is largely unknown, epidemiologic studies have consistently found an association between exposure to medical radiation during pregnancy and risk of childhood cancer in offspring. The relation between early life diagnostic radiation exposure and occurrence of pediatric cancer risks is less clear. This review summarizes current and historical estimated doses for common diagnostic radiologic procedures as well as the epidemiologic literature on the role of maternal prenatal, children’s postnatal and parental preconception diagnostic radiologic procedures on subsequent risk of childhood malignancies Risk estimates are presented according to factors such as the year of birth of the child, trimester and medical indication for the procedure, and the number of films taken. The paper also discusses limitations of the methods employed in epidemiologic studies to assess pediatric cancer risks, the effects on clinical practice of the results reported from the epidemiologic studies, and clinical and public health policy implications of the findings. Gaps in understanding and additional research needs are identified. Important research priorities include nationwide surveys to estimate fetal and childhood radiation doses from common diagnostic procedures, and epidemiologic studies to quantify pediatric and lifetime cancer risks from prenatal and early childhood exposures to diagnostic radiography, computed tomography, and fluoroscopically-guided procedures. PMID:19083224

  19. Diagnostic accuracy of ovarian cyst segmentation in B-mode ultrasound images

    NASA Astrophysics Data System (ADS)

    Bibicu, Dorin; Moraru, Luminita; Stratulat (Visan), Mirela

    2013-11-01

    Cystic and polycystic ovary syndrome is an endocrine disorder affecting women in the fertile age. The Moore Neighbor Contour, Watershed Method, Active Contour Models, and a recent method based on Active Contour Model with Selective Binary and Gaussian Filtering Regularized Level Set (ACM&SBGFRLS) techniques were used in this paper to detect the border of the ovarian cyst from echography images. In order to analyze the efficiency of the segmentation an original computer aided software application developed in MATLAB was proposed. The results of the segmentation were compared and evaluated against the reference contour manually delineated by a sonography specialist. Both the accuracy and time complexity of the segmentation tasks are investigated. The Fréchet distance (FD) as a similarity measure between two curves and the area error rate (AER) parameter as the difference between the segmented areas are used as estimators of the segmentation accuracy. In this study, the most efficient methods for the segmentation of the ovarian were analyzed cyst. The research was carried out on a set of 34 ultrasound images of the ovarian cyst.

  20. Resident-Perceived Benefit of a Diagnostic and Interventional Musculoskeletal Ultrasound Curriculum

    PubMed Central

    Luz, Jennifer; Siddiqui, Imran; Jain, Nitin B.; Kohler, Minna J.; Donovan, Jayne; Gerrard, Paul; Borg-Stein, Joanne

    2016-01-01

    Musculoskeletal ultrasound (MSUS) training is now a required component of physiatry residency, but formal curriculum guidelines are not yet required or established. The authors’ objective was to assess the educational value of a collaborative residency MSUS training program. The authors designed a structured MSUS training curriculum for residents based on the authors’ experience and previous literature. Twenty-five residents participated in this MSUS curriculum designed by faculty and chief residents. Resident volunteers were trained by the faculty as “table trainers” who taught their peers in small groups. Handson MSUS training sessions were led by a Physical Medicine and Rehabilitation faculty MSUS expert. A Likert scale–formatted questionnaire assessed resident-perceived value of the curriculum. Response rate was 96% (22 of 23). Self-reported MSUS knowledge comparing precurriculum and postcurriculum implementation resulted in significant improvement (P = 0.001). Peer teaching was highly valued, with 86% of residents rating it “very” or “extremely” beneficial (mean [SD] score, 3.9 [1.1]). Self-guided learning, by supplemental scanning and reading, was rated “beneficial” or “very beneficial” by 73% of residents (3.0 [0.7]). The authors’ successful pilot program may serve as a teaching model for other residency programs. PMID:26098924

  1. Texture Analysis of Supraspinatus Ultrasound Image for Computer Aided Diagnostic System

    PubMed Central

    Park, Byung Eun; Jang, Won Seuk

    2016-01-01

    Objectives In this paper, we proposed an algorithm for recognizing a rotator cuff supraspinatus tendon tear using a texture analysis based on a histogram, gray level co-occurrence matrix (GLCM), and gray level run length matrix (GLRLM). Methods First, we applied a total of 57 features (5 first order descriptors, 40 GLCM features, and 12 GLRLM features) to each rotator cuff region of interest. Our results show that first order statistics (mean, skewness, entropy, energy, smoothness), GLCM (correlation, contrast, energy, entropy, difference entropy, homogeneity, maximum probability, sum average, sum entropy), and GLRLM features are helpful to distinguish a normal supraspinatus tendon and an abnormal supraspinatus tendon. The statistical significance of these features is verified using a t-test. The support vector machine classification showed accuracy using feature combinations. Support Vector Machine offers good performance with a small amount of training data. Sensitivity, specificity, and accuracy are used to evaluate performance of a classification test. Results From the results, first order statics features and GLCM and GLRLM features afford 95%, 85%, and 100% accuracy, respectively. First order statistics and GLCM and GLRLM features in combination provided 100% accuracy. Combinations that include GLRLM features had high accuracy. GLRLM features were confirmed as highly accurate features for classified normal and abnormal. Conclusions This algorithm will be helpful to diagnose supraspinatus tendon tear on ultrasound images. PMID:27895962

  2. Comparison of Inter-Observer Variability and Diagnostic Performance of the Fifth Edition of BI-RADS for Breast Ultrasound of Static versus Video Images.

    PubMed

    Youk, Ji Hyun; Jung, Inkyung; Yoon, Jung Hyun; Kim, Sung Hun; Kim, You Me; Lee, Eun Hye; Jeong, Sun Hye; Kim, Min Jung

    2016-09-01

    Our aim was to compare the inter-observer variability and diagnostic performance of the Breast Imaging Reporting and Data System (BI-RADS) lexicon for breast ultrasound of static and video images. Ninety-nine breast masses visible on ultrasound examination from 95 women 19-81 y of age at five institutions were enrolled in this study. They were scheduled to undergo biopsy or surgery or had been stable for at least 2 y of ultrasound follow-up after benign biopsy results or typically benign findings. For each mass, representative long- and short-axis static ultrasound images were acquired; real-time long- and short-axis B-mode video images through the mass area were separately saved as cine clips. Each image was reviewed independently by five radiologists who were asked to classify ultrasound features according to the fifth edition of the BI-RADS lexicon. Inter-observer variability was assessed using kappa (κ) statistics. Diagnostic performance on static and video images was compared using the area under the receiver operating characteristic curve. No significant difference was found in κ values between static and video images for all descriptors, although κ values of video images were higher than those of static images for shape, orientation, margin and calcifications. After receiver operating characteristic curve analysis, the video images (0.83, range: 0.77-0.87) had higher areas under the curve than the static images (0.80, range: 0.75-0.83; p = 0.08). Inter-observer variability and diagnostic performance of video images was similar to that of static images on breast ultrasonography according to the new edition of BI-RADS.

  3. [Systematic teaching of differential diagnostics and information retrieval in medical education--a controlled study].

    PubMed

    Renko, Marjo; Soini, Hannu; Rantala, Heikki; Tapiainen, Terhi; Pokka, Tytti; Uhari, Matti

    2010-01-01

    Teaching of differential diagnostic skills in medical education is often nonsystematic and touched only in a disease-based manner in the context of patient cases. We conducted a controlled study, in which a portion of fifth year students received systematic teaching of differential diagnostics and information retrieval for a period of ten weeks, whereas another portion continued in conventional basic training. We tested the students' problem-solving skills in both groups with a computer-assisted test. Students in the intervention group were more successful in the test and settled on the correct diagnosis more often than students in the control group.

  4. Droplets, Bubbles and Ultrasound Interactions.

    PubMed

    Shpak, Oleksandr; Verweij, Martin; de Jong, Nico; Versluis, Michel

    2016-01-01

    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to circulate within blood vessels. Perfluorocarbon liquid droplets can be a potential new generation of microbubble agents as ultrasound can trigger their conversion into gas bubbles. Prior to activation, they are at least five times smaller in diameter than the resulting bubbles. Together with the violent nature of the phase-transition, the droplets can be used for local drug delivery, embolotherapy, HIFU enhancement and tumor imaging. Here we explain the basics of bubble dynamics, described by the Rayleigh-Plesset equation, bubble resonance frequency, damping and quality factor. We show the elegant calculation of the above characteristics for the case of small amplitude oscillations by linearizing the equations. The effect and importance of a bubble coating and effective surface tension are also discussed. We give the main characteristics of the power spectrum of bubble oscillations. Preceding bubble dynamics, ultrasound propagation is introduced. We explain the speed of sound, nonlinearity and attenuation terms. We examine bubble ultrasound scattering and how it depends on the wave-shape of the incident wave. Finally, we introduce droplet interaction with ultrasound. We elucidate the ultrasound-focusing concept within a droplets sphere, droplet shaking due to media compressibility and droplet phase-conversion dynamics.

  5. [A preliminary study on data mining techniques for utilizing the breast ultrasound database].

    PubMed

    Peng, Yulan; Zhang, Heqing; Jing, Jigang; Ma, Buyun; Lu, Xiao; Tang, Chong; Nie, Shan; Liu, Ying; Qin, Yuzhou; Luo, Yan

    2010-08-01

    Based on the breast ultrasound database of West China Hospital from January 1, 2002 to December 31, 2007, a study of data mining techniques for utilizing the diagnostic information of breast ultrasound and breast pathology was carried out. An innovative computerized retrieval system was invented. With the visual user interface of the system, the data of benignancy or malignancy diagnosed by ultrasound and pathologic examination, and the data on the diagnostic correlation of ultrasound and pathology were obtained, respectively. The qualities of data mining were 99. 98%-100%. By means of the retrieval system, the users can secure numerous data from the breast ultrasound database rapidly and accurately; so it contributes to the rational utilization of information from medical database for serving various medical studies. This method may also be helpful for doctors to utilize ultrasound database in other fields.

  6. The Diagnostic Accuracy of Linear Endoscopic Ultrasound for Evaluating Symptoms Suggestive of Common Bile Duct Stones

    PubMed Central

    He, Xu; Li, Jian; Min, Feng; Li, Hong-yan

    2016-01-01

    Background. In order to assess the diagnostic accuracy of linear EUS for evaluating clinically suggestive CBD stones in high-risk groups. Methods. 202 patients with clinically suggestive CBD stones in high-risk groups who underwent linear EUS examination between January 2012 and January 2015 were retrospectively reviewed. Endoscopic retrograde cholangiopancreatography (ERCP) with stone extraction or surgical choledochoscopy was only performed when a CBD stone was detected by linear EUS. Cases that were negative for CBD stones were followed up for at least 6 months. Results. Of 202 enrolled patients, 126 were positive for CBD stones according to linear EUS findings. 124 patients successfully underwent ERCP, and ERCP failed in 2 who were later successfully treated by surgical intervention. There were 2 false-positive cases with positive findings for CBD stones on ERCP. Among 76 patients without CBD stones, no false-negative cases were identified during the mean 6-month follow-up. Linear EUS had sensitivity, specificity, and positive and negative predictive values for the detection of CBD stones of 100%, 92.88%, 98.21%, and 100%, respectively. Conclusions. Linear EUS is a safe and efficacious diagnostic tool for evaluating clinically suggestive CBD stones with high risk of choledocholithiasis. Performing linear EUS prior to ERCP in patients with symptoms suggestive of CBD stones can reduce unnecessary ERCP procedures. PMID:27610131

  7. The Diagnostic Accuracy of Linear Endoscopic Ultrasound for Evaluating Symptoms Suggestive of Common Bile Duct Stones.

    PubMed

    Wang, Min; He, Xu; Tian, Chuan; Li, Jian; Min, Feng; Li, Hong-Yan

    2016-01-01

    Background. In order to assess the diagnostic accuracy of linear EUS for evaluating clinically suggestive CBD stones in high-risk groups. Methods. 202 patients with clinically suggestive CBD stones in high-risk groups who underwent linear EUS examination between January 2012 and January 2015 were retrospectively reviewed. Endoscopic retrograde cholangiopancreatography (ERCP) with stone extraction or surgical choledochoscopy was only performed when a CBD stone was detected by linear EUS. Cases that were negative for CBD stones were followed up for at least 6 months. Results. Of 202 enrolled patients, 126 were positive for CBD stones according to linear EUS findings. 124 patients successfully underwent ERCP, and ERCP failed in 2 who were later successfully treated by surgical intervention. There were 2 false-positive cases with positive findings for CBD stones on ERCP. Among 76 patients without CBD stones, no false-negative cases were identified during the mean 6-month follow-up. Linear EUS had sensitivity, specificity, and positive and negative predictive values for the detection of CBD stones of 100%, 92.88%, 98.21%, and 100%, respectively. Conclusions. Linear EUS is a safe and efficacious diagnostic tool for evaluating clinically suggestive CBD stones with high risk of choledocholithiasis. Performing linear EUS prior to ERCP in patients with symptoms suggestive of CBD stones can reduce unnecessary ERCP procedures.

  8. Anesthetic Techniques Influence the Induction of Pulmonary Capillary Hemorrhage During Diagnostic Ultrasound Scanning in Rats

    PubMed Central

    Miller, Douglas L.; Dou, Chunyan; Raghavendran, Krishnan

    2015-01-01

    Objectives Puhnonary apillary hemorrhage can be induced by diagnostic ultrasonnd (US) during direct pulmonary US scanning in rats. The influence of specific anesthetic tedmiques on this bioeffect was examined. Methods Ketamine plus xylazine has been used previously. In this study, the influence of intraperitoneal injections of ketamine and pentobarbital, inhalational isoflurane, and the supplemental use of xylazine with ketamine and isollurane was tested. A diagnostic US machine with a7.6-MHz linear array was used to image the right lung of anesthetized rats in a warmed water bath at different mechanical index (MI) settings. Pulmonary capillary hemorrhage was assessed by measuring comet tail artifacts in the image and by morphometry of the hemorrhagic areas on excised lungs. Results Pulmonary capillary hemorrhage was greatest for pentobarbital, lower for inhalational isoflurane, and lowest for ketamine anesthesia, with occurrence thresholds at at Mis of about 0.44, 0.8, and 0.8, respectively. Addition of xylazine produced a substantial increaseinhemorrhageanda significant proportion of hemorrhage occurrence for ketamineat an MI of 0.7 (P < .01) and forisofluraneat an MI of 0.52 (P < .01). Conclusions Ketamine plus xylazine and pentobarbital yield lower thresholds than ketamine or isoflurane alone by nearly a factor of 2 in MI. These results suggest that the choice of the anesthetic agent substantially modifies the relative risks of pulmonary capillary hemorrhage from pulmonary US. PMID:25614402

  9. Diagnostic value of CT compared to ultrasound in the evaluation of acute abdominal pain in children younger than 10 years old.

    PubMed

    Simanovsky, Natalia; Dola, Tamar; Hiller, Nurith

    2016-02-01

    To assess the diagnostic value of ultrasound compared to CT in evaluating acute abdominal pain of different causes in children 10 years of age and under, hospital records and imaging files of 4052 patients under age of 10 who had imaging for abdominal pain were reviewed. One-hundred-thirty-two patients (3 %), (74 males/58 females) who underwent ultrasound and CT within 24 h were divided by age: group I, ages 0-48 months (25 patients); group II, 49-84 months (53 patients); and group III, 85-120 months (54 patients). Diagnoses at ultrasound, CT, and discharge were compared. Cases of a change in diagnosis following CT and impact of the changed diagnosis on patient management were assessed. Non-diagnostic ultrasound or a diagnostic conundrum was present in a small percentage (3 %) of our patients. In the group of patients imaged with two modalities, CT changed the diagnosis in 73/132 patients (55.3 %). Patient management changed in 63/132 patients (47.7 %). CT changed the diagnosis in 46/64 patients with surgical conditions (71.8 %, p < 0.001). Among patients with surgical conditions, the difference between ultrasonography (US) and CT diagnoses was significant in groups 2 (p = 0.046) and 3 (p =  .001). The impact of the change in diagnosis in surgical patients imaged with two modalities was significant in the group as a whole and in each age group separately. Non-diagnostic or equivocal US in a small percentage of patients is probably sufficient to justify the additional radiation burden.

  10. Diagnostic value of high-frequency ultrasound and magnetic resonance imaging in early rheumatoid arthritis

    PubMed Central

    Wang, Ming-Yu; Wang, Xian-Bin; Sun, Xue-Hui; Liu, Feng-Li; Huang, Sheng-Chuan

    2016-01-01

    Early diagnosis and management improve the outcome of patients with rheumatoid arthritis (RA). The present study explored the application of high-frequency ultrasound (US) and magnetic resonance imaging (MRI) in the detection of early RA. Thirty-nine patients (20 males and 19 females) diagnosed with early RA were enrolled in the study. A total of 1,248 positions, including 858 hand joints and 390 tendons, were examined by high-frequency US and MRI to evaluate the presence of bone erosion, bone marrow edema (BME), synovial proliferation, joint effusion, tendinitis and tendon sheath edema. The imaging results of the above abnormalities, detected by US, were compared with those identified using MRI. No statistically significant overall changes were observed between high-frequency US and MRI in detecting bone erosion [44 (5.1%) vs. 35 (4.1%), respectively; P>0.05], tendinitis [18 (4.6%) vs. 14 (1.5%), respectively; P>0.05] and tendon sheath edema [37 (9.5%) vs. 30 (7.7%), respectively; P>0.05]. Significant differences were observed between high-frequency US and MRI with regards to the detection of synovial proliferation [132 (15.4%) vs. 66 (7.7%), respectively; P<0.05] and joint effusion [89 (10.4%) vs. 52 (6.1%), respectively; P<0.05]. In addition, significant differences were identified between the detection of BME using MRI compared with high-frequency US (5.5 vs. 0%, respectively; P<0.05). MRI and high-frequency US of the dominant hand and wrist joints were comparably sensitive to bone erosion, tendinitis and tendon sheath edema. However, MRI was more sensitive in detecting bone marrow edema in early RA, while US was more sensitive in the evaluation of joint effusion and synovial proliferation. In conclusion, US and MRI are promising for the detection and diagnosis of inflammatory activity in patients with RA. PMID:27882112

  11. Diagnostic value of high-frequency ultrasound and magnetic resonance imaging in early rheumatoid arthritis.

    PubMed

    Wang, Ming-Yu; Wang, Xian-Bin; Sun, Xue-Hui; Liu, Feng-Li; Huang, Sheng-Chuan

    2016-11-01

    Early diagnosis and management improve the outcome of patients with rheumatoid arthritis (RA). The present study explored the application of high-frequency ultrasound (US) and magnetic resonance imaging (MRI) in the detection of early RA. Thirty-nine patients (20 males and 19 females) diagnosed with early RA were enrolled in the study. A total of 1,248 positions, including 858 hand joints and 390 tendons, were examined by high-frequency US and MRI to evaluate the presence of bone erosion, bone marrow edema (BME), synovial proliferation, joint effusion, tendinitis and tendon sheath edema. The imaging results of the above abnormalities, detected by US, were compared with those identified using MRI. No statistically significant overall changes were observed between high-frequency US and MRI in detecting bone erosion [44 (5.1%) vs. 35 (4.1%), respectively; P>0.05], tendinitis [18 (4.6%) vs. 14 (1.5%), respectively; P>0.05] and tendon sheath edema [37 (9.5%) vs. 30 (7.7%), respectively; P>0.05]. Significant differences were observed between high-frequency US and MRI with regards to the detection of synovial proliferation [132 (15.4%) vs. 66 (7.7%), respectively; P<0.05] and joint effusion [89 (10.4%) vs. 52 (6.1%), respectively; P<0.05]. In addition, significant differences were identified between the detection of BME using MRI compared with high-frequency US (5.5 vs. 0%, respectively; P<0.05). MRI and high-frequency US of the dominant hand and wrist joints were comparably sensitive to bone erosion, tendinitis and tendon sheath edema. However, MRI was more sensitive in detecting bone marrow edema in early RA, while US was more sensitive in the evaluation of joint effusion and synovial proliferation. In conclusion, US and MRI are promising for the detection and diagnosis of inflammatory activity in patients with RA.

  12. A comparison of the diagnostic accuracy of MARS MRI and ultrasound of the painful metal-on-metal hip arthroplasty

    PubMed Central

    Siddiqui, Imran A; Sabah, Shiraz A; Satchithananda, Keshthra; Lim, Adrian K; Cro, Suzie; Henckel, Johann; Skinner, John A

    2014-01-01

    Background and purpose Metal artifact reduction sequence (MARS) MRI and ultrasound scanning (USS) can both be used to detect pseudotumors, abductor muscle atrophy, and tendinous pathology in patients with painful metal-on-metal (MOM) hip arthroplasty. We wanted to determine the diagnostic test characteristics of USS using MARS MRI as a reference for detection of pseudotumors and muscle atrophy. Patients and methods We performed a prospective cohort study to compare MARS MRI and USS findings in 19 consecutive patients with unilateral MOM hips. Protocolized USS was performed by consultant musculoskeletal radiologists who were blinded regarding clinical details. Reports were independently compared with MARS MRI, the imaging gold standard, to calculate predictive values. Results The prevalence of pseudotumors on MARS MRI was 68% (95% CI: 43–87) and on USS it was 53% (CI: 29–76). The sensitivity of USS in detecting pseudotumors was 69% (CI 39–91) and the specificity was 83% (CI: 36–97). The sensitivity of detection of abductor muscle atrophy was 47% (CI: 24–71). In addition, joint effusion was detected in 10 cases by USS and none were seen by MARS MRI. Interpretation We found a poor agreement between USS and MARS MRI. USS was inferior to MARS MRI for detection of pseudotumors and muscle atrophy, but it was superior for detection of joint effusion and tendinous pathologies. MARS MRI is more advantageous than USS for practical reasons, including preoperative planning and longitudinal comparison. PMID:24694273

  13. [Methodical features of the molding of diagnostic competences in medical parasitology workers].

    PubMed

    Dovgalev, A S; Astanina, S Iu; Avdiukhina, T I; Serdiuk, A P; Imamkuliev, K D

    2015-01-01

    The paper provides a rationale for a procedure to mold diagnostic competences in medical workers of the laboratories of therapeutic-and-prophylactic institutions and hygiene and epidemiology centers, Russian Federal Service for Supervision of Consumer Rights Protection and Human Welfare. The methodical features of molding diagnostic competences in the above contingents are the design and organization of an educational process by applying systems integration and competence-based approaches; increased active self-directed learning of audience; a procedure to organize its unsupervised extracurricular activities. Professional habits and skills in laboratory specialists should be molded on the basis of didactic principles and in compliance with the found methodical patterns. The eventual result (molded competences) and its compliance with the practical health care requirements is assessed using all control types (incoming, running, intermediate, and ultimate ones). This ensures the stability and predictability of molding diagnostic competences in parasitology specialists.

  14. Virtual reality aided visualization of fluid flow simulations with application in medical education and diagnostics.

    PubMed

    Djukic, Tijana; Mandic, Vesna; Filipovic, Nenad

    2013-12-01

    Medical education, training and preoperative diagnostics can be drastically improved with advanced technologies, such as virtual reality. The method proposed in this paper enables medical doctors and students to visualize and manipulate three-dimensional models created from CT or MRI scans, and also to analyze the results of fluid flow simulations. Simulation of fluid flow using the finite element method is performed, in order to compute the shear stress on the artery walls. The simulation of motion through the artery is also enabled. The virtual reality system proposed here could shorten the length of training programs and make the education process more effective.

  15. Principles and applications of polymerase chain reaction in medical diagnostic fields: a review

    PubMed Central

    Valones, Marcela Agne Alves; Guimarães, Rafael Lima; Brandão, Lucas André Cavalcanti; de Souza, Paulo Roberto Eleutério; de Albuquerque Tavares Carvalho, Alessandra; Crovela, Sergio

    2009-01-01

    Recent developments in molecular methods have revolutionized the detection and characterization of microorganisms in a broad range of medical diagnostic fields, including virology, mycology, parasitology, microbiology and dentistry. Among these methods, Polymerase Chain Reaction (PCR) has generated great benefits and allowed scientific advancements. PCR is an excellent technique for the rapid detection of pathogens, including those difficult to culture. Along with conventional PCR techniques, Real-Time PCR has emerged as a technological innovation and is playing an ever-increasing role in clinical diagnostics and research laboratories. Due to its capacity to generate both qualitative and quantitative results, Real-Time PCR is considered a fast and accurate platform. The aim of the present literature review is to explore the clinical usefulness and potential of both conventional PCR and Real-Time PCR assays in diverse medical fields, addressing its main uses and advances. PMID:24031310

  16. The quest for 'diagnostically lossless' medical image compression: a comparative study of objective quality metrics for compressed medical images

    NASA Astrophysics Data System (ADS)

    Kowalik-Urbaniak, Ilona; Brunet, Dominique; Wang, Jiheng; Koff, David; Smolarski-Koff, Nadine; Vrscay, Edward R.; Wallace, Bill; Wang, Zhou

    2014-03-01

    Our study, involving a collaboration with radiologists (DK,NSK) as well as a leading international developer of medical imaging software (AGFA), is primarily concerned with improved methods of assessing the diagnostic quality of compressed medical images and the investigation of compression artifacts resulting from JPEG and JPEG2000. In this work, we compare the performances of the Structural Similarity quality measure (SSIM), MSE/PSNR, compression ratio CR and JPEG quality factor Q, based on experimental data collected in two experiments involving radiologists. An ROC and Kolmogorov-Smirnov analysis indicates that compression ratio is not always a good indicator of visual quality. Moreover, SSIM demonstrates the best performance, i.e., it provides the closest match to the radiologists' assessments. We also show that a weighted Youden index1 and curve tting method can provide SSIM and MSE thresholds for acceptable compression ratios.

  17. Appropriate use of diagnostic imaging

    SciTech Connect

    Palmer, P.E.S.; Cockshott, W.P.

    1984-11-16

    This article discusses ways in which more appropriate use can be made of roentgenography with a resulting decrease in radiation doses to the patient population. The authors recommend that fewer films be made and that traditional roentgenography be replaced with endoscopy, ultrasound, computerized tomography, or angiography where appropriate. They also recommend that medical schools and medical subspecialty groups study the World Health Organization document which provides indications for diagnostic imaging, the choice of procedure and the limitations of each.

  18. The ethical imperative to think about thinking - diagnostics, metacognition, and medical professionalism.

    PubMed

    Stark, Meredith; Fins, Joseph J

    2014-10-01

    While the medical ethics literature has well explored the harm to patients, families, and the integrity of the profession in failing to disclose medical errors once they occur, less often addressed are the moral and professional obligations to take all available steps to prevent errors and harm in the first instance. As an expanding body of scholarship further elucidates the causes of medical error, including the considerable extent to which medical errors, particularly in diagnostics, may be attributable to cognitive sources, insufficient progress in systematically evaluating and implementing suggested strategies for improving critical thinking skills and medical judgment is of mounting concern. Continued failure to address pervasive thinking errors in medical decisionmaking imperils patient safety and professionalism, as well as beneficence and nonmaleficence, fairness and justice. We maintain that self-reflective and metacognitive refinement of critical thinking should not be construed as optional but rather should be considered an integral part of medical education, a codified tenet of professionalism, and by extension, a moral and professional duty.

  19. [Curvelet denoising algorithm for medical ultrasound image based on adaptive threshold].

    PubMed

    Zhuang, Zhemin; Yao, Weike; Yang, Jinyao; Li, FenLan; Yuan, Ye

    2014-11-01

    The traditional denoising algorithm for ultrasound images would lost a lot of details and weak edge information when suppressing speckle noise. A new denoising algorithm of adaptive threshold based on curvelet transform is proposed in this paper. The algorithm utilizes differences of coefficients' local variance between texture and smooth region in each layer of ultrasound image to define fuzzy regions and membership functions. In the end, using the adaptive threshold that determine by the membership function to denoise the ultrasound image. The experimental text shows that the algorithm can reduce the speckle noise effectively and retain the detail information of original image at the same time, thus it can greatly enhance the performance of B ultrasound instrument.

  20. Modeling and simulation of ultrasound fields generated by 2D phased array transducers for medical applications.

    PubMed

    Matrone, G; Quaglia, F; Magenes, G

    2010-01-01

    Modern ultrasound imaging instrumentation for clinical applications allows real-time volumetric scanning of the patients' body. 4D imaging has been made possible thanks to the development of new echographic probes which consist in 2D phased arrays of piezoelectric transducers. In these new devices it is the system electronics which properly drives the matrix elements and focuses the beam in order to obtain a sequence of volumetric images. This paper introduces an ultrasound field simulator based on the Spatial Impulse Response method which is being properly developed to analyze the characteristics of the ultrasound field generated by a 2D phased array of transducers. Thanks to its high configurability by the user, it will represent a very useful tool for electronics designers in developing 4D ultrasound imaging systems components.

  1. Measurement of vibration induced by diagnostical ultrasound in an eye model with simulated retina

    NASA Astrophysics Data System (ADS)

    Brand, U.; Mengedoht, Klaus; Pessel, Martin; Paul, M.; Trier, H. G.

    1994-02-01

    The aim of the experiments is the development of a non-invasive technique for determining the location of an ultrasonic focus in the wall of the human eye. This would enable improvements in ultrasonic biometry and in ultrasonic tissue characterization in the eye. For the study, an eye model, consisting of an artificial cornea, a typical intraocular implant lens, and a thin polyethylene pellicle simulating the retinal membrane, was built. The model was irradiated in water by ultrasonic pulses from a medical A-mode transducer for biometry of the eye (single element, piston type, 8 MHz nominal center frequency, 1 kHz pulse repetition rate) and by a laser beam simultaneously. The results encourage further experiments.

  2. Clinical value of contrast-enhanced ultrasound in improving diagnostic accuracy rate of transthoracic biopsy of anterior-medial mediastinal lesions

    PubMed Central

    Fu, Jingjing; Yang, Wei; Wang, Song; Bai, Jing; Wu, Hao; Wang, Haiyue; Yan, Kun; Chen, Minhua

    2016-01-01

    Objective To evaluate the clinical value of contrast-enhanced ultrasound (CEUS) in transthoracic biopsy of anterior-medial mediastinal lesions. Methods A total of 123 patients with anterior or middle mediastinum lesions required ultrasound guided transthoracic biopsy for pathological diagnosis. Among them, 72 patients received CEUS examinations before biopsy. After CEUS, 8 patients were excluded from biopsy and the rest 64 patients underwent biopsy (CEUS group). During the same period, 51 patients received biopsy without CEUS examination (US group). The ultrasonography characteristics, the number of biopsy puncture attempts, diagnostic accuracy rate and the incidence of complications were recorded and compared between the two groups. Results A large portion of necrosis area or superficial large vessels was found in 8 patients, so the biopsy was cancelled. The internal necrosis was demonstrated in 43.8% of the lesions in CEUS group and in 11.8% of US group (P>0.001). For thymic carcinoma, CEUS increased the detection rate of internal necrosis and pericardial effusion than conventional ultrasound (62.5% vs. 18.8%, P=0.012; 56.3% vs. 12.5%, P=0.023). The average number of punctures in CEUS group and US group was 2.36±0.70 and 2.21±0.51 times, respectively (P>0.05). The diagnostic accuracy rate of biopsy in CEUS group (96.9%, 62/64) was significantly higher than that in US group (84.3%, 43/51) (P=0.022). In US group, 2 patients suffered from mediastinal bleeding (3.9%), while no major complications occurred in CEUS group. Conclusions CEUS examination provided important information before transthoracic mediastinum biopsy and improved diagnostic accuracy rate in biopsy of anterior and middle mediastinum lesions than conventional ultrasound. PMID:28174490

  3. Diagnostic agreement when comparing still and video imaging for the medical evaluation of child sexual abuse.

    PubMed

    Killough, Emily; Spector, Lisa; Moffatt, Mary; Wiebe, Jan; Nielsen-Parker, Monica; Anderst, Jim

    2016-02-01

    Still photo imaging is often used in medical evaluations of child sexual abuse (CSA) but video imaging may be superior. We aimed to compare still images to videos with respect to diagnostic agreement regarding hymenal deep notches and transections in post-pubertal females. Additionally, we evaluated the role of experience and expertise on agreement. We hypothesized that videos would result in improved diagnostic agreement of multiple evaluators as compared to still photos. This was a prospective quasi-experimental study using imaging modality as the quasi-independent variable. The dependent variable was diagnostic agreement of participants regarding presence/absence of findings indicating penetrative trauma on non-acute post-pubertal genital exams. Participants were medical personnel who regularly perform CSA exams. Diagnostic agreement was evaluated utilizing a retrospective selection of videos and still photos obtained directly from the videos. Videos and still photos were embedded into an on-line survey as sixteen cases. One-hundred sixteen participants completed the study. Participant diagnosis was more likely to agree with study center diagnosis when using video (p<0.01). Use of video resulted in statistically significant changes in diagnosis in four of eight cases. In two cases, the diagnosis of the majority of participants changed from no hymenal transection to transection present. No difference in agreement was found based on experience or expertise. Use of video vs. still images resulted in increased agreement with original examiner and changes in diagnostic impressions in review of CSA exams. Further study is warranted, as video imaging may have significant impacts on diagnosis.

  4. Increasing of Blood-Brain Tumor Barrier Permeability through Transcellular and Paracellular Pathways by Microbubble-Enhanced Diagnostic Ultrasound in a C6 Glioma Model

    PubMed Central

    Zhang, Jinlong; Liu, Heng; Du, Xuesong; Guo, Yu; Chen, Xiao; Wang, Shunan; Fang, Jingqin; Cao, Peng; Zhang, Bo; Liu, Zheng; Zhang, Weiguo

    2017-01-01

    Most of the anticancer agents cannot be efficiently delivered into the brain tumor because of the existence of blood-brain tumor barrier (BTB). The objective of this study was to explore the effect of microbubble-enhanced diagnostic ultrasound (MEUS) on the BTB permeability and the possible mechanism. Glioma-bearing rats were randomized into three groups as follows: the microbubble-enhanced continued diagnostic ultrasound (MECUS) group; the microbubble-enhanced intermittent diagnostic ultrasound (MEIUS) group and the control group. The gliomas were insonicated through the skull with a diagnostic ultrasound and injected with microbubbles through the tail veins. Evans Blue (EB) and dynamic contrast-enhanced-MRI were used to test changes in the BTB permeability. Confocal laser scanning microscopy was used to observe the deposition of the EB in the tumor tissues. The distribution and expression of junctional adhesion molecule-A (JAM-A) and calcium-activated potassium channels (KCa channels) were detected by a Western blot, qRT-PCR, and immunohistochemical staining. In the MEUS groups, the EB extravasation (11.0 ± 2.2 μg/g in MECUS group and 17.9 ± 2.3 μg/g in MEIUS group) exhibited a significant increase compared with the control group (5.3 ± 0.9 μg/g). The MEIUS group had more EB extravasation than the MECUS group. The Ktrans value of the dynamic contrast-enhanced-MRI in the MEUS groups was higher than that of the control group and correlated strongly with the EB extravasation in the tumor (R2 = 0.97). This showed that the Ktrans value might be a non-invasive method to evaluate the BTB permeability in rat glioma after microbubble-enhanced ultrasound treatment.Western blot, qRT-PCR and immunohistochemical staining revealed that MEUS increased the KCa channels expression and reduced JAM-A expression in glioma. This change was more obvious in the MEIUS group than in the MECUS group. The results demonstrated that MEUS effectively increased the BTB permeability in

  5. Capillary waveguide optrodes: an approach to optical sensing in medical diagnostics

    NASA Astrophysics Data System (ADS)

    Lippitsch, Max E.; Draxler, Sonja; Kieslinger, Dietmar; Lehmann, Hartmut; Weigl, Bernhard H.

    1996-07-01

    Glass capillaries with a chemically sensitive coating on the inner surface are used as optical sensors for medical diagnostics. A capillary simultaneously serves as a sample compartment, a sensor element, and an inhomogeneous optical waveguide. Various detection schemes based on absorption, fluorescence intensity, or fluorescence lifetime are described. In absorption-based capillary waveguide optrodes the absorption in the sensor layer is analyte dependent; hence light transmission along the inhomogeneous waveguiding structure formed by the capillary wall and the sensing layer is a function of the analyte concentration. Similarly, in fluorescence-based capillary optrodes the fluorescence intensity or the fluorescence lifetime of an indicator dye fixed in the sensing layer is analyte dependent; thus the specific property of fluorescent light excited in the sensing layer and thereafter guided along the inhomogeneous waveguiding structure is a function of the analyte concentration. Both schemes are experimentally demonstrated, one with carbon dioxide as the analyte and the other one with oxygen. The device combines optical sensors with the standard glass capillaries usually applied to gather blood drops from fingertips, to yield a versatile diagnostic instrument, integrating the sample compartment, the optical sensor, and the light-collecting optics into a single piece. This ensures enhanced sensor performance as well as improved handling compared with other sensors. waveguide, blood gases, medical diagnostics.

  6. Medication Adherence in Patients with Rheumatoid Arthritis: The Effect of Patient Education, Health Literacy, and Musculoskeletal Ultrasound

    PubMed Central

    Joplin, Samantha; van der Zwan, Rick; Joshua, Fredrick; Wong, Peter K. K.

    2015-01-01

    Background. Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease affecting <1% of the population. Incompletely controlled RA results in fatigue, joint and soft tissue pain, progressive joint damage, reduced quality of life, and increased cardiovascular mortality. Despite an increasing range of disease modifying agents which halt disease progression, poor patient adherence with medication is a significant barrier to management. Objective. The goal of this review was to examine the effectiveness of measures to improve patient medication adherence. Methods. Studies addressing treatment adherence in patients with RA were identified by trawling PsycINFO, Medline, Cochrane, Pubmed, and ProQuest for studies published between January 2000 and October 2014. Articles were independently reviewed to identify relevant studies. Results. Current strategies were of limited efficacy in improving patient adherence with medications used to treat RA. Conclusion. Poor medication adherence is a complex issue. Low educational levels and limited health literacy are contributory factors. Psychological models may assist in explaining medication nonadherence. Increasing patient knowledge of their disease seems sensible. Existing educational interventions appear ineffective at improving medication adherence, probably due to an overemphasis on provision of biomedical information. A novel approach to patient education using musculoskeletal ultrasound is proposed. PMID:26060812

  7. The Changing Landscape of Molecular Diagnostic Testing: Implications for Academic Medical Centers

    PubMed Central

    Rehm, Heidi L.; Hynes, Elizabeth; Funke, Birgit H.

    2016-01-01

    Over the last decade, the field of molecular diagnostics has undergone tremendous transformation, catalyzed by the clinical implementation of next generation sequencing (NGS). As technical capabilities are enhanced and current limitations are addressed, NGS is increasingly capable of detecting most variant types and will therefore continue to consolidate and simplify diagnostic testing. It is likely that genome sequencing will eventually serve as a universal first line test for disorders with a suspected genetic origin. Academic Medical Centers (AMCs), which have been at the forefront of this paradigm shift are now presented with challenges to keep up with increasing technical, bioinformatic and interpretive complexity of NGS-based tests in a highly competitive market. Additional complexity may arise from altered regulatory oversight, also triggered by the unprecedented scope of NGS-based testing, which requires new approaches. However, these challenges are balanced by unique opportunities, particularly at the interface between clinical and research operations, where AMCs can capitalize on access to cutting edge research environments and establish collaborations to facilitate rapid diagnostic innovation. This article reviews present and future challenges and opportunities for AMC associated molecular diagnostic laboratories from the perspective of the Partners HealthCare Laboratory for Molecular Medicine (LMM). PMID:26828522

  8. Design and Control of Functional Microbubbles for Medical Applications of Ultrasound

    NASA Astrophysics Data System (ADS)

    Takagi, Shu; Osaki, Taichi; Ariyoshi, Takuya; Azuma, Takashi; Ichiyanagi, Mitsuhisa; Kinefuchi, Ikuya

    2015-11-01

    Microbubbles are used as a contrast agent for ultrasound diagnosis. It is also expected to be use for the treatment. One of the possible applications is microbubble DDS. For that purpose, microbubbles need to be well-controlled for the generating process and manipulation. In this talk, for the design and control of the functional microbubbles, an experimental study on generation and surface modification of microbubbles are explained. Using a T-junction type microchannel, small bubbles about 5 μm size are successfully generated. For the surface modification, Biotin-coated microbubbles are tried to adhere the Avidin-coated wall. Furthermore, the manipulation of the microbubbles using ultrasound is also discussed. Plane-wave and focused ultrasound is used to manipulate a microbubble and bubble clusters. The experimental results are shown in the presentation. Supported by JSPS KAKENHI Grant Number 15K13865.

  9. A Traditionally Administered Short Course Failed to Improve Medical Students’ Diagnostic Performance

    PubMed Central

    Noguchi, Yoshinori; Matsui, Kunihiko; Imura, Hiroshi; Kiyota, Masatomo; Fukui, Tsuguya

    2004-01-01

    BACKGROUND Quite often medical students or novice residents have difficulty in ruling out diseases even though they are quite unlikely and, due to this difficulty, such students and novice residents unnecessarily repeat laboratory or imaging tests. OBJECTIVE To explore whether or not a carefully designed short training course teaching Bayesian probabilistic thinking improves the diagnostic ability of medical students. PARTICIPANTS AND METHODS Ninety students at 2 medical schools were presented with clinical scenarios of coronary artery disease corresponding to high, low, and intermediate pretest probabilities. The students’ estimates of test characteristics of exercise stress test, and pretest and posttest probability for each scenario were evaluated before and after the short course. RESULTS The pretest probability estimates by the students, as well as their proficiency in applying Bayes's theorem, were improved in the high pretest probability scenario after the short course. However, estimates of pretest probability in the low pretest probability scenario, and their proficiency in applying Bayes's theorem in the intermediate and low pretest probability scenarios, showed essentially no improvement. CONCLUSION A carefully designed, but traditionally administered, short course could not improve the students’ abilities in estimating pretest probability in a low pretest probability setting, and subsequently students remained incompetent in ruling out disease. We need to develop educational methods that cultivate a well-balanced clinical sense to enable students to choose a suitable diagnostic strategy as needed in a clinical setting without being one-sided to the “rule-in conscious paradigm.” PMID:15109340

  10. Non-invasive medical diagnostics by nanoparticle-based solid-state gas sensors

    NASA Astrophysics Data System (ADS)

    Tricoli, Antonio

    2013-08-01

    Chemical sensors made of tailored nanoparticles offer excellent miniaturization capability and are able to rapidly and continuously detect trace amounts of important analytes down to trace concentrations. Application of these sensing materials to non-invasive medical diagnostics by breath analysis has the potential to drastically reduce diagnostics costs while offering better service quality to the patients and enabling very early-stage detection of severe illnesses such as lung cancer. Here, we present a flexible approach to synthesize advanced solid-state gas sensor materials that have demonstrated reliable detection of important breath markers. In particular, the feasibility of capturing highly performing, meta-stable sensing nanoparticles by flame-synthesis of multi component metal-oxides is critically discussed.

  11. Duplex ultrasound

    MedlinePlus

    Vascular ultrasound; Peripheral vascular ultrasound ... A duplex ultrasound combines: Traditional ultrasound: This uses sound waves that bounce off blood vessels to create pictures. Doppler ultrasound: This ...

  12. CUQI: cardiac ultrasound video quality index

    PubMed Central

    Razaak, Manzoor; Martini, Maria G.

    2016-01-01

    Abstract. Medical images and videos are now increasingly part of modern telecommunication applications, including telemedicinal applications, favored by advancements in video compression and communication technologies. Medical video quality evaluation is essential for modern applications since compression and transmission processes often compromise the video quality. Several state-of-the-art video quality metrics used for quality evaluation assess the perceptual quality of the video. For a medical video, assessing quality in terms of “diagnostic” value rather than “perceptual” quality is more important. We present a diagnostic-quality–oriented video quality metric for quality evaluation of cardiac ultrasound videos. Cardiac ultrasound videos are characterized by rapid repetitive cardiac motions and distinct structural information characteristics that are explored by the proposed metric. Cardiac ultrasound video quality index, the proposed metric, is a full reference metric and uses the motion and edge information of the cardiac ultrasound video to evaluate the video quality. The metric was evaluated for its performance in approximating the quality of cardiac ultrasound videos by testing its correlation with the subjective scores of medical experts. The results of our tests showed that the metric has high correlation with medical expert opinions and in several cases outperforms the state-of-the-art video quality metrics considered in our tests. PMID:27014715

  13. Ultrasound Imaging System Video

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this video, astronaut Peggy Whitson uses the Human Research Facility (HRF) Ultrasound Imaging System in the Destiny Laboratory of the International Space Station (ISS) to image her own heart. The Ultrasound Imaging System provides three-dimension image enlargement of the heart and other organs, muscles, and blood vessels. It is capable of high resolution imaging in a wide range of applications, both research and diagnostic, such as Echocardiography (ultrasound of the heart), abdominal, vascular, gynecological, muscle, tendon, and transcranial ultrasound.

  14. Gold nanoparticles sensing with diffusion reflection measurement as a new medical diagnostics application

    NASA Astrophysics Data System (ADS)

    Fixler, Dror

    2014-02-01

    The ability to quantitatively and noninvasively detect nanoparticles in vivo has important implications on their development as optical sensors for medical diagnostics. We suggest a new method for cancer detection based on diffusion reflection (DR) measurements of gold nanorods (GNR). In our talk, the ability to extract optical properties of phantoms and their GNR concentrations from DR measurements will demonstrate. We will report, for the first time, GNR detection through upper tissue-like phantom layers, as well as the detection of a tumor presented as highly concentrated GNR placed deep within a phantom.

  15. Magnetic resonance for in vitro medical diagnostics: superparamagnetic nanoparticle-based magnetic relaxation switches

    NASA Astrophysics Data System (ADS)

    Demas, Vasiliki; Lowery, Thomas J.

    2011-02-01

    Advances in magnetic resonance (MR) miniaturization, along with nanoparticles and biotechnology, are extending MR applications in diagnostics to beyond the medical imaging regime. The principles behind magnetic resonance switch (MRSw) biosensors, as well as a summary of rapidly developing fields including MR miniaturization and MRSw demonstrations, are presented here. Due to the range of applications of MRSw biosensor tests and the breakthroughs in downsized instruments, continued development will enable the deployment of MRSw biosensors in a wide variety of settings and with potentially unlimited targets.

  16. 4D Ultrasound - Medical Devices for Recent Advances on the Etiology of Cerebral Palsy

    PubMed Central

    Tomasovic, Sanja; Predojevic, Maja

    2011-01-01

    Children cerebral palsy (CCP) encompasses a group of nonprogessive and noninfectious conditions, which cause light, moderate, and severe deviations in neurological development. Diagnosis of CCP is set mostly by the age of 3 years. The fact that a large number of cerebral damage occurs prenatally and the fact that early intervention in cases of neurological damage is successful, prompted some researchers to explore the possibility of detecting neurologically damaged fetus in the uterus. This research was made possible thanks to the development of two-dimensional ultrasound technology in a real time, which enabled the display of the mobility of the fetus. Advancement of the ultrasound technology has enabled the development of 4D ultrasound where a spontaneous fetal movement can be observed almost in a real time. Estimate of the number and quality of spontaneous fetal movements and stitches on the head, the neurology thumb and a high palate were included in the prenatal neurological screening of the fetus. This raises the question, as to does the fetal behavior reflect, (which was revealed in 2D or 4D ultrasound), fetal neurological development in a manner that will allow the detection of the brain damage. PMID:23407920

  17. 4D Ultrasound - Medical Devices for Recent Advances on the Etiology of Cerebral Palsy.

    PubMed

    Tomasovic, Sanja; Predojevic, Maja

    2011-12-01

    Children cerebral palsy (CCP) encompasses a group of nonprogessive and noninfectious conditions, which cause light, moderate, and severe deviations in neurological development. Diagnosis of CCP is set mostly by the age of 3 years. The fact that a large number of cerebral damage occurs prenatally and the fact that early intervention in cases of neurological damage is successful, prompted some researchers to explore the possibility of detecting neurologically damaged fetus in the uterus. This research was made possible thanks to the development of two-dimensional ultrasound technology in a real time, which enabled the display of the mobility of the fetus. Advancement of the ultrasound technology has enabled the development of 4D ultrasound where a spontaneous fetal movement can be observed almost in a real time. Estimate of the number and quality of spontaneous fetal movements and stitches on the head, the neurology thumb and a high palate were included in the prenatal neurological screening of the fetus. This raises the question, as to does the fetal behavior reflect, (which was revealed in 2D or 4D ultrasound), fetal neurological development in a manner that will allow the detection of the brain damage.

  18. Human abdomen recognition using camera and force sensor in medical robot system for automatic ultrasound scan.

    PubMed

    Bin Mustafa, Ammar Safwan; Ishii, Takashi; Matsunaga, Yoshiki; Nakadate, Ryu; Ishii, Hiroyuki; Ogawa, Kouji; Saito, Akiko; Sugawara, Motoaki; Niki, Kiyomi; Takanishi, Atsuo

    2013-01-01

    Physicians use ultrasound scans to obtain real-time images of internal organs, because such scans are safe and inexpensive. However, people in remote areas face difficulties to be scanned due to aging society and physician's shortage. Hence, it is important to develop an autonomous robotic system to perform remote ultrasound scans. Previously, we developed a robotic system for automatic ultrasound scan focusing on human's liver. In order to make it a completely autonomous system, we present in this paper a way to autonomously localize the epigastric region as the starting position for the automatic ultrasound scan. An image processing algorithm marks the umbilicus and mammary papillae on a digital photograph of the patient's abdomen. Then, we made estimation for the location of the epigastric region using the distances between these landmarks. A supporting algorithm distinguishes rib position from epigastrium using the relationship between force and displacement. We implemented these algorithms with the automatic scanning system into an apparatus: a Mitsubishi Electric's MELFA RV-1 six axis manipulator. Tests on 14 healthy male subjects showed the apparatus located the epigastric region with a success rate of 94%. The results suggest that image recognition was effective in localizing a human body part.

  19. Anniversary paper: evolution of ultrasound physics and the role of medical physicists and the AAPM and its journal in that evolution.

    PubMed

    Carson, Paul L; Fenster, Aaron

    2009-02-01

    Ultrasound has been the greatest imaging modality worldwide for many years by equipment purchase value and by number of machines and examinations. It is becoming increasingly the front end imaging modality; serving often as an extension of the physician's fingers. We believe that at the other extreme, high-end systems will continue to compete with all other imaging modalities in imaging departments to be the method of choice for various applications, particularly where safety and cost are paramount. Therapeutic ultrasound, in addition to the physiotherapy practiced for many decades, is just coming into its own as a major tool in the long progression to less invasive interventional treatment. The physics of medical ultrasound has evolved over many fronts throughout its history. For this reason, a topical review, rather than a primarily chronological one is presented. A brief review of medical ultrasound imaging and therapy is presented, with an emphasis on the contributions of medical physicists, the American Association of Physicists in Medicine (AAPM) and its publications, particularly its journal Medical Physics. The AAPM and Medical Physics have contributed substantially to training of physicists and engineers, medical practitioners, technologists, and the public.

  20. Gene technology in medical diagnostics and criminal procedure and liability for malpractice in Germany.

    PubMed

    Deutsch, E; Füllmich, R; Poppe, H

    1990-01-01

    The increasing employment of gene technological procedures in medical diagnostics and criminal procedure has forced both the medical and the legal professions to focus their attention on the complex question of liability of physicians, lab technicians, and other personnel involved in applying these measures. This article gives an outline, by citing practical cases, of the major aspects of liability for malpractice that are relevant under German law. Bearing in mind that this article will be read predominantly by members of the Anglo-American common-law legal system, the legal aspects - even though they are German legal aspects - are viewed in the light of the common law. The article examines three major issues: (a) liability for diagnoses employing gene technological procedures: (b) liability for wrong testimony based on 'genetic finger-printing': and (c) the donor's rights concerning his or her DNA-probe.

  1. [The metrology of medical devices for the diagnostic in vitro: the European approach].

    PubMed

    Antonov, V S

    2011-12-01

    In the European Union, the measurement devices are regulated by the Directive 2004/22/EU establishing the mandatory requirements, rules of admittance and control/surveillance on the market. The medical laboratory analyzers don't come under the force of this Directive and are regulated by the Directive 98/72/EU in the same way as all medical devices for diagnostics in vitro. The new Russian Federal Law No102 "On the provision of the unification of measurements" came into force in 2009 is significantly harmonized with the similar international legislation and enable to eliminate the contradictions which for many years impeded the development of metrological support of clinical laboratory examinations.

  2. Diagnostic accuracy of ultrasound for detecting posterior ligamentous complex injuries of the thoracic and lumbar spine: A systematic review and meta-analysis

    PubMed Central

    Gabriel, Alcalá-Cerra; Ángel, J. Paternina-Caicedo; Juan, J. Gutiérrez-Paternina; Luis, R. Moscote-Salazar; Hernando, R. Alvis-Miranda; Rubén, Sabogal-Barrios

    2013-01-01

    Background: Posterior ligamentous complex injuries of the thoracolumbar (TL) spine represent a major consideration during surgical decision-making. However, X-ray and computed tomography imaging often does not identify those injuries and sometimes magnetic resonance imaging (MRI) is not available or is contraindicated. Objective: To determine the diagnostic accuracy of the ultrasound for detecting posterior ligamentous complex injuries in the TL spine. Materials and Methods: A systematic review was carried out through four international databases and proceedings of scientific meetings. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, and their 95% confidence intervals (CIs) were estimated, by using weighted averages according to the sample size of each study. Summary receiver operating characteristic was also estimated. Results: A total of four articles were included in the meta-analysis, yielding a summary estimate: Sensitivity, 0.89 (95% CI, 0.86-0.92); specificity, 1.00 (95% CI, 0.98-1.00); positive likelihood ratio, 224.49 (95% CI, 30.43-1656.26); negative likelihood ratio, 0.11 (95% CI, 0.05-0.19); and diagnostic odds ratio, 2,268.13 (95% CI, 265.84-19,351.24). There was no statistically significant heterogeneity among results of included studies. Summary: Receiver operating characteristic (±standard error) was 0.928 ± 0.047. Conclusion and Recommendation: The present meta-analysis showed that ultrasound has a high accuracy for diagnosing posterior ligamentous complex injuries in patients with flexion distraction, compression, or burst TL fractures. On the basis of present results, ultrasound may be considered as a useful alternative when magnetic resonance imaging (MRI) is unavailable or contraindicated, or when its results are inconclusive. PMID:24381453

  3. [Selection of the information for solving medical diagnostic problems with "diagnostic games" (the example of predicting the time of sinus rhythm maintenance after eliminating atrial fibrillation)].

    PubMed

    Gel'fand, I M; Syrkin, A L; Alekseevskaia, M A; Nedostup, A V; Kliushin, E S

    1983-01-01

    A new method is proposed for data selection with respect to solving medical diagnosis problems. It reduces the scope of information, leaving for further processing only the facts the physician actually needs for problem-solving. The protocols of "diagnostic games" reflect the physician's mental process and can be used in the development of a physician model.

  4. Expert Facilitated Development of an Objective Assessment Tool for Point-of-Care Ultrasound Performance in Undergraduate Medical Education

    PubMed Central

    Black, Holly; Sheppard, Gillian; Metcalfe, Brian; Stone-McLean, Jordan; McCarthy, Heather

    2016-01-01

    Background: With the various applications of point-of-care ultrasound (PoCUS) steadily increasing, many medical schools across North America are incorporating PoCUS training into their undergraduate curricula. The Faculty of Medicine at Memorial University also intends to introduce PoCUS training into its own undergraduate medical program. The proposed approach is to introduce a PoCUS curriculum focusing on anatomy and physiology while developing cognitive and psychomotor skills that are later transferred into clinical applications. This has been the common approach taken by most undergraduate ultrasound programs in the United States. This project highlights the development and the challenges involved in creating an objective assessment tool that meets the unique needs of this proposed undergraduate ultrasound curriculum. Methods: After a thorough review of existing literature and input from experts in PoCUS, a prototype global rating scale (GRS) and three exam-specific checklists were created by researchers. The exam-specific checklists include aorta exam, subxiphoid cardiac exam, and focused abdominal exam. A panel of 18 emergency room physicians certified in PoCUS were recruited to evaluate the GRS and three checklists. This was accomplished using a modified Delphi technique. The items were rated on a 5-point Likert scale. If an item received a mean score of less than 4, it was deemed unimportant for the assessment of PoCUS performance in undergraduate medical learners and was excluded. Experts were also encouraged to provide comments and suggest further items to be added to the GRS or checklists. Items were modified according to these comments. All of the edits were then sent back to the experts for revisions. Results: A consensus was achieved after three rounds of surveys, with the final GRS containing nine items. The final aorta checklist contained nine items, and the subxiphoid cardiac and focused abdominal checklists each contained 11 items. Conclusion: By

  5. A prospective study of medical diagnostic radiography and risk of thyroid cancer.

    PubMed

    Neta, Gila; Rajaraman, Preetha; Berrington de Gonzalez, Amy; Doody, Michele M; Alexander, Bruce H; Preston, Dale; Simon, Steven L; Melo, Dunstana; Miller, Jeremy; Freedman, D Michal; Linet, Martha S; Sigurdson, Alice J

    2013-04-15

    Although diagnostic x-ray procedures provide important medical benefits, cancer risks associated with their exposure are also possible, but not well characterized. The US Radiologic Technologists Study (1983-2006) is a nationwide, prospective cohort study with extensive questionnaire data on history of personal diagnostic imaging procedures collected prior to cancer diagnosis. We used Cox proportional hazard regressions to estimate thyroid cancer risks related to the number and type of selected procedures. We assessed potential modifying effects of age and calendar year of the first x-ray procedure in each category of procedures. Incident thyroid cancers (n = 251) were diagnosed among 75,494 technologists (1.3 million person-years; mean follow-up = 17 years). Overall, there was no clear evidence of thyroid cancer risk associated with diagnostic x-rays except for dental x-rays. We observed a 13% increase in thyroid cancer risk for every 10 reported dental radiographs (hazard ratio = 1.13, 95% confidence interval: 1.01, 1.26), which was driven by dental x-rays first received before 1970, but we found no evidence that the relationship between dental x-rays and thyroid cancer was associated with childhood or adolescent exposures as would have been anticipated. The lack of association of thyroid cancer with x-ray procedures that expose the thyroid to higher radiation doses than do dental x-rays underscores the need to conduct a detailed radiation exposure assessment to enable quantitative evaluation of risk.

  6. Radiological safety status and quality assurance audit of medical X-ray diagnostic installations in India.

    PubMed

    Sonawane, A U; Singh, Meghraj; Sunil Kumar, J V K; Kulkarni, Arti; Shirva, V K; Pradhan, A S

    2010-10-01

    We conducted a radiological safety and quality assurance (QA) audit of 118 medical X-ray diagnostic machines installed in 45 major hospitals in India. The main objective of the audit was to verify compliance with the regulatory requirements stipulated by the national regulatory body. The audit mainly covered accuracy check of accelerating potential (kVp), linearity of tube current (mA station) and timer, congruence of radiation and optical field, and total filtration; in addition, we also reviewed medical X-ray diagnostic installations with reference to room layout of X-ray machines and conduct of radiological protection survey. A QA kit consisting of a kVp Test-O-Meter (ToM) (Model RAD/FLU-9001), dose Test-O-Meter (ToM) (Model 6001), ionization chamber-based radiation survey meter model Gun Monitor and other standard accessories were used for the required measurements. The important areas where there was noncompliance with the national safety code were: inaccuracy of kVp calibration (23%), lack of congruence of radiation and optical field (23%), nonlinearity of mA station (16%) and timer (9%), improper collimator/diaphragm (19.6%), faulty adjustor knob for alignment of field size (4%), nonavailability of warning light (red light) at the entrance of the X-ray room (29%), and use of mobile protective barriers without lead glass viewing window (14%). The present study on the radiological safety status of diagnostic X-ray installations may be a reasonably good representation of the situation in the country as a whole. The study contributes significantly to the improvement of radiological safety by the way of the steps already taken and by providing a vital feed back to the national regulatory body.

  7. Dual Processing Model for Medical Decision-Making: An Extension to Diagnostic Testing

    PubMed Central

    Tsalatsanis, Athanasios; Hozo, Iztok; Kumar, Ambuj; Djulbegovic, Benjamin

    2015-01-01

    Dual Processing Theories (DPT) assume that human cognition is governed by two distinct types of processes typically referred to as type 1 (intuitive) and type 2 (deliberative). Based on DPT we have derived a Dual Processing Model (DPM) to describe and explain therapeutic medical decision-making. The DPM model indicates that doctors decide to treat when treatment benefits outweigh its harms, which occurs when the probability of the disease is greater than the so called “threshold probability” at which treatment benefits are equal to treatment harms. Here we extend our work to include a wider class of decision problems that involve diagnostic testing. We illustrate applicability of the proposed model in a typical clinical scenario considering the management of a patient with prostate cancer. To that end, we calculate and compare two types of decision-thresholds: one that adheres to expected utility theory (EUT) and the second according to DPM. Our results showed that the decisions to administer a diagnostic test could be better explained using the DPM threshold. This is because such decisions depend on objective evidence of test/treatment benefits and harms as well as type 1 cognition of benefits and harms, which are not considered under EUT. Given that type 1 processes are unique to each decision-maker, this means that the DPM threshold will vary among different individuals. We also showed that when type 1 processes exclusively dominate decisions, ordering a diagnostic test does not affect a decision; the decision is based on the assessment of benefits and harms of treatment. These findings could explain variations in the treatment and diagnostic patterns documented in today’s clinical practice. PMID:26244571

  8. A preface on advances in diagnostics for infectious and parasitic diseases: detecting parasites of medical and veterinary importance.

    PubMed

    Stothard, J Russell; Adams, Emily

    2014-12-01

    There are many reasons why detection of parasites of medical and veterinary importance is vital and where novel diagnostic and surveillance tools are required. From a medical perspective alone, these originate from a desire for better clinical management and rational use of medications. Diagnosis can be at the individual-level, at close to patient settings in testing a clinical suspicion or at the community-level, perhaps in front of a computer screen, in classification of endemic areas and devising appropriate control interventions. Thus diagnostics for parasitic diseases has a broad remit as parasites are not only tied with their definitive hosts but also in some cases with their vectors/intermediate hosts. Application of current diagnostic tools and decision algorithms in sustaining control programmes, or in elimination settings, can be problematic and even ill-fitting. For example in resource-limited settings, are current diagnostic tools sufficiently robust for operational use at scale or are they confounded by on-the-ground realities; are the diagnostic algorithms underlying public health interventions always understood and well-received within communities which are targeted for control? Within this Special Issue (SI) covering a variety of diseases and diagnostic settings some answers are forthcoming. An important theme, however, throughout the SI is to acknowledge that cross-talk and continuous feedback between development and application of diagnostic tests is crucial if they are to be used effectively and appropriately.

  9. Parallel Digital Watermarking Process on Ultrasound Medical Images in Multicores Environment

    PubMed Central

    Khor, Hui Liang; Liew, Siau-Chuin; Zain, Jasni Mohd.

    2016-01-01

    With the advancement of technology in communication network, it facilitated digital medical images transmitted to healthcare professionals via internal network or public network (e.g., Internet), but it also exposes the transmitted digital medical images to the security threats, such as images tampering or inserting false data in the images, which may cause an inaccurate diagnosis and treatment. Medical image distortion is not to be tolerated for diagnosis purposes; thus a digital watermarking on medical image is introduced. So far most of the watermarking research has been done on single frame medical image which is impractical in the real environment. In this paper, a digital watermarking on multiframes medical images is proposed. In order to speed up multiframes watermarking processing time, a parallel watermarking processing on medical images processing by utilizing multicores technology is introduced. An experiment result has shown that elapsed time on parallel watermarking processing is much shorter than sequential watermarking processing. PMID:26981111

  10. A UK wide survey on attitudes to point of care ultrasound training amongst clinicians working on the Acute Medical Unit.

    PubMed

    Smallwood, Nicholas; Matsa, Ramprasad; Lawrenson, Philip; Messenger, Jenny; Walden, Andrew

    2015-01-01

    The use of point of care ultrasound (POCU) is increasing across a number of specialties, becoming mandatory within some specialist training programmes (for example respiratory and emergency medicine). Despite this, there are few data looking at the prevalence of use or the training clinicians have undertaken; this survey sought to address this. It shows that the majority of POCU undertaken on the Acute Medical Unit (AMU) is without formal accreditation, with significant arriers to training highlighted including a lack of supervision, time and equipment. For those who undertook POCU, it was shown to regularly speed up clinical decision making, while 76.3% respondents believed a lack of access to POCU out of hours may affect patient safety. The data provide support to the concept of developing AMU specific POCU accreditation, to ensure robust and safe use of this modality on the AMU.

  11. Case report of medical thoracoscopy and endobronchial ultrasound bronchoscopy in the workup of giant solitary fibrous tumor of the pleura

    PubMed Central

    Dammad, Tarek; Duchesne, Joshua; Pasnick, Susan

    2016-01-01

    Abstract Solitary fibrous tumor of the pleura (SFTP) is a rare tumor of fibroblastic origin. It can be quite vascular, and its surgical management carries the risk of a major intra-operative bleed. The pre-operative use of endobronchial ultrasound (EBUS) to visualize the vascular supply of the tumor has not been reported. We report a case of a patient presenting with progressive shortness of breath and cough who was found to have a very large pleural-based tumor. We describe the use of medical thoracoscopy and EBUS to establish the diagnosis of SFTP and to characterize the blood supply of the tumor. In the future, EBUS may provide an alternative to conventional angiography for both mapping and embolizing tumor blood supply. PMID:27399107

  12. Note: Comparative experimental studies on the performance of 2-2 piezocomposite for medical ultrasound transducers

    NASA Astrophysics Data System (ADS)

    Marinozzi, F.; Bini, F.; Biagioni, A.; Grandoni, A.; Spicci, L.

    2013-09-01

    The paper reports the experimental investigation of the behavior of 2-2 Lead Zirconate Titanate (PZT)-polymer composite transducers array for clinical ultrasound equipments. Several 2-2 plate composites having the same dicing pitch of 0.11 mm and different volume fractions were manufactured and investigated. Measurements were performed through different techniques such as electrical impedance, pulse-echo, and Laser Doppler Vibrometer. With the last one, maps of the surface displacement were presented relative to thickness mode and first lateral mode resonance frequencies. The transducers with volume fractions of the 40% resulted markedly inefficient, whereas the largest bandwidth and best band shape were achieved by the 50%.

  13. Impact of Endobronchial Ultrasound (EBUS) Training on the Diagnostic Yield of Conventional Transbronchial Needle Aspiration for Lymph Node Stations 4R and 7

    PubMed Central

    Sehgal, Inderpaul Singh; Dhooria, Sahajal; Gupta, Nalini; Bal, Amanjit; Ram, Babu; Aggarwal, Ashutosh Nath; Behera, Digambar; Agarwal, Ritesh

    2016-01-01

    Background There is sparse literature on whether training in endobronchial ultrasound (EBUS)-guided transbronchial needle aspiration (TBNA) improves the diagnostic yield of conventional TBNA (cTBNA). Objectives The aim of this study was to evaluate the diagnostic yield of cTBNA before and after the introduction of EBUS. Methods This was a retrospective analysis of patients who underwent cTBNA at our center. The study was divided into two periods, before and after the introduction of EBUS at our facility. The diagnostic yield of cTBNA was compared between the study periods. Rapid on-site cytological examination was not available. Results A total of 1,050 patients (61.6% men; mean age 45.6 years) underwent cTBNA during the study period (849 before EBUS; 201 after EBUS). Sarcoidosis (n = 527) followed by bronchogenic carcinoma (n = 222) formed the most common indications for performing cTBNA. There was a significant increase in both the success of obtaining a representative sample (from 71% to 85%), and the diagnostic yield (from 33% to 49.5%) of cTBNA, after the introduction of EBUS. The increase in the diagnostic yield of cTBNA after introduction of EBUS remained significant even after adjusting for years of performing cTBNA and the type of anesthesia (topical vs. sedation and topical) on a multivariate analysis. Conclusion The diagnostic yield of cTBNA at our facility increased after the introduction of EBUS-TBNA. However, given the retrospective nature of the study, prospective studies are required to confirm our findings. PMID:27083009

  14. Distraction in diagnostic radiology: How is search through volumetric medical images affected by interruptions?

    PubMed

    Williams, Lauren H; Drew, Trafton

    2017-01-01

    Observational studies have shown that interruptions are a frequent occurrence in diagnostic radiology. The present study used an experimental design in order to quantify the cost of these interruptions during search through volumetric medical images. Participants searched through chest CT scans for nodules that are indicative of lung cancer. In half of the cases, search was interrupted by a series of true or false math equations. The primary cost of these interruptions was an increase in search time with no corresponding increase in accuracy or lung coverage. This time cost was not modulated by the difficulty of the interruption task or an individual's working memory capacity. Eye-tracking suggests that this time cost was driven by impaired memory for which regions of the lung were searched prior to the interruption. Potential interventions will be discussed in the context of these results.

  15. Image-matching as a medical diagnostic support tool (DST) for brain diseases in children.

    PubMed

    Huang, H K; Nielsen, J F; Nelson, Marvin D; Liu, Lifeng

    2005-01-01

    Imaging-matching is an important research area in imaging informatics. We have developed and evaluated a novel diagnostic support tool (DST) based on medical image matching using MR brain images. The approach consists of two steps, database generation and image matching. The database contains pre-diagnosed MR brain images. As the images are added to the database, they are registered to the 3D Talairach coordinate system. In addition, regions of interests (ROI) are generated, and image-processing techniques are used to extract relevant image parameters related to the brain and diseases from the ROIs and from the entire MR image. The second step is to retrieve relevant information from the database by performing image matching. In this step, the physician first submits a query image. The DST computes the similarity between the query image and each of the images in the database, and then presents the most similar images to the user. Since the database contains pre-diagnosed images, the retrieved cases tend to contain relevant diagnostic information. To evaluate the usefulness of the DST in a clinical setting, pediatric brain diseases were used. The database contains 2500 pediatric patients between ages 0 and 18 with brain Magnetic Resonance (MR) images of known brain lesions. A testbed was established at the Children's Hospital Los Angeles (CHLA) for acquiring MR images from the PACS server of patients with known lesions. These images were matched against those in the DST pediatric brain MR database. An expert pediatric neuroradiologist evaluated the matched results. We found that in most cases, the image-matching method was able to quickly retrieve images with relevant diagnostic content. The evaluation method and results are given.

  16. Capillary waveguide optrodes: an approach to optical sensing in medical diagnostics.

    PubMed

    Lippitsch, M E; Draxler, S; Kieslinger, D; Lehmann, H; Weigl, B H

    1996-07-01

    Glass capillaries with a chemically sensitive coating on the inner surface are used as optical sensors for medical diagnostics. A capillary simultaneously serves as a sample compartment, a sensor element, and an inhomogeneous optical waveguide. Various detection schemes based on absorption, fluorescence intensity, or fluorescence lifetime are described. In absorption-based capillary waveguide optrodes the absorption in the sensor layer is analyte dependent; hence light transmission along the inhomogeneous waveguiding structure formed by the capillary wall and the sensing layer is a function of the analyte concentration. Similarly, in fluorescence-based capillary optrodes the fluorescence intensity or the fluorescence lifetime of an indicator dye fixed in the sensing layer is analyte dependent; thus the specific property of fluorescent light excited in the sensing layer and thereafter guided along the inhomogeneous waveguiding structure is a function of the analyte concentration. Both schemes are experimentally demonstrated, one with carbon dioxide as the analyte and the other one with oxygen. The device combines optical sensors with the standard glass capillaries usually applied to gather blood drops from fingertips, to yield a versatile diagnostic instrument, integrating the sample compartment, the optical sensor, and the light-collecting optics into a single piece. This ensures enhanced sensor performance as well as improved handling compared with other sensors.

  17. Infrared mapping of ultrasound fields generated by medical transducers: Feasibility of determining absolute intensity levels

    PubMed Central

    Khokhlova, Vera A.; Shmeleva, Svetlana M.; Gavrilov, Leonid R.; Martin, Eleanor; Sadhoo, Neelaksh; Shaw, Adam

    2013-01-01

    Considerable progress has been achieved in the use of infrared (IR) techniques for qualitative mapping of acoustic fields of high intensity focused ultrasound (HIFU) transducers. The authors have previously developed and demonstrated a method based on IR camera measurement of the temperature rise induced in an absorber less than 2 mm thick by ultrasonic bursts of less than 1 s duration. The goal of this paper was to make the method more quantitative and estimate the absolute intensity distributions by determining an overall calibration factor for the absorber and camera system. The implemented approach involved correlating the temperature rise measured in an absorber using an IR camera with the pressure distribution measured in water using a hydrophone. The measurements were conducted for two HIFU transducers and a flat physiotherapy transducer of 1 MHz frequency. Corresponding correction factors between the free field intensity and temperature were obtained and allowed the conversion of temperature images to intensity distributions. The system described here was able to map in good detail focused and unfocused ultrasound fields with sub-millimeter structure and with local time average intensity from below 0.1 W/cm2 to at least 50 W/cm2. Significantly higher intensities could be measured simply by reducing the duty cycle. PMID:23927199

  18. Infrared mapping of ultrasound fields generated by medical transducers: feasibility of determining absolute intensity levels.

    PubMed

    Khokhlova, Vera A; Shmeleva, Svetlana M; Gavrilov, Leonid R; Martin, Eleanor; Sadhoo, Neelaksh; Shaw, Adam

    2013-08-01

    Considerable progress has been achieved in the use of infrared (IR) techniques for qualitative mapping of acoustic fields of high intensity focused ultrasound (HIFU) transducers. The authors have previously developed and demonstrated a method based on IR camera measurement of the temperature rise induced in an absorber less than 2 mm thick by ultrasonic bursts of less than 1 s duration. The goal of this paper was to make the method more quantitative and estimate the absolute intensity distributions by determining an overall calibration factor for the absorber and camera system. The implemented approach involved correlating the temperature rise measured in an absorber using an IR camera with the pressure distribution measured in water using a hydrophone. The measurements were conducted for two HIFU transducers and a flat physiotherapy transducer of 1 MHz frequency. Corresponding correction factors between the free field intensity and temperature were obtained and allowed the conversion of temperature images to intensity distributions. The system described here was able to map in good detail focused and unfocused ultrasound fields with sub-millimeter structure and with local time average intensity from below 0.1 W/cm(2) to at least 50 W/cm(2). Significantly higher intensities could be measured simply by reducing the duty cycle.

  19. Diagnostic imaging findings of pelvic retroperitoneal ganglioneuroma in a child: a case report with the emphasis on initial ultrasound findings.

    PubMed

    Mut, Deniz Turkyılmaz; Orhan Soylemez, Umut Percem; Demir, Mesut; Tanık, Canan; Ozer, Alper

    2016-03-01

    Ganglioneuromas are rare benign tumors of neural crest origin developed along the sympathetic chain. The pelvic retroperitoneum is the rarest location of these tumors. Clinically these tumors are commonly asypmtomatic even if they reach large sizes. Here we report the radiological features of a 16 year old boy with pathologically proven retroperitoneal ganglioneuroma that was detected initially by ultrasound. Relevant literature is also discussed.

  20. [Postmortem forensic medical diagnostics of fulminant sepsis caused by Gram-negative bacterium (Capnocitophaga canimorsus) following a dog bite].

    PubMed

    Kovalev, A V; Putintsev, V A; Bogomolov, D V; Gribunov, Iu P; Bogomolov, B P; Deviatkin, A V

    2015-01-01

    This article provides the example of postmortem forensic medical diagnostics of fulminant sepsis caused by Gram-negative bacterium (Capnocitophaga canimorsus) following a dog bite. In order to identify the etiological factor of fulminant sepsis, the expert carried out the study of the autopsy materials with the use of polymerase chain reaction (PCR). This method has only recently been introduced into postmortem diagnostics of fulminant sepsis in this country; it has no analogs abroad and can be employed for the purpose of forensic medical expertise and pathological anatomic studies.

  1. Surface tension in human pathophysiology and its application as a medical diagnostic tool

    PubMed Central

    Fathi-Azarbayjani, Anahita; Jouyban, Abolghasem

    2015-01-01

    Introduction: Pathological features of disease appear to be quite different. Despite this diversity, the common feature of various disorders underlies physicochemical and biochemical factors such as surface tension. Human biological fluids comprise various proteins and phospholipids which are capable of adsorption at fluid interfaces and play a vital role in the physiological function of human organs. Surface tension of body fluids correlates directly to the development of pathological states. Methods: In this review, the variety of human diseases mediated by the surface tension changes of biological phenomena and the failure of biological fluids to remain in their native state are discussed. Results: Dynamic surface tension measurements of human biological fluids depend on various parameters such as sex, age and changes during pregnancy or certain disease. It is expected that studies of surface tension behavior of human biological fluids will provide additional information and might become useful in medical practice. Theoretical background on surface tension measurement and surface tension values of reference fluids obtained from healthy and sick patients are depicted. Conclusion: It is well accepted that no single biomarker will be effective in clinical diagnosis. The surface tension measurement combined with routine lab tests may be a novel non-invasive method which can not only facilitate the discovery of diagnostic models for various diseases and its severity, but also be a useful tool for monitoring treatment efficacy. We therefore expect that studies of surface tension behavior of human biological fluids will provide additional useful information in medical practice. PMID:25901295

  2. Design of an affordable fluorescence confocal laser scanning microscope for medical diagnostics

    NASA Astrophysics Data System (ADS)

    Bechtel, Christin; Knobbe, Jens; Grüger, Heinrich; Lakner, Hubert

    2012-12-01

    Confocal fluorescence microscopes are a promising imaging tool in medical diagnostics due to their capability to selectively survey cross-sections of individual layers from `thick' samples. Non-invasive depth resolved investigation of neoplastic skin disorders is one example among other applications. However these microscopes are at present uncommon in medical practice. This is due to their main application area in research. The instruments dealt with here are generally complex, stationary units and are accordingly cost-intensive. It is for this reason, that we have designed a robust and portable MEMS based confocal fluorescence microscope with a field of view of 0.6mm x 0.6mm. This has been made possible by the integration of a 2D micro scanner mirror developed at Fraunhofer IPMS. A variable acquisition depth of cross-sectional images of the fluorescence specimen is enabled by an integrated z-shifter. With the use of commercially available optics an optical demonstrator set up has been realized. To characterize and to demonstrate the ability of this system test measurements were performed. The resolution of the microscope is better than 228 lp/mm determined by 1951 USAF resolution test target. Images of various biological samples are presented and optical sectioning capabilities are shown. A comparison of the measured with the predicted system performance will be given.

  3. Protection of patients in diagnostic and interventional medical imaging: collaboration is the key.

    PubMed

    Applegate, Kimberly E

    2015-02-01

    The radiology community (medical physicists, radiologic technologists, radiologists, and interventional proceduralists) has led the educational and awareness efforts in the medical arena to reduce radiation dose to patients through effective collaborations that bridge traditional medical specialty silos to reach health worker stakeholders. These successful collaborations have also included both vendors and regulators, with the overarching goal of radiation protection of patients (justification, optimization, and use of dose reference levels). This focus on patients often raises overall safety awareness and lowers occupational radiation doses as well. It is critical that the entire radiology community continue to act as leaders in these radiation safety efforts for both employees and patients. In order to be successful, it is important to understand safety culture and the growing, worldwide, multimedia resources that are available. There is little time or budget to recreate or duplicate training materials or risk communication information that may already exist. Together with the increasingly fast-paced and demanding healthcare environment and sharp focus on quality, it has never been more important to understand how to achieve better quality care for radiology departments. It is also important to measure and report quality for many customers, including patients, referring providers, and many other stakeholders. This short report will briefly define safety culture and describe methods for using collective learning tools that document radiation protection of patients in diagnostic and interventional imaging. These tools include the use of imaging modality registries, such as the Computed Tomography Does Index Registry, peer review of imaging reports, the use of clinical decision support, and guidelines. Finally, the Image Gently and Image Wisely campaigns provide examples of cross-disciplinary collaboration to improve radiation protection of patients.

  4. High-Frequency (>50 MHz) Medical Ultrasound Linear Arrays Fabricated From Micromachined Bulk PZT Materials

    PubMed Central

    Liu, Changgeng; Zhou, Qifa; Djuth, Frank T.; Shung, K. Kirk

    2012-01-01

    This paper describes the development and characterization of a high-frequency (65-MHz) ultrasound transducer linear array. The array was built from bulk PZT which was etched using an optimized chlorine-based plasma dry-etching process. The median etch rate of 8 μm/h yielded a good profile (wall) angle (>83°) and a reasonable processing time for etch depths up to 40 μm (which corresponds to a 50-MHz transducer). A backing layer with an acoustic impedance of 6 MRayl and a front-end polymer matching layer yielded a transducer bandwidth of 40%. The major parameters of the transducer have been characterized. The two-way insertion loss and crosstalk between adjacent channels at the center frequency are 26.5 and −25 dB, respectively. PMID:24626041

  5. Evaluation of Human Research Facility Ultrasound With the ISS Video System

    NASA Technical Reports Server (NTRS)

    Melton, Shannon; Sargsyan, Ashot

    2003-01-01

    Most medical equipment on the International Space Station (ISS) is manifested as part of the U.S. or the Russian medical hardware systems. However, certain medical hardware is also available as part of the Human Research Facility. The HRF and the JSC Medical Operations Branch established a Memorandum of Agreement for joint use of certain medical hardware, including the HRF ultrasound system, the only diagnostic imaging device currently manifested to fly on ISS. The outcome of a medical contingency may be changed drastically, or an unnecessary evacuation may be prevented, if clinical decisions are supported by timely and objective diagnostic information. In many higher-probability medical scenarios, diagnostic ultrasound is a first-choice modality or provides significant diagnostic information. Accordingly, the Clinical Care Capability Development Project is evaluating the HRF ultrasound system for its utility in relevant clinical situations on board ISS. For effective management of these ultrasound-supported ISS medical scenarios, the resulting data should be available for viewing and interpretation on the ground, and bidirectional voice communication should be readily available to allow ground experts (sonographers, physicians) to provide guidance to the Crew Medical Officer. It may also be vitally important to have the capability of real-time guidance via video uplink to the CMO-operator during an exam to facilitate the diagnosis in a timely fashion. In this document, we strove to verify that the HRF ultrasound video output is compatible with the ISS video system, identify ISS video system field rates and resolutions that are acceptable for varying clinical scenaiios, and evaluate the HRF ultrasound video with a commercial, off-the-shelf video converter, and compare it with the ISS video system.

  6. Medical History of Elderly Patients in the Emergency Setting: Not an Easy Point-of-Care Diagnostic Marker.

    PubMed

    Lindner, Tobias; Slagman, Anna; Senkin, Arthur; Möckel, Martin; Searle, Julia

    2015-01-01

    Background. Medical histories are a crucially important diagnostic tool. Elderly patients represent a large and increasing group of emergency patients. Due to cognitive deficits, taking a reliable medical history in this patient group can be difficult. We sought to evaluate the medical history-taking in emergency patients above 75 years of age with respect to duration and completeness. Methods. Anonymous data of consecutive patients were recorded. Times for the defined basic medical history-taking were documented, as were the availability of other sources and times to assess these. Results. Data of 104 patients were included in the analysis. In a quarter of patients (25%, n = 26) no complete basic medical history could be obtained. In the group of patients where complete data could be gathered, only 16 patients were able to provide all necessary information on their own. Including other sources like relatives or GPs prolonged the time until complete medical history from 7.3 minutes (patient only) to 26.4 (+relatives) and 56.3 (+GP) minutes. Conclusions. Medical histories are important diagnostic tools in the emergency setting and are prolonged in the elderly, especially if additional documentation and third parties need to be involved. New technologies like emergency medical cards might help to improve the availability of important patient data but implementation of these technologies is costly and faces data protection issues.

  7. SU-E-P-01: An Informative Review On the Role of Diagnostic Medical Physicist in the Academic and Private Medical Centers

    SciTech Connect

    Weir, V; Zhang, J

    2014-06-01

    Purpose: The role of physicist in the academic and private hospital environment continues to evolve and expand. This becomes more obvious with the newly revised requirements of the Joint Commission (JC) on imaging modalities and the continued updated requirements of ACR accreditation for medical physics (i.e., starting in June 2014, a physicists test will be needed before US accreditation). We provide an informative review on the role of diagnostic medical physicist and hope that our experience will expedite junior physicists in understanding their role in medical centers, and be ready to more opportunities. Methods: Based on our experience, diagnostic medical physicists in both academic and private medical centers perform several clinical functions. These include providing clinical service and physics support, ensuring that all ionizing radiation devices are tested and operated in compliance with the State and Federal laws, regulations and guidelines. We also discuss the training and education required to ensure that the radiation exposure to patients and staff is as low as reasonably achievable. We review the overlapping roles of medical and health physicist in some institutions. Results: A detailed scheme on the new requirements (effective 7/1/2014) of the JC is provided. In 2015, new standards for fluoroscopy, cone beam CT and the qualifications of staff will be phased in. A summary of new ACR requirements for different modalities is presented. Medical physicist have other duties such as sitting on CT and fluoroscopy committees for protocols design, training of non-radiologists to meet the new fluoroscopy rules, as well as helping with special therapies such as Yittrium 90 cases. Conclusion: Medical physicists in both academic and private hospitals are positioned to be more involved and prominent. Diagnostic physicists need to be more proactive to involve themselves in the day to day activities of the radiology department.

  8. 2011 Mississippi Curriculum Framework: Postsecondary Diagnostic Medical Sonography Technology. (Program CIP: 51.0910 - Diagnostic Medical Sonography/Sonographer and Ultrasound)

    ERIC Educational Resources Information Center

    Finch, Wanda; Wilson, Lesa

    2011-01-01

    As the world economy continues to evolve, businesses and industries must adopt new practices and processes in order to survive. Quality and cost control, work teams and participatory management, and an infusion of technology are transforming the way people work and do business. Employees are now expected to read, write, and communicate…

  9. 2007 Mississippi Curriculum Framework: Postsecondary Diagnostic Medical Sonography Technology. (Program CIP: 51.0910 - Diagnostic Medical Sonography/Sonographer and Ultrasound Technician)

    ERIC Educational Resources Information Center

    Larimore, Crystal; Megginson, Nita; Weekley, Tracy B.

    2007-01-01

    As the world economy continues to evolve, businesses and industries must adopt new practices and processes in order to survive. Quality and cost control, work teams and participatory management, and an infusion of technology are transforming the way people work and do business. Employees are now expected to read, write, and communicate…

  10. Medical imaging

    NASA Astrophysics Data System (ADS)

    Elliott, Alex

    2005-07-01

    Diagnostic medical imaging is a fundamental part of the practice of modern medicine and is responsible for the expenditure of considerable amounts of capital and revenue monies in healthcare systems around the world. Much research and development work is carried out, both by commercial companies and the academic community. This paper reviews briefly each of the major diagnostic medical imaging techniques—X-ray (planar and CT), ultrasound, nuclear medicine (planar, SPECT and PET) and magnetic resonance. The technical challenges facing each are highlighted, with some of the most recent developments. In terms of the future, interventional/peri-operative imaging, the advancement of molecular medicine and gene therapy are identified as potential areas of expansion.

  11. CT and Ultrasound Guided Stereotactic High Intensity Focused Ultrasound (HIFU)

    SciTech Connect

    Wood, Bradford J.; Frenkel, V.; Viswanathan, A.; Dromi, S.; Oh, K.; Kam, A.; Li, K. C. P.; Yanof, J.; Bauer, C.; Kruecker, J.; Seip, R.

    2006-05-08

    To demonstrate the feasibility of CT and B-mode Ultrasound (US) targeted HIFU, a prototype coaxial focused ultrasound transducer was registered and integrated to a CT scanner. CT and diagnostic ultrasound were used for HIFU targeting and monitoring, with the goals of both thermal ablation and non-thermal enhanced drug delivery. A 1 megahertz coaxial ultrasound transducer was custom fabricated and attached to a passive position-sensing arm and an active six degree-of-freedom robotic arm via a CT stereotactic frame. The outer therapeutic transducer with a 10 cm fixed focal zone was coaxially mounted to an inner diagnostic US transducer (2-4 megahertz, Philips Medical Systems). This coaxial US transducer was connected to a modified commercial focused ultrasound generator (Focus Surgery, Indianapolis, IN) with a maximum total acoustic power of 100 watts. This pre-clinical paradigm was tested for ability to heat tissue in phantoms with monitoring and navigation from CT and live US. The feasibility of navigation via image fusion of CT with other modalities such as PET and MRI was demonstrated. Heated water phantoms were tested for correlation between CT numbers and temperature (for ablation monitoring). The prototype transducer and integrated CT/US imaging system enabled simultaneous multimodality imaging and therapy. Pre-clinical phantom models validated the treatment paradigm and demonstrated integrated multimodality guidance and treatment monitoring. Temperature changes during phantom cooling corresponded to CT number changes. Contrast enhanced or non-enhanced CT numbers may potentially be used to monitor thermal ablation with HIFU. Integrated CT, diagnostic US, and therapeutic focused ultrasound bridges a gap between diagnosis and therapy. Preliminary results show that the multimodality system may represent a relatively inexpensive, accessible, and simple method of both targeting and monitoring HIFU effects. Small animal pre-clinical models may be translated to large

  12. The Characteristics of Early Diagnostic Hypotheses Generated by Physicians (Experts) and Students (Novices) at One Medical School.

    ERIC Educational Resources Information Center

    Sisson, James C.; And Others

    1991-01-01

    A study investigated whether physicians (n=32) would generate less specific initial diagnoses than did medical students (n=39). Analysis of number, specificity, and breadth of diagnoses found students generated significantly more diagnostic hypotheses and more specific hypotheses, but breadth did not differ significantly. (Author/MSE)

  13. Task Descriptions in Diagnostic Radiology. Research Report No. 7. Volume 1, Medical Tasks: What the Radiologist Does.

    ERIC Educational Resources Information Center

    Gilpatrick, Eleanor

    The first of four volumes in Research Report No. 7 of the Health Services Mobility Study (HSMS), this book contains 143 task descriptions covering most of the medical activities carried out by diagnostic radiologists. (The work carried out by radiologic technologists, and administrative, machine-related, and nursing-type functions are found in…

  14. [Councelling regarding prenatal diagnostic: a model project to enhance cooperation between medical and psychosocial consultants].

    PubMed

    Kuhn, Rita; Schmidt, Ulrike; Ottomar, Bahrs; Riehl-Emde, Astrid

    2007-01-01

    Although according to section 2 of the Pregnancy Conflicts Law, there is a legal claim to psychosocial counselling and although its benefit has been proven empirically, pregnant women rarely draw upon it in the context of prenatal diagnostics (PND). One of the reasons is probably that physicians are not sufficiently aware of this counselling offer. By means of the model project "Interprofessional quality circles in prenatal diagnostics" an attempt was made to counteract this deficit. For this purpose, interprofessional quality circles have been established in six different places in Germany in order to motivate medical and psychosocial consultants to an increased cooperation. The effects and realization of the quality circle efforts have been evaluated. For this purpose, structural characteristics such as cooperation practice and utilization of psychosocial counselling have been assessed using a questionnaire before and after the introduction of the quality circles. All sessions have been documented; in addition, they have been evaluated by the participants using another shorter questionnaire. The results show that the quality circles led to an improved cooperation between the different professional groups and an increased utilization of psychosocial counselling. The work of the quality circles has been evaluated positively. It was regarded as conductive to cooperation, emotionally exonerative and extremely helpful with respect to the daily counselling work. Most of all, its practicality and case management were appraised. Thus, interprofessional quality circles prove to be an adequate instrument to advance the interprofessional and aim-oriented cooperation in such a way as demanded emphatically by the German Expert Advisory Board of Community Health in its recent experts report.

  15. Design of a Web-tool for diagnostic clinical trials handling medical imaging research.

    PubMed

    Baltasar Sánchez, Alicia; González-Sistal, Angel

    2011-04-01

    New clinical studies in medicine are based on patients and controls using different imaging diagnostic modalities. Medical information systems are not designed for clinical trials employing clinical imaging. Although commercial software and communication systems focus on storage of image data, they are not suitable for storage and mining of new types of quantitative data. We sought to design a Web-tool to support diagnostic clinical trials involving different experts and hospitals or research centres. The image analysis of this project is based on skeletal X-ray imaging. It involves a computerised image method using quantitative analysis of regions of interest in healthy bone and skeletal metastases. The database is implemented with ASP.NET 3.5 and C# technologies for our Web-based application. For data storage, we chose MySQL v.5.0, one of the most popular open source databases. User logins were necessary, and access to patient data was logged for auditing. For security, all data transmissions were carried over encrypted connections. This Web-tool is available to users scattered at different locations; it allows an efficient organisation and storage of data (case report form) and images and allows each user to know precisely what his task is. The advantages of our Web-tool are as follows: (1) sustainability is guaranteed; (2) network locations for collection of data are secured; (3) all clinical information is stored together with the original images and the results derived from processed images and statistical analysis that enable us to perform retrospective studies; (4) changes are easily incorporated because of the modular architecture; and (5) assessment of trial data collected at different sites is centralised to reduce statistical variance.

  16. Clinical ultrasound physics.

    PubMed

    Abu-Zidan, Fikri M; Hefny, Ashraf F; Corr, Peter

    2011-10-01

    Understanding the basic physics of ultrasound is essential for acute care physicians. Medical ultrasound machines generate and receive ultrasound waves. Brightness mode (B mode) is the basic mode that is usually used. Ultrasound waves are emitted from piezoelectric crystals of the ultrasound transducer. Depending on the acoustic impedance of different materials, which depends on their density, different grades of white and black images are produced. There are different methods that can control the quality of ultrasound waves including timing of ultrasound wave emission, frequency of waves, and size and curvature of the surface of the transducer. The received ultrasound signal can be amplified by increasing the gain. The operator should know sonographic artifacts which may distort the studied structures or even show unreal ones. The most common artifacts include shadow and enhancement artifacts, edge artifact, mirror artifact and reverberation artifact.

  17. Opto-acoustic diagnostics of the thermal action of high-intensity focused ultrasound on biological tissues: the possibility of its applications and model experiments

    SciTech Connect

    Khokhlova, Tanya D; Pelivanov, Ivan M; Solomatin, Vladimir S; Karabutov, Aleksander A; Sapozhnikov, Oleg A

    2006-12-31

    The possibility of using the opto-acoustic (OA) method for monitoring high-intensity ultrasonic therapy is studied. The optical properties of raw and boiled liver samples used as the undamaged model tissue and tissue destroyed by ultrasound, respectively, are measured. Experiments are performed with samples consisting of several alternating layers of raw and boiled liver of different thickness. The position and transverse size of the thermal lesion were determined from the temporal shape of the OA signals. The results of measurements are compared with the real size and position of the thermal lesion determined from the subsequent cuts of the sample. It is shown that the OA method permits the diagnostics of variations in biological tissues upon ultrasonic therapy. (special issue devoted to multiple radiation scattering in random media)

  18. Utilization of Behavioral Medicine Services to Refine Medical Diagnostic Formulation in the Face of Uncertain Symptom Presentation

    PubMed Central

    Moore, David A.; Markman, Elisabeth S.; McMahon, Cori E.; Markman, Maurie

    2016-01-01

    In the ever expanding realm of cancer care, the psychosocial impact of disease and medical treatments has been garnering increased attention. To address these needs, the integration of behavioral medicine services into inpatient and outpatient medical settings has added a unique resource available to oncologists. Psycho-oncologists may assist providers via the provision of psychological assessment and intervention, supplying valuable consultation to members of the medical team and much needed clinical services to patients. The authors present a complex case in which the utilization of behavioral medicine consultation to clarify the diagnostic picture was critical to identifying underlying anatomic disease. PMID:27721774

  19. Wireless image streaming in mobile ultrasound.

    PubMed

    Dickson, Brett W; Pedersen, Peder C

    2010-03-01

    This work evaluates the feasibility of using 802.11 g ad hoc and 3G cellular broadband networks to wirelessly stream ultrasound video in real-time. Telemedicine ultrasound applications in events such as disaster relief and first-response triage can incorporate these technologies, enabling onsite medical personnel to receive assistance with diagnostic decisions by remote medical experts. The H.264 scalable video codec was used to encode echocardiographic video streams at various image resolutions (video graphics array [VGA] and quarter video graphics array [QVGA]) and frame rates (10, 15, 20, and 30 frames/s). The video stream was transmitted using 802.11 g and 3G cellular technologies, and pertinent transmission parameters such as data rate, packet loss, delay jitter, and latency were measured. 802.11 g permits high frame rate and VGA resolution and has low latency and jitter, but it is suitable only for short communication ranges, whereas the 3G cellular network allows medium to low frame rate streaming at QVGA image resolution with medium latency. However, video streaming can take place from any location with 3G service to any other site with Internet connectivity. The transmitted ultrasound video streams were subsequently recorded and evaluated by physicians with expertise in medical ultrasonography who evaluated the diagnostic value of the received video streams relative to the original videos. They expressed the opinion that image quality in the case of both 802.11 g and 3G was fully to adequately preserved, but missed frames could momentarily decrease the diagnostic value. This research demonstrates that 3G and 802.11 g wireless networks combined with efficient video compression make diagnostically valuable wireless streaming of ultrasound video feasible.

  20. Ultrasound skin imaging.

    PubMed

    Alfageme Roldán, F

    2014-12-01

    The interaction of high-frequency ultrasound waves with the skin provides the basis for noninvasive, fast, and accessible diagnostic imaging. This tool is increasingly used in skin cancer and inflammatory conditions as well as in cosmetic dermatology. This article reviews the basic principles of skin ultrasound and its applications in the different areas of dermatology.

  1. General Ultrasound Imaging

    MedlinePlus Videos and Cool Tools

    ... of the reflected sound waves (called the Doppler effect). A computer collects and processes the sounds and ... standard diagnostic ultrasound , there are no known harmful effects on humans. top of page What are the ...

  2. An analog integrated circuit beamformer for high-frequency medical ultrasound imaging.

    PubMed

    Gurun, Gokce; Zahorian, Jaime S; Sisman, Alper; Karaman, Mustafa; Hasler, Paul E; Degertekin, F Levent

    2012-10-01

    We designed and fabricated a dynamic receive beamformer integrated circuit (IC) in 0.35-μm CMOS technology. This beamformer IC is suitable for integration with an annular array transducer for high-frequency (30-50 MHz) intravascular ultrasound (IVUS) imaging. The beamformer IC consists of receive preamplifiers, an analog dynamic delay-and-sum beamformer, and buffers for 8 receive channels. To form an analog dynamic delay line we designed an analog delay cell based on the current-mode first-order all-pass filter topology, as the basic building block. To increase the bandwidth of the delay cell, we explored an enhancement technique on the current mirrors. This technique improved the overall bandwidth of the delay line by a factor of 6. Each delay cell consumes 2.1-mW of power and is capable of generating a tunable time delay between 1.75 ns to 2.5 ns. We successfully integrated the fabricated beamformer IC with an 8-element annular array. Experimental test results demonstrated the desired buffering, preamplification and delaying capabilities of the beamformer.

  3. Combined phase screen aberration correction and minimum variance beamforming in medical ultrasound.

    PubMed

    Ziksari, Mahsa Sotoodeh; Asl, Babak Mohammadzadeh

    2017-03-01

    In recent years, applying adaptive beamforming to ultrasound imaging improves image quality in terms of resolution and contrast. One of the best adaptive beamformers in this field is the minimum variance (MV) beamformer which presents better resolution and edge definition compared to the traditional delay-and-sum (DAS) beamformer. However, in real situations, sound-velocity inhomogeneities cause phase aberration which leads to ambiguity in targets' location and degradation in resolution. This effect is a fundamental obstacle to utilize advantages of MV beamformer, although, in aberrating medium MV beamformer results in better performance compared to DAS. In this paper, two different levels of phase screens have been applied to simulate aberrator layers located close to the transducer. Also, prior to beamforming process, a conventional correction technique based on phase screen model is used. Simulations are performed in majority resolution of MV which has the lowest robustness. The results demonstrate that applying this correction method can retrieve the efficiency of the MV beamformer. Moreover, the method improves the performance of the MV in both terms of resolution and contrast. As corrected MV achieved at least 22% improvement in sidelobe reduction and 24% increase in contrast to noise ratio (CNR) with respect to the DAS corrected data. Also, according to experimental dataset 17% enhancement in CNR is yielded by MV.

  4. 76 FR 43119 - Medical Devices; General and Plastic Surgery Devices; Classification of the Focused Ultrasound...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-20

    ... HUMAN SERVICES Food and Drug Administration 21 CFR Part 878 Medical Devices; General and Plastic Surgery... Drug Administration, HHS. ACTION: Final rule. SUMMARY: The Food and Drug Administration (FDA) is... Radiological Health, Food and Drug Administration, 10903 New Hampshire Ave., Bldg. 66, Rm. 1436, Silver...

  5. Diagnostic Performance of Intravascular Ultrasound-Derived Minimal Lumen Area to Predict Functionally Significant Non-Left Main Coronary Artery Disease: a Meta-Analysis

    PubMed Central

    Shin, Ho-Cheol; Bae, Jong Seok; Jin, Han-Young; Seo, Jeong-Sook; Yang, Tae-Hyun; Kim, Dae-Kyeong; Cho, Kyoung-Im; Kim, Bo-Hyun; Park, Yong Hyun; Je, Hyung-Gon; Kim, Dong-Soo

    2016-01-01

    Background and Objectives Intravascular ultrasound (IVUS)-guided percutaneous coronary intervention frequently results in unnecessary stenting due to the low positive predictive value of IVUS-derived minimal lumen area (MLA) for identification of functionally significant coronary stenosis. We appraised the diagnostic accuracy of IVUS-derived MLA compared with the fractional flow reserve (FFR) to assess intermediate coronary stenosis. Subjects and Methods We searched MEDLINE and Cochrane databases for studies using IVUS and FFR methods to establish the best MLA cut-off values to predict significant non-left main coronary artery stenosis. Summary estimates were obtained using a random-effects model. Results The 17 studies used in our analysis enrolled 3920 patients with 4267 lesions. The weighted overall mean MLA cut-off value was 2.58 mm2. The pooled MLA sensitivity that predicted functionally significant coronary stenosis was 0.75 (confidence interval [CI]: 0.72 to 0.77) and the specificity was 0.66 (CI: 0.64 to 0.68). The positive likelihood ratio (LR) was 2.33 (CI: 2.06 to 2.63) and LR (-) was 0.33 (CI: 0.26 to 0.42). The pooled diagnostic odds ratio (DOR) was 7.53 (CI: 5.26 to 10.76) and the area under the summary receiver operating characteristic curve for all the trials was 0.782 with a Q point of 0.720. Meta-regression analysis demonstrated that an FFR cut-off point of 0.75 was associated with a four times higher diagnostic accuracy compared to that of 0.80 (relative DOR: 3.92; 95% CI: 1.25 to 12.34). Conclusion IVUS-derived MLA has limited diagnostic accuracy and needs careful interpretation to correlate with functionally significant non-left main coronary artery stenosis. PMID:27721852

  6. A software framework for diagnostic medical image perception with feedback, and a novel perception visualization technique

    NASA Astrophysics Data System (ADS)

    Phillips, Peter W.; Manning, David J.; Donovan, Tim; Crawford, Trevor; Higham, Stephen

    2005-04-01

    This paper describes a software framework and analysis tool to support the collection and analysis of eye movement and perceptual feedback data for a variety of diagnostic imaging modalities. The framework allows the rapid creation of experiment software that can display a collection of medical images of a particular modality, capture eye trace data, and record marks added to an image by the observer, together with their final decision. There are also a number of visualisation techniques for the display of eye trace information. The analysis tool supports the comparison of individual eye traces for a particular observer or traces from multiple observers for a particular image. Saccade and fixation data can be visualised, with user control of fixation identification functions and properties. Observer markings are displayed, and predefined regions of interest are supported. The software also supports some interactive and multi-image modalities. The analysis tool includes a novel visualisation of scan paths across multi-image modalities. Using an exploded 3D view of a stack of MRI scan sections, an observer's scan path can be shown traversing between images, in addition to inspecting them.

  7. Cross method for analysis of the erythrocyte sedimentation rate and aggregation coefficient in medical diagnostics

    NASA Astrophysics Data System (ADS)

    Yamaikina, Irene V.; Furmanchuk, Dmitryi A.

    1998-06-01

    Method of erythrocyte sedimentation rate (ESR) measurement is non-specific one. The ESR are tightly correlated to increase or decrease of aggregation coefficient (N). The variations of N could happen due to two main reasons: either changes in concentration of plasma proteins (first of all of fibrinogen) or changes of erythrocyte membrane characteristics (surface charge, transmembrane potential). The cross-method of ESR analysis has been proposed, using blood samples from patient and healthy donor of the same ABO blood groups and Rh-factors. The hematocrit (Ho)-ESR dependencies were measured in four variants: (1) patient's erythrocytes in patient's plasma; (2) patient's erythrocytes in donor's plasma; (3) donor's erythrocytes in donor's plasma; (4) donor's erythrocytes in patient's plasma. On presenting the ESR data for more than 100 patients with different bone marrow disorders after chemotherapy in the coordinates Ho-ESR three conventional zones could be marked out: high-ESR zone, medium zone and zone of low level of Ho. Proposed cross-method allows to estimate which of the two aforementioned reasons results in ESR variation. Some patients revealed not only changed fibrinogen level but additional changes in membrane affinity to fibrinogen. The modificated ESR cross-method opens us some new capacities in medical diagnostics.

  8. Justification of diagnostic medical exposures: some practical issues. Report of an International Atomic Energy Agency Consultation

    PubMed Central

    Malone, J; Guleria, R; Craven, C; Horton, P; Järvinen, H; Mayo, J; O’reilly, G; Picano, E; Remedios, D; Le Heron, J; Rehani, M; Holmberg, O; Czarwinski, R

    2012-01-01

    Objectives The Radiation Protection of Patients Unit of the International Atomic Energy Agency (IAEA) is concerned about the effectiveness of justification of diagnostic medical exposures. Recent published work and the report of an initial IAEA consultation in the area gave grounds for such concerns. There is a significant level of inappropriate usage, and, in some cases, a poor level of awareness of dose and risk among some key groups involved. This article aims to address this. Methods The IAEA convened a second group of experts in November 2008 to review practical and achievable actions that might lead to more effective justification. Results This report summarises the matters that this group considered and the outcome of their deliberations. There is a need for improved communication, both within professions and between professionals on one hand, and between professionals and the patients/public on the other. Coupled with this, the issue of consent to imaging procedures was revisited. The need for good evidence-based referral guidelines or criteria of acceptability was emphasised, as was the need for their global adaptation and dissemination. Conclusion Clinical audit was regarded as a key tool in ensuring that justification becomes an effective, transparent and accountable part of normal radiological practice. In summary, justification would be facilitated by the “3 As”: awareness, appropriateness and audit. PMID:21343316

  9. The Technologist Function in Fields Related to Radiology: Tasks in Radiation Therapy and Diagnostic Ultrasound. Research Report No. 9; Relating Technologist Tasks in Diagnostic Radiology, Ultrasound and Radiation Therapy. Research Report No. 10.

    ERIC Educational Resources Information Center

    Gilpatrick, Eleanor

    The two research reports included in this document describe the application of the Health Services Mobility Study (HSMS) task analysis method to two technologist functions and examine the interrelationships of these tasks with those in diagnostic radiology. (The HSMS method includes processes for using the data for designing job ladders, for…

  10. Focal bowel wall changes detected with colour Doppler ultrasound: diagnostic value in acute non-diverticular diseases of the colon.

    PubMed

    Danse, E M; Jamart, J; Hoang, P; Laterre, P F; Kartheuser, A; Van Beers, B E

    2004-11-01

    We performed a study to determine if colour Doppler findings may help to identify the cause of wall thickening in acute non-diverticular diseases of the colon. The study group included 66 patients admitted to the emergency department with a final diagnosis of infectious colitis (n=23), inflammatory colitis (n=10), ischaemic colitis (n=23) and malignant tumours (n=10). The following ultrasound features were assessed: maximal wall thickness, wall stratification, arterial flow in the colonic wall and arteriolar resistive index. Higher values of wall thickness were observed in malignant tumour (18.2+/-6.2 mm, p<0.001). Moderately thickened wall (6.6+/-1.3 mm, p< or =0.06), preserved stratification (90% versus 46% in the remainder of the study population) and lower resistive index (0.51+/-0.10, p< or =0.05) were significantly related to inflammatory colitis. Absence of arterial flow was more frequently observed in ischaemia (43% versus 12% in the remainder of the study population). In conclusion, despite some overlap, both ultrasound and colour Doppler features are helpful in the differential diagnosis of colonic thickening related to non-diverticular colonic lesions.

  11. Investigation of transmit and receive performance at the fundamental and third harmonic resonance frequency of a medical ultrasound transducer.

    PubMed

    Frijlink, Martijn E; Løvstakken, Lasse; Torp, Hans

    2009-12-01

    In this study, the phenomenon of higher harmonic thickness resonance of a piezoelectric transducer was used to investigate potentially additional sensitivity at the third harmonic frequency for conventional medical transducers. The motivation for this research is that some applications in medical ultrasound (e.g. third harmonic transmit phasing and contrast imaging) need probes which are sensitive around both the fundamental and third harmonic frequencies, and that these higher harmonic thickness modes, although often considered as undesired, might be used beneficially. The novelty aspect in this study is the presented transmit and receive potential at both the fundamental and third harmonic of a conventional cardiac probe with modified electrical tuning. Elements of an experimental PZT-based phased-array probe (f(c)=3 MHz, 64 elements, element width=0.3mm, elevation aperture=13 mm) were electrically retuned with series inductors around the third harmonic resonance frequency at 10 MHz. Hydrophone measurements with 10-MHz-tuned elements showed that, as compared to a conventionally tuned element, the transmit transfer function at the third harmonic increased more than 23 dB, while the sensitivity at the fundamental frequency was only 6 dB lower. Pulse-echo measurements showed that the two-way transfer function of a 10-MHz-tuned element resulted in 20 dB increased sensitivity around the third harmonic as compared to an untuned element. Simulated transfer functions, from both a 1D KLM and 2D finite element model of an element of the experimental array transducer, confirmed the measured sensitivity peaks at the fundamental and third harmonic. In conclusion, this study demonstrated the effect of changing the electrical tuning on a conventional array transducer which increased the sensitivity around the third harmonic resonance frequency, while maintaining good sensitivity at the fundamental frequency.

  12. TOPICAL REVIEW: Synthesis and applications of magnetic nanoparticles for biorecognition and point of care medical diagnostics

    NASA Astrophysics Data System (ADS)

    Sandhu, Adarsh; Handa, Hiroshi; Abe, Masanori

    2010-11-01

    Functionalized magnetic nanoparticles are important components in biorecognition and medical diagnostics. Here, we present a review of our contribution to this interdisciplinary research field. We start by describing a simple one-step process for the synthesis of highly uniform ferrite nanoparticles (d = 20-200 nm) and their functionalization with amino acids via carboxyl groups. For real-world applications, we used admicellar polymerization to produce 200 nm diameter 'FG beads', consisting of several 40 nm diameter ferrite nanoparticles encapsulated in a co-polymer of styrene and glycidyl methacrylate for high throughput molecular screening. The highly dispersive FG beads were functionalized with an ethylene glycol diglycidyl ether spacer and used for affinity purification of methotrexate—an anti-cancer agent. We synthesized sub-100 nm diameter magnetic nanocapsules by exploiting the self-assembly of viral capsid protein pentamers, where single 8, 20, and 27 nm nanoparticles were encapsulated with VP1 pentamers for applications including MRI contrast agents. The FG beads are now commercially available for use in fully automated bio-screening systems. We also incorporated europium complexes inside a polymer matrix to produce 140 nm diameter fluorescent-ferrite beads (FF beads), which emit at 618 nm. These FF beads were used for immunofluorescent staining for diagnosis of cancer metastases to lymph nodes during cancer resection surgery by labeling tumor cell epidermal growth factor receptor (EGFRs), and for the detection of brain natriuretic peptide (BNP)—a hormone secreted in excess amounts by the heart when stressed—to a level of 2.0 pg ml - 1. We also describe our work on Hall biosensors made using InSb and GaAs/InGaAs/AlGaAs 2DEG heterostructures integrated with gold current strips to reduce measurement times. Our approach for the detection of sub-200 nm magnetic bead is also described: we exploit the magnetically induced capture of micrometer sized 'probe

  13. Intravascular ultrasound imaging

    SciTech Connect

    Cavaye, D.M.; White, R.A. )

    1992-01-01

    This book will give vascular surgeons, cardiologists, radiologists, and technologists a complete working knowledge of intravascular ultrasound imaging and the crucial role of this new technology in endovascular diagnosis and therapy. The book reviews the essential principles of vascular pathology and ultrasound imaging and then provides state-of-the-art information on intraluminal ultrasound imaging devices and techniques, including practical guidelines for using catheters, optimizing image quality, and avoiding artifacts. Image interpretation and computerized image reconstruction are also discussed in detail. The first section explains the diagnostic, therapeutic, and experimental applications of intravascular ultrasound, particularly as a adjunct to angioplasty and other current interventional procedures.

  14. Sounding out the future of ultrasound education

    PubMed Central

    Dawson, M; Goudie, A; Mallin, M

    2014-01-01

    As in so many other fields, the internet has revolutionised medical education. It has done this by circumventing the traditional constraints of medical education, in particular the availability of local resources such as teachers and textbooks. This “education revolution” has been most successful in the areas of theoretical knowledge. This article explores the available resources, and the challenges that arise when attempting to teach point-of-care ultrasound via the internet, such as the visuomotor and visuospatial skills required to create a diagnostic image. This article also describes the progress to date in this field. PMID:27433235

  15. Female breast cancer in relation to exposure to medical iatrogenic diagnostic radiation during life

    PubMed Central

    Pranjic, Nurka; Drljević, Kenan; Prasko, Subhija; Drljevic, Irdina; Brzeziński, Piotr

    2013-01-01

    Aim of the study Exposure to radiation and aging are the leading causes of breast cancer among female patients. We aimed to investigate and assess the relationship between exposure to medical, diagnostic and iatrogenic radiation and breast cancer using a questionnaire among 100 newly diagnosed female breast cancer patients and 100 control female subjects without cancer. Material and methods A case control study using a family ambulatory based survey was conducted among 200 female patients from all municipalities of Zenica-Doboj Canton. New cases of breast cancer among subjects of experimental groups (n = 100) were diagnosed between 1 January 2003 and 31 December 2007 using the institutional clinical procedure for breast cancer diagnosis. Data were obtained using a self-rated questionnaire on radiation as a breast carcinogen. Data analysis was performed using SPSS version 19.0. Results There were no significant differences between the two groups and their subgroups for individual data and demographics except for prevalence of decreased family financial situation (practical poverty) among subjects with breast cancer in relation to control subjects (31%: 17% among control subjects; p = 0.001). Female patients who are exposed to iatrogenic radiation before the 3rd year of life (OR = 1.29; 95% CI: 0.839–1.985) and those who are exposed to CT more than twice per year are more than twice as likely to have breast carcinoma (OR = 2.02; 95% CI: 1.254–3.261) compared to control subjects. Poverty and low family income are vulnerability factors associated with elevated levels of breast carcinoma. This result is not in accordance with prior study results. ConcIusions It is necessary to develop an adequate registration system of iatrogenic exposure to radiation for each patient of any age, particularly for children aged < 3 years and for CT iatrogenic exposure. PMID:23788943

  16. Radiative-SPR platform for the detection of apolipoprotein E for use in medical diagnostics

    NASA Astrophysics Data System (ADS)

    Sciacca, Beniamino; Francois, Alexandre; Penno, Megan A. S.; Brazzatti, Julie A.; Klingler-Hoffmann, Manuela; Hoffmann, Peter; Monro, Tanya M.

    2012-03-01

    Surface Plasmon Resonance (SPR) based sensors enable the rapid, label-free and highly sensitive detection of a large range of biomolecules. We have previously shown that, using silver coated optical fibres with an high surface roughness, a re-scattering of the surface plasmons is possible, turning SPR into a radiative process. This approach overcomes limitations associated with current SPR technologies such as the tight tolerance on the metallic coating thickness, and results in a more compact, versatile, robust and cost-effective approach. However, the specific detection of small molecules is a challenge in SPR systems, regardless of the SPR architecture that is used. This new sensing platform, which has proved effective for the detection of large molecules such as viruses, is now demonstrated to be able to detect small proteins thanks to an improved surface functionalization procedure, a key point for reliable and robust immunosensors. Avidin, a tetrameric biotin-binding protein, was used to link biotinylated antibodies to the biotinylated surface, with a given orientation, to enable efficient sensing of the analyte. This approach may offer significant advantages compared to protein A surface functionalization strategies such as a limited cross reactivity with free IgG antibodies in clinical samples. We demonstrate that by bringing together this novel emission-based fibre SPR platform, with an improved surface functionalization process, is possible to rapidly and specifically detect human apolipoprotein E, a low molecular weight protein (~39kDa) known to be involved in cardiovascular diseases, in Alzheimer's disease and in gastric cancer. The results obtained clearly show that this new sensing platform has the potential to serve as a tool for point-of-decision medical diagnostics.

  17. In vitro diagnostic company recalls and medical laboratory practices: an Italian case

    PubMed Central

    Lippi, Giuseppe; Salvagno, Gian Luca; Brocco, Giorgio; Guidi, Gian Cesare

    2015-01-01

    Introduction In vitro human diagnostic (IVD) company recalls are a common practice aimed to either minimize a potential error or eliminate an existing failure. In this case report, we aim to provide a critical analysis of a recent IVD recall and to provide a practical framework about what to do when an IVD company recalls product(s) based on the International Organization for Standardization - ISO 15189:2012 standard. Case report In 2014, Abbott Laboratories® (Green Oaks, IL) published an urgent field safety notice regarding a product recall (Architect Intact parathyroid hormone (PTH) Assay List Number 8K25) with immediate action required. The IVD company explained the reasons for the recall as follows: i) Abbott has confirmed that a performance shift in the Architect Intact PTH assay has the potential to generate falsely elevated results on patient samples; ii) results generated with impacted lots may demonstrate a positive shift relative to those generated with previous reagent and/or calibrator lots. This issue may also impact established Architect Intact PTH reference ranges; iii) the magnitude of shift averages approximately 13% to 45%; iv) Abbott Architect Intact PTH controls do not detect the shift; and v) all current reagent, calibrator, and control inventory are impacted. The recall could have resulted in ~40,000 inaccurate laboratory tests reported by 18 laboratories from Italy (Lombardy region). Conclusion IVD company recalls have a serious impact on the patient safety and require a thorough investigation and responsible approach to minimize the possible damage. Medical laboratories accredited according to the ISO 15189 standard have procedures in place to manage such situations and ensure that patient safety is maintained when such recalls are issued. PMID:26110040

  18. Clinically Unjustified Diagnostic Imaging – a Worrisome Tendency in Today’s Medical Practice

    PubMed Central

    Sobiecka, Aleksandra; Bekiesińska-Figatowska, Monika; Rutkowska, Milena; Latos, Tomasz; Walecki, Jerzy

    2016-01-01

    Summary Background The purpose of the study was to evaluate the percentage of unjustified examinations among all the CT and MRI studies performed by two radiology departments and to determine the types of examinations which are most commonly carried out unnecessarily. Material/Methods Three radiologists assessed the justification of CT and MRI examinations performed during a period of 14 days based on the referrals. The radiologists assessed 799 referrals for CT scans (847 examinations of a particular part of the body) and 269 MRI referrals (269 examinations). The criteria for justification were: medical expertise and the guidelines. During the first stage radiologists divided the examinations into 3 groups: justified, unjustified and the examinations of questionable justification. The second step was to determine the reasons why the studies were considered as unjustified or of questionable justification. Results 73 of 1116 examinations (6.54%) were considered to be unjustified or of a questionable justification. There were 59 CT scans (59/847=6.97%) and 14 MRI studies (14/269=5.20%). The most common reasons to consider them as unjustified or of questionable justification were: inadequate method of diagnostic imaging chosen as a first-line tool and lacking or insufficient clinical details. Conclusions In our investigation 6.54% of both CT and MRI examinations were considered as unjustified or of questionable justification, which is lower than described in other studies (from 7% to 26%). The assessment was based only on referrals, therefore a total share of these examinations is likely to be higher. PMID:27471577

  19. Medical diagnosis aboard submarines. Use of a computer-based Bayesian method of analysis in an abdominal pain diagnostic program.

    PubMed

    Osborne, S F

    1984-02-01

    The medical issues that arise in the isolated environment of a submarine can occasionally be grave. While crewmembers are carefully screened for health problems, they are still susceptible to serious acute illness. Currently, the submarine medical department representative, the hospital corpsman, utilizes a history and physical examination, clinical acumen, and limited laboratory testing in diagnosis. The application of a Bayesian method of analysis to an abdominal pain diagnostic system utilizing an onboard microcomputer is described herein. Early results from sea trials show an appropriate diagnosis in eight of 10 cases of abdominal pain, but the program should still be viewed as an extended "laboratory test" until proved effective at sea.

  20. [Diagnostic potential of the lower-body negative pressure test in medical monitoring during extended space flights].

    PubMed

    Aslferova, I V; Turchaninova, V F; Golubchikova, Z A; Krivolapov, V V; Khorosheva, E G

    2007-01-01

    To put into service the diagnostic and prognostic capabilities of the lower body negative pressure test (LBNP) during extended space flights, cardiovascular reactions associated with various levels of test tolerance were analyzed and compared. The article gives account of 60 tests performed by 44 cosmonauts 33 to 53 years of age during 59- to 415-d flights. In 36 tests tolerance was good and in 24 - satisfactory. Medical evaluation was fulfilled using GaMMa-1M, an onboard multifunctional medical monitoring system. Dynamics of ECG, blood pressure, stroke and minute volumes, pulse filling, and vertebral-basilar tone exhibited some specific traits that mirrored LBNP tolerance. Established were diagnostically implicative values in the course of pressure drop. Evidence was obtained that during the test and ensuing data analysis consideration should be given as to the span of changes of each parameter, so the time of their initiation, and dynamics.

  1. Acquisition and review of diagnostic images for use in medical research and medical testing examinations via the Internet

    NASA Astrophysics Data System (ADS)

    Pauley, Mark A.; Dalrymple, Glenn V.; Zhu, Quiming; Chu, Wei-Kom

    2000-12-01

    With the continued centralization of medical care into large, regional centers, there is a growing need for a flexible, inexpensive, and secure system to rapidly provide referring physicians in the field with the results of the sophisticated medical tests performed at these facilities. Furthermore, the medical community has long recognized the need for a system with similar characteristics to maintain and upgrade patient case sets for oral and written student examinations. With the move toward filmless radiographic instrumentation, the widespread and growing use of digital methods and the Internet, both of these processes can now be realized. This article describes the conceptual development and testing of a protocol that allow users to transmit, modify, remotely store and display the images and textual information of medical cases via the Internet. We also discuss some of the legal issues we encountered regarding the transmission of medical information; these issues have had a direct impact on the implementation of the results of this project.

  2. Two-layer Lab-on-a-chip (LOC) with passive capillary valves for mHealth medical diagnostics.

    PubMed

    Balsam, Joshua; Bruck, Hugh Alan; Rasooly, Avraham

    2015-01-01

    There is a new potential to address needs for medical diagnostics in Point-of-Care (PoC) applications using mHealth (Mobile computing, medical sensors, and communications technologies for health care), a mHealth based lab test will require a LOC to perform clinical analysis. In this work, we describe the design of a simple Lab-on-a-chip (LOC) platform for mHealth medical diagnostics. The LOC utilizes a passive capillary valve with no moving parts for fluid control using channels with very low aspect ratios cross sections (i.e., channel width ≫ height) achieved through transitions in the channel geometry via that arrest capillary flow. Using a CO2 laser in raster engraving mode, we have designed and fabricated an eight-channel LOC for fluorescence signal detection fabricated by engraving and combining just two polymer layers. Each of the LOC channels is capable of mixing two reagents (e.g., enzyme and substrate) for various assays. For mHealth detection, we used a mobile CCD detector equipped with LED multispectral illumination in the red, green, blue, and white range. This technology enables the development of low-cost LOC platforms for mHealth whose fabrication is compatible with standard industrial plastic fabrication processes to enable mass production of mHealth diagnostic devices, which may broaden the use of LOCs in PoC applications, especially in global health settings.

  3. Current and Projected Modes of Delivery of Veterinary Medical Services to Animal Agriculture: Diagnostic Laboratory Services.

    ERIC Educational Resources Information Center

    Seaton, Vaughn A.

    1980-01-01

    The veterinary diagnostic laboratory's prime role has been diagnosis and/or laboratory findings to assist a diagnosis. Interpretation and evaluation and more involvement with decision-making in monitoring groups of animals and their health status are seen as future roles for diagnostic laboratories. (MLW)

  4. 76 FR 77834 - Scientific Information Request on Intravascular Diagnostic and Imaging Medical Devices

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ... diagnostic coronary angiography to evaluate the presence/extent of Coronary Artery Disease (CAD) in order to... outcomes? During diagnostic coronary angiography for the evaluation of the presence/extent of CAD and the... the evaluation of the presence/extent of CAD and the potential need for coronary intervention?...

  5. Design, construction, and validation of a rotary multifunctional intravascular diagnostic catheter combining multispectral fluorescence lifetime imaging and intravascular ultrasound

    PubMed Central

    Bec, Julien; Xie, Hongtao; Yankelevich, Diego R.; Zhou, Feifei; Sun, Yang; Ghata, Narugopal; Aldredge, Ralph

    2012-01-01

    Abstract. We report the development and validation of an intravascular rotary catheter for bimodal interrogation of arterial pathologies. This is based on a point-spectroscopy scanning time-resolved fluorescence spectroscopy technique enabling reconstruction of fluorescence lifetime images (FLIm) and providing information on arterial intima composition and intravascular ultrasound (IVUS) providing information on arterial wall morphology. The catheter design allows for independent rotation of the ultrasonic and optical channels within an 8 Fr outer diameter catheter sheath and integrates a low volume flushing channel for blood removal in the optical pathways. In the current configuration, the two channels consist of (a) a standard 3 Fr IVUS catheter with single element transducer (40 MHz) and (b) a side-viewing fiber optic (400 μm core). Experiments conducted in tissue phantoms showed the ability of the catheter to operate in an intraluminal setting and to generate coregistered FLIm and IVUS in one pull-back scan. Current results demonstrate the feasibility of the catheter for simultaneous bimodal interrogation of arterial lumen and for generation of robust fluorescence lifetime data under IVUS guidance. These results facilitate further development of a FLIm-IVUS technique for intravascular diagnosis of atherosclerotic cardiovascular diseases including vulnerable plaques. PMID:23224011

  6. Design, construction, and validation of a rotary multifunctional intravascular diagnostic catheter combining multispectral fluorescence lifetime imaging and intravascular ultrasound

    NASA Astrophysics Data System (ADS)

    Bec, Julien; Xie, Hongtao; Yankelevich, Diego R.; Zhou, Feifei; Sun, Yang; Ghata, Narugopal; Aldredge, Ralph; Marcu, Laura

    2012-10-01

    We report the development and validation of an intravascular rotary catheter for bimodal interrogation of arterial pathologies. This is based on a point-spectroscopy scanning time-resolved fluorescence spectroscopy technique enabling reconstruction of fluorescence lifetime images (FLIm) and providing information on arterial intima composition and intravascular ultrasound (IVUS) providing information on arterial wall morphology. The catheter design allows for independent rotation of the ultrasonic and optical channels within an 8 Fr outer diameter catheter sheath and integrates a low volume flushing channel for blood removal in the optical pathways. In the current configuration, the two channels consist of (a) a standard 3 Fr IVUS catheter with single element transducer (40 MHz) and (b) a side-viewing fiber optic (400 μm core). Experiments conducted in tissue phantoms showed the ability of the catheter to operate in an intraluminal setting and to generate coregistered FLIm and IVUS in one pull-back scan. Current results demonstrate the feasibility of the catheter for simultaneous bimodal interrogation of arterial lumen and for generation of robust fluorescence lifetime data under IVUS guidance. These results facilitate further development of a FLIm-IVUS technique for intravascular diagnosis of atherosclerotic cardiovascular diseases including vulnerable plaques.

  7. Design, construction, and validation of a rotary multifunctional intravascular diagnostic catheter combining multispectral fluorescence lifetime imaging and intravascular ultrasound.

    PubMed

    Bec, Julien; Xie, Hongtao; Yankelevich, Diego R; Zhou, Feifei; Sun, Yang; Ghata, Narugopal; Aldredge, Ralph; Marcu, Laura

    2012-10-01

    We report the development and validation of an intravascular rotary catheter for bimodal interrogation of arterial pathologies. This is based on a point-spectroscopy scanning time-resolved fluorescence spectroscopy technique enabling reconstruction of fluorescence lifetime images (FLIm) and providing information on arterial intima composition and intravascular ultrasound (IVUS) providing information on arterial wall morphology. The catheter design allows for independent rotation of the ultrasonic and optical channels within an 8 Fr outer diameter catheter sheath and integrates a low volume flushing channel for blood removal in the optical pathways. In the current configuration, the two channels consist of (a) a standard 3 Fr IVUS catheter with single element transducer (40 MHz) and (b) a side-viewing fiber optic (400 μm core). Experiments conducted in tissue phantoms showed the ability of the catheter to operate in an intraluminal setting and to generate coregistered FLIm and IVUS in one pull-back scan. Current results demonstrate the feasibility of the catheter for simultaneous bimodal interrogation of arterial lumen and for generation of robust fluorescence lifetime data under IVUS guidance. These results facilitate further development of a FLIm-IVUS technique for intravascular diagnosis of atherosclerotic cardiovascular diseases including vulnerable plaques.

  8. Abdominal Ultrasound

    MedlinePlus

    ... Ultrasound - Abdomen Ultrasound imaging of the abdomen uses sound waves to produce pictures of the structures within ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  9. Hip Ultrasound

    MedlinePlus

    ... Index A-Z Hip Ultrasound Hip ultrasound uses sound waves to produce pictures of muscles, tendons, ligaments, ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  10. Obstetrical Ultrasound

    MedlinePlus

    ... Index A-Z Obstetric Ultrasound Obstetric ultrasound uses sound waves to produce pictures of a baby (embryo ... pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or ...

  11. Histological Knowledge as a Predictor of Medical Students' Performance in Diagnostic Pathology

    ERIC Educational Resources Information Center

    Nivala, Markus; Lehtinen, Erno; Helle, Laura; Kronqvist, Pauliina; Paranko, Jorma; Säljö, Roger

    2013-01-01

    Over the years, the role and extent of the basic sciences in medical curricula have been challenged by research on clinical expertise, clinical teachers, and medical students, as well as by the development and diversification of the medical curricula themselves. The aim of this study was to examine how prior knowledge of basic histology and…

  12. Nonlinear acoustics in biomedical ultrasound

    NASA Astrophysics Data System (ADS)

    Cleveland, Robin O.

    2015-10-01

    Ultrasound is widely used to image inside the body; it is also used therapeutically to treat certain medical conditions. In both imaging and therapy applications the amplitudes employed in biomedical ultrasound are often high enough that nonlinear acoustic effects are present in the propagation: the effects have the potential to be advantageous in some scenarios but a hindrance in others. In the case of ultrasound imaging the nonlinearity produces higher harmonics that result in images of greater quality. However, nonlinear effects interfere with the imaging of ultrasound contrast agents (typically micron sized bubbles with a strong nonlinear response of their own) and nonlinear effects also result in complications when derating of pressure measurements in water to in situ values in tissue. High intensity focused ultrasound (HIFU) is emerging as a non-invasive therapeutic modality which can result in thermal ablation of tissue. For thermal ablation, the extra effective attenuation resulting from nonlinear effects can result in enhanced heating of tissue if shock formation occurs in the target region for ablation - a highly desirable effect. However, if nonlinearity is too strong it can also result in undesired near-field heating and reduced ablation in the target region. The disruption of tissue (histotripsy) and fragmentation of kidney stones (lithotripsy) exploits shock waves to produce mechanically based effects, with minimal heating present. In these scenarios it is necessary for the waves to be of sufficient amplitude that a shock exists when the waveform reaches the target region. This talk will discuss how underlying nonlinear phenomenon act in all the diagnostic and therapeutic applications described above.

  13. Diagnostic performance of axial-strain sonoelastography in confirming clinically diagnosed Achilles tendinopathy: comparison with B-mode ultrasound and color Doppler imaging.

    PubMed

    Ooi, Chin Chin; Schneider, Michal Elisabeth; Malliaras, Peter; Chadwick, Martine; Connell, David Alister

    2015-01-01

    This primary aim of this study was to evaluate the diagnostic performance of axial-strain sonoelastography (ASE), B-mode ultrasound (US) and color Doppler US in confirming clinically symptomatic Achilles tendinopathy. The secondary aim was to establish the relationship between the strain ratio during sonoelastography and Victorian Institute of Sport Assessment-Achilles (VISA-A) scores. The VISA-A questionnaire is a validated clinical rating scale that evaluates the symptoms and dysfunction of the Achilles tendon. One hundred twenty Achilles tendons of 120 consecutively registered patients with clinical symptoms of Achilles tendinopathy and another 120 gender- and age-matched, asymptomatic Achilles tendons of 120 healthy volunteers were assessed with B-mode US, ASE and color Doppler US. Symptomatic patients had significantly higher strain ratio scores and softer Achilles tendon properties compared with controls (p < 0.001). The strain ratio was moderately correlated with VISA-A scores (r = -0.62, p < 0.001). The diagnostic accuracy of B-mode US, ASE and color Doppler US in confirming clinically symptomatic Achilles tendinopathy was 94.7%, 97.8% and 82.5% respectively. There was excellent correlation between the clinical reference standard and the grade of tendon quality on ASE (κ = 0.91, p < 0.05), compared with B-mode US (κ = 0.74, p < 0.05) and color Doppler imaging (κ = 0.49, p < 0.05). ASE is an accurate clinical tool in the evaluation of Achilles tendinopathy, with results comparable to those of B-mode US and excellent correlation with clinical findings. The strain ratio may offer promise as a supplementary tool for the objective evaluation of Achilles tendon properties.

  14. The sensitivity of medical diagnostic decision-support knowledge bases in delineating appropriate terms to document in the medical record.

    PubMed Central

    Feldman, M. J.; Barnett, G. O.; Morgan, M. M.

    1991-01-01

    A pertinent, legible and complete medical record facilitates good patient care. The recording of the symptoms, signs and lab findings which are relevant to a patient's condition contributes importantly to the medical record. The consideration and documentation of other disease states known to be related to the patient's primary illness provide further enhancement. We propose that developing sets of disease-specific core elements which a physician may want to document in the medical record can have many benefits. We hypothesize that for a given disease, terms with high importance (TI) and frequency (TF) in the DX-plain, QMR and Iliad knowledge bases (KBs) are terms which are used commonly in the medical record, and may be, in fact, terms which physicians would find useful to document. A study was undertaken to validate ten such sets of disease-specific core elements. For each of ten prevalent diseases, high TI and TF terms from the three KBs mentioned were pooled to derive the set of core elements. For each disease, all patient records (range 385 to 16,972) from a computerized ambulatory medical record database were searched to document the actual use by physicians of each of these core elements. A significant percentage (range 50 to 86%) of each set of core elements was confirmed as being used by the physicians. In addition, all medical concepts from a selection of full text records were identified, and an average of 65% of the concepts were found to be core elements.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1807600

  15. Clinical applications of high-intensity focused ultrasound.

    PubMed

    She, W H; Cheung, T T; Jenkins, C R; Irwin, M G

    2016-08-01

    Ultrasound has been developed for therapeutic use in addition to its diagnostic ability. The use of focused ultrasound energy can offer a non-invasive method for tissue ablation, and can therefore be used to treat various solid tumours. High-intensity focused ultrasound is being increasingly used in the treatment of both primary and metastatic tumours as these can be precisely located for ablation. It has been shown to be particularly useful in the treatment of uterine fibroids, and various solid tumours including those of the pancreas and liver. High-intensity focused ultrasound is a valid treatment option for liver tumours in patients with significant medical co-morbidity who are at high risk for surgery or who have relatively poor liver function that may preclude hepatectomy. It has also been used as a form of bridging therapy while patients awaiting cadaveric donor liver transplantation. In this article, we outline the principles of high-intensity focused ultrasound and its clinical applications, including the management protocol development in the treatment of hepatocellular carcinoma in Hong Kong by performing a search on MEDLINE (OVID), EMBASE, and PubMed. The search of these databases ranged from the date of their establishment until December 2015. The search terms used were: high-intensity focused ultrasound, ultrasound, magnetic resonance imaging, liver tumour, hepatocellular carcinoma, pancreas, renal cell carcinoma, prostate cancer, breast cancer, fibroids, bone tumour, atrial fibrillation, glaucoma, Parkinson's disease, essential tremor, and neuropathic pain.

  16. In-flight ultrasound identification of pneumothorax.

    PubMed

    Quick, Jacob A; Uhlich, Rindi M; Ahmad, Salman; Barnes, Stephen L; Coughenour, Jeffrey P

    2016-02-01

    Ultrasound is a standard adjunct to the initial evaluation of injured patients in the emergency department. We sought to evaluate the ability of prehospital, in-flight thoracic ultrasound to identify pneumothorax. Non-physician aeromedical providers were trained to perform and interpret thoracic ultrasound. All adult trauma patients and adult medical patients requiring endotracheal intubation underwent both in-flight and emergency department ultrasound evaluations. Findings were documented independently and reviewed to ensure quality and accuracy. Results were compared to chest X-ray and computed tomography (CT). One hundred forty-nine patients (136 trauma/13 medical) met inclusion criteria. Mean age was 44.4 (18-94) years; 69 % were male. Mean injury severity score was 17.68 (1-75), and mean chest injury score was 2.93 (0-6) in the injured group. Twenty pneumothoraces and one mainstem intubation were identified. Sixteen pneumothoraces were correctly identified in the field. A mainstem intubation was misinterpreted. When compared to chest CT (n = 116), prehospital ultrasound had a sensitivity of 68 % (95 % confidence interval (CI) 46-85 %), a specificity of 96 % (95 % CI 90-98 %), and an overall accuracy of 91 % (95 % CI 85-95 %). In comparison, emergency department (ED) ultrasound had a sensitivity of 84 % (95 % CI 62-94 %), specificity of 98 % (95 % CI 93-99 %), and an accuracy of 96 % (95 % CI 90-98 %). The unique characteristics of the aeromedical environment render the auditory element of a reliable physical exam impractical. Thoracic ultrasonography should be utilized to augment the diagnostic capabilities of prehospital aeromedical providers.

  17. Usefulness of lung ultrasound in diagnosing causes of exacerbation in patients with chronic dyspnea.

    PubMed

    Rogoza, Katarzyna; Kosiak, Wojciech

    2016-01-01

    Dyspnea is a non-specific symptom that requires fast diagnostics, accurate diagnosis and proper treatment. The most common causes of dyspnea include exacerbation of chronic obstructive pulmonary disease (COPD) and chronic heart failure (CHF). Distinction between these two medical conditions seems to be critical in diagnostics of emergencies. At the same time, basic diagnostic tools available in emergency room, such as classic radiography (X-ray) of the chest, electrocardiography (ECG) or b-type natriuretic peptide test, are sometimes ambiguous. Therefore looking for additional diagnostic tool seems to be justified and necessary. Transthoracic lung ultrasound assessment is a simple and easily accessible examination, enabling the early and explicit diagnostics of pulmonary oedema and its distinction from other, non-cardiac causes of dyspnea. This review outlines the current knowledge on the subject of transthoracic lung ultrasound (TLUS), particularly in respect of its clinical usefulness in distinction of causes of dyspnea exacerbation.

  18. Visualization of Thermal Distribution Caused by Focused Ultrasound Field in an Agar Phantom

    NASA Astrophysics Data System (ADS)

    Kim, Jungsoon; Kim, Moojoon; Ha, Kanglyeol

    2011-07-01

    Ultrasound waves have been widely used not only in medical diagnostic systems but also in medical treatment. There has been increasing interest in the thermal distribution caused by ultrasound waves. In this study, using thermochromic particles, a visualization method was suggested in a mimic phantom for organic materials. By blending various thermochromic particles with different critical temperatures, the thermal field distribution in the phantom could be observed. The effect of a concave-type ultrasound transducer on the temperature distribution in an agar phantom mixed with thermochromic particles was observed. The temperature distribution corresponded to changes in the brightness distribution of gray. It was confirmed that the thermal distribution pattern in the vicinity of the focal area varies with the time exposure to ultrasound waves.

  19. Can Doppler or contrast-enhanced ultrasound analysis add diagnostically important information about the nature of breast lesions?

    PubMed Central

    Stanzani, Daniela; Chala, Luciano F.; de Barros, Nestor; Cerri, Giovanni G.; Chammas, Maria Cristina

    2014-01-01

    OBJECTIVES: Despite evidence suggesting that Doppler ultrasonography can help to differentiate between benign and malignant breast lesions, it is rarely applied in clinical practice. The aim of this study was to determine whether certain vascular features of breast masses observed by duplex Doppler and color Doppler ultrasonography (before and/or after microbubble contrast injection) add information to the gray-scale analysis and support the Breast Imaging-Reporting and Data System (BI-RADS) classification. METHODS: Seventy solid lesions were prospectively evaluated with gray-scale ultrasonography, color Doppler ultrasonography, and contrast-enhanced ultrasonography. The morphological analysis and lesion vascularity were correlated with the histological results. RESULTS: Percutaneous core biopsies revealed that 25/70 (17.5%) lesions were malignant, while 45 were benign. Hypervascular lesions with tortuous and central vessels, a resistive index (RI)≥0.73 before contrast injection, and an RI≥0.75 after contrast injection were significantly predictive of malignancy (p<0.001). CONCLUSION: The combination of gray-scale ultrasonography data with unenhanced or enhanced duplex Doppler and color Doppler US data can provide diagnostically useful information. These techniques can be easily implemented because Doppler devices are already present in most health centers. PMID:24519198

  20. The patient's photograph in the medical record as a diagnostic tool.

    PubMed

    Golan-Cohen, Avivit; Horn, Oded; Sive, Philip H; Vinker, Shlomo

    2008-12-01

    Two case reports are presented: one of acromegaly and the other of hyperthyroidism. Previous photographs of the patients that appeared in their military medical record were of considerable assistance in making the correct diagnoses. When "smart cards" are issued in the future, inclusion of a photograph as an integral part of the patient's medical information should be considered.

  1. Integrating Nursing Diagnostic Concepts into the Medical Entities Dictionary Using the ISO Reference Terminology Model for Nursing Diagnosis

    PubMed Central

    Hwang, Jee-In; Cimino, James J.; Bakken, Suzanne

    2003-01-01

    Objective: The purposes of the study were (1) to evaluate the usefulness of the International Standards Organization (ISO) Reference Terminology Model for Nursing Diagnoses as a terminology model for defining nursing diagnostic concepts in the Medical Entities Dictionary (MED) and (2) to create the additional hierarchical structures required for integration of nursing diagnostic concepts into the MED. Design and Measurements: The authors dissected nursing diagnostic terms from two source terminologies (Home Health Care Classification and the Omaha System) into the semantic categories of the ISO model. Consistent with the ISO model, they selected Focus and Judgment as required semantic categories for creating intensional definitions of nursing diagnostic concepts in the MED. Because the MED does not include Focus and Judgment hierarchies, the authors developed them to define the nursing diagnostic concepts. Results: The ISO model was sufficient for dissecting the source terminologies into atomic terms. The authors identified 162 unique focus concepts from the 266 nursing diagnosis terms for inclusion in the Focus hierarchy. For the Judgment hierarchy, the authors precoordinated Judgment and Potentiality instead of using Potentiality as a qualifier of Judgment as in the ISO model. Impairment and Alteration were the most frequently occurring judgments. Conclusions: Nursing care represents a large proportion of health care activities; thus, it is vital that terms used by nurses are integrated into concept-oriented terminologies that provide broad coverage for the domain of health care. This study supports the utility of the ISO Reference Terminology Model for Nursing Diagnoses as a facilitator for the integration process. PMID:12668692

  2. New Technologies for Diagnosing Pediatric Tumors Expert Opinion on Medical Diagnostics

    PubMed Central

    Wei, Jun S.; Badgett, Thomas C.; Khan, Javed

    2008-01-01

    Background The completion of Human Genome Project (HGP) has paved the way for novel, more detailed and accurate molecular diagnostic classification of cancer. With the information from the HGP, cancers can be categorized not only on the morphology or limited immunohistological markers, but according to their “molecular fingerprints” such as gene expression profiles. Technologies detecting these signatures have been developed to simultaneously measure multiple genes or proteins in one assay with high sensitivity and specificity. Objective To evaluate potential innovative novel methods of diagnosis and prognosis in pediatric cancers. Methods We selected a variety of promising new diagnostic technologies utilizing molecular signatures which harness the results from HGP including DNA microarray, bead-based detection system, multiplexed RT-PCR, MesoScale Discovery (MSD), and isotope-coded affinity tag (ICAT), as well as their applications in biomarker discovery for pediatric tumors. Label-free detection technologies and the obstacles for taking these new diagnostic technologies from the bench to the bedside are also discussed. Conclusion The use of molecular signatures is gaining acceptance in clinical practice. However, technical challenges need to be addressed before incorporating these new technologies into current diagnostic and prognostic schema. PMID:19554203

  3. Focused ultrasound in ophthalmology

    PubMed Central

    Silverman, Ronald H

    2016-01-01

    The use of focused ultrasound to obtain diagnostically significant information about the eye goes back to the 1950s. This review describes the historical and technological development of ophthalmic ultrasound and its clinical application and impact. Ultrasound, like light, can be focused, which is crucial for formation of high-resolution, diagnostically useful images. Focused, single-element, mechanically scanned transducers are most common in ophthalmology. Specially designed transducers have been used to generate focused, high-intensity ultrasound that through thermal effects has been used to treat glaucoma (via ciliodestruction), tumors, and other pathologies. Linear and annular transducer arrays offer synthetic focusing in which precise timing of the excitation of independently addressable array elements allows formation of a converging wavefront to create a focus at one or more programmable depths. Most recently, linear array-based plane-wave ultrasound, in which the array emits an unfocused wavefront and focusing is performed solely on received data, has been demonstrated for imaging ocular anatomy and blood flow. While the history of ophthalmic ultrasound extends back over half-a-century, new and powerful technologic advances continue to be made, offering the prospect of novel diagnostic capabilities. PMID:27757007

  4. Focused ultrasound in ophthalmology.

    PubMed

    Silverman, Ronald H

    2016-01-01

    The use of focused ultrasound to obtain diagnostically significant information about the eye goes back to the 1950s. This review describes the historical and technological development of ophthalmic ultrasound and its clinical application and impact. Ultrasound, like light, can be focused, which is crucial for formation of high-resolution, diagnostically useful images. Focused, single-element, mechanically scanned transducers are most common in ophthalmology. Specially designed transducers have been used to generate focused, high-intensity ultrasound that through thermal effects has been used to treat glaucoma (via ciliodestruction), tumors, and other pathologies. Linear and annular transducer arrays offer synthetic focusing in which precise timing of the excitation of independently addressable array elements allows formation of a converging wavefront to create a focus at one or more programmable depths. Most recently, linear array-based plane-wave ultrasound, in which the array emits an unfocused wavefront and focusing is performed solely on received data, has been demonstrated for imaging ocular anatomy and blood flow. While the history of ophthalmic ultrasound extends back over half-a-century, new and powerful technologic advances continue to be made, offering the prospect of novel diagnostic capabilities.

  5. Effect of the angular aperture of medical ultrasound transducers on the parameters of nonlinear ultrasound field with shocks at the focus

    NASA Astrophysics Data System (ADS)

    Rosnitskiy, P. B.; Yuldashev, P. V.; Khokhlova, V. A.

    2015-05-01

    Certain modern applications of high-intensity focused ultrasound (HIFU) in medicine use the nonlinear effect of shock front formation in the focal waveform. However, an important problem remains unsolved: determination of transducer parameters that provide the given pressure levels of the shock wave field at the focus required for a specific application. In this paper, simulations based on the Khokhlov-Zabolotskaya equation are performed to test and confirm the hypothesis that angular aperture of the transducer is the main parameter that determines the characteristic amplitude of the shock front and corresponding values for the peak positive and negative pressures at the focus. A criterion for formation of a developed shock in the acoustic waveform, as well as a method for determining its amplitude is proposed. Quantitative dependences of the amplitude of the developed shock and the peak pressures in the wave profile on the angular aperture of the transducer are calculated. The effects of saturation and the range of changes of the shock waveform parameters at the focus are analyzed for a typical HIFU transducer.

  6. TH-E-9A-01: Medical Physics 1.0 to 2.0, Session 4: Computed Tomography, Ultrasound and Nuclear Medicine

    SciTech Connect

    Samei, E; Nelson, J; Hangiandreou, N

    2014-06-15

    communication, use optimization (dose and technique factors), automated analysis and data management (automated QC methods, protocol tracking, dose monitoring, issue tracking), and meaningful QC considerations. US 2.0: Ultrasound imaging is evolving at a rapid pace, adding new imaging functions and modes that continue to enhance its clinical utility and benefits to patients. The ultrasound talk will look ahead 10–15 years and consider how medical physicists can bring maximal value to the clinical ultrasound practices of the future. The roles of physics in accreditation and regulatory compliance, image quality and exam optimization, clinical innovation, and education of staff and trainees will all be considered. A detailed examination of expected technology evolution and impact on image quality metrics will be presented. Clinical implementation of comprehensive physics services will also be discussed. Nuclear Medicine 2.0: Although the basic science of nuclear imaging has remained relatively unchanged since its inception, advances in instrumentation continue to advance the field into new territories. With a great number of these advances occurring over the past decade, the role and testing strategies of clinical nuclear medicine physicists must evolve in parallel. The Nuclear Medicine 2.0 presentation is designed to highlight some of the recent advances from a clinical medical physicist perspective and provide ideas and motivation for designing better evaluation strategies. Topics include improvement of traditional physics metrics and analytics, testing implications of hybrid imaging and advanced detector technologies, and strategies for effective implementation into the clinic. Learning Objectives: Become familiar with new physics metrics and analytics in nuclear medicine, CT, and ultrasound. To become familiar with the major new developments of clinical physics support. To understand the physics testing implications of new technologies, hardware, software, and applications

  7. Raman spectroscopy for medical diagnostics--From in-vitro biofluid assays to in-vivo cancer detection.

    PubMed

    Kong, Kenny; Kendall, Catherine; Stone, Nicholas; Notingher, Ioan

    2015-07-15

    Raman spectroscopy is an optical technique based on inelastic scattering of light by vibrating molecules and can provide chemical fingerprints of cells, tissues or biofluids. The high chemical specificity, minimal or lack of sample preparation and the ability to use advanced optical technologies in the visible or near-infrared spectral range (lasers, microscopes, fibre-optics) have recently led to an increase in medical diagnostic applications of Raman spectroscopy. The key hypothesis underpinning this field is that molecular changes in cells, tissues or biofluids, that are either the cause or the effect of diseases, can be detected and quantified by Raman spectroscopy. Furthermore, multivariate calibration and classification models based on Raman spectra can be developed on large "training" datasets and used subsequently on samples from new patients to obtain quantitative and objective diagnosis. Historically, spontaneous Raman spectroscopy has been known as a low signal technique requiring relatively long acquisition times. Nevertheless, new strategies have been developed recently to overcome these issues: non-linear optical effects and metallic nanoparticles can be used to enhance the Raman signals, optimised fibre-optic Raman probes can be used for real-time in-vivo single-point measurements, while multimodal integration with other optical techniques can guide the Raman measurements to increase the acquisition speed and spatial accuracy of diagnosis. These recent efforts have advanced Raman spectroscopy to the point where the diagnostic accuracy and speed are compatible with clinical use. This paper reviews the main Raman spectroscopy techniques used in medical diagnostics and provides an overview of various applications.

  8. Ultrasound -- Vascular

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  9. Ultrasound - Breast

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  10. Ultrasound -- Pelvis

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  11. Prostate Ultrasound

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  12. Abdominal Ultrasound

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  13. Obstetrical Ultrasound

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  14. Musculoskeletal Ultrasound

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  15. Hip Ultrasound

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  16. Ultrasound - Scrotum

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  17. Ultrasound - Breast

    MedlinePlus

    ... the examination. top of page What does the equipment look like? Ultrasound scanners consist of a console ... ultrasound that require biopsy are not cancers. Many facilities do not offer ultrasound screening, and the procedure ...

  18. Ultrasound-guided synovial biopsy

    PubMed Central

    Sitt, Jacqueline C M; Wong, Priscilla

    2016-01-01

    Ultrasound-guided needle biopsy of synovium is an increasingly performed procedure with a high diagnostic yield. In this review, we discuss the normal synovium, as well as the indications, technique, tissue handling and clinical applications of ultrasound-guided synovial biopsy. PMID:26581578

  19. Combined photoacoustic and ultrasound biomicroscopy.

    PubMed

    Harrison, Tyler; Ranasinghesagara, Janaka C; Lu, Huihong; Mathewson, Kory; Walsh, Andrew; Zemp, Roger J

    2009-11-23

    We report on the development of an imaging system capable of combined ultrasound and photoacoustic imaging based on a fast-scanning single-element 25-MHz ultrasound transducer and a unique light-delivery system. The system is capable of 20 ultrasound frames per second and slower photoacoustic frame rates limited by laser pulse-repetition rates. Laser and ultrasound pulses are interlaced for co-registration of photoacoustic and ultrasound images. In vivo imaging of a human finger permits ultrasonic visualization of vessel structures and speckle changes indicative of blood flow, while overlaid photoacoustic images highlight some small vessels that are not clear from the ultrasound scan. Photoacoustic images provide optical absorption contrast co-registered in the structural and blood-flow context of ultrasound with high-spatial resolution and may prove important for clinical diagnostics and basic science of the microvasculature.

  20. Performance analysis of medical video streaming over mobile WiMAX.

    PubMed

    Alinejad, Ali; Philip, N; Istepanian, R H

    2010-01-01

    Wireless medical ultrasound streaming is considered one of the emerging application within the broadband mobile healthcare domain. These applications are considered as bandwidth demanding services that required high data rates with acceptable diagnostic quality of the transmitted medical images. In this paper, we present the performance analysis of a medical ultrasound video streaming acquired via special robotic ultrasonography system over emulated WiMAX wireless network. The experimental set-up of this application is described together with the performance of the relevant medical quality of service (m-QoS) metrics.

  1. Medical Diagnostic Consultation concerning Mental Retardation: An Analogue Study of School Psychologists' Attitudes

    ERIC Educational Resources Information Center

    Wodrich, David L.; Tarbox, Jennifer; Balles, John; Gorin, Joanna

    2010-01-01

    Recent research of relevance to school psychologists suggests that the cause, or etiology, of mental retardation can be established by medical diagnosticians in approximately one-half of cases. In the current study, 109 practicing school psychologists considered a hypothetical case of an elementary student with mental retardation and indicated…

  2. Cranial Ultrasound/Head Ultrasound

    MedlinePlus

    ... waves. Ultrasound imaging, also called ultrasound scanning or sonography , involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the ...

  3. [Forensic-medical diagnostics of an electrical mark resulting from the injury inflicted by technical electricity in the aqueous environment].

    PubMed

    Pigolkin, Iu I; Skovorodnikov, S V; Dubrovin, I A

    2014-01-01

    The objective of the present study was to develop the criteria for forensic-medical diagnostics of an electrical injury inflicted in the aqueous environment based on the characteristics of the electrical mark. The specific morphological features of the electrical injuries inflicted in the aqueous environment that were discovered in the materials available for the forensic medical expertise were analysed taking into consideration the results of the relevant research reported in the forensic medical literature. It was shown that an electrical injury inflicted in the aqueous environment results in the formation of an unusual mark in the form of blisters containing no watery liquid associated with electrogenic oedema in the surrounding tissues. Macroscopic and microscopic studies of the electrical mark failed to reveal the signs of grade III and IV grade thermal burning or thermally affected hair. It is concluded that the consistent characteristics of the electrical mark resulting from the injury inflicted by technical electricity in the aqueous environment include cell lengthening, blister formation inside the corneal layer, and the separation of epidermis from the skin proper.

  4. Contrast-enhanced and targeted ultrasound.

    PubMed

    Postema, Michiel; Gilja, Odd Helge

    2011-01-07

    Ultrasonic imaging is becoming the most popular medical imaging modality, owing to the low price per examination and its safety. However, blood is a poor scatterer of ultrasound waves at clinical diagnostic transmit frequencies. For perfusion imaging, markers have been designed to enhance the contrast in B-mode imaging. These so-called ultrasound contrast agents consist of microscopically small gas bubbles encapsulated in biodegradable shells. In this review, the physical principles of ultrasound contrast agent microbubble behavior and their adjustment for drug delivery including sonoporation are described. Furthermore, an outline of clinical imaging applications of contrast-enhanced ultrasound is given. It is a challenging task to quantify and predict which bubble phenomenon occurs under which acoustic condition, and how these phenomena may be utilized in ultrasonic imaging. Aided by high-speed photography, our improved understanding of encapsulated microbubble behavior will lead to more sophisticated detection and delivery techniques. More sophisticated methods use quantitative approaches to measure the amount and the time course of bolus or reperfusion curves, and have shown great promise in revealing effective tumor responses to anti-angiogenic drugs in humans before tumor shrinkage occurs. These are beginning to be accepted into clinical practice. In the long term, targeted microbubbles for molecular imaging and eventually for directed anti-tumor therapy are expected to be tested.

  5. Is point-of-care ultrasound accurate and useful in the hands of military medical technicians? A review of the literature.

    PubMed

    Hile, David C; Morgan, Andrew R; Laselle, Brooks T; Bothwell, Jason D

    2012-08-01

    Over the past decade, point-of-care ultrasound (US) use by nonphysician providers has grown substantially. The purpose of this article is to (1) summarize the literature evaluating military medics' facility at US, (2) more clearly define the potential utility of military prehospital US technology, and (3) lay a pathway for future research of military prehospital US. The authors performed a keyword search using multiple search engines. Each author independently reviewed the search results and evaluated the literature for inclusion. Of 30 studies identified, five studies met inclusion criteria. The applications included evaluation of cardiac activity, pneumothorax evaluation, and fracture evaluation. Additionally, a descriptive study demonstrated distribution of US exam types during practical use by Army Special Forces Medical Sergeants. No studies evaluated retention of skills over prolonged periods. Multiple studies demonstrate the feasibility of training military medics in US. Even under austere conditions, the majority of studies conclude that medic can perform US with a high degree of accuracy. Lessons learned from these studies tend to support continued use of US in out-of-hospital settings and exploration of the optimal curriculum to introduce this skill.

  6. The benomyl test as a fundamental diagnostic method for medical mycology.

    PubMed Central

    Summerbell, R C

    1993-01-01

    The fungicide benomyl has long been known to differentially affect major taxonomic groups of fungi. In the present study 163 species or aggregates of closely similar species of medically important fungi and actinomycetes, as well as species commonly isolated as clinical contaminants, were tested to determine their reactions to three concentrations of benomyl. Fungi of basidiomycetous, endomycetous, and microascaceous affinities were highly resistant, including all common yeasts and Geotrichum, Pseudallescheria, Scedosporium, and Scopulariopsis species. Also resistant were fungi of pleosporalean affinities with poroconidial anamorphs, such as Alternaria, Bipolaris, Curvularia, and Exserohilum species. Most other fungi of ascomycetous affinity were moderately to strongly susceptible. Such fungi included dermatophytes; Coccidioides, Blastomyces, and Histoplasma species; Sporothrix schenckii; medically important aspergilli; and "black yeasts." Benomyl testing aided in the provisional identification of nonsporulating mycelia, including common basidiomycetous isolates obtained as contaminants as well as nonsporulating Aspergillus fumigatus from pulmonary sources. PMID:8458952

  7. A Diagnostic Analysis of Erroneous Language in Iranian Medical Specialists’ Research Papers

    PubMed Central

    Gholami, Javad; Zeinolabedini, Maryam

    2015-01-01

    Abstract Background: As English has increasingly become the lingua franca in science and international journals require native-like academic writing standards from nonnative researchers, there is more pressure on nonnative scholars to write their research articles more accurately and appropriately in English. This study was conducted to determine the most-occurring language-related errors which Iranian medical authors/researchers commit while trying to have their research published in international English journals. Also, this article seeks to provide useful guidelines to reduce such linguistic mistakes. Methods: The present study investigated the most common language-related errors in Iranian medical specialists’ research articles. To this end, the first drafts of 60 published research articles in medical sciences were cross-checked against their peer-reviewed published versions in order to identify the most frequent non-target language forms which received discoursal, lexical, grammatical, and mechanical revisions by peer editors. Results: The findings revealed that the editors had surprisingly dealt with discoursal errors more than any other linguistic aspects of these research articles. This was followed by lexical replacements. In third place were grammatical improvements, where erroneous structures mostly related to tenses, usage of articles and prepositions, and agreement between verbs and nouns were treated. The least common revisions were on the mechanics of academic writing, consisting of hyphenating, spelling, case lettering, spacing, and spacing with commas. Conclusion: Although most of the Iranian medical authors/researchers enjoyed a good level of proficiency in English, their manuscripts required discoursal, lexical, grammatical, and mechanical revisions before publication in credited international journals. PMID:26157466

  8. A history of evidence in medical decisions: from the diagnostic sign to Bayesian inference.

    PubMed

    Mazur, Dennis J

    2012-01-01

    Bayesian inference in medical decision making is a concept that has a long history with 3 essential developments: 1) the recognition of the need for data (demonstrable scientific evidence), 2) the development of probability, and 3) the development of inverse probability. Beginning with the demonstrative evidence of the physician's sign, continuing through the development of probability theory based on considerations of games of chance, and ending with the work of Jakob Bernoulli, Laplace, and others, we will examine how Bayesian inference developed.

  9. Use of digital patient photographs and electronic medical record data as diagnostic tools in Japan.

    PubMed

    Kawano, Koichi; Suzuki, Muneoh; Araki, Kenji

    2012-10-01

    An electronic medical record (EMR) system was introduced to the University of Miyazaki Hospital, in Japan, in 2006. This hospital is the only one in Japan to store digital photographs of patients within EMRs. In this paper, we report on the utility of these digital photographs for disease diagnosis. Digital photographs of patients were taken at the time of hospitalization, and have been used for patient identification by medical staff. More than 20,000 digital photographs have been saved, along with examination data and medical history classified by disease, since the introduction of EMR. In the first part of the present study, we analyzed the facial cheek color of patients using photographs taken at the time of hospitalization in relation to diagnoses in six disease categories that were considered to lead to characteristic facial skin characteristics. We verified the presence or absence of a characteristic color for each disease category. Next, we focused on four diseases, Analysis of the facial skin color of 1268 patients found the same patterns of characteristic color. Overall, we found significant differences in complexion according to disease type, based on the analysis of color from digital photos and other EMR information. We propose that color analysis data should become an additional item of information stored in EMRs.

  10. The Biplot as a diagnostic tool of local dependence in latent class models. A medical application.

    PubMed

    Sepúlveda, R; Vicente-Villardón, J L; Galindo, M P

    2008-05-20

    Latent class models (LCMs) can be used to assess diagnostic test performance when no reference test (a gold standard) is available, considering two latent classes representing disease or non-disease status. One of the basic assumptions in such models is that of local or conditional independence: all indicator variables (tests) are statistically independent within each latent class. However, in practice this assumption is often violated; hence, the two-LCM fits the data poorly. In this paper, we propose the use of Biplot methods to identify the conditional dependence between pairs of manifest variables within each latent class. Additionally, we propose incorporating such dependence in the corresponding latent class using the log-linear formulation of the model.

  11. Microfluidic blood plasma separation for medical diagnostics: is it worth it?

    PubMed

    Mielczarek, W S; Obaje, E A; Bachmann, T T; Kersaudy-Kerhoas, M

    2016-09-21

    Circulating biomarkers are on the verge of becoming powerful diagnostic tools for various human diseases. However, the complex sample composition makes it difficult to detect biomarkers directly from blood at the bench or at the point-of-care. Blood cells are often a source of variability of the biomarker signal. While the interference of hemoglobin is a long known source of variability, the release of nucleic acids and other cellular components from hemocytes is a new concern for measurement and detection of circulating extracellular markers. Research into miniaturised blood plasma separation has been thriving in the last 10 years (2006-2016). Most point-of-care systems need microscale blood plasma separation, but developed solutions differ in complexity and sample volume range. But could blood plasma separation be avoided completely? This focused review weights the advantages and limits of miniaturised blood plasma separation and highlights the most interesting advances in direct capture as well as smart blood plasma separation.

  12. TH-A-207B-01: Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity.

    PubMed

    Chen, S

    2016-06-01

    Imaging of tissue elastic properties is a relatively new and powerful approach to one of the oldest and most important diagnostic tools. Imaging of shear wave speed with ultrasound is has been added to most high-end ultrasound systems. Understanding this exciting imaging mode aiding its most effective use in medicine can be a rewarding effort for medical physicists and other medical imaging and treatment professionals. Assuring consistent, quantitative measurements across the many ultrasound systems in a typical imaging department will constitute a major step toward realizing the great potential of this technique and other quantitative imaging. This session will target these two goals with two presentations. A. Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity - Shigao Chen, Ph.D. Learning objectives-To understand: 1.

  13. TH-A-207B-02: QIBA Ultrasound Elasticity Imaging System Biomarker Qualification and User Testing of Systems.

    PubMed

    Garra, B

    2016-06-01

    Imaging of tissue elastic properties is a relatively new and powerful approach to one of the oldest and most important diagnostic tools. Imaging of shear wave speed with ultrasound is has been added to most high-end ultrasound systems. Understanding this exciting imaging mode aiding its most effective use in medicine can be a rewarding effort for medical physicists and other medical imaging and treatment professionals. Assuring consistent, quantitative measurements across the many ultrasound systems in a typical imaging department will constitute a major step toward realizing the great potential of this technique and other quantitative imaging. This session will target these two goals with two presentations. A. Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity - Shigao Chen, Ph.D. Learning objectives-To understand: 1.

  14. Nanostructured oxide-based selective gas sensor arrays for chemical monitoring and medical diagnostics in isolated environments.

    PubMed

    Gouma, Pelagia-Irene

    2005-01-01

    MoO3 and MoO3-WO3-based resistive type sensors/arrays have been used for the detection of toxic gaseous compounds important to environmental monitoring and to medical diagnostics. The responses of the sensing elements when exposed to 400 ppm of methanol, 10 ppm of isoprene, and 15 ppm of ammonia at temperatures between 400 degrees C and 500 degrees C have been assessed. A correlation was made between the crystallography of the nanostructured oxide sensing films and their relative gas selectivity to the analytes of interest. Arrays of selective sensing elements are proposed as valuable tools for the survival of humans in isolated environments and for space exploration.

  15. Performance of physical examination skills in medical students during diagnostic medicine course in a University Hospital of Northwest China.

    PubMed

    Li, Yan; Li, Na; Han, Qunying; He, Shuixiang; Bae, Ricard S; Liu, Zhengwen; Lv, Yi; Shi, Bingyin

    2014-01-01

    This study was conducted to evaluate the performance of physical examination (PE) skills during our diagnostic medicine course and analyze the characteristics of the data collected to provide information for practical guidance to improve the quality of teaching. Seventy-two fourth-year medical students were enrolled in the study. All received an assessment of PE skills after receiving a 17-week formal training course and systematic teaching. Their performance was evaluated and recorded in detail using a checklist, which included 5 aspects of PE skills: examination techniques, communication and care skills, content items, appropriateness of examination sequence, and time taken. Error frequency and type were designated as the assessment parameters in the survey. The results showed that the distribution and the percentage in examination errors between male and female students and among the different body parts examined were significantly different (p<0.001). The average error frequency per student in females (0.875) was lower than in males (1.375) although the difference was not statistically significant (p = 0.167). The average error frequency per student in cardiac (1.267) and pulmonary (1.389) examinations was higher than in abdominal (0.867) and head, neck and nervous system examinations (0.917). Female students had a lower average error frequency than males in cardiac examinations (p = 0.041). Additionally, error in examination techniques was the highest type of error among the 5 aspects of PE skills irrespective of participant gender and assessment content (p<0.001). These data suggest that PE skills in cardiac and pulmonary examinations and examination techniques may be included in the main focus of improving the teaching of diagnostics in these medical students.

  16. Performance of Physical Examination Skills in Medical Students during Diagnostic Medicine Course in a University Hospital of Northwest China

    PubMed Central

    Li, Yan; Li, Na; Han, Qunying; He, Shuixiang; Bae, Ricard S.; Liu, Zhengwen; Lv, Yi; Shi, Bingyin

    2014-01-01

    This study was conducted to evaluate the performance of physical examination (PE) skills during our diagnostic medicine course and analyze the characteristics of the data collected to provide information for practical guidance to improve the quality of teaching. Seventy-two fourth-year medical students were enrolled in the study. All received an assessment of PE skills after receiving a 17-week formal training course and systematic teaching. Their performance was evaluated and recorded in detail using a checklist, which included 5 aspects of PE skills: examination techniques, communication and care skills, content items, appropriateness of examination sequence, and time taken. Error frequency and type were designated as the assessment parameters in the survey. The results showed that the distribution and the percentage in examination errors between male and female students and among the different body parts examined were significantly different (p<0.001). The average error frequency per student in females (0.875) was lower than in males (1.375) although the difference was not statistically significant (p = 0.167). The average error frequency per student in cardiac (1.267) and pulmonary (1.389) examinations was higher than in abdominal (0.867) and head, neck and nervous system examinations (0.917). Female students had a lower average error frequency than males in cardiac examinations (p = 0.041). Additionally, error in examination techniques was the highest type of error among the 5 aspects of PE skills irrespective of participant gender and assessment content (p<0.001). These data suggest that PE skills in cardiac and pulmonary examinations and examination techniques may be included in the main focus of improving the teaching of diagnostics in these medical students. PMID:25329685

  17. Diagnostic Analysis Of Ultrasound Data

    DOEpatents

    Chambers, David H.; Mast, Jeffrey; Azevedo, Stephen G.; Wuebbeling, Frank; Natterer, Frank; Duric, Neb; Littrup, Peter J.; Holsapple, Earle

    2006-01-10

    A method and apparatus are provided for investigating tissue in which acoustic data are derived from scattering a plurality of pulsed spherical or cylindrical acoustic waves from a plurality of transmission elements through the tissue to a plurality of receiving elements. The acoustic data, which include a mix of reflected and transmitted acoustic waves, are received and digitized, and a representation of a portion of the tissue is generated from the digitized acoustic data.

  18. Thyroid and parathyroid ultrasound.

    PubMed

    Ghervan, Cristina

    2011-03-01

    Thyroid ultrasound is easy to perform due to the superficial location of the thyroid gland, but appropriate equipment is mandatory with a linear high frequency transducer (7.5 - 12) MHz. Some pathological aspects of the thyroid gland are easily diagnosed by ultrasound, like the enlargement of the thyroid volume (goiter) or the presence of nodules and cysts; while other aspects are more difficult and need more experience (diffuse changes in the structure, echogenicity and vascularization of the parenchyma, differential diagnosis of malignant nodules). Ultrasound has become the diagnostic procedure of choice in guidelines for the management of thyroid nodules; most structural abnormalities of the thyroid need evaluation and monitoring but not intervention. A good knowledge of the normal appearance of the thyroid gland is compulsory for an accurate ultrasound diagnosis.

  19. Specific Challenges in Conducting and Reporting Studies on the Diagnostic Accuracy of Ultrasonography in Bovine Medicine.

    PubMed

    Buczinski, Sébastien; O'Connor, Annette M

    2016-03-01

    Ultrasonography is used by bovine practitioners more for reproductive issues than as a diagnostic test for medical and surgical diseases. This article reviews the specific challenges and standards concerning reporting of studies on diagnostic accuracy of ultrasound in cattle for nonreproductive issues. Specific biases and applicability concerns in studies reporting ultrasonography as a diagnostic test are also reviewed. Better understanding of these challenges will help the practitioner to interpret and apply (or not) diagnostic accuracy study results depending on the field context. Examples of application of sensitivity and specificity results in a clinical context are given using the Bayes theorem.

  20. Ultrasound and the IRB

    ERIC Educational Resources Information Center

    Epstein, Melissa A.

    2005-01-01

    The purpose of this paper is to assist researchers in writing their research protocols and subject consent forms so that both the Institutional Review Board (IRB) and subjects are assured of the minimal risk associated with diagnostic B-scan ultrasound as it is used in speech research. There have been numerous epidemiological studies on fetal…

  1. Real-time hand-held ultrasound medical-imaging device based on a new digital quadrature demodulation processor.

    PubMed

    Levesque, Philippe; Sawan, Mohamad

    2009-08-01

    A fully hardware-based real-time digital wideband quadrature demodulation processor based on the Hilbert transform is proposed to process ultrasound radio frequency signals. The presented architecture combines 2 finite impulse response (FIR) filters to process in-phase and quadrature signals and includes a piecewise linear approximation architecture that performs the required square root operations. The proposed implementation enables flexibility to support different transducers with its ability to load on-the-fly different FIR filter coefficient sets. The complexity and accuracy of the demodulator processor are analyzed with simulated RF data; a normalized residual sum-of-squares cost function is used for comparison with the Matlab Hilbert function. Three implementations are integrated into a hand-held ultrasound system for experimental accuracy and performance evaluation. Real-time images were acquired from a reference phantom, demonstrating the feasibility of using the presented architecture to perform real-time digital quadrature demodulation of ultrasonic signal echoes. Experimental results show that the implementation, using only 2942 slices and 3 dedicated digital multipliers of a low-cost and low-power field-programmable gate array (FPGA) is accurate relative to a comparable software- based system; axial and lateral resolution of 1 mm and 2 mm, respectively, were obtained with a 12-mm piezoelectric transducer without postprocessing. Because the processing and sampling rates are the same, high-frequency ultrasound signals can be processed as well. For a 15-frame-per-second display, the hand-held ultrasonic imaging-processing core (FPGA, memory) requires only 45 mW (dynamic) when using a 5-MHz single-element piezoelectric transducer.

  2. Diagnostic medical imaging radiation exposure and risk of development of solid and hematologic malignancy.

    PubMed

    Fabricant, Peter D; Berkes, Marschall B; Dy, Christopher J; Bogner, Eric A

    2012-05-01

    Limiting patients' exposure to ionizing radiation during diagnostic imaging is of concern to patients and clinicians. Large single-dose exposures and cumulative exposures to ionizing radiation have been associated with solid tumors and hematologic malignancy. Although these associations have been a driving force in minimizing patients' exposure, significant risks are found when diagnoses are missed and subsequent treatment is withheld. Therefore, based on epidemiologic data obtained after nuclear and occupational exposures, dose exposure limits have been estimated. A recent collaborative effort between the US Food and Drug Administration and the American College of Radiology has provided information and tools that patients and imaging professionals can use to avoid unnecessary ionizing radiation scans and ensure use of the lowest feasible radiation dose necessary for studies. Further collaboration, research, and development should focus on producing technological advances that minimize individual study exposures and duplicate studies. This article outlines the research used to govern safe radiation doses, defines recent initiatives in decreasing radiation exposure, and provides orthopedic surgeons with techniques that may help decrease radiation exposure in their daily practice.

  3. Munchausen's syndrome by proxy and Lyme disease: medical misogyny or diagnostic mystery?

    PubMed

    Sherr, Virginia T

    2005-01-01

    Chronic, tertiary Lyme disease, a vector-borne infection most accurately designated neuroborreliosis, is often misdiagnosed. Infectors of the human brain, Lyme borrelial spirochetes are neurotropic, similar to the spirochetes of syphilis. Symptoms of either disease may be stable and persistent, transient and inconsistent or severe yet fleeting. Characteristics may be incompatible with established knowledge of neurological dermatomes, appearing to conventional medical eyes as anatomically impossible, thus creating confusion for doctors, parents and child patients. Physicians unfamiliar with Lyme patients' shifting, seemingly vague, emotional, and/or bizarre-sounding complaints, frequently know little about late-stage spirochetal disease. Consequently, they may accuse mothers of fabricating their children's symptoms--the so-called Munchausen's by proxy (MBP) "diagnoses." Women, following ancient losses of feminine authority in provinces of religion, ethics, and healing - disciplines comprising known fields of early medicine, have been scapegoated throughout history. In the Middle Ages, women considered potentially weak-minded devil's apprentices became victims of witch-hunts throughout Europe and America. Millions of women were burned alive at the stake. Modern medicine's tendency to trivialize women's "offbeat" concerns and the fact that today's hurried physicians of both genders tend to seek easy panaceas, frequently result in the misogyny of mother-devaluation, especially by doctors who are spirochetally naïve. These factors, when involving cases of cryptic neuroborreliosis, may lead to accusations of MBP. Thousands of children, sick from complex diseases, have been forcibly removed from mothers who insist, contrary to customary evaluations, that their children are ill. The charges against these mothers relate to the idea they believe their children sick to satisfy warped internal agendas of their own. "MBP mothers" are then vilified, frequently jailed and

  4. Delay, change and bifurcation of the immunofluorescence distribution attractors in health statuses diagnostics and in medical treatment

    NASA Astrophysics Data System (ADS)

    Galich, Nikolay E.; Filatov, Michael V.

    2008-07-01

    Communication contains the description of the immunology experiments and the experimental data treatment. New nonlinear methods of immunofluorescence statistical analysis of peripheral blood neutrophils have been developed. We used technology of respiratory burst reaction of DNA fluorescence in the neutrophils cells nuclei due to oxidative activity. The histograms of photon count statistics the radiant neutrophils populations' in flow cytometry experiments are considered. Distributions of the fluorescence flashes frequency as functions of the fluorescence intensity are analyzed. Statistic peculiarities of histograms set for healthy and unhealthy donors allow dividing all histograms on the three classes. The classification is based on three different types of smoothing and long-range scale averaged immunofluorescence distributions and their bifurcation. Heterogeneity peculiarities of long-range scale immunofluorescence distributions allow dividing all histograms on three groups. First histograms group belongs to healthy donors. Two other groups belong to donors with autoimmune and inflammatory diseases. Some of the illnesses are not diagnosed by standards biochemical methods. Medical standards and statistical data of the immunofluorescence histograms for identifications of health and illnesses are interconnected. Possibilities and alterations of immunofluorescence statistics in registration, diagnostics and monitoring of different diseases in various medical treatments have been demonstrated. Health or illness criteria are connected with statistics features of immunofluorescence histograms. Neutrophils populations' fluorescence presents the sensitive clear indicator of health status.

  5. Sterile working in ultrasonography: the use of dedicated ultrasound covers and sterile ultrasound gel.

    PubMed

    Marhofer, Peter; Fritsch, Gerhard

    2015-01-01

    Ultrasound is currently an important tool for diagnostic and interventional procedures. Ultrasound imaging provides significant advantages as compared to other imaging methods. The widespread use of ultrasound also carries the risk of drawbacks such as cross-infections. A large body of literature reports this possibly life-threatening side effect and specific patient populations are particularly at risk (e.g., neonates). Various methods of ultrasound probe disinfection are described; however, none of the mechanical or chemical probe disinfection procedures is optimal and, in particular, disinfection with high concentration of alcohol might be associated with ultrasound probe damage. The preparation of ultrasound probes with dedicated probe covers is a useful alternative for sterile working conditions. One ultrasound probe cover discussed in this paper is directly glued on to the ultrasound probe without the use of ultrasound coupling gel. By the use of sterile ultrasound coupling gel at the outer surface, additional effects on aseptic working conditions can be obtained.

  6. Speech disorders in Parkinson's disease: early diagnostics and effects of medication and brain stimulation.

    PubMed

    Brabenec, L; Mekyska, J; Galaz, Z; Rektorova, Irena

    2017-03-01

    Hypokinetic dysarthria (HD) occurs in 90% of Parkinson's disease (PD) patients. It manifests specifically in the areas of articulation, phonation, prosody, speech fluency, and faciokinesis. We aimed to systematically review papers on HD in PD with a special focus on (1) early PD diagnosis and monitoring of the disease progression using acoustic voice and speech analysis, and (2) functional imaging studies exploring neural correlates of HD in PD, and (3) clinical studies using acoustic analysis to evaluate effects of dopaminergic medication and brain stimulation. A systematic literature search of articles written in English before March 2016 was conducted in the Web of Science, PubMed, SpringerLink, and IEEE Xplore databases using and combining specific relevant keywords. Articles were categorized into three groups: (1) articles focused on neural correlates of HD in PD using functional imaging (n = 13); (2) articles dealing with the acoustic analysis of HD in PD (n = 52); and (3) articles concerning specifically dopaminergic and brain stimulation-related effects as assessed by acoustic analysis (n = 31); the groups were then reviewed. We identified 14 combinations of speech tasks and acoustic features that can be recommended for use in describing the main features of HD in PD. While only a few acoustic parameters correlate with limb motor symptoms and can be partially relieved by dopaminergic medication, HD in PD seems to be mainly related to non-dopaminergic deficits and associated particularly with non-motor symptoms. Future studies should combine non-invasive brain stimulation with voice behavior approaches to achieve the best treatment effects by enhancing auditory-motor integration.

  7. [Forensic medical diagnostics of intoxication with certain poisonous mushrooms in the case of the lethal outcome in a hospital].

    PubMed

    Zaraf'aynts, G N

    2016-01-01

    The present study was undertaken with a view to improving forensic medical diagnostics of intoxication with poisonous mushrooms in the cases of patients' death in a hospital. A total of 15 protocols of forensic medical examination of the corpses of the people who had died from acute poisoning were available for the analysis. The deathly toxins were amanitin and muscarine contained in various combinations in the death cap (Amanita phalloides) and the early false morels (Gyromitra esculenta and G. gigas). The main poisoning season in the former case was May and in the latter case August and September (93.4%). The mortality rate in the case of group intoxication (such cases accounted for 40% of the total) amounted to 28.6%. 40% of the deceased subjects consumed mushrooms together with alcohol. The poisoning caused the development of either phalloidin- or gyromitrin-intoxication syndromes (after consumption of Amanita phalloides and Gyromitra esculenta respectively). It is emphasized that the forensic medical experts must substantiate the diagnosis of poisoning with mushroom toxins based on the results of the chemical-toxicological and/or forensic chemical investigations. The relevant materials taken from the victim or the corpse should be dispatched for analysis not only within the first day but also on days 2-4 after intoxication. The mycological and genetic analysis must include the detection and identification of mushroom microparticles and spores in the smears from the oral cavity, vomiting matter, wash water, gastric and intestinal contents. In addition, the macro- and microscopic morphological signs, clinical data (major syndromes, results of laboratory studies, methods of treatment) should be taken into consideration as well as the time (season) of mushroom gathering, simultaneous poisoning in a group of people, and other pertinent information.

  8. Automatic segmentation of medical images using image registration: diagnostic and simulation applications.

    PubMed

    Barber, D C; Hose, D R

    2005-01-01

    Automatic identification of the boundaries of significant structure (segmentation) within a medical image is an are of ongoing research. Various approaches have been proposed but only two methods have achieved widespread use: manual delineation of boundaries and segmentation using intensity values. In this paper we describe an approach based on image registration. A reference image is prepared and segmented, by hand or otherwise. A patient image is registered to the reference image and the mapping then applied to ther reference segmentation to map it back to the patient image. In general a high-resolution nonlinear mapping is required to achieve accurate segmentation. This paper describes an algorithm that can efficiently generate such mappings, and outlines the uses of this tool in two relevant applications. An important feature of the approach described in this paper is that the algorithm is independent of the segmentation problem being addresses. All knowledge about the problem at hand is contained in files of reference data. A secondary benefit is that the continuous three-dimensional mapping generated is well suited to the generation of patient-specific numerical models (e.g. finite element meshes) from the library models. Smoothness constraints in the morphing algorithm tend to maintain the geometric quality of the reference mesh.

  9. Guided-mode resonance sensors for rapid medical diagnostic testing applications

    NASA Astrophysics Data System (ADS)

    Wawro, D.; Ding, Y.; Gimlin, S.; Zimmerman, S.; Kearney, C.; Pawlowski, K.; Magnusson, R.

    2009-02-01

    A new tag-free photonic resonance concept occurring on subwavelength waveguide gratings is applied for rapid medical testing applications. These high-resolution sensors operate in real time while being sensitive to a wide variety of analytes, including microbials. This method does not require extensive processing steps, thus simplifying assay tests and enabling a rapid response (less than 30 minutes is possible). In this work, a sensor system that uses a single, fixed-wavelength source with a shaped input wavefront to auto-scan in angle has been developed. As binding events occur at the sensor surface, shifts in a resonance reflection peak (or a corresponding transmission minimum) are tracked as a function of incident angle. The amount of angular shift is correlated to the quantity of analyte in the test sample. Due to inherent polarization diversity, two narrow peaks shift their positions on the sensor surface when a bioreaction occurs, thereby providing cross-referenced data. The sensor system connects to portable interfaces for data acquisition and analysis by dedicated software codes. A portable guided-mode resonance sensor system prototype has been developed. Its performance for the detection of the microbial S. aureus in buffer and rat serum is presented in this paper.

  10. Tele-ultrasound using ATM over a T-1 satellite connection

    NASA Astrophysics Data System (ADS)

    Williamson, Morgan P.; Suitor, Charles T.; de Treville, Robert E.; Freckleton, Michael W.; Kinsey, Van; Goeringer, Fred; Lyche, David K.; Hunter, Bruce; Jennings, Neal E.; Shelton, Philip D.; Marcy, Jon; Poore, Tom; North, Jack

    1996-04-01

    In September 1995 the United States military conducted a demonstration project to provide live ultrasound video and diagnostic DICOM still images using GTE's asynchronous transfer mode (ATM) technologies over an Orion T-1 satellite link. Still images were frame-grabbed from a Diasonics ultrasound and sent to the ALI Wide Area Network system. A group of diagnostic images was then sent in DICOM 3.0 format over a virtual ethernet satellite link from Chantilly, Virginia to Dayton, Ohio. These images came across a DICOM gateway into the Medical Diagnostic Imaging Support (MDIS) System. Live video from the ultrasound was also routed through a CLI Radiance VTC over the satellite to a VTC in Ohio. The video bandwidth was progressively narrowed with two radiologists determining the minimal acceptable bandwidth for detecting test objects in a phantom. The radiologists accepted live video ultrasound at bandwidths as low as 384 kbps from the hands of an experienced ultrasonographer located hundreds of miles away. DICOM still images were sent uncompressed and were of acceptable image quality when viewed on the MDIS system. The technology demonstrated holds great promise for both deployed U.S. Military Forces and civil uses of remote radiology. Detailed network drawings and videotapes of the ultrasound examinations at the remote site are provided.

  11. Ultrasound imaging in the general practitioner's office – a literature review

    PubMed Central

    Ryk, Małgorzata; Suwała, Magdalena; Żurakowska, Tatiana; Kosiak, Wojciech

    2016-01-01

    Ultrasound, which is a safe and non-invasive diagnostic modality that uses more and more advanced imaging techniques, has become the first-choice examination in various diseases. It is more and more often used in the general practitioner's office to supplement physical examination and interview. Aim The aim of this paper is to review the Polish medical literature pertaining to the usage of ultrasound imaging in general practice as well as to present advantages, disadvantages and utility associated with conducting ultrasound examinations by general practitioners based on selected publications. Material and methods The analysis involved 15 articles found in Polish medical literature published in 1994–2013 in 9 medical journals. These publications were obtained using various data bases, such as Polish Medical Bibliography, Google Scholar as well as websites of “Lekarz Rodzinny” and “Ultrasonografia.” Results Of 15 available publications, 5 papers present the usage of ultrasound imaging by a primary care physician for general purposes, 4 discuss the usage of abdominal scans, 3 – imaging of the neck and lymph nodes, 1 – lungs, and 2 discuss its usage for specific disease entities. In over 70% of the papers, the financial aspect associated with the usage of this modality in general practice is mentioned. More than a half of the publications draw attention to the possibility of using point-of-care ultrasound examinations. Advantages of ultrasonography most often mentioned by the authors include: good effects of screening, safety, short duration and low cost. The authors of eight publications also indicate disadvantages associated with ultrasound imaging used by a general practitioner. Conclusions In the Polish literature, there are relatively few papers on the role of ultrasonography in the office of a primary care physician. This modality is more and more often becoming a tool that helps primary care physicians to establish diagnoses, accelerates the

  12. Abdominal ultrasound

    MedlinePlus

    ... Kidney - blood and urine flow Abdominal ultrasound References Chen L. Abdominal ultrasound imaging. In: Sahani DV, Samir ... the Health on the Net Foundation (www.hon.ch). The information provided herein should not be used ...

  13. Endoscopic ultrasound

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/007646.htm Endoscopic ultrasound To use the sharing features on this page, please enable JavaScript. Endoscopic ultrasound is a type of imaging test. It is ...

  14. High intensity focused ultrasound technology, its scope and applications in therapy and drug delivery.

    PubMed

    Phenix, Christopher Peter; Togtema, Melissa; Pichardo, Samuel; Zehbe, Ingeborg; Curiel, Laura

    2014-01-01

    Ultrasonography is a safe, inexpensive and wide-spread diagnostic tool capable of producing real-time non-invasive images without significant biological effects. However, the propagation of higher energy, intensity and frequency ultrasound waves through living tissues can induce thermal, mechanical and chemical effects useful for a variety of therapeutic applications. With the recent development of clinically approved High Intensity Focused Ultrasound (HIFU) systems, therapeutic ultrasound is now a medical reality. Indeed, HIFU has been used for the thermal ablation of pathological lesions; localized, minimally invasive ultrasound-mediated drug delivery through the transient formation of pores on cell membranes; the temporary disruption of skin and the blood brain barrier; the ultrasound induced break-down of blood clots; and the targeted release of drugs using ultrasound and temperature sensitive drug carriers. This review seeks to engage the pharmaceutical research community by providing an overview on the biological effects of ultrasound as well as highlighting important therapeutic applications, current deficiencies and future directions.

  15. Carotid Ultrasound

    MedlinePlus

    ... this page from the NHLBI on Twitter. Carotid Ultrasound Also known as carotid duplex. Carotid ultrasound is a painless imaging test that uses high- ... of your carotid arteries. This test uses an ultrasound machine, which includes a computer, a screen, and ...

  16. Medical revolution in Argentina.

    PubMed

    Ballarin, V L; Isoardi, R A

    2010-01-01

    The paper discusses the major Argentineans contributors, medical physicists and scientists, in medical imaging and the development of medical imaging in Argentina. The following are presented: history of medical imaging in Argentina: the pioneers; medical imaging and medical revolution; nuclear medicine imaging; ultrasound imaging; and mathematics, physics, and electronics in medical image research: a multidisciplinary endeavor.

  17. Current practice in laboratory diagnostics of autoimmune diseases in Croatia. 
Survey of the Working group for laboratory diagnostics of autoimmune diseases of the Croatian Society of Medical Biochemistry and Laboratory Medicine

    PubMed Central

    Kuna, Andrea Tešija; Đerek, Lovorka; Kozmar, Ana; Drvar, Vedrana

    2016-01-01

    Introduction With the trend of increasing incidence of autoimmune diseases, laboratories are faced with exponential growth of the requests for tests relating the diagnosis of these diseases. Unfortunately, the lack of laboratory personnel experienced in this specific discipline of laboratory diagnostic, as well as an unawareness of a method limitation often results in confusion for clinicians. The aim was to gain insight into number and type of Croatian laboratories that perform humoral diagnostics with the final goal to improve and harmonize laboratory diagnostics of autoimmune diseases in Croatia. Materials and methods In order to get insight into current laboratory practice two questionnaires, consisting of 42 questions in total, were created. Surveys were conducted using SurveyMonkey application and were sent to 88 medical biochemistry laboratories in Croatia for the first survey. Out of 33 laboratories that declared to perform diagnostic from the scope, 19 were selected for the second survey based on the tests they pleaded to perform. The survey comprised questions regarding autoantibody hallmarks of systemic autoimmune diseases while regarding organ-specific autoimmune diseases was limited to diseases of liver, gastrointestinal and nervous system. Results Response rate was high with 80 / 88 (91%) laboratories which answered the first questionnaire, and 19 / 19 (1.0) for the second questionnaire. Obtained results of surveys indicate high heterogeneity in the performance of autoantibody testing among laboratories in Croatia. Conclusions Results indicate the need of creating recommendations and algorithms in order to harmonize the approach to laboratory diagnostics of autoimmune diseases in Croatia. PMID:27812306

  18. Non-Destructive Measurement Methods (Neutron-, X-ray Radiography, Vibration Diagnostics and Ultrasound) in the Inspection of Helicopter Rotor Blades

    DTIC Science & Technology

    2005-04-01

    the radiography gauging. In addition to the Statistical Energy Analysis (SEA) measurement a small exciter table (BK4810) and impedance head (BK 8000... Statistical Energy Analysis ; 7th Conf. on Vehicle System Dynamics, Identification and Anomalies (VSDIA2000), 6-8 Nov. 2000 Budapest, Proc. pp. 491-493... Energy Analysis (SEA) and Ultrasound Test. (UT) were concurrently applied. These methods collect accessory information on the objects under inspection

  19. [Ultrasound of spleen and retroperitoneum].

    PubMed

    Salcedo Joven, I; Segura-Grau, A; Díaz Rodríguez, N; Segura-Cabral, J M

    2016-09-01

    Ultrasound provides data of extremely great value when studying spleen pathology, being diagnostic in splenomegaly and splenic trauma, as well as offering a good approach to the diagnosis of both benign and malignant focal pathology, particularly lymphoma. However, for the evaluation of adrenal and retroperitoneal diseases, other techniques such as CT or MRI are more suitable, even though ultrasound is still an excellent screening and monitoring method, as well as being useful in non-invasive therapeutic approaches.

  20. What's new in urologic ultrasound?

    PubMed Central

    Lal, Anupam; Naranje, Priyanka; Pavunesan, Santhosh Kumar

    2015-01-01

    Ultrasound is an imaging technology that has evolved swiftly and has come a long way since its beginnings. It is a commonly used initial diagnostic imaging modality as it is rapid, effective, portable, relatively inexpensive, and causes no harm to human health. In the last few decades, there have been significant technological improvements in the equipment as well as the development of contrast agents that allowed ultrasound to be even more widely adopted for urologic imaging. Ultrasound is an excellent guidance tool for an array of urologic interventional procedures and also has therapeutic application in the form of high-intensity focused ultrasound (HIFU) for tumor ablation. This article focuses on the recent advances in ultrasound technology and its emerging clinical applications in urology. PMID:26166960